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terms of a geometric fractional Sobolev norm; this shows that a spectral gap exists and that this behavior is
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operator. Lastly, we explicitly compute the Jacobian of a collision map (p, q) to (cp' + (1-c)p, q) for a fixed c in
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ABSTRACT

GLOBAL CLASSICAL SOLUTIONS TO THE RELATIVISTIC BOLTZMANN

EQUATION WITHOUT ANGULAR CUT-OFF

Jin Woo Jang

Robert M. Strain

We prove the unique existence and exponential decay of global in time classical

solutions to the special relativistic Boltzmann equation without any angular cut-off

assumptions with initial perturbations in some weighted Sobolev spaces. We con-

sider perturbations of the relativistic Maxwellian equilibrium states. We work in the

case of a spatially periodic box. We consider the general conditions on the collision

kernel from Dudyński and Ekiel-Jeżewska (Commun Math Phys 115(4):607–629,

1985). Additionally, we prove sharp constructive upper and coercive lower bounds

for the linearized relativistic Boltzmann collision operator in terms of a geometric

fractional Sobolev norm; this shows that a spectral gap exists and that this behav-

ior is similar to that of the non-relativistic case as shown by Gressman and Strain

(Journal of AMS 24(3), 771–847, 2011). We also derive the relativistic analogue of

Carleman dual representation of Boltzmann collision operator. Lastly, we explic-

itly compute the Jacobian of a collision map (p, q)→ (θp′ + (1− θ)p, q) for a fixed

θ ∈ (0, 1), and it is shown that the Jacobian is bounded above in p and q. This is the

first global existence and stability result for relativistic Boltzmann equation without

v



angular cutoff and this resolves the open question of perturbative global existence

for the relativistic kinetic theory without the Grad’s angular cut-off assumption.
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Chapter 1

Introduction

1.1 The relativistic Boltzmann equation

In 1872, Boltzmann [12] derived an eqution which mathematically models the dy-

namics of a gas represented as a collection of molecules. This was a model for the

collisions between non-relativistic particles. For the collisions between relativistic

particles whose speed is comparable to the speed of light, Lichnerowicz and Marrot

[38] have derived the relativistic Boltzmann equations in 1940. This is a funda-

mental model for fast moving particles. Understanding the behavior of relativistic

particles is crucial in describing many astrophysical and cosmological processes [37].

Although the classical non-relativistic Boltzmann kinetic theory has been widely

and heavily studied, the relativistic kinetic theory has received relatively less atten-

tion because of its complicated structure and computational difficulty on dealing
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with relativistic post-collisional momentums. The relativistic Boltzmann equation

is written as

pµ∂µf = p0∂tf + cp · ∇xf = C(f, f), (1.1.1)

where c is the speed of light and the collision operator C(f, f) can be written as

C(f, h) =

∫
R3

dq

q0

∫
R3

dq′

q′0

∫
R3

dp′

p′0
W (p, q|p′, q′)[f(p′)h(q′)− f(p)h(q)]. (1.1.2)

Here, the transition rate W (p, q|p′, q′) is

W (p, q|p′, q′) =
c

2
sσ(g, θ)δ(4)(pµ + qµ − p′µ − q′µ),

where σ(g, θ) is the scattering kernel measuring the interactions between particles

and the Dirac δ function expresses the conservation of energy and momentum.

1.2 Notation

The relativistic momentum of a particle is denoted by a 4-vector representation

pµ where µ = 0, 1, 2, 3. Without loss of generality we normalize the mass of each

particle m = 1. We raise and lower the indices with the Minkowski metric pµ =

gµνp
ν , where the metric is defined as gµν = diag(−1, 1, 1, 1). The signature of the

metric throughout this paper is (− + ++). With p ∈ R3, we write pµ = (p0, p)

where p0 which is the energy of a relativistic particle with momentum p is defined

as p0 =
√
c2 + |p|2. The product between the 4-vectors with raised and lowered
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indices is the Lorentz inner product which is given by

pµqµ = −p0q0 +
3∑
i=1

piqi.

Note that the momentum for each particle satisfies the mass shell condition pµpµ =

−c2 with p0 > 0. Also, the product pµqµ is Lorentz invariant.

By expanding the relativistic Boltzmann equation and dividing both sides by p0

we write the relativistic Boltzmann equation as

∂tF + p̂ · ∇xF = Q(F, F )

where Q(F, F ) = C(F, F )/p0 and the normalized velocity of a particle p̂ is given by

p̂ = c
p

p0
=

p√
1 + |p|2/c2

.

We also define the quantities s and g which respectively stand for the square of

the energy and the relative momentum in the center-of-momentum system, p+q = 0,

as

s = s(pµ, qµ) = −(pµ + qµ)(pµ + qµ) = 2(−pµqµ + 1) ≥ 0, (1.2.1)

and

g = g(pµ, qµ) =
√

(pµ − qµ)(pµ − qµ) =
√

2(−pµqµ − 1). (1.2.2)

Note that s = g2 + 4c2.

Conservation of energy and momentum for elastic collisions is described as

pµ + qµ = p′µ + q′µ. (1.2.3)
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The scattering angle θ is defined by

cos θ =
(pµ − qµ)(p′µ − q′µ)

g2
. (1.2.4)

Together with the conservation of energy and momentum as above, it can be shown

that the angle and cos θ are well-defined [24].

Here we would like to introduce the relativistic Maxwellian which models the

steady state solutions or equilibrium solutions also known as Jüttner solutions.

These are characterized as a particle distribution which maximizes the entropy

subject to constant mass, momentum, and energy. They are given by

J(p) =
e
− cp0

kBT

4πckBTK2( c2

kBT
)
,

where kB is Boltzmann constant, T is the temperature, and K2 stands for the Bessel

function K2(z) = z2

2

∫∞
1
dte−zt(t2 − 1)

3
2 . Throughout this paper, we normalize all

physical constants to 1, including the speed of light c = 1. Then we obtain that the

relativistic Maxwellian is given by

J(p) =
e−p

0

4π
.

We now consider the center-of-momentum expression for the relativistic collision

operator as below. Note that this expression has appeared in the physics literature;

see [14]. For other representations of the operator such as Glassey-Strauss coordi-

nate expression, see [1], [27], and [25]. Also, see [49] for the relationship between

those two representations of the collision operator. As in [46] and [14], one can

4



reduce the collision operator (1.1.2) using Lorentz transformations and get

Q(f, h) =

∫
R3

dq

∫
S2
dw vφσ(g, θ)[f(p′)h(q′)− f(p)h(q)], (1.2.5)

where vφ = vφ(p, q) is the Mφller velocity given by

vφ(p, q) =

√∣∣∣ p
p0
− q

q0

∣∣∣2 − ∣∣∣ p
p0
× q

q0

∣∣∣2 =
g
√
s

p0q0
.

Comparing with the reduced version of collision operator in [1], [27], and [25], we

can notice that one of the advantages of this center-of-momentum expression of

the collision operator is that the reduced integral (1.2.5) is written in relatively

simple terms which only contains the Mφller velocity, scattering kernel, and the

cancellation between gain and loss terms.

The post-collisional momentums in the center-of-momentum expression are writ-

ten as

p′ =
p+ q

2
+
g

2

(
w + (γ − 1)(p+ q)

(p+ q) · w
|p+ q|2

)
, (1.2.6)

and

q′ =
p+ q

2
− g

2

(
w + (γ − 1)(p+ q)

(p+ q) · w
|p+ q|2

)
. (1.2.7)

The energy of the post-collisional momentums are then written as

p′0 =
p0 + q0

2
+

g

2
√
s

(p+ q) · w,

and

q′0 =
p0 + q0

2
− g

2
√
s

(p+ q) · w.

5



These can be derived by using the conservation of energy and momentum (1.2.3);

see [48].

For f, g smooth and small at infinity, it turns out [24] that the collision operator

satisfies ∫
Q(f, g)dp =

∫
pQ(f, g)dp =

∫
p0Q(f, g)dp = 0

and ∫
Q(f, f)(1 + log f)dp ≤ 0. (1.2.8)

Using (1.2.8), we can prove the famous Boltzmann H-theorem that the entropy

of the system −
∫
f log fdp dx is a non-decreasing function of t. The expression

−f log f is called the entropy density.

1.3 A brief history of previous results in the rel-

ativistic Boltzmann theory

The full relativistic Boltzmann equation appeared first in the paper by Lichnerow-

icz and Marrot [38] in 1940. In 1967, Bichteler [11] showed the local existence of

the solutions to the relativistic Boltzmann equation. In 1989, Dudynski and Ekiel-

Jezewska [20] showed that there exist unique L2 solutions to the linearized equation.

Afterwards, Dudynski [17] studied the long time and small-mean-free-path limits

of these solutions. Regarding large data global in time weak solutions, Dudynski

and Ekiel-Jezewska [19] in 1992 extended DiPerma-Lions renormalized solutions

6



[16] to the relativistic Boltzmann equation using their causality results from 1985

[18]. Here we would like to mention the work by Alexandre and Villani [10] on

renormalized weak solutions with non-negative defect measure to non-cutoff non-

relativistic Boltzmann equation. In 1996, Andreasson [1] studied the regularity of

the gain term and the strong L1 convergence of the solutions to the Jüttner equi-

librium which were generalizations of Lions’ results [39, 40] in the non-relativistic

case. He showed that the gain term is regularizing. In 1997, Wennberg [52] showed

the regularity of the gain term in both non-relativistic and relativistic cases.

Regarding the Newtonian limit for the Boltzmann equation, we have a local

result by Cercignani [13] and a global result by Strain [49]. Also, Andreasson,

Calogero and Illner [2] proved that there is a blow-up if only with gain-term in

2004. Then, in 2009, Ha, Lee, Yang, and Yun [33] provided uniform L2-stability

estimates for the relativistic Boltzmann equation. In 2011, Speck and Strain [44]

connected the relativistic Boltzmann equation to the relativistic Euler equation via

the Hilbert expansions.

Regarding problems with the initial data nearby the relativistic Maxwellian,

Glassey and Strauss [25] first proved there exist unique global smooth solutions to

the equation on the torus T3 for the hard potentials in 1993. Also, in the same

paper they have shown that the convergence rate to the relativistic Maxwellian is

exponential. Their assumptions on the differential cross-section covered the case of

hard potentials. In 1995 [26], they extended their results to the whole space and

7



have shown that the convergence rate to the equilibrium solution is polynomial.

Under reduced restrictions on the cross-sections, Hsiao and Yu [34] gave results

on the asymptotic stability of Boltzmann equation using energy methods in 2006.

Recently, in 2010, Strain [47] showed that unique global-in-time solutions to the

relativistic Boltzmann equation exist for the soft potentials which contains more

singular kernel and decay with any polynomial rate towards their steady state rela-

tivistic Maxwellian under the conditions that the initial data starts out sufficiently

close in L∞.

In addition, we would like to mention that Glassey and Strauss [27] in 1991

computed the Jacobian determinant of the relativistic collision map. Also, we

notice that there are results by Guo and Strain [50, 51] on global existence of

unique smooth solutions which are initially close to the relativistic Maxwellian for

the relativistic Landau-Maxwell system in 2004 and for the relativistic Landau

equation in 2006. In 2009, Yu [54] proved the smoothing effects for relativistic

Landau-Maxwell system. In 2010, Yang and Yu [53] proved time decay rates in the

whole space for the relativistic Boltzmann equation with hard potentials and for

the relativistic Landau equation.

8



Chapter 2

Carleman dual representation of

the relativistic collision operator

2.1 Dual representation

In this section, we develop the Carleman representation of the relativistic gain and

loss terms which arise many times throughout this paper represented as an integral

over Ep
q−p′ where the set is defined as:

Ep
q−p′

def
= {p ∈ R3|(p′µ − pµ)(qµ − p′µ) = 0}. (2.1.1)

We first derive the Carlelman dual representation of the relativistic gain term.

Initially, suppose that
∫
S2 dw |σ0(θ)| < ∞ and that

∫
S2 dw σ0(θ) = 0. Then, the

9



relativistic gain term part of the inner product 〈Γ(f, h), η〉 is written as

〈Γ+(f, h), η〉

=
c

2

∫
R3

dp

p0

∫
R3

dp′

p′0

∫
R3

dq

q0

∫
R3

dq′

q′0
sσ(g, w)δ(4)(pµ + qµ − p′µ − q′µ)

× f(q)h(p)
√
J(q′)η(p′)

where δ(4) is the delta function in four variables. We will reduce the integral by

evaluating the delta function. Note that we have∫
R3

dp

p0

∫
R3

dq′

q′0
=

∫
R4

dpµ
∫
R4

dq′µδ(pµpµ + 1)δ(q′µq′µ + 1)u(p0)u(q′0)

where u(x) = 1 if x ≥ 1 and = 0 otherwise. Then, we obtain that

〈Γ+(f, h), η〉

=
c

2

∫
R3

dp′

p′0
η(p′)

∫
R3

dq

q0
f(p)

∫
R4

dpµh(p)

∫
R4

dq′µe−
q′0
2 u(p0)u(q′0)

× δ(pµpµ + 1)δ(q′µq′µ + 1)sσ(g, w)δ(4)(pµ + qµ − p′µ − q′µ).

We reduce the integral
∫
R4 dq

′µ by evaluating the last delta function and obtain

〈Γ+(f, h), η〉

=
c

2

∫
R3

dp′

p′0
η(p′)

∫
R3

dq

q0
f(q)

∫
R4

dpµsσ(g, w)h(p)e−
p0+q0−p′0

2 u(p0)

× u(q0 − p′0 + p0)δ(pµpµ + 1)δ((qµ − p′µ + pµ)(qµ − p′µ + pµ) + 1)

The terms in the second delta function can be rewritten as

(qµ − p′µ + pµ)(qµ − p′µ + pµ) + 1 = (qµ − p′µ)(qµ − p′µ) + 2(qµ − p′µ)pµ

= g̃2 + 2pµ(qµ − p′µ).

10



Therefore, by evaluating the first delta function, we finally obtain the dual repre-

sentation of the gain term as

〈Γ+(f, h), η〉

=
c

2

∫
R3

dp′

p′0
η(p′)

∫
R3

dq

q0
f(q)

∫
Ep
q−p′

dπp
p0

s

2g̃
σ(g, w)h(p)e−

p0+q0−p′0
2

(2.1.2)

where the measure dπp is defined as

dπp = u(p0 + q0 − p′0)δ(
g̃2 + 2pµ(qµ − p′µ)

2g̃
).

We also want to compute the dual representation for the loss term. We start

from the following.

〈Γ(f, h), η〉

=

∫
R3

dp

∫
R3

dq

∫
S2
dw vφf(q)h(p)σ(g, w)(

√
J(q′)η(p′)−

√
J(q)η(p))

=

∫
R3

dp

∫
R3

dq

∫
S2
dw vφf(q)h(p)Φ(g)σ0(θ)(

√
J(q′)η(p′)−

√
J(q)η(p)).

Initially, suppose that
∫
S2 dw |σ0(θ)| <∞ and that

∫
S2 dw σ0(θ) = 0. Then, the loss

term vanishes and we obtain

〈Γ(f, h), η〉 =

∫
R3

dp

∫
R3

dq

∫
S2
dw vφf(q)h(p)σ(g, w)

√
J(q′)η(p′).

This is the relativistic Boltzmann gain term and its dual representation is shown

above to be the following:

c

2

∫
R3

dp′

p′0

∫
R3

dq

q0

∫
Ep
q−p′

dπp
p0

sσ(g, θ)

g̃
f(q)h(p)

√
J(q′)η(p′). (2.1.3)
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On the geometry Ep
q−p′ , (p′µ − pµ)(qµ − p′µ) = 0 Thus we have ḡ2 + g̃2 = g2. Note

that

(p′µ − q′µ)(pµ − qµ) = (2p′µ − pµ − qµ)(pµ − qµ)

= (p′µ − pµ + p′µ − qµ)(pµ − p′µ + p′µ − qµ)

= (p′µ − pµ)(pµ − p′µ) + (p′µ − qµ)(p′µ − qµ)

= −ḡ2 + g̃2.

Since cos θ
def
= (p′µ−q′µ)(pµ−qµ)

g2
, we have that

cos θ
def
=
−ḡ2 + g̃2

ḡ2 + g̃2
.

Define t = −ḡ2+g̃2

ḡ2+g̃2
. Then, we obtain dt = dḡ −4ḡg̃

(ḡ2+g̃2)2
. Since

∫ 1

−1
dt σ0(t) = 0, we have

∫ ∞
0

4ḡg̃2

(ḡ2 + g̃2)2
σ0

(−ḡ2 + g̃2

ḡ2 + g̃2

)
dḡ = 0.

From the estimation part for the inequality on the set Ep
q−p′ , we may find a proper

variable w′ ∈ H2 such that R+
0 ×H2 = Ep

q−p′ . Then, the integral is now

∫
H2

dw ′
∫ ∞

0

dḡ
4ḡg̃2

(ḡ2 + g̃2)2
σ0

(−ḡ2 + g̃2

ḡ2 + g̃2

)
= 0.

Then, we obtain ∫
Ep
q−p′

dπp
g̃2

(ḡ2 + g̃2)2
σ0

(−ḡ2 + g̃2

ḡ2 + g̃2

)
= 0.

Therefore by multiplying constant terms with respect to p, we have

∫
Ep
q−p′

dπp
p0

sσ(g, θ)

g̃

s̃g̃4Φ(g̃)

sg4Φ(g)
f(q)h(p′)η(p′)

√
J(q) = 0.
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Now we subtract this expression from the Carleman representation just writ-

ten for 〈Γ(f, h), η〉 must equal the usual representation. This will be called the

relativistic dual representation. Thus,

〈Γ(f, h), η〉

=

∫
R3

dp

∫
R3

dq

∫
S2
dw vφf(q)h(p)σ(g, w)(

√
J(q′)η(p′)−

√
J(q)η(p))

=
c

2

∫
R3

dp′

p′0

∫
R3

dq

q0

∫
Ep
q−p′

dπp
p0

sσ(g, θ)

g̃
f(q)η(p′)

× {h(p)
√
J(q′)− s̃g̃4Φ(g̃)

sg4Φ(g)
h(p′)

√
J(q)}.

(2.1.4)

We claim that this representation holds even when the mean value of σ0 is not zero.

Suppose that
∫
S2 dw |σ0(θ)| <∞ and that

∫
S2 dw σ0(θ) 6= 0. Define

σε0(t) = σ0(t)− 1[1−ε,1](t)

∫ 1

−1

dt′
σ0(t′)

ε
.

Then, we have
∫ 1

−1
σε0(t)dt = 0 vanishing on S2. Now, define

〈Γε(f, h), η〉

=

∫
R3

dp

∫
R3

dq

∫
S2
dw vφf(q)h(p)σε0(cos θ)(

√
J(q′)η(p′)−

√
J(q)η(p)).

Note that t = cos θ. Then,

|〈Γ(f, h), η〉 − 〈Γε(f, h), η〉|

=

∣∣∣∣ ∫
R3

dp

∫
R3

dq

∫
S2
dw vφf(q)h(p)Φ(g)

· (
√
J(q′)η(p′)−

√
J(q)η(p))1[1−ε,1](cos θ)

1

ε

∫ 1

−1

σ0(t′)dt′
∣∣∣∣.

(2.1.5)

Here, we briefly discuss some properties under the condition cos θ = 1. By the

definition, we have

cos θ =
(pµ − qµ)(p′µ − q′µ)

g2
.
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Thus, if cos θ = 1,

(pµ − qµ)(p′µ − q′µ) = g2

= (pµ − qµ)(pµ − qµ).

Then we have

(pµ − qµ)(p′µ − pµ) = 0.

By the collision geometry (p′µ − pµ)(p′µ − qµ) = 0, we have

(pµ − p′µ)(pµ − p′µ) = ḡ2 = 0.

Thus, we get ḡ = 0. Equivalently, this means that

(p′0 − p0)2 = |p′ − p|2.

And this implies that p0 = p′0 and p = p′ because

|p′0 − p0| =
∣∣∣∣ |p′|2 − |p|2p′0 + p0

∣∣∣∣ < |p′ − p|.
Therefore, if cos θ = 1, we have p′µ = pµ and q′µ = qµ. Thus, as ε→ 0, the difference

term in (2.1.5)→ 0 because the integrand vanishes on the set cos θ = 1. Therefore,

we can call (2.1.4) as the dual representation because if we define

Tfη(p)
def
=

∫
R3

dq

∫
S2
dw σ(g, θ)f(q)(

√
J(q′)η(p′)−

√
J(q)η(p)),

T ∗f h(p′) =
1

p′0
c

2

∫
R3

dq

q0

∫
Ep
q−p′

dπp
p0

sσ(g, θ)

g̃
f(q)

× {h(p)
√
J(q′)− s̃g̃4Φ(g̃)

sg4Φ(g)
h(p′)

√
J(q)},
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then

〈Γ(f, h), η〉 = 〈Tfη, h〉 = 〈η, T ∗f h〉.

2.2 Alternative forms of the collision operator

The collision integral below can be represented in other variables:

∫
R3

dp

p0

∫
R3

dq

q0

∫
R3

dq′

q′0

∫
R3

dp′

p′0
sσ(g, θ)δ(4)(p′µ + q′µ − pµ − qµ)A(p, q, p′) (2.2.1)

where A has a sufficient vanishing condition so the integral is well-defined.

Here we can write the above integral as one on the set R3 × R3 × Ep′

p+q where

Ep′

p+q is the hyperplane

Ep′

p+q = {p′ ∈ R3 : (p′µ − pµ)(pµ + qµ) = 0}.

We rewrite eq.(2.2.1) as ∫
R3

dp

p0

∫
R3

dq

q0
B(p, q, p′)

where B = B(p, q, p′) is defined as

B =

∫
R3

dp′

p′0

∫
R3

dq′

q′0
sσ(g, θ)δ(4)(p′µ + q′µ − pµ − qµ)A(p, q, p′)

=

∫
R4×R4

dΘ(p′µ, q′µ)sσ(g, θ)δ(4)(p′µ + q′µ − pµ − qµ)A(pµ, qµ, p′µ)

where dΘ(p′µ, q′µ)
def
= dp′ µdq′ µu(q′0)u(p′0)δ(s − g2 − 4)δ((p′µ − q′µ)(p′µ + q′µ)) and

u(r) = 0 if r < 0 and u(r) = 1 if r ≥ 0. Now we apply the change of variable

q̄′
µ

= q′µ − p′µ.
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Then with this change of variable the integral becomes

B =

∫
R4×R4

dΘ(q̄′
µ
, p′µ)sσ(g, θ)δ(4)(2p′µ + q̄′

µ − pµ − qµ)A(pµ, qµ, p′µ)

where dΘ(q̄′
µ
, p′µ)

def
= dp′ µdq̄′

µ
u(q̄′0 + p′0)u(p′0)δ(s − g2 − 4)δ(q̄′

µ
(p′µ + q′µ)). This

change of variables gives us the Jacobian= 1. Finally we evaluate the delta function

to obtain

B =

∫
R4

dΘ(p′µ)sσ(g, θ)A(pµ, qµ, p′µ)

where we are now integrating over the four vector p′µ and dΘ(p′µ) = dp′ µu(q0 +

p0−p′0)u(p′0)δ(s− g2−4)δ((pµ + qµ)(pµ + qµ−2p′µ)). We conclude that the integral

is given by

B =

∫
Ep
′
p+q

dπp′

2
√
sp′0

sσ(g, θ)A(p, q, p′) (2.2.2)

where dπp′ = dp′ u(p0 + q0 − p′0)δ
(
− s

2
√
s
− p′µ(pµ+qµ)√

s

)
. This is an 2 dimensional

surface measure on the hypersurface Ep′

p+q in R3.

Additionally, we can write the integral (2.2.1) as one on the set R3×R3×Eq
p′−p

where Eq
p′−p is the hyperplane

Eq
p′−p = {q ∈ R3 : (p′µ − pµ)(pµ + qµ) = 0}.

We rewrite (2.2.1) as ∫
R3

dp

p0

∫
R3

dp′

p′0
B(p, q, p′)
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where B = B(p, q, p′) is defined as

B =

∫
R3

dq

q0

∫
R3

dq′

q′0
sσ(g, θ)δ(4)(p′µ + q′µ − pµ − qµ)A(p, q, p′)

=

∫
R4×R4

dΘ(qµ, q′µ)sσ(g, θ)δ(4)(p′µ + q′µ − pµ − qµ)A(pµ, qµ, p′µ)

where dΘ(qµ, q′µ)
def
= dq µdq′ µu(q′0)u(q0)δ(s − g2 − 4)δ((qµ − q′µ)(qµ + q′µ)) and

u(r) = 0 if r < 0 and u(r) = 1 if r ≥ 0. Now we apply the change of variable

q̄µ = q′µ − qµ.

Then with this change of variable the integral becomes

B =

∫
R4×R4

dΘ(q̄µ, qµ)sσ(g, θ)δ(4)(p′µ + q̄µ − pµ)A(pµ, qµ, p′µ)

where dΘ(q̄µ, qµ)
def
= dq µdq̄µu(q̄0 + q0)u(q0)δ(s− g2− 4)δ(q̄µ(2qµ + q̄µ)). This change

of variables gives us the Jacobian= 1. Finally we evaluate the delta function to

obtain

B =

∫
R4

dΘ(qµ)sσ(g, θ)A(pµ, qµ, p′µ)

where we are now integrating over the four vector qµ and

dΘ(qµ) = dq µu(p0 − p′0 + q0)u(q0)δ(s− g2 − 4)δ((pµ − p′µ)(2qµ + pµ − p′µ)). We

conclude that the integral is given by

B =

∫
Eq
p′−p

dπq
2ḡq0

sσ(g, θ)A(p, q, p′) (2.2.3)

where dπq = dq u(p0 + q0 − p′0)δ
(
ḡ
2

+
qµ(pµ−p′µ)

ḡ

)
. This is an 2-dimensional surface

measure on the hypersurface Eq
p′−p in R3.

17



We also want to introduce another way of writing the collision operator. The

12-fold integral (2.2.1) will be written in 9-fold integral in this section in (p, p′, q̄)

where we define q̄ as below. We write (2.2.1) using Fubini as follows

I
def
=

∫
R3

dp

p0

∫
R3

dp′

p′0

∫
R3

dq

q0

∫
R3

dq′

q′0
sσ(g, θ)δ(4)(p′µ + q′µ − pµ − qµ)A(p, q, p′).

By adding two delta functions and two step functions, we can express the integral

above as follows

I =

∫
R3

dp

p0

∫
R3

dp′

p′0

∫
R4

dqµ
∫
R4

dq′µ u(q0 + q′0)u(s− 4)δ(s− g2 − 4)

× sσ(g, θ)δ((qµ + q′µ)(qµ − q′µ))δ(4)(p′µ + q′µ − pµ − qµ)A(p, q, p′)

where we are now integrating over the 14-vector (p, p′, qµ, q′µ), u is defined by u(r) =

0 if r < 0 and u(r) = 1 if r ≥ 0, and we let g
def
= g(qµ, q′µ) and s

def
= s(qµ, q′µ). We

will convert the integral over (qµ, q′µ) into the integral over qµ − q′µ and qµ + q′µ.

Now we apply the change of variables

qµs
def
= qµ + q′µ, qµg

def
= qµ − q′µ.

This will do the change (qµ, q′µ)→ (qµs , q
µ
g ) with Jacobian = 16. With this change,

the integral I becomes

I =

∫
R3

dp

p0

∫
R3

dp′

p′0

∫
R4

dqµs

∫
R4

dqµg u(q0
s)u(−qµs qsµ − 4)δ(qµs qgµ)

× δ(−qµs qsµ − qµg qgµ − 4)sσ(g, θ)δ(4)(p′µ − pµ − qµg )A(p,
qs + qg

2
, p′).
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Then we evaluate the third delta function to obtain

I =

∫
R3

dp

p0

∫
R3

dp′

p′0

∫
R4

dqµs u(q0
s)u(−qµs qsµ − 4)δ(−qµs qsµ − ḡ2 − 4)

× δ(qµs (p′µ − pµ))sσ(g, θ)A(p,
qs + qg

2
, p′).

Note that −qµs qsµ− 4 = ḡ2 ≥ 0 by the first delta function, and thus we always have

u(−qµs qsµ − 4) = 1. Also, since s̄ = ḡ2 + 4, we have

u(q0
s)δ(−qµs qsµ − ḡ2 − 4) = u(q0

s)δ(−qµs qsµ − s̄)

= u(q0
s)δ((qs

0)2 − |qs|2 − s̄)

=
δ(q0

s −
√
|qs|2 + s̄)

2
√
|qs|2 + s̄

.

Then we finally carry out an integration using the first delta function and obtain

I =

∫
R3

dp

p0

∫
R3

dp′

p′0

∫
R3

dqs

2
√
|qs|2 + s̄

δ(qµs (p′µ − pµ))

× sσ(g, θ)A(p,
qs + qg

2
, p′).

(2.2.4)
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Chapter 3

On the global classical Solutions

to the relativistic Boltzmann

equation without angular cut-off

3.1 Statement of the main results and remarks

3.1.1 Linearization and reformulation of the Boltzmann equa-

tion

We will consider the linearization of the collision operator and perturbation around

the relativistic Jüttner equilibrium state

F (t, x, p) = J(p) +
√
J(p)f(t, x, p). (3.1.1)
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Without loss of generality, we suppose that the mass, momentum, energy con-

servation laws for the perturbation f(t, x, p) holds for all t ≥ 0 as

∫
R3

dp

∫
T3

dx


1

p

p0


√
J(p)f(t, x, p) = 0. (3.1.2)

We linearize the relativistic Boltzmann equation around the relativistic Maxwellian

equilibrium state (3.1.1). By expanding the equation, we obtain that

∂tf + p̂ · ∇xf + L(f) = Γ(f, f), f(0, x, v) = f0(x, v), (3.1.3)

where the linearized relativistic Boltzmann operator L is given by

L(f)
def
= − J−1/2Q(J,

√
Jf)− J−1/2Q(

√
Jf, J)

=

∫
R3

dq

∫
S2
dw vφσ(g, w)

(
f(q)

√
J(p)

+ f(p)
√
J(q)− f(q′)

√
J(p′)− f(p′)

√
J(q′)

)√
J(q),

and the bilinear operator Γ is given by

Γ(f, h)
def
= J−1/2Q(

√
Jf,
√
Jh)

=

∫
R3

dq

∫
S2
dw vφσ(g, θ)

√
J(q)(f(q′)h(p′)− f(q)h(p)).

(3.1.4)

Then notice that we have

L(f) = −Γ(f,
√
J)− Γ(

√
J, f).

We further decompose L = N + K. We would call N as norm part and K as
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compact part. First, we define the weight function ζ̃ = ζ + ζK such that

Γ(
√
J, f) =

(∫
R3

dq

∫
S2
dw vφσ(g, θ)(f(p′)− f(p))

√
J(q′)

√
J(q)

)
− ζ̃(p)f(p),

(3.1.5)

where

ζ̃(p) =

∫
R3

dq

∫
S2
dw vφσ(g, θ)(

√
J(q)−

√
J(q′))

√
J(q)

=

∫
R3

dq

∫
S2
dw vφσ(g, θ)(

√
J(q)−

√
J(q′))2

+

∫
R3

dq

∫
S2
dw vφσ(g, θ)(

√
J(q)−

√
J(q′))

√
J(q′)

def
= ζ(p) + ζK(p).

Then the first piece in Γ in (3.1.5) contains a crucial Hilbert space structure and

this is a similar phenomenon to the non-relativistic case as mentioned in Gressman

and Strain [30]. To see this, we take a pre-post collisional change of variables

(p, q)→ (p′, q′) as

−
∫
R3

dp

∫
R3

dq

∫
S2
dw vφσ(g, θ)(f(p′)− f(p))h(p)

√
J(q′)

√
J(q)

=− 1

2

∫
R3

dp

∫
R3

dq

∫
S2
dw vφσ(g, θ)(f(p′)− f(p))h(p)

√
J(q′)

√
J(q)

− 1

2

∫
R3

dp

∫
R3

dq

∫
S2
dw vφσ(g, θ)(f(p)− f(p′))h(p′)

√
J(q)

√
J(q′)

=
1

2

∫
R3

dp

∫
R3

dq

∫
S2
dw vφσ(g, θ)(f(p′)− f(p))(h(p′)− h(p))

√
J(q′)

√
J(q).

(3.1.6)
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Then, we define the compact part K of the linearized Boltzmann operator L as

Kf = ζK(p)f − Γ(f,
√
J)

= ζK(p)f −
∫
R3

dq

∫
S2
dw vφσ(g, θ)

√
J(q)(f(q′)

√
J(p′)− f(q)

√
J(p)),

where

ζK(p)
def
=

∫
R3

dq

∫
S2
dw vφσ(g, θ)(

√
J(q)−

√
J(q′))

√
J(q′). (3.1.7)

Then, the rest of L which we call as the norm part N is defined as

Nf = −Γ(
√
J, f)− ζK(p)f

= −
∫
R3

dq

∫
S2
dw vφσ(g, w)(f(p′)− f(p))

√
J(q′)

√
J(q) + ζ(p)f(p),

where

ζ(p)
def
=

∫
R3

dq

∫
S2
dw vφσ(g, θ)(

√
J(q)−

√
J(q′))2. (3.1.8)

Then, as in (3.1.6), this norm piece satisfies that

〈Nf, f〉 =
1

2

∫
R3

dp

∫
R3

dq

∫
S2
dw vφσ(g, θ)(f(p′)− f(p))2

√
J(q′)

√
J(q)

+

∫
R3

dp ζ(p)|f(p)|2.

Thus, we define a fractional semi-norm as

|f |2B
def
=

1

2

∫
R3

dp

∫
R3

dq

∫
S2
dw vφ σ(g, θ)(f(p′)− f(p))2

√
J(q)J(q′).

This norm will appear in the process of linearization of the collision operator.
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For the first part of the compact piece 〈Kf, f〉 and the second part of the

norm piece 〈Nf, f〉, the following asymtotics will be shown in Proposition 4.1.1 and

Corollary 4.2.2:

|ζK(p)| . (p0)
a+γ
2 and ζ(p) ≈ (p0)

a+γ
2 , (3.1.9)

under our hypothesis on the collision kernel (3.1.10) and (3.1.11) only. They can

be established with the similar machinery as in Section 3.2, 3.3, and 3.5. Pao [42]

proved related estimates in non-relativistic case using special function arguments.

This completes our main splitting of the linearized relativistic Boltzmann collision

operator.

We can also think of the spatial derivative of Γ which will be useful later. Recall

that the linearization of the collision operator is given by (3.1.4) and that the post-

collisional variables p′ and q′ satisfies (1.2.6) and (1.2.7). Then, we can define the

spatial derivatives of the bilinear collision operator Γ as

∂αΓ(f, h) =
∑
α1≤α

Cα,α1Γ(∂α−α1f, ∂α1h),

where Cα,α1 is a non-negative constant.

3.1.2 Main hypothesis on the collision kernel σ

The Boltzmann collision kernel σ(g, θ) is a non-negative function which only de-

pends on the relative momentum g and the scattering angle θ. Without loss of gen-

erality, we may assume that the collision kernel σ is supported only when cos θ ≥ 0
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throught this paper; i.e., 0 ≤ θ ≤ π
2
. Otherwise, the following symmetrization [24]

will reduce the case:

σ̄(g, θ) = [σ(g, θ) + σ(g,−θ)]1cos θ≥0,

where 1A is the indicator function of the set A.

Throughout this paper we assume the collision kernel satisfies the following

growth/decay estimates:

σ(g, θ) . (ga + g−b)σ0(θ)

σ(g, θ) & (
g√
s

)gaσ0(θ)

(3.1.10)

Additionally, the angular function θ 7→ σ0(θ) is not locally integrable; for c > 0, it

satisfies

c

θ1+γ
≤ sin θ · σ0(θ) ≤ 1

cθ1+γ
, γ ∈ (0, 2), ∀θ ∈ (0,

π

2
]. (3.1.11)

Here we have that a + γ ≥ 0 and γ < b < 3
2

+ γ. Note that we do not assume any

cut-off condition on the angular function.

The assumptions on our collision kernel have been motivated from many impor-

tant physical interactions; the Boltzmann cross-sections which satisfy the assump-

tions above can describe many interactions such as short range interactions [22, 43]

which describe the relativistic analogue of hard-sphere collisions, Mφller scatter-

ing [14] which describes electron-electron scattering, Compton scattering [14] which

is an approximation of photon-electron scattering, neutrino gas interactions [15],

and the interactions of Israel particles [35] which are the relativistic analogue of

25



the interactions of Maxwell molecules. For explicit representations of the collision

kernels, see Appendix. Conditions on our collision kernel is generic in the sense

of Dudyński and Ekiel-Jeżewska [20]. Some of the collision cross-sections of those

important physical interactions have high angular singularities, so the non-cutoff

assumptions on the angular kernel are needed.

3.1.3 Spaces

We will use 〈·, ·〉 to denote the standard L2(R3
p) inner product. Also, we will use

(·, ·) to denote the L2(T3
x×R3

p) inner product. As will be seen, our solutions depend

heavily on the following weighted geometric fractional Sobolev space:

Ia,γ
def
= {f ∈ L2(R3

p) : |f |Ia,γ <∞},

where the norm is described as

|f |2Ia,γ
def
= |f |2L2

a+γ
2

+

∫
R3

dp

∫
R3

dp′
(f(p′)− f(p))2

ḡ3+γ
(p′0p0)

a+γ
4 1ḡ≤1

where ḡ is the relative momentum between p′µ and pµ in the center-of-momentum

system and is defined as

ḡ = g(p′µ, pµ) =
√

(p′µ − pµ)(p′µ − pµ)

=
√

2(−p′µpµ − 1) =
√

2(p′0p0 − p′ · p− 1).

(3.1.12)
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Here, we also define another relative momentum between p′µ and qµ as

g̃ = g(p′µ, qµ) =
√

(p′µ − qµ)(p′µ − qµ)

=
√

2(−p′µqµ − 1) =
√

2(p′0q0 − p′ · q − 1).

Note that this space Ia,γ is included in the following weighted L2 space given by

|f |2L2
a+γ
2

def
=

∫
R3

dp (p0)
a+γ
2 |f(p)|2.

p0 is a convenient notation, but we do not include the speed of light as a parameter

in our norms as we normalize the speed of light c = 1 throughout this paper.

The notation on the norm | · | refers to function space norms acting on R3
p only.

The analogous norm acting on T3
x × R3

p is denoted by || · ||. So, we have

||f ||2Ia,γ
def
= || |f |Ia,γ ||2L2(T3).

The multi-indices α = (α1, α2, α3) will be used to record spatial derivatives. For

example, we write

∂α = ∂α
1

x1
∂α

2

x2
∂α

3

x3
.

If each component of α is not greater than that of α1, we write α ≤ α1. Also,

α < α1 means α ≤ α1 and |α| < |α1| where |α| = α1 + α2 + α3.

We define the space HN = HN(T3 ×R3) with integer N ≥ 0 spatial derivatives

as

||f ||2HN = ||f ||2HN (T3×R3) =
∑
|α|≤N

||∂αf ||2L2(T3×R3).
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We sometimes denote the norm ||f ||2HN as ||f ||2H for simplicity.

We also define the derivative space Ia,γN (T3 × R3) whose norm is given by

||f ||2Ia,γN = ||f ||2Ia,γN (T3×R3) =
∑
|α|≤N

||∂αf ||2Ia,γ(T3×R3).

Now, we state our main result as follows:

Theorem 3.1.1. (Main Theorem) Fix N ≥ 2, the total number of spatial deriva-

tives. Choose f0 = f0(x, p) ∈ HN(T3×R3) in (3.1.1) which satisfies (3.1.2). There

is an η0 > 0 such that if ||f0||HN (T3×R3) ≤ η0, then there exists a unique global strong

solution to the relativistic Boltzmann equation (1.1.1), in the form (3.1.1), which

satisfies

f(t, x, p) ∈ L∞t ([0,∞);HN(T3 × R3)) ∩ L2
t ((0,∞); Ia,γN (T3 × R3)).

Furthermore, we have exponential decay to equilibrium. For some fixed λ > 0,

||f(t)||HN (T3×R3)) . e−λt||f0||HN (T3×R3)).

We also have positivity; F = J +
√
Jf ≥ 0 if F0 = J +

√
Jf0 ≥ 0.

3.1.4 Remarks and possibilities for the future

Our main theorem assumes that the initial function has at least N spatial deriva-

tives. The minimum number of spatial derivatives N ≥ 2 is needed to use the

Sobolev embedding theorems that L∞(T3
x) ⊃ H2(T3

x). Note that if the number

of spatial derivatives is N > 4, the strong solutions in the existence theorem
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are indeed classical solutions by the Sobolev lemma [23] that if N > 1 + 6
2

then

HN(T3×R3) ⊂ C1(T3×R3). For the lowest number of spatial derivatives, N ≥ 2, we

obtain that the equation is satisfied in the weak sense; however, the weak solution is

called a strong solution to the equation because we show that the solution is unique.

Cancellation estimates. Here we want to record one of the main computa-

tional and technical difficulties which arise in dealing with relativistic collisions.

While one of the usual techniques to deal with the cancellation estimates which

contains |η(p)−η(p′)| is to use the fundamental theorem of calculus and the change

of variables in the non-relativistic settings, this method does not give a favorable

estimate in the relativistic theory because the momentum derivative on the post-

collisional variables (1.2.6) and (1.2.7) creates additional high singularities which

are tough to control in the relativistic settings. Even with the other different rep-

resentation of post-collisional variables as in [25], it is known in much earlier work

[27] that the growth of momentum derivatives is large enough and this high growth

prevents us from using known the non-relativistic method from [31]. It is also worth

it to mention that the Jacobian which arises in taking the change of variables from

p to u = θp+ (1− θ)p′ for some θ ∈ (0, 1) has a bad singularity at some θ = θ(p, p′).

Even if we take a non-linear path from p to p′, the author has computed that the

Jacobian always blows up at a point on the path and has concluded that there

exists a 2-dimensional hypersurface between the momentums p and p′ on which the
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Jacobian blows up. We deal with this difficulty by isolating the term |η(p)− η(p′)|

in one integral in the sense of the Cauchy-Schwarz inequality and bounding the

integral from above in terms of the norm |η|Ia,γ and the extra factor 2−
3k
2 , which is

a favorable factor for the case k ≥ 0. See Section 3.3.

Non-cutoff results. Regarding non-relativistic results with non-cutoff assump-

tions, we would like to mention the work by Alexandre and Villani [10] from 2002

on renormalized weak solutions with non-negative defect measure. Also, we would

like to record the work by Gressman and Strain [29, 30] in 2010-2011. We also want

to mention that Alexandre, Morimoto, Ukai, Xu, and Yang [4, 6, 7, 8, 9] obtained a

proof, using different methods, of the global existence of solutions with non-cutoff

assumptions in 2010-2012. Lastly, we would like to mention the recent work by the

same group of Alexandre, Morimoto, Ukai, Xu, and Yang [5] from 2013 on the local

existence with mild regularity for the non-cutoff Boltzmann equation where they

work with an improved initial condition and do not assume that the initial data is

close to a global equilibrium.

We also want to remark that Theorem 3.1.1 is the first global existence and

stability proof in the relativistic kinetic theory without angular cutoff conditions

and this solves an open problem.

Future possibilities: We believe that our method can be useful for making
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further progress on the non-cutoff relativistic kinetic theory. Note that our kernel

assumes the hard potential interaction. We can use the similar methods to prove

another open problem on the global stability of the relativistic Boltzmann equations

for the soft potentials without angular cutoff. We will soon address in a future

work the generalization to the soft potential interaction which assumes −b+ γ < 0

and −3
2
< −b + γ in a subsequent paper [36]. For more singular soft potentials

−b + γ ≤ −3
2
, we need to take the momentum-derivatives on the bilinear collision

operator ∂βΓ which is written in the language of the derivatives of the post-collision

maps of (1.2.6) and (1.2.7) and the estimates on those terms need some clever

choices of splittings of kernels so that we reduce the complexity of the derivatives.

This difficulty on the derivatives is known and expected in the relativistic kinetic

theory, for the representations of the post-collisional momentums in the center-of-

momentum expression in (1.2.6) and (1.2.7) contain many non-linear terms.

Furthermore, we expect to generalize our result to the whole space case R3
x by

combining our estimates with the existing cut-off technology in the whole space.

It is also possible that our methods could help to prove the global existences and

stabilities for other relativistic PDEs such as relativistic Vlasov-Maxwell-Boltzmann

system for hard potentials without angular cut-off.
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3.1.5 Outline of the article

In the following section, we first introduce the main lemmas and theorems that are

needed to prove the local existence in Section 3.6.

In Section 3.2, some size estimates on single decomposed pieces will be intro-

duced. We start by introducing our dyadic decomposition method of the angular

singularity and start making an upper bound estimate on each decomposed piece.

Some proofs will be based on the relativistic Carleman-type dual representation

which is introduced in the Appendix. Note that some proofs on the dual represen-

tation require the use of some new Lorentz frames.

In Section 3.3, we estimate the upper bounds of the difference of the decomposed

gain and loss pieces for the k ≥ 0 case.

In Section 3.4, we first split the main inner product of the non-linear collision

operator Γ which is written as a trilinear form. Then, we use the upper bound

estimate on each decomposed piece and the upper bound estimates on the difference

terms that were proven in the previous sections to prove the main upper bound

estimates.

In Section 3.5, we use the Carleman dual representation on the trilinear form

and find the coercive lower bound. We also show that the norm part 〈Nf, f〉 is

comparable to the weighted geometric fractional Sobolev norm | · |I .

In Section 3.6, we finally use the standard iteration method and the uniform

energy estimate for the iterated sequence of approximate solutions to prove the
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local existence. After this, we derive our own systems of macroscopic equations and

the local conservation laws and use these to prove that the local solutions should

be global by the standard continuity argument and the energy estimates.

In the Appendix, we derive the relativistic Carleman-type dual representation

of the gain and loss terms and obtain the dual formulation of the trilinear form

which is used in many places from the previous sections.

3.1.6 Main estimates

Here we would like to record our main upper and lower bound estimates of the inner

products that involve the operators Γ, L, and N . The proofs for the estimates are

introduced in Section 3.2 through 3.5.

Theorem 3.1.2. We have the basic estimate

|〈Γ(f, h), η〉| . |f |L2|h|L2
a+γ
2

|η|Ia,γ .

Lemma 3.1.3. Suppose that |α| ≤ N with N ≥ 2. Then we have the estimate

| (∂αΓ(f, h), ∂αη) | . ||f ||HN ||h||Ia,γN ||∂
αη||Ia,γ .

Lemma 3.1.4. We have the uniform inequality for K that

|〈Kf, f〉| ≤ ε|f |2Ia,γ + Cε|f |2L2

where ε is any positive small number and Cε > 0.
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Lemma 3.1.5. We have the uniform inequality for N that

|〈Nf, f〉| . |f |2Ia,γ .

Lemma 3.1.6. We have the uniform coercive lower bound estimate:

〈Nf, f〉 & |f |2Ia,γ .

Lemma 3.1.5 and Lemma 3.1.6 together implies that the norm piece is compa-

rable to the fractional Sobolev norm Ia,γ as

〈Nf, f〉 ≈ |f |2Ia,γ .

Finally, we have the coercive inequality for the linearlized Boltzmann operator

L:

Lemma 3.1.7. For some C > 0, we have

〈Lf, f〉 & |f |2Ia,γ − C|f |2L2 .

Note that this lemma is a direct consequence of Lemma 3.1.4 and Lemma 3.1.6

because L = K +N .

3.2 Estimates on the single decomposed piece

In this chapter, we mainly discuss about the estimates on the decomposed pieces of

the trilinear product 〈Γ(f, h), η〉. Each decomposed piece can be written in two dif-

ferent representations: one with the usual 8-fold reduced integral in
∫
dp
∫
dq
∫
dw

and the other in Carleman-type dual representation as introduced in the Appendix.
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For the usual 8-fold representation, we recall (3.1.4) and obtain that

〈Γ(f, h), η〉

=

∫
R3

dp

∫
R3

dq

∫
S2
dw vφσ(g, θ)η(p)

√
J(q) (f(q′)h(p′)− f(q)h(p))

= T+ − T−

where the gain term T+ and the loss term T− are defined as

T+(f, h, η)
def
=

∫
R3

dp

∫
R3

dq

∫
S2
dw vφσ(g, θ)η(p)

√
J(q)f(q′)h(p′)

T−(f, h, η)
def
=

∫
R3

dp

∫
R3

dq

∫
S2
dw vφσ(g, θ)η(p)

√
J(q)f(q)h(p)

In this chapter, we would like to decompose T+ and T− dyadically around the

angular singularity as the following. We let {χk}∞k=−∞ be a partition of unity on

(0,∞) such that |χk| ≤ 1 and supp(χk) ⊂ [2−k−1, 2−k]. Then, we define σk(g, θ)
def
=

σ(g, θ)χk(ḡ) where ḡ
def
= g(pµ, p′µ). The reason that we dyadically decompose around

ḡ is that we have θ ≈ ḡ
g

for small θ. Then we write the decomposed pieces T k+ and

T k− as

T k+(f, h, η)
def
=

∫
R3

dp

∫
R3

dq

∫
S2
dw vφσk(g, θ)η(p)

√
J(q)f(q′)h(p′)

T k−(f, h, η)
def
=

∫
R3

dp

∫
R3

dq

∫
S2
dw vφσk(g, θ)η(p)

√
J(q)f(q)h(p).

(3.2.1)

For some propositions, we utilize the Carleman-type dual representation and
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write the operator T+ on the set Ep
q−p′ as

T∗(f, h, η)
def
=
c

2

∫
R3

dp′

p′0
η(p′)

∫
R3

dq

q0
f(q)

∫
Ep
q−p′

dπp
p0

sσ(g, θ)

g̃

√
J(q′)h(p),

where the set Ep
q−p′ is defined as (2.1.1) in the Appendix. We also take the dyadic

decomposition on those integral above. Then, we define the following integral

T k∗ (f, h, η)
def
=
c

2

∫
R3

dp′

p′0
η(p′)

∫
R3

dq

q0
f(q)

∫
Ep
q−p′

dπp
p0

σ̃k
√
J(q′)h(p), (3.2.2)

where

σ̃k
def
=
sσ(g, θ)

g̃
χk(ḡ), ḡ

def
= g(pµ, p′µ), g̃

def
= g(p′µ, qµ).

Thus, for f, h, η ∈ S(R3), where S(R3) denotes the standard Schwartz space on R3:

〈Γ(f, h), η〉 =
∞∑

k=−∞

{T k+(f, h, η)− T k−(f, h, η)}.

Now, we start making some size estimates for the decomposed pieces T k− and T k+.

Proposition 3.2.1. For any integer k, l, and m ≥ 0, we have the uniform estimate:

|T k−(f, h, η)| . 2kγ|f |L2
−m
|h|L2

a+γ
2

|η|L2
a+γ
2

. (3.2.3)

Proof. The term T k− is given as:

T k−(f, h, η) =

∫
R3

dp

∫
R3

dq

∫
S2
dw σk(g, w)vφf(q)h(p)

√
J(q)η(p), (3.2.4)

where σk(g, w) = σ(g, w)χk(ḡ). Since cos θ = 1 − 2 ḡ
2

g2
, we have that ḡ = g sin θ

2
.

Therefore, the condition ḡ ≈ 2−k is equivalent to say that the angle θ is comparable
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to 2−kg−1. Given the size estimates for σ(g, w) and the support of χk, we obtain∫
S2
dw σk(g, w) . (ga + g−b)

∫
S2
dw σ0(cos θ)χk(ḡ)

. (ga + g−b)

∫ 2−kg−1

2−k−1g−1

dθσ0 sin θ

. (ga + g−b)

∫ 2−kg−1

2−k−1g−1

dθ
1

θ1+γ

. (ga + g−b)2kγgγ.

(3.2.5)

Thus,

|T k−(f, h, η)| . 2kγ
∫
R3

dp

∫
R3

dq(ga+γ + g−b+γ)vφ|f(q)||h(p)|
√
J(q)|η(p)|

def
= I1 + I2.

Here, I1 and I2 corresponds to ga+γ and g−b+γ part respectively. Note that a+γ ≥ 0

and −b+ γ < 0. We first estimate I1. Since g .
√
p0q0 and vφ . 1, we obtain

I1 . 2kγ
∫
R3

dp

∫
R3

dq (p0q0)
a+γ
2 |f(q)||h(p)|

√
J(q)|η(p)|.

By the Cauchy-Schwarz inequality,

I1 .2kγ(

∫
R3

dp

∫
R3

dq |f(q)|2|h(p)|2
√
J(q)(p0)

a+γ
2 )

1
2

× (

∫
R3

dp |η(p)|2(p0)
a+γ
2

∫
R3

dq
√
J(q)(q0)

a+γ
)
1
2 .

(3.2.6)

Since
∫
R3 dq

√
J(q)(q0)

a+γ ≈ 1, we have

I1 .2kγ(

∫
R3

dp

∫
R3

dq |f(q)|2|h(p)|2
√
J(q)(p0)

a+γ
2 )

1
2

× (

∫
R3

dp |η(p)|2(p0)
a+γ
2 )

1
2

.2kγ|f |L2
−m1
|h|L2

a+γ
2

|η|L2
a+γ
2

for m1 ≥ 0.

(3.2.7)
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For I2, we have

I2 = 2kγ
∫
R3

dp

∫
R3

dq g−b+γ|f(q)||h(p)|
√
J(q)|η(p)|.

Since g ≥ |p−q|√
p0q0

and −b+ γ < 0, this is

I2 . 2kγ
∫
R3

dp

∫
R3

dq |p− q|−b+γ(p0q0)
b−γ
2 |f(q)||h(p)|

√
J(q)|η(p)|.

With the Cauchy-Schwarz inequality,

I2 .2kγ(

∫
R3

dp

∫
R3

dq |f(q)|2|h(p)|2
√
J(q)(p0)

1
2

(−b+γ)
(q0)

b−γ
)
1
2

× (

∫
R3

dp |η(p)|2(p0)
− 1

2
(−b+γ)

(p0)
b−γ
∫
R3

dq
√
J(q)|p− q|2(−b+γ))

1
2 .

Since
∫
R3 dq

√
J(q)|p− q|m ≈ (p0)

m
if m > −3 and 2(−b+ γ) > −3, we have

I2 .2kγ(

∫
R3

dp

∫
R3

dq |f(q)|2|h(p)|2
√
J(q)(p0)

1
2

(−b+γ)
(q0)

b−γ
)
1
2

× (

∫
R3

dp |η(p)|2(p0)
1
2

(−b+γ)
)
1
2

.2kγ|f |L2
−m2
|h|L2

1
2 (−b+γ)

|η|L2
1
2 (−b+γ)

for some m2 ≥ 0.

This completes the proof.

Before we do the size estimates for T k+ terms, we first prove a useful inequality

as in the following proposition.

Proposition 3.2.2. Suppose that the set Ep
q−p′ is defined as in (2.1.1). On the set

Ep
q−p′ , we have that

∫
Ep
q−p′

dπp
p0

g̃(ḡ)−2−γχk(ḡ) . 2kγ

√
q0

p′0
, (3.2.8)

38



where dπp is the Lebesgue measure on the set Ep
q−p′ and is defined as

dπp = dp u(p0 + q0 − p′0)δ
( g̃2 + 2pµ(qµ − p′µ)

2g̃

)
,

where δ is the delta function in four variables, and u(x) = 1 if x ≥ 1 and 0 otherwise.

Proof. We first introduce our 4-vectors p̄µ and p̃µ defined as

p̄µ = pµ − p′µ and p̃µ = p′µ − qµ.

Then, notice that the Lorentzian inner product of the two 4-vectors are given by

p̄µp̄µ = ḡ2 and p̃µp̃µ = g̃2.

Similarly, we define some other 4-vectors which will be useful:

pµ = pµ + p′µ and p̂µ = p′µ + qµ.

The product is then given by

−pµpµ = s̄ and − p̂µp̂µ = s̃.

Note that the four-dimensional delta-function occuring in the measure is derived

from the following orthogonality equation

(pµ − q′µ)(pµ + q′µ) = 0

which tells that the total momentum is a time-like 4-vector orthogonal to the space-

like relative momentum 4-vector. This orthogonality can be obtained from the

following conservation laws

pµ + qµ = p′µ + q′µ.
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We start with expanding the measure as

I
def
=

∫
Ep
q−p′

dπp
p0

g̃(ḡ)−2−γχk(ḡ)

=

∫
R3

dp

p0
u(p0 + q0 − p′0)δ

( g̃2 + 2pµ(qµ − p′µ)

2g̃2

)
(ḡ)−2−γχk(ḡ)

where u(x) = 1 if x ≥ 1 and 0 otherwise.

Here, the numerator in the delta function can be rewritten as

g̃2 + 2pµ(qµ − p′µ)

= (qµ − p′µ + 2pµ)(qµ − p′µ)

= qµqµ + p′µp′µ − 2p′µqµ + 2pµqµ − 2pµp′µ

= 2(p′µp′µ − p′µqµ + pµqµ − pµp′µ)

= 2(p′µ − pµ)(p′µ − qµ).

Now, define p̄ = p − p′ ∈ R3 and p̄0 = p0 − p′0 ∈ R. We denote the 4-vector

p̄µ = (p̄0, p̄) = pµ − p′µ. We now apply the change of variables p ∈ R3 → p̄ ∈ R3.

Note that our kernel I will be estimated inside the integral of
∫

dq
q0

∫
dp′

p′0
in the next

propositions and this change of variables is indeed (p′, p)→ (p′, p̄) = (p′, p− p′).

With this change of variables the integral becomes

I =

∫
R3

dp̄

p̄0 + p′0
u(p̄0 + q0)δ

( p̄µ(p′µ − qµ)

g̃2

)
(ḡ)−2−γχk(ḡ).

The remaining part of this estimate will be performed in the center-of-momentum

system where p + p′ = 0; i.e., we take a Lorentz transformation such that pµ =

(
√
s̄, 0, 0, 0) and p̄µ = (0, p̄) = (0, p̄x, p̄y, p̄z). (This technique is similar to the ones
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found in [14] and [49].) Note that this gives us that |p̄| = ḡ. Also, we choose the

z-axis parallel to p̃ ∈ R3. Then, we have p̃x = p̃y = 0 and p̃z = g̃. Additionally, we

introduce a polar-coordinates for p̄, taking the polar-axis along the z-direction:

p̄ = |p̄|(sin θ cosφ, sin θ sinφ, cos θ).

Note that ḡ and the measure dp̄
p̄0+p′0

are Lorentz invariant because

dp̄

p̄0 + p′0
=2dp̄µu(p̄0 + p′0)δ(p̄µp̄µ + 2p̄µp′µ)

=2dp̄µu(p̄0 + p′0)δ((p̄µ + p′µ)((p̄µ + p′µ) + 1)

and these are Lorentz invariant. Then the measure of the integral is now

dp̄ = |p̄|2d|p̄|d(cos θ)dφ = ḡ2dḡd(cos θ)dφ

We now write the terms in the delta function in these variables and perform the

integration with respect to cos θ. The delta function is now written as

δ
(2p̄µ(p′µ − qµ)

g̃2

)
= δ
(2|p̄||p̃| cos θ

g̃2

)
=

g̃2

2|p̄||p̃|
δ(cos θ) =

g̃2

2ḡ|p′ − q|
δ(cos θ).

After we evaluate the integral by reducing this delta function, we obtain that our

integral is now

I =

∫ ∞
0

dḡ(ḡ)−γχk(ḡ)
g̃2

2p′0ḡ|p′ − q|
=

g̃2

2p′0|p′ − q|

∫ ∞
0

dḡ(ḡ)−1−γχk(ḡ).

We recall the inequality that g̃ ≤ |p′ − q| and that g̃ .
√
p′0q0. Using this

inequality and the support condition of χ, we obtain that the integral is bounded

above by

I .

√
q0

p′0

∫ ∞
0

dḡ(ḡ)−1−γχk(ḡ) . 2kγ

√
q0

p′0
.
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This completes the proof for the proposition.

We are now ready to estimate the operator T k+. This is more difficult and requires

more refined techniques because it contains post-collisional momentums.

Proposition 3.2.3. Fix an integer k. Then, we have the uniform estimate:

|T k+(f, h, η)| . 2kγ|f |L2|h|L2
a+γ
2

|η|L2
a+γ
2

. (3.2.9)

Proof. By taking a pre-post change of variables, we obtain from (3.2.1) that the

term T k+ is equal to

T k+(f, h, η) =

∫
R3

dp

∫
R3

dq

∫
S2
dw σk(g, w)vφf(q)h(p)

√
J(q′)η(p′), (3.2.10)

where σk(g, w) = σ(g, w)χk(ḡ). Thus,

|T k+(f, h, η)|

.
∫
R3

dp

∫
R3

dq

∫
S2
dw (ga + g−b)vφσ0χk(ḡ)|f(q)||h(p)|

√
J(q′)|η(p′)|

def
= I1 + I2.

Here, I1 and I2 corresponds to ga and g−b part respectively. We estimate I2 first.

By the Cauchy-Schwarz inequality,

I2 .

(∫
R3

dp

∫
R3

dq

∫
S2
dw vφ

g−bσ0χk(ḡ)

g−b+γ
|f(q)|2|h(p)|2

√
J(q′)(p′0)

−b+γ
2

) 1
2

×
(∫

R3

dp

∫
R3

dq

∫
S2
dw vφg

−bσ0χk(ḡ)g−b+γ|η(p′)|2
√
J(q′)(p′0)

b−γ
2

) 1
2

= I21 · I22.
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For I21, we split the region of p′ into two: p′0 ≤ 1
2
(p0 + q0) and p′0 ≥ 1

2
(p0 + q0).

If p′0 ≤ 1
2
(p0 + q0), p0 + q0 − q′0 ≤ 1

2
(p0 + q0) by conservation laws. Thus,

−q′0 ≤ −1
2
(p0 + q0) and J(q′) ≤

√
J(p)

√
J(q). Since (p′0)

1
2

(−b+γ) . 1 and the

exponential decay is faster than any polynomial decay, we have

(p′0)
1
2

(−b+γ)
√
J(q′) . (p0)−m(q0)−m

for any fixed m > 0.

On the other region, we have p′0 ≥ 1
2
(p0 + q0) and hence p′0 ≈ (p0 + q0) because

p′0 ≤ (p0 + q0).

Also, we have (p′0)
1
2

(−b+γ) . (p0)
1
2

(−b+γ) because −b+ γ < 0. Thus, we obtain

(p′0)
1
2

(−b+γ)
√
J(q′) . (p0)

1
2

(−b+γ).

Note that σ0(θ) ≈ θ−2−γ ≈ ( ḡ
g
)−2−γ because σ0 sin θ ≈ θ−1−γ and cos θ = 1 − 2 ḡ

2

g2
.

Similarly, we have that σ0(θ̃) ≈ ( ḡ
g̃
)−2−γ. After computing dw integral as in (3.2.5)

in both cases above, we obtain

I21 .

(∫
R3

dp

∫
R3

dq
g−b2kγgγ

g−b+γ
|f(q)|2|h(p)|2

√
J(q′)(p′0)

−b+γ
2

) 1
2

.

(∫
R3

dp

∫
R3

dq 2kγ|f(q)|2|h(p)|2(p0)
1
2

(−b+γ)

) 1
2

. 2
kγ
2 |f |L2|h|L2

−b+γ
2

by the Cauchy-Schwarz inequality.
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Now we estimate I22. Note that vφ = g
√
s

p0q0
. Then, by (3.2.5),

I22 =

(∫
R3

dp

∫
R3

dq

∫
S2
dw vφg

−bσ0χk(ḡ)g−b+γ|η(p′)|2
√
J(q′)(p′0)

b−γ
2

) 1
2

.

(∫
R3

dp

∫
R3

dq
g
√
s

p0q0
2kγg2(−b+γ)|η(p′)|2

√
J(q′)(p′0)

b−γ
2

) 1
2

By a pre-post change of variables, we have

I22 .

(∫
R3

dp′
∫
R3

dq′
g
√
s

p′0q′0
2kγg2(−b+γ)|η(p′)|2

√
J(q′)(p′0)

b−γ
2

) 1
2

.

Since g(p′µ, q′µ) ≤ 2
√
p′0q′0 and s = g2 + 4, we have

vφ =
g
√
s

p′0q′0
=
g(p′µ, q′µ)

√
s(p′µ, q′µ)

p′0q′0
. 1.

Since g ≥ |p′−q′|√
p′0q′0

and −b+ γ < 0,

I22 .

(∫
R3

dp′
∫
R3

dq′ 2kγ
|p′ − q′|2(−b+γ)

(p′0q′0)−b+γ
|η(p′)|2

√
J(q′)(p′0)

b−γ
2

) 1
2

.

Note that (q′0)b−γ
√
J(q′) .

√
Jα(q′) for some α > 0. Thus,

I22 .

(∫
R3

dp′ 2kγ|η(p′)|2(p′0)
3
2

(b−γ)

∫
R3

dq′
√
Jα(q′)

|p′ − q′|2(b−γ)

) 1
2

.

(∫
R3

dp′ 2kγ|η(p′)|2(p′0)
3
2

(b−γ)(p′0)2(−b+γ)

) 1
2

= 2
kγ
2 |η|L2

−b+γ
2

.

Together, we obtain that

I2 . 2kγ|f |L2|h|L2
−b+γ

2

|η|L2
−b+γ

2

.

44



Now, we estimate I1. By the Cauchy-Schwarz inequality,

I1 .

(∫
R3

dp

∫
R3

dq

∫
S2
dw vφ

gaσ0χk(ḡ)

g̃a+γ
|f(q)|2|η(p′)|2

√
J(q′)(p0)

a+γ
2

) 1
2

×
(∫

R3

dp

∫
R3

dq

∫
S2
dw vφg

aσ0χk(ḡ)g̃a+γ|h(p)|2
√
J(q′)(p0)

−a−γ
2

) 1
2

= I11 · I12.

For I12, we first take a pre-post change of variables and use the Carleman dual

representation as (2.1.2) in the Appendix. Note that g ≈ g̃ and s ≈ s̃ on the set

Ep
q−p′ because the identity on the set g2 = ḡ2 + g̃2 gives g2 & g̃2 and the assumption

that σ0 vanishes for θ ∈ (π
2
, π] gives cos θ ≥ 0 which hence gives g2 ≤ 2g̃2. Also, we

recall that σ0(θ) ≈ θ−2−γ ≈ ( ḡ
g
)−2−γ. Then we use Proposition 3.2.2 to obtain

I12 .

(∫
R3

dp′

p′0

∫
R3

dq

q0
2kγ s̃ g̃2a+2γ|h(p′)|2

√
J(q)(p′0)

−a−γ−1
2

√
q0

) 1
2

.

We further use g̃ .
√
p′0q0 and s̃ . p′0q0 to conclude that

I12 .

(
2kγ
∫
R3

dp′ (p′0)
a+γ−1

2 |h(p′)|2
∫
R3

dq (q0)a+γ+ 1
2

√
J(q)

) 1
2

.2
kγ
2 |h|L2

a+γ
2

.

For I11, we split the region of p′ into two as before: p′0 ≤ 1
2
(p0 + q0) and

p′0 ≥ 1
2
(p0 + q0). If p′0 ≤ 1

2
(p0 + q0), we have that −q′0 ≤ −1

2
(p0 + q0) and

J(q′) ≤
√
J(p)

√
J(q). Then we obtain

(p0)
a+γ
2

√
J(q′) . (p0)−m(q0)−m

for any fixed m > 0. On the other region, we have p′0 ≥ 1
2
(p0 + q0) and hence

p′0 ≈ (p0 +q0) because p′0 ≤ (p0 +q0). In this case, we have
√
q0(p0)

a+γ
2 . (p′0)

a+γ+1
2
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because a+ γ ≥ 0. Thus, we obtain

(p0)
a+γ
2

√
J(q′) . (p′0)

a+γ+1
2 (q0)−

1
2 .

In both cases, we obtain that

I11 .

(∫
R3

dp

∫
R3

dq

∫
S2
dw vφ

gaσ0χk(ḡ)

g̃a+γ
|f(q)|2|η(p′)|2(p′0)

a+γ+1
2 (q0)−

1
2

) 1
2

.

By the Carleman dual representation as in Appendix, the last upper bound is

(1

2

∫
R3

dp′

p′0

∫
R3

dq

q0

∫
Ep
q−p′

dπp
p0

s

g̃

gaσ0χk(ḡ)

g̃a+γ
|f(q)|2|η(p′)|2(p′0)

a+γ+1
2 (q0)−

1
2

) 1
2

(3.2.11)

where dπp = dp · u(p0 + q0 − p′0) · δ
(
g̃2+2pµ(qµ−p′µ)

2g̃

)
.

Note that σ0(θ) ≈ θ−2−γ ≈ ( ḡ
g
)−2−γ and g ≈ g̃ on the set Ep

q−p′ .

By the inequality (3.2.8) and s ≈ s̃ . p′0q0, we have

∫
Ep
q−p′

dπp
p0

s

g̃

gaσ0χk(ḡ)

g̃a+γ
≈
∫
Ep
q−p′

dπp
p0

(ḡ)−2−γχk(ḡ)s̃g̃ . 2kγ(p′0)
1
2 (q0)

3
2 .

Then, we obtain

I11 . (

∫
R3

dp′

p′0

∫
R3

dq

q0
|f(q)|2|η(p′)|2(p′0)

a+γ
2 2kγp′0q0)

1
2

. (2kγ
∫
R3

dp′ (p′0)
a+γ
2 |η(p′)|2

∫
R3

dq|f(q)|2)
1
2

. 2
kγ
2 |f |L2|η|L2

a+γ
2

(3.2.12)

by the Cauchy-Schwarz inequality. Thus,

I1 . 2kγ|f |L2|h|L2
a+γ
2

|η|L2
a+γ
2

.

This completes the proof.
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3.3 Cancellation with hard potential kernels

Our goal in this section is to establish an upper bound estimate for the difference

T k+ − T k− for the case that k ≥ 0. We would like it to have a dependency on the

negative power of 2k so we have a good estimate after summation in k. Note that

k ≥ 0 also implies that ḡ ≤ 1.

Firstly, we define paths from p′ to p and from q′ to q. Fix any two p, p′ ∈ R3

and consider κ : [0, 1]→ R3 given by

κ(θ)
def
= θp+ (1− θ)p′.

Similarly, we define the following for the path from q′ to q;

κq(θ)
def
= θq + (1− θ)q′.

Then we can easily notice that κ(θ) + κq(θ) = p′ + q′ = p+ q.

We define the length of the gradient as:

|∇|iH(p)
def
= max

0≤j≤i
sup
|χ|≤1

∣∣∣(χ · ∇)jH(p)
∣∣∣, i = 0, 1, 2, (3.3.1)

where χ ∈ R3 and |χ| is the usual Euclidean length. Note that we have |∇|0H = |H|.

Now we start estimating the term |T k+−T k−| under the condition ḡ ≤ 1. We recall

from (3.2.4) and (3.2.10) that |(T k+ − T k−)(f, h, η)| is defined as

|(T k+ − T k−)(f, h, η)|

=

∣∣∣∣∫
R3

dp

∫
R3

dq

∫
S2
dw σk(g, w)vφf(q)h(p)(

√
J(q′)η(p′)−

√
J(q)η(p))

∣∣∣∣ ,
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The key part is to estimate |
√
J(q′)η(p′)−

√
J(q)η(p)|.

We have the following proposition for the cancellation estimate:

Proposition 3.3.1. Suppose η is a Schwartz function on R3. Then, for any k ≥ 0

and for 0 < γ < 2 and m ≥ 0, we have the uniform estimate:

|(T k+ − T k−)(f, h, η)|

. 2(γ−2)k|f |L2
−m
|h|L2

a+γ
2

|η|L2
a+γ
2

+ 2
(γ−3)

2
k|f |L2

−m
|h|L2

a+γ
2

|η|Ia,γ .

We observe that the weighted fractional Sobolev norm |η|Ia,γ is greater than or

equal to |η|L2
a+γ
2

. Therefore, the direct consequence of this proposition is that

|(T k+ − T k−)(f, h, η)| . max{2(γ−2)k, 2
(γ−3)

2
k}|f |L2

−m
|h|L2

a+γ
2

|η|Ia,γ . (3.3.2)

Proof. Note that 0 < γ < 2. We want our kernel has a good dependency on 2−k so

we end up with the negative power on 2 as 2(γ−2)k. Note that under ḡ ≤ 1, we have

p′0 ≈ p0 and q0 ≈ q′0. Thus, it suffices to estimate
√
J(q′)η(p′) −

√
J(q)η(p) only.

We now split the term into three parts as

√
J(q′)η(p′)−

√
J(q)η(p)

=
√
J(q′)(η(p′)− η(p)) + η(p)

(√
J(q′)−

√
J(q)− (∇

√
J)(q) · (q′ − q)

)
+ η(p)

(
(∇
√
J)(q) · (q′ − q)

)
=I + II + III.

(3.3.3)
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We estimate the part II first. By the mean-value theorem on
√
J , we have

√
J(q′)−

√
J(q) = (q′ − q) · (∇

√
J)(κq(θ1))

for some θ1 ∈ (0, 1). Now with the fundamental theorem of calculus, we obtain

(∇
√
J)(κq(θ1))− (∇

√
J)(q) =

(∫ θ1

0

D(∇
√
J)(κq(θ

′))dθ′
)
· (κq(θ1)− q),

where D(∇
√
J) is the 3×3 Jacobian matrix of ∇

√
J . With the definition on |∇|

from (3.3.1), we can bound the modulus of part II by

|II| ≤ |η(p)||q′ − q|
∣∣∣∣( ∫ θ1

0

D(∇
√
J)(κq(θ

′))dθ′
)
· (κq(θ1)− q)

∣∣∣∣
≤ |η(p)||q′ − q||κq(θ1)− q|

∫ θ1

0

|∇|2
√
J(κq(θ

′))dθ′

≤ |η(p)||q′ − q|2
∫ θ1

0

|∇|2
√
J(κq(θ

′))dθ′.

(3.3.4)

Note that |∇|2
√
J .

√
J and that |q′ − q| ≤ g(qµ, q′µ)

√
q0q′0 = ḡ

√
q0q′0 ≈

2−k
√
q0q′0. Also, we have that (q0q′0)

√
J(κq(θ

′)) . (J(q)J(q′))ε for sufficiently

small ε. Thus, the estimate for the integral with this kernel II follows exactly the

same as in the proposition for |T k−| as in (3.2.5), (3.2.3), and (3.2.7), and we get the

first term in the right-hand side of the proposition.

For part III, we consider the integral (T k+,III−T k−,III) in the center-of-momentum

frame p + q = 0 with the Lorentz transformation Λ such that Λ(pµ + qµ) =

(
√
s, 0, 0, 0)t where we recall that s is defined as in (1.2.1). We recall that the
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difference (T k+,III − T k−,III) is given as

(T k+,III − T k−,III)

def
=

∫
R3

dp

∫
R3

dq

∫
S2
dw vφσk(g, w)f(q)h(p)η(p)(∇

√
J(q)) · (q′ − q)

=

∫
R3

dp

p0
h(p)η(p)

∫
R3

dq

q0
f(q)

∫
S2
dw g
√
sσk(g, w)(∇

√
J(q)) · (p− p′).

(3.3.5)

By writing (p− p′) · (∇
√
J)(q) as

(p− p′) · (∇
√
J)(q) = (pµ − p′µ)(∇

√
J)µ(q)

with (∇
√
J)µ(q)

def
= (0, (∇

√
J)(q)), we observe that the integrand and the measures

are Lorentz invariant. Also, note that our cos θ which was defined in (1.2.4) is now

redefined as

cos θ =
[Λ(pµ − qµ)](p′µ − q′µ)

g2
=

p̄

|p̄|
· w

where p̄ is defined by Λ(pµ − qµ) = (0, p̄)t and we have used g = |Λ(pµ − qµ)| = |p̄|.

Then the symmetry of σk with respect to w around the direction p̄
|p̄| forces all

components of p − p′ to vanish except the component in the symmetry direction.

Therefore, we may replace p− p′ with

p̄

|p̄|
〈p− p′, p̄

|p̄|
〉 =

p̄

|p̄|
(pµ − p′µ)[Λ(pµ − qµ)]

g

in the expression for (p− p′) · (∇
√
J)(q). Since we have (pµ− p′µ)(p′µ− qµ) = 0, the

vector further reduces to

p̄

|p̄|
(pµ − p′µ)(pµ − p′µ)

g
=

p̄

|p̄|
ḡ2

g
.
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Hence we obtain ∣∣∣∣ p̄|p̄| ḡ2

g

∣∣∣∣ ≤ 2−2kg−1.

Thus we must control the following integral

2−2k

∫
R3

dp

p0
h(p)η(p)

∫
R3

dq

q0
f(q)

∫
S2
dw
√
sσk(g, w)(|∇|

√
J(q)). (3.3.6)

Note that
√
s . p0q0. Thus, we obtain that

|T k+,III − T k−,III| . 2(γ−2)k|f |L2
−m
|h|L2

a+γ
2

|η|L2
a+γ
2

by following exactly the same argument as in (3.2.5), (3.2.3), and (3.2.7).

For the part I, we define η̃(p, p′) = η(p′)−η(p). Since ḡ ≤ 1, we have q0 ≈ q′0 and

this gives that there is some uniform constant c > 0 such that
√
J(q′) ≤ (J(q))c.

Thus, we have

|T k+,I − T k−,I| ≤
∣∣∣∣∫

R3

dp

∫
R3

dq

∫
S2
dw vφσk(g, w)f(q)h(p)η̃(p, p′)

√
J(q′)

∣∣∣∣
≤
∣∣∣∣∫

R3

dp

∫
R3

dq

∫
S2
dw vφσk(g, w)f(q)h(p)η̃(p, p′)(J(q))c

∣∣∣∣ .

Now, we use the Cauchy-Schwarz inequality and obtain

|T k+,I − T k−,I| ≤
(∫

R3

dp

∫
R3

dq

∫
S2
dw vφσk(g, w)|f(q)|2|h(p)|2(J(q))c

) 1
2

×
(∫

R3

dp

∫
R3

dq

∫
S2
dw vφσk(g, w)|η̃(p, p′)|2(J(q))c

) 1
2

.

(3.3.7)

The first part on the right-hand side is bounded by 2
kγ
2 |f |L2

−m
|h|L2

a+γ
2

for some m ≥ 0

as in (3.2.6) and (3.2.7). For the second part, we rewrite this 8-fold integral as the
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following 12-fold integral:∫
R3

dp

∫
R3

dq

∫
S2
dw vφσk(g, w)|η̃(p, p′)|2(J(q))c

=

∫
R3

dp

∫
R3

dq

∫
R3

dp′
∫
R3

dq′ sσ(g, w)χk(ḡ)|η̃(p, p′)|2

× (J(q))cδ(4)(p′µ + q′µ − pµ − qµ).

As in (2.2.3), we reduce this integral to the integral on the set Eq
p′−p as the following:∫

R3

dp

∫
R3

dq

∫
R3

dp′
∫
R3

dq′ sσ(g, w)χk(ḡ)|η̃(p, p′)|2

× (J(q))cδ(4)(p′µ + q′µ − pµ − qµ)

=

∫
R3

dp

p0

∫
R3

dp′

p′0

∫
Eq
p′−p

dπq
2ḡq0

sσ(g, θ)χk(ḡ)|η̃(p, p′)|2(J(q))c

=

∫
R3

dp

p0

∫
R3

dp′

p′0

∫
Eq
p′−p

dπq
2ḡq0

sσ(g, θ)χk(ḡ)
|η̃(p, p′)|2

ḡ3+γ
ḡ3+γ(J(q))c

. 2−k(3+γ)

∫
R3

dp

p0

∫
R3

dp′

p′0

∫
Eq
p′−p

dπq
2ḡq0

sσ(g, θ)χk(ḡ)
|η̃(p, p′)|2

ḡ3+γ
(J(q))c1ḡ≤1

= 2−k(3+γ)

∫
R3

dp

p0

∫
R3

dp′

p′0

∫
Eq
p′−p

dπq
2ḡq0

sσ(g, θ)χk(ḡ)
|η(p′)− η(p)|2

ḡ3+γ
(J(q))c1ḡ≤1.

By following the proof of Proposition 3.2.2 in the different Lorentz frame q+ p′ = 0

and recalling that σ(g, w) . (ga + g−b)σ0(w) ≈ (ga + g−b)
(
ḡ
g

)−2−γ
, we obtain

1

p0p′0

∫
Eq
p′−p

dπq
2ḡq0

sσ(g, θ)χk(ḡ)(J(q))c . 2kγ(p0p′0)
a+γ
4 .

Therefore, the second part of the right-hand side of (3.3.7) is bounded above by(∫
R3

dp

∫
R3

dq

∫
S2
dw vφσk(g, w)|η̃(p, p′)|2(J(q))c

) 1
2

. 2−
3k
2

(∫
R3

dp

∫
R3

dp′(p0p′0)
a+γ
4
|η(p′)− η(p)|2

ḡ3+γ
1ḡ≤1

) 1
2

≤ 2−
3k
2 |η|Ia,γ .
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Therefore, we finally obtain that

|T k+,I − T k−,I| ≤2
(γ−3)

2
k|f |L2

−m
|h|L2

a+γ
2

|η|Ia,γ .

Together with the previous estimates on part II and III, we obtain the proposition.

3.4 Main upper bound estimates

In this section, we finally establish the main upper bound estimates with the hard

potential collision kernel.

We first make an upper bound estimate for the trilinear product 〈Γ(f, h), η〉.

We consider the dyadic decomposition of gain and loss terms as the following.

〈Γ(f, h), η〉 =
∞∑

k=−∞

{T k+(f, h, η)− T k−(f, h, η)}

=
0∑

k=−∞

{T k+(f, h, η)− T k−(f, h, η)}

+
∞∑
k=1

{T k+(f, h, η)− T k−(f, h, η)}

def
= S1 + S2.

(3.4.1)

We first compute the upper bound for the sum S2. In this sum, we note that

k ≥ 0 and 0 < γ < 2. Then, by (3.3.2), we obtain

|S2| .
∞∑
k=1

max{2(γ−2)k, 2
(γ−3)

2
k}|f |L2

−m
|h|L2

a+γ
2

|η|Ia,γ

. |f |L2
−m
|h|L2

a+γ
2

|η|Ia,γ .
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For the sum S1, we note that
∑0

k=−∞ 2kγ . 1. Then, by (3.2.9) and (3.2.3), we

obtain that

|S1| .
0∑

k=−∞

2kγ|f |L2
−m
|h|L2

a+γ
2

|η|L2
a+γ
2

.|f |L2
−m
|h|L2

a+γ
2

|η|L2
a+γ
2

Thus, we can collect the estimates on S1 and S2 and conclude that

|〈Γ(f, h), η〉| . |f |L2
−m
|h|L2

a+γ
2

|η|Ia,γ . (3.4.2)

This proves Theorem 3.1.2. Note that this immediately implies Lemma 3.1.3 by

taking the spatial derivatives on the functions.

Here we also would like to mention a proposition that is used to prove other

further compact estimates. Let {ek}14
k=1 consist of the following elements:

√
J,

(
pi
p0

√
J

)
1≤i≤3

, p0
√
J,

(
pi
√
J
)

1≤i≤3
,

(
pipj
p0

√
J

)
1≤i≤j≤3

. (3.4.3)

We will see in (3.6.8) that this is the basis for the hydrodynamic part Pf .

Proposition 3.4.1. Let {el}14
l=1 be the basis for the hydrodynamic part Pf defined

as in (3.4.3). Then we have that

|〈Γ(el, f), h〉| . |f |L2
a+γ
2

|h|Ia,γ , (3.4.4)

and that

|〈Γ(f, el), h〉| . |f |L2|h|Ia,γ . (3.4.5)

Additionally, for any m ≥ 0, we have

|〈Γ(f, h), el〉| . |f |L2
−m
|h|L2

−m
. (3.4.6)
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Proof. For (3.4.4), we expand the trilinear form as in (3.4.1) and the proof follows

the same lines as the proof of (3.4.2). Here, we use Sobolev embeddings on the L2-

norm of el to bound it by L∞-norm with some derivatives which are also bounded

uniformly.

For (3.4.5), we write the trilinear form as the sum

〈Γ(f, el), η〉 =
∞∑
k=0

(T k+ − T k−)(f, el, η) +
−1∑

k=−∞

(T k+ − T k−)(f, el, η)

def
= S1 + S2.

For the sum S2, we obtain from (3.2.3) and (3.2.9) that

|T k+(f, el, η)|+ |T k−(f, el, η)| . 2kγ|f |L2|η|L2
a+γ
2

.

On the other hand, if k ≥ 0, we observe (3.3.2) and obtain that

|(T k+ − T k−)(f, el, η)| . max{2(γ−2)k, 2
(γ−3)

2
k}|f |L2

−m
|η|Ia,γ .

This gives the upper bound for the sum S1 since 0 < γ < 2.

Lastly, we prove (3.4.6). We write the trilinear form as the sum

〈Γ(f, h), el〉 =
∞∑
k=0

(T k+ − T k−)(f, h, el) +
−1∑

k=−∞

(T k+ − T k−)(f, h, el)

def
= S1 + S2.

If el is defined as in (3.4.3), then both T k+ and T k− have rapid decay in both p and q

variables in (3.2.10) and (3.2.4). By applying Cauhy-Schwarz inequality, we obtain

|T k+(f, h, el)|+ |T k−(f, h, el)| . 2kγ|f |L2
−m
|h|L2

−m
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and this gives our upper bound for S2. For S1, we note that el has rapid decay

because |el(p)| ≤ p0
√
J(p) . J(p)( 1

2
−ε) for any choice of el in the basis (3.6.8) and

for sufficiently small ε > 0. Then, instead of decomposing the cancellation term as

in (3.3.3), we do the following decomposition:

√
J(q′)el(p

′)−
√
J(q′)el(p

′)

=
√
J(q′) (el(p

′)− el(p)− (∇el)(p) · (p′ − p))

+ el(p)
(√

J(q′)−
√
J(q)− (∇

√
J)(q) · (q′ − q)

)
+
√
J(q′)(∇el)(p) · (p′ − p) + el(p)(∇

√
J)(q) · (q′ − q)

def
=D1 +D2 +D3 +D4.

We follow the part II estimate as (3.3.4) for D1 and D2, and we follow the part III

estimate as (3.3.5) for D3 and D4. Then we obtain that for any m ≥ 0

|(T k+ − T k−)(f, h, el)| . 2(γ−2)k|f |L2
−m
|h|L2

−m

for k ≥ 0 case. We use this for getting the upper bound for S1 because γ − 2 < 0.

This complete the proof.

Note that (3.4.4) implies Lemma 3.1.5. Also, this proposition further implies

the following lemma:

Lemma 3.4.2. We have the uniform estimate

|〈Kf, h〉| . |f |L2 |h|Ia,γ . (3.4.7)
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We obtain this lemma from (3.4.5) and the estimate on ζK(p) as in (3.1.9). Note

that this lemma implies Lemma 3.1.4 by letting h = f . More precisely, we use that

the upper bound of the inequality in the lemma is bounded above by

|f |L2|f |Ia,γ ≤ ε|f |2Ia,γ + Cε|f |2L2 .

Then we obtain Lemma 3.1.4.

3.5 Main coercive estimates

In this section, for any schwartz function f , we consider the quadratic difference

arising in the inner product of the norm part Nf with f . The main part is to

estimate the norm |f |2B which arises in the inner product and will be defined as

follows.

|f |2B
def
=

1

2

∫
R3

dp

∫
R3

dq

∫
S2
dw vφσ(g, θ)(f(p′)− f(p))2

√
J(q)J(q′)

≥ 1

2

∫
R3

dp

∫
R3

dq

∫
S2
dw vφσ(g, θ)(f(p′)− f(p))2

√
J(q)J(q′)1ḡ≤1.

Note that if ḡ ≤ 1, we have q0 ≈ q′0 as well as p0 ≈ p′0. Thus, we can bound√
J(q)J(q′) below as

√
J(q)J(q′) & e−Cq

′0
for some uniform constant C > 0.

By the alternative Carleman-type dual representation of the integral operator as

in (2.2.4), we may write the lower bound of the norm as an integral of some kernel
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K(p, p′) as

|f |2B &
∫
R3

dp

∫
R3

dq

∫
S2
dw vφσ(g, θ)(f(p′)− f(p))2e−Cq

′0
1ḡ≤1

≈
∫
R3

dp

p0

∫
R3

dp′

p′0
(f(p′)− f(p))21ḡ≤1

×
∫
R3

dqs√
|qs|2 + s̄

δ(qµs (p′µ − pµ))sσ(g, θ)e−Cq
′0

=

∫
R3

dp

p0

∫
R3

dp′

p′0
(f(p′)− f(p))21ḡ≤1K(p, p′),

where the kernel K(p, p′) is defined as

K(p, p′)
def
=

∫
R3

dqs√
|qs|2 + s̄

δ(qµs (p′µ − pµ))sσ(g, θ)e−Cq
′0
. (3.5.1)

Our goal in this section is to make a coercive lower bound of this kernel and hence

the norm |f |B. First of all, the delta function in (3.5.1) implies that (p′µ− pµ)(p′µ−

pµ + 2q′µ) = 0. Then this implies that

2(p′µ − pµ)(q′µ − pµ) = 2p′µq′µ − 2p′µpµ − 2pµq′µ + 2pµpµ

= 2p′µq′µ − 2pµq′µ − p′µpµ − pµp′µ + pµpµ + p′µp′µ

= (p′µ − pµ)(p′µ − pµ + 2q′µ) = 0.

Then, we obtain that

ḡ2 + g̃2 = (p′µ − pµ)(p′µ − pµ)− 2(p′µ − pµ)(q′µ − pµ) + (q′µ − pµ)(q′µ − pµ)

= (p′µ − q′µ)(p′µ − q′µ)
def
= g′2,
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and we have ḡ2+g̃2 = g′2 on this hyperplane as expected where g′
def
= g(p′µ, q′µ). Note

that, from the assumptions on the collision kernel, we have σ(g′, θ) = Φ(g′)σ0(θ)

and

σ0(θ) ≈ 1

sin θ · θ1+γ
≈ 1

θ2+γ
≈
(g′
ḡ

)2+γ

.

Thus,

σ(g′, θ) ≈ Φ(g′)
(g′
ḡ

)2+γ

.

Together with this, we have

K(p, p′) ≈
∫
R3

dqs√
|qs|2 + s̄

δ(qµs (p′µ − pµ))sΦ(g′)
(g′
ḡ

)2+γ

e−Cq
′0

&
∫
R3

dqs√
|qs|2 + s̄

δ(qµs (p′µ − pµ))s
(g′
ḡ

)2+γ

e−Cq
′0 g′√

s
g′a

&
∫
R3

dqs√
|qs|2 + s̄

δ(qµs (p′µ − pµ))e−Cq
′0 g′4+a+γ

ḡ2+γ

&
∫
R3

dqs
q′0

δ(qµs (p′µ − pµ))e−Cq
′0 g′4+a+γ

ḡ2+γ
,

where the first inequality is from the assumption on the collision kernel (3.1.10)

that Φ(g′) & g√
s
ga and that s = g2 + 4 > g2, and the last inequality is by that√

|qs|2 + s̄ . q′0 if ḡ ≤ 1 by the geometry.

Here, we have the following lower bound for the kernel K(p, p′).

Proposition 3.5.1. If ḡ ≤ 1, the kernel K(p, p′) is bounded uniformly from below

as

K(p, p′) &
(p′0)2+a+γ

2

ḡ3+γ
.
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With this proposition, we can obtain the uniform lower bound for the norm |f |B

as below.

|f |2B &
∫
R3

dp

p0

∫
R3

dp′

p′0
(f(p′)− f(p))2

ḡ3+γ
(p′0)2+a+γ

2 1ḡ≤1

&
∫
R3

dp

∫
R3

dp′
(f(p′)− f(p))2

ḡ3+γ
(p′0)

a+γ
2 1ḡ≤1

&
∫
R3

dp

∫
R3

dp′
(f(p′)− f(p))2

ḡ3+γ
(p′0p0)

a+γ
4 1ḡ≤1

Thus, the proof for our main coercive inequality is complete because we have that

|f |2L2
a+γ
2

+ |f |2B & |f |2Ia,γ .

Proof. Here we prove Proposition 3.5.1. We begin with

K(p, p′) &
∫
R3

dqs
q′0

δ(qµs (p′µ − pµ))e−Cq
′0 g′4+a+γ

ḡ2+γ
.

First, we take a change of variables from qs = p′ − p + 2q′ to q′. Then we obtain

that

K(p, p′) &
∫
R3

dq′

q′0
δ((p′µ − pµ + 2q′µ)(p′µ − pµ))e−Cq

′0 g′4+a+γ

ḡ2+γ

=

∫
R3

dq′

q′0
δ(ḡ2 + 2q′µ(p′µ − pµ))e−Cq

′0 g′4+a+γ

ḡ2+γ
.

Now we take a change of variables on q′ into polar coordinates as q′ ∈ R3 → (r, θ, φ)

and choose the z-axis parallel to p′ − p such that the angle between q′ and p′ − p is
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equal to φ. Then we obtain that

K(p, p′) &
∫ ∞

1

dq′0
∫ ∞

0

dr

∫ 2π

0

dθ

∫ π

0

dφ r2 sinφ

× g′4+a+γ

ḡ2+γ
δ(ḡ2 + 2q′µ(p′µ − pµ))δ(r2 + 1− (q′0)2)e−Cq

′0
.

(3.5.2)

The terms in the first delta function in (3.5.2) can be written as

ḡ2 + 2q′µ(p′µ − pµ) = ḡ2 − 2q′0(p′0 − p0) + 2q′ · (p′ − p)

= ḡ2 − 2q′0(p′0 − p0) + 2r|p′ − p| cosφ.

Also, note that the second delta function is

δ(r2 + 1− (q′0)2) = δ((r −
√

(q′0)2 − 1)(r +
√

(q′0)2 − 1))

=
δ(r −

√
(q′0)2 − 1)

2
√

(q′0)2 − 1
,

because r > 0. Now we reduce the integration against r using this delta function

and get

K(p, p′) &
∫ ∞

1

dq′0
∫ 2π

0

dθ

∫ π

0

dφ
(q′0)2 − 1

2
√

(q′0)2 − 1
sinφ

g′4+a+γ

ḡ2+γ
e−Cq

′0

× δ(ḡ2 − 2q′0(p′0 − p0) + 2
√

(q′0)2 − 1|p′ − p| cosφ).

Now, let v = cosφ. Then, dv = − sinφ dφ and the integration is now rewritten as

K(p, p′) &
∫ ∞

1

dq′0
∫ 2π

0

dθ

∫ 1

−1

dv
(q′0)2 − 1

2
√

(q′0)2 − 1

g′4+a+γ

ḡ2+γ
e−Cq

′0

× δ(ḡ2 − 2q′0(p′0 − p0) + 2
√

(q′0)2 − 1|p′ − p|v).
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Note that

δ(ḡ2 − 2q′0(p′0 − p0) + 2
√

(q′0)2 − 1|p′ − p|v)

=
1

2
√

(q′0)2 − 1|p′ − p|
δ
(
v +

ḡ2 − 2q′0(p′0 − p0)

2
√

(q′0)2 − 1|p′ − p|

)
.

We remark that

∣∣∣∣ ḡ2−2q′0(p′0−p0)

2
√

(q′0)2−1|p′−p|

∣∣∣∣ ≤ 1. Then we further reduce the integration on v

by removing this delta function and get

K(p, p′) &
∫ ∞

1

dq′0
∫ 2π

0

dθ
1

|p′ − p|
g′4+a+γ

ḡ2+γ
e−Cq

′0

&
∫ ∞

1

dq′0e−Cq
′0 g′4+a+γ

ḡ3+γq′0

&
∫ ∞

1

dq′0e−Cq
′0 |p′0 − q′0|4+a+γ

ḡ3+γ(
√
q′0p′0)4+a+γq′0

&
1

ḡ3+γ(p′0)2+a+γ
2

∫ ∞
1

dq′0e−Cq
′0 |p′0 − q′0|4+a+γ

(q′0)3+a+γ
2

≈(p′0)4+a+γ

ḡ3+γ

1

(p′0)2+a+γ
2

=
(p′0)2+a+γ

2

ḡ3+γ

(3.5.3)

where q
def
= p′+q′−p and the second inequality is by |p

′−p|
q′0
≈ |q−q′|√

q′0q0
. ḡ(qµ, q′µ) = ḡ,

the third inequality is by |p
′0−q′0|√
p′0q′0

≤ g′, and the last equivalence is by

∫ ∞
1

d(q′0)e−Cq
′0 |p′0 − q′0|4+a+γ

(q′0)k
≈ (p′0)4+a+γ

for any k ∈ R. This proves the proposition.

Note that Lemma 3.1.6 has been proven in this proof above.
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3.6 Global existence

3.6.1 Local existence

In this section, we use the estimates that we made in the previous sections to show

the local existence results for small data. We use the standard iteration method

and the uniform energy estimate for the iterated sequence of approximate solutions.

The iteration starts at f 0(t, x, p) = 0. We solve for fm+1(t, x, p) such that

(∂t + p̂ · ∇x +N)fm+1 +Kfm = Γ(fm, fm+1), fm+1(0, x, p) = f0(x, p). (3.6.1)

Using our estimates, it follows that the linear equation (3.6.1) admits smooth solu-

tions with the same regularity in HN as a given smooth small initial data and that

the solution also has a gain of L2((0, T ); Ia,γN ). We will set up some estimates which

is necessary to find a local classical solution as m→∞.

We first define some notations. We will use the norm || · ||H for || · ||HN for

convenience and also use the norm || · ||I for the norm || · ||Ia,γN . Define the total

norm as

M(f(t)) = ||f(t)||2H +

∫ t

0

dτ ||f(τ)||2I .

We will also use |f |Ia,γ for 〈Nf, f〉.

Here we state a crucial energy estimate:

Lemma 3.6.1. The sequence of iterated approximate solutions {fm} is well defined.

There exists a short time T ∗ = T ∗(||f0||2H) > 0 such that for ||f0||2H sufficiently
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small, there is a uniform constant C0 > 0 such that

sup
m≥0

sup
0≤τ≤T ∗

M(fm(τ)) ≤ 2C0||f0||2H .

Proof. We prove this lemma by induction over k. If k = 0, the lemma is trivially

true. Suppose that the lemma holds for k = m. Let fm+1 be the solution to the

linear equation (3.6.1) with given fm. We take the spatial derivative ∂α on the

linear equation (3.6.1) and obtain

(∂t + p̂ · ∇x)∂
αfm+1 +N(∂αfm+1) +K(∂αfm) = ∂αΓ(fm, fm+1).

Then, we take a inner product with ∂αfm+1. The trilinear estimate of Lemma 3.1.3

implies that

1

2

d

dt
||∂αfm+1||2L2

pL
2
x

+ ||∂αfm+1||2Ia,γ + (K(∂αfm), ∂αfm+1)

= (∂αΓ(fm, fm+1), ∂αfm+1) . ||fm||H ||fm+1||2I .

We integrate over t we obtain

1

2
||∂αfm+1(t)||2L2

pL
2
x

+

∫ t

0

dτ ||∂αfm+1(τ)||2Ia,γ

+

∫ t

0

dτ(K(∂αfm), ∂αfm+1)

≤ 1

2
||∂αf0||2L2

pL
2
x

+ C

∫ t

0

dτ ||fm||H ||fm+1||2I .

(3.6.2)

From the compact estimate (3.4.7), for any small ε > 0 we have∣∣∣∣∫ t

0

dτ(K(∂αfm), ∂αfm+1)

∣∣∣∣
≤ C 1

2
+ε

∫ t

0

dτ ||∂αfm(τ)||2L2 + (
1

2
+ ε)

∫ t

0

dτ ||∂αfm+1(τ)||2Ia,γ .
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We use this estimate for (3.6.2) and take a sum over all the derivatives such that

|α| ≤ N to obtain

M(fm+1(t)) ≤C0||f0||2H + 2C sup
0≤τ≤t

M(fm+1(τ)) sup
0≤τ≤t

M1/2(fm(τ))

+ 2C 1
2

+ε

∫ t

0

dτ ||fm(τ)||2H + 2ε

∫ t

0

dτ ||fm+1(τ)||2I

≤C0||f0||2H + 2C sup
0≤τ≤t

M(fm+1(τ)) sup
0≤τ≤t

M1/2(fm(τ))

+ 2C 1
2

+εt sup
0≤τ≤t

M(fm(τ)) + 2ε sup
0≤τ≤t

M(fm+1(τ)).

(3.6.3)

Then by the induction hypothesis on M(fm(τ)), we obtain that

M(fm+1(t)) ≤C0||f0||2H + 2C
√

2C0||f0||H sup
0≤τ≤t

M(fm+1(τ))

+ 4C0C 1
2

+εt||f0||2H + 2ε sup
0≤τ≤t

M(fm+1(τ))

≤C0||f0||2H + 2C
√

2C0||f0||H sup
0≤τ≤t

M(fm+1(τ))

+ 4C0C 1
2

+εT
∗||f0||2H + 2ε sup

0≤τ≤t
M(fm+1(τ)).

Then we obtain that

(1− 2ε− 2C
√

2C0||f0||H) sup
0≤τ≤t

M(fm+1(t)) ≤ (C0 + 4C0C 1
2

+εT
∗)||f0||2H .

Then, for sufficiently small ε, T ∗ and ||f0||H , we obtain that

sup
0≤τ≤t

M(fm+1(t)) ≤ 2C0||f0||2H .

This proves the lemma by the induction argument.
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Now, we prove the local existence theorem with the uniform control on each

iteration.

Theorem 3.6.2. For any sufficiently small M0 > 0, there exists a time T ∗ =

T ∗(M0) > 0 and M1 > 0 such that if ||f0||2H ≤M1, then there exists a unique solution

f(t, x, p) to the linearized relativistic Boltzmann equation (3.1.3) on [0, T ∗)×T3×R3

such that

sup
0≤t≤T ∗

M(f(t)) ≤M0.

Also, M(f(t)) is continuous on [0, T ∗). Furthermore, we have the positivity of the

solutions; i.e., if F0(x, p) = J +
√
Jf0 ≥ 0, then F (t, x, p) = J +

√
Jf(t, x, p) ≥ 0.

Proof. Existence and Uniqueness. By letting m → ∞ in the previous lemma, we

obtain sufficient compactness for the local existence of a strong solution f(t, x, p) to

(3.1.3). For the uniqueness, suppose there exists another solution h to the (3.1.3)

with the same initial data satisfying sup0≤t≤T ∗M(h(t)) ≤ ε. Then, by the equation,

we have

{∂t + p̂ · ∇x}(f − h) + L(f − h) = Γ(f − h, f) + Γ(h, f − h). (3.6.4)

Then, by Sobolev embedding H2(T3) ⊂ L∞(T3) and Theorem 3.1.2, we have

|({Γ(f − h, f) + Γ(h, f − h)}, f − h)|

.||h||L2
pH

2
x
||f − h||2Ia,γ

+ ||f − h||2L2
p,x
||f ||H2

xI
a,γ ||f − h||Ia,γ

=T1 + T2.
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For T1, we have ∫ t

0

dτ T1(τ) ≤
√
ε

∫ t

0

dτ ||f(τ)− h(τ)||2Ia,γ

because we have sup0≤t≤T ∗M(h(t)) ≤ ε. For T2, we use the Cauchy-Schwarz in-

equality and obtain∫ t

0

dτ T2(τ) ≤
√
ε

(
sup

0≤τ≤t
||f(τ)− h(τ)||2L2

p,x

∫ t

0

dτ ||f(τ)− h(τ)||2Ia,γ
)1/2

.
√
ε

(
sup

0≤τ≤t
||f(τ)− h(τ)||2L2

p,x
+

∫ t

0

dτ ||f(τ)− h(τ)||2Ia,γ
)

because f also satisfies sup0≤t≤T ∗M(f(t)) ≤ ε. For the linearized Boltzmann oper-

ator L on the left-hand side of (3.6.4), we use Lemma 3.1.7 to obtain

(L(f − h), f − h) ≤ c||f − h||2Ia,γ − C||f − h||2L2(T3×R3)

for some small c > 0. We finally take the inner product of (3.6.4) and (f − h) and

integrate over [0, t]× T3 × R3 and use the estimates above to obtain

1

2
||f(t)− h(t)||2L2

p,x
+ c

∫ t

0

dτ ||f(τ)− h(τ)||2Ia,γ

.
√
ε

(
sup

0≤τ≤t
||f(τ)− h(τ)||2L2

p,x
+

∫ t

0

dτ ||f(τ)− h(τ)||2Ia,γ
)

+

∫ t

0

dτ ||f(τ)− h(τ)||2L2(T3×R3).

By the Gronwall’s inequality, we obtain that f = h because f and h satisfies the

same initial conditions. This proves the uniqueness of the solution.

Continuity. Let [a, b] be a time interval. We follow the simliar argument as in

(3.6.2) and (3.6.3) with the time interval [a, b] instead of [0, t] and let fm = fm+1 = f
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and obtain that

|M(f(b))−M(f(a))| = |1
2
||f(b)||2H −

1

2
||f(a)||2H +

∫ b

a

dτ ||f(τ)||2I

.

(∫ b

a

dτ ||f(τ)||2I
)(

1 + sup
a≤τ≤b

M1/2(f(τ))

)
.

As a → b, we obtain that |M(f(b)) −M(f(a))| → 0 because ||f ||2I is integrable in

time. This proves the continuity of M .

Positivity. For the proof of positivity of the solution, we recall the paper [3]

where we see the positivity of strong solutions to the non-relativistic Boltzmann

equations without angular cut-off with the initial data f0 ∈ HM for M ≥ 5 and

with moderate singularity 0 ≤ γ ≤ 1. Similar to this proof, we consider the cut-off

approximation F ε to the relativistic Boltzmann equation except that the kernel σ

has been replaced by σε where the angular singularity has been removed and σε → σ

as ε → 0. We obtain that F ε is positive. If our initial data is nice enough to be

in HM for M > 5, we conclude that F = J +
√
Jf ≥ 0 using the compactness

argument from the uniqueness of the solution. If our initial solution is not regular

enough, then we use the density argument that HM is dense in H(T3×R3) and the

approximation arguments and the uniqueness to show the positivity. If the angular

cutoff is more singular as 1 ≤ γ < 2, then the positivity can be obtained by using

higher derivative estimates and following the same compactness argument as in the

case with lower singularity.
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3.6.2 Global existence

In this section, we would like to derive the systems of macroscopic equations and

balance laws with respect to the coefficients appearing in the expression for the

hydrodynamic part Pf and prove an coercive inequality of the microscopic part

{I − P}f . With this coercivity estimates for the non-linear local solutions to the

relativistic Boltzmann system, we will show that these solutions must be global

with the standard continuity argument and by proving energy inequalities. We will

also show rapid time decay of the solutions.

For the relativistic Maxwellian solution J , we have normalized so that∫
R3 J(p)dp = 1. Here we introduce the following notations for the integrals:

λ0 =

∫
R3

p0Jdp, λ00 =

∫
R3

(p0)2Jdp, λ1 =

∫
R3

(p1)2Jdp,

λ10 =

∫
R3

p2
1

p0
Jdp, λ12 =

∫
R3

p2
1p

2
2

(p0)2Jdp, λ11 =

∫
R3

p4
1

(p0)2Jdp,

λ100 =

∫
R3

p2
1

(p0)2Jdp.

We also mention that the null space of the linearized Boltzmann operator L is

given by the 5-dimensional space

N(L) = span{
√
J, p1

√
J, p2

√
J, p3

√
J, p0
√
J}.

Then we define the orthogonal projection from L2(R3) onto N(L) by P . Then we

can write Pf as a linear combination of the basis as

Pf =

(
Af (t, x) +

3∑
i=1

Bfi (t, x)pi + Cf (t, x)p0

)
√
J (3.6.5)
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where the coefficients are given by

Af =

∫
R3

f
√
Jdp− λ0c

f , Bfi =

∫
R3 fp

√
Jdp

λi
, Cf =

∫
R3 f(p0

√
J − λ0

√
J)

λ00 − λ2
0

.

Then we can decompose f(t, x, p) as

f = Pf + {I − P}f. (3.6.6)

We start from plugging the expression (3.6.6) into (3.1.3). Then we obtain

{∂t + p̂ · ∇x}Pf = −∂t{I − P}f − (p̂ · ∇x + L){I − P}f + Γ(f, f). (3.6.7)

Note that we have expressed the hydrodynamic part Pf in terms of the microscopic

part {I−P}f and the higher-order term Γ. We define an operator l = −(p̂ ·∇x+L)

here. Using the expression (3.6.5) of Pf with respect to the basis elements, we

obtain that the left-hand side of the (3.6.7) can be written as

∂tA
√
J +

3∑
i=1

∂i(A+ Cp0)
pi
p0

√
J + ∂tCp0

√
J +

3∑
i=1

∂tBipi
√
J

+
3∑
i=1

∂iBi
p2
i

p0

√
J +

3∑
i=1

∑
i 6=j

∂jBi
pipj
p0

√
J

where ∂i = ∂xi . For fixed (t, x) we can write the left-hand side with respect to the

following basis, {ek}14
k=1, which consists of

√
J,

(
pi
p0

√
J

)
1≤i≤3

, p0
√
J,

(
pi
√
J
)

1≤i≤3
,

(
pipj
p0

√
J

)
1≤i≤j≤3

. (3.6.8)

Then, we can rewrite the left-hand side as

∂tA
√
J +

3∑
i=1

∂iA
pi
p0

√
J + ∂tCp0

√
J +

3∑
i=1

(∂iC + ∂tBi)pi
√
J

+
3∑
i=1

3∑
j=1

((1− δij)∂iBj + ∂jBi)
pipj
p0

√
J.
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By a comparison of coefficients, we obtain a system of macroscopic equations

∂tA = −∂tma + la +Ga,

∂iA = −∂tmia + lia +Gia,

∂tC = −∂tmc + lc +Gc,

∂iC + ∂tBi = −∂tmic + lic +Gic,

(1− δij)∂iBj + ∂jBi = −∂tmij + lij +Gij,

(3.6.9)

where the indices are from the index set defined asD = {a, ia, c, ic, ij|1 ≤ i ≤ j ≤ 3}

and mµ, lµ, and Gµ for µ ∈ D are the coefficients of {I − P}f , l{I − P}f , and

Γ(f, f) with respect to the basis {ek}14
k=1 respectively.

We also derive a set of equations from the conservation laws. For the perturba-

tion solution f , we multiply the linearized Boltzmann equation by
√
J, pi
√
J, p0
√
J

and integrate over R3 to obtain that

∂t

∫
R3

f
√
Jdp+

∫
R3

p̂ · ∇xf
√
Jdp = 0

∂t

∫
R3

f
√
Jpidp+

∫
R3

p̂ · ∇xf
√
Jpidp = 0

∂t

∫
R3

f
√
Jp0dp+

∫
R3

p̂ · ∇xf
√
Jp0dp = 0.

(3.6.10)

These hold because 1, pi, p
0 are collisional invariants and hence

∫
R3

Q(f, f)dp =

∫
R3

Q(f, f)pidp =

∫
R3

Q(f, f)p0dp = 0.

We will plug the decomposition f = Pf + {I −P}f into (3.6.10). We first consider
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the microscopic part. Note that

∫
R3

p̂ · ∇x{I − P}f
√
J


1

pi

p0

 dp =
3∑
j=1

∫
R3

pj
p0
∂j{I − P}f

√
J


1

pi

p0

 dp

=
3∑
j=1

∂j

∫
R3

{I − P}f
√
J


pj
p0

pipj
p0

pj

 dp =
3∑
j=1

∂j〈{I − P}f,
√
J


pj
p0

pipj
p0

0

〉.

(3.6.11)

Also, we have that

∂t

∫
R3

{I − P}f
√
J


1

pi

p0

 = ∂t〈{I − P}f,
√
J


1

pi

p0

〉 = 0. (3.6.12)

On the other hand, the hydrodynamic part Pf = (A+ B · p+ Cp0)
√
J satisfies

∂t

∫
R3


1

pi

p0

Pf
√
Jdp+

∫
R3

p̂ · ∇xPf
√
J


1

pi

p0

 dp
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= ∂t

∫
R3


A+ B · p+ Cp0

Api + B · ppi + Cp0pi

Ap0 + B · pp0 + C(p0)
2


√
Jdp

+
3∑
j=1

∫
R3

∂j


pj
p0

(A+ B · p+ Cp0)

pipj
p0

(A+ B · p+ Cp0)

pjA+ B · ppj + Cp0pj


√
Jdp

=


∂tA+ λ0∂tC

λ1∂tBi

λ0∂tA+ λ00∂tC

+


λ10∇x · B

λ10∂iA+ λ1∂iC

λ1∇x · B

 .

(3.6.13)

Also, we have that L(f) = L{I − P}f . Together with (3.6.10), (3.6.11), (3.6.12),

and (3.6.13), we finally obtain the local conservation laws satisfied by (A,B, C):

∂tA+ λ0∂tC + λ10∇x · B = −∇x · 〈{I − P}f,
√
J
p

p0
〉,

λ1∂tB + λ10∇xA+ λ1∇xC = −∇x · 〈{I − P}f,
√
J
p⊗ p
p0
〉,

λ0∂tA+ λ00∂tC + λ1∇x · B = 0.

Comparing the first and the third conservation laws, we obtain

∂tA
(

1− λ2
0

λ00

)
+∇x · B

(
λ10 −

λ0λ1

λ00

)
= −∇x · 〈{I − P}f,

√
J
p

p0
〉,

λ1∂tB + λ10∇xA+ λ1∇xC = −∇x · 〈{I − P}f,
√
J
p⊗ p
p0
〉,(

λ0 −
λ00

λ0

)
∂tC +

(
λ10 −

λ1

λ0

)
∇x · B = −∇x · 〈{I − P}f,

√
J
p

p0
〉.

(3.6.14)

We also mention that we have the following lemma on the coefficients A,B, C

by the conservation of mass, momentum, and energy:
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Lemma 3.6.3. Let f(t, x, p) be the local solution to the linearized relativistic Boltz-

mann equation (3.1.3) which is shown to exist in Theorem 3.6.2 which satisfies the

mass, momentum, and energy conservation laws (3.1.2). Then we have∫
T3

A(t, x)dx =

∫
T3

Bi(t, x)dx =

∫
T3

C(t, x)dx = 0,

where i ∈ 1, 2, 3.

We also list two lemmas that helps us to control the coefficients in the linear

microscopic term l and the non-linear higher-order term Γ.

Lemma 3.6.4. For any coefficient lµ for the microscopic term l, we have

∑
µ∈D

||lµ||HN−1
x

.
∑
|α|≤N

||{I − P}∂αf ||L2
a+γ
2

(T3×R3).

Proof. In order to estimate the size for HN−1 norm, we take

〈∂αl({I − P}f), ek〉 = −〈p̂ · ∇x({I − P}∂αf), ek〉 − 〈L({I − P}∂αf), ek〉.

For any |α| ≤ N − 1, the L2-norm of the first part of the right-hand side is

||〈p̂ · ∇x({I − P}∂αf), ek〉||2L2
x
.
∫
T3×R3

dxdp |ek||{I − P}∇x∂
αf |2

. ||{I − P}∇x∂
αf ||2L2

a+γ
2

(T3×R3)

Similarly, we have

||〈L({I − P}∂αf), ek〉||2L2
x
.
∣∣∣∣∣∣|{I − P}∂αf |L2

a+γ
2

|
√
J |L2

a+γ
2

∣∣∣∣∣∣2
L2
x

. ||{I − P}∇x∂
αf ||2L2

a+γ
2

(T3×R3).

This completes the proof.
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Lemma 3.6.5. Let ||f ||2H ≤M for some M > 0. Then, we have

∑
µ∈D

||Gµ||HN−1
x

.
√
M
∑
|α|≤N

||∂αf ||L2
a+γ
2

(T3×R3).

Proof. In order to estimate the size for HN−1 norm, we consider 〈Γ(f, f), ek〉. By

(3.4.6), for any m ≥ 0,

||〈Γ(f, f), ek〉||HN−1
x

.
∑

|α|≤N−1

∑
α1≤α

∣∣∣∣∣∣|∂α−α1f |L2
−m
|∂α1f |L2

−m

∣∣∣∣∣∣
L2
x

. ||f ||L2
−mH

N
x

∑
|α|≤N

||∂αf ||L2
a+γ
2

.
√
M
∑
|α|≤N

||∂αf ||L2
a+γ
2

(T3×R3).

This completes the proof.

These two lemmas above, the macroscopic equations, and the local conservation

laws will together prove the following theorem on the coercivity estimate for the

microscopic term {I − P}f which is crucial for the energy inequality which will

imply the global existence of the solution with the continuity argument.

Theorem 3.6.6. Given the initial condition f0 ∈ H which satisfies the mass, mo-

mentum, and energy conservation laws (3.1.2) and the assumptions in Theorem

3.6.2, we can consider the local solution f(t, x, p) to the linearized relativistic Boltz-

mann equation (3.1.3). Then, there is a constant M > 0 such that if

||f(t)||2H ≤M0,
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then there are universal constants δ > 0 and C > 0 such that

∑
|α|≤N

||{I − P}∂αf ||2Ia,γ (t) ≥ δ
∑
|α|≤N

||P∂αf ||2Ia,γ (t)− C
dI(t)

dt
,

where I(t) is the interaction potential defined as

I(t) =
∑

|α|≤N−1

{Iαa (t) + Iαb (t) + Iαc (t)}

and each of the sub-potentials Iαa (t), Iαb (t), and Iαc (t) is defined as

Iαa (t) =
3∑
i=1

∫
T3

∂i∂
αmia∂

αA(t, x)dx,

Iαb (t) = −
3∑
i=1

∑
j 6=i

∫
T3

∂j∂
αmij∂

αBidx,

Iαc (t) =

∫
T3

(∇ · ∂αB)∂αC(t, x)dx+
3∑
i=1

∫
T3

∂i∂
αmic∂

αC(t, x)dx.

Proof. Since Pf = A+ B · p+ Cp0, we have that

||P∂αf(t)||2Ia,γ . ||∂αA(t)||2L2
x

+ ||∂αB(t)||2L2
x

+ ||∂αC(t)||2L2
x
.

Thus, it suffices to prove the following estimate:

||∂αA(t)||2HN
x

+ ||∂αB(t)||2HN
x

+ ||∂αC(t)||2HN
x

.
∑
|α|≤N

||{I − P}∂αf(t)||2L2
a+γ
2

+M
∑
|α|≤N

||∂αf(t)||2L2
a+γ
2

+
dI(t)

dt
.

(3.6.15)
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Note that the term M
∑
|α|≤N ||∂αf(t)||2

L2
a+γ
2

can be ignored because we have

∑
|α|≤N

||∂αf(t)||2L2
a+γ
2

.
∑
|α|≤N

||P∂αf(t)||2L2
a+γ
2

+
∑
|α|≤N

||{I − P}∂αf(t)||2L2
a+γ
2

. ||∂αA(t)||2HN
x

+ ||∂αB(t)||2HN
x

+ ||∂αC(t)||2HN
x

+
∑
|α|≤N

||{I − P}∂αf(t)||2L2
a+γ
2

.

Therefore, with sufficiently small M > 0, (3.6.15) will imply Theorem 3.6.6.

In order to prove (3.6.15), we will estimate each of the ∂α derivatives of A,B, C

for 0 < |α| ≤ N separately. Later, we will use Poincaré inequality to estimate the

L2-norm of A,B, C to finish the proof.

For the estimate for A, we use the second equation in the system of macroscopic

equations (3.6.9) which tells ∂iA = −∂tmia + lia + Gia. We take ∂i∂
α onto this

equation for |α| ≤ N − 1 and sum over i and obtain that

−∆∂αA =
3∑
i=1

(∂t∂i∂
αmia − ∂i∂α(lia +Gia)).

We now multiply ∂αA and integrate over T3 to obtain

||∇∂αA||2L2
x
≤ ||∂α(lia +Gia)||L2

x
||∇∂αA||L2

x
+
d

dt

3∑
i=1

∫
T3

∂i∂
αmia∂

αA(t, x)dx

−
3∑
i=1

∫
T3

∂i∂
αmia∂t∂

αA(t, x)dx.

We define the interaction functional

Iαa (t) =
3∑
i=1

∫
T3

∂i∂
αmia∂

αA(t, x)dx.

For the last term, we use the first equation of the local conservation laws (3.6.14)
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to obtain that

∫
T3

3∑
i=1

|∂i∂αmia∂t∂
αA(t, x)|dx ≤ ζ||∇ · ∂αB||2L2

x
+ Cζ ||{I − P}∇∂αf ||2L2

a+γ
2

,

for any ζ > 0. Together with Lemma 3.6.4 and Lemma 3.6.5, we obtain that

||∇∂αA||2L2
x
− ζ||∇ · ∂αB||2L2

x

. Cζ
∑
|α|≤N

||{I − P}∂αf ||2L2
a+γ
2

+
dIαa
dt

+M
∑
|α|≤N

||∂αf ||2L2
a+γ
2

.
(3.6.16)

For the estimate for C, we use the fourth equation in the system of macroscopic

equations (3.6.9) which tells ∂iC + ∂tBi = −∂tmic + lic + Gic. We take ∂i∂
α onto

this equation for |α| ≤ N − 1 and sum over i and obtain that

−∆∂αC =
d

dt
(∇ · ∂αB) +

3∑
i=1

(∂t∂i∂
αmic − ∂i∂α(lic +Gic)).

We now multiply ∂αC and integrate over T3 to obtain

||∇∂αC||2L2
x
≤ d

dt

∫
T3

(∇ · ∂αB)∂αC(t, x)dx−
∫
T3

(∇ · ∂αB)∂t∂
αC(t, x)dx

+ ||∂α(lic +Gic)||L2
x
||∇∂αC||L2

x
+
d

dt

3∑
i=1

∫
T3

∂i∂
αmic∂

αC(t, x)dx

−
3∑
i=1

∫
T3

∂i∂
αmic∂t∂

αC(t, x)dx.

We define the interaction functional

Iαc (t) =

∫
T3

(∇ · ∂αB)∂αC(t, x)dx+
3∑
i=1

∫
T3

∂i∂
αmic∂

αC(t, x)dx.

We also use the third equation of the local conservation laws (3.6.14) to obtain that

∫
T3

3∑
i=1

|∂i∂αmic∂t∂
αC(t, x)|dx ≤ ζ||∇ · ∂αB||2L2

x
+ Cζ ||{I − P}∇∂αf ||2L2

a+γ
2

,

78



for any ζ > 0. Together with Lemma 3.6.4 and Lemma 3.6.5, we obtain that

||∇∂αC||2L2
x
− ζ||∇ · ∂αB||2L2

x

. Cζ
∑
|α|≤N

||{I − P}∂αf ||2L2
a+γ
2

+
dIαc
dt

+M
∑
|α|≤N

||∂αf ||2L2
a+γ
2

.
(3.6.17)

For the estimate for B, we use the last equation in the system of macroscopic

equations (3.6.9) which tells (1 − δij)∂iBj + ∂jBi = −∂tmij + lij + Gij. Note that

when i = j, we have

∂iBi = −∂tmii + lii +Gii.

Also, if i 6= j, we have

∂iBj + ∂jBi = −∂tmij + lij +Gij.

We take ∂j∂
α on both equations above for |α| ≤ N − 1 and sum on j to obtain

∆∂αBi = −∂i∂i∂αBi + 2∂i∂
αlii + 2∂i∂

αGii

+
∑
j 6=i

(−∂i∂αljj − ∂i∂αGjj + ∂j∂
αlij + ∂j∂

αGij − ∂t∂j∂αmij).

We now multiply ∂αBi and integrate over T3 to obtain

||∇∂αBi||2L2
x
≤ − d

dt

∑
j 6=i

∫
T3

∂j∂
αmij∂

αBidx+
∑
j 6=i

∫
T3

∂j∂
αmij∂t∂

αBidx

+
∑
µ∈D

||∂α(lµ +Gµ)||L2
x
.

We define the interaction functional

Iαb (t) = −
3∑
i=1

∑
j 6=i

∫
T3

∂j∂
αmij∂

αBidx.
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We also use the second equation of the local conservation laws (3.6.14) to obtain

that

3∑
i=1

∑
j 6=i

∫
T3

|∂j∂αmij∂t∂
αBi(t, x)|dx

≤ ζ(||∇ · ∂αA||2L2
x

+ ||∇ · ∂αC||2L2
x
) + Cζ ||{I − P}∇∂αf ||2L2

a+γ
2

,

for any ζ > 0. Together with Lemma 3.6.4 and Lemma 3.6.5, we obtain that

||∇∂αB||2L2
x
− ζ(||∇ · ∂αA||2L2

x
+ ||∇ · ∂αC||2L2

x
)

.Cζ
∑
|α|≤N

||{I − P}∂αf ||2L2
a+γ
2

+
dIαb
dt

+M
∑
|α|≤N

||∂αf ||2L2
a+γ
2

.
(3.6.18)

Choose sufficiently small ζ > 0. Then, (3.6.16), (3.6.17), and (3.6.18) implies that

||∇A||2
HN−1
x

+||∇B||2
HN−1
x

+ ||∇C||2
HN−1
x

.
∑
|α|≤N

||{I − P}∂αf ||2L2
a+γ
2

+
dI

dt
+M

∑
|α|≤N

||∂αf ||2L2
a+γ
2

.
(3.6.19)

On the other hand, with the Poincaré inequality and Lemma 3.6.3, we obtain

that

||A||2 .
(
||∇A||+

∣∣∣∣∫
T3

A(t, x)dx

∣∣∣∣)2

= ||∇A||2 .
∑
|α|≤N

||∂αf ||2L2
a+γ
2

.

This same estimate holds for b and c. Therefore, the inequality (3.6.15) holds and

this finishes the proof for the theorem.

We now use this coercive estimate to prove that the local solutions from the

Theorem 3.6.2 should be global-in-time solutions by standard continuity argument.

We will also prove that the solutions have rapid exponential time decay.
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Before we go into the proof for the global existence, we would like to mention a

coercive lower bound for the linearized Boltzmann collision operator L which also

gives the positivity of the operator:

Theorem 3.6.7. There is a constant δ > 0 such that

〈Lf, f〉 ≥ δ|{I − P}f |2Ia,γ .

Proof. By following [41] with our assumptions on the relativistic long-range collision

kernel and using that g ≥ |p−q|√
p0q0

, we can obtain that

〈Lf, f〉 ≥ δ1|{I − P}f |2L2
a
2

.

The positive constant δ1 is explicitly computable. Also, by Lemma 3.1.7, we have

〈Lf, f〉 ≥ |f |2Ia,γ − C|f |2L2

for some C > 0. If we suppose that f = {I − P}f , then we can conclude that

〈Lf, f〉 = δ2〈Lf, f〉+ (1− δ2)〈Lf, f〉

≥ δ2|f |2Ia,γ − Cδ2|f |2L2 + (1− δ2)δ1|f |2L2
a
2

for any δ2 ∈ (0, 1). Note that we have |f |2
L2
a
2

≥ |f |2L2 . By choosing δ2 > 0 sufficiently

small, we obtain the theorem.

Now, we define the dissipation rate D as

D =
∑
|α|≤N

||∂αf(t)||2Ia,γ .
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We will use the energy functional E(t) to be a high-order norm which satisfies

E(t) ≈
∑
|α|≤N

||∂αf(t)||2L2(T3×R3). (3.6.20)

This functional will be precisely defined during the proof. Then, we would like to

set up the following energy inequality:

d

dt
E(t) +D(t) ≤ C

√
E(t)D(t).

We will prove this energy inequality and use this to show the global existence.

Proof. (Proof for Theorem 3.1.1) We denote D def
= D0 and E def

= E0. By the definitions

on interaction functionals, there is a sufficiently large constant C ′′ > 0 for any C ′ > 0

such that

||f(t)||2L2
pH

N
x
≤ (C ′′ + 1)||f(t)||2L2

pH
N
x
− C ′I(t) . ||f(t)||2L2

pH
N
x
.

Note that C ′′ doesn’t depend on f(t, x, p) but only on C ′ and I. Here we define the

energy functional E(t) as

E(t) = (C ′′ + 1)||f(t)||2L2
pH

N
x
− C ′I(t).

Then, the above inequalities show that the definition of E satisfies (3.6.20).

Recall the local existence Theorem 3.6.2 and Theorem 3.6.6 and choose M0 ≤ 1

so that both theorems hold. We choose M1 ≤ M0

2
and consider initial data E(0) so

that

E(0) ≤M1 < M0.
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From the local existence theorem, we define T > 0 so that

T = sup{t ≥ 0|E(t) ≤ 2M1}.

By taking the spatial derivative ∂α onto the linearized relativistic Boltzmann equa-

tion (3.1.3), integrating over (x, p), and summing over α, we obtain

1

2

d

dt
||f(t)||2L2

pH
N
x

+
∑
|α|≤N

(L∂αf, ∂αf) =
∑
|α|≤N

(∂αΓ(f, f), ∂αf). (3.6.21)

By the estimates from Lemma 3.1.3, we have

∑
|α|≤N

(∂αΓ(f, f), ∂αf) .
√
ED.

Since our choice of M1 satisfies E(t) ≤ 2M1 ≤ M0, we see that the assumption for

Theorem 3.6.6 is satisfied. Then, Theorem 3.6.6 and Theorem 3.6.7 tells us that

∑
|α|≤N

(L∂αf, ∂αf) ≥ δ||{I − P}f ||2Ia,γ

≥ δ

2
||{I − P}f ||2Ia,γ +

δδ′

2

∑
|α|≤N

||P∂αf ||2Ia,γ (t)−
δC

2

dI(t)

dt
.

Let δ′′ = min{ δ
2
, δδ
′

2
} and let C ′ = δC. Then, we have

1

2

d

dt

(
||f(t)||2L2

pH
N
x
− C ′I(t)

)
+ δ′′D .

√
ED.

We multiply (3.6.21) by C′′

2
and add this onto the last inequality above using the

positivity of L to conclude that

dE(t)

dt
+ δ′′D(t) ≤ C

√
E(t)D(t),
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for some C > 0. Suppose M1 = min{ δ′′2
8C2 ,

M0

2
}. Then, we have

dE(t)

dt
+ δ′′D(t) ≤ C

√
E(t)D(t) ≤ C

√
2M1D(t) ≤ δ′′

2
D(t). (3.6.22)

Now, we integrate over t for 0 ≤ t ≤ τ < T and obtain

E(τ) +
δ′′

2

∫ τ

0

D(t)dt ≤ E(0) ≤M1 < 2M1.

Since E(τ) is continuous in τ , E(τ) ≤M1 if T <∞. This contradicts the definition

of T and hence T =∞. This proves the global existence.

Also, notice that E(t) . D(t). This and the equation (3.6.22) show the expo-

nential time decay.
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Chapter 4

Further upper bound and

coercivity estimates

In this chapter, we compute the upper bound estimates of ζK(p) and ζ(p) and the

lower bound coercivity estimate of ζ(p). Recall from (3.1.7) and (3.1.8) that ζK(p)

and ζ(p) are defined as

ζK(p)
def
=

∫
R3

dq

∫
S2
dw vφσ(g, θ)(

√
J(q)−

√
J(q′))

√
J(q′)

and

ζ(p)
def
=

∫
R3

dq

∫
S2
dw vφσ(g, θ)(

√
J(q)−

√
J(q′))2.

Obtaining the asymptotics (3.1.9) is crucial for the estimates for the inner product

with the norm part 〈Nf, f〉 and the one with the compact part 〈Kf, f〉 of the

linearized Boltzmann collision operator.

85



4.1 Upper bound estimates

We first show the upper bound estimates for ζK(p) and ζ(p). More precisely, we

have the following proposition for ζK :

Proposition 4.1.1.

|ζK(p)| . (p0)
a+γ
2 .

Also, we have the following upper bound estimate for ζ:

Proposition 4.1.2.

ζ(p) . (p0)
a+γ
2 .

Proof. (Proof for Proposition 4.1.1) We let {χl}∞l=−∞ be a partition of unity on

(0,∞) such that |χl| ≤ 1 and supp(χl) ⊂ [2−l−1, 2−l]. Then, we define σl(g, θ)
def
=

σ(g, θ)χl(ḡ) where ḡ
def
= g(pµ, p′µ). Define

ζ lK(p) =

∫
R3

dq

∫
S2
dw vφσl(g, θ)(

√
J(q)−

√
J(q′))

√
J(q′).

If l < 0, we can write

|ζ lK(p)| .
∫
R3

dq

∫
S2
dw vφ(ga + g−b)σ0(θ)χl(ḡ)

∣∣∣√J(q) +
√
J(q′)

∣∣∣√J(q′),

since σ(g, θ) . (ga + g−b)σ0(θ) and |
√
J(q)−

√
J(q′)| ≤ |

√
J(q) +

√
J(q′)|. Then,

|ζ lK(p)| .
∫
R3

dq

∫
S2
dw vφ(ga + g−b)σ0(θ)χl(ḡ)

(√
J(q)J(q′) + J(q′)

)
.

For the part with
√
J(q)J(q′), we use

√
J(q′) ≤ 1 and vφ . 1 to obtain that∫

R3

dq

∫
S2
dw vφ(ga + g−b)σ0(θ)χl(ḡ)

√
J(q)J(q′)

.
∫
R3

dq

(
(p0q0)

a
2 +
|p− q|−b

(p0q0)−
b
2

)√
J(q)

∫
S2
dw σ0(θ)χl(ḡ).

(4.1.1)
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For the last inequality, we used |p−q|√
p0q0
≤ g .

√
p0q0. Then we use

∫
S2
dw σ0(θ)χl(ḡ) ≈

∫ 2−l

2−l−1

1

θ1+γ
dθ = 2lγgγ . 2lγ(p0q0)

γ
2

to obtain that the first part of |ζ lK(p)| is bounded above by

2lγ
(∫

R3

dq(p0q0)
a+γ
2

√
J(q) +

∫
R3

dq(p0q0)
b+γ
2 |p− q|−b

√
J(q)

)
.

Use the inequality that
∫
R3 dq|p − q|−bJ(q)c ≈ (p0)−b for some c > 0 and b < 3 to

conclude that the first part of |ζ lK(p)| is bounded above by 2lγ(p0)
a+γ
2 .

For the rest part of |ζ lK(p)|, we use a dual representation to write the rest of the

integral as

c

2p0

∫
R3

dq′

q′0

∫
Ep
′
q′−p

dπp′

p′0
(ga + g−b)σ0(θ)χl(ḡ)J(q′), (4.1.2)

where

Ep′

q′−p
def
= {p′ ∈ R3|(pµ − p′µ)(q′µ − pµ) = 0}

and dπp′ is the Lebesgue measure on the set Ep′

q′−p and is defined as

dπp′ = dp′u(p′0 + q′0 − p0)δ

(
g̃2 + 2p′µ(q′µ − pµ)

2g̃

)

Here g̃
def
= g(pµ, q′µ) and u(x) = 1 if x ≥ 1 and 0 otherwise. By following the proof

for Proposition 3.2.2 with the roles of p and p′ and the roles of q and q′ are reversed

respectively, we obtain that

∫
Ep
′
q′−p

dπp′

p′0
g̃(ḡ)−2−γχl(ḡ) . 2lγ

√
q′0

p0
.
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Since we further have g ≈ g̃ and σ0(θ) ≈
(
ḡ
g

)−2−γ
, (4.1.2) is bounded above as

c

2p0

∫
R3

dq′

q′0

∫
Ep
′
q′−p

dπp′

p′0
(ga + g−b)σ0(θ)χl(ḡ)J(q′)

.
1

p0

∫
R3

dq′

q′0
J(q′)

√
q′0

p0
(g̃a+γ+1 + g̃−b+γ+1)

.
1

p0

∫
R3

dq′J(q′)

(
(p0q0)

a+γ
2 +

|p− q′|−b+γ

(p0q0)
−b+γ

2

)

. (p0)
a+γ
2 ,

where the last inequality is by
∫
R3 dq

′|p − q′|−b+γJ(q′)c ≈ (p0)−b+γ for some c > 0.

Therefore, we finally obtain that if l < 0,

|ζ lK(p)| . 2lγ(p0)
a+γ
2 .

On the other hand, if l ≥ 0, then we have ḡ ≤ 1 and we obtain q0 ≈ q′0. Then

we further split the integral into three parts as the following:

ζ lK(p) =

∫
R3

dq

∫
S2
dw vφσl(g, θ)(

√
J(q)−

√
J(q′))

√
J(q′)

= −
∫
R3

dq

∫
S2
dw vφσl(g, θ)(

√
J(q)−

√
J(q′))2

+

∫
R3

dq

∫
S2
dw vφσl(g, θ)

(√
J(q)−

√
J(q′)− (∇

√
J)(q) · (q − q′)

)√
J(q)

+

∫
R3

dq

∫
S2
dw vφσl(g, θ)(∇

√
J)(q) · (q − q′)

√
J(q)

def
= I1 + I2 + I3.

For the part I1, we use mean-value theorem to write

√
J(q)−

√
J(q′) = (q − q′) · (∇

√
J)(θq + (1− θ)q′)
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for some θ ∈ (0, 1). Note that

|(∇
√
J)(θq + (1− θ)q′)| .

(
J(q)J(q′)

) ε
2 ≤ J(q)

ε
2

for some small ε > 0. Thus,

|I1| .
∫
R3

dq

∫
S2
dw vφσl(g, θ)|q − q′|2(J(q))ε

≤
∫
R3

dq

∫
S2
dw vφσl(g, θ)ḡ

2(q0q′0)(J(q))ε

.2−2l

∫
R3

dq

∫
S2
dw vφσl(g, θ)(J(q))ε

′

.2l(γ−2)(p0)
a+γ
2

where the last inequality is by the same argument as (4.1.1).

For the part I2, we use the same argument as the one for part II in (3.3.3) and

(3.3.4) to obtain the same result.

For the part I3, we follow the same argument as the one for part III in (3.3.5)

and (3.3.6) without having the functions f , η, and h. Therefore, if l ≥ 0, we finally

have

|ζ lK(p)| . 2l(γ−2)(p0)
a+γ
2 .

Consequently, we sum up the decomposed pieces over l and obtain

|ζK(p)| . (p0)
a+γ
2 .

We similarly show the upper bound estimate for ζ(p) as the following.
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Proof. (Proof for Proposition 4.1.2) As in the previous proof for ζK , we decompose

the function dyadically around the singularity. We define

ζ l(p)
def
=

∫
R3

dq

∫
S2
dw vφσl(g, θ)(

√
J(q)−

√
J(q′))2.

If l ≥ 0, this is bounded above by 2l(γ−2)(p0)
a+γ
2 by the same argument as the

one for part I1 of ζ lK(p) estimate above.

If l < 0, we observe that (
√
J(q)−

√
J(q′))2 . max{J(q), J(q′)}. If J(q) ≥ J(q′),

it suffices to estimate the following:∫
R3

dq

∫
S2
dw vφσl(g, θ)J(q).

This estimate is already done in (4.1.1) and we obtain that ζ l(p) . 2lγ(p0)
a+γ
2 . If

J(q) ≤ J(q′), it suffices to estimate the following:∫
R3

dq

∫
S2
dw vφσl(g, θ)J(q′).

This is equal to (4.1.2) and we obtain that ζ l(p) . 2lγ(p0)
a+γ
2 .

Finally, we sum up the decomposed pieces over l and obtain

ζ(p) . (p0)
a+γ
2 .

This completes our proofs for the upper bound estimates.

4.2 Lower bound coercivity estimate

In this section, we would like to obtain the following coercivity estimate on ζ:
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Proposition 4.2.1.

ζ(p) & (p0)
a+γ
2 .

Together with Proposition 4.1.2, we obtain the following equivalence:

Corollary 4.2.2.

ζ(p) ≈ (p0)
a+γ
2 .

Proof. (Proof for Proposition 4.2.1) ζ(p) is defined as

ζ(p)
def
=

∫
R3

dq

∫
S2
dw vφσ(g, θ)(

√
J(q)−

√
J(q′))2.

We write this as an integral on the set R3 × Eq′

p+q where the set Eq′

p+q is defined as

Eq′

p+q
def
= {q′ ∈ R3|(q′µ − pµ)(pµ + qµ) = 0}.

Then we use a dual representation to write the integral as

ζ(p) =
c

2p0

∫
R3

dq

q0

∫
Eq
′
p+q

dπq′

q′0
√
sσ(g, θ)(

√
J(q)−

√
J(q′))2

where dπq′ is the Lebesgue measure on the set Eq′

p+q and is defined as

dπq′
def
= dq′δ

(
s+ 2q′µ(pµ + qµ)

2
√
s

)
.

We first observe that σ(g, θ) & g√
s
gaσ0(θ) ≈ ga+1

√
s

(
g
ḡ

)2+γ

. Also, there is some θ ∈

(0, 1) such that

(
√
J(q)−

√
J(q′))2 =

(
q0

2
− q′0

2

)2

exp(−(θq0 + (1− θ)q′0))

≥ 1

4
(q0 − q′0)2e−q

0

e−q
′0

91



by the mean-value theorem. Therefore, we have

ζ(p) &
1

p0

∫
R3

dq

q0
e−q

0

∫
Eq
′
p+q

dπq′

q′0
ga+γ+3

ḡ2+γ
(q0 − q′0)2e−q

′0
.

By writing the integral with respect to dq′ as the integral with respect to dq′µ by

having extra delta function, the last lower bound is equal to

1

p0

∫
R3

dq

q0
e−q

0

∫
R4

dq′µu(q′0)δ(q′µq′µ + 1)δ

(
s+ 2q′µ(pµ + qµ)

2
√
s

)
× ga+γ+3

ḡ2+γ
(q0 − q′0)2e−q

′0
.

We use
√
s ≥ g and ḡγ+2 . (q0q′0)

γ
2

+1 to decrease the last lower bound further as

1

p0

∫
R3

dq

(q0)
γ
2

+2
e−q

0

ga+γ+4

∫
R4

dq′µu(q′0)δ(q′µq′µ + 1)δ (s+ 2q′µ(pµ + qµ))

× (q0 − q′0)2

(q′0)
γ
2

+1
e−q

′0
.

Here we write dq′ integral in
∫
R4 dq

′µu(q′0) using polar coordinates (q′ ∈ R3 →

(r, θ, φ)) as ∫ ∞
1

d(q′0)

∫ ∞
0

dr

∫ 2π

0

dθ

∫ π

0

dφ r2 sinφ

and choose the z-axis parallel to p + q such that the angle between q′ and p + q

is equal to φ. Then we follow a similar estimate as in (3.5.2) and (3.5.3), and use∫∞
1
d(q′0)e−Cq

′0
(q0 − q′0)2 ≈ (q0)2 for some C > 0 to obtain that

ζ(p) &
1

p0

∫
R3

dq

(q0)
γ
2

+2
e−q

0

ga+γ+4 (q0)2

|p+ q|
.

We observe that a+ γ + 4 > 0 and use g ≥ |p−q|√
p0q0

to obtain that

ζ(p) &
1

p0

1

(p0)
a+γ
2

+2

∫
R3

dq e−q
0|p− q|a+γ+4 1

|p+ q|(g0)
a
2

+γ+1
.
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Here we note that |p+q| ≤ 2 max{p0, q0} . p0q0. Then we write e−q
0

(g0)
a
2+γ+1 & e−(1+ε)q0

for some small ε > 0 to obtain

ζ(p) &
1

(p0)
a+γ
2

+4

∫
R3

dq e−(1+ε)q0 |p− q|a+γ+4

≈ 1

(p0)
a+γ
2

+4
(p0)a+γ+4 = (p0)

a+γ
2 .

This completes the proof for the lower bound coercive estimate for ζ(p).
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Chapter 5

On the Derivative of the

Relativistic Collision Map

5.1 Introduction

We consider a pair of relativistic particles with momenta p and q that collide and

diverge with post-collisional momenta p′ and q′. Using the Center-of-Momentum

expression, we can represent the post-collisional variables p′ and q′ as (1.2.6) and

(1.2.7). In this chapter, we are interested in the Jacobian of the collision map

(p, q) → (u, q) where u is defined as u
def
= θp′ + (1 − θ)p for some θ ∈ (0, 1). The

Jacobian will be computed explicitly and it will be shown that the Jacobian is

bounded above in the variable p and q.
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In this chapter, our goal is to compute

det

(
∂u

∂p

)

where u
def
= θp′ + (1 − θ)p for some θ ∈ (0, 1). Recall that the post-collisional

momentum in the center-of-momentum expression is defined as

p′
def
=
p+ q

2
+
g

2

(
w + (γ − 1)(p+ q)

(p+ q) · w
|p+ q|2

)
,

where

(γ − 1)
def
=
p0 + q0 −

√
s√

s
=

|p+ q|2√
s(p0 + q0 +

√
s)
.

Notice that (γ − 1) ≥ 0 from the construction.

5.2 The Jacobian of the collision map

We first state our main results:

Proposition 5.2.1. The Jacobian determinant det
(
∂u
∂p

)
is equal to

det

(
∂u

∂p

)
= A3 + P2A

2 + P3 (5.2.1)

where A ∈ (1− θ, 1) is defined as

A
def
= (1− θ

2
) +

θ

2

(
g

(γ − 1)(p+ q) · w
|p+ q|2

)
,

and P2 and P3 are defined as in (5.2.2) and (5.2.3) and satisfy that

|P2| . q0

(
1 +

1

g

)
and |P3| . 1.
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Since A ∈ (1− θ, 1), we obtain the following corollary:

Corollary 5.2.2. The Jacobian determinant det
(
∂u
∂p

)
is bounded above as∣∣∣∣det

(
∂u

∂p

)∣∣∣∣ . q0

(
1 +

1

g

)
.

A similar work on the relativistic Jacobian has been done by Glassey and

Strauss [27] in 1993 with Glassey-Strauss coordinates without using the center-

of-momentum system. More precisely, they showed that

∑
i,j

∫
S2

{∣∣∣∣∂p′i∂qj

∣∣∣∣+

∣∣∣∣∂q′i∂qj

∣∣∣∣} dw . (p0)5.

Proof. (Proof for Proposition 5.2.1) Now we compute the derivative

∂ui
∂pj

= (1− θ)δij + θ
∂p′i
∂pj

for any choices of i, j ∈ {1, 2, 3}. We observe that

∂p′i
∂pj

=
1

2

(
δij +

∂g

∂pj
wi +

∂g

∂pj
(γ − 1)(pi + qi)

(p+ q) · w
|p+ q|2

+ g
(p+ q) · w√

s(p0 + q0 +
√
s)
δij + g(pi + qi)

∂

∂pj

(
(p+ q) · w√

s(p0 + q0 +
√
s)

))
Here,

∂g

∂pj
=

∂

∂pj
(
√
−(p0 − q0)2 + |p− q|2)

=
1

2g

∂

∂pj
(−(p0 − q0)2 + |p− q|2)

=
1

2g
(−2(p0 − q0)

∂p0

∂pj
+ 2|p− q|∂|p− q|

∂pj
)

=
1

g
(−(p0 − q0)

pj
p0

+ (pj − qj))

=
1

g
(
q0

p0
pj − qj).
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Also, we have

∂

∂pj

(
(p+ q) · w√

s(p0 + q0 +
√
s)

)
=
wj(
√
s(p0 + q0 +

√
s))− (p+ q) · w ∂

∂pj
(
√
s(p0 + q0 +

√
s))

s(p0 + q0 +
√
s)2

Note that we have

∂
√
s

∂pj
=

∂

∂pj
(
√

(p0 + q0)2 − |p+ q|2)

=
1

2
√
s

∂

∂pj
((p0 + q0)2 − |p+ q|2)

=
1

2
√
s

(2(p0 + q0)
∂p0

∂pj
− 2|p+ q|∂|p+ q|

∂pj
)

=
1√
s

((p0 + q0)
pj
p0
− (pj + qj))

=
1√
s

(
q0

p0
pj − qj), .

Then we obtain that

∂

∂pj
(
√
s(p0 + q0 +

√
s)) =

∂
√
s

∂pj
(p0 + q0 +

√
s) +

√
s(
∂p0

∂pj
+
∂
√
s

∂pj
)

= (
q0

p0
pj − qj)

p0 + q0 + 2
√
s√

s
+

√
s

p0
pj.

Therefore,

∂p′i
∂pj

=

(
1

2
+

1

2
g

(p+ q) · w√
s(p0 + q0 +

√
s)

)
δij

+
1

2g
(
q0

p0
pj − qj)

(
wi + (γ − 1)(pi + qi)

(p+ q) · w
|p+ q|2

)
+

1

2
g(pi + qi)(

wi√
s(p0 + q0 +

√
s)

)

− (p+ q) · w
2s(p0 + q0 +

√
s)2

g(pi + qi)

(
p0 + q0 + 2

√
s√

s
(
q0

p0
pj − qj) +

√
s

p0
pj

)
.
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Putting all these together, we can write:

∂ui
∂pj

= Aδij +Bpipj + Cqiqj +Dpiqj + Eqipj + Fpjwj +Gqiwj +Hwipj + Iwiqj,

where the scalars are

A = (1− θ) +
θ

2

(
1 + g

(p+ q) · w√
s(p0 + q0 +

√
s)

)
= (1− θ

2
) +

θ

2

(
g

(γ − 1)(p+ q) · w
|p+ q|2

)
,

B =
(p+ q) · w

2gpo(p0 + q0 +
√
s)2s

3
2

(q0s(p0 + q0 +
√
s)− g2q0(p0 + q0 + 2

√
s)− g2s)

C =
(p+ q) · w

2g(p0 + q0 +
√
s)2s

3
2

(−s(p0 + q0 +
√
s) + g2(p0 + q0 + 2

√
s))

D = C, E = B

F =
g

2
√
s(p0 + q0 +

√
s)
, G = F

H =
q0

2gp0
, I = − 1

2g
.

Notice that (1− θ) < A < 1 because

g
(p+ q) · w√

s(p0 + q0 +
√
s)
∈ (−1, 1).

We will use this to compute the determinant of the matrix Φ = (Φij) where Φij =

∂ui
∂pj

.

We first decompose the pre-collisional vector p as below:

p = (p · w)w + w × (p× w).

Define w̄
def
= w×(p×w)

|p×w| . Then, w̄ ∈ S2 and w̄ ⊥ w.

Also, define w̃
def
= p×w
|p×w| . Then, w̃ ∈ S2 and w̃ ⊥ w and w̃ ⊥ w̄. Thus, {w, w̄, w̃} is
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an orthonormal basis for R3. Then, we can decompose q as below:

q = (q · w)w + w × (q × w)

= (q · w)w + ((w × (q × w)) · w̄)w̄ + w̄ × ((w × (q × w))× w̄)

= (q · w)w + (q · w̄)w̄ + (q · w̃)w̃

def
= aw + bw̄ + cw̃.

Similarly, write:

p = (p · w)w + w × (p× w) = (p · w)w + |p× w|w̄ def
= dw + ew̄.

Notice that a2 + b2 + c2 = |q|2 and d2 + e2 = |p|2.

Then, we can rewrite the matrix element Φij:

Φij = Aδij +B′wiwj + C ′w̄iw̄j +D′w̃iw̃j + E ′wiw̄j + F ′wiw̃j

+G′w̄iwj +H ′w̄iw̃j + I ′w̃iwj + J ′w̃iw̄j,

where

B′ = Bd2 + Ca2 +Dad+ Ead+ Fd+Ga+Hd+ Ia

C ′ = Be2 + Cb2 +Dce+ Ece

D′ = Cc2

E ′ = Bde+ Cab+Dbd+ Eae+He+ Ib

F ′ = Cac+Dcd+ Ic
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G′ = Bde+ Cba+Dae+ Ebd+ Fe+Gb

H ′ = Cbc+Dce

I ′ = Cac+ Ecd+Gc

J ′ = Cbc+ Ece.

Since {w, w̄, w̃} forms a basis for R3, the determinant of Φ is equal to:

det(Φ) =

∣∣∣∣∣∣∣∣∣∣∣∣

A+B′ E ′ F ′

G′ A+ C ′ H ′

I ′ J ′ A+D′

∣∣∣∣∣∣∣∣∣∣∣∣
Subtracting (Column 3)×a

c
from (Column 1) and subtracting (Column 3)× b

c
from

(Column 2) gives

Φ11 = A+Bd2 + Ead+ Fd+Ga+Hd

Φ21 = Bde+ Ebd+ Fe+Gb

Φ31 = Ecd+Gc− a

c
A

Φ12 = Bde+ Eae+He

Φ22 = A+Be2 + Ebe

Φ32 = Ece− b

c
A

There is no change on Column 3 by this column reduction. Notice that this reduc-

tion does not change the determinant.
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Now, subtracting (Column 2)×d
e

from (Column 1) gives

Φ11 = A+ Fd+Ga, Φ21 = −d
e
A+ Fe+Gb, Φ31 = (

bd

ce
− a

c
)A+Gc.

Now, we subtract (Row 3)×a
c

from (Row 1) and (Row 3)× b
c

from (Row 2) respec-

tively. Then, we have the matrix elements to be:

Φ11 = (1− abd

c2e
+
a2

c2
)A+ Fd

Φ21 = (
ab

c2
− d

e
− b2d

c2e
)A+ Fe

Φ31 = (
bd

ce
− a

c
)A+Gc

Φ12 =
ab

c2
A+Bde+He

Φ22 = (1 +
b2

c2
)A+Be2

Φ32 = −b
c
A+ Ece

Φ13 = −a
c
A+Dcd+ Ic

Φ23 = −b
c
A+Dce

Φ33 = A+ Cc2.

We do one more row reduction: (Row 1)-(Row 2)×d
e
. This gives

det(Φ) =

∣∣∣∣∣∣∣∣∣∣∣∣

a11A a12A+He a13A+ Ic

a21A+ Fe a22A+Be2 a23A+Dce

a31A+Gc a32A+ Ece a33A+ Cc2

∣∣∣∣∣∣∣∣∣∣∣∣
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where

a11 = 1− abd

c2e
+
a2

c2
− abd

c2e
+
d2

e2
+
b2d2

c2e2

a21 =
ab

c2
− d

e
− b2d

c2e

a31 =
bd

ce
− a

c

a12 =
ab

c2
− d

e
− b2d

c2e

a22 = 1 +
b2

c2

a32 = −b
c

a13 =
bd

ce
− a

c

a23 = −b
c

a33 = 1.

Since B = E,C = D,and G = F , we can do one more row reduction: (Row 2)-(Row

3)× e
c
. This gives

Φ21 = (
ab

c2
− d

e
− b2d

c2e
− bd

c2
+
ae

c2
)A

def
= a′21A

Φ22 = (1 +
b2

c2
+
be

c2
)A

def
= a′22A

Φ23 = (−b
c
− e

c
)A

def
= a′23A.

Finally, we have

det(Φ) =

∣∣∣∣∣∣∣∣∣∣∣∣

a11A a12A+He a13A+ Ic

a′21A a′22A a′23A

a31A+Gc a32A+ Ece a33A+ Cc2

∣∣∣∣∣∣∣∣∣∣∣∣
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where, with L
def
= ae− bd,

a11 =
c2|p|2 + L2

c2e2
, a′21 =

L(b+ e)− c2d

c2e
, a31 = − L

ce
,

a12 =
bL− c2d

c2e
, a′22 =

b2 + c2 + be

c2
, a32 = −b

c
,

a13 = − L
ce
, a′23 = −b+ e

c
, a33 = 1.

Then the determinant is

det(Φ) = A
(
a11A(a′22A+ Cc2a′22 − a′23a32A− a′23Ece)

− (a12A+He)(a′21A+ a′21Cc
2 − a′23a31A− a′23Gc)

+ (a13A+ Ic)(a′21a32A+ a′21Ece− a′22a31A− a′22Gc)
)
.

Here we further reduce the determinant. First, notice that

a′22 =
b2 + c2 + be

c2
= 1 + (−b

c
)(−b+ e

c
) = 1 + a32a

′
23.

Thus,

a′22A− a′23a32A = A.

Also, we have

a′21 − a′23a31 =
L(b+ e)− c2d

c2e
− (
−b− e
c

)(
−L
ce

) = −d
e

and

a′21a32 − a′22a31 =
L(b+ e)− c2d

c2e
· −b
c
− (

b2 + be

c2
+ 1) · −L

ce
=
a

c
.
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Then the determinant is now

det(Φ) = A
(
a11A(A+ Cc2a′22 − a′23Ece)

− (a12A+He)(−d
e
A+ a′21Cc

2 − a′23Gc)

+ (a13A+ Ic)(
a

c
A+ a′21Ece− a′22Gc)

)
= (a11 + a12

d

e
+ a13

a

c
)A3

+ (a11a
′
22Cc

2 − a11a
′
23Ece+Hd− a12a

′
21Cc

2

+ a12a
′
23Gc+ Ia+ a13a

′
21Ece− a13a

′
22Gc)A

2

+ (−a′21CHc
2e+ a′23GHce+ a′21IEc

2e− a′22IGc
2)A

def
= P1A

3 + P2A
2 + P3A.

We compute P1 first.

P1 = a11 + a12
d

e
+ a13

a

c

=
c2|p|2 + L2

c2e2
+
bdL− c2d2

c2e2
− Lae

c2e2

=
1

c2e2
(c2e2 + L2 + L(bd− ae))

=
1

c2e2
(c2e2 + L2 − L2)

= 1.

Now let’s simplify P2;

P2 =Cc2(a11a
′
22 − a12a

′
21) + Ece(a13a

′
21 − a11a

′
23)

+Gc(a12a
′
23 − a13a

′
22) +

1

2g
(
q0

p0
d− a).
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Firstly,

a11a
′
22 − a12a

′
21

=
1

c4e2
((c2|p|2 + L2)(b2 + c2 + be)− (bL− c2d)(L(e+ b)− c2d))

=
1

c4e2
(c4(|p|2 − d2) + b2c2|p|2 + bc2(|p|2e+ 2Ld) + c2(L2 + Lde))

= 1 +
1

c2e2
(b2|p|2 + b(|p|2e+ 2Ld) + L2 + Lde)

= 1 +
1

c2e2
(b2e2 + |p|2be+ e2a2 + e2ad− bd2e)

=
1

c2e2
(|q|2e2 + be3 + e2ad)

=
1

c2
(|q|2 + be+ ad).

We also have

a13a
′
21 − a11a

′
23

=
1

b3e2
(−L2(e+ b) + Lc2d+ (c2|p|2 + L2)(b+ e))

=
1

b3e2
(Lc2d+ bc2|p|2 + c2|p|2e)

=
1

b3e2
(c2dea− bc2d2 + bc2|p|2 + c2|p|2e)

=
1

be
(ad+ be+ |p|2).
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Lastly,

a12a
′
23 − a13a

′
22

=
1

c3e
((bL− c2d)(−b− e) + L(b2 + c2 + be))

=
1

c3e
(c2d(b+ e) + Lc2)

=
1

c3e
(c2db+ c2de+ c2ea− c2bd)

=
a+ d

c

Thus, we have

P2 = C(ad+ be+ |q|2) + E(ad+ be+ |p|2) +G(a+ d) +
1

2g
(
q0

p0
d− a).

We have that

B = E =
1

p0

(p+ q) · w
2g(p0 + q0 +

√
s)2s

3
2

(4q0(p0 + q0 +
√
s)− g2

√
s(q0 +

√
s))

=
(a+ d)

2gp0

(γ − 1)2

|p+ q|4
(4q0(γ + 1)− g2(q0 +

√
s))

and

C = D =
(p+ q) · w

2g(p0 + q0 +
√
s)2s

3
2

(−4(p0 + q0 +
√
s) + g2

√
s)

=
(a+ d)

2g

(γ − 1)2

|p+ q|4
(−4(γ + 1) + g2)

and

G =
g

2
√
s(p0 + q0 +

√
s)

=
(γ − 1)g

2|p+ q|2
.
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Let us reduce P2.

P2 =C(ad+ be+ |q|2) + E(ad+ be+ |p|2) +G(a+ d) +
1

2g
(
q0

p0
d− a)

=
(γ − 1)2(p+ q) · w

2gp0|p+ q|4
(

(|q|2 + ad+ be)(p0g2 − 4p0(γ + 1))

+ (|p|2 + ad+ be)(4q0(γ + 1)− g2(q0 +
√
s))

+
|p+ q|2

(γ − 1)
p0g2 +

|p+ q|4

(γ − 1)2

(q0d− p0a)

a+ d

)
=

(γ − 1)2(p+ q) · w
2gp0|p+ q|4

(
(ad+ be)(4(q0 − p0)(γ + 1) + g2(p0 − q0)− g2

√
s)

+ (4γ + 4− g2)(|p|2q0 − |q|2p0)− g2|p|2
√
s

+
|p+ q|2

(γ − 1)
p0g2 +

|p+ q|4

(γ − 1)2

(q0d− p0a)

a+ d

)
=

(γ − 1)2(p+ q) · w
2gp0|p+ q|4

(
(ad+ be)((q0 − p0)(4γ + 4− g2)− g2

√
s)

+ (4γ + 4− g2)(p0 − q0)(1 + p0q0)− g2|p|2
√
s

+
|p+ q|2

(γ − 1)
p0g2 +

|p+ q|4

(γ − 1)2

(q0d− p0a)

a+ d

)
=

(γ − 1)2(p+ q) · w
2gp0|p+ q|4

(
(1 + p0q0 − ad− be)(p0 − q0)(4γ + 4− g2)

− (ad+ be+ |p|2)g2
√
s

+
|p+ q|2

(γ − 1)
p0g2 +

|p+ q|4

(γ − 1)2

(q0d− p0a)

a+ d

)
.
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Thus, we obtain that

P2 =
(γ − 1)2(p+ q) · w

2gp0|p+ q|4
(

(1 + p0q0 − ad− be)(p0 − q0)(4γ + 4− g2)

− (ad+ be+ |p|2)g2
√
s

+
|p+ q|2

(γ − 1)
p0g2 +

|p+ q|4

(γ − 1)2

(q0d− p0a)

a+ d

)
.

(5.2.2)

Here, we note that |a|, |b|, |c| . q0 and |d|, |e| . p0. Since we also have g ≤
√
s .√

p0q0, we can conclude that |P2| . q0
(

1 + 1
g

)
.

We now simplify P3.

P3 = −a′21CHc
2e+ a′23GHce+ a′21IEc

2e− a′22IGc
2

= a′21c
2e(IE − CH) +G(a′23Hce− a′22Ic

2)

= (abe− bde+ ae2 − c2d− b2d)(IE − CH)−G((b+ e)He+ I(b2 + c2 + be))

Notice that

IE − CH = − 1

2g
E − q0

2gp0
C

= − 1

2g
(−C q

0

p0
− (a+ d)g

√
s

2p0

(γ − 1)2

|p+ q|4
+ C

q0

p0
)

=
(a+ d)(γ − 1)2

√
s

4p0|p+ q|4
.
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Finally,

P3 =
(a+ d)(γ − 1)2

√
s

4p0|p+ q|4
(abe− bde+ ae2 − c2d− b2d)

+
(γ − 1)

4p0|p+ q|2
(q0(−be− e2) + p0(b2 + c2 + be))

=
(γ − 1)

4p0|p+ q|2
(
(a+ d)(abe− bde+ ae2 − c2d− b2d)

p0 + q0 +
√
s

+ be(pq − q0) + p0(|q|2 − a2)− q0(|p|2 − d2))

=
(γ − 1)

4p0|p+ q|2
1

p0 + q0 +
√
s

((e2a− bde+ abe− b2d− c2d)(a+ d)

+ (p0 + q0 +
√
s)(p0(be+ |q|2 − a2) + q0(−be− |p|2 + d2)))

=
(γ − 1)

4p0|p+ q|2
1

p0 + q0 +
√
s

(I1 + I2)

Here, we have

I1 = (e2a− bde+ abe− b2d− c2d)(a+ d)

= (a2 − d2)(ad+ be) + (a2 − d2)((p0)2 − 1) + (ad+ d2)((p0)2 − (q0)2)

= (a2 − d2)(ad+ be− 1) + (p0)2(a2 + ad)− q2(ad+ d2)

and

I2 = (p0 + q0 +
√
s)(p0(be+ |q|2 − a2) + q0(−be− |p|2 + d2))

def
= (p0 + q0 +

√
s)I3.
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Then,

I1 + I2 =
√
sI3 + (ad+ be)(a2 − d2 + (p0)2 − (q0)2)− (a2 − d2)

+ (p0)2|q|2 − (q0)2|p|2 + p0q0(−|p|2 + d2 + |q|2 − a2)

=
√
sI3 + (ad+ be− p0q0)(a2 − d2 + (p0)2 − (q0)2)

− (a2 − d2) + (p0)2|q|2 − (q0)2|p|2

=
√
sI3 + (1 + p0q0 − ad− be)(d2 − a2 − (p0)2 + (q0)2)

=
√
sI3 + (1 + p0q0 − ad− be)(−e2 + b2 + c2).

Therefore, we get

P3 =
(γ − 1)2

4p0
√
s|p+ q|4

(
√
s((be+e2)(p0−q0))+(1+p0q0−ad−be)(

√
sp0−e2 +b2 +c2)).

(5.2.3)

By Cauchy-Schwarz inequality, it can be shown that

(1 + p0q0 − ad− be) > 1.

Remark that P2 and P3 are not independent of A because both still contain the

term g(a+d)(γ−1)
|p+q|2 which is equal to 2

θ
(A− 1 + θ

2
). Let K

def
= g(a+d)(γ−1)

|p+q|2 . Since

K =
g(a+ d)(γ − 1)

|p+ q|2
=

((p+ q) · w)g

(p0 + q0 +
√
s)
√
s
,

|K| is bounded by 1. Then we can write the Jacobian as a cubic polynomial in K

as in the following proposition:
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Proposition 5.2.3.

det

(
∂u

∂p

)
= D1K

3 +D2K
2 +D3K +D4

where |K| ≤ 1, |D1| . q0 and |D2|, |D3|, |D4| . q0

g
.

Thus, we obtain the following corollary:

Corollary 5.2.4. ∣∣∣∣det

(
∂u

∂p

)∣∣∣∣ . q0

(
1 +

1

g

)
.

Proof. (Proof for Proposition 5.2.3) Let’s rewrite the constant coefficients A through

I and the coefficients P2 and P3 in terms of K.

A = (1− θ

2
) +

θ

2
K

B = E = K · 1

2p0g2s
(4q0 − g2s(

√
s+ q0)(γ − 1)

|p+ q|2
)

C = D = K · 1

2g2s
(−4 +

g2s(γ − 1)

|p+ q|2
)

F = G =
g(γ − 1)

2|p+ q|2

H =
q0

2p0g

I =
−1

2g
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Now, express P2 in terms of K.

P2 =C(ad+ be+ |q|2) + E(ad+ be+ |p|2) +G(a+ d) +
1

2g
(
q0

p0
d− a)

=K
( (γ − 1)

2|p+ q|2p0g2
{(1 + p0q0 − ad− be)(p0 − q0)(4γ + 4− g2)

− (ad+ be+ |p|2)g2
√
s}+

1

2

)
+

1

2g
(
q0

p0
d− a)

= : P21K + P22

For P3, we have

P3 =
(a+ d)(γ − 1)2

√
s

4p0|p+ q|4
(abe− bde+ ae2 − c2d− b2d)

+
(γ − 1)

4p0|p+ q|2
(q0(−be− e2) + p0(b2 + c2 + be))

=
(γ − 1)

√
s

4p0|p+ q|2g

(
K(abe− bde− ae2 − c2d− b2d)

+
g√
s
{(q0(−be− e2) + p0(b2 + c2 + be)}

)
=

(abe− bde− ae2 − c2d− b2d)

4p0(p0 + q0 +
√
s)g

K

+
((q0(−be− e2) + p0(b2 + c2 + be))

4p0(p0 + q0 +
√
s)
√
s

def
=P31K + P32
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Now, the determinant is

det(Φ) =A3 + A2P2 + AP3

=
(

(1− θ

2
) +

θ

2
K
)3

+
(

(1− θ

2
) +

θ

2
K
)2

(P21K + P22)

+
(

(1− θ

2
) +

θ

2
K
)

(P31K + P32)

=
(

(
θ

2
)3 + P21(

θ

2
)
)
K3 +

(θ
2

(1− θ

2
)(

3θ

2
+ 2P21) +

θ

2
(P22(

θ

2
) + P31)

)
K2

+
(

3(1− θ

2
)2 θ

2
+ (1− θ

2
)2P21 + θ(1− θ

2
)P22 + (1− θ

2
)P31 +

θ

2
P32

)
K

+
(

(1− θ

2
)3 + P22(1− θ

2
)2 + P32(1− θ

2
)
)

= : D1K
3 +D2K

2 +D3K +D4.

Since we have |P21| . q0 and |P22|, |P31|, |P32| . q0

g
, we obtain that |D1| . q0 and

|D2|, |D3|, |D4| . q0

g
and this completes the proof.
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Chapter 6

Appendix

6.1 On the relativistic collsional scattering angle

Consider the center-of-momentum expression for the collision operator. Under the

expression, note that

p′ − q′ = gw + g(γ − 1)(p+ q)
(p+ q) · w
|p+ q|2

= gw +
√
s(p′0 − q′0)(γ − 1)(p+ q)

1

|p+ q|2
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Thus, w can be represented as

w =
1

g
(p′ − q′ −

√
s(p′0 − q′0)(γ − 1)(p+ q)

1

|p+ q|2
)

=
1

g
(p′ − q′ − (p′0 − q′0)

p′ + q′

p0 + q0 +
√
s

)

=
(p′ − q′)(p′0 + q′0 +

√
s)− (p′0 − q′0)(p′ + q′)

g(p′0 + q′0 +
√
s)

=
(
√
s+ 2q′0)p′ − (

√
s+ 2p′0)q′

g(p0 + q0 +
√
s)

.

On the other hand,

cos θ =
(pµ − qµ)(p′µ − q′µ)

g2

=
−(p0 − q0)(p′0 − q′0) + (p− q) · (p′ − q′)

g2

=
1

g2

(
− (p0 − q0)(

g√
s
w · (p+ q)) + (p− q) · (gw + g(γ − 1)(p+ q)

(p+ q) · w
|p+ q|2

)
)

=
1

g2

(
− (p0 − q0)(

g√
s
w · (p+ q)) + g(p− q) · w + g(p02 − q02

)
(p+ q) · w√

s(p0 + q0 +
√
s)

)
=

1

g
√
s(p0 + q0 +

√
s)

(
− (p0 − q0)(p0 + q0 +

√
s)w · (p+ q)

+
√
s(p− q) · w(p0 + q0 +

√
s) + w · (p+ q)(p02 − q02

)
)

=
−(p0 − q0)w · (p+ q) + (p− q) · w(p0 + q0 +

√
s)

g(p0 + q0 +
√
s)

=
(
√
s+ 2q0)p− (

√
s+ 2p0)q

g(p0 + q0 +
√
s)

· w

= k · w.

Note that |k| = 1. This expression on cos θ gives us the intuition on the rela-

tionship between cos θ expressed as the Lorentzian inner product of 4-vectors and

that expressed as the usual Euclidean inner product of 3-vectors. Thus, we can
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see that even in the relativistic collisional kinetics, the geometry can be expressed

by using the usual 3-vectors and the usual Euclidean inner product with the above

translation.

6.2 Grad angular cut-off assumptions on the rel-

ativistic scattering kernel

In many papers, we suppose that the collision scattering kernel σ(g, w) takes the

form of a product in the relative momentum and the scattering angle as:

σ(g, w) = Φ(g)σ0(cosθ). (6.2.1)

Grad [28] announced a cut-off condition for the angular function σ0(cosθ) which

requires that the function σ0(cosθ) is bounded. Afterwards, people started con-

sidering more lenient conditions and the L1(S2) bound has become popular which

states ∫
S2
σ0(cosθ)dw <∞. (6.2.2)

We remark that our angular kernel defined as in (3.1.11) is not integrable and does

not assume any cut-off.
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6.3 Assumptions on the relativistic scattering ker-

nels from physics literature

In this section, we would like to introduce some different assumptions on the rela-

tivistic scattering kernels σ(g, θ). As we have seen in the previous section, Grad’s

angular cut-off conditions play important roles for the classical theory. Similarly,

they are also important in the relativistic kinetic theory and we will see some scat-

tering kernels from the physics literature.

6.3.1 Short Range Interactions [22, 43]

This is an analogue of the hard-sphere case in the Newtonian case. In this case, for

short range interactions,

σ := constant

or

sσ := constant.

Then, we can check that this satisfies Grad’s angular cut-off condition because it is

bounded.

6.3.2 Mφller Scattering [14]

This is an approximation of electron-electron scattering.

σ(g, θ) = r2
0

1

u2(u2 − 1)2

(2u2 − 1)2

sin4θ
− 2u4 − u2 − 1/4

sin2θ
+

1

4
(u2 − 1)2,
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where u =
√
s

2mc
and r0 = e2

4πmc2
.

6.3.3 Compton Scattering [14]

This is an approximation of photon-electron scattering.

σ(g, θ) =
1

2
r2

0(1− ξ)1 +
1

4

ξ2(1− cosθ)2

1− 1
2
ξ(1− cosθ)

+ (
1− (1− ξ/2)(1− cosθ)

1− 1
2
ξ(1− cosθ)

)2,

where ξ = 1− m2c2

s
.

6.3.4 Neutrino Gas [15]

In this case, the differential cross section does not depend on θ:

σ(g, θ) =
G2

π~2c2
g2,

where G is the weak coupling constant and ~ is Planck’s constant. Similarly, the

angular function is bounded so it satisfies the Grad cut-off condition.

6.3.5 Israel Particles [35]

This is the analogue of the Maxwell molecules cross section in the Newtonian theory:

σ =
m

2g

b(θ)

1 + (g/mc)2
.
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