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Surface Plasmon Based Engineering of Semiconductor Nanowire Optics

Abstract
Semiconductor nanowires combine the material properties of semiconductors, which are ubiquitous in
modern technology, with nanoscale dimensions and as such, are firmly poised at the forefront of
nanotechnology research. The rich physics of semiconductor nanowire optics, in particular, arises from the
increased interaction between light and matter that occurs when light is confined to dimensions below the size
of its wavelength, in other words, when the nanowire serves as a light trapping optical cavity, which itself is
also a source of light. Light confinement is taken to new extremes by coupling to the surface plasmon modes
of metallic nanostructures, where light acquires mixed photonic and electronic character, and which may
focus light to deep-subwavelength regions amenable to the dimensions of the electron wave. This thesis
examines how the integration of "plasmonic optical cavities" and semiconductor nanowires leads to
substantial modification (and enhancement) of the optical properties of the same, resulting in orders-of-
magnitude faster and more efficient light emission with colors that may be tuned as a function of optical cavity
geometry. Furthermore, this method is applied to nanowires composed of both direct and indirect bandgap
semiconductor materials resulting in applications such as light emission from high-energy states in light
emitting materials, highly enhanced broadband light emission from nominally non-light emitting (dark)
materials, and broadband (and anomalous) enhancement of light absorption in various materials, all the while
maintaining the unifying theme of employing integrated plasmonic-semiconductor optical cavities to achieve
tailored optical properties. We begin with a review of the electromagnetic properties of optical cavities,
surface plasmon-enhanced light emission in semiconductors, and the key physical properties of
semiconductor nanowires. It goes without saying that this thesis work resides at the interface between optical
physics and materials science.
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ABSTRACT 

 

SURFACE PLASMON BASED ENGINEERING OF SEMICONDUCTOR 

NANOWIRE OPTICS 

Carlos Octavio Aspetti 

Ritesh Agarwal, PhD 

Semiconductor nanowires combine the material properties of semiconductors, which are 

ubiquitous in modern technology, with nanoscale dimensions and as such, are firmly 

poised at the forefront of nanotechnology research. The rich physics of semiconductor 

nanowire optics, in particular, arises from the increased interaction between light and 

matter that occurs when light is confined to dimensions below the size of its wavelength, 

in other words, when the nanowire serves as a light trapping optical cavity, which itself is 

also a source of light. Light confinement is taken to new extremes by coupling to the 

surface plasmon modes of metallic nanostructures, where light acquires mixed photonic 

and electronic character, and which may focus light to deep-subwavelength regions 

amenable to the dimensions of the electron wave. This thesis examines how the 

integration of “plasmonic optical cavities” and semiconductor nanowires leads to 

substantial modification (and enhancement) of the optical properties of the same, 

resulting in orders-of-magnitude faster and more efficient light emission with colors that 

may be tuned as a function of optical cavity geometry. Furthermore, this method is 

applied to nanowires composed of both direct and indirect bandgap semiconductor 

materials resulting in applications such as light emission from high-energy states in light 

emitting materials, highly enhanced broadband light emission from nominally non-light 
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emitting (dark) materials, and broadband (and anomalous) enhancement of light 

absorption in various materials, all the while maintaining the unifying theme of 

employing integrated plasmonic-semiconductor optical cavities to achieve tailored optical 

properties. We begin with a review of the electromagnetic properties of optical cavities, 

surface plasmon-enhanced light emission in semiconductors, and the key physical 

properties of semiconductor nanowires. It goes without saying that this thesis work 

resides at the interface between optical physics and materials science.  
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Figure 4.8 | a) Phonon dispersion of crystalline Si (adapted from Wei et.al.20) The dashed 
vertical lines indicate phonon modes in high density-of-states (~zero slope) regions. 
Electronic dispersion of Si (adapted from Chelikowsky et. al.22), where dashed lines 
demonstrate the corresponding electronic states at the same momentum values as high-
DOS phonons from a). a) and b) are used to explain the hot photoluminescence bands.  

Figure 4.9 | Spontaneous emission enhancement as function energy mismatch between Ω-
cavity mode and phonon-mediated hot photoluminescence state for a) resonant size 
nanowire (d=70 nm) and b) non-resonant size nanowire (d=50 nm). The vertical dash 
lines represent the positions of the hot photoluminescence bands reported in Figure 4.7a 
and intersect with the curve corresponding to spontaneous emission enhancement of 
those states.  

Figure 5.1 | a) Schematic of silicon nanowire integrated with a 300 nm thick silver film to 
form a plasmonic nanocavity (drawn to scale). The native oxide of silicon (SiOx) is used 
to separate the active silicon core from the silver shell.  b) Scanning electron microscope 
(SEM) of silver coated silicon nanowire. c) Transmission electron microscope (TEM) 
image of a representative bare silicon nanowire demonstrating 1.5-2.5 nm of native oxide 
(denoted by dashed white lines) on the nanowire surface. d) Frequency domain spatial 
distribution of the electric field intensity in Ω-cavity Si (d=150 nm) demonstrating high 
order (m=9) mode (obtained via FDTD simulation) and e) corresponding magnetic field 
intensity.  
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Figure 5.2 | Photoluminescence spectrum of plasmonically-coupled silicon nanowire 
(d=150 nm) plotted vs. a) absolute emission energy and b) energy shift from the laser line 
for various excitation energies in the range 1.959 eV-2.708 eV. Spectra in (b) are plotted 
with a constant offset of 2×10! counts for clarity. The dashed boxes labeled A and B 
denote high-intensity emission bands. c) Schematic of the electronic dispersion of silicon 
featuring carrier excitation (magenta arrows), intra-band relaxation and hot-luminescence 
(green arrows) and radiative recombination from thermalized carriers (blue arrows). This 
process is examined for relaxation towards the selected conduction band minima at both 
the X-points (1.12 eV) and L-points (~2.1 eV).  

Figure 5.3 | a) Magnified photoluminescence spectra of d=150 nm plasmonically-coupled 
silicon nanowire in low energy region demonstrating emission below the silicon bandgap 
at the L-point. (b-e) Variation in spectral positions of subpeaks in photoluminescence 
spectrum of plasmonically-coupled silicon nanowire. b) variation in band A and c) band 
B as a function of excitation energy for a single silicon nanowire size (d=150 nm).  d) 
variation in spectral positions of band A and e) band B for several nanowire sizes as a 
function of excitation energy. Black arrows denotes location of first high intensity peak.  

Figure 5.4 | Electromagnetic mode properties of plasmonically-coupled silicon analyzed 
via FDTD simulations and photoluminescence spectroscopy. a) nomenclature convention 
for modes polarized parallel (TM) and perpendicular (TE) to the nanowire long-axis. b) 
Variable-energy excitation photoluminescence spectra of d=150 nm Ω-cavity silicon 
nanowire juxtaposed with simulated cavity mode spectrum (orange curve). c-f) frequency 
domain profiles of the electric intensity (log scale) for cavity modes ordered from highest 
to lowest energy. g) Plot of quality factor versus azimuthal index (m), for TE modes in 
(b) and represented by the field profiles in (d-f).  

Figure 5.5 | a-c) Photoluminescence spectra of plasmonically-coupled nanowires excited 
at various laser energies in the range 1.959 eV – 2.708 eV for nanowires of size a) d=151 
nm, b) d=153 nm, and c) d=156 nm (all spectra are offset by 25,000 counts for clarity). 
The cavity mode spectrum of the d=151 nm nanowire is plotted on top of the 
photoluminescence spectra (high in red to low in blue) using the same energy scale. The 
variable energy excitation photoluminescence spectra demonstrate the role of mode 
structure in modulating high intensity subpeaks. In addition to size-dependent peak 
modulation, the modes, which red-shift with increasing size, also enable hot 
luminescence at lower energies for larger nanowires. d) Photoluminescence spectrum in 
low energy region (excited with 633 nm, He-Ne laser) for samples (a-c). e) Simulated 
cavity mode spectra of plasmonically-coupled silicon nanowires with diameters in the 
range d=150 nm to 160 nm as a function of energy.  

Figure 5.6 | a) Temperature dependent photoluminescence spectra of plasmonically-
coupled silicon (for two different samples) in the range 77 K-300 K. Increase in overall 
emission intensity with temperature follows expected trend for hot-luminescence from an 
indirect bandgap material as the phonon population increases with increasing 
temperature. b) Plot of total integrated counts as a function of temperature for samples 
shown in (a).  



	
  

	
   xvi	
  

Figure 5.7 | Difference between the average emission energy and exciting laser energy 
(i.e. the mean emission shift) plotted against excitation energy. The variation in mean 
emission energy as function of size and excitation energy highlight the role of both cavity 
modes and electronic structure in modulating the emission spectrum.  

Figure 6.1 | Model of optical refrigeration for a 4-level system. |0  and |1  comprise the 
electronic states of the ground state manifold separated by energy 𝛿𝐸!. |2  and |3  
comprise the excited state manifold separated by energy 𝛿𝐸!. Wrad and Wnr are the 
radiative and non-radiative decay rates respectively, while w1 and w2 correspond to the 
phonon-mediated thermalization rate of the ground state and excited state manifolds 
respectively. [Adapted from reference 10] 

Figure 6.2 | Stokes and anti-Stokes Raman scattering for bare CdS nanowire (d~200 nm) 
with 5 nm conformal SiO2 coating. a) Raman spectrum featuring broad 
photoluminescence peak centered at ~1157 cm-1 (2.474 eV) which is attributed to 
excitonic emission from CdS. b) Magnified view of region near 2LO Raman peaks in 
both the Stokes and anti Stokes region. Spectra have been baseline corrected to eliminate 
the photoluminescence background and provide accurate values of the Raman intensity. 

Figure 6.3 | Stokes and anti-Stokes Raman scattering for metal coated CdS nanowire with 
5 nm conformal SiO2 coating and 300 nm Ag metal shell (green curves). a) Raman 
spectrum featuring broad photoluminescence peak centered at ~980 cm-1 (2.452 eV) 
which is attributed to excitonic emission from CdS. The spectrum of a bare (non-metal 
coated) CdS nanowire is also plotted for comparison (black curve). b) Magnified view of 
region near 2LO Raman peaks in both the Stokes and anti Stokes region. Spectra have 
been baseline corrected to eliminate the photoluminescence background and provide 
accurate values of the Raman intensity. 

Figure 6.4 | Atomic force microscopy of CdS nanobelts. a) AFM image of typical thick 
CdS nanobelt with thickness of ~240 nm. b) AFM profiles of typical thick and thin CdS 
nanobelts as discussed in section 6.2. 

Figure 6.5 | Differential Luminescence Thermometry temperature calibration curve and 
schematic of measurement scheme. a) Photoluminescence at several times in the range 0-
18 minutes for a CdS sample at a fixed temperature of 268 K. The photoluminescence 
peak  position reaches a steady state within ten minutes of stabilization of the sample 
stage temperature. b) Photoluminescence spectra for a representative CdS samples at 
various temperatures in the range 268 K to 312 K (plotted at 8 K intervals for clarity). c) 
Plot of change in temperature, ΔT, vs. change in spectral peak position, ΔE, obtained 
from the photoluminescence data in (b). The blue line represents a linear fit to the data. d) 
schematic of measurement process using a pump laser (514.5 nm) for cooling and a low 
power probe laser (473 nm) for monitoring the shift in the photoluminescence spectrum.  

Figure 6.6 | Optical image of CdS nanobelt suspended over PMMA boxes (~9 µm x 9 
µm) with a ~4 µm separation. The bright emission from the nanobelt is anti-Stokes 
photoluminescence resulting from excitation below the bandgap at (with the 514.5 nm 
pump laser).  
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Figure 6.7 | Anti Stokes photoluminescence in bare CdS nanobelts with thickness d~200-
300 nm. a) Photoluminescence in CdS nanobelt excited with the 514.5 nm line of a CW 
laser (inset: optical image of anti Stokes photoluminescence excited with pump laser). b) 
Magnified view of anti Stokes photoluminescence spectrum in CdS nanobelt featuring a 
blue shift of  ~1.74 meV (~0.3 nm), which reaches a steady state after 15 minutes of 
excitation with the pump laser.  c) Magnified view of anti Stokes photoluminescence 
spectrum in CdS nanobelt featuring a blue shift of 2.6 meV (~0.5 nm) after 1 hour of 
excitation with pump laser.  

Figure 6.8 | Pump-probe differential luminescence thermometry of bare and passivated 
CdS nanobelts. a) Stokes Photoluminescence spectra of a CdS nanobelt featuring the 
spectrum at time t=0 (black curve) and t=15 min (after pump excitation; red curve). The 
difference spectrum (DLT curve) is plotted in magenta. c) Stokes Photoluminescence 
spectra of a CdS nanobelt passivated with SiO2 featuring the spectrum at time t=0 (black 
curve) and t=10 min (red curve). The difference spectrum (DLT curve) is also plotted in 
magenta. 

Figure 6.9 | Probe photoluminescence peak position and sample stage temperature vs. 
time for two bare CdS nanobelt samples in the temperature range a) 307 K-311 K and b) 
311 K-316K. 

Figure 6.10 | Laser cooling of plasmonically-coupled CdS in geometry optimized for top-
down excitation and measurement. a) Schematic of CdS integrated with a 15 nm thick Ag 
film. Excitation is performed through the Ag film as denoted by the dark green and 
purple arrows. Emission is also measured through the substrate (bright green arrow). b) 
Stokes Photoluminescence spectra of a CdS nanobelt featuring the spectrum at time t=0 
(black curve) and t=15 min (after pump excitation; red curve). The difference spectrum 
(DLT curve) is plotted in magenta. c) Magnified view of anti-Stokes photoluminescence 
(excited with probe laser) of data presented in (b).  

Figure 6.11 | Laser cooling of plasmonically-coupled CdS using inverted geometry. a) 
Schematic of CdS integrated with a 300 nm thick silver film. Excitation is performed 
through the substrate as denoted by the dark green and purple arrows. Emission is also 
measured through the substrate (bright green arrow). b-d) Magnified view of Anti-Stokes 
photoluminescence (excited with probe laser) b) after 10 minutes of cooling, c) after 2 
minutes of warm up time (after excitation with pump laser has ceased) and d) 5 minutes 
of warm up time. The original probe photoluminescence spectrum at t=0 is plotted in 
black in all three plots as a reference point.  

Figure 7.1 | Photoluminescence of plasmonically-coupled Si nanowire (d~150 nm) 
excited with the 457.8 nm laser line of an Argon-ion laser (continuous wave, blue curve) 
and Ti:Sapphire laser (pulse width 140 fs, 80 MHz repetition rate) tuned to 458 nm 
(magenta curve).  
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Chapter 1. Introduction 

Reproduced in part with permission from Reports on Progress in Physics, Volume 77, 
Issue 8, Pages 1-20. Copyright 2014 ACS Publications 

Reproduced in part with permission from the Journal of Physical Chemistry Letters 
(accepted, October 2014) 

1.1: Cavity Electromagnetics Primer: Light Emission in Optical Cavities  

When we think of optics of materials, we typically recall phenomena such as 

reflection and refraction, i.e. geometric optics. This is an example of the interaction 

between light and matter, where light moves the free and bound charges in a material 

giving rise to all the optical phenomena.1 Yet, some of the most interesting effects arise 

when (i) light interacts with active media, that is materials which have electronic 

resonances in the same spectral range of the incoming light, and (ii) when that light is 

placed in a light-trapping box. In 1946, Edward Purcell was the first to realize that the 

rate of light emission from a radiating dipole  (such as the electron-hole pair in a 

semiconductor) is a function of the surroundings of that optical emitter.  

Originally developed for radio-frequency operation, the enhanced spontaneous 

emission rate of the emitter may be expressed as:  

 
𝛾 =

3𝑄
4𝜋!

𝜆!

𝑉!
𝛾! 

Eq. 1.1 

where 𝛾! is the spontaneous emission rate in free space, 𝜆 is the wavelength of the 

emitted radiation in the host medium, Q is the quality factor of the electromagnetic mode 

that couples to the optical emitter, and 𝑉! is the mode volume of the same.2 The quality 
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factor is a measure of the optical cavity to store electromagnetic energy; analogous to 

how a capacitor stores electrical energy. It can also be considered as a measure of how 

long light is confined to the optical cavity before leaking into the vacuum. In the 

denominator we find the mode volume, which can be expressed as:  

 
𝑉! =

𝜀 𝑟 𝐸!(𝑟)𝑑!𝑟
(𝜀 𝑟 𝐸!(𝑟))!"#

 
Eq. 1.2  

where 𝜀 𝑟  is the dielectric constant of the material and 𝐸!(𝑟) the electric field intensity. 

This is a measure of the confinement of the electromagnetic field. It has the units of 

volume and, in fact, is often quoted with respect to the volume taken up by light in free 

space, 𝜆!. The enhancement in the spontaneous emission rate, 𝛾 𝛾!, is known as the 

Purcell factor, and depends on the ratio Q/Vm. In other words, in order to obtain highly 

enhanced spontaneous emission rates, we should place optical emitters in environments 

that have long lived modes (high Q) and where the optical modes are also highly 

confined (low Vm). As expected, these two quantities are typically anti-correlated. The 

smaller the mode volume, the more likely it is that light will leak out (lower Q) and vice 

versa. Furthermore, there is a fundamental limit on the mode volume of light, known as 

the diffraction limit, where for example in the case of waveguided modes, light may not 

be confined to dimensions much smaller than one-half its wavelength in the host medium 

(this is also known as the “cutoff energy” in the waveguide literature).3 For 

completeness’s sake, we note that the above expression assumes perfect spectral 

matching between the emitter and the optical cavity mode. In reality, both spectral 

overlap as well as spatial and polarization overlap between the optical emitter and 
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electromagnetic mode must be taken into account for accurate computation of the Purcell 

factor4 (see section 4.6). The physical origin of the Purcell effect is rooted in Fermi’s 

golden rule, where the spontaneous emission rate of an optical emitter may be computed 

as: 

 𝛾 =
2𝜋
ℏ 𝑓 𝑑 ∙ 𝐸 𝑟 𝑖

!
𝜌(ℏ𝜔) Eq. 1.3 

and where 𝑓 𝑑 ∙ 𝐸 𝑟 𝑖  is the transition dipole matrix element for the transition between 

state f and state i, and 𝜌(ℏ𝜔) is the photon density of states. Here, the Q/Vm ratio from the 

Purcell factor in classical terms may be related to the density of photon states, ρ, in the 

quantum electrodynamics picture. For an insightful derivation of the Purcell effect in 

terms of classical parameters (as expressed above), but beginning with Fermi’s golden 

rule, the reader is referred to a recent review by Maier et al.5  

Though it was initially developed for radio-frequency operation, the Purcell effect 

is a general principle that can be applied across the electromagnetic spectrum. Advances 

in nanofabrication have enabled the engineering of optical cavities with nanoscale 

dimensions, thus tuning their resonances to the nanoscale portion of the electromagnetic 

spectrum (in terms of wavelength), or in other words, the UV-visible-near IR frequencies. 

This is a boon from the perspective of semiconductor technology as many relevant 

elemental and compound semiconductors (Ge, Si, InP, GaAs, etc.) feature band gaps and 

light emission in this spectral range.6 Implicit here is the fact that the electron-hole pairs  

of semiconductors may function as optical emitters, the light emission of which may be 
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tuned as a function of the surroundings.  As mentioned above, due to the fundamental 

limit on the mode volume, and thus the size of the optical cavity, research has focused on 

optimizing the quality factor of optical cavities.7,8 Figure 1.1 is a summary of 

conventional optical cavities, where the light source is a semiconductor quantum dot that 

is embedded in an optical cavity fabricated via top-down methods.8 Optical cavities in the 

Whispering Gallery Mode resonator geometry (where light is confined to the 

circumference of a circular cavity) excel at hosting high Q modes; 125 being one of the 

highest Purcell factors achieved at optical frequency with a corresponding quality factor 

of 12,000.9 Quality factors as high as 108 have been achieved at IR frequency. 10  

Such Purcell enhancement schemes suffer from three main drawbacks. First, as 

can be observed in figure 1.1, high Q cavities feature large spatial footprints generally of 

several microns limiting their applicability in nanotechnology. Secondly, in these cases 

the optical emitter and optical cavity are two separate entities which must be properly 

aligned to achieve the desired results, and which adds another level of difficulty to their 

fabrication. Finally, perhaps the most fundamental limitation on these high Q cavities is 

their limited operational bandwidth. A high quality factor, or long-lived mode in time 

domain, equates to a narrow peak in frequency space, where the peak width, ∆𝑓, is 

related to the quality factor at the resonance frequency, 𝑓!, as ∆𝑓 = 𝑓! 𝑄. For the 

previously mentioned high-Q resonator (Q=12,000), this equates to a mode width <1 

meV, thereby placing a significant constraint on the operation of this hybrid optical 

cavity-semiconductor device.  If we are only interested in enhancing spontaneous 

emission, then the best systems would be monolithically integrated optical cavity-
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semiconductor hybrid structures, which optimize Q/Vm not just through high Q and low 

Vm but rather through low Q, which equates to operation over a broad frequency range, 

and ultralow mode volumes, significantly below the diffraction limit, thereby maintaining 

the high Q/Vm ratio. Metals excel at confining light into deep-subwavelength dimensions, 

where light couples to surface modes on the metal surface and acquires both photonic and 

electronic character. This type of optical mode is termed the “surface plasmon” and will 

be the focus of the next subsection.  

 

 

 

 

 

  

 

Figure 1.1 | Different all-dielectric cavity paradigms and corresponding cavity Quantum 
Electrodynamics parameters. The red dot corresponds to the position of the optical 
emitter (quantum dot). For the full figure (including Rabi Splitting magnitude, etc.) 
please refer to the original review article by Khitrova et. al.10 [Adapted from Reference 
10] 
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1.2: Surface Plasmons and their Role as Optical Cavities and Antennas 

Metals excel at confining light into deep-subwavelength dimensions. When light 

(photon) is incident on the surface of a metal (in the spectral region where the metal has 

negative values of permittivity), the surface electrons and photon may form a strongly 

coupled system, also known as the surface plasmon polariton (SPP).11 The surface 

electrons serve to “anchor” the light to the surface of the metal resulting in an 

electromagnetic mode that may only propagate on the surface of the metal. The SPP 

features a dispersion relation that is similar in form to that of other strongly coupled 

systems (such as the exciton-polariton in semiconductors1) and which dictates its physical 

properties. For a detailed description of SPPs the reader is referred to section 1.2.1.  In a 

similar fashion, localized surface plasmons (LSPs) are non-propagating modes, which 

may be excited in deep-subwavelength structures where the light-matter interaction may 

be treated quasistatically.12 Physically speaking, the key difference between SPPs and 

LSPs is that LSPs are not bound to the same dispersion relation as SPPs, which facilitates 

their excitation from the far-field12 (see section 1.2.1). Both are surface plasmon (SP) 

resonances. Given that ratio of surface to volume increases as the dimensions of the 

system shrink, at the nanoscale, the optical properties of metals are dominated by SP 

resonances.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

1  For a general overview of strong light-matter coupling and its observation in 
semiconductors, the reader is referred to C. F. Klinghshirn’s “Semiconductor Optics”, 3rd 

ed., Chapters 5 and 6.  
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Though the exact form of the surface plasmon resonance frequency depends on 

the dispersion relation, which itself will be a function of geometry (i.e. boundary 

conditions) and material properties, it will generally scale with charge carrier 

concentration. Metals with high free electron densities, such as Ag and Au, posses SP 

resonances in the visible regime. Au nanostructures, for example, interact with light with 

wavelengths on the order of a micrometer and confine it to dimensions of a few 

nanometers, ~100 times smaller, far below the diffraction limit13-15 and vice-versa. In 

other words, these metal nanostructures function as antennas, which operate at optical 

frequency. Moreover, the ultra-low mode volumes associated with sub-diffraction limited 

confinement enable truly nanoscale photonics.  

SP-based devices, where the exciting source is light from the far field and where 

the only spectrally-matched material resonance is that of the plasmonically-active 

medium, have enabled applications such as single-molecule detection,16,17 targeted cancer 

therapy18, more efficient solar cells19, and even optical cloaking.20 Moreover, the ability 

to transmit information at both fiber optic speeds and at truly nanoscopic length scales21 

has spurred research on the unique properties of sub-diffraction limited SP-based optics 

such as propagation, confinement and local field enhancement in nanostructured 

systems.22-25 The physics of these devices is certainly interesting in its own right, but yet 

another level of complexity (and potential applications) arises when SPs are interfaced 

with active materials, that is materials with electronic resonances (and associated 

spontaneous light emission) that are spectrally matched to the SP resonance. It should be 

noted that the term “active plasmonics” has also been used to label systems where the 
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propagation of SPPs is controlled via passive means, for example by changing the 

dielectric environment.26 In this thesis, the term active refers to the active media that is 

interfaced with SP resonances. Tailoring of the light emission properties of active 

materials is one such application, which has received significant attention in recent years 

and is largely based on the interaction between optical antennas and active media.15 27-31 

Section 1.3 provides an overview of SP-enhanced light emission and examines the effect 

of length scales on light-matter interaction. First, the reader is provided with a more 

detailed description of surface plasmons. 

1.2.1: Surface Plasmon Polaritons: a Formal Description 

The optical properties of non-magnetic materials are dictated exclusively by the 

complex dielectric function of the material, 𝜀 𝜔, 𝑘  which may be a function of both 

frequency and wavevector (or time and space in the Fourier domain). If we assume that 

the wavelength of the electromagnetic radiation is much larger than dimensions over 

which there is a gradient in material properties, such as the unit cell spacing (on the order 

of Angstroms) or electron mean free path (on the order of tens of nanometers), then the 

dielectric function may be considered to be a function of energy only, which is in general 

still accurate for metal structures up to UV frequencies.12 

By treating the highly mobile electrons of a metal as a free electron gas and 

employing a driven oscillator model (where the incident electromagnetic radiation is the 

driving term), we arrive at a free-electron model for the metal dielectric function. 
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2Barring interband transitions the dielectric function, 𝜀, of metals may be readily 

described by the free electron model (also known as the Drude model):  

 
𝜀 𝜔 = 𝜀! −

𝜔!!

𝜔! + 𝑖𝜔𝛾 
Eq. 1.4 

where 𝜀!, 𝜔!, and   𝛾 are the static permittivity, electron plasma frequency, and damping 

coefficient.32 3In general, materials with highly mobile electrons such as metals, doped 

semiconductors, or complex oxides, may undergo collective oscillations of their electrons 

in the bulk, where these behave as a plasma, the quanta of which is called the plasmon.33 

Boundary conditions at the material’s surface, on the other hand, lead to surface 

plasmons (described below), which, due to high surface-to-volume ratios, dominate the 

optical properties of plasmonically-active structures (such as metals at optical frequency) 

at the nanoscale.  

As discussed in section 1.2, light that is incident on a metal surface may couple 

strongly to the electrons on the surface resulting in a polariton, namely the surface 

plasmon polariton (SPP). Surface plasmon polaritons are a class of propagating modes at 

the interface of metals and dielectrics, thus, in order to arrive at SPPs we must apply the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

2 The interested reader may refer to derivations of the free electron model by Pedrotti et. 
al.  “Introduction to Optics”, 3rd ed., Chapter 25 and Maier et. al. “Plasmonics: 
Fundamentals and Applications”, Chapter 1. 
3 For further discussion of optical properties due to bulk plasmons refer to Charles 
Kittel’s “Introduction to Solid State Physics”, 8th ed., Chapter 14. 
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appropriate boundary conditions to Maxwell’s equations (Figure 1.2). 4The resulting 

solutions demonstrate evanescently decaying fields in the direction perpendicular to 

propagation and have both TM (only Ex, Ez, and Hy non-zero components) and TE (only 

Hx, Hz, and Ey non-zero components) polarization, of which only the TM solution 

satisfies continuity at the interface38. In other words, SPPs must have electric field 

components in the direction of propagation (i.e. the plane of incidence) and magnetic 

field components perpendicular to the direction of propagation. Furthermore, continuity 

at the interface,  

 𝑘!
𝑘!

= −
𝜀!
𝜀!

 
Eq. 1.5 

where kd, km, 𝜀!, and 𝜀! are the wavevectors and permittivities perpendicular to the 

interface in the dielectric and metals respectively, demands that 𝜀! < 0, or that 

plasmonically-active materials have negative values of permittivity. To summarize, SPPs 

are TM polarized surface modes, which demonstrate evanescent decay (exponential 

decay as function of distance) of the electric field perpendicular to the interface and may 

only occur when the permittivity (or real part of the dielectric function) of either media is 

negative (Figure 1.3). 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

4 For a detailed derivation of propagating surface plasmon modes, refer to Stefan Maier’s 
“Plasmonics: Fundamentals and Applications”, Chapter 2. 
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 In order to simplify examination of the free electron dielectric function, we may 

use the high frequency approximation where 𝜔 is close to (but less than) 𝜔!. The 

dielectric function then simplies to, 

 
𝜀 𝜔 = 1−

𝜔!!

𝜔! 
Eq. 1.6 

Thus, even at high frequencies close to the plasma frequency the real part of the dielectric 

function is negative and satisfies one the requirements for SPP excitation. Another 

important result is the dispersion relation of SPPs, which for the flat metal-dielectric 

interface is expressed as, 

 
𝑘! =

𝜔
𝑐

𝜀!𝜀!
𝜀! + 𝜀!

!
!
 

Eq. 1.7 

Figure 1.4 depicts the above dispersion for light and SPP in different media. There are 

two important conclusions we may draw from this diagram. The first, is that the SPPs 

cannot be excited directly from incident light in air, or in any medium which 

simultaneously hosts the incident light and interfaces with the metal. The reason is that 

SPPs have higher momentum values than freely propagating light, which makes sense 

from a physical picture perspective as SPPs are composed not only of moving mass-less 

particles (photons) but also electrons. Thus in order to excite SPPs, we must either couple 

light from an external higher-dielectric medium (i.e. via prism coupling) or use a grating. 

It should be noted that excitation of SPs is facilitated by coupling to active structures 

such as light emitting semiconductors, which enables near-field excitation. In other 



	
  

	
  
	
  

12	
  

words, SPPs may also be excited in the near-field via dipolar light emission from 

semiconductors placed in the evanescent tail of the SPP mode in both planar31,34-39 and 

curved metal optical cavity geometries.28,29  

 Secondly, close to the surface plasmon frequency (discussed below) the energy 

dispersion becomes flat over a large energy range. The photon density of states is 

proportional to !"
!"

!!
 thus, SPPs exhibit very high density of photon states close to the 

surface plasmon resonance, an essential attribute which forms the basis for much of the 

work presented in this thesis (see section 1.2 on the relation between photon density of 

states and enhanced light emission and section 1.3 on SP enhanced emission of light). It 

should be noted that the SP resonance frequency is different, but closely related to the 

bulk plasma frequency, 𝜔! and dielectric environment. For this idealized case, the SP 

resonance frequency maybe expressed as: 

 𝜔!" =
𝜔!

1+ 𝜀! ! ! Eq. 1.8 

Furthermore the plasma frequency is related to the free electron density via:  

 
𝜔! =

𝑛𝑒!

𝜀!𝑚
 

Eq. 1.9 

where n is the free electron density, and e, 𝜀! and m are the electron charge, permittivity 

of free space and effective electron mass respectively.  This relation accounts for the fact 

the SP resonance of metals with high a high density of conduction electrons such as Au 

or Ag is typically found in the visible regime.  
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Figure 1.2 | Boundary conditions for derivation of SPPs propagating in the x-direction. 
The dielectric function varies in the z-direction only.12 [Adapted from Reference 12] 

 

 

Figure 1.3 | a) Schematic of SPP propagating in x-direction showing coupled electron and 
electromagnetic field oscillation. b) Evanescent decay of same SPP as a function of 
distance into metal and dielectric. The SPP is highly confined to the interface and 
demonstrates faster decay into the metal due to their lossy nature.40 [Adapted from 
Reference 39] 
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Figure 1.4 | E vs. k diagram (dispersion) of SPPs at a flat metal-dielectric interface. The 
metal is described by the dielectric function and has negligible damping (𝛾 = 0 and 
therefore 𝐼𝑚 𝜀 = 0). The solid lines describe the real part of the wavevector denoting 
propagating waves and the dotted lines correspond to the imaginary part denoting loss.12 
[Adapted from Reference 12] 

 

1.3 Surface Plasmon Enhanced Light Emitters 

Yet another way to examine the potential of plasmonically active metallic 

nanostructures (i.e. optical antennas) to enhance light emission is to examine the effect of 

length scales. Electronic transitions of a single optical emitter (i.e. organic dye molecule 

or quantum well) which lead to spontaneous emission involve electrons confined to few 

nm length-scales, while the light which they emit has wavelengths on the order of ~1 

micron, thus the immediate environment of the light emitter is below the diffraction limit 

and cannot efficiently host electromagnetic modes. More to the point, the power emitted 

by a time-harmonic current element of length l is directly proportional to 𝑙 𝜆 ! where 𝜆 
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is the wavelength of the emitted light, thus this length-scale mismatch leads to, for 

example, the low absorption cross sections and low emission quantum efficiencies of 

single molecules.41 Optical antennas mitigate this length-scale mismatch by confining 

light to dimensions more amenable to the length scales of an electron confined in a 

molecule and have led to significant enhancements in fluorescence intensity (>103)15 and 

Purcell enhancements up to ~30 times15,27 for a single molecules and of ~103 for “bulk” 

(non-quantum confined) semiconductor materials.28,29 The reader is referred to several 

excellent reviews for more discussion on relating radio frequency antenna theory to 

metallic nanostructures41, optical antenna action (i.e. re-direction of light emission and 

polarization)5,41 optical-antenna enhanced quantum yield5,42 and applications thereof.5,41-

43  

The tailoring of spontaneous emission lifetimes (a.k.a. Purcell enhancement) of 

organic molecules via coupling to surface plasmons has been studied since the 1960s44 

with early experiments demonstrating both fluorescence enhancement45,46 and 

quenching47,48 of the spontaneous emission intensity. Indeed it was recently shown, both 

experimentally and theoretically, that surface plasmon enhanced spontaneous emission 

will transition from a region of enhancement to quenching with decreasing separation 

from a metal surface (see Figure 1.5).49 This is because spontaneous emission depends on 

both the excitation rate of charge carriers and the quantum yield, which have different 

functional forms. The excitation rate increases monotonically with decreasing separation 

from the metal surface. The quantum yield, on the other hand, initially rises with 

decreasing separation but eventually peaks and decreases with proximity to the metal 
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surface. It was shown by Novotny et al., that the underlying cause is the breakdown of 

dipole emission and thus excitation of higher order modes within the emitter itself, which 

leads to increased ohmic losses in the metal surface, a non-radiative pathway.49 It should 

be noted that the quantum yield, q, of an optical emitter is equal to: 

 𝑞 =
𝛾!

𝛾! + 𝛾!"
 Eq. 1.10 

where 𝛾! and 𝛾!" are the radiative and non-radiative decay rates respectively. Thus, after 

a minimum separation between the excited carrier (active material) and metal, the non-

radiative decay rate will increase faster than the radiative decay rate, lowering the 

quantum yield.  

Metallic nanostructures have been interfaced with both organic and inorganic 

optical emitters leading to Purcell factors of up to ~100, and where the spontaneous 

emission enhancements are based on interfacing with both LSP modes15,27,49-56 and SPP 

modes30,34-37,57,58 These systems constitute more efficient light emitters and where 

optoelectronic components based on these materials may be modulated at frequencies up 

to 100 times that of their bulk counterparts (due to the enhanced recombination rates). 

Perhaps an even more technologically relevant application is the development of truly 

nanoscale laser sources. By coupling SP modes with a gain medium, the SPs themselves 

may be amplified by making multiple passes through the gain medium embedded in a 

metal nanostructure resulting in surface plasmon amplification by stimulated emission of 

radiation also known as SPASER action.59 This is due to LSPs and thus does not require 

an optical cavity. A more general term, “plasmonic laser”, which applies to all laser 
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systems that employ SPs to enhance lasing (i.e. propagating SPP and LSP-based) has 

been used in recent literature.31,60 Optically pumped plasmon lasers have been 

synthesized via both LSPs and SPPs such as in a Au-nanoparticle functionalized with an 

organic dye54 and a CdS nanocrystal interfaced with a Ag film.31,37 All cases led to lasing 

from deep sub-wavelength regions (~λ/12 and λ/20 respectively) and enhanced 

spontaneous emission.  

 It should be noted that the enhanced light emission discussed thus far is a weak-

coupling phenomenon, where the interaction between the radiating dipole and the 

vacuum electric field can be treated using perturbation theory and where the spontaneous 

emission rate may be computed using Fermi’s golden rule (see section 1.1).5 Strong-light 

matter interaction, on the other hand, is possible when the SP dephasing lifetime is longer 

than the time it takes for energy to be transferred between the exciton (otherwise known 

as the electron-hole pair) and plasmon; an effect known as Rabi oscillations. Strong light-

matter coupling between SPs and excitons has been predicted61 and observed62-65 where 

the SP and exciton form yet another strongly coupled quasi-particle, a polariton. For a 

general overview of strong-light matter interaction we refer the reader to Klingshirn’s 

“Semiconductor Optics”, (Chapters 5 and 6).66 Discussion on strong-light matter coupling 

with SPs will be omitted as it is outside the scope of this thesis work, but the interested 

reader is referred to a brief review on the subject and references therein.67  

 The final piece of the puzzle is the addition of the semiconductor nanowire.  As 

will be explored in the remainder this thesis, the unique optical properties of 
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semiconductor nanowires, when integrated with plasmonic optical nanocavities, result 

enhancement of spectroscopic properties of the former to unprecedented levels, with 

applications including orders of magnitude faster light emission, broad-band emission 

from a non-light emitting material, anomalous absorption across the visible spectrum, and 

finally SP-enhanced optical cooling of semiconductors. The combination of 

semiconductor materials physics with optical cavity engineering has led to a thesis topic, 

which truly resides at the interface of optical physics with materials science. The final 

introductory section provides a brief overview of semiconductor nanowires and their role 

in nanoscience, with an emphasis on their optical properties.   

 

Figure 1.5 | Rate of experimentally measured fluorescence counts (left axis) and Purcell 
enhanced-spontaneous emission rate (right axis) as function of separation (z) between 
ultra-low concentration (single molecule level) of Nile-blue, a fluorescent dye, emitting 
at 650 nm and a Au sphere at tip of a Near Field Scanning Optical Microscope (as 
depicted in inset).49 [Adapted from Reference 48] 
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1.4 Semiconductor Nanowires and their Role in Nanoscience 

Due to their 1-D nature and their ability to simultaneously conduct photons, 

phonons, electrons and the plethora of associated quasi-particles, semiconductor 

nanowires are firmly poised at the forefront of nanotechnology research; a testament to 

which is the explosion of publications per year witnessed over the previous decade 

(Figure 1.6). From an engineering point of view, interest in semiconductor nanowires is 

fueled by our ability to readily synthesize high crystalline quality nanowires of virtually 

any composition and architecture68 (see section 2) and in particular, with exceptional 

electronic69 and optical70 properties. The single crystalline nature of semiconductor 

nanowires equates to high electron mobilities, while control over their architecture 

facilitates fabrication of nanoscale p-n junctions resulting in robust nanoscale integrated 

circuit elements71,72 that are fully programmable (and reprogrammable).73 Furthermore, 

their optoelectronic properties and dimensions have driven the interface of semiconductor 

nanowires with biological species down to the cellular level.74,75 Finally, the ability of 

semiconductor nanowires to trap light and therefore enhance light-matter interaction, has 

unleashed their potential as platforms for nanophotonics as will be explored in the 

remainder of this section.  

The rich physics of semiconductor nanowire optics stems from their ability to 

serve as both optical cavities and sources of light. Semiconductors are generally high 

refractive index materials such that nanowires composed of these materials can 

effectively trap light. Nanowire resonances have been proven to be versatile and may be 
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broadly categorized as modes that travel along the nanowire long axis, in other words 

with k-vector parallel to the long axis and those which propagate in the cross section of 

the nanowire, only with k-vector perpendicular to the long axis. The modes with k-

parallel (to the nanowire long axis) are simply the waveguided modes of a dielectric 

cylindrical waveguide and are readily described by solving Maxwell’s equations,76 but 

with the potential for significant guiding of light outside of the nanowire due to the 

nanoscale dimensions.77 Figure 1.7a,b features finite element simulations of 

electromagnetic mode structure inside of a nanowire made cadmium sulfide, a group II-

VI semiconductor that is known for its light emitting properties (see chapter 3). The 

mode selected for simulation is the lowest order (HE11) mode at a wavelength 

corresponding to the B-exciton resonance of CdS at 480 nm (see chapter 3 for more 

discussion on the electronic structure of CdS). In this regime the nanowire effectively 

behaves like a fiber optic cable at the nanoscale as exhibited by the cross section parallel 

to the long axis (Figure 1.7a), where the electric field is confined to the nanowire and 

transmitted from end to end. On the other hand, the cross sections perpendicular to the 

nanowire long axis (Figure 1.7b) demonstrate leakage of the field outside of CdS as the 

diameter of the nanowire decreases, a result of operating close to the diffraction limit. 

These waveguided modes, coupled with the electronic properties of semiconductor 

nanowires, have produced highly sensitive photodetectors78,79 and nanoscale lasers, 

which are both optically pumped80,81 and electrically pumped.82   

The modes with k-transverse (to the nanowire long axis) are known as either 

“leaky mode resonances”83 or whispering-gallery modes (WGM).84 As can be examined 
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from the cross section of computational electromagnetics simulation of a germanium 

nanowire (Figure 1c), these modes propagate in the angular direction, along the nanowire 

circumference, and are loosely confined. These WGM resonances have been used to 

enhance light absorption in semiconductor nanowires with direct applications as 

improved photodetectors83 and which couple the enhanced electronic properties of 

semiconductor nanowire solar cells85 with their light trapping ability for even higher 

efficiency.86  

The light-emitting property of semiconductor nanowires stems from the electron-

hole pairs that form after the semiconductor is imparted with super-bandgap energy, and 

which eventually decay radiatively. Several semiconductor materials such as ZnO, ZnSe, 

and CdS, exhibit high oscillator strengths, which leads to the formation of exciton-

polaritons, a strongly coupled quasi particle composed of the electron-hole pair66 (see 

section 1.2, footnote i). Thus, semiconductor nanowires serve as both optical cavities and 

nanoscopic sources of strongly87 (and weakly) coupled light. For an in-depth overview of 

light-matter interaction in semiconductor nanowires we refer the reader to a recent review 

on the subject.88 89 Our recently developed understanding of the spectroscopic properties 

of semiconductor nanowires, which again, stems from the electromagnetics of 

subwavelength nanowire optical cavities and their solid state light-emitting processes 

have led to novel physical phenomena such as tunable light-matter coupling90 and from 

an applications perspective, all-optical logic gates based on polariton-polariton 

scattering.91 
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With this understanding of semiconductor nanowire optics in mind, we may begin 

to tune the spectroscopic properties of nanowires with nanophotonics, i.e. by interfacing 

nanowires with plasmonic nanocavities, further confining light to dimensions far below 

the diffraction limit (see section 1.2 and 1.3). Certainly, many of the principles of Q/Vm 

optimization outlined above may be applied to semiconductor nanowires as they too are 

active media, but yet another level of complexity is attained due to the fact that these 

nanowires also act as optical cavities (discussed above). Thus, as we will observe in the 

following chapters, tuning of the spectroscopic properties of semiconductor nanowires 

will involve the interplay between nanowire optical modes and the surface plasmon 

modes of plasmonic nanocavities, which will result in the tuning not only of their light 

emission properties, but also engineering of the absorption/scattering properties of these 

plasmonically-coupled nanowires.  
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Figure 1.6 | Number of publications involving nanowires and quantum dots published 
between 1996 and 2011. Results were obtained by performing an ISI keyword-based 
search for each year. 
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Figure 1.7 | Computational electromagnetics simulations of electromagnetic modes in 
semiconductor nanowires with k vector parallel and perpendicular to the nanowire long 
axis. a) Full 3D finite element simulation of the electric field intensity profile of the HE11 
waveguided mode in CdS nanowire (diameter=200 nm, length=5 micron). The cross 
section is taken parallel to the nanowire long axis and b) cross sections of CdS nanowires 
of various diameter (inset) taken perpendicular to the nanowire long axis.90 c) Simulation 
of the electric field profile of the TM31 WGM resonance in germanium nanowire 
(diameter=110 nm).83 [Adapted from References 82 and 88] 

 

 

 
1.4.1: Surface Plasmon Enhanced Lasing From a Semiconductor Nanowire 

 We now make a small digression to briefly review recent work by Zhang et al. 

that combines the semiconductor nanowire (composed of CdS) with a metal film (silver) 

to achieve surface plasmon enhanced lasing and spontaneous emission. One of the 

unifying themes of this thesis is the use of the interaction between semiconductor 

nanowire modes with surface plasmon modes to manipulate the spectroscopic properties 
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of the nanowire. Where, Zhang’s experiments employ the waveguided (k-parallel) modes 

of the nanowire (discussed above) this thesis work is based on the WGM (k-transverse) 

resonances of the nanowire to hybridize with the surface plasmon mode, yet also 

incorporates key features of plasmonic-cavity design established here.  

The planar nanowire-on-film geometry is outlined in figure 1.8a, where a CdS 

nanowire (with diameter, d, 50-400 nm) is interfaced with a thick silver film, but 

separated from the metal film with a 5 nm insulating layer (MgF2). The insulating gap is 

critical both in terms of the quantum yield of the optical emitter and of the 

electromagnetic modes involved. As discussed in section 1.3, proximity of an optical 

emitter (such as CdS) to a metal surface can actually quench emission due to both ohmic 

losses and high order electromagnetic modes excited within the emitter itself, even 

though the electron-hole pair excitation rate will increase asymptotically with decreasing 

separation from the metal49 (Anger et al. predict 5 nm as an optimal separation between 

emitter and metal which was reproduced experimentally by Oulton et al.31). Perhaps even 

more critical are the new hybridized electromagnetic modes that are enabled by the thin-

insulating gap. By using a low refractive index gap, Oulton et al. demonstrated, through 

finite element analysis, that a significant portion of the field is stored near the optically 

loss-less insulating gap.92 The waveguided modes are plasmonic in nature (i.e. confined 

to deep subwavelength dimensions of ~10-2 λ near the metal surface), yet a majority of 

the field is guided outside of the lossy metal (in the insulating gap) that enables guiding 

of surface plasmons over micron distances. The large fields inside of the low index 

spacer layer can be understood in terms of continuity of the displacement current at the 
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interface between two materials which demands a high normal component of the electric 

field in the spacer, thus enabling the spacer layer to behave like a capacitor for the field. 

Furthermore, using coupled mode theory, the new hybrid modes can be modeled as a 

superposition of the nanowire and SP modes92, highlighting the potential synergy 

between these two types of electromagnetic modes.  

 Returning to the experimental realization of this system, hybrid nanowire 

waveguided/surface plasmon modes are excited by the photoluminescence from CdS. 

The high mode volumes associated with the hybrid modes in conjunction with modal 

overlap in the CdS gain medium results in plasmon-enhanced laser action from CdS 

(Figure 1.8b) at the CdS I2 exciton line. More importantly, for small nanowire sizes near 

~150 nm the bare CdS nanowire does not exhibit lasing due to decreasing mode 

confinement (and thus poor overlap with the gain medium) with decreasing nanowire 

size. This effect was also demonstrated in studies of waveguided modes in bare ZnSe 

nanowires where single-mode operation was shown at nanowire diameters as small as 

𝜆 9, but with increasing leakage of the mode outside of the nanowire with decreasing 

diameter.93 Indeed, the pump threshold intensity for bare CdS increases asymptotically at 

~d=150 nm (Figure 1.8c), whereas the plasmonic system demonstrates lasing and thus 

experimentally attainable threshold values down to d=50 nm, the experimental limit of 

the sample size distribution. The plasmonic system is also associated with about ~6 times 

faster spontaneous emission (See Figure 1.8d) as expected from the previous discussion 

on metals interfaced with active materials (sections 1.2 and 1.3). It should be noted that in 

addition to lasing from CdS below the photonic “cutoff”, the polarization of the laser 
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light from the plasmonic system is that of the surface plasmon mode (parallel to the 

nanowire long axis), which is also the polarization of the hybrid mode and is orthogonal 

to that of lasing from the bare nanowire, as the photonic modes involved have 

polarization perpendicular to the nanowire long axis.31 

 

 
 

Figure 1.8 | Lasing from CdS nanowire interfaced with Ag film. (a) Schematic of CdS-
on-Ag film geometry. b) photoluminescence spectrum of plasmonically-coupled CdS 
demonstrating lasing action at the I2 exciton line. (inset, left: transition from spontaneous 
emission to lasing; inset, right: power dependence of emission and mode spacing vs. 
length corresponding to an effective index of 11). c) Threshold intensity vs. nanowire 
diameter demonstrating lasing in plasmonically-coupled CdS below the photonic lasing 
cutoff. d) Purcell enhancement for plasmonically-coupled CdS.31 [Adapted from 
Reference 30] 
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Chapter 2. Growth and Characterization of Single-Crystalline and Surface Passivated 

CdS Nanowires 

 

Reproduced in part with permission from The Journal of Physical Chemistry A, Volume 
115, Issue 16, Pages 3827-3833. Copyright 2011 American Chemical Society 

The nanowires used in the experiments presented in this thesis are composed of 

either cadmium sulfide, a direct-band gap semiconductor (see Chapters 3 and 6), or 

silicon, an indirect-band gap semiconductor (see Chapters 4 and 5). Though the silicon 

nanowires were commercially obtained, the CdS nanowires were all grown in-house, and 

both nanowire types were grown via the Vapor-Liquid-Solid (VLS) method. Therefore, 

we will briefly review VLS growth. Furthermore, CdS was the test bed initially used to 

explore surface-plasmon based engineering of semiconductor optics, which formed our 

understanding of the physics behind surface-plasmon enhanced light emission from 

semiconductors and, which also led to the development of several sample design 

standards. As such, in this section we will also present an overview relevant physical 

properties and morphology of our CdS nanowires (further supplemented in chapter 3). 

2.1: Overview of Vapor Liquid Solid Method  

Nanowires may be synthesized by a variety of top-down and bottom-up methods 

including (but not limited to) selective chemical etching,1 solution-based synthesis,2 

molecular beam epitaxy (MBE),3 and vapor-liquid-solid (VLS) growth.3 These methods 

have distinct advantages and disadvantages, for example selective etching yields all the 

control garnered from traditional top-down electronic micro-fabrication (such as 
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placement and dimensions). Solution based techniques have high yield with controlled 

size distributions and high-surface quality. However, when high crystalline quality 

(leading to optimal optical, electrical and thermal conduction) is required, MBE and VLS 

methods yield the most consistent results, albeit with less controlled placement on the 

growth substrate and with a degree of size poly-dispersity.   

Due to ease of implementation the VLS method is used for all nanowires used in 

this thesis. VLS is basically a three-step process (Figure 2.1): first a catalyst particle, such 

as Au, is deposited over the growth substrate and heated to a melt. The semiconductor 

precursor is then introduced into the chamber and heated above the eutectic temperature 

of catalyst-semiconductor system. After the alloy reaches supersaturation, precursor 

precipitates at the catalyst/substrate interface resulting in nanowire growth.3 Another 

great advantage is that VLS growth does not require that the growth substrate be lattice 

matched to the NW, a combination of kinetics and thermodynamics of the NW surface 

are the biggest determining factors in the final growth phase.  
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Figure 2.1 | Schematic of VLS process described in three steps. a) Precursor (PC) comes 
into contact with catalyst particle above the eutectic temperature. b) Fictitious binary 
phase diagram demonstrating supersaturation of catalyst with time. c) Solid precursor is 
precipitated at the catalyst-substrate interface leading to vertical nanowire growth.  

 

2.2: Growth of Cadmium Sulfide Nanowires:  Experimental Procedure 

CdS nanowires were grown by via the VLS method as mentioned above. First, a 5 

nm Au film was plasma-sputter coated onto a Si substrate and annealed at 790 C for 5 

minutes to form gold islands (these serve as catalyst particles for VLS growth). The 

substrate was placed on one end of a quartz tube furnace. Pure CdS powder (99.999% 

purity, Sigma Aldrich) was loaded into a quartz tube furnace at the tube center. Precursor 

is transported to the growth substrate using 100 sccm of Argon as a carrier gas.  During 

growth, the quartz growth chamber was maintained at a temperature of 760 C and a 

pressure of 300 milliTorr using an auto vacuum system. The resulting nanowires are 



	
  

	
  
	
  

37	
  

generally single crystalline and grow in the wurtzite phase (Figure 3.1). After 3 hours of 

growth, we generally see diameters in the range 100-300 nm and an average length of 

~15 microns. 

 

Figure 2.2 | a) SEM micrograph of nanowire growth substrate (1 micron scale bar), (inset: 
tip of nanowire and catalyst particle, 100 nm scale bar). b) SEM micrograph of individual 
nanowire on substrate used for optical measurement. c) X-ray diffraction dat for CdS 
nanowire growth substrate in (a).4  

 

2.3: Optical Characterization 

The VLS-grown CdS nanowires used in the following studies feature high optical 

quality, whereby they exhibit high-intensity waveguiding (Figure 2.3) and free exciton 

emission (Figure 2.4a). As expected in structures at the nanoscale, surface plays an 

important role in dictating the physical properties. In the case of the optical properties of 

CdS, trap states and dangling bonds at the surface can serve as scattering centers for 



	
  

	
  
	
  

38	
  

excitons5 (see section 1.4 for discussion on the exciton in semiconductors), providing a 

fast non-radiative decay channel.6 This results in both decreased photoluminescence 

intensity6 and light emission (photoluminescence) at lower energies4 (see figure 2.4a, red 

curve). Passivation of the surface with a 5 nm SiO2 coating results in free A and B 

exciton emission from CdS (figure 2.4a, blue curve), which is in agreement with 

literature values and implies that majority of emission from CdS now comes from the 

bulk as opposed to scattering from the surface.4 

As discussed above, producing CdS nanowires of the highest optical quality is 

dependent on the treatment of the surface. Upstanding CdS nanowires were coated with 5 

nm of SiO2 using Atomic Layer Deposition (Cambridge Nanotech) and alternating pulses 

of O3, (3-aminopropyl) triethoxysilane, and H2O. The physical and chemical morphology 

of the coating was confirmed via Transmission Electron Microscopy (TEM) (Figure 2.4b, 

top) and Fourier Transform Infrared Spectroscopy (FTIR) (Figure 2.4b, bottom) 

respectively. TEM reveals an uniform 5nm SiO2 coating. FTIR demonstrates a stark 

change in the surface chemistry of the nanowire, where surface dangling bonds, known to 

serve as exciton binding sites (as discussed above) are passivated via formation of metal-

sulfate bonds. Dangling bonds at the surface may serve as exciton scattering sites, yet as 

demonstrated by photoluminescence (PL) spectroscopy, passivation results in a clear to 

transition to nearly complete free-excitonic emission with peaks at the characteristic A 

(2.5444) and B (2.5597) exciton energies7 (Figure 2.4, blue curve). 
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Figure 2.3 | a) Schematic of experimental setup involving pumping of CdS nanowire 
above the band-gap and both body and end-emission. b) Optical image of nanowire on 
measurement substrate. c) Same nanowire as (a) under laser excitation.4  
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Figure 2.4 | Optical and morphological properties of VLS grown CdS nanowires. a) 
Photoluminescence spectrum of unpassivated CdS nanowire (red curve) and SiO2-
passivated CdS nanowire (blue curve).8 b) Transmission electron microscope micrograph 
of CdS nanowire coated with 5 nm of SiO2 (top panel) and FTIR spectrum of uncoated 
CdS nanowire (bottom panel, black curve) and passivated nanowire (bottom panel, blue 
curve).4   
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Chapter 3.  Highly Enhanced Spontaneous Emission Lifetimes and Light Absorption in 

Semiconducting Nanowires via Nanocavity Plasmons 

 

Reproduced in part with permission from Nature Materials, Volume 10, Issue 9, Pages 
669-675. Copyright 2011 Nature Publishing Group 

3.1: Introduction 

3.1.1: Motivation 

Until this point, integration of active media with surface plasmons (SPs) has 

focused on either open geometries such as metal films and metal nanowires, which host 

surface plasmon polarition (SPP) modes and metal nanostructures which host localized 

surface plasmons (LSPs). Resonant optical cavities based on SP modes, on the other 

hand, should yield the sought-after combination of both high quality factor (Q) modes 

due to their closed architecture and low mode volumes normally associated with SP 

modes.  Such a resonant cavity may be fabricated by “wrapping” the metal/insulator film 

around the nanowire core resulting in a core-shell semiconductor-metal cavity (discussed 

later). Using this resonant plasmonic-cavity architecture, we demonstrate unprecedented 

Purcell factors of ~103 in “bulk” CdS, that is CdS which is not quantum confined, based 

on spectral overall between the SPP modes of the plasmonic nanocavity and light 

emission from CdS.1 With Purcell enhancements at this extreme level, the spectroscopic 

properties of the host material system are profoundly altered and will be discussed below.  
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Furthermore, though a significant portion of the discussion will be dedicated to 

the use of SP optical cavities to enhance light emitting properties, the reciprocal process 

is also explored here, whereby SP modes of the core-shell semiconductor-metal cavity 

are used to enable large enhancements in absorption of light, another important optical 

property. This SP-enhanced absorption would serve to produce devices that are highly 

enhanced optical antenna absorbers, with applications as more sensitive nanowire 

photodetectors2-4 or even more efficient solar cells.5 

3.1.2: Exciton Dynamics in CdS (and other Direct Bandgap Semiconductors) 

  In a direct bandgap semiconductor (e.g. CdS, with significant ionic character), 

intra-band relaxation of excited charge carriers occurs via scattering with longitudinal-

optical (LO) phonons and acoustic phonons in approximately 0.1 ps and 100 ps 

respectively.8 The conduction band minimum at k=0 is resonant with the light line (i.e. 

the photon dispersion: ω=ck) at k~0, thus the photon state is both energy and momentum 

matched to the electronic state at k~0 and the electron may recombine radiatively (Figure 

3.1, blue curves). This radiative recombination process occurs in ~1 ns and is generally 

much slower than the relaxation processes, (i.e. ~1000 times slower in this case).8,9 This 

explains why CdS and other semiconductor materials mostly emit from the ground state, 

that is the material, under normal conditions, emits light from near the band edge. This 

phenomenon is well known in photochemistry where it has been described by “Kasha’s 

Rule”; the emission spectrum of any molecule is independent of the excitation 

wavelength as emission always occurs from the lowest energy excited state.7 
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 We note that Purcell enhancement of a semiconductor will lead to increased 

spontaneous emission (SE) in several systems as discussed above, and as reported in the 

CdS-on-Ag film structure (where the Purcell factor was ~6).10 The key point here is that 

in all of the references on SP enhanced SE discussed thus far (see section 1.3), SE is 

restricted to emission near the band edge, again due to the discrepancy in timescales 

between intra-band relaxation and radiative recombination. On the other hand, if Purcell 

enhancement (or in other words the Q/Vm ratio) and thus the spontaneous emission rate 

can be pushed high enough (102-103 for a direct bandgap material like CdS) then, in 

theory, radiative recombination should become competitive with the relaxation process, 

which is ~103 times faster as discussed above. In theory, we should be able to break 

Kasha’s rule. In order to explore highly enhanced spontaneous emission, CdS was 

interfaced with a plasmonic nanocavity as will be discussed below. 
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Figure 3.1 | Schematic of E vs. k dispersion relation for an exciton in CdS, depicting the 
exciton generation, relaxation, and emission process (dark blue curve). EL denotes the 
laser excitation energy. 

 

3.2: Synthesis and Characterization of Semiconductor-Metal-Insulator Core Shell 

Plasmonic Nanocavity 

 CdS semiconductor nanowires were grown in house following the methods 

expounded in Chapter 2 and subsequently coated with a layer of SiO2 (5 nm) and a thin 

silver film (15 nm) to form a core-shell CdS-SiO2-Ag structure (Figure 3.2a). Following 

nanowire growth on a silicon substrate, the substrate was transferred to an atomic layer 

deposition chamber (Cambridge Nanotech), where it was treated with and alternating 
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pulses of O3, (3-aminopropyl) triethoxysilane, and H2O resulting in 5 nm of SiO2 on the 

surface. The uniformity of the coating was checked via transmission electron microscopy 

(TEM) and reveals a conformal shell around the entire nanowire (Figure 3.2b). It should 

be noted that VLS-grown CdS nanowires grow vertically on the growth substrate forming 

an upstanding “forest” of nanowires. This facilitates their uniform exposure to precursor 

during the surface treatment steps. Following SiO2 deposition, the growth substrate was 

placed into an electron-beam evaporation chamber (Thermionics) and metallized at a 

very slow rate (0.2 Angstrom/second). Once again, TEM reveals a metal coating with a 

conformal morphology (Figure 3.2c). The uniformity of all coatings where further 

corroborated via elemental mapping with Energy Dispersive X-Ray Spectroscopy (Figure 

3.2d).  
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Figure 3.2 | Characterization of core-shell; CdS-SiO2-Ag nanowire. a) Schematic of core-
shell structure. b) TEM micrograph of ALD deposited SiO2 passivation layer. c) TEM 
micrograph of 15 nm polycrystalline Ag coating. d) EDX elemental maps demonstrating 
conformal coatings of all species.1  

 

3.3: Material Selection 

 CdS is an ideal material for this study due, first, to its intrinsically high quantum 

yield,11 which enables it to serve as an excitation source for SPPs in the Ag film. Electron 

hole pairs in CdS also couple strongly to light due to the intrinsic high oscillator strength 

in CdS,12 which leads to the formation of excitons that are stable up to room-temperature 
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(and certainly at the cryogenic temperatures used in this study). This results in well 

characterized free exciton emission in the photoluminescence spectrum of CdS13 (see 

chapter 2). Finally, CdS features particularly high coupling strength between excitons and 

optical phonons in the crystal lattice. As will become apparent in subsequent sections, 

this phonon-exciton coupling, in addition to the high Purcell factors, is essential in 

mediating the anomalous photoluminescence from high energy states observed in CdS 

when coupled to high Q/Vm plasmonic nanocavities.  To provide some perspective on this 

subsject, phonon-exciton coupling in CdS, also known as fröhlich coupling, is 

approximately 10 times higher than in GaAs, another important light emitting 

semiconductor.14  

  The SiO2 interlayer serves three important functions. First, it serves to prevent 

non-radiative quenching of excited charge carriers by the metal as explained in work by 

Anger et al. (see section 1.3). It also plays a key role in developing low-loss hybrid 

electromagnetic modes of as explained in studies of Oulton et al10 (see section 1.4.1). 

Finally, deposition of a SiO2 layer on CdS has been established as a method to chemically 

passivate the surface of CdS and prevent exciton scattering at the surface thus promoting 

free exciton emission15 (see chapter 2).  The photoluminescence spectrum of a bare CdS 

nanowire (Figure 3.3a, blue curve) shows the traditional free A and B exciton emission in 

CdS.16 Silver is used as the metal shell as it demonstrates the lowest losses in the visible 

range and is thus the best choice for plasmonics at optical frequency17 (if we ignore 

chemical reactivity with the environment, in which case gold would be a superior 

choice).  
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3.4: Photoluminescence Measurements of Plasmonically-Coupled CdS 

3.4.1: Experimental 

Photoluminescence measurements were performed using a home-built laser-

microscope-spectrometer setup. Light from the laser is fed through a x60, 0.7 NA 

objective (Nikon) with a spatial resolution of 500 nm. The 457.9 nm laser line of a 

continuous wave argon-ion laser (Coherent) was focused to a spot size of ~1 micron. 

Nanoscale silver can be quite susceptible to oxidation in atmosphere and degradation, 

thus nanowires were excited with low excitation power densities (<100 kW/cm-2) to 

avoid sample heating. Photoluminescence was collected using a spectrometer (Acton) 

with 0.1 nm resolution and a cooled CCD (Pixis 2K, Princeton Instruments). Low 

temperature measurements were conducted using a nitrogen-cooled (Janis, ST-500) 

cryostat.  

3.4.2: Initial Results  

The photoluminescence spectra (taken at 77 K) of a bare (but SiO2 passivated) 

CdS nanowire and nanowire coated with the silver shell is shown in Figure 3.3. The bare 

nanowire shows traditional A and B exciton emission, which is expected for CdS (see 

chapter 2). Upon addition of the metal shell there is an increase in the overall 

photoluminescence intensity by ~10x (Figure 3.4).  Yet more interesting is the spectral 

shape which now features sharp peaks at multiples of the LO phonon energy in CdS (38 

meV) above the free exciton emission (Figure 3.3a, magenta curve) and which 

correspond to radiative decay from previously characterized hot states in CdS.18 In other 
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words, we observe light emission from states, which are above the grounds state. 

Photoluminescence measurements on different size (diameter) nanowires (Figure 3.4b) 

also reveal a clear size dependence in the intensity of hot luminescence peaks with a 

particularly marked effect when the 4th order hot luminescence peak (4-LO) is in 

resonance with the B-exciton position (2.556 eV), which hints at the role of cavity modes 

in mediating the emission process.   

 

 

Figure 3.3 | a) Photoluminescence measurements at 77 K for metal-coated (magenta) and 
bare (blue) nanowires. b) Photoluminescence for metal-coated nanowires with different 
core diameters (legend: core nanowire diameter).1  
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Figure 3.4 | Comparison between photoluminescence spectra of bare and passivated CdS 
nanowire (blue curve) and metal-coated CdS nanowire (red curve), both with diameter, 
d=60 nm. In order to provide a fair comparison of the photoluminescence intensities, we 
take into account both in-coupling and out-coupling through the thin silver film with 
respect to the bare nanowire. These were calculated to be 280% (enhancement) of the in-
coupling and 5% (reduction) in out-coupling using Lumerical, a commercial Finite 
Difference Time Domain solver. Overall, a significant (~10x) increase in photon counts 
is observed for the metal-coated nanowire. The in-coupling enhancement is due to 
antenna effects whereas the decrease in out-coupling is due to ohmic losses.1 
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3.4.3: Results and Discussion 

The occurrence of hot luminescence peaks points to either a substantial slowing of 

non-radiative decay process or an equally high increase in the radiative process. The 

latter process could occur as result of SPP resonances in the vicinity of free A and B 

exciton emission, which substantially increase the local photon density of states (LDOS) 

and thus increase the radiative rate of decay (or decrease the lifetime) via the Purcell 

effect as discussed in Chapter 1. Indeed, this Purcell enhancement would have to be at 

least 3 orders of magnitude to make the radiative (~ns) process competitive with the non-

radiative (~ps) process (see section 3.1.2). Figure 3.5 is a representation of the proposed 

hot luminescence mechanism, where decay of the excited carrier to the conduction band 

and back to the light-line is mediated by the LO phonon, which again has energy equal to 

38 meV. The enhancement of the 4-LO peak when resonant with the B-exciton peak is 

attributed to the rapid accumulation of excitons at the B-exciton state, which is the 

ground state, and which would not be able to decay much further (these carriers already 

have k near 0) and would likely recombine radiatively.  
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Figure 3.5 | a) Schematic of exciton generation, relaxation, and emission process for a 
thermalized exciton (blue curve, left) and non-thermalized (hot)-exciton (green curve, 
right) in CdS. EL denotes the laser excitation energy. b) Photoluminescence spectra 
associated with the diagram in (a) (also plotted in figure 3.4) and following the same 
color code for a bare CdS nanowire (blue curve, bottom) and plasmonic-core shell CdS 
nanowire (green curve, top). The bare CdS nanowire shows emission from thermalized 
excitons while the metal-coated CdS nanowire cavity shows emission peaks 
corresponding to non-thermalized (hot) excitons.1 

 

 It should be noted that hot photoluminescence has similar spectral characteristics 

to Resonance Raman scattering (RRS), where light is also scattered at multiples of the 

LO-phonon energy. The fundamental difference between these two processes is that hot 

photoluminescence involves a real exciton state (i.e. excitation of the exciton to a high 

energy state followed by relaxation), whereas RRS is a single photon process.19 

Polarization dependent measurements provide evidence for the excitonic nature of our 

observed emission. The polarization-resolved photoluminescence in Figure 3.6, clearly 



	
  

	
  
	
  

54	
  

demonstrate a preferential polarization of the hot photoluminescence signal, which is not 

linked to the polarization of the incident light as would be the case in RRS.20 Figure 3.6a 

shows typical A and B exciton polarizations, where the A-exciton is polarized 

perpendicular to the c-axis of the CdS wurtzite structure and the B-exciton is isotropic.16 

From the polarization of the A-exciton we determine that the nanowires are grown with 

the c-axis tilted approximately ~55° from the nanowire long axis (also denoted in the 

Figure). Figure 3.6b shows the polarization of emission from the metal-coated nanowire 

in which both A and B excitons are polarized perpendicular to the nanowire axis. This 

point will be discussed in greater detail in the next section, but it is indicative of coupling 

to a cavity mode, and is clearly not dependent on the incident polarization that is isotropic 

(circular). In order to elucidate the electromagnetic modes responsible for the Purcell 

enhancements required by this theory, we performed computational electrodynamics 

simulations to solve for, and examine, the cavity modes. 
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Figure 3.6 | Polarization dependence of the photoluminescence intensity as function of 
angle, 𝜃, from nanowire long-axis, taken by placing a linear polarizer in front of the 
spectrometer for a) bare nanowire and b) metal-coated nanowire.  From the polarization 
of the A-exciton in figure 3.6a (which is polarized perpendicular to the c-axis of CdS) it 
is determined that this batch of nanowires is grown with c-axis ~55° (dashed line at 
bottom of polar plots) from the nanowire long axis (horizontal purple line at bottom of 
polar plots). 1 

 

3.5: Finite Difference Time Domain Simulations of Plasmonically-Coupled Nanowires 

3.5.1: Simulation Details 

 5Simulations of the cavity modes of both bare and metal coated nanowires were 

performed using Lumerical, a commercial Finite Difference Time Domain (FDTD)21,22 

software package. Taking advantage of the cylindrical symmetry of the nanowire, 

simulations were mostly performed on a 2D cross-section, perpendicular to the nanowire 

long axis, which in effect simulates an infinitely long wire (though select geometries 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

5  For an overview of several prominent computational electrodynamics methods, 
including FDTD, please refer to the review by Smajic et. al.17a For a detailed introduction 
to the FDTD technique please refer to Computational Electrodynamics: Finite Difference 
Time Domain Method by Taflove and Hagness, Chapters 1-317a 
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were simulated in 3D to ensure the validity of the 2D approximation). As will be 

discussed further down, the nature of the electromagnetic modes is such that nanowire 

length does not influence the mode structure unless its magnitude is comparable to the 

mode wavelength (not the case in our nanowire samples, see chapter 2). The nanowires 

were excited with a pulsed dipole source in an off-center position. Simulations were 

performed for all polarizations (with electric field components in-and-out of the plane of 

the nanowire). The frequency-dependent real and imaginary parts of the dielectric 

function of Ag were obtained via an analytical fit to experimental data.23 The real parts of 

the refractive indices of CdS and SiO2 were obtained from the Handbook of Optical 

Constants.24 

3.5.1.1: Nomenclature of Electromagnetic Modes 

For the remainder of this thesis, the electromagnetic modes hosted by a nanowire 

or hybrid-nanowire plasmonic nanocavity will be classified with the naming convention 

established below. In line with the literature on semiconductor nanowire resonances with 

k-transverse, that is with propagation constant which is orthogonal to the nanowire long-

axis (see section 1.4) we shall label modes that are polarized parallel to the nanowire long 

axis “TM” or transverse magnetic and those which are polarized perpendicular to the 

nanowire long axis “TE” or transverse electric4 25 (see Figure 3.7).  Again, this 

nomenclature depends on the direction of the electric field polarization with respect to the 

nanowire long axis and not to the plane of incidence. To provide an example, in the case 

of Zhang et al.’s work on plasmonic CdS nanowire lasers,10 the hybrid nanowire-SP 
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modes (with k-parallel) would be classified as TM, due to their electric field polarization 

along the nanowire long axis. In the case of the work of Brongersma et al. on WGM 

resonances (k-transverse) in Germanium nanowires4 (also known as leaky modes, see 

section 1.4) both TE and TM modes are realized. 

 

 

Figure 3.7 | Schematic of naming convention for semiconductor nanowire 
electromagnetic modes. The black arrows correspond to the electric field polarization 
with reference to the nanowire below (colored red).  

 

3.5.2: Results and Discussion  

As discussed in section 3.4.2, the metal-coated nanowires demonstrate hot exciton 

emission, which is most intense when the emission is resonant with the B-exciton 

position (Figure 3.4a, magenta curve). In order to examine the potential for 

electromagnetic modes involved in the emission process, a metal coated nanowire of the 

same experimental geometry was simulated (d=140 nm) using the FDTD technique. 

Taking a Fast Fourier Transform (FFT) of the time domain data reveals a mode near the 
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B-exciton (2.556 eV) region, the magnetic field intensity profile of which is featured in 

Figure 3.8. These modes are highly confined to the insulator-metal interface, but noting 

the insulator is only 5nm in thickness, also leak into the CdS core-region. It should be 

noted that this mode was excited with an infinitesimal current source (point dipole) with 

an isotropic average polarization (see section 4.4.1) and in several orientations. It was 

found that it is only possible to excite this mode with a “TE-polarized” dipole source 

section, i.e. with electric field components perpendicular to the nanowire long-axis (and 

in the plane of the wire cross section). The only non-zero magnetic field component is 

along the nanowire long axis only. Furthermore, these modes propagate along the 

circumference of the nanowire. In other words, the wavevector, k, is in the angular 

direction only. 

This mode has the same polarization characteristics as the surface plasmon mode 

at a planar dielectric-metal interface (see section 1.2 for a formal discussion on SP 

modes), which requires electric field components in the plane of propagation and 

magnetic field component transverse to the same. Effectively, these are Whispering 

Gallery Modes (WGM), but with “plasmonic” polarization and which may not be hosted 

in a bare nanowire of the same size due to small cavity size and associated low 

confinement (Figure 3.8b). WGM modes are known for being particularly high Q modes, 

yet when coupled with SPPs can also lead to extremely low mode volumes26 (see section 
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1.1 for a brief discussion on WGM resonators). 6The TE polarization of these WGM 

modes is further confirmed by the polarization dependent photoluminescence 

measurements presented in section 3.4.3, where emission from metal coated nanowires is 

TE polarized (i.e. contains electric field components perpendicular to the nanowire long 

axis).  The combination of experiment and computational electromagnetics simulations 

reveals that the metal coated nanowires behave as semiconductor nanowires coupled with 

a plasmonic nanocavity that may host highly confined WGM type modes. Frequency 

domain calculations for modes propagating parallel to the nanowire long axis yield very 

high propagation losses (10-30 dB/micron), due to the lossy nature of the metal coating, 

which means the nanowires (> 1 micron length) cannot support propagating 

(waveguided) modes. 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

 
6 It should be noted that in section 1.2.1 the SPP mode at a metal-dielectric interface is 
formally described as a “TM” mode only. This is due to the mode naming convention that 
depends on field component in relation to the plane of incidence as opposed to a 
convention that depends on the nanowire-long axis used here. The physical picture, of 
course, remains the same.  
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Figure 3.8 | Calculated magnetic field intensity at 2.556 eV (4-LO hot excition/B-exciton 
energy) for a) d=140 nm plasmonically-coupled nanowire and b) d=140 nm bare 
nanowire. No electromagnetic mode is observed in the bare nanowire in this energy 
range. White lines denote material boundaries.1   

 

The photoluminescence spectra of various plasmonically-coupled nanowires 

presented in section 3.4 (Figure 3.3b), demonstrate a strong dependence on the diameter 

of the nanowire, which would be expected for WGM type modes that propagate along the 

nanowire circumference only. In order to clarify this dependence, light emission was 

explored for 44 different nanowire sizes, and the highest intensity peak plotted vs. 

nanowire diameter (Figure 3.9a, open circles). In order to make a more reliable 

experimental measurement, the relative enhancement of the 4LO peaks was plotted, 

instead of the absolute PL intensity (which may be subject to subtle changes in 

experimental conditions). The enhancement of the 4-LO peak was measured by 

normalizing all spectra to the respective A-exciton intensity (which is not resonant with 

any hot PL peaks) and compared to the expected B-exciton intensity in a bare nanowire.16 
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With shrinking nanowire size we observe a monotonic increase in the relative emission 

intensity of this peak. Furthermore, three peaks at different nanowire diameters punctuate 

the spectrum.  FDTD simulations at the 4-LO spectral position were conducted on 

plasmonically-coupled nanowires in the same size range. Simulation results were 

compared with the experimental data, by calculating the average electric field density 

defined as,  

 
𝐸! =

∬ 𝐸 𝑥,𝑦 𝑑𝑥𝑑𝑦
𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙  𝑛𝑎𝑛𝑜𝑤𝑖𝑟𝑒  𝑐𝑜𝑟𝑒  𝑎𝑟𝑒𝑎 

Eq. 3.1 

This calculation was performed in over 60 different nanowire sizes and plotted vs. 

diameter on the same graph (Figure 3.9a, red curve). The calculated dependence of the 

electric field density on nanowire size shows excellent agreement with experimental 

results. As can be examined from the frequency domain electric field intensity profiles 

(Figures 3.9b-d) as the size of the nanowire core decreases, the electric field density 

increases, which closely follows in the increase in hot luminescence (Figure 3.9a). 

Furthermore, the 3 peaks at d=60 nm, 100 nm, and 135 nm correspond to the m=2, 3, and 

4th order WGM mode, where m denotes the integer number of wavelengths. These are the 

“resonant sizes” of the nanowire, which are the dimensions where the SPP-WGM mode 

is spectrally matched to the emission from CdS. The Purcell factors are calculated in the 

following subsection. 
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Figure 3.9 | Size-dependent photoluminescence spectra and simulation from 
plasmonically-coupled core-shell CdS nanowires. a) Size-dependent enhancement of 4-
LO hot photoluminescence peak (open circles) and calculated field intensity per unit area 
(red curve) as a function of nanowire diameter. b-d) Simulated magnetic field (H2) and 
electric field (E2) intensity profiles, as a function of nanowire diameter for three resonant 
sizes b) d=60 nm (azimuthal mode number, m=2) c) d=100 nm (m=3),  and d) d=135 nm 
(m=4).1 
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3.5.2.1: Calculating the Purcell Factor  

 As discussed in section 1.1, a dipole emitter in resonance with an electromagnetic 

mode of an optical cavity will experience an enhanced spontaneous emission rate. The 

original formulation of the Purcell factor is presented in section 1.1, but a slightly 

modified version is used for this work based on the derivation by Boroditsky et al.27 For a 

non-degenerate mode in a semiconductor optical cavity the Purcell factor is given by: 

 γ
γ!
=
3𝑄(𝜆 2𝑛)!

2𝜋𝑉!
 

Eq. 3.2 

where 𝑄,  𝜆, 𝑛, and  𝑉! are the quality factor, free space wavelength, refractive index, and 

effective mode volume respectively as before. This differs from the original form by a 

factor of π/4 (i.e it is very similar). The difference arises from the Lorentzian nature of 

the semiconductor resonance and the reader is referred to the original paper for details of 

the derivation. Again, the effective mode volume is expressed by 

 
𝑉!"" =

𝜀 𝑟 𝐸!(𝑟)𝑑!𝑟
(𝜀 𝑟 𝐸! 𝑟 )!"#

 
Eq. 3.3 

where 𝜀 𝑟  is the material dielectric constant. Taking the advantage of cylindrical 

symmetry of nanowire structures, the effective mode volume of whispering gallery 

modes can be expressed as:  

 
𝑉! ≈ 𝐴! ∙ 𝐿 =

𝜀 𝑟 𝐸!(𝑟)𝑑!𝑟
(𝜀 𝑟 𝐸! 𝑟 )!"#

∙ 𝐿 
Eq. 3.4 
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where Am is the effective mode area and L is the effective dimension of whispering 

gallery mode in the cylinder axis. Furthermore, as demonstrated in the previous section, 

the SPP-WGM modes are confined to the cross section of the nanowire and do not 

propagate more than one wavelength away from the excitation region (see Figure 3.8c). 

In other words, L ~ λSPP where λSPP is the wavelength of the cavity plasmon. Thus, to 

obtain the effective mode volume, Vm, for the plasmonically-coupled nanowires, we 

calculated Am from the electric field intensity profile and multiplied by λSPP, which 

enabled us to use electromagnetic simulation data from the 2D cross section only.  

The frequency domain electric-field intensity profiles (Figure 3.9b-d) provide all 

of the necessary data for calculation of the Purcell factor. The calculated field 

enhancements for these three resonant cases are 40,000 and 14,400, and 6,400 

respectively. In particular, the smallest resonant size nanowire (d=60 nm) demonstrates a 

quality factor of 55 (high given the nanoscale size of the cavity). Of particular note, is the 

extremely small mode volume associated with these modes, which is 10-4 λ0 where λ0 is 

the vacuum wavelength. In other words, light in these cavities is 10,000 times more 

confined than that in free space, which when coupled with moderate quality factors leads 

to the exceptionally high Purcell enhancements. In this case (d=60 nm), the Purcell factor 

is calculated to be 3.8  ×10!, which would place the Purcell-enhanced radiative 

recombination time in the ps range thereby making the radiative process competitive with 

the non-radiative process. 
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3.6: Time-Resolved Photoluminescence Measurements 

3.6.1: Experimental 

In collaboration with Kikkawa group at the Department of Physics and 

Astronomy at the University of Pennsylvania, time resolved PL measurements were 

performed on an array of 300-500 plasmonic nanowires, with average diameter of 140 

nm ± 50 nm at room temperature (Figure 4.8). These time-resolved measurements were 

acquired using the optical Kerr gate effect.28 The excitation source was the 800 nm output 

of a 1 kHz regenerative amplifier (Spectra-Physics Spitfire), which was frequency-

doubled in a 𝛽-barium borate crystal. The spot size (~75 µm) yields an average power 

density of 0.4 W/cm2
. The resulting emission from the sample was focused onto a Kerr 

medium  (0.76 mm thick Suprasil II plate, Meller Optics). The 800 nm fundamental pulse 

was used to generate a transient birefringence in the fused silica, which rotated the 

photoluminescence signal passing through it. Using orthogonally oriented linear 

polarizers (before and after the Kerr medium) eliminates photoluminescence at other 

delay times. The remaining photoluminescence signal was focused onto a 500 cm 

spectrometer (Triax 552, JY) thermally cooled CCD (Spec-10, Princeton Instruments). 

Varying the position of the delay line retroreflector with regards to the excitation beam 

yields maps of the emission spectra vs. delay time with sub-ps temporal resolution. 

3.6.2: Results and Discussion 

A near complete transition from thermalized luminescence to hot luminescence is 

further corroborated by time resolved photoluminescence spectroscopy, which shows a 
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transition from 1.6 ns lifetime in bare CdS (in agreement with literature values for bulk 

CdS, see section 3.1.2) to 7 ps in the plasmonically-coupled samples (Figure 3.10). 

Perhaps more impressive is the fact that these are ensemble measurements made on CdS 

nanowires with significant spread in their size distribution, i.e. the measured sample had 

an average diameter d=140nm +/- 50 nm, thus even lower emission lifetimes are 

expected on the single nanowire level at the “resonant sizes”, in this case d=60 nm, 100 

nm or 135 nm, which are the dimensions where the SPP-WGM mode is spectrally 

matched to the emission (see Figure 3.9a).1 

 

Figure 3.10 | a) Time resolved PL spectral map from ensemble of 300-500 nanowires 
with average diameter 140±50 nm at room temperature (300 K). b) Time-resolved 
integrated emission intensity for plasmonic (upper) and photonic (lower) nanowires. 
Solid lines are an exponential fit to the data. Resulting radiative recombination lifetimes 
of 7 ps and 1600 ps for plasmonically-coupled and bare nanowires respectively are 
included next to the fitted curves.1 
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3.7: Concluding Remarks on Surface Plasmon-Enhanced Light Emission 

To summarize, by interfacing a direct bandgap material (e.g. CdS) with an 

appropriately designed metal plasmon nanocavity (a.k.a. an optical antenna) the 

spontaneous emission rate was enhanced to the point where it became competitive with 

intra-band relaxation to enable emission from high-energy hot states; an interesting 

finding from a spectroscopic point of view. Furthermore, this work establishes the 

nanocavity plasmon WGM cavity as a test-bed for cavity Quantum Electrodynamics, 

which requires high ratios of Q/Vm to enhance light-matter interaction. From a device 

physics perspective, on the other hand, this implies that nanowire optical and 

optoelectronic devices may be modulated at orders of magnitude higher frequency by 

interfacing the active material with an appropriate metal nanocavity (and there is no 

immediate impediment as to why the metal cavity could not double as a channel for 

charge injection and extraction).  

3.8: Light absorption in Semiconductor Nanowires 

 In general, absorption in semiconductor nanowires is dictated by the polarization 

of incoming light and the dielectric mismatch that exists between the high refractive 

index nanowires and air. In the absence of electromagnetic resonances, it has been 

demonstrated that semiconductor nanowires absorb light, which is polarized parallel to 

the long axis of the nanowire much more readily than light which is polarized 

perpendicular to the long axis (in the plane of the cross section) due to the dielectric 

mismatch.29 In line with the literature on nanowire resonances, we shall label modes that 
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are polarized parallel to the nanowire long axis “TM” or transverse magnetic and those 

which are polarized perpendicular to the nanowire long axis “TE” or transverse electric.4 

For a more detailed discussion on nomenclature of nanowire optical modes the reader is 

referred to section 3.5.1.1.25 This polarization anisotropy, which is observed in bare 

semiconductor nanowires when the cross section is small compared to the wavelength of 

the incoming light, is orthogonal to that of semiconductor nanowires integrated with a 

plasmonic nanocavity discussed above. Boundary conditions on SPP modes dictate that 

their (electric field) polarization must be in the direction of propagation17 (see Chapter 1, 

section 1.2.1). Thus, for SP modes in the plane of the nanowire cross section, we expect 

TE polarized light to play a significant role in the absorption characteristics of the 

semiconductor nanowire, traditionally dominated by TM polarized light in bare 

nanowires.29 

3.9: Simulating Absorption: FDTD Methodology 

The absorption properties of both Cadmium Selenide and Germanium are 

highlighted for this study. CdSe is chosen due the similarity in its dielectric (refractive 

index) properties to CdS, but with a lower bandgap (1.74 eV) that enables absorption 

across the visible spectrum. Germanium, on the other hand, is an indirect band gap 

semiconductor with established electronic and optoelectronic applications.4,30,31 

Simulations were performed using the time Finite Difference Time Domain technique 

and the Lumerical commercial solver as before (see section 3.5), but with several key 

differences. First, we replicate our experimental setup by using a Gaussian beam as the 
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excitation source, which is focused through a 0.7 NA lens and resulting in a diffraction-

limited spot at the sample. Secondly, in order to obtain absorption data of the highest 

possible accuracy, several single frequency simulations were performed as opposed to 

simulating broadband data with a single pulsed excitation. This eliminates the need to fit 

the optical constants of CdSe24 and Ge32 (Figure 3.11), which, in the case of CdSe (Figure 

3.11a), feature several excitonic resonances that make obtaining accurate fits a difficult 

process. At each frequency the absorbed power, P, is calculated as: 

 𝑃 = −0.5𝜔 𝐸! 𝐼𝑚𝑎𝑔(𝜀) Eq. 3.5 

where ω, E, and ε are the angular frequency, electric field amplitude, and dielectric 

function respectively. This is normalized to the source power, which allows us to express 

the absorption as percent absorbed power with respect to the source. Furthermore, any 

power absorbed outside of the nanowire core (for example in the metal) is filtered out to 

provide a measure strictly of the power that is absorbed by the nanowire.  
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Figure 3.11 | Experimentally obtained refractive index values for a) CdSe and b) Ge. The 
real part of the refractive index (blue curves) and imaginary part (magenta curves) are 
listed for the wavelength range over which absorption spectra were computed.  

 

3.10: Results and Discussion 

3.10.1: Anomalous Absorption in Plasmonically-Coupled CdSe, a Direct Bandgap 

Material 

The simulated absorption spectra of a bare CdSe nanowire (diameter d=60 nm) is 

shown in figure 3.12a. As expected in this subwavelength nanowire size range, TM 

polarized light dominates the absorption spectra due to the much higher dielectric 

mismatch experienced by TE polarized light, and approaches zero absorption near the 

CdSe bandgap due to the lack of electronic states at lower energies. Absorption of TE 

polarized light demonstrates a monotonic decrease with increasing wavelength (Figure 

3.12b, blue curve) due to the lack of any optical resonances and due to increasing spatial 

(refractive index) mismatch with increasing wavelength of the incident light. Addition of 
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a conformally coated thin (15 nm) silver film on the CdSe nanowire  (see Figure 3.2), on 

the other hand, reverses the polarization dependence of the absorption spectrum, where 

the absorption is now dominated by the TE polarized light (Figure 3.12b, red curve) 

albeit at the expense of absorption due to TM polarized light (Figure 3.12b, blue curve). 

Interestingly, by placing what is essentially a mirror on the active material we would 

expect a decrease in light absorption all along the active layer (in this case the CdSe 

nanowire), but by making the Ag film thin, and on the order of the skin depth, the system 

is able to host SP modes which transform this system into an optical antenna, capable of 

concentrating far field light into the nanowire core (Figure 3.12c). Here, the absorption 

spectrum is punctuated by the dipolar SP resonance (centered at ~690 nm) and a higher 

order mode centered at ~480 nm. Absorption in the metal-coated nanowire due to TM 

radiation is mediated by the fundamental (first order) WGM mode resonance (Figure 

3.12d) and will be exploited to achieve increases in absorption to levels even higher than 

the photonic case (discussed later). Furthermore, the resonances are highly tunable 

(Figure 3.12e) demonstrating a blue shift with increasing shell size that is in line with that 

reported for core-shell metal-semiconductor nanoparticles.33   
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Figure 3.12 | Enhanced absorption with anomalous polarization dependence (with respect 
to a bare CdSe nanowire) in a plasmonically-coupled CdSe nanowire. a, b) Absorption 
spectrum of (a) bare CdSe nanowire (d=60 nm) and (b) plasmonically-coupled CdSe 
nanowire featuring absorption of TM polarized light (blue curve) and TE polarized light 
(red curve). c) Frequency domain electric field intensity (|E|2) profile of dipole surface 
plasmon resonance due to TE excitation in plasmonically-coupled CdSe (log scale). d) 
Frequency domain electric field intensity (|E|2) profile of fundamental WGM resonance 
in plasmonically-coupled CdSe due to TM excitation (linear scale). e) Absorption spectra 
of plasmonically-coupled CdSe under TE excitation with varying Ag shell thicknesses (in 
range 10 nm to 30 nm). 
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3.10.2: Anomalous Absorption in Plasmonically-Coupled Ge, an Indirect Bandgap 

Material 

Similar studies were conducted on Ge, which is generally used as an electronic (as 

opposed to optical) material as discussed above.  The characteristics of the absorption 

spectrum of a bare Ge nanowire, d=40 nm (Figure 3.13a), are similar to those of CdSe, 

but with the spectrum extending to the near IR due to the lower Ge band gap (0.67 eV). 

We note that in the previous study of CdSe, 15 nm is the smallest thickness of the Ag 

shell possible, before the dipolar SP resonance is pushed below the CdSe bandgap (as 

demonstrated for a CdSe nanowire coupled with a 10 nm Ag shell, Figure 3.12e, red 

curve). In the case of Ge, which exhibits a lower energy bandgap, addition of a 10 nm Ag 

coating yields broadband enhancement not only the of the TE-absorption (Figure 3.13b, 

red curve), but also of the absorbed TM-polarized light (Figure 3.13b, blue curve) in 

comparison to the bare Ge nanowire. Again, the TE-spectrum is mediated by the strong 

dipolar SP-resonance (Figure 3.13c). Furthermore, we note that by choosing a smaller 

nanowire (d=40 nm, compared to d=60 nm for CdSe) we are able to tune the resonances 

to the visible range, which highlights the tunability of these resonances as function of 

nanowire dimensions. Again, TM absorption is dominated by the lowest order WGM 

mode (Figure 3.13d). In this case, absorption of TM polarized light is enhanced across 

the entire spectrum and to levels higher than that of the bare Ge nanowire. We expect that 

the broadband enhancement of the TM-absorption is due in part to the high refractive 

index of Ge (which is known to lead to WGM resonances even in the photonic case4), 

coupled with limited radiative losses, which are achieved by placing a metal around the 
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nanowire. Although for the TM case this is not an SP mode per se, using metals to limit 

radiative losses of photonic modes is a known technique that leads to increased photonic 

confinement.34-36  
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Figure 3.13 | Enhanced absorption with anomalous polarization dependence (when 
compared to a bare Ge nanowire) in a plasmonically-coupled Ge nanowire. a, b) 
Absorption spectrum of (a) bare Ge nanowire (d=40 nm) and (b) plasmonically-coupled 
Ge nanowire featuring absorption of TM polarized light (blue curve) and TE polarized 
light (red curve). c) Frequency domain electric field intensity (|E|2) profile of dipole 
surface plasmon resonance due to TE excitation in plasmonically-coupled Ge (log scale). 
d) Frequency domain electric field intensity (|E|2) profile of fundamental WGM 
resonance in plasmonically-coupled Ge due to TM excitation (linear scale). e) Absorption 
spectra of plasmonically-coupled Ge under TE excitation with varying Ag shell 
thicknesses (in range 10 nm to 30 nm). 
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3.11: Concluding Remarks on SP Enhanced Light Absorption 

As demonstrated in this study, the semiconductor nanowire-metal core-shell 

architecture can lead to broadband enhancement in the absorption of TE polarized light, 

which is usually poorly absorbed in high-aspect ratio, high-refractive index nanowires 

due to refractive index mismatch. Furthermore, through optimization of the cavity 

dimensions (nanowire size and metal shell thickness) it was shown the broadband 

enhancement in the absorption spectrum may be achieved under isotropic polarization 

(both TE and TM polarized light), where both SP modes and highly confined photonic 

modes play a role. We expect that such optical antenna-based engineering of absorption 

in semiconductor nanowires to have direct applications in photodetection and 

photovoltaics, which will add a viable alternative to the LSP-based engineering examined 

thus far.25,37 
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Chapter 4.  Silicon Coupled with Plasmon Nanocavity Generates Bright Visible Hot 

Luminescence 

 

Reproduced in part with permission from Nature Photonics, Volume 7, Issue 7, Pages 
285-289. Copyright 2013 Nature Publishing Group 

4.1: Introduction 

4.1.1: Motivation 

In the previous chapter, experiments on plasmonically-coupled CdS demonstrated 

that we may use deeply-confined nanocavity plasmons to generate orders of magnitude 

increases in the spontaneous radiative decay rate of materials, to the point where it is 

possible to make radiative decay competitive with non-radiative relaxation, and thus 

activate luminescence from non-thermalized (hot) carriers. This was confirmed via steady 

state photoluminescence spectroscopy, numerical simulation of the cavity modes and 

time-resolved photoluminescence spectroscopy. Furthermore, we elucidated the role of 

electromagnetics (cavity modes) and solid state physics (phonons) in mediating hot 

photoluminescence. Increasing the quantum efficiency in CdS wasn’t the end goal per se, 

as this already a direct-band gap material that emits light efficiently. In terms of making 

more efficient light emitters, CdS is not the appropriate material as its quantum yield 

(QY) is already high.1 In terms of more efficient light emission, materials that would 

benefit from highly enhanced spontaneous emission would be “dark” materials i.e. 

indirect-bandgap semiconductors, which convert energy to heat much more readily than 

to light.2 In fact, light-emitting materials, which already have a high QY, will often see a 
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drop in their QY when they are interfaced with optical antennas due to the enhancement 

of both non-radiative and radiative processes (see section 1.3). Materials with low 

intrinsic QY, on the other hand, will generally observe an increase in their QY due to the 

comparatively high increases in radiative decay rate,3 given proper optimization of active 

media-metal architecture as discussed above in the previous chapter.  

Silicon is one of the most important of the indirect-band gap semiconductor 

materials due to its ubiquity in the semiconductor electronics industry. Silicon combines 

a suite of attractive physical properties: it is mechanically robust, conductive, non-toxic, 

abundant, and as such the semiconductor industry has spend decades perfecting Si 

processing techniques. Yet one of the key properties that does not belong to Si is efficient 

light emission. It has an extremely low quantum yield estimated to be between 10-4-10-6 

(discussed further down). This is one of the largest impediments to making the transition 

from Si electronics into Si-based photonics, plasmonics or even opto-electronics, thus the 

previous two decades have witnessed a significant scientific effort towards engineering 

the optical properties of Si4-8and realizing the next generation of Si-based ultra-fast opto-

electronic components.9,10 Furthermore, semiconductor giants like Intel have made large 

monetary investments into silicon-based photonics (i.e. Intel Silicon Photonics lab)11 

where the goal is to make optical devices that operate at the speed of light, while taking 

advantage of the decades worth of silicon processing experience of the semiconductor 

industry. As stated by Mario Paniccia, head of silicon photonics at Intel, the goal is to 

“siliconize photonics”11; and a fundamental piece of the puzzle, arguably one of the most 

challenging, is the development of a silicon light source. The following two chapters 
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discuss how the lessons from interfacing CdS with a plasmonic optical cavity were 

applied to silicon. The result was broadband luminescence from “bulk” sized silicon 

nanowires, that is silicon that is not quantum confined, and over a broad nanowire size 

range (40-150 nm in diameter and lengths up to several microns). 

4.1.2: Charge Carrier Excitation and Relaxation Dynamics in Si (and other Indirect 

Bandgap Semiconductors). 

 In Si, once the electron is excited to the conduction band, typically by a phonon 

assisted process, its behavior is quite similar to that of an excited charge carrier in the 

direct-band gap semiconductor (see Chapter 3, section 3.1.2). The excited electron will 

quickly relax to the conduction band minimum via phonon scattering events (i.e. intra-

band relaxation) that occur on a 0.1-1 ps timescale12-14 (Figure 4.1). The key difference 

with a direct-band gap material like CdS, is that in an indirect band gap material such as 

Si, once the electron reaches the conduction band minimum (near the X and L points), it 

is momentum mismatched from the valence band maximum at the Γ point (Figure 4a). 

This prohibits radiative recombination of the electron-hole pair from the conduction band 

minimum (the ground state of the excited electron) to the valence band maximum as both 

energy and momentum must be conserved.  Thus, in order for the electron to recombine 

radiatively with a hole it must exchange momentum with the crystal lattice, which is an 

incredibly inefficient process. Unlike in CdS, here the QY is ~10-6 at the conduction band 

minimum2 and estimated to be 10-4 near the direct bandgap (at the Γ point).15 The 

estimate for the QY near the Γ point is obtained from the radiative recombination lifetime 
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for electrons near the Γ point, reported as ~10 ns16 and the known intra-band relaxation 

times stated above, which is taken as the time for non-radiative recombination. Using the 

usual prescription for calculation quantum yield, i.e. 

 𝑄𝑌 =
𝛾!"#$"%$&'

𝛾!"#$"%$&' + 𝛾!"!!!"#$"%$&'
 Eq. 4.1 

where γ is the decay rate (i.e. the reciprocal of the associated lifetime). 

  Again, given the fast intra-band relaxation times, most excited charge carriers 

will decay to conduction band minimum first, at which point the relaxed carrier is much 

more likely to lose its energy via several non-radiative processes such as recombination 

at defect sites (impurity states), free carrier absorption,17 and Auger recombination.4 

Stating the problem another way, if we were to obtain light emission from Si, it would 

benefit us to do so before the electron has time to relax to the conduction band minimum 

(thereby increasing momentum mismatch with the light-line at k~0). Stimulation of hot-

luminescence is a logical route for efficient light emission from Si, noting the farther 

carriers relax along the electronic dispersion, the less-likely it is to find a phonon of the 

appropriate momentum to enable radiative recombination. As was the case with CdS, hot 

luminescence would depend on significant shortening of the spontaneous emission 

lifetime (or enhancement of the spontaneous emission rate), which may be accomplished 

through the use of highly confined plasmonic optical cavities featuring large values of 

Q/Vm (see sections 1.1, 1.3 and chapter 3). Si nanowires were integrated with a plasmonic 

nanocavity as detailed in the following section.   
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Figure 4.1 | Schematic of electronic dispersion relation in Si depicting the excited charge 
carrier generation (magenta curve), relaxation, and emission processes (dark blue 
curves).15  

 

4.2: Synthesis of Plasmonically-Coupled Silicon Nanowires 

Silicon nanowires were obtained from Sigma Aldrich in powder form. These were 

size-polydispersed with a reported 40 nm average diameter and 1-20 micron length. 

Experimentally, we found a diameter range of 30-80 nm. These NWs were dispersed in 

Isopropyl Alcohol via a ~5 second sonication step and drop cast on 150 micron thick 

glass coverslip slides from Fisher Scientific. A 3 nm SiO2 interlayer was deposited via 

Atomic Layer Deposition (we assumed a ~1-2 nm native oxide layer) and served to 

prevent exciton quenching at the metal surface (see section 4.3) while further passivating 
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the Si nanowire. This was followed by metallization of 100 nm of Ag via electron beam 

evaporation (Thermionics). The resulting structure is an Ω-shaped metal nanocavity 

(Figure 4.2) capable of supporting surface plasmon polariton (SPP) modes.  

 There are three reasons for constructing this device in the Ω-cavity architecture as 

opposed to the core-shell geometry presented in Chapter 3. First, synthesis of the core-

shell conformal coating requires up-standing nanowires on a substrate such that the entire 

nanowire surface is exposed to incoming deposition materials. Microfabrication for 

electronics usually involves stacking of ~2D layers, thus it is much more likely that 

application of this technology will use nanowires which are already dispersed on the 

substrate horizontally to allow for 2D fabrication. Second, these nanowires will likely 

require higher pump power intensities to perform accurate detection of the signal as Si is 

known to have a very low QY (see section 4.1). The core-shell geometry employs a very 

thin (15 nm) Ag shell, which is a trade off between being thin enough to allow light to 

couple into the nanowire, while thick enough to constitute a continuous Ag film and 

sustain SPP oscillations. Unfortunately, this film is not stable under intense laser 

irradiation and requires lower pump powers. The Ω-cavity employs a thick Ag film (100 

nm), which may be pumped at higher intensities (>100 kW/cm2) as the thicker Ag film is 

also good heat sink. In theory there is no dependence of the results presented in this work 

on the Ag film thickness, as long as the thickness of the film is greater than the skin depth 

of Ag (~15 nm at optical frequency), and thus there is no cross talk between SPP modes 

on the either the inner or outer interfaces of the Ag film. The third reason is more subtle, 

but as will be described below, the Ω-cavity sustains half-integer multiples of the SPP 
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wavelength as opposed to full integer multiples of the core-shell cavity and thus allows 

more SPP resonances in same spectral region.  

 

 

Figure 4.2 | Schematic of silicon nanowire coupled with silver nanocavity in “Ω” shaped 
configuration. The nanowire is conformally coated by 3 nm of SiO2 via atomic layer 
deposition, followed by 100 nm of Ag using electron beam evaporation at a slow 
deposition rate (0.2 Å/s).18 

 

4.3: Photoluminescence of Plasmonically-Coupled Si Nanowires  

Photoluminescence measurements were performed on the same home-built setup 

described in Chapter 3, section 3.4.1. All measurements were performed at room 

temperature, and at pump intensity ~250 kW/cm2. Measurements in this section were 

performed with the 457.9 nm laser line of a continuous wave (cw) argon-ion laser 

(Coherent) and the 355.7 nm line of a frequency-doubled femtosecond pulsed 
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Ti:Sapphire laser  (Chameleon) to allow for UV excitation. The Ω-cavity was excited and 

measured through the SiO2 substrate.  

 The conformal coating of nanowire with diameter, d=65 nm, is imaged in Figure 

4.3a. When the nanowire was illuminated under cw excitation, we observed bright white-

light (Figure 4.3b, c) from the excitation region (note, all light below 460 nm is filtered to 

avoid any signal from the laser). The photoluminescence spectrum of the bare nanowire 

features a response at noise level as expected from bulk silicon (Figure 4.3d, blue curve). 

The spectrum of the nanowire coupled with the plasmonic Ω-cavity (Figure 4.3d, green 

curve), on the other hand, reveals broad luminescence over the visible spectrum (from the 

laser line to ~1.75 eV or 708 nm). Again, there were no observable photon counts from 

the silicon nanowire without the Ag coating. 

This experiment was repeated on another nanowire (d=45nm) under UV 

excitation (3.486 eV). The resulting photoluminescence spectrum again reveals a broad 

envelope, which starts at the laser line suggesting that the observed emission is indeed 

hot-carrier photoluminescence. We propose a hot photoluminescence mechanism (Figure 

4.4b) where, as expounded in the previous chapter, excited charge carriers undergo two 

competing processes, thermalization to the minimum of the conduction band via non-

radiative phonon scattering and scattering back into the light line (at k~0 or the Γ point) 

via LO-phonon scattering. Radiative recombination from high energy states above the 

conduction band minimum is possible if the spontaneous emission lifetime (~ns) 

becomes comparable to that of the non-radiative recombination process (<1ps), and if 
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there is a sufficient source of readily available phonons to participate in the scattering 

process (discussed below).15,19 

 

 

Figure 4.3 | Ω-cavity silicon and associated photoluminescence spectra. a) Scanning 
electron microscope micrograph of the Ag coated nanowire (Ω-cavity). b-c) Bright field 
optical microscope image of Ω-cavity and corresponding image under CW laser 
excitation. d) Photoluminescence spectrum of Ω-cavity (d=65 nm) and bare Si nanowire 
coated with ~5 nm SiO2 only. There were no observable counts above noise level from 
the the bare Si nanowire.15 
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Figure 4.4 | UV excitation of Ω-cavity silicon nanowire and proposed hot 
photoluminescence mechanism. a) Photoluminescence from Ω-cavity silicon nanowire 
(d=45 nm) excited at 3.486 eV demonstrating broad luminescence up to the laser line. b) 
Schematic of electronic dispersion in Si depicting carrier generation, relaxation, and 
emission for thermalized carriers (blue curves) and a hot, i.e. non-thermalized carrier 
(green curves). Excited electrons relax rapidly along the conduction branch to the X-point 
via intra-band relaxation, which competes with LO-phonon scattering back to the light 
line (k~0), thereby leading to a broad photoluminescence spectrum.15  
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4.4: Size Dependent Photoluminescence Spectroscopy and FDTD Simulations of 

Plasmonically-Coupled Silicon Nanowires 

First, the reader is referred to Chapter 1, section 1.4 for discussion on 

semiconductor nanowire modes and Chapter 3, section 3.5.1.1 for a review of the 

nomenclature for electromagnetic modes in this thesis work. As demonstrated in Chapter 

4, the spectral position of WGM/leaky modes is sensitively dependent on nanowire 

diameter, thus to explore the effect of cavity size on hot luminescence, several 

plasmonically-coupled nanowires were measured. The photon counts of hot 

photoluminescence were highest for the d=70 nm nanowire (Figure 4.5a, magenta curve) 

and demonstrates a clear peak structure superimposed on the broad hot luminescence 

background. We postulate that the origin of the efficient emission channels is related to 

the phonon dispersion of Si and will be discussed in the following section. FDTD 

simulations of these nanowires (see Chapter 3, section 3.5.1 for simulation details) reveal 

several cavity modes, that are spectrally matched to the high efficiency emission channels 

and which themselves span the visible range (Figure 4.5a, blue curve).  

In order to verify the role of cavity modes in mediating hot photoluminescence, 

systematic measurements made on plasmonically-coupled nanowires spanning the range 

d=30 nm-80 nm, which were combined and plotted (Figure 4.5b). Interestingly, the 

emission is strongest for nanowires at two different diameters, d=55 nm and d=70 nm, 

which hints at the role of cavity modes in the increased spontaneous emission process.  

Furthermore, samples in the same size range were simulated using FDTD (Figure 4.5c) 
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and their cavity spectra superimposed on the size dependent plot. Indeed, the cavity 

spectra are spectrally matched to highest efficiency emission channels observed at d=70 

nm, at d=55 nm also. We refer to these as resonantly-sized cavities where the resonance 

is between high efficiency emission channels and the cavity modes.15   
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Figure 4.5 | Photoluminescence spectrum of resonantly sized cavity and experimental and 
simulated spectra of cavity electromagnetic modes as a function of nanowire diameter. a) 
Photoluminescence spectrum (magenta curve) of cavity at (d=70 nm) which corresponds 
to dimensions that are resonant with the cavity modes (blue curve). The high efficiency 
emission channels are labeled A, B, and C from high to low energy. b) Size-dependent 
photoluminescence spectra of Ω-cavity Si. The white dash lines represent selected off-
resonance simulated cavity spectra taken from (c). The yellow dash lines represent 
resonant simulated cavity spectra corresponding to the experimentally measured size 
(d=70 and d=55 nm) and are also plotted in (c). c) Simulated spectra of cavity modes at 
various nanowire diameters in the range d=40 nm-80 nm. The white dash lines 
correspond to locations of the hot photoluminescence bands.15 
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Returning to analysis of mode structure, FDTD simulations (following a similar 

procedure to that of Chapter 3, section 3.5.1) reveal multiple equally-spaced cavity 

modes positioned at 2.505 eV, 2.342 eV, and 2.179 eV (Figure 4.6a-c), which are 

spectrally matched to the phonon-mediated hot photoluminescence peaks observed 

experimentally (Figure 4.5a, labeled A-C). The frequency-domain mode profiles, reveal 

highly confined SPP modes, at the Ag/SiO2 interface which occur at half integer 

multiples of the SPP wavelength (m=5, 4 and 3 for modes at 2.505 eV, 2.342 eV, and 

2.179 eV respectively). In the core-shell geometry, propagation losses for SPP modes 

along the nanowire long-axis direction were found to be exceedingly high (10-30 

dB/micron, see Chapter 3, section 3.5.2).19 To confirm whether these are WGM-type 

modes or waveguided modes, we performed full 3D simulations which demonstrate a 

propagation length <200 nm (or about one wavelength) (Figure 4.6d) In other words, 

these modes propagate in the plane transverse to the long-axis only. The Quality factor of 

these modes is ~30 with an ultra-low mode volume of 𝜆!10!! and calculated Purcell 

Factor >103 at 2.505 eV. The reader is referred to Chapter 3, section 3.5.2.1 for details of 

Purcell factor calculations and section 4.6 for a discussion of Purcell factor calculation in 

off-resonance conditions.15 

In addition, the polarization characteristics are the same as discussed in Chapter 3, 

section 3.5, i.e. they are SPP modes with TE polarization propagating along the metal-

dielectric interface. It should be noted that unlike the modes of the core-shell cavity, these 

are not Whispering Gallery Modes (WGM). The Ω-cavity breaks circular symmetry 

thereby eliminating the periodic boundary condition on the electromagnetic modes. In 
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other words, it is not possible to fit half-integer multiples of the SPP wavelength in the 

core-shell geometry due to the periodic boundary condition, which is not the case in the 

Ω-cavity. We exploit the broken symmetry of the Ω-cavity to obtain broadband emission 

(across the visible range). The modes are Fabry-Perot-type modes, which reflect back and 

forth between the two vertices of the Ω-cavity at half integer wavelength multiples. The 

following section will discuss the proposed origin of high efficiency emission channels in 

plasmonically-coupled silicon. 

 

 

 

 

Figure 4.6 | Simulated cavity mode spectra of resonant-sized cavity (d=70 nm). a-c) 
Frequency domain profiles of the electric field intensity (log scale) of resonant peaks at a) 
2.505 eV, b) 2.342 eV, and c) 2.179 eV respectively. d) Simulated field profile along the 
Si wire axis (corresponding to 2.505 eV, m=5 mode). The field profile is taken 15 nm 
below the top surface in the antinode regions of the electric field. The decay length is 
estimated to be ~200 nm.15 



	
  

	
  
	
  

95	
  

4.5: Hot-Carrier Radiative Recombination via Coupling with Phonons with High-Density 

of States. 

Polarization dependent photoluminescence measurements were performed in an 

attempt to decouple the contribution from phonon-mediated hot photoluminescence and 

cavity modes. As discussed in section 4.4 the Ω-cavity modes are TE (electric field 

polarized perpendicular to nanowire long-axis) modes, thus the emission, if mediated by 

the SPP modes, should be polarized perpendicular to the nanowire long axis also. The TE 

polarized light emission of the d=70 nm nanowire (Figure 4.7a) highlights the hot 

photoluminescence peaks with a polarization ratio, 𝜌, of 0.56 where 𝜌 = !!"!!!"
!!"!!!"

. In other 

words ~70% of the emission is TE polarized. Separating the TE and TM polarized 

photoluminescence allows us to examine both cavity modes and hot luminescence events 

in a non-resonant case d=50 nm, Figure 4.7b) where the cavity modes are detuned from 

the hot luminescence peaks observed in the resonant case (see section 4.4). As expected, 

the cavity modes, “C” peaks, shift as a function of nanowire size and are well matched by 

simulation of the cavity spectra for a d=50 nm Ω-cavity. An interesting phenomenon is 

that the phonon-mediated hot luminescence, “P”, peaks occur at similar energies as in the 

resonant case, pointing to a hot-carrier emission mechanism that is intrinsic to Si. Note, 

even though the “C” peaks are detuned from the hot luminescence peaks, they may still 

induce Purcell enhanced spontaneous emission, albeit at lower photon counts (see section 

4.6). 
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Figure 4.7 | a) Photoluminescence spectrum of resonant (d=70 nm) Ω-cavity Si for 
perpendicular and parallel polarizations (with respect to the nanowire long axis). 
Numbers 1-5 represent different phonon-mediated hot photoluminescence events. b) 
Photoluminescence spectrum for non-resonant (d=50 nm) cavity also for perpendicular 
and parallel polarizations. The perpendicular polarization reveals both cavity, “C”, modes 
and hot photoluminescence, “P”, modes. The cavity modes are confirmed by the 
simulated spectrum of the cavity electromagnetic modes.15   

 

As we learned in Chapter 4, radiative recombination of carriers in indirect 

bandgap materials requires the participation of phonons to absorb the excess momentum, 

thereby returning carriers to the k~0 light line (see section 4.1.2). The phonon assisted 

process must conserve momentum, i.e. it will require scattering with phonons of 

momentum q = −(qe + qr )∑ , where 𝑞! is the momentum of the charge carrier scattered to 

the conduction branch and 𝑞! is the momentum of all phonons involved in thermalization 

of the charge carrier, thus bringing the carrier back to k~0.  This event is limited by the 

availability of phonons and is therefore an improbable event, yet the probability of 
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radiative decay would be a function of the density of states of the phonon dispersion (i.e. 

their availability to participate in relaxation processes). We find that this probability 

increases greatly when the cavity SPP modes are resonant with hot-carrier emission that 

is mediated by phonons from the highest density of states (high-DOS) regions in the Si 

phonon dispersion.  

  Figure 4.8a is the phonon dispersion of Si along high-symmetry directions K, X 

and L (adapted from the work of Wei et. al.20). Along the <110> direction we can see a 

flat region in the transverse-optical, TO, phonon and transverse-acoustic, TA, phonon 

branches at ~2𝜋/𝑎(0.6, 0.6, 0). This is a region of very high-DOS in the phonon 

dispersion relation. Now examining the electronic dispersion, we note that there are 

carriers with momentum equal to 2𝜋/𝑎(0.6, 0.6, 0) at ~2.51 eV (Figure 4.8b, blue line). 

These are carriers, which may relax back to the light line via a phonon with energy and 

momentum equal to the corresponding high-DOS phonon region. Applying the same 

analysis we identify two other high-DOS phonon regions: one at ~2𝜋/𝑎(0.7, 0.7, 0) also 

between the Γ and Κ point for longitudinal-optical (LO) phonons and TA phonons and 

another at ~𝜋/𝑎(0.9, 0.9,0.9) for TO and TA phonons near the L point (along <111> 

direction). These correspond to electronic states at ~2.18 eV and 2.34 eV respectively. 

Indeed, these predicted hot-PL bands agree well with experimentally measured hot-

photoluminescence bands (Figure 4.5a).15 

 The absorption process in Si (i.e. when excited with a laser source) involves 

scattering with a phonon to the conduction band, followed by intra-band relaxation with 
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low momentum phonons. This either occurs via a 1-phonon step involving optical 

phonons near the Brillouin zone center (Γ-point) or 2-TA phonons with opposite 

momentum values at the zone boundaries.21  Noting, the density of states is much higher 

for TA phonons than LA phonons at the zone boundary, we expect intra-band relaxation 

to be dominated by TA phonons. In theory we may use this information, coupled with 

known phonon energies to infer the type (optical or acoustic) and number of phonons 

involved in the hot photoluminescence process (i.e. each photoluminescence sub-peak), 

but this requires further experimentation and theoretical examination and is outside the 

scope of this study.  

 

Figure 4.8 | a) Phonon dispersion of crystalline Si (adapted from Wei et.al.20) The dashed 
vertical lines indicate phonon modes in high density-of-states (~zero slope) regions. 
Electronic dispersion of Si (adapted from Chelikowsky et. al.22), where dashed lines 
demonstrate the corresponding electronic states at the same momentum values as high-
DOS phonons from a). a) and b) are used to explain the hot photoluminescence bands.15  
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4.6: Purcell Enhancement in Off-Resonance Conditions 

Thus far, the spontaneous emission enhancement (Purcell enhancement) has only 

been calculated for the condition of perfect resonance between the emitter and the cavity 

mode, i.e. the Purcell Factor. In reality, spontaneous emission enhancement would be 

lower than the Purcell Factor and will depend on the spectral mismatch (i.e. the amount 

of detuning between the cavity mode and emitter), spatial mismatch, polarization 

mismatch, and the finite linewidths of both the emitter and the cavity mode. Furthermore, 

as we have observed, even if the cavity mode is detuned from an emission channel, we 

may still observe enhanced spontaneous emission at a lower level (see previous section 

and section 4.4 on size dependent measurements). A more accurate representation of the 

spontaneous emission (SE) enhancement is as follows, 

 

 
𝑆𝐸 = 𝐹!

𝛾! 2𝛾! + 𝛾!
4 1− 𝜔! 𝜔! ! + 2𝛾! + 𝛾! !

𝐸(𝑟) !

𝐸!"# ! 𝜂 

  

Eq. 4.2 

where  is the Purcell factor, and  and  are the frequency of the cavity mode and 

the emitter respectively.  (= ) and  (= ) denote the decay rates of the 

emitter and the cavity mode, the inverse of which is the Quality factor.  and  are 

the linewidth of the emitter and the cavity mode respectively, and  is the polarization 

matching factor.23 The Quality factor of the Ω-cavity is ~30 corresponding to a spectral 

linewidth of ~84 meV for the cavity modes (i.e. peak A in Figure 4.5a). The homogenous 
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broadening (linewidth) of the single hot photoluminescence peaks, on the other hand, is 

typically much smaller ~15 meV (i.e. peak 2 in Figure 4.7a). The polarization matching 

factor, , was chosen as 2/3 noting only electric field components in the plane of the 

nanowire cross section may excite SPP modes. For the resonant size Ω-cavity, 

calculations were carried out for cavity modes at 2.51 eV (Purcell factor = 3688) and 2.34 

eV (Purcell factor = 3457). These are represented by the two solid lines (blue and orange) 

as a function of spectral (energy) mismatch. The dashed lines represent the spectral 

position of the hot photoluminescence subpeaks (peaks 1-5 in Figure 4.9a). Peaks 1 and 2 

belong to the first band (blue line) and peaks 3-5 belong to the second band (orange line). 

The intersection of the hot photoluminescence peaks with the detuned SE is therefore a 

more accurate Purcell factor value and is still >103 for energy mismatch up ~60 meV. 

Again, this highlights the applicability of surface plasmon-enhanced SE over a broad 

energy range due to the low Q-values of SP modes in plasmonic nanocavities (see 

Chapter 1, section 1.1). The value of the resonant Purcell factor was taken near the 

surface of the Si nanowire where it is highest (due to strongest modal overlap). For the 

non-resonant case (d=50 nm, Figure 4.7b) the SE enhancement was calculated for the 

mode at 2.42 eV, which has the highest Purcell factor value (2138) out of all the cavity 

modes and is expected to dominate SE (Figure 4.9 b, solid blue curve). In the next section 

we will quantify the enhancement in the quantum yield of silicon as a result of Purcell 

enhancement. 

 

η



	
  

	
  
	
  

101	
  

 

 

 

 

Figure 4.9 | Spontaneous emission enhancement as function energy mismatch between Ω-
cavity mode and phonon-mediated hot photoluminescence state for a) resonant size 
nanowire (d=70 nm) and b) non-resonant size nanowire (d=50 nm). The vertical dash 
lines represent the positions of the hot photoluminescence bands reported in Figure 4.7a 
and intersect with the curve corresponding to spontaneous emission enhancement of 
those states.15  
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4.7: Enhanced Quantum Yield of Plasmonically-Coupled Silicon 

 Thus far, we have demonstrated the ability to transform silicon from a dark 

material, to a light-emitting material by coupling with a plasmonic nanocavity. Ideally, 

we would like to provide a measure of the internal quantum yield (QY), which quantifies 

the efficiency with which a material converts excited carriers to emitted photons. As a 

reminder, the QY of bulk silicon is 10-4-10-6 (see section 4.1). In order to obtain an 

accurate estimate of the quantum yield, we must first know the power incident and 

absorbed by the silicon and also the collection efficiency of our measurement setup. The 

collection efficiency of the fiber-coupled spectrometer with a charge-coupled device 

(CCD) detector was obtained by measuring a known laser power and comparing the 

known power to the measured integrated counts (taking into account the response curve 

of the CCD). The collection efficiency was estimated to be 1%. From the integrated 

counts of the photoluminescence spectrum of the resonant size Ω-cavity Si sample, the 

measured radiated power through the objective was 0.8 nW. The far-field out-coupling 

efficiency was determined via full three-dimensional FDTD calculations. For the Ω-

cavity (d=70nm, l=8 µm), the average far-field out-coupling efficiency is 0.059% 

throughout the entire emission spectral range after considering the numerical aperture of 

our objective. We estimate the actual power emitted from Si to be 1.4 µW.  An 

absorption efficiency of 1% was calculated via FDTD using a 2 µm spot-size (FWHM) 

and a laser wavelength of 457.9 nm, resulting in 100 µW of absorbed power at 10 mW of 

incident laser power. Therefore, the quantum yield of 1.4% was estimated by taking the 

ratio of the emitted power from Si (1.4 µW) to the absorbed power in Si (100 µW). 
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4.8: Conclusions 

 This work presents surface plasmon-enhanced hot photoluminescence as a viable 

method of obtaining light emission from Si. As discussed in previous sections, due to the 

ubiquity of silicon in modern technology we expect such findings to play an important 

role in the development of semiconductor technology. The ability to obtain visible light at 

a reasonable quantum yield (> 1%) from Si at length scales that are compatible with 

contemporary electronics (>20 nm) is a significant step towards the integration Si-based 

photonics with conventional electronics. From a scientific point of view, this work 

highlights the interplay of three (quasi)-particle systems: charge carriers, phonons, and 

cavity plasmons and will require a substantial amount of theoretical and experimental 

work to unravel the exact hot photoluminescence mechanism. Furthermore, the previous 

two chapters lay out what appears to be a general technique of engineering light emission 

from semiconductor materials, as it was applied to two materials with starkly different 

electronic structures, namely a light emitting material (CdS) with a direct bandgap and a 

dark material (Si) with an indirect bandgap. A hot photoluminescence process, which is 

mediated by phonons, should be independent of the excitation energy; a property that 

should be verified by variable energy excitation experiments. Moreover, we would like to 

perform temperature-dependent measurements as a means to separate hot 

photoluminescence from Resonant Raman Scattering (see Chapter 3, section 3.4.3). 

Finally, the role of the electronic structure of silicon in mediating hot luminescence 

should be clarified. The next chapter will be dedicated to variable energy and temperature 

dependent studies of plasmonically-coupled silicon nanowires. 
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Chapter 5. Studies of Hot Photoluminescence in Plasmonically-Coupled Silicon via 

Variable Energy Excitation And Temperature Dependent Spectroscopy 

Reproduced in part with permission from Nano Letters, Volume 14, Issue 9, Pages 5413-
5422. Copyright 2014 ACS Publications 

 

5.1: Introduction 

5.1.1: Motivation 

The previous chapter was dedicated to the demonstration of super-bandgap (hot) 

photoluminescence in the visible spectral range from non-quantum confined silicon 

nanowires.1 The spontaneous emission rate of silicon (and thereby the emission intensity) 

was enhanced by coupling silicon to highly confined modes of a plasmonic nanocavity  

using methods similar to those previously applied to cadmium sulfide, a direct bandgap 

material2 (see Chapter 3). However, emission from non-thermalized carriers or “hot-

luminescence” has similar spectral characteristics to resonant-Raman scattering (RRS)3, 

such as scattering peaks that occur at fixed phonon energies from the laser line, even 

though hot-luminescence and RRS are fundamentally different processes; the former 

involves real electronic transitions whereas the latter does not. Thus, experimental 

verification of hot photoluminescence in silicon, and potentially other plasmonically-

coupled indirect-bandgap materials, is of fundamental importance.  

By integrating silicon nanowires (~150 nm diameter, 20 micron length), with an 

Ω-shaped plasmonic nanocavity we are able to generate broadband visible luminescence, 
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which is induced by high-order hybrid nanocavity-surface plasmon modes. The nature of 

this super-bandgap emission is explored via photoluminescence spectroscopy studies 

performed with variable laser excitation energies (1.959 eV to 2.708 eV) and finite 

difference time domain simulations. Furthermore, temperature-dependent 

photoluminescence spectroscopy, in addition to steady-state spectroscopic evidence, 

demonstrates that the observed emission corresponds to radiative recombination of un-

thermalized (hot) carriers as opposed to a Resonant Raman process.  

5.1.2: Review of Light Emission in Silicon  

Silicon, due to its indirect bandgap, converts excited charge carriers to heat much 

more readily than to light. In other words, silicon is a “dark” material in comparison to 

direct bandgap semiconductors, which is the main impediment to the application of Si for 

light emitting devices. The exceptionally low quantum yield of silicon stems from the 

large momentum mismatch between its conduction minima and valence band maxima.4 

To be more specific, it is this momentum mismatch which is predominantly responsible 

for a slow radiative recombination lifetime of milliseconds once carriers relax to the 

conduction band minimum (near the X-point), corresponding to a (theoretical) radiative 

quantum yield of 10-6.5 The low levels of light emission may be circumvented in sub-10 

nm quantum confined silicon nanocrystals,6,7 or nanoporous structures but this introduces 

significant new challenges in their integration with conventional electronic devices.8-10 

Previous work has demonstrated efficient emission in bulk silicon diodes (up to 6% at 

room temperature)11 where the emission is enhanced by (1) applying a bias, which 
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exponentially increases the equilibrium photon occupation probability,12 (2) patterning 

the surface to enhance both absorption and emission,13 and (3) using pristine float-zone 

silicon to suppress non-radiative scattering centers13. In addition to the fabrication costs 

of these devices, significant limitations include its restriction to band-edge emission (1.12 

eV) and slow modulation rates; the recombination lifetime is still in the millisecond range 

compared to nanoseconds in most direct bandgap materials.14,15For a comprehensive 

overview of the dynamics of excited charge carriers in silicon and the light emission 

process, the reader is referred to section Chapter 4, section 4.1.2.  

5.2: Experimental 

Silicon nanowires were integrated with plasmon nanocavities (Figures 5.1a, b) 

following a procedure similar to that detailed in Chapter 4, section 4.2. However, in 

contrast to the previous study, large (d ~150 nm, L ~20 micrometers) commercially 

obtained silicon nanowires (Sigma Aldrich) were used. These nanowires demonstrate 

superior uniformity in their morphology, while their increased diameters (compared to 

d=30 nm–80 nm) result in higher order (plasmonic) cavity modes. High resolution 

transmission electron microscopy reveals a native oxide layer on these nanowires of 1.5-

2.5 nm thickness (Figure 5.1c), which is used as an insulating interlayer to separate the 

active material from the metal and thereby prevent non-radiative recombination of charge 

carriers at the metal surface.16 This layer is also used to sustain high intensity surface 

plasmon fields in the gap between the metal and the silicon core (Figures 5.1d, e). The 

reader is referred to Chapter 1, section 1.3 and Chapter 3, section 3.3 for discussion on 
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the role of the insulating interlayer in interfacing active materials with plasmonically 

active metals. A thick silver film (300 nm) was deposited atop the silicon nanowires 

using both thermal and electron beam evaporation techniques. Thermal evaporation was 

used because it uses a tungsten boat to hold silver source as opposed to a graphite 

crucible, thereby eliminating a potential source of carbon contamination, which can be an 

issue with silver (see section 5.5.2). During thermal evaporation, particular care was 

taken to ensure a clean environment by first coating the entire chamber with a 200 nm 

layer of silver (base pressure of 10-6 Torr) followed by deposition on the Si nanowires. 

Samples synthesized using both techniques yield similar results, though for consistency 

all samples studied for this manuscript were synthesized with a single technique (electron 

beam evaporation). This highlights precautions taken during silver deposition, which is 

key for supporting surface plasmon modes in the vicinity of the silicon core, which can 

span the visible spectral range. Finite-difference-time-domain simulations of the silicon-

oxide-silver cavity demonstrate these nanowires (150 nm diameter) are capable of 

sustaining high order (m > 7) hybrid surface plasmon modes which can significantly 

enhance spontaneous emission in silicon via the Purcell effect.1,2 

 Optical characterization of individual nanowire samples with Ag-based plasmonic 

nanocavities was carried out using a home-built microscope setup equipped with a 60X, 

0.7 NA objective (Nikon) that has a spatial resolution of ~600 nm. Variable-energy 

excitation experiments were conducted with 5 different laser lines obtained from a 

continuous wave argon-ion laser including: 457.9 nm, 488 nm, 496.5 nm, 501.7 nm, 

514.5 nm, and a He-Ne laser (633 nm) corresponding to an energy range (1.959 eV - 
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2.708 eV). The incident photon flux at each wavelength was maintained constant by 

focusing 1 mW of incident laser power to a ~1 µm spot at all wavelengths. 

Photoluminescence spectra were collected using a spectrometer (Acton) coupled to a 

cooled CCD (charge-coupled device) with a spectral resolution of 0.1 nm. Temperature 

dependent measurements were conducted using a liquid nitrogen cooled cryostat (for 

temperatures between 77 K and room temperature). We measured plasmonically-coupled 

silicon nanowires with diameters ranging from 148 nm to 156 nm and at all the laser 

energies mentioned above.  
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Figure 5.1 | a) Schematic of silicon nanowire integrated with a 300 nm thick silver film to 
form a plasmonic nanocavity (drawn to scale). The native oxide of silicon (SiOx) is used 
to separate the active silicon core from the silver shell.  b) Scanning electron microscope 
(SEM) of silver coated silicon nanowire. c) Transmission electron microscope (TEM) 
image of a representative bare silicon nanowire demonstrating 1.5-2.5 nm of native oxide 
(denoted by dashed white lines) on the nanowire surface. d) Frequency domain spatial 
distribution of the electric field intensity in Ω-cavity Si (d=150 nm) demonstrating high 
order (m=9) mode (obtained via FDTD simulation) and e) corresponding magnetic field 
intensity.17 
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5.3: Variable Energy Excitation and Photoluminescence Spectroscopy of Plasmonically-

Coupled Silicon Nanowires 

The photoluminescence spectra of a single plasmonically-coupled silicon 

nanowire of diameter d=150 nm are plotted vs. (absolute) emission energy (Figure 5.2a) 

for different laser excitation energies. The emission envelope spans the visible range and 

appears to have a fixed spectral width that is independent of the excitation energy. 

Plotting the same spectra vs. energy shift from the laser line reveals two high intensity 

subbands labeled A and B (Figure 5.2b), which occur at a fixed distance from the laser 

line, and are consistent with the previously reported data obtained with 2.708 eV 

excitation,1 which was the focus of the previous chapter. The extent of the emission 

envelope and the occurrence of high intensity bands are related to the electronic structure 

and phonon dispersion of silicon respectively, which are discussed below.   

In indirect bandgap semiconductors, once the excited charged carrier is scattered 

to the electronic branch with momentum 𝑞! and relaxes along the electronic branch by 

scattering with phonons with momentum 𝑞!, radiative recombination at the light line 

(with momentum q ~ 0) will require scattering with phonons of momentum 

∑+−= )( re qqq  to satisfy momentum conservation (Figure 5.2c).18 We refer the reader 

to chapter 4, sections 4.3 and 4.5 for an introductory discussion of phonon-mediated hot 

photoluminescence in silicon. It should be noted that both energy and momentum must be 

conserved, thus the emitted photon will have energy 𝐸 = 𝐸!"#$%!& − 𝐸!, where 𝐸!"#$%!& 

is the excitation energy and 𝐸! is the total energy of all phonons involved in scattering. 
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In silicon, intraband relaxation typically occurs on a picosecond timescale19 20 while 

radiative recombination has a ~10 ns lifetime near the direct bandgap21; thus radiative 

recombination is normally observed from carriers that thermalize near the minimum of 

the conduction band (near X point)  (Figure 5.2c, blue curves). The spontaneous emission 

rate of silicon nanowires, on the other hand, may be enhanced by up to ~102-103 via the 

Purcell effect due to highly confined hybrid plasmonic-cavity modes1 thereby making 

spontaneous emission competitive with the intraband relaxation process and enabling 

luminescence from non-thermalized states, i.e. hot-photoluminescence. 

This competition between intraband relaxation and radiative recombination 

(Figure 5.2c, green curves) results in a broad emission envelope (Figure 5.2a) as carriers 

scatter back to the almost vertical photon dispersion line near q~0 (also known as the 

light line), which leads to radiative recombination, but also as the carriers continue 

relaxing along the conduction bands. The limited number of available relaxation channels 

in the electronic dispersion is responsible for the apparent emission cut-off at ~2 eV. For 

all excitation energies, examining the electronic structure of silicon, we note the existence 

of multiple pathways for the relaxation of the excited carrier, i.e. towards the two local 

conduction band minima near the X-point (1.12 eV) and the valley at the L-point (~2.1 

eV).22 Based on momentum mismatch between the light line at q~0 and the electronic 

branch, the two most likely relaxation pathways (towards X and L points) are depicted in 

Figure 5.2c. A carrier excited with at high energy (> 2.1 eV) may relax towards all 

available conduction band minima, yet once the energy of the excited carrier is < 2.1 eV, 

relaxation towards the L-point will no longer be possible leading to less radiative 
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recombination events, and thus a fixed spectral extent of the emission region. In addition, 

carriers excited with energy < 2.1 eV may only be absorbed to the conduction band along 

the X and K points (near the conduction band minima), which are also electronic states 

that have high-momentum mismatch from the light line (at q~0). Thus, we expect lower 

counts from these states due to both the lower number of emission channels and also the 

low availability of phonons required to scatter back to the light line from near the X point 

(see discussion of phonon mediated hot-luminescence below). We note that hot emission 

from states below the L-point bandgap is still possible, albeit at lower counts (Figure 

5.3a) due to the requirement of phonons with high density of states (high-DOS) (see 

discussion below). Indeed, excitation at 1.959 eV yields a nearly background level 

spectrum (Figure 5.2b, yellow curve), suggesting the involvement of real electronic states 

for both absorption and emission. As illustrated in Figure 5.2c it can be seen that hot-

photoluminescence (like thermalized emission) is also an indirect process and requires 

phonon scattering to satisfy momentum conservation. Depending upon the excitation 

energy, excited carriers can occupy the available electronic branches (towards X and L 

points), and they can emit light through the phonon-assisted recombination process 

during intraband relaxation. However, for excitation at 1.959 eV, the electronic branch 

towards L point becomes inactive, and the excited carriers in the conduction band along 

the X point have momentum values which do not correspond to that of phonons with 

high-DOS,1 thus giving rise to the low radiative quantum yield.  

The high intensity subbands (Figure 5.2b, labeled A, B) occur at a fixed energy 

separation from the laser line and thus are evidence of events, which depend on phonon 
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scattering rather than decay from fixed electronic states.  Though the most likely phonons 

that can participate in this process would be those that have the highest density of states 

in the phonon dispersion of Si,1 labeling of the individual subpeaks within these bands is 

a significant theoretical problem, which should incorporate potential effects of phonons at 

the SiO2-Si interface which are known to play a role in device physics,23 24 coherent 

phonons due the high fields involved,25 and correspondingly large phonon population 

numbers. Still potential hot-luminescence pathways are discussed below. 

The phonon dispersion of silicon features several flat regions in the phonon 

dispersion,26 which correspond to phonons with high-density of states. For the 

experimentally observed hot luminescence range between 2.6 and 2.0 eV (band A), 

taking into account the electronic dispersion of silicon, the corresponding high-DOS 

regions of the phonon dispersion are observed near K- and L- points. The high-DOS 

transverse optical (TO) phonons around the K-point correspond to the energies between 

56 - 64 meV, while those around the L-point correspond to 60 meV. In addition, the high-

DOS transverse acoustic (TA) phonons can be found near the K- and L-points with the 

energies of 19 and 14 meV, respectively. Thus, the high intensity bands (A and B) could 

originate from the hot carrier transition assisted by the various pathways of high-DOS 

phonons. For example, taking into account at least 1 TO phonon to scatter to the 

electronic dispersion, one for intra-band relaxation, and another for scattering back to the 

light line, we expect a high intensity band at about 190 meV shift from the laser line 

(band A). Similarly, hot carrier emission involving 6 TO phonons can result in a high 

intensity band at ~360 meV shift (band B). However, it should be noted that the above 
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pathways are representative cases, and the high intensity bands would be attributed to a 

summation of the various combinations of the high DOS phonons including TO and TA 

along with many other pathways involving slightly lower DOS phonons. These would be 

the most likely phonons to participate in radiative recombination and should result in the 

same high intensity bands regardless of the excitation energy ranging from 2.708 to 2.410 

eV. Plotting the photoluminescence spectra of the d=150 nm plasmonically-coupled 

nanowire vs. energy shift from the laser line (Figure 5.2b), we observe broad high-

intensity bands at ~190 meV and ~360 meV as expected from high-DOS phonons in 

silicon. 

In addition, since the phonon dispersion around the high-DOS states is relatively 

flat, we also expect scattering from several electronic states which satisfy both 

momentum and energy conservation with a range of high-DOS phonons. Indeed, we 

observe variation of peak positions in band A by as much as 20 cm-1 (3 meV) when 

examining band A of a single 150 nm nanowire at various excitation energies (Figure 

5.3b, c). We observe even greater scatter in peak positions (40 cm-1 or 5 meV) as a 

function of nanowire size at a single excitation energy of 2.541 eV (Figure5.3d, e), again 

a reflection of the fact that high-DOS phonons from a relatively broad region of the 

phonon dispersion may be involved in the hot-photoluminescence process. Indeed, a 

similar mechanism of hot photoluminescence was recently observed in organic dye 

molecules, where surface-plasmon enhanced spontaneous emission results in a series of 

peaks at fixed vibrational mode energies (also revealed by variable energy excitation) 
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superimposed on a broadband emission envelope which is restricted due to availability of 

electronic states.27 

 

 

 

 

 

 

Figure 5.2 | Photoluminescence spectrum of plasmonically-coupled silicon nanowire 
(d=150 nm) plotted vs. a) absolute emission energy and b) energy shift from the laser line 
for various excitation energies in the range 1.959 eV-2.708 eV. Spectra in (b) are plotted 
with a constant offset of 2×10! counts for clarity. The dashed boxes labeled A and B 
denote high-intensity emission bands. c) Schematic of the electronic dispersion of silicon 
featuring carrier excitation (magenta arrows), intra-band relaxation and hot-luminescence 
(green arrows) and radiative recombination from thermalized carriers (blue arrows). This 
process is examined for relaxation towards the selected conduction band minima at both 
the X-points (1.12 eV) and L-points (~2.1 eV).17 
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Figure 5.3 | a) Magnified photoluminescence spectra of d=150 nm plasmonically-coupled 
silicon nanowire in low energy region demonstrating emission below the silicon bandgap 
at the L-point. (b-e) Variation in spectral positions of subpeaks in photoluminescence 
spectrum of plasmonically-coupled silicon nanowire. b) variation in band A and c) band 
B as a function of excitation energy for a single silicon nanowire size (d=150 nm).  d) 
variation in spectral positions of band A and e) band B for several nanowire sizes as a 
function of excitation energy. Black arrows denotes location of first high intensity peak.17  
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5.4: Electromagnetic Properties of High Order Modes in Large Plasmonically-Coupled Si 

Optical Cavities and their Role in Mediating Photoluminescence 

5.4.1: Relationship between Mode Order and Quality Factor of WGM-Type Modes  

It should be noted that the Purcell-enhanced spontaneous emission of silicon is a 

highly complex function of the spectral and spatial overlap between cavity modes and 

states that satisfy momentum and energy conservation, thereby involving three (quasi)-

particles, i.e., plasmons, charge carriers and phonons. Noting that cavity modes for a 

particular nanowire are spectrally fixed, we expect there to be an excitation energy 

dependent modulation of the higher intensity emission bands. As discussed above, these 

bands occur at fixed energy shifts from the laser line (i.e. bands A and B), thus their 

spectral positions will change with the exciting laser and be tuned in and out of resonance 

with the cavity modes which are spectrally fixed for any given geometry. Both the broad 

emission envelope and the subbands are expected to be modulated as a function of the 

excitation energy.  

In order to explore the cavity modes responsible for modulating the emission 

envelope, we performed finite-difference-time-domain simulations of all experimentally 

measured samples. The frequency domain response of the sample was obtained by 

averaging the Fourier transforms of the time domain fields due to all 3 orthogonal 

polarizations; that is two orthogonal polarizations in the plane of the nanowire cross 

section and a polarization along the nanowire long axis. Unlike the nanowires previously 

studied in Chapter 4 (in the size range d < 80 nm1), these larger nanowires with diameters 
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d~150 nm demonstrate markedly different cavity mode spectra characterized by higher 

order modes with electric field  polarizations both perpendicular to the long axis (TE or 

transverse electric) and parallel to the long axis (TM or transverse magnetic) of the 

nanowire (Figure 5.4a). Note this convention is orthogonal to that used in some 

plasmonics literature where the field polarization is labeled with respect to the plane of 

incidence,28 but inline with recent nanowire literature where the field polarization is 

referenced with respect to the nanowire long-axis.29 For more details of this naming 

convention we refer the reader to Chapter 3, section 3.5.1.1. Figure 5.4 shows the 

photoluminescence spectrum of the plasmonically-coupled silicon nanowire examined in 

Figure 5.2, along with the associated cavity field spectrum (Figure 5.4b). Note there is a 

region of low mode activity between peak 1 at 2.58 eV and peak 2 at 2.22 eV of the 

simulated cavity spectrum. This is responsible for the lower photoluminescence counts in 

this spectral range. This region of low mode activity is observed all across the measured 

size range in this work and is due to a lack of high order TE polarized modes and lower 

order TM modes with both azimuthal and radial components.  

 As can be observed from the frequency domain electric field profiles (Figures 

5.4c-f), these modes resemble whispering gallery modes (WGM) and will be classified as 

either TEmn for perpendicular electric field polarization or TMmn for parallel electric field 

polarization (with respect to the nanowire long-axis) and where the indices m and n 

correspond to the integer number of half wavelengths in the azimuthal and radial 

directions respectively. It should be noted that for WGM modes, the index “m” often 

refers to an integer number of wavelengths as circularly symmetric structures must 
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observe the periodic boundary condition, which only allows modes at full wavelength 

multiples.30 The base at the intersection of the nanowire and substrate breaks the circular 

symmetry and enables modes at half-wavelength multiples.1 Following the spectra from 

right to left (i.e. from low energy to high energy laser excitation in Figure 5.4b), we 

observe 3 modes with perpendicular electric field polarization, which are attributed to the 

TE71, TE81, and TE91 modes respectively. These are plasmonic modes similar to those in 

chapter 4, but of higher order, and where the majority of the field is stored near the 

Si/SiOx interface also.1 The mode at ~2.6 eV (Figure 5.4c), on the other hand, is polarized 

parallel to the nanowire long-axis and has a completely different field profile, where the 

majority of the field is stored inside the Si core as opposed to the metal interface. This 

may be classified as the TM11 mode. Referring to Figures 5.4c-f, we note that the field 

intensities (normalized to the source) within the core in both the TM and TE modes are 

>102. The TE modes demonstrate >1000 times intensity at the silicon surface, but this is 

offset by the superior spatial overlap between the active region and the cavity mode in the 

TM11 mode. It has been previously demonstrated that in silicon-Au plasmonic core-shell 

nanowire photodetectors, both the TE and TM modes may contribute in similar 

magnitudes to the spectral characteristics of the system,31 thus given the relative field 

intensities within the silicon core, we expect that both TE and TM modes can mediate the 

hot-PL process. 

The question remains, as to why is there a spectral gap in emission between the 

TE and TM modes in the spectrum (Figure 5.4b). This may be understood from the 

inverse relationship between azimuthal mode order and quality factor that exists in 
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plasmonic cavities. In all-dielectric WGM resonators, the quality factor scales 

proportional to the azimuthal order (and inversely proportional to the radial order),32,33 in 

other words this is why larger resonators, which host very high order modes, demonstrate 

the highest quality factors.34 The opposite trend is true in plasmonic systems; the quality 

factor decreases with increasing azimuthal mode order35. In a surface-plasmon WGM-

type resonator, increasing mode order within the same circumference implies increased 

confinement to the metal-dielectric interface. Metals are lossy media,28,36-38 thus higher 

interaction with the metal-interface results in increased damping of the cavity mode. By 

tracking quality factor of the TE cavity modes as a function of azimuthal order (Figure 

5.4g) we observe that the quality factor drops precipitously with increasing order, which 

signifies that in our system mode damping becomes prohibitively high for azimuthal 

mode orders >9. Therefore, due to the highly damped high order TE modes we expect a 

decreased photoluminescence emission intensity in regions at energies higher than the 

highest order TE mode, but lower than the lowest order TM mode.  

This characteristic of the cavity modes is reflected in the emission spectra of 

several nanowires, which demonstrate a drop in emission intensity between bands A and 

B, and which was not observed in previous measurements of smaller (sub 80 nm) 

plasmonically-coupled nanowires.1 For 2.708 eV excitation, we observe two broad 

regions of the emission envelope, one centered around 2.5 eV due to the TM mode and 

the other centered around 2.2 eV due to the TE modes. Interestingly, in the spectra 

excited at 2.708 eV, band B is effectively quenched (Figure 5.2b and 5.4b, black curves), 

as it is resonant with this area of low mode activity. Furthermore, the spectra due to 
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excitation at 2.541 eV, where band A (at ~0.2 eV shift, Figure 5.2b) is now resonant with 

the region of low mode activity, also exhibits low intensity in this region when compared 

with the spectra excited at other laser energies. In fact, the features of the 

photoluminescence spectra due to excitation at other laser energies in the range 2.541 eV 

- 1.959 eV are all superimposed on the same emission envelope due to the TE cavity 

modes, but again, restricted in the low energy region due the silicon bandgap at the L-

point (discussed above). Therefore, for larger sized Si nanowires (d~150 nm range) we 

now exploit both TE and TM modes to generate hot-luminescence in larger nanowire 

cavities. 
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Figure 5.4 | Electromagnetic mode properties of plasmonically-coupled silicon analyzed 
via FDTD simulations and photoluminescence spectroscopy. a) nomenclature convention 
for modes polarized parallel (TM) and perpendicular (TE) to the nanowire long-axis. b) 
Variable-energy excitation photoluminescence spectra of d=150 nm Ω-cavity silicon 
nanowire juxtaposed with simulated cavity mode spectrum (orange curve). c-f) frequency 
domain profiles of the electric intensity (log scale) for cavity modes ordered from highest 
to lowest energy. g) Plot of quality factor versus azimuthal index (m), for TE modes in 
(b) and represented by the field profiles in (d-f).17

 

 

5.4.2: Size Dependent Photoluminescence Spectroscopy of Plasmonically-Coupled Si 

The size dependence (albeit a narrow range of 151 nm to 156 nm) of the emission 

is shown in figure 5.5. Photoluminescence spectra are analyzed for nanowires with sizes 

d=151 nm, 153 nm, and 156 nm, corresponding to Figures 5.5a-c respectively and excited 

at different laser energies. For d=151 nm, the emission spectrum excited with the 2.708 

eV laser line (Figure 5.5a, black curve) demonstrates a dip in the emission around 2.38 

eV (as in the d=150 nm sample examined above), which we attribute to cavity mode 

structure (Figure 5.5a, top). When the sample is excited with a 2.541 eV (488 nm) laser 

(Figure 5.5a, red curve) band A becomes resonant with the local minimum in the cavity 

field spectrum resulting in significant damping of the emission in this region. Indeed, the 

entire emission envelope resulting from the excitation energy of 2.541 eV and those at 

other laser energies up to 1.959 eV also reflects the same structure observed at 2.708 eV 

excitation. Figure 5.5e shows simulated cavity spectra for various nanowire diameters, 

which demonstrate a monotonic red-shift in the cavity modes with increasing diameter 

(as expected). As the nanowire size (although in a small range) increases (Figure 5.5b, c), 

the cavity modes redshift (Figure 5.5e) and the emission envelope shifts to the right 
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(lower energies) leading to a direct modulation of subpeaks in band A (Figure 5.5b, red 

curve). The overall red shift of the emission also results in luminescence from lower 

energy states. Figure 5.5d is a magnified view of the low energy region of the spectrum 

(1.5 eV-1.9 eV), excited at 1.959 eV for all three nanowires. As the intensity of band A 

significantly decreases under excitation at 1.959 eV, the plasmonic nanowire with d=153 

nm shows a different peak spacing of ~15 meV, compared to that of ~30 meV at the other 

excitation energies, which differs by 1 TA phonon energy. This strongly suggests that, 

since the excitation energy is smaller than the energy gap at L-point (~2.1 eV), the 

electronic states along the <111> direction cannot contribute to the hot luminescence 

process, leading to a dramatic decrease in the counts and also different peak positions. 

Furthermore, as expected from figure 5.5e, increasing nanowire size leads to an increase 

in measured counts from low energy states due to the increased overlap between the 

cavity mode and the band A for the larger size nanowires.   
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Figure 5.5 | a-c) Photoluminescence spectra of plasmonically-coupled nanowires excited 
at various laser energies in the range 1.959 eV – 2.708 eV for nanowires of size a) d=151 
nm, b) d=153 nm, and c) d=156 nm (all spectra are offset by 25,000 counts for clarity). 
The cavity mode spectrum of the d=151 nm nanowire is plotted on top of the 
photoluminescence spectra (high in red to low in blue) using the same energy scale. The 
variable energy excitation photoluminescence spectra demonstrate the role of mode 
structure in modulating high intensity subpeaks. In addition to size-dependent peak 
modulation, the modes, which red-shift with increasing size, also enable hot 
luminescence at lower energies for larger nanowires. d) Photoluminescence spectrum in 
low energy region (excited with 633 nm, He-Ne laser) for samples (a-c). e) Simulated 
cavity mode spectra of plasmonically-coupled silicon nanowires with diameters in the 
range d=150 nm to 160 nm as a function of energy.17  

 

5.5: Differentiating Hot Photoluminescence from Resonant Raman Scattering 

5.5.1: Temperature Dependent Spectroscopy of Plasmonically-Coupled Si 

To further test the validity of the hot-luminescence process, we examined the 

temperature dependence of the photoluminescence spectrum from plasmonically-coupled 

silicon and compared it to the known temperature dependence of other radiative and 

scattering processes. Raman spectroscopy typically shows a decrease in intensity with 

increasing temperature due to a decrease in the polarizability of a material with 

temperature.39 Resonant Raman Spectroscopy of silicon also demonstrates a negative 

temperature dependence with increasing temperature  (as the number of photons involved 

in electronic absorption increases with temperature, due to phonon mediated indirect 

absorption, thereby limiting the amount of photons involved in the Raman process).40,41 

Likewise, photoluminescence from direct-bandgap materials, such as GaAs42 and CdS43 

also exhibit a negative temperature dependence due to increased non-radiative 

recombination at higher temperatures18. On the other hand, indirect transitions such as hot 
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luminescence from an indirect-bandgap material (such as silicon) involve a competition 

between an increase in the non-radiative decay rate and also an increase in the radiative 

decay rate with temperature, as phonons are critical to mediating radiative recombination 

(see Chapter 4, sections 4.1.2 and Chapter 5, section 5.3).  Previously, a positive 

temperature dependence was verified for silicon quantum dots, where increased 

photoluminescence was observed at higher temperatures and attributed to indirect-

radiative recombination, as also confirmed by time resolved photoluminescence 

measurements.44  

For these plasmonically-coupled silicon samples, we measured the 

photoluminescence spectrum at temperatures in the range 77 K-300 K at 2.708 eV 

excitation and with a fixed laser power. A monotonic increase in counts as a function of 

increasing temperature (Figures 5.6) was observed, again, in contrast to the stokes-Raman 

spectra, which generally shows a decrease in intensity with increasing temperature. We 

chose two representative data sets (Figure 5.6 a, b), which exhibit spectra with differing 

levels of intensity and broad spectral features, while both exhibit a positive temperature 

dependence in their photoluminescence counts. We observed this positive temperature 

dependence in all samples measured. It should be noted that at higher temperatures the 

absorption coefficient of silicon will also increase (as it is phonon mediated), which can 

lead to a larger concentration of excited carriers and emitted light.45 However, the ratio of 

absorption coefficients for silicon (2.708 eV) at 300 K and 77 K is 2.4, while the 

observed ratio of integrated counts (emission) at the same temperatures ranges from 10-

20 depending on the nanowire size and laser excitation energy. Therefore, the 
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temperature dependent change in absorption is insufficient to explain an order of 

magnitude increase in the measured increase in counts. Thus, the temperature dependence 

of the emission intensity can be best explained by a hot-photoluminescence process, 

where the thermal activation of phonons that are required for intra- and inter-band 

relaxation can increase the radiative quantum yield.  

 

Figure 5.6 | a) Temperature dependent photoluminescence spectra of plasmonically-
coupled silicon (for two different samples) in the range 77 K-300 K. Increase in overall 
emission intensity with temperature follows expected trend for hot-luminescence from an 
indirect bandgap material as the phonon population increases with increasing 
temperature. b) Plot of total integrated counts as a function of temperature for samples 
shown in (a).17 
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5.5.2: Quantification of Mean Emission Energy 

As demonstrated in section 5.3, there is considerable scatter in the positions of 

individual peaks in the broad spectrum of plasmonically-coupled silicon, which changes 

as a function of both size and excitation energy (see discussion in section 5.3 and Figure 

5.3). The observed modulation of individual peaks and spectral features as a function of 

excitation energy is in contrast to the resonant Raman spectrum of silicon, which 

demonstrates little or no variation in its spectral features as a function of excitation 

energy in either the visible46 or infrared frequencies.4 To further explore the variation of 

the many spectral features of plasmonically-coupled silicon as a function of excitation 

energy, we use the photoluminescence spectra to extract the mean emission energy of the 

spectrum and thus the mean energy shift of the spectrum from the exciting laser energy. 

The mean emission energy was calculated from the photoluminescence spectra via 

𝜈 = !! ! !"
! ! !"

 where 𝑁 𝜈  is the number of measured counts at a frequency 𝜈.47 The mean 

emission energy is then ℎ𝜈.48 Subtracting this value from the exciting laser energy results 

in a mean emission shift. Plotting the mean emission shift (of the spectrum) as a function 

of excitation energy (Figure 5.7), we observe significant variation in the mean emission 

energy of individual nanowire samples (>100 meV comparing 2.410 eV excitation with 

2.708 eV excitation and > 25 meV between 2.410 eV and 2.541 eV), which is a 

consequence of the dependence of the emission on both cavity modes and electronic 

structure as discussed above. Moreover, there is clear size dependence in the mean 

emission shift where larger wires demonstrate greater mean emission shifts and thus, 
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stronger red shifting in the emission envelope. The red-shift of the emission envelope as a 

function of size is consistent with the previous discussion on size-dependent cavity 

modes (see section 5.4.2 and figure 5.5e), where lower energy modes (for larger 

nanowires) enhance scattering from lower energy states. We also note that carbon 

contamination, and thus Raman activity of carbon, can be an issue especially when 

combined with silver;49  although it is unlikely that trace amounts of carbon can yield 

such bright white light emission (~105 peak counts, >106 integrated counts), that the 

broad emission envelope is very strongly dependent on the excitation energy, and that the 

peaks change their positions and intensities depending on a variety of parameters. These 

observations are in contrast to the Raman spectrum of silicon where the mean emission 

energy should show negligible dependence on the exciting laser in this range. It should be 

noted that Surface Enhanced Raman Spectroscopy (SERS) is known to lead to a broad 

background, which can depend on plasmon modes.50 Still, measurements in the range 

2.410 eV-2.541 eV include all TE plasmon modes (see Figure 5.4b) thus; we expect any 

possible SERS background to result in little or no net variation of the average emission 

energy or shift. Furthermore, SERS spectra retain the same Raman spectral features over 

a broad excitation range,51 where the SERS enhancement is much more sensitive to 

resonance with electronic states than local field enhancement.52 
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Figure 5.7 | Difference between the average emission energy and exciting laser energy 
(i.e. the mean emission shift) plotted against excitation energy. The large variation in 
mean emission energy as function of size and excitation energy highlight the role of both 
cavity modes and electronic structure in modulating the emission spectrum.17  

5.6: Conclusions 

In this chapter we demonstrated bright luminescence from silicon nanowires 

coupled with metal nanocavities supported by high order hybrid cavity-surface plasmon 

modes. Photoluminescence spectroscopy at variable excitation energies reveals that the 

electronic structure of silicon plays a key role in determining the emission intensity, 

while the individual sub-features of the spectrum are mediated by phonons in a hot-

luminescence process. Finite difference time domain simulations elucidate the role of 

cavity modes in modulating the emission spectrum. Furthermore, temperature dependent 

spectroscopy reveals a temperature dependence of the measured intensity that is 

indicative of hot-luminescence and rules out the Resonant Raman process. It should also 

be noted that, in addition to this experimental work, extensive theoretical work is 
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necessary to analyze this highly complicated system featuring the interplay between 

phonons (bulk and interfacial for this hybrid system), plasmons, and charge carriers all of 

which play a role in the radiative recombination process. Finally, a direct measurement of 

the carrier lifetimes in plasmonically-coupled silicon would be highly desirable. 
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Chapter 6.  Surface Plasmon Enhanced Laser Cooling of Semiconductors 

 

6.1: Introduction 

6.1.1: Motivation 

Cooling of matter with lasers presents the possibility of a highly efficient cooling 

mechanism that would require no moving parts or cryogenic fluids,1 but would rather rely 

strictly on the optical properties of matter. Laser cooling of matter may be broadly 

categorized into cooling of atomic systems, rare-earth ion-doped glasses, and 

semiconductors, which is the focus of this chapter. Laser cooling of atoms differs from 

laser cooling of solid state materials in that it is largely based on momentum transfer 

mediated by both incoming photons and spontaneously emitted photons, which slows the 

atom down.2 As a testament to the impact of this field, two Nobel prizes in optical 

cooling were awarded, first in 1997 for the achievement of nanoKelvin temperatures3 and 

optical trapping4 (leading to the development of the most accurate atomic clocks ever 

created5) and in 2001 for the realization of a Bose-Einstein condensate in a system of 

ultra-cold atoms.6  

Optical cooling in the solid state was predicted as far back as 1929 by Pringsheim 

et al.7, and is based on the production of up-converted luminescence, where light is 

emitted at higher energy than the initial exciting laser via coupling to vibrational modes 

of the host material. In analogy to anti-Stokes Raman scattering, this upconverted 
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luminescence is often quoted as “anti-Stokes luminescence”. Optical cooling in the solid 

state has witnessed success in the cooling of rare-earth (RE) doped glasses such as 

fluorozirconate, ZBLANP: Yb3+where Yb3+ is the RE dopant.8 Glasses generally have a 

large bandgap due to their disordered structure, thus dopants are required to enable 

absorption at useful frequencies.  Furthermore, fluoride crystals and glasses generally 

have low phonon energies, which limits non-radiative processes that are adverse to anti-

Stokes luminescence (see section 6.1.2 on SBE theory). In RE doped glasses, anti-Stokes 

luminescence is achieved by exciting electrons of the ground state into a low energy 

excited state that is closely separated from a higher energy excited state (Figure 6.1, red 

curve). This is illustrated for a 4-level model system in Figure 6.1, where the electron is 

resonantly excited from the top of the ground state manifold to the lowest energy excited 

state. Both the ground and excited state manifolds will thermalize at the rates of w1 and 

w2 respectively, which includes a component at the lower energy ground state and higher 

energy excited states due to Boltzmann statistics. Note the distribution of excited 

electrons within discrete donor atoms may be approximated by classical (Boltzmann) 

statistics as they may be treated as distinguishable particles. More specifically, this is due 

to the low electron concentration, which leads to an electron-electron separation that is 

greater than the de Broglie wavelength of the electron.9 For detailed description of the 

excitation and decay process the reader is referred to the review by Epstein and Bahae.10 

A key issue in the cooling of RE-doped solids is the width of the ground state manifold, 

i.e. the separation between states  |0  and |1  in 6.1. As the temperature of the system 

lowers so will the population of the highest energy ground state which will in continually 
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limit the absorption of the material at a fixed excitation laser energy. As we will see in 

the following section, this places a limit on the cooling achievable in in RE-doped solids 

to ~T=100 K.  

 

Figure 6.1 | Model of optical refrigeration for a 4-level system. |0  and |1  comprise the 
electronic states of the ground state manifold separated by energy 𝛿𝐸!. |2  and |3  
comprise the excited state manifold separated by energy 𝛿𝐸!. Wrad and Wnr are the 
radiative and non-radiative decay rates respectively, while w1 and w2 correspond to the 
phonon-mediated thermalization rate of the ground state and excited state manifolds 
respectively.10 [Adapted from reference 10] 

 

Charge carriers in semiconductor materials on the other hand, reside in electronic 

bands and feature large electron concentrations. As such, they obey Fermi-Dirac statistics 

and do not suffer the same limitations as RE-doped glasses. In theory, semiconductor 

materials may be cooled to much lower temperatures of ~T=10 K,11 yet unambiguous 

cooling of a semiconductor was not achieved until 2013, when Xiong et al. cooled 

nanobelts composed of Cadmium Sulfide by up to 40 K.12 As we can intuit, optical 

cooling of semiconductor materials will have the largest impact on technological 
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development as these form the backbone of modern electronic and optical devices. In the 

next section, we will explore the prevailing theory behind optical cooling of solids and 

determine the difficulties and advantages of cooling with semiconductor materials.  

 

6.1.2: Sheik-Bahae Epstein (SBE) Theory of Solid State Cooling 

 Under the right excitation conditions, when a sample is illuminated with laser 

light a portion of that power will go into cooling the sample. The ratio of cooling power 

to incident power can thus be considered the cooling efficiency, which would need to be 

> 0 in order to achieve any cooling. According to the Sheik-Bahae Epstein (SBE) theory 

of cooling of solids the cooling efficiency, 𝜂! , may be expressed as:  

 
𝜂! 𝜈! ,𝑇 = 𝜂!"!𝜂!"#

𝜈!"
𝜈!

− 1 
Eq. 6.1 

where νL and T are the excitation laser frequency and sample temperature respectively. 

νem, ηexe and ηabs are the mean emission frequency, external quantum efficiency and 

absorption efficiency respectively. Thus, in order to achieve high cooling efficiencies we 

require materials that have external quantum and absorption efficiencies that are close to 

unity and which are excited at energies as far away from the emission energy as possible. 

We address each of these components individually below.  
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 The external quantum yield is closely related to the internal quantum yield (QY) 

that measures the efficiency of radiative recombination within a material and which has 

been a focus of the previous chapters, namely:  

 𝑄𝑌 =
𝛾!

𝛾! + 𝛾!"
 Eq. 6.2 

where 𝛾! and 𝛾!" are the radiative and non-radiative decay rates respectively. 

Subsequently, the external quantum efficiency may be computed as: 

 𝜂!"! =
𝜂!𝛾!

𝜂!𝛾! + 𝛾!"
 Eq. 6.3 

where 𝜂! is the extraction efficiency. The extraction efficiency is a measure of the ability 

of light to escape its immediate surroundings. Direct bandgap semiconductor materials 

such as GaAs or ZnO, are a natural choice due to their high quantum yields.13 The 

extraction efficiency, on the other hand, is a detriment. As expounded in Chapter 1, 

semiconductor nanowires, which generally feature high refractive indices, are excellent 

optical cavities. In other words, they generally trap light potentially lowering the external 

quantum yield.   

Non-radiative recombination is also an issue, which becomes explicit if we recast 

the external quantum efficiency in terms of the carrier density, N, via: 

 
𝜂!"! =

𝜂!𝐵𝑁!

𝐴𝑁 + 𝜂!𝐵𝑁! + 𝐶𝑁! 
                         Eq. 6.4 
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where A, B, and C correspond to the coefficients for the non-radiative rate (AN), radiative 

rate (BN2), and Auger processes (CN3) respectively.14 Optimizing the above expression 

for the carrier concentration, we obtain the following expression in terms of the A, B and 

C coefficients only: 

 𝜂!"! 𝑁!"#$%&' = 1− 2 !"
!!!

  Eq. 6.5 

Though the C coefficient is mostly fixed, the A coefficient has a geometric dependence. 

Non-radiative recombination may occur in defect and trap states within the bulk as well 

as the material surface. As we know, the smaller the dimensions of the material, the 

higher the importance of the surface due to the ratio of surface to volume, which 

increases with decreasing dimensions. Furthermore, if the material is single crystalline, as 

is often the case with VLS grown nanostructures (see chapter 2), then non-radiative 

recombination should occur at the surface only. This property may be readily observed in 

the photoluminescence spectrum of the sample, which will only feature bulk free-exciton 

emission or emission from the band-edge if it is single crystalline.15  

The non-radiative recombination at the surface, As, is related to sample 

dimensions via: 

 𝐴! =
𝑆
𝑡  Eq. 6.6 

where S is the surface recombination velocity and t is the sample thickness (assuming a 

semi-infinite slab geometry).15,16 Thus, the external quantum efficiency may be 
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significantly improved by using nanostructures with superior surface quality, a factor we 

will revisit in further sections. The absorption efficiency, 𝜂!"#, depends on both the 

electronic absorption of the semiconductor, 𝛼 𝜈,𝑇 , which is itself a function of 

frequency and temperature and the background absorption 𝛼! in the form:10 

 𝜂!"# = 1+ 𝛼! 𝛼 𝜈,𝑇 !! Eq. 6.7 

Optimization of the absorption efficiency, and therefore lowering of the background 

absorption, depends on many of the same factors as the 𝜂!"!; requiring highly pure 

crystalline samples with high quality surfaces that that are devoid of traps and other non-

radiative centers.  

 Yet another strategy to achieve cooling, is to focus on the ratio between excitation 

energy and emission energy, !!"
!!

, by exciting electrons into states below the conduction 

band edge. This strategy relies on the principle of the Urbach tail, which denotes that 

absorption in a material is not a discontinuity at the band gap, but has an appreciable tail 

of low energy states below the bandgap.17 Excited electrons may interact with phonons 

from the lattice and absorb into the conduction band at which point radiative 

recombination may occur as per usual. This was proposed for as a method to facilitate 

cooling in GaAs, where longitudinal optical (LO) phonons may couple to excited carriers 

in GaAs to enable absorption from the bandtail.18 Interestingly, from this point of view 

GaAs is not an optimal material for optical cooling. The strength of the coupling between 

LO phonons and electrons, the so called fröhlich coupling, is 0.068 in GaAs, but  ~10 

times higher (0.514) in CdS,19 another direct bandgap material with high quantum yield 
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(see Chapter 3). This property was exploited to achieve the first ever realization of net 

cooling in a semiconductor, namely CdS.12  

It should be noted that optical cooling still remains an incredibly challenging 

problem, and since 2013 we have seen no additional work on laser cooling of 

semiconductors by other research groups. This is expected as each photon that is 

contributes to the cooling process via anti-Stokes photoluminescence will withdraw about 

ELO from the material (38 meV in the case of CdS20), yet a single photon that contributes 

to heating deposits energy equal to the laser energy. Furthermore, dimensions play a 

critical role in the cooling or heating process. If the material is too thick then light 

trapping becomes an issue and anti-Stokes photons are readily reabsorbed. On the other 

hand, if the material is too thin then recombination at the surface, a non-radiative process 

(see discussion above), plays a significant role in carrier recombination of the material.21 

In the case of CdS, it was found that a balance between these two properties yields ~100 

nm as an optimal belt thickness.15 Yet even additional considerations arise at the 

nanoscale, such as the dependence of emission from the band edge on sample dimensions 

even well above the quantum confinement regime, which will affect both absorption and 

the ratio of mean emission energy to excitation energy.22 These observations point to the 

need for another technique of efficient optical cooling. Surface plasmon-enhanced laser 

cooling of semiconductors is one such approach and will be focus of this chapter.  
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6.1.3: Theory of Surface Plasmon Enhanced Laser Cooling of Semiconductors 

The previous chapters have been largely dedicated to engineering the optical 

properties of semiconductor materials by interfacing them with surface plasmon (SP) 

modes. Increased spontaneous emission due to the highly Purcell enhanced radiative 

recombination rates (Chapters 1, 3 and 4) resulted in orders of magnitude faster light 

emission and increased quantum yields (Chapters 4 and 5).  Naturally we would like to 

explore the potential of surface plasmon-enhanced spontaneous emission for enhancing 

laser cooling of semiconductors, which itself is based on efficient light emission and thus 

a high radiative recombination rate. The first clue pointing to surface plasmon enhanced 

cooling comes from the maximum cooling power density, which may be derived from 

SBE theory as:1 

 𝑁𝑘𝑇
𝜏!"#

 
Eq. 6.8 

where 𝜏!"# is the radiative recombination lifetime (i.e. 𝛾!"#!!). This is often cited as an 

advantage to achieve cooling in semiconductor materials, which often feature higher 

radiative rates than RE-doped glasses.10 As demonstrated in Chapters 3-5, with an 

appropriately designed plasmonic optical cavity, the spontaneous emission rate of 

materials may be enhanced by up to 103, meaning, all things being equal, cooling should 

be enhanced by a similar amount in a plasmonically-coupled system.  

 Framing the problem from another perspective, in order to avoid heating the 

sample in question, as opposed to cooling it, places a limit on the minimum allowable 
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non-radiative recombination rate, which detracts from radiative recombination. 

Quantitatively, we may recast the cooling efficiency from SBE theory in terms of the 

minimum allowable non-radiative recombination lifetime: 

 𝜏!"#$
(!"#) =

𝜈!
𝜂! 𝜂!"#𝜈! − 𝜈!"

1
𝛾!"#

 Eq. 6.9 

This is similar to the expression obtained by Khurgin,23 who originally proposes SP-

enhanced optical cooling, but which also takes into account the absorption efficiency of 

the system, 𝜂!"#. This minimum non-radiative recombination time is generally on the 

order of microseconds, which places a high demand on the quality of the materials 

produced. As we can observe from the expression above, this requirement is significantly 

relaxed by employing a Purcell enhanced radiative rate, which should facilitate laser 

cooling of the material.  

 The question then remains as to what happens with the photons emitted into the 

optical cavity. As has been expounded in previous chapters, these are plasmonic optical 

cavities, which lead to extreme confinement of the optical field. More to the point, the 

light extraction efficiency of light emitted using our previous two geometries, i.e. core-

shell (Chapter 3) and Ω-architecture (Chapters 4 and 5) is generally  ~0.1-1%24,25 which 

would offset any gains from an increased radiative rate. The key is that the objective is 

not simply to extract anti-Stokes photons from the system, but rather to prevent them 

from being reabsorbed by the semiconductor. If the plasmonically-active material may be 

separated from the semiconductor by a thermal insulator, such as glass, then Purcell-
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enhanced anti-Stokes photons should excite SPs within the metal and dissipate into the 

metal, which itself is generally a good heat sink. The remainder of this chapter is 

dedicated to experimental verification of this hypothesis. First, laser cooling is explored 

in CdS nanobelts, following the prescription set out by Xiong et al.12 The CdS samples 

are then integrated with a metal cavity to explore the possibility of surface-plasmon 

enhanced cooling in CdS nanostructures. 

6.1.3.1: Enhanced Phonon-Electron Coupling in Plasmonically-Coupled CdS 

 As has been true throughout this thesis work, there is always an interplay between 

cavity electrodynamics and the solid state physical properties of the material. The 

previous section established the benefits of surface plasmon enhanced optical cooling due 

to the increased light emission that stems from Purcell enhancement, and which we have 

employed to generate highly enhanced luminescence from various semiconductor 

materials (see Chapters 3-5). High values of electron-phonon (fröhlich) coupling are 

critical to facilitating absorption into the conduction band from the Urbach tail of the 

semiconductor, which is mediated by lattice phonons. CdS already has a particularly high 

fröhlich coupling constant which is ~10 times that of GaAs (see section 6.1.2), yet 

Purcell enhancement in plasmonically-coupled CdS leads to orders of magnitude 

fastercarlight emission from high energy (hot) electronic states which itself was mediated 

by LO phonon scattering. Based on this observation of hot photoluminescence which 

mediates the surface-plasmon aided Purcell enhancement, we expect even higher values 

of electron-phonon coupling in plasmonically-coupled CdS. In order to quantify the 
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fröhlich coupling in CdS, we may examine the ratio of Stokes to anti-Stokes Raman 

scattering. Stokes Raman scattering involves phonon generation whereas anti-Stokes 

Raman scattering results in phonon-annihilation, thus the amount of anti-Stokes Raman 

scattering is proportional to the strength of the electron phonon interaction. The ratio of 

stokes to anti-Stokes Raman scattering intensities for the 1st order process (involving a 

single LO phonon) may be written as:  

 𝐼!
𝐼!"

= 𝐴𝑒
ℏ!!

!" Eq. 6.10 

where A is a geometric pre-factor which varies with the experimental setup and is 

generally >1 and ω0 is the LO phonon energy.26,27 We characterize the experimental 

prefactor in our Raman setup by using a standard piece of bulk silicon wafer (111), which 

yields A=0.93. Likewise, second order anti-Stokes scattering is generally lower than 

second order Stokes scattering intensity and may be expressed as:12,26 

 

 𝐼!!!"

𝐼!"!!"
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2𝑒

!ℏ!!
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2− 𝑒
ℏ!!

!"
 

Eq. 6.11 

Using the above expressions we calculate anti-Stokes/Stokes ratios of 0.25 and 

0.076 for the 1LO and 2LO processes respectively, in line with previously reported 

values.12 Due to Bose-Einstein statistics, anti-Stokes scattering is generally lower than the 

stokes scattering. Anti-Stokes scattering can be increased by exciting resonantly, in other 

words, when the exciting laser is some integer multiple of the LO phonon energy away 



	
  

	
  
	
  

151	
  

from excitonic emission, i.e. 𝐸! = 𝐸!" − 𝑛𝐸!", where EL, Eex, and ELO are the laser 

energy, spectral position of the excitonic emission and the LO phonon energy 

respectively. The 532 nm laser in our setup provides such resonant excitation, given the 

emission from our CdS sample is typically at 501-505 nm (2.45-2.47 eV), which is ~3LO 

phonons (each with a value of 38 meV) above the 532 nm laser line. We explore the 

effect of resonant excitation in both bare and plasmonically-coupled CdS below.  The 

Raman spectrum of bare CdS nanowire with d~200 nm (66.2) demonstrates strong anti-

Stokes photoluminescence centered around -1157 cm-1 (2.474 eV). We also observe 

Raman peaks at -2LO (stokes) +2LO (anti-Stokes) and +3LO where -/+ denotes stokes 

shift and anti-Stokes shift respectively. Note, we do not observe first order scattering due 

to the notch filter which blocks a range around the exciting 532 nm that also blocks the 

1LO peak at 306 cm-1. After subtracting the luminescence background (Figure 6.2b) we 

obtain an anti-Stokes/Stokes ratio of the -2LO and +2LO peaks of 0.39, which is ~5 times 

the theoretical relative anti-Stokes activity. This is expected due to the near resonant 

excitation and broad photoluminescence spectrum, which facilitates spectral overlap 

between the excitonic emission and Raman overtones.  In order to examine electron-

phonon coupling in plasmonically-coupled CdS, nanowires in the same size range were 

first deposited on a transparent glass substrate, coated with with 5 nm of SiO2 via atomic 

layer deposition and metallized with 300 nm of Ag (see sections 6.3 and 6.4 for 

experimental details). The samples were then excited and measured through the 

transparent glass substrate (see Figure 6.7a). Examination of the plasmonically-coupled 

nanowire (Figure 6.3, green curves) yields a stokes/anti-Stokes ratio of 3.327 (Figure 
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6.3b), which is well above unity and x44 the theoretical ratio Furthermore, second order 

Raman activity dominates over the photoluminescence background. This is evidence of 

the potentially enhanced electron-phonon coupling in plasmonically-coupled CdS, which 

in combination with Purcell enhancement, may be exploited to promote laser cooling in 

CdS nanostructures.  
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Figure 6.2 | Stokes and anti-Stokes Raman scattering for bare CdS nanowire (d~200 nm) 
with 5 nm conformal SiO2 coating. a) Raman spectrum featuring broad 
photoluminescence peak centered at  ~1157 cm-1 (2.474 eV) which is attributed to 
excitonic emission from CdS. b) Magnified view of region near 2LO Raman peaks in 
both the Stokes and anti Stokes region. Spectra have been baseline corrected to eliminate 
the photoluminescence background and provide accurate values of the Raman intensity. 

Figure 6.3 | Stokes and anti-Stokes Raman scattering for metal coated CdS nanowire with 
5 nm conformal SiO2 coating and 300 nm Ag metal shell (green curves). a) Raman 
spectrum featuring broad photoluminescence peak centered at ~980 cm-1 (2.452 eV) 
which is attributed to excitonic emission from CdS. The spectrum of a bare (non-metal 
coated) CdS nanowire is also plotted for comparison (black curve). b) Magnified view of 
region near 2LO Raman peaks in both the Stokes and anti Stokes region. Spectra have 
been baseline corrected to eliminate the photoluminescence background and provide 
accurate values of the Raman intensity. 
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6.2: Experimental 

 CdS nanobelts and nanowires were grown via the vapor liquid solid method as 

discussed in chapter 2.  Atomic force microscopy revealed that the majority of samples 

have thickness, d, between 200 nm and 300 nm (Figure 6.4a and Figure 6.4b, cyan 

curve), which, as discussed in section 6.1.2, is too thick and will result in photon 

reabsorption, which hinders the optical cooling process. It was found that nanobelts and 

nanowires on the part of the growth substrate closest to the center of the furnace, that is 

generally at higher temperature and which sees precursor first, feature belts with 

thickness 70-110 nm (Figure 6.4b). These samples are appropriate for cooling and used in 

the remainder of this work, unless specified otherwise. 

 

 

Figure 6.4 | Atomic force microscopy of CdS nanobelts. a) AFM image of typical thick 
CdS nanobelt with thickness of ~240 nm. b) AFM profiles of typical thick and thin CdS 
nanobelts as discussed in section 6.2. 
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Photoluminescence measurements were performed using a home-built laser-

microscope-spectrometer setup depicted in Figure 6.5b. The probe laser is a solid-state 

diode laser operating at 473 nm, which is above the room-temperature band gap of CdS 

(~505 nm). The power is tuned to < 20 µW in order to avoid heating the sample. The 

probe laser beam is fed through a x60, 0.7 NA objective (Nikon) with a spatial resolution 

of 500 nm. The laser was focused to a spot size of ~1 micron. The resulting emission was 

collected using a spectrometer (Acton) with 0.1 nm resolution and a cooled CCD (Pixis 

2K, Princeton Instruments). The 514.5 nm laser line of a continuous wave argon-ion laser 

(Coherent) was used as the pump beam (cooling laser) and focused through the same 

optics. A narrow-band holographic filter (Kaiser Optics) is used to filter out the 514.5 nm 

laser light leaving only the light emitted by the sample. Incident pump powers in the 

range 1-7 mW were used.   

6.2.1: Differential Photoluminescence Thermometry  

The sample temperature was monitored using Differential Luminescence 

Thermometry (DLT), a technique that monitors the shift in the photoluminescence 

spectra as a function of temperature.10 The bandgap of semiconductors generally features 

a negative and quadratic dependence on temperature expressed by the empirical relation 

known as the Varshni formula.19 The negative temperature dependence has been 

confirmed in CdS28 and used to enable sub-Kelvin resolution during previous laser 

cooling experiments.12 In our CdS nanobelts, the temperature dependence of the spectral 

position of the photoluminescence was measured by controlling the temperature the 
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sample stage and recording the peak position of the photoluminescence spectrum. First, 

the stage was cooled to 268 K and allowed to reach a steady state temperature within +/- 

0.25 K. Photoluminescence was then excited at low power (see above) at several 

instances between 0-20 minutes (Figure 6.5a) which reveals that the sample thermalizes 

well under 10 minutes (a measurement which was further refined in section 6.3 below). 

In order to ensure complete thermalization of the sample, CdS belts were maintained at 

the set stage temperature for 10 minutes before recording the photoluminescence peak 

position. The temperature of the sample stage was then varied between 268 K and 312 K 

(under liquid nitrogen flow) in 4 K intervals (Figure 6.5b), which reveals a monotonic red 

shift of the photoluminescence spectrum with sample temperature. The change in 

temperature (with reference to 312 K) was plotted as a function of change in peak 

position (Figure 6.5c). In this narrow temperature range, the data is readily fit by a linear 

function, the slope of which agrees well with previous experimental investigation.12 This 

curve is now used to extract the temperature of the sample from the shift in the spectral 

position of the photoluminescence.  

At its most basic the DLT technique involves the use of two laser beams, a pump 

and a probe. The pump beam excites the sample above the bandgap (Figure 6.5d) and 

provides a base photoluminescence spectrum. The sample is then illuminated with the 

lower energy (but higher intensity) pump laser only; at an energy below the bandgap, 

which excites carriers into the Urbach tail of the semiconductor (see discussion above). 

The sub-bandgap excitation will cool the sample overtime, after which the pump is turned 
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off and the photoluminescence spectrum is taken with the probe beam only. If the sample 

is cooled then a net blue shift in the photoluminescence should be observed.  
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Figure 6.5 | Differential Luminescence Thermometry temperature calibration curve and 
schematic of measurement scheme. a) Photoluminescence at several times in the range 0-
18 minutes for a CdS sample at a fixed temperature of 268 K. The photoluminescence 
peak  position reaches a steady state within ten minutes of stabilization of the sample 
stage temperature. b) Photoluminescence spectra for a representative CdS samples at 
various temperatures in the range 268 K to 312 K (plotted at 8 K intervals for clarity). c) 
Plot of change in temperature, ΔT, vs. change in spectral peak position, ΔE, obtained 
from the photoluminescence data in (b). The blue line represents a linear fit to the data. d) 
schematic of measurement process using a pump laser (514.5 nm) for cooling and a low 
power probe laser (473 nm) for monitoring the shift in the photoluminescence spectrum.  
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 In an ideal case, the sample to be cooled would be suspended in vacuum to avoid 

thermalization from the surroundings (which is essentially a large heat reservoir). In their 

previous work on cooling of CdS nanobelts, Xiong et al. suspended CdS nanobelts over 

~3 µm x 3 µm pits on an SiO2/Si substrate.12 In this work, samples are suspended over a 

PMMA box pattern (Figure 6.6). The PMMA box pattern was constructed by spin-

coating six layers of PMMA 950k A4 and exposing using an electron beam lithography 

(elionix) system. The trench box depth is ~1.7 µm as confirmed by atomic force 

microscopy. The PMMA box pattern was chosen as it promotes cooling from both 

geometric and materials science considerations.  For a CdS nanowire over a hole, the 

thermal loss, PLoss, into the substrate may be modeled via:15 

 𝑃!"## = −2𝑘𝑀
∆𝑇
∆𝐿 Eq. 6.12 

where k, M, ΔT, and ΔL are the thermal conductivity of CdS, the cross sectional area of 

the nanobelt, the difference in temperature between the cooling point on the sample (area 

excited by pump laser spot) and substrate, and the distance between the sample cooling 

spot to the substrate wall. In the boxed cooling pattern we may often approximate ΔL in 

at least the lateral or longitudinal dimension as infinite. From a materials property point 

of view, the thermal conductivity of PMMA (0.167 – 0.250 W/mK) is ~10 times lower 

than that of thermally grown SiO2 (1.4 W/mK)29 and should aid in preventing 

thermalization to the substrate.  
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Figure 6.6 | Optical image of CdS nanobelt suspended over PMMA boxes (~9 µm x 9 
µm) with a ~4 µm separation. The bright emission from the nanobelt is anti-Stokes 
photoluminescence resulting from excitation below the bandgap at (with the 514.5 nm 
pump laser).  

 

6.3: Initial Results and Discussion 

When pumped with the sub-bandgap 514.5 nm (pump) laser, CdS nanobelts 

typically feature bright emission at the band edge (Figure 6.7a). Before attempting to 

measure cooling in plasmonically-coupled CdS nanostructures, attempts were made to 

reproduce the results of Xiong et. al.12 on CdS nanobelts. In order to avoid thermalization 

of the sample with the substrate, ideally the probe measurement would be made 

immediately after the pump laser is shut off. As a first order experiment, CdS nanobelts 

were excited below the band gap, with the pump laser beam, and the anti-Stokes 

spectrum was monitored as a function of time. In other words this is a single-beam 

experiment. Though in general it is preferable to monitor temperature with the shift in 
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probe beam as the temperature dependence of “Stokes” (or normal) photoluminescence is 

well documented,19 we may still look for qualitative signs of cooling as the anti-Stokes 

photoluminescence should itself blue shift with time.  

The anti Stokes spectrum of a CdS nanobelts with suboptimal dimensions 

(thickness d~200-300 nm) are shown in Figure 6.7, where these CdS nanobelts typically 

feature bright photoluminescence when excited with the pump laser below the band edge 

(Figure 6.7a).  The majority of samples measured show no change in the spectral position 

of the emission peak as a function of time, which is expected given all of the 

considerations established above, yet two different samples demonstrated a monotonic 

blue shift as a function of time when illuminated for up to 1 hour with the pump (514.5 

nm) laser at 2 mW (Figure 6.7b, c). Note, the samples were excited until the anti Stokes 

photoluminescence peak no longer moved, at which point the sample has reached 

saturation (cooling is offset by thermal loss to the surroundings and a cooling efficiency 

which is < 0), a feature which was also observed in previous experiments.12 The total 

blue shift in the spectrum is still <1nm after 1 hour of pumping and certainly less than the 

~4 nm blue shift measured by Xiong et al., which led to cooling by up to 40 K, but the 

results are still sufficient to justify pursuing further experimentation (i.e. pump-probe 

measurements). 
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Figure 6.7 | Anti Stokes photoluminescence in bare CdS nanobelts with thickness d~200-
300 nm. a) Photoluminescence in CdS nanobelt excited with the 514.5 nm line of a CW 
laser (inset: optical image of anti Stokes photoluminescence excited with pump laser). b) 
Magnified view of anti Stokes photoluminescence spectrum in CdS nanobelt featuring a 
blue shift of  ~1.74 meV (~0.3 nm), which reaches a steady state after 15 minutes of 
excitation with the pump laser.  c) Magnified view of anti Stokes photoluminescence 
spectrum in CdS nanobelt featuring a blue shift of 2.6 meV (~0.5 nm) after 1 hour of 
excitation with pump laser.  
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Pump-probe measurements were performed using the experimental conditions 

described in section 6.2, which closely resemble those used in previous CdS cooling 

experiments.12 Figure 6.8 features a representative data set, where the photoluminescence 

(resulting from excitation with the probe laser) is taken at room temperature (Figure 6.8, 

black curves). The sample is then pumped for fifteen minutes and a second probe 

photoluminescence measurement is made immediately thereafter (Figure 6.8a, red curve). 

No shift in the photoluminescence spectra is observed. A more sensitive measure of the 

onset of cooling (or heating) is provided by plotting the difference between the initial 

spectrum and the spectrum after some time (DLT curve). Cooling, or a net blue shift in 

the spectrum will be appear as a peak followed by a dip in the DLT spectrum, due to 

greater activity in the blue part of the spectrum, whereas heating will appear as a valley 

followed by a peak. The DLT curve (figure 6.8a, magenta curve) reveals no such activity 

with a small dip in the middle due to noise in the probe spectrum, which is taken at low 

power (see section 6.2 for details).  

In order to further promote cooling, CdS nanobelt samples were uniformly coated 

with a 5 nm layer of SiO2 via atomic layer deposition, which is known to passivate the 

surface of CdS (see Chapter 2 for a discussion on the improved optical properties of 

surface-passivated CdS and Chapter 3, section 3.2 for the experimental details). 

Moreover, as discussed in section 6.1.2, in single crystalline CdS nanostructures the 

surface is the largest contributor to non-radiative recombination, the passivation of which 

results in improved free exciton radiative recombination.28 As can be observed in Figure 

6.8c, there is no further improvement in the cooling performance of these samples. This 
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observation is somewhat expected given the constraints on the cooling efficiency 

(discussed above) which require a quantum yield of near unity and almost no parasitic 

absorption. Furthermore, nanostructures need to be of the appropriate dimensions to 

avoid light trapping (and subsequent reabsorption) but also minimize surface effects (see 

section 6.1.2).  

Still, given the initial positive results with single-beam measurements, we first 

examine the issue of thermalization to the substrate. As discussed during the initial 

measurements with a single laser beam and in section 6.2, this is an ever-present issue. In 

order to experimentally determine whether lack of cooling is due to the sample’s 

surroundings, the entire sample stage was heated (a feature of the Janis ST-500 cryostat) 

by 3 K-5 K, where the instantaneous temperature was monitored as a function of time. 

The Stokes photoluminescence (due to excitation with the probe laser) was monitored 

concurrently. If the samples instantly thermalized with the surroundings then we would 

expect the change in the photoluminescence peak position to follow the change in stage 

temperature as a function of time and saturate (stop shifting) once the stage temperature 

reaches its steady state value. As observed in two separate measurements in different 

temperature ranges (Figure 6.9) this is not the case. The sample begins to thermalize after 

~ 10 seconds and does not reach equilibrium with the environmental temperature until 

between 40 seconds (Figure 6.9a) and 20 seconds (Figure 6.9b) after the stage has 

reached equilibrium, which points to the effectiveness of the patterned-PMMA coated 

substrate for thermal isolation (see section 6.2) and excludes thermalization as a cause for 

lack of  observable optical cooling in the pump-probe measurements.    
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Figure 6.8 | Pump-probe differential luminescence thermometry of bare and passivated 
CdS nanobelts. a) Stokes Photoluminescence spectra of a CdS nanobelt featuring the 
spectrum at time t=0 (black curve) and t=15 min (after pump excitation; red curve). The 
difference spectrum (DLT curve) is plotted in magenta. c) Stokes Photoluminescence 
spectra of a CdS nanobelt passivated with SiO2 featuring the spectrum at time t=0 (black 
curve) and t=10 min (red curve). The difference spectrum (DLT curve) is also plotted in 
magenta. 
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Figure 6.9 | Probe photoluminescence peak position and sample stage temperature vs. 
time for two bare CdS nanobelt samples in the temperature range a) 307 K-311 K and b) 
311 K-316K. 
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Thus, the sensitive geometric and sample quality considerations discussed in 

previous sections are likely the most significant barrier to optical cooling. As postulated 

in section 6.1.3, coupling of carriers in CdS to surface plasmons may relax some of the 

aforementioned constraints through increased radiative recombination. Furthermore, the 

realization of highly Purcell-enhanced light emission has been a focus of this thesis. What 

follows is the first experimental pursuit, to the author’s knowledge, of surface plasmon-

enhanced optical cooling in a semiconductor system. 

6.4: Cooling of Plasmonically-Coupled Cadmium Sulfide 

 In order to explore plasmonically-enhanced optical cooling, the CdS nanobelts 

discussed in the previous section were metallized with a thin (15 nm) layer of silver via 

electron-beam evaporation (Thermionics). The thin silver film enables laser excitation 

and measurement of the emission from the top (through the silver film) as depicted in 

Figure 6.10a. Interestingly, a modicum of cooling was observed in one of the samples 

(Figure 6.10b), which is confirmed via the DLT curve that features the characteristic peak 

followed by valley (see previous section). A magnified view near the spectral peak 

(Figure 6.10c) reveals a small shift (<1 nm, 0.7 meV) corresponding to a net cooling of 

~1.7 K, which again, is significantly lower than the maximum cooling of 40 K achieved 

in previous work. Still, this is the only observation finite cooling using the pump-probe 

method compared to previous (and passivated) CdS nanobelts.  
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Figure 6.10 | Laser cooling of plasmonically-coupled CdS in geometry optimized for top-
down excitation and measurement. a) Schematic of CdS integrated with a 15 nm thick Ag 
film. Excitation is performed through the Ag film as denoted by the dark green and 
purple arrows. Emission is also measured through the substrate (bright green arrow). b) 
Stokes Photoluminescence spectra of a CdS nanobelt featuring the spectrum at time t=0 
(black curve) and t=15 min (after pump excitation; red curve). The difference spectrum 
(DLT curve) is plotted in magenta. c) Magnified view of anti-Stokes photoluminescence 
(excited with probe laser) of data presented in (b).  
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In order to promote SP-enhanced cooling, first a thicker silver film (300 nm) is 

deposited. A thicker film of metal will ensure continuity of the film and lead to lower 

optical losses. In addition, and perhaps more importantly, a thicker metal film should 

serve as a superior heat sink for dissipation of heat generated from surface plasmon 

oscillations. On the other hand, a thick metal film, which is greater than the skin depth of 

silver at optical frequency (~15 nm), will prohibit excitation from the top surface. Thus, 

the entire sample was constructed on a transparent glass slide (Fisher Scientific, 150 µm 

thick), which enabled excitation and detection from the bottom surface (through the 

substrate) as detailed in Figure 6.11a. Measurement of the samples following the same 

experimental conditions described above did not reveal any cooling of the sample. In 

order to further promote cooling, the same measurements were repeated under resonant 

excitation, by previously tuning the sample temperature to enable light emission at an 

energy which is an integer of the LO phonon energy, nELO, away from the excitation 

laser. In order to resonantly excite the sample at 1LO phonon energy away from the laser 

the stage temperature was increased to 319K to tune the photoluminescence peak to 

Energy, E=ELaser+ELO = 2.414 eV+0.038 eV corresponding to ~506 nm. Interestingly, 

cooling was only observed at 2LO resonant excitation corresponding to a sample 

temperature of 229K and sample emission at ~498.5 nm (Figure 6.11b-c). As can be 

observed the probe photoluminescence spectrum blue shifts after 10 minutes of excitation 

with the pump laser (6.11b), before returning to its original position after 5 minutes 

without pumping (Figure 6.11c). Still, < 1 meV of shift is observed (0.8 meV) 
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corresponding to ~2 K of cooling, a far cry from the 40K of cooling achieved by the 

Xiong group with bare CdS nanobelts.12 It should be noted that no cooling was observed 

for bare nanowires under similar conditions. 

 

 

 

 

 

 

    
    

 
Figure 6.11 | Laser cooling of plasmonically-coupled CdS using inverted geometry. a) 
Schematic of CdS integrated with a 300 nm thick silver film. Excitation is performed 
through the substrate as denoted by the dark green and purple arrows. Emission is also 
measured through the substrate (bright green arrow). b-d) Magnified view of Anti-Stokes 
photoluminescence (excited with probe laser) b) after 10 minutes of cooling, c) after 2 
minutes of warm up time (after excitation with pump laser has ceased) and d) 5 minutes 
of warm up time. The original probe photoluminescence spectrum at t=0 is plotted in 
black in all three plots as a reference point.  

	
   	
  

	
  

a 

b c d 



	
  

	
  
	
  

171	
  

6.5: Conclusions and Future Work 

By coupling CdS nanobelts to surface plasmons sustained within a metal shell we 

were able to show improvements in the optical cooling performance of CdS over its 

uncoupled (bare) counterpart. Several geometries were explored during the optimization 

process, which highlights the extreme sensitivity of optical cooling to sample growth 

conditions, sample geometry, and material properties. Still, significant additional work is 

required to (1) improve the cooling performance of these plasmonically-coupled 

structures and (2) elucidate the role of surface plasmons in mediating anti-Stokes 

photoluminescence. In order to improve cooling performance, a thickness dependent 

study of the insulating (SiO2) spacer layer is essential. Whereby, increasing thermal 

isolation will be balanced with decreased efficiency of surface plasmon excitation. 

Details of this potential study are expounded in Chapter 7, future work. (3) Resonant 

excitation must also carefully explored as it will be sensitively dependent on both laser 

excitation energy as well as the mean emission energy which itself is sensitive to sample 

dimensions at the nanoscale (see section 6.1.2) and temperature. Finally, the role of 

surface plasmons in plasmonically-coupled CdS nanobelts must be clarified and will 

require Purcell factor as well quantum yield calculations, which may be performed using 

the finite difference time domain analysis techniques that have been developed in 

previous chapters.   
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Chapter. 7 Conclusions 

 

7.1: Future Work 

In order to confirm the generality of surface plasmon induced hot 

photoluminescence, we would like to apply this method to other material systems and in 

a different spectral range. Of particular interest would be germanium, again a dark 

material normally used for electronic applications. With its low bandgap of 0.67 eV,1 we 

may extend hot luminescence to the NIR range and, in particular, enable operation near 

the technologically relevant telecommunications wavelength (1.55 µm). Furthermore, this 

will allow other plasmonically-active materials to be incorporated, such as highly doped 

semiconductors and oxides, which may be more compatible with modern electronic 

fabrication techniques and which are more amenable to tuning of their plasmon resonance 

based on carrier doping.2 

 Though much work has been performed on the characterization of hot 

luminescence in silicon, time resolved measurements could potentially provide yet 

another way of differentiating between different hot emission pathways which depend on 

both electronic and phonon structure of the material (see Chapters 4 and 5). Time 

resolved photoluminescence spectroscopy involves a pulsed excitation source and a high-

intensity gate beam that is used to induce transient birefringence on the Kerr medium (see 

section Chapter 3, section 3.6.1). In general, there is a broad luminescence background in 

the visible range due to auto fluorescence from the Kerr medium, thus, the intensity of 
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the photoluminescence signal from the sample must be maximized in order to enable the 

time resolved measurement.3 This may be accomplished by making ensemble 

measurements, a technique which proved successful in measuring the spontaneous 

emission lifetime of plasmonically-coupled CdS in Chapter 3.4  

Attempts to perform these measurements on an ensemble of plasmonically-coated 

Si nanowires with sizes in the range d=40 nm-80 nm (as used in Chapter 4)5 were 

unsuccessful due to the low quantum yield of the samples. This is expected as the 

quantum yield of indirect bandgap semiconductors is generally low and estimated to be 

1.4% for the plasmonically-coupled Si nanowires. Furthermore, emission was found to be 

highly sensitive to the size of the sample, where the previously mentioned quantum yield 

only applies to “resonantly” sized plasmonically coupled Si nanowires. It would be 

beneficial to attempt these measurements on “large” plasmonically-coupled Si nanowire 

samples, such as those used in Chapter 5, with diameters in the vicinity of d~150 nm. 

These nanowires should generally feature a higher external quantum yield as incoupling 

and outcoupling of light is facilitated in a larger structure. Furthermore, when comparing 

the d=150 nm nanowire to d=70 nm nanowire the amount of active material is increased 

~4.6 fold in volume. Pulsed excitation can also present some difficulty in excitation of 

hot photoluminescence, as the exciting laser pulse is only pseudo-monochromatic with a 

width of ~50 nm in the frequency domain. In order to examine the possibility of exciting 

hot photoluminescence in plasmonically coupled silicon under pulsed excitation, a 

plasmonically-coupled sample with d~150 nm was excited with a continuous-wave Ar+ 

laser operating at 457.9 nm with a 2 mW output and the 140 fs pulse of a Ti:Sapphire 
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laser tuned to 458 nm and also operating at 2 mW time-averaged power. A broad hot 

luminescence signal was effectively generated from the plasmonically-coupled sample 

(Figure 7.1, magenta curve), albeit at lower counts for the previously mentioned reasons.  

 

 

 

 

 

 

 

Figure 7.1 | Photoluminescence of plasmonically-coupled Si nanowire (d~150 nm) 
excited with the 457.8 nm laser line of an Argon-ion laser (continuous wave, blue curve) 
and Ti:Sapphire laser (pulse width 140 fs, 80 MHz repetition rate) tuned to 458 nm 
(magenta curve).  

  

With regards to surface-plasmon enhanced optical cooling of CdS, a critical 

parameter is the separation of the metal cavity from the active CdS core. As expounded in 

the original theoretical treatment by Khurgin et. al., ideally, the spacer between the metal 

and semiconductor would be a vacuum.6 This would serve to both generate the high 

intensity surface plasmon fields which have been shown to appear in high index 

semiconductor-insulator-metal systems4,7,8  while thermally isolating the metal from the 
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semiconductor and allowing heat dissipation to occur in the metal. Interestingly, the SiO2 

used as the insulating spacer layer, which is deposited via atomic layer deposition (see 

Chapter 2 and Chapter 3, section 3.2) is not the ideal material here. From an experimental 

point of view, perhaps a more adequate material would be highly porous SiO2, which 

would maintain its low index character, while behaving as a superior thermal insulator. 

Nanoporous silica thin films, with nanopores in the range 5-10 nm have been produced 

via solution methods9 where the sample and porous SiO2 film and substrate are interfaced 

via dip-coating, a method that is amenable to VLS grown CdS samples on a growth 

substrate (see Chapter 2). Furthermore, the distance between the emitter (in this case 

CdS) and plasmonically-active material (i.e. Ag) is critical in determining the efficiency 

of light emission10 where the optimal distance will depend on both geometry and 

refractive index. Thus, a detailed study with variable-thickness porous SiO2 should be 

conducted.  

7.2: Concluding Remarks 

 This thesis was dedicated to the integration of semiconductor nanowires with 

plasmonic optical cavities (i.e. optical antennas) to achieve unprecedented levels of 

enhancement in their optical properties, with a focus on light emission. The groundwork 

for surface-plasmon enhanced photoluminescence in semiconductors was established in 

Chapter 3, where CdS, a direct bandgap semiconductor, was interfaced with silver in a 

core-shell geometry. Though the nanocavity plasmon modes hosted by the system have 

moderate quality factors (~50), the mode volumes are on the order of 10-4. In other 
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words, light in this hybrid-semiconductor/plasmon system is 104 times more confined 

than in free space. The high Q/Vm values led to Purcell factors on the order of 1000, that 

is spontaneous emission from excited charge carriers is 1000 times faster in this system 

than in the bulk. Such high radiative recombination rates, which are a result of the 

electromagnetics of the optical cavity, significantly altered the photoluminescence 

spectrum of CdS, enabling light emission from charge carriers in the excited state before 

they have time to relax to the ground state, the so called “hot”-photoluminescence. 

Furthermore, this process was shown to be mediated by optical phonons in CdS, which 

highlights the interplay between optical physics and solid-state physics that is prevalent 

throughout this thesis.  

In the latter part of Chapter 3, plasmonic cavity modes in the core-shell 

architecture were used in the reciprocal process, to enable broadband enhancement of 

light absorption in a computational study of plasmonically-coupled Ge and CdSe 

nanowires.  Interestingly by placing what is essentially a mirror around the nanowires, 

but of the appropriate dimensions for plasmonic modes, nanowires were shown to absorb 

more light than their bare counterparts with straightforward applications in nanowire 

based photodetector and solar cell design.  

 In Chapter 4, the lessons learned about hot carrier luminescence in plasmonically-

coupled CdS, a light emitting material, were applied to Si, a dark material. In Si, due to 

its indirect band structure, excess energy is converted to heat much more readily than to 

emitted photons, a system that is starkly different than CdS. The implications of light 
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emitting Si are substantial noting Si is ubiquitous in modern electronics. As expounded in 

Chapter 4, there is a significant push from industry to explore Si as an optoelectronic 

material where a Si light source would represent a significant milestone. Hot 

photoluminescence via coupling to high Q/Vm plasmonic modes led to broadband hot-

photoluminescence with a quantum yield of ~1.4%, a substantial increase compared to 

the 10-4-10-6 typically reported for bulk Si. Moreover, this was achieved in non-quantum 

confined silicon, with dimensions that are amenable to modern electronic device 

fabrication.  

 Chapter 5 was dedicated to a comprehensive experimental study of hot 

photoluminescence in silicon cavities in a larger size range, which highlights the 

applicability of this technique across various dimensions. Variable energy excitation 

photoluminescence measurements reveal the role of the electronic structure of silicon in 

determining the spectral range of the photoluminescence spectrum, while the individual 

peaks were demonstrated to depend on phonon modes. Finite Difference Time Domain 

simulations elucidate the role of cavity modes in determining the broad features in the 

photoluminescence spectrum and also reveal interesting electromagnetic properties 

germane to plasmonic cavities which host high order, whispering gallery-type modes. 

Finally, though resonant-Raman scattering and hot photoluminescence show similar 

spectral characteristics, temperature dependent photoluminescence spectroscopy presents 

clear evidence for a hot photoluminescence process, where the temperature dependence is 

opposite that of Stokes resonant-Raman scattering.  
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 The lessons learned in previous chapters were then applied to a phenomenon that 

would benefit from highly enhanced light emission; optical cooling of semiconductors. 

Chapter 6 lays out the theoretical foundations of optical cooling of semiconductors based 

on literature review and examines each component separately with regards to optical 

cooling in CdS. The many difficulties, which prevent the widespread use of optical 

cooling in semiconductors, are highlighted here and surface plasmon enhanced cooling is 

proposed as a solution. The potential benefits of cooling via surface plasmon enhanced 

light emission are then posed in terms of both cavity electromagnetics (enhanced 

emission quantum yield) and solid-state physics i.e. enhanced electron-phonon coupling 

in plasmonically-coupled CdS, where experimental evidence is presented. Finally, we 

embark on the first experimental exploration, to the author’s knowledge, of surface-

plasmon enhanced optical cooling in semiconductors, where we demonstrate promising 

results and clearly outline subsequent steps for its optimization.  

 It is the author’s hope that the investigations presented here serve to motivate the 

use of plasmonics in modern semiconductor technology, as plasmonics (i.e. photonics at 

the nanoscale) presents the potential for ever smaller and faster devices.11 From the 

physics point of view, it is encouraging that the investigations performed here have 

sparked further avenues for research. In this case, the exploration of surface plasmon 

enhanced light emission reveals an interplay between charge carriers, phonons, and 

plasmons, where the exact luminescence mechanism, particularly in the case of Si, has 

yet to be determined. This opens the door for a significant amount of theoretical work, 
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which when combined with experiment, presents the opportunity for further scientific 

(and technological) endeavor.  
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