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Abstract
Models derived from X-ray crystallography can give the impression that proteins

are rigid structures with little mobility. NMR ensembles may suggest a more dynamic

picture, but even these represent a rather narrow range of possibilities close to the lowest

energy state. In reality proteins participate in a wide range of dynamics from the subtle

and rapid sidechain dynamics that occur in nanoseconds in the PDZ signaling domain to

the large and slow rearrangement of secondary structure that takes days in the mitotic

checkpoint protein Mad2. Between these extremes are motions on time scales typically

associated with protein function, such as those in SNase monitored by hydrogen

exchange. The dynamic character of several protein systems, including PDZ domain,

Calmodulin, SNase, and Mad2, were explored using a variety of biophysical techniques.

This broad investigation demonstrates the dynamic variability between and within

proteins. The study of PDZ and Calmodulin illustrates how a computational technique

can recapitulate experimental results and provide additional insight into signal

transduction. The case of SNase shows that HX NMR data can be exploited to reveal

protein dynamics with unprecedented detail. The Mad2 system highlighted some of the

pitfalls associated with this technique and some alternative strategies for investigating

protein dynamics.
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ABSTRACT 

PROTEIN HYDROGEN EXCHANGE, DYNAMICS, AND 
FUNCTION 

John J. Skinner 

S. Walter Englander 

Ben E. Black 

 

Models derived from X-ray crystallography can give the impression that proteins 

are rigid structures with little mobility. NMR ensembles may suggest a more dynamic 

picture, but even these represent a rather narrow range of possibilities close to the lowest 

energy state. In reality proteins participate in a wide range of dynamics from the subtle 

and rapid sidechain dynamics that occur in nanoseconds in the PDZ signaling domain to 

the large and slow rearrangement of secondary structure that takes days in the mitotic 

checkpoint protein Mad2. Between these extremes are motions on time scales typically 

associated with protein function, such as those in SNase monitored by hydrogen 

exchange. The dynamic character of several protein systems, including PDZ domain, 

Calmodulin, SNase, and Mad2, were explored using a variety of biophysical techniques. 

This broad investigation demonstrates the dynamic variability between and within 

proteins. The study of PDZ and Calmodulin illustrates how a computational technique 

can recapitulate experimental results and provide additional insight into signal 

transduction. The case of SNase shows that HX NMR data can be exploited to reveal 

protein dynamics with unprecedented detail. The Mad2 system highlighted some of the 

pitfalls associated with this technique and some alternative strategies for investigating 

protein dynamics. 
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CHAPTER 1 

INTRODUCTION 

 

1. Protein Dynamics 

Models derived from X-ray crystallography can give the impression that proteins 

are rigid structures with little mobility. NMR ensembles may suggest a more dynamic 

picture, but even these represent a rather narrow range of possibilities close to the lowest 

energy state. In reality proteins participate in a wide range of dynamics from the subtle 

and rapid sidechain dynamics that occur in nanoseconds in the PDZ signaling domain (1) 

to the large and slow rearrangement of secondary structure that takes days in the mitotic 

checkpoint protein Mad2 (2). Between these extremes are motions on time scales 

typically associated with protein function, such as those in SNase monitored by hydrogen 

exchange. 

 

1.1 Allostery 

Allosteric effects require interactions between spatially separated sites without 

obvious structural reconfiguration. The mechanism underlying this process is not 

completely understood. Allostery can be thought of as occurring by modulation of 

dynamic pathways (3) or by perturbing the overall protein ensemble (4). These models 

are not necessarily mutually exclusive as an ensemble view of allostery still requires 
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distal domains to somehow communicate with one another and a pathway view is 

compatible with multiple routes. 

One popular method for investigating protein dynamics is to apply molecular 

dynamics (MD) simulations. Unfortunately, it is difficult to parse the dynamics relating 

to allosteric regulation from the other dynamics occurring throughout a protein. Chapter 2 

describes a novel technique called pumped-probe MD (ppmd; (1) that allows for the 

detection of allosteric pathways by applying a low frequency pumping force to an MD 

simulation and monitoring how the force transfers through the protein. 

 

1.2 Relating Protein Dynamics to Hydrogen Exchange Data 

Hydrogen exchange (HX) has proved to be a valuable technique for studying 

protein dynamics. What makes this method so powerful is that it is only sensitive to the 

populations in which a backbone amide is exposed to solvent. For most residues this 

corresponds to higher energy states that become populated anywhere from 10-1 to 10-9 of 

the time. Because HX rates are known for unfolded peptides (5, 6), HX rates measured 

for folded proteins can be translated into stability constants. Combining this technique 

with 2D NMR (7) allows for the determination of residue resolved stabilities. 

HX rates have often been associated with protein folding (8). However, faster 

rates often result from local motions that occur on timescales relevant to many protein 

functions. Obtaining HX rates for marginally protected and unprotected residues has 

become easier with advances in NMR magnetization transfer experiments (9–11). Yet the 

determination of rates from these experiments has been hindered by approximations 
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made to fitting algorithms. Chapter 3 describes a novel algorithm for accurately 

determining HX rates from magnetization transfer experiments. 

Several groups have applied models to relate HX data to protein structure (12–

14). Chapter 4 evaluates the effectiveness of these models at predicting HX rates for 

Staphylococcal nuclease (SNase). The failure of each of these methods to accurately 

predict HX rates inspired the detailed examination of the SNase structure in relation to 

measured HX rates, discussed in Chapter 5. The structural analysis leads to several 

general conclusions including that residues with multiple layers of secondary structure 

between themselves and the edges of those structures tend to exchange as cooperative 

units regardless of the proximity to solvent and that an amide can hydrogen bond to a 

water molecule without becoming HX competent. In several cases involving local 

structural fluctuations detailed motions could be inferred from the context of nearby 

residues based on HX rates and local structure. 

 

1.3 Conformational Switching 

Mad2 is one of a handful of proteins, known as metamorphic proteins (15), that 

undergo a drastic structural rearrangement as part of their function. Other such proteins 

include RNA polymerase (16, 17), viral glycoprotein (18), chloride ion channel (19), 

lysozyme (20), and chemokine lymphotactin (21, 22). Of this group, Mad2 is the only 

protein known to exist in both of its conformations in the absence of ligand or 

environmental perturbation. In the case of Mad2 this conformation change includes the 

rearrangement of two β strands and the transition of another β strand into an α helix (2). 
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Conformational switching is required for Mad2 to bind either its upstream effector or the 

protein Mad2 regulates (23). While this switching is necessary for Mad2’s function as a 

mitotic regulatory protein, the structural details of this transition have not been described 

(24). Chapter 6 of this thesis describes an investigation of the intermediate I-Mad2 

conformation by various biophysical techniques. 

 

2. Hydrogen Exchange Theory 

2.1 Hydrogen Exchange Rates 

Backbone amides have a pKa >18, which means they are in constant exchange 

with solvent even though the population is never significantly deprotonated. Above pH 

~3 HX is catalyzed by OH-, thus the rate of HX increases by 10-fold for each pH unit. N- 

is a stronger base than OH- by >100-fold so amide NH to OH- ion collision occurs >100 

times before the proton is actually carried away.  For a polypeptide chain in a random 

coil HX rates at pH 7 at 0 oC are about 1 s-1. These rates are dependent on sequence, 

temperature, pH and isotope, which have been accurately calibrated (5, 6).  

When an amide is hydrogen bonded it is isolated from solvent and therefore 

completely protected from attack by OH- catalyst. HX occurs only when the amide 

samples a state in which it is exposed to solvent. The resulting HX rate can be described 

as follows: 

   kobs = kopkch/(kop + kcl + kch)     Eq. 1.1 
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where kch is the known HX rate for the amide if it were in a random coil, kop is the rate 

for opening the amide to solvent, and kcl is the reclosing rate. In most cases kcl >> kch and 

kcl>>kop, which reduces Eq. 1 to 

    kobs = kopkch/kcl       Eq. 1.2 

This is known as the EX2 case. Since kch is known, one can determine the ratio kop/ kcl 

which is trivially converted into stability against the opening reaction. It should be noted 

that this analysis assumes that the exposed state exchanges at the same rate as a random 

coil, which may not be true in all cases (discussed in Chapter 5). 

When pH is high and kcl is slow (kcl<< kch), we enter the EX1 regime. Here Eq. 

1.1 reduces to 

   kobs = kopkch/ kch = kop       Eq. 1.3 

EX1 behavior has only been observed in the most stable regions of very stable proteins. 

 

2.2 Mechanisms of Amide Exposure 

The stability and (un)folding rates of proteins are typically determined by 

methods that analyze the protein as a whole or possibly one specific region of the protein. 

NMR HX allows the determination of these properties on a residue-by-residue basis. This 

has led to the observation that hydrogen bonded amides exchange by three different 

exposure mechanisms: global unfolding, sub-global unfolding, and local fluctuations (8). 
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For amides that exchange by global unfolding, HX exhibits the same stability, denaturant 

dependence, and unfolding rate (kop) as the protein as a whole as measured by other 

methods (25, 26). Collectively, these residues appear to represent the first fragment or 

“foldon” of the protein to fold and the last to unfold (8). This first foldon may be stable 

independently of the rest of the protein and can provide the nucleus or template upon 

which the rest of the structure can form (27). 

Amides that exchange by a sub-global unfolding mechanism have a lower 

stability and shallower denaturant dependence than their global counterparts (27). The 

shallower denaturant dependence is due to the partially unfolded conformers exposing 

less surface area than the globally unfolded state. When these amides are clustered into 

foldons by their equilibrium and kinetic properties and mapped onto the protein, they are 

typically found to be clustered spatially as well. These units are thought to build upon the 

global scaffold and one another in a sequential manner (28). 

Exchange by local fluctuations is the least understood of the three mechanisms. 

These residues exhibit no denaturant dependence, which presumably means little or no 

additional surface area is exposed in the exchange competent state. From the perspective 

of one studying protein folding, local fluctuations are an annoyance which one tries to 

circumvent by adding denaturant until the stability becomes such that the amide 

exchanges by way of a more interesting global or sub-global unfolding. However, these 

fluctuations may play an important role in other protein functions. 

 

3. Overview of This Thesis 
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The dynamic character of several protein systems, including PDZ domain, 

Calmodulin, SNase and Mad2, were explored using a variety of biophysical techniques. 

This broad investigation demonstrates the dynamic variability between and within 

proteins. The study of PDZ and Calmodulin illustrates how a computational technique 

can recapitulate experimental results and provide additional insight into signal 

transduction. The case of SNase shows that HX NMR data can be exploited to reveal 

protein dynamics with unprecedented detail. The Mad2 system highlighted some of the 

pitfalls associated with this technique and some alternative strategies for investigating 

protein dynamics. 

 

4. Bibliography 

1.  Sharp, K., and J.J. Skinner. 2006. Pump-probe molecular dynamics as a tool for 

studying protein motion and long range coupling. Proteins. 65: 347-361. 

2.  Luo, X., Z. Tang, G. Xia, K. Wassmann, T. Matsumoto, J. Rizo, and H. Yu. 2004. 

The Mad2 spindle checkpoint protein has two distinct natively folded states. Nat 

Struct Mol Biol. 11: 338-345. 

3.  del Sol, A., C.-J. Tsai, B. Ma, and R. Nussinov. 2009. The Origin of Allosteric 

Functional Modulation: Multiple Pre-existing Pathways. Structure. 17: 1042-1050. 

4.  Wrabl, J.O., J. Gu, T. Liu, T.P. Schrank, S.T. Whitten, and V.J. Hilser. 2011. The 

role of protein conformational fluctuations in allostery, function, and evolution. 

Biophys. Chem. 159: 129-141. 



 

8 
 

5.  Bai, Y., J.S. Milne, L. Mayne, and S.W. Englander. 1993. Primary structure effects 

on peptide group hydrogen exchange. Proteins. 17: 75-86. 

6.  Connelly, G.P., Y. Bai, M.F. Jeng, and S.W. Englander. 1993. Isotope effects in 

peptide group hydrogen exchange. Proteins. 17: 87-92. 

7.  Wagner, G., and K. Wüthrich. 1982. Amide proton exchange and surface 

conformation of the basic pancreatic trypsin inhibitor in solution: Studies with two-

dimensional nuclear magnetic resonance. Journal of Molecular Biology. 160: 343-

361. 

8.  Englander, S.W., L. Mayne, and M.M.G. Krishna. 2007. Protein Folding and 

Misfolding: Mechanism and Principles. Quarterly Reviews of Biophysics. 40: 287-

326. 

9.  Gemmecker, G., W. Jahnke, and H. Kessler. 1993. Measurement of fast proton 

exchange rates in isotopically labeled compounds. J. Am. Chem. Soc. 115: 11620-

11621. 

10.  Hwang, T.-L., S. Mori, A.J. Shaka, and P.C.M. van Zijl. 1997. Application of 

Phase-Modulated CLEAN Chemical EXchange Spectroscopy (CLEANEX-PM) to 

Detect Water−Protein Proton Exchange and Intermolecular NOEs. J. Am. Chem. 

Soc. 119: 6203-6204. 

11.  Hwang, T.-L., P.C.M. van Zijl, and S. Mori. 1998. Accurate Quantitation of Water-

amide Proton Exchange Rates Using the Phase-Modulated CLEAN Chemical 



 

9 
 

EXchange (CLEANEX-PM) Approach with a Fast-HSQC (FHSQC) Detection 

Scheme. Journal of Biomolecular NMR. 11: 221-226. 

12.   nderson   . .   .  ern ndez, and D.M. LeMaster. 2008. A Billion-fold Range in 

Acidity for the Solvent-Exposed Amides of Pyrococcus furiosus Rubredoxin. 

Biochemistry. 47: 6178-6188. 

13.  Best, R.B., and M. Vendruscolo. 2006. Structural Interpretation of Hydrogen 

Exchange Protection Factors in Proteins: Characterization of the Native State 

Fluctuations of CI2. Structure. 14: 97-106. 

14.  Hilser, V.J., and E. Freire. 1996. Structure-based Calculation of the Equilibrium 

Folding Pathway of Proteins. Correlation with Hydrogen Exchange Protection 

Factors. Journal of Molecular Biology. 262: 756-772. 

15.  Murzin, A.G. 2008. Biochemistry. Metamorphic proteins. Science. 320: 1725-1726. 

16.  Yin, Y.W., and T.A. Steitz. 2002. Structural Basis for the Transition from Initiation 

to Elongation Transcription in T7 RNA Polymerase. Science. 298: 1387 -1395. 

17.  Tahirov, T.H., D. Temiakov, M. Anikin, V. Patlan, W.T. McAllister, D.G. 

Vassylyev, and S. Yokoyama. 2002. Structure of a T7 RNA polymerase elongation 

complex at 2.9 A resolution. Nature. 420: 43-50. 

18.  Roche, S., F.A. Rey, Y. Gaudin, and S. Bressanelli. 2007. Structure of the Prefusion 

Form of the Vesicular Stomatitis Virus Glycoprotein G. Science. 315: 843 -848. 



 

10 
 

19.  Littler, D.R., S.J. Harrop, W.D. Fairlie, L.J. Brown, G.J. Pankhurst, S. Pankhurst, 

M.Z. DeMaere, T.J. Campbell, A.R. Bauskin, R. Tonini, M. Mazzanti, S.N. Breit, 

and P.M.G. Curmi. 2004. The Intracellular Chloride Ion Channel Protein CLIC1 

Undergoes a Redox-controlled Structural Transition. Journal of Biological 

Chemistry. 279: 9298 -9305. 

20.  Xu, M., A. Arulandu, D.K. Struck, S. Swanson, J.C. Sacchettini, and R. Young. 

2005. Disulfide Isomerization After Membrane Release of Its SAR Domain 

Activates P1 Lysozyme. Science. 307: 113 -117. 

21.  Tuinstra, R.L., F.C. Peterson, S. Kutlesa, E.S. Elgin, M.A. Kron, and B.F. Volkman. 

2008. Interconversion between two unrelated protein folds in the lymphotactin 

native state. Proceedings of the National Academy of Sciences. 105: 5057 -5062. 

22.  Alexander-Brett, J.M., and D.H. Fremont. 2007. Dual GPCR and GAG mimicry by 

the M3 chemokine decoy receptor. The Journal of Experimental Medicine. 204: 

3157 -3172. 

23.  Luo, X., Z. Tang, J. Rizo, and H. Yu. 2002. The Mad2 Spindle Checkpoint Protein 

Undergoes Similar Major Conformational Changes Upon Binding to Either Mad1 or 

Cdc20. Molecular Cell. 9: 59-71. 

24.  Skinner, J.J., S. Wood, J. Shorter, S.W. Englander, and B.E. Black. 2008. The Mad2 

partial unfolding model: regulating mitosis through Mad2 conformational switching. 

The Journal of Cell Biology. 183: 761 -768. 



 

11 
 

25.  Bai, Y., J.J. Englander, L. Mayne, J.S. Milne, and S.W. Englander. 1995. 

Thermodynamic parameters from hydrogen exchange measurements. In: Energetics 

of Biological Macromolecules. Academic Press. pp. 344-356. 

26.  Huyghues-Despointes, B.M.P., C.N. Pace, S.W. Englander, and J.M. Scholtz. 

Measuring the Conformational Stability of a Protein by Hydrogen Exchange. In: 

Protein Structure, Stability, and Folding. New Jersey: Humana Press. pp. 069-092. 

27.  Bai, Y., T. Sosnick, L. Mayne, and S. Englander. 1995. Protein folding 

intermediates: native-state hydrogen exchange. Science. 269: 192 -197. 

28.  Krishna, M.M.G., H. Maity, J.N. Rumbley, Y. Lin, and S.W. Englander. 2006. 

Order of Steps in the Cytochrome c Folding Pathway: Evidence for a Sequential 

Stabilization Mechanism. Journal of Molecular Biology. 359: 1410-1419. 

 



 

12 
 

CHAPTER 2 

Using Pump-Probe Molecular Dynamics to Find Allosteric Pathways 

 

1. Introduction 

Pump-probe molecular dynamics (PPMD) was developed by Dr. Kim Sharp 

during my brief time in his laboratory prior to my Ph.D. candidacy. While that work was 

largely driven by Dr. Sharp, I was able to contribute enough to be included as an author 

on the manuscript that introduced this technique (1). That work has been included here 

for the sake of completeness. 

PPMD is a novel method for analyzing the dynamics of proteins. A set of 

oscillating forces are applied to a set of atoms or residues as part of a molecular dynamics 

simulation. How these forces propagate to other parts of the protein is probed using a 

Fourier transform of atomic motions. From this analysis, a coupling profile is determined 

which quantifies the degree of interaction between pump and probe residues. Various 

physical properties of the method such as reciprocity and speed of transmission are 

examined to establish the soundness of the method. The coupling strength can be used to 

address questions such as the degree of interaction between different residues at the level 

of dynamics, and identify propagation of influence of one part of the protein on another 

via ―pathways‖ through the protein. The method is illustrated by analysis of coupling 

between different secondary structure elements in the allosteric protein calmodulin, and 

by analysis of pathways of residue–residue interaction in the PDZ domain protein 

previously elucidated by genomics and mutational studies. 
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Proteins are dynamic objects, and motions of a protein play an important part in 

their function. Functionally important conformational changes in proteins are typically 

driven by energies of only a few kT, provided, for example, by the binding of ligands or 

other proteins. Techniques such as NMR and hydrogen exchange (HX) provide detailed 

site resolved dynamic information on proteins, revealing the stability, extent, and time 

scale of motion of individual groups through HX protection factors (2), the generalized 

order parameter (S2
), relaxation rates (τ), chemical shift averaging, and other quantities 

(3). Molecular dynamics (MD) simulations also provide a detailed description of protein 

motion and play an important role in the interpretation of experimental probes of protein 

dynamics. With the routine ability to do all atom simulations on multinanosecond time 

scales and longer, the amount of information provided by these simulations is enormous. 

Analyzing the fluctuations in a useful way and relating them to specific experiments is 

nontrivial. 

An important class of methods for studying protein motion is based on frequency 

analysis. An early example is the now classic method of normal mode (harmonic) 

analysis (4), which decomposes the possible motions of a protein around a minimum 

conformation into harmonic, orthogonal modes. An important insight from this analysis 

is that the lowest frequency modes represent the softest, most thermodynamically 

accessible ways a protein could change its conformation (the stiffness being proportional 

to the square of the frequency). These modes involve long range, concerted motions 

because they are low frequency, i.e. they have a large effective mass, and hence involve 

many atoms (5). A related method is the quasi-harmonic method that uses coordinate 

fluctuation covariance matrices obtained from MD to model modes of conformational 
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change (6–9). This allows for a limited amount of anharmonicity. The coordinate 

covariance matrices may then be analyzed in terms of eigen-vectors and subjected to the 

same frequency analysis as with normal modes. Principle component and essential 

dynamics analysis also use effective modes obtained from coordinate fluctuation 

covariances(10–12). However, extracting, interpreting, and using the modes obtained by 

this kind of frequency analysis is not easy (13–16). Alternatively, coupling between 

different atoms, residues, or segments may be analyzed directly using the covariance 

terms (17). Another approach is to use simplified harmonic models (Elastic network or 

Tirion type potentials; (18, 19) that can be combined with other treatments of large 

anharmonic motion (20) and sequence/mutation data (21). Fourier transformation (FT) 

and filtering of frequencies can be used to simplify and analyze MD trajectories (22, 23). 

Removal of high frequency motions allows clearer analysis of the putatively more 

interesting, or at least large scale, low frequency motions. Other methods take this a step 

further by actively manipulating selected frequency components of the velocity during 

MD simulations to probe, or drive conformational changes (24–27). Dynamics quantities 

such as amide and methyl NMR order parameters and relaxation rates can be obtained 

directly from MD simulations, and are most effectively obtained through the frequency 

domain via fast Fourier transform (FFT; (28–31).  

The view of native protein motion as a superposition of oscillatory motions 

(harmonic or anharmonic) of different frequencies around a minimum energy 

conformation has provided an attractive model for allosteric (literally ―other shape‖) 

interactions (8, 20, 32, 33), which gives further impetus to frequency-based methods of 

analysis. The logic is that allosteric effects require interaction between spatially separated 
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sites. One such mechanism is via collective motion of a large spatial array of atoms, 

which in turn is characteristic of ―low frequency modes‖ of protein motion. This model 

(dubbed here the low frequency mode model) naturally invokes analytical methods such 

as normal mode analysis, essential dynamics, and quasi-harmonic analysis. A different 

but not necessarily mutually exclusive view of allostery comes from many experiments, 

the specific residue–residue interaction model. This model does not derive from a low 

frequency mode view of protein motions, and different ways to analyze MD simulations 

are required if they are to help interpret these types of experiments. 

The specific residue–residue interaction model for allostery emerges from many 

studies on different proteins with a variety of methods, of which we mention a few 

pertinent examples. Some classic examples involving oxygen carrying proteins and 

allosteric enzymes such as glycogen phosphorylase and phosphofructokinase have been 

reviewed in detail by Perutz (34). For example, in hemoglobin, oxygen binding to heme 

iron causes a flattening of the heme-porphyrin plane, which is transmitted to the distal 

histidine, then via a leucine and isoleucine on the F-helix, to movement of the end of the 

F-helix, and the CD loop in the cooperative α1β2 and α2β1 interfaces (35).  

Using a statistical mechanical ensemble model of protein fluctuations Friere (36) 

traced the effect of substrate binding to Lysozyme at helix F through a specific pathway 

involving residues 24–37 on a neighboring helix, through residues 8–15 on the next helix 

on to residues in a sheet region on the opposite side of the protein. 

In Calmodulin (CaM) residue Y138 has been shown to interact with residues E82, 

E78, Q79, and D80 of the linker region between helices D and E, which in turn interact 
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with helix A. These specific interactions are required for cooperativity and linkage of 

Ca2+ binding and peptide substrate binding (37–40).  

In the PDZ class of proteins (a peptide binding domain found in signaling 

proteins) a combination of genomics analysis of sequences, mutations, and binding 

assays has traced specific reside–residue interactions necessary for allostery, for example 

from residue H76 through F29 and E57 to A51 on the other side of the protein (41). This 

coupling pathway has also recently been detected in dynamic behavior on the ps to ns 

timescale from changes in NMR-derived backbone and side chain order parameters (42). 

A similar sequence/mutation analysis of coupling has been done on the large class of G-

coupled protein receptors (GPCR). Significantly, these networks of interactions are quite 

sparse, i.e. relatively few of the residues mediate allostery, and not all close residues 

interact in way relevant for allostery (43). More generally, recent NMR experiments 

show that mutations cause changes in dynamics that propagate along nonhomogenous, 

long range, and apparently specific paths (42, 44, 45).  

Significantly, the specific residue–residue interactions that are mapped out by the 

experimental and genomic analyses described above are far from obvious by 

retrospective analysis of these systems in purely structural terms, i.e. in terms of distances 

between residues. It is hard to explain in purely structural terms why particular residue 

interactions are important, while others of equal or lesser distance are not. An extra 

dimension to the interactions must arise from the motions these groups undergo, and the 

coupling between them, i.e. from protein dynamics. However, in terms of the specific 

residue–residue interaction model for allostery it is difficult with existing MD techniques 

to frame and test simple hypotheses about coupling such as the following: Does residue X 
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influence Y, and by how much? Are they more strongly coupled than an arbitrary pair X-

Z. How does influence propagate as a function of direction and distance? Can one detect 

pathways of allosteric action analogous to those found experimentally? Even experiments 

that probe simpler dynamic properties of proteins than allostery can be difficult to 

explain. An example is the NMR order parameter, which is a measure of the mobility of a 

single backbone or side chain group. CaM has anomalous order parameter data such as 

inverted temperature dependence for some residues (the order parameter increases with 

T), and an unexpectedly large variation in methionine order parameters (46, 47). These 

observations imply significant correlation between motions of specific residues, but these 

correlations are not evident in covariance fluctuation matrices or standard frequency 

analysis (17, 48). Mayer et al. recently obtained detailed residue–residue correlation 

matrices in protein G from analysis of the correlation in NMR order parameter changes 

induced by mutations (49). A direct comparison with residue–residue correlations 

obtained by covariance matrix analysis of MD simulations found almost no relationship 

to the experimental correlations (50). These and other studies illustrate shortcomings with 

the available tools for conformational fluctuation analysis in trying to explain 

experimental data on protein dynamics. This led us to devise a new technique, pump-

probe molecular dynamics (PPMD), to address these types of questions and to fill a gap 

in the simulation analysis toolbox. 
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2. Methods 

2.1 PPMD 

The method called here pump-probe molecular dynamics (PPMD) can be applied 

within any standard MD simulation using existing force field parameters and most 

simulation conditions. The basic PPMD protocol is as follows: 

1. An atom or set of atoms to be pumped is selected. 

2. An oscillating force of a specified magnitude, direction, and frequency 

ν0 (period τ = 1/ν0) is applied to the pumped atom(s). 

3. Coordinate snapshots are saved throughout the simulation. 

4. After the simulation the fluctuation power spectra, or spectral density, W(ν) of 

the motions of particular atoms or groups of interest (probe atoms) are obtained 

via Fast Fourier Transform (FFT) of their Cartesian coordinate trajectories. It 

should be noted that the power W(ν) in this context is proportional to the 

contribution to the mean squared displacement of that atom from motions at 

frequency ν: summation over the entire power spectrum yields total mean squared 

displacement of an atom over the simulation period. 

5. The pump frequency region of each probe spectrum is examined to see how 

much the fluctuation power spectrum is increased by the pump, by comparing 

with the same region of W(ν) from a control simulation without pumping force. 
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The basic PPMD protocol can be applied repeatedly with different pump atoms, 

force magnitudes, and pump periods as appropriate, to build up a detailed picture of how 

the pump impulses are transmitted throughout the protein. In the current implementation, 

pumping of atoms is done in a circular motion around the Z-axis with the same phase and 

direction of force for all pumped atoms. This application of the force had no particular 

rationale other than its simplicity, and it was chosen merely for the initial implementation 

and exploration of the technique. Obviously PPMD is not restricted to this way of 

applying the force, and other ways of applying it could be selected using some other 

physical considerations. For example, the axis of the applied circular force could be 

varied in case the Z-axis direction is atypical for any particular protein/group. 

Pumped dynamics are not energy conservative. Elementary considerations show 

that the power deposited by a particular magnitude of pumping increases as the square of 

the period τ. Pumping force magnitudes are communicated to the MD program 

CHARMM (51) in its units (kcal/mole/Å), but since we had no a priori information, 

suitable magnitudes were determined by experimentation, and typically were 1–3 in these 

units for the range of frequencies examined here. With the range of pumping forces 

applied in this work, we have found that the temperature control algorithms in standard 

MD simulation packages can handle the increase in energy, as judged by a stable value of 

T during the simulation, and negligible structure distortion. 

In practice we found that the increase in power (contribution to rms fluctuation) at 

the pumped frequency was usually clear enough in the probe atom's power spectrum that 

comparison of a control power spectrum (no pumping force) of the same atom was not 

necessary. The increase in fluctuation power spectrum could be detected relative to the 
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baseline power spectrum to either side of ν0 by a suitable peak finding algorithm, 

obviating the increase in noise inherent in any spectrum subtraction procedure. 

 

2.2 Quantifying the Coupling, or Effectiveness of Transmission of the Pumped 

Motion 

The displacement of an atom in response to a given force will vary depending on 

how stiff that region of the protein is. Thus, each fluctuation power spectrum is 

normalized by the sum over W(ν) (which is just the mean square deviation of the atom) 

before comparison. After normalization of the power spectra, one can quantify coupling 

between atoms. If the increase in power of the pumped atom i at frequency ν compared to 

the control simulation is designated as δWi(ν), and the corresponding increase in power of 

a probed atom j is δWj(ν), then the coupling constant at a particular pump frequency ν0 

can be defined as the ratio of total increase in power (relative contribution to rms 

fluctuation) of probe to pump atom.  

                             
    

    
     (2.1) 

C is written in terms of integration over a frequency range centered on the pump 

frequency large enough to capture any frequency shifting in transmission to the probe 

atom due to the nonlinear nature of protein force fields. We allow for the possibility of 

frequency shifting so as not to miss the coupling, although we have encountered no 

detectable frequency shifting in applications thus far. If a group of atoms are pumped, the 

denominator contains the sum of δWi(ν0) terms over the pumped atoms. Using this 
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coupling metric, one can compute a coupling profile through the sequence of a protein for 

any pumped frequency. Since C is a dimensionless quantity, and for a given 

protein/simulation condition only relative values across the sequence convey information, 

C in plots presented here have been ―normalized‖ and shifted for clarity in graphing. 

Analysis of residue–residue coupling constants showed that very similar results were 

obtained if they were computed for the entire backbone of the probe residue (N, C, O, 

and Cα), its side chain atoms, or just its Cα atom. Results presented here are for coupling 

constants using just the Cα atom unless otherwise stated. 

 

2.3 Comparison of Coupling Profiles 

To compare two coupling profiles of a protein, obtained for example before and 

after a mutation or other perturbation, or with different simulation conditions, two types 

of analysis were employed. These were developed bearing in mind that only relative 

values of coupling constant within a single profile have significance, and that most of a 

typical coupling profile is baseline, with relatively few peaks of interest. 

 

2.3.1 Outlier analysis 

One set of coupling constants is treated as the independent variable xi, the other 

set as a dependent variable, yi, where xi and yi are the coupling values of the ith residue 

say before and after the perturbation. The two sets are subject to linear regression to the 

equation y = ax + b, yielding a minimized root mean squared deviation σ for the fit. The 
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scaled residual ri = (yi – (axi + b))/σ is computed for each residue. A residual of less than 

−1.5σ or greater than 1.5σ indicates an outlier from the regression, i.e. a significant 

decrease or increase in coupling, respectively, at that residue due to the perturbation. 

 

2.3.2 Percentile analysis 

One set of residue coupling constants (yi) is plotted against the other (xi). The 

resulting scatter plot typically shows the majority of points in a cluster with low coupling 

constant in both simulations (Fig. 2.7). This cluster contains the ―non-interesting‖ 

coupling constants in any profile that are close to baseline, i.e., have coupling that is 

weak or below the noise level in both simulations. The more interesting coupling 

constants are the stronger ones corresponding to peaks in the coupling profile. The values 

that divide the upper 10th percentile from the lower 90th percentile are calculated for 

both sets of coupling constants, designated x0.1 and y0.1, respectively. Vertical and 

horizontal lines are drawn at x = x0.1 and y = y0.1, respectively. This divides the plot into 

four regions: lower left, containing residues with low, baseline level coupling in both 

simulations; upper right, containing residues that have stronger (upper 10th percentile) 

coupling in both simulations; upper left and lower right regions containing residues that 

show a coupling peak in one simulation but not the other, i.e. with a significant 

difference. If for example all the points fell into either the lower left ―baseline‖ region or 

the upper right ―peak‖ region there is complete agreement between the two coupling 

profiles at a 10% significance level. Put another way, there is a peak in one simulation if 

and only if there is a peak in the other. The 10%/90% division was chosen to reflect the 
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typical ratio of residues in peak vs. baseline regions of the coupling profiles analyzed 

here. The ratio would be adjusted for profiles with less/more peak regions. 

Both forms of comparison have the advantage that they are sensitive to the shape 

of the coupling profile, i.e. the number and location of peaks. They are insensitive to a 

difference in average coupling between two simulations, or a difference in the range of 

coupling values between low and high that might occur through differences in scaling, or 

systematic but nonspecific differences arising from simulation conditions. We note that 

the linear regression R2 value alone does not provide a good way either to measure the 

similarity of profiles or detect differences in peaks: first, the R value is typically always 

low, dominated as it is by the uncorrelated cluster of baseline points. Second, a low R 

would occur even if all the peaks occupy in the same positions in the two profiles but 

they are of different heights. 

 

2.4 Frequency and Correlation Analysis 

FT, time autocorrelation functions, and time cross-correlation functions for 

atomic motions were computed from CHARMM format output trajectories using the 

FORTRAN versions of the routines FFT and CORREL described in Numerical recipes 

(52). Time autocorrelation functions for the Brownian harmonic oscillator (BHO) model 

were computed from standard analytical expressions (53). The behavior of a BHO is 

governed by the dimensionless ratio of friction coefficient to harmonic force constant G = 

γ/2ω0, where γ is the friction coefficient per unit mass, and ω0 is the harmonic oscillator 

frequency. Values of G < 0, = 0, and >0 correspond to under-damped, critically damped, 
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and over-damped conditions, respectively. To match the approximate time scale of 

relaxation seen in time autocorrelation functions derived from explicit atom simulations 

of proteins, a constant oscillator frequency of ω0 = 0.05 radian/ps (oscillation period of 

125.7 ps) was chosen with friction coefficients of 0.033, 0.1, or 0.2 ps−1 yielding G = 

0.33 (under-damped), 1 (critically damped), and 2 (over-damped), respectively. 

 

2.5 MD Protocol 

The PPMD method has been implemented in a Fortran77 subroutine that is called 

by CHARMM (51). For the purposes of developing and testing the PPMD methodology, 

we used the following standard simulation parameters/conditions: CHARMM version 27 

force field with all atoms (54), the Verlet algorithm with a time step of 1 fs, a temperature 

of 298 K held constant by periodic velocity reassignment, a nonbond cutoff of 14 Å with 

force shifting, and a total simulation time of at least 10 times the pump frequency period, 

usually longer than 1 ns. The number of simulation steps and frequency of coordinate 

saving were adjusted so that exactly 2n snapshots were generated for FFT. This obviates 

padding or truncation, and maximizes precision. For most of the simulations we used an 

approximate but rapid solvent treatment by using the distance dependence dielectric 

option in CHARMM with a constant of 4. While this model has well-documented 

shortcomings, it is rapid, and given the large number of simulations required to develop 

and test the PPMD method, this is an acceptable trade off. The impact of this on our 

method is assessed with several control simulations as described in results. 



 

25 
 

For simulations using Langevin dynamics (LD), the Langevin MD command in 

CHARMM was used. Friction coefficients γ were assigned to all non-hydrogen atoms 

using  

                 (2.2) 

where η = 0.89 cP is the viscosity of water, m is the atomic mass, a is the atomic radius in 

the CHARMM forcefield, and f is the fraction of exposed surface area of that atom, 

calculated using the program SURFCV (55). Thus, buried atoms experience no solvent 

friction/fluctuation force, while exposed atoms typically have friction coefficients in the 

range 50–90 ps−1. Hydrogens are assigned a friction coefficient of zero since they are 

constrained to the heavy atom positions using the SHAKE algorithm (56). 

For simulations using NMR type nuclear Overhauser effect (NOE) type distance 

restraints, the CHARMM command NOE was used. A list of restraints was generated for 

each pair of Cα atoms within 10 Å of each other in the starting structure. For each pair of 

Cα atoms an NOE type restraint was applied using a harmonic potential with force 

constant 1 kcal/mole/Å. The force was applied if the distance varied by more than 2.5 Å 

from the starting structure, other wise no force was applied, i.e., a 5 Å zone of fluctuation 

with no restraining force was allowed. 

 

2.6 Additional PPMD Enhancements 

In our initial application of PPMD the pumped frequency does not correspond to 

any special frequency of natural motion in the protein, (like a prominent normal mode). 
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Thus, it is necessary to scan pumping over as wide a range of frequencies as possible to 

build up a complete picture of the coupling. To reduce the amount of simulation we 

investigated pumping at several frequencies simultaneously. Provided the frequencies are 

well separated, we found that the effects were independent (additive). All results 

presented here were thus obtained using four simultaneous pumping frequencies: a base 

frequency with period τ, and three others with periods 3τ, 5τ, and 7τ, respectively. 

To explore the sensitivity of the PPMD method simulations of increasing pump 

magnitude were performed. It was found, not surprisingly, that larger magnitudes 

eventually resulted in structural distortions in the protein by the end of the simulation. 

However, by using the NOE-type restraint facility in CHARMM applied to the Cα atoms 

we could pump with larger magnitudes and so increase sensitivity. NOE-type restraints 

are convenient for this purpose because they apply no force as long as the distances stay 

within the upper and lower bounds. These restraints thus can keep a simulation 

conformation within reasonable bounds while providing minimal bias to the dynamics. 

PPMD results with and without NOE-type restraints described below show very similar 

coupling behavior. 

 

2.7 Proteins Studied 

For the initial development and testing of PPMD, we selected two proteins for 

which good structures were available, and for which detailed experimental data related to 

function and allostery was available, CaM and the PDZ domain protein. More 
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specifically, for each protein a variety of experiments and analysis has demonstrated 

specific residue–residue couplings of functional importance. 

 

2.7.1 CaM (PDB entry 1CDL (57) 

CaM is a calcium-regulated protein involved in signal transduction, trafficking, 

muscle contraction, and many other cellular processes. It is known to recognize over 200 

targets (58), and so it is central in cell regulation and signaling. CaM binds four calcium 

ions, forming a dumb-bell like structure with two globular domains each containing two 

ions separated by a long helical domain. Studies of the CaM system include the structural 

basis for its protein target recognition (38, 59), the thermodynamics of calcium binding 

(60), the thermodynamics of smMLCK target peptide peptide binding (61), and the 

concerted conformational change upon peptide (62). Wand et al. have an extensive set of 

dynamic information for calcium-loaded CaM/smMLCK peptide complex, including 

NMR order parameters (S2
) and relaxation times (τ) for almost all the amide and methyl 

groups over the range 15–73°C, and additional order parameter data for the uncomplexed 

CaM, and for CaM mutants. This work has resulted in an unprecedented amount of site 

resolved dynamics data on a protein, and interesting dynamic behavior that we have only 

partly been able to explain with standard MD simulation analysis (17, 48). There is also 

an extensive series of studies systematically exploring the relationship between 

fluctuations, conformational changes, binding, and cooperativity (37–40, 63). This 

experimental work has elucidated specific residue interactions involved in allostery, for 

example between residue Y138 and helix E cap residues Glu82, and between E78, Q79, 
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and D80 of linker region and residues on helix A. CaM shows two levels of allosteric 

interaction: between calcium and peptide binding and peptide binding and large binding 

related changes in conformation. 

 

2.7.2 PDZ domain protein (PDB entry 1BE9 (64) 

PDZ domain proteins are a family of modular peptide binding domains found in 

many cytosolic signalling proteins (65). Extensive sequence data and several high 

resolution structures are available. Lockless and Ranganathan (41) have used 

evolutionary sequence analysis and mutation/function analysis to identify specific 

coupling at the level of residue–residue interactions. These interactions form a network 

that spans a significant distance in space (i.e. they are allosteric in nature). By examining 

the spatial sequence of pairs of couplings they can trace pathways of communication. For 

example residue H76, which is crucial for determining peptide binding specificity, is 

coupled, through residues F29 and E57 to A51 on the opposite side of the protein. Their 

combined genomics and experimental analysis also identifies other couplings between 

some, but by no means all, close residues. The fact that in their analysis not all close 

residues are coupled forms an important control for the concept of specificity in residue–

residue interactions. Recently, Fuentes et al. have shown that very similar coupling 

pathways are revealed by changes in NMR-derived side chain and backbone order 

parameters upon peptide binding to PDZ (42), a direct demonstration of long range 

propagation of signals. 
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Starting structures of the single site mutants G33A, G34A, F29K, F44A, S75T, A80V, 

K84A, and T89S were generated from the wild-type structure (pdb entry 1BE9) using 

CHARMM by changing the residue template, rebuilding the atoms of the mutated residue 

and then minimizing the structure using the adaptive basis Newton–Raphson minimizer 

for 1000 steps. PPMD simulations were then run on the mutants under the same 

conditions as the wild type. 

 

3. Results 

PPMD simulations were run on CaM, pumping residues 46–53 in helix C with 

oscillating forces of 10, 30, 50, and 70 ps period. Figure 2.1 shows typical fluctuation 

power spectra obtained from a 5 ns simulation. The upper plot shows a typical power 

spectrum of an atom from a control simulation with no pumping. The lower plot shows 

the spectrum of a pumped atom in residue Gln49. Against the rather featureless 

background four sharp peaks at the pumping frequencies can easily be distinguished as 

one would expect since this is a pumped atom. The spectra at selected probe atoms in 

residues T29 and L32 in the neighboring helix and a more distance residue T110, which 

neighbors residues 29 and 32 but not the pumped helix, show similar features except the 

spikes have different relative intensities, some being undetectable altogether. This 

indicates different degrees of transmission to different atoms and at different frequencies. 
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Figure 2.1 Fluctuation power spectra of some atomic motions in CaM with 10, 30, 50, and 70 ps period 
pumping forces applied to helix C, over a total simulation time of 5 ns. Traces are displaced vertically for 
clarity, and from the bottom up are for the Cα atom in residues Q45 (a pumped residue), T110, L32, and 

T29. Top trace: Fluctuation power spectrum of Cα atom of Q54 in a control simulation with no pumping 

force. 

 

Figure 2.2  shows the coupling profile for the simulation in Figure 2.1, obtained 

from analyzing the fluctuation power spectra for all the residues, extracting the relative 

intensities at the pumped frequencies, and applying Eq. 2.1. The coupling profiles exhibit 

a large peak at the pumped residues, indicating trivial coupling of the pumped residues 

with themselves. More significantly, there are peaks in coupling at more distant residues 

in both sequence and space, e.g. at residues 29, 32, and 110, indicating nonhomogeneous 

spread of the pumped energy and specific couplings. 



 

31 
 

 

Figure 2.2. Coupling profiles for CaM with the C helix pumped. Traces are displaced vertically for clarity. 
From bottom up, couplings for 10, 30, 50, and 70 ps period pumping. Probe residues whose fluctuation 
power spectra are shown in Figure 2.1 are labeled. 

 

An alternative way to display the coupling is through a coded structural 

representation of the protein (Figs. 2.3 and 2.4). Here the thickness of the backbone worm 

indicates the degree of coupling, and enables one to see which parts of the protein are 

more coupled, and where they are. Figure 2.3 shows a PPMD simulation on CaM where 

helix C was pumped at 10, 30, 50, and 70 ps. The coupling profile at 10 ps is coded on 

the figure. The pumped helix C shows strong coupling to the B helix, which contains 

residues 29 and 32 and forms one flap closing over the peptide. There is ―follow-on‖ 

coupling to the helix turn containing residue 110 on the opposite flap. Residues 29, 32, 

and 110, whose fluctuation power spectra are shown in Figure 2.1, are rendered in CPK. 
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Figure 2.3 Coded structural representation of CaM. Worm thickness is proportional to coupling to Helix C 
at the 10 ps oscillation period. Probe residues whose fluctuation power spectra are shown in Figure 2.1 are 
rendered in CPK. 

 

Figure 2.4 Coded structural representation of PDZ domain protein. Residue H76 was pumped. Worm 
thickness is proportional to coupling to H76 at the 10 ps oscillation period. Key coupling pathway residues 
are shown in CPK. 
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Figure 2.4 shows a similar representation for a PPMD simulation of the PDZ 

domain protein. In this case residue H76, a key coupled residue identified by Lockless 

and Raganathan (41) was pumped at 10, 30, 50, and 70 ps. The coupling at 10 ps is 

shown on the figure. This figure shows that coupling from the pumped residue extends 

down the helix containing H76 and also across to the β strand containing F29. 

Interestingly, coupling is much less effective in the other strand direction from H76: 

round the turn. Heterogeneous coupling to other regions is also apparent. Since the 

coupling is frequency dependent, average coupling profiles using data from multiple 

frequencies provide a better picture of the coupling through the protein and increase the 

sensitivity. To obtain average coupling profiles, profiles from eight different pumping 

periods, 1, 3, 5, 7, 10, 30, 50, and 70 ps, were averaged. Figure 2.5 shows two such 

coupling profiles for the PDZ protein. Each coupling profile represents a set of 

simulations in which either residue H76 or G33 was pumped. These two residues were 

shown experimentally to be coupled (41). Each profile shows a peak in the region of the 

pumped residue, and other peaks. In the simulations where H76 is pumped, coupling 

down one side of the helix to the residues one and two helical turns down (A80 and K84) 

is clearly seen, recapitulating the pathway seen by Lockless and Ranganathan (41). 

Significantly, one sees a peak at G33 when H76 is pumped, and a peak at residue H76 

when pumping G33, i.e. the coupling is reciprocal. To better illustrate the heterogeneous 

nature of the coupling, in Figure 2.6 the residue coupling constants from the H76 pump 

simulation of PDZ domain illustrated in Figure 2.5 (upper profile) are plotted against the 

distance of each residue from the pumped residue H76. The figure illustrates a general 

decrease in coupling with distance, as one would expect as energy is dissipated across the 
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protein. However, examining the couplings at a given distance in the 5–15 Å region 

shows a wide range of coupling strengths at each distance, notably even at the very 

shortest distances that represent neighboring residues. 

 

Figure 2.5 PDZ domain coupling profiles for pumping at H76 (-x-, trace displaced upward for clarity) and 
G33 (no symbol). Arrows indicate residues one and two helical turns down from pumped residue H76, as 
shown in Figure 2.4. Profiles are profiles averaged over 1, 3, 5, 7, 10, 30, 50, and 70 ps pumping periods. 
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Figure 2.6 Plot of coupling strength vs. Cα–Cα distance for PDZ domain pumped at H76. Coupling 

strengths are taken from the profile averaged over 1, 3, 5, 7, 10, 30, 50, and 70 ps pumping periods (Fig. 
5.5). Distances are measured from the pumped residue H76 Cα. 

 

These coupling profiles illustrate several key features revealed by the PPMD 

simulations:  

i. Heterogenous coupling in space. Not all residues close to the pumped residue(s) 

are coupled to the same extent (Fig. 2.6). 

ii. Long range coupling. Significant transmission is observed, in some cases from 

one secondary structure element across another to a third as illustrated in Figures 

2.2 and 2.3. 

iii. Coupling does not necessarily occur via the shortest pathway, as illustrated by the 

coupling of F29 to H76 via A80 and K84 in PDZ domain protein (Fig. 2.4). 

iv. Reciprocity of coupling between pump and probe residues, as illustrated in Figure 

2.5. 
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The simulation protocol used for the initial development and testing of the PPMD 

method was chosen for its speed and to maximize the sensitivity to the pumping signal. 

However, there are two simulation conditions used here that could potentially affect the 

coupling profiles. The first is the use of an implicit solvent model. The most serious 

concern with this model for the PPMD method is the lack of solvent friction and 

fluctuations. Solvent friction/fluctuation could more rapidly damp the PPMD signal, and 

so reduce the sensitivity of the method and its ability to detect long range coupling. Also, 

since solvent does not act uniformly on the protein, but preferentially on surface atoms, it 

could potentially alter the coupling profiles in a qualitative way. To examine these two 

possibilities we ran control simulations in which solvent friction/fluctuation on solvent 

exposed atoms was included via CHARMM's LD facility. Since the solvent friction 

forces in the LD method would actually be more random than those from an explicit 

solvent simulation (in which there is a degree of correlation between solvent and protein 

atom motions due to force reciprocity), the LD control should provide an upper estimate 

of the effect of neglecting solvent friction/fluctuation. Figure 2.7A shows a comparison 

of the coupling constants obtained at a pump period of 70 ps applied to the C helix of 

CaM. The simulation with no solvent friction/fluctuation is the same as that depicted in 

Figure 2.2. The simulation with solvent friction was run with a factor of three larger 

pumping force. The inset to the figure shows an expanded section of the coupling profile 

between residues 20 and 60, showing that the profiles from the no-friction simulation and 

the control LD simulation with solvent friction are very similar. 
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Figure 2.7 Percentile analysis of similarity of coupling profiles for CaM pumped at Helix C with a 70 ps 
period. (A) No solvent friction (abscissa) vs. solvent friction (ordinate). Inset shows part of both coupling 
profiles overlaid to illustrate similarity. (B) With NOE restraints vs. no restraints (ordinate). 

 

To better compare the two coupling profiles we plotted the ―with friction‖ 

coupling constants against the ―no friction‖ coupling constants for the 70 ps pump period, 

and used the method of percentile analysis as described in the methods section. The upper 

10th percentile lines divide the graph into four regions. Using this analysis we see that 

Figure 2.7A shows excellent correspondence in coupling profiles with and without 
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solvent friction, with most of the points falling in the lower left baseline regions, or the 

upper right region indicating a peak found in both simulations. Only one or two residues 

fall in each of the upper left and lower right regions that indicate a peak in one case but 

not another. Figure 2.8A shows the same comparison of friction/no friction for a 

simulation of the PDZ domain, pumping residue H76 at 10 ps. Again, relatively few 

points fall in either of the upper left or lower right regions that would indicate differences 

in peaks. Similar levels of agreement are obtained for coupling at the other three pump 

periods in each simulation. We conclude that solvent friction does not change the 

coupling profiles qualitatively, although it requires a larger pumping force to get the same 

signal to noise ratio which increases the risk of structure distortion. 
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Figure 2.8 Percentile analysis of similarity of coupling profiles for PDZ domain protein pumped at residue 
H76 with a 10 ps period. (A) No solvent friction (abscissa) vs. solvent friction (ordinate). (B) With NOE 
restraints vs. no restraints (ordinate). 

 

The second compromise in the simulation protocol was to use NOE-type 

restraints on the protein Cα atoms so as to use a larger pumping force to improve signal 

to noise without distorting too much, or unfolding the protein. While NOE constraints 

have no force bias when they are satisfied (the majority of the time), they do apply a 

harmonic restoring force to atoms outside the distance bounds, and this harmonic force 

may introduce its own coupling behavior and so distort the coupling profile. Figure 2.7B 

shows a comparison of the coupling profiles obtained at a pump period of 70 ps applied 

to the C helix of CaM with and without NOE type restraints. Figure 2.8B shows the same 

comparison for PDZ domain with residue H76 pumped with a 10 ps period. The 

percentile analysis again shows that there is very good correspondence between the peaks 

in the two profiles for each protein. The simulations without restraints were done with a 

factor of 5 lower pumping force to avoid protein shape distortion, i.e. they have a poorer 

signal to noise ratio which requires a longer simulation. Thus as long as mild NOE type 

restraints do not qualitatively affect the coupling profile, they have the advantage of 

better signal to noise and shorter simulation time. There may however be situations in 

which the type of coupling that is being probed requires rather large excursions of the 

protein to occur. In this case NOE-type restraints would tend to oppose or mask the 

coupling, and so they would not be desirable. 

In Figure 2.9 the standard fluctuation cross-correlation coefficients 

Cij=<ΔxiΔxj>2/<Δxi
2><Δxj

2> between the Cα of H76 and other residue Cα's are shown for 
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the PDZ domain protein. The plot shows the H76 row extracted from the Cα correlation 

matrix from a control simulation (no pumping) performed for exactly the same length and 

conditions as a pumped simulation. The simulation was divided into two halves, and the 

correlation coefficients calculated for each half to assess the variability. The result is 

typical of fluctuation correlation analysis, i.e. the residue in question H76, is perfectly 

correlated with itself, and there is significant coupling to its immediate neighbors. The 

large majority of correlation coefficients have magnitudes less than 0.5, and moreover 

most of these vary widely between the first and second halves of the simulation 

indicating that they are not significant at this length of simulation, at least. The pattern of 

PPMD couplings, in contrast, persist across different frequencies (Fig. 2.2) and different 

simulations (Figs. 2.7 and 2.8). Coupling between more distant (in sequence) residues, 

e.g. H79 and F29, is not apparent from the correlation analysis, nor is any systematic 

pathway of coupling. Thus, at least for the length of simulation required for PPMD (1–2 

ns) this technique has better signal to noise, and is more revealing of coupling pathways 

than conventional correlation coefficient analysis. 
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Figure 2.9 Fluctuation cross-correlation coefficient Cij = 〈ΔxiΔxj〉
2/〈Δxi

2〉〈Δxj
2〉 between the Cα of 

H76 and other residue Cα's for PDZ domain protein from a control simulation (no pumping). From batches 
1 to 8 (filled squares), and from batches 9 to 16 (open circles). 

 

It should be stressed that PPMD is not measuring the mobility of atoms or 

residues per se i.e. their root mean square (rms) deviation, but the change in mobility due 

to coupling, or transmission of energy/motions from the pumped residue(s) to the probed 

residue(s) as measured by the increase in fluctuation power at particular frequencies. 

Thus, a coupling profile does not reflect differences in intrinsic flexibility along the 

polypeptide chain. The effect of intrinsic differences is removed by the normalization of 

each atom's fluctuation power spectrum by that atoms rms deviation (which is given by 

the sum over the power spectrum) prior to the calculation of coupling via Eq. 2.2. The 

coupling profile does provide a measure of the interaction between specific atoms or 

groups at the level of dynamics. To explore the transmission characteristics further, we 

used time cross-correlation analysis. The cross-correlation function quantifies the 

correlation in motion between two atoms or groups for different time lags. The same FFT 
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transforms of coordinate trajectories used for the fluctuation power spectra can be used to 

obtain these time cross-correlation functions in a straightforward manner (52). From the 

time axis offset one can obtain the phase delay at different points in the protein. An 

example is shown in Figure 2.10, which illustrates the transmission of pumped impulses 

applied at residue H76 of PDZ domain protein. For the time range shown in the figure, 

the cross-correlation functions are dominated by the highest frequency pump applied in 

this simulation, the 10 ps period pump. The profile for the pumped residue is shown for 

reference, and has a phase shift of zero. Various phase shifts are observed at other atoms. 

While the time delay generally increases with distance it is not just dependent on 

distance, as Table 2.1 shows. For example the impulse arrives at residue S24 before 

residue D105, even though the former residue is farther away. Thus, there is 

heterogeneous propagation speed through different parts of the protein. These results 

suggest that variation in distance-normalized transmission speed is another way to 

quantify coupling strength in the PPMD analysis. This will be examined further in a 

future study. 
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Figure 2.10 Time cross-correlation functions for Cα atoms in PDZ domain protein pumped at H76. 
Distances from the pumped residue are given in Table 2.1. 

 

Table 2.1 Phase Delay of a 10 ps Pump Applied to H76 of PDZ. Distance is from H76 Cα to residue Cα 

Residue Lag (ps) Distance (Å) 
H76 0 0 
G33 0.7 6 
S24 4.5 22 

D105 6 16 
 

The other information obtained from the time cross-correlation analysis is the 

general rate of transmission of impulses through a protein. The effect propagates at 

speeds of up to 5 Å/ps, and so it could cross a medium size protein within several 

picoseconds. It should be noted that this is well within the time scale of the simulations. 

The upper limit for transmission of any mechanical impulse in a medium is the speed of 

sound, Vs. While this is not known exactly for proteins, and it also depends on whether 

the waves are longitudinal or transverse, and how homogenous the mechanical properties 

are, Vs may be estimated from the relationship:  

        
 

 
      2.3 

where Y is the Young's or bulk modulus and ρ is the density. Since Y is the inverse of the 

compressibility, it may be estimated from experimental measurements of the latter as Y ≈ 

1/(5 × 10−6/Atm) = 2 × 1011 dynes/cm3 (66). With a typical protein density of 1.3 g/cm3, 

Eq. 2.3 gives Vs = 14,000 km/h or 39 Å/ps. This estimate lies somewhere between that of 

water (14 Å/ps) and steel (50 Å/ps), which are accurately estimated by Eq. 2.3 (67), and it 

thus seems reasonable. From this we conclude that the transmission rates derived from 
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the data in Table 2.1 are similar enough to Vs, but far enough below the estimated upper 

limit to be reasonable. 

It should be noted that the time cross-correlation functions are normalized by the 

mean squared motions of the two atoms, and so Figure 2.10 only shows the time lag in 

transmission and not the decay in intensity with distance. The latter is more accurately 

depicted by the coupling profiles in Figures 2.2 and 2.5. To better understand how 

transmission of an impulse such as that applied by PPMD might be dissipated in a dense, 

fluctuating medium such as a protein, we compared the general dynamic behavior of the 

protein to the BHO model. The BHO model is an analytically treatable stochastic model 

of a system undergoing fluctuation and frictional dissipation around some minimum 

energy state, with a harmonic restoring force (53). The BHO model is effectively a one-

dimensional analogue of a stable protein undergoing fluctuations around the minimum 

energy ―native state‖ structure. The time autocorrelation functions for atomic motions in 

non-PPMD simulations of CaM with implicit and explicit solvent were calculated from 

the MD trajectories again using FFTs. Characteristic profiles are shown in Figure 2.11. 

These are compared to the BHO model using friction and harmonic force constant 

parameters chosen to match the protein dynamics time-scale. The BHO model has three 

regimes: where friction forces dominate and there is no oscillatory behavior (over-

damped); where the restoring force dominates and the system shows oscillatory behavior 

(under-damped), and an intermediate regime (critically damped); and where the system 

has the fastest relaxation and which also shows no oscillatory behavior. As can be seen 

from Figure 2.11, the protein behaves as an under-damped system with a characteristic 

time scale in the 10–100 ps range. Interestingly, the protein motion has strong oscillatory 
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characteristics even with explicit solvent, even though one might expect the frictional 

effect of the solvent to make the system behave as an over/critically damped one. The 

under-damped, oscillatory character of protein dynamics is consistent with the detectable 

transmission of pumped oscillatory impulses over the same length scale as the protein 

revealed by the PPMD simulations. 

 

Figure 2.11 Time autocorrelation functions for atomic motions of Cα of Asp58 (▪, □) and Glu 67 (▵, ▴) in 
CaM simulated with implicit solvent (empty symbols) or explicit solvent (filled symbols). Brownian 
harmonic oscillator that is under-damped (—), over-damped (…), or critically damped (- -). 

 

 A key experimental tool to detect residue–residue coupling is site directed 

mutagenesis. For example a series of PDZ mutants examined by Lockless and 

Raganathan (41) revealed very similar coupling to that obtained from their multiple 

sequence analysis. We examined eight of their mutants using PPMD simulations. Three 

of these mutants, F44A, S75T, and T89S, involved residues that were determined by 

sequence analysis and mutation not to be coupled to H76. The other five mutants, G33A, 

G34A, F29K, A80V, and K84A, involved residues that were found experimentally to be 
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coupled to H76. PPMD simulations were performed on each of the mutants by pumping 

at 1, 3, 5, 7, and 10 ps at either H76 or F29, and the average coupling profiles were 

computed. Each mutant coupling profile was compared to the corresponding wild-type 

coupling profile (pumped at either H76 or F29), and significant changes in coupling 

peaks caused by mutations were determined by the outlier analysis. The results are 

summarized in Table 2.2. The most notable result is for residue 36, where significant 

changes in coupling peak are seen in all the mutations involving ―on-pathway‖ residues, 

but for none of the mutations involving off pathway residues. 

Table 2.2 Summary of changes in coupling due to mutations in PDZ domain protein. X indicates a peak at 
that residue that changed due to that mutation (increased or decreased) by >1.5σ as determined by outlier 

analysis. Mutants in italics are not coupled to H76. Residue numbering is according to PDB 1BE9. 

Peak 
position 

F44A S75T T89S G33A G34A F29K A80V K84A 

24 X X 
  

X 
  

X 

36 
   

X X X X X 

46 X X 
    

X 
 

49 X 
  

X X 
 

X 
 

54 
   

X 
   

X 

75 
 

X X 
 

X X X X 

81 X 
 

X 
 

X 
 

X 
 

85 X 
 

X 
   

X X 

 

4. Discussion 

We present here the development and initial implementation of a method for 

analyzing the dynamics of proteins using MD simulations, the PPMD method. The 

method is straightforward to implement and very flexible. It was designed with the goal 

of helping to interpret experiments that probe residue–residue coupling, particularly in 

the context of modern NMR measurements of site resolved protein dynamics, and more 
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generally in phenomena that involve long range interactions in proteins, such as allosteric 

effects. The method is not, however, restricted to these applications. The ability to 

perturb a protein in a defined way at a defined place and analyze the resulting change in 

dynamics should be applicable to the understanding of proteins in general as complex 

dynamical objects. The idea of manipulating MD trajectories in a controlled way is not 

new, and various methods have been developed.(23–25, 68, 69) However, the PPMD 

method described here has significant differences from these earlier methods. 

Temperature pulse methods (68, 70, 71) manipulate the total kinetic energy. In effect they 

operate over the entire frequency regime simultaneously, and usually are applied over the 

entire protein. In contrast the PPMD method selectively applies a force at a few 

frequencies at a time (although these can be scanned over the entire spectrum), and to 

selected atoms of residues. Steered or targeted MD simulations use a force along some 

―pathway‖ applied to some part of the system (72). Here the goal is different from 

PPMD: it is to drive the system through some specific transition or sequence of events in 

the MD time scale, events that presumably happen over much longer time scales 

naturally. Temperature pulse methods are also used with a similar goal, for example to 

drive protein unfolding on the MD time scale (70, 71).  

A method that more closely relates to PPMD is one that manipulates atomic 

velocity components in a frequency specific way during MD simulation (24, 25). PPMD 

differs from the methods described in these papers in several key aspects. First, these 

methods were applied to the atomic velocities. Since the causal sequence in an MD 

algorithm is Force → Acceleration → Velocity → Position, intervening at the velocity 

stage will cause atomic velocities and positions to get out of phase. This limits the extent 
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and magnitude of the pulses one can apply (25). Special precautions such as pulsed 

applications of the perturbation and quenching can be used to get around this (25), but 

this complicates the method, and it can only be applied to a single frequency at a time. In 

contrast, PPMD avoids this by intervening at the force step. The PPMD method is 

straightforward, and can be applied at multiple frequencies simultaneously. This is an 

advantage if a wide range of frequencies is to be explored. Second, the goal of the 

velocity frequency manipulation method was somewhat different: it was applied 

principally to drive low frequency motions and torsional motions so as to cause some 

transition (24, 25). Previously Bowman et al. developed a method called driven 

molecular dynamics (DMD), which also applies harmonic forces to a protein during an 

MD simulation (26, 27). In DMD a centro-symmetric force of frequency ν is applied 

between each pair of atoms, whose strength is proportional to the distance between the 

atoms. The goal of applying this ―non-specific dilating‖ force uniformly to all the atoms 

is to excite normal mode vibrations, which are detected by the amount of energy 

absorbed at each frequency. The goal of DMD is to provide an alternative to the standard 

normal mode analysis using Hessian matrix diagonalization (26, 27).  

The PPMD method thus differs from previous velocity and force driven MD methods in 

two respects. First, in the way the frequency-based perturbation is applied––as a force––

but only to specific residues. Second, in what the method is designed for: the PPMD 

method is not designed to drive the protein through some conformational change, low 

frequency or otherwise, or to excite normal modes, but to examine residue–residue 

couplings and coupling ―pathways.‖ 
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Another method that was recently applied to the PDZ domain protein so as to 

detect differential coupling between different parts of the protein is the anisotropic 

thermal diffusion (ATD) method of Ota and Agard (69). In this innovative method, the 

MD simulation is quenched periodically by reducing the simulation temperature to 10 K, 

then the system is rethermalized with just one residue coupled to a heat bath. The 

transmission of kinetic energy from this residue to other residues as a function of time is 

used to extract differences in thermal conductivity. This cycle can be repeated and the 

results combined to improve the precision. Differences in the rate of thermal diffusion are 

then interpreted as different couplings between residues. Ota and Agard found that 

residues H76 and F29 of PDZ domain were coupled, in agreement with the results of 

Lockless and Raganathan and our analysis. This coupling occurred through the residue 

I31 that, although not coupled to either H76 or F29 in Lockless and Raganathan's 

experimental analysis (41), lies directly between H76 and F29, i.e. the coupling occurs by 

the shortest pathway. In contrast, in the PPMD analysis presented here, the coupling 

between H76 and F29 occurs along a helix, through residues A80 and K84, which are 

coupled to H76 in Lockless and Raganathan's experimental analysis, and then across to 

F29 on a neighboring strand. This is a more indirect path in space. While the aim of the 

ATD and PPMD methods applied to the PDZ domain protein is the same, they probe 

different modes of energy transmission under somewhat different conditions, which may 

account for these differences in the coupling pathway. In the ATD method it is the 

transmission of kinetic or heat energy, which comes from all types of motion, whether 

they can be characterized by a frequency or not. In the PPMD method it is transmission 

of ―acoustic‖ or mechanical motions at specific frequencies. The other difference is that 
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in the ATD method the protein is quenched and rethermalized, i.e. the method is 

intermittent and nonequilibrium, while the PPMD method obtains couplings under 

continuous, equilibrium conditions. The two methods may, therefore, reveal different 

aspects of coupling, and they could provide complementary information. Further 

comparison of the two methods on more proteins would be valuable. In this regard, 

Leitner et al. have done a detailed examination of the thermal conductivity of proteins 

using normal mode methods (73), although this study was not undertaken from the 

perspective of examining specific residue–residue couplings. 

In the initial applications of PPMD described here we have shown that nontrivial 

residue–residue couplings can be detected by the method, and that they reveal long range, 

nontrivial pathways of interaction. In the PDZ domain for example, these coupling 

pathways recapitulate those seen experimentally. We emphasize although that the 

genomics analysis, mutation experiments, and simulations are each examining different 

properties of the protein, the sequence analysis examines the tolerance of different sites to 

coupled changes in amino acid residues while preserving biological function. The 

mutation experiments are probing the contribution of different side-chains to peptide 

binding energetics. The pump-probe simulations measure the transmission of motional 

energy between residues. In addition, we are using one wild-type sequence alone, while 

the statistical analysis extracts couplings from many different sequences. Thus, one 

would not expect exact correspondence between the three lines of analysis. Indeed it is 

encouraging that the mutation/binding, sequence analysis, and PPMD agree to the extent 

they do. However, there are differences in detail. In particular, one expects PPMD to 

reveal more couplings than those seen in experiment, since the simulations provide 
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atomic level detail on every residue, whereas not all couplings would be important for the 

correct sequence-to-structure relationship or for binding energetics. An obvious way to 

more closely mimic the PDZ mutation experiments would be to do pump-probe 

simulations on PDZ-peptide complexes and analyze binding related changes. 

An important consideration for the usefulness of PPMD is distance over which 

one can detect couplings. The results in Figures 2.2 and 2.3 show that one can pick up an 

interaction between residues on two secondary structure units separated by a third (a 

helix). Nevertheless, it would be naïve to expect that one simply pump a residue on one 

side of a protein and always see an effect on the other side. To map out long pathways 

one might have to ―walk‖ the pump-probe across the protein in shorter steps. This 

actually parallels how sequences of specific residue–residue interactions that form 

pathways have been elucidated in experiments on PDZ domain, GPCR proteins, and CaM 

(38–41, 43). In spite of limitations in the distance over which one can detect couplings, it 

is important to point out that the PPMD method detects specific residue–residue 

couplings that we simply cannot detect in standard residue–residue or atom–atom 

fluctuation covariance matrix analysis. Such couplings, if present in these matrices, are 

either swamped by the large amount of noise and statistically spurious correlation 

coefficients likely in the large number (N × N) of terms, or they are not manifest at a 

simple pair-wise correlation level. In contrast our analysis effectively reduces the N × N 

dimensionality in the covariance matrix analysis to a series of N-dimensional analyses, 

i.e. between each pumped residue and the N − 1 remaining residues, and it also increases 

signal to noise by pumping, rather than trying to use ambient fluctuations. Of course there 

is an increased computational cost, as a full series of couplings would require additional 
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simulations pumping at the other N − 1 residues. However, specific applications are 

unlikely to require pumping at every residue. Typically only key biologically important 

residues would need to be pumped to gain useful information. 

We examined several of the mutants of PDZ domain protein using PPMD that 

were studied by Lockless and Raganathan in elucidating the coupling between H76 and 

F29, namely three ―off-pathway‖ mutations F44A, S75T, and T89S, and five ―on-

pathway‖ mutants, G33A, G34A, F29K, A80V, and K84A. The goal of this analysis was 

to use changes in coupling profile to identify residues that might be involved in the H76-

F29 coupling pathway that are not apparent from the sequence analysis/mutation 

experiments. The results in Table 2.2 show, for example, that at residue 36 significant 

changes in the coupling are seen in all the mutations involving on-pathway residues, but 

for none of the mutations involving off-pathway residues. Interestingly, residue D36 sits 

on the loop directly above residue H76 (as seen at the top of Fig. 2.4). We tentatively 

identify this residue as having a secondary role in the pathway. We speculate that it may 

play a role in ―directing‖ the coupling down the helix from H76 through A80 and K84, 

rather than in the other strand direction from H76. No other peak shows such a clear 

distinction between on- and off-pathway mutations, although the peak at residue 49 is 

prominently perturbed by just one off-pathway mutations, but by the majority of on-

pathway mutations. The peak at position 46 is effectively the converse, being perturbed 

in two of three off-pathway mutations, while being affected by just one on-pathway 

mutation. This presumably indicates a residue that is quite decoupled from the pathway. 

It is significant that one should see some such decoupled residues, since if every residue 

in the protein were involved in a coupling it would make little sense to talk about a 
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coupling pathway at all. Our mutant analysis is far from exhaustive, and clearly one 

would not expect a clean binary distinction between ―on‖ and ―off‖ pathway cases for 

every position/mutation, given the complexity of the dynamics of PDZ and the various 

experimental and simulation uncertainties and limitations. However, this analysis does 

indicate how one can use PPMD to provide a more mechanistic view of experimentally 

determined couplings, and how one might use this analysis of MD simulations to 

examine residue and atomic level details of coupling inaccessible to experiment. 

Characterization of CaM dynamics by the time autocorrelation functions revealed 

that it behaves as an under-damped system, i.e. it has a significant oscillatory 

characteristic. Other proteins we have examined show the same general behavior. This is 

significant for the application of the PPMD method. It means that oscillations, whether 

intrinsic or applied externally as here, will propagate significantly through the protein, as 

seen here. These oscillations are thus in principle capable of mediating long range 

coupling, of being detected and analyzed. If a protein acted as an over-damped system, 

one would expect much less transmission of the PPMD pulse, making the method less 

sensitive. Indeed, the consequences of a protein being an over-damped dynamic system 

would be problematic for any frequency-based analysis such as mode analysis or 

frequency filtering. If protein dynamics had no oscillatory character, it would make little 

sense to talk about modes or frequencies at all. The oscillatory character of protein 

dynamics, while clear in the time correlation analysis, is not obvious from the atomic 

fluctuation power spectra. In a non-PPMD simulation the fluctuation power spectrum is 

rather featureless with a low, broad peak extending from about 0.02–0.08 ps−1 (Fig. 2.1, 

top trace). Examination of such profiles for different atoms, or for the same atom from 
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different simulation batches or conditions shows that these profiles are generally similar. 

No clearly identifiable modes both standout from their neighbors and are persistent across 

a group of atoms or between different simulation batches. Put another way, it is difficult 

from examination of the fluctuation power spectrum alone to determine whether protein 

dynamics is occurring in either the under-damped or over-damped regime. Moreover, the 

density of vibrational states determined both experimentally, and in harmonic and quasi-

harmonic analyses of proteins is also dense enough to approximate a continuum.(74, 75) 

The difficulty in identifying specific and persistent low frequency modes from principal 

component analysis (13–16) is partly due to how closely spaced in frequency they are, 

and how variable many modes are. So selection of particular native modes from harmonic 

analysis so as to analyze coupling or putative allosteric conformational changes is 

difficult and somewhat subjective. As demonstrated here, the PPMD provides another 

approach to this problem, where one specifically probes the coupling between residues at 

a wide range of frequencies. The couplings obtained from PPMD show physically 

reasonable properties, such as reciprocity, decay with distance, and transmission times 

consistent with known physical behavior of proteins. The couplings are also robust with 

respect to the presence of solvent friction and mild restraints on the protein. This is useful 

since it allows one to use larger pumping forces and get larger signal to noise ratios in the 

PPMD simulations. 
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5. Future Directions 

The PPMD method is very flexible in terms of how and where the pumping force is 

applied. We chose only quite simple pumping schemes at a restricted set of frequencies 

so as to demonstrate the usefulness of the method. We pumped at periods from 1 to 70 ps. 

The full range, conservatively, would be from about 5 times the MD time step (5 fs) to 

about one-fifth of the total simulation length (anywhere from 1 ns upwards with current 

computers). In addition to the pumping frequency, the selection of pumped atoms, 

magnitude, type, and phase of force can be varied widely. These features of PPMD can 

be exploited to maximize control and sensitivity. As PPMD is a new technique, these 

options need to be explored in a systematic fashion so as to get the most out of it. Some 

specific considerations include:  

 How finely to scan the pump frequency: scanning requires multiple simulations, 

and so one wants to be effective but frugal. Pumping at four frequencies yields a 

proportional speed up in this regard. The practical upper limit to the number of 

simultaneous pumping frequencies is not known. 

 The largest magnitude pumping force that can be applied without causing too 

much heating or structural distortion so as to maximize sensitivity. 

 How best to apply the force: options include applying it to a single atom or a 

collection of atoms, as a planar or circular oscillation, as torsional force around a 

bond, etc. To increase sensitivity one can also pump more atoms, such as parts 

of/whole secondary structure units, reflecting the tendency of longer time-scale 
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motions to involve more atoms. The pumping of a portion of Helix C of CaM 

illustrates this. 

PPMD analysis has a close correspondence to NMR experiments that measure 

propagation of changes in order parameters (S2) of residues surrounding a site of single 

residue mutations (42, 44, 45). Both provide a measure of residue–residue coupling 

through dynamics on the same spatial and time scales. The experiments also reveal 

inhomogeneous transmission of effects. For example in CaM the M119L mutant 

produces large changes that are confined to the region of the mutation, whereas D58N 

produces an apparent pathway of changes in methyl order parameters up to 15–20 Å 

away (45). While order parameters can be obtained directly from MD simulations and 

compared to NMR data (29), both experimental and calculated quantities are single 

residue values: there is no specific information about correlation between sites. Here the 

explicit coupling information obtained from PPMD provides an important extra 

dimension. Analysis of such NMR experiments is a natural future application for PPMD. 

More generally, we envision PPMD as a flexible method for analyzing protein dynamics 

with different, but complementary properties to existing analysis techniques, not as a 

replacement. It is in fact possible to use PPMD in combination with existing techniques. 

For example, normal mode and quasi-harmonic analysis provide eigen-values and eigen-

vectors that describe the frequency and identity of effective modes. In PPMD it would be 

possible to pump certain combinations of atoms with the right magnitudes and directions 

to mimic a mode, thus combining elements of both approaches. Either alone or in 

combination with other techniques, the PPMD method can help address specific 

questions about protein dynamics such as how much one residue is coupled to another, 
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how a perturbation at one site affects another site, and whether there is a pathway of 

coupling between the two sites. 
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CHAPTER 3 

Enhancing the Accuracy of Hydrogen Exchange Rates 

Determined by 
1
H-

1
H Measurements 

1. Introduction 

Protein hydrogen exchange (HX) rates span more than a billion-fold range (1). 

HX rates over most of this range can be measured by mixing protein with 2H2O and 

measuring HX either by NMR (2) or by mass spectroscopy (3). However, this method is 

incapable of measuring rates on very short time scales as the solvent mixing step 

becomes a limiting factor. In order to overcome this limitation, previous workers have 

developed methods for measuring 1H-1H exchange by NMR by observing the transfer of 

magnetization from water to the protein (4, 5). This has allowed for HX rates to be 

measured on the order of 1-100 s-1, which corresponds to the HX rates for unprotected 

and minimally protected amides at physiological pH. 

One significant downside of this technique is that magnetization transfers to the 

amide by multiple pathways. Advances in pulse sequence development have minimized 

the contributions of these alternative pathways, but have not eliminated them entirely (6). 

These contributions manifest themselves in a predictable manner, yet the complexity of 

the formula that describes their behavior has prevented researchers from properly 

accounting for them when calculating HX rates. Here is described a novel algorithm for 

accurately fitting magnetization transfer data. This algorithm has been applied to data 

collected by Woon Lim and the accuracy of the resulting rates was verified in several 
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ways. This fitting algorithm results in determining rates that are systematically faster than 

those determined by the previously utilized method. 

 

2. Theory - Magnetization Transfer 

Magnetization transfer experiments are performed by applying a series of pulses 

that selectively excite the solvent and then monitoring the 1H-15N signal as magnetization 

transfers to the protein. Magnetization transfer primarily occurs by three pathways: 1. 

chemical exchange, 2. NOE transfer from CαH’s that were magnetized along with 

solvent, and 3. NOE transfer from exchange-relay that results from rapidly exchanging 

protons, such as those associated with hydroxyl or amine groups. The CLEANEX-PM 

pulse module largely eliminates NOE contributions by manipulating magnetization 

trajectories, which forces spins to spend twice as much time along the z-axis than in the 

xy-plane, causing NOE and ROE contributions to cancel one another (5, 6). This spin-

locking sequence is applied during the HX mixing time and the magnetization transfer is 

observed by fast HSQC (Fig. 3.1). 

 

Figure 3.1: CLEANEX-PM pulse sequence adapted from (6). 
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The signal arising from the CLEANEX-PM pulse sequence is a 2D 1H-15N spectra in 

which each peak has a normalized volume (Vτ/V0) that has been described for a two-spin 

system (Eq. 3.1; (7, 8)  

    

  
  

    

           
                         Eq. 3.1 

The signal arises from the chemical exchange rate (kex) and from the amide 

relaxation rate R1A, which is a combination of longitudinal and transverse relaxation rates 

(6). The signal is also affected by the fraction of water that recovers between experiments 

(f) and the water relaxation rate (R1B). 

Due to the complex and non-linear nature of Eq. 3.1, other groups have avoided 

fitting to the full equation and have instead approximated kex from initial slope based on 

the fact that when τ = 0, d(Vτ/V0)/dτ = f kex (6). However, because the slope deviates 

from this behavior when τ > 0, this fitting method results in systematic errors. 

  

3. Methods 

3.1 Data Collection 

All magnetization transfer data were collected by Dr. Woon Lim at 20 oC using a 

500 MHz magnet with Varian cold probe. 1H -1H exchange was measured using the 

CLEANEX-PM pulse sequence (5, 6) with mixing times of 4, 5, 6, 7, 8, 10, 15, and 20 

ms over the pH range 4.9-11.26 at approximately half pH increments. 
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Values for f (the fraction of H2O that recovers between pulses) and R1B (a residue 

and pH-independent solvent relaxation rate) were determined experimentally at these 

conditions to be 0.54 and 0.6 s-1, respectively. 

 

3.2 Accurate Fitting Algorithm 

The rates kex and R1A were first approximated for each residue at each pH by 

setting the starting value for kex equal to the initial slope divided by f. In the second 

round, kex was fit for each residue at each pH using Eq. 3.1 and setting R1A = 0. Fitting 

was then repeated allowing both kex and R1A to float and using kex from the previous 

round as the starting value and 50 s-1 as the starting R1A value. kex and R1A were then fit 

for each residue at all pH’s simultaneously based on the knowledge that kex increases by 

10-fold per pH unit and R1A is independent of pH. This provides the final R1a rate for 

each residue and the starting kex rates for a final round of fitting, done for each residue at 

each pH. All fitting was done using the Matlab v2008a function 1sqnonlin. An example is 

described in detail in section 4.1. 

 

3.3 Removal of Background Noise 

Because eq. 3.1 describes a two spin system it fails to account for magnetization 

signals arising from cross relaxation. It is therefore necessary to remove the cross 

relations contribution from the measured signal prior to fitting. At low pH when kex < 1  

s-1, a low level pH-independent background signal was observed for most amides. This 
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behavior is not accounted for in Eq. 3.1. This signal, when it could be measured for each 

amide at low pH, or the global average when it could not, was subtracted from all pH-

dependent time points prior to rate determination. 

After background noise was subtracted an additional automated filtering routine 

was applied to remove poor quality data. Measurements for a given residue at a single pH 

were discarded if any of the volumes were negative, if the maximum volume was greater 

than f times the reference volume, or if the best fit line through the data had a negative 

slope. 

 

4. Results 

4.1 Stepwise Fitting 

A multi-step fitting algorithm was applied to CLEANEX-PM data in order to 

obtain accurate kex rates. The stepwise fitting process is illustrated for Gly86 in Fig. 3.2-

3.8. 

The first step was to remove the background signal. This results in a significant 

signal change at low pH but very little change at high pH as can be seen by comparing 

Fig. 3.2 to Fig. 3.3. In this case the pH 7.47 and pH 7.95 time courses were used to 

determine the background signal and therefore do not appear in Fig. 3.3. 



 

73 
 

 

Figure 3.2 Uncorrected peak volumes as a function of mixing time for Gly86. 

 

Figure 3.3 Peaks volumes as a function of mixing time for Gly86 after background signal has been 

subtracted. 
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The first step involved fitting a line to each time course (Fig. 3.4). The initial kex 

rate was calculated based on the assumption that f kex equals the initial slope. The best fit 

line for the entire time course was used rather than the initial slope because choosing 

which time points to categorize as initial slope requires an arbitrary cutoff. 

 

Figure 3.4 Linear fits to time courses for Gly86. The slope is assumed to equal f kex. 

Eq. 3.1 was used for the next round of fitting. In this step R1A was set to 0 and the 

fitting function searched for kex only (Fig. 3.5). Even without including R1A, the resulting 

fits are superior to linear fits. This fitting step was then repeated, this time seeking the 

best fit values for both kex and R1A (Fig. 3.6). For this step the initial R1A value was set to 

50 s-1 so that the starting point would not be identical to the end point of the previous 

fitting round, which could be a local minimum. 
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Figure 3.5 Best fit lines using Eq. 3.1 with the approximation R1A = 0. 

 

Figure 3.6 Best fit lines using Eq. 3.1 to fit both kex and R1A 

The next round involved fitting the time courses for all pH’s simultaneously by 

setting kex = k0 + pH. This was based on the knowledge that kex increases by a factor of 
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10 per pH unit (9), as described in Chapter 1. Starting values for k0 and R1A were set to 

the mean values calculated in the previous round. For Gly86, this reduces the number of 

fitting parameters from 12 to 2, which results in poorer fits for some time courses (Fig. 

3.7). 

 

Figure 3.7 Fit for all pH’s simultaneously 

For the final fitting round the time courses for each pH were once again fit 

separately. The same R1A value was used for each pH and was kept constant while fitting 

(Fig. 3.8). The kex rates from the final round of fitting were used to calculate pH-

independent k0 rates (Table 3.1). 
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Figure 3.8 Final pH dependent fitting step 

         Table 3.1 pH-independent log k0 rates in s-1 

Res log k0 Res log k0 Res log k0 Res log k0 

2 10.7 21 4.0 76 3.8 138 5.7 
5 7.7 28 7.5 80 8.2 144 7.8 
7 7.2 29 7.2 82 5.5 145 8.2 
8 7.5 33 7.3 83 4.2 146 8.2 
9 7.2 58 5.9 86 5.6 147 8.4 

10 4.6 59 5.3 96 6.8 148 8.3 
14 6.3 68 6.0 119 7.1 149 6.8 
17 7.1 69 4.4 120 5.7     
19 3.7 72 5.8 123 7.7     

  

On average these rates were 1.4 fold faster than the rates determined by linear 

fitting alone. A simple average difference between rates determined by our fitting 

algorithm and simple linear fitting fails to capture the significance of this advancement. 

Figure 3.9A illustrates that the deviation in rates is non-linear. As kex increases the linear 

fitting underestimates exchange rates even more. Failure to remove background signal 
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prior to linear fitting results in a similar overall systematic deviation, though with a more 

pronounced deviation when kex is small (Fig. 3.9B). 

 

Figure 3.9 kex determined from linear slope vs kex determined by the method described here with (A) and 
without (B) removing background noise. 

 

4.2 Rate Validation 

4.2.1 pH Dependence 

At physiological pH HX is catalyzed by hydroxide (9), therefore HX rates are 

expected to increase by a factor of 10 per pH unit. This behavior can be seen in fig. 3.10 

for 1H-1H rates determined using the algorithm described above. The systematic deviation 

that results from standard linear fitting (Fig. 3.9) prevents rates determined by that 

method from exhibiting expected pH dependence. 
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Figure 3.10 log kex as a function of pH with unity slope. Rates faster than 0.5s-1 were collected by 1H-1H 
exchange. Slower rates were collected by 2H-1H exchange are discussed in Chapter 4. 

 

4.2.2 Comparison to 
2
H-

1
H Rates 

Seven residues could be measured by both 1H-1H and 2H-1H exchange, namely 

the slowest amides measured by 1H-1H at high pH and the fastest amides measured by 

2H-1H  at low pH. These rates can be compared by applying the expected pH dependence 

(10) and isotope effects (11). Rates for six of the seven sites agree to within a factor of 4. 

The exception, Phe61 (much faster), could only be measured by 1H-1H at pH 11.26 where 

rates are questionable due to protein destabilization. 
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4.2.3 Comparison to Theoretical Rates 

Previous calibrations for main chain amides in unstructured polypeptides make it 

possible to predict HX rates based on primary amino acid sequence and ambient 

conditions (10, 11). For seven of the eight amides measured on unstructured SNase 

segments (residues 2 and 5 at the N-terminus and 144 to 149 at the C-terminus), rates 

agree with predicted values within a factor of 3. The one exception, Thr2, exchanges 

faster than predicted. This behavior has been seen before for the +2 residue position (10). 

It should be noted that Thr2 is an outlier in that its maximum peak intensity exceeds the 

theoretical maximum according to Eq. 3.1. This suggests that in addition to the rapid HX 

rate expected for the +2 position, Thr2 also experiences significant magnetization transfer 

from other sources, perhaps due to nearby rapid exchangers such as the N-terminus and 

its own sidechain, which have been known to cause additional signal (6). 

 

5. Conclusions 

The CLEANEX-PM NMR pulse sequence is a powerful tool for measuring HX 

rates on the order of 1-100 s-1 (6). Yet the complex nature of magnetization transfer from 

solvent into the protein had prevented previous workers from utilizing all available data. 

The step-wise fitting algorithm described here has resulted in more accurate HX rates 

from the same experimental data. On average the rates determined by this algorithm were 

1.4 fold faster than those determined by a simple linear fit. However, this small average 

difference belies larger systematic deviations that occur when exchange rates are near the 

fast and slow detection limits (Fig. 3.9). 



 

81 
 

Rates were also improved by removing a pH-independent background signal from 

each time course. This signal likely arises from magnetization transfer through NOE 

pathways. Eq. 3.1 fails to capture this behavior because it describes a simple two spin 

system. A truly accurate equation describing magnetization transfer would require using a 

spatial structure of the protein in order to calculate cross relaxation, such as was 

described by Fan and colleagues (12).  

Based on expected pH dependence (Fig. 3.10) and comparison to both theoretical 

and independently measured rates, we find phenomenological treatment of background 

signal combined with accurate fitting to the two spin description of magnetization 

transfer (Eq. 3.1) to markedly improve HX rate determination. 
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CHAPTER 4 

Comparing Hydrogen Exchange Models to Measured Experiments 

 

1. Introduction 

 The main chain amide hydrogens of protein molecules engage in continual 

exchange with the hydrogens of solvent water. Hydrogen exchange (HX) chemistry is 

well understood (1), and the HX rates of exposed amides in structureless polypeptides -- 

in any sequence, ambient condition, and isotope combination -- can be accurately 

predicted (2, 3) . Amide hydrogens in structured proteins can exchange far more slowly, 

over a great range of rates, that depend on and therefore can provide information about 

biophysical properties (structure, stability, dynamics, energetics) and functional 

properties (interactions, structure change, folding) resolved to the individual amino acid 

level. To most effectively exploit this rich source of information, it will be necessary to 

understand the determinants of HX behavior. The common presumption that the 

determinants are well understood is far from true. These uncertainties limit the 

interpretive power of the many structural and functional HX studies that are now being 

reported. 

 In formative work before the first protein structure had been solved, Linderstrøm-

Lang explored protein HX with the intention of looking for Pauling’s H-bonded helices 

and sheets. Lang took the view that the slowly exchanging hydrogens found by his group 

did indeed represent Pauling’s H-bonded structures. He proposed a simple 
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phenomenological model, namely that the exchange process requires structural protection 

to be relieved by some dynamic structural event that exposes the hydrogen to exchange 

(4–6). The picture is commonly represented as in Scheme 4.1 where kop and kcl are 

structural opening and reclosing rates, and kch is the chemical rate expected for freely 

exposed hydrogens (2). 

              kop                 kch 
Closed    ↔   open        →      exchange    Scheme 4.1 

                           kcl 

 It should be noted that this Scheme 4.1 is wholly kinetic in nature, providing no 

basis for distinguishing the closed and open states structurally. Over the years, the search 

for structural determinants of HX slowing has elicited a number of proposals. In general, 

prior workers have attempted top down strategies. Some broad structural determinant of 

HX rate is proposed and then an HX data base is tested for correlation with that factor. In 

order to examine these uncertainties we obtained a large HX data set for most of the 

amide hydrogens of the staphylococcal nuclease protein (SNase; Fig. 4.1). 

HX measurements were collected for the staphylococcal nuclease (SNase) mutant 

P117G/H124L. Assignments and 2H-1H experiments for this mutant were previously 

published (7). We have extended this analysis by measuring rapid 1H-1H exchange using 

the Cleanex-PM method (8). Combining these methods provided a nearly complete data 

set for the backbone amides in SNase (109 out of 143 backbone amide hydrogens and a 

Trp indole ring NH).  In addition to the raw rates, information regarding the pH 

dependence (7) and denaturant dependence (9) reveal the nature of the opening reactions 

that allow HX to occur. We use these data to test models previously proposed in attempts 
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to understand protein HX rates based on known structure and calculated properties. 

Intuitively-based penetration models suppose that protein surface (“solvent accessible”) 

hydrogens will exchange rapidly and that the slower exchange of more buried hydrogens 

depends on the entry of water or the HX catalysts, hydroxide and hydronium ion, into the 

protein matrix (reviewed in (6). Electrostatic field has been suggested to play a major role 

in modulating the HX rate of amides exposed to solvent at the protein surface (10–13). 

For more buried hydrogens, algorithms based on local interaction density (14, 15) and on 

segmental unfolding reactions (16, 17) have been developed. We find these models do 

not adequately explain SNase HX data. More realistic determinants of HX rates are 

proposed in Chapter 5 on the basis local context. 

2. Materials and Methods 

2.1 HX Rates 

 1H-1H exchange measurements were collected by Dr. W. Lim as described in 

Chapter 3. 2H-1H measurements were collected by Dr. S. Bédard (7). 
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Figure 4.1 Log kex vs pH. Lines are drawn with unit slope except for the slowest residues which were fit to 
eq. 4.1. 

 

 Measured HX rates as a function of pH are displayed in Fig. 4.1. The general HX 

behavior can be considered in terms of the Linderstrøm-Lang conformational kinetic 

model described in Scheme 1 (18). Once transient opening occurs, a kinetic competition 

ensues between exchange and reclosing. When structure is stable (kcl > kop) and reclosing 

is fast (kcl > kch), the measured exchange rate, kex, depends on the fraction of time open 

(exchange competent), equal to the equilibrium constant Kop, as in Eq. 4.1. This is the so-

called EX2, bimolecular exchange, case since the chemical exchange rate, kch, is 

proportional to the concentration of solvent HX catalyst, namely hydroxide ion over the 

pH range studied here. This dependence generates the unit slope of the rate – pH behavior 

in Fig. 4.1. 

    kex = Kop/(Kop + 1) kch  ~ Kop kch       Eq. 4.1 
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With increasing pH, kch increases and may exceed kcl. In this so-called EX1 case, kex 

reaches a limiting rate equal to kop. The slowest exchanging SNase hydrogens in Fig. 4.1 

exhibit an EX2 to EX1 transition, which will occur only for protected hydrogens when 

structural reclosing is slow relative to kch.   

 For EX2 exchange, hydrogen exchange rates are reported here in terms of the HX 

protection factor (Pf) as in Eq. 4.2.  

    Pf  = (Kop + 1)/ Kop = kch / kex     Eq. 4.2 

 

2.2 Structure-Based Calculations 

 Calculations were based on the SNase crystal structure 1SNO. Pro117 was 

mutated to glycine by deleting the extra atoms. Crystallographic waters were removed 

and hydrogens were added using CHARMM (19). Solvent accessible surface area 

(SASA) was calculated using Surfcv (20)  with a 1.4 Å rolling ball probe radius and 

CHARMM22 (19) atom radii.  

 Electrostatic Poisson-Boltzmann continuum dielectric calculations were 

performed with Qnifft (21, 22). The ΔpKa for each amide was calculated by subtracting 

the energy of the protein with that amide deprotonated from the energy of the reference 

state. We used the same parameters previously described by LeMaster (12, 13), namely 

CHARMM22 atomic radii and charge distribution, an internal dielectric of 3 and an 

external dielectric of 78.5. The probe size was set to 1.4 Å with a grid size of 193 and 

scaling was set to 3.0. Temperature was set to 298 K with a monovalent salt 
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concentration of 150 mM. Other crystal structures used for electrostatic calculations were 

1BQ8 (rubredoxin), 2PPN (FKBP12) 1LW6 (CI2) and 1UBQ (ubiquitin). 

Structure-based predictions for individual residue HX rates in SNase 

P1175/H124L were provided by M. Vendruscolo and by T. Liu, based on their previously 

published methods (15, 23, 24). 

 

3. Results and Discussion 

3.1 Solvent Accessibility 

 It is often stated that HX rates measure solvent accessibility, which leads to the 

expectation that protein surface hydrogens will exchange at rates close to those calibrated 

for amides in unstructured polypeptides. SNase observations are contrary to this view. 

Measured HX protection factors (Pf; Eq. 4.2) versus distance to the protein surface are 

displayed in Fig. 4.2. Some hydrogens on unstructured SNase segments at the N- and C-

termini do exchange rapidly, at their expected unprotected rates with protection factor ~1 

(log Pf ~ 0). However, other near-surface hydrogens exchange almost as slowly as the 

most deeply buried ones. Most of these are explained by protection due to hydrogen 

bonding on the solvent-exposed surfaces of regular secondary structures or loops. Other 

apparently unprotected hydrogens, but on structured segments, exchange more slowly 

than expected by factors between 2 and 40-fold. These are considered in Fig. 4.6 and in 

detail in Chapter 5.  
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In summary, whereas fast exchanging hydrogens that approximate the expected 

free peptide rate are placed only at the protein surface, many other hydrogens at the 

protein surface can exchange far more slowly. 

 

3.2 Solvent Penetration 

 A hypothesis related to the accessibility-dependent view is that slow exchange 

represents buried hydrogens and the HX process involves the penetration of water and/or 

hydroxide catalyst into the protein so that the rate-determining proton transfer event 

occurs within the protein matrix. Fig. 4.2 shows that many near-surface hydrogens, where 

the concept of penetration has little meaning, can exchange as slowly as buried ones. 

Also, HX protection has no significant dependence on depth of burial.  

 Further, many of the slowest hydrogens are known to exchange by way of 

unfolding reactions, both global and partial, rather than being reached in situ by incoming 

solvent species. This is indicated by the dependence of their exchange rate on GdmCl 

concentration (9). HX that occurs by way of a large unfolding reaction can be recognized 

by the observation of a sharp increase in HX rate with low concentrations of added 

denaturant (25). This occurs because denaturant promotes unfolding reactions, even 

under fully native conditions far below the melting concentration. In agreement, the 

unfolding reaction indicated for the slowest SNase hydrogens has a computed free energy 

equal to global unfolding (ΔGop = -RT ln Kop = -RT ln kex/kch = 10 kcal/mol) (7). Also, 

the HX rate for many very slow hydrogens is seen (Fig. 4.1) to roll over and approach 

pH-independent EX1 behavior at high pH (7). This behavior indicates unfolding reactions 
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that require > 1 msec to reclose. Thus the slowest SNase hydrogens, which should be 

prime candidates for exchange by way of a penetration mechanism, instead exchange by 

way of sizeable unfolding reactions that expose them to solvent.  

 If a penetration mechanism exists, these results limit the HX rate that it could 

mediate. It must be slower than the slowest hydrogens measured here, namely at least 8 

orders of magnitude slower than the structurally unhindered rate found for fully exposed 

amides.  

 

Figure 4.2 Protection factors as a function of distance from the amide hydrogen to the water-protein 
interface. Colors indicate the exchange reaction occurs by way of a large unfolding reaction (green), a local 
fluctuation (red), or that the exchange reaction could not be determined (black). Data collected by 1H-1H 
exchange are indicated as open circles. A distance of 1.32 Å is plotted for residues that did not appear in 
the crystal structure. 
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3.3 Electrostatic Effects on HX Rates 

3.3.1 Validating Electrostatic Calculations 

 Some unprotected amide hydrogens proximal to water at the protein surface 

exchange more slowly than freely solvent exposed amides by up to 40-fold. A more 

extreme result has been described by the LeMaster group who reported the retardation of 

exchange rates for apparently solvent accessible amides in several small proteins by up to 

a billion-fold (12). They attributed this behavior to electrostatic effects on the relative 

acidity of the amide. To test this possibility, they used Poisson-Boltzmann continuum 

dielectric calculations to evaluate the change in amide pKa values due to immediately 

local formal and partial charges. They plotted the calculated ΔpKa against measured HX 

rates, and fit a number of factors to improve the correlation. Only amides that have a 

solvent accessible surface area (SASA) ≥ 0.5 Å
2 were considered. It was assumed that 

this would ensure an unhindered rate of encounter with hydroxide catalyst, so that only 

the proton transfer equilibrium within the encounter complex, dependent on pKa, would 

come into play.  
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Figure 4.3 ΔG of deprotonation calculated by Qnifft compared to previously published ΔpKa calculations 
for rubredoxin (12). Published ΔpKa values were adjusted so that the slowest exchanging residue, Val38, 
was set to 0. The sign for published ΔpKa has presumably been reversed. ΔG is as reported by Qnifft. For 
both axes the offset should be considered arbitrary. 
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Figure 4.4 ΔG of deprotonation calculated by Qnifft compared to previously published ΔpKa calculations 
for CI2 (black) and FKBP12 (red; (26). ΔpKa scale was set relative to N-methylacetamide. 

 

 

Figure 4.5 ΔG of deprotonation calculated by Qnifft compared to previously published ΔpKa calculations 
for ubiquitin (13, 26). ΔpKa scale was set relative to N-methylacetamide. Published values were based on 
an extended NMR ensemble while our calculations were based on the crystal structure 1UBQ. 

 

We repeated electrostatic calculations for the proteins studied by the LeMaster 

group using their favored parameters. Our calculations for rubredoxin, CI2 and FKBP12, 

essentially duplicate their results (Fig. 4.3 and 4.4). The small deviations likely arise from 

differences in how hydrogens were added to the crystal structures. Much larger 

deviations were seen for ubiquitin calculations (Fig. 4.5). These differences likely arise 

because our calculations were performed on a crystal structure while LeMaster and 

coworkers calculated pKa values for ubiquitin using NMR-restrained ensembles (13). Not 

surprisingly, the ensemble based calculations match the measured HX rates better than 
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those calculated from a crystal structure. It is not clear why these calculations require the 

use of an ensemble for ubiquitin, but not for the other proteins studied by the LeMaster 

group. 

 

3.3.2 Applying Electrostatic Calculations to SNase 

The same calculations were applied to the slow amide protons on structured 

segments of SNase with computed amide H SASA > 0.5 Å2. These results are displayed 

in Fig. 4.6. The measured HX rates show no correlation with calculated electrostatic field. 

It is notable that the calculated pKa range corresponds to a kex range that is seven orders 

of magnitude wide, as before, but the observed range of HX rates spans less than three 

orders of magnitude. 

 

Figure 4.6 ΔpKa from electrostatic calculations vs measured HX rates for amides with >0.5Å
2 ASA. 
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 It is noteworthy that rate versus field correlations found in previous studies with 

other proteins (12, 26) depend heavily on a few very slow hydrogens that anchor the 

correlation curves. Is it possible that these hydrogens are structurally protected in some 

non-obvious way? In chapter 5 it is demonstrated that structurally bound water molecules 

protect a number of SNase amides from HX. When solvent is treated as a continuum, as 

in previous studies, the usual rolling ball SASA analysis will fail to distinguish near-

surface structurally-bound waters from free solvent. Prior work is considered from this 

point of view.   

 Analysis shows that some slowly exchanging hydrogens considered to be solvent 

exposed in previous studies are H-bonded to crystallographically defined water molecules 

held in place by specific protein interactions. In CI2 (26), the slowest supposedly 

unprotected hydrogen (Arg62) is H-bonded to a crystallographically defined water 

molecule that also H-bonds to a main chain carbonyl between two beta strands. Other 

slow amides (Val31, Ile44, Asp45) are H-bonded to waters that are also H-bonded to two 

main chain or side chain carbonyls. These waters could not be simply replaced with 

catalyzing hydroxide (27) without some structural adaptation, and therefore must offer 

protection against HX. Five of the remaining ten amides in CI2 that contribute to the rate 

- field correlation are in a loop that interacts with a neighboring protein in the crystal. 

This makes uncertain their local environment in the monomeric solution condition of the 

HX experiments and therefore the calculated field.  

 In rubredoxin (12), the very slowly exchanging Lys46 amide hydrogen is H-

bonded to a defined water molecule that is held also by H-bonding to main chain 

carbonyls. The Asp14 amide is H-bonded to a protecting water that is also H-bonded to a 
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main chain carbonyl and to a tyrosine side chain OH. The slowest hydrogen, on Val38, is 

H-bonded to a defined water molecule that is involved in a network of water molecules 

held in a cleft between Val38 and an external loop. In other cases where apparently 

exposed but slowly exchanging hydrogens help to anchor the field/rate correlation curve, 

the slow amides are also H-bonded to defined water molecules held in place by H-

bonding to protein groups.  

 The different water molecules in this list are often held in the protein structure by 

two other H-bonds, but in some cases the water binds to only one other protein group 

perhaps making the question of stable protection ambiguous. However, recent work 

suggests that hydroxide does not act as an H-bond donor (27), which suggests that 

hydroxide is unlikely to replace any water molecule that donates an H-bond to the 

protein. The protein - water interactions for the hydrogens that anchor the previously 

described rate-field correlation curves will naturally produce extreme values. They make 

exchange slow by blocking attack by hydroxide HX catalyst, and they ensure that the 

Poisson-Boltzmann calculation will compute a strongly unfavorable deprotonation 

environment. When the slowly exchanging hydrogens identified as structurally protected 

in this way are removed from the field/HX correlation curves only a much smaller range 

of HX rates due to clearly unprotected solvent exposed hydrogens remains and no 

correlation of HX rates with electrostatic field is apparent.  

Previous workers have found that exchange rates of freely exposed amides can be 

affected by and in some cases explained by local electrostatic effects (11, 28, 29). The 

question considered here is whether such effects account for the surprisingly large HX 

retardation seen for some protein surface amides. Considerations just described leave 
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uncertainty concerning the reality of the correlation inferred before. Some re-examination 

of factors in the analysis may be useful. This especially includes explicitly bound water 

molecules, but also the use of a 0.5 Å2 filter in a continuum water calculation to identify 

freely accessible hydrogens, and the use of an internal dielectric model for the protein 

with ε = 3 since the surprisingly large dynamic range calculated for pKa varies linearly 

with 1/ε (12). 

 

3.4 Packing Density 

 Vendruscolo and coworkers investigated the use of HX data to calculate the 

dynamic protein ensemble by including an additional potential energy term in their 

molecular dynamics calculation that biases the simulation to match a subset of known 

HX data (15, 23, 30). They hypothesized that HX rates are connected to structure by Eq. 

4.3. 

   ln Pf = BcNc + BhNh     Eq. 4.3 

For each amino acid amide, Pf is the HX protection factor (Eq. 4.2), Nc and Nh are, 

respectively, the number of contacts and the number of H-bonds. The B coefficients were 

optimized by comparing with known HX rates for a number of reference proteins (15, 

30). Fig. 4.7 shows that the HX results for SNase are not well correlated with local 

interactions in the structure as formalized in Eq. 4.3. 
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Figure 4.7 Measured log Pf vs log Pf predicted based on local packing density. Colors indicate cases where 
exchange is known to occur by a large unfolding reaction (blue), or local fluctuation (red), or if the 
unfolding reaction is unknown (black). The best fit line (black) to the entire dataset has an r2 of 0.26. 
Predictions were provided by M. Vendruscolo. 

  

 One reason that these predictions poorly correlate with measurements is that these 

calculations only take into account local structure while HX is known to occur through 

multiple mechanisms (31). Best and Vendruscolo pointed to this factor as the explanation 

for why their calculations grossly underestimate Pf values in CI2 for residues known to 

exchange by global unfolding (23). However, this explanation is not consistent with a 

model in which residues can exchange by multiple mechanisms with the fastest pathway 

dominating the measured rate. For residues that exchange by global unfolding one would 

expect the Pf values associated with their local fluctuation pathways to be even higher 

than the measured Pf rather than the other way around. 
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 Another reason for the less than ideal correlation is that coefficients were 

parameterized using HX data for which the exchange mechanism was unknown. This 

could explain why predictions do not fare better for residues known to exchange by local 

fluctuations than they do for the entire data set (Fig. 4.7). 

 Perhaps the most likely explanation is that Eq. 4.3 is not representative of the 

factors underlying local fluctuations. Based on Scheme 4.1 one can think of each amide 

existing in equilibrium between exchange competent conformations and protected 

conformations. If an equation is to accurately predict HX rates then it must somehow 

relate to the energetics underlying that equilibrium. Eq. 4.3 assumes that each contact 

made by the residue is equally valuable for protecting it from exchange except for the H-

bond, which has an extra weighting factor. This assumption breaks down for any 

structured residue whose backbone amide does not engage in an intramolecular H-bond 

(i.e. half of the residues on the edge of a β-sheet). In this case Eq. 4.3 would predict 

protection due to local contacts while Scheme 4.1 would predict no protection. Similarly, 

Eq. 4.3 takes into account the environment of the H-bond donor, but not the acceptor. 

Based on Scheme 4.1 one expects Pf to be independent of whether it is the displacement 

of the amide or the H-bond acceptor that exposes the amide to HX catalyst. Analysis 

described in Chapter 5 indicates that some residual slowing does occur when only the H-

bond acceptor is displaced, but that this slowing is limited to Pf <40. 
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3.5 COREX 

 Hilser and coworkers have developed the COREX algorithm for predicting the 

stability of each residue in a protein based on the native structure and the measured 

global stability (32, 33). This algorithm generates an ensemble of all possible states in 

which one or more regions of consecutive residues are unfolded. Each state is assigned an 

energy based on known thermodynamic parameters regarding the exposed surface area of 

the unfolded segments and the remaining protein. For standard COREX calculations a 

residue-specific stability is determined by summing the energy of the states in which the 

residue is in the native structure and dividing by the energy summation for all states in 

which the residue is unfolded. Recently, an additional step has been taken to relate 

COREX calculations to HX protection factors in what is now referred to as H-COREX 

(24). This extended algorithm functions similarly to the original COREX algorithm, but 

now accounts for the states in which a residue remains structured but is HX competent 

presumably due to unfolding of residues acting as its H-bond acceptor. This algorithm 

calculates Pf by dividing the number of states in which the residue is folded and protected 

by the number of states in which it is unfolded plus the number of states in which it is 

folded yet exposed (equivalent to 1/Kop). 

 Fig. 4.8 shows that the SNase HX data do not match the H-COREX predictions. 

One expects discrepancies to arise if the ensemble predicted by COREX does not match 

reality or if the criteria used to define the “structured yet exposed” states do not 

correspond to the exchange competent states. 
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Figure 4.8 Log Pf predicted by H-COREX vs measured log Pf. Colors indicate that exchange takes place 
by a large unfolding reaction (blue), a local fluctuation (red) or if the unfolding reaction is unknown 
(black). The best fit line (black) to the full dataset has an r2 of 0.52. Predictions were provided by T. Liu. 

 

 One limitation of COREX calculations is that a minimum window size must be 

used when generating the ensemble (typically six to eight residues). This prevents 

COREX from describing unfoldings that are smaller than the minimum window size. 

Many residues in SNase exhibit no measurable change in Pf in low concentrations of 

denaturant indicating that very little additional surface area is exposed when these 

residues access their exchange competent states (25). However, H-COREX does not fare 

any worse when predicting Pf for these residues than it does when predicting Pf for 

residues that exhibit significant denaturant dependence (Fig. 4.8). It should be noted that 

Hilser and coworkers expect COREX to be just as predictive for residues without 

denaturant dependence as it is for all other residues (16). The suggestion is that the fully 

folded state seen in crystal structures is rarely populated and that this state actually 

represents the average structure. They postulate that any given protein molecule is more 
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likely to have a small section of structure unfolded than it is for every residue to be in the 

folded state. The argument follows that these residues do not exhibit denaturant 

dependence because the surface area that is exposed when they exchange is 

approximately equal to the exposed surface area of the most populated states. However, it 

seems unlikely that the ensemble is predominated by partial unfoldings similar to those 

that expose these residues as their Pf values indicate that any given amide is exposed less 

than 0.1% of them time. A detailed structural analysis in the next chapter will reveal 

cases where the motions underlying exchange must be smaller than those assumed by 

COREX. 

 The ensemble generated by COREX will also deviate from reality when partial 

unfolding leads to non-native interactions or when the unfolded regions do not behave as 

random coils. Non-native interactions have been attributed to high protection factors in 

SNase (7) as well as other proteins. These interactions occur when an amide finds an 

alternative H-bond acceptor while its neighboring residues are unstructured. Similarly, 

local environment may prevent an unstructured segment from behaving as a random coil. 

This is particularly likely for residues near the folded-unfolded interface and for all 

residues in very short segments. For these residues, steric considerations will prevent the 

backbone from randomly sampling Ramachandran space, which could limit amide 

exposure or alter the intrinsic exchange rate (34). 

 Even if the COREX algorithm perfectly described the protein ensemble there is no 

guarantee that this ensemble is accurately translated into Pf. Any attempt to determine Pf 

from an ensemble will require an accurate structural description of the HX competent 

state. The phenomenological equation described in Scheme 1 is useful for interpreting 



 

104 
 

HX data, but it is silent regarding how to categorize structure as “open” or “closed.” The 

use of ASA calculations for this purpose may be an oversimplification given that protein-

solvent interactions cannot always be described by a continuum water model (35). The 

role of water molecules as protecting H-bond acceptors is explored in Chapter 5. 

 

4. Conclusions 

 The evidence against exchange in situ for both surface and buried hydrogens (Fig. 

4.2) favors a dominant role for dynamic structural perturbations in determining protein 

HX behavior, as in the general Linderstrøm-Lang model (Scheme 4.1). We find that even 

surface hydrogens often exchange slowly because they are protected by local structure, 

and they require dynamic perturbations that expose the hydrogen to attack by HX 

catalyst. Other information makes it clear that buried hydrogens require even more 

dramatic structural excursions to bring them into an exchange competent state. Up to 40-

fold slowing was observed for constitutively exposed residues, but was not explained by 

standard electrostatic calculations (Fig. 4.6). Predictions based on local contacts (Fig. 4.7) 

or on unfolding reactions (Fig. 4.8) each capture the general trend in HX rates, but do not 

predict Pf with a high degree of accuracy (r2 = 0.26 and 0.52 respectively). 

 Each of the methods tested here attempt to account for one facet of HX. A truly 

predictive method would need to be based on a model that accounts for all of the 

determinants of HX rates.  This work has inspired a re-examination of the factors 

underlying exchange which is discussed in the following chapter. 
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CHAPTER 5 

Interpreting Protein Dynamics from Hydrogen Exchange Data 

 

1. Introduction 

 The naturally occurring exchange of protein and water hydrogens depends on and 

therefore can provide detailed information about the biophysical properties and functional 

behavior of protein molecules (1). This capability is widely exploited in current protein 

studies (2–5). It is often conceived that the determinants of protein hydrogen exchange 

(HX) rates and behavior are well understood, but this is not true. The lack of detailed 

understanding diminishes the interpretive power of the many studies that are now being 

done.  

 In searching for the structural factors that determine HX slowing, prior workers 

have attempted top down strategies (described in (6). One hypothesizes some broad 

general determinant and then tests an HX database for correlation with that factor. To 

explain unexpectedly slow exchange at the protein surface, factors considered have 

included relative solvent exposure (7) and electrostatic field (8).  For more buried 

hydrogens, various hypotheses have considered solvent penetration into the protein (9), 

degree of burial, H-bonding (10, 11), local packing density (12), and transient unfolding 

reactions (13). In the previous chapter these different models were compared to a large 

HX data set that covers the entire HX range of the amide hydrogens of the well-studied 

protein, staphylococcal nuclease (SNase; (6). Predictive success was not impressive 

suggesting that multiple mechanisms are involved.  
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 The availability of detailed structural information and extensive HX data now 

makes it possible to pursue a more systematic examination. We take a bottom up 

approach and attempt to discern HX mechanism at an amino acid level by examining the 

HX behavior of many individually resolved SNase residues and their neighbor 

relationships (14). The α/β protein SNase is sufficiently large and varied that it provides a 

good sampling of the various possible HX mechanisms. The detailed HX information is 

supplemented by knowledge of the sensitivity of the exchange of SNase hydrogens to 

denaturant (15) and pH (16) which can be used to distinguish the relative size of 

structural excursions (17, 18).  All of this information together provides a resource for 

considering in some detail the static and dynamic factors that determine HX rates. The 

comparison of amino acid-resolved HX results and patterns in detailed structural context 

produces a closer view of the various modes by which dynamic local and larger protein 

motions can release structural protection, on scales ranging from a crankshaft motion 

about a pair of alpha carbons to the cooperative unfolding of the entire protein. 

 

2. Materials and Methods 

1H-1H exchange measurements were collected by Dr. W. K. Lim. HX rates were 

determined from these data as described in Chapter 3. 2H-1H measurements were 

collected by Dr. S. Bédard (16). Denaturant dependence was reported by Dr. J. Wrabl 

(15). Details regarding experimental conditions are described in Chapter 4. 

The SNase crystal structure 1SNO was used as the starting structure for analysis. 

The structure was mutated from H124L to P117G/H124L by deleting the extra atoms in 
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residue 117. Hydrogens were then added using CHARMM(19). The NMR structure set 

2KQ3 was used for comparison. Figures 5.2-5.8, 5.10 and 5.11 were created using 

PyMol. Crystal lattice analysis was done using Coot (20). 

An inventory of all possible hydrogen bonds was created using the broad criteria 

of maximum H-O distance of 3.5Å, minimum NHO angle of 100° and minimum HOC 

angle of 90°. This list was then reduced by inspecting the structure manually. 

 

3. Results and Discussion 

3.1 Hydrogen Bond Acceptor Types 

 The secondary structural elements of SNase include a distorted 5-stranded β-

barrel, three major α-helices, and connecting loops. Examination shows that almost all 

SNase amide hydrogens are involved in H-bonding, either to other protein groups or to 

water molecules. This seems to be true of proteins in general because the incorporation of 

a non-H-bonded amide incurs a cost of several kcals in stabilization free energy (21). Fig. 

5.1 presents an H-bonding inventory of SNase amides according to their H-bond 

acceptor, most often main chain or side chain groups of the protein. Some amides form 

H-bonds to a defined water molecule, which can be internal or can interact with bulk 

solvent. For a few surface amides, classified as exposed, no H-bonding partner or 

interacting water is well defined, presumably due to translocational freedom or lattice 

contacts.  
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Figure 5.1 Hydrogen bond inventory for SNase. Colors indicate amide hydrogens that exchange by way of 
a large unfolding reaction (green; high denaturant dependence and/or EX1 behavior), or a small local 
fluctuation (red; observed denaturant dependence about zero), or whether this information is not available 
(black). Amides that H-bond to solvent are categorized by whether they reside on unstructured or well-
structured segments. Open circles represent ambiguous cases. Among unstructured amides, the HX rate for 
Thr2, obtained only at pH 11.3, is unreliable. Contrary to x-ray analysis (Fig. 5.7), NMR shows Asn138 H-
bonded to the α2 helix (Fig. 5.10). HX rates and the presence of an interfering lattice contact suggest that 
the Gln80 side chain in fact protects Thr82 rather than Gln80. 

 

 Eight measured amides are in apparently unstructured segments near the protein 

termini that are not defined in the x-ray structure but do produce sharp NMR lines, 

indicating high structural mobility. They exchange at close to their expected freely 

exposed amide rate (22) with HX protection factor ~1 (log Pf  ~ 0). However, surface 

amides on structured segments, although H-bonded to solvent water, are slowed on 

average by ~10 fold (Pf range from 1.5 and 38). Amides protected by H-bonding to 

backbone carbonyls, side chains, or structurally incorporated water molecules all span 

essentially the whole HX rate range indicating that HX slowing is not determined by the 

H-bond type.  



 

114 
 

We find that hydrogens protected by H-bonding to other protein groups or internal 

waters cannot exchange at all, even when they are in direct contact with solvent (see 

below). One wants to understand the structural distortion reactions that allow exchange. 

Figs. 5.2 to 5.5 each show a region of the SNase structure, with H-bond donors and 

acceptors, and the measured log Pf of individual amide hydrogens. In many of these 

cases, examination of the pattern of exchange of neighboring residues indicates the 

deprotection motions. 

 

3.2 Structural Context 

3.2.1 Global unfolding 

 Fig. 5.2 shows one face of the 5-stranded SNase -barrel. Protecting H-bond 

acceptors include main chain carbonyls, a side chain carbonyl, and a crystallographically 

defined water molecule. Some conclusions about mechanism can be drawn. 
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Figure 5.2 HX protection pattern indicating global unfolding on one face of the SNase β-barrel. Standard 
colors and stick diagrams identify main chain atoms, superimposed on secondary structural elements and 
connecting loops diagrammed as background. For clarity Cαs are displayed as small spheres and the 
Asn100 sidechain is shown as thin sticks. H-bonds are displayed as dashed lines and amide donors are 
labeled. Log Pf is shown for each amide for which it could be determined. Color of Log Pf indicates that 
HX occurs by way of unfolding (green), local fluctuations (red), or unknown (black). The red sphere is a 
crystallographically defined water molecule. 

 

 The surface of the -structure is in direct contact with water. For example, the 

amide NHs of Lys9 and Met98 face into the solvent and exchange at near the free peptide 

rate. Nevertheless immediately neighboring amides, all at the aqueous surface, exchange 

more slowly by 10 million-fold. This behavior is shared by amides in varied structures, in 

-sheet and -helix, and they are protected by varied H-bonding, between  strands, 

within a helix, and even with a side chain (Asn100). Clearly, close proximity to solvent 
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does not ensure exchange. These results limit the rate of exchange by direct transfer to 

solvent HX catalyst (hydroxide) to < 10-8 M-1 s-1. 

 Exchange of the very slow hydrogens exhibits a sharp dependence on denaturant 

(15), suggesting a large scale unfolding. Many exchange with the same large protection 

factor (log Pf between 7.3 and 7.7), corresponding to an unfolding free energy of ~10 

kcal/mol, equal to the protein stability (16). Also, they exhibit EX1 HX at pH 8.5 and 

above(16), again indicating a large unfolding – slow refolding HX mechanism. The 

measured EX1 HX rate indicates a reclosing rate (~102 s-1) (16), close to the rate for the 

first folding phase in refolding from the denatured state (23). These results demonstrate 

that the exchange of the very slow hydrogens is mediated by the reversible global 

unfolding/refolding reaction under native conditions.  

 Despite being involved in similar structure, nearby amides H-bonded between 4 

and 1 exchange with varied faster rates (log Pf = 3.9 to 5.8), suggesting a number of 

smaller fluctuations. The fluctuations that expose the amide NHs of Val74 and Phe76 

involve their H-bond acceptors and not the amides themselves. This follows from the fact 

that peptide groups are rigidly planar. Displacement of the Val74 and Phe76 amide NHs 

would equally displace their carbonyls and deprotect the 3/4 interface amides, but this 

does not occur. The 4 main chain remains in place. Exchange seems to involve a fraying 

motion at the N-terminus of . In agreement, Val74 has zero dependence on denaturant, 

indicating exchange by a local fluctuation. Similar motions seem possible for the slower 

hydrogens in principle, but the data require that such modes can only provide even slower 

exchange than is observed. 



 

117 
 

 Note the contrast with the side chain of Asn100 which provides strong protection, 

presumably because it is rigidly held in place, packed between a sheet and a helix which 

are themselves well packed. Similarly, a water molecule provides HX protection for 

Phe76 (see also Fig. 5.8).  The degree of protection should not depend on the frequency 

of water dissociation but on the preferential equilibrium binding of H2O versus OH- (like 

Kop in Scheme 1). In this particular case, deprotection occurs not when the water leaves 

but when 1 frays, as discussed in section 3.2.4. 

 

3.2.2 Heterogeneous Unfolding in a Beta Sheet 

 Fig. 5.3 shows the opposite face of the -barrel, starting farther along the 1 

strand as it wraps around the barrel. As before, hydrogens are well protected by H-

bonding even though most of this surface is in direct contact with solvent, but here the 

HX pattern is more varied. Some of the hydrogens exchange very slowly, with denaturant 

dependence (15) and EX1 behavior (16) indicative of a concerted unfolding reaction 

(green), as before. Other immediately neighboring residues undoubtedly experience the 

same large unfolding but they show a diversity of faster rates. Some individual residues 

on 1 and 2 are much faster than their neighbors, pointing to exchange by way of local 

fluctuations in which the major strands remain in place. In agreement, the denaturant 

dependence measured for some of these residues is negligible (red).  
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Figure 5.3 Heterogeneous exchange in the SNase β-barrel. Identification scheme as described in Fig. 5.2. 

 Several amides -- Leu14 and Ala17 (1), and Thr33 (3) -- are fully exposed to 

bulk water. Gly20 (1) is bound to a water that is held by two side chains which, 

however, seem freely mobile. Protection factors are low, close to 10 in each case, 

indicating that solvent hydroxide has easy access to these amides but Pf values are larger 

than for hydrogens in unstructured segments, as in Fig. 5.1.  

 For Val23 the detailed motions that permit HX to occur can be inferred by the 

local context. The motion that breaks the protecting Val23 H-bond cannot involve most 

of its immediately neighboring residues as evidenced by their significantly higher Pf 

values. Given the high Pf of Arg35 and the rigid planarity of the peptide bond, the motion 

that exposes Val23 cannot involve the displacement of its H-bond acceptor. Similarly, the 

Pf values for Lys24, Phe34, and Leu36 indicate the Val23’s HX competent state does not 

disturb the H-bonds that protect its immediate neighbors in sequence. This strongly 
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suggests a crankshaft motion of the Thr22/Val23 peptide group about its two neighboring 

-carbons, which would expose the Val23 amide to solvent and would insert the Thr22 

carbonyl into the hydrophobic center of the β-barrel. The non-ideal interactions 

associated with this state help to explain why it is only populated 10-5 of the time. 

Why are local fluctuations similar to Val23 not seen throughout the β-barrel? The 

only remarkable characteristic about the Thr22/Val23 peptide group is that the carbonyl 

accepts two H-bonds. An identical situation can be seen for the Lys24/Leu25 peptide 

group, but Leu25 is much more protected and exchanges by way of a large unfolding 

reaction. These main chain similarities suggest that the difference depends upon their 

sidechains. Inspection reveals a pocket of large hydrophobic sidechains between Lys25 

and solvent is a pocket of long hydrophobic sidechains with the charged end of the Lys25 

sidechain acting as a polar cap (Fig. 5.4). In contrast, the surface near Val23 is relatively 

unencumbered by sidechains. A possible implication is that, even if the Lys24/Leu25 

peptide group experienced a similar motion, the Leu25 amide would remain protected 

from catalyst. 
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Figure 5.4 Sidechains between residues Val23 and Leu25 and solvent. 

 

3.2.3 Varied Exchange in Three α Helices 

 The three α-helices of SNase each exhibit different HX patterns. Fig. 5.5 displays 

each of these helices in the context of the entire protein. In α1, log Pf values seen for the 

H-bonded amides from residue 58 to 69 are 1.9, 3.1, nd, 4.4L, 5.7U, 6.7, 6.7U, 6.6U, 

7.0U, 7.2, 2.4, 4.0L, 1.7, with known local fluctuations (L) and known unfolding (U) 

noted (15, 16). H-bonded amides through the middle of the helical length, on both the 

aqueous and inner surfaces, show about the same Pf and a large denaturant dependence, 

indicating a cooperative unfolding reaction. The more N-terminal helical residues 

presumably participate in the same cooperative unfolding but they exchange through 
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some more facile opening reaction which produces a fraying progression. Interestingly, 

denaturant dependence is low, apparently due to small surface exposure in the fray. No 

fraying pattern appears at the α1 C-terminus; it is stabilized by a capping interaction (see 

Fig. 5.6).  

 

Figure 5.5 HX behavior in the SNase α-helices. The entire SNase molecule is shown.  Identification 
scheme as described in Fig. 5.2 

 

 In helix α2, residues 102 to 109 exchange by way of a large subglobal unfolding 

reaction, with high denaturant dependence but with measured ΔGop and calculated EX1 

kop rates smaller than for the global unfolding. Interestingly, no local fluctuational 

exchange is seen, unlike the other helices, perhaps because the α2 helix is packed 

between the other two helices. The N-terminal residues 99 and 100 intersect β5 (see also 
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Fig. 5.2) and appear to exchange only with the global unfolding (16), as for β5 and its 

neighbors. One expects α2 residues 99 and 100 will participate in the same cooperative 

subglobal unfolding as the rest of α2, but they instead appear to remain protected through 

the helix unfolding and exchange only when global unfolding occurs.   

In contrast, the H-bonded amides in helix α3 show disparate rates, and do not 

exchange by a cooperative helix unfolding. Log Pf observed for residues Glu122 to 

Leu137 are 4.7, 0.2, 1.3, 6.1, 6.3L, 4.2, 4.8L, 6.1, 4.8, 6.5, 6.2, 5.5, 5.0L, 5.0, 5.2. The α3 

residues show a mildly oscillating HX rate pattern that rises and falls with a rough helical 

periodicity apparently as the helical surface goes from buried (with α2) to solvent 

exposed and back again. The variability in Pf values is an indication that local 

fluctuations predominate. Arg126 is one of the most highly protected amides in SNase 

(log Pf = 6.3), yet its lack of denaturant dependence demonstrates it exchanges by way of 

a local fluctuation. The suggestion is that α3 unfolds as a cooperative unit less than 10-6.3 

of the time. In this case local fluctuations provide much faster HX pathways. 

A general principle for α-helices seems to be that the presence or absence of local 

fluctuations is determined by tertiary interactions. It should be noted that the presence of 

local fluctuations does not prevent helices from cooperative unfolding, but rather 

interferes with measuring this behavior by HX. The cooperative unfolding behavior seen 

for α1 and α2 is likely common to all helices including α3, though these reactions may 

occur infrequently for some helices due to their high stability. 
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3.2.4 Loops and Water 

 In SNase several loops serve to connect pieces of secondary structure and some 

loops are marginally stable. The backbone φ and ψ angles in loops occupy the same 

regions of Ramachandran space found in helices and sheets. The difference is that in 

loops these angles do not appear in regularly repeating patterns. Yet the H-bond 

requirements for backbone amides and carbonyls remain the same. For some residues 

these requirements can be fulfilled by other backbone atoms, but often sidechains and 

even water molecules are required. For a protein the size of SNase this can result in one 

or more water molecules being encapsulated within the protein. Several examples of HX 

behavior in loops, including those involving internal water molecules, are discussed in 

this section. 

 Fig. 5.6 displays HX behavior in the short α1/β4 loop. Three neighboring amides, 

two within the loop (Ala69 and Lys71) and one from an adjoining loop (Asp95), with 

varied H-bonding (backbone, side chain), have similar protection factors (log Pf = 4.0, 

3.8, 4.4) suggesting that they are exposed together by a concerted loop unfolding. The 

concerted unfolding of Ω-loops has been noted before (24) and may reflect a common 

dynamic loop mode. The loop residues exhibit low denaturant dependence indicating that 

HX occurs without exposing much additional surface area.  
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Figure 5.6 Cooperative motion in the α1/β4 loop. Identification scheme as described in Fig. 5.2  

 The amide NH of the intervening loop residue, Lys70, exchanges much faster (log 

Pf = 1.7), indicating a local motion in which the Ala69/Lys70 peptide group is separately 

exposed, apparently by a crankshaft rotation about the two neighboring alpha carbons or 

possibly by reorientation of the Asp95 sidechain. Other alternatives are ruled out by the 

slow exchange of the Lys71 and Lys97 amide NHs, and the rigidly connected 

Ala94/Asp95 peptide unit. These results also show that the Asp95 NH is exposed to 

exchange by the movement of its acceptor in the loop unfolding.  

 Fig. 5.7 shows residue interactions in the α2/α3 loop, the α1/β3 loop, and the near 

C-terminal region (residues 141 to 149 are unstructured). A defined water molecule is 

held in place by interactions with α3 and the α2/α3 loop. It is held in place by water 

donating H-bonds to two main chain carbonyls and accepting two others from the indole 
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ring NH of Trp140 and the amide NH of Ala109 (C-termini of α3 and α2, respectively). 

The Ala109 H-bond to the water is non-ideal, 4.4 Å N to O, but there is no other 

available acceptor. The local context indicates that neither of these hydrogens exchange 

by way of water diffusing in and out of the protein. Ala109 is highly protected (log Pf = 

7.0) and ultimately exchanges as part of a large unfolding unit, indicated by common 

equilibrium and kinetic parameters for the entire α2 helix. The indole ring NH is less 

protected and may exchange through the same local motion that exposes its similarly 

protected backbone (log Pf of 4.7 and 4.8).  

 

Figure 5.7 An internal water molecule and several loops. Identification scheme as described in Fig. 5.2. 
The high log Pf associated with Asn138 is explained by the NMR structure (Fig. 5.10).  

 

 The HX pattern in the α1/β3 loop is suggestive of cooperative motions. Residues 

Asp40 and Ala112 are similarly protected (log Pf = 4.8 and 4.4). They are surrounded by 



 

126 
 

another set of residues (Val39, Lys110, Val111) with similar protection (log Pf = 6.0, 5.8, 

5.9). If this pattern is the result of cooperative motion then it is not the type typically 

associated with unfolding. The motion suggested is one in which the two strands move 

apart while surrounding interactions remain intact. Alternatively, this pattern may arise 

by chance from unrelated, independent motions. 

 Asn138 is unprotected in the crystal structure, but has a significant protection 

factor (log Pf 2.6). This is explained by differences in the NMR structure, which is 

discussed below (Fig. 5.10). 

 Fig. 5.8 shows the long β4/β5 loop and its interaction with the near N-terminal 

segment. A number of interactions are mediated by water molecules. His8, proximal to 

the unstructured N-terminal segment (residues 1 to 5), H-bonds to a defined water, which 

is in direct contact with bulk, and protection is low (Pf < 2). The Phe76 water acceptor is 

strongly protecting even though it is only one water removed from bulk. The Asp77 

water acceptor is cut off from bulk water and offers strong protection. Both donate two 

H-bonds to the protein. Thus their replacement by hydroxide catalyst is disfavored. It 

would not fulfill the local H-bonding requirements and would require some structural 

reorganization.  
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Figure 5.8 Loops with internal waters. Identification scheme as described in Fig. 5.2  

3.2.5 Resolving Structural Ambiguities 

HX rates may help to resolve structural ambiguities. In the SNase x-ray structure, 

the Gln80 amide appears to be protected by its own side chain but solution HX finds it to 

be the least protected of all side chain-protected amides (Pf ~1; Fig. 5.1). The x-ray 

structure provides no H-bond acceptor for the neighboring Thr82, but solution HX data 

shows that it is the most protected (Pf ~1000) among exposed amides. Examination of the 

X-ray data reveals that Thr82 interacts with the side chain of a neighboring protein in the 

crystal lattice (Fig. 5.9). Both anomalies could be reconciled by the suggestion that the 

Gln80 side chain actually protects Thr82 in solution. The NMR structure provides no 

NOE information in this case. 
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Figure 5.9 Electron density map surrounding Thr82 shows that this residue is involved in a lattice contact 
with a sidechain from a neighboring molecule.  

 

Another ambiguous case involves Asn138, which appears to be H-bonded to 

external solvent in the crystal structure (Fig. 5.7). The measured log Pf of 2.6 is large 

compared to similar cases (Fig. 5.1) and seems more consistent with an amide that is 

engaged in an intra-molecular H-bond. Examination of the NMR structures (2KQ3) 

reveal Asn138 to be oriented such that it H-bonds to the Gln106 carbonyl in all 20 

structures (Fig. 5.10). 
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Figure 5.10 The protection factor of Asn138 (log Pf = 2.6) is consistent with the SNase NMR structure 
(PDB 2KQ3). This structure reveals that Asn138 is H-bonded to the carbonyl of Gln106. This reorientation 
relative to the crystal structure (Fig. 5.7) still permits Trp140 to H-bond to the carbonyl of Leu137, which is 
linked to Asn138 through the peptide bond. 

 

NMR models proved useful for resolving apparent conflicts between the crystal 

structure and HX data. However, it should be noted that the NMR structures were not 

without limitations of their own. This is especially true when water molecules are 

incorporated into the protein structure. Waters were not modeled into the NMR 

structures. Without these waters the force fields used to refine NMR models distort the 

structures in order to satisfy H-bond requirements. In the case of SNase neither X-ray nor 

NMR structures are completely consistent with H-bond requirements and HX 

measurements. Where discrepancies between X-ray and NMR structures exist, HX data 

can be used to determine which model is more consistent with the aqueous protein. 
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3.2.6 Local Fluctuations 

Residues with HX rates that are insensitive to low concentrations of denaturant 

have been said to exchange by way of local fluctuations (18). The lack of denaturant 

dependence implies that little additional surface area is exposed during the exchange 

reaction. Therefore it has long been assumed that such residues exchange by way of very 

local, independent motions likely limited to a single residue. Examination of HX in 

SNase provides the most detailed analysis of local fluctuations to date (14). 

Several examples provide insight into the size of local fluctuations. Val23 (Fig. 

5.3) demonstrates that local fluctuations can arise from the independent motion of a 

single residue, as has been suggested (25). Apparently cooperative motions are observed 

in other cases. Sequentially increasing Pf values were observed in the N-terminal region 

of α1 (Fig. 5.5), implying HX occurs by helical fraying. As the Pf values increase HX 

rates change from being insensitive to low denaturant concentrations to being denaturant 

dependent, suggesting that a fray must be of sufficient size before denaturant dependence 

is detectable. Similarly, the α1/β4 loop appears to exchange cooperatively, even though 

denaturant dependence is not detectable (Fig. 5.6). From these observations we can 

deduce that denaturant dependence can be undetectable for cooperative unfolding 

reactions as long as they are sufficiently small (approx. 4 residues). 

Some general conclusions can be drawn from the overall pattern of local 

fluctuations in SNase (Fig. 5.11). Local fluctuations are seen throughout SNase, but are 

found predominantly near the edges of secondary structure. This observation is consistent 

with a model in which the measured HX rate arises from a competition between local 
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fluctuations and larger unfolding reactions. Interactions that restrict local motions will 

bias a residue toward HX by way of unfolding. Restrictive contacts are more common for 

residues surrounded by stable secondary structure. It should be noted that proximity to 

the edge of secondary structure does not necessarily correspond to nearness to the protein 

surface, which does not strongly correlate with Pf (Fig. 4.2). This point is best illustrated 

by fraying in α1 where Pf increases with the number of residues from the N-terminus 

while distance to surface oscillates with residue number. 

 

Figure 5.11 Exchange mechanisms displayed on the structure of SNase. Colors indicate residues known to 
exchange by large unfolding (red), by local fluctuations (blue), and residues for which the HX mechanism 
is unknown (green). 

 

Algorithms used to predict HX rates were discussed in Chapter 4. The H-COREX 

algorithm (26) calculates the probability of unfolding for each residue based on the 
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energy of all states in which a fragment containing that residue is unfolded relative to the 

energy of all states in which that residue is folded. This information is then translated into 

Pf by considering a residue to be HX competent if either the residue or its H-bond 

acceptor is unfolded. 

It has been argued that the COREX-based method should account for all HX rates 

including those arising from local fluctuations (27). The suggestion is that what is seen as 

local fluctuations actually arise from the combination of many larger unfolding of various 

sizes. The lack of observed denaturant dependence is explained using the idea that the 

fully structured protein actually makes up a very small percentage of protein population. 

The argument is that the population is dominated by proteins that are partially unfolded, 

but, since experiments typically measure the average structure, these partial unfoldings 

are masked. 

However, this argument fails to account for the observation that many residues 

that exchange by local fluctuations have significantly lower Pf values than their 

immediate neighbors. The COREX algorithm assumes that all unfolding reactions 

include multiple consecutive residues. Given this restriction, a residue will have the 

lowest Pf value relative to its two immediate neighbors when this residue is the only 

residue that is contained in two equally probable unfolding reactions, one including its 

upstream neighbors and the other including its downstream neighbors. In this case the 

central residue would have a Pf that was half that of its immediate neighbors. Yet in 

SNase many cases can be seen in which a single residue or a short segment of 

consecutive residues have Pf values at least two orders of magnitude lower than 

immediate neighbors (Table 5.1). 
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Table 5.1 SNase protection factors. Abbreviations for acceptor types are unstructured (un), structured but 
exposed to solvent (ex), backbone carbonyl (bb), sidechain (sc) and internal water (wa). 

Residue Measured 
log Pf 

Exchange 
reaction Acceptr Residue Measured 

log Pf 
Exchange 
reaction Acceptr 

Thr2 -1.1  un Arg87 4.61  sc 
Lys5 0.43  un Gly88 4.91 local bb 
Leu7 0.38  ex Leu89 5.08 local bb 
His8 0.19  ex Ala90 7.49 denat EX1 bb 
Lys9 0.88  ex Tyr91 7.66 denat EX1 bb 
Glu10 3.90  bb Ile92 7.51 EX1 sc 
Ala12 4.95  bb Tyr93 7.53 EX1 bb 
Thr13 4.37 local bb Ala94 7.64 denat EX1 bb 
Leu14 1.37  ex Asp95 4.42 local bb 
Ile15 5.04  bb Gly96 1.26  ex 
Lys16 4.19 local bb Lys97 5.74  bb 
Ala17 1.01  ex Met98 0.28  ex 
Asp19 4.16  bb Val99 7.32 denat EX1 bb 
Gly20 1.33  wa Asn100 7.48 denat EX1 sc 
Asp21 4.60  sc Glu101 7.60 EX1 sc 
Thr22 4.68  bb Ala102 7.13 EX1 bb 
Val23 4.99 local bb Leu103 7.36 EX1 bb 
Lys24 6.71 denat bb Val104 7.23 EX1 bb 
Leu25 7.55 denat EX1 bb Arg105 7.17 EX1 bb 
Met26 6.86 denat bb Gln106 7.38 denat EX1 bb 
Tyr27 4.60  bb Gly107 7.12 denat EX1 bb 
Lys28 0.49  ex Leu108 6.57 denat EX1 bb 
Gly29 1.17  ex Ala109 7.04 EX1 wa 
Gln30 5.17  bb Lys110 5.77  bb 
Met32 6.96  bb Val111 5.90  sc 
Thr33 1.09  ex Ala112 4.38 local bb 
Phe34 7.48 denat bb Asn119 1.70  sc 
Arg35 7.62 EX1 bb Thr120 2.89  sc 
Leu36 6.37  bb Glu122 4.68  bb 
Leu37 7.30 denat EX1 bb Gln123 0.20  ex 
Val39 5.95  bb Leu124 1.25  ex 
Asp40 4.77 local bb Leu125 6.08  bb 
Ala58 1.92  bb Arg126 6.29 local bb 
Ser59 3.08  bb Lys127 4.24  bb 
Phe61 4.44 local bb Ser128 4.76  bb 
Thr62 5.73 denat bb Ala130 6.05  bb 
Lys63 6.70  bb Gln131 4.79 local bb 
Lys64 6.73 denat bb Ala132 6.52  bb 
Met65 6.57 denat bb Lys133 6.21  bb 
Val66 6.97 denat bb Lys134 5.52  bb 
Glu67 7.20  bb Glu135 5.02 local bb 
Asn68 2.35  bb Lys136 5.06  bb 
Ala69 3.95 local bb Leu137 5.23  bb 
Lys70 1.70  sc Asn138 2.57  ex 
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Residue Measured 
log Pf 

Exchange 
reaction Acceptr Residue Measured 

log Pf 
Exchange 
reaction Acceptr 

Lys71 3.79 local sc Ile139 5.05  bb 
Ile72 1.58  ex Trp140 4.80  bb 
Glu73 7.55 denat EX1 bb Ser141 4.50  bb 
Val74 5.78 local bb Asn144 0.47  un 
Glu75 7.65 EX1 bb Ala145 0.09  un 
Phe76 3.88  wa Asp146 0.16  un 
Asp77 4.61  wa Ser147 -0.22  un 
Gln80 0.06  sc Gly148 0.32  un 
Thr82 2.93  ex Gln149 -0.35  un 

Asp83 4.35  bb Trp140 
sc 4.68  wa 

Gly86 2.75  bb     
 

3.3 Modeling HX behavior 

In the previous chapter several models were used to predict SNase HX Pf values. 

None of these predictions matched measured HX rates with high accuracy. The 

observations considered above suggest several factors that must be accounted for in an 

accurate HX model. 

 

3.3.1 Accuracy of kch 

HX rates were originally understood based on reaction Scheme 5.1 where kop and 

kcl are structural opening and reclosing rates, and kch is the chemical rate expected for 

freely exposed hydrogens (10). 

                    kop                 kch 
  Closed    ↔   open        →      exchange       Scheme 5.1 

                                  kcl 

Whenever kcl is fast relative to kch (EX2), Pf can be described by eq. 5.1 
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Pf  = kcl/kop + 1 = kch / kex               Eq. 5.1 

This phenomenological description of HX rates is largely consistent with observations for 

SNase. However, this model fails to explain the relatively modest slowing observed for 

amides that are exposed to solvent in static regions of the protein (Fig. 5.1). For these 

residues the concept of opening and closing rates has little meaning so based on Scheme 

5.1 one expects kex to equal kch. The fact that these rates don’t match within experimental 

error suggests that kch rates for structured segments do not match kch rates calculated for a 

random coil (22). It may be that the amide pKa is dependent upon backbone conformation 

(28) and sidechain (29) conformation, even though electrostatic calculations do not 

correlate with observed rates in SNase (Fig. 4.5; (6). 

The implications of incorrectly calculating kch extend beyond amides that are 

constitutively exposed to HX catalyst. Any time the actual kch does not match the 

predicted kch there is a danger of attributing the slowing to the equilibrium factor Kop. 

This could occur when an amide remains structure but is exposed to catalyst due to the 

displacement of its H-bond acceptor. Similarly, when residues in a short segment unfold 

they may be restricted to a subset of Ramachandran space and therefore not exchange as 

they would in a random coil. This uncertainty may account for the spread in Pf values 

observed for many cooperative unfolding units. Fortunately the differences in Kop 

between these unfolding units are often larger than the range of kch uncertainty (40-fold 

in SNase). 
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3.3.2 The HX Competent State 

Scheme 5.1 provides a general framework for interpreting HX rates, but it is silent 

regarding the nature of the open and closed states. Figure 5.1 demonstrates that Pf is 

independent of H-bond acceptor type, which means that an amide cannot be considered to 

be in the open state on the basis that it is accessible by water. Observed pH dependence 

(Fig. 4.1) indicates that, at physiological pH, the open state can be considered any 

conformation in which the amide is accessible to hydroxide. 

The subtle differences between water and hydroxide hydrogen bonding patterns 

have significant implications at the protein surface. Evidence suggests that hydroxide 

accepts four hydrogen bonds in a planar arrangement and cannot offer its one proton as 

an H-bond donor (30). Thus any structure that cannot accommodate this arrangement will 

preferentially exclude hydroxide. 

 

3.3.3 Multiple Exchange Pathways 

It is clear from the data presented here that HX rates result from structural 

distortions of various sizes ranging from a single peptide group (Fig. 5.5) to secondary 

structure units (Fig. 5.3) to global unfolding of the entire protein (Fig. 5.2). The measured 

HX rate will be dominated by the most favorable opening event. In principle, all 

distortions and their relative populations could be modeled by all atom simulations such 

as molecular dynamics calculations. In practice, the necessary computational time is 

prohibitive and the ensembles generated by such calculations do not always match 

reality. An alternative approach is to determine ΔG for each distortion by calculating the 
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energy of the native structure relative to the hydroxide accessible state. Previous attempts 

at this approach have focused on either local fluctuations (12, 31) or larger unfolding 

reactions (32), but not both. 

 

4. Conclusions 

 The present chapter describes a systematic examination of detailed highly 

resolved HX data in light of the detailed structure of the sizeable α/β SNase protein. The 

results emphasize the importance of H-bonding for providing structural protection and of 

transient structural dynamics in separating the protecting H-bond by displacing the donor 

itself or the acceptor and exposing the hydrogen to solvent catalyst.  

 Some detailed insights emerge. A new complexity is found for unprotected 

hydrogens exposed to solvent on the surface of structured regions where kch can be 

slower than the random coil expectation by as much as 40-fold (Fig. 5.1). For structurally 

protected hydrogens, the degree of HX protection does not simply depend on surface 

exposure, depth of burial(6), or on the acceptor type which can be a main chain carbonyl, 

a side chain, or even a bound water. The degree of protection by each kind of acceptor 

covers the entire range of energetics. It depends on the interaction network that needs to 

be disrupted to make the hydrogen available for attack by solvent catalyst. Weakly 

supported surface-exposed side chains provide less protection than well supported buried 

ones, and the same is true of defined water molecules, but surface-exposed main chain 

interactions in regular secondary structure can provide strong protection.  
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 Detailed exposure reactions can often be recognized by the HX patterns they 

produce. In the case of local fluctuation pathways, immediately neighboring hydrogens 

can experience very different HX rates. Individual hydrogens can exchange by 

uncooperative local fluctuations even when they are embedded within a large unfolding 

reaction, allowing individual amides, or small sets of amides in the case of edge fraying, 

to exchange more rapidly. Exposure can result from displacement of either the amide 

itself or its acceptor. Local fluctuations are not limited to surface-exposed sites. The 

connection of local fluctuational HX with a lack of denaturant dependence was 

supported. 

Stable supporting interactions act to suppress local fluctuations and favor HX by 

unfolding reactions, including global and cooperative subglobal reactions. In these cases, 

contiguous sets of hydrogens are seen to exchange with the same protection factor (EX2 

regime), and even with the same unfolding and refolding rates (EX1 regime), identifying 

the protein segments that participate in the cooperative unfolding. Subglobal unfolding 

reactions are seen to involve helices, loops, and parts of β-structure. Large unfolding 

reactions are not preferentially limited to deeply buried sites, although global unfolding is 

often taken to identify the protein “core”. The connection of high denaturant sensitivity 

with large unfolding was supported. 
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CHAPTER 6 

The Mad2 Conformational Transition 

 

1. Introduction 

The metamorphic protein Mad2 acts as a molecular switch in the checkpoint 

mechanism that monitors proper chromosome attachment to spindle microtubules during 

cell division. The remarkably slow spontaneous rate of Mad2 switching between its 

checkpoint inactive and active forms is catalyzed onto a physiologically relevant time 

scale by a self–self interaction between its two forms, culminating in a large pool of 

active Mad2. Structural, biochemical, and cell biological advances suggest that the 

catalyzed conversion of Mad2 requires a major structural rearrangement that transits 

through a partially unfolded intermediate. 

 

1.1 Mad2 Function 

The essential goal of mitosis is the equal distribution of sister chromatids into 

genetically identical daughter cells (1, 2). Chromosome segregation is directed by the 

centromere, a locus epigenetically defined by a specialized chromatin domain marked by 

nucleosomes in which the histone variant CENP-A (centromere protein A) replaces H3 

(3). The kinetochore, an enormous protein assembly consisting of >80 known proteins, 

assembles upon the centromere of each chromatid and connects to microtubule-based 

fibers that extend from opposite poles of the mitotic spindle. Accurate kinetochore 

attachment to the spindle is monitored by a diffusible checkpoint signal termed the 
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mitotic checkpoint (also referred to as the spindle assembly checkpoint; (4, 5). The 

checkpoint inhibits mitosis, halting progression to anaphase until all chromosomes are 

aligned on the metaphase plate and every kinetochore is properly attached to the spindle 

(Fig. 6.1A). 

On and off switching of the mitotic checkpoint must be fast and definitive 

because either a weak checkpoint or an asynchronous metaphase to anaphase transition 

leads to irreversible missegregation of one or more chromosomes. The checkpoint must 

be active upon entry into mitosis and sufficiently robust so that checkpoint activation is 

maintained if even a single kinetochore remains unattached to the spindle (Fig. 6.1B). 

After proper spindle attachment to all kinetochores, the checkpoint rapidly inactivates to 

allow for the destruction of mitotic targets (e.g., cyclin B and securin), which leads to 

synchronous chromosome separation and segregation. Inappropriate early inactivation of 

the checkpoint produces lethal chromosomal missegregation (6, 7). However, a 

functional mitotic checkpoint is required for tumor cell death resulting from treatment 

with microtubule toxins such as taxol that are widely used in the clinic (8). It is not clear 

how rapid checkpoint silencing occurs, though several pieces of evidence have emerged 

(9). 



 

146 
 

 

Figure 6.1 The mitotic checkpoint ensures equal partitioning of chromosomes in anaphase. (A) A human 
tissue culture cell progressing through mitosis with time indicated in minutes. In the top row, chromosomes 
(green) are overlaid with a differential interference contrast image of the entire cell. Sister chromatids align 
at the metaphase plate early in mitosis and wait for ∼20 min before chromatid separation in anaphase. 
Upon final chromosome alignment, the mitotic checkpoint signal decays, allowing the cell to enter 
anaphase and initiate simultaneous separation of sister chromatids. (B) The mitotic checkpoint signal, 
comprised in part by a diffusible pool of C-Mad2, emanates from kinetochores that have not yet properly 
engaged the microtubule-based spindle. A single unattached chromosome is sufficient to generate a 
checkpoint signal that arrests mitosis before anaphase. (C and D) Interconversion between inactive O-Mad2 
(O-Mad2ΔNΔC; PDB 1DUJ; (10) and checkpoint-active C-Mad2 (C-Mad2ΔN; PDB 1S2H; (11) involves a 
major secondary and tertiary structural reorganization of N-terminal (blue) and C-terminal (red) segments. 
(E) Unattached kinetochores contain the checkpoint protein Mad1, which recruits C-Mad2, providing a 
catalytic surface for the conversion of the soluble pool of inactive O-Mad2 to active C-Mad2. C-Mad2 is 
able to bind and inhibit Cdc20 within the MCC, halting progression to anaphase. The Cdc20–C-Mad2 
complex may also act to catalyze conversion of the O-Mad2 pool, although this aspect of Mad2 signaling 
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remains controversial (4, 12). (B and E) Chromosomes are drawn in green with their kinetochores drawn in 
red. 

 

The Mad2 protein is a centrally important regulator of the mitotic checkpoint 

machinery. Its activity is controlled by switching between its two different native 

conformations, open Mad2 (O-Mad2; Fig. 6.1C) and closed Mad2 (C-Mad2; Fig. 6.1D; 

(11, 13). Before checkpoint activation, freely diffusible monomeric Mad2 is thought to 

exist largely as O-Mad2, its inactive conformation, as is common for many regulatory 

proteins. Conformational conversion from inactive free O-Mad2 to active free C-Mad2 is 

catalyzed by a self–self interaction, namely by binding to the C-Mad2 subunit of a 

Mad1–C-Mad2 complex (10, 14, 15) anchored at kinetochores that are not yet properly 

engaged with a spindle (Fig. 6.1E; (16–18). Purified Mad1-bound Mad2 is known to 

catalyze the O-Mad2 to C-Mad2 transition in the absence of any other effector molecules 

(19). Recent research has supported this model in vivo (20). Newly converted Mad2 

releases from the kinetochore and blocks premature progression to anaphase by binding 

to and deactivating Cdc20 in conjunction with other essential checkpoint proteins 

(including BubR1 kinase and Bub3) as part of a mitotic checkpoint complex (MCC; Fig. 

6.1E; (21, 22). Although the checkpoint remains active, the inhibition of Cdc20 by C-

Mad2 serves to restrain an E3 ubiquitin ligase known as the anaphase-promoting 

complex/cyclosome (APC; Fig. 6.1E; (4, 5). Once all kinetochores have properly 

attached to the spindle, Mad2 deactivates and releases Cdc20, allowing it to bind and 

activate the APC. APC–Cdc20 ubiquitinates several key mitotic substrates, including 

securin and cyclin B, leading to their removal by the proteasome and initiation of the 

metaphase to anaphase transition. 
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Mad2 differs strikingly from most regulatory proteins. Other proteins that change 

structure drastically, known as metamorphic proteins (23), require the selective 

stabilization of their intrinsically less stable active form through substrate binding, 

chemical modification, or environmental change. There is now some evidence that 

phosphorylation may play a role in Mad2 regulation (24), but this regulation is not 

strictly required for intercoversion to take place. For Mad2, the structural changes from 

the inactive form to the active form are unusually large (Fig. 6.1C,D) and remarkably 

slow (11). Furthermore, Mad2 is found initially out of equilibrium in its inactive form (O-

Mad2) even though its active form (C-Mad2) is the more stable conformation (11). Thus, 

checkpoint activation simply requires Mad2 to reach its equilibrium distribution. These 

properties raise key questions about the mechanism of mitotic checkpoint regulation. 

How do effector molecules modulate the rate of Mad2 interconversion? Could Mad2 

regulation involve kinetic trapping in one of its two conformational states? Do transient 

conformational intermediates play a functional role?  

 

1.2 Mad2 Structural Rearrangement 

It has been reported that the spontaneous Mad2 activation reaction, O-Mad2R133A 

to C-Mad2R133A, proceeds with a lifetime of 9 hr; the reverse reaction is six fold slower 

(11)! These unusually slow interconversion rates stem from the magnitude of the 

structure change, which involves a complete rearrangement of the secondary and tertiary 

structure of ~60 out of 205 amino acids. In O-Mad2, the N-terminal segment forms a 

long loop and a short β strand (β1) that connects to the static core (Fig. 6.1C). In the 
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transition to C-Mad2, this segment loses its β conformation and reconfigures, adding two 

more turns to the αA helix (Fig. 6.1D; (11, 14, 25). The C terminus undergoes an even 

more dramatic change. In O-Mad2, the C-terminal segment forms strands β7 and β8 (and 

connecting loops) that dock onto the static core β6 strand. In C-Mad2, the whole segment 

moves to the opposite side of the major β sheet and forms two new strands, β8′ and β8″, 

with a completely different hydrogen-bonding network. Overall, the transition to the C-

Mad2 conformer relocates the N-terminal segment to make room for the incoming C-

terminal segment, the displacement of which exposes an extended active site that is 

occluded in O-Mad2.  

The Mad2 active site is tailored to interact with both its upstream activator Mad1 

(Fig. 6.2A) and its downstream target Cdc20 (14, 25). Although Mad1 and Cdc20 appear 

to be otherwise unrelated, their Mad2-interacting regions are highly homologous and can 

be mimicked by a synthetic 12-residue consensus sequence peptide (Mad2 Binding 

Peptide 1 [MBP1]; Fig. 6.2B; (25). These partners bind by incorporating into the major 

Mad2 β sheet as a single β strand, interacting with the β6 strand and a new β7′ strand that 

forms upon the binding (10, 14, 25). As shown in Figure 6.2A and B, they actually thread 

through the C-Mad2 sheet like links in a concatenated chain. Once Mad1 binds to Mad2, 

it forms a very stable complex with no detectable turnover in 4 min, as detected with 

purified components by FRAP (15), correlating with earlier cell-based FRAP 

measurements of the hyperstable pool of kinetochore-bound C-Mad2 that is presumably 

bound to Mad1 (26). Recently, it has been discovered that Mad2 also binds shugoshin-2 

(Sgo2) in a similar manner as part of its function in regulating meiosis (27). 
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For the sake of simplicity, it is often stated that C-Mad2 itself is competent to 

bind Mad1 or Cdc20. However, in this binding reaction, Mad2 must expose a binding 

site, load its binding partner, and lock it in place. This implies that binding to either Mad1 

or Cdc20 requires a substantial local rearrangement of Mad2 structure (19, 28). Although 

the possibility exists that Mad1 and Cdc20 may themselves unfold, thread through the 

Mad2-binding loop, and refold, partial unfolding of Mad2 seems more likely, especially 

since the O-Mad2 to C-Mad2 conversion appears to require a similar partial unfolding. In 

this view, a partially unfolded intermediate form of Mad2 would be required for Cdc20 

binding and APC inhibition. 

 

1.3 Conformational Switching Models 

On time scales relevant to cell biology, the great majority of biomolecules assume 

their equilibrium distribution among alternative conformations, and their rates of 

interconversion can be safely ignored. However, the spontaneous O-Mad2 to C-Mad2 

conversion rate (many hours) is clearly inadequate for the rapid checkpoint activation 

required to inhibit anaphase immediately upon mitotic entry. The conversion of freely 

diffusible O-Mad2 is catalyzed by its self-interaction with the C-Mad2 partner of the 

kinetochore-bound Mad1–C-Mad2 complex (Fig. 6.2C). How is this catalytic event 

accomplished? Thermodynamic principles dictate that molecular binding partners 

promote structure change in allosteric proteins by binding more strongly to the favored 

form. Two common structure change models exist. Association may promote the 

structure change by sacrificing some of its binding energy to forcefully distort the protein 
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conformation (induced fit model), or selection may occur among preexisting dynamically 

cycling protein conformations by more strongly binding to and thereby trapping the 

preferred partner (conformational selection model).  

 

 

Figure 6.2 Mad2 containing complexes. (A and B) The displacement of the C-terminal segments in C-
Mad2 exposes a new β sheet edge that can incorporate Mad1 (A; PDB 1GO4; (14)), Cdc20, or the synthetic 
peptide MBP1 (B; PDB 2V64; (28) between newly exposed β6 and newly formed β7′. In the crystal 
structure of the MBP1 bound C-Mad2–O-Mad2LL (B), asymmetrical dimerization occurs mainly through 
the unaltered core of Mad2 (gray to tan) but also includes the β8′ strand that is unique to C-Mad2 (coloring 
as in Fig. 6.1C). O-Mad2, the form undergoing conversion (tan), interacts with C-Mad2 only through its 
unchanging core. (C) A reaction scheme for Mad2 catalysis. Mad2 (red) represents the molecule 
undergoing conversion. Uncatalyzed Mad2 interconversion proceeds far more slowly (lifetime >9 h; (11) 
than the duration of metaphase (∼20 min). The Mad2 structural rearrangement is catalyzed by binding to 
the Mad1–C-Mad2 complex. In this reaction scheme, catalysis by induced fit would increase the forward 
O-Mad2→C-Mad2 rate, whereas the conformational selection of C-Mad2 would reduce the reverse O-
Mad2←C-Mad2 rate. It is unknown whether Mad2 releases from the Mad1–C-Mad2 dimer as fully folded 
C-Mad2 or as a partially unfolded intermediate.  
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If the O-Mad2 to C-Mad2 conversion is catalyzed by induced fit, the structure of 

Mad2 in the catalytic complex should display the activation mechanism. Mapelli et al. 

crystallized a valid replica of the Mad1–C-Mad2–O-Mad2 catalytic complex (Fig. 6.2B; 

(28). The O-Mad2 subunit was trapped in the open conformation by shortening the loop 

connecting the β5 strand to the αC helix. The O-Mad2 loopless mutant (O-Mad2LL) was 

dimerized with a C-Mad2 molecule that was bound in turn to the synthetic activation 

peptide MBP1 to make a stable MBP1–C-Mad2–O-Mad2LL complex. The crystal 

structure of the complex reveals that the dimerization surface of O-Mad2, the form 

undergoing conformational change, only involves segments that are not substantially 

altered upon the O-Mad2 to C-Mad2 switch. Thus, it does not appear that the interaction 

would serve to forcefully induce the transition, providing evidence against an induced fit 

mechanism.  

In the case of a conformational selection mechanism, one can expect that the 

catalyzing kinetochore-bound Mad1–C-Mad2 complex would favor the closed form of 

the substrate Mad2 molecule by binding to sites that are specific for C-Mad2. In fact, the 

C-Mad2–C-Mad2 complex does involve some of those sites (19). However, 

conformational selection alone does not increase the rate of conversion to the target 

structure; rather, it stabilizes the selected form by decreasing the reverse rate. Therefore, 

conformational selection of C-Mad2 can be effective only if conformer sampling (O-

Mad2 to C-Mad2) is appropriately fast. If rapid conformational sampling occurred 

naturally, catalysis would not be necessary because the target C-Mad2 is actually the 

more stable form (11), ruling out conformational selection of C-Mad2 (Fig. 6.2C). In 
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summary, available crystal structures elegantly display the static Mad2 dimerization 

interface, but they do not suggest a mechanism to explain how the C-Mad2–O-Mad2 

interaction catalyzes the O-Mad2 to C-Mad2 transition. 

 

1.4 An Unfolding Model for Mad2 Conformational Change 

It is hard to envision how any kind of straightforward conformational conversion 

(e.g., by a hinging or rigid body motion) could accomplish the major structural 

rearrangement between the two natively folded Mad2 forms. Rather, the conformational 

rearrangement is so extensive that it seems to require a significant unfolding of Mad2 to 

some transient high energy intermediate followed by kinetic partitioning between the two 

alternative forms upon refolding. Similarly, the fact that the main chain of Mad1 and 

Cdc20 actually threads through the major β sheet of C-Mad2 seems to require some 

transitional partially unfolded intermediate from which the C terminus could refold 

around the ligand.  

A precedent for conformational change through partial unfolding can be found in 

the much smaller cytochrome c alkaline transition. At an elevated pH, the residue ligated 

to heme is switched from Met80 to the neighboring Lys79. Rather than simply shifting 

over by one amino acid residue, the transition involves the unfolding and refolding of a 

15-residue loop that contains the two critical residues. The loop has been shown to unfold 

and refold repeatedly under native conditions as a cooperative unit. The stability of the 

loop determines the equilibrium between the Met80-liganded and Lys79-liganded forms 

(29), and the unfolding rate limits the kinetics of the transition (30). More generally, 
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recent work indicates that many proteins act as accretions of units that repeatedly unfold 

and refold under native conditions. It now appears that cooperative units can account for 

the steps in protein folding pathways, and, having reached the native state, their 

continuing dynamic unfolding and refolding behavior can be exploited to control ligand 

on and off rates (31) and even allosteric communication (32).  

Can the emerging folding unit paradigm help to explain the Mad2 conformational 

switching mechanism? In addition to the aforementioned structural issues (e.g., massive 

rearrangement and threading), some other Mad2 folding–related observations are 

suggestive. Chemically denatured Mad2 spontaneously refolds into a nonequilibrium 

mixture of its two alternative conformations (C-Mad2 and O-Mad2 in a 2:1 ratio; (11). 

The implication is that the refolding pathway contains some intermediate stage from 

which Mad2 partitions into its two different stable forms (Fig. 6.3A and B). Spontaneous 

equilibration from this point is extremely slow. Thus, O-Mad2 is not itself a facile on-

pathway precursor for generation of C-Mad2. Rather, O-Mad2 appears to transit to C-

Mad2 by backtracking through a partially unfolded intermediate Mad2 (I-Mad2; Fig. 

6.3A) and redistributing between O-Mad2 and C-Mad2 over several equilibration cycles.  
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Figure 6.3 Mad2 unfolding and refolding considerations. (A) Free energy reaction landscape for Mad2 
interconversion through a partially folded intermediate that lies on the folding pathway (created with 
Matlab version R2007a; The MathWorks, Inc.). When chemically denatured Mad2 is refolded, it initially 
reaches a nonequilibrium O-Mad2–C-Mad2 mixture, suggesting that the folding pathway to reach either 
form passes through a common intermediate and kinetically partitions rather than passing through one form 
on the way to the other. We suggest that the catalyzed interconversion seems likely, on this and other 
grounds, to pass back through the same partially unfolded intermediate. (B) A notional structure for a 
Mad2-folding intermediate showing the common (gray) and variable (colored as in Fig. 6.1C) segments. 
(C) Catalysis through intermediate stabilization. The conversion reaction of Mad2 is drawn with (red 
dashed line) or without (black solid line) dimerization with the kinetochore-bound C-Mad2–Mad1 
complex. The measured C-Mad2/O-Mad2 equilibrium ratio is 8:1 (11), indicating that C-Mad2 is ∼1 
kcal/mol more stable than O-Mad2. Conformational selection of I-Mad2 would equally stabilize I-Mad2 
and the TS2 transition barrier relative to O-Mad2, effectively increasing the O-Mad2→C-Mad2 rate even 
though the energy difference between I-Mad2 and TS2 remains unchanged. The dashed black line indicates 
the energy state of O-Mad2, the black arrow (left) indicates increasing energy, the double-headed black 
arrow indicates the energy difference between O-Mad2 and TS2 without dimerization, and the doubled-
headed red arrow indicates the energy difference between O-Mad2 and TS2 with dimerization. 
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How can an unfolding-dependent binding model promote the rate of the Mad2 

conformational transition? As noted before, selective binding to C-Mad2 itself would not 

be helpful. Instead, the Mad1–C-Mad2 complex needs only to selectively stabilize a 

partially unfolded intermediate on the O-Mad2 side of the rate-limiting transition barrier, 

such as the hypothetical I-Mad2 in Figure 6.3C. The stabilization of I-Mad2 would 

equally stabilize the rate-limiting transition state relative to O-Mad2 and therefore 

increase the rate of O-Mad2 to C-Mad2 (it should be noted that I-Mad2 may be, but is not 

necessarily, the same as the intermediate that binds Mad1 and Cdc20 discussed above in 

section 1.2). Consistent with this view is the observation that Mad1–C-Mad2 catalyzes 

the O-Mad2 to Cdc20–C-Mad2 transition but not the C-Mad2 to Cdc20–C-Mad2 

transition (33). 

Unfortunately, a Mad1–C-Mad2–I-Mad2 structure is not likely to be solved by X-

ray crystallography because partially unfolded and dynamically interconverting structures 

are not conducive to crystal formation. Available crystal structures of pertinent dimers 

used Mad2 variants that would prevent I-Mad2 formation. The Mad2LL mutant used to 

obtain MBP1–C-Mad2–O-Mad2LL crystals prevents O-Mad2 from switching into the C-

Mad2 conformation by restricting the conformational search space of the N terminus 

(28). The L13A mutation used to obtain C-Mad2–C-Mad2 crystals stabilizes the native 

closed conformation so that the alternative O-Mad2 or I-Mad2 forms would not 

significantly populate (19). The structure of I-Mad2 will have to be studied by methods 

more applicable to dynamic systems. Unit dependent unfolding behavior in other proteins 

has so far been studied successfully, not by static crystallography but by dynamic 
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hydrogen exchange (31). We applied this and other methods to begin unraveling the 

mysteries underlying Mad2 interconversion. 

 

2. Materials and Methods 

2.1 Mutations 

Several mutants were created in order to alter or investigate Mad2 function (Table 

6.1). A PreScission protease recognition site was also introduced between a His6 tag and 

the Mad2 N-terminus. 

    Table 6.1 Mad2 mutants used in this study. 

Mutant Description Effect Reference Notes 

R133A 
 

Dimerization 
reduced 

(11)  

RQ R133E/Q134A 
Dimerization 
deficient 

(34) Fast conversion 

RF R133A/F141A 
Dimerization 
deficient 

(34)  

ΔC 
Last 10 residues 
truncated 

Cannot form C-
Mad2 

(10)  

L3P 
 

None This study 
Intended to 
inhibit 
oligomerization 

L3R 
 

None This study 
Intended to 
inhibit 
oligomerization 

Q4P 
 

None This study 
Intended to 
inhibit 
oligomerization 

Loopless T109 to R117 removed Locked in O-Mad2 (28)  

C79S 
 

None This study 
Intended to 
inhibit sample 
degradation 

C106S 
 

None This study 
Intended to 
inhibit sample 
degradation 
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All mutations were introduced using the QuickChange PCR protocol developed 

by Strategene. This method was done by building a solution containing 39.5 μL H2O, 5 

μL 10X Pfu Buffer, 2 μL 25X dNTPs, 1.25 μL forward primer (100 ng/μL), 1.25 μL 

reverse primer (100 ng/μL), 1μL parent DNA (~35 ng/μL) and 1 μL Pfu Turbo 

polymerase. This solution was incubated at 95 °C for 2 min before beginning 18 cycles of 

95 °C for 30 s, 55 °C for 1 min, and 68 °C for 12 min. After amplification finished 1 μL 

Dpn1 was added to the solution to digest the methylated parent DNA. The new DNA was 

then used to transform ultra-competent gold, which further amplified DNA production.  

A colony was then chosen for further growth. DNA was purified by midi-prep. A 

sample was sent for sequencing and the remainder was stored at -20 °C. Glycerol stocks 

were made from the ultra-competent cells and stored at -80 °C. 

 

2.2 Protein Purification 

The existence of two conformers adds an additional complication to the 

purification of Mad2. It has been reported these conformers can be separated by anion 

exchange and that interconversion can be effectively halted by storing the protein at 4 °C 

(11, 35). Therefore it is crucial to keep temperatures as low as possible throughout 

purification. Also important is the removal of purification tags which can interfere with 

interconversion. 
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2.2.1 Cell Growth 

Many conditions were attempted for both standard and isotopically labeled Mad2. 

What follows is the optimized conditions for Mad2RQ and Mad2RF mutants. 

2XYT media was used for standard growths and M9 media for 15N and 13C enriched 

growths. M9 media was made by dissolving 6 g/L Na2HPO4, 3 g/L KH2PO4, 0.5 g/L 

NaCl into 1 L H2O. This was brought to pH 7.5 and autoclaved. Additional minerals were 

sterile filtered using a 0.22 μm filter and added to the media, resulting in the following 

final concentrations: 2 mM MgSO4, 0.1 mM CaCl2, 15 mg/L ZnSO4, 15 mg/L FeSO4, 

and 1.25 g/L NH4SO4. Glucose was added to a final concentration of 2.5 g/L for 13C 

labeled growths and 4 g/L glucose for unlabeled growths. The antibiotics Amp and Cam 

were added to prevent bacterial contamination and loss of plasmid. 

The Mad2 plasmid was transformed into Rosetta pLysS cells for 2XYT growths. 

The pLysS construct significantly slowed cell growth and greatly reduced yield when 

minimal media was used. This is likely due to the pLysS construct causing cells to lyse 

during the centrifuge step that is required when using minimal media. Therefore, Rosetta 

cells without the pLysS construct were used for M9 growths. Transformed cells were 

grown overnight at 37 °C in small batches of 2XYT media for seeding 1L growths of 

2XYT or in LB for seeding 1L growths of M9. For M9 media growths cells were spun 

down (10 min, 4000 g) and the media was removed prior to seeding. 

Cells were added to the final growth media until they reached an OD600 of 0.1. 

The cells were incubated at 37 °C until they reached an OD600 between 0.8 and 1. The 

temperature was then reduced to 25 °C and 1 mM IPTG was added. Cells were grown for 
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4hrs before they were harvested. Harvesting involved centrifuging cells for 10 min at 

4000 g and then resuspending each 1 L in 20 mL resuspension buffer (300 nM NaCl, 50 

mM Phosphate pH 7.5, 1 mM DTT, 1 μg/mL L/P/A, 1 mM PMSF). Resuspended cells 

were placed in 50 mL conicals and stored at -80 °C. Cells were broken down by thawing, 

adding lysozyme, dounce homogenization and sonication. Cell fragments were then 

removed by centrifugation (30 min, 26,000 g). The remaining cell particles were removed 

by syringe filtration (0.44 μm). 

 

2.2.2 Purification 

The N-terminal His6 tag was then utilized to bind Mad2 to Talon© cobalt beads. 

The beads were washed three times with binding buffer (150 mM Nacl, 50 mM 

Phosphate, 1 mM DTT, 1 μg/mL L/P/A, 1 mM PMSF, 5 mM Imidazol). Binding was 

done in batch using a ratio of 2 mL packed per 1 L growth media. Beads were incubated 

with the cell extract on a rotator at 4 °C for 30 min. The beads were then washed several 

times with binding buffer plus an additional 5 mM Imidazol and then with binding buffer 

without L/P/A or PMSF.  The bound protein was incubated with PreScission protease at 4 

°C for 1 hr. The bead slurry was placed in disposable gravity filtration columns and the 

flow-through was collected. A typical gel result is shown in Figure 6.4. The resulting 

solution contained only the protease and cleaved Mad2 as the His6 tag and other 

contaminants remained behind on the beads. 
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Figure 6.4 Mad2 purification gel. Lanes are as follows: 1. 5 μg/mL BSA, 2. 1 μg/mL BSA, 3. Post-
sonication pellet, 4. Post-sonication supernatant, 5. Talon-bead flowthrough, 6. Protein bound to Talon-
beads, 7. Protein remaining on beads after protease incubation. 8. Protein collected after protease 
incubation. 

 

2.2.3 Chromatography 

The flow through was then syringe filtered (0.22 μm) and diluted with ddH2O 

until the final NaCl concentration was <50 mM. The sample was then injected onto a 

FPLC Source 15Q HR 16/10 column. A NaCl gradient was used to elute Mad2 from the 

Q-column. The PreScission protease did not bind to the column and thus came out in the 

flow through. Mad2 eluted as two major peaks, one at 150 nM NaCl and one at 260 nM 

NaCl (Fig. 6.5A). The peaks correspond to O-Mad2 and C-Mad2 respectively, as 

determined previous (11, 35) and verified by 1D and 2D NMR (discussed in a later 



 

162 
 

section). Mad2 can be found predominantly O-Mad2 conformation when purification is 

done at low temperature (35) (25 °C induction, 4 °C purification). A typical purification 

from a 6L growth would yield 20-40 mg of protein, all of which could be loaded onto the 

Q-column in a single batch.  

Mad2 oligomers were separated using a HiLoadTM 16/60 SuperdexTM 200 prep 

grade size exclusion column (SEC). For each mutant it was confirmed that oligomers 

were only found in the anion exchange fractions associated with C-Mad2. All 

experiments involving C-Mad2 were done using purified monomer. 

 

2.3 Peptide Synthesis 

Mad2 Binding Peptide 1 (MBP1) is a synthetic peptide used as a soluble binding 

partner for Mad2 (sequence SWYSYPPPQRAV; (25). A fluorescently labeled version of 

this peptide (RhB-MBP1) was generated by covalently linking this peptide to a 

Rhodamine B derivative that was kindly provided by Dr. S. Vinogradov. The flourophore 

consisted of Rhodamine B attached to the backbone carbonyl of glutamic acid by a 

piperdine ring. Peptide synthesis was done using a CEM Liberty microwave peptide 

synthesizer in the Dutton laboratory using standard FMOC/tBu protection protocols (36). 

The Rhodamine B derivative was first linked to the resin by the glutamic acid sidechain 

and the rest of MBP1 was sequentially synthesized in the direction of  C-terminus to N-

terminus. After synthesis the protein was cleaved from the resin by incubation with a 

mixture of trifluroacetic acid (TFA), ethanedithiol, anisole, and thioanisole in a 

9:0.2:0.5:0.3 ratio. Rotovap was used to remove excess reagent. The crude product was 



 

163 
 

then precipitated with methyl,t-butyl ether. The peptide was then purified by reverse 

phase HPLC using a C18 column and a gradient of acetonitrile with 0.1% (v/v) TFA in 

water. The final product was verified using an Orbi-trap mass spectrometer. 

Concentrations for the synthetic peptide RhB-MBP1 were estimated based on 

absorbance. Rhodamine B is known to have a maximum absorbance at 542.75 nm with 

an extinction coefficient of 106,000 M-1cm-1. The absorbance maximum for RhB-MBP1 

has been shifted to 568 nm. Concentrations listed here were calculated using the 

Rhodamine B extinction coefficient applied to the RhB-MBP1 absorbance at 568 nm. 

 

2.4 Spectroscopy 

2.4.1 Circular Dichroism 

Circular dichroism (CD) measurements were done using an Aviv model 280 

circular dichroism spectrometer. All measurements were taken at 4 °C unless otherwise 

specified. Samples concentrations were such that OD220 < 2 so that sample opacity would 

not interfere with CD measurements. 

 

2.4.2 Fluorescence Correlation Spectroscopy 

Florescence correlation spectroscopy (FCS) experiments were done to determine 

how much RhB-MBP1 bound to C-Mad2RQ based on diffusion times for the bound and 

unbound species. These experiments were done in the F. Gai lab. A 30-40 μL sample was 

placed on a cover slip. An Argon laser was used to irradiate a 28 femtoliter region of the 
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sample. In each experiment 50 nM RhB-MBP1 was mixed with 4 μM protein (either 

Mad2RQ or BSA). FCS results were fit using the auto-correlation function (Eq. 6.1). 

       
 

 
    

 

  
 

  
 

  
 

  
 

    
 

 

   

 
              Eq. 6.1 

Where N is the total number of molecules in the confocal volume, n is the number of 

species in the sample, and fi is the fraction of species i in the sample. The ratio of the 

axial/radial dimensions of the observation volume is denoted as ω, with equals 7 in this 

case. The characteristic diffusion time is τ
i
D for species i. The delay time (τ) ranged from 

1 μs to 1 s. 

Fluorescence intensity experiments were done in the Vanderkooi lab using a 

Fluorolog-3-21 Jobin-Yvon Spex SA fluorometer equipped with a 450 W xenon lamp for 

excitation and a cooled R2658P Hamamatsu photomultiplier tube for detection. RhB-

MBP1 was excited at 560 nm. Emission was detected at 570-610 nm. NATA was excited 

at 280 nm and emission was detected at 340-380 nm. Concentrations were 400 nM for 

RhB-MBP1 and 4 μM Mad2
RQ unless otherwise noted. Temperature control was 

maintained using a water bath connected to the cuvette holder in the fluorometer. When 

multiple samples were used, a second cuvette holder was connected to the water bath in 

serial. Samples were stored in the second cuvette holder between measurements. 

Temperatures are reported for the primary cuvette holder in the instrument. The 

temperature for the secondary cuvette holder was lower than the primary cuvette holder 

by 0.5 °C. 
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2.4.3 NMR 

1D 1H NMR experiments for Mad2RQ consisted of applying a simple 90 pulse 

plus a water suppression gradient at regular time increments using a 500 MHz magnet 

with Varian cold-probe. 2D O-Mad2RF to C-Mad2RF conversion experiments similarly 

involved applying a 1H-15N HSQC pulse sequence at regular time intervals using a 500 

MHz magnet with a Varian cold-probe. Hydrogen exchange (HX) experiments for O-

Mad2RF also involved applying a 1H-15N HSQC pulse sequence at regular time intervals 

following exchange into 2H2O buffer and were done using a 600 MHz magnet with a 

Varian cold-probe located at the University of Chicago. 

Attempts at peak assignments were done by Dr. Yibing Wu. The initial attempt 

was done using a 500 μL sample of 0.44 mM 
13C-15N labeled Mad2RF with 25 mM 

phosphate, 1 mM NaN3, 20 mM deuterated DDT, and 10% 2H2O kept in a flame sealed 

tube filled with Argon gas. The sample was checked using a 600 MHz magnet with a 

Varian room temperature probe at the Fox Chase Cancer Center. The sample was then 

shipped to the NMR Facility at Madison (NMRFaM) where experiments were run 

remotely on a 900 MHz magnet with a Varian cold-probe. A second attempt at assigning 

peaks was done using a 300 μL sample of 0.7 mM 
13C-15N labeled Mad2RF with 25 mM 

phosphate, 1 mM NaN3, 20 mM deuterated DDT, and 5% 2H2O in a Shigemi tube. This 

round of 3D experiments were done using a 500 MHz magnet with a Varian cold probe. 

All experiments were done at 21 °C unless otherwise noted. Processing was done with 

nmrPipe (37). 
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2.5 Hydrogen Exchange Mass Spectroscopy 

Hydrogen exchange mass spectroscopy for Mad2RF were performed and 

processed by Sandya Ajith. Purified O-Mad2 and purified C-Mad2 were incubated in a 

solution of 25 mM Tris, 150mM NaCl in a 75% 2H2O/1H2O mixture at pHread 7.0. At each 

time point the HX reaction was quenched with low pH buffer consisting of 0.8 M 

GdmCl, 0.8% formic acid and 10% glycerol, which was immediately flash frozen and 

stored at -80 °C. Samples were later thawed and injected onto a pepsin and fungal 

protease column for digestion. The resulting peptides were then sprayed into an Orbi-trap 

mass spectrometer. Peptide identification and analysis were done using DXMS software. 

 

2.6 Electrostatic Calculations 

Electrostatic calculations were based on the X-ray structures 1DUJ (O-Mad2) and 

1S2H (C-Mad2). Hydrogens were added using CHARMM (38). Electrostatic calculations 

were performed using Qnifft (39, 40). Atom sizes and partial charges were set using the 

CHARMM22 parameter set (38). 

 

3. Results and Discussion 

3.1 Separation of Mad2 conformers 

Mad2 can be separated into its two conformations by anion exchange (11, 35). 

Figure 6.5A illustrates the separations of Mad2 into the lower salt O-Mad2 and higher 

salt C-Mad2 conformations. Once separated interconversion could be delayed storing 
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conformers at 4 °C. Conversion rates as a function of temperature are discussed in section 

3.2. 

The Mad2RQ and Mad2RF mutants have been reported to completely abolish Mad2 

dimerization (34). We tested this for Mad2RQ and Mad2RF using size exclusion 

chromatography (SEC). Purified O-Mad2 did elute as a monomer, but C-Mad2 eluted 

both as monomer and as dimer (Fig 6.5B). In order to determine if the relative peak 

volumes represented the monomer-dimer equilibrium, the C-Mad2 monomer fractions 

were pooled and concentrated to the same concentration as the previous injection sample 

and incubated for an hour. No dimerization was observed for this injection (Fig 6.5C) 

despite wild type Mad2 dimerization kinetics being on the order of seconds (15). 

The slow kinetics observed for oligomerization of C-Mad2 dimerization deficient 

mutants present the possibility that dimerization for these mutants occurs at a different 

interface or by a different mechanism than the one measured for wild type Mad2. A 

crystal structure of the C-Mad2—C-Mad2 dimer (2VFX; (19) presents a possible 

explanation. For this structure the unit cell consists of twelve C-Mad2 molecules. Each 

molecule interacts with another C-Mad2 molecule at normal dimer interface, as seen for 

the C-Mad2—O-Mad2 dimer (28), and interacts with another C-Mad2 molecule by 

incorporating that protein’s N-terminus in its β-sheet. This same binding motif is 

associated with Mad1—C-Mad2 (Fig. 6.2A; (14, 25) and Cdc20—C-Mad2 (10) 

interactions. Three mutations were designed to abolish this putative interaction. Any one 

of these mutations (L3P, L3R and Q4P) should disrupt the N-terminal binding seen in the 

2VFX structure, but none affect the elution pattern observed by SEC. 
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Figure 6.5 Anion exchange and size exclusion chromatograms for Mad2RQ. (A) Chromatograph from anion 
exchange of Mad2RQ. O-Mad2 elutes at a lower salt concentration than C-Mad2. (B) Size exclusion 
chromatograph (SEC) for O-Mad2RQ (blue) and C-Mad2RQ (red) after anion exchange purification. (C) 
When the C-Mad2RQ monomer was concentrated and incubated for 1 hr it still eluted as a monomer. (D) 
The small, third peak from A eluted as mostly dimer with some higher order oligomers. 

 

A third peak occasionally observed during anion exchange purification was 

investigated. This peak elutes at a higher salt concentration and is smaller than O-Mad2RQ 

and C-Mad2RQ peaks. The SEC chromatogram for this species (Fig 6.5D) looks very 

similar to the one observed for C-Mad2RF (Fig 6.5B), except the peaks are shifted to the 

left. The shift indicates that this species is mostly dimer with some tetramer also present. 
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The CD spectrum for the oligomer species is nearly identical to that of C-Mad2, (Fig. 

6.6). This suggests that oligomerization does not significantly distort the helical structure 

of Mad2. The possibility of a large distortion of the β structure remains. 

 

Figure 6.6 CD spectra for O-Mad2RF (A; blue), C-Mad2RF (A; red) and Mad2RF oligomer (B). 

 

3.2 Mad2 Interconversion 

3.2.1 Macroscopic Interconversion 

Mad2 interconversion is central to its function as a mitotic regulatory protein (41). 

The first kinetic measurements of Mad2 interconversion were done by monitoring the 1D 

Val197 1H methyl peak by NMR. Luo and coworkers reported the dimerization reduced 

Mad2R133A mutant to have an O-Mad2 to C-Mad2 rate of 3.0 X10-5 s-1 and a reverse rate 

of 5.2 X10-6 s-1 at 30°C (11). Later it was discovered that the double mutant Mad2RQ and 

Mad2RF suppressed dimerization better than MadR133A (34). We measured kinetics for the 

Mad2RQ by 1D NMR and found much faster rates (Fig. 6.7A; Table 6.2). Interestingly, 

we observed two peaks whereas Luo et al reported a single peak, suggesting that the 
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Val197 sidechain methyl groups experience slightly different environments in Mad2RQ 

relative to Mad2R133A. S. Getchel and B. Wexler measured kinetics for Mad2RF using 

anion exchange FPLC (Fig. 6.7B).  

 

Figure 6.7 Mad2 interconversion. (A) O-Mad2RQ to C-Mad2RQ conversion was  measured by monitoring 
the C-Mad2 Val197 1H methyl peaks by 1D NMR. (B) Overlay of chromatograms from several Mad2RF 
interconversion time points which were analyzed by anion exchange FPLC. Chromatograms for various 
time points are overlaid. Anion exchange measurements were done by S. Getchel and B. Wexler. (C) 
Arrhenius plot interconversion rates for O-Mad2RQ to C-Mad2RQ (black), O-Mad2RF to C-Mad2RF (red), and 
C-Mad2RF to O-Mad2RF (blue). 
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The kinetics of open to closed conversion for the Mad2RQ and Mad2RF mutants 

differ in an absolute sense and in terms of temperature dependence (Fig. 6.7C; Table 6.2). 

This temperature dependence corresponds to a ΔH‡ of 14 kcal/mol for the Mad2RQ open 

to closed conversion and 28 kcal/mol for Mad2RF. The NMR structure of O-Mad2ΔNΔC 

may provide some insight into the cause of this difference (Fig. 6.8). Notably, the polar 

Gln134 sidechain is inserted into a hydrophobic pocket. This interaction should be 

enthalpically disfavored and therefore promote open to closed conversion, yet 

measurements indicate the opposite. Gln134 is absent in the rapidly converting Mad2RQ 

mutant. The suggestion is that the Q134A mutation is even more enthalpically favored in 

the transition state. Also notable is that the difference in rates for the two mutants 

corresponds to a ΔΔG‡ of only 0.9 kcal/mol, indicating that the large enthalpic 

discrepancy is largely offset by an entropic difference that is nearly as large (TΔΔS
‡ = 13 

kcal/mol). 
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Figure 6.8 O-Mad2ΔNΔC structure (pdb 1DUJ) highlighting interactions involving the residues that have 
been mutated in Mad2RQ and Mad2RF. Mutations involving Arg133 and Phe141 presumably disrupt Mad2 
dimerization without disturbing internal interactions. Conversely, the Gln134 sidechain is packed among 
hydrophobic residues Thr11, Trp100, and Val131. 

 

Kinetic differences between Mad2R133A and Mad2RF provide insight into the role 

of Phe141. The O-Mad2 to C-Mad2 conversion rates for these mutants differ by a factor 

of 4 while the their O-Mad2 and C-Mad2 equlibrium differs by only a factor of 2 (Table 

6.2). This means that the F141A mutation destabilizes C-Mad2 relative O-Mad2, but 

destabilizes the transition state even more. The difference in equilibrium may be due to 

Phe141 being exposed to solvent in O-Mad2 (Fig. 6.8) and buried among hydrophobes in 
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C-Mad2. The C-terminus of αC rearranges from an α helical conformation in O-Mad2 to 

a 3-10 helical conformation in C-Mad2. The fact that the F141A mutation affects 

conversion rates more than equilibrium populations suggests that the rearrangement of 

residue 141 is integral to the rate-limiting step in conformational conversion. 

        Table 6.2 Temperature dependent interconversion rates. 

Conversion Mutant Temperature (K) Rate (s-1) 

O to C RQ 288 6.8E-06 

O to C RQ 293 1.0E-05 

O to C RQ 296 1.3E-05 

O to C RF 296 2.8E-06 

O to C RF 303 7.5E-06 

O to C RF 310 2.4E-05 

O to C R133A 303 3.0e-05 

C to O RF 296 8.3E-07 

C to O RF 303 3.1E-06 

C to O RF 310 1.7E-05 

C to O R133A 303 5.2E-06 

 

3.2.2 Residue Specific Interconversion 

1H-15N HSQC NMR experiments were used to monitor the open to closed 

conversion at single residue resolution for Mad2RF. Initial assignment of amide peaks was 

done by direct comparison to published peak tables. Previous workers reported NMR 

assignments for O-Mad2ΔNΔC (BMRB 4775; (10) and C-Mad2ΔN bound to MBP1 (BMRB 

5299; (25). These spectra have fewer peaks than the Mad2RF spectra due to truncations, 

which makes peak assignment by direct comparison difficult. This problem was 

alleviated somewhat by the publication of O-Mad2R133A and C-Mad2R133A spectra (Fig. 

6.9A; (11). Though peak tables were not published for these mutants, direct comparison 

of previously published peak tables to Mad2R133A spectra allowed for the assignment of 
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some well dispersed peaks for Mad2RF.  One complexity that had to be accounted for was 

the presence of both O-Mad2 and C-Mad2 peaks in the same spectra (Fig. 6.9B). Peaks 

were assigned to conformation by purifying O-Mad2RF and watching peaks decay or rise 

as the population converted to C-Mad2RF (Fig. 6.9C-D). 

 

Figure 6.9 1H-15N HSQC spectra for Mad2. Yu and coworkers published 1H-15N HSQC spectra for O-
Mad2R133A and C-Mad2R133A (A; adapted from (11). Both conformations can be seen for Mad2RF at 
equilibrium (B; 900 MHz).  Spectra collected during a time series monitoring O-Mad2RF to equilibrium 
conversion are displayed for the initial (C) and ~4hr (D) time points. Peaks that could be assigned are 
shown for O-Mad2 (C) and C-Mad2 (D). An arrow points from the O-Mad2 peak to the C-Mad2 peak for 
peaks that were assigned for both conformations. The peak corresponding to W100 in O-Mad2 does not 
decay over the course of this experiment. 
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Oddly, the peak transitions observed in Mad2RF spectra at 21 °C occur at a rate of 

~1.5 X10-4 s-1 (Table 6.3) much faster than the open to closed conversion measured by 

anion exchange (Table 6.2). The implication is that Mad2RF forms a stable intermediate 

between the closed and open transition. We have suggested this possibility previously 

(41), but no experimental evidence has been reported until now. The shifting peaks 

correspond to residues found throughout Mad2 as can be seen by mapping those that 

could be assigned onto the structure (Fig. 6.10). Surprisingly, many of these peaks 

correspond to residues found in β2, β3 and αA, which, other than the N-terminus of αA, 

are very similar in the open and closed structures (Fig. 6.10B, D). β2 and β3 serve to 

connect αA to αB, even though the C-terminus of αA is near the N-terminus of αB. The 

fact that these strands are not necessary to connect αA to αB causes one to wonder why 

they are present in Mad2. The fact that open to closed conversion causes residues in and 

around these strands to experience a change that alters their 1H-15N chemical shifts 

suggests that β2 and β3 play some subtle, yet to be determined role in conformational 

conversion. 

 

Table 6.3 Rates of decay for O-Mad2 and rise of C-Mad2 peaks that could be clearly distinguished 

O-Mad2 log k (s-1) C-Mad2 log k (s-1) 
G9 -4.4 G27 -3.7 
I19 -3.9 D74 -3.8 
F23 -4.2 T109 -3.5 
G27 -3.9 Q134sc -3.5 
G36 -4.2 Q134sc -3.6 
T44 -4.1 L154 -3.9 
V46 -4.2 T187 -3.7 
G50 -4.0 T188 -3.5 
L53 -4.0   
V55 -4.2   
L65 -4.1   
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O-Mad2 log k (s-1) C-Mad2 log k (s-1) 
V69 -4.1   
L84 -4.4   
V85 -4.1   
V87 -3.9   
L97 -3.9   

Q101sc -3.6   
F102 -4.1   
S150 -4.4   
L154 -3.8   

 

Also notable is that the O-Mad2 peak for W100 does not decay over the time 

course, indicating that it still experiences an O-Mad2-like environment. W100 interacts 

with β8‖ in C-Mad2 (Fig. 6.10C). This is surprising given that some peaks corresponding 

to residues found in C-Mad2 β8’ and β8‖ rise in this experiment. One possibility is that 

the these strands rearrange into a C-Mad2-like arrangement before moving toward the 

opposite side of the major β sheet. 
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Figure 6.10 1H-15N peaks that shift from open to closed conformations mapped onto O-MadΔNΔC (A, B) 
and C-Mad2R133A (C, D) structures. Colors indicate residues corresponding to C-Mad2 peaks that increased 
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with time (blue) and to O-Mad2 peaks that clearly decayed, but for which no rising C-Mad2 peak could be 
found (red). The peak corresponding to O-Mad2 W100 (cyan) maintained constant volume throughout the 
experiment. Residues that could not be assigned or for the corresponding peak has identical chemical shifts 
in both forms are shown in green. 

 

3.2.3 Electrostatic Considerations 

The differences in conversion rates measured by 1H-15N NMR compared and 

anion exchange for the same mutant (Tables 6.2, 6.3) may be due to these experiments 

responding to different regions of Mad2. The signals measured by 1H-15N NMR arise 

from the environment of individual residues as discussed in the previous section. What is 

being monitored by anion exchange is not as clear. At first glance it is surprising that the 

two Mad2 conformations have different affinities for anion exchange given that their 

primary sequence is identical. A protein’s affinity for an ion exchange column can be 

estimated by its pI, which can be calculated from its sequence. Clearly the difference in 

affinity arises from conformational rearrangement, which suggests that binding affinity is 

influenced by local structure. We used Qnifft (39) to calculate the electrostatic fields for 

each conformation (Fig 6.11). Calculations indicate that C-Mad2 has a high density of 

negative charges at a single region of its surface while the surface charges for O-Mad2 

are more evenly distributed. This high charge density is associated with β6, which is 

exposed when β7 and β8 rearrange to form β8’ and β8‖. Therefore, it is possible that the 

O-Mad2 to C-Mad2 transition measured by 1H-15N NMR represents an intermediate that 

has undergone some rearrangement, but for which β6 is not exposed. 
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Figure 6.11 Electrostatic analysis of differences in binding affinity for O-Mad2 and C-Mad2. 
Crystallographic structures are shown (A) in the same orientation as electrostatic maps (B). Negative (red) 
and positive (blue) surfaces extend to a distance equivalent to a potential energy of 1 kT. A large negative 
patch on the surface of C-Mad2 is circled. A typical anion exchange elution profile is shown in C. 

 

3.2.4 Summary of the Mad2 Intermediate 

Experiments designed to measure the rate of O-Mad2 to C-Mad2 conversion and 

performed near room temperature resulted in rate measurements on the order of ~3X10-6 

s-1 for anion exchange and 1D NMR and ~1.5X10-4 s-1 (Table 6.2) for 2D NMR (Table 

6.3). This 200-fold difference can be explained by the presence of an intermediate I-

Mad2 conformation that is not observable by the first two methods. Examination of what 

is being detected by each method provides some insight into what I-Mad2 may look like.  
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Several pieces of evidence point to the possibility that O-Mad2 β7 and β8 do not 

rearrange into their C-Mad2 positions in the intermediate I-Mad2 conformation. The 

rearrangement of these strands exposes a large negative patch at the protein surface (Fig. 

6.11), which causes C-Mad2 to have a higher affinity to an anion exchange column. 

Similarly, strand rearrangement causes the sidechain of V197 to interact with aromatic 

groups which allows V197 methyl groups to be monitored by 1D NMR (Fig. 6.7A). Also 

notable is that 2D NMR experiments show that W100 does not switch to its C-Mad2 

environment with the same rapid rate as other residues shown in Figure 6.10. This is 

significant because W100 interacts with β8‖ in C-Mad2 and its sidechain is interacts with 

the V197 sidechain. Taken together, these observations clearly indicate that these strands 

are not in their C-Mad2 position in I-Mad2. However, it should be noted that several 

residues located in these strands do experience a change in chemical environment. This 

may indicate that the strands undergo some rearrangement prior to switching to the 

opposite side of the sheet. 

Many of the residues experiencing a C-Mad2-like environment in I-Mad2 are 

found in β2 and β3 and the closely linked helix αA (Fig. 6.10). The fact that these 

residues experience different chemical environments in the two known Mad2 conformers 

is somewhat surprising given their structural similarities. It is possible that these residues 

play an important role in interconversion, which may explain why it is partially involved 

in the catalyzing Mad2 dimerization reaction (Fig. 6.2B). It is quite possible that this 

interaction is essential to catalyzing the Mad2 conversion by stabilizing I-Mad (Fig. 

6.3C). 
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3.3 Hydrogen Exchange 

3.3.1 NMR 

Hydrogen exchange (HX) monitored by NMR has proven to be an effective tool 

for studying protein high energy states (42). This technique was applied to O-Mad2RF in 

the hope of identifying the residues that are involved in the O-Mad2 to C-Mad2 

conversion. Several problems arose. The most significant issue was that most NMR peaks 

could not be assigned. Even when peaks could be assigned, it is difficult to distinguish 

peak volume decay due to HX from decay due to interconversion. If these rates are 

significantly different from one another then peak decay will fit to a double exponential, 

but if these rates are similar then the data will fit well to a single exponential with a rate 

somewhere between the two actual rates. 

Rates are given for peaks that could be assigned and whose rates were not 

compromised by peak overlap (Table 6.4). It is not clear why some peaks would decay 

more slowly during HX experiments then they would in the absence of 2H2O (i.e. G27, 

V55, L65, V69, L84, V85 and L97). It should be noted that a change in chemical shift 

does not necessarily correspond to a structural change that would expose and amide to 

HX catalyst. For example, Gly27 is found in the middle of αA in both O-Mad2 and C-

Mad2, but nearby changes involving β1 and β2 cause the peak to shift. In this case one 

expects the O-Mad2 Gly27 peak to decay as the population reaches its O-Mad2 to C-

Mad2 equilibrium and then to decay further as the amide is exposed to HX catalyst. 

Strangely, this initial decay was not observed in these experiments. 
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Also puzzling is that HX rates do not exhibit expected pH dependence. Under 

most experimental conditions one expects HX rates to increase by a factor of 10 for each 

pH unit (see Chapter 1 for an explanation of HX rates). Instead, HX rates increased by a 

factor of ~5 per pH unit. One possibility is that these residues have extremely fast 

reclosing rates so that HX is in the EX1 regime. Another possibility is that the stability of 

O-Mad2 increases with pH. At the pHs measured here one expects only Histidine to 

titrate in the absence of a significant pKa shift. Mad2 has only one histidine, His191, 

which is exposed to solvent in O-Mad2, but is buried among hydrophobes in C-Mad2. 

Unfortunately, attempt to determine protein stability as a function of pH proved fruitless 

as the unfolding and refolding rates were too slow to make equilibrium measurements 

possible. However, future workers may consider conformational interconversion as a 

function of pH to be an interesting avenue of investigation. 

Table 6.4 Peak decay rates for O-Mad2RF to C-Mad2RF conversion and O-Mad2RF HX. Rates in log (s-1). 

Residue O to C pD 6.56 pD 7.26 pD 8.15 pD 8.61 pD 9.91 

I19 -3.9 -3.7 -3.5    
F23 -4.2 -4.2   -5.1 -3.6 
G27 -3.9 -4.7 -5.1 -4.6 -4.6  
Q34  -4.5 -4.5    
G36 -4.2 -3.3 -3.0    
Y38  -4.7 -4.4    
T44 -4.1 -4.0 -3.7    
V46 -4.2 -4.5 -4.1    
G50 -4.0      
L53 -4.0 -4.1 -4.0    
V55 -4.2 -4.9 -4.3    
L65 -4.1 -5.3    -4.1 
V69 -4.1 -4.7    -4.3 
L84 -4.4 -5.0 -4.5   -3.3 
V85 -4.1 -4.9 -4.0    
V86  -4.7     
V87 -3.9  -4.5    
L97 -3.9 -4.9 -4.7 -4.6   

W100  -4.9     
C149      -3.7 
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Residue O to C pD 6.56 pD 7.26 pD 8.15 pD 8.61 pD 9.91 

S150 -4.4 -4.0 -4.1    
V181   -3.4    

 

 

3.3.2 Hydrogen Exchange Mass Spectroscopy 

Hydrogen exchange mass spectroscopy (HXMS) measurements for O-Mad2RF 

and C-Mad2RF were done by Sandya Ajith. A typical peptide map for a single time point 

is displayed in Figure 6.12A. Peptides spanning the β2 β3 region exchanged differently 

for each conformation (Fig. 6.12B, C), as did peptides spanning β8 (Fig. 6.12D, E). For 

C-Mad2RF, these strands completely exchange within 100 s, while the O-Mad2RF peptides 

continue to exchange over 24 hr later. Interestingly, these peptides in O-Mad2RF continue 

to increase at each measured time point, indicating that HX is not occurring in a 

cooperative manner. 

The fact that one can easily distinguish O-Mad2 from C-Mad2 in these regions 

bodes well for identifying I-Mad2 by HXMS. As mentioned in Section 3.2.4, one expects 

the β2 β3 region of I-Mad2 to be C-Mad2-like and the C-terminal strands to be more O-

Mad2-like. Our NMR experiments indicate that I-Mad2 is stably populated during the O-

Mad2 to C-Mad2 transition. Thus a simple way to test our hypothesis about this transition 

is to apply an HX pulse of fixed duration at various time points throughout an O-Mad2 to 

C-Mad2 conversion experiment. If our hypothesis is correct then the β2 β3 region will 

exhibit a C-Mad2 profile prior to the C-terminal region. 
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Figure 6.12 HXMS data for O-Mad2RF (A,B,D) and C-Mad2RF (C,E). (A) A peptide map for a single O-
Mad2RF time point. Color scale from blue to red indicates percent exchange for each peptide. The regions 
implicated in conversion in Figure 6.10 are circled. (B, C) HXMS time course for peptides spanning strands 
β8 (β8’ and β8‖ in C-Mad2; spanning residues 44 to 55) for O-Mad2RF (B) and C-Mad2RF (C). (D, E) 
HXMS time course for peptides spanning strands β2 and β3 (spanning residues 181 to 206) for O-Mad2RF 
(D) and C-Mad2RF (E). Line and symbol colors in B and D correspond to the identical peptide in C and E 
respectively. 
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3.4 NMR Peak Assignments 

The standard procedure for obtaining NMR peak assignments is to apply a series 

of 3D experiments that effectively trace the backbone. These experiments require high 

protein concentrations and long collection times, which are not ideal for the Mad2 

system. The high protein concentration proved to be a challenge. Firstly, the use of 

minimal media to grow 13C/15N labeled protein greatly reduces yield. Secondly, Mad2 

tends to aggregate at concentrations approaching 1 mM. The concentration problem was 

partially mitigated by using a 900 MHz magnet with a cold probe. 

The long times needed for 3D experiments were also challenging due to sample 

degradation and conformational interconversion. In order to minimize protein 

degradation from oxidation, the sample was kept under Argon gas in a flame sealed tube 

in the presence 20 mM deuterated DDT. Even under these conditions samples continued 

to aggregate over time. The problem of interconversion can be avoided by reducing 

temperature, but lowering temperature also increases molecular tumbling time which 

causes a significant reduction in signal-to-noise due to line broadening. We attempted to 

circumvent the interconversion problem by allowing the sample to reach equilibrium so 

that the total populations of O-Mad2 and C-Mad2 would remain constant during 

measurements. 

In an attempt to assign peaks for Mad2RF, Dr. Yibing Wu planned and 

implemented a series of 3D experiments. Ultimately, this goal proved intractable due to 

low sample concentration, the presence of multiple conformations, and dynamics 

occurring on the time scale of the experiments. 2D projections from HNCA and 
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HN(CO)CA experiments clearly indicate that the signal is too weak for the purposes of 

backbone tracing (Fig. 6.13). Additional attempts using longer collection times and 

increased temperatures also failed to yield desired results. 

 

 

Figure 6.13 2D projections of HNCA (A) and HN(CO)CA (B) spectra collected using a 900MHz magnet 
with cold probe. 

 

 Why were earlier workers able to obtain NMR assignments while we were not? 

The answer most likely comes from the differences in mutants that were used. Published 

O-Mad2 assignments came from the double truncation mutant O-Mad2ΔNΔC (10). This 

mutant is incapable of forming C-Mad2, which eliminates complications arising from 

populating multiple conformations. Assignments published for C-Mad2 came from the C-

Mad2ΔN mutant bound to ligand (25). Including the ligand greatly increases stability of 

C-Mad2, thereby eliminating multiple conformations. In both cases the unstructured N-

terminus has been truncated, perhaps reducing aggregation. However, an apo-C-Mad2 
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NMR structure was published for full length C-Mad2 (11), suggesting that the N-terminal 

truncation is not strictly necessary for obtaining NMR assignments. The essential 

difference between the protein used in that study and the one used here is that our version 

has the additional mutation F141A. In addition to further inhibiting dimerization, the 

F141A mutation stabilizes O-Mad2 relative to C-Mad2 as indicated by the nearly even 

distribution between the two conformations at equilibrium compared to the 1:6 ratio of 

O-Mad2 to C-Mad2 at equilibrium reported for Mad2R133A (11). This even distribution 

makes assignments more difficult. Also complicating assignments are the dynamic 

reactions that occur on the time scale of NMR measurements. It is possible that the 

F141A mutation has stabilized the I-Mad2 conformation or transition states, causing 

more rapid rearrangements that earlier workers did not have to deal with. 

 

3.5 Peptide Binding 

Mad2 utilizes the same binding site to interact with both Mad1 and Cdc20 (25). 

The synthetic Mad2 binding peptide 1 (MBP1) was designed to mimic this interaction 

(25). We synthesized MBP1 covalently linked to a Rhodamine B derivative (RhB-MBP1) 

in order to monitor Mad2 binding by fluorescence. 

Fluorescence correlation spectroscopy (FCS) can be used to calculation the 

diffusion constants for fluorescently labeled molecules. The diffusion time for RhB-

MBP1 changes drastically upon binding to Mad2 due to the relative sizes of the 

molecules. Our results show that there is no discernable difference in RhB-MBP1 

diffusion time for RhB-MBP1 alone, mixed with BSA, or mixed with C-Mad2 for 20 min 
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(Fig. 6.14). Incubating RhB-MBP1 with C-Mad2 at room temperature overnight resulted 

in 60% binding. This corresponds to a KD of 3 μM, which is much higher than previously 

published (190 nM for MBP1—Mad2RQ; (13). These results suggest that Mad2 binding 

has not reached equilibrium and is therefore incredibly slow, perhaps because the C-

Mad2 conformation must partially unfold prior to binding (41). 

 

Figure 6.14 FCS results for RhB-MBP1 alone, mixed with C-Mad2 for 20 min, mixed with C-Mad2 
overnight, and mixed with BSA. The data are fit to the auto-correlation function (Eq. 6.1). 

 

One observation from the FCS experiments was that the fluorescence intensity 

increased when RhB-MBP1 was bound to Mad2, suggesting that binding could be 

monitored by simply measuring fluorescence intensity. A fluorescence intensity time 

course at 25°C revealed that RhB-MBP1 fluorescence intensity was essentially 

unaffected by doubling the C-Mad2RQ concentration, indicating that RhB-MBP1 has been 
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saturated. What was more surprising was that fluorescence intensity increased by a factor 

of 1.5 prior to the first time point and then remained constant (Fig. 6.15A). This result is 

consistent with binding reaching a steady state in under a minute, in sharp contrast to 

FCS results. One possible explanation is that fluorescence intensity measurements require 

a higher concentration of RhB-MBP1 (400 nM) than FCS (50 nM), which should 

promote binding. 

 

Figure 6.15 RhB-MBP1bnding monitored by fluorescence intensity monitored as a function of time. (A) 
400 nM RhB-MBP1 mixed with 4 μM (green) and 8 μM (blue) C-Mad2RQ at 25°C. Binding appears to 
reach equilibrium by the first time point. (B) Signal drift for NATA (green) and RhB-MBP1 (blue) at 7.5 
°C. (C) C-Mad2RQ mixed with RhB-MBP1 at 7.5 °C. After normalization the data fits with a rate of 0.61 
min-1 with a burst to 1.18. (D) RhB-MBP1 mixed with C-Mad2RQ (black) and O-Mad2RQ (blue) at 6.9 °C. 
The apparent time-dependent binding actually arises due to normalization to RhB-MBP1 signal (red). 
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Signals have been normalized to an RhB-MBP1 control time course except for panel B and for RhB-MBP1 
in panel D for which signals have been normalized to the initial time point.  

 

Binding kinetics needed to be slowed in order to move into the experimentally 

observable range. This could not be accomplished by reducing RhB-MBP1 

concentrations because using a monochrometer requires much higher fluorescence 

intensities than a broadband filter. Structural data suggests that MBP1 binding requires a 

rearrangement of secondary structure by Mad2 (10, 25). Since this rearrangement 

disrupts secondary structured it is reasonable to assume that there is a significant 

enthalpic barrier between the bound and unbound states. This should correspond to sharp 

temperature dependence. We therefore repeated RhB-MBP1 binding experiments at 

lower temperatures. 

The first low temperature fluorescence intensity experiments were done to check 

drift in fluorescence intensity of RhB-MBP1 and the control fluorophore NATA (Fig. 

6.15B). Fluorescence intensity decreased for both fluorophores, but much more so for 

RhB-MBP1. RhB-MBP1 loses 10% of its fluorescence intensity in less than 1 hr. 

Reducing the temperature to 7.5 °C resulted in a measurable binding rate of 0.6 

min-1 (Fig. 6.15C). In order to verify the specificity of RhB-MBP1 binding, this 

experiment was repeated using O-Mad2RQ as a negative control. Surprisingly, O-Mad2RQ 

displayed a binding rate identical to that of C-Mad2RQ (Fig. 6.15D). Analysis of the 

control peptide revealed that the apparent rate arises from normalizing to RhB-MBP1, 

which loses signal presumably due to photobleaching or aggregation. The initial burst 

signal likely does result from binding, but we can conclude that this interaction is non-

specific since binding is similar for O-Mad2RQ and C-Mad2RQ. 
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The contrasting observations from FCS and fluorescence intensity experiments 

are puzzling. One possible explanation is that there are two different binding reactions 

taking place: one that is kinetically slow, but highly stable and a second that is kinetically 

fast, and marginally stable. FCS results are consistent with a slow, highly stable binding 

event like the one that would be expected for MBP1 incorporation into the Mad2 

structure. Fluorescence intensity results are more consistent with a fast, marginally stable 

binding event such as one in which the fluorophore interacts with a hydrophobic pocket. 

Since the two experiments were done with RhB-MBP1 concentrations that differed by 

nearly an order of magnitude, it is conceivable that FCS experiments were done at 

concentrations below the KD of the non-specific interaction. 

Lad et al had success detecting Mad2 binding to a Cdc20 fragment by attaching a 

Texas Red fluorophore to the fragment and measuring fluorescence polarization (33). 

Based on isothermal calorimetry (ITC) experiments they were able to determine that the 

fluorophore did not significantly alter the KD (160 nM). They measured binding constants 

for the Cdc20111-138 fragment to O-Mad2RQ and C-Mad2RQ at room temperature (5.3 X 

10-5 μM
-1s-1 and 3.7 X 10-2 μM

-1s-1 respectively). If we assume the same kinetics for 

RhB-MBP1 then this corresponds to a binding rate of 0.15 s-1 for the Mad2 concentration 

we used for fluorescence intensity measurements (4 μM). In agreement with our 

measurements, this rate would be too fast to measure at room temperature by our 

technique. However, the non-specific binding we observe at lower temperatures makes 

this point moot. Future efforts to study Mad2 binding will need to take into consideration 

both the potential non-specific nature of certain fluorophores and the Mad2 

concentrations used given the rates reported by Lad et al (33). 
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4. Conclusions 

Ever since Anfinsen demonstrated that purified proteins could refold into their 

native structure a central dogma of biochemistry has been that proteins have a single 

native state that is determined by primary sequence (43). The mitotic checkpoint protein 

Mad2 challenges this view by forming two ―native‖ conformations with similar free 

energy (11). Interestingly, the differences in these conformations and the slow 

interconversion between them are integral to its function (4, 41). Despite the importance 

of Mad2 interconversion, little is known about the transition from the inactive O-Mad2 

conformation to the inhibitory C-Mad2 conformation. The investigation described here 

begins to illuminate this important subject. 

Mad2 is capable of forming dimers which catalyze O-Mad2 to C-Mad2 

conversion under certain conditions (34). Mutations that abolish dimerization reduce the 

complexity of interconversion and are therefore ideal for studying this reaction. We find 

these mutations do not completely abolish dimerization (Fig. 6.5B), but instead limit it to 

an extremely slow binding reaction involving C-Mad2. While it is not clear what regions 

of Mad2 are involved in this binding we have demonstrated that this interaction does not 

involve the N-terminus being inserted into the Mad2 binding pocket. 

The O-Mad2 to C-Mad2 conversion was studied at the whole molecule and single 

residue level, which yielded drastically different rates. This may be explained by the 

presence of an intermediate that can be observed by 1H-15N NMR (Figs. 6.9, 6.10) but not 

by anion exchange (Fig. 6.7B). Though NMR peaks could not be assigned by standard 

3D experiments, due to low concentrations and conformational heterogeneity (Fig. 6.13), 
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several peaks could be assigned by comparison with published spectra and peak tables 

(Fig. 6.9). We were thereby able to determine that many of the peaks shifting from their 

O-Mad2 to C-Mad2 positions were found in β2 and β3 and the adjoining helix αA despite 

these regions appearing very similar in both conformations (Fig. 6.10). HX results are 

consistent with this observation (Fig. 6.12). These results suggest that these strands are 

important for interconversion, apparently adopting a C-Mad2 arrangement in an 

intermediate that appears to be on the O-Mad2 side of the transition state. Also central to 

conformational change is residue Phe141. Mutating Phe141 to Ala alters the O-Mad2/C-

Mad2 equilibrium, but has an even greater effect on the rate of conversion. This suggests 

that the rearrangement of residue 141 is part of the rate limiting step in the O-Mad2 to C-

Mad2 transition. 

We have previously proposed that catalysis of the O-Mad2 to C-Mad2 transition 

by dimzerization occurs by stabilization of an intermediate Mad2 conformer (I-Mad2) 

found on the O-Mad2 side of the rate limiting transition state (Fig. 6.3C; (41). 

Observations can easily be interpreted in terms of this model. The shift in NMR peaks 

associated with β2 and β3 likely corresponds to a transition from O-Mad2 to I-Mad2. 

Only later do the C-terminal strands and Phe141 move into position to form C-Mad2. 

Fully consistent with this model is the X-ray structure of the O-Mad2/C-Mad2 which 

shows that O-Mad2 β3 interacts with catalyzing C-Mad2 (28). Notably, the observation 

by Lad et al (33) that C-Mad2 can bind to ligand more rapidly than O-Mad2 can suggests 

the presence of a second intermediate on the C-Mad2 side of the transition state which 

allows for the C-Mad2 structure to rearrange into a binding competent state. 
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5. Future Directions 

Plenty of opportunity remains for investigating the I-Mad2 conformation and 

other questions related to Mad2 conformational interconversion. As mentioned in section 

3.3.2, HXMS pulse labeling experiments look to be a promising avenue for determining 

the rate of conformational change for interesting structural regions. Of all potential future 

work stemming from this study, this method appears to have the highest likelihood of 

yielding interesting results. This method could be applied to studying Mad2 catalysis as 

well. Vital to studying catalysis is being able to distinguish the Mad2 population 

undergoing conversion from the population acting as catalyst. This can be done by 

growing one population under perdeuterating conditions so that this species will be easily 

distinguishable by mass spectroscopy. These non-exchanging deuteriums would greatly 

increase the mass of peptide fragments from the catalyst population so that they would 

not overlap with peptides from the population undergoing interconversion. We have 

reported differences in the macroscopic conversion rates for Mad2R133A, Mad2RQ and 

Mad2RF mutants, but have not reported residue specific rates. HX pulse labeling 

experiments may be applied to these mutants to see if they vary in how rapidly they attain 

the I-Mad2 conformation. 

More ambitious experiments may involve mutations affecting the β2 and β3 

region. Both strands can be removed or more subtle mutations can be introduced that will 

disrupt the aromatic interactions between linking these strands to αA (Tyr 33 to Phe43 or 

Tyr49 to Phe23 and Phe26). Combining these mutations with whole molecule conversion 

experiments, such as those monitored by 1D NMR or anion exchange, would allow for 

the role of this region in Open to Closed conversion to be investigated without the need 
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for HX experiments. However, such experiments run the risk of creating aggregation 

prone mutants, particularly if these strands were simply removed and the underlying 

hydrophobic core were exposed to solvent. Another possibility is to investigate the 

influence of pH on conversion rates and to determine if His191 plays a role in this 

behavior. Finding a pH dependence within the physiological range may suggest a yet to 

be described mechanism for spindle checkpoint control. 

If NMR experiments are to be pursued then it may be advisable to truncate the 

first ten residues of Mad2. Published peak assignment tables come from a truncated 

version of Mad2 (10, 25), so this truncation may be required for adequately assigning 

peaks. However, truncation of the N-terminus likely affects kinetics and perhaps even the 

presence or absence of I-Mad2. 

Investigations of the Mad2 ligand binding reaction will clearly need to utilize a 

different flourophore than the one described here. Recently, other workers have had 

success monitoring Mad2 binding by measuring fluorescence polarization of Texas Red 

attached to a ligand (33). This technique combined with HXMS can be used to identify 

the conformational change that allows C-Mad2 to bind ligand. Based on the structure of 

Mad2 we can assume that this binding reaction minimally requires the rearrangement of 

the C-terminal strands β8’ and β8‖ (Figs. 6.1D, 6.2A), which should limit the binding rate 

to the rate of rearrangement. By increasing ligand concentration one should reach a 

concentration independent rate that corresponds to the opening rate (identical to the HX 

EX1 case; see Chapter 1). Similarly, applying HXMS to C-Mad2 at high pH should 

reveal segments of the protein that exchange with a pH-independent rate identical to the 

rate identified by ligand binding, identifying these regions as being involved in the 
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rearrangement that is necessary for ligand binding. A potential pitfall to this method 

would be that these rearrangements may be so rapid that determining the rearrangement 

rate may require ligand concentrations higher than are suitable for experiments. In this 

case it may be necessary to reduce the binding rate. The easiest way to do so will be to 

reduce the experiment temperature, which should greatly reduce the binding rate due to 

the enthalpic barrier associated with breaking the hydrogen bonds that keep β’ and β‖ in 

place. Alternatively, one can create mutants that stabilize β8’ and β8‖, though this may 

require extensive trial and error. 
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