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ABSTRACT

A NOVEL ITERATIVE ALGORITHM FOR SOLVING NONLINEAR INVERSE

SCATTERING PROBLEMS

Howard Levinson

Vadim Markel

We introduce a novel iterative method for solving nonlinear inverse scattering

problems. Inspired by the theory of nonlocality, we formulate the inverse scatter-

ing problem in terms of reconstructing the nonlocal unknown scattering potential

V from scattered field measurements made outside a sample. Utilizing the one-

to-one correspondence between V and T , the T-matrix, we iteratively search for

a diagonally dominated scattering potential V corresponding to a data compatible

T-matrix T . This formulation only explicitly uses the data measurements when

initializing the iterations, and the size of the data set is not a limiting factor. After

introducing this method, named data-compatible T-matrix completion (DCTMC),

we detail numerous improvements the speed up convergence. Numerical simulations

are conducted that provide evidence that DCTMC is a viable method for solving

strongly nonlinear ill-posed inverse problems with large data sets. These simulations

model both scalar wave diffraction and diffuse optical tomography in three dimen-

sions. Finally, numerical comparisons with the commonly used nonlinear iterative

methods Gauss-Newton and Levenburg-Marquardt are provided.
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Chapter 1

Introduction

Inverse scattering problems (ISPs) are a topic of interest in many fields. With ap-

plications from geophysics to medical imaging, the common goal of reconstructing

one or more unknown characteristics from the produced scattered field of an object

allows one to gain knowledge of what is inside an opaque region in a nondestruc-

tive manner. This can be extremely valuable information, and modern examples

include diffuse optical tomography [3, 11], diffraction tomography [15, 21], electrical

impedance tomography [2, 13, 27], electromagnetic imaging (near-field [7, 8, 16] and

far-field [9, 53]), and seismic tomography [28, 29]. All of these methods share the

restriction that scattered field measurements can only be made on the boundary or

exterior to the object of interest.

In theory, if the scattering properties of the object are known ahead of time, it

is relatively simple to predict the resulting scattered field when a source wave or
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multiple source waves scatter after making contact. This is the forward scattering

problem, which is of limited use in tomography, as the scattering effect cannot be

known ahead of time. The inverse problem is more critical, and is in general much

more difficult.

Inverse scattering problems are well known to be ill-posed [40]. As defined by

Hadamard, this implies that the inverse problem fails to have a unique solution,

fails to have a solution at all, or the solution does not depend continuously on the

measured data. It is common for an ill posed problem to suffer from more than one

of these deficiencies. When one cannot make direct measurements inside the sample

(as is the case for ISPs), it is typically impossible to uniquely determine a solution.

Moreover, once one takes into account the potentially robust noise present in any

scattering data measurements, it is clear that finding a reasonable solution is no

easy task.

To handle this ill-posedness, suitable regularization techniques must be applied.

Popular choices such as Tikhonov regularization sacrifice exactness to restore exis-

tence, uniqueness, and stability of solutions [18]. With an appropriate regularization

scheme, a reasonably precise solution can be found for many difficult ISPs.

Further complicating matters is the fact that many ISPs are nonlinear [44, 47]. A

major contributing factor to this nonlinearity is the presence of multiple scatterings.

One cannot blindly use the superposition principle to independently reconstruct

two nearby scatterers if the field is sufficiently strong. One would be ignoring the
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potentially strong scattering effect between the two scatterers. This nonlinearity

adds significant difficulties to any solution process, as the well-developed class of

linear solvers may not be applicable.

Linear approximations can be useful in many instances of ISPs, but many prob-

lems contain large levels of nonlinearity, and true nonlinear methods must be em-

ployed. While there are several analytic inversion approaches (such as the inverse

Born series [38, 39]) and Bayesian inference nondeterministic methods [51] that

have their merits, the class of nonlinear iterative algorithms are a popular choice

for approaching ISPs. With an iterative approach, regularization can be added as a

realization of continuous regularization strategies, or as a rule for determining the

stopping index. Three-dimensional inverse scattering problems can be a significant

computational undertaking, and iterative methods often can provide reasonable

results in a reasonable amount of computation time.

The most conventional choices of nonlinear iterative algorithms are the family

of variants on Newton’s method [25]. These methods search for a descent direction

at each iteration that moves closer to the desired result. Unfortunately, this search

for a descent direction has the serious drawback of requiring access and the use of

all available data points at each iteration. With the heavy computational workload

associated with many of these problems, one does not want to take too many data

measurements that will significantly slow down the solution process.

But in direct competition with reducing computing time is the need to obtain
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accurate results. As mentioned there is strong ill-posedness present due to the re-

striction on where data measurements can be made. One of the key tools to combat

this ill-posedness is the ability to make a significant number of data measurements.

In diffuse optical tomography for example, it is not totally uncommon to expect

data sets on the order of 109 to obtain acceptable resolution [12, 31, 32, 50]. Thus

with these nonlinear iterative techniques, it seems one must always balance the need

for additional data measurements to supply enough information, with the associ-

ated increase in computation time.

This thesis introduces a novel nonlinear iterative algorithm named data-compatible

T-matrix completion (DCTMC). Motivated by the need for efficient algorithms

that can solve large three-dimensional ill-posed ISPs in a reasonable amount of

time, DCTMC is not limited by the number of data measurements taken. That

is, adding additional data points does not significantly increase the computational

load of each iteration. In fact, the data set is only explicitly used once to initialize

the iterations, and the subsequent processes that utilize the data are inconsequen-

tial operation-wise in comparison with the other operations. Thus, DCTMC has

the potential to be faster and more accurate than the current choices for nonlinear

iterative methods.

The remainder of this thesis is organized as follows. We begin in Chapter 2 with

a brief overview of scattering theory and standard nonlinear iterative approaches
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to solve the related inverse problem. Next in Chapter 3 we introduce the data-

compatible T-matrix completion algorithm, as well as many computational short-

cuts and improvements. In Chapter 4, we provide several important results associ-

ated with the linearized DCTMC algorithm. We test the DCTMC algorithm with

substantial simulations in Chapter 5 that model scalar wave diffraction and diffuse

optical tomography. Lastly, we compare DCTMC analytically and numerically to

standard nonlinear iterative methods in Chapter 6 followed by a final summary in

Chapter 7.
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Chapter 2

Theory

2.1 Scattering Theory

The background information on scattering theory in this section is based on the work

in [20, 41]. The goal of any forward scattering problem is to compute the resulting

field produced by the interaction of an incident wave and an inhomogeneous object

compared to background. We state this general physical situation by

L u(r) = q(r) , (2.1.1)

where L is a linear operator, u(r) is the physical field, and q(r) is the induced

source at a location r. We are working in the frequency domain, and while both

u and q contain the frequency ω as an argument, this argument is dropped as

we consider the case of fixed frequency. The dependence between the field and

source and frequency is purely parametric and can be reintroduced if necessary.
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For example, varying the frequency is important in several types of time domain

problems, but for our purposes it will be ignored.

We can write L = L0 − V , where L0 is the linear operator governing the

field without an added inhomogeneous scattering region. Here, V is the scattering

potential, or interaction operator, which models the interaction between the field

and the obstacle. It is assumed that V is compactly supported in a finite scattering

volume.

Thus, absorbing the known term L0u into the induced source term q, we can

write the relationship between the field and the induced source by

Q(r) = V (r)u(r) . (2.1.2)

In this sense, the incident wavefield interacts with the potential generating the in-

duced source Q. While scattering theory can be very general, potential scattering

describes many problems of interest in electromagnetics, optics, and acoustics. Ig-

noring the vectorial nature of electromagnetic wave fields, the literature provides

the general form for the scattering potential

V (r) = k2
0[1− n2

r(r)] , (2.1.3)

where nr(r) is the relative index of refraction which measures the ratio of the index

of refraction of the scatter to the index of refraction of the background material.

That is,

nr(r) =
n(r)

n0

. (2.1.4)
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Keep in mind that we are still suppressing the frequency argument, which is present

iin all terms in the equation above. For a fixed frequency ω, the constant wavenum-

ber in (2.1.3) k0 is defined as k0 = (ω/c)n0(ω). In this view, the scattering potential

is completely defined by its complex index of refraction.

The field produced from the forward scattering problem must satisfy the inho-

mogeneous Helmholtz equation, that is

[∇2 + k2
0]u(r) = V (r)u(r) , (2.1.5)

where we have replaced the source term on the right-hand side by (2.1.2). Reducing

the field u into a decomposition of the incident and scattered fields, we obtain

u = uinc + uscatt , (2.1.6)

where we conclude that the incident field satisfies the homogeneous Helmholtz equa-

tion. This is assumed despite the fact that the incident field will in all likelihood be

propagated through a background medium that is not equal to free space. In this

sense, the incident field will satisfy the inhomogeneous Helmholtz equation. How-

ever, as the source is separated from the scatter, the incident field uinc satisfies the

homogeneous Helmholtz equation within the compact scattering region. An explicit

example of solving the inhomogeneous Helmholtz equation for the scattered field

will be provided in Section 5.1.1. For now, we will return to symbolic notation to

maintain generality.

We write uinc = G0q, where G0 is the unperturbed Green’s function which is the

inverse of L0. This corresponds correctly to the case where there is no scattering, i.e.
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V = 0. We will denote the complete Green’s function of the system by G = L −1.

Thus, the total field can be written as u = Gq. It is worth highlighting the fact

that G exists whenever the forward problem has a solution. Now, acting on both

sides of the equation (2.1.1) by the unperturbed Green’s function G0, we obtain the

Lippman-Schwinger integral equation in symbolic form

u = u0 +G0V u . (2.1.7)

Rearranging terms, we can then obtain the solution for the scattered field by

uscatt = (G−G0)q = G0(I − V G0)−1V G0q . (2.1.8)

We now turn to the inverse scattering problem where we are interested in recon-

structing the scattering potential V . To have a chance of reconstructing V with a

reasonable amount of accuracy, it is imperative to have multiple views of the scat-

tering potential. That is, multiple scattering experiments must be performed with

different incident fields. Single experiments can be used for inverse source problems,

but the extra information provided from multiple scattering experiments is crucial

for the reconstruction process. To that end, we obtain data measurements by mea-

suring the scattered field at detector locations rd. Then, to obtain multiple views,

we can propagate waves through the medium from localized sources q(r) = δ(r−rs),

changing the location of rs for each experiment. We will denote the set of sources

by Σs and the set of detectors used by Σd. Then, by collecting the measurements

made at each location rd ∈ Σd for each source rs ∈ Σs, we obtain a data function

9



of two variables Φ(rd, rs). Looking back at equation (2.1.8), we see that replacing

q by each point source, the equation

G0(I − V G0)−1V G0 = Φ (2.1.9)

holds for restricted values of r and r′. That is, the operator G0 is the same oper-

ator all three times in the equation above, but each kernel G0(r, r′) has different

restrictions. For the first operator multiplication, r ∈ Σd and r′ ∈ Ω, where Ω is the

scattering sample. The last operator multiplication is restricted by r ∈ Ω, r′ ∈ Σs.

Finally, the operator G0 that both has an operator multiplication and inversion is

restricted solely within the sample, r, r′ ∈ Ω. Thus, the inverse scattering problem

can be stated as reconstructing the unknown interaction operator V from a data

function Φ measured outside the sample. The inverse problem is clearly nonlinear.

While Φ is theoretically measured continuously across the surfaces Σs and Σd,

it is impossible to do this in practice. One can only measure the scattered field

at a finite number of points, and likewise can only illuminate the sample from a

finite number of point sources. In this regard, the operator equation (2.1.9) must be

discretized to allow any numerical or analytical solving to take place. Thus, after

discretizing the sample, we consider the matrix equation

A(I − V Γ )−1V B = Φ . (2.1.10)

In equation (2.1.10), we have replaced the three instances of G0 by matrices of

different notation, to highlight the fact that they are each restricted in a different
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Figure 2.1: Illustration of the imaging geometry. The matrices A, B, Γ and V
are the discretized operators in (2.1.10) and are depicted in blue frames. The
restricting and sampling of the kernels G0(r, r′) and V (r, r′) are demonstrated by
the endpoints of the arrows. The multiple scattering depicted corresponds to the
second order term G0V G0V G0 in the formal power-series expansion of the left-hand
side in (2.1.9). Note that in the local limit of the potential V (r, r′) the two green
arrows contract to two vertexes at r1 = r′1 and r2 = r′2.

manner. A is restricted from the detectors to the sample, B is restricted from the

sources to the sample, and Γ is restricted within the sample itself. An example of

this is shown in Figure 2.1. While the slab geometry example in this figure is the

main geometric setup we will be investigating in our later simulations, the above

formulation is general and does not require any specific shape for the surface of

detectors or sources, or the sample. The only physical requirement is that there is

no intersection between Σs or Σd and the sample Ω.
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Equation (2.1.10) is not only general with respect to the geometric setup of

the problem and the discretization choices, but is very general in regards to its

application to scattering theory. The geometry matrices A, B, and Γ are all theo-

retically known, and encompass all of the information of the physical model. Since

the elements of the matrix Φ are all acquired experimentally, the only unknown in

(2.1.10) is the scattering potential V . It is important to note that this equation

cannot be solved simply by matrix inversion, as the matrices A and B are typically

of low rank. In fact, the invertibility of these matrices coincides with performing

measurements within the sample, which is a strict violation of the problem. We

now turn to methods for recovering the interaction operator V .

2.2 Nonlinear Reconstructions

Oftentimes, a linearization of the ISP is an acceptable method for solving this inverse

scattering problem. For these methods, a linearizing transformation is applied to

the data function on the right-hand side of (2.1.10) to simplify the forward problem

to be linear in terms of the unknown interaction matrix V , namely

AV B = L[Φ] . (2.2.1)

Moreover, it is conventional to assume that the interaction matrix is strictly diag-

onal, and such by combining the geometry matrices A and B into the matrix K

by the entrywise formula K(mn),j = AmjBjn, and unrolling the matrix L[Φ] into a
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vector ψ, one obtains the linear equation

Kv = ψ . (2.2.2)

This equation can then be solved for v using any linear equation solver. We will

discuss more linearizing techniques in Sections 4.1 and 5.1.

Another approach to solving inverse scattering problems is to use one of sev-

eral known nonlinear techniques for reconstructing the interaction matrix. These

approaches intend to reconstruct the images with greater accuracy as compared to

linear solvers which make approximations that can significantly reduce the accuracy

of the model. However, nonlinear methods are more computationally intensive than

linear solvers. For that reason, there are many practical scenarios when a linear re-

constructions are acceptable. But when the results obtained from the linearization

of the ISP is not worthy of its application, one must increase the computational

load and use a nonlinear method.

The most popular approach to solving nonlinear inverse scattering problems is

to use Newton’s method or one of its variants. This section will review the idea

behind these mainstream approaches. These methods are reviewed in more detail in

[1, 17, 30]. However, it is worth keeping in mind alternative nonlinear methods such

as the inverse Born series, where the reconstruction is an analytically computable

result directly from the data, and several non-deterministic approaches based on

Bayesian inference.

For these mainstream approaches, it is common to ignore the algebraic structure
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of equation (2.1.10) and rewrite the ISP in the form F [v] = 0, where v are the

diagonal entries of V and F is the nonlinear functional that relates the scattering

potential to the data. This can be alternatively written as ATB = F̃ [v] which

can more clearly elucidate the relationship the nonlinear functional F̃ has with the

data. From here, one thinks of the inverse scattering problem as an optimization

problem. The solution v̂ is found by minimizing an objective function

v̂ = arg min
v

Ψ(v) . (2.2.3)

In most cases, it is common to treat this objective function Ψ as the statement of

a nonlinear least squares problem, that is

Ψ(v) =
Ns∑
i=1

Nd∑
j=1

[Φc(v)− Φm] , (2.2.4)

where Φm is the measured data for specific source and detector pair, and Φc(v)

is the calculated data for that same pair given a scattering potential within the

vector v. We denote the number of sources and detectors used as Ns and Nd

respectively. Then starting from an initial guess v0, the forward problem for Φc(v0)

is calculated, and then based on the specific minimization scheme, our guess is

updated by vk+1 = vk + γkdk, where dk is a descent direction, and γk is a step size.

Oftentimes in the literature γk = 1, as the step size is typically independent of the

method used to determine the descent direction. However, one can always add an

optimization step that conducts a line search for a useful value of γk. That is,

γk = min
γ

Ψ(vk + γdk) . (2.2.5)
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We will now mention some of the most commonly used methods to determine the

direction dk.

2.2.1 Landweber Iteration

Landweber iteration is a special case of steepest descent, in which constraints are

placed on the step size γk. Thus, dk = −∇Ψ(v). Numerically, defining the residual

column vector R(v) with entries

ri(v) = Φc
i(v)− Φm

i , (2.2.6)

allows us to express the gradient of the objective function as the product

∇Ψ(v) = J(v)TR(v), (2.2.7)

where J is the Jacobian matrix defined as

J(v) =



∂r1(v)
∂v1

. . . ∂r1(v)
∂vN

...
. . . . . .

∂rM (v)
∂v1

. . . ∂rM (v)
∂vN


. (2.2.8)

Here, N is the number of discretized elements in the sample, and M = NdNs

is the total number of data points. Thus, Landweber iteration can be succinctly

summarized as

vk+1 = vk − J(v)TR(v) . (2.2.9)

While steepest descent algorithms are well known for converging from very far

away initial guesses, this convergence can be extremely slow. Thus, this algorithm

15



is rarely used directly in practice.

2.2.2 Gauss-Newton Method

A faster and more popular method for nonlinear optimization is the Gauss-Newton

iteration method. While steepest descent used only first-order derivatives, Gauss-

Newton uses an approximation to the second derivative. We begin with the first-

order Taylor approximation to the gradient of the objective function

∇Ψ(vk+1) = ∇Ψ(vk + dk) ≈ ∇Ψ(vk) +∇2Ψ(vk)dk . (2.2.10)

Thus as the objective function is minimized when this equation is equal to zero, we

are interested in solving the set of equations

∇2Ψ(vk)dk = −∇Ψ(vk) , (2.2.11)

for the Gauss-Newton direction dk. The term ∇2Ψ(vk) is the Hessian operator and

can be calculated as

∇2Ψ(vk) = 2J(vk)
TJ(vk) +

M∑
m=1

Nv∑
i=1

Nv∑
j=1

ri(v)
∂rm(v)

∂vi∂vj
. (2.2.12)

In practice, the second term requires a very lengthy calculation, and is in fact

typically much smaller than the first. Therefore, Gauss-Newton method uses the

approximation

∇2Ψ(vk) ≈ 2J(vk)
TJ(vk) . (2.2.13)
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This combined with the previous result ∇Ψ(vk) = 2J(vk)
TR(vk), we obtain a set of

linear equations to solve for the search direction, namely

J(vk)
TJ(vk)dk = J(vk)

TR(vk) . (2.2.14)

Gauss-Newton can converge much quicker than steepest descent, but fails to con-

verge for initial guesses not close to the desired result. However if an initial guess

is sufficiently close, convergence is quadratic.

2.2.3 Levenburg-Marquardt Method

The Levenburg-Marquardt method is a popular nonlinear iterative algorithm that

balances the benefits of both steepest descent iteration and Gauss-Newton method.

In its purest form, a positive diagonal matrix is added to the approximation to the

Hessian on the left-hand side of (2.2.14). Most commonly this diagonal matrix is

chosen to be a multiple of the identity matrix, giving the set of linear equations

governing this method to be

(J(vk)
TJ(vk) + λkI)dk = J(vk)

TR(vk) . (2.2.15)

This choice closely resembles the well-known Tikhonov regularization and is in fact

equivalent to iteratively regularized Gauss-Newton. For very small values of the

damping parameter λk, the direction is clearly very close to the direction obtained by

pure Gauss-Newton. However, larger values of λk suppresses the second derivatives

and as the left-hand side behaves more like the identity matrix, the search direction
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is closer to steepest descent. Thus, the choice of λk can be modified each iteration –

if it is known that our intermediate result is reasonably close to correct, λk should

be made small to have near quadratic convergence behavior a la Gauss-Newton. If

we can be reasonably sure we are far away, a larger value of λk would be preferred

for a larger convergence radius.

2.2.4 Nonlinear Conjugate Gradient

The last common nonlinear reconstruction technique we will review is nonlinear

conjugate gradient. Regular conjugate gradient is a linear iterative method for

solving symmetric positive definite linear systems. Convergence is guaranteed for

the linear case in at most n iterations, where n is the size of the system, and

acceptable results can be found much faster depending on the spectrum of the

matrix involved. For completeness sake (and as this algorithm is used later in the

simulated linear reconstructions) this algorithm for solving the equation Kv = ψ

goes as follows for an initial guess v0:

1. r0 = Kv0 − ψ

∆v0 = −r0

2. While ‖rk‖ > ε do

(a) αk =
rTk rk

∆vTk K∆vk

(b) vk+1 = vk + αk∆vk
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(c) rk+1 = rk + αkK∆vk

(d) βk+1 =
rTk+1rk+1

rTk rk

(e) ∆vk+1 = −rk+1 + βk+1∆vk; k =k +1

Nonlinear conjugate gradient method can then be directly obtained from its linear

counterpart by removing all instances of the residual rk from the above algorithm

and replacing it with ∇Ψ(vk).

2.3 T-matrix

The T-matrix is defined as the operator that relates the complete and unperturbed

Green’s functions through the Dyson equation

G = G0 +G0TG0 . (2.3.1)

A simple inspection of equation (2.1.8) solves for this operator as

T = (I − V G0)−1V . (2.3.2)

Another interesting way of looking at the T-matrix is to define the transition op-

erator which maps incident waves into the product of the interaction operator and

the total wavefield [14, 46]. That is,

Tu0 = V u , (2.3.3)
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and if we multiply both sides of the Lippman Schwinger (2.1.7) equation by the

scattering potential V , we obtain

Tu0 = V u0 + V G0Tu0 , (2.3.4)

or equivalently

T = V + V G0T (2.3.5)

Again solving this equation for T we arrive precisely at the definition in (2.3.2).

From the definition of the transition operator, one can conclude that the scattering

amplitude outside of the sample is proportional to the boundary value of the T-

matrix over a sphere. Thus, scattering amplitude can be determined directly from

the T-matrix, but not vice versa. Clearly the T-matrix completely determines the

scattering operator through the one-to-one correspondence in (2.3.2), but merely

knowing the scattering amplitudes only determines the scattered field outside of the

sample. Thus, one can think of the inverse scattering problem as computing the

T-matrix from some analytic continuation of the scattering amplitudes. However,

there is no stable method to accomplish this.

As an actual discretized matrix, the relationship between the T-matrix and V

is written as

T = (I − V Γ )−1V = V (I − ΓV )−1 . (2.3.6)

Clearly, the T-matrix is symmetric. The inverse operation in equation (2.3.6) is

known to exist if V is physically admissible. We can also write V in terms of T .
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From (2.3.6), we can calculate that

V = (I + TΓ )−1T = T (I + ΓT )−1 . (2.3.7)

Thus, we have a one-to-one correspondence between the transition matrix and the

interaction matrix. Knowledge of either of these matrices fully determines the for-

ward problem, but express the properties of the scattered field in different manners.
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Chapter 3

The Data-Compatible T-matrix

Completion Algorithm

3.1 Motivation

We now turn towards the crux of this these – introducing the novel nonlinear itera-

tive method, data compatible T-matrix completion. Before detailing the specifics of

the algorithm, it is worth discussing the desire for additional methods to approach

nonlinear inverse scattering problems. All of the methods reviewed in Section 2.2

calculate an objective function which depends on all available data measurements,

and is subsequently minimized using one of the previous schemes. In its naive form,

computationally implementing any of these methods at least require storage of the

Jacobian matrix which is of size M ×Nv, where M is the number of data elements
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and Nv is the number of discretized elements one wants to reconstruct. And then for

say Gauss-Newton, one also requires the matrix multiplication JTJ , which requires

O(M2Nv) operations. This calculation quickly becomes unwieldy as the number of

data measurements increases. This is clearly unwanted, as one of the major tools

we have to solve inverse scattering problems is the ability to conduct multiple ex-

periments and obtain very large data sets. However, with traditional methods one

must balance the benefits from additional data measurements versus the increased

computational workload.

It would be dishonest to leave out the fact that there exist more efficient methods

for generating and multiplying these large Jacobian matrices, and thus run faster

than O(M2Nv). Adjoint methods such as in [4, 5, 43] can take advantage of the

sparse nature of the Jacobian matrix in a manner where the Jacobian matrix is never

explicitly computed. But while there are certainly computational improvements one

can make when using these Newton methods, one cannot escape the fact that the

computational workload increases as our data set increases as well.

There is substantial evidence that inverse scattering problems of interest require

strongly overdetermined data sets in order to obtain accurate results [36, 37]. For

example, to obtain optimal lateral resolution for diffuse optical tomography in the

slab geometry with 100×100 grid cross-sections, one needs on the order of 300×300

panels of sources and detectors on either side of the sample. This set up produces

roughly 1010 data measurements. Thus, the size of the data set overshadows the
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size of the discretization mesh, and is the limiting factor for mainstream nonlinear

approaches. This relative magnitude of the size of the overdetermined data set

holds for many other ISPs of interest.

There has been a great deal of interest in both acquiring these large data sets,

and experimentally determining the optimal size of data sets for DOT [6, 31, 50].

Noise and severe ill-posedness can warrant a reduction in the optimal size of the data

set, as one can reach the limit of resolution, and especially noisy data measurements

are better off left discarded. However, the majority of these works use linearized

reconstruction techniques to be able to handle the large data sets efficiently. Thus,

it is certainly desirable to develop nonlinear techniques that will forgo these linear

approximations that reduce accuracy, but can still reconstruct from large data sets

with reasonable computing time.

This is the main goal of DCTMC – to present a nonlinear solver in which in-

creasing the size of the data set has a negligible impact on computation time. The

descriptions of the Newton type solvers in Section 2.2 are very clear in that the

unknown interaction matrix from the forward matrix equation (2.1.10) is treated

as being strictly diagonal and can thus be reduced to a column vector. This comes

from the theory of locality, which states that certain physical properties or events

at a specified point r are only influenced by the field present within a finite radius

` of that point (as esoterically explained in [49]). While the degree of locality is
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never zero, the radius of influence ` is typically small enough (often on the atomic

scale which is much smaller than any discretization mesh), that the forced diagonal

structure of V is accurate.

DCTMC relaxes this locality restriction, and allows our iterative process to

search for nonlocal interaction operators as well. For example, Ohm’s law in local

electrodynamics is J(r) = σ(r)E(r). Relaxing this to nonlocal electrodynamics, the

current density J(r) is given by

J(r) =

∫
V (r, r′)E(r′)d3r′ , (3.1.1)

where V is the integral interaction operator as in (2.1.2). Now we consider the

Calderon problem where we want to find the conductivity σ(r) from voltage drop

measurements taken after two electrodes inject direct current. Finding a nonlocal

kernel V (r, r′) from 3.1.1 that is consistent with the voltage drop measurements

can be simple as this problem is very underdetermined – the degrees of freedom of

V (r, r′) is much larger than the size of the data set. But for the exact same reason,

V (r, r′) cannot be determined uniquely. What we have accomplished so far by

generalizing the linear relationship between the current density and electric field to

a nonlocal setting is the ability to find many solutions that are compatible with the

data. The question remains, how can we narrow down to our desired solution? Keep

in mind that our generalization to the nonlocality of V was only a mathematical

trick, we still expect V to be local to some degree, that is V (r, r′)→ 0 when |r−r′| >

`. Thus, we can safely assume that V is approximately diagonal. Furthermore, local
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conductivity can be obtained from the integral operator by σ(r) =
∫
V (r, r′)d3r′.

Our search out of our data consistent solutions is narrowed down to a search for an

approximately diagonal nonlocal kernel V (r, r′). The concept for DCTMC can be

summarized as:

(1) An initialization step where a class of kernels V (r, r′) that are compatible

with the data is formed. This initialization is the only place when the data

measurements are explicitly used. Moreover, the size of the data set is not a

limiting factor for defining this class of data compatible solutions.

(2) Then we iteratively reduce the off-diagonal norm of V (r, r′) while ensuring

that all iterations of V (r, r′) remain compatible with the data.

(3) Once the ratio of the off-diagonal and diagonal norms of V (r, r′) is sufficiently

small, we have found our diagonally dominated data-compatible interaction

operate. We then compute the local interaction σ(r) =
∫
V (r, r′)d3r′. This is

the final solution to the nonlinear ISP.

While this motivation was stated for electrical impedance tomography, its statement

is very general and can be applied to many other inverse scattering problems. The

fact that (1) above is the only time the data is used (and is not limiting) highlights

the potential advantages of this algorithm.

Lastly of note, the T-matrix from Section 2.3 plays a crucial role in the DCTMC

algorithm. T-matrix methods have been proven useful in solving nonlinear inverse
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problems [33, 52]. These methods are source and detector independent, as the

computation of the T-matrix gives the forward solution for any source and de-

tector arrangement. The mainstream Newton approaches typically utilize finite

difference and finite element methods for the forward problem, which must be run

for each source independently. However, finite element methods generate sparse

matrices which allow for some of the reductions mentioned required for Jacobian

calculations. The trade off for working with source/detector independence is that

computing the T-matrix as in (2.3.6) requires inverting a dense matrix. This one-

to-one correspondence between the interaction operator V and the T-matrix plays

an important role in DCTMC.

3.2 The Experimental T-matrix

We return to the discretized forward equation for the scattering problem

A(I − V Γ)−1V B = Φ , (3.2.1)

but now substituting in equation (2.3.6) to obtain the forward equation

ATB = Φ , (3.2.2)

which is a linear equation in T . It is worth taking some time to discuss the relative

sizes of all matrices in equation (3.2.2). The volume is discretized into Nv voxels,

and recall we have Ns sources and Nd detectors. In the majority of practical setups,
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it is clear that the inequality

Ns, Nd � Nv � NsNd (3.2.3)

must hold if there is any hope of solving the inverse problem with reasonable accu-

racy. The first inequality is generally true due to the nature of most problems of in-

terest, namely that it is impossible to take enough useful measurements to perfectly

determine a solution. The second inequality states that we need an overdetermined

system to handle the ill-posedness involved. So while this inequality holds true in

general, it is useful to consider the order of the values used throughout this paper.

As in the setup in Fig. 6.1, let the measurement planes Σs and Σd be identical, with

both sources and detectors scanned on L×L square grids. The sample is discretized

with the same pitch as the source/detector grids on an L×L×L cubic grid. Then,

Ns = Nd = L2, Nv = L3, and NsNd = L4, which certainly satisfies condition (3.2.3)

for reasonable values of L.

The dimensions of all matrices in equation (3.2.2) are shown in Fig. 3.1. For

all of the reasons mentioned, we can assume that A and B are not invertible.

However, since we have rewritten the forward equation to be linear equation in

our fundamental unknown T , we can fully utilize the knowledge of pseudoinverses.

This will lead us to the definition of the experimental T-matrix, which is the central

concept to DCTMC.

The idea is to find a condition on T that completely satisifies equation (3.2.2).

We begin by considering the singular value decompositions of the geometry matrices
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Figure 3.1: Schematic block diagram of equation (3.2.2). Nv is the number of
discretized voxels, while Nd and Ns are the numbers of detectors and sources re-
spectively.

A and B. That is,

A =

Nd∑
µ=1

σAµ
∣∣fAµ 〉 〈gAµ ∣∣ , B =

Ns∑
µ=1

σBµ
∣∣fBµ 〉 〈gBµ ∣∣ , (3.2.4)

where σAµ are the singular values of A, and
∣∣fAµ 〉 are the left singular vectors of A

of length Nd and
∣∣gAµ 〉 are its right singular vectors of length Nv. This is similar for

B, but with the left singular vectors
∣∣fBµ 〉 being of length Nv and the right singular

vectors
∣∣gBµ 〉 being of length Ns. Note that the summations in (3.2.4) have upper

indicies of Nd and Ns, due to our assumption that Nd, Ns ≤ Nv (all singular values

of larger index than Nd or Ns are identically equal to zero). Now using orthogonality

of singular vectors and rearranging our forward equation, we obtain the entrywise

condition

σAµ σ
B
ν T̃µν = Φ̃µν , 1 ≤ µ ≤ Nd , 1 ≤ ν ≤ Ns , (3.2.5)

29



where we have the following entrywise definitions:

T̃µν ≡
〈
gAµ |T |fBν

〉
, 1 ≤ µ, ν ≤ Nv ; (3.2.6a)

Φ̃µν ≡
〈
fAµ |Φ|gBν

〉
, 1 ≤ µ ≤ Nd , 1 ≤ ν ≤ Ns . (3.2.6b)

We now let RA be the Nv×Nv unitary matrix formed by the column singular vectors

|gAµ 〉 and RB be the Nv ×Nv unitary matrix formed by the column singular vectors

|fBµ 〉. Then, the first line of equation (3.2.6) implies with the unitary property that

T̃ = R∗ATRB and T = RAT̃R
∗
B . (3.2.7)

Note that even though this transformation from T to T̃ is invertible, it is not a

conventional rotation due to the fact that RA 6= RB in general. We now call the

matrix T that has been used thus far the T-matrix in real-space representation, while

the “rotated” matrix T̃ is named the T-matrix in singular-vector representation. We

could name Φ̃ and Φ similarly, albeit using different unitary matrices (of dimension

Nd×Nd and Ns×Ns). But to avoid confusion, since Φ̃ is not a recurring aspect of

the DCTMC algorithm, we refrain from explicitly defining these “rotations”.

Returning to the equivalent singular-vector representation forward equation

(3.2.5), we see that we can numerically reduce this constraint to

T̃µν =


1

σAµ σ
B
ν

Φ̃µν , if σAµ σ
B
ν > ε2 ;

unknown , otherwise .

(3.2.8)

where we have used the conventional notation that σAµ and σBµ are equal to zero

for µ > Nd and ν > Ns. We let ε be a small positive constant that acts as a reg-
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ularization parameter to deal with numerical imprecisions. With infinite precision,

equation (3.2.8) results in NsNd known values, but for an appropriate choice of ε

larger than the smallest positive floating-point constant of computational precision,

it is certainly possible for this equation to give less than NsNd known values in the

T-matrix in singular-vector representation.

However many known entries results from equation (3.2.8) summarizes the en-

tirety of our knowledge based solely on the data. But we know these entries are

correct in singular-vector space with great certainty. In fact, since these entries fully

(or nearly, depending on the choice of ε) represent the data, any choice or modifica-

tion to the unknown values will have negligible impact on the error of the forward

equation (3.2.2) when the T-matrix is rotated back to real-space. This is precisely

our definition of data-compatability: a T-matrix is called data-compatabile if when

it is rotated to the basis of singular functions, it agrees with all known values from

equation (3.2.8).

In general, we can expect this equation to result in a number of known entries

not much less than or equal to NsNd. However, from inequality (3.2.3), we know

that NsNd � N2
v , which implies that we only know a very small number of the

total entries of T̃ . For our previous estimated values of these dimensions, we have

NsNd/N
2
v = 1/L2, which is certainly a small fraction of known entries for large L.

We can arrange the singular values of A and B in descending order, and such the

known elements of T̃ will all be contained in the upper-left submatrix of dimension
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MA ×MB, where MA ≤ Ns and MB ≤ Nd. This is schematically shown in Figs.

3.2. The region of known elements can be of a general shape contained in this rect-

angular block, but we will assume it is rectangular. Furthermore, in all numerical

simulations, the region was indeed rectangular. It is not complicated to include

irregular shapes (see Figure 3.3), but it adds nothing to the discussion.

We can now define the experimental T-matrix Texp as the matrix that satisfies

the forward equation (3.2.2) in the minimum norm sense with smallest norm ‖T‖2.

We can calculate Texp in one of two ways. The first method, which was hinted at

before, is to calculate

Texp = A+ΦB+ , (3.2.9)

where A+ and B+ are the Moore-Penrose pseudoinverses. Then to obtain T̃exp in

singular-vector space, one needs to perform the necessary rotation as in equation

(3.2.7). An equivalent method is to work directly in singular-vector representation,

defining

(
T̃exp

)
µν

=


1

σAµ σ
B
ν

Φ̃µν , if σAµ σ
B
ν > ε2 ;

0 , otherwise .

(3.2.10)

which is setting all unknown entries to be identically equal to zero. It is worth

noting that even though T̃exp is sparse, the same is not necessarily true of Texp.

Perhaps even more important to note, is the fact that by this definition Texp is

not necessarily symmetric, even though it is theoretically known that the correct

T-matrix should be symmetric. However, with later modifications that are not
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Figure 3.2: Left panel: Known elements of T̃ in singular-vector representation
computed from the data by using (3.2.8) are organized inside the shaded block in
the upper left-hand corner. Elements outside of this shaded block are not known
and completely independent of the data. Right panel: The experimental T-matrix,
Texp, the minimum norm solution to (3.2.2). This is equivalent to setting the un-
known elements of T̃ to zero.

inherent to the algorithm, we can easily ensure symmetry. We are now ready to

proceed to defining the basics of the iterations.

3.3 Iteration Cycle

There are two main conditions to be met:

(i) The T-matrix must be data-compatible

(ii) The corresponding V -matrix must be diagonally dominated

Our goal is to “complete” the matrix T̃ in singular-vector space by filling in the

unknown elements in a way that the corresponding interaction matrix V in real

space is diagonally dominant. By using the one-to-one correspondence between the

T-matrix and the interaction matrix V , and the invertible rotations between real

space and singular-vector space, we can iteratively update an intermediate results
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Figure 3.3: A more general shape of known elements of the experimental T-matrix,
as compared with Figure 3.2. The elements above the thick red line satisfy the
condition σAµ σ

B
ν > ε2. Assuming that the singular values σAµ and σBµ are arranged

in the descending order, the boundary line can only go from left to right and from
bottom to top if followed from the left-most boundary of the matrix. One can easily
obtain a rectangular shape by excluding the elements σA4 σ

B
1 , σA4 σ

B
2 , and σA1 σ

B
6 , but

this is not necessary.

by alternatively ensuring conditions (i) and (ii).

We now explicitly define a number of operators that will ease in the description

of the algorithm. We let T [·] be the nonlinear operators that computes the T-matrix

from a given interaction matrix by the previous definition (2.3.6)

T [V ] = (I − V Γ )−1V , (3.3.1)

which is also invertible (as discussed in Section 2.3) with the form

T −1[T ] = (I + TΓ )−1T . (3.3.2)

Note that both of these functionals have Γ as a parameter, and can act on any

Nv × Nv matrix. However, they are only intended to be used for the appropriate

V or T-matrix. We also define the rotation transformation R[·] between real-space
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and singular-vector representations and its inverse R−1[·] by

R[T ] = R∗ATRB , R−1[T̃ ] = RAT̃R
∗
B . (3.3.3)

Again, these operators can act on any Nv ×Nv matrix, but have been written with

the parameter of intended use. The definition of this operator also presupposes that

the rotation matrices have already been calculated, and thus the SVD representation

of A and B. With these same assumptions, we define the masking operators M[·]

and N [·]:

(
M[T̃ ]

)
µν
≡


0 , σAµ σ

B
ν > ε2 ;

T̃µν , otherwise .

(
N [T̃ ]

)
µν
≡


T̃µν , σAµ σ

B
ν > ε2 ;

0 , otherwise .

(3.3.4)

with the point that M[T̃ ] + N [T̃ ] = T̃ . Then the method of enforcing data-

compatibility of T̃ can be defined through the overwriting operator O[·] by

O[T̃ ] ≡M[T̃ ] + T̃exp = T̃ −N [T̃ ] + T̃exp . (3.3.5)

The operator literally leaves all “unknown” elements unchanged, and forcibly over-

writes the “known” entries.

Finally, we define the operator D[·], which calculates the diagonal approximation

to an Nv ×Nv matrix. We will begin by defining this operator by

D = (D[V ])ij ≡ δijVii , (3.3.6)

which is perhaps the simplest method of defining a related diagonal matrix by set-

ting all off diagonal terms to zero. The specific overwriting operator O[·] was chosen
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in a similar manner. We can certainly choose alternate definitions for D[·] and O[·],

which we will later discuss and justify our final choices. For now, overwriting and

diagonalizing are done by forcibly changing any entry that is not desired.

With these definitions in hand, we can now elaborate on the iterative algorithm

DCTMC. We assume that the SVD decompositions of the geometry matrices A and

B have been precomputed, along with the experimental T-matrix T̃exp. Let k = 1,

and our initial guess T̃1 = T̃exp. Then the algorithm runs as follows:

1: Tk = R−1[T̃k]

This transforms the T-matrix from singular-vector to real-space representa-

tion. Both T̃k and Tk are data-compatible.

2: Vk = T −1[Tk]

This gives k-th approximation to the interaction matrix V . Vk is data-

compatible but not diagonal. Compute the off-diagonal and diagonal norms

of Vk. If the ratio of the two is smaller than a predetermined threshold, exit;

otherwise, continue to the next step.

3: Dk = D[Vk]

Compute the diagonal approximation to Vk, denoted here by Dk. Dk is diag-

onal but not data-compatible.

4: T ′k = T [Dk]

Compute the T-matrix that corresponds to the diagonal matrix Dk. Unlike
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Tk, T
′
k is no longer data-compatible.

5: T̃ ′k = R[T ′k]

Transform T ′k to singular-vector representation. Here T̃ ′k is still not data-

compatible.

6: T̃k+1 = O[T̃ ′k]

Advance the iteration index by one and overwrite the elements of T̃ ′k that are

known from data with the corresponding elements of T̃exp. This will restore

data-compatibility of T̃k+1. Then go to Step 1.

These steps illustrate a method for iteratively ensuring data-compatibility of the

T-matrix and diagonal dominance of the interaction matrix V . A flowchart of these

iterations is shown in Figure 3.4. While these enforcements are “exclusive or” in

the boolean sense that only one of them is guaranteed to be true at any point in

the algorithm, the goal is that convergence will lead to an acceptable result on both

fronts.

3.4 Computational Complexity and Shortcuts

In terms of computational complexity, Steps 1, 2, 4, and 5 are dominant, all with

complexity O(N3
v ). In this section however, we will present computational shortcuts

to reduce the number of steps with complexity O(N3
v ). The first shortcut for fast

rotations results in no loss of information, and there is no reason not to use its
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Figure 3.4: Basic flowchart of the DCTMC iteration process for the case when
the iterations start with an initial guess of T̃exp. The operations for the numbered
iteration steps are defined in Section 3.3. Matrix representations are abbreviated
by SV (singular-vector) and RS (real-space). The computational shortcuts depicted
are described in Sec. 3.4. The fact that the size of the data set is not a limiting
factor is show by the arrow in the top-left corner.
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implementation. The second shortcut which reduces computation time from the

T-matrix to the interaction matrix V is certainly useful for the definition presently

used of D[·] in (3.3.6), but may be needed to be eschewed when using alternative

definitions for the diagonal matrix approximation operator.

3.4.1 Fast Rotations and Data-Compatibility

The first shortcut combines steps 5, 6, and 1 into one step that enforces data-

compatibility by overwriting without rotating all entries to singular-vector space

and back. These steps are listed below, with their computational complexity as

well as their complexity based on the estimated values with discretization into grid

size L.

5 : T̃ ′k = R[T ′k] O(N3
v ) = O(L9) ,

6 : T̃k+1 = O[T̃ ′k] ≤ O(NdNs) = O(L4) ,

1 : Tk+1 = R−1[T̃k+1] O(N3
v ) = O(L9) .

Steps 1 and 5 are obviously the dominant steps, with Step 6 only needing to access

and overwrite a maximum ofNsNd entries (and potentially less depending on desired

precision). It is natural to combine these three steps, due to the fact that the

bookend rotations are linear. Combining these three steps in one results in

Tk+1 = R−1 [O [R[T ′k]]] = R−1
[
R[T ′k]−N [R[T ′k]] + T̃exp

]
, (3.4.1)
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where the second equality has inputted the second definition of O[·] in (3.3.5) and

the fact that R[Texp] = T̃exp. Now we can distribute the operator R−1 across due

to linearity, which results in the expression

Tk+1 = T ′k + Texp −R−1 [N [R[T ′k]]] . (3.4.2)

This expression is identical to Steps 5, 6, and 1, but we still need to be able to reduce

R−1 [N [R[T ′k]]] to show any computational improvements. This is not difficult, as

(3.4.2) has replaced O[·] in (3.4.1) with N [·], which turns any matrix into a sparse

matrix. Therefore, it is reasonable to expect that R−1 [N [R[T ′k]]] can be computed

in fewer than O(N3
v ) operations.

Let us first consider the operation N [R[T ]]. As the masking operator N sets

all entries not in the upper left MA ×MB submatrix to zero, there is no need to

calculate all entries in the rotation R[T ]. Therefore we define the Nv ×MA ma-

trix PA by the first MA columns of RA, and similarly PB by the first MB columns

of RB. Then, N [R[T ]] = P ∗ATPB which now has computational complexity of

O(min(MA,MB)N2
v ) which is a reduction over the original computational complex-

ity of O(N3
v ) by a minimum of O(L) under our estimates. Identical reasoning allows

us to expand to the full expression

R−1[N [R[T ′k]]] = PA (P ∗ATPB)P ∗B , (3.4.3)

which has the same computational complexity of O(min(MA,MB)N2
v ). It is clear

that PAP
∗
A and PBP

∗
B are not equal to the identity matrix, and are not sparse in
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Figure 3.5: Schematics of computing N [R[T ]]. Matrices PA and PB are obtained
from RA and RB by setting all columns to zero except for the first MA and MB

columns, respectively.

any sense. Therefore, it would be inefficient to premultiply these matrices and set

QA = PAP
∗
A and QB = PBP

∗
B and calculate QATQB. Using this premultiplication

would clearly still have complexity O(N3
v ). Therefore, the evaluation of (3.4.3)

should be calculated in the order implied by the parentheses to gain an improvement.

Putting all of this together, we obtain the shortcut for fast rotations combing Steps

5, 6, and 1 by

Tk+1 = T ′k + Texp − PA (P ∗AT
′
kPB)P ∗B . (3.4.4)

With this shortcut, it is no longer necessary to store the full matrices of RA and

RB in memory. We only need to precompute and store PA and PB. Since Texp is

also precomputed, this shortcut only requires computing the last term.
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3.4.2 Fast T → D Transformation (Option 1)

We now consider another shortcut that will quickly calculate the related interaction

matrix V to the T-matrix and simultaneously find its diagonal approximation D.

This shortcut can be thought of as not a pure shortcut to the algorithm, but as an

alternative definition to the closest diagonal approximation operator D[·] that runs

faster. Our previous definition was to compute V that perfectly corresponds to T ,

but is most likely not diagonally dominated. Then we set all off diagonal terms to

zero to arrive at our diagonal approximation. Put alternatively, we seek a diagonal

matrix D that minimizes ‖V − D‖2. However, we can also search directly for the

nearest diagonal matrix D that corresponds to T . From (2.3.7), we have

T = D +DΓT , (3.4.5)

which we can solve as a classical minimization problems, stated as

min
D diagonal

‖T −D −DΓT‖2 . (3.4.6)

We can explicitly solve problem (3.4.6) to arrive at the solution:

Dij = δij
Tii + [(ΓT )∗ T ]ii

1 + [(ΓT )∗ + (ΓT ) + (ΓT )∗ (ΓT )]ii
. (3.4.7)

While we have arrived at a nice closed-form solution to (3.4.6), at first glance it

seems like this evaluation still requires O(N3
v ) operations, which is not an improve-

ment over the original method which required the inverse an Nv ×Nv matrix. The

issue seems to be the calculation of the product ΓT , however, we are able to itera-

tively update this product, so as to not require full calculation each step. We define
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the matrix Λ = ΓT , and look back at the computational shortcut for fast rotations

as stated in (3.4.4). We can multiply both sides of the equation by Γ to obtain

ΓTk+1 = ΓT ′k + ΓTexp − ΓPA (P ∗AT
′
kPB)P ∗B , (3.4.8)

or using the natural extension of the definition of Λ,

Λk+1 = Λ′k + Λexp − (ΓPA) (P ∗AT
′
kPB)P ∗B . (3.4.9)

The matrix ΓPA can be precomputed at the start, as well as the matrix Λexp =

ΓTexp, so the only remaining issues is how to obtain Λ′k. If this matrix can be easily

obtained, then the computational complexity of (3.4.9) is identical to the complexity

of the previous shortcut, namely O(min(MA,Mb)N
2
v ). It is a reasonable question if

the computation of Λ′k requires a new matrix multiplication, due to the fact that

ΓT ′k has not been used previously. However, it can be precomputed without any

additional cost in the previous step of the algorithm. From the definition of T [·] in

(3.3.3), we have

T ′k = Dk(I − ΓDk)
−1 . (3.4.10)

which results in

Λ′k = ΓDk(I − ΓDk)
−1 = (I − ΓDk)

−1 − I , (3.4.11)

when both sides of (3.4.10) are left-multiplied by Γ. Thus,as we already need to

calculate this inverse matrix, we are able to obtain Λ′k simply by subtracting off of

the diagonal. We spell out this procedure to obtain Λ′k exactly as follows:
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1: Compute the product ∆k ≡ ΓDk, which is fast because Dk is diagonal.

2: Compute the inverse Sk ≡ (I −∆k)−1, which has the complexity of N3
v .

3: Compute Λ′k = Sk − I [as follows from (3.4.11)].

4: Compute T ′k = DkSk [as follows from (3.4.10)], which is again fast because Dk

is diagonal.

Thus, in this shortcut to go directly from T to D, we have eliminated all steps in

this process requiring N3
v operations, leaving only the calculation in item 2 inverting

(I −∆k) as required to go from the interaction matrix V to the T-matrix.

3.4.3 Fast T → D Transformation (Option 2)

We now present another alternative for the diagonal approximation Dk to an in-

teraction matrix that also allows for computational improvements over the original

method. We define the operator D[·] as:

Dij =


∑Nv

k=1 Vik i = j

0 i 6= j ,

(3.4.12)

which sums over all rows to the diagonal. This fits in with the conceptual under-

standing of DCTMC in terms of working in a nonlocal framework. Returning to

the example used in 3.1, the nonlocal version of Ohm’s law is generalized from the

linear J(r) = σ(r)E(r) to the nonlinear J(r) =
∫
V (r, r′)E(r′)d3r′. To now return
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to local conductivity leads to σ(r) =
∫
V (r, r′)d3r′. In a discretized setting, this

corresponds to summing over rows in the V -matrix.

Now how can this method of finding the diagonal approximation lead to any

improvement in computational speed? It seems like we still need to calculate the

entire V matrix and then sum over rows as opposed to just discarding all off-diagonal

terms. However, we can exploit the fact that we can compress the diagonal matrix

D into a column vector containing its diagonal entries. We can obtain the values

along the diagonal of D, |D〉 from V by

|D〉 = V |1〉 , (3.4.13)

where |1〉 is the Nv × 1 column vector with all entries equal to one. Thus, the

process going from T to D can be written as

|D〉 = (I + TΓ )−1T |1〉 , (3.4.14)

or equivalently as

(I + TΓ )|D〉 = T |1〉 , (3.4.15)

which can then be solved by a linear solver. This is both faster than explicitly cal-

culating the inverse matrix, as well as being much more stable. We can also remove

the matrix multiplication TΓ by factoring out Γ and then left-multiplying our re-

sult |D〉 by Γ−1. In all tested applications, the matrix Γ has been computationally

invertible (and thus can be precomputed). It is a moot point if Γ is not invertible

or of very low rank, as then the inverse matrices can be calculated easily anyways
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as in our sparse methods of Section 3.5.5.

3.4.4 Streamlined Iteration Cycles

This section integrates the computational shortcuts into the DCTMC algorithm. In

what follows, Option 1 refers to the method in Section 3.4.2, while Option 2 refers

to the method explained in Section 3.4.3. The shortcut for fast rotations is always

used, which as mentioned, is a pure improvment of DCTMC with no downsides.

Initial setup:

a: Permanently store in memory the analytically-known matrix Γ . Option 2

only: Calculate and store in memory Γ−1.

b: Compute the SVD decomposition (3.2.4) of A and B. This will yield a set

of singular values σAµ , σBµ (some of which are identically zero) and singular

vectors |fAµ 〉, |fBµ 〉, |gAµ 〉, |gBµ 〉.

c: Use the previous result to construct RA and RB, and permanently store in

memory the submatrices PA and PB. RA and RB can be discarded and deal-

located. Option 1 only: Construct and store P̃A = ΓPA.

d: Compute Φ̃µν according to (3.2.6) and T̃exp according to (3.2.10). Discard

the real-space data function, the singular values and singular vectors, and

deallocate the associated memory.
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e: Compute and store permanently in memory Texp = PAT̃expP
∗
B and Option 1

only: Λexp = ΓTexp.

f: Initialize iterations by setting T1 = Texp and Option 1 only: Λ1 = Λexp.

Main iteration (Option 1): For k = 1, 2, . . ., perform the following computa-

tions:

1: (Dk)ij = δij
(Tk)ii + (Λ∗kTk)ii

1 + (Λ∗k + Λk + Λ∗kΛk)ii
;

2: ∆k = ΓDk ;

3: Sk = (I −∆k)
−1 ;

4: T ′k = DkSk , Λ′k = Sk − I ;

5: Tk+1 = T ′k + Texp − PA (P ∗AT
′
kPB)P ∗B , Λk+1 = Λ′k + Λexp −QA (P ∗AT

′
kPB)P ∗B

.

Main iteration (Option 2): For k = 1, 2, . . ., perform the following computa-

tions:

1: Solve (Γ−1 + Tk)|D′k〉 = Tk|1〉 for |D′k〉 ;

2: |Dk〉 = Γ |D′k〉 Place values onto diagonal of Dk ;

3: ∆k = ΓDk ;

4: Sk = (I −∆k)
−1 ;
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5: T ′k = DkSk ;

6: Tk+1 = T ′k + Texp − PA (P ∗AT
′
kPB)P ∗B .

Some operations are placed on the same line to emphasize the fact that their exe-

cution is insignificant and can run in parallel. A few comments on these iterations:

For Option 1 [1:], the calculation of (ΛkTk)ii and (Λ∗kΛk)ii for i = 1, . . . , Nv has

the computational complexity of only O(N2
v ). As noted previously, the overwriting

step [5:] has computational complexity of O(min(MA,Mb)N
2
v ), while steps [2:] and

[4:] are fast as Dk is diagonal. Therefore, the only bottleneck is the operation of

matrix inversion in [3:], with complexity O(N3
v ). Iterations can be stopped in this

case when the norm ‖Tk−Dk−DkΓTk‖2 is smaller than a predetermined threshold.

For Option 2, both [1:] and [4:] have complexity O(N3
v ), but step [1:] is still

faster and more stable as mentioned. All are other steps are identical to Option 1, or

inconsequential. Iterations can again be stopped when the norm ‖Tk−Dk−DkΓTk‖2

is smaller than a predetermined threshold. It is worth noting that both options

avoided the troublesome direct inversion required to calculate V from T , a marked

improvement over the original statement of DCTMC. The runtime per iteration on

a slower workstation for Nv = 2304 and MA = MB = 954 are shown in Table ??.

The relative difference between these methods scales linearly, that is Option 2 runs

about twice as fast as not using a faster diagonalization method (but still using fast

rotations), while Option 1 always runs a bit (1.25 times) slower than Option 2.
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Just Rotation Shortcut ≈ 58s

Option 1 Shortcut ≈ 39s

Option 2 Shortcut ≈ 31s

Table 3.1: Runtimes for different computational shortcuts

3.5 Variations and Improvements

3.5.1 Starting From an Initial Guess

The iteration cycles were written from a starting point of T1 = Texp. This is in

no way a requirement for DCTMC, it is merely the most convenient option as Texp

must already be computed. If one has an initial guess for V based on some a priori

knowledge, it makes sense to start from this initial guess and continue the algorithm

from the appropriate starting point D1. One option is to use the linearized solution

is the initial guess, which can be obtained quickly through (4.1.6). This gives the

linearized solution |vL〉 where we then set D1 = DL that contains the elements of

|vL〉 on its diagonal. While one must be careful to avoid local minimums using this

method, it was shown to be highly effective in our simulations.

3.5.2 Reciprocity

From the general reciprocity principle, data measurements are unchanged if the lo-

cations of sources and detectors are interchanged. This is typically an unimportant

point for most reconstruction algorithms, as adding these duplicate data points does

not contribute any information to the Jacobian and only adds computation time.
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In T-matrix methods the reciprocity principle is evident through the symmetry of

the T-matrix. However, as noted in Section 3.2, our definition of the experimental

T-matrix Texp does not enforce symmetry. Thus, including these data points from

interchanging sources and detectors is not redundant, and in fact enforces sym-

metry of the experimental T-matrix. This in turn also forces all data compatible

T-matrices obtained in the iterations to be symmetric. This is clearly useful in-

formation for the DCTMC algorithm – we must explicitly enforce the reciprocity

principle. Note that these “interchanged” data measurements are trivially obtained,

and do not require any additional experimental work. Moreover, while enforcing

symmetry of the T-matrix will add some computation time, it is small as the num-

ber of data measurements is not a limiting factor in this method. That is, only the

values of MA and MB will change (the number of known elements in the T-matrix),

which will add some extra work to the overwriting step, but is still dwarfed by the

full matrix inversions required to obtain T from V . This more complete data set

was shown to be crucial in our simulations with noise in Section 5.3.

3.5.3 Regularization

It is well known that inverse scattering problems of interests can be severely ill-

posed and noisy. Suitable regularization is typically required to produce reasonable

results. There are two main forms of regularization for DCTMC – a linear based

version of Tikhonov regularization and regularization by enforcing known physical
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constraints. The linear-inspired Tikhonov regularization will be discussed in Section

4.1, whose main idea is regularizing the matrix W in (4.1.3). In combination with

this or separately, imposing physical constraints can be applied to the elements of

Dk each iteration. This is a way of applying nonlinear information, and is certainly

a type or regularization that can prevent convergence towards unwanted solutions.

Examples of a priori physical information that can be applied iteratively include

knowledge that all elements of Dk be real, be nonnegative, or have nonnegative

imaginary part. All of these constraints can easily be applied to each obtained

diagonal interaction matrix.

It is also worth pointing out that the choice of ε in equation (3.2.10) plays an

important role in suppressing noise in the data. This is akin to truncated SVD and

can also be viewed as a form of regularization. The choice of ε regulates how much

we want our solution to perfectly fit the data. Larger values of epsilon reduce the

number of known entries in the experimental T-matrix, and allow entries that could

be perfectly determined by the data to change. This can be especially valuable in

the presence of noisy measurements. In the simulations from Section 5.1, a relatively

large value of ε could be used as the simulations were without noise. However, as

the problem became more nonlinear, smaller values of ε were required to prevent

unwanted convergence. The simulations in Section 5.3 required much smaller values

of ε in the presence of noise. Thus, this truncation of the experimental T-matrix is

key to regularizing against both noise and instances of strong nonlinearity.
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3.5.4 Choice of Diagonal Approximation

We have previously discussed three main options for obtaining the diagonal approx-

imation to the nonlocal interaction matrix V , setting all off diagonal terms to zero,

summing over all rows to the diagonal, or solving the minimization problem (3.4.6).

In this section, we will focus our attention on the second option, summing over rows

as

Dij =


∑Nv

k=1 Vik i = j

0 i 6= j .

(3.5.1)

While this operator is physically inspired by the nonlocal approach of DCTMC, in

practice, it is necessary to apply some type of weight function to the sum. We can

reasonably expect that if two voxels are far away from each other, there should not

be large interaction between them. Thus it can be prudent to forgo adding these

elements in the row sum in (3.5.1), or at least heavily suppressing them to avoid

adding unwanted computational noise to the diagonal. One wants to define a weight

function w(ri, rk) such that w(ri, ri) = 1 and w(ri, rk) goes to zero sufficiently fast

as ri and rk move away from each other. Then this diagonal approximation is given

by

Dij =


∑Nv

k=1w(ri, rk)Vik i = j

0 i 6= j .

(3.5.2)

The addition of this weight function w has no strong impact on the computation

time of the full algorithm, but using Option 2 of the streamlined iteration cycle must
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be modified. One no longer wants to obtain D from V by right-multiplying V by

the column vector of all ones, as this ignores any weighting that takes place. Thus,

one must instead weight the T-matrix in equation (3.4.15) to be more diagonally

dominated. That is, define a corresponding weighting operator W and then solve

(I +W [T ]Γ)|D〉 =W [T ]|1〉 . (3.5.3)

It is clear that there is no easy correspondence between the choice of w and W ,

but there is evidence that this second approach using the shortcut of Option 2 can

be effective. The choice of W should be such that the off diagonal terms of T are

slightly reduced in a relative manner to the desired weighting definition of w.

3.5.5 Accounting for Sparsity

It is clear that no matter which computational improvement of DCTMC one chooses,

the inversion (I −∆k)
−1 is the computational bottleneck. If some of the elements

of Dk are zero, the matrix ∆k = ΓDk will have corresponding zero columns, and

the matrix (I −∆k) all have corresponding identity columns. The inversion of this

matrix can ignore these columns, and if there are p elements of Dk that are zero,

computation of (I −∆k)
−1 requires O((Nv − p)3) operations.

We cannot reasonably expect in practice that any diagonal elements will be

precisely equal to zero, but we can use a threshold to automatically set absolutely

small or relatively small diagonal elements of Dk to zero and then invert the subse-

quently “smaller” matrix. Moreover, if one has a priori knowledge that the target
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is p-sparse, one could set the smallest p (or some number less than p) entries of Dk

to be identically equal to zero.

3.5.6 DCTMC in the Inverse Regime

DCTMC is a nonlinear solver as it fully utilises the nonlinear relationship between

T and V to iteratively ensure data-compatibility of the T-matrix and locality of

the interaction matrix V . However, it is interesting to reformulate the problem in

terms of V −1 and T−1. It is important to highlight that the work in this section

presupposes that all inverses will exist (which might not be true), and has less

rationale for convergence. Nonetheless, it is an interesting variation under these

assumptions, with a potential to be much faster per iteration.

The benefit of working in the inverse regime is that the relationship between

V −1 and T−1 is linear. Inverting (2.3.7), we can obtain

T−1 = V −1 − Γ , (3.5.4)

or written in terms of operators

T [V −1] = T−1 + Γ , T −1[T−1] = V −1 − Γ . (3.5.5)

This gives us an easy method for transforming between V −1 and T−1. As we want

V to be diagonal, it is clear that the corresponding condition in the inverse regime

is for V −1 to be diagonal as well. However, it is not obvious how we can define

data-compatibility for T−1. In what follows as our definition of data-compatibility
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for T−1, it is clear that it will not be the same definition of data-compatibility for

T , and these definitions do not correlate perfectly. The formulation of DCTMC in

the inverse regime is in no way an identical formulation to the original DCTMC.

First we introduce some notation. We denote by τ̃ the MA ×MB upper left

submatrix of the known entries of the experimental T-matrix. We will further

assume that MA = MB. This is not an unrealistic assumption as using reciprocity

as in Section 3.5.2 ensures MA = MB. Nevertheless, a more rudimentary solution

for the case MA 6= MB is to set MA = MB = min{MA,MB}. Then it is clear that

for an appropriate choice of ε, we can assume that τ̃ is invertible.

For data compatibility, we still need to rotate to the singular-vector representa-

tion – we want the upper left submatrix of (T̃−1)−1 to agree with τ̃ . We note that

in the inverse regime

T̃−1 = (R∗ATRB)−1 = R∗BT
−1RA . (3.5.6)

Therefore, we redefine the rotations between singular vector and real representations

by

R[T−1] = R∗BT
−1RA , R−1[T̃−1] = RBT̃

−1R∗A . (3.5.7)

But since we are working in this inverse regime, it is greatly preferred to not ac-

tually invert the matrix back, as then this method is no different than the original

DCTMC. Instead, we will treat the fundamental unknown T̃−1 as a block matrix

which in turn allows us to use known expressions for inverting block matrices. We
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write T̃−1 as:

T̃−1 =


X1 X2

X3 X4

 , (3.5.8)

where X1 is MA ×MA, X2 is MA × (Nv −MA), X3 is (Nv −MA)×MA, and X4 is

(Nv −MA)× (Nv −MA) in dimension. Then we can write the inverse as

T̃ = (T̃−1)−1 =


C −CX2X

−1
4

−X−1
4 X3C X−1

4 +X−1
4 X3CX2X

−1
4

 , (3.5.9)

where C = (X1 −X2X
−1
4 X3)−1. Therefore, we need C = τ̃ , or equivalently

X1 = τ̃−1 +X2X
−1
4 X3 , (3.5.10)

where τ̃−1 can be precomputed and the inversion X−1
4 is faster than full inversion

as it is a submatrix. Data compatibility in the inverse regime requires overwriting

the upper left submatrix in a nonlinear fashion, which makes sense as we have

removed the nonlinearity present between T and V . We have not removed all the

nonlinearity from the problem, but the idea is that the computations required in

inverse regime require less computation time.

To fully take advantage of all computational improvements in the inverse regime,

we will exploit the linear relationship between T−1 and V −1 to perform all calcu-

lations solely on V −1. Conceptually, it makes sense to still think of T−1 as the

fundamental unknown due to its relationship with data compatibility, however it is

not needed to ever explicitly compute the inverse of the T-matrix in this algorithm.
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For example, let us look at the steps involved in enforcing data compatibility. This

is the computation of O[R[T−1]]. Using (3.5.4) and (3.5.7), we obtain

O[R[T−1]] =O[R∗BT
−1RA]

=O[R∗BV
−1RA −R∗BΓRA] ,

where it is clear that we only want to overwrite the entries of R∗BV
−1RA, as the

other term is constant. Hence, writing Γ and Ṽ −1 as

Γ =


Γ1 Γ2

Γ3 Γ4

 , Ṽ −1 =


Y1 Y2

Y3 Y4

 , (3.5.11)

it is clear that we can write the overwriting operation purely in terms of V −1 as

O[Ṽ −1] =


τ̃−1 + Γ1 + (Y2 − Γ2)(Y4 − Γ4)−1(Y3 − Γ3) Y2

Y3 Y4

 , (3.5.12)

where we denote Ỹ1 = τ̃−1 + Γ1 + (Y2−Γ2)(Y4−Γ4)−1(Y3−Γ3). The iteration cycle

can be written purely in terms of V −1 as follows. Starting from an initial guess of

D−1
1 :

1: Ṽ −1
k = R[D−1

k ]

This transforms the diagonal inverse V-matrix from real-space representation

to singular vector representation. Ṽ −1
k is no longer diagonal.

2: (Ṽ ′k)
−1 = O[Ṽ −1

k ]

This overwrites the elements of Ṽ −1
k to restore data compatibility.This gives

57



k-th approximation to the interaction matrix V . Vk is data-compatible but

not diagonal.

3: (V ′k)
−1 = R−1[(Ṽ ′k)

−1]

Transforms (Ṽ ′k)
−1 back to real space representation. Note that this matrix

is data compatible, but not diagonal. Compute the off-diagonal and diagonal

norms of Vk. If the ratio of the two is smaller than a predetermined threshold,

exit; otherwise, continue to the next step.

4: D−1
k = D[(V ′k)

−1]

Compute the diagonal approximation to (V ′k)
−1. D−1

k is diagonal but not

data-compatible. Replace k with k + 1 and return to Step 1.

This algorithm in the inverse regime has fewer steps in each iteration as we can define

data compatibility directly for the interaction matrix due to its linear relation with

the T -matrix.

In terms of actual implementation of this algorithm, the rotation in Step 1 must

be performed to obtain Y2, Y3, and Y4 in order to pass along to the overwriting

operation. This rotation is the bottleneck of this algorithm. The computation of

R∗BD
−1RA has one fast matrix multiplication as D−1 is diagonal, but the second

multiplication runs at O(N3
v ). The dominating part of the overwriting in Step 2

is the inversion of Y4 − Γ4 which requires O((Nv − MA)3) operations. A similar

shortcut to the fast rotations in Section 3.4.1 can be used for Step 3 to dramatically
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reduce computation time. Writing this rotation as

R−1[(Ṽ ′k)
−1] =RB


Y1 Y2

Y3 Y4

R∗A +RB


Ỹ1 − Y1 0

0 0

R∗A

=Ṽ −1
k +RB


Ỹ1 − Y1 0

0 0

R∗A ,
is beneficial as this multiplication is fast due to the sparsity of the remaining matrix.

It is worth reminding that there is no shortcut for the initial rotation for DCTMC

in the inverse regime as we do not know what we will be overwriting with until

after singular vector representation has been obtained. Therefore R∗BD
−1RA is the

bottleneck, but in some ways is a nicer bottleneck then the full inversion required in

DCTMC. It is much simpler to make approximations for this matrix multiplication

(such as using rank one updates to D−1 if not many entries change dramatically

each iteration) than it is to approximate the nonlinear relationship between inter-

action matrix and the T -matrix without fundamentally changing the problem. To

make clear the computation time advantages to using this method, compared to

the results in Table 3.1, DCTMC in the inverse regime only takes about 23 seconds

per iteration. This is nearly three times faster than the original method. However,

the advantages or disadvantages of using DCTMC in the inverse regime in terms of

convergence are unexplored.
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Chapter 4

DCTMC in the Linear Regime

4.1 Formulation of Linearized DCTMC

We now consider the DCTMC algorithm in the linear regime. By linear regime,

we imply that V = T , or put alternatively, Γ → 0. Returning to the iteration

cycle described in Section 3.3, we see that by sending Γ → 0, steps 2 and 4 are

eliminated, and combined with fast rotations from Section 3.4.1 the iteration cycle

is reduced to only two steps: diagonalizing and overwriting. In terms of operators,

the algorithm in the linear regime looks like:

1: Dk = D[Tk] ;

2: Tk+1 = Dk + Texp − (PAP
∗
A)Dk(PBP

∗
B) .

We first look at the diagonalizing operator D[·] which discards all off diagonal terms

as defined in (3.3.6). Then by applying this operator to Step 2 in the iteration
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scheme above combined with the definition Dexp = D[Texp], we obtain the one line

algorithm

Dk+1 = Dk +Dexp −D[(PAP
∗
A)Dk(PBP

∗
B)] . (4.1.1)

This last term can be simplified due to the diagonal nature of Dk where the diagonal

entries of D[(PAP
∗
A)Dk(PBP

∗
B)] can be obtained in vector form by

|D[(PAP
∗
A)Dk(PBP

∗
B)]〉 = |v′k〉 = W |vk〉 , (4.1.2)

where |vk〉 contains the diagonal entries of Dk and W is formed by

W = (PAP
∗
A) ◦ (PBP

∗
B)T , (4.1.3)

where ◦ represents the Hadamard product (entrywise multiplication). Equivalently

stated as Wij = (PAP
∗
A)ij(PBP

∗
B)ji. Now (4.1.1) can be reduced to the vector form

|vk+1〉 = |vexp〉+ (I −W )|vk〉 . (4.1.4)

Started from |v1〉 = |vexp〉, this iteration can be written as

|vk+1〉 =
k−1∑
j=0

(I −W )j|vexp〉 (4.1.5)

This is Richardson first-order iteration which clearly converges if |1 − wn| < 1 for

all n where wn are the eigenvalues of W . If this condition holds, the iteration

converges to |v∞〉 = W−1|vexp〉. Thus, DCTMC in the linear regime provides an

iterative scheme for solving the linear equation

W |v〉 = |vexp〉 . (4.1.6)
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4.2 Analysis of Linearized DCTMC

An interesting question is how is this equation relates to the standard method of

linearizing these ISPs. Recall that the typical linearization procedures assume that

V is strictly diagonal and also place the diagonal entries of V into the vector |v〉.

The data matrix Ψ is then unrolled into a vector |ψ〉 by stacking the columns into

one vector of length NdNs. The main equation to be solved is

K|v〉 = |ψ〉 , (4.2.1)

where we have used the first Born approximation (see Section 5.1), and we recall that

K is formed by combining the matrices A and B in the manner of K(mn),j = AmjBjn

where (mn) is a composite index. DCTMC already takes into account this separable

structure of K, as W is formed by already separating K into A and B. But it is

interesting to investigate how we can derive W from K.

Using the singular value decompositions of A and B from (3.2.2), we can express

the elements of K as

K(mn),j =

Nd∑
µ=1

Ns∑
ν=1

σAµ σ
B
ν 〈m|fAµ 〉〈gAµ |j〉〈j|fBν 〉〈gBν |n〉 . (4.2.2)

We also define the unitary matrix U by the entrywise definition

U(µν),(mn) = 〈fAµ |m〉〈n|gBν 〉 , 1 ≤ µ,m ≤ Nd , 1 ≤ ν, n ≤ Ns . (4.2.3)

Left-multiplying the linear equation (4.2.1) by this unitary matrix will not change

its Tikhonov regularized pseudoinverse solution. This is a direct consequence of the
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fact that (UK)∗(UK) = K∗K and (UK)∗U = K∗. Therefore we are now interested

in the linear equation

(UK)|υ〉 = U |φ〉 , (4.2.4)

where we can express the elements of the matrix UK as

(UK)(µν),j = σAµ σ
B
ν 〈gAµ |j〉〈j|fBν 〉 . (4.2.5)

Returning back to our work on the experimental T-matrix in (3.2.6), we can also see

that 〈(µν)|U |φ〉 = Φ̃µν which allows us to make numerous substitutions to (4.2.4)

to obtain

σAµ σ
B
ν

Nv∑
j=1

〈gAµ |j〉〈j|fBν 〉〈j|υ〉 = Φ̃µν , 1 ≤ µ ≤ Nd , 1 ≤ ν ≤ Ns . (4.2.6)

Now just as in (3.2.8) where we had to introduce the thresholding parameter of

ε to account for the fact that very small singular values may create numerical

instabilities, we will equally discard equations from (4.2.6) with zero or very small

coefficients. We will only keep the equations for which σAµ σ
B
ν > ε2 which will restrict

the range on µ and ν by

σAµ σ
B
ν

Nv∑
j=1

〈gAµ |j〉〈j|fBν 〉〈j|υ〉 = Φ̃µν , 1 ≤ µ ≤MA , 1 ≤ ν ≤MB , (4.2.7)

where MA and MB are identical to their definitions in Section 3.2. We highlight

that this threshold discarding does not computationally affect the pseudoinverse

solution. Up to this point, the numerical solution of (4.2.7) is equivalent to the

numerical solution of (4.2.1). We now introduce a transformation that can alter
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the solution. We precondition (4.2.7) by diagonal scaling by dividing each equation

by σAµ σ
B
ν . Thus, using the definition of T̃exp as in (3.2.8), we obtain

Nv∑
j=1

〈gAµ |j〉〈j|fBν 〉〈j|υ〉 =
(
T̃exp

)
µν

, 1 ≤ µ ≤MA , 1 ≤ ν ≤MB . (4.2.8)

Note that due to our previous thresholding, this diagonal scaling is stable and is

in fact invertible. Therefore, if the original linear equation (4.2.1) is invertible

(which as previously mentioned is most certainly not for problems of interest),

then its solution and the solution of (4.2.8) are identical. However, if (4.2.1) is

not invertible, then these two equations no longer have equivalent pseudoinverse

solutions. That is, this last diagonal scaling operation has invalidated the exact

equivalence between traditional linearization and DCTMC in the linear regime.

We continue our search for the exact relationship between W amd K, by defining

the matrix Q by Q(µν),j = 〈gAµ |j〉〈j|fBν 〉 and the column vector τ by 〈(µν)|τ〉 =(
T̃exp

)
µν

. We substitute these expressions into (4.2.8) to obtain the neatly written

linear equation

Q|υ〉 = |τ〉 . (4.2.9)

Now recall that the columns of PA in (4.1.3) are the singular vectors |gAµ 〉 for µ =

1, . . . ,MA and likewise the columns of PB are the singular vectors |fBν 〉 for ν =

1, . . . ,MB. Thus, we can write the entrywise definition of W by

Wij =

MA∑
µ=1

MB∑
ν=1

〈i|gAµ 〉〈gAµ |j〉〈j|fBν 〉〈fBν |i〉 . (4.2.10)

Comparing this to the definition of Q, we see the important fact that Q∗Q = W .
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Similarly, we can see that

〈i|Q∗|τ〉 =

MA∑
µ1

MB∑
ν=1

Q∗i,(µν)

(
T̃exp

)
µν

= (PAT̃expP
∗
B)ii = (Texp)ii = 〈i|υexp〉 , (4.2.11)

or Q∗|τ〉 = |vexp〉. Therefore left multiplying both sides of (4.2.9) by Q∗ results in

the linear equation (4.2.1) from DCTMC in the linear regime. Letting Θ be the

diagonal matrix with entries 1/(σAµ σ
B
ν ) for composite index 1 ≤ (µν) ≤MAMB and

zeros elsewhere, we see that Q = ΘUK. Thus, the relationship between W and K

is given by

W = Q∗Q = (ΘUK)∗(ΘUK) = K∗U−1Θ2UK , (4.2.12)

which, as previously mentioned, is a preconditioned form of the original linear

equation.

Also noteworthy is the fact that as W = Q∗Q, Tikhonov regularization of (4.1.6)

is accomplished by the transformation W → W + λ2I. It is worth reminding again

that this Tikhonov regularization is not equivalent to Tikhonov regularization of

(4.2.1). However, this is a reasonable method of solving the linearized problem.

Now how does this Tikhonov regularization relate to the actual iterations of

DCTMC in the linear regime? The substitution W → W + λ2I changes the over-

writing step (Step 2 at the beginning of this section) by

2: Tk+1 = Dk − λ2Dk + Texp − (PAP
∗
A)Dk(PBP

∗
B) .

This regularization of the DCTMC algorithm in the linear regime can be naturally

extended to the general nonlinear case by replacing the linear transformation in
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the overwriting operation (PAP
∗
A)Tk(PBP

∗
B) by (PAP

∗
A)Tk(PBP

∗
B) + λ2D[X]. This

regularization alters Step 5 of the general algorithm for Option 1 (Step 6 for Option

2) in Section 3.4.4 by

5: Tk+1 = T ′k − λ2D [T ′k] + Texp − PA (P ∗AT
′
kPB)P ∗B ,

Λk+1 = Λ′k − λ2D [Λ′k] + Λexp −QA (P ∗AT
′
kPB)P ∗B .

We have so far answered the question of regularization of DCTMC in the linear

regime and its relationship to the standard linearization method. We now return

to the question of convergence of equation (4.1.6) using the Richardson first-order

iteration in (4.1.4). We remark that this numerical method of solving (4.1.6) is not

the most efficient one as conjugate gradient descent would be expected to perform

better. So while DCTMC in the linear regime is not expected to be used in practice,

the analysis of convergence and regularization give important insight into these

properties for the nonlinear case.

As previously mentioned, the iterations converge if the eigenvalues of W , wn,

all satisfy the inequality |1−wn| < 1. As W is Hermitian, all of its eigenvalues are

real which reduces the convergence criteria to 0 < wn < 2. We prove that in fact

the eigenvalues of W satisfy the inequality

0 ≤ wn ≤ 1 . (4.2.13)

We return to the expression used for W in (4.2.10). We let |x〉 be an arbitrary

Nv × 1 nonzero vector, and X the diagonal matrix containing the elements of |x〉.
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Then,

〈x|W |x〉 =

MA∑
µ=1

MB∑
ν=1

∣∣〈gAµ |X|fBν 〉∣∣2 ≥ 0 . (4.2.14)

Using the orthonormal properties of the singular vectors, we can also obtain

〈x|x〉 =
Nv∑
i=1

〈i|X∗X|i〉 =
Nv∑
µ=1

Nv∑
ν=1

∣∣〈gAµ |X|fBν 〉∣∣2 , (4.2.15)

which shows that 〈x|W |x〉 ≤ 〈x|x〉 as Ma,Mb ≤ Nv. Thus, as 0 ≤ 〈x|W |x〉 ≤ 〈x|x〉,

we have proved (4.2.13).

If there exists an |x〉 such that 〈x|W |x〉 = 〈x|x〉, this implies that MA = MB =

Nv. This implies that all elements of the experimental T-matrix are determined

directly from the data, which is quite unrealistic. As the T-matrix is perfectly

determined, no iterations are conducted as the initial guess is the fixed point (W =

I).

If there exists an |x〉 such that 0 = 〈x|W |x〉, then clearly there will be no

convergence as there is an eigenvalue exactly equal to zero. In this case, the natural

substitution W → W +λ2I will obtain convergence. Furthermore, this substitution

will also aid in slow convergence when W has a small eigenvalue. Recall that this

substitution was previously proved to be exactly Tikhonov regularization. We can

also define the characteristic overlap of singular vectors related to detectors and

sources as

ξ = inf
X 6=0

{∑MA

µ=1

∑MB

ν=1

∣∣〈gAµ |X|fBν 〉∣∣2∑Nv

µ=1

∑Nv

ν=1

∣∣〈gAµ |X|fBν 〉∣∣2
}

, (4.2.16)

where the iterations in (4.1.4) will converge at least as fast as the power series∑
n(1 − ξ)n. This shows how Tikhonov regularization can increase convergence

67



speed. The application of the extension of this Tikhonov regularization to nonlinear

DCTMC was shown to be effective in simulations.
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Chapter 5

Simulations and Results

While the previous chapters have developed and analyzed the DCTMC algorithm,

we now investigate its use in several large-scale simulations. We begin in Section 5.1

with simulations of three-dimensional scalar wave diffraction experiments, and then

move on to significantly improving these results in Section 5.2. Finally, we tackle a

more difficult problem that simulates experimental diffuse optical tomography data

in Section 5.3. The overall conclusion from this chapter is that DCTMC is a viable

nonlinear solver that is able to handle large noisy data sets.

5.1 Three-dimensional Scalar Wave Diffraction

A first investigates three-dimensional scalar wave diffraction simulations, that are

applicable to ultrasound imaging [15, 26] and seismic wave imaging [28, 29, 45]. As

mentioned previously, the method of DCTMC can be applied to a wide range of
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inverse problems, and is not limited to inverse scattering for scalar waves. However

the first tests of DCTMC were conducted for this problem to study its capabilities

and merits without the complications associated with other imaging modalities.

For example, focusing on scalar propagating waves ignores the vector representa-

tions necessary in the electromagnetic scattering. In Section 5.3, we will investigate

DCTMC in a more complicated setting, namely diffuse optical tomography. Those

simulations incur more severe ill posedness due to the exponential decay of the waves

involved. In that section, we will also add noise to further complicate the simula-

tions. But for now, we are merely interested in whether DCTMC will converge,

and how it will behave as a solver of inverse scattering problems with significant

nonlinearity.

To that end, the reconstructions in this section will mainly be compared to their

linear counterparts. We are interested if DCTMC is a viable nonlinear solver – which

is only valuable if a linear solution cannot produce acceptable results. As discussed

in Chapter 4, we have two methods for obtaining linearized solutions. We can

either solve equation (4.2.1) using the matrix K, or we can solve the preconditioned

equation (4.1.6) using W . In both cases, the equation will be Tikhonov-regularized

and then solved by conjugate gradient descent. Recall that (4.1.6) is inspired by

DCTMC in the linear regime, but we will not actually solve it using its slower

Richardson iterative process.

Using the traditional approach of computing the pseudoinverse of K can be
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problematic as the size of the problem increases. For the largest reconstructions

we conducted, the matrix K contains 28,149,336,000 entries which requires at least

224Gb of RAM in double precision (which was used for all reconstructions). There

are methods which can compute the product K∗K without storing the entire matrix

K (as in [6]), but this multiplication can still take a considerable amount of time.

From here, the Tikhonov regularization substitutionK∗K → K∗K+λ2I and solving

the resulting system of equations is reasonable.

However, directly forming the positive-definite matrix W and Tikhonov regu-

larizing it by the operation W → W + λ2I is a much faster process. One never has

to deal with any matrices that are larger than Nv × Nv. “Separating” the matrix

K into the smaller matrices A and B is more computationally efficient, as comput-

ing W only requires the singular vectors from these matrices of smaller dimension.

Thus, this DCTMC inspired linear approach can be significantly advantageous over

the traditional approach. While this preconditioning does change the results, our

tests show that any difference between these linearized results is negligible. This

evidence suggests that DCTMC in the linear regime has merits. All shown lin-

earized reconstructions are the result of using this DCTMC inspired method with

the matrix W .

As a last note about the linear reconstructions used, we tested three conventional

linearization methods – the first Born, first Rytov, and mean-field approximations.

This has no impact on the choice of using K or W , these approximations only affect
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the data matrix, by the transformation

AV B = Ψ [Φ] , (5.1.1)

as in (5.1.1). These linearization approaches are all reviewed in [10]. The most

natural approach to linearizing (as was done previously for DCTMC in the linear

regime) is to send Γ → 0. This is precisely the first Born approximation which is

valid if ‖V Γ‖2 � 1 and makes the approximation

A(I − V Γ )−1V B ≈ AV B . (5.1.2)

This is trivial in terms of linearizing the data function, so in this case Ψ = Φ.

Neither the first Rytov nor the mean-field approximation are as simple to write

as general expressions. For these, we will define a third geometry matrix C which is

restricted directly between source and detector pairs. That is, Cij = G0(ri, rj) and

ri ∈ Σd, rj ∈ Σs This restriction is simply the incident field produced by a source

located at ri and measured at rj (i.e. V = 0). The first Rytov approximation is

then

Ψij = Cij log (1 + Φij/Cij) , (5.1.3)

while the mean-field approximation uses entrywise harmonic average as

Ψij =
1

1/Φij + 1/Cij
. (5.1.4)

In general, there was no distinct advantage seen using any particular one of these

three approximations, so the majority of cases only show the first Born approxi-

mated results to ease calculation.
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5.1.1 Discretization

We will first detail the discretization process for the scalar wave equation, and how

it fits into the DCTMC framework. We begin with a scalar field u(r) and the wave

equation that it satisfies

[
∇2 + k2ε(r)

]
u(r) = −4πk2q(r) . (5.1.5)

Here q(r) is the source and assume ε(r) = 1 outside of the bounded domain of

our sample, Ω. We further make the assumption that k = ω/c is fixed, where c

is the scalar wave velocity in free space. We are thus working in the frequency

domain. Note that the factor −4πk2 has been added to the standard wave equation

to ease our future calculations. Our goal is to reconstruct the values of ε(r) from

measurements of the field u(r) taken outside of Ω. Our discretization process is

based on the discrete dipole approximation for Maxwell’s equations [23, 42]. A

similar method will be used for the scalar diffusion equation in Section 5.3.

We define the susceptibility of the medium by

χ(r) ≡ ε(r)− 1

4π
, (5.1.6)

which transforms (5.1.5) to

(
∇2 + k2

)
u(r) = −4πk2 [χ(r)u(r) + q(r)] . (5.1.7)

Now we can obtain the well-known Lippmann-Schwinger equation by inverting the

operator on the left-hand side of (5.1.7), namely

u(r) =

∫
G0(r, r′)q(r′)d3r′ +

∫
G0(r, r′)χ(r′)u(r′)d3r′ , (5.1.8)
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where G0(r, r′) is the free-space Green’s function of the wave equation which solves

(
∇2 + k2

)
G0(r, r′) = −4πk2δ(r− r′) . (5.1.9)

This solution can be explicitly computed through contour integration to be

G0(r, r′) = k2 exp (ik|r− r′|)
|r− r′|

. (5.1.10)

Note that in (5.1.8), the first term is the incident field while the second term is the

scattered field. That is, u = uinc + uscatt, where

uinc(r) =

∫
G0(r, r′)q(r′)d3r′ , (5.1.11)

and

uscatt(r) =

∫
G0(r, r′)χ(r′)u(r′)d3r′ . (5.1.12)

Discretizing the Lippman-Schwinger equation (5.1.8) into Nv cubic voxels, each

of volume h3, allows us to reduce the problem to having finite number of degrees of

freedom. We will assume our sample is rectangular (as in Figure 2.1) and denote

our collection of Nv voxels by Vn. To now be able to solve the Lippman-Schwinger

equation, we will further assume that the susceptibility quantities χ(r) and the field

u(r) are constant across each voxel. That is,

χ(r) = χn AND u(r) = un IF r ∈ Vn . (5.1.13)

This is a reasonable approximation, but certainly never exact. This approximation

allows us to extract a finite set of equations from (5.1.8) by focusing on the center
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of each voxel rn. As the value of interest is constant in each voxel, we can solve for

the susceptibility for each rn (n = 1, . . . , Nv). The obtained equations are of the

form

un = uinc(rn) +
Nv∑
m=1

χmum

∫
r∈Cm

G0(rn, r)d3r . (5.1.14)

Under our reasonable assumptions, we expect (5.1.14) to have a solution for the

discrete field un. What is left to evaluate in (5.1.14) are the integrals on the right-

hand side. There are two methods to calculate these integrals. The less-popular

method is to directly compute each integral numerically. While this is certainly

possible, the previous approximations render this extra work of limited practical

use. Much more common is to use the known analytical expressions for G0 (as in

(5.1.10)) to further approximate the integrals in a discrete process.

For rn /∈ Vm (i.e. n 6= m), we use the conventional approximation

∫
r∈Cm

G0(rn, r)d3r ≈ h3G0(rn, rm) , n 6= m . (5.1.15)

However, the case n = m must be treated separately as the integrand contains a

singularity when the denominator in (5.1.10) equals zero. We will thus evaluate the

integral under the approximation

exp (ik|r− r′|) ≈ 1 + ik|r− r′| . (5.1.16)

The validity of using this approximation requires the assumption that kh � 1.

However, if kh is not small, than all of our previous assumptions are invalid as the

field will not be relatively constant across each voxel. Substituting (5.1.16) into
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(5.1.10) now allows us to evaluate the integral for the case n = m as

∫
r∈Cn

G0(rn, r)d3r ≈
∫ h/2

−h/2
dx

∫ h/2

−h/2
dy

∫ h/2

−h/2
dz

(
k2√

x2 + y2 + z2
+ ik3

)

= (kh)2 (ξ + ikh) , (5.1.17)

where the value of ξ is

ξ = log
(

26 + 15
√

3
)
− π/2 ≈ 2.38 . (5.1.18)

This “volume” parameter ξ is completely dependent on the shape of the voxels

used. While we are focused on a cubic voxelization scheme, this integration would

be evaluated over a ball if it were more appropriate to discretize the sample into

spherical regions. In this case, ξ = (9π/2)1/3 ≈ 2.42 (which can clearly be calculated

from a much simpler integral).

Note that the value of ξ has no impact on the imaginary part of the integral,

(kh)3. This term is known as the first non-vanishing radiative correction. Including

higher terms in the approximation of (5.1.16) would result in higher order dynamic

corrections. This first correction is the most important as it is well known in

electromagnetics that it ensures energy conservation of the scattering process [22,

24, 34].

With these discretized integral calculations, we are now able to rewrite (5.1.14)

in a fully discretized manner. We first introduce the “moments” dn, where

dn ≡ h3χnun , (5.1.19)
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and also denote the discretized incident field by en:

en ≡ uinc(rn) . (5.1.20)

Now, (5.1.14) takes on the especially tidy form

dn = αn

(
en +

Nv∑
m=1

Γnmdm

)
, (5.1.21)

where the quantity of interest is now the polarizability of each voxel αn, where

αn =
h3χn

1− (kh)2(ξ + ikh)χn
. (5.1.22)

The interaction matrix Γ contains the approximated integral values with zeros on

its diagonal. It is entrywise defined as

Γnm = (1− δnm)G0(rn, rm) . (5.1.23)

Equation (5.1.21) is our discretized forward problem. The relationship between the

moments dn and the scattered field uscatt is the discretization of definition (5.1.12),

namely

uscatt(rd) =
Nv∑
n=1

G0(rd, rn)dn . (5.1.24)

Thus, if the values of the polarizabilities αn are known, the forward problems states

that given the incident field at each voxel en, the moments are given by (5.1.21).

Then, using the relationship between the moments and the scattered field in (5.1.24),

the scattered field at any detector location rd can be calculated. This is the (linear)

forward problem that gives the scattered field.
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The inverse problem is to use measurements of the scattered field from outside

the sample to recover the values of αn. Then (5.1.22) can be inverted to obtain χn

by

χn =
αn/h

3

1 + (kh)2(ξ + ikh)(αn/h3)
, (5.1.25)

with the value of εn obtained with one more simple step. Before continuing with

the manipulations necessary to state the inverse problem, let us first rationalize the

choice of the fundamental unknown αn as opposed to using χn or εn. It is true that

the voxel permittivity or voxel susceptibility are the actual physical quantities of

interest, but there are advantages to treating the polarizabilities as the fundamental

unknown. The preference of χn over εn is clear as this transition was necessary to

obtain a neat version of the Lippman-Schwinger equation. Moreover, since the

relationship between χn and αn is nonlinear, we are in essence removing some of

the nonlinearity from the problem analytically. In fact, (5.1.25) is a scalar wave

form of the Maxwell-Garnett formula, while its inverse (5.1.22) is an analog to

the Clausius-Mossotti relation [48]. The nonlinearity we are removing is the self-

interaction present in a fixed voxel, which was partially removed by renormalizing

the polarizability. That is, if the corrective term from the denominator of (5.1.22)

vanished, we would be left with just h3χn which is the bare polarizability. Adding

in this corrective term (which was calculated from the integrand of self-interaction)

renormalizes the polarizability and removes some of the nonlinearity. It is clear that

the nonlinearity of the ISP that is caused by interaction across different voxels can
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not be removed, which is why we still require nonlinear solvers.

As a simple example of how the renormalization removes some nonlinearity,

let us look at a sample of only one voxel. Even though we would not require an

iterative method to determine the polarizability or susceptibility of this voxel, we

will consider the case of using such a scheme. Treating the polarizability α as

the fundamental unknown results in Aα = b (where A and b are known), which

is a linear equation that only requires one iteration. Treating the more direct

χ as the fundamental unknown actually results in a nonlinear equation, namely

Aχ/(1− βχ) = b, which can require several iterations.

Thus, we have given some justification for the choice of the polarizabilities as

the fundamental unknown. We now return to the full statement of the discretized

inverse problem. We acquire multiple measurements of the scattered field uscatt(rd)

at Nd detector locations (rdk for k = 1, . . . , Nd). These measurements are obtained

for each of Ns point source locations given by rsl (l = 1, . . . , Ns). By measuring at

all detector locations rdk for each source independently, we obtain the data matrix

elements Φkl. We will also let |f〉 be the column vector of length Nd whose entries

are fk = uscatt(rdk), and |q〉 be the column vector of length Ns whose entries are the

point sources.

Similarly, we will let |d〉 and |e〉 be vectors of length Nv that contain the moments

dn and incident fields en respectively. Then, letting V be the Nv × Nv interaction

matrix that contains the polarizabilites αn on its diagonal and zeros everywhere
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else, equation (5.1.21) can be rewritten in matrix form

|d〉 = V (|e〉+ Γ |d〉) . (5.1.26)

Solving (5.1.26) gives us the desired T-matrix, where

|d〉 = (I − V Γ )−1V |e〉 = T [V ]|e〉 . (5.1.27)

Now, to finish it off, we define the Nd×Nv matrix A by Akn = G0(rdk, rn), and the

Nv ×Ns matrix B by Bnl = G0(rn, rsl) and rsl. Then by (5.1.24), |f〉 = A|d〉, and

by (5.1.11), |e〉 = B|q〉. Thus, (5.1.27) can be transformed to the familiar equation

AT [V ]B = Φ . (5.1.28)

Exactly as in (3.2.2), the geometry matrices A and B are obtained by direct sam-

pling of the Green’s function whose definition (in this case (5.1.10)) is dependent

on the physics of the problem of interest. Note that while the off-diagonal terms of

Γ are also obtained by direct sampling, this will not work for the diagonal terms

due to the singularity of G0. As seen in (5.1.23), the discretization process defined

Γnn = 0 when using the renormalized polarizabilities. This local-field correction

and renormalization are thus related to the singularity of the Green’s function, as

it only affects the diagonal entries of Γ . Algebraically, for an invertible matrix P ,

this is just the transformation V ′ = PV , Γ ′ = Γ − V −1(I − P−1) so that

(I − V Γ )−1V = (I − V ′Γ ′)−1V ′, (5.1.29)

where we can specifically take P = (I − V D)−1, where D is the diagonal matrix

containing the diagonal elements of Γ , so that Γ ′nn=0.
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5.1.2 Iteration Process

Our reconstructions will deal with sparse targets. This is mathematically equivalent

to experiments with known background as detailed in Section 2.1. This allows us

to take advantage of sparsity to increase the speed of convergence for a most basic

form of DCTMC. Then we will show how many of the improvements from 3.5 can

significantly quicken convergence. As mentioned previously, our first test is to show

proof of concept for DCTMC as a nonlinear solver.

We consider two targets in these sparse simulations, one “large” and one “small”.

For the small target, we have discretized the sample into 2,304 voxels (Nv = 2, 304)

on a 16 × 16 × 9 grid. With a homogeneous background of zero, there are two

rectangular inclusions of contrast. We parameterize these contrast inclusions by

varying the susceptibility χ0. Then, the first rectangular inclusion is of voxel size

6× 6× 3 with susceptibility χ0 while the second inclusion is of voxel size 5× 5× 2

with susceptibility 0.857χ0. These two inclusions touch at one corner only. Thus

we can model the target by its susceptibility χ(r) where

χ(r) = χ0Θ(r) , (5.1.30)

in which Θ(r) is a shape function bounded between zero and one. For the small

target, Θ(r) = 1 across the first inclusion, Θ(r) = 0.857 across the second inclusion,

and Θ(r) = 0 everywhere else.

The large target is discretized into 13,500 voxels on a 30× 30× 15 grid and also

contains two rectangular inclusions. One inclusion is of voxel size 6 × 6 × 4 and
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has Θ(r) = 1 while the other inclusion is of voxel size 10× 10× 6 and has reduced

contrast of Θ(r) = 0.75. Again, Θ(r) = 0 everywhere else. For the large target,

the two rectangles come close to one another, but do not touch anywhere. Both of

these targets are displayed in Figure 5.1.

These shapes hold true for all small and large targets in this section, with the

only varying parameter the largest contrast susceptibility χ0. As we increase the

value of χ0, it is clear that the overall nonlinearity of the ISP also increases. As

we are working in the frequency domain, the wavenumber was fixed such that

kh = 0.2. This small value is fairly realistic, and validates the discretization scheme

used. In general, very strong nonlinearity is present if the phase shift between an

incident wave not passing through any inclusions and one propagating through the

inhomogeneity is π/2 or larger. The phase shift can be calculated by

∆ϕ = (kh)n
(√

1 + 4πχ0Θi − 1
)
, (5.1.31)

where n represents the voxel depth of the inclusion. This rough analysis severely

underestimates of the amount of nonlinearity present, as it ignores multiple scat-

tering between inclusions. Table 5.1 gives the varying values of susceptibility used,

and its equivalence in terms of permittivity as well as the expected phase shift ig-

noring multiple scattering for the small target, with identical information for the

large target in Table 5.2. As one can see, for either size target, a susceptibility of

χ0 ≥ 0.875 leads to strong nonlinearity with accordingly sizable phase shifts. As

we will later see, the linear reconstructions will break down for smaller values of χ0
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Slice 1 Slice 2 Slice 3

Slice 4 Slice 5 Slice 6

Slice 7 Slice 8 Slice 9

<-0.3 -0.3 0 0.5 1 1.3 >1.3

Slice 1 Slice 2 Slice 3

Slice 4 Slice 5 Slice 6

Slice 7 Slice 8 Slice 9

Slice 10 Slice 11 Slice 12

Slice 13 Slice 14 Slice 15

Figure 5.1: The shapes of the small (left) and the large (right) targets. The small
target consists of 16×16×9 voxels and is represented by 9 slices, each slice being of
the dimension 16×16. These slices are shown in the figure consecutively. Similarly,
the large target consists of 15 slices of the size 30× 30 each. The color scale ranges
over [−0.3, 1.3] to allow slight deviations of the ratio χn/χ0. There are two cutoffs:
values that are smaller than −0.3 are displayed as black and values that are larger
than 1.3 are displayed as white.
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Inclusion 1 Inclusion 2

χ0 εn ∆ϕ εn ∆ϕ

0.00175 1.02 0.004π 1.01 0.002π

0.0175 1.22 0.04π 1.19 0.02π

0.175 3.20 0.30π 2.88 0.13π

0.875 12.00 0.94π 10.42 0.43π

1.75 22.99 1.45π 19.85 0.66π

Table 5.1: Small target susceptibilities and estimated phase shifts

Inclusion 1 Inclusion 2

χ0 εn ∆ϕ εn ∆ϕ

0.002 1.03 0.007π 1.02 0.005π

0.02 1.25 0.07π 1.18 0.05π

0.2 3.51 0.52π 2.88 0.36π

1.0 13.57 1.61π 10.42 1.14π

2.0 26.13 2.47π 19.85 1.76π

Table 5.2: Large target susceptibilities and estimated phase shifts

due to the effects of multiple scattering. Thus the order of χ0 gives us an idea of

the amount of nonlinearity present, but is in no way precise. However, to be able to

compare reconstructions across varying degrees of χ0, all reconstructions plot the

ratio of χn/χ0. This normalization is done after the fact – no a priori information

of the value of χ0 was used during the reconstruction process.

Source and detector grids were placed on either side of the sample as in Figure

2.1. For the small target, we have considered near-field, intermediate-field, and

far-field zone cases. For the near-field zone arrangement, two identical 22 × 22

panels of sources and detectors were used, each with pitch h. The sample is placed

84



symmetrically between these grids, so that the grids extend beyond the sample by

3h in all directions. These panels are placed a distance of h/2 away from the sample.

With Ns = Nd = 484, there are a total of 234,256 data points.

For the intermediate-field zone arrangement, the grids of sources and detectors

are moved farther away so that they are 5h away from the sample. To account for

this distance, extra rows and columns of sources and detectors were added so that

these grids wer of size 40×40. The sample is still symmetrically positioned between

these panels. For this case, Ns = Nd = 1, 600 with a total of 2,256,000 data points.

The far-field zone arrangement increases the separation between the sample and

source/detector grids to 50h. The grids of sources and detectors also increase in

size to 46× 46. For this case, Ns = Nd = 2, 116 leading to 4, 477, 456 data points.

We only consider the case of the near-field zone for the large target. Two panels

of sources and detectors of size 38× 38 are placed a distance of h/2 away on either

side. The data size is then 2,085,136 with Ns = Nd = 1, 444.

The reconstructions in this section follow this streamlined iteration cycle as de-

scribed in 3.4.3. As previously mentioned, these initial simulations were conducted

to test DCTMC’s ability as a nonlinear solver, and forgo the computational im-

provements discussed in Section 3.5. However, there are two specific modifications

made to the algorithm for the simulations. One is regularization to account for

physical constraints as mentioned in Section ??, and the other is to take advantage
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of the sparse target. Before displaying the reconstructions, we will first provide a

bit of detail into these two additions.

Physical Constraint Regularization

We can apply physical constraints if we have some a priori knowledge of the prop-

erties of the target. An example of this is if we know that the medium is passive,

meaning that the imaginary part of the susceptibility is nonnegative. An even

stricter condition would be if we knew that the medium is non-absorbing or trans-

parent, in which case Imχn = 0. As we have chosen the polarizabilities αn as the

fundamental unknowns as opposed to the susceptibilities χn, it is imperative to

convert either the non-amplifying or non-absorbing conditions in terms of αn. To

do this, we notice that the quantity

Im

(
h3

αn

)
= −

[
Imχn
|χn|2

+ (kh)3

]
, (5.1.32)

where if Imχn ≥ 0, the first term on the right-hand side is strictly positive. There-

fore, Im(h2/αn) ≤ −(kh)3. For a given intermediate result αn, this condition can

be enforced by the transformation

αn −→
1

Re(1/αn)− imax [−Im(1/αn), k3]
. (5.1.33)

Moreover, if we have the stricter non-absorbing condition (Imχn = 0), then we

know that Im(h2/αn) = −(kh)3. In this case, the transformation

αn −→
1

Re(1/αn)− ik3
. (5.1.34)
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ensures that all results satisfy this physical condition. To this end, the simulations

in this section were assumed a priori to be transparent, and the transformation

(5.1.34) was applied each iteration after diagonalizing the interaction matrix. It

is worth noting that this regularization slightly improved convergence speed, and

was needed in strongly nonlinear cases to prevent convergence towards unwanted

results.

Sparsity

We are assuming that our targets are sparse. This means that we have a ho-

mogeneous background of zero. This comes from our mathematical discretization

of the problem, where we are using the free space Green’s function calculated in

(5.1.10). Assuming that the background is zero is not an unreasonable assumption,

as in most imaging, it is conventional to assume that the value of the homogeneous

background is known. In the unlikely event that the background is not free space,

computation of a more appropriate Green’s function can be analytically performed

for a number of standard geometrical setups. In this case, the updated Green’s

function transforms the unknown χ in the Lippman-Schwinger equation (5.1.8) to

be χ− χ0 where χ0 is the background susceptibility. Thus the procedure described

in this section still applies even though the background is not free space. We have

chosen to use free space background for these targets, so that we are able to use the

simple expression (5.1.10) for the Green’s function. But in terms of the algorithm,
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this is mathematically equivalent to calculating the appropriate Green’s function

for a known non-free space background.

We account for sparsity using a primitive type of adaptive mesh that roughens

the target to force entries close to background values to remain as the background.

In our statement of the problem, this refers to identifying susceptibilities χn that are

negligibly small, and can thus be set to the background value of zero. We call these

background voxels “noninteracting”, as they do not contribute in any meaningful

way to the scattered field.

If we know for certain that a voxel is “noninteracting”, then recalculating its

value every iteration is a waste of computational effort. To this end, removing

this discretized voxel from the computational domain can dramatically increase

reconstruction speed. This is because the bottleneck obtaining the matrix Sk =

(I −∆k)
−1 can be reduced from O(N3

v ) to O((Nv − p)3), where p is the number

of found “noninteracting” voxels. An even more dramatic approach that improves

convergence speed is to recalculate the experimental T-matrix and its associated

matrices under this reduced computational domain. This allows the knowledge of

a “noninteracting” voxel to be integrated into the algorithm beyond just quicker

matrix inversion. In a sense, since if (Dk)ii = 0, then the i-th column and row

of Tk are identically equal to zero, the effective size of the T-matrix is of smaller

dimension.

We have accounted for sparsity using this more intense method of using “nonin-
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teracting voxels” by recalculating geometry and experimental matrices whenever a

background voxel has been found. To this end, we use a modified algorithm that has

strict conditions for declaring a given voxel to be “noninteracting”. The algorithm

runs as follows:

1. Run 50 iterations normally.

2. Then every 20 iterations check whether some susceptibilities χn satisfy |χn| <

χmax/100, where χmax = maxn |χn|. This identifies susceptibilities that could

negligibly contribute to the scattered field.

3. If a given voxel satisfies the above condition 3 checks in a row, the corre-

sponding χn is set to zero. This ensures that the given voxel is not likely to

be interacting.

4. The voxels with zero χn (as determined in the previous step) are declared

to be non-interacting and are excluded from the computational domain. We

then recalculate the initial setup procedure, but for a smaller number of inter-

acting voxels Nv. This results in a smaller computational time per subsequent

iteration.

5. The process is repeated with the following modifications. After 200 iterations,

checks are made every 10 iterations, and after 400 iterations, the relative

threshold for determining a non-interacting voxel is reduced to the factor of

60, and after 600 iterations the relative threshold is reduced to the factor of
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40.

The roughening procedure described is fairly ad hoc, and the parameters or condi-

tions used can be easily changed depending on the level of confidence one has with

declaring noninteracting voxels. There is certainly a risk of incorrectly assigning

noninteracting voxels, which has the potential to severely derail the reconstruction

process. However our simulations show that this rarely happened, and incorrect

assignments only occurred for severely nonlinear problems that would not have

converged regardless. In fact, several results with incorrectly assigned noninter-

acting voxels were dramatically preferred over reconstructions done without taking

sparsity into account. Moreover, in certain scenarios one can detect an incorrect

assignment by monitoring the error of the matrix equation (5.1.36). A spike in this

error after declaring a voxel to be negligible is likely a result of incorrect assignment.

It is also worth pointing out that while we are taking advantage of the sparse

nature of these targets, we do not actually have to assume any a priori knowledge

of sparsity (as opposed to the physical constraint regularization in the previous

section). This procedure merely reduces very small values to zero. If there are no

such voxels, this procedure does not force any roughening to occur.

Measure of Convergence

We use three errors to analyze the convergence of iterations. The first indicative

error is normalized root mean square error of the solution ηχ. This error is defined
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as

η2
χ =

1

Nvχ2
0

Nv∑
n=1

[
χ(Reconstructed)
n − χ(True)

n

]2
. (5.1.35)

Note that this error can only be computed as we are simulating the reconstructions

and thus know the actual susceptibility values of the target. In practice, this error

can not be computed. No matter which version of the DCTMC iteration cycle is

being used, this error is calculated after obtaining the diagonal interaction matrix

Dk (after Step 1 in Option 1).

The error that can be used to monitor convergence without any a priori knowl-

edge of the desired result is the error of the equation ηΦ. This is defined as

η2
Φ =

1

NdNsχ2
0

Nd∑
i=1

Ns∑
j=1

[Φij − (ATB)ij]
2 . (5.1.36)

This error is intended to be computed after obtaining the T-matrix from a diagonal

interaction matrix (after Step 4). Of course this error should not be computed after

overwriting the T-matrix, as then the matrix is fully data compatible and ηΦ ≈ 0

up to numerical precision. If the roughening procedure is used to take advantage of

sparsity, this is the error that should be monitored for any unwanted spikes.

The last error deals with the conceptual description of DCTMC, where the goal

is for the interaction matrix to become more diagonally dominated as the iterations

proceed. To that end, we also calculate the ratio of the off diagonal to diagonal

norms ηV of the interaction matrix V before any diagonalization takes place. That

is,

ηV =

∑
i,j(1− δij)|Vij|2∑

i |Vii|2
. (5.1.37)
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This error can also be calculated without any a priori knowledge of the target. It is

worth noting tht the main shortcut options for the iteration cycle directly compute

a diagonal interaction matrix from a data compatible T-matrix–a non-diagonal V

is never actually computed. Therefore, if one is interested in calculating this error,

one must add a step where you compute a not necessarily diagonal V directly by

Vk = (I + TkΓ )−1Tk. This matrix will then be discarded in terms of continuing the

iterations, it is only used for calculating this error. Note that while computing the

error of the solution ηχ is fast, the matrix multiplication required for computing

ηΦ and the extra step required to calculate ηV does add a computational burden.

Therefore, to avoid unnecessary slowdown, these errors were calculated every ten

iterations.

5.1.3 Small Target Reconstructions

Using Option 1 of the streamlined iteration cycle and the add-on modifications

described in this chapter, reconstructions for the small target in the near field zone

are shown below in Figure 5.2. The top two rows show the linearized solutions from

the first Born and first Rytov approximations. As mentioned previously, the mean

field approximation was also tested, which is not shown. However, it was clear that

there were no advantages to using either approximation over the first Born, so first

Born was the linearizing approximation used henceforth. We display the first Rytov

approximated reconstruction for this case to provide evidence that it is not superior.
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It is clear that the linear solver is near perfect for χ0 = 0.00175, and still quite good

for the case χ0 = 0.0175. However it begins to break down as χ0 = 0.175, and is

near worthless for χ0 ≥ 0.875. Thus we would be content if DCTMC performed

better for χ0 = 0.175.

The DCTMC reconstructions are shown in the third row of Figure 5.2 after

performing 900 iterations. For χ0 ≤ 0.875, the DCTMC reconstructions are nearly

perfect, and vastly outperform the linear counterparts. Even the case with strongest

nonlinearity χ0 = 1.75, we were able to obtain a very reasonable result with this

nonlinear algorithm. Looking closely at this particular reconstruction, it is clear

that the roughening procedure incorrectly assigned several voxels as noninteract-

ing. It is quite interesting that the reconstruction still provided some value despite

being handicapped with erroneous information. Thus, tweaking the parameters and

conditions for assigning noninteracting voxels can ameliorate this issue. This can

include both setting the initial relative threshold to a value smaller than 1/100, or

increasing the number of consecutive identifications beyond three for declaring a

voxel noninteracting forever.

Figures 5.3 and 5.4 contain the reconstruction results for the intermediate field

zone and the far field zone respectively. Clearly as the source and detector panels

are moved farther away from the sample, the quality of the reconstruction begins

to deteriorate as can be seen by looking at the linearized reconstructions. While

this is less true for the DCTMC reconstructions in the intermediate field zone up
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Figure 5.2: Linear (top and middle rows, marked FB for first Born and FR for first
Rytov approximation) and nonlinear (bottom row, marked NL) reconstructions of
the small target for varying levels of contrast χ0. The source/detector planes are
in the near-field zone of the sample. The quantity shown by the color scale in each
plot is χn/χ0, where χn is the reconstructed susceptibility of the n-th voxel and χ0

is the amplitude of the shape function. Voxels reconstructed above a cutoff value
are shown in white while those reconstructed below a lower cutoff are shown as
black.
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to χ0 = 0.875, where the reconstructions are still nearly perfect, it is clear that

there is a complete breakdown for the strongest case. This result is definitely made

to look worse by the complete assignment of incorrect noninteracting voxels. Thus

this reconstruction can be made to look better by either adjusting the sparsity

conditions or forgoing the roughening procedure altogether, but we have displayed

all reconstructions using the same algorithm for the sake of consistency.

As we move to the far field zone,it is clear that the problem is too ill-posed to

arrive at such neat images as before. That is, we have lost a significant amount of

important information that is contained in the evanescent waves. It is still note-

worthy that DCTMC outperforms the linear reconstructions in the less nonlinear

cases (χ0 ≤ 0.175), but both reconstructions fail at stronger nonlinearities. Overall,

the conclusion from these reconstruction plots is that DCTMC is a viable nonlinear

solver that outperforms a linear reconstruction in many important scenarios. It

is reliable in the near field zone for even severely nonlinear problems, but is less

effective at strong nonlinearities of sources and detectors are placed farther away.

Still in these cases, a linear solver is never preferred over a DCTMC reconstruction.

We now turn to analyzing the error plots. These are all contained in Figure

5.5. The top row displays the error against the target ηχ for each iteration for

all three source/detector arrangements. Let us first take a look at the case in the

near field zone. Besides χ0 = 1.75, these normalized errors are nearly identical and

independent of the value of χ0. This is evidence that DCTMC is consistent in terms
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Figure 5.3: Same as in Fig. 5.2 but the source/detector planes are located in the
intermediate-field zone of the sample.

FB

NL

χ0 = 0.00175 χ0 = 0.0175 χ0 = 0.175 χ0 = 0.875 χ0 = 1.75

Figure 5.4: Same as in Fig. 5.2 but the source/detector planes are located in the
far-field zone of the sample.
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of solving nonlinear problems up until severely nonlinear situations (when we would

expect many solvers to fail). For these cases, there are three convergence patterns.

Up until about iteration number 200, convergence is slow. Here, the intermediate

results of reconstructed values αn are all very small, in which case the relationship

between T and V is quite linear. Therefore, these iterations are proceeding similar

to DCTMC in the linear regime, where it was shown that the iterations are slow

as in first-order Richardson. The convergence of this region can be easily sped up

by adding Tikhonov regularization, or starting from the linear solution that can be

obtained quickly by conjugate gradient descent. As we will see in Section 3.5, our

initial guess obtained directly from the experimental T-matrix is very close to a

zero interaction matrix, and starting from the linear solution greatly reduces this

region of slow convergence.

At about iteration number 200, the slope of the error curve decreases as the

magnitude of the reconstructed polarizabilities has increased into a true nonlin-

ear regime, and the algorithm has correctly assigned many noninteracting voxels.

Zooming in on the errors between iteration number 200 and 400, one sees that

the slope is not smooth, and there are several sharp descents when the algorithm

correctly assigns noninteracting voxels.

The last region occurs around iteration 400, when the majority of noninteracting

voxels have been identified and algorithm is left to run in this reduced computational

domain. The error ηχ(i) decreases at an exponential rate as the amplitudes of the
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interacting voxels are in general increased to become closer to the actual value. It

is worth noting that the plot suggests that further iterations will reduce this error

and improve the accuracy of the reconstruction.

However the case χ0 = 1.75 in the near field zone has a different behavior.

There is still the slow convergence region, but then there is a brief spike when

several voxels are incorrectly assigned as noninteracting. However, thereafter is

the interesting turn where the reconstruction actually improves in a region of fast

convergence. However, this is short-lived compared to the less nonlinear cases as

the reconstruction hits a floor imposed by these incorrectly assigned voxels around

iteration number 250.

The behavior of ηχ(i) in the intermediate field zone is similar, where the cases

χ0 < 1.75 are all nearly identical, albeit with a slower region of fast convergence.

Moreover, the case χ0 = 1.75 shows that too many voxels were incorrectly identified

as noninteracting as there is a spike, but no eventual decrease as in the near field

zone case. All five curves in the far field zone are fairly similar, were all iterations

remain in the slow convergence zone, due to the lack of information contained in

the data.

Turning to the error of the equation ηΦ, we see roughly similar behavior in all

three source/detector arrangements. However, these curves are not quite as inde-

pendent of the value of χ0, as there is some separation present. The separation that

is present, say in the near field zone, is mainly in the third region of exponential
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convergence. This is solely a result of the amount nonlinearity present in the inverse

problem. Moreover, the fact that there is some separation in the slow convergence

area does not disprove the above rationale that these iterations behave like linear

first-order Richardson, as the definition of this error ηΦ is not proportional to χ0,

as it contains the data matrix Φ. Besides the separation, the cases χ0 ≤ 0.875 all

exhibit similar convergence properties to the error ηχ. That is, in the near field

zone there are three distinct regions of convergence: slow linear convergence, fast

convergence as noninteracting voxels are identified, and final exponential conver-

gence where the error continues to decrease. The slow convergence region is longer

in the intermediate field zone with a fitting reduction in faster convergence time,

while again the far field zone struggles to escape slow convergence.

For χ0 = 1.75, there is interesting behavior in the near field zone. Slow conver-

gence is ended by a slight increase due to unwanted assignment of noninteracting

voxels followed by fast convergence as with ηχ. However, instead of immediately

reaching a floor, there is a region of exponential convergence until around itera-

tion 600. We have exponential growth after this fact, which shows we would have

been better off stopping the iterations at 600 as opposed to 900. Recall, ηΦ can be

calculated without any a priori knowledge of the target, so it is viable to monitor

this error and stop whenever there is no longer any decreasing behavior. We will

show an example of this for the large target. It is also clear that there is a small

spike when a voxel is declared noninteracting incorrectly. It is certainly possible to
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detect this bump, and reset the algorithm back before this assignment and forgo

any sparsity checks until a later time.

The intermediate field zone error of the equation for χ0 = 1.75 shows chaotic

behavior consistent with its undesirable reconstruction. The far field zone remains

in slow convergence at the strong nonlinearity as well.

Lastly, we analyze the rate of the interaction matrix becoming diagonal, quan-

tified by ηV . The behavior across different levels of nonlinearity is analogous to

ηΦ in the near field zone, albeit with a lack of exponential decay for χ0 = 0.175

and 0.875. It is worth noting that even in the intermediate field zone and far field

zone, the overall behavior is similar, but in all cases there is fast convergence at

the beginning. This shows that the concept of DCTMC iteratively searching for an

interaction matrix that is increasingly diagonally dominated actually plays out in

the reconstruction process. Thus it is interesting that the error ηV suffers mainly

from slow convergence after the initial 200 iterations. If not enough noninteracting

voxels are identified after that point (as in the intermediate and far field zones),

this error more or less levels off.

5.1.4 Large Target Reconstructions

The large target has significantly larger dimensions than the previous reconstruc-

tions for the small target. This adds both a greater degree of ill-posedness as well

as stronger nonlinearity at lower contrast levels. A contributing factor to this ill-
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Figure 5.5: Convergence data for the small target. Errors ηχ (a,b,c), ηΦ (d,e,f) and
ηD (g,h,i) are plotted vs the iteration number i for the near-field zone (NFZ: a,d,g),
intermediate-field zone (IFZ: b,e,h) and far-field zone (FFZ: c,f,i) source-detector
arrangements. The different curves correspond to different contrast χ0 as follows:
χ0 = 0.00175 (1), χ0 = 0.0175 (2), χ0 = 0.175 (3), χ0 = 0.875 (4), and χ0 = 1.75
(5).
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posedness is the fact that there are interacting voxels that are far away from both

sources and detectors. Thus, the amount of information passed along by a propagat-

ing wave is reduced. Therefore, the linearized reconstructions begin to break down

a lower contrast levels then for the small target as can be seen in Figure 5.6. Even

at the lowest contrast level tested χ0 = 0.002, there is significant room for improve-

ment in the reconstruction, especially as the seventh slice contains a shadow of both

phantoms where none should appear. This is a direct consequence of struggling to

determine the depth with the increased distance between source and detectors. As

in the small target, we have only displayed the linearized reconstructions based on

the first Born approximation as first Rytov and mean field approximations were not

noticeably better.

Again, the second row of Figure 5.6 shows the DCTMC reconstructions after

900 iterations. For χ0 ≤ 0.2, the DCTMC reconstructions are consistent and fairly

independent of χ0. It is clear that even the DCTMC reconstruction struggles to

accurately reconstruct interactive voxels at great depth. However, it is still evident

that these DCTMC reconstructions are greatly preferred to their linearized counter-

parts. This is especially important for the case χ0 = 0.2, where the linear solution

is of quite limited value. As we increase the nonlinearity to χ0 = 1.0, DCTMC

begins to break down, but still provides some utility especially compared to the

broken down linear solver. It is clear that incorrect assignment of noninteracting

voxels has taken place precisely in the interior of the larger inclusion where voxels
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had previously been underestimated at lower nonlinearity levels. However, the first

inclusion is reconstructed quite nicely, and the boundaries of the second inclusion

are still sharp. This is as far as DCTMC goes, as at χ0 = 2.0, the reconstruction is

not useful analogous to the strongest nonlinearity for the small target in the near

field zone.

We now turn to the convergence data for these reconstructions in Figure 5.7.

The error plots are reminiscent of the results in the intermediate field zone for the

small target. For ηχ, the three lowest levels of nonlinearity are fairly close with a

region of slow convergence, followed by a region of increased convergence speed that

seems to continue if we ran more than 900 iterations. The curve for χ0 = 1.0 begins

to decrease until it has incorrectly assigned several voxels at which point the error

sharply increases. The case χ0 = 2.0 once again has unwanted oscillatory behavior.

These qualitative descriptions hold true for ηΦ and ηV . As previously mentioned,

one can certainly monitor the error ηΦ and stop after there is no more decreasing

behavior. This is certainly true for the χ0 = 1.0 reconstruction, in which the error

plot has a distinct minimum at i = 590. Figure 5.8 compares the reconstructions

after 590 and 900 iterations where there is a clear (but not dramatic) preference for

the reconstruction if we had stopped the iterations when ηΦ increased.

Overall, the reconstructions so far provide initial proof that DCTMC is a vi-

able iterative method for solving nonlinear inverse problems. Especially taking into

account the results for the large target, it is clear that DCTMC is capable of ef-
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Figure 5.6: Same as in Fig. 5.2, but for the large target, near-field zone
source/detector arrangement and a slightly different set of contrasts χ0. Utilization
of first Rytov approximation for linearized reconstruction does not provide any im-
provements over first Born approximation, and the corresponding results are not
shown in this figure.
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Figure 5.8: Comparison of the reconstructions of the large target with χ0 = 1 (Case
4 in Fig. 5.7) for different numbers of iterations imax, as labeled. Reconstruction
with imax = 490 is marginally better than the reconstruction with imax = 900.
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fectively handling large data sets with more than 2× 106 data points. In all cases,

the DCTMC reconstruction performed at least as well as the linear solver, and was

indeed greatly preferred the majority of the time. At the strongest levels of non-

linearity, the DCTMC algorithm failed to produce useful results, but this is not

too worrisome as early estimates (Table 5.2) show that these problems are severely

nonlinear and troublesome for all attempts at solving. While these reconstructions

were done methodically in 900 iterations, the next section will take into account

many of the discussed improvements to greatly reduce the number of iterations

required to fully converge.

5.2 Improved Reconstructions

This section investigates several improvements to the DCTMC algorithm, both

motivated by the previous discussion in Section 3.5 and the later analysis of the toy

problem in Section 6.1. The overall conclusion is that with a few easy modifications,

we can substantially reduce the necessary computation time to obtain accurate

results with DCTMC. The results shown are to be compared with the simulations

run for the small target in the near-field zone. Similar results were obtained for

the intermediate and far field zones, but the work presented will give an idea of

the relative merits of these improvements. In the following section we will apply

DCTMC with these proven improvements to the more difficult case of diffuse optical

tomography.
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Figure 5.9: Initial starting points for DCTMC in the case χ0 = 0.175. The left
figure is the V -matrix obtained directly from the experimental T-matrix. The right
figure is the linear reconstruction obtained quickly.

5.2.1 DCTMC Starting from Linear Reconstruction

As previously mentioned, DCTMC in the linear regime is Richardson first-order

iteration, which has slow convergence. Therefore, if our initial guess V1 is close

to 0, then the initial iterations act like the slow Richardson iterations, and take

an unnecessary number of iterations to enter the “nonlinear regime”. Looking

back at the simulations for the small sample done in 5.1.3, we see that our initial

guess corresponding to the experimental T-matrix was actually very close to 0, thus

making a natural improvement to start from the linear reconstructions that were

obtained quickly. For example, as seen in Figure 5.9 the initial guess used in the

previous reconstruction for χ0 = 0.175 is shown in the left panel, compared to

the more useful starting point of the linearized reconstruction in the right panel.

The number of necessary iterations can be significantly reduced using this modified

version of the algorithm:
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1. Run the linear reconstruction.

2. Using the result of step 1 as the initial guess, run 5 iterations normally.

3. Then every 5 iterations check whether some susceptibilities χn satisfy |χn| <

χmax/500, where χmax = maxn |χn|.

4. If a given voxel satisfies the above condition 3 checks in a row, the correspond-

ing χn is set to zero, and the computational domain is reduced.

5. The process is repeated with the following modifications. After 15 iterations,

checks are made every 20 iterations and the relative threshold for determining

a non-interacting voxel is reduced to the factor of 100. After 200 iterations,

checks are made every 10 iterations, and after 400 iterations, the relative

threshold is reduced to the factor of 60, and after 600 iterations the relative

threshold is further reduced to the factor of 40.

Compared to the original algorithm used previously, the interval between checks is

reduced at the beginning to utilize the non-interacting voxels found by the linear

reconstruction, while simultaneously raising the relative threshold so as to not trust

the linear reconstruction too much. After these 15 initial iterations, these parame-

ters are then set back to match the original method. Error plots comparing these

two methods are shown in Figures 5.10 and 5.11. There are a few immediate

conclusions to be made from these error plots. First of all, as we are starting from a

much more reasonable guess, our starting error is much smaller. More importantly,
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Figure 5.10: Convergence data for the case χ0 = 0.00175 comparing the original
guess and the linear reconstruction guess. The left panel plots the error ηχ while
the right panel plots ηΦ.

Figure 5.11: Convergence data for the case χ0 = 0.175 comparing the original guess
and the linear reconstruction guess. The left panel plots the error ηχ while the right
panel plots ηΦ.
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Figure 5.12: Convergence data for the case χ0 = 1.75 comparing the original guess
and the linear reconstruction guess. The left panel plots the error ηχ while the right
panel plots ηΦ.

as we can use sparsity conditions very quickly in the iteration process, we have

faster convergence from the start, as can be seen from the slope of the error curves

starting at iteration 15. For the case χ0 = 0.00175 (where the linear reconstruction

is nearly perfect), and the case χ0 = 0.175 (where the linear reconstruction is still

reasonable), this makes perfect logical sense – a much improved initial guess leads

to improved reconstruction speed. The least nonlinear case χ0 = 0.00175 has a

more dramatic improvement (see Figure 5.10), since it starts from a better guess,

but even starting from the linearized guess for χ0 = 0.175 leads to an improvement

by about 150 iterations (see Figure 5.11).

The most interesting case is for the strongest nonlinearity χ0 = 1.75. This

case is noteworthy as our initial guess is not close to the actual result. In fact,

it is farther away in L2 error than starting from 0. But as discussed previously,

this could be advantageous, namely that starting from 0 leads to slow Richardson

iterations whereas an initial guess V1 far from 0 can take advantage of the nonlinear
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aspect of the algorithm. However, in this case we see a very slowly converging (but

stable error) that does not outperform the original method (see Figure 5.12). This

is not an ideal situation, but we will see in the last section when combining all the

improvements that this is not a problem.

5.2.2 Using Reciprocity of Sources and Detectors

We now investigate the improvement of enforcing symmetry of the experimental

T-matrix by including the doubled data set obtained by interchanging sources and

detectors from Section 3.5.2. As can be seen from the following error plots, using

this more complete information leads to slightly improved starting points for the it-

erations as well as much faster convergence speed. This is a dramatic improvement

for a simple change that does not require any additional information or process-

ing power. The case represented in Figure 5.13 is for χ0 = 0.0175, and all other

strengths of nonlinearity exhibit similar behavior. It is noteworthy that with this

“more complete” dataset, we achieve full convergence in about 500 iterations, as

opposed to obtaining a satisfactory but still improving result after 900 iterations.

In terms of the “known” entries in the experimental T-matrix, using reciprocity we

know about 17% of the entries, whereas without taking advantage of this we only

know about 4% of the entries. That is, by using reciprocity the dimension of the

upper submatrix used in overwriting the T-matrix is roughly doubled, which leads

to much better results.
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Figure 5.13: Convergence data for the case χ0 = 0.0175 comparing the original
process and using reciprocity of sources and detectors. The left panel plots the
error ηχ while the right panel plots ηΦ.

Summing over Rows when Diagonalizing V

As we will see in the toy problem analysis from Section 6.1, much better results

were obtained when diagonalizing V by summing over rows versus just setting

all off-diagonal terms to zero. The numerical examples show both an increase in

convergence speed as well as being more robust in terms of larger convergence areas.

This fits in with the conceptual understanding of DCTMC in terms of working in a

nonlocal framework. As mentioned in Section 3.5.4, for these intermediate results it

is not reasonable to sum over elements that are very far away from each other, and

a weight function must be used to suppress these unwanted nonlocal interactions.

The results in this section are the most promising results in terms of significantly

improving the convergence rate of DCTMC. It is worth emphasizing that the results

in this section are without the improvements of the previous two sections (starting

from better initial guesses and interchanging source and detector), as well as any
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sparsity constraints. The sparsity conditions used previously have been crucial to

reasonable convergence rates in simulations thus far, but are in reality an “add-

on” to the DCTMC algorithm. Adding the row-summing technique is an inherent

change, and these results are a fundamental success wholly attributable to DCTMC.

To fully investigate the merits of this diagonalization scheme, we will forgo us-

ing the shortcut from Option 2 with the weighted T-matrix as described in Section

3.5.4, and conduct iterations in the full manner that directly calculate the interac-

tion matrix from the data compatible T-matrix. We can then explicitly sum over

the rows of V in the weighted manner we desire. While this increases computation

time per iteration by a factor of about 2, we will demonstrate that any loss in cal-

culation time per iteration is more than made up for with faster convergence.

The weight function used for these first examples was a simple characteristic func-

tion. That is for each voxel rk and a specified radius R, let IR = {j : |rj − rk| ≤ R}

be the set of all indices j such that rj is in the ball of radius R centered at rk. Then

the act of diagonalizing to Dk = D[Vk] is given by the entrywise formula:

Dij =


∑

k∈IR Vik i = j

0 i 6= j

(5.2.1)

The first results are for the case χ0 = 0.0175, where 150 iterations were performed

without any adjustments or reductions for sparsity. The final result after these 150

iterations for varying values of R are shown in Figure 5.14. The immediate reaction
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R = 0 R = 2.5 R = 5

R = 7.5 R = 10

Figure 5.14: Final output of DCTMC algorithm after 150 iterations with varying
degrees of R, where the row-summing is done over the radius R.

is that the cases R = 2.5, 5,and 7.5 are clearly much better than the original R = 0,

where little change has happened after 150 iterations (the initial slow convergence).

It is also true that summing over a radius of 10 is too large of a radius, as this result

is unwanted. Looking at these five images almost looks like a type of regularization,

where R =∞ is no regularization, and as we send R to 0, the image “spreads” out

a little until it is completely over-regularized at R = 0.

Looking at the error plots of ηχ in Figure 5.15, we see how dramatic of an

improvement one achieves using row-summing. Using the error against target ηχ,

the case R = 5 is preferred, followed by R = 2.5 and R = 7.5. Furthermore, it is

interesting that for the case R = 10, the first couple of iterations are quite effective,
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Figure 5.15: Convergence data of ηχ. The left plot compares the cases R = 0, 2.5, 5,
and 7.5 while the right plot compares R = 0 and 10.

before something goes wrong and the error curve turns sharply in the opposite

direction. This is an example of not suppressing a far away nonlocal interaction

that causes unwanted behavior. Note that the case R = 0 corresponds to no row-

summing, and Shortcut 2 was used for this case. But despite the fact that the R = 0

case completed in about half the time, looking at the first error plot in Figure 5.15

shows that there is no confusion on the preference between 75 iterations of the

positive values of R and 150 iterations of R = 0.

We have to be careful as we increase the nonlinearity present in the problem, as

the larger magnitude in difference between the background and the inhomogeneities

can cause unwanted behavior when summing farther away voxels. For the case

χ0 = 0.875, we see that for R = 4 and R = 6, the error plots quickly diverge.

However, if we add a simple weight function to the sum to penalize entries from

farther away, we can dramatically improve the result. An extremely rudimentary
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Figure 5.16: Convergence data of ηχ for the case χ0 = 0.875. The left panel plots
the error without using any weight function while the right panel plots the error
under the weight function Θ defined in equation (5.2.2).

weight function w(ri, rk) was used such that diagonalizing is now given by:

Dij =


∑

k∈IR w(ri, rk)Vik i = j

0 i 6= j ,

(5.2.2)

where

w(ri, rk) =


1 i = j

(2|ri − rk|)−1 i 6= j.

(5.2.3)

As can be seen in Figure 5.16, adding on this extra weight funtcion was key to

improving the algorithm, and suggests that further investigation into the optimal

choice of radius R and weight function is warranted. Figure 5.17 contains the final

result after 150 iterations for each of these methods. Again it is clear that the recon-

structions performed with weighted row-summing are superior to the reconstruc-

tions performed without any row-summing, or done with unweighted row-summing.
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R = 0 R = 2.5 (no weight) R = 2.5 (weight)

R = 5 (no weight) R = 5 (weight)

Figure 5.17: Final output of DCTMC algorithm after 150 iterations for χ0 = 0.875
with varying degrees of R, where the row-summing is done over the radius R with
or without a weight function.
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5.2.3 Putting it All Together

Combining these improvements, we can see significant performance enhancing of

the DCTMC algorithm. Compared to the five cases used in the small sample in

the near-field zone, we will demonstrate that one can achieve acceptable results in

75 iterations, compared to the 900 iterations previously performed in Section 5.1.3.

For the sake of clarity, the algorithm used in this section proceeds as follows:

1. Run the linear reconstruction.

2. Using the result of step 1 as the initial guess, run 5 iterations normally.

3. Then every 5 iterations check whether some susceptibilities χn satisfy |χn| <

χmax/500, where χmax = maxn |χn|.

4. If a given voxel satisfies the above condition 3 checks in a row, the correspond-

ing χn is set to zero, and the computational domain is reduced.

5. The process is repeated with the following modifications. After 20 iterations,

the relative threshold for determining a non-interacting voxel is reduced to

the factor of 100. After 40 iterations, the relative threshold is further reduced

to the factor of 60.

Throughout the algorithm, reciprocity of sources and detectors was used, as well

as the row summing described in equation (5.2.2). The final result for all levels

of nonlinearity are shown in Figure 5.18. The main takeaway is that all of these
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χ0 = 0.00175 χ0 = 0.0175 χ0 = 0.175 χ0 = 0.875 χ0 = 1.75

Figure 5.18: Final output of improved DCTMC algorithm after 75 for all five levels
of nonlinearity.

results are perfect or at least very acceptable, and were produced in a small fraction

of the time originally used to obtain the images in Figure 5.2. The most dramatic

improvement are for the three lowest levels of nonlinearity, as starting from these

linear reconstructions is of great assistance. For these three, we obtain more ac-

curate results in 75 iterations, compared to the 900 used previously. For the case

χ0 = 0.875, the end result is only marginally worse than the original method, but

this trade-off is worth it. Moreover, we could run another 50 iterations quickly and

surpass the results obtained previously. These results are contained in the error

plots in Figures 5.19 and 5.20.

Again, the interesting case is for the strongest nonlinearity χ0 = 1.75, which

has repeatedly been shown to be the limiting case for DCTMC and has a strong

probability to break down. However, we can again obtain a stable result that

is not much worse than the “safer” algorithm over 900 iterations. The error of

the target fluctuates wildly at the beginning, but then starts to settle down as

seen in Figure 5.21. We believe this behavior is due to the row-summing at the

beginning handling a large variance across the sample. Even in this case, we can
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Figure 5.19: Convergence data of ηχ for the cases χ0 = 0.00175, 0.0175, 0.175, and
0.875 compared against the original results for χ0 = 0.00175 (The original plots
were identical so only one shown for clarity). The left panel plots the error for the
75 iterations only, while the right panel is zoomed out to be able to compare the
error of the final result.

strongly conclude that the modifications detailed in this paper result in a significant

improvement in convergence speed. We were able to obtain accurate (and in some

cases much improved) results in many fewer iterations, which highly increases the

practical usefulness of the DCTMC algorithm.

5.3 Three-Dimensional Diffuse Optical Tomogra-

phy

We now turn to reconstructions of simulated data for diffuse optical tomography.

The inverse problem for diffuse optical tomography has greater ill-posedness then

scalar wave diffraction due to the exponential decay of the waves. Moreover, we

have added noise to the data sets in order to more closely replicate experimental

data. Thus, the task of reconstructing the DOT data in the section is much more
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Figure 5.20: Convergence data of ηΦ for the cases χ0 = 0.00175, 0.0175, 0.175, and
0.875 compared against the original results for χ0 = 0.00175 (The original plots
were identical so only one shown for clarity). The left panel plots the error for the
75 iterations only, while the right panel is zoomed out to be able to compare the
error of the final result.

Figure 5.21: Convergence data of ηχ (left plot) for the case χ0 = 1.75 compared
with original result as well as the convergence data of ηΦ (right plot) for the same
case.
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difficult than in the previous reconstructions. We will again compare our DCTMC

obtained reconstructions against linearized reconstructions. For this case, the first

Rytov approximation was the superior tested linear approximation and is shown in

all plots.

The general discretization process is very similar to the detailed discretization

process outlined in Section 5.1.1 and is modeled in [35]. However, we point out a

few key differences. First, the free space Green’s function G0 can be calculated as

G0(r, r′) = −k2 exp (−k|r− r′|)
|r− r′|

.

Our quantity of interest is now the absorption coefficient at each voxel and will

be represented by αn. We will still consider our targets to be sparse, which is

mathematically equivalent to reconstructions with known backgrounds.

Two different targets were chosen for these reconstructions, both the same size.

The choice of target was inspired by the work in [6], where experimentally obtained

data sets modeling DOT near the chest wall were reconstructed using linear alge-

braic methods. This models clinical breast cancer imaging, which is a promising

application for DOT due to the fact that optical methods are sensitive to several

biomarkers for cancer. However in practice, the data can be inefficient due to the

strong scattering by the nearby chest wall, which can distort the region of interest.

Thus, our targets have placed a larger stronger absorbing material with a nearby

smaller phantom of interest with a smaller absorption coefficient. Note that there

is no scattering contrast between these two inclusions.
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Precisely, we again discretize our sample into 2,304 voxels on a 16× 16× 9 grid.

The absorption coefficient models are target by

α(r) = α0Θ(r) , (5.3.1)

where 0 ≤ Θ(r) ≤ 1 is the shape function. The “chest wall” phantom is of voxel size

12×3×7, while the phantom of interest is a cross target made up of two intersecting

3× 7× 3 rectangular inclusions. The chest wall phantom had absorption coefficient

of α0, while the cross target’s absorption coefficient was halved at 0.5α0. The

difference between the two targets we consider is the lateral distance between the

two phantoms. For the “far” model, this distance is d = 5 voxels. The “near” model

reduces this distance to d = 2 voxels. These models are shown below in Figure 5.22.

We will again only vary the value of α0 to control the amount of nonlinearity present

in the problem, and plot all reconstructions on the same color scale by plotting the

ratio αn/α0.

Consistent with the experimental methodology for this DOT imaging [19], we

only consider the near field case, where the grids of sources and detectors are placed

h/2 away from the sample. The slab geometry consisted of two panels of 26 × 26

sources and detectors with the sample centered between them in all directions.

5.3.1 Regularization and Noise Suppression

In this section, we are not only testing DCTMC in a more difficult physical model,

but we are also adding noise to the data. Gaussian noise at a level of 2% was added
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Figure 5.22: Left: The “far” target where the cross shaped phantom is a distance
of 5h from the stronger absorbing rectangular inclusion.Right: The “near” target
where the cross shaped phantom is a distance of 2h from the stronger inclusion.

to the data measurements to this end. There were a few parameter modifications

to the algorithm to help suppress this noise.

First of all, linearized DCTMC inspired regularization from Section 4.1 was used

with a Tikhonov value of λ2 = 1.0× 10−7. Significant testing showed that this was

a reasonable choice of λ, and more importantly, reconstructions were noticeably

superior with the choice of λ 6= 0.

Additionally, as the choice of when to stop the iterations can also be seen as

a regularization process, the error ηΦ was monitored and iterations were stopped

after several consecutive increases in this error.

Lastly, and perhaps most importantly, the value of ε from equation (3.2.10)

had to be significantly reduced compared to the noiseless reconstructions in Section

5.1. While values of ε2 = 1.0 × 10−12 were frequently used for the scalar wave

diffraction reconstructions (which in turn trusted almost all “known” elements of
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the experimental T-matrix), such small values of ε proved to produce unreasonable

results. The optimal value of ε found was ε = 1.0 × 10−4. This can be thought

of as a type of data restriction, where we treat computed “known” elements of the

experimental T-matrix as unknown due to the noisy data measurements that were

used in the calculation.

5.3.2 Iteration Process

To have any hope of reconstructing these more difficult simulated data, we employed

many of the improvements discussed in Section 3.5 and tested in Section 5.2. We

will now detail the improvements used so one can contrast with the iteration cycle

for the scalar wave diffraction simulations in Section 5.1.

Symmetry of the T-matrix was enforced using the data points obtained by in-

terchanging sources and detectors. Most importantly, we used a weighted sum over

rows to the diagonal to calculate the diagonal approximation Dk to the nonlocal

interaction matrix V ′k . This weight was previously tested and defined in (5.2.3). For

clarity, the diagonalization operator is defined entry wise as

Dij =


∑

k w(ri, rk)Vik i = j

0 i 6= j ,

(5.3.2)
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where

w(ri, rk) =



1 i = j

(2|ri − rk|)−1 0 < |ri − rk| ≤ 6

0 |ri − rk| > 6 .

(5.3.3)

We will still use sparsity to our advantage, and can check for noninteracting voxels

both sooner in the iteration process and more frequently due to the increased con-

vergence speed provided by the improvements used. The iteration cycles proceed

as follows:

1. Run 10 iterations normally.

2. Then this iteration and every 10 iterations afterwards, check whether some

values αn satisfy |αn| < αmax/200, where αmax = maxn |α|.

3. If a given voxel satisfies the above condition 3 checks in a row, the corre-

sponding αn is set to zero. This ensures that the given voxel is not likely to

be interacting.

4. The voxels with zero χn (as determined in the previous step) are declared

to be non-interacting and are excluded from the computational domain. We

then recalculate the initial setup procedure, but for a smaller number of inter-

acting voxels Nv. This results in a smaller computational time per subsequent

iteration.

5. The process is repeated with the following modifications. After 50 iterations,
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the relative threshold for determining a non-interacting voxel is reduced to

the factor of 100, and after 200 iterations the relative threshold is reduced to

the factor of 60.

5.3.3 Reconstructions

We again test each target for five levels of nonlinearity: α0 = 0.001, 0.01, 0.1, 1.0,

and 2.0. We first look at the reconstructions of the “far” target. The top row

of Figure 5.23 displays the first Rytov approximated linear reconstructions. First

Born and mean field approximations were also tested, but not shown as they do not

provide any more useful information. Looking at these linear reconstructions, the

cases α0 ≤ 0.1 all look similar – they do a decent job of reconstructing the chest

wall phantom, and the area of the cross target is identified, but its shape is far

from exact and the absorption coefficient is substantially under represented. For

the case α = 1.0, there is still some indicator of the cross target, but the chest wall

phantom is extremely noisy. At the largest level of nonlinearity, α = 2.0, the amount

of regularization needed to prevent an uncomfortably noisy image suppresses any

presence of the cross target. Moreover, the chest wall phantom is not reconstructed

either.

Now looking at the second row of the DCTMC nonlinear reconstructions, we

see a much nicer picture. The immediate reaction is that all five levels of non-

linearity look more or less identical. This is strong evidence that DCTMC is a
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χ0 = 0.001 χ0 = 0.01 χ0 = 0.1 χ0 = 1.0 χ0 = 2.0

Figure 5.23: Top row first Rytov reconstructions, bottom row DCTMC reconstruc-
tions.

viable nonlinear solver. Each reconstruction does a good job of locating the chest

wall phantom and correctly identifying its absorption coefficient. The cross target’s

absorption coefficient is also reconstructed quite accurately, but the shape of the

cross is blurred. If one looks carefully, there is a cross outline in the circular region,

but it is by no means sharp. However, it is clear at all levels of nonlinearity, and

especially at all high levels of nonlinearity, the DCTMC reconstruction is preferred.

These reconstructions provide ample evidence that with the improvement in reg-

ularization, DCTMC can handle noisy ill-posed inverse scattering problems. Look-

ing at the error plots of ηχ and ηΦ paints an encouraging picture. Compared with

the error plots for diffraction in Figure 5.5, there is no region of slow convergence.

In fact, the error curves (both error of target and error of equation) have their

fastest convergence in the first few iterations, and then slow down as they converge

128



0 50 100 150 200 250 300 350
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

i

η χ

 

 
α

0
=0.001

α
0
=0.01

α
0
=0.1

α
0
=1.0

α
0
=2.0

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8

9
x 10

−5

i

η Φ

 

 
α

0
=0.001

α
0
=0.01

α
0
=0.1

α
0
=1.0

α
0
=2.0

Figure 5.24: Convergence plots for the “far” target.

to the final result. The floor on the curve is much higher than before, but this is

due to increased ill-posedness, noise, and regularization. For example, the strongest

nonlinearity α0 = 2.0 initially has ηχ ≈ 0.41. After just ten iterations, this error

has dropped to ηχ ≈ 0.26, a factor of about 1.5. Such steep convergence rate was

unheard of in the old reconstructions until the region of fast convergence as many

noninteracting voxels were found. The improved version of DCTMC has much more

attractive convergence behavior, where not nearly as many iterations are needed for

convergence. Perhaps more importantly, the algorithm relies less on taking advan-

tage of sparsity, as this initial fast convergence happens before any voxels can be

identified as noninteracting (which can happen at the earliest that iteration number

30 under the procedure outlined).

Note that for the stronger levels of nonlinearity, the error ηΦ begins to increase

around iteration 250. Thus for these cases (α = 1.0, 2.0), the reconstruction shown

in Figure 5.23 are the results obtained after 250 iterations.
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Turning to look at the second target, the “near” target, where the cross target

is placed closer to the chest wall phantom, we obtain very consistent results. As

displayed in Figure 5.25, the linearized reconstructions for α0 ≤ 0.1 are all similar,

albeit with the cross target place closer to the chest wall phantom, these regions

blend together a bit. Again, this linear reconstruction begins to break down at

α0 = 1.0, and provides no use at the level of α0 = 2.0.

The nonlinear DCTMC reconstructions are again very consistent across all levels

of nonlinearity. These reconstructions and their error plots in Figure 5.26 exhibit

similar behavior to the previous target. The only subtle difference is that the

top of the cross target is a bit fainter due to the interaction with the chest wall

phantom. Overall, the results of this section are extremely promising for DCTMC,

where we were able to reconstruct images from a substantially ill posed problem,

in the presence of some noise. Most importantly the convergence was fairly quick,

with desirable fast initial convergence behavior which would allow one to stop the

iterations much sooner if time was an issue.
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χ0 = 0.001 χ0 = 0.01 χ0 = 0.1 χ0 = 1.0 χ0 = 2.0

Figure 5.25: Top row first Rytov reconstructions, bottom row DCTMC reconstruc-
tions.
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Figure 5.26: Convergence plots for the “near” target.
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Chapter 6

Comparison of DCTMC and other

Nonlinear Iterative Methods

6.1 Analysis of a Toy Problem

Consider the problem of reconstructing the polarizabilities α1 and α2 of two dis-

crete small scatterers from the measurements produced by one source S and two

detectors D1 and D2. Let g be the Green’s function between the two scatterers, A

be the Green’s function from S to either of the scatterers, and B1 and B2 be the

Green’s functions from the scatterers to the detectors as is schematically illustrated

in Fig. 6.1. In this case, the number of unknowns and the size of the data set are

both equal to two, so that the inverse problem is perfectly determined.
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Figure 6.1: Schematic illustration of the setup of the toy problem

The forward problem for the setup considered is the set of two equations

d1 = α1 (A+ gd2) , (6.1.1a)

d2 = α2 (A+ gd1) , (6.1.1b)

where A is the incident field created by the source at the locations of the scatterers

(in the case considered, the same at each scatterer) and d1, d2 are the induced

“dipole moments” (as in the discretization process in Section 5.1.1). The detectors

then measure the linear combinations

φ1 = (B1d1 +B2d2)/A (the first detector) , (6.1.2a)

φ2 = (B1d2 +B2d1)/A (the second detector) . (6.1.2b)

Here the normalization (division by A) is used for simplicity and does not influence

any results. Our goal is to use the measurements of φ1 and φ2 to find α1 and
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α2. After some manipulation, we can write the nonlinear equations coupling the

unknowns α1, α2 to the data points φ1, φ2 as

(
1− g2α1α2

)
φ1 = α1(1 + gα2) + βα2(1 + gα1) , (6.1.3a)(

1− g2α1α2

)
φ2 = α2(1 + gα1) + βα1(1 + gα2) , (6.1.3b)

where β = B2/B1. These equations can be solved as long as β2 6= 1, resulting in

α1 =
βφ2 − φ1

β2 − 1 + g(βφ1 − φ2)
, (6.1.4a)

α2 =
βφ1 − φ2

β2 − 1 + g(βφ2 − φ1)
, (6.1.4b)

as well as the spurious solution α1 = α2 = −1/g. If β2 = 1, application of (6.1.4)

to perfect data results in a 0/0-type uncertainty while application to noisy data

will result in the unwanted solution α1 = α2 = −1/g. We therefore assume that

β2 6= 1. Then the reconstructions depend on the data continuously except for the

lines βφ1−φ2 = (1−β2)/g and βφ2−φ2 = (1−β2)/g, where the inversion formulas

are singular.

We will now provide the relevant formulation for this toy problem using DCTMC.

First note that Γ12 = Γ21 = g, Γ11 = Γ22 = 0. The defining characteristic of

DCTMC is the experimental T-matrix, which can be calculated as

Texp =
1

2

α
(L)
1 α

(L)
1

α
(L)
2 α

(L)
2

 . (6.1.5)

where α
(L)
1 and α

(L)
2 are the approximate “linearized” solutions to the equations in
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(6.1.3) given by

α
(L)
1 =

βφ2 − φ1

β2 − 1
, (6.1.6a)

α
(L)
2 =

βφ1 − φ2

β2 − 1
. (6.1.6b)

These linearized solutions can be obtained from (6.1.4) by setting g = 0.

Overwriting the T-matrix in an iteration to maintain data-compatibility is now

defined by the operation

O[T ] = T +

a a

b b

 , (6.1.7)

where the terms a and b are selected so that the row sums of O[T ] are equal to α
(L)
j .

As can be easily verified, this will enforce data compatibility of the T-matrix. The

terms a and b can be written as

a =
1

2
α

(L)
1 − 1

2
(t11 + t12) , (6.1.8a)

b =
1

2
α

(L)
2 − 1

2
(t21 + t22) , (6.1.8b)

where tij are the elements of the matrix T . The first immediate remark is that this

attractive overwriting scheme in the reduced toy problem is equivalent to rotating

the T-matrix to singular vector representation and force overwriting the known

elements (in this case T̃11 and T̃21). This provides evidence that our definition of

overwriting is a natural choice, and is not merely the most computationally efficient

choice.
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With these definitions in hand, and using the “force-diagonalizing” technique

of D[V ]ij = δijVij, we can derive a mapping that is strictly equivalent to DCTMC

in terms of the reconstructed values of αj. Letting (v1, v2) be an initial guess or

an intermediate result for the values of (α1, α2), the mapping that represents one

iteration of DCTMC is given by the formula

v1 →v1 −
(v1 − α1)(1 + α2g)(gv1 − 1)

(1 + α2g)(gv1 − 1) + (1 + α1g)(gv2 − 1)
, (6.1.9a)

v2 →v2 −
(v2 − α2)(1 + α1g)(gv2 − 1)

(1 + α2g)(gv1 − 1) + (1 + α1g)(gv2 − 1)
. (6.1.9b)

In these expressions, α1 and α2 are the true values of the polarizabilities (not the

reconstructions) and it is assumed that the data points φ1, φ2 represent ideal mea-

surements that are free of noise or systematic errors.

Series Convergence

We can compare the convergence of DCTMC as a series in this simple scenario

in comparision with the inverse Born series. We expand as a series the inverse

solutions of (6.1.4) in powers of φ1 and φ2. This is the same form as under which

convergence of the inverse Born series has been investigated [2, 38, 39]. We note

that, for a more general ISP, a sufficient condition of convergence of inverse Born

series has been obtained in [38]. For the toy problem discussed here, we can obtain

a sufficient and necessary condition of convergence using these methods, which is

∣∣∣∣ g

β2 − 1
(βφ1 − φ2)

∣∣∣∣ < 1 AND

∣∣∣∣ g

β2 − 1
(βφ2 − φ1)

∣∣∣∣ < 1 . (6.1.10)
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Substituting the model values of α1, α2 by using (6.1.3) into this condition, we can

obtain a neat form. Let xk = gαk, where αk are the model values of the polar-

izabilities (again, not the reconstructed values). Then the convergence condition

reads

(x1, x2) ∈ Ω1 :

{∣∣∣∣x2(1 + x1)

1− x1x2

∣∣∣∣ < 1 AND

∣∣∣∣x1(1 + x2)

1− x1x2

∣∣∣∣ < 1

}
.

(6.1.11)

(Sufficient and necessary condition for convergence of inverse Born series)

This convergence stated above are illustrated in Fig. 6.2 (left panel) below.

We can now compare this convergence result for the inverse Born series to a

similar result for DCTMC. However, for DCTMC we can obtain only the sufficient

condition of convergence. Thus, we will compare the sufficient condition of conver-

gence of DCTMC with the sufficient and necessary condition of convergence of the

inverse Born series. It should be kept in mind that DCTMC can converge outside

of the region of parameters defined by the sufficient condition of convergence. For

the toy problem considered, DCTMC can be run analytically for a few iterations,

and these results can be used to prove a sufficient condition for convergence of the

iterations. This condition is

(x1, x2) ∈ Ω2 : {|x1| < 1 AND |x2| < 1} . (6.1.12)

(Sufficient condition for convergence of DCTMC)

This defines a square region between the lines x1 = ±1 and x2 = ±1, which partially
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Figure 6.2: Left: Illustration of the region Ω1 defined by the inequalities in (6.1.11).
The axes of the plot are x1 and x2. Both inequalities are satisfied in the dark blue
region, which is (a part of) Ω1. Only one inequality is satisfied in the light blue
region. None are satisfied outside of the light blue region. The region Ω2 is a square
with the the center at the origin and vertices at (−1,−1) and (1, 1) (not shown
explicitly in the plot). This figure illustrates convergence conditions only for purely
real αk’s. Right: Relative error E (6.1.13) after four iterations of DCTMC for the
toy problem. Same axes as in the left panel are used.

overlaps with Ω1.

In practice, we have observed that DCTMC converges in a much wider area

than the one defined by the sufficient condition (6.1.12). In particular, the method

appears to converge for most positive values x1 and x2 in just a few iterations. This

is illustrated in Fig. 6.2 (right panel), where we plot the relative error

E =

√∣∣αrec
1 /αmod

1 − 1
∣∣2 +

∣∣αrec
2 /αmod

2 − 1
∣∣2 . (6.1.13)

Here “rec” and “mod” refer to reconstruction and model.
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Proof of Convergence

We can prove convergence for DCTMC for (x1, x2) ∈ Ω2 using a simple algebraic

proof. Again, let vj be the intermediate reconstruction results. We are interested

in showing that the direction

u =
1

(1 + α2g)(gv1 − 1) + (1 + α1g)(gv2 − 1)

(v1 − α1)(1 + gα2)(gv1 − 1)

(v2 − α2)(1 + gα1)(gv2 − 1)


(6.1.14)

given by the second terms in (6.1.9) is a descent direction. We will, in fact, prove a

slightly stronger condition that the result of an iteration (v1, v2)→ (v′1, v
′
2) satisfies

|v′1 − α1| ≤ |v1 − α1| AND |v′2 − α2| ≤ |v2 − α2| . (6.1.15)

We will only prove the inequality for α1 and the inequality for α2 is obtained by

permutation of indices. The confirmation of a descent direction implies convergence

due to the fact that the only fixed point in this region is the desired solution. For

simplicity we will assume that 0 < α1, α2, v1, v2 < 1/g. All other configurations

using combinations of negative counterparts are identical calculations.

Without loss of generality, let α1 < v1. We first show that under our assump-

tions, the denominator in (6.1.14) is negative. That is,

g(v1 + v2α2(gv1 − 1) + α1(gv2 − 1))− 2 < 0 .

since the terms (−2/g + v1 + v2), α1(gv2 − 1), and α2(gv1 − 1) are individually

negative due to the fact that gvj < 1 and the positivity of all elements. The
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factored numerator is clearly negative under the assumption α1 < v1, which proves

that v′1 < v1.

Now, to show that α1 < v′1, we can reduce this inequality to

g(v1 + v2α2(gv1 − 1) + α1(gv2 − 1))− 2 ≤ (1 + α2g)(gv1 − 1) , (6.1.16)

and then simply by expanding out these terms and canceling repeats, we obtain the

inequality

(1 + α1g)(gv2 − 1) ≤ 0 . (6.1.17)

This inequality α1 < v′1 < v1 proves that not only does v1 → α1, but by monotone

convergence that the DCTMC algorithm in this region never “overshoots” the model

values of the scatterers during the iterations. Thus DCTMC is a straightforward

convergent algorithm in the region |x1|, |x2| < 1.

Nonlinear Least Squares Approach

Considering the toy problem as a nonlinear least squares problem, we can natu-

rally compare DCTMC with the Gauss-Newton method. From the data equations,

we can calculate the Jacobian in terms of the model scatterers (α1, α2) and their

reconstructed values (v1, v2) as

J =
1

1− α1α2g2

1− α1α2g
2 + g(1 + α1g)v2 g(1 + α1g)v1

g(1 + α2g)v2 1− α1α2g
2 + g(1 + α2g)v1

 .

(6.1.18)
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Then, a single iteration from {v1, v2} using the Gauss-Newton algorithm J−1R

results in the mapping

v1 →v1 −
(v1 − α1)(1 + α2g)(1 + gv1)

1 + g(v1 + α2gv1 + v2 + α1g(v2 − α2))
, (6.1.19a)

v2 →v2 −
(v2 − α2)(1 + α1g)(1 + gv2)

1 + g(v1 + α2gv1 + v2 + α1g(v2 − α2))
. (6.1.19b)

Comparing (6.1.19) to (6.1.9) shows that the DCTMC algorithm is similar in struc-

ture to Gauss-Newton. A natural question arises, namely, is there a matrix J̃ such

that DCTMC can be written as y = J̃−1R? It turns out the we can explicitly

calculate such a matrix, using the Gauss-Newton result as a template. We then

obtain that

J̃−1 = C


gv1−1
gv1+1

(α2g
2(α1 − v1)− gv1 − 1) gv1−1

gv1+1
(gv1(1 + α1g))

gv2−1
gv2+1

(gv2(1 + α2g)) gv2−1
gv2+1

(α1g
2(α2 − v2)− gv2 − 1)

 ,

(6.1.20)

where

C =
−1

g(v1 + v2 + α2(gv1 − 1) + α1(gv2 − 1))− 2
. (6.1.21)

This result signifies a closed form method equivalent to DCTMC for this toy prob-

lem. That is, we have the normal equations for the DCTMC solution to nonlinear

least squares. While it is useful to have a closed form algorithm for DCTMC, the

ultimate question is how does the matrix J̃ relate to the Jacobian matrix J . As of

now, the best conclusion is that there exists a diagonal scaling matrix D such that

JD = J̃ . Fully understanding the properties of J̃ and its relationship to J is an

important line of ongoing research.
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While the results thus far have used the diagonalizing operator D[V ]ij = δijVij, it

is worthwhile to consider another method of diagonalizing. We will also investigate

diagonalizing by summing over rows (D[V ]ij = δij
∑

k Vik), which is inspired by

the nonlocal formation of the problem used for DCTMC. This method results in a

separate closed form, governed by the mapping

v1 →v1 −
(v1 − α1)(1 + α2g)(g(v1 + v2)− 2)

(1 + α2g)(gv1 − 1) + (1 + α1g)(gv2 − 1)
, (6.1.22a)

v2 →v2 −
(v2 − α2)(1 + α1g)(g(v1 + v2)− 2)

(1 + α2g)(gv1 − 1) + (1 + α1g)(gv2 − 1)
. (6.1.22b)

Comparing (6.1.19)-(6.1.22), we see that they all share the fixed point (α1, α2) (the

correct solution), but differ on the spurious solutions that prevent global conver-

gence. Gauss-Newton iteration has the fixed point (−1/g,−1/g), which is the natu-

ral unwanted solution produced by the data equations, whereas DCTMC has shifted

this to the fixed points (1/g, α2) and (α1, 1/g). The modified version of DCTMC

(with row-wise summation) has the spurious solutions on the line v1 + v2 = 2/g.

Numerical Results

The first simulation was conducted to determine if convergence was correct in the

region |x1|, |x2| < 1. The model was set to α1 = 2 and α2 = 5, and g = 0.1.

An initial guess of (α1, α2) = (4, 7) was chosen which is within the bounds set

by 1/g = 10. Plots depicting the iteration results overlaid on a contour plot of

the underlying residual function are shown in Fig. 6.3. The DCTMC iteration

does indeed converge to the correct result, and never overshoots in any direction
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(a) Gauss-Newton (b) DCTMC (c) DCTMC with Row Sums

Figure 6.3: A comparison of iterative solvers for α1 = 2, α2 = 5, g = 0.1 with initial
guess v1 = 4, v2 = 7. The axes show (v1, v2).

as was proved earlier. However, compared to Gauss-Newton and the modified row

sums version of DCTMC, the DCTMC iterations converge the slowest, taking seven

iterations as opposed to two.

Starting from an initial guess well outside the proven region of convergence, we

see in Fig. 6.4 that DCTMC still converges, and again in a fairly straightforward

manner. As previously mentioned, there is significant evidence that DCTMC con-

verges in a much larger region. However, again DCTMC is the slowest to converge,

requiring ten iterations to replicate the scatterers within an accepted error. Gauss-

Newton method takes four iterations to converge, while the modified DCTMC al-

gorithm converges the fastest in only three. It is worth noting that the modified

DCTMC version does overshoot the model with its first iteration.

We have seen the comparatively slow convergence of DCTMC, and the perhaps

faster than quadratic convergence of modified DCTMC, but what about resistance

to converging to local minima (unwanted solutions)? If we take our initial guess

as (-5,-5), which is relatively close to the incorrect solution of (-1/g,-1/g), we see
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(a) Gauss-Newton (b) DCTMC (c) DCTMC with Row Sums

Figure 6.4: A comparison of iterative solvers for α1 = 2, α2 = 5, g = 0.1 with the
initial guess (v1 = 50, v2 = 35).

(a) Gauss-Newton (b) DCTMC (c) DCTMC with Row Sums

Figure 6.5: A comparison of iterative solvers for α1 = 2, α2 = 5, g = 0.1 with
initial guess (v1 = −5, v2 = −5), which is closer to the unwanted solution of
(−1/g,−1/g) = (−10,−10).

in Fig. 6.5 that Gauss-Newton does indeed converge to the wrong result. Both

DCTMC algorithms converge correctly, with the modified version again performing

much better.

But this makes perfect sense that DCTMC wouldn’t converge to the minimum at

(−1/g,−1/g) as this is not a fixed point for the algorithm. What if our initial guess

is very close to the fixed point (1/g, α2) = (10, 5)? Let the iterations begin with

(10.3, 4.8), and we do see convergence in Fig. 6.6, albeit with a very strange behavior.

After a few iterations near the unwanted solution, the algorithm shoots off to around

α1 = 160 before settling back towards the correct answer in 10 iterations. This
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Figure 6.6: DCTMC iterations for α1 = 2, α2 = 5, g = 0.1 with initial guess
v1 = 10.3, v2 = 4.8, which is closer to the unwanted solution of (1/g, α2) = (10, 5).

provides some evidence that even though DCTMC is slower than Gauss-Newton, it

is more resistant towards converging to spurious solutions.

Conclusions

Because Gauss-Newton solves the local linearization of the problem in one step,

it is clear that our simulations that do not start from the linear solution are bi-

ased towards this method. As proved in Section 4.1, the linearization of DCTMC

solves this problem by the Richardson iteration, which converges albeit quite slowly.

Thus the slow convergence for DCTMC in these numerical examples can be greatly

reduced by starting from the linearized solution. It is important to note that this

linearized solution does not have to be linearized around the origin, just as in Gauss-

Newton we can linearize around any reasonable initial guess. Despite this handicap,

it is important to note that DCTMC still converges to the correct solution. Per-

haps more remarkable is the fact that the improved version of DCTMC outperforms

Gauss-Newton despite this handicap.
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While the analysis, showed comparable convergence regions between DCTMC

and the inverse Born series, the convergence radius using DCTMC was found to be

much larger than the area defined as Ω2. We stress that we were not able to find

an initial guess for which the method diverges. There is ample evidence that there

are scenarios where DCTMC appears to converge even when Gauss-Newton and/or

the inverse Born series diverges.

6.2 Simulations of DCTMC vs. Newton-type Meth-

ods

In this section, we investigate diffuse optical tomography simulations in the slab

geometry comparing DCTMC and the mainstream approaches based on Newton’s

method. We investigate a much smaller target, in order to be able to run numerous

simulations to find optimal results for each method. To that end, the target was

discretized on a 8 × 8 × 4 grid for a total of Nv = 256 voxels. Surfaces of sources

and detectors were placed on either side of the sample in the near-field zone at a

distance of h/2 away. These grids were of size 10× 10, (Nd = Ns = 100) and again

centered about the sample on all sides.

To increase the nonlinearity present in the problem, we have not assumed that

the background values are unknown, and have thus used the mathematically equiv-

alent property of the background differing from free space. Thus, we do not use any
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Figure 6.7: Target for the reconstructions in this section. Contrary to the previ-
ous reconstructions, the background is not equal to free space and has absorption
coefficient 0.5α0. The inhomogeneity formed by two offset square inclusions has
absorption coefficient of α0.

sparsity reduction procedures. The target had one inhomogeneity formed by two

overlapping rectangles of dimension 4× 4× 1. These two square regions overlap in

the central 2× 2 area. In terms of the shape function description, Θ(r) = 1 across

the inhomogeneity and Θ(r) = 0.5 in the background. The target used is shown in

Figure 6.7.

There were three reconstruction methods tested for this section, DCTMC (with

all of its improvements), Gauss-Newton, and Levenburg-Marquardt (iteratively reg-

ularized Gauss-Newton). These two Newton-type methods were chosen as Gauss-

Newton is the most natural first attempt for nonlinear solvers, and Levenburg-

Marquardt is often the goto choice for DOT reconstructions [19]. For each recon-

struction, extensive testing was done to optimize any regularization parameters,

including number of iterations run (with a maximum of 100 needed for this small

target). Between reconstructions that only differed in the method of solving, the
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same initial guess was used. We did not test any linear solvers in this section, as

we are interested in how DCTMC compares to other nonlinear methods. For this

reason, we chose to test three substantial levels of nonlinearity, α0 = 0.1, 1.0 and

3.0.

6.2.1 Noiseless Reconstructions

We first test reconstructions without noise, which will allow us to compare pure

convergence behavior between the methods. The reconstruction results are shown

in Figure 6.8. The immediate reaction is that for the cases α0 = 0.1 and 1.0,

the Newton type methods produce perfect reconstructions while the DCTMC re-

construction is reasonable, but contains some artifacts. Because the sample is so

small, there is much less ill-posedness compared to the reconstructions in Chapter 5,

and one could reasonably expect that the DCTMC algorithm should produce near

flawless results. Thus, this convergence to a blurred result hints at the inherent

regularization present in the DCTMC algorithm, as discussed in Section 6.1. Here,

the algorithms without any regularization (Gauss-Newton) or minimal regulariza-

tion (the choice of λ in (2.2.15) was very small) demonstrate that the problem is

not too ill-posed to solve.

As we increase the nonlinearity to α0 = 3.0, we see a decrease in accuracy for

all three methods, albeit each to different degrees. The Gauss-Newton method

converged to a unwanted spurious solution (as can be seen in the matrix equa-
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tion error) where all voxels are reconstructed much larger than their actual values.

This is the case of our initial guess being too far away for Gauss-Newton to con-

verge to the correct solution. The DCTMC algorithm reconstruction is actually

quite similar to its reconstructions for the lower valleys of nonlinearity, but with

lower levels of reconstructed values for the contrast. The reconstruction obtained

from Levenburg-Marquardt is noticeably worse than its previous reconstructions,

and thus this largest leveled nonlinearity introduces some trouble. One could ar-

gue in favor of either the DCTMC or Levenburg-Marquardt reconstruction – the

Levenburg-Marquardt reconstruction comes much closer to the actual values of the

absorption coefficient, but the unwanted artifact is much stronger. It is clearer

where the inhomogeneity is located in the DCTMC reconstruction. Depending on

the application, either choice can be warranted.

Looking at the error plots for these reconstructions paints a very similar story.

It is clear for that the cases α0 = 0.1 and 1.0, the Newton-type methods solve the

inverse problem within a few iterations and both errors (ηχ and ηΦ) rapidly go to

zero. The DCTMC reconstructions for these cases converge to near zero for ηΦ

but reach a floor in terms of the error of target. For the case α0 = 3.0, Levenburg-

Marquardt converges slightly faster in terms of ηχ, and surprisingly has ηΦ converge

to zero extremely fast despite its flawed reconstruction. While the final error of the

Levenburg-Marquardt reconstruction is slightly lower than the DCTMC error, one

could still prefer either image.
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α0 = 0.1 α0 = 1.0 α0 = 3.0

Figure 6.8: Reconstructions for the three methods with noiseless data. The top
row depicts the DCTMC reconstructions, the middle row contains the reconstruc-
tions obtained from Gauss-Newton method, and the Levenburg-Marquardt recon-
structions are in the bottom row. Note that the Gauss-Newton reconstruction
for α0 = 3.0 is all white as all reconstructed values are larger than the cutoff
αn/α0 > 1.3.
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Figure 6.9: Error plots for the noiseless reconstructions. The top row plots ηχ
against iterations, while the bottom row plots the error the equation ηΦ. The non-
converging Gauss-Newton iterations for the case α0 = 3.0 are left out of the middle
plot in the top row, but instead displayed in the last plot in this row.

The conclusions to be made from this section are that, in general, the Newton

methods are superior to DCTMC in reconstructing these noiseless, slightly ill-posed

problems. However, at strong levels of nonlinearity, DCTMC demonstrates a larger

convergence radius than Gauss-Newton, as well as comparable results to Levenburg-

Marquardt. For these unrealistic inverse scattering problems with perfect data,

DCTMC is inferior at lower levels of nonlinearity, but we will see in the next section

its merits with more realistic simulations.
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6.2.2 Noisy Reconstructions

We now replicate the reconstructions from the previous section but after adding 2%

Gaussian noise to the data. The results obtained are shown in Figure 6.10. Once the

noise is added, it seems like DCTMC is the preferred method! Is clear that without

any regularization, Gauss-Newton fails to produce any reasonable results, and is

the worst of the three options. Again, at the highest level of nonlinearity tested,

Gauss-Newton reconstructs all voxels above the cutoff. The Levenburg-Marquardt

reconstructions are consistent across all levels of nonlinearity, and produce reason-

able results that indicate both the location of the inclusion, as well as its value.

However, the DCTMC reconstructions in the top row suppress the noise in a useful

manner to clearly highlight the uniform contrast. However, we again have at the

contrast α0 = 3.0 a significantly reduced reconstructed value. One might prefer the

Levenburg-Marquardt reconstruction at this highest level nonlinearity, but for the

other two levels, the DCTMC algorithm is preferred.

We have similar behavior in the convergence plots in Figure 6.11. The Gauss-

Newton error plots either exhibit oscillatory behavior, or unwanted flatline results.

While the error of the Levenburg-Marquardt method both decreases faster than

DCTMC, and often to a lower absolute value, the reconstruction images show that

there is no substantial advantage to this method, and can often be subjectively

worse.

The results from this section are very encouraging for DCTMC and further
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α0 = 0.1 α0 = 1.0 α0 = 3.0

Figure 6.10: Reconstructions for the three methods with noisy data. The top
row depicts the DCTMC reconstructions, the middle row contains the reconstruc-
tions obtained from Gauss-Newton method, and the Levenburg-Marquardt recon-
structions are in the bottom row. Note that the Gauss-Newton reconstruction for
α0 = 3.0 is again all white as all reconstructed values are larger than the cutoff
αn/α0 > 1.3.

153



0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

i

η χ
 

 
GN α

0
=0.1

GN α
0
=1.0

DCTMC α
0
=0.1

DCTMC α
0
=1.0

LM α
0
=0.1

LM α
0
=1.0

0 10 20 30 40 50 60 70 80 90 100

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

i

η χ

 

 
LM α

0
=3.0

DCTMC α
0
=3.0

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

i

η Φ

 

 
GN α

0
=0.1

GN α
0
=1.0

DCTMC α
0
=0.1

DCTMC α
0
=1.0

LM α
0
=0.1

LM α
0
=1.0

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

i

η Φ

 

 
LM α

0
=3.0

DCTMC α
0
=3.0

Figure 6.11: Error plots for the noisy reconstructions. The top row plots ηχ
against iterations, while the bottom row plots the error the equation ηΦ. The
non-converging Gauss-Newton iterations for the case α0 = 3.0 are left out alto-
gether.

validates its prospect as a future nonlinear solver of choice. While previous sim-

ulations exhibited the ability of DCTMC to reconstruct ill-posed ISPs with large

data sets, the investigations in this section are necessary to compare DCTMC to

more than just linearized solutions. DCTMC held its own in all reconstructions

against nonlinear solvers, and in several instances was slightly preferred. While

both Gauss-Newton and Levenburg-Marquardt were great at reconstructing perfect

data at lower levels of nonlinearity, once the simulations were modified to be more

realistic, the merits of DCTMC were evident. We can conclude that DCTMC is a

viable alternative to the mainstream nonlinear iterative methods.
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Chapter 7

Summary and Discussion

In this thesis, we have introduced the novel iterative algorithm data compatible

T-matrix completion for solving nonlinear inverse scattering problems. Motivated

by the theory of nonlocality, this unique reformulation treats the T-matrix as the

fundamental unknown in an underdetermined inverse problem as opposed to the

conventional approach where one solves for the interaction operator in an overde-

termined setting. This difference allows us to create this iterative method where

the size of the data set is not a limiting factor. This has the potential to be sig-

nificantly advantageous over mainstream nonlinear iterative methods, where the

computational complexity grows with the data set. With modern experimental

techniques that readily produce the large overdetermined data sets needed to solve

inverse scattering problems with reasonable precision, DCTMC can be an important

tool for solving these problems.
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With Tikhonov regularization inspired by the linearized version of DCTMC,

and noise suppression by limiting the known values in the experimental T-matrix,

DCTMC was able to reconstruct large three-dimensional ill-posed problems with or

without noise. Good results were obtained even when linear reconstructions failed,

which validated the role of DCTMC as a true nonlinear solver. While accounting

for sparsity was originally required to exit regions of slow convergence, enforcing

symmetry of the T-matrix and improving the method of determining the local

approximation to the interaction matrix V created pleasant convergence behavior

with initial rapid convergence. This allowed us to cut down the required number

of iterations by a factor of 10. This was key to being able to solve the strongly

ill-posed problems common in diffuse optical tomography in a reasonable amount

of time.

Comparisons with Gauss-Newton demonstrated a larger convergence radius for

DCTMC, as well as better convergence with noisy data. The regularized Levenburg-

Marquardt was on equal footing with DCTMC depending on the setting. DCTMC

can be computationally advantageous over these methods with large data sets, and

the results indicate that it performs at least as well. Thus, we have demonstrated

that DCTMC is a viable alternative to solving nonlinear inverse scattering problems.
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