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Tubular epithelial cells are one of the most abundant cell types in multicellular organisms. Tubular cells
transport gases and liquids, and funnel harmful excretory waste from our bodies. It is clear that Receptor
Tyrosine Kinase (RTK) signaling is essential for the formation of many tubular organs such as our kidneys
and blood vessels. However, which steps in tube development require RTK signaling is less well understood.
The C.elegans excretory system is a primitive renal system with just three essential cells (duct, pore, and canal
cells), providing a simple yet dynamic system to study tube specification and morphogenesis. In the C.elegans
excretory system, we demonstrated that the EGF-Ras-Erk signaling pathway specified the excretory duct tube
versus the pore tube fate. In addition, EGF-Ras-Erk signaling influenced the positions that the duct and pore
cells adopted within the tubular network. And finally, after position and fate determination, EGF-Ras-Erk
signaling had a continued role in maintaining organ architecture of the duct tube. Goals for future research
will be to determine how EGF-Ras-ERK signaling controls these genetically distinct steps during tube
development.

In a separate project, I studied the Nkx5 homeodomain transcription factor, MLS-2, which was identified in a
mutagenesis screen by a former graduate student in the lab. I discovered a role for MLS-2 in promoting proper
cell shape of the duct and pore. mls-2 cooperated with the EGF-Ras-Erk pathway to turn on lin-48/Ovo
during duct morphogenesis. I speculate that MLS-2 and other Nkx5 family members have conserved
functions in promoting shape acquisition in cells that adopt complex morphologies similar to the duct and
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ABSTRACT 

THE EGF-RAS-ERK PATHWAY AND THE NKX-5/HMX HOMEODOMAIN 

PROTEIN MLS-2 PROMOTE TUBE DEVELOPMENT IN THE C.ELEGANS 

EXCRETORY SYSTEM 

Ishmail Abdus-Saboor 

Meera V. Sundaram 

Tubular epithelial cells are one of the most abundant cell types in multicellular 

organisms. Tubular cells transport gases and liquids, and funnel harmful excretory waste 

from our bodies. It is clear that Receptor Tyrosine Kinase (RTK) signaling is essential for 

the formation of many tubular organs such as our kidneys and blood vessels. However, 

which steps in tube development require RTK signaling is less well understood. The 

C.elegans excretory system is a primitive renal system with just three essential cells 

(duct, pore, and canal cells), providing a simple yet dynamic system to study tube 

specification and morphogenesis. In the C.elegans excretory system, we demonstrated 

that the EGF-Ras-Erk signaling pathway specified the excretory duct tube versus the pore 

tube fate. In addition, EGF-Ras-Erk signaling influenced the positions that the duct and 

pore cells adopted within the tubular network. And finally, after position and fate 

determination, EGF-Ras-Erk signaling had a continued role in maintaining organ 

architecture of the duct tube. Goals for future research will be to determine how EGF-

Ras-ERK signaling controls these genetically distinct steps during tube development.  

 In a separate project, I studied the Nkx5 homeodomain transcription factor, MLS-

2, which was identified in a mutagenesis screen by a former graduate student in the lab. I 
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discovered a role for MLS-2 in promoting proper cell shape of the duct and pore.  mls-2 

cooperated with the EGF-Ras-Erk pathway to turn on lin-48/Ovo during duct 

morphogenesis. I speculate that MLS-2 and other Nkx5 family members have conserved 

functions in promoting shape acquisition in cells that adopt complex morphologies 

similar to the duct and pore.  
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Overview  

 A fundamental question in developmental biology is how a single cell can give 

rise to an entire organism. For developmental geneticists, the questions more specifically 

asked are, “What genes and genetic pathways determine cellular identities?” Determining 

cellular identity or fate, was described almost fifty years ago elegantly by Conrad 

Waddington in his ‘ball and hill’ model of the epigenetic landscape. The ‘ball and hill’ 

model shows a ball representing a cell at the top of a hill with many valleys that each 

represent a distinct cell fate (Fig 1.1). When the ball is at the top of the hill, it has the 

ability to adopt multiple fates depending on which valley it descends upon. However, 

once the ball has rolled down the hill and landed in a valley, it cannot go back up the hill 

and choose a different valley, or cell fate. Though researchers can now take the ball back 

up the hill and reverse cells into a multi-potent, or stem-cell like fate, the basic ‘ball and 

hill’ model still holds true. Cells are guided down hills to distinct valleys by genetic 

pathways that specify unique cellular fates.  

 After a cell has passed the ‘point of no return’ and committed to a fate, additional 

genetic inputs are needed for the cell to reach its fully functional state. For example, in 

the case of a neuron, after fate specification many processes occur including dendrite 

arborization and axon elongation. Following morphogenesis, neurons form connections 

with neighboring cells by innervating target muscles or forming synapses with other 

neurons. The relationship between fate specification and morphogenesis of neurons and 

other cells, such as epithelial cells, is poorly understood.  
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 Both vertebrate and invertebrate model organisms have been used to address the 

question of how cell fate specification and morphogenesis are coupled; many of the genes 

and genetic pathways have been identified using model organisms. With completed 

genome sequences of most model organisms, we now know that most genes are shared 

between organisms (Barr, 2003). Although we appreciate that signaling cascades such as 

the Receptor Tyrosine Kinase pathway are critical for numerous developmental processes 

including tubular organ formation, how signaling controls these processes, in many 

instances, is largely unknown. In the remainder of the introduction I will use tubular 

epithelial cells as a model and highlight what we know about specification and 

morphogenesis of these cells.  I will end the introduction by describing the C.elegans 

excretory system, and thus demonstrating how a simple system of just three cells can 

provide insight into building a network of epithelial tubes.   

 

Building a tube 

Biological tubes are highly polarized cells that are responsible for transporting 

blood, excretory fluid, and essential gases. Tubes range in size from less than a micron in 

insect tracheal tubes to greater than 20 centimeters in the gut of an elephant (Lubarsky 

and Krasnow, 2003). Building a tube is an intricate process that requires several steps 

depending on the type of tube that is formed. Some tubes are formed by numerous cells 

making a single hollow lumen and forming a multicellular tube (Lubarsky and Krasnow, 

2003). Other kinds of tubes can be unicellular, with just a single cell making a tube with a 
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hollow lumen (Lubarsky and Krasnow, 2003). All tubes generate a lumen apically, that 

serves as the location for the transport of fluid and gas. A number of models exist, both in 

vitro and in vivo, that explain how the lumen within a tube is formed (Andrew and Ewald, 

2010; Lubarsky and Krasnow, 2003). In addition, tubes do not exist in isolation, but 

rather, they connect to neighboring tubular cells via junctional proteins that are conserved 

across species (Bryant and Mostov, 2008; Goldstein and Macara, 2007). The junctions 

that attach tubular cells together are remodeled to resist tension, to facilitate the exchange 

of cells into and out of the tubular network, and also to allow for cell elongation (Acloque 

et al., 2009; Baum and Georgiou, 2011; St Johnston and Sanson, 2011). 

Types of tubes  

Biological tubes are classified as either multicellular or unicellular, based on their 

cellular architecture (Fig 1.2). Multicellular tubes are the most common form of tubes 

found within vertebrate tubular organs (Lubarsky and Krasnow, 2003). A cross section 

through a multicellular tube reveals numerous cells connected by intercellular adherens 

junctions and forming a single hollow lumen (Lubarsky and Krasnow, 2003). The 

Drosophila trachea is arguably the most extensively studied model system for tube 

development. Large scale screens have been performed since the 1980s to reveal genes 

necessary to specify the trachea (Jurgens et al., 1984), while more recent screens have 

identified genes that promote tracheal morphogenesis (Ghabrial et al., 2011). The 

Drosophila trachea has been an attractive system because it contains a combination of 

both multicellular tubes in the dorsal trunk of the trachea, and unicellular tubes in the 

terminal cells of the trachea (Schottenfeld et al., 2010).  



5 
 

Unicellular tubes are sub-divided into two distinct classes and are found in a 

variety of organs across species. One type of unicellular tube has an autocellular adherens 

junction that seals the tube along its axis (Lubarsky and Krasnow, 2003). The other type 

of unicellular tube lacks an autocellular adherens junction and have thus been termed 

‘seamless’(Bar et al., 1984).  Unicellular tubes are prevalent in the terminal ends of 

mammalian capillaries that transport blood into the brain and kidney (Bar et al., 1984). 

Interestingly, several in vitro and in vivo observations suggest that unicellular tubes may 

be the precursors to larger multicellular tubes (Blum et al., 2008; Folkman and 

Haudenschild, 1980; Kamei et al., 2006). The seamless unicellular tubes in Drosophila 

terminal cells form branches and connect to neighboring tissues to supply oxygen 

(Schottenfeld et al., 2010). All three cells of the C.elegans excretory system, described in 

detail below, are examples of unicellular tubes.   

Tube Polarization and Lumen Formation 

Tubes are highly polarized cells with an apical surface apposed to a hollow lumen 

and a basal surface contacting an underlying basement membrane and extracellular 

matrix (ECM) (Bryant and Mostov, 2008). Basal surfaces contain integrins, 

dystroglycans, and proteoglycans, which act as basal ECM receptors to link the 

epithelium to the underlying cytoskeleton (Bryant and Mostov, 2008). Apical surfaces are 

composed of heavily glycosolated transmembrane proteins such as zona-pellucida 

proteins, that can reorganize the apical organization of cells during morphogenesis (Plaza 

et al., 2010). Some apical epithelial surfaces are specialized for various types of 

absorption and secretion (Bryant and Mostov, 2008). For example, the duct and pore 
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tubes in the C.elegans excretory system secrete collagen apically into the lumen (Nelson 

and Riddle, 1984), while chitin is secreted apically into the lumen of the Drosophila 

trachea (Devine et al., 2005). Most studies of epithelial integrity have focused on the role 

of the basal ECM (Berrier and Yamada, 2007). However, recent studies from our lab 

have shown that leucine-repeat proteins that localize to the apical ECM can affect the 

integrity of the underlying cell-cell junctions between tubular epithelial cells (Mancuso et 

al., 2012).  

Epithelial cells form tubes from existing polarized tissue by either wrapping or 

budding (Figure 1.3 A,B) (Andrew and Ewald, 2010; Lubarsky and Krasnow, 2003).  

Both wrapping and budding are driven by apical constriction, a cell shape change that 

leads to invagination of the apical side of an epithelium (Sawyer et al., 2010). With 

wrapping, the newly formed tube folds inward and eventually separates from the original 

epithelium by a fusion mechanism (Andrew and Ewald, 2010).  One example of a tube 

that forms by wrapping from pre-existing polarized tissue is the vertebrate neural tube 

primordium during a process called primary neurulation (Schoenwolf and Smith, 1990). 

During vertebrate primary neurulation, hingepoint cells in the neuroepithelium apically 

constrict to cause bending that leads to wrapping of the neural tube (Sawyer et al., 2010). 

Two of the three cells of the C.elegans excretory system (duct and pore) also form by 

wrapping – not from a polarized epithelium, but from non-polarized precursor cells 

(described below).   

An example of a fusion step following wrapping is found in two unicellular 

epithelial tubes of the C.elegans digestive tract, named pm8 and vpi1 (Albertson and 
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Thomson, 1976; Rasmussen et al., 2008).  pm8 is the terminal most cell in the C.elegans 

foregut, and vpi1 attaches to pm8 as the foremost cell in the valve, which connects the 

foregut to the intestine. Both pm8 and vpi1 form by wrapping from an initially polarized 

epithelium (Albertson and Thomson, 1976; Rasmussen et al., 2008). pm8 expresses the 

fusogen protein aff-1 in a Notch dependent manner, while vpi1 expresses a different 

fusogen named eff-1(Rasmussen et al., 2008). EFF-1 and AFF-1 are fusogen proteins 

found in C.elegans that can fuse heterologous cells and also promote viral insertion when 

expressed on the surface of viruses (Avinoam et al., 2011; Podbilewicz et al., 2006; Sapir 

et al., 2007).  Following wrapping pm8 and vpi1 both have an autocellular junction which 

is then fused via aff-1 in pm8 and eff-1 in vpi1(Rasmussen et al., 2008). Interestingly, 

because both cells express a different fusogen they do not fuse to each other. The duct 

cell of the C.elegans excretory system forms by a similar wrapping and fusion process 

(Stone et al., 2009)(see below).   

The second method of epithelial tube formation from a pre-existing epithelium is 

budding.  Epithelial cells that invaginate and bud from an existing epithelium remain 

contiguous with the original epithelium (Andrew and Ewald, 2010). The Drosophila 

trachea forms from pre-existing polarized tissue budding off of an existing parental 

branch to form an epithelial sac (Brodu and Casanova, 2006; Metzger and Krasnow, 

1999). Just hours later after the initial invagination, primary and secondary branches bud 

and migrate out from the epithelial sacs (Ghabrial et al., 2003).  During larval 

development hundreds of terminal branches will extend from the secondary branches to 

provide oxygen to neighboring tissues (Ghabrial et al., 2003).  
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Epithelial cells form tubes from non-polarized precursors by two related 

hollowing mechanisms (Andrew and Ewald, 2010; Lubarsky and Krasnow, 2003). Cord 

hollowing occurs when multiple cells polarize and form lumen at sites of apical 

membrane contact. The lumena from multiple cells then coalescence into a single lumen.  

(Andrew and Ewald, 2010; Lubarsky and Krasnow, 2003) (Fig 1.3 C). Examples of tubes 

that form by cord hollowing are found during formation of the zebrafish gut (Bagnat et 

al., 2007) and during secondary neurulation in the chick and mouse embryo (Schoenwolf, 

1984; Schoenwolf and Delongo, 1980). Related to cord hollowing is the process of cell 

hollowing whereby small vesicles coalescence to form a lumen within a single cell 

(Andrew and Ewald, 2010; Lubarsky and Krasnow, 2003) (Fig 1.3 D). During cord 

hollowing the lumen is initially formed extracellularly by fusion of vesicles with the 

plasma membrane, while in cell hollowing the fusion of vesicles occurs within the cell 

(Andrew and Ewald, 2010; Lubarsky and Krasnow, 2003).  

 Cavitation is the third way to generate a polarized tube from non-polarized cells 

(Andrew and Ewald, 2010; Lubarsky and Krasnow, 2003). Cavitation occurs when the 

cells on the periphery of an epithelium initiate de novo polarization, while the cells in the 

interior undergo apoptosis to create a hollow lumen (Andrew and Ewald, 2010; Lubarsky 

and Krasnow, 2003) (Fig 1.3 E). The apoptosis of the interior cells does not appear to 

initiate polarization, but rather promotes clearance and maintenance of the interior lumen 

(Andrew and Ewald, 2010; Lubarsky and Krasnow, 2003)(Debnath et al., 2002, Martín-

Belmonte et al., 2008). Examples of tube formation by cavitation can be found during 

mammalian salivary gland development (Borghese, 1950; Melnick and Jaskoll, 2000). 
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Tube elongation 

 Several strategies exist that facilitate the elongation of tubular epithelial cells 

including cell rearrangements, cell division, cell recruitment, and changes in cell shape 

(Andrew and Ewald, 2010). Cell division and cell recruitment invoke the addition of cells 

to the elongating tube, while cell rearrangement and cell shape change do not change the 

number of cells in the tube, but rather the architecture of the cells. The Drosophila 

trachea elongates after the initial invagination by changes in cell shape accompanied by 

cell migration (Andrew and Ewald, 2010). At stage 11, the first indications of tracheal 

invagination can be observed with the apical marker PKC (Brodu and Casanova, 2006). 

As the cells begin to invaginate, the cells at the apical surface change shape by pinching 

towards the newly formed apical surface (Brodu and Casanova, 2006). By mid stage 11, 

the trachea tube has elongated and concomitant with the cell shape changes is a 

movement of the cells from the dorsal side to form a new layer of cells below the 

epidermal surface (Brodu and Casanova, 2006). The invagination with accompanied cell 

shape changes in the Drosophila trachea requires Epidermal Growth Factor Receptor 

(EGFR) signaling (Brodu and Casanova, 2006; Cela and Llimargas, 2006; Nishimura et 

al., 2007; Samakovlis et al., 1996). C.elegans excretory tube development also involves 

changes in cell shape, without cell division (see below). 

 

Receptor Tyrosine Kinase (RTK) signaling specifies tube fates 
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Congenital anomalies of the kidney and urinary tract (CAKUT) are amongst the 

most common human birth defects (Song and Yosypiv, 2011). With aberrant RTK 

signaling often associated with cases of CAKUT (Song and Yosypiv, 2011), a better 

understanding of how RTK signaling promotes tube development in the kidney and other 

tubular organs is critical for human health. RTK signaling promotes tubulogenesis in 

numerous tubular organs, from the mammalian kidney to the protonephridial tubules of 

the planarian flatworm (Costantini, 2010; Rink et al., 2011). RTK stimulation can even 

drive the assembly of MDCK cells into tubes in three-dimensional matrix gels (Pollack et 

al., 1998). In addition, RTKs are involved in numerous development processes including 

proliferation, survival, and migration (Blume-Jensen and Hunter, 2001; Schlessinger, 

2000). While targets of RTK signaling during cell proliferation are known, such as the 

HMG box protein Cic (Tseng et al., 2007), the downstream effectors of RTK signaling 

involved in tube development are largely unknown.  

RTK signaling consists of ligands binding to dimerized RTK receptors, which 

then undergo autophosphorylation on specific tyrosine residues. Following 

autophosphorylation, RTKs interact with adaptor proteins that activate guanine 

nucleotide exchange factors that exchange GDP for GTP on the Ras GTPase at the 

plasma membrane. Ras activation initiates an intracellular kinase cascade that results in 

the terminal kinase in the pathway translocating to the nucleus to mediate transcription 

(see Fig 1.4 for example of an RTK pathway). One of the most appreciated roles for RTK 

signaling during tube development is to specify ‘leader’ or tip cells, versus ‘follower’ or 

stalk cells.  
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GDNF signaling in the mammalian kidney 

The kidney is a collection of cells including  blood vessels, thousands of 

nephrons, and a collective duct system that transports urine from nephrons to the bladder 

(Costantini, 2010).  Interactions between epithelial cells and surrounding mesenchymal 

cells are critical for proper patterning of the kidney. Development of the kidney is 

initiated when the Wolfian Duct (WD) forms from the intermediate mesoderm 

(Costantini and Shakya, 2006).  Subsequently, the Ureteric Bud (UB), a component of the 

immature kidney will grow out from one specific region of the WD (Costantini and 

Shakya, 2006). The UB is not a part of the mature kidney, but gives rise to components 

that are, including the epithelium of the collecting ducts, calyces, pelvis, and the ureter 

(Costantini, 2010). Under control from signals from the surrounding mesenchyme, the 

UB epithelium will continue to branch to give rise to a highly branched and mature 

kidney (Costantini and Shakya, 2006). What controls the initial outgrowth of the UB has 

been an area of intense research over the past ten years. Studies mainly from the 

Costantini lab have shown that the TGF-b family member, glial cell-line-derived 

neurotrophic factor (GDNF) specifies which cells will grow out from the WD to form the 

UB tube.  

The growth factor GDNF binds to the RTK Ret during UB development. In both 

Ret and GDNF -/- mice, the UB fails to form (Moore et al., 1996; Schuchardt et al., 

1994). In an elegant chimeric assay, the Costantini lab implanted GFP labeled Ret -/- ES 

cells (green) into a wild type blastocyst with wild type cells labeled with CFP (blue). At 

the beginning of UB outgrowth around E9.5 green and blue cells were equally distributed 
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across the WB. However, one day later at E10.5 as the UB tube grew out from the WB, 

only blue wild type cells incorporated the tip cells of the UB, while the green Ret -/- cells 

followed and made the stalk cells of the UB. When Ret -/- cells were implanted into a 

blastocyst of Ret hypomorph cells, the Ret -/- cells could sometimes adopt a tip cell fate 

(Chi et al., 2009). Together these data showed that the cells that express the highest 

amount of the Ret RTK were more competent to respond to the GDNF ligand and out-

compete other cells to adopt a tip cell fate. Thus RTK signaling promotes the tip versus 

stalk cell fate in the developing kidney. The tip cell is of great importance in generating a 

functional kidney, as future branches will extend from the tip cells.   

How does signaling through Ret RTK specify the tip versus stalk cell fate? Two 

Ets transcription factors etv-4 and etv-5 are targets of Ret signaling that appear to 

contribute to the tip cell decision (Kuure et al., 2010b). etv-4 and etv-5 have similar 

expression patterns as Ret, they can be up-regulated by providing exogenous Ret, and  

etv-4, etv-5 -/- mice lack kidneys (Lu et al., 2009). The Costantini lab once again 

performed chimeric studies with GFP labeled etv-4,etv-5 -/- ES cells (green) and 

implanted them into a CFP labeled wild type blastocyst (blue). At early embryonic stages 

the WD had an equal distribution of green and blue cells. However, as the UB grew from 

the WB at E10.5, the blue wild type cells out-competed the trailing etv-4,etv-5 -/- cells to 

encompass the tip domain similar to Ret -/- cells (Chi et al., 2009; Kuure et al., 2010b). 

These data combined with previous studies suggest that the Ret RTK pathway promotes 

fate specification in the developing kidney by turning on two Ets family transcription 

factors.  
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FGF signaling in the Drosophila trachea 

 The Drosophila trachea begins formation by invaginating from an already 

polarized epithelium at early stage 11(Ghabrial et al., 2003). The Fibroblast Growth 

Factor (FGF) Branchless signals from outside of the trachea to activate the FGFR 

Breathless to pattern the trachea with numerous branched tubes (Ghabrial et al., 2003; 

Klambt et al., 1992; Lee et al., 1996; Shishido et al., 1993; Sutherland et al., 1996). After 

responding to the Breathless growth factor and migrating, tip cells of the trachea pull the 

rest of the cells in the branch along (Sutherland et al., 1996). Analogous to observations 

made in the developing kidney, FGFR signaling in the developing Drosophila trachea 

biases which cells will be specified as leading tip cells.  

 In 2006, in elegant mosaic screen was performed by Amin Ghabrial, Mark 

Krasnow, and others in which they recovered mutants that were able to occupy every 

tracheal position except the terminal tip cell position (Ghabrial and Krasnow, 2006). Six 

of the mutations, either missense or nonsense mutations, all mapped to the breathless 

FGFR (Ghabrial and Krasnow, 2006). In a separate screen a weak loss-of-function allele 

of breathless was identified that allowed flies to grow up unlike the null alleles of 

breathless (Ghabrial and Krasnow, 2006). Even though the weak allele of breathless 

retained some breathless activity, the breathless hypomorphic cells were always 

outcompeted for the tip cell fate by cells with higher levels of breathless (Ghabrial and 

Krasnow, 2006). Therefore the cells with the highest Breathless activity were specified as 

tip cells, while the cells with lower Breathless activity were specified as follower or stalk 

cells. Additionally, the Krasnow lab was able to demonstrate that lateral inhibition 
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mediated by Notch signaling occurs during tip cell migration (Ghabrial and Krasnow, 

2006). After high Breathless signaling specifies the tip cell fate, the tip cell signals via 

Notch to the trailing cells to reinforce their tip cell fate, and assure that the follower cells 

do not try to take their position.  

VEGF signaling during angiogenesis 

 Angiogenesis, the process of growing new blood vessels, is an essential process 

during mammalian development. Angiogenesis is the sprouting of new capillaries from 

pre-existing endothelial blood vessels (Ferrara et al., 2003), and not the initial formation 

of blood vessels, which is known as vasculogenesis. Over $4billion USD have been 

invested into research and medications that either promote or restrain angiogenesis, 

making angiogenesis one of the most funded areas of medical research (DeWitt, 2005). 

Since its discovery in the early 1980s, the vascular endothelial growth factor (VEGF) has 

emerged as the most important regulator of angiogenesis (Ferrara et al., 2003).  Targeted 

deletion of one or both alleles of VEGF-A in mice results in E11 embryonic lethality and 

a failure to induce angiogenesis (Carmeliet et al., 1996). VEGF is a potent stimulator of 

new blood vessel formation. However, only a subset of tip cells respond to the VEGF cue 

to form a new tube from the parental vessel (Eilken and Adams, 2010). 

 Tip cell versus stalk cell fate specification during angiogenesis is similar to the 

two previous examples discussed in the kidney and trachea. Neighboring endothelial cells 

initially express the Notch ligand DII4 at similar levels (Eilken and Adams, 2010). Upon 

stimulation by VEGF, one cell preferentially expresses the Notch ligand DII4 at higher 
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levels than its neighbor (Eilken and Adams, 2010). The neighbor with high Notch ligand 

expression will turn on the Notch pathway in its neighbor (Eilken and Adams, 2010). In 

the neighbor with the Notch pathway activated, VEGFR2 and VEGFR3 will be 

downregulated (Hellstrom et al., 2007; Suchting et al., 2007; Tammela et al., 2008), thus 

establishing a bias with one neighbor having higher VEGF levels than the other and 

adopting a tip cell fate. VEGF signaling specifies the tip cell versus stalk cell during 

angiogenesis after Notch signaling creates a bias to determine which cell will be more 

competent to respond to VEGF.  

Roles for genes downstream of RTK signaling after tip cell fate specification 

 Genes that act downstream of RTK signaling, as either targets or parallel 

effectors, can also promote tip cell differentiation and tubular branching. In the 

mammalian kidney GDNF/RET signaling specifies the tip cell fate of the ureteric bud 

and promotes ureteric branching (Costantini, 2010). A combined loss of the highly 

similar transcription factors, Sox8 and Sox9, results in ureteric branching defects similar 

to GDNF-/- mice (Reginensi et al., 2011). Sox-8/9 do not promote RET signaling, nor are 

they targets of RET signaling (Reginensi et al., 2011).  However, expression of key 

GDNF/RET target genes that are turned on in the tip cell, including the Ets factors etv-4 

and etv-5, are not maintained in a Sox-8/9 mutant background (Reginensi et al., 2011). 

Thus, tip cell identity is not maintained in a Sox-8/9 background, leading to later defects 

in ureteric branching. The GDNF/RET and Sox-8/9 cooperation on target genes such as 

etv-4/5 promotes branching downstream of tip cell specification.  
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 Actin depolymerizing factors (ADFs) are also required downstream of 

GDNF/RET during ureteric branching. A combined loss of the ADFs cofilin1 (Cfl1) and 

destrin (Dstn) results in arrested ureteric branching in the mouse kidney (Kuure et al., 

2010a).  Loss of these ADFs results in an abnormal accumulation of F-actin and irregular 

cell shapes of the ureteric bud epithelial cells (Kuure et al., 2010a). Interestingly, 

expression of these two ADFs is not controlled by RET signaling and adding exogenous 

GDNF cannot rescue the branching defects (Kuure et al., 2010a). Thus, Cfl1 and Dstn 

likely act in parallel to GDNF to promote ureteric branching through direct regulation of 

the actin cytoskeleton.  

 In the Drosophila trachea, the Ets factor pointed is a downstream effector in the 

FGFR signaling pathway.  While cells mutant for the breathless FGFR are never 

specified as tip cells, pointed -/- cells can occupy the tip cell position, suggesting that 

breathless promotes initial tip cell specification independent of pointed (Ghabrial and 

Krasnow, 2006).  However, when pointed -/- cells adopt the tip cell position, the tip cell 

is not able to differentiate as a tip cell (Ghabrial and Krasnow, 2006). It is not clear how 

genetically separable tip cell specification versus position are in the trachea. These data 

do suggest that some aspects of tip cell differentiation, downstream of fate specification, 

are controlled by breathless and pointed.  After tip cell specification and differentiation, 

the trachea undergoes substantial branching. Both breathless and pointed promote branch 

migration thru transcriptional regulation of the Dpp pathway effectors, Knirps and 

Knirps-related (Myat et al., 2005). Thus, FGFR signaling promotes some aspects of 

differentiation after tip cell specification, thru the Ets transcription factor pointed. 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Drosophila serum response factor, or pruned, also acts downstream of FGFR 

signaling during tracheal branching morphogenesis (Gervais and Casanova, 2011).  In 

pruned mutants, elongation of terminal branches is blocked, but terminal cells are still 

specified (Gervais and Casanova, 2011). FGFR signaling induces pruned expression, 

suggesting that FGFR mediated regulation of pruned drives terminal cell elongation. 

However, overexpressing the FGF ligand branchless produces normal terminal branch 

differentiation in the absence of pruned (Gervais and Casanova, 2011). Conversely, 

overexpressing pruned cannot drive terminal branch differentiation in the absence of 

FGFR signaling (Gervais and Casanova, 2011). The model that has emerged is that tip 

cell specification is independent of pruned, and pruned is utilized by the FGFR pathway 

but not absolutely required for branching elongation and progression.   

 In these three examples from distinct tubular organs (kidney, blood vessels, 

trachea), it is clear that RTK signaling has a very early role in specifying the leading tip 

cells of a newly forming tube.  RTK signaling can also promote later aspects of tube 

development in collaboration with other genes. Understanding more about the later roles 

of RTK signaling in tubulogenesis and how signaling promotes these steps is an area of 

ongoing research.  

 

The Nkx5/HMX family of transcription factors 

 The Nkx5/HMX gene family is present throughout the animal kingdom, ranging 

from fruit flies to humans. In fact the first family member, TgHbox5, was identified in sea 
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urchins (Wang et al., 1990).  Most members of the Nkx5/HMX family are expressed in 

the developing central nervous system and sensory organs (Gongal et al., 2011; Martinez 

and Davidson, 1997; Wang et al., 2000). Consistent with nervous system expression, 

mice and humans with loss-of-function mutations in Nkx5/HMX genes display nervous 

system related abnormalities (Schorderet et al., 2008; Wang et al., 2004).  However, only 

a few targets have been identified for Nkx5/HMX family members, leaving the precise 

function of this family of transcription factors elusive. 

Family present in wide range of species 

 Members of the Nkx5/HMX gene family can be found in sea urchins, fruit flies, 

mice, rats, chicks, worms, zebrafish, and humans  (Fig 1.5) (Adamska et al., 2000; 

Adamska et al., 2001; Bober et al., 1994; Deitcher et al., 1994; Herbrand et al., 1998; 

Martinez and Davidson, 1997; Rinkwitzbrandt et al., 1995; Shaw et al., 2003; Stadler et 

al., 1995; Stadler et al., 1992; Stadler and Solursh, 1994; Wang et al., 1990; Wang et al., 

2000; Yoshiura et al., 1998). The founding member of the family, TgHbox5, was shown 

to have at best ~60% identity with the homeodomain from other homeodomain proteins 

(Wang et al., 2000), while all members of the Nkx5/HMX family have a nearly identical 

homeodomain sequence. Early investigations revealed that family members from human, 

mouse, and chick had similar expression profiles during development in the central and 

peripheral nervous system (Bober et al., 1994; Rinkwitzbrandt et al., 1995; Stadler et al., 

1995; Stadler and Solursh, 1994; Wang et al., 1998; Yoshiura et al., 1998). The reported 

phenotypes of Nkx5/HMX family members to date are predominantly nervous system 

related, consistent with the expression patterns of most family members.  
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Lessons learned from HMX genes in vertebrates 

With a lack of targets or known binding partners of Nkx5/HMX family members, 

the precise function of the family remains obscure. However, phenotypic analysis of hmx-

1 and hmx-2;hmx-3 double mutants from vertebrate models has provided some insight. 

Hmx-1 or dumbo mutant mice have a ventrolateral displacement of the ears, which may 

be caused by malformation of the gonial or squamous temporal bones which are both in 

close proximity to the external ear (Munroe et al., 2009). Humans with mutations in 

HMX1 have similar defects as hmx-1 mice, with deformations and aplasia in the external 

ear (Schorderet et al., 2008). It has been speculated that polymorphisms in HMX1 may 

lead to variable external ear phenotypes (Munroe et al., 2009). However, it remains 

unclear how HMX1 could be promoting normal placement of the ears.  

In mice at E11.5, Hmx2 and Hmx3 are all expressed in the entire vestibular 

portion of the otic vesicle (Wang et al., 2004). The pear-shaped otic vesicle is a highly 

specialized sensory organ that elongates and divides into a dorsal vestibular region and a 

ventral cochlear region (Fekete, 1999).  hmx-2;hmx-3 double null mice present with a 

variety of defects, including a complete loss of the auditory/otic vesicle (Wang et al., 

2004).  It is not clear if the loss of the otic vesicle in hmx-2/3 null mice is a fate 

specification defect or a differentiation defect.  The Drosophila HMX gene, which is 

expressed in the fly nervous system, can completely rescue the otic vesicle phenotype of 

hmx-2/3 null mice, suggesting that family members across species have highly conserved 

functions (Wang et al., 2004).  
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Interestingly, a combined knockdown of  hmx-2 and hmx-3 in zebrafish leads to 

similar ocular differentiation defects observed in hmx-2/3 null mice (Feng and Xu, 2010). 

Also subsets of hmx-2/3 zebrafish morphants have small and misshapen ventral ganglia. 

In the zebrafish anterior otic vesicle a feedback loop exist whereby FGF signaling turns 

on expression of hmx-2/3, and subsequently hmx-2/3 is required to maintain expression of 

FGF ligands (Feng and Xu, 2010).  hmx-2/3 is also required to turn on the transcription 

factor Pax-5 for further development of zebrafish sensory hair cells (Feng and Xu, 2010). 

This is one of only a few examples showing the Nkx5/HMX family to act in 

transcriptional activation. However, pax-5 morphants are largely wild type, and 

expression of Pax-5 RNA cannot rescue hmx2/3 morphants (Feng and Xu, 2010). 

Therefore additional targets must exist that explain the mouse and zebrafish ocular 

defects. The role of C.elegans MLS-2 in the excretory system (described in Chapter 

Three) may provide valuable insight into the mechanism of action of the HMX/Nkx5 

gene family in vertebrates.   

MLS-2, a C.elegans Nkx5/HMX family member 

The first reported role for MLS-2 in C.elegans was during post-embryonic 

development of the non-essential M lineage (Jiang et al., 2005). In the M lineage, MLS-2 

is important for cell fate specification and cell proliferation. MLS-2 promotes expression 

of the C.elegans MyoD protein HLH-1 during coelomocyte fate specification in the M 

lineage (Jiang et al., 2005). In addition, MLS-2 requires the cell cycle regulator CYE-1 

for its role in cell proliferation in the M lineage (Jiang et al., 2005).  
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Most members of the Nkx5/HMX family have the HMX motif 

[A/S]A[E/D]LEAA[N/S] located immediately downstream of the homeodomain (Wang 

and Lufkin, 2005; Yoshiura et al., 1998). However, MLS-2 and its closest relative, the 

chick SOHo1 protein lack the HMX motif (Deitcher et al., 1994). The significance of 

MLS-2 lacking the HMX motif is unclear, as no role has been assigned for the HMX 

motif.  

Like other Nkx5/HMX family members, MLS-2 has roles in nervous system 

development. MLS-2 is expressed predominantly in neurons and glial cells (see Chapter 

Three), and MLS-2 is required for differentiation and morphogenesis of the AWC 

chemosensory neurons and the CEP sheath glial cells (Kim et al., 2010; Yoshimura et al., 

2008). The AWC left and right neurons are a pair of amphid sensory neurons required to 

chemotax to volatile odors (Bargmann et al., 1993). The AWC neurons have an elaborate 

shape with elongated cilia that are buried within a sheath and are not directly exposed to 

the outside environment like other chemosensory neurons in C.elegans (Ward et al., 

1975). CEH-36 promotes AWC identity (Lanjuin et al., 2003), and MLS-2 turns on 

expression of CEH-36 in the AWC neuron (Kim et al., 2010). The AWC neuron is not 

converted to an alternate fate in mls-2 mutants and most AWC specific genes are not 

expressed due to loss of CEH-36 expression (Kim et al., 2010). MLS-2 is also expressed 

in the CEP sheath glial cell (Yoshimura et al., 2008).  The CEP sheath glial cells 

envelope the C.elegans nerve ring, which is considered the worm’s brain, and sends 

processes to some synaptic sites in the brain (Ward et al., 1975).  mls-2 disrupts ventral 

glia cell differentiation and terminal markers for the ventral CEP sheath glial fate are not 
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expressed in mls-2 mutants (Yoshimura et al., 2008). Thus mls-2 promotes differentiation 

of these two elongated cell types, the AWC neuron and the CEP sheath glia cell. 

However, the targets that act downstream of MLS-2 besides other transcription factors, to 

promote morphogenesis, are unknown.  

 

The C.elegans excretory system 

The C.elegans excretory system is a simple model to investigate how a tubular 

epithelial network is made and maintained.  The excretory system is the worm’s primitive 

renal-like system and is required for fluid waste expulsion (Buechner, 2002; Nelson et al., 

1983; Nelson and Riddle, 1984). All of the cells of the excretory system (the canal, duct, 

and pore cells) are unicellular tubes that connect in tandem via apico-lateral junctions 

(Fig 1.6). The canal cell is the largest cell in the worm and appears to collect fluid waste 

(Buechner, 2002). The canal cell is a large H-shaped cell with its nucleus at the anterior 

of the worm and four hollow canals that extend down the lateral side of the worm 

(Buechner, 2002). The duct and pore cells are smaller epithelial tubes that connect the 

canal cell to the outside environment. The duct and pore cells are lineal homologs and are 

initially equivalent precursor cells (Sulston et al., 1983). Several hours after fertilization 

all three cells have adopted distinct fates and formed into tubular epithelial cells from 

non-epithelial precursor cells. 

 The canal and duct are required for survival of the worm, and animals that lack 

either of these cells die during the first larval stage with a fluid filled rod-like phenotype 



23 
 

(Nelson and Riddle, 1984).  In addition, mutants with physiological defects in the 

excretory system also die during the first larval stage with the rod-like phenotype 

(Liegeois et al., 2007). Over the years, our lab has performed forward and reverse genetic 

screens to find new genes involved in excretory system development, using the rod-like 

lethal phenotype as an easy ‘read-out’ for new mutants. For example, the lab has 

identified genes involved in fate specification of the duct cell (Abdus-Saboor et al., 2011; 

Howard and Sundaram, 2002)(Abdus-Saboor et al. 2012, submitted), lumen connectivity 

between the duct and pore cells (Stone et al., 2009), and maintenance of junction 

connectivity between the duct and pore (Mancuso et al., 2012). The forward mutagenesis 

screens performed by the lab have not been saturated; therefore more genes are likely to 

be discovered from future screens.  

Simple yet dynamic tubular network 

 Unlike complex multicellular tubes that may contain hundreds of cells, the 

C.elegans excretory system only contains three main cells, allowing visualization of tube 

development with single cell resolution. Despite the simplicity in the number of cells, the 

excretory system undergoes similar processes that more complex tubular organs undergo 

such as mesenchymal-to-epithelial transition or MET. The cells of the excretory system 

are polarized like other tubular epithelial cells. However, at the early pre-enclosure 

embryonic stage the duct and pore cells are mesenchymal-like with no associated 

junctions. At the pre-enclosure stage, the duct precursor cell is on the left side of the 

embryo, while the pore precursor is on the right side (Sulston et al., 1983). Several hours 

later by the 1.5-fold stage of embryogenesis, the precursors have migrated to the ventral 
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midline and stacked on top of each other (Stone et al., 2009; Sulston et al., 1983). Also by 

the 1.5-fold stage both the duct and pore have formed junctions with themselves and 

neighboring cells (discussed in further detail in Chapter Two). The signal(s) that initiates 

the MET of the duct and pore is unknown.  

Tubulogenesis can also be reversible; that is tubular epithelial cells can undergo 

an epithelial-to-mesenchymal transition, or EMT, and withdraw from the tube. 

Approximately seven hours after the embryo hatches, the G1 pore cell withdraws from 

the excretory system (Jean Parry, personal communication; Sulston et al., 1983). As the 

G1 pore migrates away from the excretory system, it goes back into the cell cycle and 

divides to give rise to two neurons (Sulston et al., 1983).  A neighboring epithelial cell, 

named G2 moves in and replaces the embryonic G2 pore (Sulston et al., 1983). During 

the ‘pore swap’, the duct must release its junction from the G1 pore and form new 

junctions with the G2 pore. The ‘G1-to-G2 pore swap’ is a remarkable example of 

neuronal specification, and also of single cell EMT. The factors which promote or 

restrain the G1 pore EMT remain to be identified.  

Three tubes with three distinct ways to form a lumen 

 The cells of the excretory system are unicellular tubes that generate a lumen by 

either wrapping or hollowing. Shortly after birth of the canal cell during early 

embryogenesis, a lumen begins to form in the canal cell (Buechner, 2002). Previous 

reports suggested that small vacuoles appear in the canal cell body and coalesce, forming 

an apical lumen within the canal (Buechner, 2002). However, studies from our lab 
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suggest that canal lumen formation begins at the canal-duct junction, and presumably 

continues via an inward growth mechanism (Stone et al., 2009). At this time a thick 

material can be visualized in the immature canal cell lumen by electron microscopy 

(images at www.wormatlas.org).  By the time the embryo hatches the previous electron 

dense material in the canal is replaced by a new electron dense material (Buechner, 

2002). The new electron dense material in the canal at hatch is likely related to the canal 

beginning to function as an osmoregulatory organ (Buechner, 2002). 

 In 1999 Matthew Buechner performed a screen where he identified 12 mutants 

(exc1-9, let-4, let-653, and sma-1) with large fluid-filled cysts accumulating in the canal 

cell lumen (Buechner et al., 1999).  Interestingly, most of the canal cystic mutants are not 

organismal lethal. Since the initial screen, work from the Buechner lab and others have 

shown that the exc genes encode ion channels and their regulators (Berry et al., 2003; 

Hisamoto et al.,2008; Liegeois et al., 2007), cytoskeletal proteins (Gao et al., 2001; Gobel 

et al., 2004; Praitis et al., 2005; Suzuki et al., 2001; Tong and Buechner, 2008), and an 

RNA-transport protein exc-7 (Fujita et al., 2003). exc-7 (ELAV) binds and transports 

sma-1 (β-spectrin) mRNA, which is then transported along the canals (Tong and 

Buechner, 2008; Fujita et al., 2003). An unknown mechanical sensor activates exc-9 

(CRIP), and exc-9 activates exc-4(CLIC) and exc-5 (Berry, 2003; Tong and Buechner, 

2008). Recently it has been shown that exc-5, a homologue of the FGD family of 

mammalian  exchange factors, mediates passage of early endosomes to recycling 

endosomes apically via the CDC-42 GTPase, to maintain a normal canal lumen 

(Mattingly and Buechner, 2011).  Importantly, these models are based mainly on genetic 
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arguments and await further verification from complementary biochemical approaches.  

 The duct and pore tubes form a lumen by wrapping, instead of hollowing like the 

canal cell. The pore cell forms a lumen by wrapping around itself and forming an 

autocellular junction, which can be observed by the AJM-1::GFP apical junction marker 

or by electron microscopy (Stone et al., 2009). The duct also forms a lumen by wrapping, 

followed by a secondary self-fusion event like the one described above in the C.elegans 

digestive tract (Rasmussen et al., 2008; Stone et al., 2009).  AJM-1::GFP does not label 

the duct cell. However, in an aff-1 mutant background, the duct cell autocellular junction 

can now be visualized with AJM-1::GFP (Stone et al., 2009).  AFF-1 is a molecule 

involved in homotypic fusion (Sapir et al., 2007), and the duct cell presumably expresses 

aff-1. Therefore, when aff-1 is not present the duct cell cannot fuse its autocellular 

junction. Self-fusion of the duct cell after wrapping does not appear to be an essential 

function, as the majority of aff-1 mutants are viable. One hypothesis is that the duct fuses 

its autocellular junction because it will remain in the tubular network, while the G1 pore 

cell does not fuse its autocellular junction to facilitate an easy break down of the junction 

and subsequent withdraw of the G1 pore from the excretory system.  

Three cells that adopt complex morphologies 

 Mid-way through embryogenesis at the 1.5-fold stage, electron microscopy shows 

the cells of the excretory system stacked in block-like orientations (Stone et al., 2009) 

(Fig 1.6). However, between 1.5-fold and hatch, which is approximately seven hours, 

many morphogenic and cell shape changes occur. The canal cell requires Notch signaling 

in its grandparent cell ABplpapp to be specified (Lambie and Kimble, 1991b; Moskowitz 
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and Rothman, 1996). However, no direct roles for Notch signaling in the morphogenesis 

of the canal have been identified. By the time the worm hatches, the hollow canals will 

have elongated to a length of half of the worm’s body (Buechner, 2002). As the worm 

continues to grow, so does the canal cell, with the canals extending to the nose of the 

worm at the anterior, and past the anus near the tail at the posterior of the worm 

(Buechner, 2002). 

Outgrowth of the canals has been compared to neuronal outgrowth because 

similar genes are involved in both processes (Hedgecock et al., 1997; Antebi et al., 1997).  

Canal tips appear to be guided during canal extension just like neuronal growth cones are 

guided during outgrowth (Buechner, 2002). For example, mutants of unc-5 (netrin) and 

its receptor unc-6, both have shortened mispositioned canals that fail to extend normally 

(Hedgecock et al., 1990). Instead of the canals extending alongside the lateral epidermis, 

in unc-5 and unc-6 the shortened canals extend alongside the ventral epidermis 

(Hedgecock et al., 1990). Also CEH-6, a POU homeodomain transcription factor, is 

expressed in the canal cell and promotes canal morphogenesis (Burglin and Ruvkun 

2001). The canal cell is specified in ceh-6 mutants, but the resultant canals have defects 

in morphogenesis. The targets of CEH-6 that promote canal morphogenesis are unknown 

(Burglin and Ruvkun, 2001).  

Like the canal, the duct undergoes numerous morphogenic processes, including 

elongation after fate specification. Previous studies suggested that the duct versus pore 

fate decision is specified by let-60/Ras (Sulston et al., 1983; Yochem et al., 1997).  To 

what extent EGF-Ras-Erk signaling controlled morphogenesis of the duct was unclear. 

Interestingly, Notch mutants, like let-60/Ras mutants also lack a duct cell (Lambie and 
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Kimble 1991). A missing duct cell in Notch mutants could be a secondary consequence 

of lacking a canal cell, or Notch signaling may have a cell autonomous role in the duct 

(addressed in Chapter Two).  

During the period between 1.5-fold and hatch, the duct elongates extensively and 

adopts a unique asymmetric shape (Fig 1.6). The region of the duct that connects to the 

pore is narrow in diameter similar to an axonal extension. The duct expresses the 

transcription factor LIN-48, an ortholog of Drosophila shavenbaby/ovo that influences 

duct position and/or length (Wang and Chamberlin, 2002). However, lin-48 mutants do 

not arrest with excretory system lethality, suggesting that the duct cell has normal 

function. In addition, the previous analysis performed on lin-48 mutants measured the 

distance between the terminal pharyngeal bulb and the pore, which is a low resolution 

and indirect measure of duct shape (the panel of markers that exist to study the shape of 

the duct were not available when the original lin-48 studies were performed). 

Nonetheless, the original lin-48 studies suggested that other factors exist that contribute 

to the morphogenesis of the duct.  

The morphogenesis of the pore in some ways is more remarkable than the duct 

and canal, because two different cells will function as the pore throughout the worm’s 

life. The G1 pore appears to be the default fate after the duct is specified. The G2 pore 

fate is specified by Notch signaling (Greenwald et al., 1983). However, there is no 

evidence that implicate Notch signaling in morphogenesis of the G2 pore after fate 

specification. Both the G1 and G2 pore have regular, conical shapes, without extensive 

elongation. However, the G2 pore is slightly taller in height than the G1 pore - this 
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increase in height likely corresponds to the increased size of the worm between 

embryonic and larval stages.   

 

Project Summary  

The three cells of the excretory system form tubes by different mechanisms and 

ultimately adopt unique shapes. Examples of both MET and EMT are observed in this 

relatively simple model. Both Ras and Notch signaling have been implicated in excretory 

system development for years. However, which steps in tube development require 

signaling had not been clarified. In Chapter 2, I demonstrate that Ras has genetically 

separable roles in excretory system development. Surprisingly, I found that Ras had a 

continued role in maintaining organ architecture of the duct tube. In Chapter 3, I describe 

a forward mutagenesis screen performed by Craig Stone, a former graduate student in the 

lab, to identify new genes involved in excretory system development. I show that one 

gene identified in the screen, an Nkx5/HMX homeodomain transcription factor named 

mls-2, promotes shape acquisition of the duct and pore, while acting genetically in 

parallel to Ras signaling. Chapter 4 demonstrates an attempt to identify the core 

cytoskeletal subunits involved in promoting morphogenesis of excretory system cells. A 

surprising genetic interaction was revealed between mls-2 and cytoskeletal genes in early 

embryos. Finally, in Chapter 5 I describe an RNAi enhancer screen I performed to 

identify mls-2 redundant factors. This screen identified a chromatin remodeling factor 
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that genetically interacts with both mls-2 and the EGF-Ras-ERK pathway, presumably 

during duct development.  

In summary, our results provide insight into which steps require Receptor 

Tyrosine Kinase signaling during tube formation. Our data also show which type of gene 

can act downstream or parallel to Receptor Tyrosine Kinase signaling to promote 

morphogenesis of elongated cells.  

 

Figure Legends  

Figure 1.1. Conrad Wallington’s epigenetic landscape. Model of a ball at the top of a 

hill representing a cell. Each valley represents a distinct cell fate. [Figure taken from 

Conrad Wallington’s Epigenetic Landscape]. 

Figure 1.2. The three types of tubes. (A) Multicellular tube showing basal and apical 

surfaces with junctions between the cells. (B) Unicellular tube with autocellular junction 

going down the seam of the tube. (C) Unicellular tube without an autocellular junction, 

also known as ‘seamless’ [Figure taken from (Lubarsky and Krasnow, 2003)].  

Figure 1.3. Building a lumen and polarizing a tube. (A) Building a tube by wrapping 

from an already polarized epithelium. The new tube is discontinuous from the old 

epithelium. (B) Building a tube by budding from an already polarized epithelium. The 

new tube maintains connection with the parental epithelium. (C) Building a tube by 

hollowing a cord. The lumen forms when multiple cells fuse their lumena together. (D) 
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Building a tube by cell hollowing. The lumens form within the cell when small vesicles 

fuse. (E) Building a tube by cavitation. The lumen forms within a tube by programmed 

cell death [Figure taken from (Andrew and Ewald, 2010)].  

Figure 1.4. The EGF-Ras-ERK signaling pathway. Diagram of Epidermal Growth 

Factor signaling cascade from EGF ligand to downstream effectors LIN-1 and EOR-1. 

C.elegans and also mammalian names shown where applicable.  The yellow rectangle 

represents the cytoplasm, and the white circle represents the nucleus. Dashed arrow 

shows MPK-1 likely has other substrates that have not been identified. LIN-1 shown in 

red acts as a repressor, but when phosphorylated by MPK-1, we hypothesize that LIN-1 

then acts as an activator. LIN-1 is redundant with EOR-1 and EOR-2(not shown).  

Figure 1.5. A phylogenetic tree of the HMX family. Sequence analysis performed with 

Clustal W showing the highly similar homeodomain of MLS-2 and HMX genes from 

other species [Figure taken from (Jiang et al., 2005)].  

 

Figure 1.6. Timeline of C.elegans Excretory System development. (A) Schematics of 

excretory canal cell (red, ABplpappaap), duct (yellow, ABplpaaaapa), G1(blue, 

ABprpaaaapa) at different developmental stages, based on (Sulston et al., 1983), prior 

electron microscopy (Stone et al., 2009), and work described in Chapter Two. Dark black 

lines, apical junctions; dotted line, duct auto-fusion; arrow, pore autocellular junction; 

arrowhead, duct-canal cell intercellular junction; bracket, duct cell body. Colored circled 

represent relative positions of the three cells in the live worm. Not shown are the non-

essential excretory gland cells, which also connect to the duct-canal junction (Nelson et 
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al., 1983; Nelson and Riddle, 1984). (B) Adult canal cell marked with vha-1p::GFP. Note 

that the canal cell elongates extensively. (C,D) L1 larvae. (C) AJM-1::GFP marks pore 

autocellular junction and duct-canal junction. The duct no longer has an autocellular 

junction. (D) dct-5p::mcherry marks the cytoplasm of the duct and G1 pore.  
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Figure 1.1 
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Figure 1.2 
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Figure 1.3 
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Figure 1.4 
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Figure 1.5 
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Figure 1.6 
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Chapter Two: 

NOTCH AND RAS PROMOTE SEQUENTIAL STEPS OF 

EXCRETORY TUBE DEVELOPMENT IN C. ELEGANS* 

 

 

 

 

 

 

 

 

 

 

 

*This chapter was published as Ishmail Abdus-Saboor*, Vincent P. Mancuso*, John I. 

Murray, Katherine Palozola, Carolyn Norris, David H. Hall, Kelly Howell, Kai Huang 

and Meera V. Sundaram. Development 138, 3545-3555 (2011).  Note: some additions to 

the text are contained in this chapter.  



40 
 

SUMMARY 

  Receptor Tyrosine Kinases and Notch are critical for tube formation and 

branching morphogenesis in many systems, but the specific cellular processes that require 

signaling are poorly understood.  Here we describe sequential roles for Notch and 

Epidermal Growth Factor (EGF)-Ras-ERK signaling in the development of epithelial tube 

cells in the C. elegans excretory (renal-like) organ.  This simple organ consists of three 

tandemly connected unicellular tubes, the excretory canal cell, duct and G1 pore.  lin-12 

and glp-1/Notch are required to generate the canal cell, which is a source of LIN-3/EGF 

ligand and physically attaches to the duct during de novo epithelialization and 

tubulogenesis.  Canal cell asymmetry and let-60/Ras signaling influence which of two 

equivalent precursors will attach to the canal cell.  Ras then specifies duct identity, 

inducing auto-fusion and a permanent epithelial character; the remaining precursor 

becomes the G1 pore, which eventually loses epithelial character and withdraws from the 

organ to become a neuroblast.  Ras continues to promote subsequent aspects of duct 

morphogenesis and differentiation, and acts primarily through Raf-ERK and the 

transcriptional effectors LIN-1/Ets and EOR-1.  These results reveal multiple genetically-

separable roles for Ras signaling in tube development, as well as similarities to Ras-

mediated control of branching morphogenesis in more complex organs, including the 

mammalian kidney.  The relative simplicity of the excretory system makes it an attractive 

model for addressing basic questions about how cells gain or lose epithelial character and 

organize into tubular networks. 
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INTRODUCTION 

Many organs, such as the mammalian kidney and the vasculature, consist of 

complex networks of tubules that develop from clusters of initially unpolarized 

mesenchymal cells (Dressler, 2009; Hogan and Kolodziej, 2002; Lubarsky and Krasnow, 

2003). The processes by which these cells polarize, form epithelial or endothelial 

junctions, and then organize into complex tubular shapes are only beginning to be 

elucidated. In many cases, signaling pathways involving Receptor Tyrosine Kinases 

(RTKs) and Ras are critical for formation and patterning of the tubular network.  For 

example, during branching morphogenesis of the ureteric bud in the kidney, signaling by 

the Ret RTK promotes tip cell identity and specifies the location of new branches (Chi et 

al., 2009; Shakya et al., 2005b).  Similarly, during sprouting angiogenesis, signaling by 

vascular endothelial growth factor receptors promotes tip cell identity (Phng and 

Gerhardt, 2009).  Absence of RTK signaling results in renal or vascular agenesis.  

Although the importance of RTK pathways in controlling tube development is clear, the 

specific cellular behaviors that require signaling, and the downstream mechanisms that 

control them, are not well understood. 

Tubulogenesis can be reversible, as cells can withdraw from an existing tube and 

give rise to different cell types. For example, venous endothelial cells in the mouse de-

differentiate and divide to give rise to new coronary arteries, capillaries and veins as part 

of their normal developmental program (Red-Horse et al., 2010).  Epithelial-to-

mesenchymal transition (EMT) or endothelial-to-mesenchymal transition (EndMT) are 

central features of injury-induced fibrosis in the kidney and heart (Kalluri and Neilson, 
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2003; Zeisberg et al., 2007) and underlie the metastatic properties of many tumor cells 

(Kalluri and Weinberg, 2009). Tubes that form by de novo polarization may be 

particularly prone to EMT, but the mechanisms that promote or restrain such behaviors 

remain poorly understood.  

 The C. elegans excretory system is a simple example of an epithelial tube 

network.  The excretory system is the worm’s renal-like system and is required for fluid 

waste expulsion (Nelson et al., 1983; Nelson and Riddle, 1984). It consists of three 

tandemly arranged unicellular tubes: the large canal cell (which runs the length of the 

body and appears to collect waste fluid), and the smaller duct and pore cells (which 

connect the canal cell to the outside environment) (Fig. 2.1).  While the canal cell and 

duct tubes are permanent throughout the life of the animal, the G1 pore eventually 

withdraws from the excretory system to become a neuroblast, at which time a 

neighboring epidermal cell (G2) replaces G1 as the excretory pore tube (Stone et al., 

2009; Sulston et al., 1983). Thus the excretory system provides a simple, genetically 

tractable system for studying the dynamic control of epithelial junctions, cell shape and 

cell identity.  

 The progenitors of the excretory duct and G1 pore tubes are left/right lineal 

homologs that appear to compete for the duct fate (Sulston et al., 1983). In wild-type 

animals, the left cell always becomes the duct and adopts the most canal cell-proximal 

position, while the right cell always becomes G1 and adopts a more distal position.  

However, ablation of the mother of the presumptive duct causes the presumptive G1 to 

adopt a duct-like position and morphology, showing that both cells have the capacity to 
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become a duct and suggesting some lateral inhibitory mechanism that prevents both from 

doing so. Both let-60/Ras and lin-12 glp-1/Notch mutants lack an excretory duct, 

implicating Ras and Notch in the duct vs. G1 pore fate decision or some other aspect of 

duct development (Lambie and Kimble, 1991a; Yochem et al., 1997).  

 Here we show that Notch and Epidermal Growth Factor (EGF)-Ras-ERK act 

sequentially during excretory tube development.  We identify multiple, genetically 

separable requirements for signaling in controlling tube cell position, identity, shape and 

function.  Finally, we establish the excretory duct and G1 pore system as a model for 

investigating many basic cell biological processes associated with tube development and 

EMT-coupled cell fate plasticity. 

RESULTS 

Excretory tube development involves de novo formation and remodeling of epithelial 

junctions 

 Excretory tube development occurs in three broad phases 

(migration/tubulogenesis, morphogenesis/differentiation, and G1 withdrawal/remodeling) 

(Fig. 1A) (Berry et al., 2003; Buechner, 2002; Stone et al., 2009; Sulston et al., 1983). To 

visualize the excretory duct and G1 pore during these phases, we used lineage-specific 

markers in combination with epithelial apical junction markers AJM-1 (Koppen et al., 

2001b) and DLG-1/Discs Large (Bossinger et al., 2001)(Fig. 2.1).  GFP::MLS-2 marks 

all ABpl/rpaaa descendants (including the duct and G1) plus additional lineages during 

ventral enclosure (Yoshimura et al., 2008) (J.I.M., unpublished data) (Fig. 2.1B-C,E), 



44 
 

while dct-5p::mCherry marks the duct, G1 and some other epithelial cells during L1 (this 

work, Fig. 2.1J-K).  We also analyzed a ventral enclosure embryo by transmission 

electron microscopy (TEM) of serial sections (Fig. 2.1D) and traced the canal, duct, and 

G1 pore lineages through ventral enclosure from 3D confocal movies of eight 

histone::mCherry-expressing embryos (Materials and Methods). 

 The canal cell, duct and G1 pore progenitors are born in disparate locations of the 

embryo.  During ventral enclosure (Fig. 2.1B-E), the duct (left) and G1 pore (right) 

progenitors migrate toward the canal cell, which is located slightly left of the ventral 

midline.  The duct progenitor has a shorter distance to migrate, and it appears to reach the 

canal cell first (Fig. 2.1C).  TEM of an embryo at ventral enclosure shows the duct 

progenitor and the canal cell closely apposed, while the G1 progenitor is excluded from 

the canal cell by the duct and other intervening cell bodies (Fig. 2.1D).  In 6/8 3D 

confocal movies, the duct nucleus arrives adjacent to the canal cell about 5-10 minutes 

before G1.  At this time, 1-2 nuclei still separate the canal from G1; the most consistent 

of these is RIS, a right-derived neuron whose left homolog is related to the canal cell and 

undergoes programmed cell death. In 2/8 movies, the duct and G1 nuclei arrive near the 

canal cell at approximately the same time, so it is not possible to determine which cell 

contacts the canal cell first in the absence of a membrane or cytoplasmic label.  After the 

duct reaches the canal cell, they begin to ingress, while G1 moves to a ventral position 

between the G2 and W epidermal cells (Fig. 2.1E). Together, these observations suggest 

that asymmetry of the canal cell and its lineal relatives might contribute to asymmetry in 

duct and G1 pore behavior. 
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The cells initially lack epithelial junctions (Fig. 2.1B, D), but after they contact 

each other, they form epithelial junctions and undergo tubulogenesis (Fig. 2.1F).  As 

described previously (Stone et al., 2009), the duct and G1 pore cells wrap up into tube 

shapes and form autocellular junctions. G1 retains this autocellular junction, but the duct 

cell rapidly auto-fuses, becoming a seamless toroid.  The canal cell forms lumen 

intracellularly at the site of the duct-canal cell intercellular junction.  By the 1.5 fold 

stage, the canal cell, duct and pore form a simple block-like stack of tandemly connected 

unicellular tubes with a continuous lumen and prominent epithelial junctions (Fig. 

2.1A,F).  

 Further morphogenesis occurs during the latter part of embryogenesis, such that 

by the first larval stage, the excretory duct (Fig. 2.1G-J) and canal cell (Fig. 2.1L) have 

distinctive elongated shapes. The cells also begin expressing unique differentiation 

markers, such as the lin-48/Ovo transcription factor in the duct (Fig. 2.1I) (Johnson et al., 

2001). 

 G1 withdrawal and G2 entry occur in the first larval stage, after the excretory 

system has already begun to function.  At this time, G1 migrates dorsally and loses its 

epithelial junctions while a neighboring epidermal cell, G2, forms an autocellular 

junction and replaces it as the pore (Fig. 2.1K) (Sulston et al., 1983; Stone et al., 2009). 

G2 subsequently divides in L2 to generate a neuronal daughter (G2.a) and an epithelial 

daughter (G2.p) that replaces it as the permanent pore tube (Sulston and Horvitz, 1977).  

Throughout this time the duct process must remodel its ventral junction to connect to its 

new partners. 
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let-60/Ras is both necessary and sufficient for duct vs. G1 pore fate specification 

let-60/Ras is required cell autonomously within the excretory duct cell for proper 

excretory system function and organismal viability and was previously proposed to 

promote the duct vs. G1 pore fate (Yochem et al., 1997). To test this model, we used 

AJM-1::GFP and lin-48p::GFP markers to examine let-60 ras mutants (Fig. 2.2). 

Most let-60(sy101sy127lf) null mutants, obtained from heterozygous mothers, 

have two pore-shaped cells with autocellular junctions and no lin-48p::GFP (Fig. 2.2B-

C,K-L), consistent with a duct-to-G1 pore cell fate transformation.  Although the mutants 

lack a duct-like cell, the overall arrangement of the excretory system resembles that of 

wild-type animals: two cells are arranged in tandem, with one contacting the canal cell 

and the other contacting the ventral epidermis.  Thus, initial migration, stacking and 

tubulogenesis appear normal, but auto-fusion does not occur and duct-specific 

differentiation markers are not expressed.  

let-60(sy101sy127lf) mutants die as late L1 larvae with a rigid, fluid-filled 

appearance termed “rod-like lethality”.  Fluid first accumulates near or within the two 

pore-like tubes (Fig. 2.2C').  Notably, the timing of fluid accumulation in mid-L1 

coincides with the normal timing of pore remodeling and is often associated with large 

junctional rings or discontinuities (Fig. 2.2C). Since withdrawal from the excretory 

system is a normal feature of G1 pore identity, withdrawal of both pore-like cells may 

explain the inviability.   
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let-60(n1046gf) hypermorphic mutants have two duct-like nuclei expressing lin-

48p::GFP and no autocellular junctions (Fig. 2.2D,K-L), consistent with a G1 pore-to-

duct cell fate transformation.  The two duct cells fuse to form a binucleate cell, as would 

be predicted for two adjacent cells expressing the fusogen aff-1, which is required for 

duct auto-fusion (Stone et al., 2009) and generally sufficient for fusion of adjacent cells 

(Sapir et al., 2007). Removal of aff-1 in a let-60(gf) background restored both 

intercellular and autocellular junctions (data not shown). The binucleate duct cell attaches 

to the ventral epidermis, allowing for fluid excretion, and is permanent throughout the 

life of the animal. 

We conclude that Ras signaling is both necessary and sufficient to promote duct 

vs. G1 pore identity, and that identity can be uncoupled from cell position.  Notably, 

however, some let-60 null mutants still possess a cell with at least partial duct-like 

character (Fig. 2.2K-L). Evidence below suggests that this is due to maternally-provided 

let-60 activity; maternal activity cannot be completely removed in our experiments 

because of the requirements for let-60 and other pathway components in germline 

development (Church et al., 1995). 

 

let-60/Ras functions within the canonical EGF-Ras-ERK pathway to promote the 

duct fate 

Animals mutant for lin-3/EGF or various other components of the canonical EGF-

Ras-ERK pathway all display a rod-like lethal phenotype associated with excretory 
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system failure (Ferguson and Horvitz, 1985; Sundaram, 2006). We examined mutants for 

lin-3/EGF and lin-1/Ets, which lie at the beginning and end of this pathway, respectively 

(Beitel et al., 1995b; Hill and Sternberg, 1992). lin-3(lf) and lin-1(gf) mutants appear 

similar to let-60(lf) mutants, and lin-3 overexpression and lin-1(lf) mutants appear similar 

to let-60(gf) mutants (Fig. 2.2E-H,K-L).  Furthermore, a variety of other Ras pathway 

mutants examined (including hypomorphic alleles of let-23/EGFR and lin-45/Raf) also 

show evidence of duct-to-pore fate transformations (Fig. 2.2K-L).  Finally, eor-1 and sur-

2 are nuclear factors that act redundantly downstream of MPK-1/ERK (Howard and 

Sundaram, 2002); eor-1 also appears to act redundantly with a cryptic positive function 

of lin-1/Ets (Howard and Sundaram, 2002). We found that eor-1; sur-2(RNAi) and lin-1 

eor-1 double mutants frequently have two pore-like cells (Fig. 2.2I-L). These data are 

consistent with the entire canonical pathway promoting duct vs. G1 pore identity. 

During this analysis, we noted that some mutants with reduced signaling had 

paradoxical "0 G1"-like junction patterns, without concomitant duct fate duplication, or 

had excretory failure despite apparently normal junction patterns and fates (Fig. 2.2K-L).  

These observations suggested that Ras signaling plays roles beyond cell fate specification 

(see below). 

 

The excretory canal cell expresses lin-3/EGF 

Since the mutant analyses above suggest that signaling by LIN-3/EGF through 

LET-23/EGFR is responsible for LET-60/Ras activation in the duct, we asked where 
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these proteins are expressed.  Consistent with the fact that both cells can respond to LIN-

3 to adopt the duct fate, a functional LET-23::GFP reporter, gaIs27 (Simske et al., 1996), 

is expressed in both presumptive duct and G1 pore cells during ventral enclosure (Fig. 

3A).  To examine lin-3 expression, we used a lin-3 promoter::GFP reporter (syIs107) that 

contains ~2.5 kb of upstream regulatory sequence as well as the first lin-3 intron (Hwang 

and Sternberg, 2004). Most notably, lin-3p::GFP is strongly expressed in the excretory 

canal cell, beginning soon after canal cell birth and continuing into early larval 

development (Fig. 2.3B, D). lin-3p::GFP is also expressed in a variety of other cells that 

are further away from the presumptive duct and G1 pore.  These data suggested that the 

canal cell might be a relevant source of the duct-inducing signal, a model that fits with 

the observation that the left member of the equivalence group, which is closest to the 

canal cell, is the cell that normally adopts the duct fate. 

 

Ras signaling promotes cell stacking and a canal cell-proximal position 

EGF-Ras signaling could promote duct vs. G1 pore cell fate specification 

independently of cell stacking and tubulogenesis, or signaling could also control initial 

cell positioning.  The latter possibility was suggested by results of a prior mosaic 

analysis, in which a let-60(+) presumptive G1 cell could outcompete a let-60(-) 

presumptive duct cell for the more dorsal, canal cell-proximal position and take on the 

duct fate (Yochem et al., 1997). 
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Consistent with a model in which both cells compete for the canal cell-proximal 

position, animals homozygous for a partial loss-of-function allele, let-60(n2021), display 

a variable phenotype in which the presumptive duct and G1 cells often adopt adjacent 

positions rather than stacking on top of each other (Fig. 2.4C-D). In many of these cases, 

a single duct-like cell reaches from the ventral epidermis to the canal cell, while the 

second cell is mispositioned to the side and appears non-tubular, giving a "1 duct, 0 G1" 

phenotype (Fig. 2.4G-H). In other cases, a single pore-like (un-induced) cell reaches from 

the ventral epidermis to the canal cell, giving a “0 duct, 1 G1” phenotype (Fig. 2.4I-J).  

Similar defects are seen in other hypomorphic mutants and in lin-1; eor-1 double mutants 

(Fig. 2.2K and data not shown).  We conclude that Ras signaling influences duct and G1 

pore stacking. 

Notably, the adjacent phenotype is observed only occasionally in let-60 or lin-3 

null mutants obtained from heterozygous mothers (Fig. 2.2K, Fig. 2.4K).  This is due in 

part to maternal rescue, since most let-60(n2021rf) mutants obtained from heterozygous 

mothers also have normal cell stacking, in contrast to those obtained from homozygous 

mutant mothers (Fig. 2.4K). Nevertheless, progeny from let-60(sy101sy127lf)/let-

60(n2021rf) mothers have a lower frequency of adjacent cells than those from let-

60(n2021rf) mothers (Fig. 2.4K).  Therefore, the adjacent phenotype may reflect 

problems in resolving cell competition under circumstances where Ras signaling is sub-

optimal but not absent (see Discussion). 
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The canal cell is required for stacking and tubulogenesis of the duct and G1 pore 

To test if LIN-3/EGF expression by the canal cell is required for duct fate 

specification or cell stacking, we first removed the canal cell (or its mother) physically by 

laser ablation.  In the absence of the canal cell, most animals still had a lin-48p::GFP+ 

cell (Table 1), indicating that other sources of LIN-3 are sufficient to induce at least some 

features of duct identity.  However, duct morphology was abnormal and the G1 pore 

autocellular junction was missing (Fig. 2.5L-M), suggesting that stacking had been 

disrupted.   

We next examined the effects of removing the canal cell genetically using Notch 

mutants. Mutants lacking both C. elegans Notch receptors, LIN-12 and GLP-1, the DSL 

ligand LAG-2  or the CSL transcription factor LAG-1 have a constellation of defects 

referred to as the “Lag” (lin-12 and glp-1) phenotype (Lambie and Kimble, 1991a).  lag 

mutants lack an excretory canal cell due to a lineage transformation affecting the canal 

cell’s great-grandmother ABplpapp  (Lambie and Kimble, 1991a; Moskowitz and 

Rothman, 1996). As in canal cell-ablated animals, lag mutants often possess a 

morphologically abnormal lin-48p::GFP+ cell, and lack a G1 pore autocellular junction 

(Table 2.1, Fig. 2.5).  A ventral perspective revealed that the presumptive duct and G1 

pore cells adopt adjacent ventral positions in the epidermis (Fig. 2.5B,C).  Thus lag 

mutants resemble let-60/Ras partial loss-of-function mutants. 

Several lines of evidence suggest that the lag duct and G1 pore stacking defects 

are a secondary consequence of canal cell absence.  First, canal cell ablation in wild-type 
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embryos can phenocopy lag mutants.  Second, a functional LIN-12::GFP reporter 

(arIs41) is not detectably expressed in the duct or G1 pore progenitors during ventral 

enclosure (Fig. 2.3E), nor is a LIN-12- and GLP-1-responsive reporter, ref-1p::GFP (data 

not shown); thus Notch signaling is unlikely to impact directly on duct and G1 pore fate 

specification or tubulogenesis.  Third, lin-12 hypermorphic mutants, which have a single 

canal cell, have normal duct and G1 pore morphology (Table 2.1, Fig. 2.5M).  Finally, 

examination of lin-12 null mutants or lag-2(q420) hypomorphic mutants, in which 

absence of the canal cell is variable, revealed a strong correlation between absence of the 

canal cell and failure of the duct and G1 pore to stack and undergo tubulogenesis (Fig. 

2.5 D-E,G-H,M).  

Together, the ablation and Notch mutant data support a model in which the canal 

cell facilitates duct and G1 pore stacking and tubulogenesis. The canal cell likely 

provides physical support to the duct and G1 pore as it adheres to the duct during these 

processes. Stacking and tubulogenesis appear independent of canal cell-expressed lin-

3/EGF, since these processes are intact in lin-3 zygotic null mutants, despite defects in 

cell fate specification (Fig. 2.2K-L).  Duct fate specification also appears partially 

independent of canal cell-expressed lin-3/EGF, stacking and tubulogenesis, since it is 

only mildly affected by canal cell absence (Table 2.1).  Nevertheless, since the canal cell 

does express lin-3/EGF, and partial reduction of let-60/Ras can mimic canal cell absence, 

localized LIN-3/EGF expression by the canal cell may help orient relative duct and G1 

pore positions during stacking and bias which cell ultimately adopts the duct fate (see 

Discussion).  
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Continued signaling through SOS-1 and Ras is required for duct differentiation 

To determine if there was a role for EGF-Ras signaling in the duct cell after the 

duct cell had been specified and adopted a canal proximal position, we tested the 

temporal requirement for EGF-Ras signaling with a sos-1 temperature sensitive mutant. 

The cs41 lesion of sos-1 affects the CDC25-related Ras GEF domain of SOS-1, rendering 

SOS-1 unable to exchange GTP on Ras and lead to its activation (Rocheleau et al., 2002). 

When sos-1(cs41) worms were grown at the standard growing temperature for C.elegans 

which is 20°C, the mutants appeared essentially wild-type (Rocheleau et al., 2002)( Fig 

2.6A). However when sos-1(cs41) worms were raised at 25°C they all arrested with 

excretory system abnormalities (Rocheleau et al., 2002) (Fig 2.6A). Importantly, the 

lethal excretory system abnormalities of sos-1(cs41) were almost completely rescued by 

hyper-activating the EGF-Ras pathway with a let-60(n1046) gain-of-function mutant 

(Rocheleau et al., 2002) or a hypomorphic allele of the Ras downstream effector gene lin-

1 (Fig 2.6A). The suppression of sos-1(cs41) lethal defects by let-60(n1046 gf) and lin-

1(e1275) indicated that the lethal abnormalities were caused by a failure in Ras-ERK 

mediated signaling. Since let-60 ras is required only in the duct cell (and not in the G1 or 

G2 pore or canal cell) for proper excretory function and viability (Yochem et al., 1997), 

we further infer that any excretory abnormalities of sos-1(ts) animals reflect requirements 

for Ras-ERK signaling in the developing duct cell. 
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When sos-1(ts) mutants were shifted from the permissive temperature and raised 

to the non-permissive temperature early in development before the 1.5-fold stage of 

embryogenesis, most worms failed to express the lin-48p::GFP duct fate marker (Fig 

2.6B). Consistent with this result, sos-1(ts) worms shifted prior to the 1.5-fold stage of 

embryogenesis also failed to undergo auto-fusion of the duct cell, resulting in two pore-

like cells with autocellular junctions (AJs) (Fig 2.6C). Thus early upshifs of sos-1(ts) 

mutants recapitulated the let-60/Ras zygotic null phenotype of a duct-to-pore fate 

transformation (Fig 2.2).  sos-1(ts) mutants upshifted after the 1.5-fold stage of 

embryogenesis expressed lin-48p::GFP and auto-fused the duct cell, suggesting that these 

two aspects of duct fate specification have been completed by the 1.5-fold stage of 

embryogenesis (Fig 2.6B,C). In addition, the earliest maternal upshifts could occasionally 

generate adjacent cells (data not shown), as seen in let-60(n2021) hypomorphs (Fig 2.4), 

which further supports a role for EGF-Ras signaling in cell stacking.  

When sos-1(ts) mutants were shifted from the non-permissive temperature and 

lowered back to the permissive temperature, most animals were normal for excretory 

morphology, as long as they were shifted before the bean stage of embryogenesis (Fig. 

2.6C). When sos-1(ts) mutants were downshifted after the bean stage of embryogenesis, 

an increasing proportion of larvae displayed defects in duct auto-fusion (Fig 2.6C). 

However, these defects in duct auto-fusion were observed less frequently than in the un-

shifted control worms (Fig 2.6C), demonstrating that restoring SOS-1 activity late can 

still promote at least one aspect of duct identity. These results are consistent with the 

model that Ras signaling and cell fate specification occur around the 1.5-fold stage of 
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embryogenesis as the presumptive duct and G1 pore cells approach the canal cell and 

undergo tubulogenesis. 

Unexpectedly, the sos-1(ts) temperature-sensitive period for lethal excretory 

defects extended from the bean stage into the L1 larval stage (Fig. 2.6D).  sos-1(ts) 

mutants upshifted from the permissive to the restrictive temperature displayed excretory 

lethality until the first larval stage (Fig 2.6D). The ~50% lethality of sos-1(ts) mutants 

shifted at the L2 stage of larval development was not due to excretory related lethality, 

but rather these worms died with a scrawny phenotype characteristic of egl-15/FGFR 

mutants (DeVore et al., 1995; Roubin et al., 1999). SOS-1 is also downstream of the FGF 

receptor in C.elegans, however only EGF signaling promotes duct development and not 

FGF signaling. We also verified that the sos-1(ts) mutants that died from the FGF related 

scrawny phenotype had a normal duct cell (data not shown).  sos-1(ts) mutants 

downshifted from the restrictive to the permissive temperature displayed excretory 

lethality beginning around the bean stage (Fig 2.6D). Together, the upshift and downshift 

data demonstrate that the temperature senstive period (TSP) of SOS-1 and the critical 

window of Ras signaling extends from the bean stage to the L1 stage of development.   

We next visualized the excretory system with AJM-1::GFP and lin-48p::GFP in 

sos-1(ts) mutants that died during late upshifts. At least 70% of animals upshifted at the 

1.5-fold, twofold, threefold or early L1 stages (n>20 each) accumulated fluid either 

within the excretory tubules or near the canal-duct junction, despite an initially normal 

junction and lin-48p::GFP marker pattern (Fig 2.6E,F). Therefore the duct cell can 

express a terminal fate marker and fuse its auto-junction, but when SOS-1 and Ras 
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signaling are subsequently reduced, fluid can still escape from the excretory system 

leading to defects in organ architecture.  

A cell that fails to establish duct identity early is generally incapable of 

supporting proper excretory function even when sos-1 activity is restored at later time-

points. However, even when early markers of duct identity are properly established, 

continued signaling is required to execute and/or maintain the duct fate. Although 

additional studies including transmission electron microscopy might be needed to 

understand the cellular basis of these later defects, we conclude that SOS-1 and Ras, and 

most likely the entire EGF-Ras-ERK pathway, play additional roles in duct 

morphogenesis and differentiation. 

 

G1 pore withdrawal can still occur in the absence of G2 

 When the G1 pore withdraws from the excretory system during L1, a neighboring 

epidermal cell, G2, moves in to replace it as the pore (Stone et al., 2009; Sulston et al., 

1983) (Fig. 2.1J; Fig. 2.7A-C,M). By examining Ras and Notch pathway mutants, we 

were able to address a basic question about the G1-G2 remodeling event: is 

communication between G1 and G2 important to trigger G1’s withdrawal and/or G2’s 

entry into the excretory system? 

 As described above, let-60(n1046gf) mutants invariably lack a G1 pore and have a 

binucleate duct cell attached directly to the ventral epidermis.  In 16% (11/67) of such 

mutants, G2 still moves in and gives rise to a morphologically normal larval pore cell; in 
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the remainder, G2 (or G2p) wraps around the base of the duct but does not form a pore of 

normal height (Fig. 2.7 D-F,M).  Thus, G2 entry does not require a “come here” signal 

from the G1 pore, but its morphogenesis and ability to insert between the duct and 

epidermis may be facilitated by the act of G1 withdrawal. 

 To test the requirements for G2, we used lin-12/Notch single mutants, which 

affect the G2 vs. W neuroblast cell fates (Greenwald et al., 1983). lin-12(d) hypermorphic 

mutants have two G2 cells, and one of these forms a normal larval pore while the other 

wraps around its ventral base (Fig. 2.7J-L,M).  Conversely, lin-12(0) loss-of-function 

mutants lack a G2 cell.  In such mutants, G1 still withdraws from the excretory system 

during mid-L1, and the duct then attaches directly to the ventral epidermis (Fig. 2.7G-

I,M).  Thus, G1 withdrawal does not require a “go away” signal from G2.  

 

DISCUSSION 

  We've shown that Notch signaling and Ras signaling function sequentially to 

control tube development in the C. elegans excretory system.  Notch signaling is required 

to generate the canal cell, which is a central organizer of duct and G1 pore development, 

serving both as a source of LIN-3/EGF ligand (which contributes to Ras activation) and as 

a physical attachment site for the duct (which is important for cell stacking and 

tubulogenesis).  Ras signaling influences cell positions, specifies duct vs. G1 pore 

identity, and promotes subsequent aspects of duct morphogenesis and differentiation. 

Below we propose a model for duct and G1 pore development and discuss similarities and 
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differences between development of the excretory system and development of more 

complex tube networks.  

 

A biased competition model for excretory duct vs. G1 pore fate specification 

  All excretory tubes are examples of left-right asymmetries in what is a mostly 

bilaterally symmetric embryo (Pohl and Bao, 2010; Sulston et al., 1983). Notch signaling 

on the left side of the embryo is required for the earliest of these asymmetries, generation 

of the excretory canal cell (Lambie and Kimble, 1991a; Moskowitz and Rothman, 1996). 

We propose that Notch-dependent asymmetry of the canal cell leads to the Ras-dependent 

asymmetry of the excretory duct and G1 pore.  

According to this biased competition model, the presumptive duct and G1 pore 

cells are initially equivalent. As these cells migrate toward the canal cell during ventral 

enclosure, the left cell has an advantage due to the left-biased asymmetric position of the 

canal cell; this bias may be strengthened by the presence of cells on the right side whose 

left relatives undergo cell death.   The left cell therefore reaches and adheres to the canal 

cell first, and also receives earlier or quantitatively more LIN-3/EGF signal.  LIN-3/EGF 

signaling stimulates LET-60/Ras to promote duct identity and strengthen adhesion with 

the canal cell. Signaling may also trigger production of an unknown lateral inhibitory 

signal that prevents the presumptive G1 from also responding to LIN-3/EGF.  Steric 

hindrance or differences in relative Ras vs. inhibitory signaling levels cause the 

presumptive G1 to take a more ventral position.  Polarization and initial tubulogenesis 
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appear independent of Ras signaling; however, after both cells wrap up into tube shapes, 

continued LIN-3/EGF signaling from the canal cell (and elsewhere) promotes duct vs. G1 

pore identity and later aspects of duct morphogenesis and differentiation into a functional 

tube.   

Two aspects of this model can explain the stacking defects of let-60/Ras 

hypomorphs, in which depletion of both maternal and zygotic let-60/Ras compromises 

(but does not eliminate) the earliest steps of signaling.  First, the presumptive duct, upon 

reaching the canal cell, may not adhere to it strongly. Second, the presumptive duct may 

not express the proposed inhibitory signal in a timely manner. Under conditions where 

Ras signaling is reduced but not absent, this would allow the presumptive G1 pore to 

respond to LIN-3/EGF and compete for a canal-cell proximal position.  Failure of either 

cell to adhere to the canal cell (as in lin-12 glp-1/Notch mutants), or failure to resolve 

competition between the two cells such that both adhere, could lead to the observed 

adjacent positions.  

Lateral inhibition is a central feature of RTK-mediated branching morphogenesis 

in several tubular organs (Chi et al., 2009; Ghabrial and Krasnow, 2006) and lateral 

inhibition of Ras-dependent processes is frequently mediated by Notch signaling (Chen 

and Greenwald, 2004; Sundaram, 2005). However, we find no evidence that Notch 

signaling directly influences excretory duct vs. G1 pore cell fates.  Differences in cell 

adhesion and steric hindrance may be sufficient to explain the stacking process, but they 

are unlikely to explain how only a single duct-like (lin-48p::GFP+) cell is specified from 
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the two adjacent precursors in a lin-12 glp-1/Notch mutant (Table 2.1).  Therefore, an 

unknown signaling pathway may be used to mediate lateral inhibition of the duct fate. 

 

Downstream consequences of EGF-Ras-ERK signaling in the excretory duct 

 In addition to influencing cell positions, EGF-Ras-ERK signaling is both 

necessary and sufficient for several aspects of duct vs. G1 pore identity, including duct-

specific patterns of gene expression, auto-fusion, and a permanent epithelial identity. This 

latter difference in duct epithelial permanence vs. G1 withdrawal may ultimately explain 

the lethality of the duct-to-G1 pore fate change in let-60 ras null mutants.  G1 withdrawal 

does not depend on cues from the replacement cell G2, but instead appears to be an 

intrinsically programmed characteristic of the duct and G1 progenitors that is repressed 

by Ras signaling. Ras may inhibit withdrawal in part by stimulating aff-1-dependent auto-

fusion to permanently remove the duct autocellular junction and prevent its later 

unwrapping; however, Ras must have additional effects since the duct cell still remains 

permanent in most aff-1 mutants despite a failure of auto-fusion (Stone et al., 2009).  

 sos-1(ts) temperature-shift experiments suggest that Ras signaling continues to be 

required after initial fate specification for development of a fully functional duct tube.  

After its auto-fusion to form a toroid, the duct elongates, changes shape, and elaborates a 

complex lumen (Stone et al., 2009). The junctions between the duct and its neighboring 

tubes must be maintained and may undergo further maturation to establish barrier 

functions and prevent excretory fluid leakage. Finally, the duct-pore junction must be 
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remodeled as G1 withdraws and G2 enters. The continued requirement for sos-1 as these 

events are occurring suggests that Ras signaling may directly promote such 

morphogenetic and differentiation processes.  

Most or all of the responses to Ras signaling in the excretory duct appear to be 

transcriptionally-mediated. sos-1(ts) defects can be rescued by loss of the LIN-1/Ets 

transcription factor, which is regulated by MPK-1 ERK phosphorylation (Jacobs et al., 

1998) and acts as a repressor of the duct fate. sos-1(ts) defects also can be mimicked by 

combinatorial loss of LIN-1 and another downstream transcription factor, EOR-1 (a 

BTB-zinc finger protein) (Howard and Sundaram, 2002; Howell et al., 2010), revealing a 

second (but redundant) activity of LIN-1/Ets in promoting the duct fate.  A challenge for 

future work will be to connect these transcriptional effectors to downstream targets that 

control the various cell biological processes of duct auto-fusion, morphogenesis, and 

epithelial maintenance. 

 

Similarities and differences between the excretory system and more complex tube 

networks 

  C. elegans excretory tubes are topologically quite different from epithelial tubes 

in other renal systems in that they are each only one cell in diameter.  However, similar 

unicellular tubes have been described in other organ systems, including the Drosophila 

trachea (Ghabrial et al., 2003)  and the mammalian microvasculature (Bar et al., 1984).  
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Furthermore, in vitro studies suggest that unicellular tubes may be developmental 

precursors to some larger bore tubes in the vasculature (Iruela-Arispe and Davis, 2009).  

  Despite their topological differences, C. elegans excretory tubes and larger 

multicellular tubes must undergo many similar cell biological processes.  For example, 

initially unpolarized cells must transition to an epithelial state, define an appropriate apical 

domain, form new junctions, and build a lumen; the difference is that excretory tubes 

define an intracellular rather than an extracellular lumen.  Furthermore, distinct tube types 

must join to form a continuous conduit. The maturing tubes must be structurally strong to 

withstand internal pressure from their contents, yet flexible enough to elongate and grow 

as organismal size or physiological demands increase. Finally, some epithelial tube cells, 

like the G1 pore, retain the developmental potential to adopt different fates (Jarriault et al., 

2008; Kalluri and Weinberg, 2009; Mani et al., 2008; Red-Horse et al., 2010; Weaver and 

Krasnow, 2008).  Given the simplicity of the C. elegans excretory system and its 

amenability to genetic manipulations, further studies in this system should give insights 

into basic cellular mechanisms involved in these common steps of tubular organ 

development. 

 

MATERIALS AND METHODS 

Strains and alleles 

N2 var. Bristol was the wild-type strain.  Unless otherwise indicated, all strains were 

grown at 20˚C under standard conditions (Brenner, 1974) and all mutant alleles are 
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described in (Riddle et al., 1997). I: lag-1(q385), lag-2(q411), lag-2(q420). II: let-

23(sy97). III: lin-12(n137), lin-12(n137n720), lin-12 (n941), glp-1(q46), glp-1(q231).  

IV: eor-1(cs28) (Rocheleau et al., 2002), let-60(sy101sy127), let-60(n1046), let-

60(n2021), lin-1(e1275), lin-1(n304) (Beitel et al., 1995b), lin-1(n1761) (Jacobs et al., 

1998), lin-3(n1059), lin-45(n2018). V: sos-1(cs41) (Rocheleau et al., 2002). X: lin-

15(n765), sem-5(n2019). Transgenes used are: arIs12 (lin-12 intra) (Struhl et al., 1993), 

arIs41 (LIN-12::GFP) (Levitan and Greenwald, 1998), gaIs27 (LET-23::GFP) (Simske et 

al., 1996), jcIs1 (AJM-1::GFP) (Koppen et al., 2001b), saIs14 (lin-48p::GFP) (Johnson et 

al., 2001), syIs107 (lin-3p::GFP) (Hwang and Sternberg, 2004), wIs78 (AJM-1::GFP) 

(Koh and Rothman, 2001), xnIs17 (DLG-1::GFP) (Totong et al., 2007), vha-1p::GFP 

(Oka et al., 1997), zuIs143 (ref-1p::GFP) (Neves and Priess, 2005). qnEx59 (dct-

5p::mcherry) was provided by Julia and David Raizen and contains 845 bp of the dct-5 5' 

region.  csIs55 (GFP::MLS-2) was generated from a pYJ59-containing array (Jiang et al., 

2005) by gamma-irradiation-induced integration. csEx146 (lin-48p::mcherry) contains 

4.8 kb of the lin-48 5’ region and mcherry in vector pPD49.26 (Fire et al., 1990).  lin-3 

overexpression was achieved with an integrated lin-3p::LIN-3::GFP transgene provided 

by Min Han. 

 

Marker Analysis and Imaging 

Images were captured by differential interference contrast (DIC) and epi-fluorescence 

microscopy using a Zeiss Axioskop and Hamamatsu C5985 camera, or by confocal 
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microscopy using a Leica SP5. Images were processed for brightness and contrast using 

Photoshop or ImageJ.  Some AJM-1::GFP images were inverted for clarity.  

 For electron microscopy, embryos were mounted on an agarose pad and observed 

under light microscopy to identify timepoints for fixation. A laser was used to place 3-4 

holes in the eggshell, allowing the embryo to be aldehyde fixed while on the pad (see 

more details at www.wormatlas.org/laserhole.htm). The fixed embryo was postfixed with 

osmium tetroxide, potassium ferrocyanide, and tannic acid, and then post-stained with 

uranyl acetate before embedding in plastic resin. Transverse serial thin sections were 

collected on slot grids and photographed on a Philips CM10 electron microscope. The G1 

and duct cells were identified within a series of 600 serial thin sections on the basis of 

their positions relative to the canal cell and to the G2 and W epidermal cells (Fig. S1) and 

by comparison to known nuclear positions in time-lapse confocal movies.  

 To visualize the duct and pore progenitor migration paths and timing, we 

generated 3D confocal movies of strains UP2051 (pie-1::mCherry::HIS-58::pie-1utr; his-

72pro::HIS-24::mCherry::let-858utr; GFP::MLS-2) and RW10890 (pie-1::mCherry::HIS-

58::pie-1utr; his-72pro::HIS-24::mCherry::let-858utr; PAL-1::GFP) as previously 

described (Murray et al., 2006) on a Leica TCS SP5 resonance-scanning confocal 

microscope with 0.5 micron z slice spacing and 1.5 minute time point spacing.  

Temperature was 22.5˚C.  We used a hybrid blob-slice model and StarryNite (Bao et al., 

2006; Santella et al., 2010) for automated lineage tracing and curated the duct, pore and 

canal lineages (ABplpaa and ABprpaa) through ventral enclosure (approx. 275 minutes) 

with AceTree (Boyle et al., 2006).  
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Ablations 

Laser ablations were performed with a Micropoint Laser Ablation system (Photonic 

Instruments, St. Charles, IL) mounted to a Leica DM5500B or Zeiss Axiophot 

microscope.  The canal cell mother (ABplpappaa) was identified using zuIs143 (ref-

1p::GFP) (Neves and Priess, 2005).   Successful ablation was confirmed by the absence 

of the canal cell as assessed by DIC and either vha-1p::GFP or AJM-1::GFP patterns.   

 

Immunostaining 

Embryos were permeabilized by freeze-cracking and fixed in methanol as described 

(Duerr et al., 1999) and incubated with primary antibodies overnight at 4°C and with 

secondary antibodies for 2hrs at room temperature. The following antibodies were used: 

preadsorbed rat anti-MLS-2 (CUMCR6; 1:400) (Jiang et al., 2005) goat polyclonal anti-

GFP (Rockland; 1:50), rabbit polyclonal anti-DLG-1 (1:50 to 1:100) (Segbert et al., 

2004). All secondary antibodies were from Jackson ImmunoResearch Laboratories and 

were used at a dilution of 1:50 to 1:200.  

 

Temperature Shifts 

For upshifts, sos-1(ts) mutants were shifted from 20°C to 25°C at the stage indicated.  For 

downshifts, sos-1(ts) L4 larvae were placed at 25°C and their progeny were shifted to 
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20°C at the stage indicated. We staged embryos by number of hours after egg-lay (see 

Table 2.2).  Marker expression was scored at 3-fold or early L1. Worms that failed to 

reach the L4 stage within 4 days after shift were scored as lethal. 
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Figure 2.1. Timeline of excretory system development. (A) Schematics of excretory 

canal cell (red, ABplpappaap), duct (yellow, ABplpaaaapa), G1(blue, ABprpaaaapa), G2 

(green, ABplapaapa) and W (green, ABprapaapa) at different developmental stages, 

based on (Sulston et al., 1983), prior electron microscopy (Stone et al., 2009) and this 

work. Dark black lines, apical junctions; dotted line, duct auto-fusion; arrow, pore 

autocellular junction; arrowhead, duct-canal cell intercellular junction; bracket, duct cell 

body. Not shown are the non-essential excretory gland cells, which also connect to the 

duct-canal junction (Nelson et al., 1983; Nelson and Riddle, 1984). (B-E) Progressively 

older ventral enclosure stage embryos. (B-C,E) Ventral views. GFP::MLS-2 marks the 

presumptive duct and G1 pore nuclei. DLG-1::GFP marks epidermal cell junctions in B 

and E, which are confocal projections. (B) The presumptive duct and G1 initially lack 

junctions. (C) The presumptive duct is closer to the canal cell than is the presumptive G1. 

(D) TEM of a wild-type embryo at a similar stage to C, with cells pseudo-colored as in A. 

Transverse anterior view. The presumptive duct and G1 have met at the ventral midline. 

The duct makes extensive contact with the canal cell, while G1 is excluded. No epithelial 

junctions or lumen are detectable. (E) G1 moves ventrally. The asterisk indicates the site 

of future G1 pore opening between G2 and W epidermal cells. (F-L) Left lateral views. 

(F) 1.5-fold stage embryo immunostained for DLG-1, showing newly formed autocellular 

junctions (inset) just before duct auto-fusion. (G-K) L1 larvae. The box in G indicates the 

region magnified in H. AJM-1::GFP marks junctions. The duct no longer has an 

autocellular junction. (I) lin-48p::mcherry marks the duct. (J) dct-5p::mcherry marks the 

duct and G1 pore in early L1 and (K) the duct and G1 in late L1 after G1 withdrawal and 

G2 entry. (L) Adult canal cell marked with vha-1p::GFP. Note that the canal cell 



68 
 

elongates extensively. David Hall and Carolyn Norris generated analyzed the 

transmission electron microscopy images of the immature excretory system, and Meera 

Sundaram did most of the analysis. John I. Murray did the lineage analysis of the 

GFP::MLS-2 strain. 

 
Figure 2.2. let-60/Ras promotes the duct versus G1 pore fate. (A-J ) AJM-1::GFP (left 

column) and lin-48p::GFP or (C’) dct-5p::mCherry (middle column) expression in L1 

larvae of the indicated genotypes. Lateral views, with schematic interpretations (right 

column) and symbols as in Fig. 1. Colors represent lineal identity, not fate. Mutants with 

reduced signaling usually have two pore-like cells with autocellular junctions, but as fluid 

(carat) accumulates during L1 (C), large junctional rings (asterisk) are common. In (C’), 

white arrows indicate two stacked pore-like cells. Mutants with increased signaling have 

a seamless binucleate duct that connects to the ventral epidermis. (K-L) Quantification of 

marker phenotypes. Note that some mutants with ‘0 G1’ have defects in cell stacking and 

tubulogenesis rather than in cell fate specification (see Fig. 4). Scale bar: 2µm. . Kai 

Huang, Katherine Palozola, Kelly Howell, and Meera Sundaram built and analyzed 

several of the strains. 

 
Figure 2.3. lin-3/EGF, let-23/EGFR and lin-12/Notch reporter expression in the 

excretory system. (A-C) LET-23::GFP is expressed in the presumptive duct and G1 pore 

at ventral enclosure (A) and in the duct (bracket) at 3-fold (C). (B-D) lin-3p::GFP is 

expressed in the canal cell from ventral enclosure (B) through L1 (D).  (E) LIN-12::GFP 

is expressed in the presumptive G2 and W but not in the presumptive duct or pore at 
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ventral enclosure. In A, C and E, embryos were co-stained with anti- GFP and either anti-

MLS-2 or anti-DLG-1 to mark the duct and G1 pore (n>10 each). Scale bars: 5µm. John 

I. Murray did the lineage analysis of the GFP::MLS-2 strain. 

 
Figure 2.4. let-60/Ras hypomorphs reveal defects in cell competition and stacking. 

(A,B,E,F) Wild-type. (C,D,G-J) let-60(n2021rf). (A,C)AJM-1::GFP in threefold 

embryos, ventral view. Lines indicate ventral junctions between the presumptive G1 or 

duct and the epidermis. (E,G,I,K) AJM-1::GFP and dct-5p::mCherry in early L1s, lateral 

view. Asterisks indicate ventral cells with neither duct-like nor pore-like morphology. In 

let-60(n2021rf) mutants, the presumptive duct and G1 adopt adjacent positions in the 

epidermis (C,D) and one cell usually reaches from the ventral epidermis to the canal cell 

(G-J). The lineal identity of this cell is unknown and may be variable. (K) Quantification 

of adjacent defects in early L1 larvae from heterozygous versus homozygous mutant 

mothers. Animals with no G1 pore autocellular junction or with a single autocellular 

junction that stretched from the ventral epidermis to the canal junction were scored as 

‘adjacent’. Meera Sundaram built these strains and did some of the analysis.  

 
Figure 2.5. The canal cell is required for duct and G1 pore stacking and 

tubulogenesis. (A-I,L) AJM-1::GFP. D,G,H also contain lin-48p::GFP. (J,K) Schematic 

diagrams. (A-C)Early threefold embryos, ventral view. (D-F) Early L1s, ventral view. 

(G-L) Early L1s, lateral view. In wild-type (A), the G1 pore contacts G2 and W in the 

ventral epidermis. In lag-1(RNAi) (B) or lin-12(n941) glp-1(q46) double mutants (C,F,I), 

the presumptive duct and G1 pore (lines) both contact the epidermis and lack autocellular 

junctions. In lag-2(q420rf) mutants (D,E,G,H), the presence of a canal cell (D,G) 
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correlates with normal duct and G1 pore morphology. aff-1(tm2214) (E) has no impact on 

the lag-2(q420rf) phenotype. (L) Ablation of the canal cell mother eliminates the G1 pore 

autocellular junction. (M) Quantification of junction phenotypes in early L1 larvae. 

Animals with no G1 pore autocellular junction were scored as ‘adjacent’. Scale bar: 2µm. 

Vincent Mancuso performed the studies with the Notch mutants and performed the canal 

cell ablations. Meera Sundaram also scored Notch mutants.  

 

Figure 2.6. sos-1 temperature shift experiments reveal continued requirements 

during duct morphogenesis and differentiation. 

(A) sos-1(cs41ts) lethality at 25°C is rescued by let-60(n1046gf) or lin-1(e1275lf). n>50 

for each genotype. (B,C)sos-1(ts) animals bearing AJM-1::GFP or lin-48p::GFP markers 

were upshifted or downshifted at the stages indicated. n≥20 for each time point. sos-1 is 

required before the 1.5-fold stage to promote lin-48p::GFP duct marker expression (B) or 

duct auto-fusion (C). (D)The sos-1(ts) temperature-sensitive period (TSP) for lethality 

extends from the bean stage of embryogenesis to L2. The majority of animals upshifted 

before L2 arrested with excretory abnormalities (see C,E,F). Animals upshifted during L2 

displayed a scrawny phenotype similar to that reported for egl-15/FGFR mutants 

(DeVore et al., 1995; Roubin et al., 1999). (E-F ) Fluid (carats) accumulated in or near 

the duct in threefold upshifted sos-1(ts) animals (E’,F’), while AJM-1::GFP (E) and lin-

48p::GFP (F) patterns were unaffected in these same animals. Scale bar: 2µm. 

 

Figure 2.7. G1 withdrawal and G2 entry can occur independently. 
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AJM-1::GFP in L4 larvae. (A,D,G,J) lateral views. (B,E,H,K) ventral views. (C,F,I,L) 

Schematic diagrams. (A-C)In wild type, G2p forms the pore. (D-F)In let-60(n1046gf) 

mutants, G2p usually wraps around the base of the duct. (G-I) In lin-12(n941lf) mutants, 

the duct attaches directly to the ventral epidermis after G1 withdrawal. (J-L) In lin-

12(n137gf) mutants, the extra G2p cell wraps around the ventral base of the pore. Lines 

indicate ventral junctions with the epidermis. (M) Quantification of junction phenotypes. 

Scale bar: 2µm. Meera Sundaram performed all of these experiments. 

 

Table 2.1. Physical or genetic removal of the canal reduces but does not prevent 

duct fate specification. Presence of the canal cell or duct cell was assessed based on vha-

1p::GFP or lin-48p::GFP reporter expression, respectively. + or – indicate that presence 

of canal cell as assessed based on nuclear morphology or AJM-1::GFP. †m+z– indicates 

that larvae were obtained from heterozygous hT2[qIs48] balancer mothers. For canal cell 

parent ablation, strain contained ref-1p::GFP to aid in target identification. lf, loss-of-

function; rf, reduced function; gf, gain-of-function. Vincent Mancuso and Meera 

Sundaram performed all of these experiments. 

 

Table 2.2. Staging of sos-1 ts shifted worms. Worms were shifted at the various time 

points (hours after egg lay). Developmental stage of worms was confirmed by scoring the 

worms on a dissecting microscope.  
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Figure 2.1 
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Figure 2.2 
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Figure 2.3 
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Figure 2.4 
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Figure 2.5 
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Figure 2.6 

 

 

 

 

 

 

 

 

 



78 
 

Figure 2.7 
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Table 2.1 
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Table 2.2 

 

Hours after egg lay (AEL) Developmental Stage 

1 Pre-Bean 

4 Bean 

6 2-fold 

15 Early L1 

24 L2 

31 L3 

60 L4 
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Chapter Three: 

THE NKX5/HMX HOMEODOMAIN PROTEIN MLS-2 IS 

REQUIRED FOR PROPER TUBE CELL SHAPE IN THE 

C.ELEGANS EXCRETORY SYSTEM 

 

 

 

 

 

 

 

 

 

 

*This chapter was submitted for publication as Ishmail Abdus-Saboor, Craig Stone, 

John I. Murray, and Meera V. Sundaram. (2012) The Nkx5/HMX homeodomain protein 

MLS-2 is required for proper tube cell shape in the C.elegans excretory system. 
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Summary 

Cells perform wide varieties of functions that are facilitated, in part, by adopting 

unique shapes. Many of the genes and pathways that promote cell fate specification have 

been elucidated. However, relatively few factors have been identified that promote shape 

acquisition after fate specification. Here we show that the Nkx5/HMX homeodomain 

protein MLS-2 is required for cellular elongation and shape maintenance of two tubular 

epithelial cells in the C.elegans excretory system, the duct and pore cells. The 

Nkx5/HMX family is highly conserved from sea urchins to humans, with known roles in 

neuronal and glial development. MLS-2 is expressed in the duct and pore, and defects in 

mls-2 mutants first arise when the duct and pore normally adopt unique shapes. MLS-2 

cooperates with the EGF-Ras-ERK pathway to turn on the LIN-48/Ovo transcription 

factor in the duct cell during morphogenesis. These results reveal a novel interaction 

between the Nkx5/HMX family and the EGF-Ras pathway and implicate a transcription 

factor, MLS-2, as a regulator of cell shape.  

 

Introduction  

Many cell types that are commonly found throughout the animal kingdom have quite 

remarkable shapes. For example, neurons form highly elaborate axonal and dendritic 

processes to construct networks that support the many functions of the nervous system. 

The shapes of neurons can vary tremendously depending on the function of the neuron 

and the distance between the innervating target and the cell body (Kanning et al., 2010; 
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Marin et al., 2006; Meinertzhagen et al., 2009). Glial cells, which ensheath neurons, can 

adopt elongated or stellate shapes depending on the functions and shapes of the 

associated neurons (Mason et al., 1988; Oikonomou and Shaham, 2011). Epithelial cells, 

which line our organs and external body surfaces, typically are classified as squamous, 

cuboidal, or columnar in shape (Andrew and Ewald, 2010), but certain epithelial cells, 

such as tracheal terminal cells in Drosophila and the excretory canal cell in C.elegans, 

adopt more complex, branched morphologies (Buechner, 2002; Schottenfeld et al., 2010). 

Although each cell type in the body has a characteristic shape, the relationship between 

cell fate determination and cell shape acquisition is poorly understood. 

The cytoskeleton is the major determinant of cell shape, and all three major 

components of the cytoskeleton (actin, microtubules, and intermediate filaments) play 

critical roles. Actin monomers polymerize into long stable filaments and webs that 

provide mechanical structure to cells (Pollard and Cooper, 2009). Microtubule monomers 

also polymerize into long rigid filaments that provide structure and serve as tracks for 

long-range transport of other cellular materials, especially at the growing tips of polarized 

elongated cells such as neurons (Stiess and Bradke, 2010). Intermediate filaments (IFs) 

organize into more flexible, rope-like structures that help maintain cell shape and resist 

mechanical stress (Chang and Goldman, 2004; Goldman et al., 1996; Herrmann et al., 

2007).  The actin, microtubule and IF-based cytoskeletons are interconnected by various 

bridging proteins, such as formins and plakins (Chesarone et al., 2010; Leung et al., 

2002), and work together to establish and maintain cell shape.  
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Transcription factors play key roles in specifying cell fates and in promoting 

subsequent steps of terminal differentiation, and thus must ultimately influence the 

cytoskeleton to confer cell-type appropriate shapes. Indeed, a few transcription factors 

appear dedicated specifically to the control of cell shape. For example, transcription 

factors of the Snail family drive cell shape changes during epithelial-to-mesenchymal 

transition by repressing E-cadherin and other epithelial-specific genes (Peinado et al., 

2007). The Drosophila zinc finger transcription factor shavenbaby (svb)/ovo promotes 

formation of specialized epidermal appendages (denticles) by upregulating multiple 

genes important for re-organization of the actin cytoskeleton and the extracellular matrix 

(Chanut-Delalande et al., 2006; Payre et al., 1999).  Ovo function appears to be 

conserved, since the mouse ovo gene, Movo1, also promotes formation of specialized 

epidermal appendages (hair follicles) (Dai et al., 1998).  However, defects in cell fate 

determination vs. terminal differentiation can be difficult to distinguish in many systems, 

and few other transcription factors have been identified that function specifically in shape 

determination downstream of fate specification. 

The C.elegans excretory (renal-like) system contains three distinct cell types that 

adopt unique shapes (Abdus-Saboor et al., 2011; Buechner, 2002; Nelson et al., 1983). 

All three cells of the excretory system (canal, duct, and pore) are unicellular epithelial 

tubes that connect in tandem via apico-lateral junctions (Fig. 3.1). Unicellular tubes are 

single cells that form tubes by wrapping or hollowing mechanisms (Kamei et al., 2006; 

Lubarsky and Krasnow, 2003; Rasmussen et al., 2008). The canal cell is the largest cell 

in the worm and adopts an H-like shape, with four hollow canals that extend the entire 
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length of the worm’s body (Buechner, 2002). The duct and pore are much shorter in 

length and connect the canal cell to the outside environment (Fig. 3.1). The duct has a 

distinctive asymmetric shape, and the region of the duct that connects to the pore is 

narrow in diameter similar to an axonal extension. The pore has a more regular, conical 

shape (Fig. 3.1). Thus the cells of the excretory system provide a model to investigate 

how epithelial cells adopt specialized shapes.  

The excretory duct and pore develop from initially equivalent precursors that adopt 

distinct fates in response to EGF-Ras-ERK signaling (Abdus-Saboor  et al., 2011; Sulston 

et al., 1983; Yochem et al., 1997). The duct and pore fates are distinguished by several 

properties. For example, during migration of the precursors to the midline, the duct takes 

a canal proximal position, while the pore moves ventrally (Fig. 3.1).  Both cells form 

unicellular tubes via a wrapping process, but the duct subsequently fuses its autocellular 

junction while the pore retains its autocellular junction (Stone et al., 2009). During 

morphogenesis, the duct elongates more extensively than the pore and adopts its unique, 

asymmetric shape.  The duct also expresses the transcription factor LIN-48, an ortholog 

of Drosphila svb/ovo that influences duct position and/or length (Wang and Chamberlin, 

2002).   

Here we show that the Nkx5/HMX transcription factor MLS-2 promotes cell shape 

acquisition in the C.elegans excretory duct and pore. MLS-2 cooperates with the EGF-

Ras pathway to promote lin-48/ovo expression, but MLS-2 must have additional relevant 

targets since the cell shape defects of mls-2 mutants are more severe than those of lin-48 

mutants. The roles we identified for MLS-2 in epithelial tube cell development expand 
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the role of NKX.5/HMX proteins, which have traditionally been shown to act within the 

nervous system (Wang and Lufkin, 2005). MLS-2 promotes differentiation of two other 

elongated cells in C.elegans, the AWC neuron and the CEP sheath glial cell (Kim et al., 

2010; Yoshimura et al., 2008). Therefore, MLS-2 may have a core function in promoting 

morphogenesis and terminal differentiation in cells that adopt elongated shapes.  

 

Results 

An EMS mutagenesis screen for mutants with duct cell abnormalities 

Animals mutant for various components of the canonical EGF-Ras-ERK pathway 

all display a rod-like lethal phenotype associated with absence or abnormal development 

of the excretory duct cell (Abdus-Saboor et al., 2011; Yochem et al., 1997).  To identify 

additional genes important for duct development, we conducted an EMS mutagenesis 

screen for rod-like lethal mutants.  After screening 3900 haploid genomes, we identified 

9 mutants, several of which had incompletely penetrant phenotypes.  We used the apical 

junction marker AJM-1::GFP, which labels the pore autocellular junction, and a duct-

specific lin-48 marker to classify these mutants into two phenotypic groups: 1) Mutants 

with a duct-to-pore fate transformation; and 2) Mutants with apparently normal duct fate 

specification.  Mapping and complementation tests (Materials and Methods) revealed that 

the first group included alleles of lin-3/EGF, let-60/Ras and ksr-1/Kinase Suppressor of 

Ras, as expected based on the known role of EGF-Ras signaling.  The second group of 

mutants included alleles of vha-5, lpr-1 (Stone et al., 2009) and egg-6 (Mancuso et al., 
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2012), which have been described elsewhere. 

The incompletely penetrant lethal allele cs71 fell into a third category (Fig. 3.2). 

cs71 mutants sometimes lacked lin-48 reporter expression, as seen in Ras pathway 

mutants, but loss of this duct fate marker was not accompanied by duplication of the 

excretory pore fate (Fig. 3.2D,F,G).  Furthermore, the excretory pore sometimes appeared 

abnormal or missing based on absence or shortening of its characteristic autocellular 

junction (Fig. 3.2E,F,H).  Thus, cs71 defined a gene important for both excretory duct 

and pore development.  

 

cs71 is an allele of mls-2 

Linkage mapping placed cs71 near the mls-2 gene on the X chromosome. mls-

2(cc615) null mutants showed a similar rod-like lethal phenotype, and cs71 and cc615 

failed to complement (Fig. 3.2I). cs71 mutants contained a nonsense mutation in the mls-

2 coding region (Fig. 3.2J). In addition, a translational GFP::MLS-2 reporter completely 

rescued cs71 lethality (Fig. 3.2I). We conclude that cs71 is an allele of mls-2. 

mls-2 encodes a homeodomain transcription factor that belongs to the Nkx5/HMX 

superfamily (Jiang et al., 2005).  Most members of the Nkx5/HMX family have the HMX 

motif [A/S]A[E/D]LEAA[N/S] located immediately downstream of the homeodomain 

(Wang and Lufkin, 2005; Yoshiura et al., 1998), but MLS-2 and its closest relative, the 

chick SOHo1 protein, both lack the HMX motif (Deitcher et al., 1994). Accordingly, it 

has been suggested that MLS-2 be considered a member of the Nkx5 family instead of 
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HMX (Yoshimura et al., 2008). In sea urchins, zebrafish, fruit flies, and mice, members 

of the Nkx5/HMX family are expressed in the developing central nervous system and 

sensory organs (Gongal et al., 2011; Martinez and Davidson, 1997; Wang et al., 2000). 

The function of Nkx5/HMX family members has not diverged substantially between 

species as Drosophila HMX can fully rescue the otic vesicle defects of hmx-2/3 null mice 

(Wang et al., 2004). Consistent with roles in the nervous system, C.elegans MLS-2 is 

expressed predominantly in neurons and glial cells (see below), and MLS-2 is required 

for differentiation and morphogenesis of the AWC chemosensory neurons and the CEP 

sheath glial cells (Kim et al., 2010; Yoshimura et al., 2008).  

 

MLS-2 is expressed in the duct and pore lineages 

Since mls-2 promotes duct and pore cell development, we asked if the expression 

pattern of MLS-2 was consistent with a direct role for MLS-2 in these cells. To visualize 

MLS-2 expression we used csIs55, an integrated version of the GFP::MLS-2 translational 

reporter that completely rescued mls-2 lethality (Fig. 3.2I). To gain a complete picture of 

the MLS-2 expression pattern during embryogenesis, we analyzed confocal time-lapse 

movies of three developing embryos expressing GFP::MLS-2 and a nuclear 

histone::mcherry marker (Material and Methods). GFP::MLS-2 expression became 

detectable around the 50-cell stage of embryogenesis and was restricted to specific, 

reproducible sublineages of the AB blastomere, most of which gave rise to neuronal 
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and/or glial descendants (Fig. 3.3).  GFP::MLS-2 was also expressed in the duct and pore 

lineages, but was never observed in the canal cell (Fig. 3.3). 

In 3/3 movies, we saw that expression of GFP::MLS-2 initiated in the 

grandparents of the duct and pore cells (Fig. 3.3A). GFP::MLS-2 expression persisted in 

the duct and pore cells through the ventral enclosure (Fig. 3.3B) and 1.5-fold stages of 

embryonic development, during which time fates are specified via EGF-Ras-ERK 

signaling and the duct and pore cells stack and form tubes (Abdus-Saboor et al., 2011). 

By the first larval stage of development, when the duct and pore cells have achieved their 

mature morphologies, GFP::MLS-2 was no longer detected in the duct and pore cells 

(data not shown). An MLS-2 polyclonal antibody showed the same expression pattern in 

the duct and pore cells as GFP::MLS-2 (Abdus-Saboor et al., 2011) and (data not shown). 

We conclude that the temporal and spatial expression pattern of MLS-2 is consistent with 

MLS-2 acting cell autonomously to promote duct and pore development.  

 

mls-2 mutants have incompletely penetrant and cold-sensitive lethal excretory 

system defects  

 Although both mls-2(cs71) and mls-2(cc615) appear to be null alleles since they 

truncate or eliminate the protein, their lethal and duct marker phenotypes were 

incompletely penetrant and cold-sensitive (Fig. 3.2G,I). The pore junction phenotype was 

also incompletely penetrant but was not cold-sensitive (Fig. 3.2H). In addition to the 

incompletely penetrant early L1 excretory arrest, some mls-2 mutants arrested as larvae 
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without noticeable excretory defects (Fig. 3.2I). MLS-2 is required for ventral CEP 

sheath glia morphogenesis, and approximately 20% of worms with ablated ventral sheath 

glial cells arrest as early larvae (Yoshimura et al., 2008). Therefore, the other non-

excretory larval arrest seen in mls-2 mutants is likely the result of glial defects. MLS-2 is 

also required for differentiation of the AWC neurons, but no lethality is associated with 

loss of the AWC neurons (Kim et al., 2010). Although the duct and pore are closely 

related in lineage to the ventral CEP sheath glial cells and the AWC neurons (Fig. 3.3A), 

mls-2 mutants fail to express differentiation markers for each cell type with varying 

levels of penetrance, suggesting independent roles for MLS-2 in each cell. The 

incomplete penetrance of mls-2 null mutants suggests that there are redundant factors that 

work in parallel to MLS-2 to promote excretory system development. The fact that 

presumptive null alleles are cold sensitive suggests that the process that requires MLS-2 

is cold-sensitive, and not the specific alleles. 

 

mls-2 cooperates with the EGF-Ras pathway to promote duct differentiation and 

lin-48/Ovo expression 

To address possible redundancy between MLS-2 and other related homeodomain 

factors, we took a candidate based approach. We screened 9 of the gene products most 

related by sequence to MLS-2 by RNA-mediated interference (RNAi). We observed no 

enhancement of mls-2 excretory phenotypes with this strategy (data not shown), although 

we cannot exclude the possibility of inefficient RNAi knockdown; RNAi generally works 
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very poorly in the excretory system (Rocheleau et al., 2008). We also made double 

mutants between mls-2 and three other related homeodomain genes for which mutants 

exist, but this too yielded no enhancement of the mls-2 excretory phenotype (data not 

shown). However, a more unbiased genome-wide RNAi screening approach identified 

two chromatin modifying factors that greatly enhanced mls-2 rod-like lethality (IA and 

KH unpublished). One of these, pbrm-1, has been previously shown to suppress the 

multi-vulva phenotype of let-60 Ras(n1046 gf) and also interact with other Ras pathway 

effectors in the vulva (Lehner et al., 2006). 

We asked if combining mls-2 with mutants in the EGF-Ras-ERK pathway could 

enhance the excretory-related lethality of mls-2 (Fig. 3.4). Specifically, we examined 

hypomorphic mutants for mpk-1/ERK, which is the terminal kinase in the EGF-Ras 

pathway (Wu and Han, 1994) and null mutants for lin-1/ETS, a downstream transcription 

factor (Beitel et al., 1995a). In addition, we examined null mutants for two nuclear 

factors, eor-1 and sur-2, that act redundantly downstream of MPK-1/ERK (Howard and 

Sundaram, 2002).  mpk-1/ERK, lin-1/ETS, eor-1, and sur-2 single mutants all had a 

weakly penetrant lethal phenotype (Fig. 3.4B). However, when these mutants were 

combined with mls-2 mutants, there was a great enhancement of both excretory and total 

lethality (Fig. 3.4B).  These data suggested that mls-2 cooperates with the EGF-Ras-ERK 

pathway to promote excretory duct development. 

Importantly, we found no evidence for defects in duct vs. pore cell fate 

specification in mls-2 mutants.  Although many mutants lacked markers indicative of the 

duct or pore cell fate, in no case did we observe duplication of either fate; thus, apparent 
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loss of one cell type was not associated with conversion to the other.  mls-2 enhanced 

defects in duct terminal differentiation, as reflected by enhanced loss of the lin-48 duct 

marker in a sur-2 background (Fig. 3.4C).  mls-2 did not suppress the pore-to-duct fate 

transformations of let-60 ras gain-of-function (gf) mutants (Fig. 3.4D), but did reduce 

lin-48 marker expression in let-60(gf) and lin-1 backgrounds (Fig. 3.4C). These data 

placed mls-2 genetically downstream or in parallel to the EGF-Ras-ERK pathway with 

respect to turning on lin-48 in the duct cell (Fig. 3.4A).  Thus, mls-2 cooperates with 

EGF-Ras-ERK to promote terminal differentiation of the excretory duct cell. 

 

mls-2 affects duct and pore tube cell shape 

To better understand the mls-2 mutant phenotype, we used additional markers to 

visualize the shapes of excretory system cells in mls-2 mutants. To visualize the canal 

cell, we used the vha-1p::GFP marker, which labels the entire cytoplasm of this cell 

(Mattingly and Buechner, 2011). In mls-2 mutants, the canal cell extended its canals 

normally the entire length of the worm, and fluid rarely accumulated within the canal 

lumen (3/104) (data not shown), suggesting that mls-2 excretory lethality is not the result 

of canal cell defects.  

We visualized the cytoplasm of the duct and pore cells with dct-5p:mcherry in 

combination with AJM-1::GFP (Fig. 3.5). The duct and pore cells in mls-2 mutants 

frequently had abnormal globular shapes rather than their normal elongated morphologies 

(Fig. 3.5C-H).  These cell shape defects were variable, with individual animals exhibiting 
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defects in only the pore (Fig. 3.5C), only the duct (Fig. 3.5G), or in both cells (Fig. 3.5E).  

mls-2 mutants scored with lin-48p::mcherry and AJM-1::GFP also had variable defects, 

with either the duct (Fig. 3.2D), pore (Fig. 3.2E), or both cells affected (Fig. 3.2F). Pore 

cell shape defects were strongly correlated with absence of the pore autocellular junction.  

In mutants where only the pore cell was affected, the duct often reached to the ventral 

epidermis (Fig. 3.5C); this phenotype was compatible with animal survival. In rare mls-2 

mutants where only the duct cell was affected, the pore cell appeared to connect directly 

to the canal cell, and the dct-5p::mcherry marker was not expressed in the duct or pore 

cells (Fig 3.5G). Therefore, it was difficult to define the position of the duct cell with this 

particular phenotype, but we hypothesize that the duct cell either failed to elongate or was 

displaced. In summary, mls-2 affects the shape of both the excretory pore and duct cells. 

 

mls-2 cell shape defects begin during duct and pore elongation 

To determine when the mls-2 cell shape and junctional defects began, we 

measured the length of the pore autocellular junction (AJ) and the distance between the 

pore AJ and duct-canal junction (an estimate of duct length) at four time-points between 

the1.5-fold stage of embryogenesis and the first larval stage of development (Fig. 3.6).  In 

wild type worms at the 1.5-fold stage, the duct and pore cells have stacked in tandem and 

wrapped into tubular structures with simple, block-like shapes (Figs. 3.1 and 3.6C) 

(Abdus-Saboor et al., 2011; Stone et al., 2009).  Each cell initially has an autocellular 

junction, but the duct rapidly auto-fuses to dissolve its junction. mls-2 mutants appeared 
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similar to wild-type at this stage (Fig. 3.6D), suggesting that the duct and pore had 

stacked and formed tubes normally. Consistent with the duct and pore stacking normally, 

at the early 3-fold stage mls-2 mutants had a single ventral pore opening similar to wild 

type, as opposed to adjacent non-stacked cells (Abdus-Saboor et al., 2011) (Fig. 3.6E,F). 

However, while the cells in wild type continued to elongate up until the first larval stage, 

the cells in some mls-2 mutants failed to elongate or actually collapsed and became 

shorter (Fig. 3.6G-J).  Thus, the mls-2 phenotype first became apparent two hours after 

the 1.5-fold stage, when the duct and pore cells were beginning to elongate and take 

distinct shapes. 

 

mls-2 mutants have a more severe duct shape phenotype than lin-48 mutants 

mls-2 mutants have reduced expression of lin-48 reporters in the excretory duct, 

suggesting that mls-2 might affect duct cell shape at least in part via upregulation of lin-

48.  lin-48 is the C. elegans ortholog of Drosophila svb/ovo, which is known to regulate 

expression of a variety of cytoskeletal genes to control cell shape in the epidermis 

(Chanut-Delalande et al., 2006). Furthermore, lin-48 mutants were previously described 

to have defects in duct positioning or shape (Wang and Chamberlin, 2002). We used 

markers AJM-1::GFP and dct-5p::mcherry to visualize the duct in lin-48 mutants.  While 

the duct cell body appeared somewhat narrower in lin-48 mutants than in wild-type, the 

duct retained its distinctive process and asymmetric cell shape, and pore morphology was 

normal (Fig. 3.5I).  The lin-48 mutant phenotype is relatively subtle compared to the mls-
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2 phenotype, indicating that mls-2 must regulate additional genes in the duct besides lin-

48.  mls-2 also affects pore shape via mechanisms that are independent of lin-48.  lin-48; 

mls-2 double mutants were not more severe than mls-2 mutants alone (data not shown), 

suggesting that mls-2 and lin-48 do not have redundant functions in promoting duct cell 

shape.  

 

Discussion 

 We have shown that the Nkx5/HMX homeodomain transcription factor MLS-2 

promotes terminal differentiation and morphogenesis of the epithelial duct and pore cells 

in C. elegans.  In mls-2 mutants, both cells adopt simple tube shapes as in wild-type, but 

subsequently fail to elongate to their more complex, mature morphologies. In the duct, 

MLS-2 cooperates with the EGF-Ras-ERK pathway in turning on the terminal 

differentiation gene lin-48/ovo. We propose that MLS-2 regulates additional genes 

important for cytoskeletal organization and cell elongation, and that MLS-2 plays 

widespread roles in promoting morphogenesis of cells with complex shapes.  

 

mls-2 acts in parallel to the EGF-Ras-ERK pathway to upregulate lin-48/ovo 

 The EGF-Ras-ERK pathway is used repeatedly throughout metazoan 

development to promote numerous cell fates. In C. elegans, the EGF-Ras-ERK pathway 

specifies the excretory duct versus pore fate, and there is a continued requirement for 
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signaling to maintain duct tube architecture after initial fate specification (Abdus-Saboor 

et al., 2011).  How signaling ultimately promotes specific aspects of duct fate such as cell 

shape, and how continued signaling affects later tube architecture, is unclear. Most 

effects of EGF-Ras-ERK signaling depend on the combined action of the core 

downstream transcription factors LIN-1/Ets and EOR-1/BTB-Zinc finger and the 

Mediator subunit SUR-2, which must then control expression of various other target 

genes that together influence duct terminal differentiation.  MLS-2 cooperates with SUR-

2 to turn on one known duct-specific target, the LIN-48/Ovo transcription factor, and acts 

downstream or in parallel to LIN-1/Ets.  

We favor a model whereby MLS-2 works in parallel to the EGF-Ras-ERK 

pathway and is not itself a target of signaling. Several observations have led us to this 

conclusion, including: 1) MLS-2 expression begins well before the time that Ras 

signaling is thought to occur in the duct, and is observed equally in the duct and pore; 2) 

mls-2 mutants do not have a duct-to-pore fate switch like Ras signaling mutants, and 3) 

mls-2 mutants have shape defects in both the duct and pore, whereas Ras signaling 

mutants only affect the duct.  We cannot exclude the possibility that Ras signaling 

enhances MLS-2 expression after it has already been initiated. Neither can we exclude 

the possibility that the activity of MLS-2 is post-transcriptionally regulated by Ras 

signaling. Nonetheless, our data are most consistent with the model that MLS-2 and the 

Ras pathway converge to turn on common targets such as lin-48.  

lin-48 plays only a subtle role in shape acquisition and position in the duct cell 

(Wang and Chamberlin, 2002) and (this work), and therefore is probably just one of a 
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host of target genes downstream of Ras signaling and MLS-2 that promote duct 

morphogenesis.  The Drosophila ortholog of lin-48, Shavenbaby (svb), also is 

upregulated by EGF-Ras-ERK signaling (Payre et al., 1999) and promotes specialized 

cell shape in the fly epidermis by turning on at least a dozen genes that affect either the 

cytoskeleton or the extracellular matrix (Chanut-Delalande et al., 2006). Transcriptional 

upregulation of svb depends on the combined action of at least seven distinct enhancer 

elements (Frankel et al., 2010; Frankel et al., 2011), and transcription factors that bind 

directly to these enhancers have not yet been identified.  We also do not know if MLS-2 

or Ras-regulated transcription factors act directly or indirectly to upregulate lin-48.   

 

MLS-2 may regulate expression of cytoskeletal genes to control duct and pore cell 

shape 

We hypothesize that, in addition to lin-48, MLS-2 targets may include genes more 

directly involved in cytoskeletal organization. The cold-sensitivity of mls-2 null mutants 

is consistent with defects in a microtubule-dependent process, since microtubules have 

been shown to depolymerize at low temperatures in all systems studied, including C. 

elegans (Chalfie and Thomson, 1982; Melki et al., 1989).  Both the actin and 

microtubule-based cytoskeletons have known roles in cellular elongation contexts (Lloyd 

and Chan, 2004; Otani et al., 2011; Pollard and Cooper, 2009), so disorganization of 

either could potentially explain the mls-2 duct and pore shape defects. 
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Like other organisms, C. elegans has multiple isoforms of actin and tubulin, and 

many types and isoforms of cytoskeletal bridging proteins, and these various isoforms are 

expressed in cell-type specific patterns (Bobinnec et al., 2000; Fukushige et al., 1995; 

Hurd et al., 2010)(Cartier et al., 2006; Fuchs and Karakesisoglou, 2001; McKean et al., 

2001; McLean et al., 2008). A given cell's repertoire of cytoskeletal subunits, combined 

with its repertoire of bridging proteins, may determine how the different parts of the 

cytoskeleton work together, contributing to cell-type appropriate morphologies. We 

currently know very little about which cytoskeletal isoforms are expressed in the 

excretory duct and pore cells, but predict that the MLS-2 transcription factor promotes 

expression of a subset of these factors that are important for generating the unique 

morphologies of these cells.  

 

MLS-2 promotes terminal differentiation of cells with complex shapes 

In addition to the duct and pore, mls-2 affects differentiation of the AWC neurons and 

the CEP sheath glia cells, which all derive from common precursor cells (Kim et al., 

2010; Yoshimura et al., 2008) (see Fig. 3A). However, the loss of terminal fate markers 

occurs at varying penetrance in these different cell types, suggesting that mls-2 plays a 

specific role in each of these related cell types, and not a general role in the common 

precursors of the three cell types.  In addition to lineage history, one feature shared by all 

three cell types is a complex shape. 



99 
 

The AWC left and right neurons are a pair of amphid sensory neurons required to 

chemotax to volatile odors (Bargmann et al., 1993). The AWC neurons have long, 

unbranched dendrites terminating in elaborate sheet-like cilia that are buried within the 

amphid glial sheath (Ward et al., 1975).  These dendrites elongate via a novel retrograde 

extension mechanism in which their tips are anchored at the nose while the cell body 

migrates posteriorly (Heiman and Shaham, 2009).  ceh-36 is a terminal selector gene for 

the AWC neuron (Lanjuin et al., 2003), and mls-2 promotes ceh-36 expression in the 

AWC neurons (Kim et al., 2010).  We note, however, that ceh-36 expression actually 

precedes mls-2 expression in the embryonic AWC lineages (J.I.M submitted) suggesting 

that mls-2 might be part of a feedback loop that maintains ceh-36 expression in larvae. 

The AWC neurons are not converted to an alternate neuronal fate in mls-2 mutants, but 

they often fail to express ceh-36 and other AWC-specific marker genes; cells that do 

express these markers (and therefore can be visualized) display abnormal dendrite 

morphology (Kim et al., 2010).  

The CEP sheath glial cells envelope the C. elegans nerve ring, which is considered 

the worm’s brain, and send elongated processes to surround some synaptic sites (Ward et 

al., 1975). In mls-2 mutants, ventral CEP sheath cells fail to express sheath-specific 

marker genes and fail to ensheath relevant neurons (Yoshimura et al., 2008). mls-2 is also 

strongly expressed in CEP socket glia and OLQ sheath glia (Fig. 3B, Supplementary Fig. 

3), although its requirements there have not been tested.  

 The excretory duct and pore tubes have complex cell shapes that are somewhat 

comparable to those of neurons and glia. The duct and pore, like sheath and socket glia, 
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form unicellular tubes with a hollow interior. The duct also has a long narrow process 

similar to a neuronal extension.  These cells make initial junction attachments to partners 

at both ends, and then subsequently elongate to maintain those attachments as the embryo 

elongates and the partners move further and further apart.  This phenomenon is similar to 

the stretch-dependent elongation of many neurons that form synapses early in 

development and then must maintain those synaptic connections as the animal grows 

(Smith, 2009). It may also be functionally related to the retrograde extension mechanism 

of AWC elongation (Heiman and Shaham, 2009).  

 Many conserved transcription factors control similar developmental processes 

across distantly related phyla.  For example, master transcriptional regulators FoxA, Pax6 

and Nkx2.5 specify foregut, eye or heart organ identity in both invertebrate and 

vertebrate systems (Friedman and Kaestner, 2006; Gehring and Ikeo, 1999; Mango, 2009; 

Qian et al., 2011), while the Snail family of transcription factors drives epithelial-to-

mesenchymal transitions (Peinado et al., 2007).  In all animals where they have been 

studied, Nkx5/Hmx transcription factors are expressed primarily in neurons and neuronal 

support cells such as glia (Wang and Lufkin, 2005). We hypothesize that this expression 

pattern could reflect a conserved role for MLS-2 and other Nkx5 factors in regulating 

common sets of cytoskeletal genes important for the process of cellular elongation. 

 

Materials and Methods 

Strains and alleles  
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 Bristol N2 was the wild-type strain.  Strains were maintained and manipulated by 

standard methods unless otherwise noted.  Mutant alleles used are III: mpk-1(ku1), lin-

48(sa469).  IV: eor-1(cs28), let-60(n1046), lin-1(n304).  X: lon-2(e678),  mls-2(cc615), 

mls-2(cs71). Balancers used are: hT2[qIs48] (I; III), mIn1[mIs14 dpy-10(e128)] (II), or 

nT1[qIs51] (IV, V)].  Transgenes used are: jcIs1 (AJM-1::GFP) (Koppen et al., 2001a), 

saIs14 (lin-48p::GFP) (Johnson et al., 2001), wIs78 (AJM-1::GFP) (Koh and Rothman, 

2001) , csEx146 (lin-48p::mcherry) (Abdus-Saboor et al., 2011), qpIs11 (vha-1p::GFP) 

(Mattingly and Buechner, 2011), qnEx59 (dct-5p::mcherry) (Abdus-Saboor et al., 2011). 

csIs55 (GFP::MLS-2) was generated from a pYJ59-containing array (Jiang et al., 2005) 

by gamma-irradiation-induced integration.  

 

EMS Mutagenesis Screen 

 Wild-type animals were mutagenized with 50 mM EMS as described previously 

(Brenner, 1974), and allowed to self-fertilize. F1 progeny were picked to individual 

plates.  From each F1 plate, 8 F2 progeny were picked to individual ksr-2(RNAi) plates, 

and F3 progeny were screened for rod-like lethal larvae. Mutants were isolated by 

picking live siblings of rod-like lethal larvae and allowing them to self fertilize. 9 mutants 

with a rod-like lethal phenotype of greater than 15% penetrance were kept for further 

analysis. ksr-2(RNAi) was performed to generate a sensitized background for identifying 

ksr-1-like mutations. Three ksr-1 alleles (cs66, cs74, cs76) were obtained that showed 

phenotypes that strongly depended on ksr-2(RNAi), as expected based on the known 
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redundancy between the ksr-1 and ksr-2 paralogs (Ohmachi et al., 2002). All other 

mutants showed phenotypes that were independent of ksr-2(RNAi). 

 

Mapping and complementation tests  

 Genetic mapping and complementation tests were performed using standard 

methods. All mutations were roughly mapped by crossing mutant hermaphrodites with 

males carrying a balancer chromosome marked with GFP.  Green hermaphrodite progeny 

of either the genotype m/+; Bal/+ (where m = mutation and Bal=balancer) or m/Bal were 

picked to individual plates and allowed to self-fertilize. Rod-like lethal progeny 

segregating from these animals were examined for GFP expression to assess presence of 

the balancer chromosome. Animals that segregated only non-GFP rods were presumed to 

be of the genotype m/Bal. Mutations were then fine-mapped to specific chromosomal 

regions and candidate loci by further two-factor and/or three-factor linkage mapping. 

 cs66 mapped close to dpy-6 on the X chromosome. cs66, cs74, and cs76 all showed 

strong genetic interactions with ksr-2(RNAi) and failed to complement ksr-1(n2526). cs67 

mapped close to unc-29 on chromosome I and failed to complement egg-6(ok1506) 

(Mancuso et al., 2012). cs71 mapped close to lon-2 on the X chromosome and failed to 

complement mls-2(cc615). cs72 mapped close to unc-24 on chromosome IV and failed to 

complement vha-5(ok1588). cs73 mapped close to bli-3 on chromosome I and failed to 

complement let-124(h276).  This locus has been re-named lpr-1 (lipocalin-related-1) 

(Stone et al., 2009). cs75 mapped close to dpy-20 on chromosome IV and failed to 
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complement let-60(sy101sy127).  Genomic sequencing revealed a single G-to-A 

nucleotide change within the let-60/Ras coding region, leading to an Isoleucine to 

Phenylalanine amino acid change at codon 120. cs127 mapped approximately 3 cM away 

from dpy-20 on chromosome IV and failed to complement lin-3(n1059). 

  

Marker Analysis and Imaging 

 Images were captured by differential interference contrast (DIC) and epi-

fluorescence microscopy using a Zeiss Axioskop and Hamamatsu C5985 camera, or by 

confocal microscopy using a Leica SP5. Images were processed for brightness and 

contrast using Photoshop or ImageJ.   

 Duct and pore measurements were performed using ImageJ software with worms 

expressing AJM-1::GFP, which marks the pore autocellular junction (AJ) and the duct-

canal junction. To measure the height of the pore AJ, a straight line was drawn in ImageJ 

from the base of the pore AJ to the top the pore AJ. To measure the duct length, a straight 

line was drawn in ImageJ from the top of the pore AJ to the duct-canal junction.  

 To visualize expression of MLS-2 in the duct and pore lineages, we generated 3D 

confocal movies of strains UP2051 (pie-1::mCherry::HIS-58::pie-1utr; his-72pro::HIS-

24::mCherry::let-858utr; GFP::MLS-2) and RW10890 (pie-1::mCherry::HIS-58::pie-

1utr; his-72pro::HIS-24::mCherry::let-858utr; PAL-1::GFP) as previously described 

(Murray et al., 2006) on a Leica TCS SP5 resonance-scanning confocal microscope with 

0.5 micron z slice spacing and 1.5 minute time point spacing.  Temperature was 22.5˚C.  
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We used a hybrid blob-slice model and StarryNite (Bao et al., 2006; Santella et al., 2010) 

for automated lineage tracing and curated the full lineage through the stage when ~600 

nuclei are present (bean stage,  approximately 275 minutes) with AceTree (Boyle et al., 

2006). 
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Figure Legends 

Figure 3.1: Timeline of excretory system development. Schematics of excretory canal 

cell (red), duct (yellow), and pore (blue) at different developmental stages. DIC images 

correspond to developmental stage listed on timeline; colored circles on the DIC images 

represent positions of the canal, duct, and pore. Dark black lines indicate apical junctions. 

Dotted line, duct auto-fusion. Arrow, pore autocellular junction. Arrowhead, duct-canal 
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cell intercellular junction. Bracket, duct cell body. Schematics are modified from (Abdus-

Saboor et al., 2011).  EGF-Ras-ERK-dependent duct vs. pore cell fate specification 

occurs just prior to the 1.5-fold stage (Abdus-Saboor et al., 2011). The duct elongates 

extensively between the 1.5-fold and early 3-fold stages (Stone et al., 2009). 

 

Figure 3.2. mls-2 mutants have incompletely penetrant and cold sensitive lethal 

excretory system defects. (A) WT L1 stage larva. (B) mls-2(cs71) L1 stage larva 

showing fluid accumulation near duct and pore (arrowhead). (C-F) L1 worms with AJM-

1::GFP junction marker and lin-48p::mcherry duct marker. (C) WT larva with one duct 

and one pore. (D) mls-2 mutant with normal AJM-1::GFP but no lin-48 expression. (E) 

mls-2 mutant with normal lin-48 duct expression and collapsing pore. (F) mls-2 mutant 

with no lin-48 duct expression and no pore autocellular junction. (G,H) Quantification of 

marker loss phenotypes in mls-2 mutants. (I) Rod-like (excretory) lethality shown as a 

fraction of total lethality. Other lethality scored as any worm that failed to reach L4 

within 4 days. Note: GFP::MLS-2 rescue data scored by DIC microscopy looking for 

presence or absence of fluid cysts in L1s. Non-transgenic siblings were scored as 

controls. Complete genotype in this experiment was: mls-2(cs71); pha-1(e2123); 

Ex[GFP::MLS-2; pha-1(+)]. (J) Protein structure of MLS-2 showing the homeodomain 

and mutant alleles. cs71 changes a CAA codon (Q250) to TAA (stop). Craig Stone 

identified mls-2 in mutagenesis screen, performed complementation tests with cc615, and 

identified lesion in cs71.  
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Figure 3.3. mls-2 is expressed in the duct and pore cell lineages. (A) Lineage tree 

showing florescence intensity of GFP::MLS-2 expression from 3D automated lineage 

analysis. Only 1 of 3 embryos that were lineaged is shown here. Only the ABplpa lineage 

is shown, but GFP::MLS-2 is symmetrically expressed in the ABprpa lineage, which 

gives rise to the excretory pore. See Supplemental Fig.3 for complete lineage analysis of 

all 3 embryos. (B) Ventral enclosure embryo expressing GFP::MLS-2, and (C) 

corresponding DIC image.  Identities of some nuclei are indicated. CEPsh nuclei are dim 

and not visible at this stage. AWC nuclei are not in plane of focus. The pair of nuclei 

directly above the CEPsoVL/R nuclei are the sisters of the CEPsoVL/R that are fated to 

die (Sulston et al., 1983). The DB1/DB3 ventral cord motor neurons are sisters of the 

duct and pore, respectively. AIAL/R are amphid inter-neurons and DB6/DB7 are ventral 

cord motor neurons; expression in these cells initiates at this stage and is very faint. John 

I.Murray performed automated lineage analysis of GFP::MLS-2.  

 

Figure 3.4. mls-2 cooperates with the EGF-Ras-ERK pathway to promote duct 

differentiation and lin-48/ovo expression. (A) EGF-Ras-ERK signaling pathway 

downstream of let-60/Ras. eor-1, lin-1/ETS, and sur-2/Med23 are downstream nuclear 

effectors. mls-2 acts downstream or parallel to the EGF-Ras-ERK pathway. (B) Rod-like 

(excretory) lethality shown as a fraction of total lethality. Other lethality scored as any 

worm that failed to reach L4 within 4 days. (C) Percentage of L1 worms that lacked lin-

48p::GFP expression in duct. Note: let-60(n1046) and lin-1(n304) worms frequently had 

two lin-48p::GFP positive nuclei instead of one. (D) Percentage of L1 worms that lacked 
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a pore autocellular junction and worms that had a pore AJ junction connected directly to 

the canal cell (Pore AJ to canal), as scored with AJM-1::GFP. Note: let-60(n1046) and 

let-60(n1046); mls-2(cs71) were scored at late 3-fold instead of L1. Craig Stone built 

double mutant strains between mls-2 and eor-1 and mpk-1 and characterized the excretory 

and non-excretory lethality. Craig Stone also built the n1046;mls-2; lin-48p::GFP strain. 

 

Figure 3.5. mls-2 affects duct and pore tube shape. AJM-1::GFP (left column) and dct-

5p::mCherry (second column) in early L1s grown at 15°C, lateral view. Third column 

shows overlay. Fourth column shows schematic interpretation of phenotypes. (A,B) WT; 

n=20. (C-H) mls-2(cs71); n=25. (C,D) Pore cell collapsed and duct extending ventrally; 

n=11/25.  Note: In both wild type and mls-2 mutants, the duct sometimes displays a 

dorsal extension as seen here. (E,F) Both the duct and pore cells collapsed ventrally; 

n=3/25 (G,H) Pore cell AJ connected to canal cell, with duct cell presumably small or 

mispositioned; n=5/25. The remaining 6/25 mls-2 mutants looked similar to WT. 

Asterisks indicate ventral cells with collapsed cell shapes. (I, J) lin-48(sa469); n=15.  

Duct cell shape appears similar to wild-type.   

 

Figure 3.6. mls-2 cell shape defects begin around the elongation stage of 

embryogenesis. (A, B) Schematics of wild type AJM-1::GFP junction pattern at 1.5 fold 

(A) and late 3-fold (B) stages.  Parameters measured in I, J are indicated. (C-H) Excretory 

duct and pore junction patterns visualized with AJM-1::GFP. Images were inverted in 
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ImageJ for clarity. (C) WT and (D) mls-2 embryos at 1.5-fold, lateral view. (E) WT and 

(F) mls-2 mid 3-fold embryos, ventral view. Single pore opening lies just adjacent to the 

G2 and W epidermal cells. Note proximity of the canal cell junction (arrowhead) to the 

pore opening in F.  (G, H) Measurements of AJ height and distance between AJ and canal 

cell junction at different time-points. Note: at 1.5-fold stage, height of AJ is duct and 

pore, and at all other stages, height of AJ is only the pore. Each point is a measurement 

from a single worm. Early 3-fold corresponds to 2 hours after the 1.5-fold stage. Late 3-

fold corresponds to 6 hours after the 1.5-fold stage. 
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Figure 3.1 
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Figure 3.2 
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Figure 3.3 
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Figure 3.4 
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Figure 3.5 
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Figure 3.6 
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Chapter Four: 

ASSESSING THE ROLE OF THE CYTOSKELETON IN 

PROMOTING MORPHOGENESIS IN THE C.ELEGANS 

EXCRETORY SYSTEM  
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Summary 

 The cytoskeleton, which consists of actin, microtubule, and intermediate 

filaments, is the main determinant in establishing cell shape.  All three cells of the 

C.elegans excretory system adopt complex elongated morphologies, analogous in 

structure to neurons and glia. Many cytoskeletal genes are expressed in cell type specific 

patterns to influence cell appropriate shapes. I took an unbiased RNAi approach in a 

sensitized background to identify individual cytoskeletal isoforms involved in promoting 

morphogenesis in the excretory system. Our screening did not uncover a role for any 

specific cytoskeletal isoform. However, we did uncover a novel genetic interaction in the 

early embryo between the Nkx5/HMX homeodomain protein mls-2 and several 

microtubule and actin isoforms.  

 

Introduction 

 The C.elegans excretory system provides a genetically tractable system to 

uncover roles for individual cytoskeletal isoforms during epithelial tube morphogenesis.  

Neurons are elongated cells that require the cytoskeleton for shape and polarization (Lee 

and Van Vactor, 2003), and the cells of the C.elegans excretory system are similar in 

structure to neurons. As is the case in the nervous system, it is also unclear which specific 

cytoskeletal genes promote and maintain shape in the C.elegans excretory system.  
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MLS-2 is an Nkx5/HMX homeodomain transcription factor that is required for 

proper shape in the duct and pore cells (Chapter Three). Cell shape defects first arise in 

mls-2 mutants at the time when the duct and pore normally begin elongating into complex 

morphologies (Chapter Three). The cell shape defects in mls-2 mutants suggest a failure 

of the duct and pore to maintain their cytoskeleton. The mls-2 lethal excretory phenotype 

is cold sensitive (Chapter Three), and microtubules have been shown to depolymerize at 

low temperatures in all systems studied, including C. elegans (Chalfie and Thomson, 

1982; Melki et al., 1989). I hypothesized that MLS-2 may regulate cytoskeletal genes that 

directly impact the microtubule cytoskeleton.  

I sought to identify which microtubule, actin, or intermediate filament isoform is 

required for excretory system morphogenesis, and/or interact with MLS-2. Since 

functional redundancy is always an issue with large gene families (9 α-tubulins, 6 β-

tubulins, 1 γ-tubulin; 5 actins, 9 IFs), I reduced each microtubule, actin, and intermediate 

filament (IF) isoform using RNA interference (RNAi) in both a wild type and mls-2 

background. I used mls-2 as a genetically sensitized background, with the idea that this 

may alleviate the problem of genetic redundancy. However, it appears that genetic 

redundancy might still have been an impediment , as I did not identify a role of any 

cytoskeletal isoform in excretory system morphogenesis. Nonetheless, I did reveal a 

surprising genetic interaction between mls-2 and several microtubule and actin isoforms 

in a role outside of excretory system development.    

 



118 
 

Results  

RNAi enhancer screen to identify specific subunits involved in excretory system 

morphogenesis 

 To identify a role for cytoskeletal isoforms in excretory system development, wild 

type and mls-2 worms were treated from the fourth larval stage and onwards with RNAi 

against 8 α-tubulin, 5 β-tubulin, 1 γ-tubulin, 4 actin, and 9 IF isoforms in the C.elegans 

genome. The F1 progeny from the L4 treated worms were screened for rod-like 

(excretory) lethal larvae. At least 4 separate plates were scored for each RNAi clone, and 

the results were averaged.  Results from the RNAi screening are described below.  

mls-2 has synthetic embryonic interactions with tubulin and actin 

 RNAi against each α, β, and γ-tubulin isoform in wild type worms did not yield 

any excretory lethal phenotypes (Fig 4.1 A). In addition, RNAi against the tubulin genes 

in mls-2 mutants did not enhance the excretory lethal phenotype of mls-2 mutants (Fig 

4.2). Similarly, RNAi against actin and IF isoforms did not cause excretory phenotypes in 

wild type, or enhancement of excretory phenotypes in mls-2 mutants (Figs 4.2, 4.3). 

However, genetic interactions were detected between mls-2 and actin and microtubule 

isoforms in early embryos.  

 When tba-1 was reduced by RNAi, more than half the worms arrested with 

embryonic lethality (Fig 4.1). The open reading frame of TBA-1 is 89% identical to 

TBA-2, and RNAi of tba-1 has been shown to also reduce tba-2 (Phillips et al., 2004). 

RNAi specifically targeted against tba-1 results in only 10% embryonic lethality, while 
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combined RNAi targeted specifically against tba-1 and tba-2 results in 100% embryonic 

lethality (Lu and Mains, 2005). Therefore, the 75% embryonic lethality we observed 

knocking down tba-1 RNAi is likely a combined knockdown of tba-1 and tba-2. We 

could not grow the tba-2 RNAi clone for unknown technical reasons. mls-2 mutants 

significantly enhanced the embryonic lethality of tba-1 RNAi (Fig 4.1). RNAi against 

tbg-1 and tbb-4 did not result in embryonic lethality (Fig 4.1). However, when mls-2 

mutants were treated with tbb-4 or tbg-1 RNAi, significant embryonic lethality was 

observed (Fig 4.1). tbb-1 RNAi knocks down both tbb-1 and tbb-2 (Ellis et al., 2004), 

making embryonic lethality too high to test for enhancement by mls-2 (Fig 4.1).   

To confirm that the embryonic interactions between mls-2 and these tubulin genes 

was not an artifact of using one particular mls-2 allele, I used a second null allele of mls-2 

repeating the RNAi protocol in quadruplicate. I observed similar results with both mls-2 

alleles, suggesting that these were true genetic interactions with tubulin genes (Fig 4.1 B). 

Based on my observation by stereomicroscopy, I estimate that embryos arrested before 

the 300 cell stage, which is in the first half of embryogenesis. In summary, mls-2 

genetically interacted with tba-1, tbg-1, and tbb-4 during a critical process during early 

embryonic development.  

 Reduction of act-1 and act-5 by RNAi resulted in embryonic lethality that was 

significantly increased in mls-2 mutants (Fig 4.2). Embryonic lethality of act-2 and act-3 

was nearly 100%, making it difficult to test for genetic interactions (Fig 4.2). An act-2 

deletion allele or RNAi specifically targeting act-3 alone results in no observable 

phenotypes (Willis et al., 2006). However, combining the act-2 deletion allele with act-3 
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specific RNAi results in 100% embryonic lethality (Willis et al., 2006). Therefore, our 

depletion of either act-2 or act-3 using RNAi likely reduced both genes simultaneously. 

Despite the 100% embryonic lethal phenotype of act-2 or act-3 RNAi, we still observed 

genetic interactions with mls-2 (Fig 4.2). mls-2 mutants treated with act-2 RNAi were 

completely sterile (Fig 4.2), suggesting a potential role for mls-2 in the germline.  

 Reducing all 9 IF genes by RNAi did not result in embryonic lethality or 

excretory lethality in either wild type or mls-2 worms (Fig 4.3). Reduction of ifa-2 

(previously known as mua-6) results in first larvae stage (L1) arrest due to defects in 

muscle attachment (Plenefisch et al., 2000). We consistently saw L1 arrest when 

depleting ifa-2 by RNAi, demonstrating that our RNAi knockdown of IFs was sufficient 

to reproduce known phenotypes (data not shown).  Nonetheless, we did not uncover a 

role in excretory system morphogenesis for any IF, or detect a genetic interaction 

between IFs and mls-2.   

 

mls-2 and tubulin null mutants do not genetically interact  

 We next analyzed tubulin null mutants alone and in combination with mls-2 

mutants. Null mutations should eliminate maternal and zygotic expression of the tubulin 

gene of interest and affect all cell types equally, including the excretory system. 

Therefore using null mutants should circumvent some of the caveats of the RNAi 

screening (see Discussion). We focused on microtubules because we demonstrated that 

the microtubule cytoskeleton is disorganized in the duct and pore in mls-2 mutants 
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(Chapter Three).  mls-2 mutants also have cold sensitive defects (Chapter Three), and 

microtubules have been shown to depolymerize at low temperatures (Chalfie and 

Thomson, 1982; Melki et al., 1989).  

 When I scored the two null mutants tba-1(ok1135) and tbb-1(gk207) at both 20°C 

and 15°C, we did not detect any embryonic or excretory lethality (Fig 4.4). I did detect 

very little embryonic lethality of tbb-1(gk207) at 15°C (Fig 4.4). tbg-1(t1465) is a 

hypomorphic allele that disrupts interactions between γ-tubulin and αβ-tubulin 

heterodimers (Hannak et al., 2002). tbg-1(t1465) is also a maternal effect lethal mutant so 

I had to obtain homozygous worms from heterozygous mothers. I observed almost no 

embryonic lethality or excretory lethality with tbg-1(t1465) (Fig 4.4). Consistent with the 

single mutant phenotypes, none of the tubulin mutations combined with mls-2 enhanced 

excretory or embryonic lethality (Fig 4.4). Although I did not observe any excretory 

phenotypes with the tubulin mutants, I did expect to recapitulate the embryonic 

phenotypes caused by RNAi (Fig 4.1). The non-specific RNAi knocked down multiple 

tubulin genes, while the mutants only targeted one gene. Therefore, embryonic and 

possibly excretory phenotypes may only be uncovered with a knockdown of multiple 

tubulin isoforms.  

 

tubulin temperature sensitive mutants do not have excretory phenotypes 

 In a final attempt to determine which tubulin isoforms are involved in excretory 

system morphogenesis I utilized two tubulin temperature sensitive (ts) mutants, tba-1 

(or346) and tbb-2(or362), that are wild type when grown at 15°C and completely 

embryonic lethal when grown at 25°C (Phillips et al., 2004). The fully penetrant 
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embryonic lethality at high temperatures suggested that multiple tubulin isoforms were 

affected by these dominant ts mutations. I first grew both ts mutants at an intermediate 

temperature of 20°C, in an effort to identify excretory phenotypes. However, both ts 

mutants grown at 20°C displayed a mix of wild type worms and embryonic lethality, but 

no other observable phenotypes (data not shown).  

 I next used the tubulin ts mutants to reduce tubulin activity at two different time-

points in development. It is clear that most tubulin isoforms have critical roles in early 

embryogenesis. I hypothesized that if I reduced tubulin genes after early critical roles in 

embryonic development, but before excretory system morphogenesis, I would recover 

some worms that died with rod-like (excretory) lethality. When I shifted tba-1 (or346) 

worms from the permissive to non-permissive temperature at either 1 hour or 3 hours 

after egg lay (AEL), all laid eggs grew up and hatched normally (Fig 4.5), indicating that 

the critical window when this tubulin is required for embryonic development is after 3 

hours post egg lay. tba-1 (or346) shifts also suggested that tba-1 and the other tubulin 

isoforms affected by the dominant tba-1 mutation,  are not required for excretory system 

morphogenesis. 

 When I shifted tbb-2(or362) mutants from the permissive to non-permissive 

temperature at 1 hour AEL, most embryos died (Fig 4.5).  However, when tbb-2(or362) 

mutants were shifted from the permissive to non-permissive at 3 hours AEL, most of the 

embryos lived (Fig 4.5). Therefore the critical time when tbb-2 and the tubulin genes 

affected by the dominant tbb-2 mutation are required is just a few hours after egg lay. 



123 
 

However, at either time I shifted tbb-2 ts mutants, I never observed any excretory 

lethality (Fig 4.5).  

Tubulin is still expressed in mls-2 mutants with cell shape defects 

Since I could not identify any tubulin isoform that genetically interacted with mls-

2, I wanted to determine if microtubules were disorganized or not expressed in the duct 

and pore in mls-2 mutants. To visualize microtubules, I utilized the DM1A mouse 

polyclonal alpha-tubulin antibody, which has been shown to cross react with C.elegans 

alpha-tubulin (Gonczy et al., 1999). In both wild-type and mls-2 mutants at the 1.5-fold 

stage, anti-tubulin labeled both the duct and pore cells (Fig. 4.6A,B) with a pattern 

similar to AJM-1::GFP and DLG-1::GFP (Abdus-Saboor et al., 2011). In wild-type newly 

hatched L1 larvae, tubulin was apically enriched in both the duct and pore (Fig 4.6C). In 

mls-2 mutants tubulin was still present in the duct and pore (Fig 4.6D,E). Some mls-2 L1 

larvae had a normal AJM-1::GFP pattern and tubulin localization, corresponding to the 

percentage of mls-2 worms that grow up to look wild type (Fig 4.6D). Not surprisingly, in 

7/7 mls-2 mutants with cell shape defects, tubulin appeared slightly disorganized, 

although still managing to display some sub-cellular localization (Fig 4.6E). I 

hypothesize that as the duct and pore lose shape in mls-2 mutants, the microtubule 

cytoskeleton may become disorganized or tangled in the collapsed duct and pore cells. 

The best way to visualize the microtubule cytoskeleton in mls-2 mutants would be to 

analyze a tubulin reporter in vivo. In vivo analysis could determine if microtubule 

disorganization is a primary or secondary defect in mls-2 mutants.  
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Discussion 

Targeting single cytoskeletal isoforms by RNAi did not uncover a requirement for 

any individual gene in excretory system morphogenesis. RNAi knockdown of 

cytoskeletal genes did produce embryonic lethality comparable to previously published 

reports. I unexpectedly found that embryonic lethality caused by knocking down several 

actin or tubulin genes was enhanced in an mls-2 background. Cell shape abnormalities in 

mls-2 mutants are accompanied by abnormalities in microtubule cytoskeleton 

organization. However, it is unclear how MLS-2 could be affecting the microtubule 

cytoskeleton. Below I discuss technical reasons that might have prevented me from 

discovering roles for individual cytoskeletal genes in excretory morphogenesis, and also 

ways to alleviate these difficulties. I conclude the discussion by exploring the embryonic 

requirement for MLS-2.   

Insufficient knockdown of cytoskeletal isoforms by RNAi 

C.elegans can be treated with RNAi by three different methods: injecting, 

soaking, feeding, or transgenesis. Feeding is the simplest but least effective and most 

variable of the four methods (Ahringer, 2006). Obtaining negative results from RNAi can 

be difficult to interpret, as the false negative result over all genes by feeding RNAi is 

30% (Kamath et al., 2003). To confirm negative RNAi results secondary tests need to be 

performed such as RT-PCR and antibody staining (Ahringer, 2006). In our RNAi 

screening of cytoskeletal genes, RNA knockdown was sufficient to produce embryonic 

lethality and larval lethality (ifa-2 RNAi), but may not have been reduced enough to 
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produce excretory lethality. In addition to RNAi by feeding being variable at times, some 

tissues in C.elegans, such as neurons, are recalcitrant to RNAi (Kamath et al., 2001; 

Tavernarakis et al., 2000).  

Our lab has known for years that RNAi works very poorly in the C.elegans 

excretory system. Few genes however, do produce robust excretory phenotypes when 

targeted with RNAi in sensitized genetic backgrounds (see Chapter Five). A current 

postdoctoral fellow in the lab, Jean Parry, is attempting to improve the efficacy of RNAi 

in the excretory system by driving the sid-1 gene in the duct and pore. SID-1 is a 

transmembrane protein required for systemic RNAi in C.elegans (Winston et al., 2002). 

SID-1 expressed in neurons by a pan-neuronal driver allows RNAi to work more 

efficiently in neurons (Calixto et al., 2010), a cell type that had previously been 

recalcitrant to RNAi. If we can make the duct and pore hyper-sensitive to RNAi in a SID-

1 expressing strain, we can perform the cytoskeletal screening over again, with more 

confidence that we are reducing RNA in our cells of interest.   

Overcoming redundancy of microtubule isoforms 

A second caveat to this screen is that many cytoskeletal isoforms are required 

during excretory system morphogenesis. Functional redundancy between microtubule 

isoforms in C.elegans has been observed in numerous processes (Driscoll et al., 1989; Lu 

et al., 2004; Phillips et al., 2004; Wright and Hunter, 2003). Recently, several groups 

have been able to overcome redundancy, not by knocking down individual isoforms, but 

rather by targeting all pools of stable microtubules.  
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The Bargmann and Chuang labs designed a protocol to depolymerize 

microtubules in C.elegans embryos using the microtubule depolymerizing chemical 

nocodazole (Chang et al., 2011).  Treating embryos between 0-6 hours after egg lay with 

nocodazole resulted in a pair of olfactory neurons called AWC, having shortened axons 

and defective synaptic signaling at the nerve ring (Chang et al., 2011). In addition, other 

cell types were affected by nocodazole treatment, resulting in worms with uncoordinated 

phenotypes (Chang et al., 2011). This unbiased approach for targeting stable 

microtubules uncovered a novel role for microtubules in localizing a calcium signaling 

complex during neuronal differentiation (Chang et al., 2011).  

At a recent International C.elegans Meeting the Labouesse lab described a 

protocol that used the microtubule severing protein Spastin to depolymerize all 

microtubules (Sophie Quintin, personal communication). The Labouesse lab expressed 

spastin under cell specific drivers, or in all cells under a heat-shock promoter. 

Microtubules were disrupted in cells that expressed spastin, demonstrating that their 

protocol did disrupt microtubules. Interestingly, expressing spastin in all cells after mid-

embryogenesis did not result in any lethal phenotypes, suggesting that microtubule 

function is not required for morphogenesis in late embryogenesis (Sophie Quintin, 

personal communication). The cells of the excretory system undergo considerable 

morphogenesis during late embryogenesis (see Chapter One). Therefore, the Labouesse 

lab’s results may directly impact the interpretations from our experiments reducing 

individual tubulin isoforms. While microtubules may promote shape in the excretory 
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system, depleting microtubules may only lead to subtle excretory defects and not lethal 

defects.   

An analogous approach of treating embryos with microtubule depolymerizing 

agents can be taken to define a window when microtubules are required for excretory 

system morphogenesis. In addition to looking for robust lethal phenotypes when 

disrupting microtubules, we should also look for defects in cell shape in the excretory 

system.  If depolymerizing stable microtubules leads to cell shape defects in the duct and 

pore, this would lend support to the hypothesis that MLS-2 turns on specific microtubule 

isotypes to promote cell shape.  

Embryonic role for MLS-2 uncovered 

 The embryonic genetic interaction between mls-2 and several tubulin and actin 

isoforms was surprising for several reasons. Firstly, the expression pattern of MLS-2 is 

not consistent with an early role for MLS-2 in embryonic development. A rescuing MLS-

2::GFP translational reporter cannot be detected until the 50-cell stage (Jiang et al., 

2005)(Chapter Three), and mls-2 RNA is not detected in the maternal germline or early 

embryos by Fluorescence In-Situ Hybridization( http://nematode.lab.nig.ac.jp/). 

Secondly, mls-2 single mutants rarely have any embryonic lethality, and most of the 

reported phenotypes are in larvae (Jiang et al., 2005; Kim et al., 2010; Yoshimura et al., 

2008).  

 tbg-1, tbb-4, tba-1, act-2, and act-3 all act during the one-cell stage, and depletion 

of these isoforms results in early embryonic arrest (Hannak et al., 2002; Phillips et al., 
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2004; Willis et al., 2006). TBG-1 is required during interphase to assemble centrosomal 

asters, but not to nucleate stable populations of cytoplasmic microtubules (Hannak et al., 

2002).  TBA-1 subunits incorporate into microtubules, and tba-1 is redundant with the 

highly similar isoform tba-2 (Phillips et al., 2004). tba-1 and tba-2 double mutants have 

abnormal mitotic spindles that result in the mis-segregation of key developmental 

determinants (Phillips et al., 2004).  act-2 and act-3 are redundant in early embryos for 

microfilament dependent processes such as cytokinesis (Willis et al., 2006). TBB-4 acts 

post-embryonically to promote differentiation of sensory cilia and ray neurons in the 

male tail (Hao et al., 2011; Hurd et al., 2010; Portman and Emmons, 2004). To our 

knowledge, the data presented above is the first evidence of embryonic lethality caused 

by tbb-4 depletion. Therefore TBB-4, like MLS-2, has both embryonic and post-

embryonic roles. The genetic interactions between mls-2 and the tubulin and actin 

isoforms (tba-1, tbb-4, tbg-1, act-2, act-3), suggest that mls-2 acts in a parallel pathway 

with these genes. Thus MLS-2 may turn on genes in the embryo that also regulate 

processes ranging from assembling centrosomal asters to promoting cytokinesis.   

The genetic interactions between mls-2 and the tubulin and actin isoforms could 

result from MLS-2 acting at one of two time-points in development. MLS-2 could be 

required in the maternal germline or zygotically around the one-cell stage, or 

alternatively, MLS-2 could be required after the 50-cell stage. The expression pattern of 

MLS-2 is more consistent with the latter model. In the alternative scenario, the 

embryonic lethality observed in the mls-2 and cytoskeletal double knockdowns, would 

consists of both early and mid-stage embryonic lethality. A precise study of the stages 
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when all embryos arrest would help decipher between these two models of when MLS-2 

acts. These data have not only uncovered a role for MLS-2 during mid-stage 

embryogenesis, but also for several cytoskeletal isoforms, which had previously been 

shown to work only in early embryogenesis or in larvae. To what extent any of the 

genetic interactions between mls-2, and tubulin or actin isoforms in the embryo also 

extend to the excretory system, awaits further investigation. 

 

Materials and Methods 

Strains and alleles 

Bristol N2 was the wild-type strain.  Strains were maintained and manipulated by 

standard methods unless otherwise noted.  Descriptions of each gene can be found at 

www.wormbase.org. Mutant alleles used are LG1: tba-1(or346) (Phillips et al., 2004), 

tba-1(ok1135) (Baran et al., 2010). LGIII: tbb-1(gk207) (Lu et al., 2004), tbb-2(or362) 

(Ellis et al., 2004), tbg-1(t1465) (Hannak et al., 2002). LGX: lon-2(e678), mls-2(cc615) 

(Jiang et al., 2005), mls-2(cs71).  

RNA interference (RNAi) 

RNAi was performed by placing wild type and mls-2(cs71) L4 stage worms on feeding 

plates with HT-115 E. coli expressing RNA against unc-22 (negative control) or tba-1, 

tba-2, tba-4, tba-5, tba-5, tba-6, tba-7, tba-8, tba-9, tbb-1, tbb-2, tbb-3, tbb-4, tbb-6, tbg-

1, act-1, act-2, act-3, act-5, ifa-1, ifa-2, ifa-3, ifa-4, ifb-1, ifc-1, ifc-2, ifd-1, ifd-2. Feeding 
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plates were made by growing E.coli cultures for overnight, adding IPTG to 1mM 

concentration, and then plating. 48 hours after being placed onto feeding plates of control 

RNAi or RNAi against a single cytoskeletal isoforms, multiple worms from each original 

RNAi plate were picked to new RNAi plates and allowed to lay eggs for approximately 6 

hours. 

Phenotypic Scoring 

To score for rod-like (excretory) lethality, hermaphrodites treated with control or 

experimental RNAi for 48 hours were allowed to lay eggs for approximately 6 hours. 

Percent rod-like lethal was determined by the proportion of progeny that were visible as 

rods 48 hours post-egg lay. Percent embryonic lethal was determined by the proportion of 

progeny that did not hatch by 24 hours post-egg lay.  

Immunostaining 

Embryos were permeabilized by freeze-cracking and fixed in methanol as 

described (Duerr et al., 1999) and incubated with primary antibodies overnight at 4°C and 

with secondary antibodies for 2hrs at room temperature. The following antibodies were 

used: preadsorbed rat anti-MLS-2 (CUMCR6; 1:400) (Jiang et al., 2005), goat polyclonal 

anti-GFP (Rockland; 1:50), rabbit polyclonal anti-DLG-1 (1:50 to 1:100) (Segbert et al., 

2004), mouse monoclonal anti-tubulin, clone DM1A (Sigma; 1:50). All secondary 

antibodies were from Jackson ImmunoResearch Laboratories and were used at a dilution 

of 1:50 to 1:200.  
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Figure Legends  

Figure 4.1. mls-2 and tubulin have synthetic embryonic interactions. (A) Bar graph 

showing percentage of worms with either embryonic lethality or rod-like (excretory 

lethality). Results from 3-4 plates were averaged together. unc-22 used as negative RNAi 

control. n>100 for each genotype. All statistics were performed using the Fisher’s exact 

test. p<0.05 considered statistically significant. **p<0.001 for embryonic lethality 

comparing mls-2; (unc-22 RNAi) and mls-2 in combination with tba-1(RNAi),tbb-

4(RNAi), and tbg-1(RNAi). p is not statistically significant for any other combinations, 

including excretory and embryonic lethality. Note: embryonic lethality caused by RNAi 

of most tubulin isoforms leads to high embryonic lethality, making it appear that mls-2 

rod-like lethality is reduced in these backgrounds. However, mls-2 worms that die as 

embryos do not live long enough to die from excretory lethality. (B) Bar graphs showing 

percentage of worms with either embryonic lethality or rod-like (excretory lethality). 

Results from 3-4 plates were averaged together. unc-22 used as negative RNAi control. 

The two bar graphs were taken from the same data, but separated by embryonic and rod-

like lethality. A second null allele of mls-2(cc615) was also used. n>100 for each 
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genotype. **p<0.001 for embryonic lethality for both mls-2 alleles with unc-22(RNAi) 

compared to mls-2 in combination with tba-1(RNAi),tbb-4(RNAi), and tbg-1(RNAi). 

Figure 4.2. mls-2 and actin have synthetic embryonic interactions. (A) Bar graph 

showing percentage of worms with either embryonic lethality or rod-like (excretory 

lethality). Results from 3-4 plates were averaged together. unc-22 used as negative RNAi 

control.  n>100 for each genotype. All statistics were performed using the Fisher’s exact 

test. p<0.05 considered statistically significant.  **p<0.001 for embryonic lethality 

comparing mls-2; (unc-22 RNAi) and mls-2 in combination with act-5(RNAi); 

***p=0.0006 embryonic lethality comparing mls-2;(unc-22 RNAi) and mls-2; (act-1 

RNAi). p is not statistically significant for any other combinations, including excretory 

and embryonic lethality. Note: embryonic lethality caused by RNAi of actin isoforms 

leads to high embryonic lethality, making it appear that mls-2 rod-like lethality is reduced 

in these backgrounds. However, mls-2 worms that die as embryos do not live long 

enough to die from excretory lethality.   

Figure 4.3. mls-2 does not genetically interact with intermediate filaments. (A) Bar 

graph showing percentage of worms with either embryonic lethality or rod-like 

(excretory lethality). Results from 3-4 plates were averaged together. unc-22 used as 

negative RNAi control. n>50 for each genotype. All statistics were performed using the 

Fisher’s exact test. p<0.05 considered statistically significant.  p is not statistically 

significant for any mls-2; unc-22(RNAi) versus mls-2; IF RNAi combinations, including 

excretory and embryonic lethality.  
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Figure 4.4. mls-2 and tubulin null mutants do not genetically interact. Bar graph 

showing percentage of worms with either embryonic lethality or rod-like (excretory 

lethality) at two different temperatures. Note: tbg-1(t1465) homozygous worms were 

obtained from tbg-1(t1465) heterozygous mothers. n>30 for each genotype and 

temperature. All statistics were performed using the Fisher’s exact test. p<0.05 

considered statistically significant. p is not statistically significant for any single versus 

double mutant combinations comparing similar temperatures, including excretory and 

embryonic lethality.  

Figure 4.5. tubulin temperature sensitive mutants do not have excretory phenotypes. 

Worms were grown at 15C then shifted to 25C at either 1 hour after egg lay (AEL) or 3 

hours after egg lay (AEL). Bar graph shows percentage of shifted embryos that lived or 

died as embryos after being shifted to 25C.  n>30 for each genotype and shift.  

 

Figure 4.6.  Tubulin is still expressed in mls-2 mutants with cell shape defects. (A,B) 

1.5-fold embryos carrying a lin-48p::GFP reporter, stained with anti-tubulin (red) and 

anti-GFP (green) antibodies. Tubulin marks both the duct and pore cells in Wild-type (A) 

and mls-2 (B), but mls-2 fails to express lin-48p::GFP. (C-E) L1 worms expressing AJM-

1::GFP, stained with anti-tubulin (red) and anti-GFP (green) antibodies. (C) WT. Tubulin 

localized apically in both the duct and pore cells. (D) mls-2 mutant with normal junction 

and tubulin pattern. (E) mls-2 mutant with no pore AJ. Tubulin pattern is disorganized. 

(C’’’- E’’’) Schematic interpretations of C-E.   
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Figure 4.1 A  
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Figure 4.1 B 
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Figure 4.2 
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Figure 4.3  
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Figure 4.4 
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Figure 4.5 
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Figure 4.6 
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RNAi ENCHANCER SCREEN TO IDENTIFY MLS-2 

REDUNDANT FACTORS 

 

 

 

 

 

 

 

 

 

 



142 
 

Summary 

 Genetic redundancy is a developmental strategy observed throughout the animal 

kingdom. Genetic redundancy bolsters a system against complete malfunction if one of 

its gene products is mutated or absent. The duct and canal cells of the C.elegans 

excretory system are essential for viability of the organism. Therefore, it is not surprising 

that some genes that promote duct or canal cell development have redundant factors. The 

Nkx5/HMX homeodomain protein MLS-2 promotes cell shape in the duct and pore. 

However, two genetic null alleles of mls-2 have incompletely penetrant lethal excretory 

system defects, suggesting that mls-2 has redundant factors that also promote excretory 

system development. To find the mls-2 redundant factors I performed an RNAi enhancer 

screen in an mls-2 mutant background of 650 transcription factors in the C.elegans 

genome. My screen identified pbrm-1, a chromatin modifying factor that greatly 

enhanced the mls-2 excretory lethality. In addition, pbrm-1 genetically interacted with 

downstream effectors in the EGF-Ras-ERK pathway. PB1, the mammalian homologue of 

PBRM-1, opens chromatin to allow transcription factors to bind DNA and initiate 

transcription. Therefore, mls-2 redundant factors may utilize pbrm-1 to turn on target 

genes important for excretory system morphogenesis.  

 

Introduction 

 MLS-2 is a homeodomain transcription factor that promotes cell shape acquisition 

in the duct and pore cells of the C.elegans excretory system (Chapter Three). Two null 
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alleles of mls-2 have fully penetrant defects in other cells that require MLS-2 such as the 

M-lineage (Jiang et al., 2005), but incompletely penetrant lethal excretory defects 

(Chapter Three). I hypothesized that mls-2 redundant factors were acting to protect the 

worm from excretory lethality when MLS-2 was absent.   

 The EGF-Ras-Erk pathway specifies the duct versus pore cell fate (Abdus-Saboor 

et al., 2011). Not surprisingly, combining mls-2 mutants with Ras pathway mutants 

enhances mls-2 excretory lethality (Chapter Three). However, the mls-2 and Ras mutant 

phenotypes are largely distinct, suggesting that their synergy is the result of two 

independent pathways acting in parallel. My goal was to find genes that act within the 

same pathway as MLS-2, have a similar phenotype as mls-2, and share common sets of 

target genes as MLS-2.   

 In previous work performed in the lab by Craig Stone, the 12 genes most similar 

to MLS-2 by sequence were reduced in an mls-2 mutant background (Chapter Three, 

Abdus-Saboor et al., submitted). However, no candidate redundant factors were identified 

by Craig’s approach to target genes similar to mls-2 (Chapter Three, Abdus-Saboor et al., 

submitted). Therefore, I turned towards an unbiased approach to identify mls-2 redundant 

factors by performing an RNAi enhancer screen, testing most transcription factors in the 

C.elegans genome. Surprisingly, knocking down approximately 650 transcription factors 

in an mls-2 mutant background, identified only one new candidate of interest.  

 

Results  
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mls-2 RNAi enhancer screen  

 To identify mls-2 redundant genes I performed RNAi against transcription factors 

in an mls-2 mutant background. The transcription factors we screened were taken from a 

published list (wTF2.0) of transcription factors in C.elegans (Reece-Hoyes et al., 2005). 

wTF2.0 was compiled by scanning all protein coding genes with the GO terms 

‘transcription factor activity’, ‘DNA binding’, and ‘transcriptional regulation’ (Reece-

Hoyes et al., 2005). To gain specificity and reduce the number of false positives, almost 

400 genes were removed from the list that had functions in general transcription, 

chromatin, DNA replication and repair, or genes that had no DNA binding domain 

(Reece-Hoyes et al., 2005). Finally, almost 400 genes were added back to the list that 

were found to have a predicted DNA binding domain by a different algorithm and also 

genes that acted with specific pathways despite being listed as general transcriptional 

machinery (Reece-Hoyes et al., 2005). The final list of genes in wTF2.0 contains 934 

putative transcription factors (Reece-Hoyes et al., 2005).  

I utilized a sub-library of RNAi clones that was arrayed from the Ahringer RNAi 

feeding library and based on wTF2.0. The arrayed sub-library, courtesy of the Lamitina 

lab, contained about 800 of the 934 transcription factors listed in wTF2.0, of which 650 I 

was able to screen. mls-2 second and third stage larvae were treated with control RNAi 

and RNAi against each transcription factor. Approximately 5 worms from each genotype 

were seeded onto each RNAi feeding plate.  Four days after initial RNAi exposure, 

worms were assessed for enhancement of the ~30% excretory lethality caused by mls-2 

alone. A screen of this kind was biased towards identifying strong interactions, as going 
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from 30% to 40% excretory lethality would be difficult to appreciate by eye. Of all 650 

transcription factors tested one gene was identified, pbrm-1, which greatly enhanced mls-

2 excretory lethality (Fig 5.1). PCR and analytical restriction digests confirmed that the 

pbrm-1 RNAi clone was correct (data not shown). A deletion allele of pbrm-1 is 

homozygous viable (Shibata et al., 2012) and pbrm-1 RNAi in wild type worms does not 

cause lethality (Fig 5.1). 

PBRM-1 is the C.elegans homologue of mammalian PB1, a subunit of the PBAF 

(Polybromo, Brg1-Associated Factors) chromatin-remodeling complex (Thompson, 

2009). The PBAF complex is commonly known as RSC in yeast and PBAP in 

Drosophila. The PBAF complex moves nucleosomes away from nucleosome positioning 

sequences, to provide transcription factors with access to previously occupied sites 

(Kwon and Wagner, 2007). Interestingly, some subunits within chromatin remodeling 

complexes can have distinct functions (Kwon and Wagner, 2007). Recently in C.elegans 

it was shown that pbrm-1 regulates the asymmetric expression of psa-1/Meis during 

gonad primordium formation in a manner independent of other PBAF subunits (Shibata 

et al., 2012). pbrm-1 also genetically interacts with the EGF-Ras-Erk pathway during 

C.elegans vulval development (Lehner et al., 2006). pbrm-1 suppresses the multivulva 

phenotype of hyper-activated Ras and also enhances the vulvaless phenotype of several 

Ras pathway effectors (Lehner et al., 2006). The genetic interactions between pbrm-1 and 

the EGF-Ras-Erk pathway intrigued us because of the known roles for Ras signaling in 

duct cell development (Chapter Two).  
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pbrm-1 genetically interacts with EGF-Ras effectors in the excretory system 

 To test for genetic interactions in the excretory system between pbrm-1 and the 

EGF-Ras-Erk pathway I used Ras pathway mutants that had weakly penetrant 

phenotypes. These included hypomorphic alleles of lin-45/Raf and mpk-1/Erk, and a null 

allele of eor-1. lin-45/Raf is a kinase upstream in the Ras pathway, while mpk-1/Erk is 

the terminal kinase in the Ras pathway that translocates to the nucleus (see Fig 1.4). eor-1 

is a downstream effector in the Ras pathway that is redundant with the lin-1/ets factor 

(Howard) (see Fig 1.4). When lin-45 hypomorphs were given pbrm-1 RNAi, the weak 

excretory lethal phenotype of lin-45 hypomorphs was not enhanced (Fig 5.2). However, 

when mpk-1 hypomorphs and eor-1 null mutants were treated with pbrm-1 RNAi their 

weak excretory phenotypes were greatly enhanced (Fig 5.2). Thus pbrm-1 RNAi 

enhanced the excretory lethality of mutants downstream in the Ras pathway, but not a 

kinase upstream in the Ras pathway.   

 

PBRM-1 is expressed in most cells 

To determine if the expression pattern of PBRM-1 was consistent with a cell 

autonomous role for PBRM-1 in the excretory system, I assessed PBRM-1 expression 

with a transcriptional reporter that contained ~2kb of the pbrm-1 promoter fused to GFP. 

In early embryos around the 200-cell stage, pbrm-1::GFP localized to the nucleus of 

almost every cell (Fig 5.3). Ubiquitous expression of a subunit of a chromatin remodeling 

complex is not surprising. However, during larval stages pbrm-1::GFP was no longer 
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expressed in every cell, but displayed cell type specificity (Fig 5.3). In larvae I observed 

pbrm-1::GFP in several neurons in the head (Fig 5.3), and also in the vulva during the 

fourth larval stage (data not shown). I also observed pbrm-1::GFP in a cell whose identity 

has not been confirmed by co-localization studies, but appears to be the duct cell (Fig 

5.3). However, I presume that the pbrm-1::GFP reporter lacks some important regulatory 

regions, as a full length rescuing translational PBRM-1::GFP reporter is expressed in 

every cell during larval stages (Shibata et al., 2012).  Nonetheless, the pbrm-1::GFP 

reporter has enough regulatory information to drive GFP expression in neurons, the 

vulva, and potentially the duct cell (Fig 5.3). Taken together, PBRM-1 is probably 

transcribed and localized in most cells of the worm throughout development, including 

the cells of the excretory system.  

 

An unknown mechanism for PBRM-1 in excretory system morphogenesis 

 To investigate how pbrm-1 RNAi was enhancing excretory lethality in mls-2 and 

eor-1 mutants, I examined  several excretory system markers. As a control for penetrance 

of pbrm-1 RNAi , I performed pulse lays with siblings of the scored worms and 

confirmed the enhanced excretory lethality shown in Figs 5.1, 5.2 (data not shown). lin-

48p::GFP is a marker for both duct fate specification and differentiation. Unfortunately, 

the pbrm-1(RNAi);eor-1 strain with lin-48p::GFP in the background was too sick to 

score.  AJM-1::GFP is an epithelial junction marker that labels the autocellular 

junction(AJ) of the pore cell (Stone et al., 2009). Mutants with duct-to-pore fate 
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transformations have 2 pore AJs (Abdus-Saboor et al., 2011).   The 2AJ phenotype was 

never observed in pbrm-1 or eor-1 single mutants (Fig 5.4A). However, approximately 

15% of pbrm-1(RNAi);eor-1 double mutants displayed the 2AJ phenotype (Fig 5.4A), 

suggesting that PBRM-1 may have a small role in duct fate specification. In comparison 

to the low penetrance 2AJ phenotype in pbrm-1(RNAi);eor-1 double mutants, a high 

penetrance excretory lethality was observed in this strain. This result (Fig 5.2), suggests 

that PBRM-1 has additional roles in the excretory system besides duct fate specification. 

 mls-2 single mutants and pbrm-1(RNAi); mls-2 double mutants never displayed 

the 2AJ phenotype (Fig 5.4A, Chapter Three), a result that is consistent with both MLS-2 

and PBRM-1 acting mainly outside of duct fate specification. Approximately ~20% of 

mls-2 mutants did not express lin-48 in the duct, indicating that MLS-2 promotes 

morphogenesis of the duct cell (Fig 5.4B, Chapter Three). However, treating mls-2 

mutants with pbrm-1 RNAi did not enhance loss of lin-48 in the duct (Fig 5.4B). mls-2 

mutants also have cell shape defects in the duct and pore that lead to loss of the pore AJ 

and collapse of the duct cell (Chapter Three). However, the cell shape defects of mls-2 

mutants were not enhanced or altered by treatment with pbrm-1 RNAi (data not shown). 

In summary, the mechanism by which pbrm-1 RNAi enhances excretory lethality of mls-

2 and Ras pathway effectors remains largely unknown.  

 

Discussion 
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 An RNAi enhancer screen was performed to identify MLS-2 redundant factors. 

Although many genes were tested, only pbrm-1 reproducibly enhanced mls-2 excretory 

lethality. pbrm-1 has been shown to genetically interact with the EGF-Ras-Erk pathway 

in the vulva, and I have demonstrated similar genetic interactions in the excretory system. 

RNAi or deletion of pbrm-1 alone does not lead to excretory system defects. Only 

reduction of pbrm-1 combined with loss of mls-2 or Ras effectors resulted in excretory 

system lethality. With the panel of markers I used to visualize the duct and pore, I could 

not determine how pbrm-1 contributes to excretory lethality. Below I discuss a potential 

model for PBRM-1 cooperation with MLS-2 and Ras, and an alternative way to find 

MLS-2 redundant factors. I end the discussion by highlighting a recent report about a 

common class of genes that may be acting as MLS-2 redundant factors.   

 

PBRM-1, MLS-2, and EGF-Ras-Erk may all function in parallel  

pbrm-1 excretory phenotypes are only revealed when either mls-2 or Ras pathway 

effectors are reduced, knockdown of pbrm-1 on its own has no effect. pbrm-1 genetically 

interacts with two Ras downstream genes during excretory system development, mpk-1 

and eor-1.  pbrm-1(RNAi);eor-1 double mutants have a high percentage of excretory 

lethality and a lower percentage of fate specification defects. The eor-1 and pbrm-1 

genetic interactions suggests that pbrm-1 may act downstream of Ras signaling during 

fate specification, but possibly parallel to Ras outside of fate specification.  pbrm-

1(RNAi) greatly enhanced mls-2 excretory lethality, but not loss of lin-48 in the duct or 
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cell shape defects. Although I cannot exclude the possibility that mls-2 directly depends 

upon pbrm-1, my analyses suggest that mls-2 and pbrm-1 function largely in independent 

parallel pathways.  

If pbrm-1 is acting in a pathway partially independent of mls-2 and Ras, what 

could PBRM-1 be doing to promote excretory system development? PBRM-1 appears to 

be expressed in most cells in the worm (Shibata et al., 2012), leading to several possible 

modes of action for enhancing excretory lethality. One simple possibility that we have 

not tested, is that PBRM-1 is affecting the canal cell, as opposed to the duct or pore like 

MLS-2 and Ras. We could easily test this by visualizing the canal cell in a pbrm-1(RNAi) 

single or double mutant background. A second possibility, which appears less likely, is 

that pbrm-1 is acting cell non-autonomously outside of the excretory system. Secreted 

proteins that promote excretory system development can be driven in non-excretory cells 

and have rescuing capability (Stone et al., 2009). PBRM-1 is mainly nuclear and not 

secreted, thus the cells where phenotypes are observed probably require PBRM-1 cell 

autonomously. However, I cannot exclude the possibility that PBRM-1 affects the 

expression of a secreted factor. A third possibility is that PBRM-1 acts in the duct cell 

either downstream and/or parallel to both MLS-2 and Ras.  

How could PBRM-1 act in the duct cell downstream or parallel to Ras to promote 

excretory system development? Several groups have shown that PBRM-1 and the PBAF 

complex are required for Ras dependent processes. For example, during oncogene 

mediated senescence, Ras activates p53, which promotes the transcription of the CDK 

inhibitor p21 (Burrows et al., 2010). The PBAF subunit BRD7 physically interacts with 
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p53 and directly promotes p21 transcription (Burrows et al., 2010). Thus, when the PBAF 

subunit BRD7 is reduced, activated Ras can no longer promote senescence through the 

p53-p21 pathway (Burrows et al., 2010). Likewise in C.elegans, hyper-activating Ras 

leads to a multi-vulva phenotype, which is suppressed when pbrm-1 is reduced (Lehner et 

al., 2006). Hyper-activating Ras in C.elegans also results in two duct cells being specified 

(Abdus-Saboor et al., 2011). It will be interesting to determine if reduction of pbrm-1 can 

also suppress the 2-duct phenotype caused by hyper-activated Ras. A speculative model 

combining my data with other reports, is that pbrm-1 may help transcription factors that 

are activated in part by Ras, to access DNA and turn on genes important for excretory 

system development.   

We have shown that mls-2 genetically interacts with the Ras pathway during duct 

morphogenesis (Chapter Three). While the identification of the interaction between 

pbrm-1 and mls-2 adds more evidence for mls-2 and Ras interaction, it has not given us 

an additional mls-2 interacting pathway beyond what was already known.  

 

A forward genetic screen to find MLS-2 redundant genes 

 There are several reasons to obtain negative results with RNAi treatment in the 

excretory system (see Chapter Four discussion). Even though one RNAi clone (pbrm-1) 

did produce robust results, 1/650 is a fairly low recovery rate. I discussed a way to 

improve RNAi in the excretory system for subsequent RNAi screens (Chapter Four 

discussion). Another way to alleviate the pitfalls of RNAi screening is to perform a 
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different kind of screen. A forward mutagenesis screen is the most unbiased way to let 

the worm tell us what genes are functioning redundantly with mls-2.  

 Forward genetic screens lead researchers to study genes that would have been 

overlooked based on a priori knowledge. The RNAi enhancer screen I performed was 

unbiased in that it contained all classes of transcription factors, but highly biased because 

no other genes besides transcription factors were tested. I propose doing a forward 

mutagenesis screen, but in an mls-2 mutant background with markers for the duct and 

pore cells. Having excretory system markers in the mutagenized strain would allow me to 

quickly screen which mutants were worth further pursuit. For example, mutants that 

cause enhanced excretory lethality, and duct-to-pore fate transformations, would 

probably be alleles of Ras pathway genes and not worth mapping and cloning. However, 

mutants that enhance mls-2 cell shape defects are more likely to be mls-2 redundant 

factors and worth mapping, cloning, and performing subsequent assays with. Others in 

the lab are currently performing similar forward screens with worms bearing duct and 

pore markers, and it would be feasible to mutagenize an mls-2 strain alongside the current 

screens.  

 

MLS-2 redundant genes may not be limited to transcription factors 

 Two presumptive null alleles of mls-2 have incompletely penetrant lethal 

excretory phenotypes (Chapter Three). In an effort to find the mls-2 redundant genes I 

tested cytoskeletal genes that may have the same function as mls-2 (Chapter Four), and 
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transcription factors that may turn on the same genes as MLS-2. When null alleles do not 

have fully penetrant phenotypes, the most common assumption is that similar genes are 

compensating for the loss of the absent gene. However, the genetic logic that many 

similar genes are performing the same function, does not account for all cases of genetic 

redundancy. Recently, Burga et al. in Nature showed that at least two compensation 

pathways exist to protect organisms against losses of critical gene products.  

 Burga et al. used a null mutant of the C.elegans T-box transcription factor tbx-9 to 

identify genetic compensatory pathways. The tbx-9 null mutant causes an incompletely 

penetrant abnormal muscle and epidermal phenotype in larvae (Andachi et al., 2004, 

Pocock et al., 2004). TBX-9 is highly related to another T-box transcription factor TBX-

8. Combined loss of tbx-8 and tbx-9 leads to fully penetrant muscle and epidermal 

phenotypes in larvae (Andachi et al., 2004, Pocock et al., 2004). Over-expression of 

TBX-8 partially rescues the tbx-9 null mutant, and tba-8 transcription is upregulated in a 

tbx-9 null background (Burga et al., 2011). However, some tbx-9 null mutants that do not 

upregulate tbx-8 grow up wild type (Burga et al., 2011) indicating that a second 

compensatory pathway was involved.  

 To find the second compensatory pathway in tbx-9 null mutants Burga et al. 

turned to molecular chaperones, proteins that when inhibited, can enhance the effects of 

diverse mutations (Queitsch et al., 2002, Van Dyk et al., 1989). To visualize chaperones 

the authors made reporters for daf-21 (hsp90) and hsp-4 (orthologous to mammalian 

BiP). tbx-9 null mutants expressed the chaperones at higher levels, and embryonic 

expression of the chaperone was generally predictive of the future outcome (Burga et al., 
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2011). tbx-9 null mutants that expressed both tba-8 and the chaperones at high levels in 

embryos almost always grew up wild type (Burga et al., 2011). While tbx-9 null mutants 

that expressed both tba-8 and the chaperones at low levels almost always grew up to 

display the phenotype (Burga et al., 2011). In summary, protection from loss of a null 

mutant, came from upregulation of a similar gene and from commonly used chaperones.  

 We have attempted without huge success, to identify mls-2 redundant genes by 

knocking down genes similar to mls-2 in sequence, and genes we assumed were similar 

to mls-2 in function. It may be possible, as was observed with tbx-9, that a pathway 

involving chaperones is protecting mls-2 null mutants from dying at a higher percentage. 

I could test the chaperone hypothesis by directly knocking down select chaperones by 

RNAi or using mutants where available. I could also cross reporters for chaperones into 

mls-2 mutants to see if they are upregulated. If chaperones are protecting mls-2 null 

mutants, some chaperones may be  identified in the mls-2 forward genetic screen that I 

proposed to perform in the previous section. Our prior reverse genetic approaches to find 

the mls-2 redundant genes (barring technical limitations) were likely performed 

accurately, but may not have targeted the correct set of genes. 

 

Materials and Methods 

Strains and alleles 

Bristol N2 was the wild-type strain.  Strains were maintained and manipulated by 
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standard methods unless otherwise noted.  Descriptions of each gene can be found at 

www.wormbase.org. Mutant alleles used are: LG1V: eor-1(cs28) (Rocheleau et al., 

2002), lin-45 (ku112) (Sundaram and Han, 1995).  LGIII: mpk-1(ku1) (Wu and Han, 

1994). LGX: mls-2(cs71). 

RNA interference (RNAi) 

RNAi was performed by placing mls-2(cs71) L2/3 stage worms on feeding plates with 

HT-115 E.coli expressing RNA against GFP (negative control) or each transcription 

listed in wTF2.0 (Reece-Hoyes et al., 2005) that is available in the Ahringer feeding 

library.  

The RNAi screen was based on the following 9-day protocol: Monday – I grew up lots of 

mls-2 worms at 25°C. Tuesday – I prepared 6-well NGM feeding plates. Wednesday – I 

bleached mls-2 worms to recover eggs and rocked the eggs overnight in M9 on the 

Nutator. I also grew up RNAi clones in LB-amp-tet and incubated them at 37°C 

overnight. Thursday – I transferred synchronized L1s to fresh OP50 plates to continue 

growth. I also added IPTG to 1mM concentration to overnight RNAi cultures and then 

seeded the feeding plates with the cultures and put the plates to 37°C overnight. Friday – 

I washed L2/3 stage mls-2 worms with M9 to 15mL tubes. From the 15ml tubes I 

pipetted ~5 worms to seeded RNAi plates to incubate at 20°C over the weekend. The 

following Monday and Tuesday I scored the plates that had now laid F1 progeny, for 

enhancement of mls-2 excretory lethality.  

Phenotypic Scoring 
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To score for rod-like (excretory) lethality, hermaphrodites treated with control or 

experimental RNAi for 4-5 days were allowed to lay eggs for approximately 2 days. 

Percent rod-like lethal was determined by the proportion of progeny that were visible as 

rods 48 hours post-egg lay.  

Marker Analysis and Imaging 

Images were captured by differential interference contrast (DIC) and epi-fluorescence 

microscopy using a Zeiss Axioskop and Hamamatsu C5985 camera, or by confocal 

microscopy using a Leica SP5. 

 

Acknowledgements 

  I would like to thank the Caenorhabditis Genetics Center (University of 

Minnesota, USA) for providing the strains analyzed in this chapter, including the pbrm-

1::GFP transcriptional reporter. All of the RNAi clones were from the Julia Ahringer 

RNAi feeding library. The list of transcription used was taken from Reece-Hoyes et al. 

The arrayed library, which made the screen many fold easier, was generously provided 

by Todd Lamitina. The 9-day RNAi protocol was adopted from Kai Huang, a former 

undergraduate student in the lab.  

 

Figure Legends  



157 
 

Figure 5.1. pbrm-1 enhances mls-2 excretory lethality. Bar graph showing percentage 

of worms with rod-like (excretory lethality). Results from multiple worms from 

individual plates were averaged together. GFP used as negative RNAi control. n>100 for 

each genotype.  

Figure 5.2. pbrm-1 genetically interacts with the Ras pathway in the excretory 

system. Bar graph showing percentage of worms with rod-like (excretory lethality). 

Results from multiple worms from individual plates were averaged together. GFP used as 

negative RNAi control. n>100 for each genotype. 

Figure 5.3. pbrm-1::GFP is dynamically expressed. (A,B) Florescence and 

corresponding DIC image of ~200-cell stage embryo. pbrm-1::GFP is nuclear localized in 

almost of every cell. (C,D) Florescence and corresponding DIC image of an L4 larva. 

pbrm-1::GFP is no longer nuclear localized in every cell, and is now expressed in head 

neurons and possibly the excretory duct cell (white line).  

Figure 5.4. Main process in excretory development affected by pbrm-1 is unclear. 

(A) Bar graph showing percentage of L1 worms that had a 2 pore auto-cellular 

junction(AJ) phenotype, as scored with AJM-1::GFP. n at least 20 for each genotype. (B) 

Bar graph showing percentage of L1 worms that lacked lin-48p::GFP expression in duct. 

n at least 20 for each genotype.  
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Figure 5.1 
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Figure 5.2  
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Figure 5.3 
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Figure 5.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



162 
 

 

Chapter Six: 

DISCUSSION: 
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Summary 

 For my thesis research I utilized a network of epithelial tubes in the C.elegans 

excretory system as a model to study fate specification, cell-cell interactions, and 

morphogenesis.  I was able to expand upon earlier work from others implicating Ras in 

development of the duct cell. I was able to demonstrate that the canonical EGF-Ras-Erk 

pathway has at least three genetically distinct roles in the excretory system: 1) to specify 

the duct versus the pore cell fate, 2) to bias the positions the duct and pore adopt in the 

tubular network, and 3) to maintain organ architecture in the duct. However, the 

maintenance or late role for Ras signaling in the excretory system remains unclear. I also 

demonstrated that a homeodomain transcription factor, MLS-2, acts in parallel to EGF-

Ras-ERK signaling to promote shape acquisition in the duct and pore. I hypothesize that 

MLS-2 is acting to stabilize the cytoskeleton in the duct and pore by turning on specific 

cytoskeletal isoforms.  

In this discussion I compare RTK regulation of excretory development to RTK 

regulation in more complex tubular organs. In addition, I present preliminary data that 

suggests the late requirement for Ras is during the G1/G2 pore exchange. I conclude the 

discussion by highlighting collaborations to find MLS-2 target genes in the duct and pore.   
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Duct versus pore competition is analogous to tip versus stalk competition 

 Cell competition mediated by RTK signaling is a strategy observed in several 

tubular organs including the mammalian kidney and vasculature, and the Drosophila 

trachea (Chi et al., 2009; Eilken and Adams, 2010; Ghabrial and Krasnow, 2006). In 

response to RTK growth factors, one or few cells emerge as leader or tip cells from a 

sheet of equivalent precursor cells (Tung et al., 2012). The tip cell is of seminal 

importance, especially in branched tubular organs like the Drosophila trachea, as new 

branches form from the migrating tip cell (Ghabrial et al., 2003).  The follower or stalk 

fate is also important, as the stalk cells proliferate and contribute to the nascent sprout 

(Tung et al., 2012). Interestingly, despite negative feedback to insure the tip fate decision, 

tip cell identity can be dynamic, with cells shuttling back and forth between being a tip or 

stalk cell during tubulogenesis (Jakobsson et al., 2010). The duct and pore precursor cells 

of the C.elegans excretory system are lineal homologs and are also initially equivalent 

until RTK signaling specifies the duct cell fate (Abdus-Saboor et al., 2011; Sulston et al., 

1983). Duct versus pore positioning and specification is highly similar to RTK mediated 

tip versus stalk specification in more complex tubular organs. The competition to become 

a duct (“tip”) versus pore (“stalk”) is much simpler than the multi-cellular competition 

observed in more complex tubes.  

The study of duct versus pore competition can be exploited to learn more about 

tip versus stalk specification in complex tubular organs such as the mammalian kidney. In 

the kidney, the chemo-attractive growth factor GDNF signals from the surrounding 

mesenchymal cells to the ureteric bud epithelium through the Ret RTK, to specify the tip 
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versus stalk cell fate (Costantini, 2010). The cells that are specified as tip cells appear to 

respond to GDNF and migrate away from a sheet of equivalent epithelial cells towards 

the tip of the ureteric bud (Costantini, 2010). GDNF is a potent inducer of the tip cell fate 

in the immature kidney, as no ureteric tip forms in GNDF -/- mice, and mutations that 

block inhibition of GDNF cause the formation of multiple ureteric tips (Costantini, 2010). 

However, additional reports about GDNF induction of the tip cell fate have made some of 

the previous conclusions and working models difficult to interpret. For example, mice 

that were engineered to express GDNF in the ureteric bud epithelium (receiving cell) 

instead of the surrounding mesencyhme, were still able to specify tip cells and make 

kidneys (Shakya et al., 2005a). This result suggests that the expression of the growth 

factor signal at the location of migration and specification is not required for tip cell 

specification. In addition, it has been shown that FGF10 can act as an inducer of tip cell 

specification in the absence of GDNF (Michos et al., 2010). The FGF10 rescue of GDNF 

mice does not result in completely normal kidneys, indicating that GDNF has specific 

roles that cannot be compensated by adding back FGF10 (Michos et al., 2010). While it is 

clear that GDNF is required to specify a tip cell, it is unclear if the precursors need to 

respond to GDNF at the place of their migration, if their migration is controlled by a 

parallel pathway, or if migration is simply the result of intrinsic programming of the cells.  

 Studies of the duct and pore can provide insight into the precise role of growth 

factors in specifying leader versus stalk cell fates. The duct and pore are born on opposite 

sides of the embryo and migrate towards the canal cell (Sulston et al., 1983), which is the 

source of the lin-3/Epidermal Growth Factor (EGF) (Chapter Two). The duct and pore 
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migrate and stack normally in lin-3 zygotic mutants (Chapter Two). However, lin-3 null 

mutants were obtained from heterozygous mothers, meaning that there was still 

maternally supplied lin-3/EGF. I hypothesize that maternally supplied lin-3/EGF 

localizes to the canal cell, resulting in normal duct and pore stacking in lin-3 zygotic 

mutants. We know that maternal Ras signaling is important, as reducing maternal Ras 

leads to defects in duct and pore stacking (Chapter Two). Therefore, because maternal 

lin-3/EGF was still present in our experiments, it is unclear if lin-3/EGF needs to be 

expressed at the place of migration for normal stacking and specification of the duct and 

pore.  

With the simplicity of the excretory system, there are ways to test the required 

location of EGF in duct cell specification. One way I could do this is by using a mutant 

that expresses lin-3/EGF from multiple locations in the embryo. A mutant is available 

from the Horvitz lab that has two canal cells because of a failed cell death execution 

(Daniel Denning, personal communication). I have not examined the two canal cell 

mutants in detail, but they do not die from excretory lethality like many other mutants we 

have examined. A proof of principle in using this mutant will be to locate both canal cells 

in the embryo and confirm that they both express EGF. If each canal cell expresses EGF, 

and each precursor migrates towards one of the canals, this would suggest that location of 

the growth factor signal is critical in specifying the tip cell fate. However, if the cells still 

migrate to their normal positions, despite the competing EGF signal from the other canal, 

this would suggest that location of the RTK growth factor is not critical for tip cell 

specification. To my knowledge, no tubulogenesis studies have been performed where 
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precursors with equivalent competency to respond to signaling, were given multiple 

sources of their stimulating chemo-attractant. Performing this analysis in the worm could 

suggest a model worth testing in the immature kidney, to gain insight into where GDNF 

is required during ureteric bud tip cell specification.   

 

What are the targets of EGF-Ras-ERK signaling during duct tubulogenesis? 

 Building an epithelial tube requires numerous processes ranging from cell 

migration and polarization to cell elongation (Andrew and Ewald, 2010; Lubarsky and 

Krasnow, 2003). In Chapter Two I described several genetically separable steps for EGF-

Ras-Erk signaling in the development of the duct cell. I described roles for Ras signaling 

in mediating competition as the duct and pore stacked, roles for Ras in fate specification, 

and a late requirement for Ras signaling in maintaining duct tube organ architecture (see 

next section for speculation about late requirement for Ras). However, at least two key 

questions emerged from our findings, including: 1) What are the targets of the Ras 

signaling that allow the pathway to carry out each step? 2) Are the same targets of 

signaling utilized at each step? Although I do not have answers to these questions, I will 

describe several possibilities and avenues for further research.  

 The data presented in Chapter Two suggest that most of the Ras dependent steps 

during duct tubulogenesis are dependent on transcription from a downstream effector (s). 

For example, sos-1 ts defects are rescued when reducing the Ras downstream 

transcription factor lin-1/Ets (Chapter Two). lin-1/Ets normally represses the duct cell 
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fate, and this repression is relieved by MPK-1 Erk phosphorylation of LIN-1 (Jacobs et 

al., 1998). In addition, a combinatorial loss of lin-1 and another Ras downstream 

transcription factor eor-1, results in duct specification defects (Chapter Two). In the 

immature kidney, the Ets transcription factors etv-4 and etv-5 act downstream of GDNF 

and the Ret RTK to specify the tip cell fate (Kuure et al., 2010b). In the Drosophila 

trachea, the Ets transcription factor pointed acts downstream of the Breathless FGFR. 

pointed is not required to specify the tip cell position, but for other tip cell characteristics 

(Ghabrial and Krasnow, 2006; Schottenfeld et al., 2010). Thus, activation of Ets 

transcription factors by RTK signaling during tip cell specification, appears to be a 

common them in tube development. Our work suggests that RTK activation of ETS 

transcription factors is critical for later steps of tubulogenesis, and not only cell fate 

specification (Fig. 6.1).  

 If activation of LIN-1 by MPK-1 is critical for all the Ras dependent steps during 

tubulogenesis, what are the targets of LIN-1 at each step? Are the LIN-1 targets different 

at each Ras dependent step? There are only two known targets for LIN-1 in C.elegans, 

the hox factor LIN-39 (Maloof and Kenyon, 1998; Wagmaister et al., 2006), and the 

Notch ligand LAG-2 (Zhang and Greenwald, 2011). During vulval patterning LIN-1 

binds to the lin-39 promoter to upregulate lin-39 expression in the P6.p VPC 

(Wagmaister et al., 2006). Also during vulval patterning, LIN-1 presumably binds to the 

lag-2 promoter and represses lag-2, until LIN-1 repression is relieved by EGF-Ras 

pathway activation (Zhang and Greenwald, 2011). We do not have data that suggests that 

LIN-39 or LAG-2 could be LIN-1 targets during duct development. LIN-1 may act in 
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combination with other transcription factors on common sets of target genes. For 

example, Ras works in parallel to the Nkx5/HMX homeodomain transcription factor 

MLS-2 to turn on lin-48 in the duct (Chapter Three) (Figure 6.1). LIN-1 and MLS-2 may 

have common target genes including lin-48 during duct development (see approach in 

final section to identify LIN-1/MLS-2 target genes). One potential strategy to find LIN-1 

target genes is to perform whole genome RNA sequencing from an isolated duct cell in a 

lin-1 gain-of-function background. Techniques have been described in the worm to 

perform laser microsurgery of individual cells followed by RNA sequencing (Kato and 

Sternberg, personal communication). Transcripts that are differentially expressed in the 

duct compared to a cell where the EGF-Ras pathway is not activated, would be candidate 

LIN-1 target genes. To limit the list of potential LIN-1 target genes in the duct, we could 

analyze mutants and make reporters for selected candidate genes.  

MPK Erk phosphorylation of transcription factors appears to be another common 

theme in tube development. MPK-1 phosphorylation of LIN-1 appears to be critical 

during duct development, and MAPK phosphorylation of pointed is critical during 

Drosophila trachea development (Schottenfeld et al., 2010). Finding LIN-1 targets will 

help determine how signaling controls tubulogenesis, and finding other transcription 

factors that are regulated by MPK-1 during duct development will also be informative. 

Several in vitro studies have been conducted to find novel MPK Erk target genes in 

mammals (Johnson and Hunter, 2005). One study performed in cell culture combining 

functional proteomics and mass spectrometry, identified 25 Erk target genes, 5 of which 

were previously known (Lewis et al., 2000). Another recent study used a phospho-
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proteomic approach combined with a steroid receptor fusion system to identify 38 new 

Erk target genes (Kosako et al., 2009). Because many genes in higher organisms have 

homologs in C.elegans, we can use the lists generated from other organisms, to identify 

novel MPK-1 targets in the duct.  

The lab now has a panel of markers to label the excretory system and I can easily 

visualize which step in duct development is defective in any given mutant. Therefore, as 

the lab identifies new genes by screening methods or literature searches, I can place a 

gene into a functional bin based on what process or processes are defective in duct 

development. As I begin to put functional bins together, I will be able to make 

predictions about what genes are regulated by Ras signaling at various steps. My 

predictions can be tested by looking for changes in activity or expression of the candidate 

target genes when Ras signaling is altered. The core EGF-Ras signaling cascade has been 

known for years, now the work for the field has shifted to identifying what genes are 

downstream of signaling.  

 

Does EGF-Ras-ERK signaling affect the G1-to-G2 pore swap? 

 SOS-1 and Ras signaling have a continued role in maintaining duct organ 

architecture (Chapter Two). To my surprise, when I shifted sos-1 ts mutants from the 

permissive to non-permissive temperature shortly after hatch during the first larval stage, 

a high percentage of worms died from excretory lethality (Fig. 2.6). The sos-1 ts mutants 

that died from late temperature shifts still turned on the duct fate marker lin-48 and fused 
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the duct auto-cellular junction (AJ) (Fig. 2.6). However, a late process in excretory 

system development that requires Ras signaling must have been defective to cause 

excretory lethality in sos-1 ts mutants shifted late. Importantly, sos-1 ts worms shifted 

after the second larval stage grew up normally without excretory defects (Chapter Two), 

suggesting that the late role for Ras is a development role and not a continuous 

physiological role. The only developmental process that I am aware of that occurs late, 

after the worm hatches and the excretory system has begun to function, is the G1/G2 pore 

exchange (see Introduction). 

 The sos-1 ts shifts described in Chapter Two implicate a late requirement for Ras 

signaling in excretory system development, but the precise time when Ras signaling is 

required is unknown. sos-1 ts mutants shifted at 3-fold or early L1 were scored for 

excretory lethality around the late L1 to early L2 stage, meaning that approximately 6-9 

hours elapsed between the time of shift and the time of score (Chapter Two).  I 

hypothesized that if I could determine when defects first began in sos-1 ts mutants shifted 

late, I could infer which process required Ras signaling.  

 To determine when excretory defects began in sos-1 ts mutants shifted late, I 

shifted hand-picked newly hatched sos-1 ts L1 worms bearing AJM-1::GFP from the 

permissive to non-permissive temperatures and visualized the excretory system every 

hour. I also crossed the aff-1 mutation into the sos-1 ts background to visualize the duct 

cell with AJM-1:GFP. The duct cell normally fuses its AJ, but in an aff-1 mutant 

background the duct cell AJ remains (Stone et al., 2009). The aff-1 mutation does not 

significantly affect excretory system development, and it was used as a tool to label the 
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duct cell. (Note: at the time of these experiments I did not have the dct-5p::mcherry 

marker that labels the duct and pore cytoplasm. If so, dct-5p::mcherry would have been 

the best marker to use for these studies).  sos-1 ts worms that were never shifted were 

almost always wild type,  except for a few abnormal junctions with fluid accumulation 

(Fig. 6.2). The few abnormalities in non-shifted sos-1 ts worms may have been caused by 

leakiness of the sos-1 ts mutation or a slight effect of the aff-1 mutation. sos-1 ts mutants 

scored between 1-5 hours after shift were almost always wild type (Fig. 6.2). However, 

approximately 25% of sos-1 ts mutants that were scored between 6-7 hours after shift 

displayed excretory phenotypes including large intercellular loops between the duct and 

pore and apparent disconnection between the duct and pore (Fig. 6.2). The junctional 

abnormalities of sos-1 ts worms scored 6-7 hours after shift were accompanied by 

abnormal fluid accumulation in the excretory system (data not shown). In summary, the 

time excretory defects begin in sos-1 ts mutants, and presumably the time when Ras 

signaling is required, is 6-7 hours after hatch. 

 Work from a post-doctoral fellow in the lab, Jean Parry, has demonstrated that the 

G1 pore withdrawal and G2 pore entry begins around 6-7 hours after hatch. The G1/G2 

pore swap is a tightly regulated developmental process that results in a seamless 

exchange of the old pore with the new pore. In wild type, the pore exchange never causes 

abnormal fluid accumulation. Thus, when the duct cell loses connections with the old 

pore, the new pore is ready instantaneously to connect to the duct to maintain normal 

osmoregulation in the worm.  
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 My work suggests that Ras signaling may play a role in keeping the excretory 

system intact during the pore exchange process. Prior mosaic analysis has shown that the 

only cell that requires Ras for viability is the duct cell (Yochem et al., 1997). Also 

signaling between the G1 pore and G2 pore is not required for exit of one pore and entry 

of the other (Fig. 2.7). Therefore, if Ras signaling acts cell autonomously in the duct and 

not the G1 or G2 pore, how could Ras signaling affect the pore exchange process? I 

hypothesize that Ras signaling affects the pore exchange by promoting G1 exit. If G2 

arrives at the duct to establish a connection and G1 has not withdrew, an unhealthy 

competition may ensue between the pore cells to determine which one will connect to the 

duct. I hypothesize that Ras signaling promotes G1withdraw by promoting break down of 

the duct junction that connects to the G1 pore.  

 A study performed in MDCK cells has shown that Ras signaling promotes 

adherens junction disassembly and breakdown of intercellular adhesions (Potempa and 

Ridley, 1998). MDCK epithelial cells become motile in cell culture when treated with 

Ras pathway growth factors (Potempa and Ridley, 1998; Ridley et al., 1995). However, 

when Ras signaling is blocked downstream with MAPKK inhibitors, MDCK cells lose 

the ability to spread after stimulation by Ras pathway ligands (Potempa and Ridley, 

1998). β-catenin and E-cadherin localize to intercellular junctions between un-stimulated 

MDCK cells to hold them together (Potempa and Ridley, 1998). Upon Ras growth factor 

stimulation, β-catenin and E-cadherin expression are lost at junctions, allowing for cell 

spreading and motility (Potempa and Ridley, 1998). When MAPKK or PI3K, 

downstream genes in the Ras pathway, were inhibited, β-catenin and E-cadherin 
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expression persisted at intercellular junctions even in the presence of Ras growth factor 

stimulation (Potempa and Ridley, 1998). Therefore, Ras signaling is required for MDCK 

cells to down-regulate junctional proteins that connect cells together (Potempa and 

Ridley, 1998).  

 I hypothesize that continued Ras signaling in the duct cell is required to down-

regulate proteins at the junctional complex that connects the duct to the pore. Since the 

G2 pore doesn’t need a signal from the G1 pore to enter (Fig. 2.7), G2 will still attempt to 

connect to the duct with G1 still present. It is possible that a competition between the two 

pores leads to neither cell connecting to the duct correctly, thus resulting in excretory 

lethality. Further studies using time-lapse imaging of the G1/G2 pore exchange in both 

wild type and Ras mutants should clarify the preliminary data and hypothesis I have 

presented.  

A search for MLS-2 target genes 

MLS-2 promotes cell shape acquisition in the duct and pore by an unknown 

mechanism (Chapter Three). Craig Stone (a former graduate student in the lab) and I, 

attempted to take advantage of the incompletely penetrant mls-2 phenotype and identify 

MLS-2 redundant genes (Chapters Four and Five). Knowing what genes could substitute 

for mls-2 in its absence, could have predicted what function MLS-2 normally performs. 

However, the attempts do find mls-2 redundant genes, either due to technical limitations 

or targeting the wrong genes, were largely unsuccessful. Since MLS-2 is a transcription 
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factor, the best way to determine how MLS-2 promotes cell shape in the duct and pore, is 

to determine what genes MLS-2 is turning on.  

A sequence that MLS-2 binds to while turning one of its target genes has been 

validated in vitro and in vivo. The Sengupta lab identified a 9 base pair motif 

GCAAATGGG that MLS-2 binds to while regulating the expression of the Otx gene ceh-

36 (Kim et al., 2010). In gel shift assays MLS-2 can bind to this 9-mer sequence that is 

found in the ceh-36 promoter, and mutating this motif in worms prevents MLS-2 

regulation of CEH-36 (Kim et al., 2010). CEH-36 appears to be a bona fide target of 

MLS-2 during differentiation of the AWC chemosensory neuron. In embryos CEH-36 

expression precedes MLS-2 expression (J.I.Murray, personal communication), suggesting 

that MLS-2 doesn’t regulate CEH-36 expression in the duct and pore during excretory 

system development. Nonetheless, these studies provide a motif that we could potentially 

utilize to find other MLS-2 targets relevant to our cells of interest.  

Binding motifs for Nkx5/HMX family members have also been identified with 

transcription factors from mouse and Drosophila. Berger et al. determined the binding 

preferences of nearly all homeodomain proteins in the mouse to all possible 8-base 

sequences. To identify the DNA-binding preference of all homeodomain proteins Berger 

et al. used protein binding microarrays that contained every possible combination of 8-

mer sequence. The preferred binding motif identified for the Nkx5/HMX family is 

CAATTAA (Berger et al., 2008). Another group identified the binding preference of all 

homeodomain proteins in Drosophila using a bacterial one-hybrid system. The 

Drosophila HMX preferred binding motif identified is tTAATTGc (Noyes et al., 2008). 
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Importantly, the homeodomain (DNA binding domain) of MLS-2 is nearly identical to 

the homeodomain of the mouse and Drosophila HMX (see Fig 1.5). However, it is not 

clear if MLS-2 can bind the mouse or Drosophila HMX binding motif.  We could gain 

more confidence in MLS-2 binding to the mouse or Drosophila HMX binding motif if we 

could demonstrate rescue of the mls-2 phenotype with mouse or Drosophila HMX. 

Having the MLS-2 binding motif from worms and the binding motifs of related family 

members, gives us sequence information to assist in finding novel MLS-2 candidate 

target genes.  

MLS-2 and Ras cooperate to turn on lin-48/Ovo expression during duct 

morphogenesis (Chapter Three). However, we do not know if MLS-2 or Ras promote lin-

48 expression directly or indirectly. To test if MLS-2 might promote lin-48 expression 

directly, I searched the ~5kb lin-48 promoter (the same promoter region that drives lin-48 

expression in the duct) for the MLS-2 binding motif, and the mouse and Drosophila 

HMX motifs. I did not find the MLS-2 binding motif GCAAATGGG or the mouse 

binding motif CAATTAA in the lin-48 promoter. However, I did find the shorter 

Drosophila HMX motif TAATTG three places in the lin-48 promoter (Fig 6.3). It could 

be that the shorter Drosophila motif is more likely to appear at random because it is a 6-

mer. However, a report from the Chamberlin lab suggests that at least one of the three 

sites (position 4756) may be important for lin-48 expression. A deletion of only 200 base 

pairs in the lin-48 promoter that deletes the Drosophila HMX site at position 4756, 

almost completely abolishes lin-48 expression in the duct (Johnson et al., 2001)(Figure 

6.3). If we can demonstrate that MLS-2 can bind to the Drosophila HMX motif, the data 
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from the Chamberlin lab may suggest that MLS-2 binding directly to lin-48 may be 

necessary for its expression in the duct.   

We set up a collaboration with Dr. Sridhar Hannenhalli to find MLS-2 target 

genes based on binding site motifs for the mouse HMX family (CAATTAA) and the 

mouse ETS family (A/G CCGGA A/T G T/C) (Berger et al., 2008; Wei et al., 2010). 

LIN-1, a downstream transcription factor in the Ras pathway is an ETS transcription 

factor (Jacobs et al., 1998). I hypothesized that MLS-2 and LIN-1 could potentially co-

regulate target genes, such as lin-48 (see Chapter Three). Dr. Hannenhalli searched the 

promoter (2 kb upstream) of all genes in C.elegans for presence of both the HMX and 

ETS motif, and he came up with a list of 447 genes. Sridhar performed the same analysis 

in a related nematode species C.briggsae and found 262 genes with an HMX and ETS 

site in their promoter. To eliminate potential false positives, he made a list of genes that 

had an HMX and ETS site in the promoter of a C.elegans gene and also the C.briggsae 

homologous gene. Dr. Hannenhalli’s reduced, and potentially more specific list contained 

only 15 genes (Table 6.1). Most of the genes on the list are unnamed proteins with no 

reported functions. Analyzing mutants, performing RNAi, or making reporters with these 

genes are all ways to see if they could be potential MLS-2 and/or Ras target genes.  

I am excited about a florescence activated cell sorting (FACS) based approach to 

find MLS-2 target genes. This FACS approach is a collaboration with Dr. John I. Murray 

in the Department of Genetics. The idea is to FACS sort the duct and pore cells from 

embryos, followed by RNA sequencing to get the profile of all transcripts expressed in 

the duct and pore. To sort the duct and pore we will use a strain bearing two reporters, 



178 
 

one green and one red. The reporters, ceh-6::GFP and hlh-16::mcherry, are both 

expressed in numerous lineages, but only overlap in the duct and pore (Fig. 6.4). 

Therefore, gaiting cells that are both green and red should only select the duct and pore. 

We will then perform the same strategy in an mls-2 strain bearing ceh-6::GFP and hlh-

16::mcherry to sort the duct and pore. I confirmed that hlh-16::mcherry is still expressed 

in the duct and pore in an mls-2 background (data not shown), and I hypothesize that ceh-

6::GFP is also still expressed in the duct and pore. After collecting the duct and pore cells 

from both wild type and mls-2 mutants we will perform RNA sequencing on both strains. 

Genes that are differentially expressed in the duct and pore in an mls-2 background will 

be candidate target genes. Members of the lab that continue this project could then 

perform further analysis including mutant assessment, making reporters, and potentially 

chromatin immuno-precipitation of potential candidate genes. In addition, we can look 

for preferred binding sites for MLS-2 and the HMX family in the promoters of the 

candidate targets to refine our list. This FACS approach should identify MLS-2 target 

genes that might explain how MLS-2 promotes cell shape acquisition.  

 

Concluding Remarks 

 In my research, I have exploited the C.elegans excretory system in an attempt to 

learn more about tube formation in complex tubular organs. Although I have learned 

about the genetic requirements for Ras signaling in building a tube, key questions 

pertaining to how signaling controls these steps remain. I have described a homeodomain 
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transcription factor, MLS-2, that promotes cell elongation in the excretory system. I 

hypothesize that MLS-2 family members in higher organisms may have similar roles 

and/or targets as MLS-2 in the excretory system. Once functional targets of both MLS-2 

and Ras are identified, understanding how these genes and pathways act to promote 

tubulogenesis will be clarified. With common human defects such as atherosclerosis and 

kidney disease being attributed to defects in tube architecture, these studies in the 

C.elegans excretory system should have broad implications in human health.  

 

Materials and Methods 

Strains and Alleles 

N2 var. Bristol was the wild-type strain. Descriptions of each gene can be found at 

www.wormbase.org. LGII: aff-1(tm2214)(Sapir et al., 2007). LGV: sos-1(cs41) 

(Rocheleau et al., 2002). Transgenes used are: jcIs1 (AJM-1::GFP) (Koppen et al., 

2001a), wgIs87 (ceh-6::GFP) (Murray lab), stIs10544 (hlh-16::mcherry) (Murray lab).  

 

Marker analysis and imaging 

Images were captured by differential interference contrast (DIC) and epifluorescence 

microscopy using a Zeiss Axioskop and Hamamatsu C5985 camera, or by confocal 

microscopy using a Leica SP5. Images were processed for brightness and contrast using 

Photoshop or ImageJ. 

 



180 
 

sos-1 temperature shifts 

Newly hatched sos-1; aff-1; AJM-1::GFP worms were shifted from the permissive 

temperature (20ºC) to the non-permissive temperature (25ºC)  between 1-7 hours after 

hatch. aff-1 mutants do not lay eggs, but instead the embryos hatch within the moms 

(Sapir et al., 2007). To obtain 3-fold embryos, gravid sos-1; aff-1; AJM-1::GFP worms 

were bleach/NaOH treated, followed by hand-picking 3-fold embryos from the bleached 

moms. The 3-fold embryos were monitored every half hour until they hatched. Once the 

worms hatched they were transferred to the non-permissive temperature and scored 1-7 

hours later. 
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Figure Legends 

Figure 6.1. In search of targets for Ras downstream effectors at each step of duct 

development. Timeline of excretory system development showing potential 

contributions of Ras downstream genes lin-1, eor-1, sur-2. mls-2 acts in parallel to Ras 

potentially during morphogenesis.  
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Figure 6.2. Ras may affect the G1-to-G2 pore transition. A) Percentage of worms that 

were normal or had an abnormal junction pattern in the excretory system. Abnormal 

junction no shift versus 6-7 hour shift p=0.040l;  abnormal junction 1-5 hour shift versus 

6-7 hour shift p=0.0642. B-D) sos-1; aff-1; AJM-1::GFP worms scored 6-7 hours after 

shift. Junction phenotypes were associated with abnormal fluid accumulation. B) Large 

intercellular loop between the duct and pore cells. Asterisk marks the loop. C,D) Duct 

and pore disconnected from each other.  

Figure 6.3. Drosophila HMX motif in lin-48 promoter may be necessary for duct 

expression. Figure taken and modified from (Johnson et al., 2001). lin-48 promoter 

drives good expression in the duct cell, except with a specific 200bp deletion (bottom 

row). Not shown are the other two Drosophila HMX motifs in the lin-48 promoter at 

positions 1052 and 3142, as they appear dispensable for lin-48 duct expression.  

Figure 6.4. ceh-6::GFP and hlh-16::mcherry expression overlap in the duct and 

pore lineages. A)Lineage tree with expression of a translational reporter ceh-6::GFP and 

a transcriptional reporter hlh-16::mcherry. Expression of these two reporters only 

overlaps in the duct and pore lineages. Expression patterns based on data from the 

Murray lab. B-D) Enclosure stage embryo expressing ceh-6::GFP and hlh-16::mcherry 

with overlap in the duct and pore.  

Table 6.1. Potential MLS-2 and LIN-1 common target genes.15 genes that have an 

HMX and ETS motif in the promoter of a C.elegans gene, and an HMX and ETS motif in 

the homologous gene in C.briggsae. 
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Figure 6.1 
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Figure 6.2 
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Figure 6.3 
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Figure 6.4 
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Table 6.1 

C.elegans gene C.briggsae gene Wormbase Annotation 

C33G8.4 CBG19063 Uncharacterized protein 

F57B9.8 CBG16480 Tyrosine protein kinase 

Y43F11A.1 CBG10027 Unnamed protein 

T10D4.1 CBG20893 Unnamed protein 

M02G9.2 CBG02724 Unnamed protein 

C15C8.1 CBG08573 Unnamed protein 

T22B11.4 CBG01732 Unnamed protein 

F26A1.8 CBG17976 Unnamed protein 

Y32H12A.7 CBG05169 Predicted unusual protein kinase 

T16H12.4 CBG09887 RNA Pol II subunit SSL1 

C30G12.1 CBG13131 Unnamed protein 

K07C11.8 CBG11323 Unnamed protein 

W05B10.4 CBG08550 Unnamed protein 

F15G9.2 CBG16046 Unnamed protein 

H43IO7.3 CBG01437 Glycosyltransferase 

 

 

 

 

 



187 
 

 

Addendum: 

A ROLE FOR THE RAL GEF RGL-1 IN EXCRETORY 

SYSTEM DEVELOPMENT 
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Introduction  

The C.elegans 1° vulval fate is specified by activation of the canonical EGF-Ras-

Erk signaling cascade (Sternberg, 2005). Recently, the Reiner lab demonstrated that in 

addition to Ras signaling through the Raf kinase, Ras can alternatively signal through the 

Ral guanine nucleotide exchange factor (GEF) RGL-1 to promote the 2° vulval fate 

(Zand et al., 2011). Thus, Ras signaling through RGL-1 antagonizes Ras signaling 

through Raf and the canonical pathway (Zand et al., 2011). The Reiner lab also made 

another observation with rgl-1 mutants in the excretory system that is unpublished. 

Hyper-activating Ras leads to specification of multiple vulval cells (Beitel et al., 1990), 

and specification of two duct cells (Abdus-Saboor et al., 2011). Mutants where Ras is 

hyper-activated sometimes have a ‘bump’ protruding from the worm near the duct cell, 

and it is thought that the ‘bump’ corresponds to two-duct cells being specified. The 

Reiner lab noticed that when rgl-1 mutants were put into a Ras hyperactive background, 

the frequency of the ‘bumps’ near the duct cell increased. This raised the hypothesis that 

Ras signaling thru rgl-1 may antagonize Ras signaling through the canonical pathway, 

analogous to observations made in the vulva. We established a collaboration with the 

Reiner lab to this hypothesis.  

Results and Discussion 

 Mutants with Ras hyperactivated (n1046) had the duct bump less than 20% of the 

time (Fig. A.1). However, when n1046 was combined with two different rgl-1 alleles, the 

percentage of duct bumps greatly increased (Fig A.1). We visualized the duct cell with 
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lin-48p::GFP in n1046 mutants alone and in combination with rgl-1 at L1, L4, and adult. 

n1046 alone had a high percentage of 2-duct cell specification, thus rgl-1 didn’t have an 

effect on a phenotype that already reached its higher limit (Fig A.2). In addition, duct 

morphology was not altered in an n1046 background alone versus in combination with 

rgl-1 (data not shown). These data did show that the bumps corresponded to the duct 

protrusions, as the bumps were almost always positive for lin-48 duct expression (data 

not shown). The question still remained as to why the rgl-1 mutation was enhancing duct 

protrusion in a hyper-activated Ras background.  

 To investigate the rgl-1 enhancement of duct protrusion in further detail we 

analyzed n1046 alone and in combination with rgl-1 with the AJM-1::GFP marker. 

Hyper-activating Ras leads to two-ducts being specified and no G1 pore specification 

(Abdus-Saboor et al., 2011) (Fig A.3A). However, most times the G2 pore still enters the 

excretory system in a two-duct background and wraps around the second duct that is 

positioned ventrally (Abdus-Saboor et al., 2011) (Fig. A.3B). Surprisingly, in rgl-

1;n1046 adults, the G2 ventral signal was almost always gone (Fig. A.3B-D). While we 

have not analyzed adult n1046 mutants alone to make sure they do not lose the ventral G2 

signal, the loss of the G2 signal in n1046;rgl-1 is the only difference we have noticed that 

might provide insight into how rgl-1 is causing increased duct protrusions.  

 Several hypotheses could explain how rgl-1 is causing enhanced duct protrusions 

in an n1046 background based on my limited observations. rgl-1 may antagonize the 

canonical EGF-Ras pathway in the duct, leading to increased growth and elongation of 

the duct cell, which causes in enhancement of duct protrusions. Alternatively, rgl-1 may 
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weaken the junction where the duct connects to the outside of the worm, resulting in the 

duct being able to break through the hypodermis. The loss of the G2 ventral signal in rgl-

1;n1046 does not distinguish between these two hypotheses. Thus, further tests need to 

be performed to determine if the same rgl-1 alternative pathway utilized in the vulva, is 

also utilized in the excretory duct.  

 

Materials and Methods 

Strains and Alleles 

N2 var. Bristol was the wild-type strain. Descriptions of each gene can be found at 

www.wormbase.org. LGIV: let-60(n1046) (Beitel et al., 1990). LGX: rgl-1(ok1921) 

(Knockout Consortium allele), rgl-1(tm2255) (Knockout Consortium allele). Transgenes 

used are: jcIs1 (AJM-1::GFP) (Koppen et al., 2001a), saIs14 (lin-48p::GFP)(Johnson et 

al., 2001), wIs78 (AJM-1::GFP) (Koh and Rothman, 2001).    

 

Marker analysis and imaging 

Images were captured by differential interference contrast (DIC) and epifluorescence 

microscopy using a Zeiss Axioskop and Hamamatsu C5985 camera. Images were 

processed for brightness and contrast using Photoshop. 
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Figure Legends 

Figure A.1. rgl-1 enhances n1046 duct bump. A) Percentage of adult worms showing 

the excretory duct bump phenotype. n at least 20 for each genotype. B) Image of an adult 

rgl-1;n1046 worm showing the duct bump phenotype. White line marks the bump.  

Figure A.2. rgl-1 does not affect lin-48 expression of n1046. A) Bar graph showing 

percentage of n1046 and n1046;rgl-1 mutants with the 2 lin-48 expressing duct cells. B) 

Representative image of n1046 L4 with 2 lin-48 positive duct cells. White lines show 

each lin-48 expressing duct cell.  Note: n1046;rgl-1 was indistinguishable from n1046.  

Figure A.3. rgl-1;n1046 mutants lack ventral G2 pore signal. (A,B) Same dataset, 

different observations. A) Percentage of n1046 and n1046;rgl-1 mutants that have a pore 

auto-cellular junction (AJ) scored by AJM-1::GFP. B) Percentage of n1046 and 

n1046;rgl-1 mutants that have a ventral G2 signal scored by AJM-1::GFP. (C,D) DIC 

and corresponding florescence micrograph of n1046;rgl-1 that lacks a ventral G2 signal. 

Asterisk marks region where G2 ventral signal would normally be located.  
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Figure A.1 
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Figure A.2 
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Figure A.3 
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