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Instrumental Variable and Propensity Score Methods for Bias Adjustment
in Non-Linear Models

Abstract
Unmeasured confounding is a common concern when clinical and health services researchers attempt to
estimate a treatment effect using observational data or randomized studies with non-perfect compliance. To
address this concern, instrumental variable (IV) methods, such as two-stage predictor substitution (2SPS)
and two-stage residual inclusion (2SRI), have been widely adopted. In many clinical studies of binary and
survival outcomes, 2SRI has been accepted as the method of choice over 2SPS but a compelling theoretical
rationale has not been postulated.

First, We directly compare the bias in the causal hazard ratio estimated by these two IV methods. Under the
potential outcome and principal stratification framework, we derive closed form solutions for asymptotic bias
in estimating the causal hazard ratio among compliers for both the 2SPS and 2SRI methods by assuming
survival time follows the Weibull distribution with random censoring. When there is no unmeasured
confounding and no always takers, our analytic results show that 2SRI is generally asymptotically unbiased
but 2SPS is not. However, when there is substantial unmeasured confounding, 2SPS performs better than
2SRI with respect to bias under certain scenarios. We use extensive simulation studies to confirm the analytic
results from our closed-form solutions. We apply these two methods to prostate cancer treatment data from
SEER-Medicare and compare these 2SRI and 2SPS estimates to results from two published randomized trials.

Next, we propose a novel two-stage structural modeling framework to understanding the bias in estimating
the conditional treatment effect for 2SPS and 2SRI when the outcome is binary, count or time to event. Under
this framework, we demonstrate that the bias in 2SPS and 2SRI estimators can be reframed to mirror the
problem of omitted variables in non-linear models. We demonstrate that only when the influence of the
unmeasured covariates on the treatment is proportional to their effect on the outcome that 2SRI estimates are
generally unbiased for logit and Cox models. We also propose a novel dissimilarity metric to quantify the
difference in these effects and demonstrate that with increasing dissimilarity, the bias of 2SRI increases in
magnitude. We investigate these methods using simulation studies and data from an observational study of
perinatal care for premature infants.

Last, we extend Heller and Venkatraman's covariate adjusted conditional log rank test by using the propensity
score method. We introduce the propensity score to balance the distribution of covariates among treatment
groups and reduce the dimensionality of covariates to fit the conditional log rank test. We perform the
simulation to assess the performance of this new method and covariates adjusted Cox model and score test.
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ABSTRACT

INSTRUMENTAL VARIABLE AND PROPENSITY SCORE METHODS FOR BIAS ADJUSTMENT

IN NON-LINEAR MODELS

Fei Wan

Nandita Mitra

Dylan Small

Unmeasured confounding is a common concern when clinical and health services researchers

attempt to estimate a treatment effect using observational data or randomized studies with non-

perfect compliance. To address this concern, instrumental variable (IV) methods, such as two-stage

predictor substitution (2SPS) and two-stage residual inclusion (2SRI), have been widely adopted.

In many clinical studies of binary and survival outcomes, 2SRI has been accepted as the method

of choice over 2SPS but a compelling theoretical rationale has not been postulated.

First, We directly compare the bias in the causal hazard ratio estimated by these two IV methods.

Under the potential outcome and principal stratification framework, we derive closed form solutions

for asymptotic bias in estimating the causal hazard ratio among compliers for both the 2SPS and

2SRI methods by assuming survival time follows the Weibull distribution with random censoring.

When there is no unmeasured confounding and no always takers, our analytic results show that

2SRI is generally asymptotically unbiased but 2SPS is not. However, when there is substantial

unmeasured confounding, 2SPS performs better than 2SRI with respect to bias under certain sce-

narios. We use extensive simulation studies to confirm the analytic results from our closed-form

solutions. We apply these two methods to prostate cancer treatment data from SEER-Medicare

and compare these 2SRI and 2SPS estimates to results from two published randomized trials.

Next, we propose a novel two-stage structural modeling framework to understanding the bias in

estimating the conditional treatment effect for 2SPS and 2SRI when the outcome is binary, count

or time to event. Under this framework, we demonstrate that the bias in 2SPS and 2SRI estimators

can be reframed to mirror the problem of omitted variables in non-linear models. We demonstrate

that only when the influence of the unmeasured covariates on the treatment is proportional to their
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effect on the outcome that 2SRI estimates are generally unbiased for logit and Cox models. We also

propose a novel dissimilarity metric to quantify the difference in these effects and demonstrate that

with increasing dissimilarity, the bias of 2SRI increases in magnitude. We investigate these meth-

ods using simulation studies and data from an observational study of perinatal care for premature

infants.

Last, we extend Heller and Venkatraman’s covariate adjusted conditional log rank test by using the

propensity score method. We introduce the propensity score to balance the distribution of covari-

ates among treatment groups and reduce the dimensionality of covariates to fit the conditional log

rank test. We perform the simulation to assess the performance of this new method and covariates

adjusted Cox model and score test.
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CHAPTER 1

INTRODUCTION

Evaluating the effectiveness of treatment and identifying the causal relationships between exposure

and disease are critical objectives for clinical and health services researchers. The casual effects

of a treatment can be rigorously defined under the potential outcomes framework (Holland, 1986;

Rubin, 2005). Consider a case of a two arm trial that involves one active treatment and a control

of no treatment. Let Zi denote binary treatment status variable, where Zi = 1 if subject i takes

the active treatment and Zi = 0 if subject i receives the control. Y Z=1
i is the potential outcome,

on a continuous scale, when subject i receives the active treatment and Y Z=0
i is the potential

outcome if subject i actually takes the control. The simple treatment effect for subject i is the

difference between the two potential outcomes, defined as Y Z=1
i −Y Z=0

i . Clearly, only one potential

outcome can be observed and the other one is often referred as “counter-factual” and written as

Yi = ZiY
Z=1
i + (1 − Zi)Y

Z=0
i . Therefore, it is not possible to identify the casual effect for an

individual because of this missing data issue (Rubin, 2005). However, the average casual effect

E(Y Z=1
i − Y Z=0

i ) for the population is identifiable from the data if certain assumptions are met.

Assume a binary treatment Z is randomized in the population and every subject complies with their

assignment. Under the exchange-ability and consistency assumptions (Hernán and Robins, 2006a;

Robins J.M. and Brumback, 2000), population average causal effect of treatment is consistently

estimated by the difference between two group means,

E(Y Z=1
i − Y Z=0

i ) = E(Yi|Zi = 1)− E(Yi|Zi = 0)

= Ȳ1 − Ȳ0

Although randomized controlled trials (RCT) are considered as the standard methodology to investi-

gate the causal effects of treatment because by design both observed and unobserved confounding

would be controlled, non-compliance frequently occurs when subjects fail to adhere to the treatment

assigned. Measured and unmeasured confounding factors may impact the outcome while causing

non-compliance of treatment (Cai, Small, and Ten Have, 2011). When the outcomes of patients

are compared by the actual treatment they receive, generally known as "as treated analysis", there

1



may exist prognostic factors that influence patients’ compliance with treatment assignment. Thus,

the estimator of treatment effect is biased when confounding factors are not fully measured and

controlled for (Hernán and Hernández-Díaz, 2012). Alternatively, intention-to-treat analysis (ITT) is

a widely accepted simple approach to non-compliance and subjects are analysed according to ran-

domization scheme regardless of treatment actually received. Although the integrity of randomiza-

tion is retained, ITT tends to underestimate treatment effects, and it measures the causal effects of

treatment assignment, instead of effectiveness of treatment (Hernán and Hernández-Díaz, 2012).

Besides non-compliance problem, RCTs are subject to many other limitations, such as lack of gen-

eralizability, high cost, lengthy study period, ethic concerns, and difficulty in studying rare diseases,

etc (Nallamothu and Hayward, 2008). When a RCT is not feasible, non-randomized observational

studies are commonly used to examine the effectiveness of treatment or therapy in routine clini-

cal practice. Compared to RCTs, well designed observational studies can provide more realistic

results. Confounding, whether observed or not, is also the main problem of estimating the causal

effects in observational studies. The traditional statistical methods, such as stratification, matching,

multiple regression, and propensity score, have been used to reduce bias (Martens et al., 2006).

These methods are valid under the assumption of no unmeasured confounding variables. In many

cases, however, this assumption is very likely to be violated.

An alternative method that could potentially control for both measured and unmeasured confound-

ing variables is the instrumental variable (IV) method. An IV has the following properties: (i) IV

either correlates with or has causal effects on treatment or exposure; (ii) IV has no direct effects

on outcome except its indirect effects through either treatment or exposure. (iii) there is no un-

measured confounding for the association between IV and outcome variable (Angrist, Imbens, and

Rubin, 1996; Hernán and Robins, 2006b). Random assignment scheme in RCTs is an example of

IV.

IV method has been widely used in econometrics, as an alternative to ordinary least square method,

to obtain consistent parameter estimates in the presence of the endogenous regressors and it is

also commonly referred as structural equation model or two-stage least squares (Angrist, Imbens,

and Rubin, 1996; Martens et al., 2006). Because IV methods may consistently estimate the av-

erage causal effects of treatment even when unmeasured confounding is present (Newhouse and

McClellan, 1998), the interests in applying IV technique in outcomes research have been grow-

2



ing. Terza, Basu, and Rathouz, 2008 made the extension of two IV based approaches, two-stage

residual inclusion (2SRI) and two-stage predictor substitution (2SPS), to correcting for endogeneity

bias in non-linear models for both binary and time to event outcome. When two IV methods are

compared for their performance in estimating the conditional odds ratio or hazard ratio (on unmea-

sured confounding), they conclude that only 2SRI method produces consistent estimates. This

finding rapidly increases the use of 2SRI method to control for unmeasured confounding in medical

research (Hadley et al., 2010; Tan et al., 2012).

Under the frame work of potential outcomes, Angrist, Imbens, and Rubin, 1996 divided the subjects

accordingly into four principal strata: 1) compliers, who always follow treatment assignment; 2)

always takers, who always take the treatment; 3) defiers, who always take the opposite to treatment

assignment; and 4) never takers, who never take treatment. They proved that IV estimator of

two-stage least squares method consistently estimates a local averaged treatment effects (LATE)

among compliers under five assumptions. The details of assumptions are discussed in Chapter

2. Under the same framework of potential outcomes and principal stratification, Cai, Small, and

Ten Have, 2011 found analytically and by simulation that both 2SRI and 2SPS logistic regressions

generated biased estimate of LATE among compliers. In chapter 2, under the same potential

outcome and principal stratification framework, we derive closed form solutions for asymptotic bias

in estimating the causal hazard ratio among compliers for both the 2SPS and 2SRI methods by

assuming survival time follows the Weibull distribution with random censoring.

In chapter 3, we further assess the performance of 2 stage IV methods in estimating the conditional

treatment effect given observed and unobserved covariates. For this purpose, we propose a novel

two-stage structural modeling framework to accommodate one endogenous treatment variable and

multiple unobserved covariates. This new framework is more relevant to clinical settings. Utilizing

this framework, we demonstrate that the bias in 2SPS and 2SRI estimators can be reframed to

mirror the problem of omitted variables in non-linear models. We demonstrate that only when

the influence of the unmeasured covariates on the treatment is proportional to their effect on the

outcome that 2SRI estimates are generally unbiased for logit and Cox models.

In contrast with instrumental variable method, Propensity score method is a common approach

to control for confounding bias under no unmeasured confounder assumption. In chapter 4, we

explore another use of propensity score method in estimating the conditional hazard ratio given

3



observed covariates. Covariates adjusted cox proportional hazard model is frequently used when

proportional hazard assumption holds. Heller and Venkatraman, 2004 proposed a nonparametric

covariate adjusted conditional log rank test to compare survival distributions among different treat-

ment groups. This method is robust when proportional hazard assumption is violated and also

does not require any independence assumption between treatment variable and covariates. How-

ever, their approach is valid for no more than three covariates. We use the propensity score to

balance the distribution of covariates among treatment groups and reduce the dimensionality of co-

variates to circumvent the limitations of the conditional log rank test. We performed the simulation

to assess the performance of this new method and covariates adjusted Cox model and score test.
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CHAPTER 2

BIAS IN TWO STAGE INSTRUMENTAL VARIABLE METHODS

2.1. Introduction

Evaluating the effectiveness of treatment and identifying the causal relationship between exposure

and disease are critical objectives for clinical and health services researchers. Confounding is often

a concern when analyzing non-randomized observational studies and even randomized studies with

non-compliance (Hernán and Robins, 2006b). Instrumental variable (IV) methods are increasingly

being used in clinical comparative effectiveness studies to potentially control for both measured

and unmeasured confounding. Angrist, Imbens, and Rubin, 1996 defined the IV for causal effects

of treatment on outcome to be a variable satisfying the following five assumptions: i)The potential

outcomes on one subject are unrelated with the particular assignment of treatment to the other

subjects; ii) IV is randomly (or ignorably) assigned; iii) Any effect of IV on the outcome must be

mediated by treatment received(the exclusion restriction);iv) IV has nonzero effect on treatment

received; v) There are no defiers. (for details see section 2.2)

In a recent clinical study, we were interested in comparing the effectiveness of two treatments for

prostate cancer in elderly men using SEER-Medicare, a large national observational database.

Specifically, we planned to use IV methods to estimate the effect of the addition of external beam

radiation therapy (EBRT) to androgen suppression therapy (ADT) in improving overall survival in

men with locally advanced prostate cancer. We considered a commonly used IV in health services

research: local area treatment patterns defined by the percentage of active treatment in hospital

referral regions (HRR). This IV has been shown to capture regionally distinct structural variation

in care (Bekelman et al., 2015). Such variation is not fully explained by patient characteristics.

Further, this IV varies across HRRs and is strongly associated with treatment assignment. Finally, it

is balanced across important observed prognostic factors. Although there is an extensive literature

on the importance of choosing an appropriate instrument, less attention has been paid to using the

appropriate modeling approach once an IV is selected.

Recently, there has been rapid uptake and widespread use of two IV based analytic approaches

called two-stage residual inclusion (2SRI) and two-stage predictor substitution (2SPS)(Cai, Small,
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and Ten Have, 2011; Terza, Basu, and Rathouz, 2008).These methods have been used to cor-

rect for bias due to endogeneity in non-linear models for both binary and time-to-event outcomes.

Among these two IV approaches, 2SRI was shown to consistently estimate a conditional causal

parameter under certain assumptions (Terza, Basu, and Rathouz, 2008) and has been adopted

as the method of choice in clinical research studies involving survival outcomes(Gore et al., 2010;

Hadley et al., 2010; Tan et al., 2012). The conditional causal parameter that Terza, Basu, and

Rathouz, 2008 consider is only identified by making homogeneity assumptions that go beyond the

five assumptions for a valid IV defined in the first paragraph. Angrist, Imbens, and Rubin, 1996

showed that under these five assumptions for a valid IV, the only treatment effect that is identified is

the average treatment effect for the compliers, where the the compliers are the subjects who would

take the treatment if encouraged to do so by the IV but would not take the treatment if not encour-

aged by the IV; this is called the local average treatment effect (LATE).In the context of a binary

outcome, Cai, Small, and Ten Have, 2011 demonstrated that both the 2SRI and 2SPS methods

generated biased estimates of LATE among compliers for binary outcome. In this paper, we focus

on the properties of 2SPS and 2SRI as estimators of the LATE for time-to-event data.

Despite the fact that there is growing interest in applying two stage IV methods to time-to-event data,

little is known about the potential bias of using such methods to estimate LATE among compliers.

We derive closed form expressions of the bias and conduct extensive simulations to quantify this

bias. We then apply both of the two-stage IV methods to our prostate cancer treatment data and

compare them to the results from two published randomized clinical trials (Warde et al., 2011;

Widmark et al., 2009)

2.2. Notation, Assumptions, Compliance Categories, and Model

2.2.1. Notation

Following the notation of Cai, Small, and Ten Have, 2011 and Nie, Cheng, and Small, 2011, an

N-dimensional vector of binary IV is represented by R. An IV value of 1 represents encouragement

to receive the active treatment and 0 represents no encouragement to receive the active treatment.

In a RCT setting, where the IV is the randomized assignment, then an IV value of 1 represents

random assignment to treatment and 0 represents random assignment to control; in the prostate

cancer observational study described in the introduction, an IV value of 1 represents a high local
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area rate (above median) of adding EBRT to ADT and 0 represents a low local area rate (below the

median) of adding EBRT to ADT. The ith element Ri = 1 implies that subject i is encouraged to

receive the active treatment, whereas Ri = 0 indicates that subject i is not encouraged to receive

the active treatment. Let ZR be an N-dimensional vector of potential treatment received given R,

and ith element ZRi =1 indicates that subject i receives the active treatment and ZRi =0 means that

subject i receives the control under R.

Similarly, we define TR,Z to be an N-dimensional vector of potential survival time under R and Z,

and ith element TR,Zi is the potential survival time for subject i under R and Z. Let LR,Z to be

an N-dimensional vector of potential censoring time under R and Z, and ith element LR,Zi is the

potential censoring time for subject i under R and Z.

We define Y R,Z=min{TR,Z , LR,Z}, the elementwise minimum of potential censoring and survival

times,to be an N-dimensional vector of potential observed follow up time under R and Z, and ith

element Y R,Zi represents the potential follow up time for subject i under R and Z. Let δR,Zi =

I{TR,Zi ≤ C
R,Z
i } indicates whether subject i is observed to terminate by failure (δR,Zi = 1) or by

censoring (δR,Zi =0) given R and Z. The vector Xi represents measured confounding variables for

subject i.

2.2.2. Assumptions

The main assumptions we will make for causal modeling are the five assumptions made by Angrist

et al. (Angrist, Imbens, and Rubin, 1996), and a random censoring assumption for the survival

setting.

1) Stable Unit Treatment Value Assumption (SUTVA)(Rubin, 1986, 1990)

a. if Ri=R′i, then ZRi = Z
R′

i

b. if Ri = R′i and Zi = Z ′i, then Y R,Zi = Y
R′,Z′

i

The SUTVA assumption says that the potential outcomes for subject i are not related with the treat-

ment status of other subjects such that we can write ZRi ,Y R,Zi , TR,Zi , LR,Zi ,δR,Zi as ZRii ,Y Ri,Zii ,TRi,Zii ,LRi,Zii ,

δRi,Zii respectively. The SUTVA assumption also implies the assumption of consistency, such that

the value of the potential outcome given a treatment remains unchanged no matter what the treat-

ment assignment mechanism is (Rubin, 1986)
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2) Independence of the instrument R (Abadie, 2003):

Conditional on a vector of confounders X, the random vector (Y R,Z , TR,Z , LR,Z , ZR) is indepen-

dent of R. In a randomized trial where R is the IV, the independence assumption holds without

conditioning on X.

3) Exclusion Restriction

∀Z,R, and R′, we have:

TR,Z = TR
′,Z , LR,Z = LR

′,Z , Y R,Z = Y R
′,Z , This assumption implies that any effect of IV on

potential outcomes must be through its effect on treatment actually received. Thus, we can write

T
R,Z
i , LR,Zi ,Y R,Zi as TZii , LZii ,Y Zii by combining the exclusion restriction and SUTVA assumptions.

4) Non-zero Average Causal Effect of R on Z

E[Z1
i − Z0

i ] 6= 0

This assumption means the IV is correlated with treatment received.

5) Monotonicity (Imbens and Angrist, 1994)

Z1
i ≥ Z0

i ,∀i ∈ N

This assumption rules out the existence of defiers. No subject always does the opposite of the

treatment assigned.

6) Independent censoring

The distribution of potential survival time TR,Z is independent of the distribution of potential cen-

soring time LR,Z .

2.2.3. Compliance Categories

Under the framework of principal stratification and potential outcomes (Angrist, Imbens, and Rubin,

1996; Rubin, 2005), subjects in a two-arm randomized trial can be categorized into 4 principal

strata: Always takers (AT) are subjects who always take the treatment regardless of assignments

(Z1 = 1, Z0 = 1); Compliers (C) are subjects who comply with their assignments(Z1 = 1, Z0 = 0);

Never takers (NT) are the subjects who never take the treatment no matter which group they are

assigned to(Z1 = 0, Z0 = 0); Defiers (D) are the subjects who take the treatment opposite of their

assignments(Z1 = 0, Z0 = 1).
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2.2.4. Model

We first define the probability of receiving the treatment Pr(R = 1) = r, the probability of being a

always taker Pr(AT ) = ρa, and the probability of being a complier Pr(C) = ρc. We also define

the probability of being a defier Pr(D) = ρd, but under the monotonicity assumption, there are no

defiers so that ρd = 0. Hence, the probability of being a never taker Pr(NT ) is equal to 1− ρa− ρc.

We assume both potential censoring time and potential survival time follow the Weibull distribution

with the same shape parameter α. The potential censoring time for the subjects in each principal

strata follows Weibull(α, λ), and we define the parameters of the probability distribution of potential

survival time for each principal strata as follows:

T 1|AT ∼Weibull(α, θ1at), T 0|AT ∼Weibull(α, θ0at)

T 1|C ∼Weibull(α, θ1c ), T 0|C ∼Weibull(α, θ0c )

T 1|NT ∼Weibull(α, θ1nt), T 0|NT ∼Weibull(α, θ0nt)

We also examined scenarios in which different shape parameters α’s are assumed for the po-

tential censoring time and the potential survival time. These details are given in Appendix E.

The density of Weibull distribution is f(t) = (α/K)(t/K)K−1exp(−(t/K)α) and the hazard rate

is h(t) = αK−αtα−1. In the case of Weibull regression with covariates X, K−α can be reparame-

terized as exp(βX). The hazard rate for the compliers if treated is h(T 1 = t|C) = αtα−1(θ1c )
−α. The

hazard rate for the compliers if not treated is h(T 0 = t|C) = αtα−1(θ0c )
−α. Hence, the log causal

hazard ratio φ for the compliers is the difference between two log hazard rates:

φ = log[h(T 1 = t|C)]− log[h(T 0 = t|C)]

= −α(log(θ1c )− log(θ0c ))

2.3. Two Stage Predictor Substitution(2SPS)Method

The 2SPS method is frequently used and simple to implement (Terza, Basu, and Rathouz, 2008).

In the first stage, the treatment received Z is regressed on the IV-treatment assignment R, and let
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P = E(Z|R). In the second stage, a log linear model including P ,defined as:

log[h(Y |P )] = η + ξP + log(h0(y)), h0(Y ) = αyα−1

is fitted to estimate the coefficient ξ. This is 2SPS estimator of the log causal hazard ratio. We first

derive a closed form expression to the probability limit of the maximal likelihood estimator (M.L.E)

of ξ, then take the difference between this probability limit and true log causal parameter φ for the

expression of the asymptotic bias of the 2SPS estimator as an estimator of the log causal hazard

ratio for compliers.

2.3.1. Probability limit of M.L.E of causal parameter

Let P̂ denote the predicted value from the estimated binary regression model. i.e., P̂ = Ê(Z|R).

When P̂ is substituted for P , the second stage Weibull model becomes:

log[λ(Y |P̂ )] = η∗ + ξ∗P̂ + log(h∗0(y))

Let ξ̂∗ and ξ̂ denote the estimators (M.L.E) of ξ∗ and ξ respectively. As sample size n→∞, P̂ → P ,

ξ̂∗
p−→ ξ̂, and ξ̂ p−→ ξ. Therefore, ξ̂∗ p−→ ξ. To derive closed form expression for the asymptotic bias, we

need to re-express ξ in terms of parameters specified in Section 2.2 under the principal stratification

framework.

Only always takers receive the treatment when assigned to control(R = 0). Both always takers and

compliers take the treatment when assigned to treatment(R = 1). Thus, it can be shown that (Cai,

Small, and Ten Have, 2011):

p0 = E(Z|R = 0) = ρa, p1 = E(Z|R = 1) = ρa + ρc

Since P = {p0, p1} is an one-to-one transformation of R = {0, 1}, we have the following for the

second stage Weibull regression:

log(h(Y |R = 0)) = log(h(Y |P = p0))

= η + ξp0 + log(h0(y)) (2.1)
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and,

log(h(Y |R = 1)) = log(h(Y |P = p1))

= η + ξp1 + log(h0(y)) (2.2)

Instead of working with a second stage model involving P , we can work with a model involving R

instead. Solving (2.1) and (2.2), we have:

ξ =
log(h(Y |R = 1))− log(h(Y |R = 0))

p1 − p0
(2.3)

The log linear model including R assumes two underlying Weibull distributions of the same shape

parameter α∗, Weibull(α∗,K0) and Weibull(α∗,K1), for subjects assigned to control (R = 0) and

treatment (R = 1) respectively. Thus, (2.3) can be expressed as:

ξ =
log(K−α

∗

1 )− log(K−α
∗

0 )

ρc
, K−α

∗

1 = eη+ξp1 , K−α
∗

0 = eη+ξp0 (2.4)

It is worth noting that both follow up times of subjects assigned to control, denoted as Y |R = 0,

and follow up times of subjects assigned to treatment, denoted as Y |R = 1, actually follow mixture

distributions consisting of three different Weibull distributions. Details are given in Appendix A.

However, the second stage Weibull model of 2SPS method imposes the two Weibull distributions,

with the same shape parameter α∗ but different scale parameters K0,K1, upon subjects assigned

to treatment(R = 1) or assigned to control(R = 0) respectively. Thus, the M.L.E of α∗,K0,K1

are derived by maximizing the likelihood function Ln(α∗,K0,K1) that consists of products of two

Weibull densities: Weibull(α∗,K0) and Weibull(α∗,K1).

Let α̂∗ denote the M.L.E of α∗ and We set E(∂log(Ln(α∗,K̂0(α
∗),K̂1(α

∗))
∂α∗ ), the expectation of score

equation derived from profile likelihood of α∗, equal to 0 and let α̃∗ be the solution. Under the

assumptions stated in Section 2.2 and consistency of M.L.E, the probability limit of the estimator

α̂∗ is α̃∗. Details are given in Appendix C. Once the parameters of the principal strata are defined,

α̃∗ can be solved numerically using a root-finding algorithm such as the "bisection" method. Let

K̂0, K̂1 be the M.L.Es of the two scale parameters K0,K1 respectively. After the value of α̃∗ is
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determined, the probability limits of the estimators K̂0, K̂1 can be derived as follows:

K̃0 = [
1

P (δ = 1|R = 0)
×

{ρaΓ(
α̃∗

α
+ 1)[

1

θ1at
α +

1

λα
]−α̃
∗/α + ρnΓ(

α̃∗

α
+ 1)[

1

θ0nt
α +

1

λα
]−α̃
∗/α + ρcΓ(

α̃∗

α
+ 1)[

1

θ0c
α +

1

λα
]−α̃
∗/α}]1/α̃∗

(2.5)

and,

K̃1 = [
1

P (δ = 1|R = 1)
×

{ρaΓ(
α̃∗

α
+ 1)[

1

θ1at
α +

1

λα
]−α̃
∗/α + ρnΓ(

α̃∗

α
+ 1)[

1

θ0nt
α +

1

λα
]−α̃
∗/α + ρcΓ(

α̃∗

α
+ 1)[

1

θ1c
α +

1

λα
]−α̃
∗/α}]1/α̃∗

(2.6)

The detailed steps of the derivation of (2.5) and (2.6) are given in Appendix C. By substituting (2.5) and (2.6)

into (2.4), we derive the expression of log causal hazard ratio ξ as the following:

ξ = {log([
1

P (δ = 1|R = 1)
×

{ρaΓ(
α̃∗

α
+ 1)[

1

θ1at
α +

1

λα
]−α̃
∗/α + ρnΓ(

α̃∗

α
+ 1)[

1

θ0nt
α +

1

λα
]−α̃
∗/α + ρcΓ(

α̃∗

α
+ 1)[

1

θ1c
α +

1

λα
]−α̃
∗/α}])−1

− log([
1

P (δ = 1|R = 0)
×

{ρaΓ(
α̃∗

α
+ 1)[

1

θ1at
α +

1

λα
]−α̃
∗/α + ρnΓ(

α̃∗

α
+ 1)[

1

θ0nt
α +

1

λα
]−α̃
∗/α + ρcΓ(

α̃∗

α
+ 1)[

1

θ0c
α +

1

λα
]−α̃
∗/α}])−1}

× 1

ρc
(2.7)

Thus, (2.7) is the closed-form expression of the probability limit of the log causal hazard ratio estimator ξ̂∗ from

the 2SPS Weibull model.

2.3.2. Bias analysis

The asymptotic bias of the causal parameter ξ of the 2SPS Weibull regression model is simply the difference

between the true log causal hazard ratio φ and the derived closed form expression of ξ, such that

B2sps = ξ + α(log(θ1c)− log(θ0c)) (2.8)
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We can re-paramterize θ0nt in (2.8) with one additional parameter ∆ = −α(log(θ0nt)− log(θ0c)) as the following:

log(θ0nt) = log(θ0c) +
∆

α
(2.9)

∆ in (2.9) is the log hazard ratio between never takers and compliers given no treatment. It can be interpreted

as the magnitude of the unmeasured confounding because the differences between principal strata are at-

tributable to the unmeasured confounding (Cai, Small, and Ten Have, 2011). When ∆ = 0 or θ0nt = θ0c ,there is

no unmeasured confounding.

We make the following observations about the bias of 2SPS method from (3.11): 1) When α = 1 and we

treat α∗ as a known parameter and fix it at 1, that is the scenario when the survival outcomes of all principal

strata follow exponential distributions and we also fit an exponential model in the second stage instead of

estimating the shape parameter for a more general form of Weibull distribution; 2) When ρc = 1, every subject

is a complier and (2.8) can be simplified as 1
α∗ −

γ
α
− ψ(α

∗

α
+ 1) 1

α
= 0. Then we have α̃∗ = α. Setting

ρc = 1,ρa = 0, and ρn = 0, (2.8) becomes 0 so that bias B2sps = 0 when a randomized controlled trial has

perfect compliance; 3) When there is no causal effect (θ1c = θ0c ), all terms in (2.8) cancel out and we have

B2sps = 0; 4) When ρa = 0 and θ0c = θ0n, there is no confounding because there are no always takers and

never takers can’t get treatment so that the confounding can only be attributable to the difference between

never takers and compliers given no treatment(Cai, Small, and Ten Have, 2011). However, (2.8) can not be

reduced to 0 under this setting so that the bias of 2SPS method B2sps is generally not 0 even when there is no

confounding. 5) λ, the scale parameter of the censoring distribution is involved in bias equation (2.9), which

coincides with the results in Struthers and Kalbfleisch(Struthers and Kalbfleisch, 1986).

We can analyze how parameters influence the relationship between the magnitude of confounding and bias

using derived closed form expression (2.9). For the purpose of demonstration only, here we create four

scenarios in which there are no always takers. The results are revealed in Figure 2.1 (a)-(d).

In Figure 2.1, we can clearly see that the bias of the 2SPS method is not 0 when there is no confounding. The

bias increases with the larger shape parameter α of the survival function (within each principal stratum).The

bias is the smallest when we have an decreasing hazard rate (α < 1) and the highest when we have an

increasing hazard rate(α > 1). By comparing Figure 2.1 (a) and (b), we also observe that the bias decreases

as the compliance rate increases from 0.5 to 0.8. When the scale parameter (θc) is smaller, the bias is also

smaller (Figure 2.1 (a) vs. (c)). Although the probability of being randomly assigned to the treatment group is

involved in computing the shape parameter of the second stage Weibull regression model, its effects on the

bias are very small (compare Figure 2.1 (b) to (d)).
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2.4. Two Stage Residual Inclusion(2SRI)Method

Similar to the 2SPS method, the 2SRI method involves two stage modeling (Terza, Basu, and Rathouz, 2008).

In the first stage, we regress the treatment received Z on the IV-treatment assignment R and calculate the

residual term E = Z − E(Z|R). In the second stage, we fit a log linear model on both treatment received

variable Z and residual E as,

log(h(Y |Z,E))) = λ0 + λ1Z + λ2E + log(h0(y)), h0(Y ) = αyα−1 (2.10)

, to estimate the regression coefficient λ1. This is 2SRI estimaor of the log causal hazard ratio. We derive the

probability limit of the M.L.E of λ1 first and then calculate the asymptotic bias by taking the difference between

this probability limit of the estimator and true log causal hazard ratio among compliers.

2.4.1. Probability limit of M.L.E of causal parameter

As discussed in a previous study (Cai, Small, and Ten Have, 2011), (2.10) is not the true model for the hazard

function h(Y |Z,E). In fact the true model includes the interaction term between Z and E. However, deriving

the closed-form expression for the probability limit of the estimator from (2.10) is very difficult when (2.10) is

not the true model. With one additional assumption that there are no always takers, (2.10) becomes the true

model. We derive a closed-form expression of the probability limit of the estimator of causal parameter λ1

assuming that there are no always takers and thus (2.10) is the true model. Let Ê denote the residuals from

the estimated binary regression model in the first stage. i.e., Ê = Z − Ê(Z|R). When Ê is substituted for E,

(2.10) becomes:

log[h(Y |Z, Ê)] = λ∗0 + λ∗1Z + λ∗2Ê + log(h∗0(y))

Let λ̂∗1 and λ̂1 be the estimators (M.L.E) of λ∗1 and λ1. As sample size n→∞, Ê → E , λ̂∗1
p−→ λ̂1, and λ̂1

p−→ λ̂1.

Thus, λ̂∗1
p−→ λ1. To derive a closed form expression for the asymptotic bias, we need to first re-express λ1 in

terms of the parameters specified in section 2.3 under the principal stratification framework.

As shown in a previous study (Cai, Small, and Ten Have, 2011), under the no always taker assumption, the

first stage binary regression is E(Z|R) = ρa + ρcR and residual term E = Z −E(Z|R), thus the residual term

can be re-expressed as E = Z − ρa − ρcR. Since {Z,E} has an one to one relationship with {Z,R}, we can

establish the following equivalence between the model involving {Z,E} and the model involving {Z,R}for the
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second stage Weibull model:

log(h(Y |Z,E)) = λ0 + λ1Z + λ2E + log(h0(y))

= λ0 + λ1Z + λ2(Z − ρa − ρcR) + log(h0(y))

= log(h(Y |Z,R)) (2.11)

Under the no always taker assumption, the second stage Weibull regression model defined by (2.10) assumes

the three underlying Weibull distributions with the same shape parameter but different scale parameters for

subjects in the three different subgroups: 1) ∼ Weibull(α∗,K0) for those who are assigned to treatment and

receive the treatment actually (Z = 1, R = 1). Only compliers are in this group; 2)∼Weibull(α∗,K1) for those

who are assigned to treatment but do not receive the treatment actually (Z = 0, R = 1), This group has only

never takers; 3) ∼ Weibull(α∗,K2) for those who are assigned to control and do not receive the treatment

(Z = 0, R = 0), both never takers and compliers are in this group. There are no subjects that are assigned to

control but still take the active treatment (Z = 1, R = 0) under the assumption of no always takers. Thus, the

M.L.E of α∗,K0,K1,K2 are derived by maximizing the likelihood function Ln(α∗,K0,K1,K2) that consists of

products of three Weibull densities: Weibull(α∗,K0), Weibull(α∗,K1),and Weibull(α∗,K2).

Let α̂∗ denote the M.L.E of α∗ and set E( ∂log(Ln(α∗,K̂0(α
∗),K̂1(α

∗),K̂2(α
∗))

∂α∗ ),the expectation of score equation

derived from profile likelihood of α∗, to 0 and let α̃∗ be the solution. Under the assumptions stated in section

2.2 and consistency of the M.L.E, the probability limit of the estimator α̂∗ is α̃∗. Details are given in Appendix

D. With the parameters of principal strata defined, α̃∗ can be solved numerically using a root-finding algorithm.

Let K̂0, K̂1, K̂2 be the M.L.Es of two scale parameters K0,K1,K2. Once the value of α̃∗ is determined, we

compute the probability limits of the estimators K̂0, K̂1, K̂2 as follows:

K̃0 = [
Γ( α̃

∗
α

+ 1)[ 1
θ1c
α + 1

λα
]−α̃
∗/α

1

1+(
θ1c
λ

)α

]1/α̃
∗

(2.12)

and

K̃1 = [
Γ( α̃

∗
α

+ 1)[ 1
θ0nt

α + 1
λα

]−α̃
∗/α

1

1+(
θ0nt
λ

)α

]1/α̃
∗

(2.13)
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and

K̃2 = [
Γ( α̃

∗
α

+ 1)[ 1
θ0nt

α + 1
λα

]−α̃
∗/αρnt + Γ( α̃

∗
α

+ 1)[ 1
θ0c
α + 1

λα
]−α̃
∗/αρc

1

1+(
θ0nt
λ

)α
ρnt + 1

1+(
θ0c
λ

)α
ρc

]1/α̃
∗

(2.14)

The derivation of (2.12),(2.13) and (2.14) is detailed in Appendix D. Based on (2.11), we can establish the

following three equations with all possible combination of values of Z and R excluding the always takers

scenario(Z=1,R=0).

1) When Z=1 and R=1, there are only compliers in this subgroup.

log(h(Y |Z = 1, R = 1)) = log(h(Y (1)|Z = 1, R = 1))

→ λ0 + λ1 + λ2(1− ρC) = log(K̃0

−α̃∗
)

= log([
Γ( α̃

∗
α

+ 1)[ 1
θ1c
α + 1

λα
]−α̃
∗/α

1

1+(
θ1c
λ

)α

]−1) (2.15)

2) When Z=0 and R=1, there are only never takers in this subgroup.

log(h(Y |Z = 0, R = 1)) = log(h(Y (0)|Z = 0, R = 1))

→ λ0 + λ2(−ρC) = log(K̃1

−α̃∗
)

= log([
Γ( α̃

∗
α

+ 1)[ 1
θ0nt

α + 1
λα

]−α̃
∗/α

1

1+(
θ0nt
λ

)α

]−1) (2.16)

3) When Z=0 and R=0, there are mixture of both never takers and compliers in this subgroup.

log(h(Y |Z = 0, R = 0)) = log(h(Y (0)|Z = 0, R = 0))

→ λ0 = log(K̃2

−α̃∗
)

= log([
Γ( α̃

∗
α

+ 1)[ 1
θ0nt

α + 1
λα

]−α̃
∗/αρnt + Γ( α̃

∗
α

+ 1)[ 1
θ0c
α + 1

λα
]−α̃
∗/αρc

1

1+(
θ0nt
λ

)α
ρnt + 1

1+(
θ0c
λ

)α
ρc

]−1) (2.17)

We then derive the closed form expression for the causal parameter λ1 by solving (2.15),(2.16),and (2.17) for
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λ1 as follows:

λ1 = log([
Γ( α̃

∗
α

+ 1)[ 1
θ1c
α + 1

λα
]−α̃
∗/α

1

1+(
θ1c
λ

)α

]−1)

− log([
Γ( α̃

∗
α

+ 1)[ 1
θ0nt

α + 1
λα

]−α̃
∗/αρnt + Γ( α̃

∗
α

+ 1)[ 1
θ0c
α + 1

λα
]−α̃
∗/αρc

1

1+(
θ0nt
λ

)α
ρnt + 1

1+(
θ0c
λ

)α
ρc

]−1)

− 1− ρC
ρC

(log([
Γ( α̃

∗
α

+ 1)[ 1
θ0nt

α + 1
λα

]−α̃
∗/αρnt + Γ( α̃

∗
α

+ 1)[ 1
θ0c
α + 1

λα
]−α̃
∗/αρc

1

1+(
θ0nt
λ

)α
ρnt + 1

1+(
θ0c
λ

)α
ρc

]−1))

− log([
Γ( α̃

∗
α

+ 1)[ 1
θ0nt

α + 1
λα

]−α̃
∗/α

1

1+(
θ0nt
λ

)α

]−1)

2.4.2. Bias analysis

To compute asymptotic bias of the 2SRI method, we subtract the true log hazard ratio φ from the

closed-form expression of λ1.

B2SRI = λ1 + α(log(θ1c )− log(θ0c )) (2.18)

We can re-parameterize θ0nt in (2.18) in the way as in Section 2.3 and let θ0nt = θ0ce
∆
α . From the

derived expression of asymptotic bias of 2SRI estimator, we can make the following observations:

1) When α = 1, the survival outcome within a principal stratum follows an exponential distribution. If

we treat α∗ as known and set α∗ = 1, it means we fit an exponential regression model in the second

stage; 2)When there is perfect compliance (ρc = 1), we have B2SRI = 0. In this scenario, α̃∗ = α.

By plugging ρc = 1 into (2.18), we can easily verify the results; 3) When there is no confounding

(θ0c = θ0n), B2SRI = 0; 4) When there is no causal effect (θ1c = θ0c ), B2SRI is not 0; 5) λ, the scale

parameter of the censoring distribution is involved in bias equation (2.18), similar to the findings for

2SPS method.

We can analyze how parameters influence the relationship between the magnitude of confounding

and bias from the 2SRI method using (2.18). Similar to the previous section, four scenarios were

created assuming there are no always takers. The results are shown in Figure 2.2 (a)-(d). In Figure

2.2, it is apparent that the bias of the 2SRI method is 0 when there is no confounding. Intuitively,

under the condition of no confounding, substituting the term of the estimated residuals in the second
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stage survival model has no effect on the estimate of the causal parameter. By comparing Figure

2.2 (a) and (b), we also observe that the bias decreases as the compliance rate increases from 0.5

to 0.8. When the scale parameter (θc) is smaller, the bias tends to be smaller (Figure 2.2 (a) vs.

(c)). The probability of being randomly assigned to the treatment group has very small impact on

the bias(compare Figure 2.2 (b) to (d)).

2.5. Simulation

2.5.1. Simulation algorithm

We follow the five step algorithm used by Cai, Small, and Ten Have, 2011 to generate data for a

simulation study. In the first step, a data set of N subjects is generated. Always takers, compliers,

and never takers among these subjects are generated from a multinomial distribution with probabil-

ities {ρa, ρc, ρn}. At the second step, treatment assignment status R is generated for each subject

with probability P (R = 1) = ρr. Because outcome in the present study is time to event, we modified

step 3 to generate potential survival time {T 0, T 1}and censoring time {L0, L1} for each principal

stratum based on the parameters θ0at, θ0c , θ0nt, θ1at, θ1c , θ1nt, λ. For instance, if a subject is a complier,

the potential time to death under control T 0
c is generated from weibull(α, θ0c ) and the potential time

to death under treatment T 1
c is generated from weibull(α, θ1c ). The potential censoring time {L0

c , L
1
c}

are generated from weibull(α, λ). At step 4, we use compliance status (always taker, complier, or

never taker) and treatment assignment status R to determine the treatment received status Z. For

instance, if a subject is a complier and assigned to treatment group (R = 1), then Z = 1. If a subject

is an always taker but assigned to the control group, then Z = 0. At step 5, the observed survival

time and censoring time are generated as follows:

T = T 1Z + T 0(1− Z), and L = L1Z + L0(1− Z)

and finally observed follow up time and censoring indicator are given as:

Y = min(T, L), and δ = I(L ≥ T )

2.5.2. Simulation results

To demonstrate the consistency between the derived closed form expressions and the asymptotic

biases from the 2SPS and 2SRI approaches under the assumption of no always takers(ρa = 0),

we ran the simulation 2000 times, with the sample size n=10000, according to the same parameter
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settings presented in Figure 2.1 d) and Figure 2.2 d). Table 2.1 shows simulation results from 4

scenarios (α = 0.5, 1, 1.5, 2). As shown in this table, the biases from simulated results are consistent

with the values computed with the derived analytic formula for both the 2SPS and 2SRI Weibull

models.We also considered 2SPS and 2SRI Cox models (the second stage regression is a Cox

model instead of a Weibull model). The pattern of the biases from 2SPS and 2SRI Cox models

remains the same as for the 2SPS and 2SRI Weibull models respectively. With decreasing hazard

(α = 0.5), the bias from using the 2SPS approach is smaller than the bias from the 2SRI approach.

When the hazard is constant or increasing (α ≥ 1), the results are mixed. With stronger negative

confounding, the 2SPS method produces smaller bias than the 2SRI method. However, with no

confounding or stronger positive confounding, the 2SPS method produces larger bias than the

2SRI method.

To evaluate the performance of both 2SPS and 2SRI methods in the setting where there are al-

ways takers, we simulated the data with various combination of parameters based on the following

settings: i) Shape parameter α varies among {0.5, 1, 2}, which represent decreasing, constant, and

increasing hazard scenarios; ii)Probabilities of being always takers ρa and compliers ρc were set to

3 combinations: {0.2, 0.7},{0.7, 0.2}, and {0, 0.5}. In this way, low, medium, and high levels of com-

pliance were represented; iii) probability of being assigned to treatment ρr were set to {0.1, 0.5} to

reflect both new and relatively established treatments; iv) Scale parameter of censoring distribution

were set to {0.5, 1, 2}; v) Each of the parameters θ0at, θ0c , θ1c was set to {0.5, 1, 3} separately. Thus,

1458 possible combinations were created. For each setting, we generated 10,000 observations

and fit the 2SPS and 2SRI models to the data. This process was repeated 2000 times.

The results are presented in Figure 2.3. The magnitude of bias increases with increasing magni-

tudes of unmeasured confounding. As the value of shape parameter α increases, the magnitude

of bias increases. In the scenarios with decreasing hazard, the 2SPS method outperforms the

2SRI method. The 2SRI method tends to have larger asymptotic bias when the magnitude of un-

measured confounding is large. In the scenarios with constant hazard, the 2SPS method slightly

outperforms the 2SRI method when the magnitude of unmeasured confounding is large. In the sce-

narios with increasing hazard, both approaches produce larger biases. The 2SRI method performs

better when the magnitude of unmeasured confounding is small. When there are always takers, the

2SRI method could be biased even when there is no measured confounding. We also compared
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the two methods using mean square error and the conclusions remain the same (2.4).

2.6. Seer-Medicare Prostate Cancer Study

Prostate cancer is the highest prevalence non-skin malignancy among American men (In 2011,

there were an estimated 2,707,821 men living with prostate cancer in the United States. The

number of deaths was 23.0 per 100,000 men per year). Unlike prostate cancers that are diagnosed

at an early stage, locally advanced prostate cancer is associated with substantial morbidity and

mortality. Radiation therapy is a common treatment for locally advanced prostate cancer. Two

randomized trials recently demonstrated that radiation therapy reduces mortality for men with locally

advanced tumors who also receive systemic androgen deprivation (Warde et al., 2011; Widmark

et al., 2009). However, both trials excluded elderly patients and those with early stage, PSA-

screen detected cancer and therefore had less generalizability, a common criticism of randomized

evidence. Therefore, we applied two-stage IV methods to evaluate survival outcomes in locally

advanced prostate cancer, assessing survival outcomes of androgen deprivation therapy with or

without radiation therapy in comparison to the randomized trials.

We analyzed data from the Surveillance, Epidemiology and End Results (SEER)-Medicare database.

The SEER-Medicare database links patient demographic and tumor-specific data collected by

SEER cancer registries to Medicare claims for inpatient and outpatient care. We considered pa-

tients with prostate cancer diagnosed between January 1, 1995 and December 31, 2007 in SEER

with follow up through December 31, 2010 in Medicare. The following patients were excluded: 1)

older than age 85 ; 2) with unknown urban category; 3) in hospital referral regions (HRR) with less

than 50 patients; 4) with unknown distance to the closest radiation facility; 5) patients who died

within the first 9 months of the study. A total of 31,541 patients were selected and categorized as

receiving androgen deprivation with or without radiation therapy.

The cohort was divided into the following three groups: 1) patients with American Joint Commission

on Cancer (AJCC) Tumor stage (T-stage) of T2 or T3 and aged 65-75 (called the “RCT Cohort”).

The patients in the “RCT Cohort“ are most comparable to the patients from the two randomized

studies of androgen deprivation with or without radiation therapy (Warde et al., 2011; Widmark

et al., 2009); 2) elderly patients under-represented or excluded from the published randomized

trials with T-stage T2 or T3, aged 76-85 (called the “Elderly Cohort“); and 3) patients with early
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stage, PSA-screen detected cancer with T-stage T1 disease who were excluded from the published

randomized trials (called the “Screen-Detected Cohort“).

The study by Widmark et al., 2009 included men from 47 centers in Europe diagnosed between

February, 1996 and December, 2002. 875 patients with locally advanced prostate cancer (T3; 78%;

prostate-specific antigen (PSA) ≤ 70 ng/mL; N0; M0) were enrolled. 439 patients were randomly

assigned to androgen deprivation alone and the other 436 patients received androgen deprivation

with radiation therapy. The study by Warde et. al. enrolled 1,205 patients with locally advanced

(T3 or T4) prostate cancer, organ-confined disease (T2) with either PSA >40 ng/mL or PSA >20

ng/mL and a Gleason score of 8 or higher between 1995 and 2005. 1205 patients were randomly

assigned to receive the androgen deprivation alone (n=602) or androgen deprivation with radiation

therapy (n=603). The hazard ratios for overall mortality reported previously (Widmark et al., 2009)

and (Warde et al., 2011) were 0.68 (95% CI 0.52—-0.89) and 0.77 (95% CI 0.61—-0.98). For ease

of comparison, we combined the results of the randomized trials using weighted-average meta-

analysis. The meta-analytic HR was 0.73 (0.61—-0.87).

To assess the effectiveness of androgen deprivation with or without radiation therapy in reducing

overall mortality (death from any cause), we performed two-stage IV Weibull regression analysis

(2SPS and 2SRI) using a local area treatment rate instrument and controlling for the propensity

score. The local area treatment rate instrument was defined as the proportion of patients who

received definitive treatment (surgery or radiation therapy) among all patients with prostate can-

cer in the hospital referral region (HRR) and we categorized this instrument into a binary variable

according to its median. This IV measures the ‘aggressiveness’ of local area treatment and cap-

tures regionally distinct structural care variation not fully explained by patient characteristics. The

IV was strongly associated with treatment assignment and balanced important prognostic factors

(Bekelman et al., 2015). The propensity score model included potential confounding variables in-

cluding age, race, ethnicity, clinical T stage, N stage, and World Health Organization tumor grade,

17 categories of co-morbid disease, urban residence, and census track median income.

As shown in Table 2.2, there is variability in the estimated HRs obtained from the 2SPS and 2SRI

methods. We estimated the shape parameter α ≈ 1.6 from the data. Using Figure 3, we can

see that the bias for both the 2SPS and 2SRI methods is the largest when we have an increasing

hazard (α > 1), even when the magnitude of unmeasured confounding is relatively small. When
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the hazard function is a decreasing one (α < 1), the 2SPS method produces more stable and less

biased estimates than the 2SRI method. In this case, 2SPS may be a more appropriate approach

to use. In the RCT Cohort, the estimated HRs (HR=0.96) from both IV methods are much larger

than the meta-analytic HR from the two randomized studies. Note that the confidence intervals

are also much larger in both IV analyses than in the original RCTs. In the published RCTs, the

authors concluded that there was a statistically significant treatment effect (combined therapy is

better) whereas from our IV analysis, we can’t draw this conclusion. In the total study sample and

separately in the RCT Cohort and the Screen-Detected Cohort, the two IV estimates are quite

similar. However, for the Elderly Cohort, the estimate from the 2SPS method is different from the

estimate from the 2SRI method.

2.7. Discussion

Many clinical and health services studies are using health care databases to compare the treat-

ment effectiveness for drug and surgical therapies, but are prone to unmeasured confounding. Two

stage IV methods have been gaining popularity among clinical researchers because these meth-

ods provide a relatively simple approach to analyzing survival outcome studies in the presence of

unmeasured confounding. However, current knowledge about potential bias in estimating the log

causal hazard ratio is limited. As demonstrated in our prostate cancer study, the large treatment

effects estimated from two stage IV methods could be attributable to potential bias. We have de-

rived closed-form expressions for the asymptotic bias of the 2SRI and 2SPS approaches assuming

the survival times follow a Weibull distribution with shape parameter α and scale parameter K. We

have demonstrated that these analytic results are consistent with our simulation results.

For binary outcomes, two previous studies (Cai, Small, and Ten Have, 2011; Ten Have, M, and

M., 2003) demonstrated that the bias in the treatment effect estimated using the 2SRI approach

increases as the magnitude of confounding increases. In this current work, we have shown an-

alytically and by simulation that the 2SRI and 2SPS approaches are both biased in estimating

the causal hazard ratio among compliers. In some situations when the hazard is decreasing (e.g

among patients who have recently received a kidney transplantation), the 2SPS method is less bi-

ased than the 2SRI method and could be a more appropriate method to use. When the hazard is an

increasing function, both IV methods may produce very large bias even under a moderate amount
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of unmeasured confounding. In this case, we recommend exercising caution when interpreting

results from two-stage IV survival models.

We have shown that even when all IV assumptions are met, both the 2SRI and the 2SPS methods

could fail to consistently estimate the causal hazard ratio among compliers. Our analytic results for

bias may help to guide researchers in deciding when the bias is likely to be reasonably small so that

two stage IV methods may be reasonably applied. Furthermore, in a sensitivity analysis approach,

one may estimate the shape parameter and the censoring proportion among patients assigned

to treatment or control from the data. With the shape parameter and censoring proportions fixed

based on our known data the level of the unmeasured confounding could be varied to examine

how the estimates would change, as shown in Figures 1 and 2. Alternative methods include partial

likelihood estimation (Cuzick et al., 2007).

2.8. Appendix

Appendix A: Mixture of Weibull Distributions

1) Prove the distribution function of observed survival time T conditional on random assignment R

can be expressed as the following equations:

F (T |R = 0) = 1− (e
−( t

θ1
AT

)α

ρA + e
−( t

θ0
NT

)α

ρN + e
−( t

θ0
C

)α

ρC) (A.1)

and,

F (T |R = 1) = 1− (e
−( t

θ1
C

)α

ρC + e
−( t

θ0
NT

)α

ρN + e
−( t

θ1
AT

)α

ρA) (A.2)

In the above equations, AT represents always takers, C represents compliers, and NT represents

never takers. Other definitions of parameters and distributions that are used in the proof are given

23



below:

R = 1 if assigned to treatment;0 if assigned to control

Z = 1 if receives treatment; 0 if receives control

ρr = P (R = 1)

ρA = P (AT )

ρC = P (C)

ρN = 1− ρA − ρC

T 1 = potential outcome for a patient under treatment

T 0 = potential outcome for a patient under control

T 1|AT ∼ weibull(α, θ1AT )

T 1|C ∼ weibull(α, θ1C)

T 1|NT ∼ weibull(α, θ1NT )

T 0|AT ∼ weibull(α, θ0AT )

T 0|C ∼ weibull(α, θ0C)

T 0|NT ∼ weibull(α, θ0NT )

no defiers under monotonicity assumption
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Proof:

F (T (1)|Z = 1, R = 1) = P (T (1) ≤ t|Z = 1, R = 1)

=
P (T (1) ≤ t, Z = 1, R = 1)

P (Z = 1, R = 1)

=
P (T (1) ≤ t, AT,R = 1) + P (T (1) ≤ t, C,R = 1)

P (AT,R = 1) + P (C,R = 1)

=
P (T (1) ≤ t, AT )P (R = 1) + P (T (1) ≤ t, C)P (R = 1)

(P (AT ) + P (C))P (R = 1)
∵ R⊥(T (1), T (0)),

R⊥principal strata

=
P (T (1) ≤ t|AT )P (AT ) + P (T (1) ≤ t|C)P (C)

P (AT ) + P (C)

= (1− e−(
t

θ1
AT

)α

)
P (AT )

P (AT ) + P (C)

+ (1− e−(
t

θ1
C

)α

)
P (C)

P (AT ) + P (C)

F (T (0)|Z = 0, R = 1) = P (T (0) ≤ t|Z = 0, R = 1)

=
P (T (0) ≤ t, Z = 0, R = 1)

P (Z = 0, R = 1)

=
P (T (0) ≤ t,NT,R = 1)

P (NT )P (R = 1)

= P (T (0) ≤ t|NT ) ∵ R⊥(T (1), T (0)), R⊥principal strata

= (1− e−(
t

θ0
NT

)α

)
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F (T |R = 1)can be expressed as:

F (T |R = 1) = P (T ≤ t, Z = 1|R = 1) + P (T ≤ t, Z = 0|R = 1)

= P (T ≤ t|Z = 1, R = 1)P (Z = 1|R = 1)

+ P (T ≤ t|Z = 0, R = 0)P (Z = 0|R = 1)

= P (T (1) ≤ t|Z = 1, R = 1)P (Z = 1|R = 1)

+ P (T (0) ≤ t|Z = 0, R = 1)P (Z = 0|R = 1)

= ((1− e−(
t

θ1
AT

)α

)
P (AT )

P (AT ) + P (C)
+ (1− e−(

t

θ1
C

)α

)
P (C)

P (AT ) + P (C)
)(P (AT ) + P (C))

+ (1− e−(
t

θ0
NT

)α

)(P (NT ))

= 1− (e
−( t

θ1
C

)α

ρC + e
−( t

θ0
NT

)α

ρN + e
−( t

θ1
AT

)α

ρA)

F (T (1)|Z = 1, R = 0) = P (T (1) ≤ t|Z = 1, R = 0)

=
P (T (1) ≤ t, Z = 1, R = 0)

P (Z = 1, R = 0)

=
P (T (1) ≤ t, AT,R = 0)

P (AT,R = 0)

=
P (T (1) ≤ t|AT )P (AT )P (R = 0)

P (AT )P (R = 0)

= P (T (1) ≤ t|AT )

= 1− e−(
t

θ1
AT

)α
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F (T (0)|Z = 0, R = 0) = P (T (0) ≤ t|Z = 0, R = 0)

=
P (T (0) ≤ t, Z = 0, R = 0)

P (Z = 0, R = 0)

=
P (T (0) ≤ t,NT,R = 0) + P (T (0) ≤ t, C,R = 0)

P (NT,R = 0) + P (C,R = 0)

=
P (T (0) ≤ t|NT )P (NT ) + P (T (0) ≤ t|C)P (C)

P (NT ) + P (C)

= (1− e−(
t

θ0
NT

)α

)
P (NT )

P (NT ) + P (C)

+ (1− e−(
t

θ0
C

)α

)
P (C)

P (NT ) + P (C)

F (T |R = 0)can be expressed as:

F (T |R = 0) = P (T ≤ t, Z = 1|R = 0) + P (T ≤ t, Z = 0|R = 0)

= P (T ≤ t|Z = 1, R = 0)P (Z = 1|R = 0)

+ P (T ≤ t|Z = 0, R = 0)P (Z = 0|R = 0)

= P (T (1) ≤ t|Z = 1, R = 0)P (Z = 1|R = 0)

+ P (T (0) ≤ t|Z = 0, R = 0)P (Z = 0|R = 0)

= ((1− e−(
t

θ1
AT

)α

)P (AT )

+ [(1− e−(
t

θ0
NT

)α

)
P (NT )

P (NT ) + P (C)
+ (1− e−(

t

θ0
C

)α

)
P (C)

P (NT ) + P (C)
](P (C) + P (NT ))

= 1− (e
−( t

θ1
AT

)α

ρA + e
−( t

θ0
NT

)α

ρN + e
−( t

θ0
C

)α

ρC)

Appendix B: Proofs related with Derivation of Closed Form Solution

1) Assume survival time T ∼ Weibull(α,K) and censoring time L ∼ Weibull(α, λ). Let Y =

min(T, L) and δ = I(T ≤ L). Show that

Y ∼Weibull(α, ( 1
λα + 1

Kα )−1/α)

and,

P (δ = 1) =
1

1 + Kα

λα

(B.1)
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Proof:

P (Y ≥ y) = P (min(T, L) ≥ y)

= P (T ≥ y, L ≥ y)

=

∫ +∞

y

α
tα−1

Kα
exp(−(

t

K
)α)dt

∫ +∞

y

α
lα−1

λα
exp(−(

l

λ
)α)dl

= exp(−(
y

K
)α)exp(−(

y

λ
)α)

= exp(−(
y

( 1
λα + 1

Kα )−1/α
)α)

Thus,Y ∼Weibull(α, ( 1
λα + 1

Kα )−1/α)

P (δ = 1) = P (0 ≤ T ≤ L, 0 ≤ L ≤ ∞)

=

∫ +∞

0

α
lα−1

λα
exp(−(

l

λ
)α)

∫ l

0

α
tα−1

Kα
exp(−(

t

K
)α)dtdl

=

∫ +∞

y

α
lα−1

λα
exp(−(

l

λ
)α)[1− exp(−(

l

K
)α)]dl

= 1−
∫ +∞

y

α
lα−1

λα
exp(−(

l

λ
)α)exp(−(

l

K
)α)dl

= 1− 1

1 + (λ/K)α

=
1

1 + (Kλ )α

2) Assume survival time T is a mixture of three Weibull distributions with Density f(t) =
∑3
i=1 pif(ti).

T1 ∼ Weibull(α,K1), T2 ∼ Weibull(α,K2), and T3 ∼ Weibull(α,K3). The weights are p1, p2, p3

and
∑3
i=1 pi = 1. The censoring time L ∼ Weibull(α, λ). Let Y = min(T, L) and δ = I(T ≤ L).

Show that

P (δ = 1) = p1
1

1 +
Kα

1

λα

+ p2
1

1 +
Kα

2

λα

+ p3
1

1 +
Kα

3

λα

(B.2)
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Proof:

P (δ = 1) = P (δ = 1, G = 1) + P (δ = 1, G = 2) + P (δ = 1, G = 3)

= P (δ = 1|G = 1)P (G = 1) + P (δ = 1|G = 2)P (G = 2) + P (δ = 1|G = 3)P (G = 3)

= p1
1

1 +
Kα

1

λα

+ p2
1

1 +
Kα

2

λα

+ p3
1

1 +
Kα

3

λα

3) Given X follows a Weibull distribution (α∗,K). Show that

E(Xα) = Γ(
α

α∗
+ 1)Kα (B.3)

Proof:

E(Xα) =

∫
Xα α∗

Kα∗
Xα∗−1e−(

X
K )α

∗

dx

=

∫
y
α
α∗

1

Kα∗
e
− y

Kα
∗ dy Let y = xα

∗

=
1

Kα∗

∫
y(

α
α∗+1)−1e

− y

Kα
∗ dy

=
1

Kα∗
(Kα∗)(

α
α∗+1)Γ(

α

α∗
+ 1)

∫
1

(Kα∗)(
α
α∗+1)Γ( αα∗ + 1)

y(
α
α∗+1)−1e

− y

Kα
∗ dy

= Γ(
α

α∗
+ 1)Kα

4) Given X follows a Weibull distribution (α∗,K). Show that

E(log(X)) =
−γ
α∗

+ log(K) (B.4)
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Proof:

E(log(X)) =

∫ ∞
0

log(X)
α∗

Kα∗
Xα∗−1e−(

X
K )α

∗

dx

=

∫
1

α∗
log(y)

1

Kα∗
e
− y

Kα
∗ dy Let y = xα

∗

=

∫
1

α∗
(log(u) + α∗log(K))e−udu Let y = uKα∗

=
1

α∗

∫
log(u)e−udu︸ ︷︷ ︸
−γ

+log(K)

∫
e−udu Let y = uKα∗

=
−γ
α∗

+ log(K)

5) Given X follows a Weibull distribution (α∗,K). Show that

E(Xαlog(X))
1

α∗
Γ(

α

α∗
+ 1)(Kα)(ψ(

α

α∗
+ 1) + α∗log(K)) (B.5)

Proof:

E(Xαlog(X)) =

∫ ∞
0

Xαlog(X)
α∗

Kα∗
Xα∗−1e−(

X
K )α

∗

dx

=

∫
y
α
α∗

1

α∗
log(y)

1

Kα∗
e
− y

Kα
∗ dy Let y = xα

∗

=
1

α∗
1

Kα∗
Γ(

α

α∗
+ 1)(Kα∗)

α
α∗+1∫

log(y)
1

Γ( αα∗ + 1)(Kα∗)
α
α∗+1

y(
α
α∗+1)−1e

− y

Kα
∗ dy︸ ︷︷ ︸

E(log(y))

y ∼ gamma(
α

α∗
+ 1,Kα∗)

=
1

α∗
1

Kα∗
Γ(

α

α∗
+ 1)(Kα∗)

α
α∗+1(ψ(

α

α∗
+ 1) + α∗log(K)) ψ() is digamma function

=
1

α∗
Γ(

α

α∗
+ 1)(Kα)(ψ(

α

α∗
+ 1) + α∗log(K))

6) Let Ti denote the survival time and Ci denote the censoring time for subject i. Ti and Ci are

independent. Ti ∼ weibull(α,K), and Ci ∼ weibull(α, λ). Let Yi = min(Ti, Ci) denote observed

follow-up time and δi be the indicator variable δi = (Ti ≤ Ci). Show that:

E(Yiδi) = E(Yi)E(δi) (B.6)
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Proof:

E(Yiδi) = E(Yiδi(I(δi = 1) + I(δi = 0))

= E(YiδiI(δi = 1)) + E(YiδiI(δi = 0))

= E(TiI(δi = 1))

=

∫ ∞
0

∫ ∞
0

tI(δi = 1)f(t, c)dtdc

=

∫ ∞
0

∫ ∞
0

tI(t ≤ c)ft(t)fc(c)dtdc

=

∫ ∞
0

{
∫ ∞
0

I(t ≤ c)fc(c)dc}tft(t)dt

=

∫ ∞
0

Sc(t)tft(t)dt

=

∫ ∞
0

t exp

(
− t

α

λα

)
α

Kα
tα−1 exp

(
− tα

Kα

)
dt

Let K∗ = ( 1
λα + 1

Kα )−1/α and use (B.1)

E(Yi)E(δi) = (
1

1 + Kα

λα

)

∫ ∞
0

y
α

K∗α
yα−1 exp

(
− yα

K∗α

)
dy

=

∫ ∞
0

α

Kα
yα−1 exp

(
− yα

Kα

)
y exp

(
− y

α

λα

)
dy

Both E(Yiδi) and E(Yi)E(δi) have the same integral functions. Thus,

E(Yiδi) = E(Yi)E(δi)

Similarly, we can establish the following:

E(g(Yi)δi) = E(g(Yi))E(δi)

Appendix C: Derivation of probability limits of M.L.E of α,K0,K1 for 2SPS

Let Y = min(T,C) be observed follow-up time and δ = I(T ≤ C) be the censoring time. The

subjects are assigned to either treatment group (R = 1) or control group (R = 0). The distribution of

each subgroup has different scale parameter K but the same shape parameter α∗. Thus, likelihood
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function of observed follow up time Y can be written as:

L(y) =

nR1∏
i∈{R=1}

[(α∗/K1)(yi/K1)α
∗−1]δi [exp(−(yi/K1)α

∗
)]

×
nR0∏

i∈{R=0}

[(α∗/K0)(yi/K0)α
∗−1]δi [exp(−(yi/K0)α

∗
)]

For treatment assignment group and control assignment group, subjects are from compliers (c),

never takers(nt),and always takers(at). Let nR1
, nR0

denote number of subjects assigned to treat-

ment (R = 1) and control(R = 0). Let nR1,at, nR1,nt, nR1,c denote number of always takers, never

takers, and compliers that are assigned to treatment group.nR1,at + nR1,nt + nR1,c = nR1
. Let

nR0,at, nR0,nt, nR0,c denote number of always takers, never takers, and compliers, who are assigned

to control group.nR0,at + nR0,nt + nR0,c = nR0 . Therefore, the likelihood can be rewritten as:

L(y) =

nR1,at∏
i∈{R=1,at}

[(α∗/K1)(yi/K1)α
∗−1]δi [exp(−(yi/K1)α

∗
)]

×
nR1,c∏

i∈{R=1,c}

[(α∗/K1)(yi/K1)α
∗−1]δi [exp(−(yi/K1)α

∗
)]

×
nR1,nt∏

i∈{R=1,nt}

[(α∗/K1)(yi/K1)α
∗−1]δi [exp(−(yi/K1)α

∗
)]

×
nR0,at∏

i∈{R=0,at}

[(α∗/K0)(yi/K0)α
∗−1]δi [exp(−(yi/K0)α

∗
)]

×
nR0,c∏

i∈{R=0,c}

[(α∗/K0)(yi/K0)α
∗−1]δi [exp(−(yi/K0)α

∗
)]

×
nR0,nt∏

i∈{R=0,nt}

[(α∗/K0)(yi/K0)α
∗−1]δi [exp(−(yi/K0)α

∗
)]

Next, the log likelihood function is:
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l(y) =

nR1,at∑
i∈{R=1,at}

δi{log(α∗)− log(K1)) + (α∗ − 1)(log(yi)− log(K1))}

+

nR1,c∑
i∈{R=1,c}

δi{log(α∗)− log(K1)) + (α∗ − 1)(log(yi)− log(K1))}

+

nR1,nt∑
i∈{R=1,nt}

δi{log(α∗)− log(K1)) + (α∗ − 1)(log(yi)− log(K1))}

+

nR1∑
i∈{R=1}

−(yi/K1)α
∗

+

nR0,at∑
i∈{R=0,at}

δi{log(α∗)− log(K0)) + (α∗ − 1)(log(yi)− log(K0))}

+

nR0,c∑
i∈{R=0,c}

δi{log(α∗)− log(K0)) + (α∗ − 1)(log(yi)− log(K0))}

+

nR0,nt∑
i∈{R=0,nt}

δi{log(α∗)− log(K0)) + (α∗ − 1)(log(yi)− log(K0))}

+

nR0∑
i∈{R=0}

−(yi/K0)α
∗

To derive the M.L.E of K0,K1, take the first derivative of l(y) with respect to K0,K1 and set score

equation to 0, we have

K̂0 = [

∑nR0

i∈{R=0} y
α∗

i∑nR0

i∈{R=0} δi
]1/α

∗
(C.1)

and,

K̂1 = [

∑nR1

i∈{R=1} y
α∗

i∑nR1

i∈{R=1} δi
]1/α

∗
(C.2)

To derive the M.L.E of α∗, take the first derivative of l(y) with respect to α∗ and set score equation
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to 0 and replace K1,K0 with the expressions (C.1) and (C.2), we have

0 =

∑nR0
i∈{R=0} δi

α∗
+

nR0,at∑
i∈{R=0,at}

δilog(yi) +

nR0,c∑
i∈{R=0,c}

δilog(yi) +

nR0,nt∑
i∈{R=0,nt}

δilog(yi)

− {
nR0∑

i∈{R=0}

δi}

∑nR0
i∈{R=0} y

α∗
i log(yi)∑nR0

i∈{R=0} y
α∗
i

+

∑nR1
i∈{R=1} δi

α∗
+

nR1,at∑
i∈{R=1,at}

δilog(yi) +

nR1,c∑
i∈{R=1,c}

δilog(yi) +

nR1,nt∑
i∈{R=1,nt}

δilog(yi)

− {
nR1∑

i∈{R=1}

δi}

∑nR1
i∈{R=1} y

α∗
i log(yi)∑nR1

i∈{R=1} y
α∗
i

=

∑nR0
i∈{R=0} δi

α∗
+

nR0,at∑
i∈{R=0,at}

δilog(yi) +

nR0,c∑
i∈{R=0,c}

δilog(yi) +

nR0,nt∑
i∈{R=0,nt}

δilog(yi)

− {
nR0∑

i∈{R=0}

δi}

∑nR0,at

i∈{R=0,at} y
α∗
i log(yi) +

∑nR0,c

i∈{R=0,c} y
α∗
i log(yi) +

∑nR0,nt

i∈{R=0,nt} y
α∗
i log(yi)∑nR0,at

i∈{R=0,at} y
α∗
i +

∑nR0,c

i∈{R=0,c} y
α∗
i +

∑nR0,nt

i∈{R=0,nt} y
α∗
i

+

∑nR1
i∈{R=1} δi

α∗
+

nR1,at∑
i∈{R=1,at}

log(yi) +

nR1,c∑
i∈{R=1,c}

log(yi) +

nR1,nt∑
i∈{R=1,nt}

log(yi)

− {
nR1∑

i∈{R=1}

δi}

∑nR1,at

i∈{R=1,at} y
α∗
i log(yi) +

∑nR1,c

i∈{R=1,c} y
α∗
i log(yi) +

∑nR1,nt

i∈{R=1,nt} y
α∗
i log(yi)∑nR1,at

i∈{R=1,at} y
α∗
i +

∑nR1,c

i∈{R=1,c} y
α∗
i +

∑nR1,nt

i∈{R=1,nt} y
α∗
i

M.L.E α̂∗ is the solution to the above equation. Next, divide both sides by total number of subject
n, we have

0 =

∑nR0
i∈{R=0} δi/nR0

α∗
nR0

n
+ {

nR0,at∑
i∈{R=0,at}

δilog(yi) +

nR0,c∑
i∈{R=0,c}

δilog(yi) +

nR0,nt∑
i∈{R=0,nt}

δilog(yi)}/nR0

nR0

n

−
nR0

n
{

nR0∑
i∈{R=0}

δi/nR0
}
{
∑nR0,at

i∈{R=0,at} y
α∗
i log(yi) +

∑nR0,c

i∈{R=0,c} y
α∗
i log(yi) +

∑nR0,nt

i∈{R=0,nt} y
α∗
i log(yi)}/nR0

{
∑nR0,at

i∈{R=0,at} y
α∗
i +

∑nR0,c

i∈{R=0,c} y
α∗
i +

∑nR0,nt

i∈{R=0,nt} y
α∗
i }/nR0

+

∑nR1
i∈{R=1} δi/nR1

α∗
nR1

n
+ {

nR1,at∑
i∈{R=1,at}

δilog(yi) +

nR1,c∑
i∈{R=1,c}

δilog(yi) +

nR1,nt∑
i∈{R=1,nt}

δilog(yi)}/nR1

nR1

n

−
nR1

n
{

nR1∑
i∈{R=1}

δi/nR1
}
{
∑nR1,at

i∈{R=1,at} y
α∗
i log(yi) +

∑nR1,c

i∈{R=1,c} y
α∗
i log(yi) +

∑nR1,nt

i∈{R=1,nt} y
α∗
i log(yi)}/nR1

{
∑nR1,at

i∈{R=1,at} y
α∗
i +

∑nR1,c

i∈{R=1,c} y
α∗
i +

∑nR1,nt

i∈{R=1,nt} y
α∗
i }/nR1

As nR1 , nR0 , nR1,at, nR1,nt, nR1,c, nR0,at, nR0,nt, nR0,c → ∞, the score equation converges to the
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following:

0 = P (δ = 1|R = 0)P (R = 0)/α∗

+ P (R = 0){P (AT )E(δlog(Y )|at,R = 0) + P (C)E(δlog(Y )|c,R = 0) + P (NT )E(δlog(Y )|nt,R = 0)}

− P (δ = 1|R = 0)P (R = 0)

× {P (AT )E(Y α
∗
log(Y )|at,R = 0) + P (C)E(Y α

∗
log(Y )|c,R = 0) + P (NT )E(Y α

∗
log(Y )|nt,R = 0)}

{P (AT )E(Y α∗ |at,R = 0) + P (C)E(Y α∗ |c,R = 0)) + P (NT )E(Y α∗ |nt,R = 0)}

+ P (δ = 1|R = 1)P (R = 1)/α∗

+ P (R = 1){P (AT )E(δlog(Y )|at,R = 1) + P (C)E(δlog(Y )|c,R = 1) + P (NT )E(δlog(Y )|nt,R = 1)}

− P (δ = 1|R = 1)P (R = 1)

× {P (AT )E(Y α
∗
log(Y )|at,R = 1) + P (C)E(Y α

∗
log(Y )|c,R = 1) + P (NT )E(Y α

∗
log(Y )|nt,R = 1)}

{P (AT )E(Y α∗ |at,R = 1) + P (C)E(Y α∗ |c,R = 1)) + P (NT )E(Y α∗ |nt,R = 1)}

(C.3)
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Use the results from Appendix B, we can derive the following:

E(δlog(Y )|at,R = 0) = P (δ = 1|at,R = 0)(
−γ
α

+ log([
1

θ1at
α +

1

λα
]−1/α))

=
1

1 +
θ1at

α

λα

(
−γ
α

+ log([
1

θ1at
α +

1

λα
]−1/α)

E(δlog(Y )|nt,R = 0) = P (δ = 1|nt,R = 0)(
−γ
α

+ log([
1

θ0nt
α +

1

λα
]−1/α))

=
1

1 +
θ0nt

α

λα

(
−γ
α

+ log([
1

θ0nt
α +

1

λα
]−1/α))

E(δlog(Y )|c,R = 0) = P (δ = 1|c,R = 0)(
−γ
α

+ log([
1

θ0c
α +

1

λα
]−1/α))

=
1

1 +
θ0c
α

λα

(
−γ
α

+ log([
1

θ0c
α +

1

λα
]−1/α))

E(Y α
∗
log(Y )|at,R = 0) = (ψ(

α∗

α
+ 1) + αlog([

1

θ1at
α +

1

λα
]−1/α))Γ(

α∗

α
+ 1)[

1

θ1at
α +

1

λα
]−α
∗/α 1

α

E(Y α
∗
log(Y )|nt,R = 0) = (ψ(

α∗

α
+ 1) + αlog([

1

θ0nt
α +

1

λα
]−1/α))Γ(

α∗

α
+ 1)[

1

θ0nt
α +

1

λα
]−α
∗/α 1

α

E(Y α
∗
log(Y )|c,R = 0) = (ψ(

α∗

α
+ 1) + αlog([

1

θ0c
α +

1

λα
]−1/α))Γ(

α∗

α
+ 1)[

1

θ0c
α +

1

λα
]−α
∗/α 1

α

E(Y α
∗
|at,R = 0) = Γ(

α∗

α
+ 1)[

1

θ1at
α +

1

λα
]−α
∗/α

E(Y α
∗
|nt,R = 0) = Γ(

α∗

α
+ 1)[

1

θ0nt
α +

1

λα
]−α
∗/α

E(Y α
∗
|c,R = 0) = Γ(

α∗

α
+ 1)[

1

θ0c
α +

1

λα
]−α
∗/α

P (δ = 1|R = 0) = Pat
1

1 +
θ1at

α

λα

+ Pnt
1

1 +
θ0nt

α

λα

+ Pc
1

1 +
θ0c
α

λα
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and,

E(δlog(Y )|at,R = 1) = P (δ = 1|at,R = 1)(
−γ
α

+ log([
1

θ1at
α +

1

λα
]−1/α))

=
1

1 +
θ1at

α

λα

(
−γ
α

+ log([
1

θ1at
α +

1

λα
]−1/α))

E(δlog(Y )|nt,R = 1) = P (δ = 1|nt,R = 1)(
−γ
α

+ log([
1

θ0nt
α +

1

λα
]−1/α)))

=
1

1 +
θ0nt

α

λα

(
−γ
α

+ log([
1

θ0nt
α +

1

λα
]−1/α))

E(δlog(Y )|c,R = 1) = P (δ = 1|c,R = 1)(
−γ
α

+ log([
1

θ1c
α +

1

λα
]−1/α))

=
1

1 +
θ1c
α

λα

(
−γ
α

+ log([
1

θ1c
α +

1

λα
]−1/α))

E(Y α
∗
log(Y )|at,R = 1) = (ψ(

α∗

α
+ 1) + αlog([

1

θ1at
α +

1

λα
]−1/α))Γ(

α∗

α
+ 1)[

1

θ1at
α +

1

λα
]−α
∗/α 1

α

E(Y α
∗
log(Y )|nt,R = 1) = (ψ(

α∗

α
+ 1) + αlog([

1

θ0nt
α +

1

λα
]−1/α))Γ(

α∗

α
+ 1)[

1

θ0nt
α +

1

λα
]−α
∗/α 1

α

E(Y α
∗
log(Y )|c,R = 1) = (ψ(

α∗

α
+ 1) + αlog([

1

θ1c
α +

1

λα
]−1/α))Γ(

α∗

α
+ 1)[

1

θ1c
α +

1

λα
]−α
∗/α 1

α

E(Y α
∗
|at,R = 1) = Γ(

α∗

α
+ 1)[

1

θ1at
α +

1

λα
]−α
∗/α

E(Y α
∗
|nt,R = 1) = Γ(

α∗

α
+ 1)[

1

θ0nt
α +

1

λα
]−α
∗/α

E(Y α
∗
|c,R = 1) = Γ(

α∗

α
+ 1)[

1

θ1c
α +

1

λα
]−α
∗/α

P (δ = 1|R = 1) = Pat
1

1 +
θ1at

α

λα

+ Pnt
1

1 +
θ0nt

α

λα

+ Pc
1

1 +
θ1c
α

λα

Let α̃∗ be the solution to the equation (C.3). By the consistency of M.L.E, Thus, we have α̂∗ P−→ α̃∗

Next, substitute α̂∗ into equation (C.1)

K̂0 = [

∑nR0

i∈{R=0} y
α̂∗

i∑nR0

i∈{R=0} δi
]1/α̂

∗

= [
nR0∑nR0

i∈{R=0} δi
{

nR0,at∑
i∈{R=0,at}

yα̂
∗

i +

nR0,nt∑
i∈{R=0,nt}

yα̂
∗

i +

nR0,c∑
i∈{R=0,c}

yα̂
∗

i }/nR0
]1/α̂

∗
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Asymptotically, it converges to

K̂0 → [
1

P (δ = 1|R = 0)
{PatE(Y α̃

∗
at,0) + PntE(Y α̃

∗
nt,0) + PcE(Y α̃

∗
c,0 )}]1/α̃∗

= [
1

P (δ = 1|R = 0)
×

{PatΓ(
α̃∗

α
+ 1)[

1

θ1at
α +

1

λα
]−α̃
∗/α + PntΓ(

α̃∗

α
+ 1)[

1

θ0nt
α +

1

λα
]−α̃
∗/α + PcΓ(

α̃∗

α
+ 1)[

1

θ0c
α +

1

λα
]−α̃
∗/α}]1/α̃∗

Similarly, K̂1 converges to

K̂1 → [
1

P (δ = 1|R = 1)
×

{PatΓ(
α̃∗

α
+ 1)[

1

θ1at
α +

1

λα
]−α̃
∗/α + PntΓ(

α̃∗

α
+ 1)[

1

θ0nt
α +

1

λα
]−α̃
∗/α + PcΓ(

α̃∗

α
+ 1)[

1

θ1c

α

+
1

λα
]−α̃
∗/α}]1/α̃∗

Appendix D: Derivation of probability limits of M.L.E of α,K0,K1,K2 for 2SRI

Under the no AT assumption, we can find an expression for λ1 as follows. The first stage regression

can be re-expressed as following:

E(Z|R) = ρAT + ρCR

E = Z − E(Z|R)

= Z − ρA − ρCR

Note that Z,E and Z,R are one-to-one correspondence. Knowing Z,E will let us know Z,R and

vice versa. Under no always taker assumption, we observe three subgroups 1)Z = 1, R = 1. Only

compliers in this group; 2) Z = 0, R = 1, Only never takers in this group; 3)Z = 0, R = 0, both

never takers and compliers in this group. There are no patients that are assigned to control but still

takes on active treatment (Z = 1, R = 0). For the 3 subgroups, essentially we are fitting 3 Weibull

distributions with the same shape parameter α∗ and 3 different shape parameter K0,K1,K2 with

Weibull regression model: logh(t) = λ0 + λ1Z + λ2E
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The likelihood function is:

L(y) =

nZ1,R1,c∏
i∈{Z=1,R=1,c}

[(α∗/K0)(yi/K0)α
∗−1]δi [exp(−(yi/K0)α

∗
)]

×
nZ0,R1,nt∏

i∈{Z=0,R=1,nt}

[(α∗/K1)(yi/K1)α
∗−1]δi [exp(−(yi/K1)α

∗
)]

×
nZ0,R0,nt∏

i∈{Z=0,R=0,nt}

[(α∗/K2)(yi/K2)α
∗−1]δi [exp(−(yi/K2)α

∗
)]

×
nZ0,R0,c∏

i∈{Z=0,R=0,c}

[(α∗/K2)(yi/K2)α
∗−1]δi [exp(−(yi/K2)α

∗
)]

The log likelihood is:

l(y) =

nZ1,R1,c∑
i∈{Z=1,R=1,c}

δi{log(α∗)− log(K0)) + (α∗ − 1)(log(yi)− log(K0))}+

nZ1,R1,c∑
i∈{Z=1,R=1,c}

−(yi/K0)α
∗

+

nZ0,R1,nt∑
i∈{Z=0,R=1,nt}

δi{log(α∗)− log(K1)) + (α∗ − 1)(log(yi)− log(K1))}+

nZ0,R1,nt∑
i∈{Z=0,R=1,nt}

−(yi/K1)α
∗

+

nZ0,R0,nt∑
i∈{Z=0,R=0,nt}

δi{log(α∗)− log(K2)) + (α∗ − 1)(log(yi)− log(K2))}+

nZ0,R0,nt∑
i∈{Z=0,R=0,nt}

−(yi/K2)α
∗

+

nZ0,R0,c∑
i∈{Z=0,R=0,c}

δi{log(α∗)− log(K2)) + (α∗ − 1)(log(yi)− log(K2))}+

nZ0,R0,c∑
i∈{Z=0,R=0,c}

−(yi/K2)α
∗

Take the first derivative of l(y) with respective to K0,K1,K2 respectively and set score equation to

0, then we have

K̂0 = [

∑nZ1,R1,c

i∈{Z=1,R=1,c} y
α∗

i∑nZ1,R1,c

i∈{Z=1,R=1,c} δi
]1/α

∗
(D.1)

K̂1 = [

∑nZ0,R1,nt

i∈{Z=0,R=1,nt} y
α∗

i∑nZ0,R1,nt

i∈{Z=0,R=1,nt} δi
]1/α

∗
(D.2)
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K̂2 = [

∑nZ0,R0,nt

i∈{Z=0,R=0,nt} y
α∗

i +
∑nZ0,R0,c

i∈{Z=0,R=0,c} y
α∗

i∑nZ0,R0,nt

i∈{Z=0,R=0,nt} δi +
∑nZ0,R0,c

i∈{Z=0,R=0,c} δi
]1/α

∗
(D.3)

Take the first derivative of l(y) with respective to α∗ and replace K0,K1,K2 with expression (D.1) ,

(D.2) , (D.3), then we have:

dlog(L(y))

dα
=

nZ1,R1,c∑
i∈{Z=1,R=1,c}

δi{
1

α∗
+ log(yi)} −

nZ1,R1,c∑
i∈{Z=1,R=1,c}

δi

∑nZ1,R1,c

i∈{Z=1,R=1,c}(yi)
α∗ log(yi)∑nZ1,R1,c

i∈{Z=1,R=1,c}(yi)
α∗

+

nZ0,R1,nt∑
i∈{Z=0,R=1,nt}

δi{
1

α∗
+ log(yi)} −

nZ0,R1,nt∑
i∈{Z=0,R=1,nt}

δi

∑nZ0,R1,nt

i∈{Z=0,R=1,nt}(yi)
α∗ log(yi)∑nZ0,R1,nt

i∈{Z=0,R=1,nt}(yi)
α∗

+

nZ0,R0,nt∑
i∈{Z=0,R=0,nt}

δi{
1

α∗
+ log(yi)}+

nZ0,R0,c∑
i∈{Z=0,R=0,c}

δi{
1

α∗
+ log(yi)}

− (

nZ0,R0,nt∑
i∈{Z=0,R=0,nt}

δi +

nZ0,R0,c∑
i∈{Z=0,R=0,c}

δi)

∑nZ0,R0,nt

i∈{Z=0,R=0,nt} y
α∗
i log(yi) +

∑nZ0,R0,c

i∈{Z=0,R=0,c} y
α∗
i log(yi)∑nZ0,R0,nt

i∈{Z=0,R=0,nt} y
α∗
i +

∑nZ0,R0,c

i∈{Z=0,R=0,c} y
α∗
i

=

nZ1,R1,c∑
i∈{Z=1,R=1,c}

δi
1

α∗
+

nZ1,R1,c∑
i∈{Z=1,R=1,c}

δilog(yi)−
nZ1,R1,c∑

i∈{Z=1,R=1,c}

δi

∑nZ1,R1,c

i∈{Z=1,R=1,c}(yi)
α∗ log(yi)∑nZ1,R1,c

i∈{Z=1,R=1,c}(yi)
α∗

+

nZ0,R1,nt∑
i∈{Z=0,R=1,nt}

δi
1

α∗
+

nZ0,R1,nt∑
i∈{Z=0,R=1,nt}

δilog(yi)−
nZ0,R1,nt∑

i∈{Z=0,R=1,nt}

δi

∑nZ0,R1,nt

i∈{Z=0,R=1,nt}(yi)
α∗ log(yi)∑nZ0,R1,nt

i∈{Z=0,R=1,nt}(yi)
α∗

+

nZ0,R0,nt∑
i∈{Z=0,R=0,nt}

δi
1

α∗
+

nZ0,R0,nt∑
i∈{Z=0,R=0,nt}

δilog(yi) +

nZ0,R0,c∑
i∈{Z=0,R=0,c}

δi
1

α∗
+

nZ0,R0,c∑
i∈{Z=0,R=0,c}

δilog(yi)

− (

nZ0,R0,nt∑
i∈{Z=0,R=0,nt}

δi +

nZ0,R0,c∑
i∈{Z=0,R=0,c}

δi)

∑nZ0,R0,nt

i∈{Z=0,R=0,nt} y
α∗
i log(yi) +

∑nZ0,R0,c

i∈{Z=0,R=0,c} y
α∗
i log(yi)∑nZ0,R0,nt

i∈{Z=0,R=0,nt} y
α∗
i +

∑nZ0,R0,c

i∈{Z=0,R=0,c} y
α∗
i

= 0
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M.L.E α̂∗ is the solution to the above score equation. Next, divide the equation by total sample size n,

0 =

nZ1,R1,c∑
i∈{Z=1,R=1,c}

δi
1

α∗
/nZ1,R1,c ×

nZ1,R1,c

n
+

nZ1,R1,c∑
i∈{Z=1,R=1,c}

δilog(yi)/nZ1,R1,c ×
nZ1,R1,c

n

− (

nZ1,R1,c∑
i∈{Z=1,R=1,c}

δi/nZ1,R1,c ×
nZ1,R1,c

n
)

∑nZ1,R1,c

i∈{Z=1,R=1,c}(yi)
α∗ log(yi)/nZ1,R1,c∑nZ1,R1,c

i∈{Z=1,R=1,c}(yi)
α∗/nZ1,R1,c

+

nZ0,R1,nt∑
i∈{Z=0,R=1,nt}

δi
1

α∗
/nZ0,R1,nt ×

nZ0,R1,nt

n
+

nZ0,R1,nt∑
i∈{Z=0,R=1,nt}

δilog(yi)/nZ0,R1,nt ×
nZ0,R1,nt

n

− (

nZ0,R1,nt∑
i∈{Z=0,R=1,nt}

δi/nZ0,R1,nt ×
nZ0,R1,nt

n
)

∑nZ0,R1,nt

i∈{Z=0,R=1,nt}(yi)
α∗ log(yi)/nZ0,R1,nt∑nZ0,R1,nt

i∈{Z=0,R=1,nt}(yi)
α∗/nZ0,R1,nt

+ {
nZ0,R0,nt∑

i∈{Z=0,R=0,nt}

δi
1

α∗
+

nZ0,R0,nt∑
i∈{Z=0,R=0,nt}

δilog(yi)}/nZ0,R0,nt ×
nZ0,R0,nt

n

+ {
nZ0,R0,c∑

i∈{Z=0,R=0,c}

δi
1

α∗
+

nZ0,R0,c∑
i∈{Z=0,R=0,c}

δilog(yi)}/nZ0,R0,c ×
nZ0,R0,c

n

− (

nZ0,R0,nt∑
i∈{Z=0,R=0,nt}

δi +

nZ0,R0,c∑
i∈{Z=0,R=0,c}

δi)/nZ0,R0 ×
nZ0,R0

n

×
{
∑nZ0,R0,nt

i∈{Z=0,R=0,nt} y
α∗
i log(yi) +

∑nZ0,R0,c

i∈{Z=0,R=0,c} y
α∗
i log(yi)}/nZ0,R0

{
∑nZ0,R0,nt

i∈{Z=0,R=0,nt} y
α∗
i +

∑nZ0,R0,c

i∈{Z=0,R=0,c} y
α∗
i }/nZ0,R0

As sample sizes in each principal strata→∞, the score equation will converge to:

0 =
1

α∗
P (δ = 1|Z = 1, R = 1)P (Z = 1, R = 1) + E(δlog(y)|Z = 1, R = 1)P (Z = 1, R = 1)

− P (δ = 1|Z = 1, R = 1)P (Z = 1, R = 1)
E(Y α

∗
log(Y )|Z = 1, R = 1))

E(Y α∗ |Z = 1, R = 1)

+
1

α∗
P (δ = 1|Z = 0, R = 1)P (Z = 0, R = 1) + E(δlog(y)|Z = 0, R = 1)P (Z = 0, R = 1)

− P (δ = 1|Z = 0, R = 1)P (Z = 0, R = 1)
E(Y α

∗
log(Y )|Z = 0, R = 1))

E(Y α∗ |Z = 0, R = 1)

+
1

α∗
P (δ = 1|Z = 0, R = 0, nt)P (Z = 0, R = 0, nt) + E(δlog(y)|Z = 0, R = 0, nt)P (Z = 0, R = 0, nt)

+
1

α∗
P (δ = 1|Z = 0, R = 0, c)P (Z = 0, R = 0, c) + E(δlog(y)|Z = 0, R = 0, c)P (Z = 0, R = 0, c)

− (
Pnt

Pnt + Pc
P (δ = 1|Z = 0, R = 0, nt) +

Pc
Pnt + Pc

P (δ = 1|Z = 0, R = 0, c))

× (P (Z = 0, R = 0, nt) + P (Z = 0, R = 0, c))

× P (nt)E(Y α
∗
log(Y )|Z = 0, R = 0, nt) + P (c)E(Y α

∗
log(Y )|Z = 0, R = 0, c)

P (nt)E(Y α∗ |Z = 0, R = 0, nt) + P (c)E(Y α∗ |Z = 0, R = 0, c)
(D.4)
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where,

P (δ = 1|Z = 1, R = 1) =
1

1 + (
θ1c
λ

)α

P (Z = 1, R = 1) = P (C,R = 1)

= PcP (R = 1)

E(δlog(y)|Z = 1, R = 1) =
1

1 +
θ1c
α

λα

(
−γ
α

+ log([
1

θ1c
α +

1

λα
]−1/α))

E(Y α
∗
log(Y )|Z = 1, R = 1) = (ψ(

α∗

α
+ 1) + αlog([

1

θ1c
α +

1

λα
]−1/α))Γ(

α∗

α
+ 1)[

1

θ1c
α +

1

λα
]−α
∗/α 1

α

E(Y α
∗
|Z = 1, R = 1) = Γ(

α∗

α
+ 1)[

1

θ1c
α +

1

λα
]−α
∗/α

P (δ = 1|Z = 0, R = 1) =
1

1 + (
θ0nt
λ

)α

P (Z = 0, R = 1) = P (nt,R = 1)

= PntP (R = 1)

E(δlog(y)|Z = 0, R = 1) =
1

1 +
θ0nt

α

λα

(
−γ
α

+ log([
1

θ0nt
α +

1

λα
]−1/α))
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E(Y α
∗
log(Y )|Z = 0, R = 1) = (ψ(

α∗

α
+ 1) + αlog([

1

θ0nt
α +

1

λα
]−1/α))Γ(

α∗

α
+ 1)[

1

θ0nt
α +

1

λα
]−α
∗/α 1

α

E(Y α
∗
|Z = 0, R = 1) = Γ(

α∗

α
+ 1)[

1

θ0nt
α +

1

λα
]−α
∗/α

P (δ = 1|Z = 0, R = 0, nt) =
1

1 + (
θ0nt
λ

)α

P (Z = 0, R = 0, nt) = P (nt,R = 0)

= PntP (R = 0)

E(δlog(y)|Z = 0, R = 0, nt) =
1

1 +
θ0nt

α

λα

(
−γ
α

+ log([
1

θ0nt
α +

1

λα
]−1/α))

E(Y α
∗
log(Y )|Z = 0, R = 0, nt) = (ψ(

α∗

α
+ 1) + αlog([

1

θ0nt
α +

1

λα
]−1/α))Γ(

α∗

α
+ 1)[

1

θ0nt
α +

1

λα
]−α
∗/α 1

α

E(Y α
∗
|Z = 0, R = 0, nt) = Γ(

α∗

α
+ 1)[

1

θ0nt
α +

1

λα
]−α
∗/α

P (δ = 1|Z = 0, R = 0, c) =
1

1 + (
θ0c
λ

)α

P (Z = 0, R = 0, c) = P (c,R = 0)

= PcP (R = 0)

E(δlog(y)|Z = 0, R = 0, c) =
1

1 +
θ0c
α

λα

(
−γ
α

+ log([
1

θ0c
α +

1

λα
]−1/α))

E(Y α
∗
log(Y )|Z = 0, R = 0, c) = (ψ(

α∗

α
+ 1) + αlog([

1

θ0c
α +

1

λα
]−1/α))Γ(

α∗

α
+ 1)[

1

θ0c
α +

1

λα
]−α
∗/α 1

α

E(Y α
∗
|Z = 0, R = 0, c) = Γ(

α∗

α
+ 1)[

1

θ0c
α +

1

λα
]−α
∗/α

α̃∗ is the solution to the equation (D.4). Thus, α̂∗ → α̃∗. Probability limits of M.L.E of K0 can be

derived as following:

K̂0 = [

∑nZ1,R1,c

i∈{Z=1,R=1,c} y
α̂∗

i∑nZ1,R1,c

i∈{Z=1,R=1,c} δi
]1/α̂

∗

= [

∑nZ1,R1,c

i∈{Z=1,R=1,c} y
α̂∗

i /nZ1,R1,c∑nZ1,R1,c

i∈{Z=1,R=1,c} δi/nZ1,R1,c

]1/α̂
∗

→ [
E(yα̃

∗
i |Z = 1, R = 1, c)

P (δ = 1|Z = 1, R = 1, c)
]1/α̃

∗

= [
Γ( α̃

∗

α + 1)[ 1
θ1
c
α + 1

λα ]−α̃
∗/α

1

1+(
θ1c
λ )α

]1/α̃
∗
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Similarly, for K1,K2,

K̂1 = [

∑nZ0,R1,nt

i∈{Z=0,R=1,nt} y
α̂∗

i∑nZ0,R1,nt

i∈{Z=0,R=1,nt} δi
]1/α̂

∗

→ [
Γ( α̃

∗

α + 1)[ 1
θ0
nt
α + 1

λα ]−α̃
∗/α

1

1+(
θ0nt
λ )α

]1/α̃
∗

K̂2 = [

∑nZ0,R0,nt

i∈{Z=0,R=0,nt} y
α̂∗

i +
∑nZ0,R0,c

i∈{Z=0,R=0,c} y
α̂∗

i∑nZ0,R0,nt

i∈{Z=0,R=0,nt} δi +
∑nZ0,R0,c

i∈{Z=0,R=0,c} δi
]1/α̂

∗

→ [
Γ( α̃

∗

α + 1)[ 1
θ0
nt
α + 1

λα ]−α̃
∗/α Pnt

Pnt+Pc
+ Γ( α̃

∗

α + 1)[ 1
θ0
c
α + 1

λα ]−α̃
∗/α Pc

Pnt+Pc

1

1+(
θ0nt
λ )α

Pnt
Pnt+Pc

+ 1

1+(
θ0c
λ )α

Pc
Pnt+Pc

]1/α̃
∗

Appendix E: Assumption of the same shape parameter for survival and censoring distributions

In section 2 of the manuscript, we made the assumption that both time to event and censoring

time have the same shape parameter so that close form solution could be derived. To evaluate the

potential impact on the bias when the time to event and censoring time have two different shape

parameters and the assumption is violated, we re-evaluated the scenario in the table 1 with the

shape parameter α = 0.5. We set the shape parameter of censoring distribution to be 1.2 and

compared the differences. We found that the differences in bias of 2SPS between two scenarios

ranges from 0.01 to 0.018 (δ varies from -2 to 2). For 2SRI approach, the differences ranges from

0.001 to 0.13. These differences are attributable to the different censoring proportions between two

scenarios. The shape of relationship between bias and δ remains approximately unchanged(data

not shown). It should be noted that under the assumption of having the same shape parameters

for both survival time and censoring time, the maximum likelihood estimator based on the survival

likelihood that does not incorporate the assumption of the shape parameters being the same is not

fully efficient.
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Figure 2.1: Plot of bias against magnitude of unmeasured confounding ∆ using 2SPS
method:(a)P (R = 1) = 0.8, ρa = 0, ρc = 0.5, θ1c = 3.33, θ0c = 1.67.(b)P (R = 1) = 0.8,
ρa = 0, ρc = 0.8, θ1c = 3.33, θ0c = 1.67.(c) P (R = 1) = 0.8, ρa = 0, ρc = 0.5, θ1c = 33.3,
θ0c = 16.7. (d) P (R = 1) = 0.5, ρa = 0, ρc = 0.8, θ1c = 3.33, θ0c = 1.67. The different
colour of solid line corresponds to different shape parameter: black (α = 0.5),red
(α = 1),and green (α = 2).
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Figure 2.2: Plot of bias against magnitude of unmeasured confounding ∆ using 2SRI
method:(a)P (R = 1) = 0.8, ρa = 0, ρc = 0.5, θ1c = 3.33, θ0c = 1.67.(b)P (R = 1) = 0.8,
ρa = 0, ρc = 0.8, θ1c = 3.33, θ0c = 1.67.(c) P (R = 1) = 0.8, ρa = 0, ρc = 0.5, θ1c = 33.3,
θ0c = 16.7. (d) P (R = 1) = 0.5, ρa = 0, ρc = 0.8, θ1c = 3.33, θ0c = 1.67. The different
colour of solid line corresponds to different shape parameter: black (α = 0.5),red
(α = 1),and green (α = 2).
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Figure 2.3: Absolute bias in estimating log causal hazard ratio using two stage IV
methods (X-axis is the magnitude of confounding ∆ , Y-axis is the absolute bias).
For 2SRI method or 2SPS method, the biases computed for each of 1458 possible
scenarios were grouped by the magnitude of shape parameter α (decreasing hazard
for α = 0.5, constant hazard for α = 1, and increasing hazard for α = 2) and the
magnitude of confounding ∆ (larger values represent lager confounding effects and 0
represents no confounding).
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Table 2.1: Bias in estimating log causal hazard ratio parameter ( ρa = 0, ρc = 0.5, ρr =
0.8, θ1c = 3.33, θ0c = 1.67)

α δ Biasanalytic2sps BiasAFT2sps BiasCox2sps Biasanalytic2sri BiasAFT2sri BiasCox2sri

0.5 2 -0.094 -0.093 -0.091 -0.477 -0.476 -0.476
1.5 -0.067 -0.068 -0.064 -0.238 -0.239 -0.235
1 -0.039 -0.040 -0.039 -0.086 -0.087 -0.086

0.5 -0.013 -0.016 -0.012 -0.015 -0.018 -0.014
0 0.007 0.009 0.007 0.000 0.002 0.000

-0.5 0.023 0.020 0.026 0.000 -0.003 -0.001
-1 0.038 0.037 0.051 0.029 0.028 0.029

-1.5 0.055 0.053 0.075 0.114 0.112 0.108
-2 0.073 0.074 0.101 0.261 0.263 0.236

1 2 -0.250 -0.253 -0.247 -0.545 -0.550 -0.544
1.5 -0.177 -0.175 -0.177 -0.285 -0.284 -0.284
1 -0.096 -0.093 -0.097 -0.110 -0.107 -0.112

0.5 -0.017 -0.020 -0.018 -0.022 -0.025 -0.023
0 0.051 0.053 0.055 0.000 0.002 0.000

-0.5 0.107 0.106 0.116 -0.007 -0.008 -0.009
-1 0.152 0.153 0.177 0.000 0.000 0.002

-1.5 0.193 0.191 0.232 0.057 0.053 0.055
-2 0.230 0.232 0.280 0.175 0.176 0.157

1.5 2 -0.422 -0.423 -0.418 -0.605 -0.607 -0.602
1.5 -0.285 -0.285 -0.284 -0.326 -0.325 -0.326
1 -0.132 -0.133 -0.134 -0.133 -0.134 -0.134

0.5 0.019 0.023 0.021 -0.028 -0.027 -0.029
0 0.153 0.152 0.159 0.000 -0.004 0.000

-0.5 0.261 0.266 0.274 -0.015 -0.012 -0.015
-1 0.345 0.342 0.376 -0.030 -0.033 -0.027

-1.5 0.412 0.412 0.461 -0.005 -0.008 -0.002
-2 0.467 0.468 0.531 0.078 0.075 0.068

2 2 -0.574 -0.578 -0.571 -0.656 -0.656 -0.653
1.5 -0.359 -0.360 -0.357 -0.362 -0.361 -0.359
1 -0.122 -0.124 -0.122 -0.152 -0.153 -0.152

0.5 0.111 0.115 0.112 -0.034 -0.032 -0.036
0 0.317 0.320 0.324 0.000 0.003 0.002

-0.5 0.481 0.479 0.494 -0.022 -0.026 -0.026
-1 0.605 0.605 0.636 0.059 -0.059 -0.056

-1.5 0.698 0.701 0.747 -0.069 -0.069 -0.063
-2 0.769 0.770 0.833 -0.023 -0.024 -0.026

Biasanalytic2sps - bias computed using analytic formula derived for 2SPS method; BiasAFT2sps -bias com-
puted via simulation for 2SPS Weibull accelerated failure time model;BiasCox2sps-bias computed via
simulation for 2SPS Cox model; Biasanalytic2sri - bias computed using analytic formula derived for
2SRI method; BiasAFT2sri -bias computed via simulation for 2SRI Weibull accelerated failure time
model;BiasCox2sri-bias computed via simulation for 2SRI Cox model;
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Figure 2.4: Mean square error in estimating log causal hazard ratio using two stage
IV methods (X-axis is the magnitude of confounding ∆ , Y-axis is the Mean Square
Error).For 2SRI method or 2SPS method, the mean square error computed for each
of 1458 possible scenarios were grouped by the magnitude of shape parameter α
(decreasing hazard for α = 0.5, constant hazard for α = 1, and increasing hazard for
α = 2) and the magnitude of confounding ∆ (larger values represent lager confounding
effects and 0 represents no confounding).

Table 2.2: Bias in estimating causal hazard ratio parameter for prostate cancer study

Outcome Group IV2sri IV2sps

All cause mortality Total
(n=31541) 0.57(0.17-1.06) 0.59(0.19-1.09)

RCT Cohort
(n=12924) 0.96(0.18-5.81) 0.97(0.18-5.94)

Elderly Cohort
(n=14340) 0.74(0.20-1.83) 0.96(0.26-2.35)

Screen-Detected Cohort
(n=4277) 0.34(0.02-2.99) 0.35(0.03-3.22)
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CHAPTER 3

A GENERAL FRAMEWORK FOR ASSESSING BIAS IN TWO-STAGE INSTRUMENTAL

VARIABLE MODELS

3.1. Introduction

The presence of unmeasured confounding may pose challenges when clinical and health service

researchers attempt to estimate the causal effect of an exposure on study outcomes using obser-

vational data. This causal effect is often represented by a parameter associated with the exposure

variable in a structural model including outcome Y , exposure D, observed covariates X, unob-

served covariates U. The conditional causal parameter can be interpreted as the change in an

outcome per unit change in the exposure variable while keeping all other measured or unmeasured

covariates constant. When U is omitted from the model, the resulting estimator is generally bi-

ased and inconsistent in estimating the true causal parameter, even when observed covariates X

are controlled for. In epidemiology this bias is termed "confounding bias" and it is referred to as

"endogeneity" in economics.

Instrumental variables (IVs) are routinely used to account for the unmeasured confounding bias in

observational studies. A valid IV must correlate with exposure, and all the effect of IV on outcome

must be mediated via exposure (known as “exclusion restriction”). IV methods are well developed

in the context of continuous outcomes and linear models. The two stage predictor substitution

(2SPS) method, generally known as two stage least squares (2SLS) for continuous outcomes, is

one of the most widely used approaches. The fitted value from the first stage linear regression

of the exposure on the IV is used to replace the exposure in the second stage linear outcome

model. The 2SPS estimator consistently estimates the causal effect of the exposure given observed

and unobserved covariates. Two stage residual inclusion (2SRI) method is an equally popular

alternative. It includes the residual from the first stage regression as an additional covariate, in

conjunction with the exposure, in the second stage regression model. The resulting 2SRI estimator

is also a consistent estimator of conditional causal parameter. However, clinical and health service

researchers are often interested in evaluating discrete or time to event data. The extensions of the

two stage IV approaches to generalized linear models and survival models have been proposed in
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a straightforward approach (Terza, Basu, and Rathouz, 2008). In correspondence with each type

of outcome, the second stage linear model is simply replaced with the corresponding nonlinear

models (i.e, Logistic, Poisson, and Cox proportional hazard models).

However, the consistency of the two stage IV estimators in the context of nonlinear models remains

unclear. Terza, Basu, and Rathouz, 2008 constructed a two stage nonlinear modeling framework to

account for endogeneity. Within this framework the 2SRI method consistently estimates the causal

effect of endogenous exposure variables but the 2SPS estimator is biased and inconsistent. Be-

cause of these findings, the 2SRI approach has been advocated as the method of choice in clinical

studies involving discrete and survival outcomes (Gore et al., 2010; Hadley et al., 2010; Mortensen

et al., 2014; Tan et al., 2012). Wang, 2012 investigated the relationship between pharmacokinetics,

a measure of drug exposure, and the risk of adverse events with Poisson regression models and

dose level as the IV. The author demonstrated the consistency of the 2SPS and 2SRI estimators

analytically and with simulation. IV methods have become increasingly popular in epidemiological

literature with Mendalian randomization as well. However, both the 2SRI and 2SPS approaches

have been demonstrated to be biased in estimating phenotype-disease log odds ratio, in which

dichotomous gene is IV and the exposure is a continuous phenotype (Burgess, 2013; Palmer et al.,

2008). Such biases increase with the increasing magnitude of unmeasured confounding.

Confounding also occurs in randomized trials when patients fail to comply with the treatment as-

signment. The reasons for their compliance with treatment or not may impact the outcome as

well. For example, patients with poor prognosis may have worse outcome and they may be more

(or less) compliant than patients with good prognosis. Nagelkerke et al., 2000 proposed a 2SRI

type estimator for treatment effects in a two-arm randomized trial with non-compliance for nonlinear

models. The residual is first estimated from a regression model of the actual treatment received

on treatment assignment indicator. Treatment assignment is a perfect IV because it satisfies the

core assumptions of IV (Baiocchi, Cheng, and Small, 2014). The estimated residual and treatment

indicator are included in the second stage nonlinear model to estimate treatment effects. However,

the bias of this 2SRI estimator increases with increasing confounding (Ten Have, Joffe, and Cary,

2003). When treatment effect is heterogeneous and under certain assumptions, Angrist, Imbens,

and Rubin, 1996 proved that the 2SLS estimator converges to the local average treatment effect

(LATE) among compliers within potential outcomes and principal stratification framework. Complier
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is a sub-population of patients that always comply with the treatment assigned. For binary outcome

and time to event outcome, Cai, Small, and Ten Have, 2011 and Wan et al., 2015 showed ana-

lytically and via simulation that both the 2SPS and 2SRI methods are biased in estimating causal

odds ratios and causal hazard ratios among compliers, respectively.

In light of the increasing interests in applying 2SPS and 2SRI methods in clinical and health service

research for discrete or time to event data and conflicting conclusions in the current literature, the

purpose of this paper is to investigate the consistency of the 2SPS and 2SRI estimators in three

commonly used nonlinear models. We propose a new two stage modeling framework that is more

relevant to clinical settings. Under this framework, we demonstrate that the bias in 2SPS and 2SRI

estimators can be transformed into the problem of omitted variables in non-linear models. We then

perform comprehensive simulation to assess the bias of 2SPS and 2SRI. Finally, we analyze infant

birth defect data using the 2SPS and 2SRI.

3.2. Notations, Assumptions, and Framework

3.2.1. The nonlinear model framework in current literature

The causal relationship between endogenous variables and discrete or time-to-event outcome vari-

ables is often formulated within structural equation modeling frameworkTerza, Basu, and Rathouz,

2008. Such models are widely used in economics. Conditional on observed exogenous variables

and unobserved confounding variables, the true nonlinear model that explain the causal effects of

covariates on the outcome variable Y is assumed to have the following functional form

Y = f(βT
eXe + βT

oXo + βT
uXu) + e, E(e|Xe,Xo,Xu) = 0. (3.1)

where f(·) is a known nonlinear function, Xe =< xe1 , xe2 , ..., xep > is a p−vector of endogenous ex-

posure variables and βe =< βe1 , βe2 , ..., βep > is a p−vector of parameters of interest measuring the

causal effects of exposure variables Xe on outcome Y conditional on observed and unobserved co-

variates, Xo =< xo1
, xo2

, ..., xok > is a k−vector of observed covariates, Xu =< xu1
, xu2

, ..., xup >

is a p−vector of unobserved covariates that are correlated with endogenous variables Xe. βo and

βu are k−vector and p−vector of regression parameters for Xo and Xu, respectively. e is a random

error that is not correlated with {Xe,Xo,Xu}.
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Simply fitting a regression model of Y on observed variables Xe and Xo may result in a biased

estimate of βe because of endogeneity. To formalize the relationship between Xe and Xu and to

reveal how IV can be used to correct endogeneity bias, the following set of nonlinear auxiliary (or

reduced form) equations are defined for each pair of an endogenous exposure variable and an

unmeasured covariate:

xes = gs(α
T
0Xo + αT

1R) + xus for s = 1, 2, 3, ..., p (3.2)

where g(·) is a known nonlinear function, R =< r1, r2, ..., rm > is a m−vector of IVs and α1 =<

α1,1, α1,2, ..., α1,m > is a m−vector coefficient vector(m ≥ p). Under the nonlinear model frame-

work specified by equations (3.1) and (3.2), Terza, Basu, and Rathouz, 2008 concluded that 2SRI

produces consistent estimates of conditional causal parameters βe for nonlinear outcome models.

In clinically relevant settings, however, only one endogenous exposure variable but multiple un-

measured covariates are often involved. The modeling framework defined by equations (3.1) and

(3.2) requires an inherent assumption that the effects of unmeasured covariates on the outcome

variable are proportional to their effects on the endogenous exposure variable. Only under this

strict assumption the consistency of the 2SRI estimator can be established. In the next section, we

propose a new framework to assess the bias of two stage IV models in estimating the conditional

treatment effect of an exposure variable when such an assumption is violated.

3.2.2. A new nonlinear model framework for assessing bias

In this new framework, we let D represent a continuous exposure variable, X =< x1, x2, ..., xk >

be a k−vector of observable covariates, and U =< u1, u2, ..., up > represent a p−vector of unob-

servable covariates that may be correlated with D. For simplicity and without loss of generality,

we assume both X and U are all standardized with zero mean and one unit standard deviation.

Let η(·) denote the linear predictor in a regression model including exposure variable D, measured

covariates X, and unmeasured covariates U, and is written as

η = β0 + β1D + βT
2 X + βT

3 U︸ ︷︷ ︸
ε1

(3.3)
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β1 is the parameter of interest and represents the treatment effect of exposure variable D on the

outcome, conditional on measured covariates X and unmeasured covariates U. We assume that

there is no interaction between the treatment effect and the level of measured and unmeasured

covariates. β2 and β3 are k−vector and p−vector of regression coefficients for X and U, respec-

tively. In particular, We define β3 = kb3, where k is a constant and b3 =< b3,1, b3,2, ..., b3,p >

is a p−dimensional normalized unit vector such that ‖b3‖ = 1. It should be noted that k 6= 0

and thus β3 6= 0 because some of unmeasured covariates must be correlated with outcome,

otherwise model (3.3) has no endogeneity problem, and conditional treatment effect, measured

by "β1", can be estimated consistently by controlling for observed covariates X. We also define

ε1 = βT3 U = k
∑m
i=1 b3,iui as an implicit error term for model (3.3).

When outcome Y is binary or count, the nonlinear outcome model (3.1) becomes

G(E(Y |D,X,U)) = η(D,X,U)

where G(·) is a known link function, e.g., logit link for binary data and log link for count data.

When outcome Y is time to event, the nonlinear outcome model (1) can be represented by a log

hazard function

log{λ(Y = t|D,X,U)} = η(D,X,U)

where λ is hazard function. In this case, β0 in equation (3.3) becomes β0(t) = log(λ0(t)), the log

baseline hazard function.

Suppose we have an IV R, the linear treatment model in the form of equation (3.2) is formulated as

D = α0 + α1R+ αT
2 X + αT

3 U︸ ︷︷ ︸
ε0

(3.4)

where α2 and α3 are k−vector and p−vector of coefficients for X and U, respectively. We then

define α3 = la3, where l is a constant and a3 =< a3,1, a3,2, ..., a3,p > is a p−normalized vector

such that ‖a3‖ = 1, and the implicit error ε0 = αT3 U = k
∑m
i=1 a3,iui. The treatment model (3.4)

is a standard specification for a continuous endogenous variable in the two stage IV modeling
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framework. It should be emphasized that IV R is assumed to be a univariate variable throughout

the paper only for simplicity reason but this assumption can be relaxed to accommodate multiple

IVs.

The two stage nonlinear modeling framework defined by equations (3.3) and (3.4) possesses the

following properties: (P.1) If b3,i = 0 and a3,i 6= 0 for some i ∈ {1, 2, ..., p}, then unobserved variable

ui is an independent predictor or measurement error of the treatment model (3.4). That is, ui

impacts D but not Y ; (P.2) If b3,i 6= 0 and a3,i = 0 for some i ∈ {1, 2, ..., p}, then unobserved variable

ui is an independent predictor or measurement error of the outcome model (3.3). ui impacts Y

but not D; (P.3) If b3,i 6= 0 and a3,i 6= 0 for some i ∈ {1, 2, ..., p}, then unobserved variable ui is a

confounder of the association between outcome Y and treatment D.

Within this two stage modeling framework, we require the following standard IV assumptions: (C.1)

R ⊥ U|X, IV R is independent of U conditional on X ; (C.2) R correlates with D sufficiently

conditional on {X,U}. That is, R is a strong IV ; (C.3) E(U|X) = E(U) = 0, unmeasured covariates

U is mean independent of observed covariates X.

Under (C.1), we can infer that any linear combination of unmeasured covariates U is independent

of R conditional on measured covariates X so that βT
3 U ⊥ R|X in model (3.3) and αT

3 U ⊥ R|X

in model (3.4). Thus, we have cov(ε1, R) = 0 and cov(ε0, R) = 0, two classic assumptions for IV

R under a structural model framework. The conditional independence of IV R and error term ε1

ensures the exclusion restriction assumption is satisfied. That is, there is no direct effect of IV R on

the outcome and all of its effect on the outcome has to go through exposure D. Assumption (C.2)

assures that there is a strong correlation between IV R and exposure D and thus the possibility

of the bias from a weak IV is excluded. The mean independence assumption specified in (C.3)

suggests that observed covariates X are exogenous in models (3.3) and (3.4) because we have

E(βT
3U|X) = 0 and E(αT

3U|X) = 0. In next section, we demonstrate that under this new framework,

the 2SPS and 2SRI estimators are consistent when outcome is continuous but such consistency

does not necessarily hold for nonlinear models, even with a valid IV.
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3.3. Bias analysis

In this section, we utilize the two stage modeling framework proposed in section (3.2.2) to assess

the potential bias in estimating "conditional" treatment effect, represented by β1 in model (3.3),

using the 2SPS and 2SRI approaches. We first transform bias problems for 2SPS and 2SRI in

nonlinear models into bias problems of omitting variables in nonlinear models in section(3.3.1) and

section(3.3.2). We investigate the relationship between omitted terms of 2SPS and 2SRI in section

(3.3.3). Next, in section(3.3.4) we specifically evaluate the performance of 2SPS and 2SRI in

Poisson, Logistic, and Cox proportional hazard models. In section(3.3.5) two metrics are proposed

to quantify the relationship between unmeasured covariates and the magnitude of bias for 2SPS

and 2SRI, respectively.

3.3.1. Two stage predictor substitution method

First substitute the exposure variable D defined by equation (3.4) into equation (3.3)

η = β0 + β1(α0 + α1R+ αT
2X + αT

3U) + βT
2X + βT

3U

= β0 + β1(α0 + α1R+ αT
2X) + βT

2X + ε (3.5)

where the implicit error ε = (β1α
T
3 + βT

3 )U.

Under assumptions (C.1) and (C.3), taking the expectation of both sides of model (3.4) conditional

on R and X gives

E(D|R,X) = α0 + α1R+ αT
2X

Then equation (5) becomes

η = β0 + β1E(D|R,X) + βT
2X + ε (3.6)

In equation (3.6), E(D|R,X) is a function of IV R and X, and ε is a linear combination of unmea-

sured covariates U. Thus, E(D|R,X) ⊥ ε|X by assumption (C.1).

2SPS first estimates the predicted value of D using a linear regression model including R and X
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only,

D̂ = α̂0 + α̂1R+ α̂T
2X

This D̂ consistently estimate E(D|R,X) because OLS estimators {α̂0, α̂1, α̂2} are unbiased and

consistent. Therefore, in the scenario where the outcome Y is continuous, equation (3.6) can be

approximated asymptotically by

Y = β∗0 + β∗1D̂ + β∗T2 X + ε

As n→∞, D̂ p→ E(D|R,X), and β∗1
p→ β1. Conditional on X, D̂ is independent of ε asymptotically.

The 2SPS estimator β̂∗1
p→ β∗1 , and so β̂∗1

p→ β1. Therefore, 2SPS consistently estimates the causal

parameter β1 when outcome is continuous.

However, when outcome is not continuous and a nonlinear outcome model needs to be fitted in

the second stage, the consistency of the 2SPS estimator may fail. For example, when Y is binary

or time to event outcome, the second stage outcome model of the 2SPS method, according to

equation (3.6), can be written as,

G(E(Y |R,X,U)) = β0 + β1E(D|R,X) + βT
2X + ε (3.7)

where G(·) is logit link function, or

log{λ(Y = t|R,X,U)} = β0(t) + β1E(D|R,X) + βT
2X + ε (3.8)

where λ(·) is the hazard function and β0(t) = log(λ0(t)) is the baseline log hazard function. But

since unmeasured confounders U are not observed and ε is omitted from models (3.7) and (3.8),

one is forced to fit a reduced model

G(E(Y |R,X)) = β̃0 + β̃1E(D|R,X) + β̃T
2X (3.9)
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for generalized linear models,or

log{λ(Y = t|R,X)} = β̃0(t) + β̃1E(D|R,X) + β̃T
2X (3.10)

for hazard models. This reduced model can be interpreted as a marginal model with respect to

omitted error term ε. The "marginal" causal parameter β̃1 in models (3.9) and (3.10) may differ

from the "conditional" parameter β1 in models (3.7) and (3.8) (Gail, Wieand, and Piantadosi, 1984;

Zeger, Liang, and Albert, 1988). This phenomenon is also known as noncollapsibility. Thus, when

predicted values D̂ replaces E(D|R,X) in models (3.9) and (3.10), the corresponding models be-

come

G(E(Y |R,X)) = β̃∗0 + β̃∗1D̂ + β̃∗T2 X (3.11)

or,

log{λ(Y = t|R,X)} = β̃∗0(t) + β̃∗1D̂ + β̃∗T2 X (3.12)

As n→∞, the 2SPS estimator ̂̃β∗1 consistently estimate β̃∗1 . Also, When D̂ p→ D, β̃∗1
p→ β̃1, and then̂̃

β∗1
p→ β̃1. However, the 2SPS estimator ̂̃β∗1 may fail to estimate the conditional causal parameter β1

consistently because the marginal parameter β̃1 could differ from β1 depending on the collapsibility

of the outcome models.

3.3.2. Two stage residual inclusion method

Similarly, under the same two stage framework defined by equations (3.3) and (3.4), the 2SRI

estimator could be biased as well. First, we decompose β3, coefficient vector for unmeasured

covariates in equation (3.3), into two orthogonal components: one along with the direction of α3,

coefficient vector of unmeasured covariates in treatment model (3.4), and the other vector orthog-

onal to α3 (Figure 2.1),

β3 =
‖β3‖
‖α3‖

cos(θ)α3 + (β3 −
‖β3‖
‖α3‖

cos(θ)α3)
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Re-express βT
3U term in equation (3.3) as

βT
3U =

‖β3‖
‖α3‖

cos(θ)αT
3U + (βT

3 −
‖β3‖
‖α3‖

cos(θ)αT
3)U (3.13)

Equation (3.13) can be interpreted as a least square projection of βT
3U onto αT

3U. ‖β3‖
‖α3‖cos(θ) is the

regression coefficient. The second term is the residual (details see Appendix A). It is noteworthy

that βT
3 − ‖β3‖

‖α3‖cos(θ)αT
3 = βT

3sin(θ).

Substituting equation (3.13) into equation (3.3), we get

η = β0 + β1D + βT
2X +

‖β3‖
‖α3‖

cos(θ)αT
3U + (βT

3 −
‖β3‖
‖α3‖

cos(θ)αT
3)U (3.14)

A simple manipulation of equation (3.4) leads to,

αT
3U = D − (α0 + α1R+ αT

2X) = D − E(D|R,X)

which can be interpreted as a "residual" term from the first stage linear treatment model. Therefore,

Equation (3.14) can be written as,

η = β0 + β1D + βT
2X + γ1δ + ν (3.15)

where

δ = D − E(D|R,X)

γ1 =
‖β3‖
‖α3‖

cos(θ)

ν = (βT
3 −
‖β3‖
‖α3‖

cos(θ)αT
3)U

In equation (3.15), D is a function of R, X, and αT
3U, and the implicit error ν is a linear combination

of unmeasured confounders U. Given the fact that δ = αT
3U, it is easy to show D ⊥ ν|{X, δ} by

condition (C.1). Exposure D is exogenous in model (3.15) once observed covariates X and the

residual δ from treatment model are controlled for.

The 2SRI approach first estimates the residual δ using a linear regression model including R and
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X only,

δ̂ = D − D̂ = D − (α̂0 + α̂1R+ α̂T
2X)

This δ̂ consistently estimate δ because of consistency of OLS estimators {α̂0, α̂1, α̂2}. When the

outcome Y is continuous, equation (3.15) can be approximated asymptotically by

Y = β∗0 + β∗1D + β∗2X + γ∗1 δ̂ + ν (3.16)

As n → ∞, δ̂ p→ δ, and β∗1
p→ β1. Conditional on X and δ̂, the exposure variable D is independent

of ν asymptotically in model (3.16). Thus, β̂∗1
p→ β∗1 , and β̂∗1

p→ β1 . Therefore, the 2SRI estimator

β̂∗1 consistently estimate the parameter of interest β1 when the outcome model is a linear model.

However, like the 2SPS estimator, when the outcome is not continuous and a nonlinear outcome

model is fitted in the second stage, the consistency of the 2SRI estimator is also questionable. For

example, when Y is binary or time to event outcome, the second stage outcome model of 2SRI

approach, according to equation (3.15), can be written as,

G(E(Y |D,R,X,U)) = β0 + β1D + β2X + γ1δ + ν (3.17)

where G(·) is logit link function, or

log{λ(Y = t|D,R,X,U)} = β0(t) + β1D + β2X + γ1δ + ν (3.18)

where λ(·) is the hazard function and β0(t) = log(λ0(t)) is the baseline log hazard function. But

since unmeasured confounders U are not observed and ν term is omitted from models (3.17) and

(3.18),the resulting "marginal" models are

G(E(Y |D,R,X)) = β̃0 + β̃1D + β̃2X + γ̃1δ (3.19)

, or

log{λ(Y = t|D,R,X)} = β̃0(t) + β̃1D + β̃2X + γ̃1δ (3.20)
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The marginal causal parameter of β̃1 in models (3.19) and (3.20) may differ from β1 in models

(3.17) and (3.18) (Gail, Wieand, and Piantadosi, 1984; Zeger, Liang, and Albert, 1988). When the

estimated residual δ̂ replaces δ in models (3.19) and (3.20), the corresponding models are

G(E(Y |D,R,X)) = β̃∗0 + β̃∗1D + β̃∗2X + γ̃∗1 δ̂ (3.21)

, or

log{λ(Y = t|D,R,X)} = β̃∗0 + β̃∗1D + β̃∗2X + γ̃∗1 δ̂ (3.22)

As n → ∞, δ̂ p→ δ and β̃∗1
p→ β̃1. The 2SRI estimator ̂̃β∗1 consistently estimate β̃∗1 , and β̃1, but ̂̃β∗1

may not be a consistent estimator of β1 because β̃1 could be different from β1.

3.3.3. Relationship between omitted terms in 2SPS and 2SRI

As discussed in sections (3.3.1) and (3.3.2), the omitted error term ε of 2SPS is (β1α
T
3 + βT

3 )U and

the omitted error term ν of 2SRI is (βT
3 − ‖β3‖

‖α3‖cos(θ)αT
3)U. The norm of the coefficient for ε has the

following relationship with the norm of the coefficient for ν

‖β1αT
3 + βT

3‖2 = ‖βT
3 −
‖β3‖
‖α3‖

cos(θ)αT
3‖2 + ‖(β1 +

‖β3‖
‖α3‖

cos(θ))αT
3‖2

Then, we have

‖β1αT
3 + βT

3‖ ≥ ‖βT
3 −
‖β3‖
‖α3‖

cos(θ)αT
3‖

The details are in Appendix A.

3.3.4. Two stage Poisson,Logistic,and Survival IV Models

As revealed in section (3.3.1) and (3.3.2), 2SPS decomposes the endogenous exposure variable

D into two components: 1) the endogenous component β1αT
3U, which is integrated into the error

term; 2) the exogenous component E(D|R,X), which is exogenous to the error term. On the other

hand, 2SRI decomposes the unmeasured component βT
3U into two orthogonal components: 1)

the estimable component αT
3U, which is the residual from the first stage treatment model; 2) the
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composite error term ν. Controlling for the estimable component, IV, and observed covariates, the

exposure variable is exogenous to this error term. Thus, omitting these endogenous error terms

does not cause any bias in estimating the conditional causal parameter when we apply 2SPS or

2SRI to linear models. However, a "marginal" model, resulting from omitting composite error terms,

may have different parameters from the corresponding the "conditional" model for nonlinear models

(Zeger, Liang, and Albert, 1988). The term "bias" for two stage IV methods is defined as β1 − β̃1,

the difference between conditional causal parameter β1 and marginal causal parameter β̃1 to which

two stage IV estimators converges to when composite error term ε or ν is ignored. Next, we use

approaches adopted by Lin, Psaty, and Kronmal, 1998 and Mitra and Heitjan, 2007 to examine the

bias of 2SPS and 2SRI in Poisson, logistic, and Cox proportional hazard models.

(1) Poisson model: Suppose that Y is a response variable taking integer values 0, 1, 2, ...N and

Y |{D,X,U} ∼ Pois(eη), where η is the linear predictor defined by equation (3.3). The

marginal form of 2SPS Poisson model is

E(Y |R,X) = exp(β0 + β1E(D|R,X) + βT
2X)c(X)

where c(X) =
∫∞
−∞ exp(ε)dF (ε|X), a function of X only (details in Appendix B). Both the

marginal Poisson model and conditional Poisson model have the same parameter β1.

The marginal model of 2SRI Poisson model is

E(Y |D,R,X) = exp(β0 + β1D + βT
2X + γ1δ)c(X, δ)

where c(X, δ) =
∫∞
−∞ exp(ν)dF (ν|X, δ). It is a function of X and δ. The marginal model and

conditional model have the same causal parameter β1 associated with exposure D (details in

Appendix B). Therefore, both 2SPS and 2SRI Poisson models yield consistent estimates of

conditional treatment effect.

(2) Logistic outcome model. Now assume Y is a response variable taking binary values of 0 or 1,

and Y |{D,X,U} ∼ Bernoulli( eη

1+eη ), where η(·) is linear predictor defined by equation (3.3).
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The marginal form of 2SRI logistic model is

logit{P(Y = 1|D,R,X)} = β0 + β1D + β2X + γ1δ + g(D,R,X)

where

g(D,R,X) = log
A
B

and,

A =

∫ ∞
−∞

exp(ν)

1 + exp(β0 + β1D + β2X + γ1δ) + ν)
dF (ν|δ,X)

B =

∫ ∞
−∞

1

1 + exp(β0 + β1D + β2X + γ1δ) + ν)
dF (ν|δ,X)

The marginal form of the 2SPS logit outcome model (3.7) is

logit{P(Y = 1|D,R,X)} = β0 + β1E(D|R,X) + β2X + g(R,X)

The derived bias term g(R,X) for 2SPS logistic model is

g(R,X) = log
A
B

where

A =

∫ ∞
−∞

exp(ε)

1 + exp(β0 + β1E(D|R,X) + β2X + ε)
dF (ε|X)

B =

∫ ∞
−∞

1

1 + exp(β0 + β1E(D|R,X) + β2X + ε)
dF (ε|X)

When there is no treatment effect (β1 = 0), both 2SRI and 2SPS are consistent. When the

treatment effect is not null but coefficients for implicit error terms (ν or ε ) are zero, both 2SRI

and 2SPS are also consistent. That is, β1αT
3 + βT

3 = 0 for 2SPS and βT
3 − ‖β3‖

‖α3‖cos(θ)αT
3 = 0

for 2SRI (details in Appendix C). A simple form of the relationship between marginal and

conditional causal parameters can be approximated by the following expressions if we can
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assume that R ⊥ U without conditional on X Zeger, Liang, and Albert, 1988,

β̃1 ≈
β1√

1 + c2‖βT
3 − ‖β3‖

‖α3‖cos(θ)αT
3‖2

for 2SRI, and

β̃1 ≈
β1√

1 + c2‖β1αT
3 + βT

3‖2

for 2SPS, where c = 16
√

3/(15π). As the magnitudes of the effects of omitted error terms,

measured by ‖βT
3 − ‖β3‖

‖α3‖cos(θ)αT
3‖ or ‖β1αT

3 + βT
3‖ for 2SRI or 2SPS respectively, increases,

the values of marginal parameters β̃1 shrink towards the null effect. The bias β̃1 − β1 is a

function of treatment effect β1.

(3) Cox proportional hazard model. Let Y be the time to event. Given exposure D, measured

covariates X and unmeasured covariates U, the marginal form of 2SRI Cox proportional

hazard model (3.20) can be written as

λ(t|D, δ,X) = λ0(t)exp(β1D + β2X + γ1δ)g(t,D,R,X)

where bias term

g(t,D,R,X) =

∫∞
−∞ exp(ν)(exp(−Λ0(t)exp(β1D + β2X + γ1δ + ν)dF (ν|R,X)∫∞

−∞ exp(−Λ0(t)exp(β1D + β2X + γ1δ + ν)dF (ν|R,X)

and the marginal form of 2SPS Cox proportional hazard model (3.8) can be written as

λ(t|R,X) = λ0(t)exp(β1E(D|R,X) + β2X)g(t, R,X)

where bias term

g(t, R,X) =

∫∞
−∞ exp(ε)(exp(−Λ0(t)exp(β1E(D|R,X) + β2X + ε)dF (ε|R,X)∫∞

−∞ exp(−Λ0(t)exp(β1E(D|R,X) + β2X + ε)dF (ε|R,X)

When there is no treatment effect (β1 = 0), both 2SRI and 2SPS are consistent. When the
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treatment effect is not null but coefficients for implicit error terms (ν or ε ) are zero, both 2SRI

and 2SPS are consistent (details in Appendix D).

It is difficult to derive a simple closed form expression of β̃1 in terms of β1 for Cox model with

censoring. If we assume there is no observed covariate and by the results of Lin, Logan, and

Henley, 2013, β̃1 is the solution to the following score equation:

0 = S(β̃1, β1, φ)

= Eobs

[
D − EDU

{
eβ̃1De−H0(t)e

β1D+φU

DC(t)
}

EDU
{
eβ̃1De−H0(t)eβ1D+φU

C(t)
} ]

where φ = β1α
T
3 + βT

3 for 2SPS or φ = βT
3 − ‖β3‖

‖α3‖cos(θ)αT
3 for 2SRI. C(t) is censoring distri-

bution. Eobs is the mean over subjects with events. EDU is the expectation with respect to

exposure variable D and unmeasured covariates U.

3.3.5. Dissimilarity metric

The magnitude of coefficients for omitted terms is one important factor influencing the bias (Neuhaus

and Jewell, 1993). ‖β1αT
3 + β3‖ is the size of coefficient for 2SPS. For 2SRI, the coefficient vector

βT
3 − ‖β3‖

‖α3‖cos(θ)αT
3 is equal to βT

3sin(θ). The metric ‖βT
3‖sin(θ) reveals two sources of biases for

2SRI: the magnitude of effects of unmeasured covariates on outcome, represented by ‖βT
3‖, and

the "dissimilarity" between coefficient vectors α3 and β3, measured by sin(θ). The sin(·) function

measures the dissimilarity between two coefficient vectors and it satisfies the three criteria for a

standard distance measure: i) non-negativity and identity of indiscernibles; ii) symmetry; iii) triangle

inequality (Details see Appendix A). Larger values of this metric suggests two vectors are more

dissimilar.

3.4. Simulation

3.4.1. Simulation algorithm

As discussed in previous sections, various factors may impact the bias in estimating conditional

treatment effect when applying 2SPS and 2SRI in nonlinear models, such as size of treatment

effect, magnitude of unmeasured confounding, dissimilarity between the two coefficient vectors of

unmeasured covariates, and censoring proportion etc. We design a comprehensive simulation
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study, according to the following steps, to assess the impact of these factors:

(I) We set the size of treatment effect at three levels: β1 = {0, 0.4, 0.8}.

(II) IV R ∼ N(0, 1), each of four unmeasured variables ui ∼ N(0, 1) for i ∈ {1, 2, 3, 4}. In treat-

ment model (3.4), the coefficients for IV and unmeasured covariates are determined in such

way that the desired strong association between IV and treatment variable are achieved. We

use the explained proportion of variation, R2 = var(α1R)/var(α1R+
∑4
i=1 α3,iui), to measure

the strength of IV because this measure is not variable with changing sample size. We let

α0 = 1.2 and α1 = 2. The coefficient vector for unmeasured variables is α3 = l × a3, where

a3 = {a3,1, a3,2, a3,3, a3,4} is a unit vector. The explained proportion of variation by IV R is

4/(4 + 1 ∗ l2). We fix l = 1, R2 attributable to IV is ∼ 80%. In outcome model (3.3), coeffi-

cient vector for unmeasured covariates is β3 = k × b3, where b3 = {b3,1, b3,2, b3,3, b3,4} is a

unit vector and k is chosen to be 0.5, 1, or 2, representing low, medium, and high levels of

effects of unmeasured covariates on outcome. Each element in vectors a3 and b3 are sam-

pled randomly from {0, 1, . . . , 8, 9} first and then normalized. The signs of each coefficient are

generated randomly from ∼ Bernoulli(p = 0.5).

(III) For each pair of coefficient vectors α3 and β3, we simulated a sample of 10000 observations

for each type of outcomes (binary, count, and time to event) using equations (3.3) and (3.4).

Specifically, count data are generated using Poisson distribution ∼ P (µ = exp(η)), where η is

the linear predictor defined in equation (3.3). Binary data are generated from∼ Bernoulli(p =

exp(η)
1+exp(η) ). Time to event data are simulated using ∼ Weibull(α,exp(η)). Censoring time is

also generated using∼Weibull(α, c). Shape parameter α are set at {0.5, 1, 1.5}, representing

decreasing, constant, and increasing hazard scenarios. Value of scale parameter c is chosen

to yield 0%, 45%, and 65% censoring rate.

(IV) For each combination of influencing factors, we generate 2000 pairs of coefficient vectors. For

each pair, we simulate a data with 10000 observations. We use the 2SRI and 2SPS methods

to estimate conditional treatment effect β1 on each simulated data. The process is repeated

for 1000 times and these 1000 estimates of treatment effect are averaged to compute the

2SRI and 2SPS estimators.
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3.4.2. Simulation results

Under the null hypothesis of no treatment effect, 2SRI estimators are unbiased in all scenarios

for Poisson, logistic and Cox proportional hazard models (Supplementary Figure 3.7,3.8, and 3.9).

When treatment effect is not null, the results are mixed. For Poisson models, 2SRI produces con-

sistent estimates of the conditional treatment effect for most scenarios. When two vectors are highly

dissimilar and unmeasured effects are high, there are some minor bias(Figure 3.2). For logit mod-

els, the bias of 2SRI tends to increase as treatment effect size and dissimilarity metric increases.

The magnitude of the increasing trend is magnified by the strength of effect of unmeasured co-

variate on outcome. Stronger unmeasured effect, which ranges from 0.5 to 1.5, larger increase in

bias of 2SRI (Figure 3.3). Figures 3.4 and 3.4 reveals the results for Cox model. The bias of 2SRI

increases with increasing dissimilarity. Higher unmeasured effect, larger bias (Figure 3.4). Larger

size of treatment effect, larger bias (Figure 3.5). Bias of 2SRI is the highest with increasing hazard

function. Censoring provides some protective effect. 2SRI in Censored data is less biased than in

non-censored data. 2SPS exibits similar trends with its norm ‖β1α3 + β3‖ (Data not shown). 2SRI

estimators are less biased and have more variability than 2SPS estimators (Figure 3.6).

3.5. Discussion

Because of their simplicity, two stage IV methods are very popular approaches to control for un-

measured confounding among health service researchers. The conclusions from previous studies

are in conflicts (Burgess, 2013; Cai, Small, and Ten Have, 2011; Palmer et al., 2008; Wan et al.,

2015). To comprehensively evaluate the consistency of 2SPS and 2SRI in nonlinear models, We

proposed a new two stage modeling framework which accommodates clinical settings that often

involve single exposure variable and multiple unmeasured covariates. Within this framework, we

demonstrate that bias problems of 2SRI and 2SPS can be reduced to the extensively studied bias

problems from omitting variables in non-linear models (Gail, Wieand, and Piantadosi, 1984; Lin,

Psaty, and Kronmal, 1998). Instead of estimating the conditional causal parameter, the two stage

IV estimators converge to a marginal causal parameter when the composite error terms, consisting

of unmeasured covariates, are not accounted for. The magnitude of bias can be assessed by com-

paring the difference between conditional causal parameter and marginal one. When treatment

effect is null, both 2SPS and 2SRI are unbiased. However, when treatment effect is not null, we
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can not simply extend 2SRI or 2SPS to logistic or Cox models without producing biased estimates.

The attenuation of estimated conditional treatment effect suggests the 2SPS or 2SRI estimators

are biased towards null hypothesis based on simulation and analytic results.

We further revealed that the bias of the 2SRI estimator is also attributable to the dissimilarity be-

tween the effects of unmeasured covariates on the outcome and their effects on the treatment. The

more similar between their effects on treatment and outcome, the less biased the 2SRI estimator

is. The consistency of the 2SRI estimator is only established when the effects on the outcome and

the treatment of unmeasured covariates are proportional to each other. However, this assumption

is too strict to hold in real settings.

The framework and findings proposed in the current study may be helpful to address a wide range

problem with applications of two stage IV methods in estimating the conditional treatment effect. In

this paper, we have used this framework to explain the conflicting conclusions when applying two

stage IV methods to different types of outcomes in the current literature. This framework may also

be used as guidance to evaluate the alternative two stage regression model based IV approaches.

3.6. Appendix

Appendix A: Proofs for Coefficient Vectors

(A.1): A new dissimilarity measure between two vectors Let x and y denote the two k−element

vectors, and θ be the angle between two vectors. The sine dissimilarity, sin(θ), between two vectors

is defined by their cross product and magnitudes as

sin(θ) =
x× y
‖x‖‖y‖

This sine dissimilarity metric satisfies the three criteria for common distance measure: 1) non-

negativity and identity of indiscernibles; 2) symmetry; 3) triangle inequality. Proofs are given as

follows:

1. Non-negativity and identity of indiscernibles: Distance is positive between two different points,

and is zero precisely from a point to itself. That is, d(x,y) ≥ 0, and d(x,y) = 0 if and only if x =

y.
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Proof:

Non-negativity:

Let θ denote the angle between vectors x, y and 0 ≤ θ ≤ π

d(x, y) = sin(θ)

≥ 0 ∀ θ ∈ [0, π]

Identity of indiscernibles:

When x and y are in the same or opposite directions, y = ±x, two vectors are considered to

be similar under both situations "equivalently". That is, when the angle between two vectors

are 0 and sin(0) = 0, x and y are similar. when the angle between two vectors are π and

sin(π) = 0, x and y are similar. If x and y are similar (the angle θ between two vectors is

either 0 or π), d(x, y) = sin(θ) = 0.

2. Symmetry: the distance between x and y is the same in either direction. That is, d(x, y) =

d(y, x).

Proof:

Let θ denote the angle between vectors x, y and 0 ≤ θ ≤ π

d(x, y) = sin(θ)

= d(y, x)

3. Triangle inequality: the distance between two points is the shortest distance along any path.

That is, d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z.

Proof:

Let θ1 denote the angle between vectors x, y, θ2 denote the angle between vectors y, z, and

θ3 denote the angle between vectors x, z. 0 ≤ θi ≤ π,∀i ∈ 1, 2, 3
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(3.1) When θ3 = θ1 + θ2

θ3

θ1
θ2

x

y

z

d(x, z) = sin(θ3)

= sin(θ1 + θ2)

= sin(θ1)cos(θ2) + cos(θ1)sin(θ2)

≤ sin(θ1) + sin(θ2) = d(x, y) + d(y, z)

(3.2) When θ1 = θ3 − θ2

θ3

θ1
θ2

x

z

y
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d(x, z) = sin(θ1)

= sin(θ3 − θ2)

= sin(θ3)cos(θ2)− cos(θ3)sin(θ2)

≤ sin(θ3) + sin(θ2) = d(x, y) + d(y, z)

(A.2): Least square projection of βT
3U onto αT

3U

Let β3 and α3 denote the coefficient vectors for unmeasured covariates U in outcome model (3.3)

and treatment model (3.4). Let θ denote the angle between the two vectors.

βT
3U =

‖β3‖cos(θ)

‖α3‖
αT
3U + (βT

3 − ‖β3‖cos(θ)
αT
3

‖α3‖
)U (A.1)

Show the equation (A.1) is a least square projection of βT
3U onto αT

3U.

Proof:

When unmeasured confounders U (normalized) are independent, let ρ denote the coefficient from

least square regression of βT
3U on αT

3U. Let Σ denote the variance and covariance matrix of U. In

this case, Σ is an identity matrix denoted as I.

ρ =
cov(βT

3U, αT
3U)

var(αT
3U)

=
β3 · α3

‖α3‖2
∵ Σ = I

=
‖β3‖‖α3‖cos(θ)

‖α3‖2

=
‖β3‖cos(θ)

‖α3‖

When unmeasured confounders U (normalized) are not independent, equation (A.1) is a least

square projection of βT
3U onto αT

3U by ignoring the correlation structure.

(A.3): Proposition: ‖β1αT
3 + βT

3‖ ≥ ‖βT
3 − ‖β3‖cos(θ)

αT
3

‖α3‖‖
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proof:

‖β1αT
3 + βT

3‖2 =< β1α
T
3 + βT

3 , β1α
T
3 + βT

3 >

=< (β1 +
‖β3‖cos(θ)

‖α3‖
)αT

3 + (βT
3 − ‖β3‖cos(θ)

αT
3

‖α3‖
),

(β1 +
‖β3‖cos(θ)

‖α3‖
)αT

3 + (βT
3 − ‖β3‖cos(θ)

αT
3

‖α3‖
) >

= ‖(βT
3 − ‖β3‖cos(θ)

αT
3

‖α3‖
)‖2 + ‖(β1 +

‖β3‖cos(θ)

‖α3‖
)αT

3‖2

+ < (β1 +
‖β3‖cos(θ)

‖α3‖
)αT

3, β
T
3 − ‖β3‖cos(θ)

αT
3

‖α3‖
>

+ < βT
3 − ‖β3‖cos(θ)

αT
3

‖α3‖
, (β1 +

‖β3‖cos(θ)

‖α3‖
)αT

3 >

= ‖βT
3 − ‖β3‖cos(θ)

αT
3

‖α3‖
‖2 + ‖(β1 +

‖β3‖cos(θ)

‖α3‖
)αT

3‖2 + 0 + 0

≥ ‖βT
3 − ‖β3‖cos(θ)

αT
3

‖α3‖
‖2

In third step, use the fact βT
3 − ‖β3‖

‖α3‖cos(θ)αT
3 is perpendicular to αT

3

Q.E.D

Appendix B: Bias analysis for omitting a random term in two stage IV Poisson model

(1) Two stage predictor substitution Poisson model From equation (3.7), the conditional expecta-

tion of Y given IV R, observed covariates X, and unmeasured covariates U can be derived

as

E(Y |R,X,U) = exp(β0 + β1E(D|R,X) + βT
2X + ε) (B.1)

Let F (ε|R,X) be the conditional distribution of ε given R and X. Under condition (C.1),

ε ⊥ R|X, thus F (ε|R,X) can be simplified as F (ε|X). Given this conditional model (B.1), the
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marginal model E(Y |R,X) is

E(Y |R,X) =

∫ ∞
−∞

exp(β0 + β1E(D|R,X) + βT
2X + ε)dF (ε|X)

= exp(β0 + β1E(D|R,X) + βT
2X)

∫ ∞
−∞

exp(ε)dF (ε|X)

= exp(β0 + β1E(D|R,X) + βT
2X)c(X)

where c(X) =
∫∞
−∞ exp(ε)dF (ε|X), a function of X only. Both the marginal Poisson model

and conditional Poisson model have the same parameter β1.

(2) Two stage residual inclusion Poisson model From equation (3.5), the conditional expectation

of outcome Y given treatment D, IV R, observed covariates X, and unmeasured covariates

U is

E(Y |D,R,X,U) = exp(β0 + β1D + βT
2X + γ1δ + ν) (B.2)

Let F (ν|D,X, δ) be the conditional distribution of ν given exposure D, measured confounders

X, and residual δ. Under condition (C.1), F (ν|D,X, δ) can be simplified as F (ν|X, δ) because

D ⊥ ν|{X, δ} . Given this conditional model (B.2), the marginal model E(Y |D,R,X) is

E(Y |D,R,X) =

∫ ∞
−∞

exp(β0 + β1D + βT
2X + γ1δ + ν)dF (ν|X, δ)

= exp(β0 + β1D + βT
2X + γ1δ)

∫ ∞
−∞

exp(ν)dF (ν|X, δ)

= exp(β0 + β1D + βT
2X + γ1δ)c(X, δ)

where c(X, δ) =
∫∞
−∞ exp(ν)dF (ν|X, δ). It is a function of X and δ. The marginal model and

conditional model have the same causal parameter β1 associated with exposure D, but the

parameters for X and δ, βT
2 and γ, are different between two models.

For both 2SPS and 2SRI Poisson models, if we can relax condition (C.1) and assume that R ⊥ U

without conditional on X, c(X) and c(X, δ) become constants and thus two approaches estimate

all parameters consistently.
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Appendix C: Bias analysis for omitting a random term in two stage IV logistic model

(1) Two stage residual inclusion: In section (3.3.2), the second stage logistic model of binary

outcome Y conditional on treatment D, instrumental variable R, observed covariates X,and

unmeasured covariates U is

logit{P(Y = 1|D,R,X,U)} = β0 + β1D + β2X + γ1δ + ν (C.1)

where

δ = D − E(D|R,X)

γ1 =
‖β3‖cos(θ)

‖α3‖

ν = (βT
3 − ‖β3‖cos(θ)

αT
3

‖α3‖
)U

Given this logistic model (C.1), the conditional probability of Y given X, R,D is

P(Y = 1|D,R,X) = exp(β0 + β1D + β2X + γ1δ)×∫ ∞
−∞

exp(ν)

1 + exp(β0 + β1D + β2X + γ1δ + ν)
dF (ν|D, δ,X) (C.2)

where F (ν|D, δ,X) is the conditional distribution of ν given D, δ, and X. Under condition

(C.1), F (ν|D, δ,X) can be simplified as F (ν|δ,X) because D ⊥ ν|{δ,X}. When ν term is

omitted from model (C.1), model (C.1) usually does not reduce to a logistic model as follows

logit{P(Y = 1|D,R,X)} = β∗0 + β∗1D + β∗2X + γ∗1δ (C.3)

However, it is still of practical importance to investigate how well model (C.3) may approximate

model (C.2). Use the same approach by (Lin et al, 1998), we can show that the model (C.2)

is

logit{P(Y = 1|D,R,X)} = β0 + β1D + β2X + γ1δ + g(D,R,X) (C.4)
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where

g(D,R,X) = log
A
B

(C.5)

and,

A =

∫ ∞
−∞

exp(ν)

1 + exp(β0 + β1D + β2X + γ1δ) + ν)
dF (ν|δ,X)

B =

∫ ∞
−∞

1

1 + exp(β0 + β1D + β2X + γ1δ) + ν)
dF (ν|δ,X)

The Proof of (C.5) is given below.

Proof:

First, from equations (C.2) and (C.4), we can establish

exp(β0 + β1D + β2X + γ1δ + g(D,R,X))

1 + exp(β0 + β1D + β2X + γ1δ + g(D,R,X))
=

exp(β0 + β1D + β2X + γ1δ×∫ ∞
−∞

exp(ν)

1 + exp(β0 + β1D + β2X + γ1δ + ν)
dF (ν|δ,X)

Next, divide the common factor term on both sides,

exp(g(D,R,X))

1 + exp(β0 + β1D + β2X + γ1δ)exp(g(D,R,X))
=∫ ∞

−∞

exp(ν)

1 + exp(β0 + β1D + β2X + γ1δ + ν)
dF (ν|δ,X)

Last, re-express the above equation to derive the following expression for g(D,R,X)

g(D,R,X) = log
A
B
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where

A =

∫ ∞
−∞

exp(ν)

1 + exp(β0 + β1D + β2X + γ1δ + ν)
dF (ν|δ,X)

B =

∫ ∞
−∞

1

1 + exp(β0 + β1D + β2X + γ1δ + ν)
dF (ν|δ,X)

From equation (C.5), it is easy to verify that the 2SRI logistic model produces the consistent

estimate under two conditions.

(1) when β1 = 0, g(D,R,X) contains no D term. so when the treatment effects is null, there

is no difference between the causal parameters in the marginal and conditional models.

(2) when β3 − kcos(θ)a3 = 0, ν = 0, and we have g(D,R,X) = 0. Thus, model (C.4) with ν

term omitted has exactly the same causal parameter β1 as the model (C.1).

(2) Two stage predictor substitution. In section (3.3.1), the second stage logistic model of binary

outcome Y conditional on instrumental variable R, observed covariates X,and unmeasured

covariates U is

logit{P(Y = 1|R,X,U) = β0 + β1E(D|R,X) + β2X + ε

where ε = (β1α3 + β3)U. From condition (C.1), ε ⊥ E(D|R,X)|X.

Similarly, we can write a model form with a bias term when ε term is omitted as

logit{P(Y = 1|D,R,X)} = β0 + β1E(D|R,X) + β2X + g(R,X)

The derived bias term g(R,X) for two stage predictor substitution logistic model is

g(R,X) = log
A
B
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where

A =

∫ ∞
−∞

exp(ε)

1 + exp(β0 + β1E(D|R,X) + β2X + ε)
dF (ε|X)

B =

∫ ∞
−∞

1

1 + exp(β0 + β1E(D|R,X) + β2X + ε)
dF (ε|X)

The 2SPS logistic model produces the consistent estimate under the two conditions:

(1) when β1 = 0, g(R,X) contains no E(D|R,X) term. So when the treatment effects is null,

there is no difference between the causal parameters in the marginal and conditional

models.

(2) when β1α3 + β3 = 0, we have g(R,X) = 0.

Appendix D: Bias analysis for omitting a random term in two stage IV Cox proportional hazard

model

Let T denote the time to event. Using the results from sections (3.3.1) and (3.3.2), we can specify

the conditional hazard function of T under the second stage Cox proportional model for both 2SPS

and 2SRI methods separately. The corresponding bias of the 2SPS and 2SRI methods can be

assessed using the techniques laid out in (Lin et al, 1998).

(1) Two stage residual inclusion: Conditional on treatment D,instrumental variable R, observed

covariates X, and unmeasured covariates U, the log hazard function of T under the 2SRI

Cox proportional model is

log{λ(t|D,R,X,U)} = β0(t) + β1D + β2X + γ1δ + ν (D.1)
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where

β0(t) = log(λ0(t)) unspecified baseline log hazard function

δ = D − E(D|R,X)

γ1 =
‖β3‖cos(θ)

‖α3‖

ν = (βT
3 − ‖β3‖cos(θ)

αT
3

‖α3‖
)U

When covariates U are unmeasured and ν term is omitted, we assume the log hazard function

of T conditional on {D,R,X} is

log{λ(t|D,R,X)} = β∗0(t) + β∗1D + β∗2X + γ∗1δ (D.2)

where

β∗0(t) = log(λ∗0(t)) unspecified baseline log hazard function

To assess the potential difference between β1 and β∗1 , we first denote F (ν|D,R,X) as the con-

ditional distribution function of ν given D,R, and X. Under assumption (C.1), ν ⊥ D|{R,X}.

Thus, the distribution function can be simplified as F (ν|R,X). We let f(t|·) and S(t|·) be the

conditional density and survival functions of time to event T . Then λ(t|D,R,X) in model (D.2)

can be expressed as

λ(t|D,R,X) =
f(t|D,R,X)

S(t|D,R,X)

=

∫∞
−∞ f(t|D,R,X, ν)dF (ν|R,X)∫∞
−∞ S(t|D,R,X, ν)dF (ν|R,X)

(D.3)
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Given model (D.1),

∫ ∞
−∞

f(t|D,R,X, ν)dF (ν|D,R,X) =

∫ ∞
−∞

λ0(t)exp(β1D + β2X + γ1δ + ν)

× exp(−Λ0(t)exp(β1D + β2X + γ1δ + ν)

dF (ν|R,X)∫ ∞
−∞

S(t|D,R,X, ν)dF (ν|D,R,X) =

∫ ∞
−∞

exp(−Λ0(t)exp(β1D + β2X + γ1δ + ν)

dF (ν|R,X)

where cumulative hazard function Λ0(t) is defined as

Λ0(t) =

∫ ∞
−∞

λ0(u)du

Then, equation (D.3) becomes

λ(t|D, δ,X) = λ0(t)exp(β1D + β2X + γ1δ)g(t,D,R,X), (D.4)

where

g(t,D,R,X) =

∫∞
−∞ exp(ν)(exp(−Λ0(t)exp(β1D + β2X + γ1δ + ν)dF (ν|R,X)∫∞

−∞ exp(−Λ0(t)exp(β1D + β2X + γ1δ + ν)dF (ν|R,X)
(D.5)

In equation (D.4), when β3 − kcos(θ)a3 = 0, ν = 0 and g(t,D,R,X) = 1. When β1 = 0,

g(t,D,R,X) does not contain exposure D. Thus, β∗1 in model (D.2) and β1 in model (D.1) are

the same. Under these two conditions, the 2SRI Cox proportional hazard model estimates

the conditional causal parameter β1 consistently.

(2) Two stage predictor substitution: Under the 2SPS Cox proportional hazard model, the log

hazard function of T conditional on instrumental variable R, observed covariates X, and

unmeasured covariates U

log{λ(t|R,X),U} = β0(t) + β1E(D|R,X) + β2X + ε, (D.6)
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where

β0(t) = log(λ0(t)) unspecified baseline log hazard function

ε = (β1α3 + β3)U

When covariates U are not measured and ε is omitted, the conditional hazard function of T ,

conditional on {R,X}, is defined as

log{λ(t|R,X)} = β∗0(t) + β∗1E(D|R,X) + β∗2X (D.7)

where

β∗0(t) = log(λ∗0(t)) unspecified baseline log hazard function

As in previous section, the bias term g(t, R,X) for the 2SPS Cox proportional hazard model

can be derived as

λ(t|R,X) = λ0(t)exp(β1E(D|R,X) + β2X)g(t, R,X) (D.8)

where

g(t, R,X) =

∫∞
−∞ exp(ε)(exp(−Λ0(t)exp(β1E(D|R,X) + β2X + ε)dF (ε|R,X)∫∞

−∞ exp(−Λ0(t)exp(β1E(D|R,X) + β2X + ε)dF (ε|R,X)
(D.9)

where F (ε|R,X) is the conditional distribution function.

In equation (D.8), when β3α3+β3 = 0, ν = 0 and g(t, R,X) = 1. When β1 = 0, g(t, R,X) does

not contain exposure D. Thus, β∗1 in model (D.7) and β1 in model (D.6) are the same. Under

these two conditions, the 2SPS Cox proportional hazard model estimates the conditional

causal parameter β1 consistently.
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θ
‖β3‖cos(θ)a3 α3

β3 β3 − ‖β3‖cos(θ)a3

Figure 3.1: Decomposing β3 into two orthogonal components

Beta1=0.4 Beta1=0.8

●●● ●●●● ●●●●● ●●

●●●●●● ●● ●
●
●●● ●●● ●●

●●

●●●●
●●●

●●●●●●● ●●● ●
●
●●●●● ●●●●●●

●
●●●

●●●
●●

●●●●●●●●●●●●● ●●●●●●●
●

●●●●●●●

●●

−0.050

−0.025

0.000

0.025

0.050

−0.050

−0.025

0.000

0.025

0.050

−0.050

−0.025

0.000

0.025

0.050

B
eta3=

0.5
B

eta3=
1

B
eta3=

1.5

[0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1] [0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1]
Disimilarity Measure

B
ia

s=
E

st
im

at
e−

Tr
ue

 E
ffe

ct

Figure 3.2: Boxplot of 2SRI Poisson model estimates when treatment effect is nonzero.
β1 is treatment effect; β3 is effect of unmeasured covariates on outcome. Bias is the
difference between estimates and true treatment effect
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Figure 3.3: Boxplot of 2SRI logistic model estimates when treatment effect is nonzero.
β1 is treatment effect; β3 is effect of unmeasured covariates on outcome. Bias is the
difference between estimates and true treatment effect.
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models
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CHAPTER 4

A CONDITIONAL LOG RANK TEST ADJUSTED WITH PROPENSITY SCORE TO

COMPARE SURVIVAL DISTRIBUTIONS

4.1. Introduction

Confounding is a major problem arising from non-randomized observational studies, in which an

extraneous variable may correlate with both treatment variable and outcome variable at the same

time. The confounding could bias the estimate of the treatment effect if it is not controlled for. A

common approach to correct for the biased estimate of the treatment effect resulting from con-

founding is to include both confounding variables and treatment variable in the same regression

model. When encountering right censored time to event data, clinical researchers routinely resort

to the multivariable Cox proportional hazard model.

The Cox proportional hazards model assumes that the relationship of the hazard rate at time t given

the covariates X and treatment indicator Z can be specified as the following log linear functional

form

λ(t|Z = z,X = x) = λ0(t)exp(βz + αTx) (4.1)

where λ0 is the unspecified baseline hazard, Z denotes binary treatment variable (Z=1 if subject

receives treatment, Z=0 if subject receives the placebo), X is a p-dimensional vector consisting of

measured confounding variables (X1, X2, ..., Xp)
T at the baseline, β is the regression coefficient

associated with Z, α is a p-dimensional vector of regression coefficients for X. The underlying

proportional hazard assumption requires that for any two sets of variables (z1, x1) and (z0, x0), the

ratio of two hazard functions λ(t|Z=z1,X=x1)
λ(t|Z=z0,X=x0)

is time invariant.

we maximize the following partial likelihood to get the maximum partial likelihood estimator θ̂ =

(β̂, α̂),

L(β, α) =

n∏
i=1

[
exp(βzi + αTxi)∑
j∈Ri exp(βzi + αTxi)

]δi (4.2)
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where Ri is the set of subjects at risk at time t and δi indicates a failure or not at time t.

The parameter of interest β measures the "treatment effect" of Z. Thus, we could test the null

hypothesis of no treatment effect H0 : β = 0 using the covariates adjusted Cox score test. When

the model (4.1) is correctly specified, the adjusted Cox score test is

[Uβ(0, α̂(0))]T [Jββ(0, α̂(0))][Uβ(0, α̂(0))] ∼ χ2
α,1

where α̂(0) is the restricted m.l.e of α given β = 0, and

Uβ(β, α) =
∂log(L(β, α))

∂β
,

Jββ(β, α) =
∂2log(L(β, α))

∂2α
/(
∂2log(L(β, α))

∂2β

∂2log(L(β, α))

∂2α
− (

∂2log(L(β, α))

∂β∂α
)2)

When the model (4.1) is misspecified, such as some variables are omitted from the model, Lin

and Wei, 1989 proposed a robust sandwich estimator for the variance of proportional hazard score

test statistics. With this robust variance estimator used, the score test is still valid under model

misspecification if the treatment variable Z is independent of covariates X.

Kong and Slud, 1997 extended Lin and Wei’s approach under a more general condition that the

treatment variable Z is independent of covariates X for subjects at risk at any given time t and a

more general functional forms of X.

Heller and Venkatraman, 2004 proposed a covariate adjusted non-parametric test for comparing

survival distributions among multiple groups. The validity of this non-parametric test does not re-

quire either proportional hazard assumption or any independence assumption between treatment

variable Z and covariates X. The use of kernel smoothing to estimate the expectation of treat-

ment indicator Z conditional on covariate X among subjects at risk at each time t requires that the

number of covariates could not exceed 3 due to the curse of dimensionality.

To extend Heller and Venkatraman’s conditional log rank test, we introduced the propensity score

to balance the unbalanced distribution of covariates X among treatment groups and reduce the

dimensionality of covariate X for kernel smoothing. In section 2, we discussed the extension of

conditional log rank test using propensity score. In section 3, simulation studies were performed
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to compare the size and power of log rank, adjusted Cox score test, Lin and Wei’s robust score

test, Kong and Slud’s robust score test, and the extended conditional log rank test under various

scenarios. Section 4 provides a data example. Section 5 discuss the findings.

4.2. Test Statistic

4.2.1. Notation and Assumption

For the ith subject, let Si denote the survival time and Ci represent censoring time. Ti = min(Si, Ci)

is the observed survival time. δi is censoring indicator, which is equal to 1 if Si ≤ Ci and 0 otherwise.

Ni(t) = I(Ti ≤ t, δi = 1) is the counting process that count the number of observed events (0 or

1) for the ith subject, and Yi(t) = I(Ti ≥ t) is the at-risk process, which indicates whether the ith

subject is at risk right before time t.

We make the following assumptions: i) let Xi denote the p-dimensional vector of confounding

variables (Xi1, Xi2, ..., Xip)
T observed prior to treatment assignment for the ith subject, and there

is no other unmeasured confounding variables at baseline; ii) let e(X) denote a known propensity

score function. The distribution of covariates X conditional on e(X) between two treatment groups

(Z=1 vs. Z=0) are the same: X ⊥ Z|e(X). Let b(X) be a function of X and finer than e(X). iii)

the random vectors (Si, Ci, Zi, Xi), i = 1, 2, 3....n are independently and identically distributed. iv)

the failure time S and censoring time C are independent conditional on treatment variable Z and

covariates X.

4.2.2. Propensity score

4.2.3. Constructing the Test

The null hypothesis that the conditional hazard functions of two treatment groups given measured

covariates X are the same is:

λ0(t|x) = λ1(t|x) ∀t, x
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Following the steps listed by Heller and Venkatraman, 2004, we first have that

E(dN(t)|past) = P(dN(t) = 1|past)

= λ(t)dtI(T ≥ t)

= λ(t)Y (t)dt

Thus, under the independence assumption of the failure time and censoring time conditional on co-

variates (X,Z), Heller and Venkatraman, 2004 defined the relationship between counting process,

at risk process, and the covariates by

E(dN(t)|Y (t), X, Z) = Y (t)Zλ1(t|X)dt+ Y (t)(1− Z)λ0(t|X)dt (4.3)

where λj(t|x) represents the conditional hazard for a subject with group variable z = j. Based on

the expression (1), the counting process for the treatment group (Z = 1) can be defined by

E(ZdN(t)|Y (t), X) = Y (t)E(Z|Y (t), X)λ1(t|X)dt

Next,take the expectation of both sides (with respect to Z) under the null hypothesis that λ0(t|X) =

λ1(t|X) = λ(t|X), we have

EZ(E(ZdN(t)|Y (t), X, Z)) = EZ(Y (t)Zλ1(t|X)dt|Y (t), X)

= Y (t)λ(t|X)E(Z|Y (t), X)dt under H0 (4.4)

Since E(Z|Y (t), X) is a function of (Y (t), X), equation (2) shows that under H0 the counting

process is independent of group assignment. Heller and Venkatraman, 2004 constructed a non-

parametric test using empirical estimates the left- and right-hand s ides of equation (2) and specif-

ically, conditional expectation E(ZdN(t)|Y (t) = 1, X = xi) is constructed non-parametrically using

kernel smoothing function

E(Z|Y (t) = 1, X = xi) =

∑
j Yj(t)zjKg(xj , xi)∑
j Yj(t)Kg(xj , xi)

(4.5)
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when X is p dimensional covariate vector (p > 1), the multivariate kernel function Kg is defined as

Kg(u) =

p∏
l=1

g−1l k(g−1l ul)

where g is p dimensional vector of bandwidth controlling the degree of smoothness for each element

of covariate vector X.

However, the multivariate kernel smoothing suffers from the curse of dimensionality when p≥ 3.

That is, the number of neighboring data points around any value X in a higher dimensional space

will be very small, unless the sample size is extremely large (Hastie,2010).

Based on theorem (2) from Rosenbaum and Rubin, 1983, b(X) is a 1-dimensional balancing score

function of p-dimensional baseline covariates X such that

X ⊥ Z|b(X)

and,

E(Z|Y (t0) = 1, X = xi) = E(Z|Y (t0) = 1, X = bi(x))

where t0 is the baseline or the study beginning time point.

Under independence censoring assumption, the patients censored at time tc have the same risk as

the patients not censored at the same time. Thus, it can be inferred that there are no unmeasured

factors correlating with both Z and T during the study time period. It then follows

E(Z|Y (t) = 1, X = xi) = E(Z|Y (t) = 1, X = bi(x)) (4.6)

for each time point t. Because e(X) itself is the coarsest balancing score function, the equation

(2.4) remains valid with e(X) replacing b(X). Therefore, equation (2.3) can be re-expressed as

E(Z|Y (t) = 1, X = ei(x)) =

∑
j Yj(t)zjKg(ej(x), ei(x))∑
j Yj(t)Kg(ej(x), ei(x))

(4.7)
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Then from equation (2) and using the fact that

E(dN(t)|X) = λ(t|X)Y (t)dt

a conditional log rank test statistics Sn adjusting for balancing score function e(x) can be derived

as

Sn =
∑
i

∫
zidNi(t)−

∑
i

∫ ∑
j Yj(t)zjKg(ej(x), ei(x))∑
j Yj(t)Kg(ej(x), ei(x))

dNi(t) (4.8)

This statistics was able to be re-expressed as a function of difference in the estimated conditional

hazards between treatment and control groups (Heller and Venkatraman, 2004). It follows from

theorem 1 (Heller and Venkatraman, 2004) that under the null hypothesis that λ0(t|x) = λ1(t|x) =

λ(t|x),

n−1/2Sn → N(0, V )

where asymptotic variance V is estimated consistently by

∑
i

v̂ii
2 +

∑
i 6=j

v̂ij(2v̂ii + 2v̂jj + v̂ij + v̂ji) +
∑
i 6=j 6=l

v̂ij(v̂ij v̂il + v̂ij v̂li + v̂ij v̂jl + v̂ij v̂lj)

and

v̂ij = δi(zi −
α1(xi, ti)

α0(xi, xi)
− I(tj ≥ ti)Kb(xj , xi)

α0(xi, ti)
(zj −

α1(xi, ti)

α0(xi, ti)
))

and αj(x, t) = αj1(x, t) + αj0(x, t), j = 0, 1 The propensity score function e(X) for baseline covari-

ates X can be estimated consistently under correct model specification using logistic regression

model

e(x) = P (Z = 1|X) =
eβX

1 + eβX
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4.3. Simulation study

In this section, we performed a series of simulations to evaluate the type 1 error rate and the

statistical power for the log rank test, the covariates adjusted Cox score test, Lin and Wei robust

method, Kong and Slud robust method, and the propensity score adjusted conditional log rank test.

We considered the following factors in the simulation study design:

a. Proportional hazards assumption holds or not. The association between time to event T and

covariates (Z,X) can be expressed by a log linear model log(T |Z = z,X = x) = βz + αTx + ε.

When the error term ε ∼ standard extreme value distribution, the proportional hazard assumption

holds. When the error term ε ∼ N(0, σ2), the proportional hazard assumption will be violated.

b. The strength of association between confoundersX and treatment indicator Z. We used different

values of R2
ps = (0.25,0.5,0.75) from propensity score model logit(Z|X = x) = lTx to specify the

low, medium, and high level of association between confounders X and treatment indicator Z. The

R2
ps can be computed by tuning parameter γ as the following (Heller and Venkatraman, 2004):

R2
ps = var(γlTx)/(var(γlTx) + π2)

c. The strength of association between confounders X and time to event T . Similarly, we also used

3 different values of R2
cox = (0.25,0.5,0.75) to specify the low, medium, and high level of association

between confounders X and T . The R2
cox can be computed by tuning parameter φ as the following

(Heller and Venkatraman, 2004):

R2
cox = var(φαTx)/(var(φαTx) + var(ε))

d. Two different levels of censoring proportions (25%,50%) were specified.

e. Two different proportions of treated subjects (vs. subjects in placebo group): 30% and 50% were

specified. This can be done by tuning the intercept term in the propensity score model.

Thus, we have 72 different combination of scenarios. For each scenario, we generate the data in

the following steps:
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1. 10 confounders X were simulated. X1 ∼ N(10,2), X2 ∼ N(30,5), X3 ∼ 10 + 3 ∗ Uniform(0, 1),

X4 ∼ Bernoulli(p = 0.5) , X5 ∼ Pois(µ = 10), X6 ∼ log Normal(µ = 4.16, σ2 = 4.96), X7 ∼

exp(λ = 1.5), X8 ∼ 12 + Gamma(k = 9, r = 2), X9 ∼ 3 + 0.5Pois(µ = 10) + 1.5N(0, 1), and

X10 ∼ 12.5 + 0.8N(0, 1) + 2Uniform(0, 1);

2. The binary treatment indicator Zi for the ith subject is generated using Bernoulli(Pi(Zi|Xi)),

where Pi(Zi|Xi) is determined by covariates Xi through a logit function: logit(P (Zi = 1|Xi =

xi)) = lT ∗xi. Xi is a 10-dimensional vector and lT is set to (l0,0.16,0.65,-0.58,1.68,-0.4,0.09,-0.2,-

0.69,0.28,0.74). When l0 is -10.5, we have ∼ 50% subjects receiving treatment. When l0 is -13.8,

we have ∼ 30% subjects receiving treatment.

3. The time to event Ti for the ith subject was generated from the log linear model log(Ti|Zi =

zi, Xi = Xi) = βzi + αTxi + ε. β = 0 when we evaluate the type I error rate and β = 0.7(OR = 2)

when we evaluate the power. αT is set to (-0.2,0.013,-0.13,0.09,-0.07,0.06,0.22,0.19,0.11,-0.19).

The censoring time Ci is generated from uniform distribution (0,c). The values of c were determined

for the desired censoring proportion 25% and 50%.

We repeat the same process for 1500 times. In each replication, the sample size was set to 600.

The simulation results were presented in Figure 4.1 and 4.2. The results are mixed for type I error

rate and power. Figure 4.1 reveals that the propensity score adjusted log rank test outperform all

other methods and retain its nominal level in most simulation scenarios. However, propensity score

adjusted conditional log rank test only performs better than Kong and Slud’s robust score test in

terms of power.

4.4. Discussion

When clinical researchers compare the survival distributions between two treatment groups in a

observational study, a Cox proportional hazard model including the binary treatment indicator and

observed covariates is commonly used when proportional hazard assumption is reasonable. When

such assumption is not valid, Lin and Wei, 1989 and Kong and Slud, 1997 have proposed covari-

ates adjusted robust score statistics but under the assumption that the treatment group indicator is

independent of all other covariates, which makes their tests not suitable for observational studies

because independence occurs mainly in randomized studies. Heller and Venkatraman, 2004 pro-
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posed a non-parametric conditional log rank test for right censored survival data, which does not

require the proportional hazard assumption and the independence assumption between treatment

group variable and all other covariates. Although this method is desirable for comparing treatment

effect in observation studies, the authors used kernel smoothing to estimate the expectation of treat-

ment variable conditional on covariates among the subjects at risk and in such way, covariates are

incorporated into the test statistics. Due to the curse of dimensionality on non-parametric smooth-

ing methods such as kernel smoothing. There is a limitation on the number of covariates that can

be controlled for and no more than three variables) are allowed for a satisfactory performance.

In this paper, we proposed a simple extension to the conditional log rank test by using propensity

score as a summary score of all the confounders. In this way, we reduce the dimension of the

covariates and apply the kernel smoothing on the scalar propensity score. Thus, limitation imposed

on conditional log rank is removed. The propensity score adjusted conditional log rank could be an

robust alternative to confounders adjusted Cox proportional hazard models when the proportional

hazard assumption does not hold.
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CHAPTER 5

DISCUSSION

This dissertation made several contributions to the causal inference, particularly two stage IV meth-

ods. In chapter 2 we investigated the consistency of 2SPS and 2SRI methods in estimating the

causal hazard ratio among compilers. Under principal stratification and potential outcome frame-

work, we assume the potential survival time in each compliance group (e.g. always taker, never

taker, complier) follows Weibull distribution with the same shape parameter but different scale pa-

rameters for receiving active treatment or control. For 2SPS, the true local treatment effect is the

log causal hazard hazard among complier, which is defined as difference in log scale parameters

when treated and not treated among compliers, weighted by negative shape parameter. we first

showed that the second stage Weibull model including predicted treatment status is equivalent to

the Weibull model including binary treatment assignment status (IV) because predicted treatment

received status has a one-to-one relationship with IV. This re-parameterization does not change

values of linear predictor of a Weibull model. Next, we showed that the 2SPS estimator is equal

to the difference between log hazard among subjects assigned to treatment (R=1) and log hazard

among subjects assigned to control (R=0), divided by proportion of the complier in the study pop-

ulation. Subjects assigned to either active treatment or control groups are heterogeneous and are

mixture of always takers, never takers, and compliers. The distribution of these subjects’ survival

times does not follow Weibull distribution any more. However, Weibull model assumes these het-

erogeneous subjects assigned to each arm homogeneous and impose a Weibull distribution upon

them. The distributional parameters are chosen in such way that makes this Weibull distribution as

close to the true mixture distribution as possible. Thus, 2SPS estimator can not be simplified into

an expression consisting of distributional parameters from the complier only. Utilizing this fact, we

derived the closed form expression of the probability limit of 2SPS estimator in terms of defined

parameters of potential survival times for always taker, never taker, and complier. The difference

between this expression of probability limit of 2SPS estimator and the true log causal hazard ratio

is the asymptotic bias of 2SPS estimator. To derive the close form expression of asymptotic bias

of 2SRI estimator, we can only derive the closed form expression of the asymptotic bias under the

assumption that there is no always taker, although we can still evaluate the consistency of 2SRI
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estimator without imposing no always taker assumption using simulation. The true model should

include an interaction term between the treatment received and the residual term, thus 2SRI is

a mis-specified model. Similarly, the second stage 2SRI Weibull model including treatment re-

ceived indicator and residual term is equivalent to a model including treatment received indicator

and treatment assignment indicator (IV). Such re-parameterization does not change the values of

linear predictors of Weibull model. Utilizing this relationship between two Weibull models, we de-

rived the closed form expression of asymptotic bias of 2SRI estimator. Through analytic formula

and simulations, we showed that when we use two stage IV methods to estimate the causal haz-

ard ratio among compliers, 2SPS estimator is less volatile and perform better than 2SRI estimator

when the hazard is a decreasing function (α < 1) but both 2SRI and 2SPS estimators have very

large variability when the hazard is an increasing function (α > 1). Another interesting finding is

that the biases of 2SPS and 2SRI estimators are also associated with censoring distribution. The

closed form expression of asymptotic bias for 2SPS and 2SRI are useful when we design a two

arm trial with possible non-compliance to determine the magnitude of bias of using the two stage

IV method in estimating the causal hazard ratio among compliers. In chapter 3, we studied the

consistency of two stage IV methods from another perspective. that is, Are 2SPS and 2SRi bi-

ased in estimating conditional treatment effect given observed and unobserved covariates? The

current two stage modeling framework are very restrictive and may not be suitable for clinical set-

tings involving a single endogenous exposure variable and multiple unmeasured covariates. Under

this new framework, we successfully demonstrated the consistency problems of 2SPS and 2SRI

in estimating the conditional treatment effect in non-linear model context can be transformed into

the omitted-variable bias problems in non-linear models. The latter question is a topic under ex-

tensive research. Using this result, we easily revealed that 2SPS and 2SRI are unbiased under

the null hypothesis that there is no causal effect for Poisson, logistic, and Cox proportional hazard

models. When the treatment effect is not null, the results are mixed. 2SPS and 2SRI are unbi-

ased for Poisson model but the two methods are biased for logistic and Cox proportional hazard

model. The biases are influenced by several factors: (1) larger magnitude of treatment effect is

associated with larger biases; (2) larger magnitude of the effects of unobserved covariates is as-

sociated with larger biases; (3) The magnitude of coefficients of omitted error terms in 2SPS and

2SRI are associated with the biases. Specially for 2SRI, the coefficient of omitted error term can

be represented by a dissimilarity metric sin(θ). This sine dissimilarity metric measures the dis-
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tance between two coefficient vectors of unmeasured covariates in both treatment and outcome

models. As two coefficient vectors are more dissimilar, the bias becomes larger. (4) For time to

event outcome, we found via simulation that 2 stage IV methods have smaller biases when the

hazard is a decreasing function (α < 1), and larger biases when the hazard is a increasing function

(α > 1). This finding is consistent with our results in chapter 2. Overall, 2SRI performs better than

2SPS when estimating the conditional treatment effect. This new two stage modeling framework

and related techniques presented in chapter 3 have several immediate extensions. For example,

we can use this new framework to assess the bias in estimating the conditional treatment effect

when using propensity score adjusted non-linear regression models, rather than using covariates

adjusted models. In chapter 4, we discussed the extension of a covariates adjusted non-parametric

conditional log rank test by using propensity score as a summary score of measured covariates for

observational studies. This extension relaxed the limitation of Heller and Venkatraman’s conditional

log rank test (Heller and Venkatraman, 2004) on the number of covariates that can be adjusted.

Simulation shows that the propensity score adjusted conditional log rank test is satisfactory.
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