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Sortilin: A Protein Involved in Ldl Metabolism and Atherosclerosis

Abstract
Genome-wide association studies (GWAS) have been used to identify novel genes and loci that contribute to
lipid traits and coronary heart disease (CHD) in a causal manner. A locus on chromosome 1p13, which
harbors the gene sortilin-1 (SORT1) encoding the protein sortilin is the locus in the human genome with the
strongest association with low-density lipoprotein cholesterol (LDL-C) and is also one of the strongest loci
associated with CHD. Homozygosity for the minor allele haplotype at 1p13 is associated with a >10 fold
increase in hepatic SORT1 expression, a mean 16 mg/dL reduction in plasma LDL-C, and a 40% reduction in
CHD risk. Sortilin has been extensively studied in the central nervous system, where it traffics multiple
ligands from the Golgi apparatus to the lysosome and also serves as a cell surface endocytosis receptor for a
variety of ligands. However, the role of sortilin in other cell types, most notably hepatocytes and macrophages,
which are key regulators of lipid metabolism and atherosclerosis development, has not been well studied.
Through a series of overexpression and mutagenesis studies in cells and mice, the Rader lab has previously
shown that increased sortilin expression in liver reduces plasma LDL-C both by promoting the presecretory
lysosomal degradation of the LDL precursor very-low density lipoprotein (VLDL) and by serving as an
endocytosis receptor for LDL. The Rader lab has also shown that total body Sort1 deficiency is associated
with compromised LDL clearance consistent with overexpression studies; however, it is also associated with a
paradoxical reduction in VLDL secretion. Using a variety of liver specific Sort1 deficiency models, as well as
reconstitution and mutagenesis studies, I showed that liver specificity is not responsible for the secretion
paradox and instead demonstrated that sortilin plays a dual role in VLDL trafficking, serving as a chaperone
that facilitates VLDL secretion as well as a transporter that promotes the presecretory degradation of VLDL,
depending on the conditions and level of sortilin expression.

Sortilin is strongly associated both with LDL-C levels and with CHD/atherosclerosis. Atherosclerotic
cardiovascular disease is driven by elevated LDL-C, thus it is tempting to speculate that the strong association
of the SORT1 locus with atherosclerosis is due solely to the LDL-C association. Because sortilin is expressed
in macrophages, I hypothesized that macrophage sortilin might influence atherogenesis. Through careful
interrogation of the role of sortilin in macrophages, I demonstrated that sortilin plays a role in the
development of atherosclerosis independent of plasma LDL-C levels. Specifically, I showed that sortilin serves
as an endocytosis receptor for LDL on macrophages, and this represents a physiologically important pathway
by which LDL cholesterol enters macrophages and contributes to foam cell formation and atherosclerosis.
This work increases our understanding of the role of hepatic and macrophage sortilin in LDL metabolism and
atherogenesis, and provides insight into the relationship of the SORT1 locus with LDL-C levels and CHD
risk.
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ABSTRACT 

 

SORTILIN: A PROTEIN INVOLVED IN LDL METABOLISM AND 

ATHEROSCLEROSIS  

Kevin Patel 

Daniel J. Rader 

 

Genome-wide association studies (GWAS) have been used to identify novel genes 

and loci that contribute to lipid traits and coronary heart disease (CHD) in a causal 

manner. A locus on chromosome 1p13, which harbors the gene sortilin-1 (SORT1) 

encoding the protein sortilin is the locus in the human genome with the strongest 

association with low-density lipoprotein cholesterol (LDL-C) and is also one of the 

strongest loci associated with CHD.  Homozygosity for the minor allele haplotype at 

1p13 is associated with a >10 fold increase in hepatic SORT1 expression, a mean 16 

mg/dL reduction in plasma LDL-C, and a 40% reduction in CHD risk. Sortilin has been 

extensively studied in the central nervous system, where it traffics multiple ligands from 

the Golgi apparatus to the lysosome and also serves as a cell surface endocytosis receptor 

for a variety of ligands. However, the role of sortilin in other cell types, most notably 

hepatocytes and macrophages, which are key regulators of lipid metabolism and 

atherosclerosis development, has not been well studied. Through a series of 

overexpression and mutagenesis studies in cells and mice, the Rader lab has previously 

shown that increased sortilin expression in liver reduces plasma LDL-C both by 

promoting the presecretory lysosomal degradation of the LDL precursor very-low density 
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lipoprotein (VLDL) and by serving as an endocytosis receptor for LDL. The Rader lab 

has also shown that total body Sort1 deficiency is associated with compromised LDL 

clearance consistent with overexpression studies; however, it is also associated with a 

paradoxical reduction in VLDL secretion. Using a variety of liver specific Sort1 

deficiency models, as well as reconstitution and mutagenesis studies, I showed that liver 

specificity is not responsible for the secretion paradox and instead demonstrated that 

sortilin plays a dual role in VLDL trafficking, serving as a chaperone that facilitates 

VLDL secretion as well as a transporter that promotes the presecretory degradation of 

VLDL, depending on the conditions and level of sortilin expression.  

Sortilin is strongly associated both with LDL-C levels and with 

CHD/atherosclerosis. Atherosclerotic cardiovascular disease is driven by elevated LDL-

C, thus it is tempting to speculate that the strong association of the SORT1 locus with 

atherosclerosis is due solely to the LDL-C association.  Because sortilin is expressed in 

macrophages, I hypothesized that macrophage sortilin might influence atherogenesis.  

Through careful interrogation of the role of sortilin in macrophages, I demonstrated that 

sortilin plays a role in the development of atherosclerosis independent of plasma LDL-C 

levels. Specifically, I showed that sortilin serves as an endocytosis receptor for LDL on 

macrophages, and this represents a physiologically important pathway by which LDL 

cholesterol enters macrophages and contributes to foam cell formation and 

atherosclerosis. This work increases our understanding of the role of hepatic and 

macrophage sortilin in LDL metabolism and atherogenesis, and provides insight into the 

relationship of the SORT1 locus with LDL-C levels and CHD risk. 
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Chapter One: Introduction 
 

VLDL Production and LDL Catabolism 

Low density lipoproteins (LDL) consist of a hydrophilic, polar surface coat 

composed of phospholipid, free cholesterol, free fatty acids, and apolipoprotein B (apoB) 

and a hydrophobic, nonpolar core of principally cholesteryl ester with some triglycerides 

(TG). The principal protein component of all LDL particles is apoB, which is essential to 

LDL structure and also facilitates its clearance from plasma by binding to the LDL 

receptor. LDL cholesterol (LDL-C) levels are determined both by the rate of LDL 

removal from plasma1 as well as by the rate of production of the LDL precursor very low 

density lipoprotein (VLDL)2,3. VLDL synthesis occurs in the liver, and begins with the 

synthesis and co-translational lipidation of apoB. ApoB lipidation occurs in the 

Endoplasmic Reticulum (ER) and is driven by the catalytic activity of microsomal 

triglyceride transfer protein (MTP) and phospholipid transfer protein (PLTP), which 

transfers triglycerides and phospholipids to nascent apoB2. Lipidated apoB is next 

transported to the Golgi apparatus for further lipid addition and lipoprotein modification. 

The fully lipidated apoB is then secreted as VLDL2.  

The VLDL secretion rate is strongly influenced by the pre-secretory degradation 

of apoB3. There are multiple pathways for presecretory apoB degradation, including 

proteasome and lysosome mediated degradation. When there is insufficient lipid in the 

ER to lipidate nascent apoB, the apoB particles are retro-translocated out of the ER and 

targeted for proteasome degradation in a well-characterized pathway called ERAD (ER 
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associated degradation), which is driven by the ER chaperone Hsp704. ApoB that escapes 

ER quality control can also be degraded in a post-ER compartment; specifically, Golgi-

localized apoB containing particles that are misfolded, oxidized or damaged can be 

trafficked through autophagy to the lysosome for degradation4,5. This pathway, called 

PERPP (post-ER presecretory proteolysis pathway) is believed to be responsible for the 

presecretory degradation of VLDL in response to poly-unsaturated fatty acids and 

insulin4-6. 

LDL levels are also regulated by LDL catabolism1. LDL is removed from 

circulation principally by the hepatic LDL receptor, which binds the apoB in circulating 

LDL particles and transports it to the endolysosomal system for degradation through 

clathrin-mediated endocytosis. Other receptors facilitate LDL clearance as well, 

including low-density lipoprotein related receptor 1 and syndecan-1, although these 

receptors primarily mediate the uptake of the charged side chains of apoE-containing 

lipoprotein particles1,7.  The non-LDL receptor pathways for hepatic clearance of LDL 

are not fully understood. 

Human Genetics of the Chromosome 1p13 SORT1 locus 

The most clinically effective drugs for cardiovascular disease currently available 

target well-known genes and pathways intricately involved in the regulation of 

cholesterol clearance, biosynthesis and absorption. Interestingly, one of the newest and 

most promising pharmacotherapies in the treatment of cardiovascular disease is 

Proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies, which 

have been recently shown in clinical trials to reduce LDL-C by greater than 60%. PCSK9 
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has been shown to mediate the turnover of the LDL receptor. PCSK9 was discovered 

through study of Mendelian disorders of lipid metabolism, highlighting the importance of 

using genetics as a tool to understand physiology and develop new treatments for disease.  

Complex traits such as lipid traits and CHD are influenced by multiple genes of 

small effect size that contribute to phenotype. Genome-wide association studies (GWAS) 

have been used to identify such genes and pathways, and this type of unbiased 

interrogation has been applied to the study of lipid traits and CHD. These studies have 

identified a number of genes known to be associated with lipid metabolism8-11 through 

the study of rare Mendelian disorders of lipid homeostasis, as well as a multitude of novel 

loci never before associated with heart disease11-14. 

A locus on chromosome 1p13 was identified to have a very strong association 

with LDL-C. A detailed analysis of this locus was performed to identify the causal 

variant and causal gene at this locus. Through a series of studies in human cohorts and 

human derived hepatocytes a common noncoding polymorphism was identified to create 

a C/EPB (CCAAT/enhancer binding protein) transcription factor-binding site altering the 

hepatic expression of the SORT1 gene15. Homozygosity for the minor allele haplotype is 

associated with a >10 fold increase in hepatic SORT1 expression and a mean 16 mg/dL 

reduction in plasma LDL-C. Separate studies in sortilin knockout mice also established a 

role for sortilin in lipoprotein metabolism16.  Together, these studies established sortilin 

as the causal gene at the locus underlying the association with LDL-C.  
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Independently, GWAS for myocardial infarction (MI) and CHD identified the 

same chromosome 1p13 locus as strongly associated with CHD11,12,17.  The same variants 

have also shown to be minor allele haplotype was found to be associated with an 

approximately 40% reduction in CHD risk12. 

Sortilin Background 

 

The VPS10-domain Family 

Sortilin is part of the VPS10 (vacuolar protein sorting 10) receptor family, a 

family of type-I transmembrane receptors that share an N-terminal propeptide, a VPS10 

ligand binding domain, a transmembrane domain and a small cytoplasmic tail that 

harbors two lysosomal sorting motifs, a tyrosine based sorting motif (YxxL) and a 

dileucine based sorting motif (DEDLLE).  The VPS10 family was originally identified in 

yeast as a trafficking receptor for carboxypeptidase Y from the Golgi to the vacuole, the 

yeast lysosome compartment. The VPS10 domain is a 700 amino acid module that folds 

into a 10-bladed beta propeller structure. There are 5 mammalian VPS10-domain 

containing proteins: sortilin, the sortilin related receptor (SorLA), and SorCS1-318,19. 

SorLA is best known for its role as an apolipoprotein E (apoE) receptor, and is 

believed to serve a neuroprotective role and reduce the risk of Alzheimers Disease and 

senile plaque formation by promoting the anti-amyloidogenic processing of amyloid 

precursor protein (APP) by controlling APP as well as BACE (beta secretase 1) 

trafficking20,21. In the vasculature, SorLA increases macrophage scavenger receptor 

expression, which increases foam cell formation and promotes atherosclerosis22-25. The 
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SorCS1-3 proteins are poorly characterized. They are believed to play a role in 

Alzheimers Disease25 development and genome wide association studies suggest a 

connection to diabetes26. Indeed, it has recently been shown that SorCS1 is required for 

secretory granule replenishment and maximum insulin secretion under conditions of 

metabolic stress27. 

Sortilin was originally purified by receptor associated protein (RAP) affinity 

chromatography and neurotensin affinity purification28. Sortilin is a 95 kDa, 833 amino 

acid protein that harbors an N-terminal signal peptide, a 44 amino acid N-terminal 

propeptide domain, a luminal VPS10 domain, a transmembrane domain and a short 

cytoplasmic tail homologous to the cation-independent mannose-6 phosphate receptor 

(CI-M6PR)28,29. Sortilin is expressed most strongly in brain, skeletal muscle and 

adipocytes, with significant expression in liver as well28,30. It is a largely intracellular 

protein with 90% localized to the Golgi and endolysosomal compartments and 10% at the 

plasma membrane28,31. 

Sortilin trafficking  

Sortilin is synthesized in the endoplasmic reticulum (ER) as a proprotein. The 

propeptide serves as an intrinsic chaperone for sortilin; it facilitates proper folding of the 

receptor and blocks the VPS10 domain to prevent premature ligand binding30. The 

propeptide domain is cleaved by furin in the trans-Golgi network (TGN) to generate the 

mature receptor32. From the Golgi, sortilin can follow one of three trafficking routes. 

First, it can be trafficked to the plasma membrane by constitutive secretory vesicles. At 

the plasma membrane, sortilin can be cleaved by the disintegrin and metalloproteinase 
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domain-containing protein 10 (ADAM10) to generate a soluble protein comprising the 

sortilin luminal domain33. The majority of sortilin (~95%) is not cleaved by ADAM10 

and re-enters the cell through clathrin dependent endocytosis33. The sortilin cytoplasmic 

tail harbors a tyrosine based lysosomal sorting motif (YxxL), which serves as a binding 

site for adaptor protein 2 (AP2), which recruits clathrin and enables endocytosis29,34. 

Internalized sortilin can then be trafficked back to the Golgi through interaction with the 

intracellular adaptor proteins retromer, which recognizes the tyrosine based lysosomal 

sorting motif, and adaptor protein 1 (AP1), which recognizes the dileucine lysosomal 

sorting motif (DEDLLE).  

Second, sortilin can traffic directly from the Golgi to the endolysosomal 

compartment by binding AP1 and the Golgi-localizing, gamma-adaptin ear homology 

domain, ARF-binding proteins (GGAs) through its tyrosine and dileucine based sorting 

motifs, respectively29,35,36. Third, in certain cell types, sortilin can bind its ligands 

intracellularly and be stored in secretory vesicles and undergo regulated secretion31. 

Sortilin undergoes post-translational modifications. It is N-glycosylated in the 

Endoplasmic Reticulum and also undergoes palmitoylation at cysteine 783, which 

facilitates retromer binding and lysosome to Golgi recycling37. Without palmitoylation, 

sortilin is retained in the endosomal compartment and degraded38. Sortilin localization 

and degradation is also influenced by interaction with the neurotrophin receptor homolog 

2 (NRH2), which interacts with the sortilin cytoplasmic tail and prevents sortilin 

lysosomal trafficking and instead shunts the receptor to the plasma membrane, thereby 
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promoting its cell surface localization. This interaction is not dependent on a post-

translational modification; instead, it appears to be tightly developmentally regulated39. 

Sortilin at the cell surface 

At the cell surface, sortilin serves as both a signaling receptor and as a trafficking 

receptor. In the central nervous system (CNS) sortilin binds pro-neurotrophins, including 

pro-nerve growth factor (proNGF) and pro-brain derived neurotrophic factor (proBDNF), 

which are neuronal growth factors that are incompletely processed and have their pro-

proteins still attached. Sortilin and pro-neurotrophins form a complex with the 

promiscuous p75 neurotrophin receptor (p75NTR), and this activates apoptosis in neurons. 

This signaling pathway is important for proper development of the CNS, but also plays a 

role in the pathophysiology of aging, neurodegeneration, and spinal cord injury40-42.  

Sortilin also serves as an internalization and degradation receptor for LpL43, 

apoAV44, and progranulin45. Interestingly, the same single nucleotide polymorphisms 

(SNPs) at the 1p13 SORT1 locus associated with lower LDL-C and reduced risk of CHD 

are associated with reduced plasma progranulin levels45.  Functional studies show that 

increased SORT1 expression promotes the uptake and degradation of extracellular 

progranulin, consistent with a role for sortilin as an internalization receptor for this 

protein.46. 

Sortilin inside the cell 

Intracellularly, sortilin shuttles between the Golgi apparatus and endolysosomal 

compartment, enabling sortilin to serve as a trafficking receptor to target lysosomal 
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hydrolases to the lysosome for function29,47. Indeed, sortilin has been shown to bind a 

variety of lysosomal hydrolases including sphingomyelinase activator protein, GM2 

activating protein, prosaposin, and lysosomal cathepsins, and was found to partially 

compensate for loss of the mannose-6 phosphate receptor, the primary Golgi to lysosome 

trafficking receptor for lysosomal hydrolases48.  

Sortilin is also able to traffic proteins to distinct intracellular compartments. For 

example, sortilin plays an important role in formation and stabilization of the glucose 4 

transporter (GLUT4) in skeletal muscle and adipocytes49. In these tissues, sortilin binds 

GLUT4 in the Golgi and traffics it to intracellular vesicles containing insulin regulated 

aminopeptidase (IRAP), low-density lipoprotein receptor 1 (LRP1), and vesicle 

associated membrane protein 2 (VAMP2). These vesicles form the insulin responsive 

compartment (IRC), and translocate to the cell surface upon insulin stimulation. siRNA 

mediated SORT1 knockdown depletes GLUT4 and the IRC49. 

Interestingly, it was recently suggested that intracellular sortilin plays a dual role 

in protein trafficking, and that sortilin can promote the endolysosomal degradation of 

ligands but also protect them from lysosomal degradation and facilitate their secretion. 

Specifically, sortilin was shown to bind proBDNF within the secretory pathway33. 

proBDNF bound to full length sortilin was trafficked to the endolysosomal system and 

degraded; however, if sortilin is cleaved in the Golgi by ADAM10, which separates the 

ligand binding domain from the lysosomal sorting motifs, the proBDNF:sortilin 

extracellular domain complex is secreted from cells33. The physiological importance of 

sortilin cleavage is unknown. Sortilin has been extensively studied in the central nervous 
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and skeletal systems. However, virtually no research on sortilin biology in either the liver 

or macrophage had been performed prior to the genome wide association studies showing 

association of the SORT1 locus with LDL-C and CHD. 

Chapter Two: Atherosclerosis 
 

Overview of the Pathophysiology of Atherosclerosis 

Atherosclerotic cardiovascular disease is the leading cause of morbidity and 

mortality in the world, representing an unmet need for the development of 

pharmacotherapy50. Atherosclerosis results from an inflammatory response initiated by 

the entrapment of lipoproteins in the subendothelial space.51 Specifically, elevations in 

plasma LDL-C promote deposition and retention of lipoprotein particles in the 

subendothelial space, or intima. These retained lipoproteins are modified by proteins 

secreted by neighboring vascular endothelial cells52. The proinflammatory particles 

induce the activation of the overlying endothelium. Monocytes are recruited into these 

lesions by chemokines and they differentiate into macrophages, leading to further 

modification of the retained lipoproteins. Modified lipoproteins are taken up by 

macrophages, forming cholesterol laden foam cells. These foam cells elicit inflammatory, 

fibrotic, and thrombotic responses resulting in formation of an atherosclerotic plaque53. 

These plaques can expand slowly into the blood vessel lumen or can acutely rupture 

inducing a robust inflammatory response. Both mechanisms disrupt blood flow and if 

they occur within the coronary vasculature cause a myocardial infarction (MI)54,55.   
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Haemodynamic and extracellular matrix factors 

Haemodynamic forces experienced by arteries are critical in the initiation of 

atherosclerotic lesions56,57. Atherosclerotic lesions generally develop where laminar flow 

is either disturbed or insufficient to maintain quiescent state endothelium such as sites of 

curvature and bifurcation. A quiescent state is generally characterized an alignment of 

endothelial cells in the direction of flow with low rates of proliferation and death. Flow is 

a survival signal for endothelial cells through effects on multiple signaling pathways, 

which include phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase 

5 (ERK5), and nitric oxide (NO)58. Disturbed flow or turbulent blood flow leads to 

propathologic endothelial cell shear stress, which promotes atherogenic lipoprotein entry 

and an accumulation of extracellular matrix proteins in the subendothelial space56,57.  

Disturbances in blood flow also activate endothelial mechanotransduction that 

alters blood vessel morphology and function 56,60. Mechanical stretch also affects smooth 

muscle cell function by inducing deformation of the extracellular matrix in which the 

smooth muscle cells are embedded. Under excessive pressure smooth muscle cells 

undergo a transformation, in which global gene expression is altered to promote cell 

proliferation, migration, and extracellular matrix production, processes that promote 

atherogenesis59,60. These changes are driven by many signaling pathways, most notably 

through Rho kinase, MAPKs, Akt, and the forkhead transcription factors of the FoxO 

subfamily59,61-64. 
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Inflammatory factors 

Inflammatory factors are crucial to atherosclerotic lesion initiation and 

progression65,66. Proinflammatory cytokines have been shown to induce expression of 

endothelial-leukocyte adhesion molecules, which capture monocytes67. The first phase 

known as the capture and rolling phase is mediated by chemokines, CC-chemokine 

ligand 5 (CCL5) and CXC-chemokine 1 (CXCL1), on endothelial cell 

glycosaminoglycans and on P-selectin. Next, firm adhesion of monocytes to the 

endothelium is mediated by Vascular cell adhesion molecule 1 (VCAM1) and 

intercellular adhesion molecule 1 (ICAM1) which bind to the intergrins very late antigen 

4 (VLA4) and lymphocyte function-associated antigen 1 (LFA1), respectively. In fact the 

adhesion receptor CD44 has been shown to promote atherosclerosis by mediating 

inflammatory cell recruitment and vascular cell activation68. Multiple chemokines 

interact with cognate receptors (CCR2-CCL2, CX3CR1-CX3CL1, CCR5-CCL5) on 

various classes of leukocytes and promote direct migration and penetration of leukocytes 

into the intima66,67. It has also been demonstrated in hypercholesterolemic mice that a 

subset of monocytes marked by high levels of expression of the surface inflammatory 

marker Ly6c (Ly6cHi) enter plaques early in the development of atherosclerotic 

lesions69.  Ly6cHi monocytes constitute the majority of the monocytes in the plaque, 

which are thought to be the source of the M1 macrophages (known as the classically 

activated macrophages). Human plaques have shown M1 macrophages enriched in lipids 

to be distinct from the less inflammatory M2 macrophages (alternatively activated 

macrophages)70. The factors that promote the polarization to M1 or M2 are not 

completely known.  
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Macrophage LDL uptake and foam cell formation 

LDL-C is a critical causal factor in atherogenesis and uptake of LDL by 

macrophages to form ‘foam cells’ is a key cellular process in atherogenesis.  Due to the 

central role of the foam cell in atherosclerosis development, there is much interest in 

determining the pathways by which macrophages take up cholesterol71.  LDL receptor 

expression in macrophages does not play a role in foam cell formation as evidenced by 

the abundance of foam cells in humans and mice with homozygous deletions of the LDL 

receptor gene. Furthermore, the LDL receptor is down regulated by increases in 

intracellular cholesterol, resulting in a minimal role for the LDL receptor in foam cell 

formation. Studies by Brown and Goldstein in fibroblasts from individuals lacking the 

LDL receptor suggest that LDL can enter cells through a receptor independent pathway 

termed macropinocytosis, in which cells engulf fluid from their surroundings into a 

macropinosome and all of the contents of the fluid, including any lipoproteins, are 

brought into the cell71,72.  Scavenger receptors are highly expressed on macrophages and 

participate in the uptake of oxidized and modified lipoproteins69,73.  Scavenger receptors 

are not subject to cholesterol down-regulation like the LDL receptor, creating a 

potentially unsaturatable route of entry for lipoproteins into macrophages. Though 

scavenger receptors are an important contributor to foam cell formation in vitro74, genetic 

deletion of scavenger receptors in mice does not prevent foam cell formation and the 

degree of lipoprotein oxidation in atherosclerotic lesions is insufficient to activate the 

scavenger receptor pathway75. Macropinocytosis uptake of LDL accounts for seventy 

percent of macrophage lipoprotein uptake71. The pathways that account for the remaining 

30% of LDL uptake leading to the formation of foam cells has not yet been identified. 
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Dissertation Goals 

 

The Rader lab has previously shown that elevated Sort1 expression reduces LDL 

by promoting the presecretory lysosomal degradation of VLDL and also by serving as a 

cell surface receptor for LDL clearance. The lab has also shown that the total body Sort1-

/- mouse has compromised LDL uptake but a paradoxical reduction in VLDL secretion. 

The goals of this dissertation were:  1) to better define and explain the relationship of 

hepatic sortilin deficiency to VLDL secretion; and 2) to characterize the role of 

macrophage sortilin in LDL uptake, foam cell formation, and atherosclerosis.    

Chapter Three: Hepatic sortilin modulates VLDL apoB-100 secretion 
 

Introduction 

Genomewide Association Studies (GWAS) were the first to associate the Sort1 

locus with LDL. The Rader lab demonstrated that increased sortilin expression could 

promote the endolysosomal degradation of precursor of LDL, VLDL. The discovery was 

achieved through overexpression and mutagenesis studies, where sortilin overexpression 

was found to reduce VLDL secretion and sortilin mutants defective in their ability to 

traffic to the endolysosomal system ameliorated the effect of sortilin overexpression on 

VLDL secretion76. Sortilin overexpression reduces VLDL secretion in multiple model 

systems, a finding which has been widely replicated77-78. Interestingly, studies in Sort1 

deficient systems suggested that Sort1 deficiency is also associated with a paradoxical 

reduction in VLDL secretion16,76. This series of observations in mice—that both hepatic 
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overexpression and complete genetic deficiency of sortilin reduce VLDL secretion—

created uncertainty about the physiology of sortilin and VLDL secretion.   

Conversly, the discovery of sortilin as an LDL receptor was accomplished 

through a series of overexpression, deficiency and mutagenesis studies47. Specifically, it 

was shown that liver sortilin overexpression increased LDL clearance while its deficiency 

severely compromised LDL clearance. LDL clearance was equally affected by sortilin 

manipulation in LDL receptor deficient systems, suggesting an LDL receptor 

independent pathway for sortilin mediated LDL uptake. Through the use of mutants 

defective in their ability to traffic to the endolysosomal system as well as trafficking 

mutants that are sequestered at the cell surface the Rader lab was able to demonstrate that 

sortilin serves as a receptor to facilitate LDL endocytosis and lysosomal degradation.  

Though genome wide association studies are valuable tools for identifying genes 

that contribute to complex traits, they fall short of explaining the mechanistic basis by 

which the associated genes affect phenotype; specifically, though GWAS pointed to 

SORT1 as an important regular of LDL cholesterol, they did not offer any insights on the 

mechanism by which elevations in SORT1 expression reduce LDL. One goal of my work 

was to attempt to reconcile the disparate findings and better understand the relationship 

of hepatic sortilin expression to VLDL secretion.  I entertained a number of hypotheses. 

The first involved tissue specificity of sortilin expression. The human genetic data as well 

as the overexpression studies all involved liver specific manipulations, whereas the 

deficiency studies were all done in mice deficient in sortilin in all tissues. There are 

numerous examples of genes that have opposing effects in different tissues. My first 
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hypothesis is that sortilin may have opposing functions in hepatic and extra-hepatic 

tissues and that liver-specific deletion of sortilin may have different effects on VLDL 

secretion than total body sortilin deficiency. The second hypothesis was that at low levels 

of expression, hepatic sortilin serves as a chaperone for VLDL secretion whereas at 

higher levels it promotes pre-secretory degradation. 

Results: 

 

Sortilin knockdown and deletion in mouse liver decreases VLDL apoB-100 secretion  

Our lab has previously shown that sortilin overexpression in mouse liver reduces 

VLDL secretion15. The Rader and Nykjaer labs have also shown that total body Sort1 

deficiency is associated with a paradoxical reduction in VLDL secretion16,76. To test 

whether liver specificity versus total body deficiency is responsible for the paradox, we 

took a number of approaches to reduce sortilin expression specifically in the liver (the 

methods are detailed in the Methods section). The first approach I used was siRNAs 

targeted to murine Sort1 packaged in a lipidoid particle with well characterized liver 

specific tropism80.  Age and sex matched wild-type mice were injected via tail vein with a 

2mg/kg mouse specific Sort1 siRNA or a firefly luciferase siRNA (control) once a week 

for two weeks (experiment day one and day seven) to achieve maximum Sort1 

knockdown in liver. On day ten, mice were fasted for 4 hours and VLDL secretion was 

measured by injecting pluronic to inhibit lipolysis (thus all VLDL made and secreted by 

liver remains in circulation as VLDL) and 35S-methionine/cysteine to label proteins. 

Sort1 siRNA reduced hepatic Sort1 mRNA by 71% (P = 0.008, Figure 1A) and decreased 



 
 

16 

apoB100 secretion by 53% (P value 0.0009, Figure 1B), recapitulating the phenotype of 

the whole body Sort1-/- mouse. 

 
A.                                                                   B.  

Figure 1: siRNA-mediated Sort1 knockdown in liver reduces VLDL ApoB-100 

secretion in wildtype mice. A. Quantitative real time PCR for sortilin mRNA was 

performed on liver normalized to B-actin (71% decrease; n=6 mice per group; P = 0.008). 

B. Relative VLDL 35S-methionine/cysteine-labeled ApoB-100 normalized to 2 minute 

plasma counts. (53% decrease; n=6 mice per group; P = 0.0009).  This experiment was 

performed 2 times. 

 

siRNA achieves only transient knockdown of gene expression. siRNA 

manipulation always carries the risk of off target gene expression changes even after 

proper screening for off target effects. The risk of off-target effects is compounded by the 

fact that the siRNAs were packaged in lipid, which has the potential to affect lipid related 

genes and pathways.  We therefore took a second approach to deleting sortilin in the 

liver; we obtained a Sort1 conditional knockout mouse in which exon 4 of Sort1 is 

flanked by loxP sites, enabling disruption of the endogenous Sort1 gene upon exposure to 

cre recombinase (Figure 2). 
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            Figure 2: Targeted Allele for Sort1 fl/fl mouse.  

 

To determine the effect of liver-specific Sort1 deletion on VLDL secretion, Sort1 

flox/flox mice  (n = 6 mice per group) were injected with 1 × 1012 adeno-associated virus 

particles expressing Cre recombinase (AAV.Cre) under the control of the liver-specific 

thyroxine binding globulin (TBG) promoter or null AAV (control). Plasma cholesterol 

was measured prior to injection, 2, 4, and 6 weeks post injection. Six weeks after AAV 

injection, in vivo apoB-100 secretion studies were performed. AAV.Cre injection reduced 

liver sortilin protein levels below the threshold of detection (Figure 3a) and no difference 

in sortilin adipose mRNA expression (Figure 3d), suggesting successful creation of a 

liver-specific Sort1 knockout mouse. Sort1 deficiency in liver did not affect plasma total 

cholesterol, high density lipoprotein (HDL) cholesterol, triglycerides (TG), or non-HDL 

cholesterol (Figure 3b). Importantly, hepatic-specific deletion of sortilin resulted in a 

50% reduction in apoB-100 secretion (P = 0.005, Figure 3c).  Since our lab has 

previously shown that sortilin mediates LDL uptake in hepatocytes, we interpret that lack 



 
 

18 

of change in plasma cholesterol to be a function of a balancing reduction in VLDL 

production and LDL catabolism.  

A.   B.  

                

     C.              D.        

Figure 3: Hepatic-specific deletion of sortilin decreased VLDL apoB-100 secretion. 

A.Homogenized liver proteins from livers of Sort1 fl/fl mice injected with AAV null or 

AAV Cre separated by SDS-PAGE and blotted with anti-Sortilin and anti-Bactin 

antibody. B. Plasma lipids at baseline and after 6 weeks. C. Relative VLDL 35S-

methionine/cysteine-labeled ApoB-100  (50% decrease; n=6 mice per group; P = 0.005). 

D. Relative sortilin adipose RNA expression normalized to Bactin. Experiment was 

performed 2 times. 

The LDL receptor (LDLR) has been reported to influence not only LDL uptake 

but also VLDL apoB secretion81. It is theoretically possible that hepatic sortilin could 

influence VLDL apoB secretion indirectly by influencing intracellular LDL receptor 

function. To test the hypothesis that the effect of sortilin deficiency on VLDL apoB-100 
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secretion is independent of the LDL receptor, Sort1 fl/fl mice were bred onto an Ldlr-/- 

background. Sex and age matched Sort1 fl/fl; LDLr-/- mice were injected with AAV.Cre 

and null AAV (control) at eight weeks of age (n=6 mice per group) and bled at two, four, 

and six weeks post injection. VLDL 35S-methionine/cysteine ApoB-100 secretion after 

pluronic injection was done at six weeks post injection. Liver-specific Sort1 deficiency 

on an LDLr-/- background did not affect plasma lipids (Figure 4a). However, it was 

associated with a significant 49% reduction (P value = 0.02) in VLDL apoB-100 

secretion (Figure 4b). 

     

A.                                                                      B.   

Figure 4: Hepatic-specific sortilin deficiency on LDLr-/- background reduced VLDL 

apoB-100 secretion. A. Plasma lipids at baseline and 6 weeks post injection. B. VLDL 

35S-methionine/cysteine ApoB-100 secretion where relative apoB 100 mass normalized 

to 2 minute counts (49% decrease; P = 0.02; n =6 mice per group). Experiment was 

performed 2 times. 
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mice and performed metabolic labeling experiments to measure apoB-100 secretion. We 

used mice on a Apobec-/-; hapoB transgenic background to obtain a more humanized 

model of apoB secretion; these mice only secrete apoB-100 and not apoB-48 from the 

liver, similar to humans82. We isolated primary hepatocytes from total body Sort1-/- mice 

on a Apobec-/-;hapoB transgenic background and performed an in vitro VLDL 35S-

methionine/cysteine apoB-100 secretion study. Sort1 deficiency in primary hepatocytes 

was associated with a 54% reduction in apoB-100 secretion (Figure 5; P = 0.03). Thus, 

my data indicate that hepatic Sort1 deficiency is associated with a significant reduction in 

VLDL apoB-100 secretion, suggesting sortilin serves a role in VLDL secretion. This 

suggests that liver specificity may not be responsible for the discrepant findings in Sort1 

overexpression and total body deficiency systems and that the effect of sortilin deficiency 

in reducing VLDL apoB-100 secretion may be a cell-autonomous effect. 

 

Figure 5: Sort1 deficiency in primary hepatocytes reduces apoB-100 secretion. 

Primary hepatocytes from Apobec1-/-; hAPOB transgenic (control) and Sort1-/-; 

Apobec1-/-; hapoB transgenic (Triple) mice labeled with 35S-methionine/cysteine, 

immunuprecipitated apoB 100 normalized to total protein (n =6 wells/ condition; 54% 

decrease; P = 0.03). Experiment was performed 3 times. 
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Sort1 serves as a chaperone for VLDL in a cleavage independent manner 

The Nykjaer lab previously studied the effect of Sort1 deficiency on lipid metabolism 

using an independently generated Sort1-/- mouse16. They have proposed that sortilin acts 

as a chaperone for VLDL secretion, namely that sortilin binds presecretory VLDL in the 

Golgi apparatus and escorts it along the secretory pathway, facilitating its secretion16. To 

test this model, we decided to attempt a reconstitution approach.  We injected Sort1-/- 

mice on an Apobec1-/-; hapoB transgenic background with 5x10e11 viral particles of 

wild-type mouse sortilin or null AAV (control, n = 5 mice per group) and determined the 

effect on VLDL 35S-methionine/cysteine apoB-100 secretion.  We successfully achieved 

hepatic expression—or more likely overexpression—of sortilin in the knockout mice 

(Figure 6A).  Interestingly, hepatic overexpression of Sort1 in Sort1-/- mice had no effect 

on VLDL apoB-100 secretion (Figure 6B).  This result is not consistent with a simple 

model that sortilin acts as a chaperone to promote VLDL secretion.  However, the 

interpretation is difficult because we are unlikely to have transduced all the hepatocytes 

in the liver, while at the same time very likely overexpressed sortilin in many 

hepatocytes.  AAV doses low enough to prevent overexpression are not high enough to 

transduce a majority of hepatocytes. A knockin mouse of sortilin can be made to address 

this issue. Since sortilin overexpression also reduces VLDL apoB-100 secretion, a net 

lack of an effect could be the result of reconstitution of expression in some hepatocytes 

but overexpression in others.   The data are broadly consistent with a model in which 

sortilin is required at some low level to facilitate apoB-100 secretion, but at higher levels 

of expression it facilitates the endolysosomal degradation of VLDL as seen in individuals 
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homozygous for the minor allele haplotype at 1p13 and mice overexpressing liver sortilin 

(Figure 6C). 

           

 

A.                                                                       B. 

C.                      

Figure 6: Sort1 overexpression in Sort1-/-; Apobec -/-; human apoB transgenic mice 

have no net effect on apoB secretion. A. Sortilin immunoblot (n=4 liver lysates/group) 

B. Pluronic 35S-methionine/cysteine secretion study where relative apoB 100 mass was 

normalized to 2 minute counts No change seen C. Diagram showing sortilin traffics 

VLDL from Golgi to lysosome but also LDL from the plasma membrane to the lysosome 

resulting in no net effect on apoB secretion (n = 5 mice/group.) Experiment was 

performed 2 times. 
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Sortilin is known to follow two distinct trafficking routes, from the Golgi 

apparatus to the endolysosomal system and from the Golgi apparatus to the plasma 

membrane28,31. The Golgi to lysosome trafficking pathway is dominant; with greater than 

90% of sortilin shuttled along this pathway28,31. The plasma membrane pathway appears 

to be a less common pathway, with only 10% of sortilin following this route28,31. It has 

been proposed that sortilin can serve as both a chaperone or degrader for its ligands 

depending on the trafficking route it follows, with the Golgi to plasma membrane 

pathway promoting ligand secretion and the Golgi to lysosome pathway promoting ligand 

degradation33. It is possible that when AAV is used to express sortilin in the knockout 

mouse it achieves expression levels so high that it overwhelms the Golgi to plasma 

membrane chaperone pathway and so most of the overexpressed sortilin follows the 

pathway to the lysosome and facilitates apoB degradation (Figure 6a).  To test this 

hypothesis, the Golgi to plasma membrane trafficking pathway must be isolated to 

prevent phenotype masking by sortilin’s function in the endolysosomal pathway.  

A chaperone function of sortilin for apoB secretion implies that sortilin may 

directly bind to VLDL. The Rader and Nykjaer labs have each shown that sortilin binds 

to VLDL by surface plasmon resonance16,76.  We reasoned that cleaved sortilin might be 

bound to circulating VLDL and LDL. We performed an immunoblot for sortilin on 

plasma VLDL and LDL. The experiment indeed showed the presence of sortilin protein 

on these lipoproteins (Figure 7). 
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Figure 7: Sortilin is present on VLDL and LDL. Full length sortilin was blotted by 

western on plasma FPLC fractions of VLDL and LDL pooled from 5 Sort1-/-;Apobec-/-

;hapoB transgenic mice (lanes 1 and 3) and 5 Apobec-/-;hapoB transgenic mice (lanes 2 

and 4). Experiment was performed 3 times. 

In order to isolate the Golgi to plasma membrane trafficking pathway, we used a 

sortilin mutant that was incapable of trafficking to the lysosome. Briefly, mutagenesis of 

the key residues in the dileucine and tyrosine lysosomal sorting motifs to alanine was 

performed (Y793; L826A/L827A) which we called Sort.LAYA.  Previously Sort.LAYA 

was stably expressed in a HuH7 cell line and shown to localize at the plasma membrane 

and Golgi (shared with us by cell line creators Quirong Ding and Kiran Musunuru at 

Harvard). We hypothesized Sort.LAYA overepression would restore the Golgi to cell 

membrane pathway resulting in an increase in apoB100 secretion (Figure 8a). We 

injected Sort1-/-; Apobec1-/-; hapoB transgenic mice with 5 × 1011 viral particles of null 

AAV or Sort.LAYA AAV (n=5 per group). After two weeks mice were fasted for four 

hours for a pluronic 35S-methionine/cysteine apoB-100 secretion study.  Mouse livers 

were harvested for protein analysis. Sort1.LAYA AAV injected mice had sortilin protein 

present in the liver as seen by immunoblot but no visible sortilin protein was seen in mice 

injected with null AAV (Figure 8b). Sortilin was present in the plasma of mice 

expressing Sort1.LAYA (Figure 8c). Importantly, Sort1.LAYA expression was 

associated with a 135% increase in apoB 100 secretion by P value 0.02 (Figure 8d).  

Because this mutant is incapable of trafficking to the lysosome, this result suggests that 



 
 

25 

overexpressed sortilin is capable of facilitating VLDL secretion when it is blocked from 

trafficking newly synthesized VLDL apoB-100 to the lysosome. 

 

A.                                                                         B.  

 

 

 

 

C.                          D.       
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Figure 8: Sort.LAYA increases apoB-100 secretion. A. Diagram showing Sort.LAYA 

traffics from the Golgi to the plasma membrane; modulating secretion of VLDL. B. 

Sortilin and Bactin western of livers from mice injected with Null AAV or Sort.LAYA 

AAV (n=4/group) C. Sortilin western from plasma of mice D. Pluronic 35S-

methionine/cysteine secretion study where relative apoB 100 mass was normalized to 2 

minute counts (135% increase P value = 0.02 n=6 mice/group). Experiment was 

performed 2 times 

  

Sort.LAYA restored VLDL secretion in Sort1-/- mice; however wild-type sortilin 

liver specific reconstitution did not, suggesting a complex relationship between sortilin 

and VLDL secretion. It was recently reported33 that sortilin serves as both a chaperone 

and degrader of one of its neuronal ligands proBDNF, depending on its cleavage status. 

Specifically, the authors show that sortilin is cleaved at the juxtamembrane stalk by the 

metalloproteinase Adam10 to generate a soluble fragment. Adam10 cleavage occurs 

intracellularly and at the cell surface. When Adam10 cleaves sortilin, sortilin’s ligand 

binding domain separates from its lysosomal motifs and sortilin and any bound ligands 

are constitutively secreted. Conversely, when sortilin is not cleaved by Adam10 and 

remains full length, there is no separation of the ligand binding domain from the 

lysosomal sorting motifs and sortilin and any bound ligand is trafficked to the 

endolysosomal system for degradation33. One could imagine a similar paradigm for apoB, 

with full-length sortilin promoting the endolysosomal degradation of VLDL and cleaved 

sortilin facilitating its secretion. 

 We tested the hypothesis that sortilin cleavage by Adam10 promotes apoB 

secretion by using ionomycin, a known activator of Adam10. We first treated McArdle 

RH-7777 cells stably overexpressing GFP (control) or Sort1 with vehicle (DMSO) or 
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ionomycin to determine if it could increase sortilin cleavage into the media. Ionomycin 

treatment increased sortilin mass in the media (Figure 9a).  This suggests that ionomycin 

directly through Adam10 or indirectly increases sortilin shedding. To determine if the 

increased sortilin in the media also increases apoB-100 secretion we performed an in 

vitro 35S-methionine/cysteine apoB-100 secretion study. Sort1 overexpression was 

associated with a 52% decrease in apoB100 secretion (P = 0.002) (Figure 9b). However, 

ionomycin treatment to the Sort1 overexpressing cells was still associated with a 33% 

decrease in apoB 100 secretion (P = 0.002) (Figure 9c).   

A.     

   

B.              C. 

Figure 9A-C: Ionomycin does not increase sortilin mediated apoB 100 secretion. A. 

Sortilin immunoblot of media from mcArdles cells treated with ionomycin B.-C. Stably 

overexpressing GFP and Sort1 mcArdle cells treated with and without ionomycin labeled 

with 35S-methionine/cysteine, immunuprecipitated apoB 100, and normalized to total 

protein (n =6 wells/ condition; 52% (P = 0.002) and 33% decrease (P = 0.002) 

respectively). Experiment was performed 3 times. 
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Ionomycin may be a nonspecific activator of Adam10. So, we next directly tested 

the hypothesis that genetic increases in Adam10 expression will restore apoB100 

secretion and therefore cholesterol levels in vivo. Apobec -/-; hapoB transgenic mice were 

injected with GFP AAV (1 × 1012 viral particles) or Sort1 AAV (5 × 1011 viral particles) 

and GFP AAV (5 × 1011 viral particles) or Sort1 AAV (5 × 1011 viral particles) and 

Adam10 AAV (5 × 1011 viral particles). Mice were bled prior to AAV injection and after 

2 weeks.  Sort1 overexpression was associated with lower plasma cholesterol levels, but 

Adam10 coexpression with Sort1 did not restore cholesterol levels (Figure 9d). HDL 

changes because the primary lipid species in mouse is HDL.  Sort1 overexpression 

reduced apoB 100 secretion 48% P value 0.02, and Adam10 coexpression with Sort1 

restored apoB 100 secretion 42% P value 0.03 (Figure 9e-f). Importantly, in these 

experiments we were unable to visualize sortilin in plasma by immunoblot, so it is 

impossible to determine whether expression of Adam10 via AAV was sufficient to drive 

increased sortilin cleavage. 
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         D.  

 

          E.                                                           F. 

Figure 9D-F: Adam10 in vivo overexpression increases VLDL apoB 100 secretion. 

D. Plasma total cholesterol, HDL, triglycerides, and nonHDL in mice injected with GFP 

AAV, Sort1 AAV, GFP AAV+ Sort1 AAV, Sort1 AAV +Adam10 AAV 2 weeks post 

injection E-F. Pluronic 35S-methionine/cysteine secretion study where relative apoB 100 

mass was normalized to 2 minute counts  
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To further test the hypothesis that sortilin cleavage drives VLDL secretion, 

McArdle cells stably overexpressing Adam10 were made. Adam10 overexpression in the 

context of baseline and increased Adam10 expression did not increase apoB secretion 

(Figure 9g). Conversely, we generated Adam10 knockdown cells using shRNA and also 

saw no effect on apoB secretion (Figure 9h). Importantly, as was the case for our in vivo 

studies, we were unable to detect sortilin in the media of either cell line making it 

difficult to conclusively say that there was any effect on sortilin cleavage with 

manipulation of Adam10 expression in these cell lines. Given the well-characterized role 

of Adam10 in receptor cleavage it is likely that cleavage is being affected by Adam10 

expression, which suggests that sortilin cleavage is neither necessary nor sufficient to 

drive VLDL secretion. 

  

G.        H.                                     

Figure 9 G-H: Adam10 overexpression and knockdown has no effect on sortilin 

mediated apoB 100 secretion. G. Stably overexpressing Blasticidin resistance gene or 

Adam10 or H. GFP shRNA or ADAM10 shRNA in Sort1 overexpressing mcArdles 

labeled with 35S-methionine/cysteine, immunuprecipitated apoB 100, and normalized to 
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total protein (n =6 wells/ condition no statistically significant difference seen. Experiment 

was performed 3 times.) 

 

Methods: 

In Vivo ApoB 100 Secretion Assay 

Mice underwent a four-hour fast to clear chylomicrons from circulation and were 

then injected intraperitoneally with a 400 uL solution of 1mg/g Pluronic P407-PBS 

solution to inhibit lipolysis. Fifteen minutes later mice were injected intravenously with 

500 uCi of S35-METHIONINE/CYSTEINE to label newly synthesized proteins. Blood 

was drawn by retro-orbital bleed two minutes after S35-METHIONINE/CYSTEINE 

injection for normalization and one hour after S35-METHIONINE/CYSTEINE injection 

for triglyceride measurement and VLDL isolation by ultracentrifugation. Isolated VLDL 

was run on an SDS-PAGE gel and apoB bands were cut and counted for quantitation of 

VLDL secretion. 

Primary Hepatocyte Isolation 

 Mice were anesthesized with an intraperitoneal injection of ketamine (70mg/kg) 

and xylazine (7mg/kg) and then Liver Perfusion Medium (Invitrogen, Carlsbad, CA, 

USA) followed by Liver Digestion Medium (Invitrogen) were run through the portal vein 

to remove red blood cells from the liver and to digest extracellular fibrous tissue. Isolated 

livers were washed with hepatocyte wash medium (Invitrogen), and viable cells were 

isolated by Percoll gradient centrifugation and plated at a density of 1 × 106 cells per well 

in 10% FBS and 1% Pen/Strep. 
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In Vitro apoB 100 secretion assay 

 Cells were starved for one hour in cysteine and methionine free media and then 

labeled with S35-METHIONINE/CYSTEINE for three hours. apoB was 

immunoprecipitated from media and the immunoprecipitate was run on an SDS gel, 

stained with commassie, and the apoB 100 band was cut and counted. apoB counts were 

normalized to total cellular protein. 

Obtaining DNA for genotyping 

 Mice were anesthetized with isofluorane and tail tips were cut with razor blades 

and cauterized. Tails were digested overnight with 180 uL of Buffer ATL and 20uL of 

Proteinase K (Qiagen, California) at 55 degrees. The Qiagen Symphony (Qiagen, 

California) was used to extract DNA from the digested tails.  

Genotyping whole body Sort1-/- mice  

Sort1-/- mice were genotyped using the Expand Long Range, dNTP Pack (Roche, 

Buckinghamshire, UK). 5 uL of tail DNA was mixed with 5 uL of 5x Long Range Buffer 

with 12.5 mM MgCl2, 1.5 uL of DMSO, 1.25 uL of PCR nucleotide mix, 9.9 uL of water, 

0.35 uL of Expand Long Range enzyme mix and 1 uL of a 10 uM solution of the forward 

primer (CTCAGGAATGGCATTCTCAG) and 1 uL of a 10 uM solution of the reverse 

primer (AGCCTTTACCTGGTGTCATC). The PCR cycling conditions were 92 degrees 



 
 

33 

for 2 minutes, followed by 35 cycles of 92 degrees for 10 seconds, 59 degrees for 15 

seconds, and 68 degrees for 6 minutes. There was an additional 7 minute extension cycle 

at 68 degrees followed by a hold at 4 degrees. PCR products were run on a 1% agarose 

gel. The wild-type allele produces a 2000 base pair product and the knockout allele 

produces a 4000 base pair product. 

 

Genotyping Sort1 flox/flox mice  

Sort1 fl/fl mice were genotyped using PCR beads (GE Healthcare, Piscataway, 

New Jersey) and the primers 2899_20 (GAGATGTTAACCTCGCTCAGG) and 2899_30 

(CTCTGTCTTAGCTATGTGAACC).  We used 1uL of a 10 uM solution of each primer, 

18 uL water, and 5 uL of tail DNA. The following PCR cycling conditions were used: 95 

degrees for 5 minutes, followed by 35 cycles of 95 degrees for 30 seconds, 60 degrees for 

30 seconds, and 72 degrees for 10 minutes. That was followed by a hold at 4 degrees. The 

PCR reaction for the wild type allele produces a 166-bp band. The PCR for the 

conditional allele produces a 323 base pair product. 

Genotyping LDLr-/- mice 

 LDLr was genotyped using PCR beads (GE Healthcare, Piscataway, New Jersey) 

and the primers LDLR1 (AATCCATCTTGTCAATGGCCGATC), LDLR2 

(CCATATGCATCCCCAGTCTT) and LDLR3 (GCGATGGATACACTCACTGC). The 

following PCR cycling conditions were used: 94 degrees for 3 minutes, followed by 35 

cycles of 94 degrees for 30 seconds, 65 degrees for 1 minute, and 72 degrees for 1 
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minute. There was an additional 2 minute extension time followed by a hold at 4 degrees. 

The PCR reaction for the wild type allele uses primers two and three and produces a 167-

bp band. The PCR for the knockout allele uses primers one and two and produces a 350 

base pair product.  

Adeno-Associated virus injection 

Adeno-associated virus (AAV) was prepared by the University of Pennsylvania vector 

core following standard procedure. AAVs were resuspended in sterile phosphate buffered 

saline (PBS) to a total volume of 400uL and then injected intraperitoneally into mice.  

siRNA preparation 

SiRNAs were prepared as a lipidoid formulation designed for liver specific targeting by 

Alnylam Pharmaceuticals (Cambridge, Massachusetts). The sequences for the Sort1 

duplex were: 5′-uGucAGAAuGGucGAGAcudTsdT-3′ (sense) and 5′-

AGUCUCGACcAUUCUGAcAdTsdT-3′ (antisense, 2′-OMe modified nucleotides are in 

lower case, and phosphorothioate linkages are indicated by “s”). The sequence of the 

luciferase siRNA duplex is siLuc sense: 5'-CUUACGCUGAGUACUUCGATT-3', 

antisense: 5'-UCGAAGUACUCAGCGUAAGTT-3'. Formulated siRNAs were diluted in 

sterile 1x PBS so mice could be injected with 10 uL of siRNA solution per gram of 

mouse. The total injection volume ranged from 250-270 uL per mouse. SiRNAs were 

injected via tail vein.  

Sacrificing Mice and Harvesting Tissues 
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Mice were anesthetized by isofluorane inhalation and then a terminal bleed was 

performed by retro-orbital puncture. Mice were sacrificed by cervical dislocation. Mice 

were then perfused with 1xPBS to remove red blood cells from the liver and livers were 

dissected and snap-frozen in liquid nitrogen.  

Evaluating Gene Expression 

 RNA was extracted from mouse liver using Trizol (Invitrogen, Grand Island, NY) and 

converted to cDNA using the high capacity reverse cDNA kit (Applied Biosystems, 

Foster City, CA). Murine sortilin was amplified using the Taqman probe Mm_00490905 

and murine actin was amplified using the Taqman probe Mm_4352933 (Applied 

Biosystems, Foster City, California). Real time PCR was performed on an Applied 

Biosystems 7900HT Real-time PCR system. Sortilin was normalized to actin expression. 

To evaluate protein expression, livers were homogenized in 1xPBS with protease 

inhibitor mini tablets (Roche, Indianapolis, Indiana) and 75 ug of protein was loaded onto 

10% bis tris gels (Invitrogen, Grand Island, New York) and transferred onto 

nitrocellulose membranes (Invitrogen, Grand Island, New York). Membranes were 

probed using rabbit anti sortilin (ab16640) and mouse anti actin (ab8226, Abcam, 

Cambridge, MA) and mouse anti sortilin (612100, BD Biodesign, Sparks, MD).     

Statistics  

Statistical analyses were done using 2-tailed paired student’s t test for all 

experiments except one. A 1 way ANOVA followed by a Tukey post-hoc test was used 
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for the plasma lipids assay of the Adam10 in vivo overexpression experiment. The error 

bars on graphs are representations of the standard error. 

 

Discussion 

 

Our lab has previously shown that sortilin serves as a bona fide LDL receptor to 

facilitate the endolysosomal degradation of LDL and also promotes the endolysosomal 

degradation of the LDL precursor VLDL76,83. Interestingly, both Sort1 overexpression 

and deficiency are associated with reduced VLDL secretion. Though extensively studied, 

this paradox remains unexplained16,76. Sort1 is expressed in multiple tissues, and while 

the overexpression studies involved liver specific manipulations, all deficiency studies 

were done in mice deficient in sortilin in all tissues, suggesting that tissue specificity 

could be responsible for the disparate findings in overexpression and deficiency systems. 

We have shown that tissue specificity may not be responsible for the paradoxical 

secretion phenotype of the whole body Sort1-/- mouse by use of liver specific Sort1 

knockdown using siRNA, liver-specific Sort1-/- mice generated through use of the Cre 

recombinase system, and Sort1-/- primary hepatocytes. Liver specific Sort1 deficiency 

recapitulates the secretion phenotype of the Sort1 total body knockout mouse and is also 

associated with reduced VLDL secretion. 

It has been suggested that sortilin serves as a chaperone for VLDL. Liver specific 

reconstitution of Sort1-/- mice with wild-type Sort1 using AAV does not restore VLDL 

secretion, suggesting that sortilin does not serve as a pure chaperone for VLDL. AAV is a 
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powerful research tool to achieve somatic overexpression of genes in mouse liver; 

however, due to transduction efficiency constraints it cannot be used to effectively 

reconstitute gene expression, it enables robust overexpression of genes91. Sortilin is 

known to traffic both to the plasma membrane as well as to the endolysosomal system, 

and the amount of sortilin at the cell surface is regulated with most sortilin remaining 

intracellular. If sortilin were to serve as a trafficking receptor to facilitate VLDL export it 

would depend on a dominant Golgi to plasma membrane trafficking pathway. To isolate 

sortilin’s plasma membrane pathway and eliminate confounder effects from sortilin’s 

Golgi to lysosome pathway we used AAV encoding Sort.LAYA, a sortilin mutant 

defective in its ability to traffic to the endolysosomal system that is instead shuttled to the 

cell surface. Expression of Sort.LAYA restores VLDL secretion in Sort1-/- mice, 

suggesting that sortilin can serve as a chaperone for VLDL, but the lack of rescue with 

wild-type Sort1 suggests a complexity to sortilin’s role in VLDL secretion.  

Consistent with the hypothesis that sortilin can serve as both a chaperone and 

degrader of its ligands, Evans et al reported that sortilin facilitates the secretion as well as 

the lysosomal targeting and degradation of proBDNF 33. Specifically, Evans et al 

identified Adam10 as the metalloproteinase that cleaves sortilin at the juxtamembrane 

stalk both intracellularly and at the plasma membrane, separating sortilin’s ligand binding 

domain from its lysosomal sorting motifs. They further suggested that proBDNF bound 

to full length sortilin that is not cleaved by Adam10 is trafficked with sortilin to the 

lysosome for degradation, whereas proBDNF bound to cleaved sortilin is secreted from 

cells6. One can envision a similar paradigm for apoB-containing lipoproteins: under 
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physiological conditions the majority of sortilin is cleaved by Adam10 and facilitates 

VLDL secretion, so loss of sortilin reduces VLDL secretion, whereas in the context of 

increased Sort1 expression, Adam10 is limiting, and most sortilin remains full length and 

facilitates the endolysosomal degradation of VLDL. This cleavage pathway may explain 

the reduction in VLDL secretion seen with both Sort1 overexpression and deficiency.  

Our data indicates Adam10 mediated sortilin cleavage is neither necessary nor sufficient 

for sortilin mediated VLDL chaperoning. This may be due to the different tissues in 

which the studies were performed (neuronal tissue versus liver) or the ligands 

intetrogated (proBDNF versus apoB). 

 Sortilin cleavage therefore cannot explain why reductions in Sort1 expression in 

different genetic systems can lead to both increased and decreased VLDL secretion. The 

answer may lie in recent advances in understanding sortilin trafficking and regulation. It 

has been shown that 10% of sortilin localizes to the plasma membrane while 90% is 

intracellular; however, Kim et al found that this ratio can be altered by neurotrophin 

receptor homolog 2 (Nrh2)31. Nrh2 is a molecular switch that promotes the trafficking of 

sortilin to the cell surface31. It is possible that Nrh2 is the factor that drives the secretion 

phenotype, diverting sortilin from the endolysosomal pathway to the cell surface. Further 

studies will have to be done to address this hypothesis. 

 In summary, through liver specific Sort1 deficiency models as well as 

reconstitution and mutagenesis studies our findings indicate that liver specificity is not 

responsible for the secretion paradox and instead demonstrate that sortilin plays a dual 

role in VLDL trafficking, serving as both a chaperone and degrader of VLDL. Facilitated 
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secretion is dependent on intact Golgi to cell surface trafficking and cleavage alone is 

insufficient to restore function.   
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Chapter Four: Macrophage sortilin promotes LDL uptake, foam cell 

formation, and atherosclerosis 
 

 Patel KM, Strong A, Tohyama J, Jin X, Morales CR, Billheimer J, Millar JS, Kruth H, 

Rader DJ. Macrophage Sortilin Promotes LDL Uptake, Foam Cell Formation, and 

Atherosclerosis Circ Res. 2015 Jan 15. pii: CIRCRESAHA.114.305811. 
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Introduction: 

A central hallmark of atherosclerosis is the cholesterol-loaded macrophage or 

‘foam cell.’  Despite decades of research, the molecular mechanisms by which arterial 

macrophages take up cholesterol-rich lipoproteins, such as low density lipoproteins 

(LDL), leading to the development of foam cells and atherosclerotic lesions remain to be 

fully elucidated. Kruth and colleagues have shown that macrophages internalize native 

LDL through a process of macropinocytosis, although LDL uptake cannot be fully 

accounted for by this process71.  Gene deletion of known receptors of modified LDL, 

such as scavenger receptor A (SRA) and CD36, do not reduce foam cell formation or the 

development of atherosclerosis in mice52.  Thus, pathways that mediate macrophage 

uptake of LDL leading to foam cell formation and atherosclerosis remain of substantial 

interest.  

 Unbiased genome-wide association studies (GWAS) of coronary artery disease 

(CAD) have the potential to identify new pathways involved in atherosclerosis.  In one of 

the first GWAS for CAD, non-coding genetic variants at chromosome 1p13 were 

reported to be significantly associated with myocardial infarction and CAD17, a finding 

that has been widely replicated11,12.  The same variants have also shown to be 

significantly associated with plasma levels of LDL cholesterol8,15,84.  The SORT1 gene, 

encoding the protein sortilin, appears to be the causal gene at the locus regulating LDL 

cholesterol levels16,76,83.  Sortilin is a type I transmembrane trafficking receptor initially 

characterized by its ability to serve as a receptor for proneurotrophins16,76,83 and for its 

role as a sorting receptor for lysosomal hydrolases48,85.  Hepatic sortilin expression 
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modulates VLDL production rates7, 9 10; in addition, hepatic sortilin binds LDL and 

promotes its cellular uptake and lysosomal degradation76.  Sortilin is also expressed in 

macrophages, but little is known about its function in this cell type or its relationship to 

atherosclerosis86,87. I hypothesized that macrophage sortilin mediates macrophage LDL 

uptake. Through a combination of in vivo mouse studies and ex vivo macrophage studies 

utilizing Sort1-/- macrophages, I show here that macrophage sortilin promotes 

macrophage LDL uptake, foam cell formation, and atherosclerosis independent of plasma 

LDL-C levels.  

Results 

Sortilin deficiency in hematopoetic cells protects against atherosclerosis 

  Total body Sort1 deficiency on an LDLr-/- background is associated with reduced 

plasma cholesterol levels, confounding attempts to address its role in atherosclerosis 

independent of LDL-C levels.  We crossed Sort1-/- mice onto the background of an 

atherosclerosis-prone Apobec1-/-; hAPOB Tg mouse model, which has a human-like 

lipoprotein profile, and fed the mice a western type diet for 18 weeks.  On this genetic 

background, total and LDL cholesterol levels were not different in Sort1-/- mice 

compared with Sort1+/+ mice (Figure 10a,b). This is because liver sortilin serves as a 

LDL receptor and degrader of VLDL.  
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Figure 10A: Biochemical measurements of plasma lipids of Apobec1-/-; hapoB 

transgenic mice on western diet. Total Cholesterol, HDL, Triglycerides, and human 

ApoB were measured by MIRA autoanalyzer and Non-HDL was calculated. 

 

Figure 10B: FPLC profile of pooled plasma. Equal amounts of plasma from each 

mouse was pooled and run on an FPLC. A cholesterol plate assay was performed on each 

of the 46 samples from the FPLC and the results are graphed. 

After 18 weeks on diet, Sort1-/- mice had a 68% reduction in en face aorta lesion 

area (P <0.0001 Figure 10c,d) and an 87% reduction in aortic root lesion area (P <0.0001 

Figure 10e,f) compared with Sort1+/+ mice, demonstrating a major effect of sortilin 

deficiency in reducing atherosclerosis despite no effect on plasma cholesterol in this 

model. 
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Figure 10C: Oil Red O stained aortas. Mice were placed on western diet for 18 weeks. 

Aortas were harvested from mice and fixed in 4% paraformaldehyde.  

 

Figure 10D: Quantification of whole aorta. Oil Red O stained area was quantified 

relative to total surface area.  
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 Figure 10E: Aortic roots cross sections. Lesion area was measured over the 

hematoxylin and eosin stained sections prepared from paraffin embedded hearts.   

 

Figure 10F: Quantification of aortic root cross sections. Lesion area was quantified on 

3 sections for each mouse. 

Macrophages express sortilin and we hypothesized that macrophage sortilin 

deficiency might account specifically for the reduced atherosclerosis.  In order to test this 

hypothesis, irradiated LDLr-/- mice were transplanted with bone marrow from Sort1-/-

;LDLr-/- mice or Sort1+/+;LDLr-/- mice and 6 weeks after transplantation were started 

on a western type diet and fed for 18 weeks.  Bone marrow engraftment was 74% (Figure 

11i). Body, liver and spleen weights, plasma cholesterol, peripheral blood counts, and 

hepatic Sort1 expression were similar between groups (Figure 11).   
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Figure 11 

 

Figure 11: Characterization of recipient LDLr-/- mice carrying donor LDLr-/- or 

Sort1-/-;LDLr-/- bone marrow. A. Sort1 deficiency in bone marrow has no effect on 

body weight. B. Sort1 deficiency in bone marrow has no effect on Liver, C. Spleen, or D. 

Adipose Mass. E. Sortilin deficiency in bone marrow has no effect on plasma lipids. F. 

Sort1 deficiency in bone marrow has no effect on white blood cells (WBC), neutrophils 

(NE#), lymphocytes (LY#), G. monocytes (MO#), eosinophils (EO#), basophils (BA#). 

H. Sort1 deficiency in bone marrow has no effect on platelet number. I. Bone marrow 

engraftment was 74% as measured by Sort1 mRNA expression in spleen normalized to 

Bactin. N=11 per group P value <0.01 
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Mice transplanted with Sort1-/-;LDLr-/- bone marrow had a 69% reduction in en 

face aortic lesion area (P<0.00001) and a 34% reduction in aortic root lesion area (P < 

0.01) compared to mice transplanted with Sort1+/+;LDLr-/-  bone marrow (Figure 12a-

d), suggesting that hematopoietic, and potentially macrophage sortilin influences the 

development of atherosclerotic disease. 

  

 

Figure 12 A-B: Whole aorta atherosclerosis of bone marrow transplanted mice. 

Aortas from n=11 mice per group were isolated, stained, and quantified as previously 

described. 
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Figure 12 C-D: Aortic root atherosclerosis of bone marrow transplanted mice. 

Hearts (n=11 per group) were prepped, sectioned, and stained as previously described.  

Sortilin deficiency has no effect on thioglycollate-elicited monocyte recruitment or 

LPS-induced inflammatory response in vivo 

Monocyte recruitment is a key determinant of the macrophage content of 
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response. Three days after injection, peritoneal macrophages were harvested and counted. 

There was no difference in macrophage counts between Sort1+/+ and Sort -/- mice 

(Figure 13a).  Other methods to assay macrophage recruitment into plaques can be very 

helpful. Monocyte recruitment and atherosclerosis development is strongly influenced by 

inflammation and cytokine production. To determine if Sort1-/- mice have reduced 

cytokine levels, cytokine multiplexing assays were performed on Sort1-/- and Sort1+/+ 

mice injected with lipopolysaccharide (LPS).  Cytokine levels post LPS injection was 

found to be similar between Sort1-/- and Sort1 +/+ (Figure 13b,c).    
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B       

   C      

Figure 13: Sortilin deficiency has no effect on macrophage recruitment or 

modulation of inflammation. A. Thioglycollate (3%w/v) was injected into peritoneal 

cavity and after 4 days peritoneal macrophages were counted from Sort1 +/+ and Sort -/- 

mice (n=10) B. Serum cytokine levels were measured 2 hours and C. 5 hours post 

lipopolysaccharide injection in Sort1 +/+ and Sort -/- mice (n=10 per group) 
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Macrophage sortilin deficiency reduces LDL uptake and foam cell formation  

 To determine if macrophage sortilin deficiency reduces foam cell formation, 

primary bone marrow macrophages were isolated from Sort1-/-; LDLr-/- and control 

Sort1+/+; LDLr-/- mice, cells were differentiated with M-CSF for 7 days, incubated with 

1 mg/mL LDL for 5 hours, and Oil Red O staining was performed. Sort1-/-;LDLr-/- 

macrophages had a clear and consistent reduction in Oil Red O staining (Figure 14a).   

 

Figure 14A: Oil Red O staining of M-CSF differentiated macrophages. Macrophages 

were fixed in 4% paraformaldehyde then stained with haematoxylin (blue) and Oil Red O 

(red). (n=4 wells/group. Experiment was performed 2 times) 

 

Sort1 deficient macrophages had a significant 28% reduction in total cellular 

cholesterol, a 25% reduction in free cholesterol, and a 32% reduction in cholesteryl ester 

(P<0.05; Figure 14b-d).   

LDLr -/- Sort1 -/-; LDLr -/- 
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Figure 14 B-D: Cholesterol measurements of M-CSF differentiated macrophages. 

Macrophages were dissolved in isopropanol and free cholesterol and cholesterol ester 

were measured by gas chromatography/ mass spectrometry (GC/MS). Total cholesterol 

was calculated as sum of free cholesterol plus cholesterol ester. (n=3 wells/ group. 

Experiment was performed 2 times. 

In vivo foam cell formation assays were performed by isolating thioglycollate-

elicited peritoneal macrophages from Sort1+/+;Apobec-/-;hApob Tg and Sort1-/-

;Apobec-/-;hApob Tg mice fed a western type diet for 18 weeks. Consistent with the in 

vitro loading experiments, macrophages isolated from Sort1-/- mice had reduced Oil Red 

O staining and a significant 33% reduction in cellular cholesterol content compared to 

macrophages isolated from Sort1+/+ mice (P<0.05; Figure 14e-f).  These studies 

indicated that sortilin-deficient macrophages have reduced capacity to form foam cells 

when exposed to high levels of LDL. 
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Figure 14 E-F: Oil Red O staining and cholesterol measurements of thioglycollate 

elicited peritoneal macrophages. Mice were placed on a western diet for 18 weeks. 

Thioglycollate was injected intraperitoneally and peritoneal macrophages were isolated 4 

days thereafter. Oil Red O staining and cholesterol measurements were performed as 

previously described. (n=3 mice/group. Experiment was performed 2 times.) 

As sortilin can act as a receptor for LDL in hepatocytes, we hypothesized that 

sortilin promotes the internalization of LDL by macrophages. To test the response of 

sortilin expression to increasing cholesterol concentration in macrophages, thioglycollate-

elicited peritoneal macrophages were isolated from wild-type mice and incubated for 24 

hours in lipoprotein-deficient serum, lipoprotein-deficient serum supplemented with 25-
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hydroxycholesterol to reduce intracellular cholesterol content, or with lipoprotein 

deficient serum supplemented with high concentrations of LDL. In contrast to the LDL 

receptor, whose expression was reduced by co-incubation with LDL, Sort1 mRNA 

abundance increased over 400-fold with LDL incubation (P <0.05; Figure 15a) and 

sortilin protein also increased significantly with LDL incubation (Figure 15b). 

 

Figure 15 A-B: Sort1 and LDLr Expression in thio-elicited macrophages.  A. After 

plating macrophages for 2 hours they were treated with conditions stated above for 24 

hours B. Macrophages were treated with 500ug/ml LDL in LPDS media or LPDS media 

(control). (n=4 mice/group Experiment was replicated 2 times.) 

To test the hypothesis that sortilin is able to promote the uptake of LDL into 

macrophages, 125I-LDL uptake studies were performed in thioglycollate-elicited and bone 

marrow derived macrophages from Sort1+/+ and Sort1-/- mice. Sort1 deficiency was 
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associated with a 48% and 33% percent reduction in LDL uptake, respectively (P <0.05 

for both; Figure 15 c-d).  

 

Figure 15 C-D: I-125 LDL uptake in thioglycollate elecited macrophages and bone 

marrow derived macrophages. C. Thioglycollate elecited macrophages and D. bone 

marrow derived macrophages were treated with 500ug/ml LDL for 24 hours. I-125 LDL 

was incubated for 5 hours. Cell associated and degraded LDL were individually assayed 

and the sum are represented as total uptake. (n=6 wells/per group Experiment was 

replicated 2 times) 

We next tested if this effect on LDL uptake was independent of the LDL receptor. 

Bone marrow derived macrophages were isolated from Sort1+/+;LDLr-/- and Sort1-/-

;LDLr-/- mice and 125I-LDL uptake studies were performed. Sort1 deficiency was 

associated with a 39% percent reduction in LDL uptake in the absence of the LDLR 

(P<0.05; Figure 15f).  

 To further confirm that sortilin deficiency confers atheroprotection by eliminating 

a receptor dependent pathway for LDL uptake and not by modulating macropinocytosis, 

LDL uptake studies were performed in bone marrow derived macrophages in the 

presence of cytochalasin D, a potent inhibitor of actin polymerization and 

macropinocytosis.  Under these conditions, while LDL uptake is reduced, substantial 

residual LDL uptake still takes place.71  Sort1 deficiency was associated with a 38% 
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reduction in LDL uptake in the presence of cytochalasin D (P< 0.05; Figure 15e).  These 

studies indicate that macrophage sortilin deficiency reduces macrophage uptake of LDL 

and formation of foam cells and this effect is independent of the LDL receptor and of 

macropinocytosis.  

 

a 

 

39%(.02) 46%(7E-5) 67%(5E-4) 

b 

  

12%(9E-3) 45%(.01) 

c 

   

38%(.027) 

 

Figure 15 E: I-125 LDL uptake in M-CSF differentiated macrophages from LDLr -

/- and Sort1-/-; LDLr -/- mice. Macrophages were pretreated with 500ug/ml LDL. 

250ug/ml LDL was incubated and 4ug/ml cytochalasin D (as indicated) for 5 hours (n=6 

wells/ per group. Experiment was replicated 2 times.).  

Finally, to determine whether increased macrophage sortilin results in increased 

LDL uptake, J774 cells were transduced with lentivirus encoding GFP or Sort1 and LDL 
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uptake studies were performed. Sort1 overexpression in macrophages led to a 29% 

increase in LDL uptake (P< 0.05; Figure 15f).   

  

Figure 15F: I-125 LDL uptake in J774 cells overexpressing Sort1 and GFP. J774 

cells were treated with doxycylcine for 48 hours to induce expression then I-125 LDL 

uptake study was performed as previously described. (N=6 wells/per group. Experiment 

was replicated 2 times.) 

 

Methods: 

Animals  

 Sort1-/- mice were obtained from Dr. Carlos Morales at McGill University and 

crossed onto the Apobec1-/-; hAPOB transgenic background.  LDLr-/- mice for the bone 

marrow transplant studies. The University of Pennsylvania IACUC approved all animal 

protocols. 

Total body sortilin deficient mouse atherosclerosis studies 

Female Sort1-/-;Apobec1-/-; hAPOB Tg mice (n=10) and Sort1+/+;Apobec1-/-; 

hAPOB transgenic littermates (n=10) at 8 weeks of age were started on a western-type 
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diet. Mice placed on a western diet (21% fat, 50% carbohydrate, 20% protein Research 

Diets D12079B), which was continued for 18 weeks.  Mice were bled at weeks 0, 2, and 

9 and after 18 weeks on the diet were sacrificed and assessed for atherosclerosis in the 

aortic roots and the entire aorta by en face quantitation (see below).   

Hematopoietic sortilin deficient mouse atherosclerosis studies  

Donor bone marrow was isolated from male Sort1-/-;LDLr -/- and LDLr -/- mice 

by flushing femurs and tibias with sterile PBS.  Female LDLr -/- recipient mice (8-10 

weeks old) were irradiated with 900 rads from a cesium g source prior to transplantation.  

Each irradiated mouse was then injected with 4 E6 donor bone marrow cells via tail vein 

injection.  The recipient LDLr-/- mice were given water with sulfamethoxazole and 

trimethoprim for 2 weeks post bone marrow transplantation.  For bone marrow 

engraftment, Sort1 mRNA was quantified in spleen using quantitative PCR.  Six weeks 

post transplantation mice were placed on a western diet for 18 weeks.  Mice were bled at 

weeks 0, 4, and 14, and after 18 weeks on the diet were sacrificed and assessed for 

atherosclerosis in the aortic roots and the entire aorta by en face quantitation (see below). 

Atherosclerosis quantitation and assessment 

 Mice placed on a western diet (21% fat, 50% carbohydrate, 20% protein Research 

Diets D12079B) for 18 weeks were anesthetized with isoflurane followed by a cervical 

dislocation after a four-hour fast. Aortas were collected from the base of ascending aorta 

and to the iliac bifurcation, whereas aortic roots with heart were harvested and both are 

fixed in 4% paraformaldehyde. Aortas for en face were stained with Oil Red O.  Aortic 
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roots were dehydrated and paraffin embedded and used for lesion area quantification. 

Images were captured with Leica MZ12 microscope at a 40x magnification and 

quantification was performed with Image Pro Plus Software. For en face atherosclerotic 

lesion area was quantified in reference to the total surface area of the aorta as previously 

described. For aortic root atherosclerosis, lesion area was measured over the hematoxylin 

and eosin stained sections prepared from paraffin embedded hearts. In aortic roots 

atherosclerosis in either Sort1-/- or Sort +/+ on Apobec1-/-; hAPOB Tg model, we 

quantified representative section where captures 3 aortic valve leaflet equally observed in 

the section slice (same section as described below).20 In the quantification of aortic roots 

atherosclerosis in irradiated / bone marrow transplanted experiment; we quantified lesion 

area of 5 serial sections (80um between sections) in each mice. For choosing 5 sections, 

we first defied a “zero-point” where meets all 3 leaflet of the aortic valve moving from 

aortic vessel towards internal lumen of the vessel. Then 2 serial sections towards aortic 

arch and another 2 distal serial sections to the zero point into the ventricle chamber were 

quantified. For each mouse, the data was represented as average lesion area (average area 

across the 5 points). 

Monocyte recruitment assay 

 Sort1+/+ and Sort1 -/- (n=10 per group) were injected i.p. with thioglycollate 

(3%) and three days later macrophages were isolated and counted by hemocytometer. 
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Assessment of cytokine response to LPS injection 

 Sort1+/+ and Sort1 -/- (n=10 per group) were injected i.p. with LPS (3mg/kg). 

Mice were bled retroorbitally 2 and 5 hours post injection. Serum was isolated and run on 

the Bioplex Pro Mouse Cytokine 23-plex Immunoassay (#M60-009RDPD). 

Studies of macrophage foam cell formation 

 For in vitro studies, M-CSF differentiated bone marrow macrophages from   

Sort1-/-;LDLr -/- and LDLr -/- mice ((n=3 per group; for procedure see below) on day 7 

were incubated with 1 mg/ml LDL for 5 hours. The cells were fixed with 

paraformaldehyde and stained with Oil Red O and hematoxylin. For in vivo foam cell 

formation studies, Sort1-/-;Apobec1-/-; hAPOB Tg mice and Sort1+/+;Apobec1-/-; 

hAPOB Tg littermates (n=3 per group) were placed on a western diet for 18 weeks. 

Thioglycollate (3%) was injected i.p. and 3 days later cells were peritoneal macrophages 

were isolated, plated, and stained with Oil Red O and hematoxylin.  

Studies of macrophage LDL uptake  

For studies of macrophage LDL uptake, both thioglycollate-elicited peritoneal 

macrophages and bone marrow derived macrophages were used.  For isolation of 

thioglycollate-elicited peritoneal macrophages, Sort1+/+ and Sort1 -/- (n=6 per group) 

were injected i.p. with thioglycollate (3%) and three days later macrophages were 

isolated.  Thioglycollate-elicited peritoneal macrophages after plating were incubated 

with 500ug/ml of LDL in 10% LPDS overnight. The next day the LDL uptake assay was 

performed with 25ug/ml I-125 LDL. For isolation of bone marrow derived macrophages, 
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bone marrow was isolated from mice femurs from Sort1+/+ and Sort1 -/- (n=2 per 

group).  Monocytes were differentiated for 7 days in M-CSF media into macrophages and 

on day 7 an LDL uptake study was performed with 250 ug/ml I-125 LDL. For lentiviral 

expression of SORT1 in J774 macrophages, lentivirus encoding human was generated as 

previously described.10 J774 cells were transduced with viral supernatant (Control: GFP 

+ rtTA, Experimental SORT1 + rtTA). The cells were incubated at 37°C overnight, viral 

supernatant was removed, and cells were grown in RPMI medium. LDL uptake assay 

was performed with 25 ug/ml I-125 LDL.  

 LDL uptake assay  

 The macrophages (thioglycollate-elicited peritoneal or bone marrow derived) 

were incubated with125I-LDL for five hours. In some experiments, cytochalasin D 

(4ug/ml) was added to bone marrow derived macrophages as indicated right before LDL 

incubation. Cells were dissolved in 0.2M NaOH. The values were standardized to protein 

content of the dissolved cells in NaOH by bicinchoninic acid (BCA) assay (Thermo). 

After incubation the media was removed. Trichloroacetic acid was added to precipitate 

out unreacted LDL, followed by chloroform extraction of free iodine. Total Uptake 

values represent the sum of LDL associated and degraded. 

Statistics  

Statistical analyses were done using 2-tailed paired student’s t test for total body 

knockout atherosclerosis, bone marrow transplant atherosclerosis, LDL uptake, 

macrophage recruitment, cellular cholesterol experiments.  A 1 way ANOVA with a 
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Bonferroni correction was done for the LPS experiment. The error bars on graphs are 

representations of the standard error. 

Discussion: 

 

Genetic variation at the 1p13 SORT1 locus is strongly associated both with CAD, 

as well as with plasma LDL-C levels.  We have previously shown that sortilin is a cell 

surface receptor for LDL on hepatocytes and its elevated expression in liver reduces 

LDL-C at least in part by facilitating LDL clearance from blood.  Sortilin is expressed in 

macrophages, which actively take up LDL, leading us to investigate the role of 

macrophage sortilin in LDL uptake, foam cell formation, and atherosclerosis.  After a 

series of studies of atherosclerosis in mice and LDL uptake in macrophages, we conclude 

that macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis 

and that deficiency is protective against atherosclerosis at least in part by reducing LDL 

uptake.   

Macrophage uptake of modified LDL can be mediated by scavenger receptors 

such as SRA and CD36.  However, deletion of SRA or CD36 does not reduce 

macrophage uptake of native LDL71 nor does it ameliorate atherosclerosis in 

hypercholesterolemic mice.88 Even CD36-/-; SRA -/- mice still contain abundant lipid 

laden macrophages in vessel wall and develop atherosclerosis.75  Kruth has shown that 

macrophages can take up native LDL through fluid-phase macropinocytosis, but there 

remains substantial LDL uptake even when this pathway is inhibited71.  Our data 

establish macrophage sortilin as the first receptor-mediated pathway of uptake of native 
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LDL leading to foam cell formation and promoting atherosclerosis development.  We 

also found that increasing concentrations of extracellular LDL causes an upregulation of 

macrophage Sort1 mRNA and protein. Because a function of macrophages is to 

phagocytose LDL, it is very possible that increased exposure of macrophages to LDL 

triggers the transcriptional upregulation of sortilin, which then mediates increased LDL 

uptake.  The mechanisms of this upregulation of macrophage Sort1 by LDL require 

further exploration. 

Mortensen et al. reported that whole body sortilin deficiency reduced 

atherosclerosis in the ApoE -/- mouse model89.  While the fundamental observation is 

consistent with our data, these authors suggested a different mechanism, namely that 

decreased proinflammatory cytokines may have been responsible for the reduced 

atherosclerosis.  We performed our cytokine assays prior to initiation of atherosclerotic 

disease, while Mortensen et al measured the cytokine profile after disease was present.  In 

addition, these authors did not see a reduction in LDL uptake by sortilin deficient 

macrophages, although they used an ATTO dye conjugated to the LDL that may have 

influenced the interaction with sortilin. We also used a different mouse model, the 

Apobec1-/-; hAPOB Tg mouse, in which human apoB-100 containing LDL is the 

dominant lipoprotein, in a human-like lipoprotein profile, while Mortensen et al used the 

Apoe-/- mouse, which is characterized primarily by mouse apoB-48 containing remnant 

lipoproteins. Overall, the top-line results of the two studies, which used very different 

mouse atherosclerosis models, are highly comparable, whereas the mechanisms 

responsible for the reduced atherosclerosis may be complex and multifactorial.  
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In summary, our findings indicate that SORT1 deficiency in macrophages reduces 

LDL uptake and macrophage cholesterol loading independent of the LDL receptor or 

macropinocytosis, and protects against the development of atherosclerosis. The 

macrophage sortilin pathway is a novel pathway of macrophage cholesterol loading that 

quantitatively contributes to atherosclerosis. 

 

Figure 16: Macrophage sortilin mediates LDL uptake. Sortilin causes foam cell 

formation by mediating the uptake and degradation of LDL in macrophages independent 

of macropinocytosis. 

Chapter Five: Conclusions and Future Directions 
 

Despite decades of research in the metabolism of LDL and the pathogenesis of 

atherosclerosis, there remain major gaps in our knowledge. It is well-established that a 

major factor influencing plasma levels of LDL-C is the rate at which the liver secretes 

VLDL, the metabolic precursor to LDL. Yet the detailed molecular mechanisms by 
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which this large complex macromolecular particle containing apoB and multiple lipid 

constituents is assembled and secreted remain poorly understand. As another example, 

while the uptake of LDL by macrophages to form foam cells is virtually a sine qua non of 

atherogenesis, the molecular mechanisms by which macrophages internalize LDL remain 

very poorly understood.  Unbiased human genetics can point to novel pathways involved 

in traits and disease and help to fill in mechanisms of incompletely understood processes.  

It is remarkable that the SORT1 locus on chromosome 1p13 was one of the first novel 

loci to be identified in association with LDL-C levels as well as with coronary heart 

disease.  In my thesis work, I investigated the role of the protein sortilin (encoded by the 

gene SORT1) in both VLDL secretion (affecting LDL-C levels) as well as in macrophage 

LDL uptake (affecting atherosclerosis).  In doing so, I helped to elucidate the complex 

role that hepatic sortilin plays in both facilitating VLDL secretion through a probable 

chaperone-type function as a well as, at higher levels of expression, reducing VLDL 

secretion probably through targeting newly-synthesized VLDL from the Golgi to the 

lysosome.  In addition, I established that macrophage sortilin plays a key role in 

mediating macrophage uptake of LDL, contributing to foam cell formation and 

atherosclerosis.  These studies extended our previous knowledge of sortilin biology, 

provide examples of how human genetics can reveal new pathways relevant to human 

traits and disease, and provide a potential novel target for therapeutic intervention to 

reduce LDL-C levels and risk of CHD.  

Our laboratory had previously shown that hepatic overexpression of sortilin can 

promote the presecretory lysosomal degradation of VLDL and reduce its secretion rate; in 
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addition, our lab and another group showed that complete ‘whole body’ sortilin 

deficiency is also associated with a reduction in VLDL secretion. One major aim of my 

thesis was to try to resolve these seemingly paradoxical observations. I proved that the 

explanation is not due to tissue specific differences in the overexpression and deficiency 

studies. By using two different approaches to knock down or delete sortilin specifically in 

the liver, I found that VLDL secretion was still reduced. We developed a hypothesis that 

there is a duality in the biology of sortilin: that it can act as both a chaperone and 

degrader of VLDL depending on factors such as level of expression and other unknown 

factors (Figure 17). We reasoned that the ability of sortilin to serve as a degrader of 

intracellular newly synthesized VLDL requires intact endolysosomal Golgi to lysosome 

trafficking, whereas the ability of sortilin to serve as a VLDL chaperone requires intact 

Golgi to plasma membrane trafficking. I carried out a series of experiments to test these 

hypotheses. In one of my most important findings, a mutant form of sortilin that is 

incapable of trafficking to the lysosome but retains the ability to traffic to the plasma 

membrane was shown to recover VLDL secretion in the sortilin knockout mouse (unlike 

wild-type sortilin which has the ability to traffic to the lysosome). These and other data 

help to support the working model shown in Figure 17. 
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Figure 17: Working model of the dual role of sortilin in modulating VLDL 

secretion.  At low levels of expression, sortilin promotes the secretion of VLDL, possibly 

through a chaperone-type function.  At higher levels of expression, sortilin promotes the 

presecretory transport of VLDL from Golgi to lysosome thus reducing VLDL secretion.  

The data presented in this thesis are consistent with a model in which hepatic 

sortilin facilitates VLDL export and thus its complete or virtually complete deletion from 

liver results in reduced VLDL secretion.  Studies in primary hepatocytes lacking sortilin 

established that this is a cell-autonomous process that is not dependent on signals from 

other tissues or cell types.  However, at increased levels of hepatic sortilin expression 

(such as those seen in individuals homozygous for the minor allele haplotype at 1p13), 

sortilin begins to serve a role of trafficking presecretory VLDL to the endolysosomal 

system for degradation. The molecular basis for this functional switch was an interest of 

my thesis work, but remains highly uncertain.  I hypothesized that cleavage of sortilin by 

ADAM10 is a key determinant of the chaperone vs degradation function: that ADAM10 

cleaves sortilin intracellularly and the soluble sortilin lacking the transmembrane domain 

is targeted for cellular secretion and serves as a VLDL chaperone. In this model, when 
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sortilin expresssion increases ADAM10 becomes rate-limiting and the increased amount 

of full-length sortilin transports presecretory VLDL to the lysosome. However, our in 

vivo and in vitro studies failed to show that Adam10 overexpression and knockdown 

affected VLDL secretion both in the context of endogenous and overexpressed sortilin.  

While these studies have not formally eliminated this hypothesis, I was unable to support 

this attractive working model. 

I turned my attention to other factors that regulate the intracellular itinerary of 

sortilin, with particular attention to plasma membrane targeting. Cell surface sortilin 

levels are tightly regulated, with only 10% of cellular sortilin at the cell surface at a given 

time. It has recently been shown that NRH2 controls cell surface sortilin trafficking, and 

that its overexpression increases sortilin levels at the cell surface and its deficiency 

prevents cell surface sortilin expression39. NRH2 is only weakly expressed in liver, so it 

is possible that it would also become limiting with increasing sortilin expression, 

meaning that the excess sortilin would be unable to traffic to the plasma membrane and 

would instead only be capable of trafficking to the endolysosomal system to drive the 

presecretory lysosomal degradation of VLDL. Our laboratory is currently designing an 

Nrh2 AAV and shRNA to test this attractive hypothesis in vivo. 

Another possible explanation for the reduced secretion seen in sortilin deficient 

mice is that sortilin deficiency leads to ER stress, which Caviglia et al recently showed 

leads to global reductions in protein secretion as well as VLDL secretion90. As sortilin is 

a Golgi to lysosome trafficking receptor and the yeast sortilin homolog VPS10 has been 

shown to play a critical role in quality control, its deficiency would likely result in ER 
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stress due to the missorting of lysosomal enzymes as well as loss of quality control. 

Kjolby et al reported that apoB/VLDL accumulated in the ER of Sort1-/- mice16, and 

accumulation of such a large hydrophobic protein could easily precipitate ER stress. To 

test the hypothesis that Sort1 deficiency is associated with ER stress and that this is 

responsible for the reduced secretion seen in the Sort1-/- mouse, ER stress markers such 

as 78 kDa glucose-regulated protein (Grp78), C/EBP homologous protein (CHOP), and 

eukaryotic initiation factor alpha (eIF2a) phosphorylation can be determined by 

immunoblot in Sort1+/+ and Sort1-/- mice. If there is evidence of ER stress, it could be 

alleviated through treatment with phenylbutyric acid (PBA) and the effect on VLDL 

apoB-100 secretion could be determined.  Based on the model, I would hypothesize that 

PBA treatment should increase VLDL apoB-100 secretion in Sort1-/- mice.  Such studies 

are planned as the project moves forward. 

Interestingly, though our lab and another lab have reported reduced VLDL apoB 

secretion in ‘primary’ Sort1 deficient systems, there have also been a number of reports 

of ‘secondary’ reduced expression of Sort1 being associated with increased apoB 

secretion77-79. All of these systems have compromised autophagy or defects in mTOR 

signaling. It is tempting to speculate that in systems with compromised autophagy such as 

those used in the above studies, the VLDL not chaperoned by sortilin is ultimately 

secreted by a low affinity backup pathway to alleviate cell stress that would undoubtedly 

accrue as a result of the increased intracellular apoB and lack of autophagy mediated 

degradation (Figure 18). I measured apoB secretion from Sort1-/- primary hepatocytes 

treated with the autophagy inhibitors E64d and 3-methyladenine and found that inhibition 
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of autophagy rescues VLDL secretion in Sort1-/- hepatocytes, consistent with a role for 

autophagy in the degradation of VLDL not secreted by sortilin. The autophagy 

hypothesis as a basis for the paradoxical effects of sortilin deficiency on VLDL secretion 

could be tested by using siRNAs to knock down sortilin alone or in parallel with the 

conserved autophagy gene Atg7: the hypothesis is that that Sort1 knockdown alone will 

reduce VLDL secretion whereas Sort1 knockdown in parallel with Atg7 knockdown will 

increase secretion. Complementary studies could also be performed in liver-specific 

Atg7-/- mice. 

 

Figure 18: Compromised apoB autophagy and Sort1 knockdown may increase apoB 

secretion. ApoB undergoes final lipidation in the Golgi. Once completely lipidated, 

VLDL can be bound by sortilin and trafficked to the lysosome or plasma membrane. 

When the two pathways are are blocked in conjuction with autophagy inhibition, a 

backup pathway may secrete apoB or it may buildup in the cell. 

No matter what the exact mechanistic basis, it is clear that sortilin has a complex 

dual role in modulating VLDL secretion. This duality likely serves an evolutionary 

function, with sortilin levels tightly regulated to accommodate the cell’s metabolic needs. 
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Specifically, it is tempting to hypothesize that at low Sort1 expression levels such as 

those seen in obese mice and in systems in which there is a surplus of lipids, sortilin 

serves predominantly as a secretory receptor, facilitating lipid export from cells and 

preventing cellular lipotoxicity. Conversely, when cells are lipid depleted and sortilin is 

upregulated, its predominant function is as an endolysosomal trafficking receptor, 

allowing cells to conserve lipid by trafficking it to the lysosome for catabolism. This 

regulatory cycle also makes evolutionary sense in considering sortilin’s role as a cell 

surface LDL receptor. When lipids are in surplus, sortilin would be downregulated to halt 

cellular uptake of LDL, whereas in the context of cellular lipid depletion sortilin would 

be upregulated to promote LDL uptake from exogenous sources.  

Interestingly, we have demonstrated that sortilin expression is regulated 

differently in the macrophage, with cholesterol loading increasing sortilin protein. Given 

that sortilin is a high affinity cell surface receptor for LDL, this mechanism of cholesterol 

regulation suggests that sortilin on the macrophage could play an important role in 

atherosclerosis development. Indeed, we have shown that sortilin expression in 

macrophages is associated with increased atherosclerosis and that its deficiency in bone 

marrow-derived cells is atheroprotective. Specifically, we have found that sortilin in 

macrophages promotes the development of atherosclerosis by acting as a cell surface 

receptor for LDL, facilitating LDL uptake into macrophages and subsequent foam cell 

formation.  While my bone marrow transplantation studies were unequivocal in their 

atherosclerosis results, further evidence for the important role of macrophage sortilin in 

influencing atherogenesis could be generated by breeding the Sort1 flox/flox mouse with 
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the LysM-Cre mouse to delete sortilin in the macrophage and then performing 

atherosclerosis studies.  These studies were established by me and are currently ongoing 

in our lab. 

Macrophage sortilin plays a critical role in foam cell formation and atherogenesis; 

however, it is probably not the only cell type in which sortilin deficiency modulates 

atherosclerotic disease.  For example, whereas total body Sort1 deficiency resulted in a 

67% reduction in plaque burden, myeloid specific Sort1 deficiency resulted in a 40% 

reduction in atherosclerosis, suggesting a contribution by a non-hematopoetic cell type. 

The Aikawa lab at Harvard recently reported a role for vascular smooth muscle cell 

sortilin expression in atherogenesis92. They found that sortilin was strongly expressed in 

the calcified regions of human atherosclerotic plaques, and that C-terminal sortilin 

phosphorylation promoted smooth muscle cell calcification. Thus, sortilin deficiency in 

vascular smooth muscle cells also appears to be atheroprotective, which may account for 

the difference in protection with total body Sort1 deficiency versus macrophage specific 

Sort1 deficiency. This model could be tested by generating a mouse deficient in Sort1 in 

vascular smooth muscle cells and performing atherosclerosis studies. 

Although there are many currently available therapies that reduce LDL-C (statins, 

ezetimibe) and more in development (PCSK9 antibodies), coronary heart disease is still a 

major cause of morbidity and mortality in the US and around the world. Given the very 

strong human genetics linking sortilin to LDL-C levels and CHD risk coupled with the 

consistent preclinical data that I and others have generated, sortilin is an interesting 

potential novel therapeutic target for reducing LDL-C and risk of CHD.  Determining the 
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molecular mechanisms by which sortilin affects LDL metabolism and atherosclerosis and 

dissecting the nuances of its expression-dependent functions in different tissues will be 

critical before sortilin can be seriously targeted. Overexpression of Sort1 in the human 

liver would be expected to lower plasma LDL-C levels and risk of CHD.  Even though 

gene therapy is booming (as evidenced by the recent initial public offerings of Spark 

Therapeutics, Bluebird Bio, and Avalanche), sortilin will not be an early target for gene 

therapeutic expression.  

One could also imagine a therapeutic benefit to targeting sortilin expression in 

macrophages. Though liver directed therapies would aim to increase Sort1 expression, 

Sort1 inhibition in macrophages would be the preferred approach based on my data. By 

using nanoparticles specifically directed to macrophages, which are cleared by the 

kidneys, the liver could be bypassed enabling macrophage specific Sort1 inhibition.  The 

nanoparticles could deliver small molecule inhibitors, monoclonal antibodies, or genetic 

knockdown or deletion vectors like siRNAs or CRISPR/Cas systems. Much work 

remains to be done to unravel the nuances of the sortilin pathway, and there is much 

discovery to look forward to in the near future. 
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