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Remarks on Virasoro Model Space∗

HoSeong La and Philip Nelson

Physics Department
University of Pennsylvania

Philadelphia, PA 19104 USA

A.S. Schwarz†

Institute for Advanced Study
Olden Lane

Princeton, NJ 08540 USA

ABSTRACT

A model space for the Virasoro group is constructed and some re-
marks on its properties are given.

The structures of rational conformal field theories (CFT) have been fairly

well studied[1], but beyond that not many things are known yet. In search of

a framework that can be used to investigate even the non-rational CFT’s, one

may be tempted to study the promising relationship between the CFT and the

representation theory of Virasoro algebra more seriously. Here we will briefly

describe some steps taken in this direction taken in [2]; see also [3].

Since Kirillov-Kostant’s method of orbits using geometric quantization has

been successful to produce the representations of some noncompact groups, it

is natural to attempt this method for the Virasoro group and we can further

investigate how the representations form the Hilbert space of any CFT. But the

actual construction is still elusive.

One of the main difficulties is that we do not know how to quantize the

individual coadjoint orbits of Virasoro. In particular, the geometrical meaning of

the appearance of degenerate Verma modules for the discrete minimal CFT’s is

∗
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a complete mystery. We may speculate that all such difficulties are due to the

fact that a proper phase space is not correctly identified and individual coadjoint

orbits may not be proper spaces. From the Kac determinant formula we already

know that once the central charge c is given, a collection of highest weights are

automatically specified. Thus somehow we could expect that not just a single

Verma module but a set of them will appear at the same time if we have a nice

representation theory. Besides, this is a desirable structure of CFT. But each

coadjoint orbit can at most provide one Verma module, thus we should enlarge the

phase space to accommodate a sufficient number of coadjoint orbits, presumably

infinitely many for irrational CFT’s. Furthermore, for c < 1 the unitary Hilbert

spaces for CFT are not the Verma modules but their quotients so that again a

single coadjoint orbit seems not to be good enough.

As proposed by Alekseev and Shatashvili one may try to use a somewhat

larger space in which all the possible coadjoint orbits are contained[4]. In fact, for

some compact groups such a larger space has been known for a long time. For

example, consider SU(2); then the coadjoint orbits are S2 ≃ SU(2)/U(1), but

there is a larger space A ≡ SL(2,C)/N+, the principal affine space of SL(2,C),

where N+ is the maximal unipotent subgroup. The following is satisfied for the

complexified maximal torus Tc of SL(2,C):

A ≡ SL(2,C)/N+ ≃ SU(2)/U(1)× Tc.

One remarkable property of such a space A is that the space of holomorphic func-

tions on A which are square integrable with proper weights provides the unitary

representation containing every irreducible one exactly once. Such a construction

is due to Segal and Bargmann.

Gelfand generalized the above construction for arbitrary SU(N) and conjec-

tured that the unitary representation which appears in this way also contains every

irreducible representation exactly once[5]. Gelfand also coined the term “model

space” for a space that has a property that the derived unitary representation is

a direct product of irreducible ones with multiplicity exactly one.

The generalization for the Virasoro group at first sight is not obvious because

the model space A = Gc/N+ requires the existence of the complexification Gc

of the given group G; as is well known Virasoro has no complexification. But,

carefully observing the relation between the coadjoint orbit and the model space

for a compact group, we can construct a space with all the required properties

anyway.

Note that dim
c
Gc/N+ = 1

2 (dimG+rankG) and dim
c
G/T = 1

2 (dimG−rankG).



Thus

dim
c
A− dim

c
G/T = rankG.

If there exists any model space A of the Virasoro group, presumably it would

satisfy

“dim
R
A− dim

R
Diff S1/S1 = 2 rankDiff S1S1 = 2.′′

This relation is formal because both terms on the LHS are infinite. Since we have

an analytic realization of Diff S1/S1 by Kirillov and Yur’ev[6] as

Diff S1/S1 = {f : f(0) = 0, f ′(0) = 1}, (1)

we can enlarge by complex dimension 1 to

A = {f : f(0) = 0}. (2)

In both cases f is a holomorphic function on the unit disk D = {: z :< 1},
continuous and univalent up to the boundary.

This space A turns out to be isomorphic to Diff S1 × R+ = {(γ, s)}, and it

has a natural complex structure. The symplectic form on Diff S1 × R+ can be

induced by a map from Diff S1 × R+ into the cotangent space T ∗
Diff S1 and

is invariant under the action of Diff S1, which acts naturally on Diff S1 × R+.

With respect to the complex structure just mentioned this symplectic form is a

nondegenerate pseudo-Kähler form, i.e. the corresponding hermitian form is not

positive definite. For the technical details we refer [2].

Next we construct Â = ̂Diff S1 × R+ × R. As before we take s to be the

coordinate for R+; we also take c to be the coordinate for the new R. c is canon-

ically conjugate to the central variable in ̂Diff S1. We can reduce Â to A by a

Hamiltonian reduction, in which we restrict c to one value and identify different

values of the central variable in ̂Diff S1; then we find that Ac ≡ Â/ ∼ is the same

as A = Diff S1 × R+. Moreover, the left action of ̂Diff S1 on Â descends to the

usual left action of Diff S1 on A. We have not lost the central extension, however.

Constructing the symplectic form and performing Hamiltonian reduction to fixed

c yields a family of pseudo-Kähler symplectic forms on A

Ωc = −i(ϕ1ϕ̄
′
1 − ϕ̄1ϕ

′
1) + 2i

∑

n>0

(
n+

c

24s
n3
)
(ϕn+1ϕ̄

′
n+1 − ϕ̄n+1ϕ

′
n+1), (3)

where ϕ1 = 1
2
√
s
∆− i

√
sv0, ϕk+1 = −i

√
svk, vk = v−k and (γ, s; v,∆) is a tangent

vector to A, v =
∑

vke
inθ, θ ∈ S1. Similarly for the primes.



Ωc and its corresponding hermitian metric are singular whenever 24s/c = −n2

for integer n. Hence we should really define Ac as a singular symplectic variety.

Also as before the hermitian metric is not positive definite. But the symplectic

form is nondegenerate except at those discrete singular values so that the trouble

for the nonexistence of nondegenerate symplectic form on some coadjoint orbits

has been partly overcome.

Besides, far from being a pathology we expect the singularity of Ω to be the

key to its correct quantization. As we cross the singularities the signature of the

hermitian form changes. For indefinite hermitian form we know we should con-

sider wavesections as Dolbeault cohomology classes[7], or equivalently introduce

fermions. As noted by Alekseev and Shatashvili, such fermions are precisely what

is needed to correct the signs in the character formula in [4]. Yet we do not know

how to make this conjecture precise.

Once given a symplectic structure, we can try the usual geometric quantiza-

tion, even though we have an indefinite hermitian form. With a certain integrality

condition we can regard this symplectic 2-form as the curvature of a line bundle

with connection (B,∇). The wanted Hilbert space is supposed to show up as the

space of sections of this line bundle and the quantization is basically the construc-

tion of a representation of Virasoro on this Hilbert space, corresponding to the

Lie algebra of Poisson brackets acting on the symplectic manifold. If µa is the

moment of some generator and Xµa
its Hamiltonian vector field, then

µ̂a = −i∇Xµa
+ µa (4)

is the corresponding quantum operator on sections of B.

In our case Diff S1 acts on A and (B,∇) are defined in the usual way from the

Kähler potential K of Ω and with the polarization defined by the Diff S1-invariant

complex structure on A. Thus B is a holomorphic line bundle and ∇ ≡ d − i∂K

its Hermitian connection. Since Ω = i∂∂̄K this is a suitable choice. We finally get

an action on wavesections defined by eq.(4).

For model space A we want the space of holomorphic functions on A so that

the bundle is holomorphically trivial. This amounts to finding a single global

Kähler potential. We also want the group action (4) to be simply the left transla-

tion:

µ̂a = −iXµa
. (5)

In order for (4) to reduce to (5) we need to have that the Kähler potential K can

be chosen everywhere to satisfy

µa = −i〈∂K,Xµa
〉 = −iX(1,0)

µa
K. (6)



Furthermore, eq.(6) amounts to requiring that the connection −i∂K be itself G-

invariant. A little manipulation reduces this condition to

X(1,0)
µa

µb +X(0,1)
µb

µa = 0, (7)

where X
(1,0)
µa is the holomorphic part of Xµa

. The real part of (7) merely says

{µa, µb} = −{µb, µa}, but the imaginary part is a new condition.

For A since it retracts to a circle epitomized by the phase of the first Taylor

coefficient of f , so to study the triviality of B we can restrict our attention to the

submanifold

A0 = {fu, u ∈ C
×}, fu(z) = uz.

Then K = − : u :2, which is clearly global. Eqn. (7) is also satisfied by properly

defining the moments.

But, further application of geometric quantization is not successful because

of the indefinite hermitian structure and nonexistence of square integrability. We

need a somewhat drastic new method.

The proposal by Alekseev, Faddeev and Shatashvili is to do functional integral

quantization instead of canonically quantizing it[8]. They introduced the integral

of the canonical one form for the symplectic structure as the required action for

the functional integral and named it “geometric action”. If necessary, the Cartan

element can be used as the Hamiltonian.

In compact group cases the character formula is derived as a path integral for

the geometric action of coadjoint orbit. For SU(2) the spin quantization is due to

the quantizability of coadjoint orbit, or single-valuedness of the geometric action.

Surprisingly, the geometric action derived for loop groups (Virasoro group)

turned out to be the WZW action (light-cone gauge fixed Liouville action) with

an extra linear term[9]. This raises further question that this may be a right

framework to investigate WZW CFT’s from the representation theory of loop

groups[10]. In the Virasoro group case it is less obvious how it can be related to

the CFT’s. But, H. Verlinde showed that without the linear term such a geometric

action is related to the Virasoro conformal blocks[11]. With a linear term, the

same Virasoro Ward identity can be satisfied only on a model space[3]. Thus in

the Virasoro group case it seems to be more plausible to work on the model space

rather than on each coadjoint orbit to investigate the possibility of CFT from this

framework.

The geometric action corresponding to eq.(3) on A is

S[F, b0] =

∫
dθdt

[
−b0(t)ḞF ′ +

c

48π

Ḟ

F ′

(
F ′′′

F ′ − 2

(
F ′′

F ′

)2
)]

, (8)



where b0 = s/2π and F ∈ Diff S1 are dynamical variables, while b0 is just a

constant in the geometric action of a coadjoint orbit. c is a classical central charge,

which is supposed to get renormalized to be the actual Virasoro central charge. To

perform the path integral quantization (8) needs to define some QFT, though not

necessarily physical. Note that the parameter space has automatically a topology

of a cylinder because θ ∈ S1 and t ∈ R. F (θ+2π, t) = F (θ, t) + 2π and F (θ, ti) =

F (θ, tf ). Thus in some sense this is equivalent to looking for the Lagrangian

formulation of the chiral part of any CFT’s, including the minimal models for

which we still do not know any such formulation. But we know the Lagrangian

formulation for the Ising model. Therefore it is worth while to check whether this

defines any chiral part of the Ising model.

There are still a lot of unanswered questions. We do not know how to deter-

mine the renormalized Virasoro central charge. Once the renormalized c is given,

we do not know what determines the highest weights h. We need some formula

like the Kac determinant. Besides, without the linear term the geometrical action

is almost Polyakov’s 2d gravity action[12], except that the topology is a cylinder.

Thus it will be extremely important to understand whether the linear term has

any role in 2d gravity on the cylinder. Also if this is a right framework, one should

be able to produce c ≥ 1 CFT’s, too. But, none of these are fully understood yet.

We are grateful to R. Bott, I.M. Gelfand, A. Morozov, N. Yu Reshetikhin,

E. Verlinde, H. Verlinde, E. Witten and especially S. Shatashvili for many discus-

sions and suggestions.
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