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Abstract
Signals transduced through the T cell receptor (TCR) lead to T cell differentiation, proliferation, and
elaboration of cytokines, all of which are required for optimal immunity. Phosphoinositide (PI) mediated
signaling plays a particularly prominent role in this process. TCR signaling is amplified by the activation of
phospholipase C γ1 (PLCγ1), which cleaves phosphatidylinositol-4,5-bisphosphate (PIP2) to form the
second messengers diacylglycerol (DAG) and inositol triphosphate (IP3). Regulation of PI and products such
as DAG are therefore essential for normal TCR signaling. DAG levels are reduced by diacylglycerol kinases
(DGKs), which metabolize DAG and diminish DAG-mediated signaling. In T cells, the predominant DGK
isoforms expressed are DGKα and DGKζ. Deletion of either isoform enhances DAG-mediated signaling, yet
the relative importance of these enzymes is unknown. Here, we describe that DGKζ but not DGKα suppresses
natural regulatory T cell development and predominantly controls Ras and AKT signaling. The differential
functions of DGKα and DGKζ are not attributable to differences in expression levels or localization to the T
cell-APC contact site. However, RasGRP1, a key activator of Ras signaling, associated to a greater extent with
DGKζ than DGKα. In addition, DGKζ displayed greater metabolism of DAG to PA after TCR stimulation
than DGKα. In silico modeling of TCR-stimulated Ras activation in DGKα- versus DGKζ-deficient T cells
suggested that a greater catalytic rate for DGKζ than DGKα could lead to increased suppression of Ras-
mediated signals by DGKζ. DGKζ dominant functions over DGKα, therefore, are in part due to DGKζ's
greater effective enzymatic activity and association with RasGRP1. Future experiments will establish how
DGK isoform function is regulated by TCR signaling. To examine how the DAG precursor PI is regulated, we
performed a preliminary analysis of mice with a T cell specific deficiency of phosphatidylinositol transfer
protein (PITP) α and β, which regulate PI-mediated signaling in vitro. Our initial in vivo studies suggest that
deletion of PITPα and PITPβ at the double positive stage of T cell development results in loss of mature T
cells in the thymus and periphery. Further experiments will establish why PITPs are required for normal T cell
development.
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ABSTRACT 

 

REGULATION OF T CELL RECEPTOR SIGNALING BY DIACYLGLYCEROL KINASES AND 

PHOSPHATIDYLINOSITOL TRANSFER PROTEINS 

Rohan P. Joshi 

Gary A. Koretzky 

Signals transduced through the T cell receptor (TCR) lead to T cell differentiation, 

proliferation, and elaboration of cytokines, all of which are required for optimal immunity.  

Phosphoinositide (PI) mediated signaling plays a particularly prominent role in this process.  TCR 

signaling is amplified by the activation of phospholipase C γ1 (PLCγ1), which cleaves 

phosphatidylinositol-4,5-bisphosphate (PIP2) to form the second messengers diacylglycerol 

(DAG) and inositol triphosphate (IP3).  Regulation of PI and products such as DAG are therefore 

essential for normal TCR signaling.  DAG levels are reduced by diacylglycerol kinases (DGKs), 

which metabolize DAG and diminish DAG-mediated signaling.  In T cells, the predominant DGK 

isoforms expressed are DGKα and DGKζ.  Deletion of either isoform enhances DAG-mediated 

signaling, yet the relative importance of these enzymes is unknown.  Here, we describe that 

DGKζ but not DGKα suppresses natural regulatory T cell development and predominantly 

controls Ras and AKT signaling.  The differential functions of DGKα and DGKζ are not 

attributable to differences in expression levels or localization to the T cell-APC contact site.  

However, RasGRP1, a key activator of Ras signaling, associated to a greater extent with DGKζ 

than DGKα.  In addition, DGKζ displayed greater metabolism of DAG to PA after TCR stimulation 

than DGKα.  In silico modeling of TCR-stimulated Ras activation in DGKα- versus DGKζ-deficient 

T cells suggested that a greater catalytic rate for DGKζ than DGKα could lead to increased 

suppression of Ras-mediated signals by DGKζ.  DGKζ dominant functions over DGKα, therefore, 

are in part due to DGKζ’s greater effective enzymatic activity and association with RasGRP1.  

Future experiments will establish how DGK isoform function is regulated by TCR signaling.  To 

examine how the DAG precursor PI is regulated, we performed a preliminary analysis of mice 
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with a T cell specific deficiency of phosphatidylinositol transfer protein (PITP) α and β, which 

regulate PI-mediated signaling in vitro.  Our initial in vivo studies suggest that deletion of PITPα 

and PITPβ at the double positive stage of T cell development results in loss of mature T cells in 

the thymus and periphery.  Further experiments will establish why PITPs are required for normal 

T cell development. 
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CHAPTER I: INTRODUCTION 

An adaptive immune system that efficiently recognizes pathogen is essential for 

clearance of infection.  During infection, antigen-presenting cells (APCs) engulf 

pathogens and present pathogen-derived peptides on their cell surface.  T cells, a critical 

arm of the adaptive immune system, recognize these peptides by engagement of cell-

surface T cell receptor (TCR).  Signals mediated by the TCR lead to T cell differentiation, 

proliferation, and elaboration of cytokines, all of which are required for optimal immunity, 

and elimination of infection.  Receptor mediated signaling is therefore crucial for T cell 

function.  Phosphoinositide lipid mediated signaling plays a particularly prominent role in 

this process.  After engagement of the TCR, signaling is amplified by the activation of 

phospholipase C γ1 (PLCγ1), which cleaves phosphatidylinositol-4,5-bisphosphate 

(PIP2) to form the second messengers diacylglycerol (DAG) and inositol trisphosphate 

(IP3), and the activation of phosphatidylinositide 3-kinase (PI3K), which phosphorylates 

PIP2 to form phosphatidylinositol-3,4,5-trisphosphate (PIP3).  DAG, IP3, and PIP3 each 

activate a diverse set of signaling cascades leading to T cell activation.  An 

understanding of the regulation of phosphoinositides and their products is therefore 

essential for understanding how TCR signaling leads to T cell activation.  The major 

focus of this thesis is on the regulation of DAG.  Preliminary studies also investigated 

how the phosphoinositide precursor of DAG is itself regulated.   

Synthesis of DAG is crucial for activation of signaling cascades including the 

Ras, NF-κB, and AKT pathways.  DAG levels must therefore be finely tuned not only 

through controlled production but also by its metabolism.  Diacylglycerol kinases (DGKs) 

are a diverse family of enzymes that phosphorylate DAG to form phosphatidic acid (PA), 

thereby terminating DAG signaling and initiating additional signaling events through the 
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synthesis of bioactive PA.  The critical role of DGKs in controlling DAG in T cells has 

become evident over the last decade through the use of both cell line and in vivo 

models.  The regulation of DGKs themselves, however, has begun to be understood 

only recently.  This review summarizes our understanding of the role of DGKs in T cells 

and describes new advances in deciphering the means by which DGKs are regulated. 

 

1.1. DGK Isotypes and their Structures 

DGKs are a large family of enzymes that share a common substrate, DAG.  The 

domain architectures of DGKs reflect this common function, as each of the ten isoforms 

has a catalytic domain as well as at least two C1 domains that are homologous to 

protein kinase C (PKC) C1 phorbol-ester/DAG binding domains. 

The catalytic domains of DGKs contain two parts, a catalytic subdomain (termed 

DAGKc) and an accessory subdomain (termed DAGKa).  The DAGKc subdomain 

contains a highly conserved Gly-Gly-Asp-Gly motif that serves as the ATP binding site 

and is necessary for enzymatic activity (Sanjuán et al., 2001; Topham et al., 1998).  The 

role of the DAGKa subdomain has not been directly studied.  However, two unrelated 

kinases, sphingosine kinase (SPK) and ceramide kinase (CERK), contain a domain 

similar to DAGKc, but do not contain a DAGKa subdomain.  DAG is not a substrate for 

SPK and CERK, and DGKs are not specific for sphingosine or ceramide containing 

lipids, suggesting that the DAGKa subdomain may be required for the specificity of 

DGKs for DAG lipids (Raben and Wattenberg, 2008; Sugiura et al., 2002; Merida et al., 

2008). 
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The conservation of the C1 domain across all DGK isoforms suggests that this 

domain is essential for DGK function.  Nevertheless, the exact role of the DGK C1 

domain is unclear.  As DGK C1 domains are homologous to DAG/phorbol ester-binding 

PKC C1 domains, DGK C1 domains were presumed to mediate the binding of DGK to 

DAG.  However, no DGK C1 domain contains the canonical phorbol-ester binding amino 

acid motif of the PKC C1 domain, with the exception of DGKβ and DGKγ C1 domains 

(Hurley and Misra, 2000).  DGK C1 domains therefore may not be involved in direct 

DAG binding.  Nevertheless, the C1 domain may have non-canonical roles in controlling 

DGK localization.  For example, cellular exposure to phorbol myristate acetate (PMA) 

causes DGKγ to translocate to the plasma membrane (Shirai et al., 2000).  Targeted 

disruption of the C1 domain of DGKζ or DGKθ prevents the translocation of these 

molecules to the membrane in response to G-protein coupled receptor (GPCR) 

activation (Santos et al., 2002; van Baal et al., 2005).  The DGK C1 domain may also be 

involved in protein-protein interactions, as evidence suggests that DGKζ translocation 

may be controlled by interactions with β-arrestins, rather than interactions with DAG 

(Nelson et al., 2007).  In addition, DGKζ directly interacts with Rac1 through its C1 

domain (Yakubchyk et al., 2005).   The available evidence suggests that the C1 domain 

may have functions unique to each isoform and could be involved in protein-protein 

interactions in addition to protein-lipid interactions.   
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1.2. DGK Subtypes 

The ten DGKs are divided into five subtypes based on domains apart from the 

C1 and catalytic domains (Fig. 1.1).  As described below, these additional domains 

potentially regulate DGK catalytic activity, localization, and substrate specificity. 

 

1.2.1 Type I DGKs (DGKα, DGKβ, and DGKγ)  

Type I DGKs contain an N-terminal calcium sensitive recoverin homology (RVH) 

domain and two EF hand motifs.  The RVH domain is homologous to the N-terminus of 

the recoverin family of neuronal calcium receptors (Jiang et al., 2000a).  In vitro kinase 

assays using purified protein suggest that deletion of the RVH domain results in loss of 

calcium dependent activation of DGKα; in addition, simultaneous deletion of the RVH 

and EF hands domains results in constitutive activation of DGKα (Jiang et al., 2000a).  

These data suggest that the RVH domain senses calcium, while the EF hand domain 

mediates suppression of kinase activity.  The RVH and EF hands domains likely 

cooperate to control calcium dependent activation of DGKα through an intramolecular 

interaction with the C1 and catalytic domains (Takahashi et al., 2012).  In addition to 

controlling enzymatic activity, binding of calcium to the EF hands may allow DGKα to 

translocate from the cytoplasm to the plasma membrane (Merino et al., 2007).  While the 

RVH and EF hand domains of DGKα are important for its function, the role of these 

domains in DGKβ and DGKγ function has been less well studied.  When expressed in 

isolation, the EF hands of DGKβ and DGKγ bind to calcium with a dissociation constant 

an order of magnitude less than that of DGKα, suggesting that calcium may not strongly 

regulate these isoforms (Yamada et al., 1997).  However, simultaneous deletion of the 
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RVH and EF hands of DGKγ results in cytoplasm to plasma membrane translocation 

and increased filipodia-like cytoplasmic protrusions in a N1E-115 neuroblastoma cell line 

(Tanino et al., 2013).  Thus, calcium is a key regulator of DGKα function and may 

regulate other Type I DGKs as well.  

 

1.2.2 Type II DGKs (DGKδ, DGKη, and DGKκ) 

Type II DGKs contain an N-terminal plekstrin homology (PH) domain that 

mediates interaction with lipids and proteins (Imai et al., 2005; Klauck et al., 1996; 

Sakane et al., 1996).  The PH domain of DGKδ weakly binds to phosphatidylinositols; 

however, treatment of HEK293 cells with the DAG analog PMA promotes PH domain-

dependent translocation of DGKδ to the plasma membrane (Park et al., 2008; Takeuchi 

et al., 1997; Imai et al., 2002, 2004).  In addition to the PH domain, DGKδ and DGKη 

contain a sterile α motif (SAM) at their carboxy termini, which may be involved in 

oligomerization through zinc binding (Imai et al., 2002; Knight et al., 2010). DGKκ lacks a 

SAM domain but does contain a C-terminal motif that may bind type I PDZ domains 

(Imai et al., 2005).  The function of this motif is unknown. 

 

1.2.3. Type III DGKs (DGKε) 

DGKε, the only member of the Type III DGK family, contains no additional 

structural domains other than its tandem C1 and catalytic domains.  Interestingly, DGKε 

is the only DGK isoform known to display specificity to the acyl sidechains of the glycerol 

backbone of DAG (Kohyama-Koganeya et al., 1997; Rodriguez de Turco et al., 2001). 
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DGKε preferentially binds to DAG containing an arachidonoyl chain at middle position of 

the glycerol backbone (Kohyama-Koganeya et al., 1997; Rodriguez de Turco et al., 

2001).  This preference may be responsible for the presence of arachidonoyl containing 

PIP2 in the plasma membrane (Prescott and Majerus, 1981; Shulga et al., 2011). 

 

1.2.4. Type IV DGKs (DGKζ and DGKι)  

Type IV DGKs contain myristoylated alanine-rich protein kinase C substrate 

(MARCKS), PDZ-binding, and ankyrin domains.  The MARCKS domain is homologous 

to the phosphorylation-site domain (PSD) of the MARCKS protein and contains four 

serine residues that are possibly sites of phosphorylation by protein kinase C (PKC) 

α(Topham et al., 1998).  In COS-7 and A172 cells, this phosphorylation event leads to 

nuclear translocation of DGKζ; in Jurkat T cells, serine to alanine mutation of these 

residues results in loss of translocation of DGKζ to the plasma membrane (Topham et 

al., 1998; Santos et al., 2002).  The PDZ-binding and ankyrin domains are involved in 

protein-protein interactions.  For example, the PDZ-binding domain regulates DGKζ’s 

interaction with Sorting Nexin-27 (SNX27) and is required for SNX27 to mediate 

intracellular vesicle trafficking (Rincon et al., 2007). Additionally, in Purkinje neurons and 

muscle cells the PDZ-binding domain controls DGKζ’s interaction with γ1-Syntrophin, 

which determines the subcellular localization of DGKζ (Hogan et al., 2001; Abramovici et 

al., 2003; Abramovici and Gee, 2007).  Finally, the ankyrin domain regulates DGKζ’s 

interaction with the long form of the leptin receptor in rat hypothalamus extract and may 

regulate leptin receptor signaling (Liu et al., 2001).  The role of the MARCKS and ankyrin 

domains in DGKι function is unknown.  However, just as has been found for DGKζ, the 
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PDZ-binding domain is required for the interaction of DGKι with the postsynaptic density 

95 (PSD-95), a neuronal scaffolding protein (Kim et al., 2009; Yang et al., 2011). 

 

1.2.5. Type V DGKs (DGKθ) 

The only member of the Type V DGK family, DGKθ, contains an N-terminal 

proline-rich domain, a PH domain between its C1 and catalytic domains, and a Ras-

association domain within its PH domain.  The enzymatic activity of DGKθ is diminished 

by mutations of the PH and proline-rich domains, suggesting an essential role of these 

species conserved regions in DGKθ function (Houssa et al., 1997; Los et al., 2004). 

 

1.3. Tissue Expression of DGKs 

DGK expression is broad, as most tissues express multiple DGK isoforms and 

most DGK isoforms are expressed in multiple tissues.  The major site of DGK 

expression is the brain, which expresses all known DGK isoforms (Shulga et al., 2011; 

Crotty et al., 2006).  A recent review reported expressed sequence tag (EST) data 

available from the National Center for Biotechnology Information (NCBI) and 

summarized tissue expression of DGKs (Shulga et al., 2011).  Interestingly, EST data 

suggest that DGK isoform expression is relatively narrow in several tissues: (1) DGKε is 

the only expressed isoform in adipose tissue; (2) DGKγ is the only isoform expressed in 

the pituitary gland; (3) DGKα and DGKθ are the only isoforms expressed in the bone 

marrow; and (4) DGKα, DGKδ, and DGKζ are the most abundant isoforms expressed in 

lymphocyte-rich tissue (Shulga et al., 2011).  While DGKα, DGKδ, and DGKζ are all 
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expressed in T cells, the function of DGKδ in T cells remains unknown.  As such, the 

role of DGKα and DGKζ in T cells is discussed in detail below. 

 

1.4. Regulation of DGK function in T cells 

1.4.1. Transcriptional Regulation of DGKs in T cells 

The regulation of DGKα and DGKζ has been a focus of research over the past 

five years because of the key roles these molecules have in TCR signaling. Both DGKα 

and DGKζ are regulated at the transcriptional level.  T cell lines that are induced to 

become unresponsive to antigen (anergic) by the administration of TCR stimulation 

without co-stimulation through additional receptors, such as CD28, up-regulate DGKα 

mRNA (Zha et al., 2006; Macián et al., 2002).  In contrast, activation of murine T cells 

with both TCR and co-stimulation causes down-regulation of both DGKα and DGKζ 

mRNA transcripts (Olenchock et al., 2006; Martínez-Moreno et al., 2012).  These data 

suggest that transcription of DGKα and DGKζ mRNA is sensitive to signals downstream 

of TCR and co-stimulation.   

One transcription factor upregulated in response to TCR stimuli is early growth 

responsive gene 2 (Egr2).  A binding site for Egr2 was identified within the promoter of 

DGKα (Zheng et al., 2012).  After TCR engagement, transcription of Egr2 was found to 

peak before DGKα transcription increased, suggesting that Egr2 may regulate DGKα 

levels.  It was found that Egr2 bound to the DGKα promoter and increased DGKα 

transcription after TCR engagement in the absence of co-stimulation.  Furthermore, 

deletion of Egr2 resulted in decreased DGKα upregulation and anergy induction after 

anergy inducing conditions.  In addition, forced over-expression of DGKα in Egr2 
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deficient T cells rescued anergy induction. These results suggest that Egr2 is a key 

regulator of DGKα transcription during anergy and that this regulation has important 

functional effects. 

Recently, binding sites for members of the forkhead box O (FoxO) transcription 

factor family were found within the DGKα gene (Martínez-Moreno et al., 2012).  In 

quiescent T cells, FoxO1 and FoxO3 are bound to the DGKα promoter and enhance 

DGKα transcription.  DGKα promoter binding is lost after T cell activation, and this event 

is correlated with the phosphorylation of FoxO proteins downstream of TCR and AKT 

signaling and decreased DGKα transcription.  T cells exposed to the cytokine interleukin-

2 (IL-2), which is produced by activated T cells, were also found to decrease DGKα 

transcription in a manner dependent on AKT function.  In addition, this decreased 

transcription correlated to decreased FoxO binding to the DGKα promoter.  FoxO 

proteins may therefore provide a link between TCR signaling, T cell activation, and 

DGKα transcription.  For example, in quiescent cells, FoxO mediated transcription of 

DGKα may be high; initial TCR signaling may lead to decreased FoxO mediated 

transcription and the production of IL-2, which may further serve to shut off DGKα 

transcription in activated T cells.  Further studies using genetic tools would help 

determine the functional implication of FoxO regulation of DGKα on T cell activation and 

anergy.  The factors that control DGKζ transcription have not yet been studied. 

 

1.4.2. Post-translational Regulation of DGKs in T cells 

Evidence also exists for post-translational regulation of DGKα and DGKζ.  The 

presence of RVH and EF hand domains in DGKα suggests that cytoplasmic calcium 
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levels could regulate this isoform.  After TCR engagement, calcium is released into the 

cytoplasm from the ER and extracellular environment (Smith-Garvin et al., 2009).  In 

vitro data would suggest that this flux would lead to binding of calcium to the EF hands 

and loss of auto-inhibition (i.e. activation) of DGKα catalytic activity (Takahashi et al., 

2012; Jiang et al., 2000a).  Surprisingly, treatment of Jurkat T cells with an intracellular 

calcium chelator during TCR and co-stimulation leads to an increase rather than a 

decrease in DGKα catalytic activity as measured by an ex vivo assay of PA production 

(Baldanzi et al., 2011).  Interestingly, intracellular calcium increases are necessary for 

the translocation of DGKα to the plasma membrane, where DAG is synthesized after 

TCR engagement (Sanjuan et al., 2003; Sanjuán et al., 2001).  Thus, the in vivo 

calcium-dependent regulation of DGKα is more complex than what occurs in vitro with 

isolated protein, and calcium may serve to localize DGKα activity rather than modulate 

DGKα catalytic function.   

Recently, the adapter protein SAP [signaling lymphocyte activation molecule 

(SLAM)-associated protein] was also found to regulate DGKα function during immune 

signaling (Baldanzi et al., 2011).  Upon TCR and co-stimulation of Jurkat T cells through 

either CD28 or SLAM receptor engagement, DGKα is recruited to the membrane and its 

catalytic activity is suppressed.  This suppression is dependent upon PLCγ1 activation 

and calcium release (Baldanzi et al., 2011).  Knockdown of SAP results in a rescue of 

DGKα catalytic activity and reduced translocation to the plasma membrane after TCR 

and co-stimulation (Baldanzi et al., 2011).  The investigators in this study could not find a 

direct protein interaction between SAP and DGKα; thus, SAP apparently directs the 

posttranslational regulation of DGKα through an as yet unidentified mechanism 

(Baldanzi et al., 2011).  The Src family tyrosine kinase Lck also regulates DGKα in a T 

cell line (Merino et al., 2008).   TCR stimulation of Jurkat T cells leads to Lck-mediated 
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phosphorylation of DGKα at the hinge region between its tandem C1 domains and the 

catalytic domain (Merino et al., 2008).  Mutation of this tyrosine residue to phenylalanine 

abrogates DGKα translocation to the plasma membrane and suppression ERK 

phosphorylation (Merino et al., 2008).  TCR-activated Lck phosphorylation of DGKα 

therefore is an important event for attenuating T cell activation.   

Comparatively little is known about posttranslational modification of DGKζ in 

immune cells.  As described above, in COS-7 and A172 cells, PKCα phosphorylates 

serine residues in the MARCKS domain of DGKζ and leads to its nuclear translocation 

(Topham et al., 1998).  In Jurkat T cells, mutation of these serine residues to alanine 

results in loss of DGKζ translocation to the plasma membrane, but the kinase that acts 

on DGKζ has not been definitively identified (Santos et al., 2002; Gharbi et al., 2011).  

Although the MARCKS domain appears important for localization in this cell line, the 

importance of this domain for DGKζ regulation of downstream signaling pathways 

requires further study. 

 

1.5. DGK Regulation of Immune Cell Signaling and Activation 

1.5.1. An Overview of TCR and DAG Signaling in T cells 

Engagement of the TCR by peptide presented by APCs starts a signaling 

cascade that culminates in activation of the T cell (Fig. 1.2).  Early events lead to the 

activation of the tyrosine kinases Lck and ZAP-70, which leads to the formation of a 

multimolecular signaling complex involving the adapter proteins linker of activated T cells 

(LAT) and SH2 domain containing leukocyte protein of 76kDa (SLP-76) (Zhang et al., 

1998; Motto et al., 1996; Smith-Garvin et al., 2009).  PLCγ1 is recruited to and activated 
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by this complex and in turn hydrolyses the phospholipid PIP2 to form membrane-

diffusible DAG and cytosolic IP3 (Imboden and Stobo, 1985).  DAG recruits and activates 

numerous targets, of which the best characterized in T cells are RasGRP1, PKD and 

PKCθ, although other PKCs are targets as well (Tognon et al., 1998; Quann et al., 2011; 

Spitaler et al., 2006).  RasGRP1 is a guanine nucleotide exchange factor that activates 

Ras-GTP and the MAPK cascade, along with non-DAG activated son of sevenless 

(SOS) (Dower et al., 2000, 1).  This leads to the formation of the activator protein 1 (AP-

1) transcription factor complex, which is critical for the production of interleukin-2 (IL-2) 

and T cell activation.  Activation of PKCθ leads to the recruitment of CARMA1 and 

Bcl10, culminating in the activation of the NF-κB pathway, which is important for the 

production and secretion of pro-inflammatory cytokines (Coudronniere et al., 2000; Sun 

et al., 2000; Narayan et al., 2006; Wang et al., 2004; Hara et al., 2004; Jun et al., 2003).  

Activation of PKD promotes integrin activation through an interaction with Rap1 in T cells 

(Medeiros et al., 2005, 1).  DGKs phosphorylate DAG to form PA, and may act as 

negative regulators of these pathways. 

PA itself is an important signaling lipid, although its functions in T cells are not 

well defined.  For example, in Jurkat T cells, simultaneous activation of integrin and TCR 

receptors leads to hydrolysis of phosphatidylcholine by phospholipase D 2 (PLD2), likely 

creating a pool of PA that is a source for the synthesis of DAG by phosphatidic acid 

phosphatase (PAP) (Mor et al., 2007).  This PLD2-sourced pool of DAG is important for 

specific activation of k-Ras, rather than n-Ras, which is activated by TCR signaling alone 

(Mor et al., 2007).  PA may also lead to activation of mammalian target of rapamycin 

(mTOR) and DGKζ specifically may influence this pathway (Foster, 2007, 2009; Fang et 

al., 2001; Avila-Flores, 2005).  For example, in HEK293 cells, overexpression of DGKζ 

increased PA levels in response to mitogenic simuli.  Overexpression of DGKζ also 
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increased phosphorylation of ribosomal S6 kinase (S6K), a molecule downstream of 

mTOR, in a manner dependent on mTOR’s PA binding domain (Avila-Flores, 2005).  

These data suggest that, after engagement of the TCR, DAG and DGKs may have 

additional roles in regulating mTOR and other pathways downstream of PA.  As 

discussed below and consistent with this notion, PA may have a role in the development 

of T cells in the thymus.  Further studies are needed, however, in primary T cells to 

further elucidate the functions of PA in T cells. 

 

1.5.2. DGKα in T cell Signaling and Activation 

DGKs serve a crucial role in T cells by metabolizing DAG and terminating DAG 

activated signaling cascades.  The predominant isoforms of DGK expressed in T cells 

are DGKα and DGKζ (Zhong et al., 2008).  Studies in a transformed T cell line (Jurkat) 

stimulated through an ectopically expressed muscarinic type I receptor revealed a 

modest reduction in CD69 upregulation with overexpression of wildtype DGKα and a 

marked reduction of CD69 upregulation with expression of a constitutively active form of 

DGKα (Sanjuán et al., 2001).  Overexpression of DGKα in Jurkat T cells also reduced 

AP-1 activation after TCR stimulation (Olenchock et al., 2006). In studies of a virally 

transduced primary T helper 1 cell clones, overexpression of DGKα was found to inhibit 

ERK phosphorylation in response to TCR and co-stimulation and translocation of 

RasGRP1 to the plasma membrane (Zha et al., 2006).  Primary T cells deficient in DGKα 

also demonstrate increased ERK phosphorylation and Ras activation following TCR 

stimulation (Olenchock et al., 2006).  This leads to increased IL-2 production and 

proliferation of DGKα-deficient cells during blockade of co-stimulatory signals 



	  
	  

14	  

(Olenchock et al., 2006).  Together, these data suggest that DGKα-dependent 

suppression of TCR signaling is crucial for the suppression of T cell activation.  The 

effects of DGKα deficiency on primary T cell function are discussed further below. 

 

1.5.3. DGKζ in T cell Signaling and Activation 

Early experiments in which DGKζ was overexpressed in Jurkat T cells 

demonstrated that DGKζ suppresses Ras, ERK, and AP-1 activation as well as 

upregulation of the activation marker CD69 (Zhong et al., 2002).  Kinase activity was 

found to be required for this suppression; in addition, an intact N-terminal region 

including the MARCKS domain was required, while the ankyrin and PDZ-binding 

domains were found to be dispensable (Zhong et al., 2002).  Subsequent experiments in 

primary T cells from DGKζ-deficient mice confirmed these findings.  DGKζ knockout T 

cells produced less PA after TCR stimulation (Zhong et al., 2003).  In addition, 

phosphorylation of MEK and ERK was increased in DGKζ-deficient T cells.  This 

increase correlated with increased upregulation of the activation markers CD69 and 

CD25 as well as increased proliferation to antigen and increased homeostatic 

proliferation (expansion of cell numbers when transferred into lymphopenic mice) (Zhong 

et al., 2003).  Finally, DGKζ-deficient mice had a modest increase in responses to the 

pathogen lymphocytic choriomeningitis virus (LCMV), indicating that enhanced T cell 

signaling and activation may have functional consequences as well (discussed further 

below). 

 

1.5.4. DGK Regulation of AKT-mTOR Signaling in T cells 
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Much evidence suggests, therefore, that DGKα and DGKζ have overlapping roles 

in T cell signaling, although no direct comparison of the relative contribution of DGKα 

and DGKζ to this regulation has been performed.  Highlighting the overlapping yet 

complementary roles of DGKα and DGKζ, treatment of DGKζ-deficient T cells with an 

inhibitor of DGKα function increases IL-2 production and proliferation in response to TCR 

stimuli and co-stimulation blockade compared to DGKζ-deficient untreated cells 

(Olenchock et al., 2006).  In addition, simultaneous deletion of DGKα and DGKζ in T 

cells [double knockout (DKO) cells] increases activation of the AKT and mTOR pathways 

(Gorentla et al., 2011).  Increased Ras-MEK-ERK-Rsk1 signaling in DKO cells is likely 

responsible for increased AKT-mTOR activation (Gorentla et al., 2011). DGKα and 

DGKζ are therefore responsible for regulating a wide range of pathways that are 

important for T cell signaling, activation, proliferation, and metabolism. 

 

1.5.5. DGKζ as a Modulator of Analog-to-digital Signaling in T cells 

The role of DGKζ in T cell activation has been refined recently with respect to 

Ras activation.  T cells exhibit digital activation after TCR stimulation, such that 

increases in TCR ligand binding lead to increased percentages of cells with an “on” 

state, rather than a smooth gradient of cell activation markers (Chakraborty et al., 2009).   

This mechanism requires that an analog signal (number of TCR bound to ligand) be 

converted to a digital state (activation) through the TCR signaling machinery.  The Ras 

pathway contributes to this conversion through the two guanine nucleotide exchange 

factors RasGRP1 and SOS (Roose et al., 2005).  DAG allosterically activates RasGRP1; 

in contrast, the immediate product of RasGRP1 and SOS – Ras-GTP – allosterically 
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activates SOS, thereby creating a positive feedback loop (Roose et al., 2005, 2007).  In 

other words, as Ras-GTP production by RasGRP1 reaches a certain threshold, SOS is 

activated and greatly enhances production of Ras-GTP.  Thus, DAG-RasGRP1 units 

serve as an analog component, while SOS serves as an analog to digital converter (Das 

et al., 2009; Chakraborty et al., 2009).  As DGKζ activity attenuates DAG, it is positioned 

to regulate the number of DAG-RasGRP1 molecules present and therefore modulate the 

threshold for digital Ras activation. This phenomenon was studied in CD8+ T cells (Riese 

et al., 2011).  An in silico model predicted that CD8+ T cells deficient in DGKζ would 

have increased DAG-RasGRP1 functional units, leading to an increase in fraction of T 

cells with activated Ras signaling but no change in the amount of activated Ras in each 

cell.  In vitro testing using phosphorylation of ERK as a surrogate for Ras activation 

confirmed this prediction.  In addition, the model predicted that a lower amount of 

antigen-receptor engagement on DGKζ-deficient cells than wildtype cells would be 

necessary for the equivalent amount of Ras/ERK activation.  However, in vitro testing of 

this notion found that wildtype and DGKζ-deficient CD8+ T cells had similar levels of 

antigen-receptor engagement at 50% of the maximum ERK phosphorylation, suggesting 

increased complexity to how DGKζ controls RasGRP1 activity.  These data therefore 

suggest that DGKζ activity is important for determining the threshold of T cell activation.  

Additional studies are needed to determine whether the presence of DGKα in T cells 

also affects this threshold. 

 

1.5.6. DGK at the Immunological Synapse 
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The immunological synapse (IS) forms at the site where the TCR engages with 

antigen presented by an APC.  A multimolecular signaling cluster is formed at this site, 

which includes PLCγ1.  The localized production of DAG at the IS is important for 

functional TCR signaling.  For example, localized DAG synthesis causes reorientation of 

the microtubule-organizing complex (MTOC) towards the IS, which is required for 

transduction of the TCR signal (Quann et al., 2009).  Moreover, treatment of TCR-

stimulated cells with an inhibitor of DGK activity results in diffuse DAG persistence at the 

IS and impaired MTOC reorientation, which is thought to be important for directional 

secretion of cytolytic factors and sustained TCR signaling (Quann et al., 2009, 2011).  

DGKs may therefore play an essential role at the IS in metabolizing DAG and restricting 

DAG localization to the IS.  This notion was studied in Jurkat T cells (Gharbi et al., 

2011).  Following TCR stimulation, TCR-bound immune complexes were isolated, and 

both DGKα and DGKζ were present, although a GFP-tagged DGKα did not translocate 

to the plasma membrane as visualized by microscopy.  In addition, knockdown of DGKα 

did not affect the in vitro conversion of DAG to PA by the TCR-bound complexes, while 

knockdown of DGKζ did.  Collectively, these experiments support the notion that while 

both DGKα and DGKζ likely participate in the regulation of DAG at the IS, DGKζ appears 

to play the dominant role.  It was also found that treatment of Jurkat T cells with PMA 

enhanced the accumulation of DGKζ in TCR-bound immune complexes, suggesting a 

positive feedback between DAG accumulation and DGKζ function at the IS (Gharbi et 

al., 2011).  Although it was not formally shown, this could be due to stimulation of PKCs, 

as a non-phosphorylatable MARCKS domain mutant DGKζ was defective in DAG 

metabolism at the IS.  Together, these data suggest a key role for DGKs, in particular 

DGKζ, in regulating signaling at the IS. 
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DGKs may also be involved in secretory traffic at the IS.  One mechanism of 

target cell killing at the IS by CD8+ cytotoxic T cells (CTLs) may be the engagement of 

Fas on target cells by Fas ligand (FasL) expressed on the surface of CTLs or by FasL 

secreted through exosomes (Monleón et al., 2001).  Exosomes containing FasL form 

within multivesicular bodies (MVBs) in CTL, and may be regulated by T cell activation 

(Zuccato et al., 2007; Monleón et al., 2001).  In a recent study, Jurkat T cells were used 

as a model system to study the role of DGKα in MVB exosome secretion (Alonso et al., 

2011).  DGKα was recruited to MVBs and appeared to have two distinct roles.  Through 

pharmacologic inhibition, it was shown that DGKα activity negatively regulated mature 

MVB formation.  In contrast, knockdown of DGKα resulted in increased polarization of 

MVBs to the IS and increased exosome secretion.  These results are consistent with the 

notion that DGKα has a dual role in exosome secretion, with kinase activity required for 

suppression of MVB development but non-kinase functions required for exosome 

secretion.  The role of DGKζ in MVB formation requires further study. 

 

1.6. DGK Functions in T cells 

1.6.1. T cell Anergy 

Anergy is one mechanism by which T cells undergo peripheral tolerance.  

Engagement of the both the TCR as well as co-stimulatory receptors leads to normal T 

cell activation, whereas stimulation of T cells through the TCR alone induces anergy 

(Jenkins et al., 1987; Choi and Schwartz, 2007; Macián et al., 2002).  Anergic cells do 

not proliferate or produce IL-2 in response to antigenic stimuli, thus preventing the 

potential activation of self-reactive cells that have escaped negative selection in the 
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thymus (Choi and Schwartz, 2007).  Anergic T cells were found to have decreased Ras 

activation and translocation of RasGRP1 to the immunological synapse, although 

activation of nuclear factor of activated T cells (NFAT), a calcium-dependent process 

has been found to be intact (Fields et al., 1996; Li et al., 1996; Zha et al., 2006; Kang et 

al., 1992).  Thus, it appears that anergy correlates with a normal TCR-induced calcium 

signal but defective production of DAG.  As IP3 and DAG are created in equimolar ratios 

by PLCγ1 cleavage of PIP2, it was speculated that DGK metabolism of DAG could 

potentially alter the balance of calcium and DAG signaling, thus converting T cell 

activation into T cell anergy.  This notion was lent further weight by microarray data in 

which DGKα was found to be one of the predominant transcripts upregulated in anergic 

T cells (Macián et al., 2002; Zha et al., 2006).   

Experimental evidence from studies in which DGK levels were manipulated 

genetically support the role of DGKs in T cell anergy.  Overexpression of DGKα in a T 

cell line mimics an anergic state characterized by decreased Ras activation and 

RasGRP1 translocation to the IS (Zha et al., 2006).  Conversely, deletion of DGKα, or 

DGKζ, in primary cells results in cellular resistance to anergy (Olenchock et al., 2006).  

Engagement of cytotoxic T lymphocyte antigen 4 (CTLA4), an inhibitory receptor on the 

surface of T cells, in the presence of TCR stimulation normally suppresses activation 

and promotes anergy.  However, unlike wildtype cells, stimulation of DGKα- or DGKζ-

deficient T cells through the TCR in the presence of co-stimulation blockade with 

CTLA4-Fc resulted in proliferation and production of IL-2 (Olenchock et al., 2006).  

Moreover, using an in vivo model, DGKα-deficient mice were found to have impaired 

anergy induction (Olenchock et al., 2006).  Together, these data demonstrate that DGKα 

and DGKζ both function to control T cell activation and perhaps aid peripheral tolerance.   
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Neither DGKα- nor DGKζ-deficient mice develop autoimmunity, which may be 

expected for molecules that suppress T cell activation.  Autoimmune hepatitis is 

observed in mice that lack both isoforms, suggesting that DGKα and DGKζ have 

redundant functions in suppressing autoimmunity (Zhong et al., 2008).  However, the 

DKO mice have striking defects in T cell selection and development (discussed below).  

Hence, although T cells deficient in both isoforms demonstrate augmented TCR 

activation and potentially a propensity for inducing autoimmunity, another possibility is 

that these T cells express an altered set of TCRs that could potentially lead to an 

autoimmune phenotype.  Separating these possibilities is difficult in conventional DKO 

mice, as normal T cell development does not occur.  Mice with conditional gene 

targeting systems would help clarify the mechanisms of autoimmunity in DGK-deleted 

mice, as these mice would enable normal T cell development to proceed before gene 

deletion of DGKα and DGKζ.  These mice would also allow investigators to separate 

possible alterations in selection from changes in TCR signaling in mature T cells for the 

observed effects of DGK loss on T cell activation and anergy, described above. 

 

1.6.2. T cell Responses to Pathogen 

Effective immune responses to initial exposure to a pathogen as well as subsequent 

exposures are essential for survival of the host.  Effector and memory T cell subsets 

mediate these responses, respectively.  TCR signal strength modulates both effector 

and memory T cell differentiation and maintenance (Zehn et al., 2009; Smith-Garvin et 

al., 2010; Wiehagen et al., 2010; Teixeiro et al., 2009).  The critical role of DGKα and 

DGKζ in suppressing T cell activation and the regulated expression of these molecules 
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during activation led to a study of how these molecules function in effector and memory 

responses to LCMV (Shin et al., 2012).  CD8+ T cells from LCMV-specific P14 

transgenic TCR mice deficient in DGKα or DGKζ showed increased antigen-specific 

CD8+ T cell expansion and increased cytokine production in response to LCMV infection.  

Interestingly, the enhanced effector responses to LCMV by DGKα-deficient T cells were 

found to be partly cell extrinsic, while the enhanced responses to LCMV by DGKζ-

deficient T cells were found to be cell intrinsic; these data suggest separate roles for 

DGKα or DGKζ in T cell signaling.  After rechallenge with LCMV, CD8+ T cells deficient 

in DGKα or DGKζ demonstrated decreased expansion, indicating that DAG signaling 

may differentially control effector and memory cell formation.   

The mechanism controlling this differential DGK function in effector and memory 

T cells is currently unclear.  One intriguing possibility is that DAG signaling may control 

mTOR activation, which acts differently in effector and memory T cells (Araki et al., 

2009; Shin et al., 2012; Pearce et al., 2009; Rao et al., 2010).  Inhibition of mTOR 

complex 1 (mTORC1) function using rapamycin has been found to diminish CD8+ 

effector T cell function and promote memory CD8+ T cell differentiation (Rao et al., 2010; 

Chi, 2012).  These data indicate that one function of mTORC1 is to enhance effector T 

cell function and diminish memory T cell formation, which mirrors the observed 

phenotype in mice deficient in DGKα or DGKζ.  As described above, T cells lacking both 

DGKα and DGKζ have increased AKT and mTORC1 activation (Gorentla et al., 2011).  

In addition, although we have not investigated mTORC1 activation, we have found that T 

cells lacking DGKζ alone have increased AKT activation (unpublished observations).  

Taken together, the available evidence suggests that deletion of DGKs may regulate 

effector and memory responses by enhancing mTORC1 activity, although further studies 

are required. 
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1.6.3. T cell Anti-tumor Responses 

T cell responses to tumor are often characterized by development of peripheral 

tolerance to tumor antigens (Staveley-O’Carroll et al., 1998).  Induction of T cell anergy 

in particular may be one mechanism by which tumors evade the immune system 

(Staveley-O’Carroll et al., 1998).  As deletion of DGKα or DGKζ disrupts anergy 

formation and promotes T cell activation, deletion of these molecules may also enhance 

T cell responses to tumor.  Other inhibitory molecules involved in TCR signaling have 

been targeted successfully to increase T cell responses to tumor.  For example, CD8+ T 

cells deficient in SH2 domain-containing phosphatase 1 (SHP-1), a tyrosine 

phosphatase, or cbl-b, an E3 ubiquitin ligase, have enhanced responses to tumor.  

Recently, the role of DGKζ in tumor responses was tested using an implanted EL-4 OVA 

model of tumor eradication (Riese et al., 2011).  Compared to tumors implanted in 

wildtype mice, tumors implanted into DGKζ-deficient mice were significantly smaller after 

three weeks.  In addition, tumor antigen-specific T cells from DGKζ-deficient mice 

expressed higher levels of markers of activation and proliferation.  To rule out the effects 

of DGKζ deletion in non-T cells and determine whether CD8+ T cells were responsible for 

this effect, these experiments were also performed using adoptively transferred CD8+ 

DGKζ-deficient T cells, with similar results.   

Interestingly, DGKζ-deficient T cells did not display enhanced cytotoxicity 

compared to wildtype CD8+ T cells.  The mechanism by which DGKζ deficiency 

enhances tumor responses is an important question and requires further investigation.  

For example, DGKζ deficiency could enhance anti-tumor responses primarily by 
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preventing the induction of anergy during initiation of the immune response.  

Alternatively, DGKζ deficiency may increase anti-tumor responses by lowering the 

threshold for T cell activation during proliferation of effector cells.  Distinguishing 

between these possibilities will have important implications for the timing of 

administration of DGKζ-targeting cancer immunotherapies.  DGKζ has added promise as 

a therapeutic target compared to other inhibitory molecules, as unlike mice deficient in 

SHP-1 or cbl-b, mice lacking DGKζ do not develop overt signs of autoimmunity.  

Additional study is needed, however, to determine if modulation of DGKζ function is also 

applicable to T cell responses in non-implanted, endogenously developing tumor 

models. 

The role of DGKα in anti-tumor responses was studied recently in human tumor 

infiltrating CD8+ T cells (CD8-TILs) from patients with renal cell carcinoma (RCC) (Prinz 

et al., 2012).  CD8-TILs from RCCs were defective in lytic granule exocytosis and their 

ability to kill target cells.  While proximal signaling events were intact in response to TCR 

engagement, CD8-TILs exhibited decreased phosphorylation of ERK when compared to 

non-tumor infiltrating CD8+ T cells.  This impairment of lytic ability and phosphorylation of 

ERK correlated with an increase in DGKα expression in CD8-TILs.  Treatment of CD8-

TILs with an inhibitor of DGKα activity rescued killing ability of target cells, increased 

basal levels of phosphorylation of ERK, and increased PMA/ionomycin stimulated 

phosphorylation of ERK.  In addition, ex vivo administration of IL-2 to CD8-TILs was 

found to decrease DGKα expression levels, rescue lytic granule exocytosis and killing 

ability, and increase phosphorylation of ERK in response to PMA/ionomycin treatment.  

These results suggest that CD8-TILs may be defective in function partially due to high 

DGKα levels leading to dysfunction in lytic granule exocytosis, which is consistent with 

the previously described role for DGKα in controlling secretory traffic at the 
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immunological synapse (Alonso et al., 2011).  Further study is needed to elucidate the 

DGKα-regulated pathways in CD8-TILs that control lytic granule exocytosis. 

 

1.6.4. T cell Adhesion 

Surveillance of a host for pathogens requires that T cells constantly circulate 

between secondary lymphoid organs and enter and exit microvasculature.  Interaction 

with the microvasculature requires cooperation between (1) selectins, which mediate 

rolling on endothelial cells, (2) chemokine receptors, which determine directionality of 

cellular migration and transduce signals to activate integrins on the migrating cell, and 

(3) integrins, which mediate the firm attachment of the cell to the underlying endothelium 

and allow transmigration into a tissue (Hogg et al., 2011; Sackstein, 2005).  DAG-

activated RasGRP2 may link chemokine receptor signaling to integrin activation by 

activating Rap1 (Hogg et al., 2011).  Through DAG metabolism, DGKs are therefore 

positioned to regulate signaling from chemokine receptors to integrins, so-called “inside 

out” signaling.  The role of DGKζ in regulating T cell adhesion was recently studied (Lee 

et al., 2012).  Using a quantitative model of T cell integrin signaling adhesive dynamics, 

it was predicted that DGKζ deficiency would enhance the kinetics of integrin activation 

and shorten the distance to arrest of T cells under shear flow (Lee et al., 2012).   To test 

this model, wildtype or DGKζ-deficient T cells were introduced into a flow chamber with 

immobilized P-selectin and intercellular adhesion molecule-1 (ICAM-1), a ligand for 

integrins, with or without the chemokine receptor ligand CXCL12.  The time and distance 

to arrest of T cells of the different genotypes was then measured.  DGKζ-deficient T cells 

had a significantly shorter time and distance before arrest than wildtype cells after 
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addition of CXCL12, supporting the model and indicating that DGKζ deficiency may 

enhance integrin activation kinetics and firm arrest of T cells.  These data suggest that 

DGKζ regulates T cell arrest and may suppress aberrant integrin activation.  Further 

studies are required to investigate the molecular mechanisms by which DGKζ modulates 

inside-out signaling and integrin activation.  

 

1.7. DGKs and development 

1.7.1. T cell Development 

During T cell development in the thymus, each thymocyte expresses a TCR with 

a single specificity.  These TCRs arise from the random rearrangement of gene 

segments resulting in enormous potential for diversity of sequence. The selection of 

thymocytes from this large number of developing cells with useful but self-tolerant TCRs 

is essential for a productive immune response to pathogens that does not cause 

autoimmunity.  Signaling through the TCR of developing T cells directs the deletion of 

cells that cannot recognize peptide presented by self-MHC (termed positive selection) 

and cells that are potentially autoreactive (termed negative selection).  The TCR-

mediated, DAG-activated RasGRP1 is a critical molecule for the positive selection of T 

cells (Dower et al., 2000; Priatel et al., 2006).  In addition, Ras/ERK signaling is 

important for both positive and negative selection of T cells (Daniels et al., 2006; 

Mariathasan et al., 2001; Werlen et al., 2000).  Strong but transient ERK signals induce 

negative selection, whereas weaker but sustained ERK signals promote positive 

selection (Werlen et al., 2000; Daniels et al., 2006; Mariathasan et al., 2001).  

Recruitment of activated Ras to the plasma membrane may lead to strong selecting 
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signals, while recruitment to both the plasma membrane and intracellular regions may 

lead to weak selecting signals (Daniels et al., 2006).   Together, these data suggest that 

alterations in DAG signaling by DGKs could alter thymocyte selection by altering 

strength of signal and Ras-GTP localization.   

Expression of both DGKα and DGKζ is highly regulated during thymocyte 

development. DGKα mRNA is expressed at low levels in the earliest double negative 

(DN) stage of development and increases as thymocyte development progresses to the 

double positive (DP) and CD4 and CD8 single positive (CD4SP and CD8SP) stages 

(Outram et al., 2002; Wu et al., 2009; Lattin et al., 2008; Su et al., 2004).  Two isoforms 

of DGKζ are expressed in developing thymocytes, a short form and long form that share 

the same domains but are distinguished by the length of the N-terminal region (Zhong et 

al., 2002).  The long isoform is more highly expressed than the short isoform in DN 

thymocytes; as development continues, expression of the short isoform progressively 

increases while expression of the long isoform decreases (Zhong et al., 2002).  Whether 

this switch in isoform has functional implications is unknown. 

While both molecules demonstrate regulated expression during development, 

deficiency of DGKα or DGKζ alone does not grossly alter thymocyte selection, although  

a decrease in CD8SP thymocytes in mice deficient in DGKζ has been observed 

(Olenchock et al., 2006; Zhong et al., 2003).  DGKα and DGKζ may cooperate to control 

selection, as simultaneous deletion of DGKα and DGKζ leads to a strong block at the DP 

stage of thymocyte development (Guo et al., 2008).  Interestingly, upregulation of CD69, 

CD5, and TCRβ – events correlated with productive positive selection – are unaffected, 

and this defect is likely due to increased cell death once thymocytes reach the TCRβhi 

stage of DP development (Guo et al., 2008).  Positive selection can be tested using 

female mice that have a transgenic TCR specific for the H-Y antigen, which is only 
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expressed by males.  Female DKO mice crossed to the H-Y transgene have decreased 

CD8SP compared to wildtype, but whether this is due to a failure of positive selection or 

to enhanced negative selection is unclear.  Mice with RasGRP1 overexpression do not 

have defects in positive selection, suggesting that DGK deficiency may lead to 

alterations in signaling through molecules other than RasGRP1 (Klinger et al., 2004; 

Guo et al., 2008).   Although further study is needed, exogenous addition of PA to 

DGKα- and DGKζ-deleted fetal thymic organ cultures partially rescued development of 

SP thymocytes, indicating that lack of PA production during TCR signaling could lead to 

the observed phenotype (Guo et al., 2008).  In summary, these data provide strong 

evidence that DGKα and DGKζ have a cooperative role in controlling the selection of 

developing thymocytes. 

 DGKs are also invoved in the development of invariant natural killer T cells 

(iNKT), a rare subset of T cells that function at the interface of innate and adaptive 

immunity.  The PKCθ/NF-κB pathway plays a critical role in iNKT development at 

multiple stages (Bendelac et al., 2007).  As DAG activates PKCs, a recent study 

investigated the role of DGKα and DGKζ in iNKT development (Shen et al., 2011).  

Although deficiency of DGKα and DGKζ alone does not markedly affect iNKT 

development, simultaneous deletion of both isoforms reveals a cell-intrinsic defect in 

iNKT development at the early CD44loNK1.1− stage.  After TCR stimulation, thymocytes 

lacking both DGKα and DGKζ had increased ERK and IκBα phosphorylation compared 

to wildtype cells, suggesting that DGKs may enhance iNKT development through 

suppression of these pathways.  Consistent with this notion, mice with constitutively 

active IKKβ had iNKT development that resembled that of DGKα and DGKζ double 

deficient mice, although there was not a correlation when all surface markers were 

investigated.  In contrast, early iNKT development was unaffected in mice with 
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constitutively active k-Ras; instead, these mice displayed a severe block at the transition 

from CD44hiNK1.1− to CD44hiNK1.1+ iNKT cells.  These data suggest that DGKα and 

DGKζ may regulate the PKCθ/IKKβ/NF-κB axis during early iNKT development and the 

RasGRP1/Ras pathway during late iNKT development.  However, further study using 

genetic and pharmacologic approaches is required to determine if increased PKCθ and 

RasGRP1 activation is causal for the observed defect in iNKT development with DGKα 

and DGKζ deletion.
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1.8. Aims of this Thesis 

TCR-mediated T cell activation is essential for a productive adaptive immune 

response.  Phosphoinositide lipid based signaling, including cascades initiated by the 

synthesis of DAG, plays a critical role in transducing signals from the TCR.  As such, 

regulation of these lipid molecules would be expected to play a large role in TCR 

signaling.  Evidence obtained over the past decade has indicated that not only the 

synthesis of DAG and other lipids, but the metabolism of these lipids as well, is important 

for temporal and spatial control of signal transduction.  In T cells, DGKα and DGKζ 

metabolize DAG to PA and terminate DAG-mediated signaling.  Deletion of either 

isoform enhances DAG-mediating signaling, leading to resistance to anergy, augmented 

T cell effector responses to pathogen, and increased function of chimeric antigen 

receptor (CAR)-expressing T cells in cancer immunotherapy.  These data suggest 

overlapping roles for DGKα and DGKζ in T cells.  However, given these isoforms’ distinct 

domain architectures that direct their differential regulation in enzymatic studies, isoform-

specific functions may exist as well.  Further investigation of isoform-selective roles in T 

cells is critical for developing therapies targeting DGKs because of their clear in vivo 

roles. 

The first results section of this thesis is devoted to investigating dominant and 

selective roles for the ζ isoform of DGK in T cells.  We investigate the role of DGK 

isoforms in vivo during nTreg development as well as in vitro in TCR signaling, which is 

essential for nTreg development.  We describe that DGKζ and not DGKα suppresses the 

development of nTreg.  Second, we describe a dominant role for DGKζ and not DGKα in 
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suppressing Ras-mediated signaling downstream of the TCR, which improves our 

understanding how DGKs function and how DAG-activated pathways are regulated in T 

cells.  These findings delineate a clear separation of function for DGKα and DGKζ in T 

cells. 

In the second results section, we investigate the mechanisms that determine 

these differences in function.  To do so, we performed experiments investigating the 

expression, localization, interaction with other proteins, and effective enzymatic activity 

of DGKα and DGKζ.  We find two novel mechanisms – binding to RasGRP1 and 

effective enzymatic activity – that may direct the differential function of DGKα and DGKζ.  

These findings are not only important for the development of therapies targeting DGKs 

but also are of broad interest for understanding how DGKs are regulated.  In addition, 

these results provide clues of significance in understanding of how nTregs develop. 

In the third results section, we broaden our investigation to phosphoinositides 

and how they themselves may be regulated.  We examine the role of 

phosphatidylinositol transfer proteins (PITP) α and β, which may facilitate the transfer of 

phosphatidylinositol from the ER to the plasma membrane, in T cells using conditional 

genetic knockout mice.  We find that while PITPα and PITPβ are grossly dispensable for 

normal T cell development when individually deleted, simultaneous deletion of these 

molecules leads a loss of mature T cells in the thymus and periphery.  These findings 

indicate that PITPs have a critical role in T cells, and future work will investigate the 

mechanism of loss of T cells with PITP deletion. 

Together, our results provide further evidence that regulation of phoshoinositides 

and their metabolic products are essential for normal T cell signaling and development. 

Our studies of differential functions of DGKα and DGKζ suggest that local interactions 

with signaling molecules and changes in enzymatic activity can direct DGK function.  
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Consequently, this work provides a foundation for therapies that may target DGK 

isoforms to enhance T cell function. 
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1.9. Figures 

  

Figure 1.1: DGK isoforms are divided into five subtypes based on domains apart 
from the C1 and catalytic domains. 

RVH: recoverin homology domain.   PH: pleckstrin homology domain.  SAM: sterile α 
motif.  M: MARCKS homology domain.  ANK: ankyrin repeat domain.  PDZ-bind: PDZ-
binding domain.  Note: domain sizes are not to scale. 
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Figure 1.2: Diacylglycerol has a central role in TCR signaling.   

Engagement of the TCR leads to the activation of tyrosine kinases and the formation of 
a multimolecular complex including adapter proteins.  PLCγ1 is recruited to and 
activated by this complex and in turn hydrolyses the phospholipid PIP2 to form 
membrane-diffusible DAG and cytosolic IP3.  DAG activates proteins including 
RasGRP1, PKCs, and PKD.  Activation of RasGRP1 leads to Ras and AKT pathway 
activation.  Activation of PKCs leads to the activation of NF-κB and cytoskeletal 
repolarization.  Activation of PKD leads to integrin activation.  IP3, Ras, and PKC-θ 
signaling cooperate to promote T cell activation through the transcription factors NFAT, 
AP-1, and NF-κB, respectively.  DGKs phosphorylate DAG to form PA, thereby 
potentially regulating a broad set of signaling pathways downstream of the TCR. 
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CHAPTER II: A DOMINANT ROLE FOR THE ZETA ISOFORM OF DGK IN T CELL 

RECEPTOR MEDIATED SIGNALING 

2.1. Introduction 

As noted above, T cell activation requires engagement of the TCR with peptide 

presented within MHC proteins on APCs, which leads to the production of second 

messengers that activate pathways critical for the normal development, activation, 

differentiation, and proliferation of T cells.  DAG is essential for activation of diverse 

signaling cascades downstream of the TCR, including the Ras, NF-κB, and AKT 

pathways, which are integrated with other key signals to promote T cell effector function 

(Tognon et al., 1998; Coudronniere et al., 2000; Quann et al., 2009; Gorentla et al., 

2011).  Levels of DAG therefore must be finely tuned not only through its production but 

also its metabolism for appropriate control of a T cell response. 

T cells express high levels of α and ζ isoforms of DGK in addition to the δ 

isoform, whose function in lymphocytes remains unknown.  Deletion of DGKα or DGKζ in 

mice results in T cells with enhanced Ras and extracellular signal-regulated kinase 

(ERK) activation in response to TCR engagement (Zhong et al., 2003; Olenchock et al., 

2006; Zhong et al., 2002).  In addition, both molecules regulate the T cell effector 

response to pathogen in mice (Shin et al., 2012).  These data suggest that DGKα and 

DGKζ have overlapping roles in T cells.  Consistent with this notion, simultaneous 

deletion of DGKα and DGKζ in mice reveals a defect in thymocyte development at the 

double positive stage that is not seen in mice deficient in DGKα or DGKζ alone, 

suggesting a redundant function for these molecules in T cell development. 
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However, DGKα and DGKζ have distinct domain architectures that suggest 

differential regulation of these molecules, perhaps directing isoform-specific functions in 

addition to their redundant roles.  DGKα contains a calcium-responsive EF-hands 

regulatory domain, while DGKζ contains myristoylated alanine-rich protein kinase C 

substrate (MARCKS), ankyrin and PDZ-domains (please refer to the Chapter I for a 

detailed description of the known functions of these domains).  In Jurkat T cells, DGKζ 

was recently found to be the predominant regulator of DAG after TCR engagement, 

suggesting specific functions for this isoform (Gharbi et al., 2011).  No direct 

investigation of the relative role of DGKα and DGKζ has been performed in primary T 

cells, although differences in DGKα and DGKζ function in TCR signaling have been 

suggested (Olenchock et al., 2006).  Furthermore, whether isoform-specific functions 

exist in vivo is unknown.   

Here, we show that DGKζ has dominant roles over DGKα in regulatory T cell 

development and TCR signaling in primary T cells.  Deletion of DGKζ, but not DGKα, 

enhances thymic regulatory T cell development.  DGKζ also demonstrates quantitatively 

greater control over signaling downstream of Ras after TCR engagement.  Our findings 

suggest that DGKζ plays a selective role in suppression of Treg development and a 

predominant role in suppression of DAG-mediated Ras signaling. 
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2.2. Results 

2.2.1 In vivo functions of DGKα and DGKζ 

2.2.1.1 DGKζ but not DGKα suppresses nTreg development 

Deletion of DGKζ results in enhanced development of natural regulatory T cells 

(nTregs) (Schmidt et al., manuscript submitted).  To determine if DGKα similarly 

suppresses development of this lineage during thymocyte maturation, we examined the 

proportion of thymic FoxP3+ cells within the pool of CD4 single positive (CD4SP) T cells 

of wildtype, DGKα-deficient, and DGKζ-deficient mice (Fig. 2.1).  The percent of CD4SP 

thymocytes was similar in each genotype (Fig. 2.2).  As reported by Schmidt et al. 

(submitted), mice deficient in DGKζ have increased percentages of thymic FoxP3+ cells 

and CD25+FoxP3− cells, a population enriched for Treg precursors, compared to 

wildtype mice (Fig. 2.1 A, C-D).   In contrast, mice deficient in DGKα showed no such 

increase in the percentage of FoxP3+ cells in the thymus and an intermediate frequency 

of CD25+FoxP3− cells.  Splenic FoxP3+ cell percentages were also increased only by 

deficiency of DGKζ and not DGKα (Fig. 2.1 B and E).  These data demonstrate that 

DGKζ is unique in its ability to suppress development of nTregs and has distinct 

functions in vivo from DGKα. 

To understand whether DGKα and DGKζ have a dose dependent effect on Treg 

development, we investigated the thymi of mice with varying numbers of alleles of DGKα 

and DGKζ (Fig. 2.3).  We applied a multilinear regression model to our data with number 

of DGKα and DGKζ alleles removed as predictors and percentage of Tregs as the 
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dependent variable and determined the significance, magnitude, and interaction of 

removal of DGK isoforms on nTreg percentages (R^2=0.736, p=1.75x10^-12).  While 

deletion of DGKα alone did not significantly increase nTreg percentages (p=0.331), 

deletion of DGKζ alone significantly increases nTreg percentages (p=4.67x10^-12) with 

a magnitude of 1.89% per deleted DGKζ allele (95% confidence interval 1.49 - 2.29).  

These data suggest that DGKζ is unique in its ability to suppress nTreg development.  

We also found a significant interaction term between DGKα and DGKζ deletion 

(p=0.0027), such that in the absence of DGKζ alleles, deletion of DGKα alleles actually 

decreased nTreg percentages.  This is demonstrated by the fact that DGKα+/-DGKζ-/- 

mice have decreased nTreg percentages compared to DGKα+/+DGKζ-/- mice.  In 

comparison, DGKα-/-DGKζ+/- mice have a modest increase in nTreg percentages 

compared to DGKα-/-DGKζ+/+ mice.  Taken together, these data suggest that in the 

context of simultaneous deletion of both isoforms, the overriding effect of DGKζ deletion 

is to increase nTreg percentages, while the overriding effect of DGKα is to decrease 

nTreg percentages.  DGKα deletion may decrease nTreg percentages indirectly due to 

alterations in CD4 single positive (CD4SP) selection, as DGKα+/-DGKζ-/- mice have 

decreased CD4SP compared to DGKα+/+DGKζ-/- mice (summary data not shown). 

 

2.2.1.2 Examination of DGKζ re-expression on DGKζ-deficient nTreg development 

As the different domain architectures of these isoforms could direct their 

differential suppressive function in nTreg development, we further investigated which 

domains of DGKζ were required for this function.  We focused these experiments on the 

kinase and MARCKS domains of DGKζ as suppression of nTreg development could be 
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kinase function independent and the MARCKS domain has been shown to direct 

localization of DGKζ in Jurkat T cells (Ard et al., 2012; Gharbi et al., 2011).  We used 

DGKζ with a point mutation in the catalytic domain that disrupts DGKζ catalytic activity or 

DGKζ with serine to alanine mutations in the MARCKS domain that prevents 

phosphorylation of these sites.  After subcloning these constructs into a retroviral vector, 

we transduced DGKζ-deficient bone marrow cells, transferred these cells into lethally 

irradiated congenically labeled recipient mice, and waited 10 weeks for immune 

reconstitution.  We observed a roughly equal transduction of wildtype DGKζ, kinase-

dead DGKζ, and MARCKS domain mutant DGKζ into cells in these mice (data not 

shown).  Unfortunately, however, we observed a wide variation in the ratio of FoxP3+ 

cells within the transduced population to non-transduced population in both kinase-dead 

DGKζ and MARCKS domain mutant DGKζ groups, making interpretation of this data 

difficult (data not shown).  The wide variation could be due to effects of retroviral 

transduction, as mice with a greater degree of transduced cells also appeared to have 

the lowest ratio of FoxP3+ cells within the transduced population to non-transduced 

population, regardless of the vector that was used (data not shown). 

2.2.1.3 CD44hiCD8+ T cells are increased in DGKζ-deficient mice compared to DGKα 

deficient mice 

DGKζ-deficient mice have increased proportions of CD44hiCD8+ T cells but a 

decreased total number of CD8+ T cells (Riese et al., 2011).  We wished to determine 

whether DGKα-deficient mice have a similar CD8+ T cell phenotype.  In contrast to age-

matched DGKζ-deficient mice, DGKα-deficient mice demonstrated a significantly smaller 

increase in the proportion of CD44hi cells within CD8+ splenic T cells (Fig. 2.4).  
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Concordant with their CD44 expression phenotype, DGKα-deficient mice appeared to 

have an intermediate number of splenic CD8+ T cells between that of wildtype and 

DGKζ-deficient mice.  The differences in CD44 phenotype between DGKα- and DGKζ-

deficient CD8+ T cells therefore could be due to differences in lymphopenia within the 

CD8+ T cell compartment. Alternatively, cell-intrinsic differences in DGK isoform function 

could lead to these differences.  Nevertheless, these data suggest that DGKζ contributes 

more than DGKα to control the CD44 activation marker phenotype of CD8+ T cells in 

vivo. 

 

2.2.2. DGKζ exhibits greater control over TCR-mediated signaling than DGKα  

2.2.2.1. DGKζ has greater quantitative control than DGKα over TCR-stimulated ERK 

phosphorylation 

TCR signaling is critical for the development of nTregs and the activation of T 

cells.  Both DGKα and DGKζ suppress DAG-mediated signaling after TCR engagement 

(Olenchock et al., 2006; Zhong et al., 2003; Gharbi et al., 2011), but a direct comparison 

of the role of DGKα and DGKζ in primary T cells has not yet been performed.  We 

predicted that differences in the ability of DGKα and DGKζ to regulate TCR signaling 

might mirror the observed differences in in vivo function, such that DGKζ would exhibit 

greater control over DAG-mediated TCR signaling than DGKα.  To test this possibility, 

we examined the phosphorylation of ERK in T cells after TCR stimulation, an assay used 

previously to examine modulation of DAG-mediated signaling by DGKs (Olenchock et 

al., 2006; Zhong et al., 2003; Riese et al., 2011; Guo et al., 2008; Zha et al., 2006; 

Gharbi et al., 2011).  Using anti-CD3 antibody at a suboptimal concentration, we 



	  
	  

40	  

stimulated T cells from mice with varying numbers of alleles of DGKα and DGKζ and 

measured ERK phosphorylation by flow cytometry.  This allelic series allowed us not 

only to determine which isoform has greater control of ERK phosphorylation but also to 

quantify the relative magnitude of DGKα and DGKζ suppression of ERK 

phosphorylation.  Deletion of DGKζ resulted in a large increase in the percentage of cells 

with phosphorylated ERK (phospho-ERK), while deletion of DGKα resulted in a 

consistently lower increase in phospho-ERK positive CD4+ and CD8+ T cells (Fig. 2.5 A-

D). 

To analyze the allelic series statistically, we applied a multiple linear regression 

model with the number of DGKα and DGKζ alleles removed as predictors and the 

natural log of the percentage of phospho-ERK positive cells as the dependent variable 

(Table 2.1).  As mice with complete DGKα and DGKζ deletion have a severe block in 

thymic development (Guo et al., 2008), we eliminated these mice from our analysis.  

According to the regression model, deletions of DGKα and DGKζ alleles were strong and 

significant predictors of the percentage of phospho-ERK positive cells for both CD4+ and 

CD8+ T cells (R-squared=0.768, p=5.74 × 10-9 and R-squared=0.811, p=3.98 × 10-10, 

respectively).  Deletion of DGKα or DGKζ significantly increased ERK phosphorylation in 

CD4+ and CD8+ T cells (Table 2.1), consistent with previous reports (Zhong et al., 2003; 

Riese et al., 2011; Olenchock et al., 2006).  However, the magnitude of the effect of 

DGKζ deletion was much greater than that of DGKα deletion, with a 2.6-fold and 3.3-fold 

greater effect of DGKζ deletion than DGKα deletion on the natural log of phospho-ERK 

in CD4+ and CD8+ T cells, respectively.  The increased ERK phosphorylation observed 

in DGKζ-deficient T cells was not due to the higher percentage of CD44hiCD8+ activated 

splenic T cells, as the percentage of phospho-ERK positive cells was similar between 

the CD44hi and CD44lo populations, regardless of genotype (Fig. 2.6).  Taken together, 
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these results provide strong evidence that DGKζ plays a more dominant role than DGKα 

in suppressing signals leading to ERK phosphorylation in CD4+ and CD8+ T cells. 

 

2.2.2.2. DGKζ exhibits greater control over TCR-stimulated AKT and S6 phosphorylation 

than DGKα 

Simultaneous deletion of DGKα and DGKζ leads to increased signaling through 

the AKT pathway, likely due to increased Ras-MAPK-ERK signaling (Gorentla et al., 

2011).  We therefore tested whether AKT signaling, like ERK, was also predominantly 

affected by DGKζ rather than DGKα deletion.  We also examined the phosphorylation of 

S6 ribosomal protein, an event downstream of both AKT and ERK signaling.  At both 5 

and 15 minutes after TCR stimulation, we observed a large increase in the percentage of 

cells with phosphorylated AKT and S6 in DGKζ-deficient T cells compared to wildtype T 

cells (Fig. 2.7 A and B, top and middle panels, C-D).  In contrast and consistent with 

DGKα’s more minor role in ERK phosphorylation, only a slight increase in percentages 

of phospho-AKT and phospho-S6 positive cells was observed in DGKα-deficient T cells.  

Of note, the phosphorylation of SH2 domain-containing leukocyte protein of 76kDa 

(SLP76) was similar among wildtype, DGKα-, and DGKζ-deficient T cells after TCR 

stimulation (Fig 2.7 A and B, bottom panels), indicating that signals proximal to DAG 

synthesis are unaltered with deletion of DGKs.  While we observed striking increases in 

the proportion of phospho-AKT and phospho-S6 positive cells in DGKζ-deficient CD8+ T 

cells, a more modest change was observed in CD4+ T cells.  This result may be due to 

differences in proximal signaling events, as less SLP76 phosphorylation was observed in 

CD4+ compared to CD8+ T cells (Fig. 2.7 A and B, bottom panels), and/or from the 
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increased proportion of Tregs, which are known to be less responsive to TCR stimuli 

than conventional CD4+ T cells, in DGKζ-deficient CD4+ T cells.  This examination of 

ERK, AKT, and S6 phosphorylation demonstrates a consistently greater role for DGKζ 

than DGKα in suppressing DAG-mediated signaling, particularly signaling downstream of 

Ras, after TCR engagement.  Interestingly, we observed that both DGKα- and DGKζ-

deficient T cells have similar increases in the phosphorylation of IκBα (Fig. 2.8), 

suggesting that DGKζ’s dominant suppressive role does not extend to DAG-mediated 

activation of PKC-θ and its downstream targets. 

We wished to determine which domains of DGKζ were required for its dominant 

suppressive role in TCR signaling as a clue to how DGKα and DGKζ function differently.  

Similar to our investigation of nTreg development we focused on the kinase and 

MARCKS domains of DGKζ as DGKζ has been found to have a kinase-independent 

scaffolding role that regulates signaling and the MARCKS domain controls localization in 

Jurkat T cells (Ard et al., 2012; Gharbi et al., 2011).  To test whether suppression of 

DAG-mediated TCR signaling requires functional kinase activity, we created bone 

marrow chimeras with DGKζ-deficient bone marrow cells expressing either retroviral 

vector, wildtype DGKζ, kinase-dead DGKζ, or a non-phosphorylatable MARCKS domain 

mutant DGKζ and evaluated ERK, AKT, and S6 phosphorylation after TCR stimulation.  

While wildtype DGKζ rescued suppression of ERK, AKT and S6 phosphorylation in both 

CD4+ and CD8+ T cells, kinase dead DGKζ did not (Fig. 2.9 A-D).  Interestingly, cells 

expressing MARCKS domain mutant DGKζ displayed an intermediate phenotype and 

suppressed these phosphorylation events more than kinase dead but less than wildtype 

DGKζ.  These results indicate that suppression of TCR signaling requires DGKζ’s ability 

to phosphorylate DAG rather than a kinase-independent scaffolding function as well as 

an intact MARCKS domain.
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2.3. Discussion 

Although previous work has shown that both DGKα and DGKζ can serve as 

negative regulators of TCR-mediated signaling and T cell activation, a direct comparison 

of the roles of these two enzymes had not been previously reported.  In this work, we 

demonstrate that DGKζ possesses functions distinct from that of DGKα both in vivo and 

in vitro.  We found significantly enhanced development of nTregs in DGKζ-deficient 

mice, a phenotype that we did not observe in DGKα-deficient mice.  Moreover, DGKζ 

and not DGKα was the predominant suppressor of Ras-mediated signals after TCR 

engagement. 

TCR signals are critical for the development of nTregs (Jordan et al., 2001).  

Increased DAG signals in particular contribute to the development of nTregs, as DGKζ-

deficient mice have a cell-intrinsic increase in thymic Tregs (Fig. 2.1 A and Schmidt et 

al., submitted).  Notably, in contrast to DGKζ-deficient mice, DGKα-deficient mice have 

no increase in thymic Treg percentages.  We observed a significant increase in Treg-

precursor enriched CD25+FoxP3− cells in DGKζ-deficient mice, which correlated with 

increased thymic Treg percentages.  Surprisingly, DGKα-deficient mice also have a 

significant albeit lower increase in CD25+FoxP3− cells, and this increase does not 

translate to an increase in thymic Treg percentages. These data suggest that DGKζ 

deficiency increases nTreg development not only through increased generation of Treg 

precursors but also through modulation of other processes during nTreg development. 

When examining an allelic series of mice with different numbers of DGKα and 

DGKζ alleles, we found that while removal of DGKζ alleles increased the percentage of 
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nTregs in the absence of DGKα alleles, removal of DGKα alleles decreased the 

percentage of nTregs in the absence of DGKζ alleles.  As DGKα+/-DGKζ-/- mice have 

decreased CD4SP compared to DGKα+/+DGKζ-/- mice, these results could be due to 

alterations in selection of CD4SP.  Although mice deficient in DGKα or DGKζ alone 

display no gross defects in selection, deletion of both DGKα and DGKζ leads to a severe 

block at the DP to SP transition, likely due to selection defects (Guo et al., 2008).  Given 

DGKα and DGKζ’s redundant role in selection, deletion of increasing numbers of DGK 

alleles in our series may uncover these defects.  Nevertheless, our data would suggest 

that these selection defects are not linked to nTreg percentages, as deletion of DGKα 

leads to opposite effects on nTreg percentages than deletion of DGKζ.  As DGKα- and 

DGKζ-deficiency have similar effects on selection but disparate effects on nTreg 

development, DGKα and DGKζ may differentially regulate downstream pathways that 

are not involved in selection but do function in nTreg development.  Alternatively, the 

signals upstream of DGKs that control nTreg development and T cell selection could be 

different, perhaps directing the function of both DGK isoforms during selection but only 

DGKζ during nTreg development.  Further experiments are needed to investigate these 

possibilities. 

We also observed that DGKα and DGKζ play different roles in suppressing Ras-

mediated TCR signaling.  Deletion of DGKζ had a much greater effect than deletion of 

DGKα on ERK, AKT, and S6 phosphorylation after TCR engagement, suggesting a 

dominant role for DGKζ in this process.  These data are consistent with previous reports 

in Jurkat cells indicating that DGKζ is the main controller of PA production from DAG at 

the TCR, as removal of DGKζ could lead to a greater increase in DAG than removal of 

DGKα (Gharbi et al., 2011).   In addition, our findings are also concordant with previous 

studies indicating that DGKζ-deficiency more profoundly increases IL-2 production than 
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DGKα-deficiency after TCR and co-stimulation (Olenchock et al., 2006).  Our studies 

also suggest that phosphorylation of the MARCKS domain is important for DGKζ 

suppression of ERK, AKT and S6 phosphorylation.  Future experiments will determine 

how the MARCKS domain regulates DGKζ function. 

Differences in signaling phenotypes between T cells deficient in DGKα or DGKζ 

could provide further clues as to the molecular pathways that control nTreg 

development.  Two possibilities are that (1) DGKα and DGKζ regulate the same 

pathways but with different thresholds that are required for nTreg development, and/or 

(2) DGKα and DGKζ regulate separate pathways that differentially control nTreg 

development.  As signaling through ERK contributes to the development of nTregs in a 

dose-dependent manner (Schmidt et al., submitted), DGKζ-deficient mice might display 

increased nTreg development compared to DGKα-deficient mice due to DGKζ’s more 

potent role in suppression of ERK signaling, leading to an increase in percentage of 

developing cells with ERK signaling above a certain threshold required for nTreg 

development.  Interestingly, both DGKα- and DGKζ-deficient T cells have similar 

increases in the phosphorylation of IκBα, signaling through which is also essential for 

nTreg development.  Thus, while deletion of DGKζ increases TCR-mediated signaling 

through both ERK and NF-κB pathways (Schmidt et al., submitted), deletion of DGKα 

may increase TCR-mediated signaling primarily through NF-κB.  As DGKζ deficiency 

increases nTreg development and DGKα deficiency does not, these data suggest that 

activation of the NF-κB pathway alone is insufficient to increase Treg development.  

Rather, NF-κB and ERK signaling may need to be simultaneously engaged to increase 

nTreg generation. 

The data presented here demonstrate that DGKα and DGKζ differentially 

regulate TCR signaling and nTreg development.  Our studies suggest that nTreg 
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development is controlled by DGKζ at a step after the FoxP3-CD25+ precursor stage.  

Future experiments will elucidate how and why DGKζ and not DGKα is involved in the 

FoxP3-CD25+ to FoxP3+CD25+ transition.  These results also have implications for the 

development of DGK-specific inhibitors for therapeutic use, as DGKα inhibition would be 

expected to have a much different effect on nTreg development and functions requiring 

TCR signaling than DGKζ inhibition. 
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2.4. Figures 

 

 

Figure 2.1: DGKα-deficient mice have no increase in Treg percentages, unlike 
DGKζ-deficient mice, but do have increased Treg precursor numbers.  

(A) Top: Representative flow cytometric profiles of freshly isolated thymocytes gated on 
live singlet cells.  Bottom: FoxP3+ cells gated on CD4 single positive thymocytes.  (B) 
Top: Representative flow cytometric profiles of freshly isolated splenocytes gated on live 
singlet cells.  Bottom: FoxP3+ cells gated on CD4 single positive splenocytes.  (C) 
Summary data of percentage of FoxP3+ cells among CD4SP in thymi.  (D) Summary 
data of percentage of CD25+FoxP3− cells (Treg precursors) among CD4SP in thymi.  (E) 
Summary data of percentage of FoxP3+ cells among CD4SP in spleen.  N=8 from 3 
independent experiments for FoxP3 expression and N=4 from 2 independent 
experiments for CD25 expression.  (*p<0.05, **p<0.01, ***p<0.001,, one-way ANOVA 
with Tukey’s post-test). 
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Figure 2.2: Wildtype, DGKα-deficient, and DGKζ-deficient mice have similar 
percentages of CD4 single positive cells.  

N=8 from 3 independent experiments. One-way ANOVA with Tukey’s post-test. 
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Figure 2.3: Allelic series reveals a dose-dependent effect of loss of DGKζ but not 
DGKα.  

(A) Top: Representative flow cytometric profiles of freshly isolated thymocytes gated on 
live singlet cells.  Bottom: FoxP3+ cells gated on CD4 single positive thymocytes.  (B) 
Summary data of percentage of FoxP3+ cells among CD4SP in thymus.  (C) A 
multilinear regression was performed using the number of DGKα and number of DGKζ 
alleles removed as predictors and the natural log of the percentage of FoxP3+ cells as 
the dependent variable.  Data were fit according to the model z = ax + by + C.  The 
magnitude of coefficients and significance of the independent variables are shown. N=8 
from 3 independent experiments for FoxP3 expression. (*p<0.05, **p<0.01, ***p<0.001,, 
one-way ANOVA with Tukey’s post-test). 
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Figure 2.4: DGKζ-deficient CD8+ T cells have increased CD44 expression 
compared to DGKα-deficient CD8+ T cells.   

Freshly isolated splenocytes were stained with antibodies to TCRβ, CD8 and CD44 and 
examined by flow cytometry.  Representative flow plots shown gated on live 
CD8+TCRβ+ splenocytes.  Summary data of the percent of CD44hi cells among CD8+ T 
cells, number of CD8+ T cells, and number of CD44hiCD8+ are shown.  N=5-6 from 3 
independent experiments.  (*p<0.05, ***p<0.001, one-way ANOVA with Tukey’s post-
test) 
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Figure 2.5: DGKζ has a quantitatively greater role in suppression of ERK 
phosphorylation than DGKα.   

Splenic cells were freshly isolated, rested for two hours in serum-free media, and 
stimulated with anti-CD3 antibody for 15 minutes.  Representative flow cytometric plots 
of ERK phosphorylation shown gated on (A) CD4 single positive splenocytes or (B) CD8 
single positive splenocytes.  Genotypes are indicated at the top and percentages 
indicate the percent of phospho-ERK positive cells at 15 minutes.  The phospho-ERK 
positive gate, indicated by the dotted line, was defined based on maximum stimulation 
using PMA.  Summary data of phospho-ERK positive cells is shown for CD4 cells (C) 
and CD8 cells (D).  For statistical analysis, see Table 1.  PMA: phorbol myristate 
acetate.  N=4-5 for each genotype from 2 independent experiments. 
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Table 2.1: Multiple linear regression of number of DGKα and DGKζ alleles deleted 
predicting percent of ERK phosphorylation.   

Dependent Variable Independent Variable Coefficient ± SE P Value 
Log %pERK+ of CD4 
cells 

# DGKα Alleles 
Deleted 

0.270 ± 0.075 0.00130 

 # DGKζ Alleles Deleted 0.705 ± 0.077 1.23 × 10-9 
 Constant 1.31 ± 0.13 2.70 × 10-10 
Log %pERK+ of CD8 
cells 

# DGKα Alleles 
Deleted 

0.287 ± 0.089 0.00330 

 # DGKζ Alleles Deleted 0.958 ± 0.091 6.99 × 10-11 
 Constant 1.44 ± 0.16 1.26 × 10-9 

A multilinear regression was performed using the number of DGKα and number of DGKζ 
alleles removed as predictors and the natural log of the percentage of phospho-ERK 
(pERK) positive cells as the dependent variable.  Data were fit according to the model z 
= ax + by + C.  The magnitude of coefficients and significance of the independent 
variables are shown. 
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Figure 2.6: ERK phosphorylation after TCR stimulation is independent of level of 
CD44 expression on CD8+ T cells.   

Splenic cells were freshly isolated, rested for two hours in serum-free media, stimulated 
with anti-CD3 antibody 15 minutes, and analyzed by flow cytometry using antibodies to 
phospho-ERK, CD8, CD4, and CD44.  Percent phospho-ERK positive cells of CD44lo or 
CD44hi CD8+ cells is shown.  N=4-5 from 2 independent experiments. 
 
 
 

0
10
20
30
40
50

DGK
DGK

CD44hi
CD44lo

%
pE

RK
+

Wildtype KODGK KO

B

loading control

Fig. S3.  ERK phosphorylation after TCR stimulation is independent of level of CD44 expression on 

Fig. S4.  Phosphorylation of I B DGK
Purified CD4+CD25 CD45RBhi

of 2 experiments.



	  
	  

54	  

Figure 2.7: DGKζ suppresses AKT and S6 phosphorylation more potently than 
DGKα.   

Splenic cells were freshly isolated, rested for two hours in serum-free media, and 
stimulated with anti-CD3 antibody for 5 or 15 minutes.  Representative flow cytometric 
plots of SLP76, AKT(S473), and S6 phosphorylation gated on (A) CD4 single positive 
live splenocytes or (B) CD8 single positive live splenocytes.  (C-D) Summary data of 
phospho-AKT and phospho-S6 positive cells gated on CD4SP and CD8SP, respectively.  
Phospho-positive gates were defined based on maximum stimulation using PMA.  
(*p<0.05, **p<0.01, ***p<0.001, Repeated-Measures ANOVA with Tukey’s post-test, 4 
independent experiments). 
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Figure 2.8: Phosphorylation of IκBα is increased similarly in DGKα- and DGKζ-
deficient T cells.   

Purified CD4+CD25-CD45RBhi T cells were stimulated by crosslinking using biotinylated 
antibodies to CD3, CD4, and CD28 and analyzed by western blot at the indicated 
timepoints.  Representative of 2 experiments.  Data acquired and analyzed by Amanda 
Schmidt. 
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Figure 2.9: Kinase activity is required for DGKζ suppression of signaling 
downstream of Ras.  

A)

B)

C)

D)

GFP

+

-

CD44pE
R

K

Vector DGK -WT DGK -KD DGK -SA

1.5

0.0

0.5

1.0

R
at

io
 %

pE
R

K+
G

FP
+:

G
FP

-
R

at
io

 %
pE

R
K+

G
FP

+:
G

FP
-

0.0

0.5

1.0

1.5

+

-

Vector DGK -WT DGK -KD DGK -SA

pAKT(S473)

pS6

0.0

0.5

1.0

1.5

R
at

io
 %

pA
KT

+
G

FP
+:

G
FP

-

0.0
0.5
1.0
1.5
2.0

R
at

io
 %

pS
6+

G
FP

+:
G

FP
-

GFP+ Unstim
GFP- Unstim
GFP+ 15 Min
GFP- 15 Min

pAKT(S473)

pS6 0.0

0.5

1.0

1.5

R
at

io
 %

pS
6+

G
FP

+:
G

FP
-

0.0

0.5

1.0

1.5

R
at

io
 %

pA
KT

+
G

FP
+:

G
FP

-

Vector
DGK -WT
DGK -KD
DGK -SA

11.3 5.42

4340.3

14.4 5.16

3248.4

6.91 3.39

11.678.1

13.9 6.11

27.852.2

18.5 10.1

14.257.2

20.5 8.48

18.552.6

10.4 9.37

47.432.9

19.5 6.28

28.146.1

31.9 7.62

14.745.7

25.5 7.72

19.647.2

5.41 0.732

14.879

22.1 7.67

25.344.9

32.9 12

7.9947.1

35 15.8

13.235.9

21 2.44

11.864.7

24.8 5.82

19.250.1



	  
	  

57	  

CD45.2+DGKζ−/− bone marrow was transduced with empty virus (vector) or virus 
encoding wildtype DGKζ (DGKζ-WT), non-phosphorylatable MARCKS domain mutant 
DGKζ (DGKζ-SA) or kinase-dead DGKζ (DGKζ-KD) and transferred into CD45.1+ 
irradiated host mice.  After reconstitution, splenocytes were isolated and stimulated for 
15 minutes using an anti-CD3 antibody.  Representative flow cytometric plots of ERK, 
AKT, and S6 phosphorylation gated on (A and C) CD45.2+CD4+ or (B and D) 
CD45.2+CD8+ live cells and then GFP+ or GFP− cells as indicated.  Right: The ratio of 
the percent of phospho-ERK, phospho-AKT, and phospho-S6 positive cells of GFP+ to 
GFP− cells in (A and C) CD45.2+CD4+ or (B and D) CD45.2+CD8+ live cells.  Ratio=1 and 
ratio<1 corresponds to similar or less phospho+ cells in transduced to non-transduced 
cells, respectively.  Phospho-positive gates were defined based on maximum stimulation 
using PMA.  Differences between all groups were significant with p<0.01. 
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2.5. Materials and Methods 

Mice 

Mice deficient in DGKα or DGKζ were described previously and backcrossed 7 

times to C57Bl/6 (Olenchock et al., 2006; Zhong et al., 2003).  Mice with varying number 

of alleles of DGKα and DGKζ were generated by crossing mice deficient in DGKα or 

DGKζ.  DGKα−/−OT-II and DGKζ−/−OT-II mice were generated by crossing C57Bl/6 OT-

II to DGKα−/− or DGKζ−/− mice, respectively.  All experiments were performed using 

age-matched mice.  Animal maintenance and experimentation were performed in 

accordance with the Institutional Animal Care and Use Committee at the University of 

Pennsylvania. 

Flow cytometric analysis of ERK, AKT, and S6 phosphorylation 

Spleens were isolated, red blood cells were removed using ACK lysis buffer 

(155mM ammonium chloride, 10mM potassium bicarbonate, 1mM EDTA), and 

splenocytes were rested for two hours in serum-free media.  For experiments examining 

ERK phosphorylation in an allelic series, rested splenocytes were stimulated for 15 

minutes with anti-CD3 (500A2) in RPMI.  For experiments examining AKT and S6 

phosphorylation in wildtype, DGKα-deficient, DGKζ-deficient cells, or splenocytes 

isolated from bone marrow chimeras, rested splenocytes were stimulated for 5 or 15 

minutes with anti-CD3 (500A2) in the presence of Live/Dead Aqua in PBS.  Similar 

results were obtained when cells were stimulated in RPMI.  Stimulation was stopped and 

cells were fixed by adding 3mL of 1X BD Phosflow Lyse/Fix buffer and incubating cells 

for 10-15 minutes.  Cells were washed with FACS buffer and surface stained with anti-

CD4-PerCPCy5.5, anti-CD8a-PECy7, and CD44-AF700.  For cells from bone marrow 

chimeras, cells were stained with anti-CD45.2-Pacific Blue, anti-CD4-PerCPCy5.5, and 
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anti-CD8a-PECy7.  Cells were then washed, permeablized in BD Perm/Wash buffer for 

30 minutes, and stained with rabbit anti-phospho-ERK (Cat# 9101S, Cell Signaling) 

1:100, and/or anti-phospho-AKT(S473)-PE (BD Pharmingen) 1:5 and rabbit anti-

phospho-S6 (Cell Signaling) 1:100.  Finally, cells were washed and stained with anti-

rabbit-PE or anti-rabbit-AF647 antibodies.  Flow cytometry was performed using an 

LSRII cytometer (BD Biosciences) and analyzed using FlowJo software (Treestar). 

Flow cytometric analysis of thymi and spleen 

Thymi and spleens from wildtype, DGKα-deficient, or DGKζ-deficient mice were 

freshly isolated and surface stained using antibodies to TCRβ, CD4, CD8, CD44 and 

CD25.  Cells were then fixed using FoxP3 fixation/permeabilization (eBiosciences) and 

stained using anti-FoxP3 (eBiosciences) in the presence of FoxP3 staining buffer 

(eBiosciences).  Flow cytometry was performed using an LSRII cytometer (BD 

Biosciences) and analyzed using FlowJo software (Treestar). 

Retroviral transduction of bone marrow and creation of bone marrow chimeras 

C57Bl/6 8-12-week-old DGKζ-deficient mice were injected intraperitoneally with 

5mg of 5-fluorouracil.  Four days later, cells from femurs, tibias, and hip bones were 

isolated by mortar and pestle (Lo Celso and Scadden, 2007).  Cells were resuspended 

at 2-5×106 cells/mL in stimulation media (Iscove's Modified Dulbecco's Media 

supplemented with 15% fetal bovine serum, 10ng/mL IL-3, 10ng/mL IL-6, and 50ng/mL 

SCF) and incubated overnight.  The following day, cells were harvested in resuspended 

at 2-5×106/mL in fresh stimulation media plated in 3mL per well of a 6 well plate.  Cells 

were infected by addition of 1mL of retrovirus containing supernatant and polybrene at a 

final concentration of 4mg/mL, centrifugation at 1300g for 2 hours, and incubation 

overnight.  The next day, cells were infected again according to the same protocol.  Four 

hours after spinfection, cells were injected retroorbitally into CD45.1 congenically 
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marked 950 rads irradiated recipient mice.  Mice were maintained on sterile water 

supplemented with trimethoprim/sulfamethoxazole for 2-3 weeks. 

Constructs and Cloning 

DGKα (kind gift from Anthony DeFranco) or DGKζ (Thermo Scientific, cat# 

MMM1013-9200165) were subcloned into pEGFP-C1 (Clontech) or MIGR1 for 

transduction of bone marrow.  eGFP-DGKα or eGFP-DGKζ were subcloned into pK1 

retroviral vector (kind gift from Warren Pear) to create pK1-eGFP-DGKα or pK1-eGFP-

DGKζ for transduction of primary murine T cells.  Wildtype DGKζ or kinase-dead DGKζ 

(kind gift from Isabel Merida) were subcloned into MIGR1 for transduction of bone 

marrow. 
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CHAPTER III: MECHANISMS CONTROLLING DGK ISOFORM FUNCTION 

3.1. Introduction 

Modulation of DGKs has been shown to regulate T cell responses to cancer and 

the cytolytic ability of chimeric antigen receptor (CAR) transduced T cells (Riese et al., 

2011, 2013).  An understanding of isoform specific functions of DGKs in T cells is 

therefore important for the development of new therapies.  In the previous chapter we 

demonstrated that DGKζ and not DGKα has a dominant role in nTreg development and 

TCR signaling.  However, the mechanisms that dictate differences in DGK isoform 

regulation of TCR signaling, which we explore here, are not well understood.   

 

3.1.1 DGKζ and DGKα structure 

The domain architectures of DGKα and DGKζ may provide clues to how the 

functions of these molecules are regulated post-translationally.  DGKα and DGKζ share 

two domains, a C1 domain and a catalytic domain.  While the C1 domain is classically 

involved in DAG binding, in DGKs its primary role appears to be in protein-protein 

interactions (Zhong et al., 2008; Joshi and Koretzky, 2013).  The catalytic domain is 

comprised of a subdomain with a true ATP binding site for catalysis, and an accessory 

domain that cannot bind ATP but may be involved in the enzymatic conversion of DAG 

to PA.  The catalytic subdomains of DGKα and DGKζ have 66% sequence identity, while 

the accessory subdomains have 45% sequence identity.  These data suggest that DGKα 

and DGKζ may have different enzymatic activities or may act on DAGs with varying acyl 
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chain lengths.  However, neither DGKα nor DGKζ display specificity toward acyl side 

chain composition (Shulga et al., 2011).  

The remaining domains of DGKα and DGKζ are distinct (please refer to the 

Chapter I for a detailed description of the known functions of these domains).  DGKα 

contains an EF hand domain that binds Ca2+ and regulates its translocation to the 

plasma membrane (Sanjuán et al., 2001; Sanjuan et al., 2003).  DGKζ has three unique 

domains: a myristoylated alanine-rich C-kinase substrate (MARCKS) domain, a PDZ 

domain, and an Ankyrin repeat domain.  Akin to the EF hands of DGKα, the unique 

MARCKS, PDZ, and Ankyrin domains of DGKζ may regulate localization of DGK activity. 

3.1.2 Localization of DGKs 

Localization of DGK activity is likely important for function. Functional TCR 

signaling requires the localized production of DAG at the site of the immunological 

synapse (IS).  For example, localized DAG synthesis after TCR stimulation is sufficient 

to cause reorientation of the microtubule-organizing complex (MTOC) to the IS, which is 

required for normal TCR signaling (Quann et al., 2009).  Moreover, treatment of TCR 

stimulated cells with an inhibitor of DGK activity results in diffuse DAG persistence at the 

IS and impaired re-orientation of the MTOC (Quann et al., 2011, 2009).  As such, DGKs 

likely play an essential role at the IS in metabolizing DAG and restricting DAG 

localization to the IS.  Translocation of DGKs to the IS therefore could be important for 

function.  In addition, interaction with molecules at the IS could similarly play a role in 

regulation DGK function.  For example, although DGKζ and DGKι have the same 

domain architectures, DGKζ has been found to regulate Ras signaling, while DGKι 

regulates Rap1 signaling.  This correlates with DGKζ’s ability to associate with 
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RasGRP1, which regulates Ras activation, and DGKι’s ability to associate with 

RasGRP3, which mediates Rap1 activation.  In addition to localization and protein 

interactions, another mechanism that could dictate DGK function in T cells is the relative 

protein expression of one isoform versus the other.  We predicted, given its dominant 

role in TCR signaling, that DGKζ would be expressed more highly than DGKα in the T 

cell populations we have studied.  In this chapter of this thesis we compare and contrast 

subcellular localization, protein expression levels, and association with key effectors of T 

cell activation of DGKα versus DGKζ. 
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3.2. Results 

3.2.1.  Expression levels of DGKα and DGKζ do not explain differences in function 

We reasoned that one potential explanation for the dominant impact of DGKζ on 

TCR signaling could be due to predominant expression of DGKζ in the cell compared to 

the alpha isoform.  Thus, if expression of DGKα is low compared to DGKζ, genetic 

deletion of DGKα would result in removal of fewer total numbers of DGK molecules and 

possibly more subtle effects on DAG-mediated TCR signaling than deletion of DGKζ.  To 

investigate this possibility, we examined protein expression of DGKα and DGKζ in T 

cells (Fig. 3.1).  As we lacked the necessary reagents to create a standard curve using 

known quantities of pure DGKα and DGKζ, we performed a western blot using lysate 

from 293T cells expressing either eGFP-DGKα or eGFP-DGKζ fusion protein and 

created a standard curve relating GFP intensity to DGKα or DGKζ intensity by 

densitometry.  We examined wildtype purified T cells using antibodies to DGKα or DGKζ 

and calculated a GFP intensity equivalent, allowing us to relate expression levels of 

DGKα and DGKζ.  To our surprise, DGKα was expressed at ~3-fold higher levels (range 

of 1.4 to 6.1) than DGKζ in T cells (Fig. 3.1).  

The incongruity between DGKα’s higher expression levels and its weaker role in 

suppression of TCR-mediated signaling downstream of Ras suggests that DGKα cannot 

function redundantly for DGKζ after TCR engagement.  To further test this notion, we 

created bone marrow chimeras with DGKζ-deficient bone marrow cells over-expressing 

DGKα or re-expressing DGKζ using a retroviral vector.  After immune reconstitution, we 

examined ERK, AKT, and S6 phosphorylation after TCR stimulation.  Even though 
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DGKα was overexpressed 2-3 fold higher than endogenous levels in transduced cells 

(Fig. 3.2 A), we observed no change in ERK, AKT, and S6 phosphorylation with DGKα 

overexpression in either CD4+ or CD8+ T cells (Fig. 3.2 B and C).  In contrast, re-

expression of DGKζ significantly suppressed ERK, AKT and S6 phosphorylation after 

TCR engagement.  Taken together, these results demonstrate that the relative 

expression levels of DGKα and DGKζ do not explain their differences in function and that 

DGKζ has a non-redundant and dominant role in suppression of Ras pathway-mediated 

TCR signaling. 

 

3.2.2.  DGKζ and DGKα localize similarly to the T cell-APC contact site 

After TCR stimulation, DAG is synthesized locally at the IS (Quann et al., 2009), 

and translocation of DGK molecules to this T cell-APC contact site could be one 

mechanism of regulation of DGK function.  We investigated this possibility in primary T 

cells.  We expressed either eGFP-DGKα or eGFP-DGKζ fusion proteins in OT-II 

transgenic TCR, DGKζ-deficient CD4+ T cells and incubated these cells with ovalbumin-

peptide pulsed B cells to allow conjugates to form.  In unconjugated T cells, both DGKα 

and DGKζ were diffusely localized throughout the cell (Fig. 3.3).  After formation of the 

IS, both DGKα and DGKζ translocated to the proximal and distal poles of the cell (Fig. 

3.4 A).  Using unbiased analysis with an automated script, we quantified the amount of 

translocation by determining the average GFP intensity in thirds (proximal to the IS, 

middle of the cell, and distal to the IS) compared to the average GFP intensity of the 

whole cell.  Both DGKα and DGKζ equally and significantly localized to the T cell-APC 

contact site at 5, 15, and 30 minutes after conjugate formation (Fig. 3.4 B, Fig. 3.5 for 15 



	  
	  

66	  

and 30 minutes, and Fig. 3.4 C).  These results suggest that, as a percentage of total 

DGKα and DGKζ in the cell, DGKα and DGKζ grossly localize to similar degrees to the T 

cell-APC contact site after initiation of TCR signaling.   

 

3.2.3.  RasGRP1 associates with DGKζ at higher levels than with DGKα 

Our experimental data suggest that the proportion of total DGKα molecules that 

localize to the T cell-APC contact site is similar to the proportion of total molecules that 

localize to the contact site.  However, our data also demonstrate that DGKζ is expressed 

at lower levels than DGKα, suggesting that the total number of DGKζ molecules that 

localize to the contact site after TCR engagement is lower than the total number of 

DGKα molecules.  The dichotomy between having a fewer number of DGKζ molecules 

near the contact site but a greater role in TCR signaling could be explained by 

differential binding to RasGRP1, which activates the Ras pathway.  The association of 

DGKs with downstream DAG-activated molecules may allow DGKs to regulate these 

molecules (Gharbi et al., 2011; Regier et al., 2005), and in HEK-293 cells, DGKζ co-

immunoprecipitates with RasGRP1 (Topham and Prescott, 2001).  One possibility that 

could explain differences in function, therefore, is that DGKα does not associate with 

RasGRP1 as DGKζ does.  To test this notion, we expressed RasGRP1 in 293T cells, 

eGFP-DGKα transduced 293T cells, and eGFP-DGKζ transduced 293T cells and then 

co-immunoprecipitated complexes using an anti-GFP antibody (Fig. 3.6 A).  We 

consistently observed greater co-immunoprecipitation of RasGRP1 with eGFP-DGKζ 

than eGFP-DGKα (mean 2.94-fold greater RasGRP1 association, range 1.28 - 5.61), 

suggesting that RasGRP1 may more strongly associate with DGKζ than DGKα.  
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Unexpectedly, eGFP-DGKα and eGFP-DGKζ were detected at similar levels when co-

immunoprecipitated using anti-RasGRP1.  This finding could be due to the additional 

immunoprecipitation of lower molecular weight RasGRP1 species that do not complex 

with DGKα and DGKζ, thereby limiting the detection of differences between RasGRP1-

DGKα and RasGRP1-DGKζ associations.  Overall, these results suggest that 

differences in DGKα and DGKζ binding to RasGRP1 may correlate with DGKζ’s 

predominant functions in T cells. 

 

3.2.4.  DGKζ is more effective at generating PA than DGKα after TCR stimulation 

We speculated that differences in ability to metabolize DAG between DGKα and 

DGKζ could also explain why a fewer number of DGKζ molecules at the T cell-APC 

contact site would have more of an effect on TCR signaling than a larger number of 

DGKα molecules.  As DGKs may undergo posttranslational modifications after TCR 

stimulation, in vitro measurement of enzymatic activity is difficult.  We therefore 

investigated DGKα and DGKζ’s effective enzymatic activity, defined by the in vivo 

production of PA after TCR engagement.  We predicted the following: PA would increase 

after stimulation in wildtype T cells; PA would increase slightly less than wildtype in 

DGKα-deficient T cells due to remaining highly functional DGKζ, even though a large 

total number of DGK molecules have been removed; and PA would barely increase in 

DGKζ-deficient T cells due to the remaining less functional DGKα, even though a small 

total number of DGK molecules have been removed.  Consistent with our hypothesis, 

PA levels increased in wildtype cells, slightly less in DGKα-deficient cells, and hardly at 

all in DGKζ-deficient cells (Fig. 3.7 A).  These data demonstrate that DGKζ plays a more 
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critical role in regulating PA production following TCR engagement than DGKα and 

suggest that DGKζ has greater effective enzymatic activity following TCR stimulation 

than DGKα in intact cells.  

 

3.2.5.  In silico modeling suggests differences in kinase activity and binding affinity to 

RasGRP1 lead to differences in function 

To further explore the effects of effective enzymatic activity and binding affinity to 

RasGRP1 on T cell signaling, we used a previously developed mathematical model of 

Ras activation in T cells (Table 3.1 and 3.2) .  Past experimental data suggest that this 

model correctly predicts the qualitative features of Ras activation kinetics following TCR 

stimulation of various signaling strengths in both wildtype and DGKζ-deficient T cells 

(Das et al., 2009; Riese et al., 2011).  We stimulated wildtype, DGKα-deficient, and 

DGKζ-deficient splenocytes with increasing concentrations of anti-CD3 antibody in vitro 

and examined ERK phosphorylation as a readout of Ras activation.  At all ranges of anti-

CD3 antibody concentrations, we observed greater ERK phosphorylation in DGKζ-

deficient T cells compared to DGKα-deficient T cells (Fig. 3.7 B).  We then performed in 

silico modeling to examine whether differences in binding to RasGRP1 and/or effective 

enzymatic activity could lead to our observed experimental results.  Effective enzymatic 

activity integrates concentrations of DAG and DGKs and kinase activity into a single 

parameter.  As we lack tools to measure exact in vivo concentrations of DAG and DGKs 

after TCR stimulation, we entered our best approximation of these individual parameters 

into the model and varied catalytic rate (kcat).  Based on our experimental data, we 
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assumed a 3-fold larger number of DGKα molecules than DGKζ molecules in the system 

and equal availability of DAG to DGKα and DGKζ. 

As expected, with equal catalytic rates and RasGRP1 binding affinities, in silico 

DGKα-deficient T cells have greater Ras activation at all ranges of TCR stimulus 

strength than DGKζ-deficient T cells (Fig. 3.7 C, top left).  With equal catalytic rates but a 

3-fold greater RasGRP1 binding affinity for DGKζ than DGKα, DGKα-deficient T cells still 

exhibit greater Ras activation than DGKζ-deficient T cells, suggesting that differences in 

binding affinity to RasGRP1 alone may not lead to our observed experimental results 

(Fig. 3.7 C, bottom left).  Consistent with our experimental data, with a greater catalytic 

rate for DGKζ than DGKα but equal RasGRP1 binding affinity, in silico DGKζ-deficient T 

cells would have greater Ras activation than DGKα-deficient T cells, suggesting that 

differences in DGK catalytic activity are critical for differences in function (Fig. 7 C, top 

right).  While a greater binding affinity of RasGRP1 to DGKζ than DGKα alone does not 

lead to differences in Ras activation (Fig 3.7 C top and bottom left), in concert with an 

increased catalytic rate for DGKζ, an increased RasGRP1 binding affinity appears to 

enhance differences in Ras activation between DGKα- and DGKζ-deficient T cells (Fig. 

3.7 C, bottom right).  Taken together, these data suggest that with a fewer number of 

DGKζ than DGKα molecules, DGKζ’s greater effective enzymatic activity and binding to 

RasGRP1 contribute to its predominant role in TCR-driven Ras-mediated signaling.   
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3.3. Conclusions 

It is intriguing that deletion of DGKζ has a greater impact on T cell function and 

TCR signaling than deletion of DGKα, despite higher expression levels of DGKα than 

DGKζ in T cells.  We wondered whether subcellular localization of DGKα and DGKζ 

within the T cell accounts for the differences, as DGKζ but not DGKα localizes to the T 

cell-APC contact site in Jurkat T cells (Gharbi et al., 2011).  However, we found that in 

primary murine T cells, both DGKα and DGKζ display sustained localization to the 

contact site, at least to 30 minutes after stimulation.  The observed discrepancy could be 

due to differences between Jurkat T cells and primary T cells.  For example, in Jurkat T 

cells, DGKζ diffusely localizes to the plasma membrane of the cell (Gharbi et al., 2011).  

In contrast, our data demonstrate that DGKζ primarily localizes to the proximal and distal 

poles of the cell (Fig 3.4 B).  We also found that, as a percentage of GFP-tagged 

molecules expressed in T cells, DGKα and DGKζ grossly localize to similar degrees to 

the contact site after initiation of TCR signaling.  Because the endogenous expression of 

DGKα is higher than DGKζ, the total number of DGKα molecules near the contact site is 

probably greater than the total number of DGKζ molecules.  These data strongly suggest 

that isoform-specific differences in function are not due to differences in gross 

localization.  However, differences in localization on a smaller scale cannot be excluded.  

For example, greater localization of DGKζ than DGKα to regions where RasGRP1 is 

present after TCR engagement by an APC could dictate DGK function.  As observed by 

total internal reflection fluorescence microscopy, interference with the function of DGKs 

leads to disruption of DAG accumulation at the IS, suggesting that DGKα and/or DGKζ 
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may localize specifically to the IS (Quann et al., 2009).  More refined imaging using 

these techniques could help determine if DGKα and DGKζ localize to different regions of 

the IS and specifically to the site of RasGRP1 localization. 

Although our localization data do not explain DGKζ’s dominant role in TCR 

signaling, association with RasGRP1 may be one mechanism controlling the differential 

functions of DGKα and DGKζ.  Studies of DGK isoforms have suggested that specific 

interaction with target proteins is important for regulating the DAG-mediated activation of 

these molecules.  For example, while DGKζ negatively regulates Ras signaling, its 

structurally related isoform, DGKι, negatively regulates Rap1 signaling (Regier et al., 

2005).  This difference in function correlated with DGKζ’s ability to associate with 

RasGRP1, which regulates Ras activation, and DGKι’s ability to associate with 

RasGRP3, which mediates Rap1 activation.  In a similar fashion, an increased ability of 

DGKζ to bind to RasGRP1 could contribute to its greater function in T cells.  This notion 

is supported by our data demonstrating 3-fold greater association of RasGRP1 with 

DGKζ than DGKα and in silico modeling data that suggest differences in binding affinity 

to RasGRP1 enhance the effects of differences in catalytic activity (Fig. 3.7 C top and 

bottom right).  The ability of DGKs to associate with DAG-activated molecules could also 

potentially explain DGKα and DGKζ’s overlapping role in NF-κB signaling but not 

RasGRP1 signaling. To this end, it would be interesting to examine potential interactions 

of DGKα and DGKζ with PKC-θ, which appears to be a shared target of these DGK 

isoforms in T cells. 

In addition to DGKζ’s stronger association with RasGRP1, we uncovered 

effective enzymatic activity as another potential mechanism that correlates with DGKζ’s 

dominant role in attenuating TCR-mediated signaling downstream of Ras.  Direct 

measurement of the physiologically relevant relative catalytic activity of the two isoforms 
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is difficult because both DGKα and DGKζ undergo posttranslational modifications that 

regulate their activity in ways that cannot be mimicked rigorously in vitro.  For example, 

the concentration of cytosolic free calcium has been shown to influence DGKα function 

(Baldanzi et al., 2011), and measurement of the local concentration of calcium around 

DGKα molecules after TCR stimulation is difficult.  Phosphorylation of the MARCKS 

domain of DGKζ may also regulate its catalytic activity (Luo et al., 2003), and 

measurement of phosphorylation of this specific site after TCR engagement is similarly 

complicated.  We therefore investigated the production of PA after TCR stimulation in 

vivo.  We observed a reproducible increase in whole-cell PA production in wildtype and 

DGKα-deficient T cells after TCR stimulation, suggesting that loss of DGKα enzyme has 

little impact on metabolism of DAG to PA.  In contrast, the TCR-stimulated increase in 

PA was largely abrogated in cells deficient in DGKζ, suggesting that DGKζ rather than 

DGKα is the predominant regulator of PA after TCR stimulation.  These data may 

explain why DGKζ has greater control over TCR signaling than DGKα, even though the 

total number of DGKα molecules near the T cell-APC contact site are probably more 

than that of DGKζ. 

Given that DGKα molecules are likely more abundant than DGKζ molecules in 

the T cell and at the T cell-APC contact site, mathematical modeling of Ras activation 

suggests that DGKζ must have a greater effective catalytic activity than DGKα to 

account for the increased Ras activation observed in DGKζ-deficient T cells.  A 

remaining question is why DGKζ function is greater than that of DGKα after TCR 

stimulation.  For example, is this difference observed at baseline or does TCR-mediated 

signaling modulate DGK isoform activity?  In terms of regulation, TCR and co-stimulatory 

signals have been found to inhibit DGKα activity in a manner dependent on signaling 

lymphocyte activation molecule-associated protein (SAP) as well as calcium release and 
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PLCγ1 activation (Baldanzi et al., 2011).  However, much less is known about regulation 

of DGKζ kinase activity in T cells.  Serine-to-aspartic acid phospho-mimetic mutations in 

the MARCKS domain lead to decreased catalytic activity in vitro, suggesting that 

MARCKS domain phosphorylation by protein kinase Cs (PKCs) may suppress its 

function (Luo et al., 2003).  Whether the same regulation is true in vivo requires further 

study.  Thus, investigation of TCR-mediated regulation of DGK activity could help 

decipher why DGKα and DGKζ display different enzymatic function in vivo. 

Our data demonstrate that re-expression of DGKζ but not overexpression of 

DGKα in DGKζ-deficient T cells rescues suppression of TCR signaling, suggesting that 

DGKα cannot function redundantly for DGKζ in suppression of these pathways.  At the 

same time, however, TCR stimulation of T cells deficient in DGKα does lead to modest 

increases in ERK, AKT, and S6 phosphorylation, suggesting that DGKα has some 

impact on these pathways.  One possibility that would reconcile these results is that two 

different pools of DAG mediate Ras pathway activation, with a DGKζ-regulated pool 

potently stimulating RasGRP1 activity and a DGKα-regulated pool weakly stimulating 

RasGRP1 activity.  DAG species are not homogenous, as acyl side chains of varying 

lengths and saturation may be connected to the glycerol backbone, and specific DAGs 

may maximally regulate downstream targets, such as PKCs, although this notion is 

controversial (Sánchez-Piñera et al., 1999; Hinderliter et al., 1997).  Development of 

approaches to differentiate DAG pools in vivo will be required to rigorously test this 

notion in primary T cells. 

While our data reveal functions in which DGKζ has a dominant role, the co-

expression of DGKα in T cells begs the question of whether DGKα has dominant roles in 

other processes.  One possibility is in reorientation of the microtubule organizing 

complex (MTOC) during formation of the IS.  DAG synthesis at the IS has been found to 
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closely precede and be sufficient for reorientation of the MTOC (Quann et al., 2009).  

Further investigation in DGKα- and DGKζ-deficient T cells and higher resolution 

microscopic analysis of DGKα and DGKζ subcellular localization at the IS could help 

decipher the relative roles of these two isoforms in MTOC reorientation. 

Our data presented in Chapter 2 demonstrate that unlike DGKα, DGKζ has an 

important role in nTreg cell development and a predominant function in TCR-mediated 

signaling downstream of Ras.  The experiments presented in this chapter suggest that 

multiple mechanisms may explain these disparities, including differences in binding to 

downstream DAG-activated molecules and in effective enzymatic function.  As DGKs 

have been identified as potential targets in cancer immunotherapy (Riese et al., 2013), 

defining these clear functions for DGKζ in T cells will help with the development and 

therapeutic use of isoform-specific inhibitors of DGKs. 
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3.4. Figures 

 

Figure 3.1: DGKα is not redundant for DGKζ in suppression of ERK, AKT and S6 
phosphorylation.  
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CD45.2+DGKζ−/− bone marrow was transduced with empty virus (vector) or virus 
encoding DGKα, or DGKζ and transferred into CD45.1+ irradiated host mice.  (A) Splenic 
T cells isolated from vector or DGKα transduced DGKζ−/− bone marrow chimeras were 
sorted for GFP+ and GFP− cells, lysed for western blotting, and probed with anti-DGKα 
antibody to determine over-expression of DGKα.  (B-C) Splenocytes were stimulated for 
15 minutes using an anti-CD3 antibody.  Left: Representative flow cytometric plots of 
ERK, AKT, and S6 phosphorylation gated on (B) CD45.2+CD4+ or (C) CD45.2+CD8+ live 
cells and then GFP+ or GFP− cells as indicated.  Right: The ratio of the percent of 
phospho-ERK, phospho-AKT, and phospho-S6 positive cells of GFP+ to GFP− cells in 
(B) CD45.2+CD4+ or (C) CD45.2+CD8+ live cells.  Ratio=1 and ratio<1 corresponds to 
similar or less phospho-positive cells in transduced compared to non-transduced cells, 
respectively.  Phospho-positive gates were defined based on maximum stimulation using 
PMA.  (***p<0.001, one-way ANOVA on log-transformed data with Tukey’s post-test) 
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Figure 3.2: DGKα is higher than DGKζ expression in T cells.   

Serial dilutions of lysate from 293T cells expressing eGFP-DGKα or eGFP-DGKζ were 
subjected to Western blot alongside undiluted or diluted wildtype purified T cell lysate.  
(A) Top left: Serial dilutions of eGFP-DGKα expressing 293T lysate blotted with anti-GFP 
antibody.  Middle left: Serial dilutions of eGFP-DGKα expressing 293T lysate and 
undiluted or diluted wildtype T cell lysate blotted with anti-DGKα antibody.  Bottom left: 
dilution ratio of wildtype T cell lysate was determined using b-tubulin as a loading 
control.  Top right: Serial dilutions of eGFP-DGKζ expressing 293T lysate blotted with 
anti-GFP antibody.  Bottom right: Serial dilutions of eGFP-DGKζ expressing 293T lysate 
and undiluted or diluted wildtype T cell lysate blotted with anti-DGKζ antibody.  * denotes 
DGKα and the two isoforms of DGKζ.  (B) Analysis of western blot data by densitometry 
for (left) DGKα or (right) DGKζ.  Dots represent data of GFP intensity and DGK intensity.  
The dashed line represents a linear regression of DGK intensity versus GFP intensity.  
The dotted line indicates wildtype T cell intensity for DGKα or the two forms of DGKζ and 
the calculated equivalent GFP value.  In the experiment shown, DGKα expression levels 
were found to be 1.44 times higher than DGKζ expression levels.  Data are 
representative of 3 experiments.  In an average of 3 experiments, DGKα expression was 
found to be 3-fold higher than DGKζ expression by densitometry.  MW = molecular 
weight. 
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Figure 3.3: DGKα and DGKζ diffusely localize in unconjugated T cells.   

eGFP-DGKα or eGFP-DGKζ transduced OT-II DGKζ−/− T cells were fixed and stained 
with DAPI.  Representative confocal microscopy images 5 minutes after initiation of 
conjugation are shown.  GFP is shown in green and DAPI in blue.  White bar indicates 5 
microns. 
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Figure 3.4: DGKα and DGKζ localize in similar degrees to the T cell-APC contact 
site.  
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(A) eGFP-DGKα or eGFP-DGKζ transduced OT-II DGKζ−/− T cells were conjugated with 
OVA-peptide pulsed B cells, fixed, and probed with an anti-talin antibody to mark the IS.  
Representative confocal microscopy images 5 minutes after initiation of conjugation are 
shown.  GFP is shown in green, talin in white, DAPI in blue, and the CMTMR labeled B 
cell in magenta.  White bar indicates 5 microns.  (B) Ratio of average GFP intensity in 
thirds of the cell (proximal to the IS, the middle of the cell, or distal to the IS) to the 
average GFP intensity of the whole cell.  Data shown 5 minutes after initiation of 
conjugation in eGFP-DGKα or eGFP-DGKζ transduced cells. (*p<0.05, ***p<0.001, 
Kruskal-Wallis with Dunn’s post-test) (C) Comparison of eGFP-DGKα or eGFP-DGKζ 
accumulation ratio at the T cell-APC contact site or distal pole of the cell at 5, 15, and 30 
minutes.  Only significant differences are shown.  N>=30 for all sets of images.  
(**p<0.01 Mann-Whitney test) 
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Figure 3.5: DGKα and DGKζ localize to the T cell-APC contact site.   

Ratio of average GFP intensity in thirds of the cell (proximal to the IS, the middle of the 
cell, or distal to the IS) to the average GFP intensity of the whole cell.  (**p<0.01, 
***p<0.001, Kruskal-Wallis with Dunn’s post-test)
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Figure 3.6: RasGRP1 associates in greater amounts with DGKζ than DGKα.   

293T, eGFP-DGKα transduced 293T, and eGFP-DGKζ transduced 293T were 
transfected with a RasGRP1-expressing vector.  Lysate was divided into thirds.  (A) 
Immunoprecipitation was performed using anti-GFP and blotted using anti-GFP or anti-
RasGRP1 antibodies.  (B) Immunoprecipitation was performed using anti-RasGRP1 or 
normal rabbit IgG and blotted using anti-GFP or anti-RasGRP1 antibodies.  
Quantification of bands performed by densitometry.  Representative of 4 experiments. 
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Figure 3.7: DGKζ has greater effective enzymatic activity than DGKα in T cells.  

(A) T cells were isolated from wildtype, DGKα−/−, or DGKζ−/− mice and stimulated for 7.5 
minutes with an anti-CD3 antibody.  PA concentration in unstimulated and stimulated 
cells was determined and data is expressed as the fold change in PA in stimulated cells 
to unstimulated cells.  Error bars represent triplicate measurements of PA.  
Representative of 2 independent experiments.  (B) Splenic cells were freshly isolated, 
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rested for two hours in serum-free media, and stimulated with increasing concentrations 
anti-CD3 antibody for 15 minutes.  ERK phosphorylation was determined by flow 
cytometry and the percent of phospho-ERK positive cells among CD8+ cells is shown for 
indicated concentrations of anti-CD3 antibody.  Representative of 2 experiments.  (C) 
Shows variation of the fraction of the cells that produced RasGTP concentrations larger 
than one third of the total Ras concentration as the signal concentration is increased. 
The signal represents the TCR-LAT signalosome created upon antigen stimulation.  The 
description of the in silico model, the simulation method, and the parameters used in the 
model are given in the materials and methods section and the supplementary material. 
The concentration of DGKα, as found in experiments, is assumed to be 3 times larger 
than that of DGKζ. The results shown here are from the simulations done on 10,000 in 
silico “cells”.  Ras activation at 15 mins for the wildtype, DGKζ−/−, and DGKα−/− cells (top 
left) when the catalytic rates and RasGRP1 binding rate of DGKζ and DGKα are the 
same, (bottom left) when the RasGRP1 binding rate of DGKζ is 3-fold larger than that of 
DGKα and catalytic rates of DGKζ and DGKα are the same, (top right) when the catalytic 
rate of DGKζ is 6-fold larger than that of DGKα and RasGRP1 binding rates equal, or 
(bottom right) when the RasGRP1 binding rate of DGKζ is 3-fold larger than that of 
DGKα and the catalytic rate of DGKζ is 6-fold larger than that of DGKα.  Professor 
Jayajit Das performed the in silico experiments, with intellectual input from Rohan Joshi 
and Professor Edward Behrens. 
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Table 3.1: Reactions and the kinetic rates used in the in silico model 

Reactions Binding rate 

(kon) 

(mM)-1s-1 

Unbinding 
rate 

(koff) 

s-1 

Disso
ciatio

n 
const

ant 
(KD) 

mM 

Cataly
tic 

Rate 

(kcat) 

s-1 

Sa + SOS  !  S-SOS 5.0 0.1 0.02 NA 

S-SOSc+RD ! S-SOSc-RD!  S-
SOSc + RT 

0.27 4.0 14.8 0.0005 

S-SOSa+RD ! S-SOSa-RD 0.122 3.0 24.6  

S-SOSa+RT ! S-SOSa-RT 0.11 0.4 3.6  

S-(SOSa-RD)c+RD !  S-(SOSa-RD)c-
RD!  S-(SOSa-RD)c + RT 

0.068 1.0 14.7 0.003 

S-(SOSa-RT)c+RD !  S-(SOSa-RT)c-
RD!  S-(SOSa-RT)c + RT 

0.053 0.1 1.89 0.038 

S+PLCγ1 !  S-PLCγ1 0.0425 

* 

0.01 

* 

0.23 

* 

 

S-PLCγ1+PIP2!  S-PLCγ1+DAG    8x10-7 

* 
DAG+RasGRP1  ! DAG-RasGRP1 0.05 0.1 2.0  

DAG-RasGRP1+RD !  DAG-
RasGRP1-RD!  RT+ DAG-RasGRP1 

0.32 1.0 3.1 0.01 

GAP+ RT !  GAP+ RT!  GAP+ RD 1.25 0.2 0.16 0.1 

DAG+DGKα !  DAG-DGKα!  
PA+DGKα 

0.05 

* 

0.01 

* 

0.2 

* 

0.01 

* 
RasGRP1-DAG+DGKα !  
RasGRP1-DAG-DGKα!  

PA+RasGRP1+DGKα 

0.05 

* 

0.01 

* 

0.2 0.01 

* 

DAG+DGKζ !  DAG-DGKζ!  
PA+DGKζ 

0.05 

* 

0.01 

* 

0.2 

* 

Varied 
from 

0.01 to 
0.06 
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* 
RasGRP1-DAG+DGKζ !  
RasGRP1-DAG-DGKζ!  

PA+RasGRP1+DGKζ 

Varied from 
0.05 to 0.15 

* 

0.01 

* 

Varied 
from 
0.2 to 
0.066 

* 

Varied 
from 

0.01 to 
0.06 

* 

aS denotes the species ‘signal’, which represents the TCR-LAT signalosome in the 
model. *Parameters were estimated to reproduce the time scales  (~15 mins) for robust 
Ras activation in the in silico models consistent with Erk activation as observed in 
experiments.  The binding and unbinding rate, dissociation constant, and catalytic rates 
of the reactions used in the in silico model are shown. Parameter values in Table S1 are 
taken from Riese et al., Das et al., and Stephens et al. 

 

 

Table 3.2: Concentrations of proteins and lipids used in the in silico model 

Molecular species Concentration 
Sa 0 – 125 molecules/(mm)2 

SOS 1000 molecules/(mm)3 
RasGRP1 1500 molecules/(mm)3 

PLCγ1 62 molecules/(mm)2 * 
PIP2

b 4250 molecules/(mm)2 

GAP 125 molecules/(mm)3 
DGKα 2250 molecules/(mm)3 * 
DGKζ 750 molecules/(mm)3 * 

 

aS denotes the species ‘signal’, which represents the TCR-LAT signalosome in the 
model. 

bPhosphatidylinositol 4,5-bisphosphate.   * = Parameters were estimated to reproduce 
the time scales  (~15 mins) for robust Ras activation in the in silico models consistent 
with Erk activation as observed in experiments.  The concentration of molecular species 
included in the in silico model is summarized.  Parameter values in Table S2 are taken 
from Riese et al., Das et al., and Stephens et al.  Additional parameters that were 
estimated for the specific model in Fig. S4 are indicted with a * symbol. 
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3.5. Materials and Methods 

Mice 

 See Section 2.5 for a description of mice used in these experiments. 

Constructs and Cloning 

DGKα (kind gift from Anthony DeFranco) or DGKζ (Thermo Scientific, cat# 

MMM1013-9200165) were subcloned into pEGFP-C1 (Clontech) or MIGR1 for 

transduction of bone marrow.  eGFP-DGKα or eGFP-DGKζ were subcloned into pK1 

retroviral vector (kind gift from Warren Pear) to create pK1-eGFP-DGKα or pK1-eGFP-

DGKζ for transduction of primary murine T cells.   

Cellular phosphatidic acid assay 

T cells from wildtype, DGKα−/−, or DGKζ−/− mice were isolated using magnetic 

selection with CD90.2 microbeads (Miltenyi), rested for 2 hours, and left unstimulated or 

stimulated for 7.5 minutes with an anti-CD3 (500A2) antibody in RPMI.  Cells were 

washed once with PBS and immediately lysed using sonication.  Protein concentration 

was determined by bicinchoninic assay (BCA, Thermo Scientific).  Total cellular 

phosphatidic acid content was determined according to manufacture protocol using the 

total phosphatidic acid kit (Cayman Chemical, cat #700240) and normalized to protein 

concentration as described previously (Bobrovnikova-Marjon et al., 2012). 

In silico modeling 

We use a continuous time Monte Carlo method or the Gillespie method 

(Gillespie, 1977) to solve the Master equation associated with signaling network 

described in Fig. S4 and Tables S1-S2. The simulation method includes copy number 

fluctuations of signaling molecules, also known as the intrinsic noise fluctuations (Swain 

et al., 2002), that occur due to random nature of stochastic biochemical reactions. We 
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also include cell-to-cell variations of the total protein and lipid abundances due to 

extrinsic noise fluctuations (Swain et al., 2002). The extrinsic noise fluctuations are 

implemented in the following way. In each individual cell, the total concentrations of 

protein or lipid were chosen from uniform distributions with the average values shown in 

Table 2. The upper and lower bounds of a uniform distribution for a specific signaling 

species was chosen by decreasing and increasing the corresponding average value by a 

factor of 0.0175 (Volfson et al., 2006). The signaling reactions were simulated in a 

spatially homogeneous simulation box of size, V = (area (4 mm2) × height (0.02 mm)) 

with two compartments representing the plasma membrane and the adjoining cytosolic 

region (26). This particular choice of the simulation box size ensures that the system is 

well-mixed.  The results shown are from the simulations done on 10,000 in silico “cells”.  

Further details regarding the simulation can be found in references 20 and 26. The 

simulations are carried out by using the software package Stochastic Simulation 

Compiler (SSC) (Lis et al., 2009). The codes for the simulations are available at the link, 

http://planetx.nationwidechildrens.org/~jayajit/. 

Immunoprecipitation 

293T cells, 293T cells transduced with eGFP-DGKα, and 293T cells transduced 

with eGFP-DGKζ were grown on 10cm culture dishes in DMEM supplemented with 10% 

fetal bovine serum and antibiotics.  These cell lines were transfected with pEF6-

huRasGRP1-myc/his WT (kind gift from Dr. Jeroen Roose) using the calcium phosphate 

method.  Two days later, cells were washed with PBS and lysed in 0.1% Tween-20, 

150mM NaCl, and 25mM Tris-HCl pH 7.4 supplemented with phenylmethylsulfonyl 

fluoride and complete protease inhibitor cocktail (Roche Applied Sciences) for 30 

minutes.  Lysate was centrifuged and supernatant was pre-cleared by incubation with 

protein A-sepharose beads for 1 hour at 4°C with in a rotating stand.  Pre-cleared lysate 
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was divided into three samples receiving either 1uL/mL lysate anti-GFP antibody 

(Abcam, cat# Ab290), 10µL/mL lysate anti-RasGRP1 (H120, Santa Cruz Biotech, cat# 

sc-28581), or 5µL/mL lysate normal rabbit IgG (Santa Cruz Biotech, cat# sc-2027).  

Protein A-sepharose beads were added and samples were incubated overnight at 4°C 

on a rotating stand.  The following day, samples were washed 3 times with lysis buffer 

and 3 times with lysis buffer containing 500mM NaCl and denatured in SDS sample 

loading buffer. 

Western blotting for DGKα expression 

Splenocytes were isolated from bone marrow chimeras, and T cells were purified 

using magnetic selection with CD90.2 microbeads (Miltenyi).  GFP+ and GFP− cells 

were sorted using a FACS Aria (BD Biosciences) and lysed in 1% Non-idet P-40 

supplemented with protease inhibitors.  Lysates were subjected to western blotting using 

anti-DGKα (Santa Cruz, cat# sc-271644), anti-GFP (Clontech, cat #632375), or anti-b-

tubulin (Cell Signaling, cat #2146S). 

Transduction of primary murine T cells 

CD4+ T cells from OT-II; DGKζ−/− mice were isolated using CD4+ T cell Isolation 

Kit (Miltenyi) and stimulated from 24-30 hours on 1mg/mL anti-CD3 (2C11) and 5µg/ml 

anti-CD28 coated 24-well plates in TCM (Iscove's Modified Dulbecco's Media 

supplemented with 10% fetal bovine serum and antibiotics) supplemented with 50U/mL 

recombinant human IL-2 (rhIL-2) at a concentration of 2-3 × 106 cells/mL.  On the same 

day, 293T cells were transfected using calcium phosphate method with pK1-eGFP-

DGKα or pK1-eGFP-DGKζ along with ecotropic packaging vectors pCGP and pHIT123 

(kind gift from Warren Pear).  The next day, 1mL virus containing supernatant from 293T 

cells was bound to wells of a 24-well plate that was coated with retronectin (Takara Bio., 

Inc.) according to the manufacturers protocols by spinning at 1200g for 2 hours at 30°C.  
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CD4+ T cell blasts were harvested and resuspended in TCM supplemented with 80U/mL 

rhIL-2 at a concentration of 2-3 × 106 cells/mL.  The virus-coated wells were washed 

once with PBS, T cells were aliquoted, and a spinfection was performed using 

centrifugation at 1200g for 2 hours at 30°C.  The following day, cells were harvested and 

replated on a non-retronectin coated plate.  Transduction efficiencies of greater than 

30% were routinely achieved. 

Conjugation of T cells and antigen presenting cells 

B cells were selected from wildtype mice using magnetic selection using CD19 

microbeads (Miltenyi).  B cells were washed with serum-free RPMI and stained with 

CMTMR (5-(and-6)-(((4-Chloromethyl)Benzoyl)Amino)Tetramethylrhodamine, Life 

Technologies) at a final concentration of 1µM.  B cells were then washed with TCM and 

divided into two samples.  One sample received OVA peptide (323-339) (Genscript) at a 

final concentration of 5µg/mL and samples were incubated for 4 hours at 37°C.  B cells 

and transduced T cells were harvested, washed once with serum-free RPMI, and 

resuspended at 6.66 × 106 and 13.33 × 106 cells/mL serum-free RPMI, respectively.  

75mL of B cells were added to 75µL T cells in a FACS tube, spun at 1000rpm for 2 

minutes, and incubated for 5-30 minutes in a 37°C water bath.  After conjugation, 50µL 

of cells were coated onto poly-L-lysine (Sigma) coated microscope cover slips and 

incubated at 37°C for 10 minutes in a humidity chamber.  Cells were then fixed with 4% 

paraformaldehyde, permeabilized with 0.3% Triton X-100, and blocked with 0.01% 

saponin, 0.25% fish skin gelatin in PBS.  Cells were stained with anti-Talin (Sigma, Cat 

#T3287) followed by anti-mouse Alexa Fluor 647 (Life Technologies) and anti-GFP-

Alexa Fluor 488 (Life Technologies) to enhance GFP signal.  Cells were mounted onto 

slides in Prolong Gold Antifade Reagent with DAPI (Life Technologies).  Conjugates 

were selected by observation of a GFP expressing cell next to a CMTMR expressing 
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cell.  Images were acquired at room temperature using Volocity (Improvision) software 

and a spinning-disk confocal (UltraView ERS 6; PerkinElmer) microscope (Axiovert200; 

Carl Zeiss) equipped with an ORCA-ER camera (Hamamatsu Photonics) and a 63× oil-

immersion plan-achromatic objective with a 1.4 N.A. 

Image Processing and Analysis 

Images were processed in Fiji (Schindelin et al., 2012), using the “subtract-

background” function and adjusting the dynamic range based on background intensity.  

Conjugates in which Talin accumulated at the IS were analyzed using a custom 

automated MATLAB script.  Briefly, GFP images were flattened and subjected to a 

threshold based on background noise intensity.  The user was then asked to draw a line 

overlaying the Talin image in order to rotate the image such that the conjugate is 

oriented vertically.  After selecting the top and bottom of the cell, the GFP image is 

divided into thirds along the y-axis and the average GFP intensity in each third as well as 

the average GFP intensity of the whole cell are calculated.  As a control analysis, cells 

were divided into thirds along the x-axis to determine if the presence of the nucleus 

affects this analysis.  GFP was not found to be excluded from the x-axis middle third of 

the cell using this analysis regardless of molecule transduced.  In addition, analysis 

using this method on GFP-alone transduced cells demonstrated no particular GFP 

localization to any third of the cell.  

Endogenous DGK protein expression 

eGFP-DGKα transduced 293T or eGFP-DGKζ transduced 293T were lysed and 

serial dilutions were created.  T cells from wildtype mice were magnetically purified using 

CD90.2 microbeads (Miltenyi), lysed, and left undiluted or diluted two-fold.  eGFP-DGKα, 

eGFP-DGKζ, and wildtype T cell lysate were then subjected to western blotting using 

antibodies to GFP and DGKα or DGKζ.  Densitometry was used to create a standard 
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curve relate GFP staining intensity to DGKα or DGKζ staining intensity and a linear 

regression was performed.  The DGKα or DGKζ staining intensity of wildtype T cell was 

then used to calculate a GFP staining equivalent to examine the relative amount of 

DGKα or DGKζ protein. 

Flow cytometric analysis of ERK, AKT, and S6 phosphorylation 

See methods section of Chapter 2. 



	  
	  

93	  

CHAPTER IV: THE ROLE OF PHOSPHATIDYLINOSITOL TRANSFER PROTEINS IN T 

CELLS 

4.1. Introduction 

Phosphatidyl inositols (PIs), a subset of phospholipids, play a crucial role in 

receptor-mediated signaling in all mammalian cells.  PIs are a substrate for the 

production of key signaling intermediates including diacylglycerol (DAG), inositol 

triphosphate (IP3), and phosphatidylinositol triphosphate (PIP3), which activate pathways 

including PKCs, Ras, calcium, and Akt.  In T cells, these PI-derived signals are 

integrated with other signals leading to T cell activation, differentiation, proliferation, and 

elaboration of cytokines.  Consequently, the regulation of PI abundance in the plasma 

membrane, hydrolysis of its products, and the metabolism of PI products each potentially 

represent a critical checkpoint during initiation of an immune response.  In Chapters II 

and III of this thesis we have investigated the metabolism of DAG and its functional 

effects on T cell development and signaling.  Here, we turn our attention to the 

regulation of plasma membrane PI, from which PIP2, DAG, IP3, and PIP3 are all derived, 

as this presents a possible point of regulation which would critically affect many signaling 

pathways. 

 

4.1.1. PI Transport 

PIs are synthesized only in the endoplasmic reticulum (ER) and traffic to the 

plasma membrane before they can serve as substrates for signal transduction.  These 

hydrophobic molecules therefore must transverse the hydrophilic cytosol of the cell 
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(Prinz, 2010).  While vesicular transport from the ER to the plasma membrane is one 

mechanism of transfer of phospholipids, when vesicular transport is blocked using 

pharmacological means phospholipids are still efficiently shuttled to the plasma 

membrane (Kaplan and Simoni, 1985).  These data suggested the presence of 

molecules that can shuttle PIs from the ER to the plasma membrane.  

Phosphatidylinositol transfer proteins (PITPs) were found to have this ability to transfer 

PIs in vitro between [3H] PI labeled donor microsomes and a liposome acceptor 

compartment (Helmkamp et al., 1974).  Thus, PITPs could potentially serve as PI 

transport molecules in intact cells and facilitate TCR signaling.  

 

4.1.2. The PITP family 

PITPs are divided into two classes based on sequence homology.  Class I 

PITPs, PITPα and PITPβ, are cytosolic proteins that contain a single PI binding domain.  

Both PITPα and PITPβ are conserved across mammalian species as well as unicellular 

and multicellular eukaryotes (Cockcroft and Carvou, 2007).  In mice, the genes for these 

molecules are located on separate chromosomes and code for small proteins of 270-271 

amino acids that have a sequence similarity of greater than 90%. PITPβ is expressed as 

two splice variants that differ by a single amino acid at the C-terminus.  In spite of their 

high degree of sequence similarity, PITPα and PITPβ localize differently in cells.  While 

both splice variants of PITPβ localize to the Golgi, PITPα localizes primarily to the 

cytosol and plasma membrane (De Vries et al., 1996; Morgan et al., 2006).   

In contrast to class I molecules, class II PITPs contain PI binding domains that 

are homologous to phospholipid binding domains of RdgB.  Class IIB contains RdgBβ, a 
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single domain molecule like class I PITPs.  In contrast, class IIA molecules are multi-

domain proteins with additional domains that simultaneously target the molecule to two 

membrane compartments of the cell (Cockcroft and Carvou, 2007).  While it is easy to 

envision how class IIA molecules transfer lipids between two targeted compartments, the 

mechanism of specificity is less clear for class IIB and PITPα and PITPβ. 

As all five members of the PITP family can bind to phospholipids, overlap in 

function between these molecules likely exists.  However, the functional importance of 

PITPα and PITPβ alone as molecules is highlighted by the phenotypes of mice deficient 

in these isoforms.  Vibrator mice harbor a natural mutation resulting in an 80% reduction 

in PITPα, leading to neurodegeneration and death (Hamilton et al., 1997).  In addition, 

mice completely deficient in PITPα die perinatally, while deletion of PITPβ causes 

embryonic lethality (Alb et al., 2002, 2003).  Because of the clear phenotypes of these 

mice, PITPα and PITPβ are the focus of this chapter. 

 

4.1.3. Class I PITP structure 

PITPα and PITPβ display a high degree of specificity for PIs, although they do 

bind and transfer phosphatidylcholine (PC) to a lesser degree (Helmkamp et al., 1974).  

The structures of PITPα and PITPβ revealed that both PI and PC bind to these 

molecules with their polar head group buried deep within the core of the PITP molecule.  

The overall structure of PITPα bound to PI or PC is highly similar, suggesting that the 

lipid species bound does not significantly alter the function of PITPs (Yoder et al., 2001; 

Tilley et al., 2004).   However, four specific residues of PITPα make hydrogen bond 

contacts with the inositol ring of PI, likely explaining the specificity of PITPs for PIs.  
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Interestingly, mutation of these four residues abrogates PI binding, but leaves PC 

binding intact (Tilley et al., 2004).  These mutant PITPs could be useful in demonstrating 

which functions of PITPs are dependent on its ability to bind to PI rather than PC.  

Mutational analysis also demonstrated that a two-tryptophan motif present in both PITPα 

and PITPβ facilitates binding to lipid membranes and is required for the PI lipid transfer 

ability of PITPα in vitro.  Mutation of this WW motif likely prevents membrane docking of 

PITP molecules and presents another potential tool for studying how PITPs function 

within intact cells. 

 

4.1.4. Biochemical functions of PITPs 

A connection between PITP function and signaling in cells was found through the 

use of permeabilized cells.  Using this method, cells were depleted of their cytosolic 

contents including PITPα and PLCγ and selectively reconstituted with PITPα and/or 

PLCγ in the presence or absence of epidermal growth factor (EGF) (Kauffmann-Zeh et 

al., 1995).  Restoration of stimulated PLCγ activity and PI-4 kinase dependent 

phosphorylation was only observed in cells reconstituted with PITPα and PLCγ, not with 

PLCγ or PITP alone.  These data suggest that PLC activity requires the presence of 

PITPs and, interestingly, that the phosphorylation of PI requires the stimulated activity of 

PI-4 kinase activity and the presence of PITPs.  Furthermore, PITPα was found to 

complex with PLCγ in a manner dependent on EGF, suggesting that PITPα might have 

an active role in facilitating these signaling events.  Similar findings were observed with 

PITPβ (Cunningham et al., 1996).  In addition, a similar requirement for PITPs for 

signaling was observed for PLCβ and PLCδ1 (Allen et al., 1997; Thomas et al., 1993).   



	  
	  

97	  

It is unknown whether in vitro transfer ability reflects actual transfer ability in cells.  

Indeed, unequivocal evidence of in vivo PI transfer of PITPs has been difficult to obtain 

due to lack of methods to track lipid movement.  The strongest evidence for PITP 

transfer of PI in vivo was obtained by examining fluorescence resonance energy transfer 

(FRET) of GFP-tagged PITPα and BODIPY-tagged PI and in live cells (Larijani et al., 

2003).  FRET efficiency was significantly increased at the plasma membrane upon 

administration of EGF and diminished by inhibition of PLCγ, suggesting that PITPs do 

associate with PIs during receptor-mediated signaling in vivo.  These data are consistent 

with a PI transfer role for PITPs in intact cells.  However, it remains possible that PITPs’ 

main function is to act as a cofactor for signaling by facilitating access to PI rather than 

by transferring PI between compartments. 

 

4.1.5. In vivo PITP functions 

 While the exact in vivo biochemical role of PITP is unclear, the phenotypes of 

mice lacking PITPα or PITPβ are striking.  Vibrator mice and mice deficient in PITPα die 

shortly after birth due to spinocerebellar degeneration, intestinal and hepatic steatosis, 

and hypoglycemia (Alb et al., 2003).  This degenerative death correlated with 

derangements in the smooth ER of neurons, enterocytes, and hepatocytes, suggesting 

that PITPα may function in vivo at the ER; however, other cellular pathologies could also 

lead to this phenotype.  Surprisingly, examination of PLC signaling in fibroblasts from 

vibrator mice revealed no differences in PI metabolism after stimulation from wildtype 

cells.  These data could be explained by redundancy of PITPβ.   
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In contrast to PITPα, deletion of PITPβ leads to early embryonic lethality, 

preventing study of this isoform in mature cells.  However, studies in other organisms 

suggest that PITP molecules may be involved in basic cellular processes in addition to 

their signaling function.  In Drosophila, the single class I PITP present, giotto, was found 

to be required for both meiotic and mitotic cytokinesis (Gatt and Glover, 2006; Giansanti 

et al., 2006).  In flatworms, PITPs were found to have a critical role in stem cell viability 

and regeneration of the organism (Reddien et al., 2005; Cockcroft and Carvou, 2007).  

Taken together, these data suggest that PITPs are involved in a broad range of cellular 

processes, including signaling, lipid homeostasis, and cell cycling. 

 

4.1.6. Conclusion 

 The role of PITPs in T cells is completely unknown.  Signaling mediated by PI is 

critical in T cells, as signaling through the TCR, and PLCγ1 in particular, dictates the fate 

of T cells during positive and negative selection, T cell activation, and T cell tolerance 

(Fu et al., 2010).  Thus, PITPs could play a role in each of these processes in T cells.  In 

addition, given the tools available to immunologists, such as bone marrow chimeras and 

gene reconstitution using retroviral transfers, T cells provide a useful platform to study 

the cell biology of PITPs.  Here, we use mice with T cell specific deletion of PITPα and/or 

PITPβ to examine the function of these molecules in T cells.
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4.2. Results 

4.2.1. PITPα and PITPβ expression in T cells and role in Jurkat T cell growth 

We first wished to determine whether PITPα and PITPβ were expressed in T 

cells.  We found that both PITPα and PITPβ were expressed in splenic and lymph node 

T cells, at roughly equivalent levels to non-T cells from these organs (Fig. 4.1).  Because 

PITPα localizes to the plasma membrane and PITPβ does not, we chose to begin our 

investigation with a focus on the function of PITPα in T cells.  As an initial approach, we 

studied Jurkat T cells in which we have knocked down PITPα.  Jurkat T cells express 

PITPα and after transduction of a vector containing shRNA to PITPα levels of protein 

were greatly reduced compared to Jurkat T cells transduced with vector alone.  After 

knockdown of PITPα, we noted that Jurkat T cell growth was impaired in two 

independently created Jurkat T cell lines (Fig. 4.2 A and B).  As shRNAs can have off 

target effects, we repeated this experiment using a set of 5 shRNA sequences that 

target different areas of PITPα mRNA and a non-targeting shRNA sequence as a 

control.  We again found that cell growth was reduced in cells with knockdown of PITPα 

(Fig. 4.2 C and D).  Cell growth tracked with expression levels of PITPα with the 

exception of one shRNA. These data suggested that PITPα may play a role in T cells. 

4.2.2. Phenotype of mice with a T cell specific deletion of PITPα or PITPβ 

Based on these preliminary data, we proceeded with generation and 

characterization of CD4-Cre+PITPαloxP/loxP mice, in which Cre is turned on at the double 

positive stage of T cell development in the thymus.  As expected, T cells from CD4-
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Cre+PITPαloxP/loxP mice were deficient in PITPα, suggesting that the gene is specifically 

deleted in the T cell compartment (Fig. 4.3 A).  As PI-mediated TCR signals are 

essential for positive and negative selection, we hypothesized that defects in mice with a 

T cell specific deletion of PITPα would manifest as aberrant T cell development.  

Surprisingly, we found that T cell development was grossly intact in CD4-

Cre+PITPαloxP/loxP mice, with similar percentages of double positive, CD4SP, and CD8SP 

(Fig. 4.3 B).  A closer look at CD69hiTCRbetahi cells undergoing positive selection also 

revealed no gross defects.  In the spleen, we found similar percentages of T cells, ratio 

of CD4+ to CD8+ T cells, and CD44hi CD4+ and CD8+ T cells to control (Fig. 4.3 C and D).  

These data indicate no gross defects in PITPα-deficient T cells.  We next performed 

experiments using a competitive bone marrow chimera system to reveal if PITPα 

deficient T cells are less fit than wildtype cells.  We mixed bone marrow from CD4-

Cre+PITPαloxP/loxP or CD4-Cre-PITPαloxP/loxP mice with congenically marked wildtype 

competitor bone marrow and transferred these cells into lethally irradiated congenically 

marked recipient mice.  After immune reconstituion, we found that deletion of PITPα 

from T cells did not markedly affect the gross phenotype of thymocytes and splenocytes 

(data not shown).  Thus, these preliminary results suggest that PITPα is dispensable for 

grossly normal T cell development. 

As PITPβ could function redundantly for PITPα, we also examined T cells that 

were deficient in PITPβ using CMV-Cre+PITPβloxP/loxP mice, in which PITPβ deletion 

should occur in all cellular compartments.  After confirming that PITPβ levels were 

reduced in T cells (data not shown), we examined the thymus and spleen of this mouse.  

Similar to our findings with PITPα, we found that thymic T cell development and the 

phenotype of peripheral T cells were grossly normal in PITPβ-deficient mice (Fig. 4.4).  

These data suggest that PITPβ is also dispensable for normal T cell development. 
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4.2.3. Phenotype of mice with a T cell specific of both PITPα and PITPβ 

To determine if PITPα and PITPβ have redundant functions in T cells, we bred 

mice with a targeted deletion of both PITPα and PITPβ in T cells (CD4-

Cre+PITPαloxP/loxPPITPβloxP/loxP mice).  With deletion of both Type I PITP isoforms, we 

observed a marked reduction in T cell percentages in the spleen and lymph node (Fig. 

4.5 A and B).  We also noted an increase in CD44hi cells within the remaining CD4+ and 

CD8+ T cells.  The remaining splenic T cells in CD4-Cre+PITPαloxP/loxPPITPβloxP/loxP mice 

expressed both PITPα and PITPβ at levels comparable to mice not expressing Cre, 

indicating that these cells have escaped Cre-mediated deletion (Fig. 4.6 A).   

To determine if these decreases in T cells in the periphery were due to a defect 

in T cell development, we examined thymi of mice in which both PITPα and PITPβ were 

deleted.  Surprisingly, we found that DP, CD4SP, and CD8SP percentages were grossly 

normal (Fig. 4.5 C).  In addition, we observed no decrease in percentage of 

TCRβhiCD69hi cells, which are thought to be productively signaling cells undergoing 

positive selection.  We observed a decrease in PITPα and PITPβ expression in DP cells 

compared to control DP cells, indicating that PITPα and PITPβ were indeed deleted in 

these cells (Fig. 4.6 B).  Because of the discordance between the phenotype of 

peripheral T cells and thymic DP cells, we more closely examined the SP population.  

Interestingly, we found a striking decrease in TCRβ+HSAlo cells, indicating a defect in the 

development of mature single positive cells (Fig. 4.5 C).  These preliminary data suggest 

that the presence of PITPα and PITPβ allows the development of mature T cells.  Given 

PITPs potential role in signaling, we were surprised by the lack of a defect at the DP to 

SP transition.  To determine if DP cells deficient in both PITPα and PITPβ are less fit 

than wildtype cells, we created mixed bone marrow chimeras.  We again found no defect 
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at the DP to SP transition, suggesting that PITPs are unnecessary for this process when 

deleted at the DP stage (data not shown).  We also observed a defect at the immature 

SP to mature SP transition in CD4-Cre+PITPαloxP/loxPPITPβloxP/loxP cells but not wildtype 

competitor cells (data not shown), indicating that this defect is cell-intrinsic. 
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4.3. Conclusions 

While the biochemical function of PITPs has been studied extensively in vitro, the 

role of PITPs in live cells is less understood.  The PITP conditional gene knockout mice 

described here provides a useful tool for elucidation of in vivo PITP function.  PI-derived 

signaling is essential for T cell development, and given the in vitro role of PITPs we 

predicted that deficiency of PITPs would impair T cell development.  Our preliminary 

experiments suggest that PITPα and PITPβ are dispensable for grossly normal T cell 

development when deleted individually.  Surprisingly, our initial results suggest that 

simultaneous deletion of PITPα and PITPβ at the DP stage in T cells does not result in 

impairment of positive selection or differentiation into single positive cells, events that 

depend on TCR signaling.  Rather, simultaneous deletion of PITPs leads to the 

impairment of development of mature single positive cells.  This defect is reflected in 

peripheral organs, in which T cell percentages are greatly decreased and the remaining 

T cells have escaped Cre-mediated deletion of PITPs. 

In vitro studies have suggested that PITPα localizes to the plasma membrane 

and acts as a cofactor for PLC-mediated signaling (Kauffmann-Zeh et al., 1995).  Given 

that mice deficient in PLCγ1 have severe defects in T cell development, we expected 

that deletion of PITPα would similarly affect T cell development (Fu et al., 2010).  

However, CD4-Cre mediated deletion of PITPα did not markedly affect T cell 

development or the phenotype of T cells in the spleen or lymph node, suggesting that 

PITPα is not required for these processes.  When competed with wildtype cells, we still 

did not observe gross defects in T cells in PITPα-deficient T cells, suggesting that 

PITPα-deficient T cells are not less fit than wildtype T cells.  These preliminary data 
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suggest that if PITPα-deficiency causes any defects in TCR signaling, they are minor 

enough to not affect T cell development. 

In contrast to PITPα, PITPβ localizes primarily to the Golgi apparatus of the cell 

and has been speculated to coordinate PI metabolism with vesicle trafficking (Morgan et 

al., 2006; Cockcroft and Carvou, 2007).  We investigated the role of PITPβ using mice 

with CMV-Cre mediated deletion.  Under the CMV promoter, PITPβ should be deleted in 

all tissues.  Although deletion of germline PITPβ results in early embryonic defects, our 

conditionally deleted PITPβ mice surprisingly displayed no gross developmental defects.  

These data suggest that the CMV-Cre expression has incomplete penetrance.   

Nevertheless, T cells in these mice expressed lower levels of PITPβ, allowing their 

study.  Like PITPα-deficient mice, we found that T cell development and phenotype was 

grossly normal in PITPβ-deficient mice.  These initial data suggest that like PITPα, 

PITPβ is not required in T cells for grossly normal T cell development.  In vitro studies 

have suggested that PLC signaling can be rescued in permeabilized mammalian cells by 

not only the addition of PITPα, but also PITPβ and Sec14p, evolutionarily unrelated 

yeast PI transfer protein (Cunningham et al., 1996).  PITPβ, PITPα, and other PI transfer 

proteins such as class II PITPs could therefore be functionally redundant in T cells.   

Mice with a T cell specific deletion of both PITPα and PITPβ displayed grossly 

normal T cell development, but a striking defect in T cell percentages in the periphery.  

These preliminary data suggest that PITPα and PITPβ have a redundant role in T cells.  

The defect in T cell percentages in the periphery correlated with a decrease in 

percentage of mature TCRβ+HSAlo single positive T cells, and we speculate that single 

positive cells deficient in PITPs cannot mature properly.  The phenotype of these double 

knockout cells were also unchanged by competition with wildtype T cells in mixed bone 

marrow chimeras, suggesting that dual deficient DP and immature SP cells are not less 
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fit than wildtype cells.  However, it is formally possible that PI depletion in the plasma 

membrane due to PITP deletion takes sufficient enough time to allow the DP to SP 

transition to occur.  Further investigation is necessary. 

While the preliminary data described here suggest a critical function for PITPs in 

T cells, the exact role of these molecules requires much further study.  Future 

experiments will examine whether the incomplete block at the TCRβ+HSAhi to 

TCRβ+HSAlo transition in the thymus is due to cell death.  Experiments using in situ 

terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining to 

examine cell death and retroviral transduction of Bcl-xL to rescue cell death would be 

useful in this regard.  Given the severity of phenotype of germline deletion of PITPα and 

PITPβ, we speculate that these proteins may function redundantly in fundamental 

cellular processes that keep a cell alive.  This homeostatic function could overshadow 

any function of these molecules in cell signaling.  For this reason, we wish to determine 

whether this defect in thymocytes would also occur in other cell populations in which 

both PITPs are deleted.  Floxed mice bred to a tamoxifen inducible Cre will allow us to 

examine the effect of global deletion of PITPα and PITPβ in different cell populations.  Of 

particular interest is whether deletion of PITPα and PITPβ causes smooth ER pathology 

leading to cell death, as similar defects were found in germline PITPα deficient mice in 

neurons, hepatocytes, and enterocytes (Alb et al., 2003).  In summary, the preliminary 

data presented here suggest that PITPα and PITPβ have a role in T cells that may or 

may not be related to TCR signaling.  Further experiments will help uncover the exact 

function of these molecules in vivo, which appears to be much more complex than their 

in vitro function. 
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4.4. Figures 

  

Figure 4.1: PITPα and PITPβ are expressed in T cells.   

T cells and were isolated by magnetic selection from spleen and lymph nodes of 
wildtype mice.  Flow-through was collected to isolate non-T cells.   A western blot was 
then performed using the indicated antibodies.  N=1.



	  
	  

107	  

 

 

 

Figure 4.2: PITPα knockdown results in reduced growth of Jurkat T cells.   

A) Western blot of PITPα and PITPβ expression 3 days after transduction with empty 
vector or shRNA to PITPα.  B) Growth of indicated Jurkat T cells lines re-plated at equal 
concentrations at time 0.  C) Western blot of PITPα and PITPβ expression 3 days after 
transduction with non-targeting control shRNA or 5 unique shRNAs to PITPα. D) Growth 
of indicated Jurkat T cells lines re-plated at equal concentrations at time 0.  N=1. 
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Figure 4.3: T cell specific deletion of PITPα does not grossly alter T cell 
development or peripheral T cell phenotype.   

A) T cells from CD4-Cre+PITPαloxP/loxP or CD4-Cre-PITPα+/loxP mice were isolated by 
magnetic selection and subjected to western blotting.  Flow through was collected to 
isolate non T cells (“Tneg”).  Shown are T cells from 4 mice of each genotype.  B) Thymi 
and C) spleen from CD4-Cre+PITPαloxP/loxP or CD4-Cre-PITPα+/loxP mice were isolated and 
analyzed by flow cytometry.  Representative of 2 mice.
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Figure 4.4: T cell specific deletion of PITPβ does not grossly alter T cell 
development or peripheral T cell phenotype.   

A) Thymi from mice of the indicated genotype were isolated and analyzed by flow 
cytometry.  Left: Gated on live singlets.  Right: Gated on DP cells.  B) Spleen from mice 
of the indicated genotype were isolated and analyzed by flow cytometry.  From left to 
right: Gated on live singlets, gated on CD3e+, gated on CD3e+CD4+, or gated on 
CD3e+CD8+ cells.  Representative of 2 mice.
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Figure 4.5: T cell specific deletion of PITPα and PITPβ results in loss of peripheral 
T cells and impaired development of mature SP thymic T cells.   

A) Lymph nodes and B) spleen were isolated from mice of the indicated genotype and 
analyzed by flow cytometry.  Cells gated on live singlets or as indicated in parentheses.  
C) Thymi from mice of the indicated genotype and analyzed by flow cytometry.  
Representative of 2 mice. 
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Figure 4.6: T cells from mice with T cell specific deletion of PITPα and PITPβ are 
PITP replete in the periphery and PITP deficient in the thymus.   

A) Splenic T and non-T cells from mice of the indicated genotype were separated using 
magnetic selection with a CD90.2 antibody, and subjected to western blotting with anti-
PITPα, anti-PITPβ, anti-ZAP70 as a control for T cell isolation, and anti-β tubulin as a 
loading control.  B) DP and non-DP cells were isolated from thymi of mice of the 
indicated genotype using magnetic selection with antibodies to CD4 and CD8.  Western 
blotting was performed for PITPα and PITPβ expression as in A.  Numbers indicate 
densitometric measurements.  N=1. 
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4.5. Materials and Methods 

Mice 

PITPαloxP/loxP and CMV-Cre;PITPβloxP/loxP mice were a kind gift from the laboratory 

of Charles Abrams and were on a C57Bl/6 background. PITPαloxP/loxP were crossed to 

CD4-Cre mice to generate CD4-Cre;PITPαloxP/loxP.  All experiments were performed using 

age-matched mice.  Animal maintenance and experimentation were performed in 

accordance with the Institutional Animal Care and Use Committee at the University of 

Pennsylvania. 

Western blotting for PITP expression 

Splenocytes or thymocytes were isolated and T cells were purified using 

magnetic selection with CD90.2 microbeads or combined CD4 and CD8 microbeads 

(Miltenyi), respectively.  Cells were lysed in 1% Non-idet P-40 supplemented with 

protease inhibitors.  Lysates were subjected to western blotting using anti-PITPα (Santa 

Cruz, cat# sc-13569) 1:500, anti-PITPβ (ProteinTech Group, cat #13110-1-AP) 1:1200, 

and/or anti-β-tubulin and anti-ZAP70 (Cell Signaling). 

Jurkat T cell growth 

 Cells were transduced with shRNAs in puromycin resistance vectors to PITPα 

(Open Biosystems) and allowed to rest for 2 days.  On day 2, cells were treated with 

puromycin.  On day 5, cells were harvested and 5x106 cells were replated in puromycin-

containing media, after which cell growth was monitored for several days. 

Flow cytometric analysis of thymi and spleen 

Thymi and spleens from wildtype, DGKα-deficient, or DGKζ-deficient mice were 

freshly isolated and surface stained using antibodies to CD3e, TCRβ, CD4, CD8, CD44, 
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CD62L, HSA and/or CD25. Flow cytometry was performed using an LSRII cytometer 

(BD Biosciences) and analyzed using FlowJo software (Treestar). 

Mixed bone marrow chimeras 

 Bone marrow was harvested from CD45.2+Thy1.2+ sample mice and 

CD25.2+Thy1.1+ wildtype mice, mixed at a 50:50 ratio, and transferred into 

CD45.1+Thy1.2+ lethally irradiated recipient mice.  Tissues were harvested after immune 

reconstitution at 10 weeks. 
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CHAPTER V: DISCUSSION AND FUTURE DIRECTIONS 

 In this thesis, we first investigated differential functions for DGKα and DGKζ.  We 

found a selective role for DGKζ in suppression of nTreg development and a dominant 

role for DGKζ in TCR stimulated Ras-mediated signaling.  These results revealed a 

previously unappreciated divergence in the roles of the two most highly expressed DGK 

isoforms in T cells.  We next turned to the mechanisms that may control differential DGK 

isoform functions and performed experiments examining expression levels, localization, 

interaction with other proteins, and effective catalytic activity.  We found that while DGKζ 

has dominant functions in TCR signaling, DGKα protein is more highly expressed in T 

cells and cannot function redundantly for DGKζ.  While experiments in Jurkat T cell lines 

have found differential localization of DGKα and DGKζ, our experiments in primary T 

cells suggested similar gross localization of these molecules after TCR stimulation.  We 

described two major mechanisms that correlate with DGKζ’s dominant function in T 

cells.  First, DGKζ associates in greater amounts with the Ras-activator RasGRP1.  

Second, DGKζ demonstrates greater effective enzymatic activity than DGKα.  In silico 

modeling suggests that greater catalytic function for DGKζ would explain its greater role, 

and that greater RasGRP1 binding would serve to magnify differences observed due to 

catalytic function.  We then examined a broader question of how phosphatidylinositol, 

the ultimate precursor of DAG in T cells, is itself regulated by examining PITPs.  Our 

preliminary results reveal that simultaneous deletion of PITPα and PITPβ at the DP 

stage of T cell development results in a loss of peripheral and mature SP thymic T cells.  

These findings have important implications for our understanding of DAG and PI 

function. 
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5.1. DAG metabolism is critical for normal nTreg development 

 The signals that direct nTreg development in the thymus have begun to be 

elucidated.  High-affinity TCR interactions in the thymus are thought to direct signals that 

activate NF-κB transcription factor and lead to transcription of FoxP3 (Jordan et al., 

2001; Long et al., 2009; Ruan et al., 2009; Hsieh, 2009).  However, the signaling 

molecules that link the TCR with NF-κB activation during nTreg lineage choice are less 

well understood.  In T cells, DAG-mediated activation of PKCθ causes the formation of a 

multimolecular complex that activates the NF-κB (Coudronniere et al., 2000; Sun et al., 

2000).  We observed that deletion of DGKζ increases nTreg development, consistent 

with the notion that higher DAG levels increases NF-κB signaling to direct nTreg 

differentiation.  However, DAG may also act through pathways other than NF-κB to 

increase nTreg development.  Further investigation of other DAG-activated pathways, 

including the Ras and PKD, could lead to the discovery of novel mediators of nTreg 

development.  In support of this notion, the AP-1 transcription factor, whose formation is 

thought to be Ras pathway dependent, has been shown to bind to the FoxP3 promoter 

(Wu et al., 2006).  A manuscript in submission by Schmidt et al. suggests that ERK 

signals, which are downstream of Ras, help direct the development of nTreg.  In 

addition, the catalytic function of PKD2 is required for optimal CD4+ T cell production of 

IL-2, a critical cytokine for nTreg development (Matthews et al., 2010).  Examination of 

nTreg development in mice with deficiencies in the Ras and PKD pathways could be 

productive. 

 One of our striking findings was that though deficiency of either DGKα or DGKζ 

leads to an increase in FoxP3-CD25+ precursors, DGKα deletion does not lead to 

increased nTreg development while DGKζ deficiency does.  These data suggest that 
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deletion of DGKζ does not simply increase nTreg development by enhancing CD25 

upregulation.  Rather, we speculate that DGKζ deficiency leads either to epigenetic 

changes after TCR stimulation that enhance accessibility of the FoxP3 promoter and/or 

increase responsiveness to IL-2R mediated signals.  As phosphorylation of IκBα 

appeared to be similar between DGKα- and DGKζ- deficient T cells, these results also 

suggest that DAG-mediated signals, possibly through Ras or PKD2, differentially 

regulate the ability to respond to IL-2R signaling.  Further experiments examining IL-2R 

signaling in DGKα- and DGKζ-deficient thymocytes would help in this regard. 

 

5.2. Regulation of DGK metabolism of DAG in T cells 

 Data described in this thesis and from other labs demonstrate that DGK 

regulation of DAG is critical for normal TCR signaling.  How DGKs themselves are 

regulated, however, is less understood in primary T cells.  Our results highlight the 

importance of regulation of DGK function.  We found that even though DGKα protein is 

expressed at three-fold higher levels than DGKζ, DGKζ is the isoform that primarily 

regulates Ras-mediated TCR signals.  Moreover, overexpression of DGKα in DGKζ-

deficient T cells was not sufficient to rescue suppression of TCR signaling.  DAG 

metabolism by DGKζ must therefore differ from DAG metabolism by DGKα, and how this 

occurs is an interesting question. 

Experiments in Jurkat T cells have focused on the localization of DGKα and 

DGKζ.  In these experiments, as we describe here for primary T cells, DGKζ was found 

to be the dominant regulator of TCR signaling (Gharbi et al., 2011).  This phenotype 

correlated with DGKζ’s ability and DGKα’s inability to localize to the IS.  In contrast, we 

found that DGKα and DGKζ grossly localized to similar degrees to the IS in primary T 
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cells, suggesting that gross localization is not a major regulator of DGKα and DGKζ 

function during TCR signaling.  However, regulation of function through localization on a 

smaller scale is not ruled out.  One particularly useful system to study localization at the 

scale of the IS is total internal reflection fluorescence (TIRF) microscopy in combination 

with photo-activated MHC-peptide coated coverslips (Quann et al., 2009).  After a pulse 

of ultraviolet light, T cells undergo polarization, allowing high-resolution temporal and 

spatial visualization of the IS.  Experiments studying the localization of GFP-tagged 

DGKα and DGKζ molecules in conjunction with DAG-visualization probes such as 

fluorescent protein tagged PKC C1 domains would be interesting.  These experiments 

could reveal if DGKα and DGKζ associate with different pools of DAG and/or regions of 

the IS.   

Our data suggest that RasGRP1 associates to a greater extent with DGKζ than 

DGKα, and this could augment differences in function due to differences in catalytic 

activity.  Thus, localization of DGKs to regions of the IS where RasGRP1 is present 

could be a major regulator of DGK function in T cells.  Interactions of DGKα and DGKζ 

with RasGRP1 can be studied in vivo after TCR engagement using two complementary 

techniques.  The first is tagging DGKs and RasGRP1 with two different fluorescent 

proteins, and observing whether these molecules colocalize after TCR stimulation using 

TIRF microscopy.  While this technique is suggestive of an interaction between DGK and 

RasGRP1 molecules, it does not definitively indicate an association.  A more rigorous 

approach would be to use fluorescence resonance energy transfer (FRET) microscopy.  

In this system, a donor fluorescent molecule, such as cyan fluorescent protein (CFP), 

excites an acceptor molecule, such as yellow fluorescent protein (YFP), only when in 

close proximity, on the order of 1-10nm.  Thus, CFP tagged DGK molecules and YFP 
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tagged RasGRP1 molecules could be used to examine in vivo association of these 

molecules. 

What signals direct DGK translocation to the T cell-APC contact site? Our 

experiments suggest that signals transduced after conjugation of T cells with APCs are 

necessary for the gross localization of DGKζ, but the exact signals that direct this 

translocation are unknown.  PKC-mediated phosphorylation of the MARCKS domain of 

DGKζ is thought to be important for its translocation to the IS in Jurkat cells, but our 

preliminary experiments in primary T cells suggest that MARCKS domain 

phosphorylation is not required for gross translocation (data not shown).  The 

localization pattern of DGKα and DGKζ in T cells resembles that of Ezrin/Radixin/Moesin 

(ERM) proteins, which anchor receptors to the actin cytoskeleton (Martinelli et al., 2013).  

DGKζ contains a PDZ-binding domain that has been demonstrated to mediate 

interaction of other proteins with ERM proteins (Mery et al., 2002; Mañes et al., 2010).  

Experiments testing the role of ERM proteins in DGKζ localization as well as the function 

of its PDZ-binding domain could prove fruitful for understanding DGKζ localization. 

We are also interested in understanding which TCR dependent signals are 

required for DGKζ association with RasGRP1 in primary T cells.  While we observed 

association of DGKζ with RasGRP1 in 293T cells, we found only a minimal interaction in 

Jurkat T cells in the absence of TCR stimulation (data not shown). Investigation of 

signals that promote DGK translocation may also reveal how DGKζ comes to associate 

with RasGRP1 in primary T cells. 
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5.3. DGK catalytic activity interfaces with analog-to-digital signaling 

 T cells exhibit digital activation after TCR stimulation, converting TCR ligand 

binding (the analog signal) to an “on” or “off” state (a digital signal) for a given cell 

(Chakraborty et al., 2009).   This effect has been specifically shown for the activation of 

Ras after TCR stimulation, with DAG-activated RasGRP1 activation as an analog 

component and allosteric activation of SOS as an analog-to-digital converter (Das et al., 

2009).  DAG levels are modulated by DGKs, which are therefore poised to modulate the 

threshold for TCR-mediated activation of Ras signaling by increasing the number of 

DAG-RasGRP1 functional units.  For example, DGKζ has been found to decrease the 

threshold for T cell activation using both experimental data and in silico modeling of Ras 

activation (Riese et al., 2011).   

This analog-to-digital signaling phenomenon has important implications for the 

function of DGKs.  Changes in DGK catalytic activity could lead to dramatic differences 

in the percentage of Ras-activated cells, for example.  Our data suggest that this is the 

case for DGKα and DGKζ, with DGKζ’s greater catalytic activity leading to a much higher 

fraction of cells with activated Ras when DGKζ is deleted.  By extension, we speculate 

that normal physiologic processes that modulate DGK activity could also have major 

effects on Ras and T cell activation.  In vitro and in vivo studies have suggested that the 

activity of DGKα and DGKζ can be modulated through post-translational modification.  

For example, calcium may augment DGKα catalytic activity, although whether this 

occurs in vivo is less clear (Jiang et al., 2000a; Takahashi et al., 2012).  Furthermore, 

TCR mediated SAP activation may modulate DGKα catalytic activity (Baldanzi et al., 

2011).  Phosphorylation of the MARCKS domain may diminish DGKζ catalytic activity 

(Luo et al., 2003).  An examination of the effects of these phenomena on the threshold 
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for Ras activation would be interesting – while localization of DGKs has been recognized 

to be a major form of regulation of function for these enzymes (Shulga et al., 2011), 

catalytic activity has been less studied with respect to regulation of function.   

5.4. Dominant functions of DGKα 

 While we have uncovered a dominant role for DGKζ in nTreg development and 

Ras-mediated signaling, the question of why DGKα is present in T cells remains.  While 

mice deficient in DGKα demonstrate impaired induction of T cell anergy, mice deficient in 

DGKζ also show features of impaired anergy induction, such as unsuppressed 

production of IL-2, and often to a more severe extent (Olenchock et al., 2006).  In 

addition, DGKα and DGKζ transcription appears to be coordinately regulated, with levels 

of both isoforms decreasing after T cell activation (Olenchock et al., 2006; Martínez-

Moreno et al., 2012).  Some clues of selective roles for DGKα exist.  For example, 

treatment of cells with DGK-II (R59949), an inhibitor that primarily interferes with the 

function of type I DGKs such as DGKα rather than DGKζ (Jiang et al., 2000b), results in 

impaired MTOC reorientation after TCR stimulation (Quann et al., 2009).  As DAG 

synthesis at the IS has been found to closely precede and be sufficient for reorientation 

of the MTOC, DGKα rather than DGKζ may play the major role in this process.  Should a 

selective role for DGKα be found, an examination of why DGKα and not DGKζ controls 

the process would be interesting.  Experiments analogous to those performed here – 

investigation of expression levels, localization, protein interactions, and enzymatic 

activity – would be useful.  In addition, uncovering a dominant role for DGKα would also 

enable more thorough investigation of the domains that control DGK function. DGKα and 
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DGKζ domains could be swapped, with clear-cut readouts of whether function is also 

swapped. 

5.5. DGKs, PITPs, and PI signaling 

 Phosphoinositols and their products are distinctive in some ways from other 

signaling intermediates, such as phosphorylated proteins.  First, PIs and products 

including PIP2, PIP3, and DAG are spatially restricted to membranes, limiting their 

signaling effects to a very specific part of the cell. Second, PIs are heterogeneous lipid 

species that contain acyl chains of varying length, adding additional complexity and 

specificity to their signal transduction role.  Third, PIs and their products are easily 

manipulated by chemical reactions to form molecules with highly distinct functional roles, 

as in the case of DAG and IP3.  Fourth, because PIs and their products can serve both 

as docking sites and activators of proteins, strict temporal control over their presence is 

necessary.  Finally, PIs provide a small reservoir (about 4-5% of the plasma membrane) 

for signaling precursors and are consumed during the signal transduction process.  This 

necessitates regeneration of the supply of PIs for further signal transduction.   

The phenotype of DGK isoform-deficient cells described here and in other labs 

demonstrates the temporal and spatial features of the PI product DAG as well as the 

importance of heterogeneity of DAG species (Joshi and Koretzky, 2013; Shulga et al., 

2010).  How the PI reservoir is regenerated is still an open question, as PI is synthesized 

in the ER and must be transported to other membranes.  In this thesis, we have begun 

to explore this question through examination of PITPs, which bind to PIs and may 

transport lipids.  Our preliminary data suggest that simultaneous deletion of PITPα and 

PITPβ leads to cellular defects in maturing thymocytes.  While experiments to 
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investigate the exact mechanism of this defect are ongoing, we speculate that these 

maturing cells are dying, possibly due to smooth ER pathology that has been described 

in germline PITPα-deficient mice (Alb et al., 2003).  Investigation of these cells using 

electron microscopy and other techniques could help in this regard.  Nevertheless, the 

smooth ER phenotype of PITPα-deficient mice is intriguing as the ER is the site of 

synthesis of PIs.  Should we obtain similar findings in T cells, these data could suggest 

that PIs are not simply innocuous species involved in signaling and vesicular transport.  

Rather, PIs may be toxic if they accumulate in certain parts of the cell.  By extension, we 

speculate that PI mediated signaling could be important for consumption of PIs and 

prevention of PI buildup.  Lipid compartment fractionation, lipid extraction, and 

quantification could be useful for our future experiments involving PITPs to determine if 

PIs accumulate in the ER. 

 

5.6. Therapeutic manipulation of DGKs for disease 

The two most highly expressed DGKs in T cells, DGKα and DGKζ, are clearly 

involved in regulating many processes: T cell selection, iNKT development, T cell 

activation, T cell anergy, T cell responses to pathogen, and T cell anti-tumor responses.  

In a general sense, the attenuation and termination of TCR-mediated DAG signaling by 

DGKα and DGKζ is common to all these processes.  As DAG has numerous 

downstream targets, one would predict that potential therapies to modulate DGK 

function would be most useful in areas where broad manipulation of TCR signaling is 

desirable, such as in suppressing autoimmunity or enhancing immune responses to 

cancer or pathogen.  However, one hurdle in targeting DGKα and DGKζ to modulate T 

cell function is that these isoforms are expressed endogenously in numerous tissues.  In 
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fact, based on EST data, DGKα and DGKζ are the most commonly tissue-expressed 

DGK isoforms of all ten DGKs (Shulga et al., 2011).  In other tissues, DGKα and DGKζ 

regulate diverse processes, such as neurite outgrowth, leptin signaling, cardiac 

remodeling, and cancer cell migration and invasion (Merida et al., 2008; Shulga et al., 

2011).  DGKα- and DGKζ-modulating therapies may therefore be most useful in settings 

in which T cells can be specifically targeted, such as approaches using adoptive and 

autologous T cell transfer immunotherapies. 

Targeting of DGKs could be useful for patients with HIV, which left untreated 

leads to chronic viremia, decreased CD4+ T cell counts, and impairment of the immune 

response to opportunistic pathogens.  In the setting of HIV infection, cytotoxic T cells 

develop an exhausted state, characterized by decreased cytokine production and 

responses to antigen (Yi et al., 2010).  While the vast majority of patients (termed 

“progressors”) are unable to mount effective immune responses to HIV, a small cohort of 

patients (termed “elite controllers” or long term non-progressors (LTNP)) have productive 

cytolytic T cell responses to HIV infected CD4+ T cells (Migueles et al., 2000, 2008).  

Interestingly, pre-treatment of CD8+ T cells with the PMA and ionomycin has been 

shown to rescue the cytolytic ability of progressors’ CD8+ T cells to nearly the same 

level of that of LTNP (Migueles et al., 2008).  While increased NFAT translocation due 

the effects of ionomycin correlate with this rescue, the function of PMA in this 

phenomenon is unknown.  As impairing the function of DGKs increases DAG levels, a 

study of the role of DGKs in cytolytic responses to HIV-infected cells would be 

interesting.  If these studies are successful, autologous transfer of DGK-inhibitor treated 

T cells could be developed into new therapies for chronic infection. 

Recently, autologous T cell transfer of chimeric antigen receptor (CAR)-

transduced T cells was successfully used to treat patients with chronic lymphoid 
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leukemia (CLL) (Kalos et al., 2011; Porter et al., 2011).  CARs consist of a high affinity 

antigen-binding extracellular domain, a transmembrane domain, and an intracellular 

signaling domain (Curran et al., 2012).  The generation of productive signaling from 

CARs allows appropriate cellular activation, cytotoxicity, and persistence to specific 

tumor antigens, and how to induce productive signaling is a topic of much research 

(Curran et al., 2012).  Although the signal transduction pathways that are activated upon 

CAR encounter with antigen are not well understood, deletion of DGKα and/or DGKζ has 

been shown to enhance cytokine and cytolytic responses to mesothelioma in CAR-

transduced murine CD8+ T cells (Riese et al., 2013).  Interestingly, DGKα-deficient and 

DGKζ-deficient CAR-transduced T cells displayed similar cytolysis of mesothelioma 

cells.  These data stand in contrast to the dominant function of DGKζ described here and 

elsewhere (Olenchock et al., 2006; Gharbi et al., 2011).  Similar experiments examining 

the cytolytic ability of DGKα and DGKζ in un-manipulated CD8+ may be useful.  If results 

from these experiments reflect the dominant role of DGKζ described here, a difference in 

signaling machinery between CAR and the TCR would be suggested.  For example, 

CAR signal transduction may have greater reliance on DAG-mediated signaling for its 

effects than TCR signaling.  In this way, future experiments examining signal 

transduction of CAR versus the TCR may dovetail with investigation of DGKs in 

augmenting CAR function. 

 

5.7. Conclusions 

 In this thesis, we define disparate functions of DGKα and DGKζ in nTreg 

development and TCR signaling and find that DGKζ functions dominantly due to its 
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greater effective enzymatic function and greater association with RasGRP1.  We also 

describe preliminary data suggesting a role for PITPα and PITPβ in T cells.  These 

findings have implications for the understanding of how DGKs, DAG, and TCR signaling 

are regulated, and how PIs may be involved in cellular processes.  Although further 

investigation is needed, the future is bright for translating our understanding of DGK 

function to helping patients. 
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