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Abstract
The [voice] distinction between homorganic stops and fricatives is made by a number of acoustic correlates
including voicing, segment duration, and preceding vowel duration. The present work looks at [voice] from a
number of multidimensional perspectives.

This dissertation's focus is a corpus study of the phonetic realization of [voice] in two English-learning infants
aged 1;1--3;5. While preceding vowel duration has been studied before in infants, the other correlates of post-
vocalic voicing investigated here --- preceding F1, consonant duration, and closure voicing intensity --- had
not been measured before in infant speech. The study makes empirical contributions regarding the
development of the production of [voice] in infants, not just from a surface-level perspective but also with
implications for the phonetics-phonology interface in the adult and developing linguistic systems.
Additionally, several methodological contributions will be made in the use of large sized corpora and data
modeling techniques.

The study revealed that even in infants, F1 at the midpoint of a vowel preceding a voiced consonant was lower
by roughly 50 Hz compared to a vowel before a voiceless consonant, which is in line with the effect found in
adults. But while the effect has been considered most likely to be a physiological and nonlinguistic
phenomenon in adults, it actually appeared to be correlated in the wrong direction with other aspects of
[voice] here, casting doubt on a physiological explanation. Some of the consonant pairs had statistically
significant differences in duration and closure voicing. Additionally, a preceding vowel duration difference was
found and as well a preliminary indication of a developmental trend that suggests the preceding vowel
duration difference is being learned.

The phonetics of adult speech is also considered. Results are presented from a dialectal corpus study of North
American English and a lab speech experiment which clarifies the relationship between preceding vowel
duration and flapping and the relationship between [voice] and F1 in preceding vowels. Fluent adult speech is
also described and machine learning algorithms are applied to learning the [voice] distinction using
multidimensional acoustic input plus some lexical knowledge.
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— ‘Tricky Linguistics’, A Bit of Fry and Laurie (1989) —

Hugh: So let’s talk instead about flexibility of language, uh, linguistic elasticity if you like.

Stephen: Yes, I think that I said earlier that I said that our language English—

Hugh: As spoken by us.

Stephen: As we speak it, yes, certainly. —defines it. We are defined by our language, if you will.

Hugh: (to the audience) Hello, we’re talking about language.

Stephen: Perhaps I can illustrate my point. Let me at least try. Here’s a question.

Hugh: What is it?

Stephen: Ah. Well my question is this: Is our language, English, capable, is English capable of

sustaining demagoguery?

Hugh: Demagoguery?

Stephen: Demagoguery.

Hugh: And by demagoguery you mean . . . ?

Stephen: By demagoguery I mean demagoguery.

Hugh: I thought so.

. . .

Stephen: There’s language, and there’s speech. There’s chess, and there’s a game of chess. Mark

the difference for me, mark it please . . . Imagine a piano keyboard. Eighty-eight keys, only

88, and yet, and yet, hundreds of new melodies, new tunes, new harmonies are being composed

upon hundreds of different keyboards in Dorset alone. Our language, Tiger, our language:

hundreds of thousands of available words, thrillions of legitimate new ideas, so that I can say

the following sentence and be utterly sure that no one has ever said it before in the history of

human communication:

ii
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ABSTRACT

LEARNING [VOICE]

Joshua Ian Tauberer

Supervisor: Jiahong Yuan

The [voice] distinction between homorganic stops and fricatives is made by a number of acoustic

correlates including voicing, segment duration, and preceding vowel duration. The present work

looks at [voice] from a number of multidimensional perspectives.

This dissertation’s focus is a corpus study of the phonetic realization of [voice] in two English-

learning infants aged 1;1–3;5. While preceding vowel duration has been studied before in infants,

the other correlates of post-vocalic voicing investigated here — preceding F1, consonant duration,

and closure voicing intensity — had not been measured before in infant speech. The study makes

empirical contributions regarding the development of the production of [voice] in infants, not just

from a surface-level perspective but also with implications for the phonetics-phonology interface in

the adult and developing linguistic systems. Additionally, several methodological contributions will

be made in the use of large sized corpora and data modeling techniques.

The study revealed that even in infants, F1 at the midpoint of a vowel preceding a voiced con-

sonant was lower by roughly 50 Hz compared to a vowel before a voiceless consonant, which is in

line with the effect found in adults. But while the effect has been considered most likely to be a

physiological and nonlinguistic phenomenon in adults, it actually appeared to be correlated in the

wrong direction with other aspects of [voice] here, casting doubt on a physiological explanation.

Some of the consonant pairs had statistically significant differences in duration and closure voicing.

Additionally, a preceding vowel duration difference was found and as well a preliminary indication

of a developmental trend that suggests the preceding vowel duration difference is being learned.

The phonetics of adult speech is also considered. Results are presented from a dialectal cor-

pus study of North American English and a lab speech experiment which clarifies the relationship

between preceding vowel duration and flapping and the relationship between [voice] and F1 in pre-

ceding vowels. Fluent adult speech is also described and machine learning algorithms are applied to

learning the [voice] distinction using multidimensional acoustic input plus some lexical knowledge.
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Chapter 1

Introduction

Phoneticians and phonologists use features such as [voice], [high], and [round] to categorize seg-
ments. The [±voice] or [tense/lax] feature separates pairs of homorganic phonemes into two groups,
the [+voice] “voiced” phonemes /b,d,v/ etc. and the [-voice] “voiceless” phonemes /p,t,f/ etc. At the
level of phonology, these sorts of distinctions play a role in phonological rules such as voice agree-
ment in the ‘-s’ morpheme in English (‘cats’ [s] versus ‘dogs’ [z]), final devoicing in languages
including German, or feature spreading such as in a case in New Julfa discussed later. At the level
of phonetics, there are generalizations as well: all of the [+voice] stops share similar properties
when it comes to the glottal state, aspiration, (shorter) stop closure duration, and (longer) preceding
vowel duration (PVD), among other dimensions. But whereas phonological phenomena are investi-
gated within a formal framework such as ordered rules or constraints, considerably less attention has
been paid to the formal system that connects phonological features to their phonetic counterparts or
correlates.

With that as a starting point, this dissertation concerns the production of the phonological [voice]
contrast and its development in infants. The primary contribution is a corpus study of the phonetic
realization of [voice] in two English-learning infants aged 1;1–3;5. While preceding vowel duration
has been studied before in infants, other correlates of post-vocalic voicing investigated here —
preceding F1, consonant duration, and closure voicing intensity — have not been measured before
in infant speech. The study will make empirical contributions regarding the development of the
production of [voice] in infants, not just from a surface-level perspective but also with implications
for the phonetics-phonology interface in the adult and developing linguistic systems. Additionally,
several methodological contributions will be made in the use of large sized corpora and in model
fitting for segment durations. Several new corpus studies of adult speech are also presented relating
to the distributions of acoustic cues in fluent speech, machine learning of the [voice] distinction in
fluent speech, a replication of past lab-speech research with new details, and dialectal variation in
acoustic cues.

The multidimensional nature of the acoustics of features has been recognized time and again in
the speech perception literature, especially as it relates to cue trading (even to some extent in infant
speech perception, Simon and Fourcin 1978; Mayo and Turk 2005). In cue trading, listeners give
weights to the different cues to the identity of an ambiguous stimulus. A strong VOT cue might
outweigh a weak vowel duration cue in the categorization of a segment as voiced or voiceless. The
production and language development literature on the other hand has focused more on single pho-
netic dimensions of utterance-initial stops and considerably little on the interaction of the correlates
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of [voice] in post-vocalic position. The present work looks at [voice] from a number of multidi-
mensional perspectives and in particular attempts to classify phonetic dimensions as either being a
part of a multidimensional linguistic competence or as a physiological consequence of some other
aspect of [voice] which actually is specified in the grammar.

Organization of this thesis

This dissertation is organized into six main chapters.
In Chapter 2 the acoustic dimensions of [voice] will be explored through a thorough review

and critique of the relevant speech production literature. It has long been known that [voice] can
be measured on many acoustic dimensions, even when we look to the left or right of the obstruent
segment itself. Lisker (1986) identified sixteen acoustic differences between voiced and unvoiced
word-medial /b/ and /p/. As he pointed out, not all are necessarily under separate linguistic con-
trol of the speaker. They may not all be free to vary, owing to physiological constraints. In other
words, while some phonetic (articulatory or acoustic) target may be specified as part of linguistic
competence, other phonetic observations we may make about [voice] may be an almost accidental
byproduct of the physical speech apparatus. This distinction is discussed for each acoustic dimen-
sion. A focus is given to acoustic dimensions relevant in non-initial context, especially preceding
vowel duration.

Chapter 3 reviews the development of [voice] in infants from a surface perspective, meaning
what phones appear in children’s inventories, and from the perspective of the phonetics-phonology
interface, meaning whether the child has learned the relationships between acoustic dimensions,
phones, and phonemes.

With this in mind, I discuss a model of the phonetics-phonology interface in Chapter 4. The
model is something that perhaps many phoneticians and phonologists implicitly assume, but the
details seem to not have been discussed before. As research at the interface moves forward, we
need a precise operational theory under which our work, such as this dissertation, can be carried out
and evaluated. The focus on the model in Chapter 4 is where the phonetic aspects correlated with
a phonological feature are stored, and the refinements I propose subsume all of the linguistically
specified aspects of [voice] within essentially a [voice] cover-feature.

The phonetics of [voice] in adult speech is considered in Chapter 5. Section 5.1 presents the
results of a dialectal corpus study of the preceding vowel duration difference aspect of [voice]
in North American English, based on joint work with Keelan Evanini that was first reported in
Tauberer and Evanini (2009). A lab experiment collecting lab speech is presented in Section 5.2
which clarifies the relationship between the preceding vowel duration effect and flapping and the
relationship between [voice] and F1 in preceding vowels.

The new corpus study of infant speech is presented in Chapter 6. In this chapter I also present a
novel application of parameter estimation for segment durations in a linguistically plausible model
of segment production, with full R code in Appendix B.

Chapter 7 returns to adult speech, but this time fluent adult speech. The chapter had two goals.
First, it provides a descriptive account of the acoustics of [voice] in fluent speech on a number
of acoustic dimensions. Compared to past work, the emphasis here is less on whether acoustic
differences exist (e.g. shown by statistical significance) but whether the acoustic differences are
large enough to be useful for discrimination, based on how separated the voiced and voiceless
distributions are. Additionally in this chapter, machine learning algorithms are applied to the task
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of learning the [voice] distinction using multidimensional input.
Appendix C lists a number of experimental directions that are raised by this dissertation (which

I do not at this time have any intention of carrying out, but may serve useful for others).

How to read this thesis

Computing technology underlies much advancement throughout science. Technology makes new
investigations possible. As it becomes faster to process data, such as with forced alignment tools as
discussed several times in this dissertation, analyses of large-scale corpora reveal patterns that older
technology was too insensitive to find. But technology has a second effect on the scientific method
by making it easier for scientists to share work in a way that makes validation and replication easier
(so-called reproducible research). The movement toward open access electronic journals, based on
the receding costs of production and distribution, is a part of this side to technology. Another aspect
is in how technology is used in the writing process.

This thesis was written using LATEX and, for the results section, Sweave by Friedrich Leisch1.
Sweave is a tool that integrates the R statistics program with LATEX so that R code can be embedded
within the LATEX document. This is a benefit for the reader, who can validate that numeric results
are justified by the analyses that generated them, and it is a benefit to the writer who can ensure that
the numeric results reported are those in fact produced by the R analysis. In Section 6.3.2 the reader
will see R code and R output in typewriter-style font. R code is marked by lines starting with
> and + symbols.

As for terminology, the reader should note that I use [voice] exclusively to denote a phono-
logical contrast, except in Chapter 4 when discussing alternative feature theories. I use “voiced”
and “voiceless” or “unvoiced” (interchangeably) to refer to the feature values, but sometimes to the
physical glottal state when it is clear. At other times I use “glottal state”, “glottal signal”, or “pho-
netic voicing” when discussing the phonetic (articulatory, acoustic, or otherwise physical) aspect
of voicing. As is traditional, angled lines /.../ indicate phonemes (i.e. grammatical contrasts) while
square brackets [...] indicate phones (i.e. acoustic patterns).

1http://www.stat.umn.edu/∼charlie/Sweave/
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Chapter 2

The Acoustics of [voice]

The distinctive feature [voice] has largely been associated with voice onset time in the acoustic
phonetics literature. This is due in part to the focus on utterance-initial segments. In this context,
voice onset time is the most significant acoustic dimension for separating [+voice] from [-voice].
But it has long been known that [voice] can be measured on many acoustic dimensions, even when
we look to the left or right of the obstruent segment itself. Lisker (1986) identified sixteen acoustic
differences between voiced and unvoiced word-medial /b/ and /p/. As he pointed out, not all are
necessarily under separate linguistic control of the speaker. They may not all be free to vary, owing
to physiological constraints, but certainly some are.

In this chapter I review the literature on the acoustic dimensions of [voice] in English, with a
focus on production (versus perception) and on non-initial context. In particular, the effect on pre-
ceding vowel duration is given extensive focus. The review starts within the temporal bounds of the
obstruent’s constriction and then moves to the properties of preceding and following vowels. Along
the way it is evaluated whether each acoustic correlate of [voice] is merely a physiological conse-
quence of some other articulatory dimension of [voice], or whether it is specified in the grammar
separately from other aspects of [voice].

2.1 Glottal signal, aspiration, and pharyngeal cavity expansion

The most obvious and in some cases primary cue to voicing is the timing and intensity of the glottal
signal (i.e. voice at the phonetic level), so it is the obvious place to begin. But the differences
between voiced and voiceless goes well beyond Voice Onset Time.

Pre-vocalic stops

For pre-vocalic stops, Voice Onset Time (VOT; Lisker and Abramson 1964b), the time from release
to the initiation of the glottal signal, is commonly considered the most salient distinguishing feature
of voiced versus voiceless segments. The mapping from abstract [voice] to VOT differs across
languages. In English utterance-initially, as reported in Keating (1984), the contrast is manifest
primarily as a difference between short-lag VOT, meaning VOT mostly between 0 and 40 ms, and
long-lag VOT, meaning between 50 and 90 ms. There is also occasional pre-voicing of voiced stops,
that is, voicing during closure just before the release, which is represented by a negative VOT. Still,
the production of the voicing categories is not perfectly separated. Flege and Brown (1982) reported
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Pre-voicing Short-Lag VOT Long-Lag VOT
English optional 0–40 ms 50–90 ms
Polish -150 – -30 ms 20–70 ms not used
Thai <-40 ms 0–30 ms >20 ms

Table 2.1: Keating (1984): Voice onset time values for voice contrasts in English, Polish, and Thai.

15–25% of utterance-initial /b/ showing pre-voicing, only 5–10 percentage points more than the rate
of pre-voicing in voiceless /p/.

Languages like English are called aspirating languages or are sometimes said to employ the
[tense/lax] distinction rather than [voice]. In Polish, on the other hand, the contrast manifests as
a difference between pre-voicing (-150 to -30 ms VOT) and short-lag VOT (20 to 70 ms). Lan-
guages like Polish are said to be pre-voicing or employ the [voice] feature rather than [tense/lax].
Thai, finally, makes a three-way distinction between pre-voicing (less than -40 ms VOT), short-lag,
and long-lag VOT (Keating 1984). See Table 2.1. Dutch, Puerto Rican Spanish, Hungarian, and
Tamil pattern with Polish; Cantonese patterns with English and German; and Eastern Armenian and
Korean pattern with Thai (Lisker and Abramson 1964a).

Because of the tight relationship between VOT and aspiration in languages like English the
terms are often used interchangeably when referring to the voice contrast (Lisker and Abramson
1964a). There is also a tight articulatory relationship between the two as aspiration noise can only
be heard if the time of maximal glottal opening is synchronous with the time of oral release (for a
summary see Fuchs 2005). Jessen (2001) noted the terminological distinction due to Repp (1979)
between ‘open interval’ which matches the interval measured by VOT and ‘aspiration’ which is
when there is aperiodic noise.

However, these intervals may not line up. It is possible to have both negative VOT as well
as aspiration. For German stops, Jessen (1998) reported utterance initial voiced stop aspiration
mean durations of 21 ms and additionally a mean of 23 ms of pre-voicing (i.e. -23 ms VOT). (The
means may be somewhat misleading as a representation of the degree of voicing, however, as the
subjects were reported to voice inconsistently.) Hindi uses both acoustic signals contrastively in
a 2x2 paradigm (Kagaya and Hirose 1975). Other languages make a three-way contrast between
aspirated, unaspirated, and pre-aspirated. Pre-aspirated stops have aspiration preceding closure.
In Icelandic, pre-aspiration is similar at least in duration to an /h/ preceding the consonant and
appears to be either an allophonic variant of the voiceless (i.e. aspirated) stops or the realization of
voicelessness in geminate stops (Suh 2001 for a summary and analysis).

VOT’s role in the voice contrast is generally thought of as a duration target: e.g. short-lag versus
long-lag. But see below for Stevens and Klatt’s (1974) musing that it may be tied to an acoustic,
spectral target (Section 2.7).

Post-vocalic stops

For post-vocalic stops, the phonetic contrast involving the glottal signal is slightly different. The
cessation of voicing after closure is more rapid in voiceless stops, so instead a Voice Termination
Time (VTT) from the onset of closure to the termination of voice would be more appropriate.1

1I am not aware of the origin of this term but it seems to be generally used, and I do not know of a general study on
VTT.
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Intervocalic stops, being post pre-vocalic and post-vocalic, have three relevant measures: VTT,
VOT, and duration of aspiration. However, intervocalic stops are often voiced throughout closure,
with no cessation of voicing between the preceding and following vowel. In these cases, measures
of VOT and VTT are meaningless: VOT would extend negatively back from the release to before the
obstruent began itself, perhaps to the start of the utterance, while VTT would extend forward from
the start of closure perhaps indefinitely. The rate of voicing during closure not surprisingly is highly
variable. Edwards (1981) reported that 45% of medial voiced stops exhibited voicing throughout
closure; Flege and Brown (1982) reported approximately 75%. Even [-voice] stops can be voiced
throughout closure: 8% in Flege and Brown (1982).

Intervocalic stops and pharyngeal cavity expansion

Another related measurement is the amount of voicing during closure, without regard to whether the
voicing is at the start (as in a VTT measurement) or at the end (as in a negative VOT measurement).
(Discontinuous voicing during closure does not seem possible. If there is voicing, it is near the
edges.) Edwards reported that the mean duration of the glottal signal in intervocalic voiced stops
was 78 ms during closure with mean closure duration of 96 ms (that’s 81% of closure duration).
For voiceless stops the mean voicing duration was roughly 2.5 standard deviations lower, at 25 ms
within a mean closure duration of 89 ms (that’s 28%). (The measurement of longer closure duration
for voiced plosives is unusual.) This take on voicing duration is then a fourth measurement of
voicing for plosives.

Closely related to the glottal signal is pharyngeal cavity expansion. During stop closure with no
nasal opening, subglottal and supralaryngeal air pressures begin to equalize during voicing. If the
transglottal pressure difference is not maintained by subglottal articulators or oral cavity expansion,
voicing will terminate. If the shape of the vocal tract were fixed, voicing would last for just 15 ms.
Passive expansion of the vocal tract walls, keeping supralaryngeal pressure low, allows for 65 ms
of voicing. (Fuchs 2005) Recall that Edwards (1981) reported that the mean duration of the glottal
signal during closure in intervocalic voiced stops was 78 ms. Both “active” and “passive” gestures
can increase the volume of the pharyngeal cavity: active gestures being greater activity in certain
muscles while passive gestures being less activity or the inhibition of activity in other muscles. But
in a study with three subjects, Bell-Berti (1975) found that the use of four gestures that increase
pharyngeal cavity size, two active and two passive, was not consistent across subjects. All subjects
used at least one active gesture, but not all the same one, and one subject did not use either passive
gesture. From the fact that active gestures can be used to extend voicing but further that the use
of active and passive gestures is mixed, Bell-Berti concluded that [lax] was a poor description of
voicing. We should also take from this that there is probably no linguistic specification of any
particular gesture — whether active or passive — in the mental representation of [voice]. Rather,
these gestures are recruited by speakers in an ad hoc manner to instantiate a more abstract, perhaps
acoustic target, e.g. to maintain a certain prescribed amount of voicing.

Fricatives

The difference between voiced and unvoiced fricatives is manifest (partly) in voicing duration dur-
ing frication — but glottal pulsing is not robustly present throughout voiced fricatives just as it is not
robustly present throughout closures of voiced stops. Stevens, Blumstein, Glicksman, Burton, and
Kurowski (1992) measured the difference in voicing during frication. However, rather than measur-
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ing the raw duration within the period of frication during which there was glottal pulsing, Stevens
et al. opted for a stricter measurement excluding voicing at an amplitude less than 10dB below the
amplitude at the boundary between the fricative and the vowel (where it should peak). The authors
did not motivate the use of a threshold on amplitude rather than relying only the presence of glottal
pulsing at all — however, I can imagine one reason was that determining the precise start and end of
glottal pulsing can be something of an art because of the neighboring nonperiodicity of the glottal
signal. By their measure, voiceless fricatives had 4 to 26 ms of glottal vibration depending on con-
text, while voiced fricatives had 29 to 58 ms. The mean frication durations were not given but were
around 80–100 ms. Fricative durations generally vary too with the voice contrast, as discussed be-
low, in such a way as to magnify the difference in durations of voicing relative to the total frication
duration. Jessen (1998) reported for German fricatives around 10 ms (unvoiced) vs. 75 ms (voiced)
of glottal pulsing, or around 7% vs. 85% of frication duration. As I noted impressionistically for
stops, for fricatives voicing occurs, if anywhere, near the boundary with a vowel, rather than spon-
taneously in the middle of the segment, as one would expect given the high cost of initiating and
terminating glottal vibration (Stevens et al. 1992).

The amount of glottal pulsing during frication depends on context. Based on electroglotto-
graphic data for productions of English /z/ and /s/, Smith (1997) reported the rate of voicing for
sentence-final, word-final, and word-medial positions. In sentence-final position all /z/ tokens she
collected had glottal pulsing for less than 25% of the duration of frication. In word-final position
followed by a voiceless consonant /z/ tokens generally had between 25%-90% of the frication du-
ration voiced. In word-medial position, the percentage of voicing ranged between 25%-100%. For
/s/, fewer than 2% overall had voicing for more than 25% of the duration of frication, most of the
remainder having no voicing at all. The amount of voicing in /z/ is also sensitive to voicing in a
following fricative, with substantially less preceding a voiceless fricative (Stevens et al. 1992).

Schissel (2008)2 compared the glottal pulsing differences in English utterance-final ‘non-morph-
emic’ /s,z/ as in ‘house’ (the noun /haUs/ or the verb /haUz/) to the plural and possessive mor-
phemes ‘-s’ which are generally analyzed as agreeing in voicing with the preceding segment. She
found that neither non-morphemic /s/ nor morphemic ‘-s’ following an unvoiced segment were ever,
in her data, realized with glottal pulsing, and both non-morphemic /z/ and morphemic ‘-s’ following
a voiced segment were realized with voicing less than one-third of the time.

It is not entirely surprising that one would find that glottal pulsing is not always present during
stop closures and frication intervals. Voicing is difficult to sustain in both cases because of the
transglottal air pressure difference that must be maintained in spite of other factors. This is discussed
in the next section.

In a transillumination study of German intervocalic (sometimes word-initial) stops and fricatives
(Jessen 1998), maximum glottal opening during stop closure or frication distinguished the voiced
and unvoiced forms: unvoiced obstruents had greater opening. (In the case of stops, the duration of
glottal opening during closure also discriminated the voiced and unvoiced forms, unvoiced forms
having 50% longer opening, but this might be a by-product of the total segment duration correlate
to be discussed next.) Jessen believed that while a glottal opening appeared in both voiced and
unvoiced obstruents, the opening in voiced obstruents was due to changes in intraoral air pressure
as a result of the oral constriction, while the greater glottal opening in unvoiced obstruents was a
result of an active gesture. Strong evidence was not presented for this position, however. A review
of the glottis and its degree of opening can be found in Fuchs (2005).

2A class project for Phonetics I during which time I was the TA.
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2.2 Obstruent duration

Voiceless obstruents have longer durations than voiced obstruents. For stops, the difference has been
reported at around 60 ms, or one-to-two standard deviations, or a ratio of approximately 1.3-to-1, but
studies have varied over whether the discriminating difference includes or excludes the burst and
aspiration duration. Lisker (1957) included the release duration in measurements of intervocalic
/p,b/ in trochaic minimal pairs and reported that durations for /b/ ranged from 65–90 ms and for /p/
from 90–140 ms. (Similar results were reported by Crystal and House (1988b); Edwards (1981).)
Luce and Charles-Luce (1985) found similar results measuring up to the burst.

For fricatives and affricates a similar pattern obtains (Crystal and House 1988b; Stevens et al.
1992). Baum and Blumstein (1987) found in utterance-initial position unvoiced fricatives around 28
ms longer in frication duration than voiced fricatives, a ratio of unvoiced to voiced duration around
1.3. Despite the large difference, variability in duration was great and there was no clear boundary
in duration times between the groups. The /s,z/ frication difference has also been found in French
(Flege and Hillenbrand 1986), with a ratio greater than 2.0 word-finally.

Lisker (1957), Denes (1955), and Stevens et al. (1992) considered segment duration from the
perceptual end, for word-medial stop closures, word-final frication durations, and frication durations
in several contexts, respectively. Each showed that the unvoiced-voiced distinction was made by
listeners at least in part based on the duration of the segment. Decreased segment duration lead
to increased identification of segments as voiced, even if the segment has no glottal voicing. In
Lisker’s case, the perceptual judgments followed an s-shaped curve and were in agreement with the
production measurements in terms of the location of the cross-over from voiced to unvoiced.

The duration pattern is in the direction we would expect given the added difficulty of maintaining
voicing during an obstruent. Voiced stops and fricatives are both difficult, though for different
reasons. As discussed above, once the transglottal pressure difference equalizes during stop closure
voicing stops. Thus the longer the closure, the less likely voicing will continue throughout. In
both stops and fricatives, voicing requires the maintenance of the right tension and adduction of
the vocal cords and a transglottal air pressure difference. It is more difficult to maintain voicing
in a fricative. Unlike in stops, supralaryngeal pressure can be kept low by allowing air to escape
through the fricative’s obstruction. But fricatives additionally require a pressure difference at the
oral constriction, but there with the oral pressure higher. Coordination is required to hit the right
targets at the two locations. See Ohala (1997) for a review of the factors involved in glottal voicing
in obstruents.

De Jong and Zawaydeh (2002) mused, as discuss below in the section on vowel duration, that
the presence of primary stress should amplify acoustic properties of segments that are linguistically
specified. As opposed to the effect on vowel duration discussed below, the presence of stress on the
syllable containing the obstruent has been reported to not magnify the voicing effect on duration
(Crystal and House 1988b). To de Jong and Zawaydeh, this would indicate that closure duration is
not linguistically specified and that the difference is a matter of, perhaps, physiology.

Could the duration difference be just a measurement bias? For plosives the termination of
closure is marked reliably by a burst. The onset of closure is less reliably marked. At best there is
rapidly decreasing intensity (e.g. Luce and Charles-Luce 1985), but persistence of glottal pulsing
into closure might mitigate the intensity drop to make it appear as if the start of closure occurred
later. This would create the illusion that voiced stops have shorter closure. (For instance, intensity
decay time at the start of closure, measured as “the time needed for signal intensity, expressed in
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decibels, to drop from 90% of its peak value to 10% of its peak value”, is 15–20 ms or 1.7 times
longer before stimuli listeners identify as voiced stops, Hillenbrand, Ingrisano, Smith, and Flege
1984.) But since the closure duration difference does persist in whispered speech for /t,d/ and /s,z/
(Parnell, Amerman, and Wells 1977), the presence of voicing cannot be the cause of the duration
difference. Frication duration differences are similarly found even between /s/ and partially and
fully devoiced tokens of /z/, with about the same magnitude of duration difference in contexts that
have greater devoicing (Smith 1997).

The duration of frication might still be a misleading measurement, Stevens et al. (1992) argued.
While the frication duration varies according to the value of [voice], it seemed that the time from
the initiation of the constriction gesture to its completion is constant across the two categories of
[voice]. Stevens et al. measured this gesture intervocalically by tracking the F1 transition in a
preceding and following vowel. Though the duration of frication differed between /s/ at 108 ms and
/z/ at 78 ms, the time from the start of transition in the preceding vowel to the end of transition in the
following vowel was roughly the same for /s/ and /z/, at around 155 ms. In other words, the timing
patterns of the supraglottal articulators were the same in /s/ and /z/, while the apparent difference
in frication duration is due to a difference in timing of glottal gestures only. Because a different
glottal position and transglottal pressure configuration are needed to initiate voicing, this all may
mean that the frication duration difference is essentially a physiologically conditioned effect not
under separate linguistic control from the specification of glottal voicing, and that the grammar in
fact specifies equal durations for the two segments.

Evidence exists that a similar explanation cannot be made for stops based on an experiment that
changed the glottal state of the stop without changing its underlying [voice] feature. Jansen (2004)
measured regressive voicing assimilation (RVA), a coarticulatory process in English, in VC1C2

sequences. An example of RVA (based on Jansen 2004) is the different realization of /z/ in “Is
{Bob, Pete} going?”: [IzbAb...] vs. [Ispit...]. The voicing of /z/ seems to be neutralized to match
that of the following segment. Jansen (2004, 2007) reported results for VCC sequences where
the two consonants spanned a word boundary, e.g. in r-less British English ‘brickwork depot’ vs.
‘brickwork tunnel’ vs. ‘Hamburg tenant’ vs ‘Hamburg dairy’, etc. Jansen measured several acoustic
properties of the velar stop. The effect of the voicing in C2 on the duration of voicing during the
closure of C1 was near-categorical. While a /gr/ sequence showed 14 ms or 63% more closure
voicing than a /kr/ sequence (which is the usual voicing difference), a /kz/ sequence showed 15
ms or 58% more closure voicing in the /k/ than in the /g/ of a /gs/ sequence. On the other hand,
stop closure duration was essentially not affected by the voicing feature on a following obstruent
segment. The closure duration difference in /kr,gr/ was 14% and in /kz,gs/ 19% (/k/ greater in both
cases). The glottal state cannot be said to be responsible for closure duration differences in stops.

Not unexpectedly then, the closure duration correlate of [voice] is reported to be not universal.
In Danish, Hindi, Mandarin, and Swati Xhosa unvoiced stops have shorter closure (Jessen 2001).
As it happens, Danish also has particularly long aspiration and it has been suggested that the closure
duration correlate has been essentially sacrificed so as to highlight the aspiration contrast. In light
of this cross-linguistic pattern, one would very much like to see whether these languages also lack
a fricative duration correlate of [voice] (if they have the voice contrast for fricatives at all) — which
would undermine a physiological account of frication duration.

To summarize, there is evidence on both sides of the question of whether obstruent duration
is linguistically specified. In favor of a linguistic specification is that the pattern is not universal
and that stop closure duration is not affected by the glottal state. On the other hand, the difference
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in frication duration seems to be determined solely by differences in the glottal state, no effect of
stress has been found, and in either case a vague principle of “conserve energy” would explain why
the more difficult, voiced obstruents would be shorter even if the duration difference itself were not
linguistically specified.

2.3 Other correlates during the consonant

Release bursts are said to be shorter and weaker following voiced versus voiceless stops, in both
aspirating (short lag/long lag VOT) and pre-voicing (pre-voicing/long lag VOT) languages (for ref-
erences see Jansen 2004, page 52 and Fischer and Ohde 1990).

In the bilabial stop pair /b,p/, lip pressure has been reported to be greater for the unvoiced
phoneme in German word-medial intervocalic position but no difference was reported for English
(Jessen 1998:278 for a summary).

Maximum airflow during the frication also was different between /z/ and /s/, regardless of the
amount of glottal pulsing, with even near-or-fully devoiced /z/ having less maximum airflow than
an /s/ in the same context. This suggested that the glottal position was somewhere between the open
state of unvoiced /s/ allowing greatest airflow and the constricted state of a fully voiced /z/ impeding
airflow. (Smith 1997)

2.4 Preceding vowel duration

A cross-linguistic phenomenon has been observed in which the duration of a vowel is longer when
preceding a voiced obstruent than when preceding a voiceless obstruent (House and Fairbanks 1953;
Luce and Charles-Luce 1985; Crystal and House 1988a among many others, some cited below). It
has been variously called the post-vocalic consonant voicing effect, the vowel length effect, extrinsic
vowel duration, and pre-fortis clipping. To put the emphasis on the consonant, rather than the vowel,
the phenomenon will be referred to here as the preceding vowel duration (PVD) difference or PVD
effect.3 The phenomenon is often described formally but descriptively as the distinction between
/bæt/ versus /bæ:d/ or V → [+long] / [+voice] in the style of Chomsky and Halle (1968),
though it is by no means a settled issue whether the phenomenon ought to be described in terms of
phonological lengthening, or whether the PVD effect is even a single phenomenon.

The duration difference is quite large, at least in English. In Section 5.2 I present the results of
a replication of various past work on measuring the PVD effect using minimal and near-minimal
pairs in a word-list-reading experimental design. Representative of past work, vowel duration before
[+voice] obstruents was found to be as large as 1.5 times greater in monosyllables and 1.3 times
greater in trochaic bisyllables than the corresponding vowel duration in the other half of the (near-
)minimal pair. Within individual minimal pairs, the tokens were easily separable: an average of 3 to
5 standard deviations separated [+voice] and [-voice] cases. But the effect is far reduced outside of
word-final, pre-pausal context (Crystal and House 1988a).

3The existing terms each have their issues. “Fortis” is an antiquated term and “pre-fortis clipping” makes a com-
mitment to the underlying process. “Vowel length” is a term used more often to refer to a phonological (i.e. binary)
contrast rather than a continuous phonetic dimension. While “extrinsic vowel duration” has been used exclusively for this
phenomenon, it is an odd term considering the number of extrinsic factors that affect vowel duration. And “post-vocalic
consonant voicing effect” is unnecessarily verbose.
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The PVD effect occurs within and across syllable boundaries (Chen 1970), for stops as well
as fricatives (Umeda 1975; Stevens et al. 1992; Smith 1997). It affects not just an immediately
preceding vowel but also the preceding vowel and any intervening sonorant (e.g. ‘sent’ vs. ‘send’,
‘false’ vs. ‘falls’, the vowel and sonorant both lengthening to roughly the same degree; Chen 1970;
Crystal and House 1988a).

The PVD difference has been observed many, many times throughout the literature, especially
in English. Chen (1970) is generally cited for his early, cross-linguistic comparison, although the
sample size was dangerously small and the data were confounded by the position and context of
the voiced/voiceless segment in each word (though it seems Chen got lucky). A number of factors
have been shown to affect the PVD effect, at different levels of linguistic structure, but the results
can be summarized that the PVD effect’s voiced–unvoiced difference is smaller when the vowel is
in a context where it is expected for other reasons to have a shorter duration. This is Klatt’s (1973)
“incompressibility” — that each successive shortening effect on a vowel has a diminished effect
because of physical bounds on the speed of articulation. The voiced-unvoiced duration difference,
in Klatt’s (1973) data, was 66 ms in a context where vowels were on average 165 ms in duration (the
context was being in a monosyllabic word) but only 28 ms in a different context when the vowels
were on average 117 ms (that’s in the first syllable of trochaic words). The effect of voicing on
duration decreases after we apply the effect of position, one might say. But this incompressibility is
so even when we consider the effects not as absolute differences but as multiplicative factors. Here
I switch from viewing the PVD as a shortening, as Klatt did, but instead as a lengthening, as most
research has done. In the first longer-vowels context voicing increased duration by 51 percent but
in the second shorter-vowels context voicing increased duration by only 22 percent. In other words,
the magnitude of the PVD effect is not constant either on an absolute time scale (i.e. milliseconds)
or in terms of a proportion (1.51-to-1). (Also see Port 1981.)

Other work has looked at this variation in PVD ratio across contexts. The PVD ratio is much
larger in pre-pausal position (a ratio of 1.5) than elsewhere (1.4 word-finally, 1.1 word-medially)
(Umeda 1975, but also see Luce and Charles-Luce 1985; Crystal and House 1988a). The effect is
also larger for stressed versus unstressed vowels (Davis and Summers 1989). It is also larger for
vowels with greater intrinsic duration (Luce and Charles-Luce 1985) and in slow ‘tempo’ speech
(1.18) than in fast ‘tempo’ speech (1.09) (Port 1981; Laeufer also notes work by Harris and Umeda
in 1974). Other measurements of the PVD effect can be found in Summers (1987).

The PVD difference is also a perceptual cue. Denes (1955), looking at word-final /s,z/, found a
strong effect of vowel duration on whether the final consonant was understood as voiced or unvoiced.
He noted that the rate of perception as one category or the other was modeled well based on the ratio
of the duration of the vowel to the consonant.

2.4.1 Comparison with other languages

The literature on the PVD effect has often portrayed it as a universal phenomenon but with a peculiar
existence in English. The duration difference has been claimed to exist at least in Danish, Dutch,
French, German, Hindi, Hungarian, Italian, Korean, Norwegian, Persian, Russian, and Spanish (see
for references Kluender, Diehl, and Wright 1988), and of course English. Its apparent universality
suggested early on that the PVD effect was a low-level possibly articulatory effect, something ne-
cessitated by other factors such as the airflow differences in voiced and unvoiced obstruents, and so
not a part of linguistic competence.

This does not appear to be the case, however. The duration difference has been claimed to
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English 1.51 Peterson & Lehiste (1960) as cited in Chen (1970)
English 1.45 House and Fairbanks (1953)
English 1.63 Chen (1970)
French 1.15 Chen (1970)
Russian 1.22 Chen (1970)
Korean 1.31 Chen (1970)
English 1.57 Zimmerman and Sapon (1958)
Spanish 1.17 Zimmerman and Sapon (1958)
English 1.23 Laeufer (1992)
French 1.15 Laeufer (1992)

Quebec French 1.32 Morasse (1995)
English 1.20 Flege and Port (1981)
Arabic 1.03 Flege and Port (1981)
Czech 1.02 Keating (1980)
Polish 1.0 Keating (1980)

Swedish 1.03 Elert (1964) as cited in Buder and Stoel-Gammon (2002)
German 1.11 cited in Fintoft (1961), as cited in Chen (1970)
German 1.20 Braunschweiler (1997), word medial
Catalan 1.17 Charles-Luce (1992)

Norwegian 1.23 Fintoft (1961) as cited in Chen (1970)
Hungarian 1.2 Jansen (2004) (long vowels long)

Table 2.2: Ratios of mean duration of vowels preceding voiced consonants to that before voiceless
consonants in various languages reported in the literature. In some cases, including Polish and
Czech, the mean of the individual ratios for minimal pairs is reported instead, which generally
magnifies the value.

not be present in Polish and Czech (Keating 1980), based on pair-list readings of intervocalic /t,d/.
(Non-final position is a position where the effect size is reduced, but in English word-list reading
still readily observed, see section 5.2.) Similar claims have been made about Arabic (Flege and
Port 1981; de Jong and Zawaydeh 2002) and Swedish (Buder and Stoel-Gammon 2002, based on
Elert (1964)). The presence or absence of the PVD effect in a language cross-cuts whether the
language has a phonemic vowel length contrast; for instance, Dutch, Hungarian, Swedish, Czech,
and Arabic all have a vowel length contrast, while only Dutch and Hungarian are claimed to have
a PVD difference. On the other side of the table, of languages without phonemic vowel length,
English and French have a PVD effect while Polish does not.

A summary of findings of the PVD effect cross-linguistically is reported in Table 2.2. For each
language, the ratio of the mean duration of vowels preceding voiced consonants to that before voice-
less consonants is reported. English shows a much larger duration difference between voiced and
unvoiced consonants than all other languages in which the PVD effect has been studied, at least at
face value. Taking the results from Chen (1970) as a representative example (its problems notwith-
standing), the ratio of the mean duration of vowels before voiced consonants to that before voiceless
consonants in English is roughly 1.5 with an absolute difference between the mean durations of 92
ms, while in French, Russian, Korean, etc. the ratios and differences are 1.2–1.3 and 28–53 ms.

Comparisons across languages are fraught with problems. A ratio of 1.1 or less, such as in
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the reported cases of Arabic, Czech, and Swedish, might be a difference of a single pitch period,
depending on vowel duration and F0, which is quite a small difference to extrapolate much of
anything. It may have more to do with intensity decay time, which is 15–20 ms greater before stops
identified by speakers as voiced (Hillenbrand et al. 1984), see page 8, a difference far too small to
explain the PVD effect in English but about the right size to explain the PVD effect in these other
languages.4 Chen’s (1970) results have been suspected of overestimating the difference between
English and the other languages (Kluender et al. 1988).

Zimmerman and Sapon (1958) very likely overestimated the effect in Spanish. They reported
for the Latin American dialects of Spanish spoken by their subjects that intervocalic contrasts were
between voiceless stops and voiced fricatives. If Spanish is like English where vowels are longer
before fricatives than for stops (Umeda 1975), then the effect may have been largely due to not
using true minimal pairs. I am not aware of any more recent studies of the PVD effect in Spanish.
The results reported for Catalan, French, and German may have underestimated the effect. Charles-
Luce (1992) for Catalan and Braunschweiler (1997) for German put the post-vocalic consonant in a
non-final environment to escape word-final devoicing, which may reduce the PVD effect. (See page
17.). Laeufer’s (1992) more detailed analysis of the PVD effect in French suggests that previous
measurements of the PVD effect in French were also underestimated and that there is no great
difference with English.

English and French vowels differ in many ways: French vowels are often shorter than their
English counterparts; English final stops are longer and are often, unlike in French, unreleased and
when they are released their releases are shorter than those in French; French pre-pausal voiced stops
are often (74%) followed by a vocalic release (a voicing cue unavailable in English that may relieve
the PVD effect of its communicative load); and varieties of French, unlike English, lack syllabic
stress (Laeufer 1992). Controlling for some of these factors in the two languages, Laeufer found a
PVD ratio in French of 1.42 and in English 1.6, much closer than past work found. Laeufer noted,
however, that vowel durations were not consistent between the two languages (in one condition
150 ms and 209 ms, respectively), and this may account for the difference in the PVD between the
two languages. Klatt’s (1973) incompressibility says that durational changes will apply differently
depending on the expected duration of the segment. When French vowels had similar durations to
English vowels, which were the contexts of sentence-final position in French and sentence-medial
position in English, the PVD ratios were much closer. (Also see Flege and Hillenbrand 1986 for
similar results involving /s,z/.)

Laeufer’s (1992) work is important in several respects. First, it highlighted language-specific
details that make cross-linguistic comparisons susceptible to confounding factors. Second, in light
of the fact that independent vowel duration factors interact with the PVD effect (Klatt 1973; Port
1981) and that when vowel durations were matched between English and French the PVD ratios
were very similar, it is not entirely clear that English and French differ with respect to PVD at all.

4It seems useful here to mention Chen’s (1970) explanation for the PVD effect in terms of the speed of closure
formation. Because intraoral air pressure during consonant closure is higher for a voiceless consonant, since the build-up
of air pressure extends into the lungs, whereas for a voiced consonant it extends only to the glottis, more effort is needed
to form the closure in a voiceless consonant, he wrote. This greater effort may begin during the transition to closure,
and the increased muscle effort may translate into increased velocity, a more rapid transition, and therefore a shorter
vowel. Kluender et al. (1988), however, noted that later research has shown that closure velocity is not reliably greater
in voiceless consonants, at least not in the contexts that show the PVD effect. A related explanation, given by Messum
(2007), is based on the premise that aerodynamic effort is a limited resource and that voiceless stops and fricatives
consume some of their preceding vowel’s time because they require more effort. This hypothesis has not actually been
tested, however.
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One can compare the PVD effect to different types of vowel durational phenomena in other
languages. The magnitude of the PVD effect in English is still smaller than duration differences
associated with a phonological length contrast, such as in Dutch (see for a summary Dietrich 2006),
for which van Bergem reported that long vowels were 1.8 times longer than short vowels. The PVD
effect is outdone also by the Scottish Vowel Length Rule (Scobbie, Turk, and Hewlett 1999), which
among other things involves lengthening by a factor of 1.8 specifically before voiced fricatives.

In summary, there are at least two categories of languages, if not three. English is the proto-
typical language exemplifying the PVD effect, and French may very well be included in the same
category. Polish, Czech, Arabic, and Swedish have strong evidence for having no PVD difference
(at least not beyond about a single pitch period if even that). As for the remaining languages, it
is not clear. Where the effect has been probably overestimated, as in Spanish, the language might
group with Polish etc. If languages remain, we may have a second type of PVD effect that is smaller
than that of English and governed by a different mechanism entirely.

2.4.2 Interaction with other phenomena

When investigating whether a phenomenon is a matter of linguistic competence, rather than a phys-
iological consequence of some other linguistic articulation, some have looked for whether the phe-
nomenon interacts in interesting ways with other linguistic phenomena. In some cases, this is the
same as asking whether the phenomenon is a productive process operating at the level of phonology
or something more static below the level of the linguistic apparatus.

Stress

De Jong and Zawaydeh (2002, page 54) theorized that lexical stress could be a diagnostic for what
aspects of a segment are linguistic and what aspects of a segment are not. “If some aspect of
speech,” they wrote, “is part of the specification of a particular segmental phonemic entity, having
that segment in a stressed syllable should be expressed by a more extreme instantiation of that
aspect. However, if some aspect of speech is due to some other organizational or motor strategy,
stress should not enhance its appearance in speech.” If only language was ever so straightforward.
Let us not confuse de Jong and Zawaydeh’s hypothesis for a rigorously tested law, but we can take
their points for what they are worth. It is also interesting to view this as a specific case of what
has been reported elsewhere, that the PVD effect is greater in contexts in which vowel duration is
expected to be greater for independent reasons.

De Jong (2004) contrasted vowel durations in the presence or absence of primary stress and
in the context of either a voiced or voiceless following stop. His previous work (cited within)
additionally included the contexts of stop versus fricative and singleton versus cluster coda. Vowels
have been found to be shorter before voiceless stops (versus voiced stops), fricatives (versus stops),
and cluster codas. The question was whether primary stress amplified the duration difference in each
of those contexts. For instance: is the vowel duration difference between ‘bed’ and ‘bet’ (having
primary stress) larger than the corresponding difference in ‘flower bed’ and ‘sports bet’ (having
secondary stress), and in turn larger than that in ‘rabid’ and ‘rabbit’ (unstressed). In this case of
post-vocalic voicing, yes, stress amplified the duration difference. (There was virtually no duration
difference in the unstressed case anyway.) On the other hand, stress was not found to affect vowel
duration differences when manner or coda size was a variable. The PVD effect, but not effects of
clusters or manner of articulation, seemed to be a linguistic phenomenon.
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De Jong and Zawaydeh (2002) applied this idea to vowel durations in Arabic. While Arabic
has a similar use of stress as in English, they wrote, the vowel duration difference before voiced
versus voiceless stops is considerably smaller than in English. Flege and Port (1981) found for
Saudi Arabian Arabic and de Jong and Zawaydeh (2002) found for Ammani-Jordanian Arabic a mix
of non-significant and significant duration differences. Although de Jong and Zawaydeh reported
consistent patterns in the expected duration (that is, vowels longer before voiced consonants), the
differences were on the order of 10 ms or a ratio of 1.1 throughout. This difference is far smaller
than that observed in English and French, and roughly the difference of just one pitch period —
small enough to wonder whether this is a reliable measurement in the first place. Not surprisingly
then, the duration difference remained essentially nil whether or not the syllable containing the
vowel had primary stress.

de Jong’s conclusion has been that the PVD effect in English is a linguistic process while in
Arabic it is not. I noted above that the voicing effect on stop closure duration was not amplified by
stress (Crystal and House 1988b) — we might similarly conclude that this is evidence that the stop
closure duration difference is like the Arabic vowel duration difference in not being a part of the
linguistic specification.

Intervocalic flapping

The interaction of the PVD effect with English t/d-flapping is an instructive case because flapping
neutralizes the voice contrast on the surface. Well known as the ‘writer’/‘rider’ ambiguity, one must
keep in mind that the ambiguity can impoverish the linguistic input so that even adults may not
know the true (if there is such a thing) underlying form of infrequently-alternating words, such as
‘giddy’, which I innocently recently misspelled as “gitty”.

There are three possibilities for how the PVD effect will come out in these words. The first is
that the preceding vowel duration difference is based on whether the flap is pronounced with glottal
pulsing or not. In other words, the PVD effect is a consequence of the articulatory gesture. Fox and
Terbeek (1977) found no duration difference according to the glottal state, although the comparison
was based on a very small sample size, in part because voiceless flaps are rare.

The second possibility is that the PVD effect depends on the lexical or underlying specification
of [voice]. In that case we would expect a /raIR@~/–/raI:R@~/ contrast, despite the neutralization of
other aspects of the /t-d/ phonemic contrast. If this were true, the PVD effect could be described
as an early-ordered rule, relative to the rule for flapping. (I certainly do not intend to commit to an
ordered-rule framework, but it is convenient for exposition.) The third possibility is that the PVD
effect depends on the [voice] feature at the end of the phonological component of the grammar,
after flapping neutralizes the difference between /t,d/. In that case, the PVD effect would produce
no difference between the two words in the minimal pair.

Neither of the analyses above fit the observed data perfectly. Vowels preceding flaps continue
to show a duration difference, but with a difference an order of magnitude smaller than usual. The
original data is due to Fox and Terbeek (1977), probably of Chicago speakers. The facts were later
investigated in New York City speakers by Huff (1980). Fox and Terbeek and Huff considered word-
medial cases; Huff additionally considered monosyllabic words with final /t,d/ followed in the next
word by an initial unstressed vowel, e.g. ‘{bite,bide} again’ (both /baIR@gEn/). Though these studies
have been cited as answering the questions definitively, they had significant shortcomings: Fox and
Terbeek lacked a control condition with non-flapped consonants and did not look across place of
articulation, as a result confounding the potential effects of both flapping and syllable structure, and
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they surprisingly did not report any mean values. Huff’s sample was relatively small and focused
on a single dialect, and it also included short-a which is known to have allophonic or idiosyncratic
variation depending on [voice] in the dialect Huff studied (e.g. Boberg and Strassel 2000).

Fox and Terbeek found a small but statistically significant difference in vowel duration pre-
ceding flaps depending on underlying voice. Huff also found a large and statistically significant
difference in duration when the flap was word final, at a ratio of 1.2. This has not to my knowledge
been replicated.

In many cases of flapping, morphological alternations are absent or infrequent, leaving language
users without much evidence for the right underlying value of [voice] — as in my case of “giddy”
versus “gitty”. Some language users may have figured it out, and some not. Looking across indi-
viduals, the result of confusion is a reduction of the observed vowel duration difference — in the
limiting case to no duration difference when there is total confusion over the underlying form. This
actually fits the data quite well. Word-final alveolar stops are variably flapped, conditioned on the
metrical structure in the word that follows. On the other hand, word-internal alveolar stops are ei-
ther always flapped in that word or never flapped. Evidence for the underlying state of the internal
flaps can only come from morphological derivations of the word, and it would make a great deal of
sense if speakers were far more confused about the underlying state of flaps in word-medial position
than in word-final position, where there should be little or no confusion. That lines up well with
very small PVD differences for word medial flaps (Fox and Terbeek 1977) but normal-sized PVD
differences for word-final flaps (Huff 1980).

If this is the correct explanation, we would expect all acoustic correlates of voice to be similarly
reduced in the trochaic case as we take an average across speakers. Another correlate, discussed
below, is the effect of [voice] on first formant frequency. Monophthongs have higher F1 before
voiceless consonants and the /ai/ diphthong has lower F1 before voiceless consonants (Canadian
Raising). Huff (1980) measured and reported formant values on the vowels preceding the word-
final and word-medial flaps. In the monosyllabic case, where the speakers surely know the right
underlying value of [voice], F1 was around 200 Hz higher for /æ/ and 100 Hz lower for /aI/
before flapped /t/ than flapped /d/. These formant differences are consistent both in direction and
magnitude with what is found before voiced and unvoiced consonants in non-flapping environments,
as discussed below. In the trochaic case where speakers may not know the underlying value of
[voice], the effect size did not appear to be appreciably reduced, meaning that the speakers also had
the correct underlying [voice] value set in these cases. If this were the general case, the reduced
effect on duration could only have been a result of the flapping process and not erroneous values
in the speakers’ lexicons. Unfortunately, Huff’s results do not agree with the results of my own
experiment reported in Section 5.2, which show that F1 is neutralized by flapping as well. In other
words, there is no reason yet to believe speakers do have the correct underlying form.

No standard model of phonology can account for these facts. If the PVD effect is essentially an
early-ordered rule before flapping, then the reduced (and essentially extinguished) duration differ-
ence before flaps is unexpected. If the PVD effect is essentially a late-ordered rule after flapping,
then we would expect the duration difference to be completely neutralized. And yet, a statistically
significant difference remains. Two phenomena have been proposed in the literature: ‘incomplete
neutralization’ (see e.g. Port and O’Dell 1986) and an effect of orthography (Warner, Good, Jong-
man, and Sereno 2006). But I do not consider these further.
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Devoicing and voiceless speech

Devoicing provides another case of dissociation between vowel duration and surface voicing. One
case of devoicing in standard English appears to be lenition in the (word-final) /s,z/ contrast. As
noted several times above, the presence or absence of the glottal signal does not appear to affect
other aspects of the voice contrast. That is, so-called voiceless /z/’s continue to be paired with
longer preceding vowels while they have less frication duration and intensity (Smith 1997).

This contrasts with the results of a preliminary study (Schissel 2008) that showed that the /s,z/
alternation of the morphological suffix ‘-s’ show preceding vowel duration differences. This al-
ternation is considered to be phonological rather than phonetic, and along with the data regarding
flapping suggests that the PVD effect operates late in the phonological system but still within the
phonological system.

Many other languages have devoicing as an active phonological rule, and one might expect those
cases to operate similarly to the ‘-s’ voicing alternation or to the neutralization of flapping. In Ger-
man syllable-final stops are devoiced, purportedly neutralizing the distinction between final stops
as in ‘Bund/bunt’ (Fuchs 2005, page 24). Nevertheless, several measures of the phonetic realization
of these stops continue to show a small difference between the voiced and voiceless stops despite
the claims of neutralization: the preceding syllable nucleus is 15 ms longer before an underlying
voiced versus voiceless consonant (making for a ratio of 1.09), the duration of glottal pulsing into
closure is 5 ms longer, release aspiration is 15 ms shorter, and closure duration is marginally shorter
(Port and O’Dell 1986). (Unfortunately Port and O’Dell (1986) did not include non-‘neutralized’
stops as a control, but we can compare the acoustic differences to those found in non-neutralized,
word-medial context by Braunschweiler (1997), who found a vowel duration ratio of 1.20. As we
know, the PVD difference in word-medial position underestimates the PVD difference that would
be found word-finally (Klatt 1973), if it weren’t for devoicing, and so Port and O’Dell’s results do
show a clear reduction of the PVD effect in devoiced context.) This case of devoicing appears to be
very similar to what is found in t/d-flapping in English. (That Port and O’Dell’s results were low
might be attributable to the same question of inferring the underlying form of rare flapped words
discussed above: some words in their corpus were rare and one lacked morphological evidence for
the underlying voicing feature. If the speakers did not know the underlying form, a mean value
across speakers will underestimate the true effect.)

Additionally, the PVD effect persists in whispered speech at the same ratio as in normally
phonated speech (a ratio as high as 1.8 in Sharf 1964), and laryngectomized patients who phonate
using the esophagus and need neither laryngeal nor pulmonary articulation also exhibit a very high
PVD ratio: 1.6 ratio in normal subjects, 1.7 in esophageal speech, the difference likely due to slower
speaking rate in esophageal patients (Gandour, Weinberg, and Rutkowsky 1980).

Voicing assimilation

The final case of interaction noted here is that between the PVD effect and regressive voicing as-
similation, which provides another example of the dissociation between the PVD effect and surface
voicing. In Section 2.2 I reviewed Jansen (2004, 2007) which showed that RVA neutralizes the
difference in the glottal state during stop closure but has no meaningful effect on stop closure du-
ration. Similarly, there is essentially no effect of RVA on preceding vowel duration. This is in
agreement with the coarticulatory explanation of RVA and explaining the PVD effect as a phono-
logical process, rather than one based on the phonetic realization of the consonant. It also contrasts
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with RVA in Hungarian, thought to be a phonological rather than coarticulatory process, which does
reduce or neutralize the preceding vowel duration difference (Jansen 2004). This does not indicate
much about the PVD effect in Hungarian since RVA neutralizes voicing at both a phonological and
phonetic level.

2.4.3 Phonological status

The evidence presented above regarding the interaction of the PVD effect with voicing lenition,
whispering, and voicing assimilation strongly indicates that the PVD effect is not simply condi-
tioned on surface voicing. Many sorts of reductionist explanations have failed (as in footnote 4).
Instead, it seems to be a phonological process. But, even at the level of phonology there is still a
wide range of ways the phenomenon might be encoded.

Because stop closure duration also correlates with [voice] — shorter for voiced consonants
— it has been proposed that the duration of the vowel varies inversely with the duration of the
stop in order to maintain constant syllable duration (Chen 1970 cited Kozhevnikov and Christovich
(1967:107) and B. Lindblom (1967:21) for the hypotheses of compensatory temporal lengthening.)
This hypothesis is likely to at least be a factor. Vowels before Italian geminate consonants are shorter
than they would be before non-geminate consonants (Esposito and Benedetto 1999), and this effect
is apparently exceedingly common across languages (though not universal, see Kluender et al. 1988,
page 161 for references). But the compensation between vowel and consonant duration is not exact
on an absolute scale. Italian geminates are roughly twice as long, around 90 ms longer, than their
non-geminate counterparts, but preceding vowels are roughly 25% or 40 ms shorter before geminate
consonants (Esposito and Benedetto 1999). Kluender et al. (1988) reported other work on English
and Swedish indicating that while there may be such a thing as compensatory vowel duration ad-
justments made inversely to other durations in the syllable, the compensation is neither total nor
large enough to explain the PVD effect. (Also see van Santen and Shih 2000 and Braunschweiler
1997 for corroborating evidence in German.)

If not the sum of the durations of the vowel and consonant, then perhaps it is the ratio of their
durations that is held constant. I noted above that Denes (1955) found that rate of perception as
[+voice] was modeled well based on the ratio of the duration of the vowel to the consonant. Luce and
Charles-Luce (1985) investigated this from the production end and came to a negative conclusion
regarding the ratio: the absolute duration of the vowel was more reliably able to distinguish the
two voice categories than the ratio (as he put it, though with a somewhat questionable mathematical
approach relying on p-values to rate the reliability of the measure).

The above failed explanations were in terms of constancy. Kluender et al. (1988, page 156)
made a proposal in terms of exaggeration: the PVD effect exists because speakers “select acous-
tic cues that have mutually reinforcing auditory effects. Talkers signal phonetic contrasts using a
‘conspiracy’ of cues that enhances the perceptual distinctiveness of features and segments.” In other
words, the effect is deliberate, in the sense that it is a part of the linguistic knowledge of the lan-
guage, and not physiological. In the case at hand, the PVD effect exaggerates the closure duration
cue. By shortening vowels before voiceless consonants, the increased closure duration of voiceless
consonants is perceived to be longer than it otherwise would be.

Kluender et al. further hypothesized that auditory enhancement would be unnecessary both in
the case where the duration difference is so great that vowel duration changes would not increase its
perceptual salience and in the case where no consonant duration difference exists to be enhanced.
For the first case, that a language with a very large consonant duration difference will not need an
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enhancing vowel cue, Kluender et al. point to Turkish. Turkish has consonant gemination, and with
a quite large duration difference between simple and geminate consonants at a ratio of 3:1. But
it lacks any vowel duration compensation for gemination. This contrasts with Italian in which, as
noted above, vowels are shorter before geminate consonants (Esposito and Benedetto 1999).

For the second case, Kluender et al. note Arabic, the only language they knew to lack a closure
duration correlate to voice (Flege and Port 1981). In line with their hypothesis, the vowel duration
difference in Arabic is very small, if it exists at all (Flege and Port 1981; de Jong and Zawaydeh
2002).

Kluender et al.’s story though enticing is still, however, not an explanation. It explains why
certain gestures ought to be recruited, but it does not say that the gestures must be recruited or that
they cannot be recruited in other cases. And, the facts seem to show that these sorts of counterex-
amples exist. Polish has a closure duration difference quite comparable to English but lacks a PVD
difference (Keating 1980). And there may be cases where the closure duration difference is reversed
(i.e. voiced consonants longer) but the PVD effect is not. According to references cited by Jessen
(2001), Danish, Hindi, Mandarin, and Swati Xhosa have a reversed closure duration correlate, but
as noted above, Danish and Hindi are also claimed to have a PVD difference. (One would need to
read the work on Danish and Hindi to know whether this actually stands against Kluender et al.’s
view.) If these are not inconsistent with Kluender et al.’s hypothesis, then they merely have punted
the hard question: of the languages with a closure duration contrast, why should some languages
recruit vowel duration but not others? The mutually reinforcing hypothesis also does not address
why in English the PVD effect appears to be greater than in other languages that also show a PVD
difference (if such differences are real; Kluender et al. denied the difference). This angle has been
insightful, but in the end may not provide anything testable.

Where does this leave the PVD effect? As far as anyone could be able to tell, the PVD effect in
English is a phonological process separate from other phonological aspects of [voice].

2.5 Fundamental frequency in following vowels

Fundamental frequency is slightly lower in vowels following voiced stops. For stressed vowels
surrounded by the same stop on either side, House and Fairbanks (1953) found just a 4 Hz difference
(a ratio of 1.04), tentatively attributing it to a lower intrinsic or natural fundamental frequency for
glottal pulsing during voiced stops. Jessen (1998) is a relatively recent and through examination of
F0 perturbation following word-initial obstruents in German. In the first five pitch periods following
stop release, or for fricatives essentially starting with the onset of formant structure, F0 after voiced
obstruents was reported consistently lower on the order of 10–20 Hz for at least 75–150 ms into the
vowel. And although there had been claims that the voicing difference was the difference between
a falling and a rising contour, Ohde’s (1984) study of word-final stressed syllables in English found
that F0 tended to decrease in the first five pitch periods in both voicing categories. — F0 simply
seems to start off higher for unvoiced consonants. (Also Edwards 1981, and Castleman and Diehl
1996 for references to other studies including perception studies.)

But when actual aspiration is considered separately from the phonological contrast, a different
pattern emerges — indicating there are actually two separate F0 perturbation effects. Ohde (1984)
performed a three-way comparison of English speakers’ 1) [+voice] stops (e.g. in nonsense word
/h@"bib/), 2) [-voice] stops in a position where they are aspirated (e.g. in /h@"p(h)ip/), and 3) [-voice]
stops in onset clusters following an ‘s’ where they are unaspirated (e.g. /h@"spip/). The difference in
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Voiced Voiceless
Unaspirated 154 188
Aspirated 120 178

Table 2.3: F0 perturbation in the four-way contrast of Hindi: Mean fundamental frequency in Hz in
a vowel following a stop. F0 was measured following the release of voiced stops and following the
start of voicing for voiceless stops (Kagaya and Hirose 1975).

Stevens (1998, page 466), however, computed based on a mathematical model of the glottis that
the effect on F0 should be on the order of 5–7 percent, much less than the 10–15 percent difference
that is observed (according to Stevens). Vocal cord tension may be a contributing factor, but the
rest of the effect remains unexplained. Ishihara (1998), for instance, reported that F0 perturbation in
Japanese and English persisted whether or not the voiced half of the minimal pair had pre-voicing.
(Jessen 1998 reported something similar for German.) Granted, there may be vocal cord tension
differences even if they do not result in pre-voicing, but I think some difference would be expected.
It seems then that F0 perturbation is linked to neither aspiration (as explained above) or glottal vi-
bration, which leaves few options besides it being a part of the phonological specification of [voice]
in much the same manner than glottal vibration itself is.

Other aerodynamic explanations had been proposed for F0 perturbation (see citations in Ohde
1984 and Jessen 1998), but they do not fit the data. The aerodynamic effect, based on higher airflow
causing a Bernoulli effect on the glottis, is expected only in the first 10–15 ms of the following
vowel. This would be useful for explaining the effect due to aspiration, except that they predict
higher F0 with aspiration, contrary to fact. Jessen (1998, page 109) noted that voiceless obstruents
tend to be followed by more breathy voice quality than voiced obstruents, in German, English, and
other languages (see references within). This might affect F0. Ohde (1984) noted that the height of
the larynx also varies between the voicing categories and could be the source of another explanation.
For a survey of explanations, see Kingston and Diehl (1994).

In fact, neither a tension or an aerodynamic explanation could be the sole explanation. Jessen
(2001) noted that the same perturbation effect is found in languages that make a binary voicing
distinction in initial position based primarily on aspiration including English, Cantonese, Mandarin,
and Danish, or based primarily on pre-voicing such as French and Japanese. And in Tamil, in which
voice is not contrastive but predictable from gemination, no perturbation effect is found (Kingston
and Diehl 1994), and thus F0 perturbation could not be a physiological consequence of any other
aspect of [voice] used by Tamil.

There is also some literature on the effect of voice on the fundamental frequency preceding the
consonant. For this context, more work has been done in perceptual studies than production studies.
Codas are perceived more often as voiced when the fundamental frequency steady state or offset
is lowered in the preceding vowel (Castleman and Diehl 1996). In CVC syllables, a mere 15 Hz
increase in F0 from 95 to 110 increases the rate of voiceless perception by roughly 20 percentage
points. In VCV sequences, the effect is much smaller, and is smaller than the perceptual effect of
varying F0 at the onset of the second vowel. Hawkins and Nguyen (2004) reported from acoustic
measurements of production data no F0 difference at the onset and mid-point of the vowel (at least
not greater than 3 Hz, which is hardly perceivable), and that F0 was approximately 20 Hz higher at
the vowel end before a voiced consonant. However, they attributed the difference at the vowel end
to the difficulty of measuring fundamental frequency in the vicinity of glottalization (of voiceless
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codas). Looking at /l/ onsets, Hawkins and Nguyen (2004) reported no effect on onset fundamental
frequency of coda voicing, but note their earlier work that showed a perceptual effect on coda voice
when onset fundamental frequency is varied (lower F0 is, again, correlated with voice).

2.6 Formant structure of preceding vowels

The first formant of vowels has also been seen to vary with the voicing of the following consonant.
In monophthongs, F1 lowers before voiced consonants. In the diphthong /aI/ in some dialects
F1 is greater. These patterns have been observed both in the acoustic phonetics literature and in
the sociophonetics literature, which tends to treat it as a sociophonetic variable subject to dialectal
variation.

2.6.1 Monophthongs

In a monophthong preceding a stop, a relatively small-scale effect on F1 appears throughout the
duration of the vowel (Summers 1987 but see also Moreton 2004 and references therein, Hawkins
and Nguyen 2004) and in an unexpected direction. F1 is lower in the voiced context by around
10–20 Hz at the onset of the vowel, 35–45 Hz during its steady-state, and 90–140 Hz at the onset
of the obstruent (these were /a/ and /ae/ vowels with mean frequencies around 775 Hz, so this is up
to nearly a 20% difference at the onset of the obstruent). These findings may be unexpected if we
were to make a prediction based on what we know about vowel duration. The change is opposite
to what would result from hyper/hypoarticulation due to the longer/shorter duration of vowels in
voiced/unvoiced context (Moreton 2004). The F1 curves in Summers (1987) had a ∩ shape, and so
hypoarticulation in the unvoiced case would be a lower steady-state F1. But this is the opposite of
what was found. See Section 5.2 for additional data.

A similar pattern was found in vowels preceding the strident fricatives (Stevens et al. 1992). In
the roughly 30 ms before the vowel-consonant boundary, F1 decreased by roughly 400 Hz in the
voiced case, but 0–200 Hz in the voiceless case — making for a 200–400 Hz difference between
voiced and voiceless cases. Stevens et al. explained the difference on purely physiological grounds:
Because voicing is cut off earlier in the voiceless case, less of the F1 transition can be seen. If it
were not for the change in glottal state, we would see that the formant transition was the same in
both voiced and voiceless cases. But as noted above, F1 differences exist not only at the vowel offset
but during the earlier steady state as well.

The correlation with F1 has been partially supported by perception research as well. At least, F1

offset has been shown to have a perceptual effect. The lower it is at the vowel-consonant boundary,
the more likely subjects are to identify the consonant as a voiced consonant. However, in one case
(Fischer and Ohde 1990) the choice in the subjects’ minds seemed to be not between a voiced
or voiceless consonant, but between a voiced consonant and a vowel — putting into question the
experimental design. (Of note, Fischer and Ohde found that the effect on perception was greater for
vowels with higher F1 steady states, the mid and low vowels, which have more room to fall in the
transition.)

Three experimental angles can be brought to bear on the phonological status of the effect on F1.
The first angle is whether flapping neutralizes the effect on F1, as discussed above in Section 2.4.2.
The results of Huff (1980) indicated that the F1 difference was not neutralized. If this were the case,
the effect would necessarily be phonological since it would rely on the underlying state of [voice]
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and not the surface realization where voice is neutralized. But, my own results reported in Section
5.2 indicate otherwise, that F1 is indeed neutralized by flapping. While this does not rule out a
late-ordered rule (i.e. bled by flapping), it does not mean that the effect is necessarily phonological.

The second angle comes from Jansen (2004, 2007) who measured the effect of regressive voic-
ing assimilation (RVA) on various acoustic properties. Recall that RVA occurs in a VC1C2 context
where the [voice] feature of C2 affects the realization of C1. (In Jansen’s experiments, the vowel was
always the long central mid open vowel /3:/ of British English.) As noted earlier, the duration of the
glottal signal during C1’s closure is nearly neutralized if an immediately following obstruent has a
conflicting value of [voice], but there is essentially no effect on closure duration or preceding vowel
duration. Jansen (2004, 2007) also measured preceding vowel F1 at 10 ms before the onset of the
(first) obstruent. When C2 was the control consonant /r/, F1 was lower by 26 Hz in the voiced case
— matching the well-known effect for monophthongs described above. When the first obstruent
was followed by /t/, the F1 difference was completely eliminated, and it was considerably reduced
when the obstruent was followed by /d/ and /z/ as well. F1 thus patterns like glottal signal duration
but not either of the segmental duration correlates. Since RVA in English is believed to be merely
coarticulation of the glottal signal, then this indicates the F1 effect is a physiological consequence
of the glottal state.

I discuss the third angle in the next section.
If this is right, then there is still a second phonological effect that affects F1 in the same way.

There is a limited and dialectally varying phonological effect called short-a tensing. The triggering
environment differs from dialect to dialect, but [voice] is often relevant. The effect is a raising and
peripheralization of the short-a nucleus from roughly [æ] (lax) to [E@] (tense). For instance, in New
York City short-a is tensed before voiced /b,d/ but not voiceless /p,t/, and before voiceless /f,s/ but
not before voiced /v,z/ (Boberg and Strassel 2000). Raising corresponds to a lower F1, which for
New York City stops matches the general pattern of the effect of [voice] on F1 discussed above.
It would be interesting to test the effect of RVA on voice-conditioned F1 in a dialect with short-a
tensing.

There may also be an effect on F2. F2 is higher before voiced consonants in high-front, low-
front, and low-back/central vowels (but not back-rounded vowels), though the statistical significance
reported was weak (Hawkins and Nguyen 2004).

2.6.2 Diphthongs

Other things being equal, we might predict the effect of post-vocalic [voice] on diphthongs based
merely on the elongation of the vowel preceding voiced consonants. In a comparison of diphthongs
across speaking rate, Gay (1968) found that what remained constant across vowel duration in the
up-gliding diphthongs /0I,aI,au,eI,ou/ was the rate of change of F2 — as opposed to the offset
target frequency. “If the speaker rate is slow, the target is reached and the gesture is completed; if
the speaker rate is fast, the movement, while on course, is cut off before reaching the final target”
(p1573). If formants are affected the same way by [voice], then we would expect peripheralization
in [+voice] context and centralization in [-voice] context. But this pattern did not hold for the voice
contrast, despite a duration difference. That is, although vowels preceding voiced consonants were
longer, the effect on F2 was different. Instead of a longer glide, a longer steady-state was generally
found.

Though Gay did not find an effect of final consonant voicing on off-glide formants, Moreton
(2004) found in the front- and up-gliding diphthongs (/aI,OI,eI/) peripheralization before a voice-
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less stop: lower F1 by roughly 10–25% and higher F2 by roughly 3–15%. (Similar but smaller
effects were found for F1 at the nuclear target.) This pattern for F1 is in the opposite direction of
what has been found for the low monophthongs, leading Moreton (2004) to propose a unified expla-
nation for the lowering of F1 in monophthongs and the raising of F1 in high-off-glide diphthongs.
He proposed a “Pre-Voiceless Hyperarticulation” hypothesis: low-monophthongs should become
lower and high-diphthong off-glides should become higher. But what of high monophthongs and
in-gliding diphthongs? Moreton’s hypothesis has yet to be tested on these crucial cases (see Section
5.2.3). Finally, Moreton did not give a reason for what the underlying mechanism is. As discussed
above, the evidence points to the F1 effect in monophthongs being physiological, meaning a conse-
quence of the glottal state or some other aspect of [voice] articulation and not a matter of linguistic
competence. Can something physiological have a hyperarticulatory effect? Perhaps it could, but the
details need to be spelled out.

Besides the effects observed by Moreton, there is also a large-scale effect called Canadian Rais-
ing affecting the diphthongs /aI,au/. Canadian Raising is found (or at least was found several
decades ago) in English speakers in Ontario as well as the “inland northern” United States from
western New England across the Great Lakes (and at the time in Charleston as well, but not any-
more, Joe Fruehwald, p.c.). For speakers in these dialects, the nuclei of the diphthong is raised
before voiceless consonants roughly to [2I,2u] (e.g. [raId] versus [r2It]). Canadian Raising is clearly
not a physiological consequence of some other aspect of voice. For one, it does not occur in many
dialects of English that are, as far as anyone has observed, otherwise identical in the relevant ways.
It is also in the opposite direction of the effect of [voice] on monophthongs. Whereas F1 is lower for
monophthongs in a voiced context by 10–50 Hz in the first half of a monophthong (Summers 1987),
it is higher on the order of 100 Hz during the nucleus of the diphthong /ai/. Also, as noted above,
whereas speaking rate affects the off-glide target of the diphthong but not the nucleus’s target (Gay
1968), it is the nucleus that is primarily changed in Canadian Raising.

Canadian Raising also has many exceptions. It does not occur across morphological boundaries
([flaI-swaR@~] ‘fly swatter’, but not [fl2I-swaR@~]) or in certain configurations of stress ([daI"kaR2mi]
‘dichotomy’). Still, there appears to be lexical exceptions ([t2Ig@~] ‘tiger’), idiolectal variation,
unusual phonemic contrasts ([aIdl

"
] ‘idol’ vs. [2Idl

"
] ‘idle’), and variability in the application of

raising before segments with nondistinctive voice such as /r/, all of which complicate the picture and
suggest the presence a phonemic split rather than a rule (Joos 1942; Chambers 1973; Vance 1987).
Still, Idsardi (2006) provides examples of vowel quality changes in semi-productive morphological
processes ([d@saId] ‘decide’ vs. [d@s2Is@v] ‘decisive’) and productive syntactic processes ([l2I-to]
‘lie to’ vs. [laI-@baut] ‘lie about’), meaning Canadian Raising is a productive rule even if overridden
in some lexical entries.

Joos (1942) reported two Canadian dialects, one in which flapping of intervocalic /t,d/ neu-
tralized raising ([raIR@~] for both ‘writer’ and ‘rider’) and one in which the vowel quality contrast
remained at least for some words ([raIR@~] vs. /[r2IR@~]). Only the latter dialect appears to remain
(Chambers 1973; Vance 1987).

Both the monophthong and the diphthong patterns are found in several other languages besides
English, but not the patterns in reverse. That is, raising before voiceless consonants in monoph-
thongs and before voiced consonants in diphthongs is not found, or very rare (Moreton 2004).
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2.7 Formant structure of following vowels

In a stressed vowel following an obstruent, a rapid rise in F1 of several hundred hertz can also be a
cue to voicedness (Stevens and Klatt 1974). While it is a perceptual cue, it may not be an indepen-
dent gesture on the production side. The difference between the voiced and voiceless cases is that
the formant transitions appear truncated (on the starting side) in the case of voiceless obstruents.
Aspiration perhaps masks post-obstruent transitions and so the first measurable values of F1 may be
at a different point in the articulation, although the articulation is otherwise the same. This has been
called F1 cut-back.

Stevens and Klatt (1974) nevertheless suggested two ways that F1 cut-back may still have a role
in linguistic competence after all. First, the linguistic difference may not be an active gesture to
control F1, but instead it might be an acoustic target: that there shall be no rapid spectral changes
following voiceless releases. The duration of aspiration may then be recruited to achieve this tar-
get. The longer VOTs for voiceless velar stops versus dentals, and dentals versus labials, may be
explained by the fact that longer aspiration is needed to mask longer transitions. What Stevens and
Klatt suggested then is that aspiration’s role in [voice] is not a duration target such as “long-lag” but
rather an acoustic, spectral target. That means that F1 cut-back could be rather the flip-side of VOT.

For a second hypothesis for how F1 cut-back may relate to a linguistic target, they note the
difference in duration of [r] in [br] versus [pr] onset clusters. In [pr], [r] has a greater duration, and
Stevens and Klatt proposed that this is a strategy to delay the rapid spectral changes from the [r]
to the following vowel which might otherwise be misinterpreted as a cue for voicing of [p]. I have
not seen any study validating whether there is a consistent duration effect in onset clusters such as
these.

2.8 Other correlates during surrounding vowels

Summers (1987) reported greater jaw lowering in a vowel preceding a voiceless obstruent, meaning
the jaw appeared to be doing more work despite a reduction in the total duration of the vowel. At
the end of the vowel, the final jaw position did not vary with [voice] but the duration of the rising
gesture was longer before a voiced obstruent. A longer duration is expected on the grounds that
overall vowel duration is longer in this context, but also unexpected because the jaw has greater
ground to cover before a voiceless obstruent. As a result, the jaw motion in the voiceless context is
more rapid. (Lisker 1957 noted a similar pattern in formant transitions.)

Lisker (1957) noted that, for pre-vocalic /p/ versus /b/, the overall intensity of phonation is
greater or rises more rapidly following /p/. If true, this is another acoustic correlate of [voice].
However, we can easily imagine that this difference follows directly from the different transglottal
pressure configurations due to differences in VOT.

2.9 Syllable onset differences

Hawkins and Nguyen (2004) found that coda voicing can affect the realization of onset /l/, and
probably onset fricatives as well. The duration of an onset /l/ is longer preceding a voiced coda than
a voiceless coda, similar to the duration difference found for the syllable nucleus, the PVD effect.
However, it is a much smaller effect. The mean duration ratio for /l/ was just 1.05 or 4 ms, which is
approximately a single pitch period, though in particular instances higher ratios such as 1.18 were
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found. The small difference is roughly the magnitude of the PVD effect in languages besides English
and French, where a physiological explanation is more likely than a specific duration specification
in the grammar. Hawkins and Nguyen also found lower F2 (by 125 Hz or 7 percent) and lower
spectral center of gravity during onset /l/ in voiced context, something that might be explained by,
for instance, anticipatory changes to oral cavity volume. But articulatory data is lacking. Hawkins
and Nguyen preferred the interpretation that voice is manifest as a syllable-wide attribute, a contrast
of “somber” (for voiced) versus “bright” (for voiceless) in a non-segmental model of acoustics or
perception.

2.10 Summary

The feature [voice] is associated with many acoustic changes during the consonant itself, in pre-
ceding and following vowels, and even as far back as a preceding onset. This chapter attempted to
survey the entire literature of the acoustics of the production of the [voice] contrast in adult English
speakers.

Some aspects of this contrast are primary aspects of [voice] itself — targets that are a part of
linguistic competence. Certainly the state of the glottis is a part of the [voice] target, manifesting
variously in voice onset time, voice termination time, the probability that voicing occurs in closure,
etc., depending on context. Other acoustic correlates of [voice] with evidence pointing in the direc-
tion of linguistic specification is that closure duration is longer in voiceless stops than voiced stops
and the PVD effect that vowels are longer before voiced consonants. This is at least the case in
English and French where the observed PVD ratios are relatively high. Some languages, as noted
earlier, have no PVD difference. And some have been measured to fall somewhere in between,
though better comparisons between languages are needed. F0 perturbation due to voice is proba-
bly also phonologically based, with no complete phonetic explanation having been found and that
the effect occurs in languages what make a voicing distinction either based primarily on the glottal
signal or based primarily on aspiration.

Other measurements seem to lead in the direction of linguistic performance. The duration dif-
ference in frication correlated with [voice] seemed to be merely an interaction with the glottal state,
and that the articulatory gestures are otherwise the same — contrasting with the correlate of closure
duration for stops. Likewise, F1 on the following vowel may be “cut-back”, meaning the articu-
latory gesture is the same but aspiration covers up the formant transition. The effect on the F1 of
monophthongs also is most likely a physiological effect, especially in light of its neutralization by
regressive voicing assimilation.
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Chapter 3

The Acquisition of [voice]

Voice is composed of many elements. As discussed in the preceding chapter, several acoustic cor-
relates of [voice] seem to be a part of linguistic competence. These correlates of [voice] are free to
vary from language to language and their use (or absence) in any given language must be learned
by infants. The state of the glottis in terms of VOT and VTT, closure duration, preceding vowel
duration, and fundamental frequency following the consonant are correlates of voice that seem to be
a part of linguistic competence. These contrast with the non-linguistic aspects of [voice] which re-
sult from physiological dependencies on other aspects of [voice]. Frication duration and preceding
vowel F1 were thought to be such correlates on the basis that their correlation with [voice] could be
attributed to changes in the glottal state.

Many techniques have been used to explore what children learn about [voice] during devel-
opment, including observing phone inventories, measuring acoustic properties in production, and
infant discrimination/perception tasks. But the phonological side of [voice] is only recently starting
to receive attention, e.g. by Dietrich, Swingley, and Werker (2007) and van der Feest (2007).

In this chapter the reader will first be introduced to some basic facts about language acquisition
as it relates to the development of the [voice] contrast, and especially the preceding vowel duration
(PVD) effect. Although much past work has already been done on this subject showing that infants
exhibit a PVD difference as early as age 2 years, several important questions remain. For one,
no reliable developmental trend has been observed and replicated in infants aged 1;6–4. That is,
research so far has equivocated on whether infants develop an adult-like PVD effect during the
course of language acquisition by starting with no PVD difference and increasing the duration of
vowels before voiced stops over time, by decreasing the duration of vowels before voiceless stops
over time, or whether the PVD effect is in fact the unmarked state in universal grammar.

Secondly, we also ought to not take it for granted that infants exhibiting the PVD effect do
so because they have learned the same phonological process that adults are thought to use. This
chapter will also consider alternate hypotheses that could explain the PVD effect pattern in infants.
Evidence against each possibility will be presented.

3.1 Gross development of [voice] production

Meaningful speech with adult-like phone production begins by roughly 15 months of age normally
(Stoel-Gammon 1985). The consonant phone inventory, as recognized by transcribers, grows over
time. In Stoel-Gammon (1985), an inventory at an age meant the phones present in at least half of
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t s d k z b p g v f
initial 16 17 12 12 0 14 9 10 1 8
medial 22 10 12 19 4 10 8 5 6 5
final 35 15 14 10 15 0 4 1 4 1
all 26 15 13 12 8 7 6 5 4 4

Table 3.1: Phone frequencies in adult infant-directed speech, as a percent of occurrence in each
context. (Rows sum to 100, modulo rounding.)

the sampled children’s inventories in hour-long recording sessions. The number of children varied
across ages, from 7 to 33. Observed first in word-initial position are unaspirated (i.e. voiced) stops
by 15 months, followed by aspirated stops at 21 months, followed by the (contrastively) voiceless
fricatives at 24 months. (Voiced fricatives are considerably more difficult to produce because of
the coordination of two constriction gestures and did not occur within 24 months.) The word-final
phone inventory is at each age much smaller, and the order of occurrence of phone types may be
different; however, this may simply reflect distributional differences in the language environment
rather than something about language development. There, voiceless stops appeared first at 18
months, followed by voiceless fricatives at 24 months. (Voiced stops and fricatives did not occur in
this position by 24 months.) In a study later on of infants from 11–18 months, voiced and voiceless
stops and fricatives were found in both word initial, medial (intervocalic), and final position (Stoel-
Gammon 2002). Still, perceptual abilities are continuing to become more adult-like even into the
second decade of life (Hazan and Barrett 2000).

There are a number of limitations to approaching language development by measuring phonetic
inventories. For one, phones are not equally frequent in the child’s linguistic environment. An
infrequently observed phone doesn’t indicate necessarily that it is less fluent for the child, when in
fact it may just be that it occurs only in infrequent words. A maximum of 50 tokens were drawn
per child per recording session in Stoel-Gammon (1985), and in both Stoel-Gammon (1985) and
Stoel-Gammon (2002) no effort was made to compare phone frequencies in the children to their
frequencies in infant-directed speech. It would be premature to take the absence of phones from the
inventories as evidence that the child could not actually produce the phone.

We can grossly estimate expected phone frequencies in child speech by looking at infant-
directed speech, where the absence of a phone ought to bear on its frequency of use and not, as
in infant speech, its difficulty to be produced. The Providence corpus (Demuth et al. 2006) contains
orthographic transcriptions of infant-directed speech to six children aged 1–4 years and provided
the necessary data to test the hypothesis that phone frequencies vary substantially. Each word in
the orthographic transcription was matched against its first entry in the Carnegie Mellon University
Pronouncing Dictionary. The consonant phones were separated according to whether they occurred
word initially (including in a cluster), medially, or finally (including in a cluster). One million
/p,t,k,b,d,g,s,f,z,v/ tokens occurred in the corpus. Their relative distribution is given in Table 3.1.
As the figure shows, the phones are not equally frequent. The labiodental fricatives are as much as
35 times less frequent than /t/ in word-final position. /s,z/ are relatively common, but not in all po-
sitions. The voiced fricatives were the rarest segments in word initial position (occurring a total of
1 time), which may explain why they were not observed in word initial position in Stoel-Gammon
(1985). What we ought to conclude from this table is that observed phone inventories especially in
small samples are likely to underestimate the child’s linguistic abilities.
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Phonetic transcription alone also only tells us what articulatory gestures the infant has to work
with and not anything about its interface with phonology. If the child produces [b] and [p] in free
alternation for both /b/ and /p/ phonemes, an analysis of a phonetic inventory will reveal two phones
but fail to indicate that the child has not learned either the phonetics of underlying [voice] or the
[voice] feature values for the words in his lexicon. Comparing the child’s phonetic output with
the adult target shows whether the child is learning adult phonological categories. Snow (1997)
measured VOT on word-initial stops and found a difference between voiced and unvoiced stops
(that is, voiced or unvoiced according to their feature value in adult phonology) starting at least
by age 1;6, the earliest age considered. Children at that age produced 41 ms more aspiration in
voiceless stops, and 73 ms at age 1;9. (In adults the difference is roughly 60 ms.) This shows that
not only is the child forming two categories, but that the child is learning by at least age 1;6 the right
[voice] (or [asp]) feature value for the initial stop phonemes in the words in his lexicon.

3.2 Development of the preceding vowel duration correlate

As in adults, much past work has been reported on the PVD effect in infants. While past research
has established that the duration difference is exhibited by infants, there has been no consensus on
the presence of a developmental trend.

The earliest work on the acquisition of the PVD effect appears to be in an unpublished doctoral
dissertation by M.A. Naeser in 1970 at the University of Wisconsin, which Krause (1982) reported
as finding a vowel length difference before voiced and voiceless consonants in the spontaneous and
imitated speech of age-1;9 (and up) children. Both experimental and corpus studies since then have
confirmed the conclusion. Taking the results in reverse order by subjects’ age, DiSimoni (1974)
found a vowel duration difference at age 9, and DiSimoni (1974) and Krause (1982) both found
a duration difference at age 6. Baran and Seymour (1976) reported a PVD difference at age 5 (in
African American Vernacular English speakers). Both DiSimoni (1974) and Krause (1982) found
a durational difference at ages 3–4, with ratios of about 1.8. At age 2;6 and 2;0, PVD ratios were
reported of roughly 1.7 and 1.4, respectively (Buder and Stoel-Gammon 2002). Ko (2007) reported
a difference before the age of two, based on a corpus study.

Three papers have reported on a developmental trend. Both DiSimoni (1974) and Krause (1982)
found that the durations of vowels before unvoiced consonants was relatively stable from age 3 to 9
(DiSimoni) or 3 to “adult”-age (Krause). But DiSimoni reported an increase in duration of vowels
before voiced consonants with vowels before voiceless consonants stable, and so an exaggeration
of the PVD effect, and Krause a decrease for voiced consonants producing a decline in the PVD
difference with age. Ko (2007) similarly looked at the duration over time for the vowel in four
frequent words in two children from age 1;6 to 4 and found no reliable pattern. A confounding
factor is the developmental trend of overall vowel duration. Lee, Potamianos, and Narayanan (1999)
reported vowel duration decreases by 25% from 5 to 7 years of age and roughly a 3-4ms decrease
per year until age 15. In light of this, the findings of roughly constant vowel duration preceding
unvoiced consonants is quite a surprise. Not only that, but we know that the PVD effect decreases
as vowel duration decrease (i.e. incompressibility, see Section 2.4), and so a stable mean PVD ratio
during a time when overall vowel duration is decreasing could, in fact, indicate learning. From these
studies, the developmental trend of the PVD effect is so far not clear.

What kind of developmental trend do we expect? Or, what is the unmarked or native state?
Could children actually start with a PVD difference and lose it over time in languages that do not
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have a PVD difference (Buder and Stoel-Gammon 2002)?
To test this hypothesis, Buder and Stoel-Gammon (2002) compared English and Swedish 24-

and 30-month-old infants in their productions of vowel duration before voiced and unvoiced stops
in an elicitation task. Swedish has a phonemic vowel length contrast and essentially no PVD effect
(a ratio of 1.03). Buder and Stoel-Gammon predicted that the PVD ratio in Swedish children would
resemble that of English children at first and then decrease with age as vowel duration became
increasingly used to signal phonemic length — unlearning the PVD effect. The results were com-
patible with the prediction, with English and Swedish children at 24 months showing PVD ratios of
approximately 1.4 and 1.7, respectively, and at 30 months 1.7 and 1.1, respectively. A ratio of 1.7
in Swedish infants is remarkable, considering the lack of supporting evidence for a difference this
large in Swedish adult speech. (The PVD difference is probably not exaggerated in infant-directed
speech either. The motherese of Dutch, which like Swedish has a phonemic vowel length contrast,
lacks the sing-song-ish vowel elongation that is found in e.g. English motherese, and this is thought
to be because it could change the meaning of the utterance, Dietrich et al. 2007. It stands to reason
that Swedish would similarly limit duration changes of vowels in motherese.). If the time trend were
true, it might support the hypothesis that the PVD effect is the unmarked option, that infants start
with a PVD difference. In infants learning languages which exhibit the effect, including English,
the PVD effect would be stable over time, while it would be attenuated in other languages. We
should not be surprised, then, that no consensus on a developmental trend has been found for the
PVD effect in English.

But from just two points in time for the Swedish children, it is hard to read much into these
results. Durations are highly variable and we saw from DiSimoni, Krause, and Ko that three papers
can produce all logically possible results.

3.3 Grammatical status of the PVD effect

Although we may see vowel duration differences in infants that resemble the adult pattern, we
cannot take for granted that this is due to the same phonological process in infants. There are
several reasons why a child might have a surface PVD difference:

1. Adult-Like: The process may be phonological in the adult-like way, where the duration of a
vowel depends on the voicing of the following consonant in a productive process.

2. Phonemic Vowel Length: The duration difference may be phonological, but stored as a prop-
erty of the vowel rather than the consonant. In other words, the child may employ a phonemic
vowel length contrast and has “learned” a distribution of short versus long vowels that only
coincidentally correlates with post-vocalic voicing.

3. Performance: The duration difference can be explained by a physiological process related to
some (other) articulatory correlate of [voice].

4. Epiphenomenal: The duration difference is epiphenomenal. Although the infant’s vowels
exhibit the expected pattern, the difference is due to other factors, for instance having a lexicon
in which, coincidentally, vowels with longer intrinsic duration (i.e. the so-called tense vowels
and diphthongs) occur more often preceding a voiced coda. Alternatively, voiced codas may
occur more often in words more prone to being lengthened due to being focused.
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We can be asking the same type of question of any other acoustic correlate of [voice], whether
it be formants, the glottal signal, or consonant release. And we should be prepared for there being a
different answer at different points during language development.

We would like to simply test for whether the PVD effect is a productive process in infants. Child
elicitation studies are difficult to carry out, and it would especially difficult to ask children to speak
novel words without also giving them a hint as to how they should be spoken. For many reasons an
elicitation study was ruled out for this dissertation, which instead is based on corpus data.

Some of the hypotheses about the PVD effect can be more easily ruled out than others. One of
the hypotheses is that vowels with shorter intrinsic duration, such as the lax /I/, tend to pair with
voiceless consonants more often than the longer or tense vowels. As a result, we would observe
a duration difference correlated with [voice], even though the correlation was entirely by chance.
But it is not the case that shorter vowels tend to be paired more often with a following voiceless
consonant than longer vowels. In both the infant-directed adult speech and the child speech in
the ‘Lily’ portion of the Providence corpus (Demuth et al. 2006), the correlation is strongly the
reverse.1 To test this, the log-ratio of the number of occurrences of each vowel type preceding voiced
consonants to the number before voiceless consonants was computed (all with primary stress). This
was compared to the rank ordering of the vowel when they are ordered by their intrinsic vowel
duration (at least as given by Umeda 1975), i.e. 0 for /I/, 1 for /E/, and so on. For adult speech,
the correlation is -.76 (N = 124, 021; p = .01), for child speech -.44 (N = 27, 767; p > .2). The
negative correlations indicate that longer vowels tend to occur more often than shorter vowels with
voiceless consonants. For instance, /aI/ occurs nearly four times as often with a voiceless consonant
than a voiced consonant in the infant-directed speech and is one of the longest vowels, whereas /I/
occurs twice as frequently with voiced consonants than /aI/ but is one of the shortest vowels. If
anything, this empirical distribution of phones would obscure rather than create a vowel duration
pattern like the PVD effect. From this we can rule out one type of epiphenomenal explanation for
the PVD pattern in infants.

It is well known that infants ‘lose’ their ability to make discriminations on non-native acoustic
dimensions. For instance, while English- and Hindi-learning infants at 6–8 months both can dis-
criminate dental from retroflex stops, only the Hindi-learning infants continued to do so at 10–12
months. Or while Spanish and Catalan infants can discriminate a Catalan-specific vowel contrast
at 4 months, only the Catalan-learning infants can at 8 months. (See Mugitani, Pons, Fais, Diet-
rich, Werker, and Amano 2009 for a summary.) The loss of the ability to discriminate non-native
contrasts is certainly a net-gain for the child: the child will be at a disadvantage if he tries to find
meaning for distinctions where none exists. Losing non-native contrasts is just another way to say
forming native categories.

Perceptual abilities are found quite early. As for discriminating values of [voice], a categorical
VOT distinction in perception in English is possible at least as early as 1–4 months, when infants
have been shown to recover from habituation when presented with (short-lag) voiced or (long-lag)
voiceless stops that differ by only a 20ms change in VOT (Eimas, Siqueland, Jusczyk, and Vigorito
1971). Similarly, infants aged 2–2.5 months were shown to discriminate /s/ from /z/ and /t/ from
/d/ in word-final position in a high-amplitude sucking dishabituation design (Eilers 1977). Though
Eilers (1977) pursued the question, it was not entirely clear exactly which acoustic cues the infants
were using. When presented with [at] vs [a:t] stimuli, which adult speakers were reported to identify

1As opposed to the acoustic analysis reported in Chapter 6, this counts all tokens in the entire corpus. Dictionary
definitions were used to categorize consonants as voiced or voiceless.
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as /at/ and /ad/, the infants in the study did not notice a difference. The infants must have been using
other factors, such as voice termination time or release burst voicing.

Ko, Soderstrom, and Morgan (2009) returned to this question in a looking-time task with infants
aged 8 and 14 months. They were played potentially familiar monosyllabic words (bag, back, cub,
cup, pig, and pick) with digitally altered vowel duration. In the mismatch condition, the vowels pre-
ceding voiced codas were shortened by half and vowels preceding voiceless codas were lengthened
by 60 percent. (In the match condition, vowels were first mismatched, and then digitally altered to
return to their original duration — to ensure that all stimuli were similarly digitally altered.) The
stimuli were read in infant-directed speech style and with a “strong coda release” so that F0 and for-
mant transition cues were available to the infant to potentially conflict with the vowel duration cue.
Infants looked at a light located at a sound source which played the stimuli; if the infant detected
a mismatch, looking times would be different in the match and mismatch conditions. Of the eight
conditions in this age × voicing × vowel duration (2 × 2 × 2) design, the only difference found
was that the short vowel with voiced coda conditions in the 14-month-olds stood apart from the rest
with a shorter looking time.

If infants have no linguistic knowledge about the relationship between vowel duration and post-
vocalic consonant voicing, the 14-month-old infants should not have been able to have a different
behavior in match and mismatch conditions. (If the looking time difference was caused by some in-
herent acoustic novelty of the mismatch, then the 8-month-olds would probably have been expected
to show the same pattern, which they did not.) At least in so far as perception goes, and if we accept
the conclusions presented in the study, some linguistic knowledge about the PVD effect must be
available to the 14-month-olds and is acquired after 8 months.

Other work has agreed, albeit weakly, that the PVD effect in infants results from linguistic
knowledge and not a physiological process. Children often omit word-final stops: In a study of three
children age 3;10-7;6 with clinical problems that likely exacerbated their rate of word-final stop
deletion to the rates ranging from 0 to 97%, all three children showed the PVD effect in utterance-
final context when the consonant itself was deleted. The older children had PVD ratios of 1.3 and 1.6
(while the youngest and most impaired child’s ratio was 1.1) (Weismer, Dinnsen, and Elbert 1981).
Still, the fact that a stop appeared to be deleted does not mean that no aspect of its articulation was
performed. The vocal cords might abduct even for a voiced stop in which closure is not achieved,
and this could, in turn, perhaps explain other acoustic differences of [voice]. Also, of course, we
would prefer to have production data from clinically normal children if possible.

The results for Ko et al.’s (2009) 14-month-olds are difficult to interpret, however. This was a
two-by-two design: infants were given short or long vowels and voiced or voiceless codas (meaning
the acoustic cues besides vowel duration). The hypothesis was that the mismatch conditions (short
vowel with voiced coda; long vowel with voiceless coda) would have longer looking times compared
to the match conditions (short vowel with voiceless coda, long vowel with voiced coda). But this
was not entirely born out, as described above. The interpretation of the results depends on how the
conditions are grouped. Ko et al. believed that the asymmetry in the data was about vowel duration:
only in the short duration category did infants notice a mismatch (i.e. incorrect coda voicing);
looking times between the match and mismatch were similar in the long-duration group. They
reasoned that infants are less sensitive to mismatches with long-duration vowels because phrase-
final lengthening and vowel elongation in infant-directed speech make lengthening not an unusual
occurrence, and so not worth discriminating. But Ko et al. could have equally parsed the results
in two other ways. By grouping the categories the other way, only in the voiceless conditions was
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a mismatch (i.e. long vowel) of interest to the infant; in the voiced conditions no looking time
difference was found when the vowel was shortened. In other words, infants were interested when
the vowel was too long.2 Or in the third perspective, only in the match conditions was there a
looking time difference. That is, when vowel duration matches other cues infants look longer at
longer vowels (after all, there is more of it to look at it), but when there is a mismatch infants always
look a long time (which was the expected outcome in any case). Certainly something anomalous
and interesting is happening, but it is impossible to know exactly what.

While something like native categories begin to form well before the end of the first year of
life, this is not the same as storing a phonological feature value in a lexical entry. For instance,
according to van der Feest (2007), Dutch-learning infants at age 1;8 cannot detect when an image of
a word they know is paired with a mispronunciation made by a [voice] mismatch in initial position,
i.e. a picture of a cat paired with the auditory stimulus [pus] (correct) or [bus] (mismatch). This
was tested with a split-screen preferential looking paradigm, with the screen split between the target
image and a distractor. By age 2 the infants have learned the word discrimination task, at least
partially: Looking times at the target and reaction times were different when a voiceless word
was mispronounced voiced, but not in the other direction. A similar effect was found for English-
learning infants aged 14–21 months in Swingley (2009) with minimal pairs such as ‘boat’ versus
‘poat’ (mispronounced in onset) versus ‘boad’ (mispronounced in coda), and ‘cup’ versus ‘gup’
(onset) versus ‘cub’ (coda). There the infants noticed a difference in both onset and coda, based
on looking times to a target and distractor. Apparently, according to van der Feest, Dutch-learning
infants are able to make the perceptual distinction when given the auditory stimuli alone. Thus
infants seem to recognize that the tasks are different, in particular that the task with images is about
word learning and not about acoustic discrimination. It seems the ability to make a perceptual
distinction does not translate immediately into the ability to associate the distinction with a word in
the lexicon and to use that knowledge in this type of task.

It is actually surprising then that the PVD effect would be observed in infants earlier than age 2
when van der Feest’s (2007) results would suggest that the specification of [voice] in lexical entries
is only beginning to be made at this time. This exactly highlights the contrast between studying
phonetic inventories and studying infant phonological knowledge. An infant at, say, age 1;5 would
very well be expected to produce both “voiced” and “voiceless” stops. But at the same time, he
would be expected to not be able to associate the right value of this feature with lexical entries. The
two segments would have to be in essentially free alternation.

Dietrich, Swingley, and Werker (2007) showed in a habituation task that English-learning chil-
dren at age 1;6 do not notice a near doubling or halving of the duration of a vowel in either a
foreign (Dutch) or English nonsense word when paired with its image — although they can make
the discrimination when there is no pairing with an image (Mugitani et al. 2009). On the other
hand, Dutch-learning children do notice the vowel duration mismatch (they dishabituate). Dutch
is a language with a phonemic vowel length contrast, unlike English, and so vowel length must
eventually be stored in the lexicon. It follows from the interpretation of van der Feest (2007) that
English-learning children are correctly not entering vowel duration information into their lexicon

2This may not be about vowel duration, however. In van der Feest (2007), a study of Dutch-learning infants’ perception
of syllable-initial voice, the same direction of asymmetry was found. Mismatches were detected with voiceless onsets
only, and not voiced onsets. But I keep this as merely a footnote because mismatch meant something different in van der
Feest (2007): Rather than a mismatch between two acoustic dimensions, it was a mismatch between the acoustic signal
and the infants’ knowledge of the correct pronunciation of the word indicated visually. Still it is interesting that the same
direction of asymmetry was found.
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while Dutch-learning children are. As Mugitani et al. concluded, English-learning infants aged 1;6
do not have a phonemic vowel length contrast. This rules out one possible explanation for the PVD
effect in infants.

Below is a summary of the evidence against each possible explanation of the PVD effect in
infants besides an active adult-like phonological process:

1. Phonemic Vowel Length: English-learning children will not notice a change in vowel duration
when paired with the image of the word it is in. (Dietrich et al. 2007; Mugitani et al. 2009).

2. Performance: The PVD difference persists in tokens with omitted stops (Weismer et al. 1981)
and infants notice some vowel duration–coda voicing mismatches (Ko et al. 2009).

3. Epiphenomenon: The distribution of vowel types in adult infant-directed speech rules out this
hypothesis.

3.4 Discussion

The review of the literature in this section directs us to a picture of [voice] that emerges in three
stages. In the first stage in the first few months after birth, acoustic dimensions that take part in
[voice] become perceptually accessible, including VOT and only later preceding vowel duration.
During the second stage around 8–14 months, associations between phonetic cues to [voice] begin
to form, as seen by infants’ ability to notice a mismatch between vowel duration and the other cues
to post-vocalic voicing. But at this stage, the infants are not storing this information into their lexical
entries. Only between 20 and 24 months does it appear that voicing information is stored in lexical
entries.

It is still not known exactly what information about [voice] is stored in linguistic knowledge and
lexical entries and when that begins to happen. In van der Feest’s (2007) study of 20- and 24-month-
old Dutch infants, a mispronunciation involved two levels of representation: the underlying [voice]
feature and the surface acoustics and articulation of pre-voicing (or lack thereof). From this study
alone, we cannot infer which level of representation was the basis of the infants’ discrimination at 24
months. Likewise in Ko et al. (2009), we cannot be sure whether the 14-month-old infants’ behavior
was due to having trouble choosing a value for [voice] in the face of incompatible acoustic evidence
(preceding vowel duration versus other cues) or whether the infants merely noticed a statistical
anomaly in the acoustic signal.

The inquiry into what is happening in the minds of language users is a program of study rather
than a single experiment. And when it comes to infants, for whom we must give up the premises
that they are competent speakers and that their grammar is stable, finding answers becomes even
more challenging. The direction forward is to push deeper into the richness of [voice] in infants’
grammars. Some of the evidence presented in this chapter provided evidence that the PVD effect in
particular is a phonological phenomenon in infants, and if true would mean that van der Feest (2007)
and Ko et al. (2009) did indeed reveal facts about phonological knowledge. But nothing is known
for sure and additional evidence, to be presented in Chapter 6, will contribute more perspective to
these questions.
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Chapter 4

The Phonetic Implementation of

Features

In the preceding chapters I explored the acoustic correlates of [voice] and discussed the evidence for
and against each correlate being a part of linguistic competence — meaning, whether the correlate
is encoded mentally. The next question is, if a correlate is mentally encoded, how is it mentally
encoded? This is an important question when investigating language acquisition because it shifts
the focus from merely an observation of the infant’s behavioral changes to an insight into the infant’s
mental representations.

Feature theory has generally carried the heavy weight of classifying phonemes into groups ac-
cording to how they participate in phonological rules (Chomsky and Halle 1968) as well as how
phonemes are realized at the level of phonetics. The [voice] feature separates phonemes into two
groups, the [+voice] “voiced” phonemes and the [-voice] “voiceless” phonemes. At the level of
phonology, this distinction plays a role in such rules as voice agreement in the ‘-s’ morpheme in En-
glish (‘cats’ [s] versus ‘dogs’ [z]) and final devoicing in languages including German. If a process
like these generalizes, that is, if it is productive, it is because it is encoded not as acting on a fixed list
of words (cat, dog) or phonemes (/t/, /g/) but because it picks out its conditioning environment based
on an abstract feature specification (e.g. [-continuant, +voice]). At the level of phonetics, there are
generalizations as well — ones we believe are related to the [voice] feature somewhere within the
phonetic or phonological subsystems of grammar. This is that all of the [+voice] phonemes share
the same properties when it comes to the glottal state (VOT, etc.), aspiration, stop closure duration,
and preceding vowel duration (PVD). But whereas phonological phenomena such as ordered rules
or constraints are investigated within a formal framework, considerably less attention has been paid
to the formal system that connects features to their phonetic counterparts.

A Compositional Phonetics

Anyone working in phonetics and phonology will have some model in mind for how the two parts of
the linguistic system connect, and by and large there is a lot that most will agree on about the nature
of the interface. For one, most would say the phonetic exponence of a phonological segment is what
I would call “compositional”, to borrow the term from semantics. A “compositional semantics” is
one in which the meaning of a term is derived from the term’s parts and how they are put together
(and from nothing else). Here, the phonetic exponence of a phoneme is determined by its featural
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specification (its parts) and nothing else. For instance, once we have identified the acoustic (or
perhaps articulatory) signatures of the phonological features [+voice] and [-voice], [+strident] and
[-strident], [+high], [+back], etc., we could put the pieces together to predict the phonetics of any
segment in the language’s inventory.

This idea goes back to Jakobson and Halle (1956), to whom we owe much of modern feature
theory. They wrote:

The speaker has learned to make sound-producing movements in such a way that the
distinctive features are present in the sound waves, and the listener has learned to extract
them from these waves. (p8)

Unfortunately there is no getting around that phonetics is not strictly compositional. It is readily
observed that despite the use of a small set of binary features to represent the vowel inventory,
the acoustic vowel space is not organized in a discrete grid pattern (even with a rotation of the
vowel space). In other words, the formant targets of vowels cannot be entirely modeled based on
their feature specifications alone: each vowel phoneme misses the target we would expect for it
given its featural specification alone. Similarly, VOT values in voiceless stops vary across place
of articulation: velar ≫ dental, labial (Lisker and Abramson 1964a). This variation cannot be
accounted for by the featural specification either. (Except recall Stevens and Klatt 1974’s proposal
that this is due to a constant acoustic target, discussed in Section 2.7.) And that is just within
a language. Precise VOT values vary from language to language (Lisker and Abramson 1964a),
the formant targets of /i/ vary greatly depending on the number of vowels in the language (Lindau
and Ladefoged 1986), and the timing of the releases in ejectives varies from language to language
(Browman and Goldstein 1986). It can’t be that these features are universal down to the phonetics
and also that the phonetics-phonology interface is strictly compositional. One must be wrong.

But if it weren’t true at all that phonetics is compositional, that would make each phoneme’s
exponence no more than an idiom. It would be a coincidence that phonemes that shared feature
values also shared phonetic properties. The whole of Chapter 2 would be a mystery. Not only
would we ask why /p,t,k/ all contrast similarly with their cognates /b,d,g/, but why should there be
cognates at all?

This conundrum arises not just from how features are put together but also, as I discuss next,
from what the inventory of features looks like and how phonetically rich features are allowed to be.

Narrow versus Algebraic Features

Starting with Jakobson and Halle and continuing even through today there has been a line of inquiry
into what is the phonetic correspondence of each feature known to phonologists. They wrote, “The
sameness of a distinctive feature through all of its variable implementations is now objectively
demonstrable” (p14). (Whether it is an acoustic property or an articulatory property that is invariant
has been another subject of debate (see Clements and Hallé 2010 for a summary), but the difference
is not important here.)

There is one major problem, and that is that after at least a half century of debate on the subject
there is little sign of a consensus on what the phonetics of features actually are. This is not exactly
surprising. Parker (1977) observed early on that of the many acoustic correlates of [voice], not even
one seems to occur in every context in which a consonant can appear. [voice] in initial stops is
distinguished primarily by VOT, a context in which closure duration and preceding vowel duration
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are not applicable. Final stops may be distinguished by preceding vowel duration, but there is no
VOT or closure duration to be measured in this context. Parker wrote, “[E]ach of these acoustic cues
must of necessity be mutually exclusive with at least one of the others,” meaning there is always
one cue that doesn’t occur with the others.

The complex presentation of acoustic correlates of features leads to a perpetual debate (or re-
finement) over such issues as whether voicing in stops of any given languae is a [voice] distinction
(generally tied to glottal vibration) or a [tense/lax] distinction (generally tied to some abstract notion
of force) (Jessen 1998, 2001), or if voicing in fricatives is distinguished by [voice] or the feature
[spread glottis] (generally tied to aspiration) (Vaux 1998).

Jessen (1998, 2001) followed Jakobson and Halle’s (1956) position, what van Rooy and Wissing
(2001) called the “narrow” view of features, that each feature names a particular acoustic/articulatory
distinction that is consistent across contexts. Jessen asked which of [tense/lax] or [±voice] is more
appropriate for German and similar languages including English, and what is the phonetic expo-
nence of these features that is common across contexts? He decided on [tense/lax] for German,
with this sort of contrast realized primarily as a duration difference of the segment, especially in
terms of aspiration. [tense] segments should have some common longer-duration property. Lan-
guages which employ [±voice] have a difference in the presence of glottal vibration during the
segment, i.e. a pre-voicing/short-lag VOT difference, and not a short-lag/long-lag difference which
is a matter of aspiration and thus an implementation of [tense/lax].

Jessen still ran into the problem of defining what the singular phonetic property of [tense/lax]
is. In Jessen (1998) he vacillated between whether [tense/lax] is primarily a matter of aspiration
(in stops) or total phone duration (in fricatives, page 279), and also allows a language to employ
[tense/lax] to make the voicing contrast primarily as a difference in aspiration duration, closure
duration, total duration, and/or preceding vowel duration, and not aspiration duration necessarily.
He noted that Danish, Hindi, Mandarin, and Swati Xhosa’s [tense] stops are aspirated but have
a shorter closure duration than their unaspirated counterparts (opposite to the usual pattern, see
Chapter 2). [tense] cannot both refer to an overall or nonspecific longer duration requirement and
also appear in languages in which [tense] segments are in some way shorter. He also expanded
the feature to other uses, allowing it to be responsible for gemination contrasts. Given all of these
possible meanings of [tense/lax], Jessen’s position is really not narrow at all.

The opposite of narrow features are “algebraic” features, with “the maximal estrangement be-
tween phoneme and sound” (Jakobson and Halle 1956, p. 15). On the algebraic side was Keating
(1980, 1984) who proposed that the phonological feature could have different phonetic representa-
tions from language to language:

[A]t one level of feature representation, all two-category voicing contrasts should be
represented as [±voice], regardless of their phonetic specifications. The intention of
this proposal is that the phonological rules which refer to voicing be equivalent across
languages at a higher level than the phonetic. Thus voicing assimilation and devoicing
processes will be described similarly across languages, regardless of the actual phonetic
contrasts involved. (Keating 1980, p233)

[T]he occurrence of a phonological rule in a language should not depend on, or be
correlated with, the phonetic details of the language. (Keating 1984, p292)

Voice-related phenomena that are found both in languages with an apparent (narrow) [voice] con-
trast and those with an apparent [tense/lax] contrast give support to the separation of phonetics from

37



phonology. Keating (1984) cites the cases of the PVD effect and F0 perturbation as such phenom-
ena. As discussed in Chapter 2, F0 perturbation had the same pattern in languages with a single
voice-like contrast regardless of whether the contrast was primarily voicing or aspiration. Also see
Kingston and Diehl (1994).

But here it gets murky because an author can simultaneously claim that a feature is phonetically
abstract, but only up to a point. Keating (1980) mapped [voice] onto VOT specifically. The abstrac-
tion was not that [voice] could map to any phonetic dimension or combination of dimensions, but
that [voice] maps to particular points on the VOT spectrum: pre-voicing, short-lag, or long-lag.1

Vaux (1998) debated the featural specification of voiced versus voiceless fricatives. While he
leaned on articulatory evidence, he intended to make a phonological point: “It should be noted that
the theory presented here is primarily a theory of phonological rather than phonetic representations”
(p509). And Vaux’s most interesting points have a distinctly phonological appearance. In support
of the use of the aspiration-feature [spread glottis] for fricatives is that “voicing” in fricatives pat-
terns in some cases with the presence of aspiration in stops in what can only be a phonological rule.
The first interesting case that I will summarize occurs in the Armenian dialect of New Julfa, which
has a four-way stop contrast parallel to that of Hindi (i.e. voicing and aspiration both contrastive).
There is a certain ‘k@-’ prefix in which /k/ is aspirated just in those cases when the prefix is followed
by either an aspirated stop or a voiceless fricative (/k+gh-o-m/ → [gh@ghom], /k- savor-ie-m/ →
[kh@savoriem]) but not a vowel, unaspirated stop, or voiced fricative. The second interesting case is
similar: In the Seville dialect of Spanish, /s/ debuccalizes in coda position to /h/, but it also causes
a following stop to become aspirated (/los padres/ → [loh phaDreh]). Given the pairing of fricative
voicelessness with aspiration, Vaux argues that they are governed by the same feature. The artic-
ulatory differences between aspiration and frication and the distance in each example between the
triggered aspiration and its conditioning environment make these easily understood as phonologi-
cal rules rather than phonetic, e.g. coarticulatory, processes. Vaux’s style of analysis is precisely
the type of “algebraic” detached-from-phonetics approach to phonological features that Jakobson
and Halle (1956) sided against. From Vaux’s arguments, nothing about the actual articulation or
acoustics of fricatives is deduced (nor was that intended).

An algebraic linguist needs two types of features. On the one hand, there are phonological
features. These are presumed a part of the grammar and are used to model categorical phonolog-
ical processes. They are the features of Chomsky and Halle (1968). On the other hand, there are
phonetic features, which are terms to identify acoustic or articulatory properties of speech sounds
without regard for any mental representation of those differences. Phonetic features are points on in
the continuous, multi-dimensional space of acoustics or articulation. They are used in the same way
we use terms like “voiceless unaspirated [p]” and “voiced unaspirated [b]”, which may not even
have any particular grammatical significance in a language (i.e. when they are not phonemes). Hav-
ing a distinction between phonetic and phonological features is relevant and useful for conducting
coherent discourse on the phonetics-phonology interface.

Unfortunately the notation of features is confusing, since [+voice] can be used in the narrow
sense to refer ambiguously to both the phonological and phonetic aspects of a phoneme. Keating
(1984) used curly braces for something like what I am calling phonetic features. She wrote of
{voiced}, {vl.unasp.}, and {vl.asp.}, which divide the acoustic space differently than the conven-
tional features [±voice] and [±asp] do. Changing feature notation would not be easy. Since brackets
are used to discriminate phones from phonemes (i.e. [b] versus /b/), standard feature notation such

1This is perhaps a narrow reading of Keating (1980).
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as [+voice] ought to refer to a narrow or phonetic feature only. This square-bracketed “[±voice]”
should describe the difference between the phones [b] and [p] (but not [p] and [ph] which would be
distinguished by [±asp]). If future phonologists want to avoid ambiguity, perhaps a slash-bracketed
“/±voice/” should be used describe the difference between the phonemes /b/ and /p/ (regardless of
whether they are English [p] and [ph] or Dutch [b] and [p]). (For the sake of clarity, however, I
continued to use [voice] throughout to refer to the phonological feature only.)

Redundant Features Undergeneralize

Stevens, Keyser, and Kawasaki (1986) divided features even further. They split phonological fea-
tures into distinctive features — those that signal differences between words — and redundant fea-
tures, which do not. Redundant features provide the listener with added cues that might be useful
in the face of noise. For instance, [+round] enhances the acoustic properties of [+back] because
both lower F2. This, they say, explains why English back [u] is rounded and front [i] is unrounded.
In these cases, [round] is recruited as a redundant feature. Similarly, [back] enhances [distributed]
because “[a] fronted tongue-body presumably provides a favorable posture from which the apico-
alveolar construction can be achieved, whereas a backed tongue-body position provides a posture
that favors formation of the dental or interdental construction” (436), explaining a correlation be-
tween these features in Malayalam.

Stevens et al. also addressed the correlates of [voice] in terms of redundant features. A nasal
murmur at the start of stop closure contributes low-frequency energy, which supports the percep-
tion of glottal vibration (which is also low-frequency energy). In the Tokyo dialect of Japanese,
they report, [k] and [g] sometimes contrast intervocalically as [k] and [N]. In other words, [nasal]
can be recruited into the featural specification of voiced stops to enhance their acoustic contrastive-
ness. How far can redundant features take us in explaining the ensemble of correlates that make up
[voice]? In this model, all of the grammatically-stored correlates of [voice] are encoded as features.
Let us say that English voicing uses [tense/lax] distinctively, which accounts for the duration of
aspiration. Then separate, redundant features must be employed to account for pharyngeal cavity
size gestures, closure duration, F0 perturbation, and the PVD effect. And this is not to speak of how
the realization of [voice] varies by context.

This model of the exponence of [voice] misses the point of a phonological voice feature, how-
ever. First, consider what the specification of /p/ is in a redundant feature model. Like all phonemes,
it is a bundle of features: [+labial, -voice, +tense, -PVD, +F0 perturbation, etc.]. Redundant features
are recruited into a segment’s bundle of features as needed. A segment is free to have whichever
redundant features makes sense for it. For instance, [+back] vowels are not necessarily rounded.
Only the non-low [+back] vowels are rounded. As far as the grammar is concerned, the relation-
ship between [back] and [round] is accidental. It might be the unmarked state that they co-occur,
it might be a historical development, but the grammar does not say that they must co-occur. This
is problematic for [voice]. Under a redundant feature model, it would be an accident that all con-
trastively voiced segments make use of the same correlates of [voice], when each segment is free to
choose its own redundant features. /p/ recruits a redundant feature for F0 perturbation, and so does
/t/, and so does /k/, etc. The redudant feature model is missing a generalization (it undergeneralizes,
see Section 7.1.4). Since [voice] and its acoustic correlates make a regular paradigm, a model that
leaves the relationship between [voice] and its components unspecified is not acceptable — at least
not until the paradigm is shown to be wrong. What is needed is a model in which multiple acoustic
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properties are stored within a single feature without the requirement that they all be present in all
contexts.

Only if a feature can be more abstract than a single acoustic/articulatory dimension can a com-
plete account of [voice] be modeled within the grammar. Stevens et al. (1986) introduced the notion
of a “cover feature” that combines several low-level features. Jessen (1998) explored the possibility
that a feature has a basic (e.g. primary) correlate that is essentially invariant across contexts but
may also be associated with other secondary correlates that are potentially context-dependent. In
the case of [tense/lax], the basic correlate is the presence of aspiration for [tense] with secondary
correlates including preceding vowel duration, etc. Cover features and Jessen’s features differs from
the redundant feature model by allowing [voice] to subsume other aspects of acoustics and articula-
tion, and explaining why the correlation applies necessarily to all segments marked for [voice]. In
a model using cover features it might be that “[-voice] = [+spread.glottis +tense, -PVD, +F0 pertur-
bation]” and this is a part of the grammar, and /p/ simply is [+labial, -voice]. The correlates of voice
necessarily carry from one phoneme to the next, as the data seems to indicate. Note that this isn’t
a departure from the narrow interpretation of features. A feature of this sort still has a particular
phonetic exponence across contexts, but the exponence involves several acoustic dimensions.

Where is the PVD in this model?

One of the dimensions in particular should raise a red flag. If the PVD effect is treated as a compo-
nent of [voice], then the model allows a feature to encode something about the phonetic realization
of the preceding segment. This model might violate our sense of the linguistic system as operating
segment-by-segment from left to right, or our view of phonetics as being compositional. That is
not very appealing, and it is certainly not very narrow. But it would not be the first complex phe-
nomenon to be proposed to be encoded within a feature. Van Rooy and Wissing (2001) proposed
that even Optimality Theory constraint rankings could be encoded as part of a feature. Observing
(or claiming) that regressive voicing assimilation of the regular phonological type found in many
languages besides English is found in a language whenever the voicing contrast in the language is
made by narrow [voice] (versus [tense/lax]), they propose that RVA is not a separate phenomenon
from narrow [voice]. “[RVA] is an inherent consequence, even property, of the distinctive feature
[voice],” they wrote.

But this is not the only way to think about what is going on. Browman and Goldstein (1986)
proposed an interesting account of the PVD effect within the framework of Articulatory Phonology.
Rather than thinking of the duration of the vowel as a parameter which is affected by the follow-
ing [voice] feature, they proposed that the duration is a consequence of the relative timing of the
gestures involved in the two segments. It is relative timing, in terms of a phase relation, that is the
parameter affected by [voice]. “Phase” in Articulatory Phonology is used like that in waves but
means something like the scheduled time of an articulatory event. “[T]he phase angle for /b/ rela-
tive to the vowel is somewhat greater than it is for /p/ (approximately 205 degrees vs. 180 degrees)”
(p246), they wrote. If the consonant starts later, then the vowel will come out longer. Browman
and Goldstein’s account of the PVD effect is that it is actually just a property of the post-vocalic
consonant, which is a handy point of view since it allows the PVD effect to be accounted for not
with a rule that involves both the vowel whose duration changes and the following consonant which
houses the [voice] specification, but with the consonant alone. This exemplifies one of Articulatory
Phonology’s premises: phonetics appears more discrete when we view it along the right dimensions.
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Figure 4.1: A sketch of the phonetic implementation of [voice] in English, including the dimensions
VOT, closure voicing, and closure duration (see Chapter 2), and phase (see this section).

This is a concrete implementation of the compensatory lengthening/shortening account of the PVD
effect discussed in Section 2.4.3. Unfortunately, evidence indicated that the PVD effect could not
be fully described by a compensatory adjustment.

Finally, must redundant features be features? In the specification of [-voice] above — “[-voice]
= [+spread.glottis +tense, -PVD, +F0 perturbation]” — we are still forced to define the expo-
nence of each of the redundant features if we cling to a compositional phonetics. But what if
the [+spread.glottis] in aspirated stops differs in exponence from the [+spread.glottis] in voiceless
fricatives (which could be true in the New Julfa case described above), or different from voiceless
sonorants? Let’s say this were true, then we perhaps might as well get rid of the intermediate level of
abstraction for the redundant features. Instead, [-voice] would specify its exponence in continuous,
phonetic space directly without reference to the values of other features: [-voice] = [VOT=40ms,
closure=75ms, etc.]. This is sketched in Figure 4.1.

Earlier I noted that Bell-Berti’s (1975) data indicated pharyngeal gestures are recruited by speak-
ers in an ad hoc manner to achieve a more abstract target, such as to maintain a certain prescribed
amount of voicing. Where does this fit in the model? On the one hand, ad hoc recruitment of
gestures looks a lot like redundant features and it is exactly parallel to Kluender et al.’s (1988) ex-
planation of the PVD effect (which I rejected) that it is recruited to support another aspect of the
[±voice] difference. Do the pharyngeal gestures undermine a model that denies undergeneraliza-
tion? No. The ad hoc nature of pharyngeal cavity articulators was on a speaker-by-speaker level,
not a phoneme-by-phoneme level. That is, if there were secondary features here they would be
the specifications of different particular muscles for different phonemes. But that is not what was
seen. There could still be, in principle, a fully generalized specification across phonemes in the
[voice] paradigm regarding the maintenance of the glottal signal — even if that specification may
vary slightly from speaker to speaker in terms of the muscles used.

Final Thoughts

At this point it is hard to say more about the mental representations of the phonetic aspects of
features without adopting a fuller picture of the phonetics-phonology interface and the phonetic
subsystem of the grammar (such as that provided by Articulatory Phonology). Any model that
accepts an at least partially compositional view of phonetics must deal with the point of this chapter,
namely that features must specify their phonetic implementation, which may be along numerous
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dimensions. But that is not the end of this chapter, since every model should make predictions.
The crucial prediction of this model is the following: so goes [voice], so goes its correlates.

As opposed to a redundant feature model, this model predicts speakers will carry their correlates
of [voice] to new phonemes, such as in L2 learning. Whether this actually occurs is not known
since testing this is not readily possible without a rich model of L2 acquisition and phonological
transfer. Flege and Hillenbrand (1986) and previous work by Flege tested native English, French,
Swedish, Finnish, and Arabic speakers’ perceptions of the English /s/-/z/ contrast by altering vowel
and consonant duration along a continuum. This is the sort of experiment that might bear on the
question. (Arabic [voice] does not involve a duration difference of either the preceding vowel or
the consonant; Swedish and Finnish lack a /z/ phoneme; and French is similar to English.) The
case of Swedish and Finnish speakers is the most relevant since they are learning a new phoneme,
/z/. Would they apply their (L1) knowledge of [voice] to the new phoneme? First, what does
[voice] look like in their native language? As indicated in Table 2.2, Swedish probably does not
have a PVD difference, or not one nearly as large as in English. Nevertheless, even the Swedish
speakers inexperienced in English made use of vowel length in making perception judgments. This
is surprising at first, but is easily explained either in terms of these speakers reinterpreting the vowel
length difference as the phonemic length contrast found in their native language (as suggested in
the paper), or alternatively that they are simply very good learners. Neither Swedish nor Finnish
nor inexperienced Arabic speakers showed sensitivity to frication duration. Since Arabic does not
make use of a frication duration cue in any case, that result is not relevant here, and I am not aware
of whether that correlate is used in either Swedish or Finnish (though I suspect not if they have
a phonemic length contrast on consonants). What we can take away from Flege and Hillenbrand
(1986) is that answering questions of this sort is not easy and requires choosing the right languages
to control for many factors.

Finally there is the question of how this model relates to first language acquisition. In a model
such as this, the acquisition of [voice] is not just a matter of mapping phonemes to phones but ac-
quiring the generalization of the acoustic properties across phones. The full acquisition of [voice]
requires solving several subproblems: storing the correct feature values in lexical entries, determin-
ing which phonetic dimensions are relevant to each value of the feature, setting the continuous-
valued parameters, and perhaps mediating that by segmental context. Acquisition might follow a
number of stages: encoding phonemes with a large number of narrow features, generalizing (and
possibly overgeneralizing) the co-occurrence of narrow features by replacing them with new alge-
braic features, and finally learning the idiosyncratic differences that do exist between phonemes.
Just as in Chapter 3, the direction forward is to start looking inside [voice].
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Chapter 5

Experiments 1–2: Adult Speech

What infants learn is a function of their environment. Two experiments are reported in this chapter
which fill in gaps in our knowledge of the preceding vowel duration (PVD) effect in adult speech.

Although the PVD effect has been reported widely in studies of English, no comprehensive
investigation into dialectal variation of the phenomenon had previously been reported. Dialectal
variation is an important factor for an infant study so that we can be reasonably sure the infants
being studied are learning a language (i.e. dialect) in which the PVD effect in fact occurs. The first
experiment in this chapter was a corpus study of vowel duration in the Atlas of North American
English (Labov, Ash, and Boberg 2006). The study found that the PVD effect appeared in every
dialect region of North America covered by the atlas. Though the magnitude of the PVD effect
varied from dialect region to dialect region, the variation was not so great as to put into question
that all infants exposed to one of these dialects will be in the environment of the PVD effect.

The second experiment described in this chapter was a production study of adult speech. Several
important questions remained about the PVD effect that had not been directly addressed in the
literature. The study was carried out to establish the effect of syllable structure and flapping on the
magnitude of the PVD effect, the effect on F1 of the preceding vowel, and to test directly whether
the PVD effect is a productive process by using nonsense words.

5.1 Experiment 1: English Dialectal Variation

The following was conducted through joint work with Keelan Evanini and was first reported in
Tauberer and Evanini (2009).

The Atlas of North American English (Labov et al. 2006), henceforth ANAE, was used to
measure any dialectal variation in the PVD effect across the dialects of the atlas. Wide variation
in the PVD effect has been found across languages, and while the PVD effect had already been
investigated specifically in several dialects of American English, Evanini and I reported the first
comprehensive survey across North American English.

5.1.1 Previous work

Two past studies have investigated dialectal variation of PVD within American English.
Veatch (1991) conducted what we ought to consider a preliminary study using only a handful

of speakers spread across four dialects of American English: speech in Alabama, Chicago white
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speech, Jamaican Creole, and Los Angeles Chicano speech. His results were fairly inconclusive.
For Alabama, Chicago white, and Jamaican Creole, one speaker from each dialect showed a weak
but significant duration difference between vowels before voiced and voiceless consonants (ratios
ranged from 0.93–1.16). The Los Angeles Chicano speaker had a statistically insignificant differ-
ence. This of course does not provide any support that Los Angeles Chicano speech lacked the PVD
effect, but it left open the possibility.

Jacewicz, Fox, and Salmmons (2007) collected a more rigorous corpus from 18 speakers in
each of Madison, Wisconsin; Columbus, Ohio; and western North Carolina. Each dialect showed a
duration difference by voicing, but an interaction by dialect was found indicating that the PVD effect
was not the same in all dialects. However, other factors such as overall differences in mean vowel
durations by dialect would impact the PVD effect and might indicate, statistically, an interaction by
voicing and dialect where the effect is actually unrelated to the PVD effect.

While not a comparison across dialects, Baran and Seymour (1976) measured the PVD effect in
5-year-old speakers of African American Vernacular English (AAVE). Baran and Seymour thought
AAVE an interesting dialect to study in this case because of its supposed devoicing of final conso-
nants, although the devoicing of final consonants is by no means unique to AAVE among English
dialects (e.g. devoicing of fricatives is common generally, Smith 1997). Their data, collected from
six minimal pairs spoken by 20 children, showed a PVD ratio of 1.4. This result contributes to a
picture that the PVD effect is universal in dialects of American English, but it also is an interesting
case for showing PVD dissociated from other aspects of [voice] including phonetic voicing itself.1

5.1.2 Methodology

Description of the ANAE corpus

The ANAE was collected by Labov et al. (2006) in an attempt to provide a comprehensive view of
the current sound changes in progress in all of the major dialect regions of North America. Previous
corpora that contained dialect variation were not adequate for dialectological purposes since they
did not control well for the geographic background of the speakers and did not provide a broad
sample of cities and subregions from within the major dialect regions.

The ANAE interviews were conducted over the telephone so that speakers from all regions could
be accessed efficiently. The sampling methods ensured that the corpus contains more accurate and
more fine-grained dialect information than existing corpora: at least two speakers were selected
randomly from every city in North America with at least 50,000 inhabitants, and only speakers who
had lived their entire lives in that city were chosen. In total, 762 speakers were interviewed for the
ANAE. Of these, a subset of 439 were selected for detailed acoustic analysis by the ANAE authors.
Interviews were a mix of spontaneous speech, minimal pair tests, and other elicitation methods,
though the speech style was not consistently recorded and so could not be controlled for below.

Table 5.1 provides the dialect region affiliation of the speakers in the portion of the corpus used
in this study. In addition to dialect region, we also investigated phenomena at the more specific
dialect level (as defined in Labov et al. 2006) and report results for the Boston and Maine speakers,
both part of the Eastern New England dialect region.

1Baran and Seymour did not report anything about the acoustics of the supposedly devoiced segments, leaving open
the question of whether they were actually devoiced and whether the devoicing differs from the speech of 5-year-olds in
other dialects, e.g. whether this is a phonetic or phonological process.
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Dialect Region Speakers

North 124
South (Region) 76
Midland 63
West 41
Canada 28
Western PA 13
Mid-Atlantic 12
Eastern New England (ENE) 10
Southeast 10
New York City (NYC) 5

Total 382

Dialect Speakers

Boston 5
Maine 2
Inland North 61
Pittsburgh 6
South (Dialect) 58

Table 5.1: Counts of speakers used in this study by dialect region or dialect in the ANAE corpus.

In total, ca. 300 vowels (always bearing primary lexical and phrasal stress) were analyzed in
the ANAE corpus for each of the 439 speakers, yielding 133,723 tokens. We omitted from analysis
the 26 speakers labeled as coming from dialect “T” in the ANAE corpus, since these speakers do
not form a coherent dialect region. Also, a small portion of the audio files had to be excluded
due to inadequacies of the corpus from a speech processing perspective. We also only considered
word-final syllables, as the position within a word has a large effect on duration. In total, the results
presented below are based on an analysis of 34,439 tokens from 382 speakers.

Duration measurement and normalization

In order to obtain duration measurements for the vowels in each of the tokens, the corpus was
processed with the forced alignment system described in Yuan and Liberman (2008). The system
is based on monophone hidden Markov models with 32 gaussian mixture components on 39 PLP
coefficients trained on 25.5 hours of speech from the SCOTUS corpus.

We normalized durations not by speaker as is usually done but in order to minimize potentially
confounding contextual effects not of interest to our study. A correlation in the corpus between
vowel quality and the voicing of the following consonant, for example, would undermine the in-
terpretation of the results; factoring out variables not of interest also reduces the variation in the
remaining data and increased our ability to make statistical inferences. We normalized durations by
fitting a linear model to the log-duration data and then subtracting from each duration measurement
the predicted components due to the unwanted factors. The model contained vowel identity and
post-vocalic place and manner of articulation as predictors.

The log-duration model we chose treated each factor as having a multiplicative effect on du-
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ration, rather than an effect in absolute terms (i.e. seconds). It is somewhere between a simple
linear model and the more complex model proposed by Klatt (1973) based on the notion of “incom-
pressibility” — that each successive shortening effect on a vowel has a diminished effect because
of physical bounds on the speed of articulation. Because the duration phenomena do not combine
precisely multiplicatively (see Section 2.4), some confounding correlations no doubt remain after
this process.

5.1.3 Results

Vowel duration by region

Table 5.2 reports mean duration in word-final syllables by dialect region. The region with the
shortest vowels was New York City at 133 ms, while the South and Southeast regions had the
longest mean durations at 156 ms and 159 ms, respectively. The differences between the South and
the two regions ranked directly below it, the Midland and the West, were not significant, but to the
next region, Western PA, the difference was significant (Tukey post-hoc p < .01).

Region Duration Region Duration

NYC 133 Western PA 150
ENE 140 West 153
Canada 142 Midland 154
Mid-Atlantic 146 South 156
North 149 Southeast 159

Table 5.2: Mean durations (ms) of vowels in word-final syllables by dialect region.

At first glance, Table 5.2 might seem to underlie the commonly held perception that Southerners
speak with a slower overall speaking rate than other regions. However, we found no such regional
difference in a large corpus of spontaneous speech containing regional variation (Cieri, Miller, and
Walker 2004): the mean speaking rates for 445 Northern and 1,421 Southern speakers from the
Fisher corpus are both 193 words per minute (it is impossible to calculate speaking rate in the
ANAE corpus, since the interviews were not transcribed). Speaking rate, then, does not explain
the vowel duration difference observed. We gave an alternate explanation in Tauberer and Evanini
(2009).

Vowel Length Effect

Table 5.3 reports the vowel duration ratio (mean duration before voiced obstruents to that before
voiceless obstruents) in each of the dialect regions for vowels preceding a stop, fricative, or affricate.
The dialect regions show similar duration ratios in the range of 1.15–1.26. A duration ratio around
1.2 is what would be expected given the nature and mix of the speech tasks in the corpus. Durations
were normalized as described above. The standard errors suggest that there are dialect differences,
such as between the South (ratio 1.18, s.e. 0.02) and the Southeast (ratio 1.24, s.e. 0.02) and Western
Pennsylvania (ratio 1.26, s.e. 0.04).

The only outliers among the dialects were the Boston and Maine dialects, with ratios of 1.34
(s.e. 0.04) and 1.00 (s.e. 0.10), respectively. (These dialects also had a very small number of
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tokens applicable for analysis in this section — 356 and 175 — from just six and two speakers,
respectively.) The Maine dialect’s duration ratio at 1.00 is considerably less than what has been
found in any comparable study of English, but a regression analysis of normalized log-durations
showed the interaction between voicing and membership in the Maine dialect to be nonsignificant.
The Boston dialect differed significantly from the rest (p < .02).

Region Ratio (SE) Region Ratio (SE)

NYC 1.15 (.06) North 1.23 (.02)
South 1.18 (.02) ENE 1.24 (.06)
Canada 1.18 (.03) Southeast 1.24 (.02)
West 1.20 (.03) Mid-Atlantic 1.23 (.06)
Midland 1.20 (.03) Western PA 1.26 (.04)

Dialect Ratio (SE) Dialect Ratio (SE)

Maine 1.00 (.10) Boston 1.34 (.04)

Table 5.3: Post-vocalic voicing duration effect as a ratio (pre-voiced vowel duration to pre-voiceless
duration) for the dialect regions and two dialects, and standard errors of the mean.

The values reported in Table 5.3 are the means of the PVD ratios computed for each speaker.
This differs from what was reported in Tauberer and Evanini (2009) which was the speaker-pooled
PVD ratio. The choice here to compute means by speaker first allowed for standard errors to be
computed.

Some of the dialect differences can perhaps be attributable to overall vowel duration differences.
The dialect region with the shortest vowels, NYC, also had the smallest voiced–unvoiced ratio, as
expected based on incompressibility (Klatt 1973). On the other hand, the difference between the
South and Southeast cannot be explained based on their overall vowel durations because their mean
durations were similar.

In summary, the PVD effect appears across dialects of American English, with some dialectal
variation in magnitude and with outliers warranting further study.

5.2 Experiment 2: Adult Lab Speech

This section describes a production experiment carried out to establish the effect of syllable structure
and flapping on the magnitude of the PVD effect and the effect on F1 of the preceding vowel. It
also addresses two other aspects of the PVD effect in light of the future research direction in the
acquisition of the PVD effect: the effect of speaking rate and whether the PVD effect is a productive
process.

The common wisdom regarding the PVD effect and flapping had been that flapping induces
incomplete neutralization. This was supported by Fox and Terbeek (1977) and Huff (1980), as
discussed in Section 2.4.2. However, while both studies reported PVD differences (much smaller
than what is usually found in English), neither study included a control group. Two problems
arose in interpreting the results. First, because the PVD effect is highly variable depending on
speaking task and phonological context, without a comparison to same-task data without a flap it
was premature to make a strong statement that flapping in fact decreases the PVD effect. Second,

47



because flapping occurs in a particular stress context, it had not been shown that the incomplete
neutralization (descriptively speaking) has to do with the flapping or the context. If might have
been that the PVD effect was reduced because the post-vocalic consonant was not word-final (Klatt
1973) or because it syllabified with the vowel to its right, and not because it was a /t,d/ turned into
a flap. An effect of syllable structure would be quite reasonable because in syllable-initial position
other [voice] cues such as aspiration become available, lessening the communicative load of PVD.
I answer these questions below.

Secondarily, preliminary evidence from Huff (1980) suggested that the effect on preceding
vowel F1 due to [voice] persisted despite a flapped /t,d/. Normally F1 of a monophthong is lower
preceding a voiced consonant on the order of 10–100 Hz (see Section 2.6). If it were true that flap-
ping does not neutralize this effect, it would indicate that the effect on F1 was phonological rather
than phonetic. Additionally, it would show that speakers had knowledge of the underlying form,
eliminating the lack-of-knowledge hypothesis for the incomplete neutralization of the PVD effect
discussed earlier (see page 16). If the F1 difference is neutralized by flapping, then one of the two
hypotheses is likely wrong.

The high variability of speaking rate in the developing child has prevented measures of the PVD
difference in children from being properly compared with other measures at different ages. Because
of the importance of understanding the interaction of speaking rate and the PVD effect, I sought
to replicate some of the work of Port (1981), who showed that the PVD effect is larger in slow
‘tempo’ speech than in fast ‘tempo’ speech. I initially intended to use the results of manipulating
this variable to understand whether changes in vowel durations in children are a result of changing
speaking rate or the development of the PVD effect.

Taking the tentative assumption that the PVD effect is not based in physiology, the last aspect of
this experiment was to measure PVD ratios in minimal pairs of nonsense words. Though it was fully
expected that the PVD difference would show up productively, an effect of processing an unfamiliar
word may nevertheless affect the magnitude of the PVD effect. Having the results of this task at
hand is an important cornerstone before moving on to infant speech in Chapter 6.

5.2.1 Methods

Five university students, all native speakers of English with no prior knowledge of the purpose of the
task, participated in the experiment, three associated with the linguistics program at the University.
The participants were compensated $15 for their time. The participants were asked to read a list
of sentences provided to them, which they had not seen before. Recordings were made in the
University’s linguistic department’s Phonetics Lab’s sound booth at 44,000 Hz.

Each sentence was a frame sentence of the form “Say for me.” containing a target word.
Target words contained a VC sequence either in a monosyllabic word, in the first syllable of a
trochaic disyllabic word (the ‘tautosyllabic’ condition), or crossing a syllable boundary in a trochaic
disyllabic word (the ‘heterosyllabic’ condition). The words came in minimal or near-minimal pairs,
differing in the voicing of C and potentially in the segmental content after C (only when no minimal
pair could be found). They were drawn from a list of 163 real English and novel nonsense words
listed in Appendix A. Vowels were mixed and included both monophthongs and diphthongs. C
ranged over the six stop consonants /p,b,t,d,k,g/. It was expected that flapping would occur for /t,d/
in the heterosyllabic target words and nowhere else. We will call these ‘flap target words’. Some
words given to the participants were discarded due to experimenter error. Sample target words were:
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thought, thawed (monosyllabic); crapshoot, crabmeat (tautosyllabic); seater, cedar (het-
erosyllabic)

nonsense words: chack, chag (monosyllabic); geetmonk, geedmonk (tautosyllabic);
nuckist, nugist (heterosyllabic)

The list included words with the short-a vowel which is known to have allophonic or idiosyn-
cratic variation depending on [voice] (e.g. Boberg and Strassel 2000) in some dialects. Several of
the five participants reported growing up in a city which is part of a dialect region in which short-a
tensing occurs, but all participants may very well have had some version of this effect.

The reading task was divided into five blocks. In each block, subjects were given each of the
sentences to read three times, presented in a random order (although subject confusion resulting
from double-sided instructions resulted in some words being read fewer or more times). Each block
of the task presented the subjects with either the real words or the nonsense words and participants
were instructed to speak in either a normal, slow, or fast speaking rate. Prior to the recording subjects
were informally told what a fast or slow speaking rate might sound like, with spoken examples from
the experimenter (me; but not using any of the target words). The sequence of experimental blocks
is given in Figure 5.1. Note that the nonsense words were only recorded at the normal speaking
rate, and the second iteration of nonsense words in block 4 was a filler to allow the participants
to find their normal speaking rate again between switching from slow to fast. The recordings of
block 4 were discarded. Excluding block 4, an average of 967 tokens were recorded per participant.
Average recording time was approximately 45 minutes per speaker.

Block Word List Speaking Rate
1. Real Normal
2. Fake Normal
3. Real Slow
4. Fake Normal (filler)
5. Real Fast

Figure 5.1: Experimental design for Experiment A.

Recordings were passed through the Phonetics Lab’s forced alignment toolkit (Yuan and Liber-
man 2008). The forced aligner time-aligns phone boundaries according to an orthographic transcript
and pronunciation dictionary. The system is based on monophone hidden Markov models with 32
gaussian mixture components on 39 PLP coefficients trained on 25.5 hours of speech from the
SCOTUS corpus. It is based on the HTK software toolkit.

As the participants were asked to read from a list, a transcript was almost readily available —
almost, owing to the fact that most participants strayed from the instructions somewhere. Phone
boundaries for the target vowels were then manually corrected based on spectrograms, with vowels
located by clear formant structure and a fast intensity rise and decline at the start and end. Resulting
from poor design choices by the experimenter, several target words contained sonorant consonants
preceding the target vowels making it difficult (if not impossible) to determine the boundary between
the preceding consonant and the vowel. In these cases, the boundary was often left where the forced
aligner located it.

First formant frequency of the preceding vowel was also measured automatically using Praat
(Boersma 2001), with a time step of 5 ms and other standard options. The maximum value was
found for the measurements within the bounds of the vowel. No hand correction was performed.
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5.2.2 Results

Vowel Duration

For each speaker and separately for each block, the mean duration of each vowel was computed
over the roughly three utterances of each word. A PVD ratio was then computed for each minimal
pair (still separately by speaker and block) by taking the ratio of the two previously computed mean
durations (the mean vowel duration before voiced stops divided by the mean vowel duration before
voiceless stops). Only minimal pairs for which the speaker spoke each half of the pair at least twice
were included.

Considering the real, monosyllabic words at a normal speaking rate, the median PVD ratio
ranged among the speakers from 1.25 to 1.70 (a one-way ANOVA indicated a highly significant
main effect for speaker, p < .001). This is likely a result of variability in speaking rate and flap
production. While the ratio indicates the magnitude of the difference on the whole, it does not
indicate the separability of the two groups. High variance in vowel duration could mean that the
distributions of durations greatly overlap and so a listener could not reliably determine the category
from the token, even if the means are far apart. To measure the separability of the distributions,
the number of standard deviations between the mean voiced and mean unvoiced durations were
computed. This is called the separability z-score below. (Because variance was seen to increase
with duration, and the unvoiced and voiced categories differ in duration, durations were considered
on a log scale so that the unvoiced and voiced categories would have a similar variance. See Rosen
2005.) As with the ratio computation, a separability z-score was computed once for each speaker,
block, minimal pair triplet. Mean separability z-scores ranged from 2.4 to 7.0 standard deviations.

The first question was whether the apparent reduction in PVD ratio seen for flapping (Fox and
Terbeek 1977; Huff 1980) was in fact true, and whether it was due to flapping or a syllable boundary
separating the vowel from the post-vocalic consonant. Indeed, in flap target words the PVD ratio
is smaller. The mean PVD ratio for real disyllable words at a normal speaking rate, excluding the
flap target words, was 1.29 (or a mean absolute duration difference of 25 ms). For the flap target
words of these, the mean ratio was 1.07 (a mean absolute duration difference of 9.6 ms). Though the
ratio was smaller, it still represented a statistically significant difference between vowels preceding
voiced or voiceless consonants (paired t-test, p < .02). However, at least some and perhaps many of
the [t,d] segments were not realized as flaps — this was not checked comprehensively. We cannot
be sure that the reason the neutralization appears incomplete here was not due to the fact that the
rule of flapping was not uniformly applied by the speakers in the first place.

This PVD difference in flap target words was not due to the syllable boundary between the
vowel and consonant. Excluding flap target words, the PVD ratios in the tautosyllabic and hetero-
syllabic groups (real words at normal speaking rate) were virtually the same, 1.23–1.24. Nor was
the effect due only to place of articulation: in the tautosyllabic group there was no significant main
effect of place of articulation. (See Figure 5.2.) Figure 5.3 shows the PVD ratios by place of artic-
ulation in the heterosyllabic group only, showing the /t,d/ pairs to be different. (The difference was
highly significant, p < .001; Speaker 1 was excluded as she was impressionistically deemed to not
consistently flap.)

The second question was what the effect of speaking rate is on the PVD effect. Recall that
speakers were asked to speak at normal, slow, and fast speeds, and given brief examples, but their
actual tempo was otherwise not enforced by the experimental design. Whether the speakers adjusted
their tempo according to the instructions was determined by measuring mean vowel duration (the
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Figure 5.2: PVD ratios. Data points summarized by the boxes are the voiced/unvoiced ratio for
each minimal pair separate by speaker. Left: By syllable structure, excluding flap target words in
the heterosyllabic group. Right: By place of articulation in the tautosyllabic group. Median values
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vowels in the relevant VC pairs) and the duration of the frame sentence minus the duration of the
vowel. Both measurements show speakers were able to adjust their speaking rate, although the
distributions for the three speaking rates were considerably overlapping. The PVD ratio also varied
by speaking rate in the expected manner, from 1.19 in the fast condition to 1.35 in the slow condition
(Figure 5.3). The difference was highly significant (one-way ANOVA, p < .0001).

The last question was whether the phenomenon is productive in nonsense words. It appears to
be so. The PVD ratio was nearly identical for real and nonsense words (Figure 5.4). (Participants
were free to choose their own pronunciations for the nonsense words and frequently chose different
vowels for different halves of a minimal pair. This leaves open the possibility that phonotactic
regularities may make it appear that a PVD difference exists, if participants tended to choose vowels
with a longer inherent duration in pre-voiced-stop context. But based on the survey of adult infant-
directed speech, in Section 3.3, this is unlikely to be the case.)

Vowel Quality

Two analyses were made regarding vowel quality. In the first comparison of F1 between the voiced
and voiceless halves of the minimal pairs, only real words in the heterosyllabic condition with
monophthong vowels were considered. This is the condition in which pre-voice F1 is predicted to be
lower. Outside of a flapping context (i.e. place of articulation was velar or labial: backing/bagging,
chucking/chugging, flocking/flogging, sopping/sobbing, seaport/seabed), F1 was on average 68 Hz
lower before the voiced consonant (N=73, p < 0.0002). (The fake words showed an even larger
difference.) In a flapping context (i.e. alveolar place of articulation: seater/cedar, catty/caddy,
petal/pedal), the difference was not significant for the real words (N=43), fake words, or all words
combined. See Figure 5.5.

The second analysis was of the diphthong /aI/ which undergoes Canadian Raising in the voice-
less context (the lowering of F1, see Section Section 2.6). The question here was whether Canadian
Raising was neutralized by flapping. No real-word tokens were included with the diphthong /aI/
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Figure 5.5: Effect of post-vocalic voicing on vowel quality. Vowel names are located at the mean
max-F1/min-F2 coordinate for tokens before voiced consonants. Arrows indicate the correspond-
ing vowel quality before voiceless consonants. (Arrow lengths are computed as the mean of the
within-speaker, within-minimal-pair differences, rather than pointing to the mean vowel target.)
Monophthongs are in red, diphthongs in blue. As opposed to the results reported in the text in this
section, all collected tokens are included in this graph except those in the flapping context.

followed by an alveolar stop, but the made-up words “jiteing/jiding” were included. This pair was
intended to be spoken with the /aI/ diphthong, but since participants were only given the words in
orthographic form they often but not always used the intended vowel. Participants produced tokens
following the pattern of Canadian Raising, with F1 141 Hz lower, on average, for the voiceless
halves of this minimal pairs (N=5, p < 0.007).

5.2.3 Discussion

Vowel Duration

To summarize the results so far, past work has been replicated with a proper control condition. The
PVD ratio was previously found by Klatt (1973) to be greater in monosyllables (1.5) than in the
first, stressed syllable in disyllabic words (1.3). Similar ratios were found here: 1.41 and 1.24, re-
spectively. Fox and Terbeek (1977) and Huff (1980) previously reported small magnitudes for flaps.
No significant effect was found for adding a syllable boundary between the vowel and consonant
(tauto- vs. heterosyllabic conditions) or varying place of articulation alone, but the interaction to
produce flapping did reduce the PVD difference. An effect of speaking rate was replicated, with
increased speaking rate correlated with decreased PVD ratio. Finally, the PVD effect appears to be
productive, assuming it is not physiologically based.

With regard to flapping, the experiment here as well as that of Fox and Terbeek (1977) crucially

53



relied on the assumption that speakers have the underlying forms for the stops that we think they do.
For the flapped pairs here including ‘petal’/‘pedal’, it is not a trivial assumption that the speakers
have an underlying /t/ and /d/ when morphological alternations that reveal the underlying form of
these words are exceedingly rare. (On the other hand, the participants in this study were reading
from a printed word list, which provides an orthographic hint.) Without a distinction in underlying
form, no vowel duration or F1 difference would be expected — and while some vowel duration
difference persisted in the flap target words, no difference was found here for F1. On the other hand,
Canadian Raising was observed to persist in a flapped nonsense word, which necessarily has less
evidence for its underlying form than a real word. As a result, we must conclude that orthographic
information is enough to provide the speaker with an underlying value for [voice] and that the
neutralization of the PVD and F1 effects was due to the neutralization of [voice] in the flapped
segment. (This is as opposed to what was noted earlier, that Huff’s (1980) results indicated that F1

was not neutralized.)2

Vowel Quality

Figure 5.5 showed the diverging effect on vowel quality of post-vocalic voicing: 1) the mid and low
monophthongs are lowered in voiceless context, 2) the high vowels are lowered to a much smaller
extent, and 3) the front- and up-gliding diphthongs are raised in voiceless context. (This leaves out
the AW diphthong which stands apart.) Points 1 and 3 are not new findings. As discussed in Section
2.6, Summers (1987) reported that F1 of /a/ and /ae/ were higher (i.e. the vowel was lowered) in the
voiceless context by around 10–20 Hz at the onset of the vowel, 35–45 Hz during its steady-state,
and 90–140 Hz at the onset of the obstruent. Moreton (2004) found in the front- and up-gliding
diphthongs (/aI,OI,eI/) lower F1 (i.e. the vowel was raised) by roughly 10-25% before a voiced
stop. (Similar but smaller effects were found for F1 at the nuclear target.) This lead Moreton (2004)
to propose a “Pre-Voiceless Hyperarticulation” hypothesis, that monophthongs and diphthong off-
glides are peripheralized before a voiceless stop.

Data on high monophthongs and in-gliding diphthongs had not been studied, leaving out two
crucial cases from Moreton’s predictions. In this experiment the data for the high/front vowels /i,I/
incidentally bears on the picture Moreton put forward. The effect of [voice] on F1 of these vowels
is much less. They continue to be lowered before a voiced stop (contra Moreton’s prediction), but
they are lowered less than all of the mid and low monophthongs. They are, at least here, clearly
not peripheralized in the height dimension as Moreton’s (2004) hyperarticulation hypothesis would
predict. This experiment was not actually carried out with the intention of testing Moreton’s hy-
pothesis, unfortunately, or other high vowels would have been included. In-gliding diphthongs are
harder to find and more so in a context that precedes contrastive voicing (that is, not before a rhotic
as in the in-gliding diphthong of r-less ‘beer’).

2If this is not convincing, then a possibly better test for the interaction between [voice] and flapping was that used by
Huff (1980), looking at flapping across word boundaries with a word-final [t,d] that flaps before a word-initial unstressed
vowel. In these cases, flapping is relatively rare and the underlying form of the flap should be known to the speaker.
Huff found a fairly large PVD ratio for vowels before flaps, 1.2, though we do not know what kind of confidence interval
to apply and the number of tokens considered by Huff was relatively small. If the data is to be believed, then it would
be evidence the other way: that when underlying forms are known to the speaker, then the PVD pattern persists despite
[voice] neutralization.
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Chapter 6

Experiment 3: Infant Speech

Research on [voice] in infants in the past could be put roughly into two groups. On the one hand,
there have been studies of production and perception of the [voice] contrast at the level of swap-
ping one segment for its voice cognate. Mispronunciation tasks have been used in this case. In
van der Feest (2007), Dutch-learning 24-month-olds were presented with a word (possibly mispro-
nounced), its picture, and a distractor picture. The words had contrastive voicing in the onset and
were mispronounced by changing a voiced segment to a voiceless segment, or vice versa. The in-
fants showed a mispronunciation effect (longer time to shift gaze to the correct picture and more
time spent looking at the distractor) when a voiceless-onset word was pronounced voiced (but not
when a voiced-onset word was pronounced voiceless; no mispronunciation effect was found, either
for voiceless or voiced onset words, for 20-month-olds; in adults, who showed a mispronunciation
effect, no voiced-voiceless asymmetry was found). A similar effect was found for English-learning
infants aged 14–21 months in Swingley (2009) with minimal pairs such as ‘boat’ versus ‘poat’ (mis-
pronounced in onset) versus ‘bode’ (mispronounced in coda), and ‘cup’ versus ‘gup’ (onset) versus
‘cub’ (coda). Stoel-Gammon’s (1985) survey of infants’ segmental inventory in production is an-
other example of this line of research. What van der Feest, Swingley, and Stoel-Gammon’s work
have in common is that the acoustic details of the contrast were not the primary focus.

The other direction of research on [voice] has been interested in particular phonetic dimensions
of the feature: VOT, preceding vowel duration (PVD), etc. Infants are known to make a categorical
perceptual VOT distinction around 1–4 months (Eimas et al. 1971). In a looking-time task with
infants aged 8 and 14 months, Ko et al. (2009) presented the infants with words with digitally altered
vowel duration. In the mismatch condition, the vowels preceding voiced codas were shortened by
half and vowels preceding voiceless codas were lengthened by 60 percent. The 14-month-olds (but
not the 8-month-olds) showed a mispronunciation effect: they looked longer at voiceless codas with
long vowels (i.e. the mismatch) than voiceless codas with short vowels. (An asymmetry was found
here too: no mispronunciation effect was found for voiced codas.) On the production side of the
PVD effect, the reader has already been referred to DiSimoni (1974), Krause (1982), Buder and
Stoel-Gammon (2002), and Ko’s (2007) corpus study in Chapter 3.

Less common is the investigation into the relationships between multiple acoustic components
of a single feature, such as in cue trading. In cue trading, the enhancement of one acoustic correlate
of a feature makes up for the absence of another. For instance, Simon and Fourcin (1978) brought
cue-trading to infant speech perception. They varied two correlates of [voice], VOT and F1 onset
in the following vowel, and found that the use of F1 develops between ages four to six years.
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This contrasted with the development of a categorical perception of [voice] based on VOT which
develops by year four, with the voiced-voiceless boundary shifting from 30 ms at that time to 25 ms
at age 11–12 years. Still while some things are known about the components of [voice] in language
development, it is mostly on the perceptual end of language use and, further, on word-initial stops.

This chapter presents the results of a new longitudinal corpus study of the production of [voice]
by American English-learning infants looking across several acoustic dimensions of the [voice]
feature in post-vocalic stops and fricatives. The goal of this study was to examine the individual
acoustic correlates of [voice] as a part of the larger whole. Some of the questions to be answered
include: Do the individual correlates develop at the same time? Do infants use each correlate
independently or are they used in an all-or-nothing pattern? Additionally, I sought in particular to
add an additional angle to the question of the developmental trend of the PVD effect, which so far
has had conflicting accounts in past work.

While the PVD component of the present study is similar to Ko (2007) in a number of ways
(in fact our data comes from the same corpus), the study here differs in several important respects.
Ko first drew 364 tokens (136 voiced, 228 voiceless) participating in six minimal or near-minimal
pairs such as ‘duck’/‘bug’ (each minimal pair came from one child, with a total of four children
examined). Each minimal pair showed a reliable vowel duration difference on its own. In the second
part of her paper, Ko selected four words (totaling 343 tokens, controlled for prosodic positions) and
for each word computed a correlation between vowel duration and age. No reliable developmental
trend was found. In the study presented in this chapter, a much larger and less balanced sample of
tokens was drawn but a more complex multi-variate analysis was used to detect the presence of a
vowel duration difference and an interaction with age.

A corpus study has its advantages and disadvantages compared to an experimental study. Ex-
periments such as elicitation tasks, especially with infants, are time-consuming to carry out with the
result being that only a relatively small number of tokens can be collected. Collecting longitudinal
data is even more difficult. A large corpus of longitudinal data simplifies the step of data collection,
leaving more time for analysis.

Of course, the inability to control a variable experimentally always brings its challenges. Cor-
relations between [voice] and other variables in the corpus, due to both randomly sampling only a
small set of child speech as well as to patterns present in the adult language, must be addressed dur-
ing data analysis. An abundance of high vowels paired with voiceless consonants may exaggerate
the effect of voicing on duration and may hide the effect of voicing on F1. High vowels are naturally
shorter than low vowels, and have lower F1. This is addressed below by a) including these types of
factors in the statistical models, and b) by using a new normalization technique before displaying
the data points visually.

Another confound is that some words may be more apt to be said in an excited state than others.
“Daddy” tokens were excluded precisely for this reason, but others such as “puppy” and “doggie” re-
mained in the data and raise this question. Prosodic focus is associated with changes in duration and
pitch, which again may confound correlations with [voice]. It is impossible in a non-experimental
design to account entirely for this possibility. Even accounting for it partially would be very time
consuming. One might ask adult listeners to rate the excitability of each token and then to include
that in a regression model of duration and other acoustic cues. I did not pursue this route. A con-
found to the age variable is the changing vocabulary of the children over time. This is a confound if
the words have idiosyncratic acoustic properties, either because some words are more excitable or
have other peculiar duration, spectral, or other properties of interest. These confounds could not be
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avoided.

6.1 Hypotheses

The audio recordings of two children from a longitudinal corpus were analyzed for vowel duration,
F1, consonant duration, and closure voicing intensity in VC tokens. Several hypotheses were made.

A vowel duration effect of consonant [voice] has been shown to exist in infants several times.
Buder and Stoel-Gammon (2002) and Ko (2007) found a difference with 2-year-old and younger
infants. Buder and Stoel-Gammon (2002), however, suggested that the PVD effect is the unmarked
option and that infants learning languages without a PVD difference would have to unlearn it,
whereas infants learning languages like English will show no developmental change. Reports of
a developmental trend of the PVD effect in English-learning infants have been contradictory so far,
but contra Buder and Stoel-Gammon the PVD effect seems an unlikely candidate for something
stored in a Universal Grammar. Thus a positive developmental trend is predicted.

Furthermore, to substantiate that the PVD effect is an independent linguistic process, a statis-
tical model will be used to determine whether preceding vowel duration is predicted better by the
phonological feature or the other phonetic aspects of the utterance. If the PVD effect is merely a
by-product of the glottal state, then a positive correlation should be seen between closure voicing
intensity and vowel duration, for instance. Or if the PVD effect is a consequence of compensating
for changes in consonant duration, then a negative correlation should be seen between consonant
duration and vowel duration. The reason for considering the [+voice] and [-voice] tokens separately
is that when pooled these correlations are sure to arise, because each of these acoustic dimensions
of [voice] is correlated to [voice], and so is correlated with all the rest. On the other hand, it is pre-
dicted that the PVD effect is an independent process that will not be correlated with other aspects
of [voice].

A main effect of age on first formant frequency is expected: as the vocal tract length of the child
increases due to normal development, the formant frequencies, as the resonances of the vocal tract,
will decrease. Fitch and Giedd (1999) reported mean vocal tract length of 9.92 cm for children 2–4
years old and 10.54 cm for children 5–6 years old, based on MRI scans. Using the formula for first
formant frequency of a neutral vowel F1 = c/4L where c is the speed of sound (35,000 cm/sec) and
L is the length of the vocal tract (Johnson 2003), the expected F1’s at these two age ranges is 882
and 830 Hz respectively, or a decrease of 1.7 Hz per month during the roughly 1.5-year period.

Nothing to my knowledge is known about F1’s role in [voice] in infants. Since F1’s role in
[voice] in adults appears to be an automatic, physiological consequence of some other aspect of
[voice], most likely the glottal state, a positive correlation is expected between the glottal state and
preceding F1.

As with F1, little if anything is known about consonant duration in infant speech. Since the PVD
effect has been found in infant speech, it is hypothesized that consonant duration in infant speech
will also vary according to [voice] as it does in adults.
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6.2 Methods

6.2.1 Corpus

The corpus of Demuth et al. (2006) served as the basis of this dissertation. It was used originally,
in that paper, to study the acquisition of word-minimality effects and the hypothesis that children
would lengthen vowels before deleted coda consonants to retain the bimoraicity of the word. Here
I have found a new use for the data to investigate [voice].

The CHILDES database manual describes the corpus as follows:

The corpus contains longitudinal audio/video recordings of 6 monolingual English-
speaking children’s language development from 1–3 years during spontaneous interac-
tions with their parents (usually their mothers) at home . . . The total corpus consists
of 364 hours of speech.

Of the participants, I selected ‘Alex’ and ‘Lily’ for further annotation and analysis. Lily was
also a subject in Ko (2007), who used the same corpus. Alex was recorded for one hour every
two weeks beginning at age 1;9, the onset of first words, and ending at age 3;5. A total of 16,460
vowels1 were recorded from Alex. Lily was recorded from age 1;1 to 2;0 every two weeks, from
age 2;0-3;0 every week, and from age 3;0-4;0 monthly, for a total of 30,646 vowels.

Of those vowels, only the stress-bearing vowels preceding a coda consonant with distinctive
voice (i.e. stops and fricatives but not nasals or liquids) were used.

While the corpus is unique in having longitudinal recordings for several children, it is not known
for its sound quality. Despite having a high sampling rate, the acoustic environment was the chil-
dren’s homes and not a speech recording lab. Background noise (hums, toys, telephones, outdoor
noises) was common, sometimes drowning out the entire linguistic signal. However, often the noises
were inconsequential for the acoustic analysis. Occasionally the child was too far away from the
microphone. The recording environments also seemed to have soft echoes (though having no expe-
rience with the acoustic analysis of echoes I was not entirely sure), which I attempted to ignore. On
rare occasions the adult and child speech overlapped. While this prevented some of the recordings
from being used in the acoustic analysis described below, a substantial amount (surely well more
than half of the corpus) was usable. Durations, at least, are easily measured even in quite poor
signals.

6.2.2 Data preparation

Sample selection

Several measures were desired for analysis. For the (relevant) vowels, duration and spectral mea-
sures were desired, as well as phonemic identity based on the adult lexical entry (in other words,
what vowel it was). For the consonants, duration and the presence of glottal voicing were desired,
and their phonemic identity (place & manner of articulation and voicing feature) based also on the
adult lexical entry.

While the corpus already included an orthographic and phonetic transcription of the child speech,
as well as time-stamps at speaker changes, time-alignments of the vowels and following consonants

1This is a count of syllable nuclei, as opposed to the count of vowels in the corpus’s Unicode transcription, which
encoded diphthongs as two vowel characters.
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of interest were needed in order to determine phone durations and spectral qualities. Likewise,
neither the orthographic nor phonetic transcription gave the phonemic detail needed.

Rather than annotating the whole corpus with time alignments at the phone level, a small sub-
set of relevant VC pairs plus their surrounding segments were chosen according to the following
criteria:

1. The vowel had primary or secondary stress.

2. The post-vocalic consonant was one of /p, t, k, s, f, b, d, g, z, v/.

3. There was no utterance or word break between the segments. Utterance breaks were annotated
manually, generally at the locations where breaths were taken in a pause or at the boundaries
of what seemed like prosodic phrases.

4. The word containing the VC pair was not in a stop list constructed to exclude function words
that are often short and stressless (despite a dictionary entry that may specify otherwise) or
other words commonly produced with unusual prosody. The stop list comprised: at, but,
daddy, did, does, get, got is, it, it’s not, out, pop, that, that’s, this, up, who’s, yes, yup.

5. A preceding segment was not /r, l, w/. It is difficult and sometimes impossible to determine a
boundary between these segments and a vowel.

6. Tokens were also rejected if the child was singing, whispering, yelling them, had question-
intonation, if other segments in the word had a significant speech errors such as deletion, or
if the audio quality was too poor.

In order to screen the large corpus for the few thousand relevant tokens, it was necessary to be
precise about each of these items and then develop a computer program to implement the check-
list. For (2), I am talking about the phonemic identity of the consonants, not features at the level
of phonetics. The reason for this is that I am investigating [voice] as a phonological phenomenon,
encompassing many different aspects of acoustic phonetics. To classify the consonants according
to their phonetic voicing (glottal signal) would miss the point. The children also commonly misar-
ticulated consonants, and there was some transcription error, so I also decided that the identification
of the consonant phoneme (e.g. as a /t/ versus a /d/ or /p/) should be based on the canonical phone-
mic identity as would be given in a pronunciation dictionary. Similarly, for (1), the stress of the
vowel, one must look at canonical stress in the adult form of the word to avoid making thousands
of impressionistic judgments by how it was realized in the child’s speech.

That said, infant speech is particularly prone to error. Rather than rejecting too many tokens,
speech errors were generally allowed so long as the segments had any exponence at all. Vowel
quality, as uttered, was ignored. Some 25% of the (relevant) vowel tokens had a mismatch in vowel
quality between the canonical vowel identity and the identity as phonetically transcribed in the
original corpus. Likewise, the phonetic features of the consonant as uttered were largely ignored.
There was nearly a 30% error rate on consonants, with errors in place and manner. Some were
uttered as sonorants, but where they were still seemingly an attempt at the consonant they were
retained for analysis.

All of these requirements necessitated that the canonical phonemic transcription of each child
utterance be computed automatically. I implemented a Python program to do this. The approach
was to use the Carnegie Mellon University Pronouncing Dictionary (cmudict) to get the possible
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canonical phonemic transcriptions of each utterance based on the orthographic transcription already
present in the corpus. The canonical phonemic transcriptions were used to identify utterances con-
taining relevant tokens.2

Because there were still far more tokens than I could go over myself, I prioritized the tokens
so they would be maximally useful to the study. The best tokens would be those that occur in
near-minimal pairs, so that the sample is as close to balanced as possible. There were a few actual
minimal pairs (occurring in the sample were back ∼ bag, eggs ∼ x /eks/, have ∼ half, peas ∼ piece,
pick ∼ pig, and the near-hit toast ∼ toes). And although there were ten times as many word types
not part of a minimal pair in my final sample, I had prioritized it so that many at least would occur
in a near-minimal pair where the vowel and following consonant’s place and manner are the same,
but the rest of the words may be different. /Ik,Ig/ and /2b,2p/ words, for instance, were chosen
over words with less common vowel–consonant bigrams. The most frequent words are included in
the results section.

The phonemic identity of each vowel was also identified, according to cmudict.
Tokens were also labeled with whether or not they were “pre-pausal”, using a slightly peculiar

definition of pre-pausal. While pre-pausal lengthening has been shown at times to be confined to
the final syllable before the pause (Wightman, Shattuck-Hunagel, Ostendorf, and Price 1992), the
data here showed that vowels separated from the end of an utterance by only unstressed syllables
were also lengthened. For the purposes of analysis, “pre-pausal” is defined as the rightmost stressed
syllable within an utterance.

Forced-alignment

Thinking ahead to having to manually annotate the start and ends of the relevant vowels and con-
sonants, I performed automated forced alignment on the entire corpus for Alex and Lily. Forced
alignment would, at the least, provide a first approximation to the final alignments. The Penn
Phonetics Lab Forced Alignment Toolkit (P2FA, Yuan and Liberman 2008) was used. P2FA is a
Hidden Markov Model-based tool based on HTK (Young, Evermann, Gales, Hain, Kershaw, Moore,
Odell, Ollason, Povey, Valtchev, and Woodland 2006), using multiple gaussian mixture monophone
models on 39 PLP coefficients. Forced alignment is usually used by providing an orthographic
transcript and a recording, plus a pronunciation dictionary such as cmudict. Essentially, the tran-
script is converted into a sequence of phonemes from which is constructed the HMM model. Since
child speech differs substantially from canonical pronunciations of words, instead of providing an
orthographic transcript a phonetic transcription was used directly instead. That is, the transcript was
a list of monophones in the acoustic model, and no intermediate mapping from words to phones
was needed.3 In addition, the alignment process was sped up by breaking down the corpus into
utterance-sized chunks based on the utterance-level time stamps already present in the corpus. (The
average utterance length was around a few words.)

Knowing from preliminary work that P2FA’s adult speech acoustic model based on Supreme
Court justice recordings did not work very well on infant speech, I opted to train a new model
from scratch using Lily’s speech. Infant speech has higher fundamental and formant frequencies,
a greater range in frequency space, and far more variability in the articulation of frication noise
— among perhaps many other differences that a PLP-based forced aligner might be sensitive to.

2Although cmudict is called a pronunciation dictionary, dictionary entries are concatenations of phonemes, not phones.
Flaps, for instance, are encoded as either T or D, according to the underlying form.

3In practice this was accomplished with a trivial map from phones to themselves.
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Creating a new acoustic model required converting the Unicode phonetic transcription into a format
suitable for HTK, the HMM toolkit behind P2FA. One- and two-character (i.e. diphthong) vowels
were converted into ASCII labels based on cmudict’s convention (AA, EY, etc.) plus a binary stress
annotation based on the transcript. Three steps of reestimation were used, followed by revising
the silence model according to the HTK tutorial, a second gaussian mixture component was added,
followed by two more steps of reestimation. Because /t/ and /d/ were inconsistently transcribed as
flaps (and so the acoustic model included an HMM for flaps), P2FA was allowed to choose either
[d] or [R] for a [d] in the transcript by adding a second mapping to the dictionary from [d] to [R].
A forced alignment step was run to take new guesses about whether any [d] was really a [d] or a
[R]. Two more steps of reestimation were performed on the revised transcript, followed by adding a
third mixture component, followed by two more steps of reestimation. Finally, the forced alignment
step was performed to get the time alignments.

The model trained on Lily’s speech was used both for Lily and Alex’s forced alignment.
I have not quantified the accuracy of the forced alignment, but I can give a general impression.

Virtually all boundaries had to be moved at least a little. Most were not further from the correct
location by more than a segment or two. But when there was significant background noise in the
signal, especially speech of the mother4, the forced alignment boundaries were often hopelessly far
away. A common interesting case is when the mother or child repeated what the other had said
within the time bounds of the utterance, which was most likely to (quite legitimately) confuse the
aligner.

6.2.3 Acoustic analysis

Segmentation and duration

The vowel and consonant tokens identified above were analyzed on several dimensions. The first
dimension of interest was vowel duration. All acoustic measurements involve some operational
simplification from the abstract linguistic concepts that are actually the target of research, and mea-
suring vowel duration is problematic because there are often no hard boundaries between a vowel
and its surrounding segments. The easiest case is the boundary between a unaspirated stop and a
following vowel: it is common to say the vowel starts after the termination of the release burst,
which is almost always easily visible on a spectrogram and is very short-lived.

Going from a vowel into stop closure the boundary is much less clear. Multiple articulations
are occurring simultaneously and at different rates. The closure itself takes some time to form,
during which the formants begin to slowly disappear as they move to their loci for the stop’s place
of articulation. This along with glottal abduction or adduction depending on the [voice] of the
consonant reduces the overall intensity of the speech signal. And the glottal signal can continue
into or throughout the stop whether or not the stop is phonologically voiced. Of all of these signals,
I used a sharp drop in or disappearance of formant intensity to mark the end of the vowel, where
applicable. For Lily, I relied on the spectrogram only — since the spectrogram is based on a sliding
window it has a limited time resolution. For Alex I primarily made use of the waveform by looking
for the characteristic shapes of the high frequency formant energy (i.e. higher than F0).

Other types of boundaries were harder. If the stop is realized as a flap (as can happen in inter-
vocalic position, and not just for alveolar stops), it is a continuous gesture with no obvious start or

4The corpus does have audio in two channels, for the mother and child, but because they often sit close together there
is significant overlap.
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end or boundary between the vowel before and the vowel after the flap. In these cases, I was forced
to take a best guess.

The boundary between vowels and fricatives (and the occasional stop misarticulated as a frica-
tive) was easier to formulate though not always easier to measure. Here I looked for the start or
end of frication, if it was visible at all. Sometimes there were gaps between the end of the formants
and the start of frication, and these counted toward the duration of the vowel. Intervocalic fricatives
also sometimes appeared more like approximants with a continuous rather than discrete gesture, and
best-guess boundaries had to be placed.

The duration measurement for consonants included the total duration of closure, release burst,
and aspiration if any for stops, or the duration of frication for fricatives. Durations of consonants
were excluded from analysis in a number of context. Their durations in utterance-final position are
unreliable because of the variability of release bursts. Because many of the acoustic properties of
consonants are affected by the context following the consonant, these properties were only taken
in intervocalic context which was thought to prevent extraneous effects such as regressive voicing
assimilation. Intervocalic context included when the sonorants R, W, L, Y, M, N followed the
consonant, besides vowels.

Closure Voicing intensity

The intervocalic stops were also annotated for degree of voicing during closure. There is no obvious
acoustical measure for this. The glottal signal during closure can vary along a number of dimensions
all relevant to considering whether the use of the glottal pulse is correlated (and how much) with the
phonological voice feature. These acoustic measurements include voice termination time, voice on-
set time (if negative), and intensity. Is a low-intensity glottal pulse throughout closure more voiced
than a high-intensity glottal pulse that terminates quickly? Ideally, many acoustic measurements
could have been taken. Instead, a qualitative annotation and a quantitative acoustic measurement
were made. The qualitative annotation was a choice between no voicing, partial voicing, full voic-
ing, and vocalized, meaning the segment appeared to have no closure. This decision was made by
visual inspection of the waveform, spectrogram, and pitch track. Voicing that comes to a quick end
was marked as no voicing. A similar measurement was made for fricatives.

A quantitative measurement based on RMS intensity during a stop’s closure was also used. It
was computed as the RMS intensity of the signal during the first 100 ms or first 85 percent of
the duration of the stop, whichever was shorter, divided by the RMS intensity in the last 100 ms
of the preceding vowel. By using this ratio the measure is robust to overall changes in speaking
intensity. Both the vowel and stop must have been 50 ms long or more, in order to get a reliable
measure of glottal signal intensity. Because the intervals for stops were annotated as including burst
and aspiration, the final 15 percent of the consonant was excluded in the hopes of removing these
signals that would influence the RMS intensity. No corresponding measure was made for fricatives
as the intensity of a fricative may be due as much or more to the frication noise as to the voice bar.

First formant frequency

First formant frequency and low-band spectral center of gravity of the monophthongs only were
measured using Praat’s automated methods (Boersma 2001). Measurements were taken at the mid-
point of the vowel and shortly before offset. No substantial differences were found among these
four measurements, and so we report results for the first format frequency at the mid-point only.
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6.3 Analysis

6.3.1 Duration modeling

In order to make any inferences about the data there must be a model. A simple and plausible model
for duration is a multiplicative model, i.e. D = D0 · k1 · k2 · . . .. That is, the duration of a vowel
starts with some base or intrinsic duration D0 (Umeda 1975), and then other multiplicative factors
are applied depending on context. If k1 is the factor for the context of a following voiced consonant,
then k1 approximately equals 1.3 in adult English. If k2 is the factor for pre-pausal context, it
might equal, say, 2.0. The duration of any pre-voiced pre-pausal vowel would be predicted to be
D = D0 · 1.3 · 2.0 = D0 · 2.6. Only with a model can we test whether any of the parameters have
interesting values, given the data, by fitting the model to the data.

We don’t know what the underlying processes are that govern segment duration, unfortunately,
so in choosing a model one is forced to balance simplicity, linguistic plausibility, and goodness of
fit. The multiplicative model is simple and linguistically plausible, but it does not fit everything
we know about segment duration. Klatt (1973) observed what he called “incompressibility”, that
phenomena such as the PVD effect have smaller effects, measured as a percent change, in word-
internal position than in word-final position (see Section 2.4). The idea of incompressibility is that
when a word-internal shortening rule applies first, the PVD effect when viewed as vowel shortening
has less room to function because the vowel is approaching a lower bound on duration due to
articulatory limits.

In Klatt’s model, phenomena such as the PVD effect and pre-pausal lengthening are ordered
rules applied successively starting with the intrinsic vowel duration D0. Each rule has the form
Di = ki(Di−1 − mD0) + mD0.5 m is a factor, suggested by Klatt as 0.45, that gives the absolute
minimum duration of the vowel when multiplied by its intrinsic duration, D0. Taking the same
factors as above and assuming D0 = 100 ms and m = 0.45, then the duration of a pre-voiced vowel
is computed as D1 = 1.3(100 − 45) + 45 = 116.5 ms. If it is also pre-pausal, the duration is
computed as D2 = 2.0(116.5 − 45) + 45 = 188 ms. (Note that if m were zero, it would be the
same as the multiplicative model.) This model is linguistically plausible and explains the known
data better than a multiplicative model, but it is not quite as simple as the multiplicative model (it is
harder to estimate the parameters; more on that momentarily). The recursive formulation that Klatt
provided can be expanded into a formula which resembles the simple multiplicative model:

D = (D0 − mD0) · k1 · k2 · . . . + mD0

Van Santen (1994) proposed a generalization of this to sums-of-products models. Such models
are, as the name suggests, sums of products of the form ΣiΠjkij . The Klatt model is a particular
instance of this that is the sum of two product terms: (D0−mD0)·k1·k2·. . . and mD0. A generalized
sums-of-products model allows for many more possible ways that the factors can combine, leading
to a much larger number of parameters to estimate. For a model involving the same two factors as
above, the multiplicative and Klatt models have just a single form. But the sums-of-products model
has five possibilities: k1 + k2, k1 · k2, k1 + k1 · k2, k2 + k1 · k2, and k1 + k2 + k1 · k2. Or this can
be thought of as a single model with twice the number of parameters:

D = k1 + k2 + k′
1 · k

′
2

where k1 and k′
1 are separate additive and multiplicative effects of the PVD effect, and k2 and k′

2 are
additive and multiplicative components of pre-pausal lengthening. While additional parameters can

5
m · D0 is Klatt’s Dmin.
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always provide a better fit to data, more data and less noisy data is needed to judge the reliability
of the fit (i.e. in terms of a confidence interval) and over-fitting must be avoided. Sums-of-products
models are the most complex model of the three discussed so far. They are also less linguistically
plausible because of the fast growth in the number of ways phenomena can interact as the number
of phenomena increases. But in virtue of having more parameters they will be able to explain more
of the variation in any given data set.

Finally, another model of phone duration was proposed (but ultimately rejected) by van Santen
and Shih (2000), where phone duration is dependent on a separately computed syllable duration
only, and not on its own context. Syllable duration would be computed first based on factors such
as the number of phonemes in the syllable, the position of the syllable in the utterance, and stress.
The syllable duration is then split across the segments within the syllable taking into account the
intrinsic duration of each segment and its inherent elasticity, e.g. that some segments vary in dura-
tion more than others, and perhaps its position within the syllable. Although van Santen and Shih
were mathematically precise about how to distribute duration within a syllable, they did not offer a
formal model of how context determines syllable duration — that would need to be specified before
the model could be used in practice.

Although many decades old by now, Klatt’s model still provides the best middle-ground when
weighing simplicity, plausibility, and goodness of fit.6 The initial difficulty with applying Klatt’s
model is that given a corpus of vowel duration measurements and labels, it is not as simple to
estimate the model parameters D0 and ki as in the simple multiplicative model. The multiplicative
model has the advantage that it can be transformed into a linear model by taking the logarithm of
both sides, and then the parameters can be estimated using simple linear regression. Assuming all
of the labels are binary (voiced/unvoiced, pre-pausal or not), the form of the linearized model is
derived as:

D = D0(k1)
x1(k2)

x2 . . . (multiplicative form)
log(D) = log(D0) + log(k1)x1 + log(k2)x2 · . . . (linearized form)

where D and xi are values from the data, xi = 0 if the context is not met or 1 if the context is met.
In the multiplicative form, a value of 0 for xi means (ki)

xi will be 1, so essentially the factor has no
effect. If xi is 1, then (ki)

xi = ki and the factor is included. The same logic holds after the model
is linearized.

The parameters of Klatt’s model cannot be estimated using linear regression, but maximum
likelihood estimation can be used instead. Under this approach, the goal is to find the parameter
settings that are most likely given the data at hand. This is accomplished by writing a likelihood
function — given a set of data, how likely is a certain setting of parameters — and then maximizing
that likelihood using a generic maximization algorithm. The result is a good fit of the data.

The likelihood function can be made based on an assumption of what distribution the residuals
are drawn from (that is, subtracting the values predicted by the model from the observed values). For
any setting of the model parameters, we can say the likelihood of those parameters being correct is
the probability of seeing the corresponding residuals. If we make the assumption that the residuals
are distributed according to a normal distribution (with mean zero and some unknown standard
deviation also to be estimated), the likelihood of a parameter setting is the product of the values of
the normal distribution density function at the residuals (i.e. the probability of seeing each residual).
The likelihood function is then maximized by searching for optimal settings of the parameters using

6See van Santen (1994) for a comparison of other models, including one based on decision tree classification. It is
beyond the scope of this dissertation to exhaustively justify the choice of model.
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any general maximization algorithm. In this case I use the “nlm” function in R. Standard errors for
the parameters are produced through this process as well, which allows us to judge the reliability of
the estimate. (For the theory behind maximum likelihood estimation, see Fergusun 1996.)

Several existing R functions have been written for maximum likelihood estimation. However,
I found them cumbersome for testing many models and examining the output. As a result, I con-
structed a new R function for performing MLE. The code is given in Appendix B.

The use of maximum likelihood estimation will become clearer in the results section when it is
fit to the vowel duration data.

6.3.2 Modeling first formant frequency

As in the case of segment duration, it is also important in the case of formant frequencies to choose
an appropriate model for analysis. We have already seen work suggestive of a model of diphthong
F2 in Section 2.6.2: Gay (1968) found that in up-gliding diphthongs of various durations the slope
of F2 remained constant, so that longer diphthongs have higher offsets. That suggests a model
in which slope is a parameter. But the effect on F2 due to [+voice] was different. Instead of a
longer glide, a longer steady-state was generally found. Moreton (2004) proposed peripheralization
before voiceless stops (lower vowels become lower, higher vowels become higher). One would
still have to formalize that mathematically. But it didn’t entirely bear out in the data presented in
Section 5.2: all of the monophthongs were lowered before voiceless consonants, though to different
degrees. At least as the interaction between F1 and voicing goes, we have several hypotheses but
few confirmations from data.

Without any standard models to choose from, a linear model using F1 frequency in Hertz will
be sufficient for testing the effect on F1 of [voice] and other factors. However, rather than fitting
a standard fixed-effects model to the data, mixed (i.e. fixed plus random) effects models will be
used instead. The advantage of including random effects is that the effects of the different vowel
qualities and place/manners of articulation of the consonant can be treated as being drawn from a
normal distribution which improves their estimation by looking across the values of each factor.

6.4 Results

6.4.1 Data overview

A total of 506 VC tokens were initially collected for the child Alex and 595 for the child Lily.
Histograms in Figure 6.1 show the distribution of the collected tokens by age (from 14–42 months)
and vowel quality. Some aspects of the distributions reflect the underlying nature of infant speech:
children speak few coherent words before around age 18 months. Other aspects of the distribution
reflect the contents of the corpus (fewer recordings were made after age 3) and the selection of
tokens I made here: attempting to flatten out the distribution, and avoiding vowels without appearing
in a fair number of both voiced and voiceless tokens.

For some vowels, there was an overwhelming imbalance in that they would be followed pre-
dominantly by either a voiced or voiceless consonant. Tokens with these vowels were removed
leaving AA, AE, AH, AO, EH, EY, IH, IY, OW7. Additionally, because there were so few tokens

7cmudict conventions are used because the identity of the vowel in each word was determined by referencing the
cmudict pronunciation.
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Figure 6.1: Left: Distribution of tokens across the ages in which the children were recorded. Right:
Frequency of vowels, split by whether they preceded a voiced or voiceless consonant.

from Lily after age 34 months, these additional tokens were reassigned to age 34 months so they
could be usefully binned in the figures. Finally, outliers were removed. This left 443 tokens for
Alex and 517 tokens for Lily (960 in all).

161 distinct words (types) were collected in the data and remained after outliers were removed.
The most frequent words are listed in Table 6.1. The 15 most frequent words accounted for 54
percent of the corpus. There was no obvious trend that the most exciting (e.g. animate) words were
the longest, although this certainly could have been a factor.

Consonants were not evenly distributed across age, and some were rare in the corpus altogether.
For Alex, /d,s,f/ were quite uncommon, and /p,b/ were found mostly through only age 28 months. I
return to this in section 6.4.4. Although several phonemes were uncommon for both children, these
cannot always be attributed to the child’s linguistic environment. Figure 6.2 shows the percent dif-
ference between the relative frequency of each consonant phoneme in the child’s speech compared
to the child’s parent’s speech, in intervocalic context only, based on a count of the tokens throughout
the entire corpus for each child. For instance, Lily used labiodental fricatives about .75 percentage
points less (actually about a 20 percent difference) than her parent in the corpus. More on this later.

6.4.2 Preceding vowel duration

A number of factors affect the duration of a vowel in adults, including speaking rate, position in
the utterance, and post-vocalic voicing. The goal of this section was to determine whether the post-
vocalic voicing effect (PVD) can be found in the children in the corpus and, if so, whether there is
a developmental trend.

The first thing to do is to plot the data. Figures 6.3–6.4 shows vowel durations by age, post-
vocalic voicing, and child. Figure 6.3 shows vowels in pre-pausal position and Figure 6.4 shows
vowels in non-pre-pausal position. The figures show a fairly robust effect of voicing across the age
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voiced frequency mean.duration
big * 147 0.190

puppy 63 0.142
he’s * 45 0.138

baby * 42 0.202
hat 38 0.139

these * 37 0.246
six 23 0.167

eight 17 0.254
pick 17 0.117

cheese * 16 0.254
fix 16 0.119

apple 15 0.126
she’s * 15 0.175
stick 15 0.161

chicken 14 0.193

Table 6.1: Fifteen most frequent words in the corpus and their mean duration, ordered by frequency.
Voiced types are marked with an asterisk for convenience.

ranges. I will return to quantifying the PVD effect and assessing whether there is a developmental
pattern shortly. The problem with interpreting Figures 6.3–6.4 for a correlation between the PVD
effect and age is the same problem that we try to resolve with regression: when multiple correlated
variables are in play, a simple correlation between any two will be confounded by effects of the
others. And because this was an observational study with no control over the distribution of tokens,
care must be taken to make sure there were no unforeseen systematic patterns. So, for one, age
is correlated with several aspects of language development which are in turn correlated with the
acoustic correlates of [voice]. A simple plot or a correlation coefficient of just age and vowel
duration may be confounded by other effects.

Here is one way this is a problem. The greatest effect on vowel duration was whether the vowel
was pre-pausal. Mean utterance length increases with age, and so as age increases vowel duration
should decrease because more tokens are not pre-pausal. We also know that the PVD effect has
less of an effect in contexts where vowels are shorter. Thus, other things being equal, we expect
the observed PVD ratio to decrease with age on account of the change in utterance length, and
not because of a change in the PVD effect itself. This confound must be taken into account when
examining unbalanced data.

In Alex’s case, multi-word utterances began at around age 2;5 and in Lily’s case around age 2;1.
Within six months following the onset of these utterances, tokens were roughly evenly split between
pre-pausal and non-pre-pausal. A plot of this is given in Figure 6.5.8

To estimate the effect of context on vowel duration, I fit a Klatt model to the vowel duration
data using the R function I described in Section 6.3.1. The model here has two parameters: an effect
of being pre-pausal (k1) and an effect of the following consonant being voiced (k2). The model is

8I don’t intend the reader to generalize this. Recall that the distribution of tokens in the data is based not only on the
children’s free expression but also on the priorities I used in selecting tokens to analyze.
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Figure 6.2: Comparison of the relative frequencies of intervocalic consonant phonemes in child
speech to the speech of the child’s parent, based on the entire corpus (that is, not just the tokens
which I annotated). Each bar is the relative frequency of the phoneme (out of the 12 phonemes
shown) for the child minus that for the adult. (Alex: N=15644, Alex’s parent: N=61228, Lily:
N=33622, Lily’s parent: N=165506)
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Figure 6.3: Raw vowel duration by age, post-vocalic voicing, and child in pre-pausal position. Here
and elsewhere, 95% confidence intervals are shown.
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Figure 6.4: Raw vowel duration by age, post-vocalic voicing, and child in non-pre-pausal position.
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thus (D0 − mD0) · k
x0

1 · kx1

2 + mD0, where x0 is 1 if the token is pre-pausal, zero otherwise, and
x1 is 1 if the token is before a voiced consonant, zero otherwise. Estimating Klatt’s value for m
proved problematic for the solution technique (the resulting standard errors were very high), so I
have assumed it to be 0.45 throughout, following Klatt.

The model is fit with the following R command after loading the MLE function given in the
appendix:

> est <- mle(data, data$vowel_duration, function(data, D0 = 0.1,

+ k1 = 1, k2 = 1) {

+ m = 0.45

+ (D0 - m * D0) * k1^data$prepausal * k2^data$voiced + m *
+ D0

+ }, nullhyp = list(D0 = NA))

estimate stderr null pval

D0 0.121 0.00439 NA NA

k1 1.70 0.083 1 2.12e-17

k2 1.58 0.0622 1 1.95e-20

σ_ε 0.081 0.00185 NA NA

r^2 0.157

The result of the maximum likelihood estimation shows that the baseline duration of vowels
(regardless of quality) is 121ms, that the pre-pausal lengthening factor is approximated at 1.7, and
the PVD effect lengthening factor at 1.6. These last two are highly statistically significantly different
from 1.0. (See the appendix for an explanation of σǫ.)

The results are comparable to what is found using a multiplicative model, solved with linear
regression:

Call:

lm(formula = log(vowel_duration) ~ prepausal + voiced, data = data)

Residuals:

Min 1Q Median 3Q Max

-1.464867 -0.272620 -0.008802 0.268704 1.187246

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.20934 0.03279 -67.37 <2e-16 ***
prepausalTRUE 0.32664 0.03187 10.25 <2e-16 ***
voicedTRUE 0.31436 0.02930 10.73 <2e-16 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4361 on 957 degrees of freedom

Multiple R-squared: 0.1528, Adjusted R-squared: 0.151

F-statistic: 86.31 on 2 and 957 DF, p-value: < 2.2e-16

Note that the coefficients must be transformed out of log-space using the exponential function to
interpret them as a ratio: for pre-pausal lengthening this yields 1.39, for the PVD effect 1.37. Factor
estimates from a Klatt model cannot be directly compared to the corresponding estimates from a
multiplicative model though. Klatt’s model takes into account the nonlinear way in which the factors
combine. For a comparison, one must compute the ratio predicted by the Klatt model for a single
factor holding all other factors constant (for instance by omitting them):
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(D0−mD0)·k+mD0

(D0−mD0)+mD0
= m + (1 − m)k

Given m = 0.45, the vowel duration ratios predicted by the Klatt model are 1.39 for pre-pausal
lengthening and 1.32 for the PVD effect. These are similar to the ratios computed by the linear
regression.

There are other confounding variables besides utterance length. The distribution of vowel qual-
ity changes over time, and vowel quality influences vowel duration because each vowel has a slightly
different intrinsic duration. Place and manner of articulation of the following consonant has been
shown to affect vowel duration as well (Crystal and House 1988a): 1) back vowels should be longer
before velars and shorter before non-velars, and 2) all vowels should be longer before bilabial stops.
Three additional binary parameters with corresponding duration factors are added into this model at
this point. The first is a parameter added to the base duration for whether the vowel is a diphthong.
This is a first approximation to modeling intrinsic vowel duration completely, which would instead
require a separate parameter for each vowel. The second parameter added is whether the following
consonant is bilabial. Finally, because the two children may have different base durations, a factor
is added to account for the difference.

> est <- mle(data, data$vowel_duration, function(data, D0monoph = 0.1,

+ D0diph = 0, D0lily = 0, prepausal = 1, bilabial = 1) {

+ m = 0.45

+ D0 = D0monoph + ifelse(!data$diphthong, 0, D0diph) + ifelse(data$child ==

+ "alex", 0, D0lily)

+ (D0 - m * D0) * prepausal^data$prepausal * bilabial^(data$placemanner ==

+ "p/b") + m * D0

+ }, nullhyp = list(D0monoph = NA))

estimate stderr null pval

D0monoph 0.138 0.00549 NA NA

D0diph 0.0362 0.00687 0 1.36e-07

D0lily 0.0140 0.00464 0 0.00248

prepausal 1.60 0.0918 1 4.48e-11

bilabial 0.701 0.0526 1 1.37e-08

σ_ε 0.0837 0.00191 NA NA

r^2 0.0988

The results show a strong effect in the expected direction for diphthongs (lengthened by 0.036
ms). It also shows a very strong effect of preceding a bilabial stop (shorter by a factor of 0.7), but
in the direction opposite of what has been reported in the literature — thus it will be dropped from
future models. (Additional model comparisons showed no effect for velars and back vowels.)

In order to interpret Figures 6.3–6.4 without being caught by the confounding variables men-
tioned so far, instead of the raw vowel durations the residuals against a model should be plotted.
This has the effect of removing the factors that were included in the model. If all of the factors influ-
encing duration that are correlated with [voice] have been included in the model, then the residuals
that are left should reflect the effect of [voice]. The calculations were performed separately for each
child, and plots of the residuals plus a 100 ms base duration are shown in Figures 6.6–6.7. Fortu-
nately there are no important differences between the two pairs of figures in any case, validating
that the sample was in fact relatively well balanced with respect to time and post-vocalic voicing.
The PVD duration difference between voiced and voiceless tokens, computed every three months
based on the vowel duration residuals, is shown in Figure 6.8.

> for (child in c("lily", "alex")) {

+ fltr <- (data$child == child)
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Figure 6.6: Vowel duration residuals by age, post-vocalic voicing, and child in pre-pausal position.

+ data$normalized_vowel_duration[fltr] = mle(data[fltr, ],

+ data$vowel_duration[fltr], function(data, D0monoph = 0.1,

+ D0diph = 0, prepausal = 1.5) {

+ m = 0.45

+ D0 = D0monoph + ifelse(!data$diphthong, 0, D0diph)

+ (D0 - m * D0) * prepausal^data$prepausal + m * D0

+ }, getresids = T)

+ }

Both sets of figures show a clear effect on vowel duration of post-vocalic voicing in both pre-
pausal and non-pre-pausal contexts. If we incorporate post-vocalic voicing into the model we find
a large and highly significant effect. (Note that the two children are pooled.) The model and results
are shown below:

> est <- mle(data, data$vowel_duration, function(data, D0monoph = 0.1,

+ D0diph = 0, D0lily = 0, prepausal = 1, voiced = 1) {

+ m = 0.45

+ D0 = D0monoph + ifelse(!data$diphthong, 0, D0diph) + ifelse(data$child ==

+ "alex", 0, D0lily)

+ (D0 - m * D0) * prepausal^data$prepausal * voiced^data$voiced +

+ m * D0

+ }, nullhyp = list(D0monoph = NA))

estimate stderr null pval

D0monoph 0.118 0.00468 NA NA

D0diph 0.0134 0.00485 0 0.00579

D0lily 0.00446 0.00356 0 0.21

prepausal 1.68 0.0824 1 1.85e-16

voiced 1.55 0.062 1 5.27e-19

σ_ε 0.0806 0.00184 NA NA

r^2 0.164

The magnitude of the PVD effect in the Klatt model, now taking into account the two children’s
different speaking rates and that diphthongs have longer intrinsic duration, is estimated at 1.55. As
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discussed above, Klatt model estimates are not duration ratios. Computing a duration ratio in the
absence of the effects of other factors, using the formula given earlier, we find the PVD ratio to be
1.3. This is a better estimate of the PVD effect in infants that we find by dividing the mean duration
of all of the voiced tokens by the mean duration of all of the voiceless tokens, which yields a ratio
of 1.25. (The corresponding multiplicative model computes a ratio of 1.36.)

To test for a developmental trend, age can be added into the model by revising the voiced term
so that it varies linearly with age: kvoiced = kvoiceint + kvoiceage(age − max(age)). max(age) is
a constant. In this model, kvoiceint (i.e. voice intercept) gives the PVD effect factor at the child’s
maximum age and kvoiceage gives the increase in the factor per month leading up to that point.
For both children we find a highly significant effect of age, with an estimated 4-percentage-point
increase in the PVD effect per month. This validates the trend we see in Figure 6.6 for Alex, though
no developmental trend is obvious from the figures for Lily. (A multiplicative model with a voice-
by-log(age) interaction term does indicates a statistically significant effect of age for Lily but not
Alex.) The results of the Klatt model estimations are given below:

function (data, D0monoph = 0.1, D0diph = 0, prepausal = 1, voiceint = 1,

voiceage = 0)

{

m = 0.45

D0 = D0monoph + ifelse(!data$diphthong, 0, D0diph)

voiced = voiceint + (data$age - max(data$age)) * voiceage

(D0 - m * D0) * prepausal^data$prepausal * voiced^data$voiced +

m * D0

}

alex

estimate stderr null pval

D0monoph 0.116 0.00665 NA NA

D0diph 0.0176 0.00689 0 0.0107

prepausal 1.77 0.134 1 9.17e-09

voiceint 1.83 0.137 1 1.27e-09

voiceage 0.0435 0.0116 0 0.000186

σ_ε 0.0777 0.00261 NA NA

r^2 0.161

lily

estimate stderr null pval

D0monoph 0.115 0.00571 NA NA

D0diph 0.0422 0.0101 0 3.12e-05

prepausal 1.75 0.113 1 4.94e-11

voiceint 1.96 0.133 1 4.19e-13

voiceage 0.0381 0.00959 0 7.05e-05

σ_ε 0.0805 0.0025 NA NA

r^2 0.218

6.4.3 First formant frequency

A mixed effects, linear model was used to analyze F1 at the vowel midpoint. Random effects are
vowel identity, to model the different vowel spectral targets, and consonant identity, to model the
different spectral loci of the consonants at offset and any earlier effect. The fixed effects include
age (as the vocal tract lengthens over time, we expect lower formant frequencies), the child (they
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may have different vocal tract lengths), post-vocalic voicing, and an interaction between child and
age (to account for different rate of vocal tract development). The results of the model fit are given
below:

Linear mixed model fit by REML

Formula: f1m ~ child * age + voiced + (1 | vowel) + (1 | placemanner)

Data: data[!data$diphthong, ]

AIC BIC logLik deviance REMLdev

10952 10989 -5468 10968 10936

Random effects:

Groups Name Variance Std.Dev.

vowel (Intercept) 45804.5 214.020

placemanner (Intercept) 1955.4 44.220

Residual 42094.5 205.169

Number of obs: 811, groups: vowel, 7; placemanner, 5

Fixed effects:

Estimate Std. Error t value

(Intercept) 674.456 115.835 5.823

childlily 422.142 97.261 4.340

age 8.258 2.522 3.274

voicedTRUE -47.910 17.327 -2.765

childlily:age -11.221 3.139 -3.575

Correlation of Fixed Effects:

(Intr) chldll age vcTRUE

childlily -0.580

age -0.676 0.815

voicedTRUE 0.030 -0.076 -0.140

childlily:g 0.530 -0.980 -0.761 0.066

All of the fixed effects are significant (assuming the number of degrees of freedom is high
enough that a t value of 2.5 is significant). A main effect of age is found: a surprising increase
rather than a decrease of 8.3 Hz per month. However the interaction term was also significant,
meaning this estimate applied for Alex and a decrease of 3 Hz per month is estimated for Lily.
Voicing also showed a significant effect, a reduction of F1 by 48 Hz in the voiced context (shown
in Figure 6.9 with raw F1 and Figure 6.10 with normalized F1 by plotting residuals with the same
model but with voicing removed as a factor). This is roughly in line with the adult pattern. Summers
(1987) reported that F1 is lower in the voiced context by around 10–20 Hz at the onset of the vowel,
35–45 Hz during its steady-state, and 90–140 at the onset of the consonant, as discussed above.
When a age-by-voicing interaction term is added to the model to test for a developmental trend,
neither the voiced main effect nor the interaction term come out significant.

6.4.4 Consonant duration

Consonant duration in intervocalic context was also measured, except for the alveolar stops as they
were often (and, according to the adult grammar, supposed to be) realized as flaps in this context.
Durations were measured as the total of closure, burst, and aspiration. Unfortunately, there was
a very uneven distribution of consonants over both [voice] and time (see Figure 6.11) making it
very difficult for any conclusions to be drawn about the relation between consonant duration and
either of these factors. In other words, assessing a correlation between duration and time is clearly
confounded by a) velars occurring generally later in time than bilabials and b) velars known to have
generally a longer duration (Crystal and House 1988a). Likewise, the fricatives in this context were
overwhelmingly voiceless, making for a bad comparison between voiced and voiceless duration.
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Figure 6.9: F1 by age, post-vocalic voicing, and child, for monophthongs.

Normalization R code:

> for (child in c("lily", "alex")) {

+ f <- (data$child == child) & !data$diphthong & !is.na(data$f1m)

+ model <- lmer(f1m ~ age + (1 | vowel) + (1 | placemanner),

+ data[f, ])

+ data$normalized_f1m[f] <- resid(model)

+ }
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Figure 6.10: F1 residual by age, post-vocalic voicing, and child, for monophthongs.

76



Age (months)

C
on

so
na

nt
 D

ur
at

io
n

0.1

0.2

0.3

15 25 35

●
●
●
●

●

●

●

●

●●

●

●

●

●

●●
●

f/v
alex

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●●●

●

●

k/g
alex

15 25 35

●●

●●
●

●

●●●
●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

p/b
alex

●

●

●

s/z
alex

15 25 35

t/d
alex

●

●
●

●●

●

●

●

●
●

●

●●

●
●

f/v
lily

15 25 35

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●●

●●
●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●
●●

●

●

●

k/g
lily

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●
●

●

●

●
●●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●
●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

p/b
lily

15 25 35

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●

●
●
●

●

●●●
●●●●●

●
●
●

●●

●

●

●
●

●

●
●

●

●
●●●

●

●

●
●
●

●

●

●

●

s/z
lily

0.1

0.2

0.3

t/d
lily

voiceless
voiced

●

●

Figure 6.11: Consonant duration by age, voicing, place of articulation, and child.

The dearth of /s,f,v/ tokens from Lily cannot be attributed to her linguistic environment —
Lily had far fewer of these phones in intervocalic context than her mother. See Figure 6.2 above.
Likewise for /z/ for Alex. But although Alex had few intervocalic /f,s/ tokens in the sample, these
phones do not stand out in Figure 6.2, meaning that the scarcity of these tokens in the intervocalic
same probably did reflect his linguistic environment.

Alex’s /p,b/ distinction and Lily’s /k,g/ distinction through consonant duration were each statis-
tically significant (p < 0.003), and in the correct direction, according to two one-tailed t-tests.

6.4.5 Closure voicing intensity

The closure voicing intensity in intervocalic stops was measured qualitatively and quantitatively.
These two measurements were reliably correlated, as shown by the positive slopes and relatively
small error bars in Figure 6.12, as well as the fact that the two lines for the voiced and voiceless
consonants are very close.

As with consonant duration, the data for voicing intensity was not amenable to an analysis
involving time. Voicing intensity is plotted against age, with [voice] separated by shading, in Figure
6.13. The quantitative voicing intensity measure was different between /p/ and /b/ (p < 0.0001), and
in the correct direction, according to a one-tailed t-test. The other differences were not significant.

6.4.6 Interactions between acoustic correlates

Interactions between the five correlates of [voice] measured in this experiment were assessed by first
dividing the tokens into the voiced and voiceless groups. Without dividing them first, we expect all
of the measures to be correlated because they are all correlated with [voice]. By splitting up the
tokens first by their [voice] feature, we can see whether there are any connections between these
acoustic dimensions that go beyond the phonological featural specification. The correlations are
also performed on normalized measures in a same manner as discussed throughout, with the R code
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Figure 6.12: Comparison of the two measurements of closure voicing intensity, the impressionistic
qualitative measure and the quantitative and automatic measure of signal intensity.
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Figure 6.13: Closure voicing by age, according to the two measures (left: impressionistic, right:
signal intensity). The same measurements for the fricatives are also shown but are not used.
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below. The correlation coefficients are corresponding p-values are reported in Table 6.2 for each
pair of measures.

> data$normalized_vowel_duration = mle(data, data$vowel_duration,

+ function(data, D0alex = 0.1, D0lily = 0, D0diph = 0, prepausal = 1) {

+ m = 0.45

+ D0 = D0alex + ifelse(data$child == "alex", 0, D0lily) +

+ ifelse(!data$diphthong, 0, D0diph)

+ (D0 - m * D0) * prepausal^data$prepausal + m * D0

+ }, getresids = T)

> f <- !is.na(data$consonant_duration)

> model <- lmer(log(consonant_duration) ~ child + (1 | vowel) +

+ (1 | placemanner), data[f, ])

> data$normalized_consonant_duration[f] <- resid(model)

> f <- (!is.na(data$f1m) & !is.na(data$f1e))

> model <- lmer(f1m ~ child * age + (1 | vowel) + (1 | placemanner),

+ data[f, ])

> data$normalized_f1m[f] <- resid(model)

Where formant frequencies are used, only tokens with monophthong vowels are included. Where
consonant duration or voicing intensity are used, only intervocalic tokens are included. Voicing in-
tensity refers to stops only.

The only interesting highly significant correlation is a negative correlation between consonant
duration and voicing intensity. This is not surprising: It is more difficult to maintain voicing dur-
ing longer closure, and as a result we expect less voicing intensity over-all in longer consonants.
(Also highly significant is the correlation between F1 at vowel midpoint and offset, which is to be
expected.) Also significant was a positive correlation between vowel duration and F1 frequency at
vowel midpoint in the voiceless tokens only, depicted in Figure 6.14. Note that while [-voice] is
correlated with higher F1 and shorter vowels, we see here within the [-voice] category that higher
F1 is correlated with longer vowels. Approaching significance was a positive correlation between
F1 offset and consonant duration among the [+voice] tokens, also shown in Figure 6.14.

As part of testing whether the PVD effect is determined by phonetic or phonological factors,
we can see which is a better predictor of vowel duration. A comparison of two models — one of
which uses the phonological feature as a predictor and the other the quantitative measure of voicing
intensity — shows through the value of r2 that the phonological feature model (r2 = 0.174) is
nominally a better fit than the phonetic model (r2 = 0.144). The models have the same number
of parameters, although even the slightly extra power in the phonetic model’s continuous-valued
voice parameter did not help it. (Using four dummy variables for the qualitative measure of voicing
intensity increases the r2 value but not enough to make it a better fit, and not more than would be
expected from merely adding additional parameters.)

> d <- data[!is.na(data$rmsvoice) & !data$fricative, ]

> est <- mle(d, d$vowel_duration, function(data, D0monoph = 0.1,

+ D0diph = 0, D0lily = 0, prepausal = 1, voice_feature = 1) {

+ m = 0.45

+ D0 = D0monoph + ifelse(!data$diphthong, 0, D0diph) + ifelse(data$child ==

+ "alex", 0, D0lily)

+ (D0 - m * D0) * prepausal^data$prepausal * voice_feature^data$voiced +

+ m * D0

+ }, nullhyp = list(D0monoph = NA))

estimate stderr null pval

D0monoph 0.100 0.00837 NA NA
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Voiced

F1 Midpoint F1 Offset Consonant Duration Voicing Intensity
Vowel Duration 0.06 (0.25) 0.05 (0.35) 0.15 (0.036) -0.05 (0.6)
F1 at Midpoint 0.45 (0) 0.12 (0.17) -0.03 (0.8)

F1 Offset 0.09 (0.34) -0.10 (0.46)
Consonant Duration -0.26 (0.011)

Voiceless

F1 Midpoint F1 Offset Consonant Duration Voicing Intensity
Vowel Duration 0.12 (0.017) 0.02 (0.69) 0.01 (0.89) 0.16 (0.058)
F1 at Midpoint 0.54 (0) 0.02 (0.84) -0.01 (0.92)

F1 Offset 0.24 (0.0049) -0.03 (0.69)
Consonant Duration -0.42 (3e-07)

Table 6.2: Correlation coefficients (and p-values in parentheses) between vowel duration residu-
als, F1 residuals at vowel midpoint and offset, consonant duration residuals, and (the quantitative
measure of) voicing intensity. The voiced and voiceless tokens are separated first.
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D0diph 0.0198 0.0116 0 0.0875

D0lily 0.0269 0.00918 0 0.00333

prepausal 1.34 0.158 1 0.0328

voice_feature 1.50 0.156 1 0.00142

σ_ε 0.0723 0.00329 NA NA

r^2 0.174

> est <- mle(d, d$vowel_duration, function(data, D0monoph = 0.1,

+ D0diph = 0, D0lily = 0, prepausal = 1, voice_intensity = 0) {

+ m = 0.45

+ D0 = D0monoph + ifelse(!data$diphthong, 0, D0diph) + ifelse(data$child ==

+ "alex", 0, D0lily)

+ (D0 - m * D0) * prepausal^data$prepausal + m * D0 + voice_intensity *
+ data$rmsvoice

+ }, nullhyp = list(D0monoph = NA))

estimate stderr null pval

D0monoph 0.0963 0.0123 NA NA

D0diph 0.0416 0.0127 0 0.00108

D0lily 0.0328 0.0109 0 0.00255

prepausal 1.33 0.19 1 0.078

voice_intensity 0.031 0.0166 0 0.0621

σ_ε 0.0736 0.00335 NA NA

r^2 0.144

6.5 Discussion

In this chapter an experiment was discussed whose results bear on the questions of a) whether
infants’ phonetic implementation of post-vocalic [voice] uses the same acoustic dimensions as in
adults, b) how the use of those acoustic dimensions changes over time during the infant’s linguistic
development, and c) whether those acoustic dimensions are specified in the grammar as part of the
phonetic implementation of [voice] or are physiological consequences of other aspects of voice.

In the introduction to this chapter I raised a number of methodological concerns about using a
corpus to ask these questions. The first concern was that extralinguistic factors such as prominence
or an inherent child-excitability of animate words would confound the results. This is a particularly
difficult problem to face since there is no a priori way to judge prominence without making use
of some of the same acoustic dimensions that are also correlated with [voice], such as duration.
Other factors such as intensity and pitch could help determine prominence, but they are difficult to
normalize in a sample such as this one where utterances are short and vary widely along these di-
mensions. It is not possible to rule out prominence as influencing the results of this experiment. But
at least Table 6.1, which listed the 15 most frequent words in the sample, did not indicate an obvious
trend for the most excitable (i.e. animate) words to have longer durations. Other concerns included
incidental correlations between [voice] and vowel quality, age, and position in the utterance.

A way in which these concerns were addressed was by using appropriate models for each vari-
able, taking into account factors such as vowel quality, whether the vowel is a diphthong, and place
in the utterance. For the two duration variables (vowel and consonant duration), a model based on
Klatt’s incompressibility was used. This model struck a balance between linguistic plausibility and
complexity or over-fitting. The use of maximum likelihood estimation to fit a Klatt model appears
to be a new, practical technique in linguistic phonetics. We had reason from adult speech data to
believe it would be more appropriate than a multiplicative model fit by linear regression (in log
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space), and the MLE-estimated Klatt model found a statistically significant effect of age on the
PVD effect for both children, while the multiplicative model seemed to be powerful enough only to
find an effect for one child. (In other cases the two models appeared to account for the variability
in the data about the same, based on the r2 values.) The residuals from these models were used in
so-called “normalized” plots of these factors by age, so that confounding effects could be removed.
This was especially important in the case of plotting first formant frequency.

The analysis revealed that infants aged roughly 1;3–3;5 use vowel duration in making the [voice]
distinction. This is in line with past research on the PVD effect. Here it was shown that the voiced-
to-voiceless PVD ratio was roughly 1.3 overall — but if there is indeed a learning curve this is
merely an average of the PVD effect during the child’s development during this time. The ratio is
in line with that observed in adults. The PVD ratio found in adult lab speech in Section 5.2 varied
between 1.2 and 1.5 depending on speaking rate and word length. In Section 5.1, dialectal variation
in American English revealed a range from 1.15–1.26. But task and measurement methods have a
large effect on the PVD difference. The lab speech elicited in Section 5.2 differed from the mixed-
task recordings in Section 5.1, and these differed from observations of spontaneous speech in infants
at varying stages of linguistic development.

The analysis similarly revealed a statistically significant effect of [voice] on monophthong F1,
the direction and magnitude of which were in line with what has been observed in adults. Unfortu-
nately, the plots of these differences were much less convincing than the p-values.

Little could be said about consonant duration and voicing intensity during closure/frication be-
cause of the sparsity of the data. The /p,b/ distinction in one child was differentiated by consonant
duration and voicing intensity, but other distinctions were not found. However, the missing acoustic
contrasts for some of the other phonemes which were not so sparse (the /k,g/ distinction for both
children) may indicate that not all phonemes are alike when it comes to implementing [voice]. This
could be for several reasons. At the level of articulation, it may be harder to voice some phonemes
than others (and this may explain why the cross-linguistic preference for voiceless stops in a lan-
guage’s stop inventory varies from place-of-articulation to place-of-articulation, Maddieson 1984,
p35). At the level of phonology, it may indicate that there is no inventory-wide phonetic imple-
mentation of [voice] in the grammar after all. (It would have been interesting as well to see if the
magnitude of the PVD effect varies by place of articulation, but the same problem here prevented
an analysis of other aspects of the consonants, the the places of articulation are not well distributed
by age. Thus the p/b contrast showed a much smaller PVD ratio than the p/b contrast, likely on
account of the p/b tokens tending to occur at the earliest of ages.)

On a token-by-token basis, there were few correlations between the acoustic dimensions that
suggested any were dependent on the others. The exception was a correlation between consonant
voicing and duration, which is to be expected since voicing is difficult to maintain and so more likely
to cease the longer closure or frication goes on. It is also compatible with a model in which closure
and frication duration differences between [±voice] are due not to differences in supra-laryngeal
articulator timing but to differences in the glottal state (something suggested, for fricatives, by
Stevens et al. 1992). Vowel duration and F1 were weakly correlated, but in the direction opposite to
what would explain the F1 component of [voice]. The direction of the correlation is instead probably
attributable to differences in intrinsic vowel duration: low vowels with high F1 tend to have longer
durations. Beyond this, vowel duration, formant frequency, and consonant duration and voicing
intensity appeared to be independent at least as far as [voice] is concerned. Comparing models of
vowel duration based on either phonological voicing or phonetic voicing intensity, the phonological
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model fit the data better. Preceding vowel duration was not dependent on whether the consonant
was phonetically voiced, and so vowel duration could not be a simple physiological consequence
of the glottal state. Likewise for formant frequency, and vowel duration could not be the result of a
rule of syllable duration constancy. These factors are each under separate linguistic and articulatory
control by the infant and their use in [voice] must be specified in the grammar.

Evidence for a developmental trend (i.e. an interaction between [voice] and age) was found
for preceding vowel duration based on maximum likelihood estimation, though it was less obvious
from the figures, and no trend was found for first formant frequency. (The data was too sparse
to perform an analysis on consonant duration and voicing intensity.) The magnitude of the vowel
duration difference increases over time, indicating that the PVD effect is a learned phenomenon.
There had been some question of the direction of the development of the PVD effect. Buder and
Stoel-Gammon (2002), for instance, proposed that the unmarked state was the presence of a vowel
duration difference, and that infants learning languages with small or no PVD must unlearn the dif-
ference. The results here (if indicative of linguistic and not mere motor learning) suggest otherwise,
that the unmarked state is no PVD. As for whether it is the voiced tokens that increase in duration
or the voiceless tokens that decrease, or a mix, it is hard to say. Figures 6.6–6.7, at least for Alex,
suggest that it is a mix.

An interesting but tentative observation is that the developmental trend of the PVD difference
is not only similar for the two children but also what differs between the two children may be
explainable in terms of the gross linguistic development of the children. For both children, the PVD
developmental curve in Figure 6.8 starts at or below zero, peaks around a 50–70 ms difference 3–
9 months later, then drops substantially for 3–6 months, and finally recovers and ends on a large
difference of roughly 75–90 ms duration difference. But, Alex’s curve appears delayed relative to
Lily’s. It might be mere chance that the curves are similar in this way, given the high variance in
the data. But what makes this interesting is that the delay between Alex and Lily’s curves here is
similar to a delay observed only incidentally in Figure 6.5, which showed the proportion of tokens
which were pre-pausal over time — an indication of the complexity of the child’s utterances at
each recording session. (When the child begins complex, multi-word utterances, the number of
pre-pausal tokens declines.) In both cases, Alex was behind Lily by close to six months. The delays
are indicated by arrows in the figures. And for both children, the drop in the PVD difference (at
27 and 32 months) was just around the completion of the child’s transition to complex utterances
(at 28 and 36 months). If the timing is not a coincidence, perhaps the changes indicate a reanalysis
of the PVD effect. As the child learns the proper prosodic structures for complex utterances, the
PVD effect may be put aside until it can be integrated in the grammar with suprasegmental effects.
It is too early to make much of this either way, but it is perhaps an area of high potential for future
research.

The analysis of F1’s correlation with the glottal state and the developmental trend of the F1

component of [voice] provide conflicting perspectives on the nature of F1’s role in [voice]. The
most likely explanation for F1 in adults was that it is a physiological consequence of the glottal
state (see Chapter 2). The lack of a developmental trend for F1 that was found is expected if it is
a physiological phenomenon and not a linguistic phenomenon. On the other hand, a correlation
between F1 and the glottal state was hoped for to substantiate this point, but no correlation was
found.
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Chapter 7

Properties of Fluent Speech and

Modeling the Learning Process

Chapter 2 would have the reader believe that with so many acoustic differences between voiced and
voiceless consonants that the problem of acoustically discriminating them ought to be trivial. At
best this might be true of laboratory recorded speech, in which speech is slow and careful. But in
continuous, fluent speech one finds that voiced and voiceless tokens are not easily separable on any
given acoustic dimension, and some acoustic dimensions that separate tokens in laboratory speech
may show no reliable value to discrimination in continuous speech.

In this chapter machine learning techniques are applied to the problem of classifying tokens
as either voiced or voiceless. Three techniques are compared: semi-supervised automated cluster-
ing, clustering plus cluster merging, and supervised support vector machines. The features used
in each case were a selection of automated acoustic measurements on the consonant and preced-
ing and following vowel. Machine learning tells us something about the difficulty of the problem
and what information the child has available is sufficient, necessary, or perhaps even unhelpful for
determining whether any given consonant is voiced or voiceless.

There are two main differences between the methodologies of the studies discussed in Chapter 2
and the methodology of this chapter. First, in Chapter 2 most of the acoustic data was of laboratory
speech, and of isolated tokens in the most extreme case. In this chapter, continuous fluent speech is
considered and it is found that, not surprisingly, the differences between voiced and voiceless tokens
on any given acoustic dimension is much less than what has been found in the past.

Second, in this chapter the task of discrimination between voiced and voicelessness (at the
phonological level) is considered with multidimensional input. That is, while studies in Chapter
2 mostly sought to describe the differences on individual dimensions here the goal is to give the
hypothetical learner as best a chance as he can have by giving him all of the available acoustic data.
For instance, in Edwards (1981), the acoustic distributions of pre-stress, intervocalic stops in a word-
list reading task were examined on a dimension-by-dimension basis. Following-vowel F0, voicing
duration during closure, and segment duration (that is, including aspiration) each independently
allowed for the placement of a decision boundary that correctly classified around 90% of tokens.
Edwards also found that VOT alone yielded a classification accuracy of as much as 98% — with
knowledge of place of articulation, the error rate dropped to 1 in the 240 observations. But the
overlap of the distributions of preceding vowel duration was “so extensive” that it had little value in
discrimination. Closure duration also had a very small voiced–voiceless difference. In this chapter,
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we will see whether VOT proves to be as useful in continuous speech and whether the same acoustic
correlates have the same relative importance.

Although the focus of this dissertation has been on language learning, the speech data used in
this chapter is adult-directed speech rather than infant-directed speech (IDS). The two modes of
speech are well known to have significant differences. For instance, in English IDS has higher
overall pitch, larger pitch excursions, long vowel durations, and vowel peripheralization, and these
exaggerations may support learning. One might hypothesize that exaggerations would extend to
the voiced–voiceless difference as well. But that does not seem to be the case. Narayan, Gorman,
and Swingley (2008) reported that in IDS, voiced and voiceless tokens has less of a separation
on the VOT dimension than in adult-directed speech, with IDS having less pre-voicing, and that the
magnitude of VOT was not significantly different between IDS and adult-directed speech. Likewise,
there was no difference in the following-F0 dimension of voicing between IDS and adult-directed
speech. Thus, it seems appropriate to work on machine learning of [voice] beginning with the more
well-understood register: adult-directed speech.

7.1 Methods

7.1.1 Corpora and Alignment

Two corpora were used in this chapter. Both were portions of audio-book recordings downloaded
from LibriVox.org, a project to create a library of public domain recordings of public domain books.
The first corpus was Around the World in 80 Days (“AW”) by Jules Verne, read by Mark Smith who
identified himself as from South Carolina, which had a total recording time of 429 minutes. The
second corpus was the first 17 chapters of Pride and Prejudice (“PP”) by Jane Austen, read by
Annie Cole who identified herself as from St. Louis, Missouri. This corpus had a total recording
time of 175 minutes. Both readers spoke naturally. The recordings were down-sampled to 11,025
Hz for the purposes of forced alignment.

The Penn Phonetics Lab Forced Alignment Toolkit (P2FA, Yuan and Liberman 2008) was used
to determine the phone boundaries based on the book texts, which were adapted into a transcription
of the audio, and the Carnegie Mellon University Pronouncing Dictionary (cmudict) plus additional
pronunciation entries for words in the corpora not found in cmudict. As described several times in
this dissertation, P2FA is a Hidden Markov Model-based tool based on HTK (Young et al. 2006),
using multiple gaussian mixture monophone models on 39 PLP coefficients. No manual correction
was performed on the alignments.

7.1.2 Features

The set of consonant tokens analyzed were stops that either immediately preceded or followed a
stressed vowel. Alveolar stops following a stressed vowel and preceding an unstressed vowel were
excluded as they would be flaps. Stops following an /s/ were also excluded to put aside the cases of
unaspirated stops in onset clusters. Praat (Boersma 2001) was used for acoustic analysis, with no
manual correction. The acoustic measurements made were:

1. Closure Intensity: The RMS intensity during the consonant’s middle third. Consonant in-
tervals include closure, burst, and aspiration. The rationale behind this measurement was to
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approximate a degree of voicing during closure, and to exclude acoustic energy toward the
end of the segment due to the burst and aspiration noise.

2. Aspiration Duration: The duration of aspiration (or Voice Onset Time), using a novel method
to locate the burst. The burst location is defined as that time which maximizes the ratio of the
RMS intensity from the burst to the end of the consonant interval to the RMS intensity in the
1/10th of the consonant interval preceding the burst. A minimum ratio of 2.5 was chosen to
prevent small changes in intensity in intervals lacking a burst (e.g. because of aligner error)
from being recorded as a burst. For sample results of this procedure, see Figure 7.1.

3. Closure Pitch: The maximum pitch during the middle 50% of the interval of the consonant.
When there is no periodic noise (i.e. when Praat indicates there is no pitch), zero is recorded.

4. Vowel Duration and Intensity: The duration and RMS intensity of the preceding and following
vowel.

5. Vowel F1: The median F1 value of the preceding and following vowel.

6. Vowel F0: The maximum pitch in the first quarter of the following vowel.

Each of these acoustic dimensions are correlated with the voicing contrast, as discussed in Chap-
ter 2.

Three subsets of the tokens were used separately, and different feature sets where used for each:

1. CV Tokens: Closure duration (total interval duration minus aspiration duration), aspiration
duration, the log of the closure RMS intensity, closure pitch, following vowel F1 and follow-
ing vowel F0 were used as features. Following vowel F0 was normalized by subtracting the
mean F0 for each vowel (i.e. its intrinsic pitch). F1 was normalized by replacing the raw F1

values with their residuals after they are fit to a linear model using vowel identity (including
stress level) and consonant place of articulation as factors (i.e. its expected target and offset).
Additionally, a feature for the consonant locus was used, which was computed as the mean of
the F1 values by the place of articulation of the consonant.

2. VC Tokens: The ratio of closure duration to preceding vowel duration (“relative closure du-
ration”), aspiration duration, the log of closure intensity, preceding vowel duration, F1, and
locus were used as features. In the Pride and Prejudice corpus, preceding vowel duration was
normalized by replacing it with its residuals when log durations are fit to a linear model using
vowel identity and utterance position as factors. Utterance position was defined as the log
of one more than the number of stressed vowels between the consonant and the subsequent
punctuation mark in the book text. Formant frequencies were normalized as described above.
A locus feature was used here as well. Because the effect of [voice] on preceding vowel F1

differs between monophthongs and diphthongs, diphthongs were excluded.

3. Intervocalic Tokens (VCV): All of the features above were used, except for the relative closure
duration feature. (The raw closure duration was used instead.)
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Figure 7.1: Spectrograms showing the automated detection of the start of aspiration (solid blue
line) within the interval for the consonant determined by forced alignment (bounded by dashed red
lines), and the surrounding phonemes. A missing aspiration line indicates the procedure failed to
find a suitable location and such tokens were dropped from analysis. This is a random sample of
pre-vocalic stops from the Around the World corpus. The identity of the phonemes are indicated
above each spectrogram (‘sp’ stands for a pause).
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7.1.3 Acoustic Distribution

The distribution of voiced and voiceless tokens overlaps on all of the acoustic dimensions in contin-
uous speech, and in some cases acoustic dimensions seen as useful for discrimination in lab speech
appear with a voiced/voiceless difference opposite to what is expected from past research.

Figure 7.1 shows the differences in mean acoustic measurements (in some cases normalized as
described above) between the voiced and voiceless tokens, separately for pre-stress CV tokens, post-
stress VC tokens, and post-stress VCV tokens1, and separately for the two audio-book corpora. The
table also includes the number of standard deviations that separate the means (using the average
of the s.d. of the voiced tokens and the s.d. of the voiceless tokens), as an indication of how
separable the two distributions are. Many of the differences reach statistical significance, but as can
be seen from the histograms in Figure 7.2 the distributions of voiced and voiceless tokens overlap
so much that for any particular value on the acoustic dimension (say, aspiration duration of .05 ms
or zero closure pitch) a token may be equally likely to be either voiced or voiceless. The larger the
separation of the means, in terms of standard deviations, the more accurately a token can be labeled
voiced or voiceless based on the known distributions.

No acoustic dimension has a consistently high separation across contexts and corpora (again
in Figure 7.1). While aspiration duration is relatively highly separable in CVs (1.2–1.3 standard
deviations), it is much less separable in the other contexts. In the VCs (and VCVs), closure pitch
and (in AW) closure RMS become more useful to the listener. This again points to the lack of
acoustic constancy across contexts, a premise that underlies some frameworks of feature theory (see
Chapter 4). While many of the other acoustic dimensions show differences that are in the right
direction as would be expected from Chapter 2, their separability is often negligible. In the case of
the CV tokens from Pride and Prejudice, two dimensions show promising separability: aspiration
duration and closure pitch. Figure 7.3 shows the corresponding scatter plot, which seems to indicate
at first that the combination of the two features may be more useful at discrimination than any one
alone. For those tokens which show closure voicing, aspiration duration clearly separates the few
phonologically voiceless tokens (with high aspiration duration) from the majority of phonologically
voiced tokens (with low aspiration duration). On the other hand, for those tokens with no closure
voicing the voiced and voiceless tokens show essentially identical distributions of aspiration dura-
tion (the right half of the figure). In other words, in an area of one acoustic dimension where the
two categories overlap, the distributions in the next most useful dimension also overlap.

7.1.4 Simple Clustering

Methods

The first machine-learning algorithm used was a variant of k-means clustering (in particular, the
Partitioning Around Medoids (pam) function of R in the cluster package). Clustering is one solution
to a labeling problem. In a binary classification task such as discriminating voiced from voiceless
stops, the algorithm groups the data points into two clusters. In standard k-means, each data point
is identified with the closest of k clusters, with distance measured straightforwardly in Euclidean
space. An iterative process is used to locate the best locations for the centers of the clusters to
minimize the overall distance between a cluster’s center and its associated data points.

1Note that the post-stress VCV tokens are a subset of the VC tokens.
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Figure 7.2: Histograms by aspiration duration (left) and closure pitch (right). Around the World CV
tokens.
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those tokens with zero closure pitch. CV tokens from Pride and Prejudice.
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Around the World in 80 Days
CV VC VCV

N (voiced/voiceless) 2,704/2,277 161/275 140/208
∆x̄ σ’s ∆x̄ σ’s ∆x̄ σ’s

Closure Duration (ms) .008 .37 — — -.012 .61
Relative Closure Duration — — -.140 .32 — —
Aspiration Duration (ms) -.024 1.3 -.013 .77 -.013 .76

Closure RMS -.12 .29 .54 1.4 .57 1.6
Closure Pitch (Hz) 13 .19 73 1.8 73 1.8
V1 Duration (ms) — — .016 .054 .055 .18

V1 F1 (Hz) — — -38 .47 -32 .42
V2 F0 (Hz) -4.9 .33 — — -1.6 .093
V2 F1 (Hz) -.38 .08 — — -2.2 .047

Pride and Prejudice
CV VC VCV

N (voiced/voiceless) 1,620/992 113/344 86/263
∆x̄ σ’s ∆x̄ σ’s ∆x̄ σ’s

Closure Duration (ms) -.0036 .16 — — -..0096 .47
Relative Closure Duration — — -.200 .38 — —
Aspiration Duration (ms) -.023 1.2 -.0086 .51 -.0094 .56

Closure RMS -.21 .51 .17 .39 .16 .38
Closure Pitch (Hz) 80 .71 110 .90 100 .86
V1 Duration (ms) — — .032 .092 .083 .24

V1 F1 (Hz) — — -16 .21 -20 .27
V2 F0 (Hz) -17 .63 — — -4.9 .15
V2 F1 (Hz) -17 .23 — — 3.6 .050

Table 7.1: Acoustic differences of voiced (VD) and voiceless (VL) stops, after transformation and
normalization as described in the text. Each cell gives the mean value for voiced stops minus the
mean value for voiceless stops followed by the number of standard deviations between the means.

This is an unsupervised learning algorithm: the algorithm does not make use of the “correct”
label of a token (voiced or voiceless) in order to determine the clustering. It only uses the acoustic
measurements to group nearby tokens together. Only after the clustering has been computed do we
look back at the correct labeling to determine which clusters line up with which labels, if any, and
how accurate the clustering matches the labels.

The only problem with applying clustering outright to the acoustic data is that a straightforward
Euclidean distance on acoustic data will cause the clustering algorithm to weigh dimensions with
large absolute measures more heavily than dimensions with small absolute measures. For instance,
frequency values are in the range of 0–3,000 Hz but RMS values here are in the range of 0–1.
As a result, clustering will pay far more attention to the frequency dimensions and essentially no
attention to the RMS dimensions. The measurements must all be rescaled before starting clustering.
A simple method is to transform all measurements to z-scores. What appears to work slightly better
in practice is to scale the dimensions according to each’s estimate in a linear regression with the
feature dimensions predicting the classification label (Mark Liberman, p.c., who attributed the idea
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to Lyle Ungar). In other words:

model <- lm(cbind(labels, features))

for (c in names(features)) features[c] <- features[c] * model$coef[[c]]

Of course, this comes at the expense of the algorithm no longer being unsupervised since it is
provided with the correct answer. But where the bulk of the work is being done in classifying the
tokens — in the actual clustering — the method is still unsupervised.

The result of the clustering with k = 2 is a contingency table such as the hypothetical one
below:

k-means
A B

True
Voiced 50 100

Voiceless 90 60

In this example, cluster A lines up with voiceless tokens and cluster B with voiced tokens. There is
no reason that the clusters should have come out this way — it is a matter of the algorithm’s random
start. In order to judge the accuracy of the clustering, each cluster is assigned to its majority true

label (A → Voiceless, B → Voiced):

Cluster
Voiced Voiceless

True
Voiced 100 50

Voiceless 60 90

and then accuracy is computed in the normal way ((100 + 90)/(100 + 50 + 60 + 90) = 0.63).

Multiple Clusters

The voiced/voiceless discrimination task is most easily thought of as a binary discrimination task.
A token is either voiced or voiceless. Assuming this is true in the adult language, it might not
be true in the language of the infant who is susceptible to both over- and under-generalization.
Over-generalization is the more well-known phenomenon where a language learner applies a rule
in more contexts where it is appropriate — because conditioning environments have not been sepa-
rated enough on the relevant dimensions. Under-generalization is the inverse case, where a language
learner applies a rule in too few cases because too many distinctions among conditioning environ-
ments have been made.

One way in which the voicing contrast could be undergeneralized is if not all of the pairs in the
paradigm were distinguished by the same underlying feature. For instance, /p,b/ might hypotheti-
cally be distinguished by feature A and /k,g/ by feature B, each with separate acoustic correlates.
A could be [voice] whereas B could be [tense/lax]. Or A could include a preceding vowel duration
difference while B does not. Recall that in Chapter 4 I argued against a redundant feature model
of voice precisely because it undergeneralizes in this way, allowing for different segments to make
use of different correlates of the voicing contrast without there being a phonological representation
of the entirety of the voice contrast. Though I argued against the redundant feature model, under-
generalization is certainly a plausible state of being, especially for the language learner, and may be
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difficult to detect. In Chapter 6 it was not possible to examine this particular case in the develop-
ing children. Although the different places and manners of articulation of the contrastively voiced
segments showed differences in acoustic correlates, these differences were also confounded by the
point during language development where the tokens occurred (which independently is affecting
factors such as PVD).

Assume the language user has undergeneralized the voice feature — be it a language learner
or an adult speaker. In this case, two clusters are not enough. Voice perception is not a binary
classification task but a multi-way classification task, i.e. k > 2. There is no difficulty in running
the machine classifier with larger values for k; however, judging accuracy requires an extra logical
step. When k = 2, judging accuracy requires us to map our two a priori categories to the two
categories yielded by the classifier, as described above. This is done in the same spirit as when a
phonologist applies a model to a set of natural observations: observations do not come pre-labeled
with linguistic terminology. But in the case of k > 2, we have no a priori k-way labeling to
compare the results of the classifier to. Instead, we can give the learner the benefit of the doubt that
the clusters will still map sensibly onto the binary distinction and measure accuracy in the same
manner as when k = 2, by comparing each label to the majority vote of its cluster.

Results

The clustering was run with 8-fold cross-validation, meaning it was run eight times, each time
using 7/8ths of the data set for clustering (training) and then testing the accuracy on the left-out
eighth. During testing, each token was assigned to the cluster with the nearest center (medoid)
using Euclidian distance. The mean accuracy across the eight runs is reported. This process was
repeated separately for each of the two audio-book corpora, and for each separately on the pre-stress
CV, post-stress VC, and post-stress VCV tokens.

Some of the results are reported in Figure 7.2. In all but the case of the Pride and Prejudice
corpus, binary clustering improved on baseline accuracy by at least 12 percentage points. The
maximum accuracy was 83% for the Around the World VC tokens, where the baseline was 63%.
(Baseline accuracy was the accuracy when all tokens were labeled with the most frequent label.)
Accuracy continued to improve with additional clusters. From 2 to 8 clusters, accuracy improved
by as much as 15 percentage points (for the PP CVs).

Corpus N Tokens Baseline k = 2 k = 3 k = 4 k = 8

AW CV 4,981 54% 66% 70% 73% 74%
AW VC 436 63% 83% 86% 86% 86%
AW VCV 348 60% 78% 81% 79% 83%
PP CV 2,612 62% 57% 71% 70% 72%

Table 7.2: Results of clustering for k = 2, 3, 4, 8.

In the case of CV tokens in the AW corpus, it is interesting to look at what the clusters are
when k = 3. This tells us something about the distribution of the acoustic properties. In a typical
application of the clustering algorithm to one of the cross-validation subsets, we find two clusters
with primarily voiced tokens and one cluster with primarily voiceless tokens. This seems to indicate
that voicing has a less spherical distribution in acoustic space than non-voicing. The two voicing
clusters fall into a less-voiced/more-voiced division. One cluster has the lowest aspiration, the
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highest pitch, and the lowest following vowel F0, while the other has greater aspiration (but not
as great as in the voiceless cluster), low pitch (in fact, the cluster medoid has no pitch like the
voiceless cluster medoid), and higher following vowel F0 (but again not as high as in the voiceless
cluster). This second voiced cluster is, in a sense, the devoiced voiced tokens: those lacking phonetic
voicing and reduced voice characteristics in other dimensions, but still somewhat separable from the
phonologically voiceless tokens.

7.1.5 Cluster Merging

The improved accuracy when k > 2 indicates that voiced and voiceless tokens do not separate well
into essentially two spherical regions in (scaled) acoustic space. Instead, the tokens form a more
complex and irregular distribution which is better captured by additional clusters. That said, the
learner has other tools at his disposal for avoiding unbounded undergeneralization without losing
the benefit of classifying according to multiple clusters. If we provide the learner with additional
information that it can use to divide the clusters into two groups, it may be able to have the best of
both worlds.

Methods

The learner presumably knows that some tokens come from the same type (i.e. phonological/lexical
class). In other words, multiple tokens of the /t/ in ‘cat’ must have the same label. The /t/ in ‘cat’ is
a type. There could be any number of ways the learner might make use of this, but in this section
a novel cluster merging technique has been employed based on the idea that if a type overlaps two
clusters those clusters probably both represent voiced tokens or both represent voiceless tokens.
Here we repeatedly merge pairs of clusters until only two remain. In each step, the pair of clusters
merged is that pair with the highest overlap in types. Overlap is computed in terms of pointwise
mutual information between the two clusters, where the “probability of occurrence” of a cluster is
the probability that a type drawn at random is assigned to the cluster by drawing one of its tokens
at random and finding the cluster with the nearest center. In terms of PMI, this is formalized as
follows:

PMI(x, y) = log p(x,y)
p(x)p(y)

p(x) =
∑

τ pτ (x)
p(x, y) =

∑
τ pτ (x)pτ (y)

pτ (x) = |τ∩x|
|τ |

where x and y are cluster and τ is a type. |τ | denotes the number of tokens observed of the type;
τ ∩ x denotes the set of tokens of type τ in the cluster x. To reduce k clusters to k − 1, on the order
of k2 pointwise mutual information computations must be performed, and as the number of tokens
and types increases this becomes computationally prohibitive quickly.

Results

Again the clustering method was run with 8-fold cross-validation on each of the two corpora, and
for each separately on the pre-stress CV, post-stress VC, and post-stress VCV tokens. The cluster
merging approach does show a useful benefit to the learner, at least in some cases. In the corpus
set that had the largest number of tokens and types, the accuracy of the classifier increased four
percentage points from two clusters (the normal binary classification) to three clusters (one step of
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cluster merging). Unfortunately, adding additional clusters did not appreciably help and in many
cases reduced accuracy. All of the four tests reported in Figure 7.3 show an improvement from
two to three clusters (for the AW corpus) or two to four clusters (for the PP corpus). For the Pride
and Prejudice CVs, while binary classification actually had an accuracy below the 62% baseline,
four clusters with cluster merging had an accuracy of 70%. In no case was the accuracy of cluster
merging better than that of undergeneralized clustering with k = 8, but cluster merging was fairly
competitive.

Corpus N Tokens N Types Baseline k = 2 k = 8 Cluster Merging
AW CV 4,981 959 54% 66% 74% 70%
AW VC 436 230 63% 83% 86% 86%
AW VCV 348 202 60% 78% 83% 81%
PP CV 2,612 607 62% 57% 72% 70%

Table 7.3: Results of simple clustering with k = 2, 8 and cluster merging.

7.1.6 Support Vector Machine

To establish a rough upper bound on the accuracy of the classification task, a supervised learning
algorithm — the support vector machine — was applied to the same acoustic data. (In a supervised
machine learning method, the algorithm is given the correct labeling to determine the best slice
through acoustic space that divides the two categories. Language learning is thought to be primarily
unsupervised because of children’s apparent lack of reliance on being explicitly told the correct way
to speak.) The svm function in the e1071 R package was used. The accuracy of SVM classification
is given in Figure 7.4. The SVM classifier consistently performed much better than any of the
unsupervised clustering methods, as expected, with an accuracy reaching 91% for the AW VCVs.

Corpus N Tokens Baseline k = 2 k = 8 SVM
AW CV 4,981 54% 66% 74% 86%
AW VC 436 63% 83% 83% 88%
AW VCV 348 60% 78% 86% 91%
PP CV 2,612 62% 57% 72% 87%

Table 7.4: Results of simple clustering with k = 2, 8 and SVM-based classification.

7.2 Summary

Today — when even non-linguists probably have some experience with the limitations of speech
recognition — it should not really be any surprise that automated classification of voicing in fluent
speech should be so difficult. However, we can learn several things from the attempt.

Compared to Edwards’s (1981) use of a single segmental context, we see here that the value
to discrimination of the nine acoustic dimensions varies from context to context. While aspiration
duration was by far the most reliable dimension in pre-stress CVs based on the number of standard
deviations that separates the means of the voiced and voiceless tokens, it trades its position with
closure RMS intensity and closure pitch in post-stress VCs. (And as opposed to Edwards (1981),
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following-vowel F0 had little value here.) The variation of the acoustic properties across contexts
and especially their limitation in discrimination presents a problem for a theory of phonology which
reduces paradigms to acoustics through narrow conceptions of features such as [tense/lax] or [asp].
In order to maintain a paradigm such as voicing with differences in acoustic realization, a more
flexible (or “algebraic”) model of the phonology-phonetics interface must be introduced, as was
discussed in Chapter 4.

On the other hand, while this chapter attempted to have classification benefit from using multiple
acoustic dimensions simultaneously, it was not readily apparent that this had any benefit. One would
think that a production equivalent of cue trading might ensure that when one cue is absent another
cue is present, if not exaggerated, to help the listener make the distinction. As discussed earlier,
while aspiration duration separates voiced and voiceless tokens overall, when considering just those
tokens with zero closure pitch (essentially voiceless and devoiced tokens) aspiration duration no
longer has any discriminative value. (It would seem to be the case that the voiced tokens that have
zero closure pitch are also aspirated. Perhaps in the end these tokens were phonologically devoiced.)
Likewise, out of the six sample groups only in two cases were there at least two acoustic dimensions
that seemed to be simultaneously useful for discrimination. These were the AW VCs and VCVs,
in which both closure RMS and closure pitch were relatively highly separable according to the
differences in the means. In other cases only one dimension seemed to stand out from the rest.

The fact that aspiration duration reached such a high level of discriminative ability validates
the method introduced in this chapter for determining the start of aspiration within an otherwise
unlabeled segment. The method defined the burst location roughly as that location which maximized
the change in RMS intensity across that point. Although no comparison to hand annotations was
made, the method clearly worked well enough to be more useful for discrimination of CV tokens’
voicing than any of the long-standing acoustic measurements included in the feature set. (If the
burst were simply placed randomly within each segment, we would have instead seen both aspiration
duration and its complement — closure duration — as having high discriminating value. But instead
closure duration had weak discriminating value.)

As for the distributions themselves, we saw that they are not best represented by two spherical
regions in acoustic space. Accuracy with simple clustering increased as the number of clusters
increased, indicating that a more refined model of the mapping between acoustics and phonology
is useful — and that perhaps learners or even adult speakers use an undergeneralized model of the
voice paradigm which involves more than two categories. On the other hand, additional information
beyond acoustics — in particular the type membership of tokens — may allow for language users
to learn a refined, multi-cluster map of acoustic space that still maps onto a binary distinction.
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Chapter 8

Summary and Concluding Remarks

On the surface this dissertation could be seen as coming from the field of acoustic phonetics or, per-
haps, experimental developmental psychology. But all along what has been of interest has been the
phonetic implementation of features in the phonetics-phonology interface. Despite the centrality of
feature theory to phonetics and phonology, discussion on the nature of features at the interface has
been mostly confined to the extremes: either that phonological features are in a direct one-to-one
mapping to acoustic or articulatory dimensions (e.g. Jakobson and Halle 1956; Stevens et al. 1986)
or that phonological features bear only an indirect relation to the next lower level in the linguistic
system (e.g. Keating 1980, 1984; Vaux 1998). Related infant language development research has
fallen into a similar division, with studies mostly focusing either on particular acoustic dimensions
or on phonemic contrasts while taking their acoustics for granted. For instance, in the mispronun-
ciation studies discussed in Chapter 3 the mispronunciation was either along a single dimension
(vowel duration) or was a change from one naturally produced segment to another without regard
to the acoustic differences.

When it comes to stop and fricative [voice] in English, there are a number of acoustic dimensions
that vary reliably across the paradigm, as reviewed in Chapter 2. Some of these dimensions encode
targets that are a part of linguistic competence: certainly the state of the glottis (e.g. VOT) and
perhaps closure duration in stops and preceding vowel duration, and possibly F0 perturbation. Other
dimensions seem to be a matter of linguistic performance only: the duration difference in fricatives
and perhaps the effect on the F1 of preceding monophthongs. I argued in Chapter 4 that the rich
acoustic side to the [voice] paradigm must be encoded as a part of the specification of the [voice]
feature itself, i.e. as its phonetic implementation or as the way it is passed from the phonological to
the phonetic components of the grammar.

But while these dimensions are reliable in a laboratory setting, their usefulness for discrimi-
nating tokens is greatly reduced in fluent speech (Chapter 7). Aspiration duration was by far the
most reliable dimension in pre-stress CVs, using standard deviations to guage the separability of
the voiced and voiceless distributions. But in post-stress VCs, aspiration duration trades its position
with signal intensity during closure and closure pitch. On the one hand, this supports the position
that phonological features cannot be tied to individual acoustic dimensions. On the other hand, even
if the phonetics-phonology interface allows for phonological features to map onto complex phonetic
outputs, the fact that the ensemble of outputs depends on context remains just as unexplained as in
a narrow model of features a la Jakobson and Halle (1956).

In Chapter 6, a corpus study was presented that investigated the phonetic realization of con-
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sonant [voice] in two English-learning infants aged 1;1–3;5. While preceding vowel duration has
been studied before, the other correlates of post-vocalic voicing investigated here — preceding F1,
consonant duration, and closure voicing intensity — had not been measured before in infant speech.
The study also made two methodological contributions. First, it was a large-scale corpus study. Al-
though the final number of tokens used was only moderately large (around 1,000), they were drawn
from a much larger pool using an automated process, and the full corpus was used to train a new
forced alignment acoustic model specific to infant speech.

The second methodological contribution was the use of maximum likelihood estimation to fit
Klatt models of segment duration based on his notion of “incompressibility”. Klatt models strike
a balance between the simpler and less empirically accurage multiplicative models and the more
complex but linguistically implausible sums-of-products models. While a multiplicative model can
be easily fit using linear regression, a Klatt model requires a more general solution technique. Max-
imum likelihood estimation proved to be effective to fit Klatt models, and it is especially useful for
the experimental linguist because it can be used to compute standard errors for estimates (as with
linear regression). The Klatt model for preceding vowel duration indicated a statistically significant
result that the corresponding multiplicative model was not powerful enough to find.

Several results came out of the study. F1 at the midpoint of a vowel preceding a voiced consonant
was lower by roughly 50 Hz, which is in line with the effect found in adults. But while the effect
has been considered most likely to be a physiological and nonlinguistic phenomenon, it actually
appeared to be correlated in the wrong direction with other aspects of [voice], casting doubt on a
physiological explanation. Some of the consonant pairs had statistically significant differences in
duration and closure voicing. Additionally, a preceding vowel duration difference was found and
additionally a preliminary indication of a developmental trend that suggests the preceding vowel
duration difference is being learned.

Finally, two important aspects of [voice] were found through experimentation with unsuper-
vised learning of [voice] categorization from multidimensional acoustic input. First, the voiced and
voiceless tokens are best represented not as two spherical clusters in acoustic space. Rather, multi-
ple clusters — especially for the voiced tokens — better captures the distribution of the tokens. This
may reflect that the phonological representation of [voice] is undergeneralized (with respect to cur-
rent phonological theory) or is likely to be undergeneralized by language learners (with respect to
the adult language). On the other hand, information outside of the domain of acoustics can be used
to correct for undergeneralization. Lexical/semantic information that groups tokens into types can
be used to collapse a multi-cluster map of acoustic space into a binary classification that is almost
competitive with a fully undergeneralized model in terms of classification accuracy.
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Appendix A

Experiment 2 Word List

Below are the words used in the reading lists of Experiment 2, adult (adult-directed) speech produc-
tion.

Monosyllabic real words:

spite spied
chat chad
thought thawed
bout bowed
leak league
sack sag
pick pig
peck peg
buck bug
tap tab
ape Abe
cup cub
rope robe

Tautosyllabic real words:

neatness needless
seatbelt seedling
fraction fragment
doctor dogma
pectin pegboard
crapshoot crabmeat
optics object
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Heterosyllabic real words:

seater cedar
catty caddy
petal pedal
coating coding
vicar vigor
backing bagging
chucking chugging
flocking flogging
hokey hoagie
sopping sobbing
seaport seabed
staples stables
soapy sober

Monosyllabic nonsense words:

geet geed
jite jide
zat zad
fot fod
spote spode
jeek jeeg
chack chag
skik skig
nuck nug
pauk paug
spap spab
skop skob
peip peib
gup gub
foup foub

Tautosyllabic nonsense words:

geetmonk geedmonk
jitehood jidehood
zatback zadback
fotful fodful
spotestick spodestick
jeekson jeegson
chackpack chagpack
skikmount skigmount
nuckbon nugbon
pauktill paugtill
spapton spabton
skoptrie skobtrie
peipcat peibcat
gupsnow gubsnow
foupdram foubdram

Heterosyllabic nonsense words:

geety geedy
jiteing jideing
zatting zadding
fotins fodins
spowtuck spowduck
jeeker jeeger
chackal chagal
ziken zigen
nuckist nugist
paukam paugam
spapale spabale
skoping skobing
peiper peiber
gupomt gubomt
foupest foubest
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Appendix B

Maximum Likelihood Estimation

Function

The following is a new function for the R statistics program for performing maximum likelihood
estimation, as described in Section 6.3.1. An example use of this function is given on page 70. The
function reports the estimate, standard error, null hypothesis (as given by the user), and p-value for
each of the model parameters.

In addition, an extra parameter called σǫ is always estimated. This is an estimate of the standard
deviation of the normal distribution that the error terms (i.e. residuals) of the model are assumed to
be drawn from. The estimated value is probably not as important as verifying that its standard error
is sufficiently small to ensure the model fit is good enough.

mle <- function(x, y, f, nullhyp=list(), getresids=F) {

# Parameters

# ---------------

#

# x are the predictors. y are the observed data values.

#

# f should be a function that implements a model, e.g.:

# f <- function(x, intercept=.1, slope=.5) {

# intercept + x*slope

# }

# where x, the first argument, is copied from the main call

# to maxlikest.

#

# The default values for the parameters are required in

# the function definition and are used as starting values

# for the nonlinear optimization procedure and as the

# null hypothesis when computing a p-value (unless

# it is overridden with e.g. nullhyp=list(intercept = 0),

# or nullhyp=list(intercept = NA) to turn off the test).

#

# if getresids==T, then this returns the residuals against

# the best fit model, otherwise the result of the model

# fit is printed out immediately and a list of the estimates

# of the parameters is returned, e.g.:

# list(intercept = .203, slope = .395)

#

# An additional parameter called "sigma_epsilon" is returned

# which is the estimate of the standard deviation of the

# normal distribution from which the error terms (i.e. residuals)

# of the model are drawn from.

#
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# Here is an example to fit a linear model:

# mle(x=c(0, 1, 2, 3), y=c(1, 3.1, 5.1, 7.1), function(x, m=1, b=1) { m*x + b });

# Ok then, here's the code:

# get the parameters we are estimating as a list, chopping

# off the first parameter which is the 'x' argument.

xparamname = names(formals(f))[1]

paramslist <- formals(f)[2:length(formals(f))]

build_param_list <- function(p) {

# names of list arguments to f

pp = list()

# add the x argument

pp[[xparamname]] = x

# convert vector of args into named list for calling f,

# except for p[length(p)] which is the implicit parameter

# epsilon_sigma, which we strip off before calling f because

# f doesn't know about it.

for (pn in 1:length(paramslist))

pp[names(paramslist)[pn]] = p[pn]

return(pp);

}

# negloglik defines a function that returns the negative

# of the log likelihood of the parameters p given the

# residuals computed from the predicted values returned

# by f.

negloglik <- function(p) {

residuals <- y - do.call(f, build_param_list(p)); # get residuals

# we added an implicit parameter for the standard deviation

# of the residuals

residual_standard_deviation = p[length(p)];

# return -log likelihood

-sum(dnorm(residuals,

sd=residual_standard_deviation, log=T))

};

# Use default value of f's arguments as initial values

for (p in paramslist)

if (missing(p))

stop("Provide a default value for each parameter in the model.\n");

initial_values <- sapply(paramslist, eval.parent)

# Add an implicit residual standard deviation variable that

# we will also estimate and report to the user, even though

# the user's function won't know about it. Here we add the

# variable and its initial guess.

initial_values = c(initial_values, list("σ_ε"=1));

# Maximize -log likelihood using the nlm function of R. While

# it is at it, get the Hessian matrix, which is used to compute

# standard errors later.

# nlm doesn't seem to work as well as optim. The hessian

# sometimes comes back singular when optim seems to

# be okay with it.

#solution <- nlm(negloglik, initial_values, hessian=T);

#if (solution$code > 2) { cat("...Solution Not So Good (code > 2)...\n") ; }

#estimate <- solution$estimate;
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solution <- optim(initial_values, negloglik, hessian=T, method="BFGS");

#if (solution$code > 0) { cat("...Solution Not So Good (code > 0)...\n") ; }

estimate = solution$par;

# Get the residuals for these parameter estimates. First strip

# off the residual standard deviation estimate because that's

# not an argument to f. Then call f (see above) with the estimates

# to get the predicted values, and subtract from y to get residuals.

residuals = y - do.call(f, build_param_list(estimate));

if (getresids) return (residuals); # get residuals and return, no output

# Standard errors are the square roots of the diagonals of the

# inverse of the Hessian matrix.

stderr <- diag(solve(solution$hessian))^.5;

# Get the null hypothesis for each parameter. If nullhyp is unspecified,

# use the initial value as the null hypothesis. Otherwise, grab it from nullhyp.

null = vector(mode="numeric", length=length(estimate))

for (x in 1:length(names(paramslist))) {

if (names(paramslist)[x] %in% names(nullhyp))

null[x] = nullhyp[[ names(paramslist)[x] ]]

else

null[x] = initial_values[x]

}

# Clear out the null hypothesis for the standard deviation of the

# residuals since we're not doing hypothesis testing on it.

null[length(estimate)] = NA

# Compute p value based on a two-tailed test.

pval = 2*pnorm(-abs(unlist(estimate)-unlist(null)), sd=stderr);

# These are the computed estimates of the parameters. Add

# names to the estimates for row labels of the final output.

names(estimate) <- names(initial_values);

# Output estimates, standard errors, null hypotheses, and p values.

print(cbind(estimate, stderr, null, pval), digits=3);

# Output r^2.

SStot = sum((y - mean(y)) ^ 2)

SSerr = sum(residuals*residuals)

rsquared = 1 - (SSerr / SStot)

cat(paste("r^2 ", format(rsquared, digits=3), "\n"));

# Output blank line.

cat("\n");

return(as.list(estimate));

}
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Appendix C

Suggested Further Experiments

This dissertation raised many questions that could not be immediately answered but which could
be addressed by further experimental work. I list here a summary of the questions raised in the
hopes that this helps other linguists find interesting questions to answer. The questions are ordered
according to the order of the dissertation.

1. Does the PVD effect occur across word boundaries — i.e. in vowel-final words followed by a
consonant-initial word? This is interesting from the perspective of the question of whether the
PVD is a phonologically productive process, although this would not answer that question.

2. It is important to revisit the claims for and against the compensatory adjustment explanations
for the PVD effect. The reason, somewhat backwards, is that the best theoretical model for
the effect — at least in my opinion — seems to be a gestural timing specification encoded
in the [voice] feature. Is there any scale in which the vowel-consonant durations appear to
maintain a constant sum?

3. A reevaluation of cross-linguistic comparisons of the PVD is necessary. Only in Laeufer
(1992) was a fair comparison made between two languages (French and English). I have not
read the original research on the PVD in Swedish (see Buder and Stoel-Gammon 2002) so
it would be worthwhile to give that a second look and to replicate it. I also suspect that the
PVD difference observed in Spanish is due to factors besides voice. Are there two types of
PVD, or can all of the languages be classified either into the Polish/Czech category or the
English/French category?

4. Danish and Hindi were claimed to have a reversed closure duration correlate of [voice] (i.e.
longer for voiced consonants) and also a PVD effect. It would be useful to revist that literature
(how large is the PVD effect?) and potentially replicate. These would make for especially
interesting cases since syllables with a voiced coda would be lengthened throughout.

5. Huff (1980) did the novel experiment of having a word-final flap, which is a case that give
language users good evidence of the underlying voice value of the flap. He found a vowel
duration difference before flaps in this case but not in the case of word-internal flaps. It would
be interesting to replicate the study with a larger sample and with speakers of a dialect that
does not have short-a raising. It’s especially interesting to look at the other correlates of
[voice].

103



6. Studies are leaning toward universal following-vowel F0 perturbation showing the pattern:
voiced ≪ voiceless, aspirated ≪ unaspirated. But I noted that not all studies agreed.

7. Moreton’s (2004) “Pre-Voiceless Hyperarticulation” has not been tested comprehensively for
the whole of the vowel space.

8. Stevens and Klatt (1974) suggested that aspiration might be a spectral target, linked to F1. Is
there evidence for this?

9. Infant phone inventories are not a good measure of phone fluency, given the disparate rates
of occurence of phones in infant-directed speech. What would we get if we looked at infant
phone production rates relative to their occurrence in infant-directed speech?

10. There were three possible interpretations of Ko et al. (2009). One could be ruled out or
strenghened if we know whether infants stared longer at longer vowels.

11. I raised the idea of a compositional phonetics, where the acoustics of a segment are predicted
based on what we know about the phonetic correlates of its individual features.

12. Are there differences in the PVD effect in Boston (observed to be a large PVD) and Maine
(no effect observed, but the difference was not significant)?

13. Do the acoustic correlates of [voice] develop at the same time in all phonemes in the [voice]
paradigm (i.e. the acoustics of [voice] are fully generalized) or is [voice] undergeneralized at
first?

14. What does the acoustic space of [voice] look like in adult, fluent speech? So far it seems as if
in any given context there is only one or perhaps two acoustic dimensions that are useful for
discriminating [voice] and that the use of multidimensional input was not beneficial.
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