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Gaussian Markov Random Field Models for Surveillance Error and
Geographic Boundaries

Abstract
This dissertation addresses two basic problems in epidemiological surveys of insect distributions: the
uncertainty in the surveillance process conducted by human inspectors and the modeling of geographic
barriers in spatial analysis.

In the first work, we propose a Bayesian hierarchical model which models the accuracy of human inspectors.
We apply this model to analyze an entomological survey conducted by the Peruvian Ministry of Health in
Mariano Melgar, Peru to locate areas of underreporting of insect infestation. We consider how the household
assignment of inspectors influences this identifiability problem. We introduce a simulation paradigm where
the strength of confounding may be controlled. Through these simulations, we demonstrate how practically
implementable assignment recommendations can mitigate the error in infestation estimates created by this
confounding.

In the second work, we study a method for modeling geographic boundaries. We parameterize the shape of
these barriers to vary according to intensity of these effects. We demonstrate the model's properties on
simulated data and show the efficiency of Bayesian procedures. We then apply the model to the above data set
by modeling streets in Mariano Melgar. We quantify this barrier effect and after performing sensitivity
analysis, conclude that streets are a major barrier. Lastly, we discuss some extensions and open possibilities
with our approach.
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ABSTRACT

GAUSSIAN MARKOV RANDOM FIELD MODELS FOR SURVEILLANCE ERROR

AND GEOGRAPHIC BOUNDARIES

Andrew E. Hong

Dylan S. Small

This dissertation addresses two basic problems in epidemiological surveys of insect distribu-

tions: the uncertainty in the surveillance process conducted by human inspectors and the

modeling of geographic barriers in spatial analysis.

In the first work, we propose a Bayesian hierarchical model which models the accuracy of

human inspectors. We apply this model to analyze an entomological survey conducted by

the Peruvian Ministry of Health in Mariano Melgar, Peru to locate areas of underreporting

of insect infestation. We consider how the household assignment of inspectors influences

this identifiability problem. We introduce a simulation paradigm where the strength of

confounding may be controlled. Through these simulations, we demonstrate how practically

implementable assignment recommendations can mitigate the error in infestation estimates

created by this confounding.

In the second work, we study a method for modeling geographic boundaries. We parameter-

ize the shape of these barriers to vary according to intensity of these effects. We demonstrate

the model’s properties on simulated data and show the efficiency of Bayesian procedures.

We then apply the model to the above data set by modeling streets in Mariano Melgar. We

quantify this barrier effect and after performing sensitivity analysis, conclude that streets

are a major barrier. Lastly, we discuss some extensions and open possibilities with our

approach.
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CHAPTER 1 : Introduction

The application of spatial statistics to epidemiology centers on two complementary prob-

lems: surveillance and control. The problem of surveillance is to visualize the geographic

pattern of an infestation over space and infer its evolution over time. The problem of con-

trol is the strategic allocation of resources to mitigate or dampen the damage caused by an

epidemic. The focus of this dissertation is on the modeling of natural phenomena that arise

in the course of surveillance problems and demonstration how statistical methods based

on these models overcome these problems. A primary motivation of these developments is

the proliferation of data rich environments where efficient computation to handle the sheer

volume and scale of the data is necessary.

The aim of this thesis is to address omnipresent problems that arise in epidemiology that

are not addressed in the literature due to deficiency in existing statistical models. The two

central contributions are investigations into the problem of surveillance error in epidemi-

ological surveys and the development of the modeling of geographic boundaries in spatial

analysis. In the former, we are interested in inferring the hidden or occluded sources of in-

festation in spatial data which is underreported due to insensitivity of inspection processes.

In the latter, we introduce a method for modeling geographic boundaries in spatial data.

One primary application of this work is to analyze epidemiological data collected throughout

the district of Mariano Melgar in the city of Arequipa, Peru by the Peruvian Ministry of

Health. The purpose of these surveys is to identify the locations of infested households

of Triatoma infestans, an insect which spreads a disease-causing protozoan Trypanosoma

cruzi, for the application of insecticide. The resulting Chagas disease from this protozoan

is a major epidemic in South America and has spurred interest in statistical methods to

aid public health campaigns, which are limited by the availability of resources, Levy et al.

(2010).
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1.1. Background

Most models for spatial data, whether they be for continuous or discrete data, are based

on the concept of a random field or a continuous stochastic process usually defined on R2.

Because most spatiotemporal data is observed at a finite number of locations, {ωi}ni=1, this

continuous model induces a marginalized, multivariable random variable x =
∑n

i=1 x(ωi)ei

with a joint distribution f(x).

The vast majority of spatial modeling is done for cases in which the random field is assumed

to be Gaussian, such as the Brownian sheet, so that the induced finite collections are jointly

Gaussian. The advantage of Gaussian models is that their distributions are summarized

by their first two moments. Then the primary point of focus in spatial statistics are co-

variance models where the covariance between two observations on the field is a function of

the locations or, for centered fields, c(x(ωi), x(ωj)) = E{x(ωi)x(ωj)} = c(ωi, ωj). Of partic-

ular interest are weakly stationary random fields with shift invariant covariance functions

c(ωi, ωj) = c(0, ωi−ωj) = c(ωi−ωj). An even stronger assumption that is sometimes made is

to assume that the covariance is isotropic or rotationally invariant c(ωi−ωj) = c(‖ωi−ωj‖).

The usual practice for fitting spatial models to data is to assume that the covariance is

isotropic and then to fit to a parametric covariance function. Standard selection of a covari-

ance model involves the variogram or γ(‖ωi−ωj‖) = 1
2E{x(ωi)−x(ωj)}2 where h = ‖ωi−ωj‖

is the lag. The variogram γ is usually taken to be continuous except for the jump discon-

tinuity at h = 0, which is known as the nugget. The sill is the limit limh→∞ γ(h), which

for ergodic random fields is just simply the variance c(0). The range is the distance r

needed such that γ(r) ≈ limh→∞ γ(h), which in practice is taken to be the distance where

the correlation is equal to 0.005. One example of these parametric models is the spherical

variogram model,

γ(h) =


τ2 + σ2 if t ≥ 1/φ

τ2 + σ2(3φh− (φh)3)/2 if 0 < t ≤ 1/φ

(1.1.1)
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where τ, σ, φ are all positive, Banerjee et al. (2004). The interpretation of the parameters

is as follows: τ2 is the nugget, τ2 + σ2 is the sill, and h = 1/φ is the range. Given data,

the variogram may be fit to a class in a number of ways, either by calculating the method

of moments estimator γ̂, using various choices of lags, and fit to γ using weighted least

squares or by (restricted if containing covariates) maximum likelihood methods using the

multivariate Gaussian likelihood.

Another approach to spatial modeling is the use of graphical models defined on a graph

G = (V, E). The multivariate random variable x is defined on each node or vertice in V and

generally the dependence structure in x is reflected in the connectivity among the vertices

through the edges E . The canonical example of these models is the multivariate Gaussian

where the graphical structure is contained in the precision matrix Q. A clique is a set of

vertices where every possible pairwise connection is contained in E , and a maximal clique

is a clique not contained in another clique in the graph. A graph may be factored into

a collection of maximal cliques. For a precision Q defined on a graph factorized into the

collection of maximal cliques {Ci}mi=1 with n nodes, the density of x is,

f(x) ∝ exp

{
−1

2
xᵀQx

}
= exp

{
−1

2

∑
v∈V

Qv,vxv
2 −

∑
u<v

Qu,vxuxv

}
(1.1.2)

= exp

{
−

m∑
i=1

Φ(xCi)

}
(1.1.3)

The potential function Φ is then a function over the maximal cliques of G. If Qi,j = 0 then

there exists no edge between vertices i and j and one has the conditional independence

property: xi ⊥ xj |x−{i,j}. This feature is a kind of Markov property, however Gaussian

Markov random fields (GMRF) possess a stronger Markov property. Namely for three

subsets of vertices of V, we call C a seperating set from A to B if every path from a vertice

in A to a vertice in B contains a vertice in C. GMRFs possess the global Markov property:

3



if C is a seperating set from A to B then xA ⊥ xB|xC , Rue and Held (2005). Interestingly

for continuous random fields, a the notion of seperation can be extended: if removing C

from the ambient space induces the closures of A and B to be disjoint. A continuous random

field is Markovian if and only if its power spectra is an inverse polynomial, Rozanov (1977).

The problem with GMRF is that for general graphs is that there is no interpretation for their

covariance structure. However, these models may be interpreted as discretized solutions to

stochastic differential equations (SDE). The most popular GMRF model is the conditionally

autoregressive (CAR) model introduced in Besag (1974), which we specify in general in

equation 2.3.3. A simple example of this connection is the AR(1) model or the CAR model

on a regular line has precision,

Q =



1 −1

−1 2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2 −1

−1 1



D =



−1 1

−1 1

. . .
. . .

−1 1


(1.1.4)

Consider the SDE, ∂x
∂t = W , where W is white noise in time by discretizing the derivative

as the foward difference for the regularly spaced locations (∆t = ∆ti = ti+1 − ti), ∂x(ti)
∂t ≈

x(ti+1)−x(ti)
∆t . The discretization implies that ∆t−1Dx ∼ N(0,∆t−1I), which has density pro-

portional to exp{−1/(2∆t)(Dx)ᵀ(Dx)} = exp{−1/(2∆t)xᵀQx}, or that x ∼ N(0,∆t−1Q).

For simple models, the connection is a curiosity. Later, we will exploit this connection fully

for more complex problems in chapter 3 to generate GMRF approximations to continuous

models.

4



With the fit covariance (or precision) fixed, the problem of prediction or interpolating values

of the random field at unobserved locations is calculated using the conditional mean, con-

ditioning on the observed values. This procedure, also known as kriging, is the best linear

unbiased estimator. Because this conditional distribution involves inversion of the covari-

ance matrix, the computational complexity of kriging scales as O(n3), where n references

the number of locations observed. Although while in this work we take the Bayesian ap-

proach to estimation, one returns to similar problems of solving systems of linear equations

involving large covariance matrices. Hence as efficient computation is one of our central in-

terests, we focus on GMRF where these matrices are usually very sparse or where a majority

of the entries are zero. For large sparse matrices, systems of equations involving covariances

can be solved using sparse Cholesky solvers, which scale based on the width of the banding

post-permutation.

1.2. Research Objectives

In chapter 2, we propose a Bayesian hierarchical model that accounts for the uncertainty

in the observation process for presence and absence of infestation data collected by human

inspectors. Modeling each inspector’s sensitivity as well as the spatial process separately, we

estimate the true infestation rates to determine regions of underreporting. As there is little

prior data regarding individual inspector accuracy, we study the problem of parameter

identifiability between inspector sensitivity and spatial intensity of the infestation. This

problem of identifiability occurs when there is correlation in space between the intensity of

the infestation and the accuracy of the inspector observing the data. We create a simulation

paradigm where inspectors are assigned to households randomly based on their accuracy

and the regional infestation intensity. By tuning the assignment distribution, we control

the likelihood of confounding and demonstrate the associated increase in estimation error.

Frequently in epidemiological surveys, there is no way to diagnose the degree of confounding.

As a result, we propose assignment recommendations, which perform well even in the worst

case scenario. We conclude that models which do not account for the heterogeneity in

5



inspection error perform poorly in the presence of confounding, regardless of assignment.

However, we demonstrate that modeling the heterogeneity in addition to our assignment

recommendations vastly improves the infestation estimation. This improvement follows even

in the absence of informative priors for inspector accuracy. For the Mariano Melgar survey

in Arequipa, Peru, we simulate data where inspectors are assigned to households uniformly

at random and contrast the estimation error to simulations using the fixed assignment to

conclude that there is some evidence that there is no danger of strong confounding. We

identified four at risk localities that fell under the Peruvian Ministry of Health’s threshold

for infested households, which as a result were later sprayed with insecticide treatment.

In chapter 3, we introduce a mechanistic approach for modeling the effect on spatial dis-

persion of geographic boundaries. While the importance of the boundaries is intuitive to

investigators, the ability to incorporate the geometry of these boundaries has been outside

the scope of existing spatial methods. Our approach is to model geographic boundaries as

deformations of the surface, on which a stochastic partial differential equation is defined.

We take as the spatial effect, in our model, the approximate solution to this SPDE by using

the finite element method. Because of the SPDE formulation, the approach avoids the prob-

lem of the positivity requirement for covariance models that usually arises when attempting

to adapt models for curved surfaces. We first review some standard background regarding

finite element analysis required for our implementation and then detail our contribution.

In addition to modeling fixed deformation, we demonstrate the ability to parameterize the

deformations. We then explore the efficiency of statistical methods on simulated data for

inferring these deformation parameters. As an application of our method, we model the

major roadways of Mariano Melgar and use Bayesian techniques to infer the effect of streets

in the spatial dispersion of the insects. Our analysis shows that streets are a highly non-

trivial barrier to the dispersion of insects. The ability, or lack thereof, of infestations of

insects to traverse streets has been an open question to entomologists studying Triatoma

infestans. Lastly, we conduct some sensitivity tests of our findings on the importance of

streets to the model’s other parameters.
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The approaches and models discussed in this dissertation work were motivated by the

problem of Chagas in South America but are applicable to other statistical problems in

epidemiology. Most of the data we worked with was discrete, but we discuss simulations

and implementations for the continuous case. Lastly, we worked with communities which

sometimes contained over fifteen thousand households. We found our methods to scale

very efficiently for large data sets. On a final note, in chapter 3, we summarize briefly our

findings and discuss some immediate extensions such as spatiotemporal modeling and more

complex models for capturing the shapes of spatial deformations.
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CHAPTER 2 : Surveillance Error in Epidemiological Surveys

2.1. Introduction

The rise of urbanization around the developing world has been met with the increasing risk

of epidemics of vector-borne disease. The use of spatial analysis in aiding public health

officials in controlling these disease outbreaks is documented in: Dengue, Teixeira et al.

(2002); Malaria, Trape et al. (1992); and Chagas disease, Corrasco et al. (2005).

Chagas disease is one of the most prevalent of the debilitating diseases in South America.

The disease is due to the Trypanosoma cruzi parasite, transmitted by triatomine insect

vectors. Most policy for Chagas disease control has centered around eliminating the insect

vector. While modern practices of vector control have been applied, the triatomine insect

has proven to be a continually re-emergent problem Levy et al. (2006). Given the disease

carrier’s persistence and abundant distribution, matched by a serious strain on public re-

sources (manpower, insecticide, and so on), there has been an increasing need and interest

for statistical methods to understand the spatial distribution of triatomine infestations in

order to apply resources and direct public health campaigns Levy et al. (2010).

Currently, the Peruvian Ministry of Health (MoH) is working in Arequipa, Peru to control

an epidemic of Trypanosoma cruzi spread by Triatoma infestans, Levy et al. (2006). Control

efforts are guided by raw household level survey data such as that shown in figure 1. Prior

to insecticide application, all localities in Arequipa are surveyed to assess the severity of

infestation. Although the inspectors conducting these surveys are all trained by the MoH

for this purpose, the process to determine if there is an infestation is not straightforward and

inspectors naturally have varying degrees of skill and experience. Further, it is unfeasible

in terms of cost to conduct repeated household level surveys. Hence, accurate prevalence

estimates from a single survey are needed for prioritizing insecticide treatment. Although

policy is fluid, at the time of this study localities with infestation prevalences exceeding 10

% were prioritized for insecticide application. Given this policy, the primary concern of our
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Figure 1: Raw results of a preliminary survey for Triatoma infestans in the district of
Mariano Meglar, Arequipa, Peru, 2009

study is to address the under-reporting of infestation rates due to surveillance error and to

apply appropriate statistical methods to correct for this problem. Although the magnitude

of the surveillance error in this setting is only roughly known in advance, the identities of

which inspectors were assigned to which households was carefully documented. In order

to take advantage of this information, we construct a Bayesian hierarchical model to infer

the heterogeneity in surveillance error across different inspectors. We will argue through

simulation, that modeling the heterogeneity in inspector surveillance error improves overall

identification of the infestation and, further, that ignoring the heterogeneity may occlude

regions of serious infestation, hidden by insensitivity on the part of inspectors of that region.

2.2. Data

The dataset in consideration consists of 12,070 household-level entries from Mariano Melgar,

a district of the city of Arequipa, Peru. Inspection was on a voluntary basis, which accounts
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for the large amount of missing data (approximately 34 % of the total number of houses);

the most common reason for missing data is simply absence - as the owner or any household

members were unavailable at the time of inspection, permission to inspect the household

could not be granted. We mapped the position of all households and the delimitation of

city blocks in the district, comparing satellite imagery in Google Earth
TM

to field maps

drawn by the personnel of the MoH Google (2009). Households were then aligned with

their city block according to their respective coordinates. For each entry, the locations of

the household are supplied along with its inspected status: infested, un-infested, and non-

response. The entries are not evenly divided amongst the inspectors, nor are the inspectors

themselves evenly distributed across space. Part of the interest of this study is to make

future recommendations for inspector assignment.

2.3. Model

To model spatial correlation between the infestation status of the vector in each household,

we used a Gaussian linear model, along with a probit link to the binary infestation status

of each data point. A complete diagram of the hierarchical specification is shown in figure

2. Similar approaches can be found in a variety of public health applications in Banerjee

et al. (2003), Banerjee et al. (2004). The parameter of interest y is binary, denoting the true

infestation status of each household. In contrast, the actual data recorded by the inspector

is z, which is the observed infestation status. The infestation status, y, is for the practical

purposes of this study unobservable and must be estimated by the model.

2.3.1. Household Risk

The spatial correlation between the true infestation status of the household, y, is modeled

through the latent probability of infestation at each household denoted by x. In order to

perform spatial regression on the binary outcome, we use the probit link:

P(yi = 1|xi) = Φ(xi) (2.3.1)
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Conditional on the spatial risk field x, each variable yi is conditionally independent from

one another.

The latent risk, x, is taken to be a linear model composed of a fixed effect t and a spatially-

correlated household level effect ui:

x = t+ u where 1ᵀu = 0 (2.3.2)

The spatial effect u is modeled using the sparse conditionally auto-regressive (CAR) model

introduced in Besag et al. (1991) also known as a Gaussian Markov random field, Rue and

Held (2005). Although u does not follow a proper Gaussian distribution, through abuse of

notation its distribution is often denoted as N(0, kuΛ), where kuΛ is the precision matrix.

In this application, Λ is fixed.

Λ will be defined as Λij = −1/d(i, j), where d(i, j) is the Euclidean distance between the

locations indexed by i and j. In order to ease the computation, truncation or tapering

will be applied in the following manner: if d(i, j) > κ, then Λij = 0. From previous work

in Barbu et al. (2013), spatial autocorrelation in data collected from an adjacent region

was shown to drop sharply at around 50 meters, and in this work, we take 50 meters to

be our threshold. The diagonal entries of Λ are defined as Λii =
∑

j 6=i−Λij . With this

specification, the conditional distribution of each household is,

ui|u−i ∼ N

(∑
{j∈Ni:j 6=i} d(i, j)−1uj∑
{j∈Ni:j 6=i} d(i, j)−1

, ku
∑

{j∈Ni:j 6=i}

d(i, j)−1

)
(2.3.3)

where u−i denotes all the households except for i. Because of the specification Λii =∑
j 6=i−Λij ; Λ is not invertible, which necessitates the sum to zero constraint in Equation

2.3.2. In deriving Monte Carlo methods, it is often helpful to consider the “joint-density,”
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f(u) ∝ exp

(
−ku

2
utΛu

)
= exp

(
−ku

2

∑
i<j

d(i, j)−1(ui − uj)21d(i,j)≤κ

)
(2.3.4)

The conditional distribution of the spatial risks is centered on the weighted sums of the

neighboring points, where the notion of a neighborhood for a specific point is every other

household within a certain distance. From the conditional distribution, the more neighbors

a household possesses, the smaller the conditional variation is for that household. The

closer household j is to household i, the more influential the value of the field at j is on the

conditional distribution of ui.

Together ku and Λ determine the strength of the spatial relationship between the household

level risks. Larger values of ku penalize the likelihood of rougher fields favoring flatter ones.

From the conditional distribution, larger values of ku allow the conditional distribution

of a point to vary less from the weighted sum of its neighbors, increasing the relevance of

neighboring values. In practice having fixed Λ, a less informative prior will be placed on ku,

as the degree of the spatial correlation in the vector distribution is not known in advance.

2.3.2. Inspection Process

The objective in modeling the inspection process is to be able to account for the imperfect

surveillance and heterogeneity in inspector sensitivities. zij is the observed status of house-

hold i recorded by inspector j as: positive (insects found), negative (no insects found), or

non-response. As a first approximation, we model this surveillance process as a Bernoulli

random variable,

P(zij = 1|yi, βj , INAi) =


βjyi if INAi = 1

NA if INAi = 0

(2.3.5)

where INA is a binary vector containing each of the households, denoting a one if the

household was inspected and a zero otherwise. βj represents the inspector’s sensitivity, or
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Figure 2: Hierarchical diagram of the model, where INA and z are the survey data denoting
whether or there is non-response and the presence or absence of an infestation. The pa-
rameters of interest are y (infestation status) and β (inspector sensitivity). u is the latent
process we used for spatial smoothing.

the probability the inspector reports the insect vector in a truly infested household. Larger

values of βj correspond to more accurate inspectors and are distributed according to a beta

distribution. In general, the accuracy of the inspectors is unknown. Prior sensitivity is

discussed in Section 2.5.4. Given the ease of identification of the triatomine insect when it

is encountered, the possibility of false positives on the part of inspectors is negligible.

We allow for spatial correlation in the location of the missing data, but we assume that this

missingness is independent of the risk of infestation, P(INA|x) = P(INA).

We will contrast our heterogeneous surveillance error rate model with a simpler, homoge-

neous error rate model where β is flat for all inspectors and the inspector labels for the

observations are ignored.
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2.3.3. Prior specification

For the precision parameter ku, we chose to use the standard diffuse gamma Γ(1, 100)

prior, as recommended in Paciorek (2007). Diffuse folded-t priors were also implemented

as recommended by Gelman (2006), but led to no discernible difference in terms of Monte

Carlo performance or estimated results. For the fixed risk level t, we used a centered diffuse

normal N(0, 1 · 104) prior.

Inspector sensitivity plays a central role in our model. To set an informed prior on inspected

sensitivity, we made use of data that the MoH had collected from spray campaigns completed

in previous districts, where infestation data on the vector was collected and compared to

the initial assessments from surveillance campaigns. Based on this prior data, we set as

our informative prior that each βj is distributed independently from the same B(6.5, 2)

distribution.

2.3.4. Computation

The model was implemented through a Gibbs sampler detailed in Appendix A.3. The

implementation of the model on a district of standard size is straightforward in R due to

the release of a number of sparse matrix packages (see for example: spam, Furrer and

Sain (2010)). We found that the slowest mixing and most autocorrelated parameter in the

model was ku. A burn-in cut-off of 10,000 steps was determined through running chains

from multiple starting points and using the Gelman and Rubin diagnostic on ku, Gelman

and Rubin (1992). Similarly, the effective sample size of the estimates and later simulations

were based on the autocorrelation of ku.

2.4. Results

Figure 3 is a map of the posterior probability of infestation, y in each household produced by

the heterogeneous inspector model. Table 1 displays the locality-wide infestation estimates,

comparing the results produced by the heterogeneous inspector model to those produced
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Figure 3: Posterior mean of infestation probabilities estimated from the Mariano Melgar
data set, using the heterogeneous inspection model.

by the homogeneous inspector model and the no surveillance error model. At the time of

the study, the MoH’s use of these results was to apply insecticide to all of the households in

localities for which the aggregated locality-wide estimated infestation prevalence exceeded

ten percent. Based on our findings, we recommended that a number of localities (localities

2, 7, 11, 15 and 37) be treated that the MoH had not planned to treated, and the MoH

followed our recommendations. For localities with presence levels below the 10 % thresh-

old, insecticide application decisions were made on a case-by-case basis, and insecticide was

often targeted to certain city blocks only. Thus, block level infestation estimates are also

important for decision making in addition to the locality infestation estimates. A compari-

son of the block level infestation estimates between our model and smoothing which ignores

surveillance error are shown in figure 5 showing the emergence of new blocks at risk for

infestation.
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Posterior Probability of Infestation Estimates for Models

Locality Heterogeneous Homogeneous No Surveillance Error % NA

1 0.0114 0.0113 0.0021 0.5884
2 0.1128 0.1214 0.0876 0.3831
3 0.0954 0.0906 0.0481 0.4613
4 0.0188 0.0228 0.0051 0.3529
5 0.0323 0.0261 0.0060 0.5976
6 0.0432 0.0421 0.0142 0.6164
7 0.1437 0.1460 0.0845 0.6220
8 0.0259 0.0296 0.0059 0.3243
9 0.1907 0.2041 0.1486 0.0093
10 0.2912 0.2913 0.2245 0.5238
11 0.1363 0.1416 0.0857 0.2879
12 0.3696 0.3706 0.2999 0.4956
13 0.3273 0.3391 0.2575 0.0828
14 0.0323 0.0308 0.0115 0.4082
15 0.1056 0.1095 0.0771 0.2857
16 0.0323 0.0297 0.0243 0.4253
17 0.0394 0.0410 0.0169 0.4690
18 0.0044 0.0015 0.0008 0.5611
19 0.0029 0.0012 0.0007 0.5917
21 0.0029 0.0011 0.0003 0.5428
22 0.0057 0.0035 0.0006 0.5926
23 0.0248 0.0235 0.0127 0.3352
24 0.0123 0.0108 0.0070 0.4489
25 0.0031 0.0014 0.0007 0.5000
26 0.0066 0.0019 0.0028 0.6504
28 0 0 0 0.5734
30 0.0044 0.0025 0.0016 0.5728
31 0.0057 0.0039 0.0041 0.5849
32 0.0029 0.0020 0.0013 0.3636
33 0.0073 0.0044 0.0015 0.6951
34 0.0013 0.0011 0.0004 0.4400
35 0.0079 0.0073 0.0053 0.5438
36 0.0564 0.0574 0.0445 0.1798
37 0.1075 0.1113 0.0804 0.1845
38 0.0780 0.0812 0.0575 0.2026

Table 1: Infestation estimates averaged by locality in Mariano Melgar using the heterogeneous and
homogeneous inspection error models. Estimates which ignore inspection error, but are spatially
interpolated for non-response are also provided.

From the Mariano Melgar data, the group average of the estimated inspector accuracies

was 76.08 %, very nearly the prior mean of 76.47 %. Figure 4 demonstrate some of the

heterogeneity of posterior distributions of the inspector sensitivities and how they deviate

from the prior.
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Figure 4: Posterior distributions of the five example inspectors’ accuracies representing the
variability in detection sensitivity across the inspectors in this study.

Although we have confidence in the informative prior used, an open question is how much

information is present in the data to identify inspector sensitivity. We believe that there is

a reasonable amount as although overall accuracy rates depend on the prior specification,

inspector sensitivity rankings relative to one another are consistent when using weaker less

informative priors such as the B
(

1
2 ,

1
2

)
(group posterior mean of 0.5297) and B(1, 1) (group

posterior mean of 0.5557). While the relative performance of the inspectors in Mariano

Melgar were consistent with our prior knowledge, we must caution that these estimates are

highly sensitive, especially in terms of overall performance, to the prior specification. Fur-

ther, we will explore phenomena in section 2.5.2 that can severely bias these estimates, and

the sensitivity estimates should be judged with caution. However, given the overall consis-

tency in ranking, we believe there is sufficient information in the data to take advantage of

the additional structure in the heterogeneous model.
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Figure 5: Top plot is the raw infestation prevalence, collected in the survey, at the block
level. The bottom plot is the estimated infestation prevalence, produced by our model,
aggregated at the block level.
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Figure 6: Difference field in infestation, ȳ|zhetero− ȳ|zhomo, between the estimates produced
by the heterogeneous and homogeneous inspection models.

2.4.1. Model Comparison

There are substantive differences between the estimated infestation probabilities produced

by the homogeneous and heterogeneous inspector models at a fine scale. The difference

between the two probability fields, shown in figure 6, indicates that the estimates produced

by the heterogeneous inspector model are much more peaked and concentrated than those

produced by the homogeneous inspector model. The posterior means for ku in the hetero-

geneous and homogeneous inspector model are 1.7288 and 1.6667 respectively, indicating

that the posterior distributions, induced by the two models, for the spatial component are

quite similar.
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Figure 7: Distribution of households surveyed by a few example inspectors across Mariano
Melgar, Arequipa, Peru demonstrating the aggregation in space of their assignment.

2.5. Impact of Inspector Distribution on Estimates

From figure 7, it is clear that inspectors are not distributed evenly or randomly across the

region. One point of interest in this analysis is how different distributions of inspectors

in space affect the accuracy of our model estimates. Particularly, we are interested in the

case where the observation error becomes spatially correlated due to how the inspectors

are distributed or assigned to households. In these scenarios, a motivating concern is to

what degree one can obtain meaningful estimates of infestation probability and inspector

sensitivity.

If there was no spatial correlation in the risk of infestation, then for any observed realization

of the data, z, there are many combinations of inspector sensitivity and true infestation

that can lead to similar likelihoods. A decrease in the accuracy of the inspector combined

with a corresponding increase in the amount of true infestation in a household leads to a
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similar likelihood for the household. However, in our model, the similarity of the risk of

infestation between households in close proximity can prevent this confusion between the

many possible realizations of y. Hence, in the absence of strong prior information regarding

the accuracy of inspectors, the exact set of households inspected by each inspector becomes

vitally important as it determines the extent to which the spatial component of the model

can separate among the many possible combinations of hierarchical variables.

By this line of reasoning, distributing inspectors uniformly at random over the map would

reduce this confounding between inspector sensitivity and infestation. In this section, we

will investigate by simulation the effects of different strategies for assigning inspectors.

Consensus on infestation status by a number of inspectors in an area increases the validity

of the evidence, while repeated disagreement suggests insensitivity on the part of some

inspectors.

2.5.1. Comparing Randomized to Actual Inspector Assignments

Distributing inspectors uniformly at random reduces confounding between inspector sensi-

tivity and infestation. There are a number of questions we investigate through simulation.

Question 1.1: how much better is a uniform assignment than the actual assignment? To

approach this question, we will generate data from the binomial inspection model and our

fitted Gaussian field, and compare the resulting estimates from our model under the two

cases that 1) the inspector-to-household labels are identical to those found in the Mariano

Melgar data; 2) inspectors are reassigned to households at random. We hypothesize that

randomized assignment will have lower error in terms of estimating infestation prevalence,

but that the estimation error would ideally not be too dissimilar - a dramatic drop in error

through randomization would indicate the possibility of serious confounding when analyzing

the Mariano Melgar data. Question 1.2: how does uniform random assignment of inspec-

tors compare to the actual assignment for comparing the sensitivity of different inspectors

based on the data? This question can be investigated through simulation as inspector sensi-

tivities can be drawn from a specified β-distribution. We then compare the estimation of y
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when the prior on β differs from the generating distribution and when it matches perfectly,

which would yield the lowest estimation error.

Example 1 We simulate the insect infestation, y, from the posterior distribution from

the Mariano Melgar data, and inspector sensitivity, β, from the inspector sensitivity prior

B(6.5, 2). Briefly, inspector-to-household labels are drawn uniformly at random for each

inspector (while maintaining the total number of households inspected by each inspector

as in the Mariano Melgar data). Simulated data is then drawn according to the binomial

inspection model. To measure the performance in estimation accuracy, we consider the

squared distance discrepancy between the simulated discrete infestation field y, and the

estimated posterior probability of infestation from the simulated data (also known as the

or the Brier score for probability forecasts Brier (1950)).

To answer question 1.1, (when a B(1, 1) prior is used to analyze the data), the difference

in mean Brier scores between data generated by the Mariano Melgar inspector assignment

and random assignments of inspectors has a p-value of 0.0073 in favor of the randomized

assignments. The significance of these results is similar when other priors are used. Thus,

there is evidence that a randomized assignment of inspectors would have been better than

the actual assignment in which most regions were inspected by only a subset of the inspectors

but the difference is moderate. For question 1.2, the difference in mean Brier scores when

using a misspecified B(1, 1) compared to using the specified generating prior of B(6.5, 2) has

a p-value of 0.0004, using the Mariano Melgar inspector assignment. Under the randomized

assignments, the p-value is less significant at 0.0185. These results suggest that error induced

by possible misspecification is much more significant in the Mariano Melgar analysis than

would be the case if the inspectors were randomly assigned to households.
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Effect of randomized inspector-to-household assignment

Model

Homogeneous Heterogeneous

Prior |ŷ − y|2 |ŷ − y|2 |β̂ − β|2 Cor(β̂,β)
n = 50 Mean SD Mean SD Mean SD Mean SD

Actual assignments

B(1, 1) 20.9611 0.3053 21.2609 0.2835 1.4122 0.0806 0.4456 0.0682
B(5, 5) 21.0010 0.2810 22.3966 0.2542 1.8430 0.0411 0.5333 0.0708
B(6.5, 2) 20.9363 0.2377 20.9187 0.2308 0.6613 0.0479 0.6824 0.0627

Randomized assignments

B(1, 1) 20.7721 0.3049 21.0009 0.2850 1.2454 0.1289 0.5400 0.1125
B(5, 5) 20.8264 0.2660 22.1084 0.2473 1.7918 0.0486 0.6084 0.0961
B(6.5, 2) 20.7660 0.2892 20.7710 0.3225 0.6848 0.0561 0.6486 0.0784

Table 2: Estimation error in the infestation (|ŷ−y|2) and inspector sensitivities (|β̂−β|2,Cor(β̂,β))
for simulated data when inspectors are assigned randomly to locations compared to the inspector
assignment in the Mariano Melgar data. For comparison, the infestation estimation error for the
homogeneous inspection error model is given in contrast to the error in the heterogeneous model.

We conclude that randomization reduces estimation error of the infestation and, randomiza-

tion increases resiliency to misspecification of inspector sensitivity priors. We hypothesize

the reason for this behavior is not simply the lack of spatial similarity in the distribution

of inspectors, but rather the lack of correlation between how inspector sensitivities are dis-

tributed and how the insect infestation is distributed across space. It is difficult to attribute

an observed mild infestation to a truly mild infestation observed by very accurate inspectors

or to a very intense infestation observed by very unreliable inspectors. This scenario occurs

when for a given household; the sensitivity of the assigned inspector is strongly negatively

correlated with the point-wise risk of infestation.

2.5.2. Strength of Confounding

Question 2.1: Does increasing the correlation between distributions of inspectors and

the distribution of insect infestation increase estimation error? Increasing the strength of

the negative correlation in these cases should not only increase the estimation error of the
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infestation, but reduce our ability to accurately estimate the inspector sensitivities. Further,

stronger negative correlation should magnify the error induced by prior misspecification.

Consequently, question 2.2 does weakening this correlation reduces estimation error?

To address these questions we first partition the households of Mariano Melgar into regions

(see Appendix A.1.1 for the elementary schema used). We then simulate infestations of

varying intensity region-by-region and inspector sensitivities. Lastly, we assign inspectors

to regions such that the correlation is negative between the inspectors accuracy and the

intensity of the infestation within the region. Actual inspectors to household assignments

are simulated last using a simple GMRF field model to ensure that they are spatially

concentrated by inspector, within region (algorithm given in Appendix A.2). If y is the

infestation, then we introduce ȳ, which is the average rate of infestation by region. With

β being the vector of inspector accuracies, the inspector-to-region assignments are drawn

according to the following Gibbs distribution,

f(ȳ,β) ∝ exp{−k(1 + Cor(y,β))2} (2.5.1)

where this distribution is normalized over all of the finite possible inspector-to-region assign-

ments. The positive constant k controls the degree of negative correlation in the resulting

sample assignment. Small values of k will result in assignments with low sample correlation,

whereas large values of k will result in assignments with strong negative correlation between

infestation intensity and inspector sensitivity.

Example 2 The Mariano Melgar household locations are divided into six regions. The

vector presence in each region is simulated with an identical precision, ku of 4.64 (estimated

from the Mariano Melgar data) and intercepts of [−1, 0,−4,−1.5,−1,−4] which correspond

to low to high (from -4 to 0) infestation intensity. Thirty-two inspector accuracies are drawn:

half from a B(3, 7) distribution, a quarter from a B(6, 4) distribution, and a quarter from

a B(8, 2) distribution which correspond to low, moderate, and high inspector sensitivity.
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Three correlation strengths are considered: k equal to [0.2, 20, 2000], corresponding to low,

medium, and high negative correlation. The primary interest is the effect of this correlation

strength on estimation quality.

The impact of k on estimating y and β is shown in table . From figures 8 and 9, stronger

negative correlation creates greater overall estimation error in infestation and inspector

sensitivity. This effect is evident even when priors are exactly specified, or it is known

in advance which inspectors belong to which low, medium, or high-accuracy distribution.

However, the increased error is especially evident when the prior is misspecified.

Further as inspector accuracy is highly heterogeneous by design, the homogeneous inspection

error model is very unsuitable. The difference in mean Brier scores when k = 20 and k = 0.2

has a Z-score of 15.95 (p-value < 0.0001) and between k = 200 and k = 20 is similarly large

at 18.68 (p-value < 0.0001). Although these values are when a B(1, 1) is used and for

the heterogeneous inspection model, the results are similar for other priors and for the

homogeneous inspection model.

To contrast the examples, because the inspector error rates were drawn from a single uni-

modal distribution in example 1, it was more reasonable to use a single error rate to describe

the group performance of the inspectors. However in example 2, inspectors were drawn from

a combination of unimodal distributions; hence, the use of a single homogeneous error rate

to describe their sensitivity resulted in poorer infestation estimates. We have shown that the

increased correlation between inspector sensitivities and the infestation induces significant

estimation error.

2.5.3. Frame of Reference to Improve Estimation

In most applications, the strength of the correlation between infestation intensity and in-

spector sensitivity is unknowable. With access only to reported infestation rates, it is

impossible to diagnose how much confounding is present. However, there is a mollifier to

this confounding that is effective even when the confounding is very strong. Our proposed
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solution is to find, before the data is collected, a region of the area of interest where a strong

infestation is likely to be present and then have a majority of the inspectors assigned to

households in this region uniformly. This frame of reference region can be used to learn the

relative inspector accuracies and accurately infer the infestation. The heuristic is that by

contrasting the repeated failure of certain inspectors to detect insects in a region of intense

infestation, the model is able to attribute this observed absence to insensitivity on the part

of said inspectors. If these insensitive inspectors are distributed uniformly across the frame

of reference region and said insensitive inspectors were mistakenly taken to be sensitive,

then the implied roughness of the infestation field in the frame of reference region will be

incompatible with the relative smoothness in the other regions.

Example 3 The parameterization of this simulation is identical to the one in example 2.

The difference is the presence of a frame of reference region, which in these simulations is

region 2, where the infestation prevalence is the highest among the regions. Each inspector

is first assigned to a random, uniform subset of households in the frame of reference region.

We then simulate the inspector assignments for the remaining five regions identically to

example 2.

Effect of correlation between inspector assignments and infestation intensity

Model

Homogeneous Heterogeneous

Prior k |ŷ − y|2 |ŷ − y|2 |β̂ − β|2 Cor(β̂,β)
n = 50 Mean SD Mean SD Mean SD Mean SD

With no frame of reference

B(1, 1)
0.2 35.3138 0.6005 34.4806 0.9162 0.9729 0.2485 0.8327 0.0885
20 36.1165 0.6059 35.6554 1.0014 1.2491 0.2520 0.7296 0.1169
2000 37.7844 0.7692 37.0555 0.9851 1.5087 0.2562 0.6052 0.1735

B(5, 5)
0.2 35.1861 0.5709 34.1913 0.8635 0.9002 0.1316 0.8652 0.0530
20 36.0754 0.5300 35.3829 0.9296 0.9930 0.1368 0.8228 0.0633
2000 37.7328 0.5589 36.8144 1.1503 1.1244 0.1867 0.7504 0.1115

True
0.2 34.4256 0.8840 0.7101 0.1017 0.9475 0.0164
20 35.5826 0.9465 0.6887 0.1063 0.9487 0.0175
2000 36.7599 0.9412 0.6950 0.1241 0.9476 0.0174

Continued on next page
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Figure 8: Brier scores, averaged across simulations, plotted against the correlation strength
coefficient k.

Table 3 – continued from previous page

Homogeneous Heterogeneous

Prior k |ŷ − y|2 |ŷ − y|2 |β̂ − β|2 Cor(β̂,β)
n = 50 Mean SD Mean SD Mean SD Mean SD

With frame of reference

B(1, 1)
0.2 34.9523 0.4277 33.8690 0.4585 0.4513 0.0724 0.9676 0.0093
20 35.7650 0.4948 34.8374 0.4855 0.4360 0.0683 0.9686 0.0099
2000 37.6855 0.5992 36.4842 0.3298 0.4185 0.0733 0.9713 0.0099

B(5, 5)
0.2 34.9010 0.4013 33.8781 0.4563 0.5880 0.0592 0.9637 0.0096
20 35.8024 0.4652 34.8565 0.4557 0.5904 0.0525 0.9621 0.0096
2000 37.7361 0.5760 36.2146 0.3275 0.5809 0.0556 0.9620 0.0109

True
0.2 34.2282 0.5130 0.6693 0.0625 0.9638 0.0071
20 35.1329 0.4601 0.6470 0.0689 0.9659 0.0095
2000 36.4124 0.3318 0.6166 0.0540 0.9663 0.0062

Table 3: Estimation error in the infestation (|ŷ−y|2) and inspector sensitivities (|β̂−β|2,Cor(β̂,β))
for simulated data when the good inspectors inspect low infestation regions and bad inspectors in-
spect high infestation regions (the extremity measured in k). For comparison, we consider two
regimes when the frame of reference is present and absence, to demonstrate the reduction in esti-
mation error across model parameters.
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Figure 9: Correlations between estimated inspector sensitivities and simulated sensitivities,
averaged across simulations, plotted against the correlation strength coefficient k.

From figures 8 and 9, the inclusion of the frame of reference region appears to remove

the error introduced through prior misspecification on the part of inspector as well as the

correlation between inspector sensitivities and infestation intensities. The improvement in

estimation due to the frame of reference region is noticeable, especially in the estimation

of inspector sensitivities. Even in the absence of accurate prior information, identifying

the sensitive and insensitive inspectors, we obtain better estimates using the heterogeneous

inspector model compared to the homogeneous model. As the heterogeneity in the inspec-

tor sensitivities is driving the confounding in this simulation, the homogeneous inspector

model is unable to identify which regions have low true presence rates and which regions

have low observed presence due to insensitive inspectors, as seen in figure 10. Without

this additional model hierarchy and the inspector labeling information, the homogeneous

inspector model appears to perform again poorly, similar to when the reference region is

absent. The difference in mean Brier scores when the reference region is used and absent
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has a Z-score of 3.89 (p-value < 0.0001) in favor of the reference region, when k = 2000 and

a B(1, 1) prior is used. The difference in mean Brier scores between the homogeneous and

heterogeneous inspector model results has a Z-score of 12.42 (p-value < 0.0001) in favor

of the heterogeneous model when k = 2000 and a B(1, 1) prior is used. Again, there are

similar significance results to the above for other values of k and other prior specifications.

Example 3 demonstrates that even if the prior on inspector sensitivities is misspecified, by

modeling the heterogeneity in inspector errors and including a frame of reference region, one

obtains very accurate estimates of presence absence and is able to identify insensitivity on

the part of particular inspectors. The higher the correlation between inspector sensitivities

and infestations, the more that stands to be lost by failing to model this heterogeneity.

From these simulations, the ability to estimate the true rate of presence is intertwined with

the ability to estimate the inspector accuracies both of which benefit from modeling the

heterogeneity.

2.5.4. Prior Sensitivity

As we have seen in example 1, in section 2.5.1, the difference in estimation error due to

prior misspecification is much smaller for the randomized inspector assignment compare

to the actual assignment in Mariano Melgar. As a follow-up consider k = 2000, when

the estimates are most adversely affected by the correlation between infestation intensities

and inspector sensitivities, the p-value between the mean Brier scores when the generating

prior is used compared to a default B(1, 1) prior is 0.0625. The above statistic is when the

reference region is absent, but when the reference region is present, the difference is much

less significant at a p-value of 0.8611. We believe that the use of this frame of reference

reduces this prior sensitivity.

2.6. Discussion

The quantification of the underreporting of spatially-correlated data when surveillance error

itself is spatially-correlated is a common issue in applied spatial analysis. In our simulations,
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Figure 10: Simulated infestation (top) from example 3, when k = 2000 and resulting model
estimates produced by the heterogeneous (middle) and homogeneous (bottom).
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we have demonstrated that the correlation between the surveillance error and infestation

intensity in space can result in severely increased estimation error. While existing work

in epidemiology has employed GMRF models for spatial smoothing, these lines of anal-

ysis have largely assumed that there is no uncertainty in the surveillance process, Boyd

et al. (2005). This raises some difficulties as although we have repeated measurements

from the units of surveillance, these measurements are taken over differing locations. We

have demonstrated that choosing to model heterogeneous surveillance error and using the

inspector-to-household assignment information can be of great use in reducing the error

in infestation estimates. Under suitable circumstances and design choices, this model can

estimate varying levels of surveillance error across space from a single survey, which is use-

ful for detecting insensitivity in terms of surveillance, as well as providing more accurate

measures of intensity.

In spite of these improvements, there are a few limitations. Firstly, while the model is able

to distinguish the relative accuracies of inspectors, the overall performance of inspectors

and hence overall infestation rates are dependent on the prior. While implementations such

as the frame of reference help in this respect, it does not completely remove the influence of

the prior. Without any additional information, we do not believe it is possible to determine

the exact amount of underreporting from just the observed data. The prior placed on

inspector sensitivities dictates in this model the overall amount of underreporting, whereas

the value of our model lies in identifying the location of the underreporting. An additional

concern to the model specification is the conditionally-autoregressive specification, which is

common to all Gaussian Markov random field analyses. We base the spatial interpolation

of the infestation risk on the Euclidean distance between household locations and ignore

households whose distance is above a threshold. These approaches have no interpretation in

terms of a covariance function and have a highly fixed, discrete structure. Another concern

is that the non-response in the data is taken to be independent of the risk of infestation.

This assumption may be unrealistic, and we may be discarding vital information and biasing

our infestation estimates.
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In Mariano Melgar, we have identified localities at highest risk of infestation underreport-

ing, due to surveillance error, and guided MoH officials to invest additional resources in

controlling transmitters of Chagas disease in these regions. We believe that by identifying

and addressing the location of underreporting we can reduce the continual problem of infes-

tation. Furthermore, increased accuracy in mapping of insect infestation also benefits the

modeling of the spread and evolution of insect populations.
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CHAPTER 3 : Geographic Barrier Modeling

3.1. Introduction

The interest of this section is modeling spatial processes on non-flat surfaces and the ac-

companying statistical inference. While all the surfaces in consideration are subsets of

Euclidean space, the application of traditional spatial models is inappropriate as it does not

respect the geometry of the surface. For instance, using an isotropic covariance model for

observations on the surface of the sphere would essentially be using chordal distance which

in some applications would be unnatural. In particular, we are interested in deformations

of surfaces which can be used to model the effects of barriers in spatially distributed data.

For ecological data in particular, we are interested in developing a method that would allow

one to infer the significance of geographic barriers such as streets on the distributions of

insect populations in a city.

In general it is difficult to purpose a valid covariance model which not only respects the

geometry of the surface, but also satisfies the positivity requirement. However recent work

on the connection between spatial models and the solutions to stochastic partial differential

equations circumvents some of these difficulties Lindgren et al. (2011). Further in keeping

with the original intentions of the authors, these resulting models are very computationally

efficient for large observation windows. Outside of the interest in modeling barriers, these

models on flat surfaces are an improvement over the Gaussian markov random field models

(GMRF) used in chapter 2. In contrast to other computational methods for large data

sets such as: covariance tapering Kaufman et al. (2008), likelihood approximation (in the

spatial domain Stein et al. (2004) and in the spectral domain Fuentes (2007)), and fixed

rank kriging Cressie and Johannesson (2010), GMRFs avoid modeling the covariance of

the spatial process and focus on the graphical interpretation of the precision matrix. The

consequence is that it is unclear what the resulting covariance induced by the GMRF is.

Further, the process exists only on the specified nodes of the graph - there is no notion of
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the process’s continual existence between two points. Therefore, it is more appropriate to

refer to the GMRF as a graphical model induced by space rather than a spatial model.

To approach the problem of urban boundaries in this work, we emphasize the fact that

Mátern equation (3.2.1) is well-defined on smooth surfaces or manifolds. The typical do-

main of study for spatial data are compact subsets of R2; the adaptation of covariance

models to more complex domains such as spheres is of current interest Gneiting (2012),

where the primary technical challenge is that the covariance functional of a process must

be positive. The approach introduced by Lindgren et al. (2011) circumvents this difficulty

as the stochastic partial differential equation solution is a valid Gaussian process defined

on the manifold.

Hence, we will begin as usual and then deform the flat subset of the plane so that it

becomes a surface located in R3. On a computer representation of this surface, the finite

element approach has been specifically researched and developed to be suitable for finding

approximate solutions on a variety of domains of relevance to engineering and applied

problems.

The outline of this chapter is as follows: in section 3.3, we describe in detail the contri-

butions of Lindgren et al. (2011). For practical implementations, we review some classical

computational results in section 3.4. We explain our methodology in section 3.5 and report

the results on the Mariano Melgar data in section 3.6.

3.2. Background

The Matérn covariance function is one the most widely studied models in spatial statistics

Stein (1999). The central fact of this model to this work is that the Matérn covariance can

be given as the solution to the following stochastic partial differential equation,

(κ2 −∆)α/2x(ω) = W (ω) (3.2.1)
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where ∆ = ∇ᵀ∇ and W (ω) is the Gaussian “white-noise” process on Rd Whittle (1963).

The derivation is done using Fourier techniques which emphasizes that the Matérn function

describes the covariance of stationary solutions.

If L is a linear operator such that Lx = W , where c is the covariance of the process x, then

under the assumption of stationarity, L2c(d) = L2c(s, t) = L2Ex(s)x(t) = ELx(s)Lx(t) =

EW (s)W (t) = δ0(s − t). Hence, if x is the solution to the equation Lx = W , then c is

the Green’s function of L2. Following the above heuristic, c can be found by solving the

deterministic equation,

(κ2 −∆)αc(ω) = δ0(ω) (3.2.2)

Appplying the Fourier transform to both sides of the equation,

(2π)d(κ2 + ‖ξ‖2)αFc = F{(κ2 −∆)αc}(ξ) = Fδ0(ξ) = 1 (3.2.3)

=⇒ Fc(ξ) =
1

(2π)d
1

(κ2 + ‖ξ‖2)α
(3.2.4)

the left-hand side is well-defined even for fractional values of α, see Samko et al. (1993) for a

formal treatment. Then, c can be found by inverting the transformation, the well-posedness

of this inversion and spectral representation for c is due to the stationarity of x. As the

density (3.2.4) depends only on ‖ξ‖, c is given by the Hankel transformation,
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c(ω) = F−1

{
1

(2π)d
1

(κ2 + ‖ξ‖2)α

}
=

1

(2π)d

∫
Rd

exp {2πξ · ω}
(κ2 + ‖ξ‖2)α

dξ (3.2.5)

=
‖ω‖1−d/2

(2π)d/2

∫ ∞
0

Jd/2−1(‖ω‖‖ξ‖)‖ξ‖d/2

(κ2 + ‖ξ‖2)α
d‖ξ‖ (3.2.6)

=
(‖ω‖/κ)α−d/2Kα−d/2(κ‖ω‖)

(2π)d/22α−1Γ(α)
(3.2.7)

where Jn is a Bessel function of the first kind and Kn is a modified Bessel function of the

second kind, Abramowitz and Stegun (1972). Using the fact that the leading behavior of

Kn(z) ∼ 1
2Γ(n)(1

2z)
−n for n > 0 as z → 0, the marginal variance is given by,

lim
‖ω‖→0

c(ω) =
1

2dπd/2κ2α−d
Γ(α− d/2)

Γ(α)
(3.2.8)

3.3. Finite Elements

Let H be a Hilbert space with the inner product 〈f, g〉 =
∫

Ω f(ω)ᵀg(ω)dω. H is a seperable

Hilbert space if there exists a countable basis {φi}∞i=1 such that under the induced norm,

one can approximate any element h ∈ H with a suitable large number of basis elements.

For a sequence {fn} in the Hilbert space L2(Ω), we say {fn} converges to f weakly if

for all g ∈ L2(Ω), 〈g, fn〉 → 〈g, f〉. This notion is relevant to the discussion of partial

differential equations because often times a ‘solution’ to a differential equation cannot be

strictly verified pointwise. However, the problem still has a well-posed weak solution which

behaves appropriately when integrated against test functions g. Therefore if we are willing

to relax the criterion for accepting a solution, we need only to verify its behavior with

respect to the inner product against these test functions. Secondly, it may be necessary

to restrict the space in which a solution lies - often there are restrictions to the space and
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to the qualities of the solution which make a problem well-posed. Computationally, for an

infinite dimensional space, it is impossible to evaluate this infinite criterion against all of

L2(Ω).

In finite elements there are two truncations, the first truncation being the set of test func-

tions {ψn} necessitated by the limitation that we can only evaluate a finite number of test

constraints. The second truncation being {φn} due to the necessity of representing the

approximate solution, x̃ =
∑n

i=1 uiφi, with a finite number of terms. When the two sets

coincide with one another, we call this approach the Galerkin method. In this setting an

important distinction is made. For an infinite dimensional space H, a finite dimensional

subspace Hn is a subset spanned by a finite number n of bases. The intuition is that for a

nested, increasing set of bases, the weak approximation found by the Galerkin method is a

projection of the weak solution onto these nested subspaces. This intuition is made precise

in Brenner and Scott (2008). The passing of Neumann boundary constraints to its weak

formulation and then its finite element solution is given by,


Lx = f on Ω

x = g on ∂Ω

=⇒


find x ∈ H such that

〈g,Lx〉 = 〈g, f〉 for all g ∈ Hᵀ

x = g on ∂Ω

(3.3.1)

=⇒


find x ∈ Hn such that

〈g,Lx〉 = 〈g, f〉 for all g ∈ Hᵀ
n

x = g on ∂Ω

(3.3.2)

For the equation Lx = W (ω), we call xn the weak solution if for all h ∈ H, 〈h, xn〉 con-

verges in distribution to 〈h, x〉. As random variables of the form 〈h,W 〉 are Gaussian, this

convergence can be determined by E〈h, xn〉 → E〈h, x〉 and E〈f, xn〉〈g, xn〉 → E〈f, xn〉〈g, xn〉
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for all f, g, h ∈ H.

3.3.1. Identities

The gradient of an element of H is given by ∇ =

[
∂
∂ωi

]
or ∇f =

[
∂f
∂ωi

]
. The Laplacian ∆

is then defined as ∆ = ∇ᵀ∇ =
∑d

i=1
∂2

∂ωi
2 . For ω ∈ ∂Ω, the unit length, outward normal

vector at ω is given by n(ω) and the normal derivative of f at ω is the directional derivative

given by ∂nf(ω) = n(ω)ᵀ∇f(ω).

Theorem 3.3.1 (Stochastic Green’s first identity). If ∇f ∈ L2(Ω) and ∆g is L2(Ω) bounded

then the following holds with probability one,

〈f,−∆g〉Ω = 〈∇f,∇g〉Ω − 〈f, ∂ng〉∂Ω (3.3.3)

A proof of this identity can be found in the appendix of Lindgren et al. (2011). The

computational application of this identity is to work with the gradients of these bases

rather than the Laplacians. The complementary important fact is the following for f, g

that have suitably regular gradients (more specifically belong to the Sobolev space H1(Ω)),

then the following holds for compact Ω,

〈∆1/2f,∆1/2g〉Ω = 〈∇f,∇g〉Ω (3.3.4)

or when 〈f, ∂ng〉 = 〈∂nf, g〉 = 0.

3.3.2. Weak Solutions

Consider the Galerkin approximation to the weak solution to the spde give in (3.2.1) with

the Neumann boundary conditions,

∂n(κ2 −∆)ix(ω) = 0, ω ∈ Ω, i = 0, . . . , b(α− 1)/2c (3.3.5)
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which according to Lindgren et al. (2011) ‘mollifies’ the problem of uniqueness. For com-

putational convenience, the number of boundary conditions will become clearer.

Under the bases and test functions {φi}ni=1 define the following matrices,

Cij , [〈φi, φj〉]ni,j=1 (3.3.6)

Gij , [〈∇φi,∇φj〉]ni,j=1 (3.3.7)

then the approximate weak solution of (3.2.1) is given by the precision of the coefficients

u, which for a given α is defined as,

Qα=1 , κ2C + G (3.3.8)

Qα=2 , (κ2C + G)C−1(κ2C + G) (3.3.9)

Qα>2 , (κ2C + G)C−1Qα−2C
−1(κ2C + G) (3.3.10)

Note that only (3.3.9) is the Galerkin approximation. The exact nature of the other ap-

proximate solutions is clear through their derivations.

We begin with the derivation of the Galerkin approximate solution, as it is the most straight

forward in terms of precedence. Recall (3.3.2) where L = κ2 − ∆ then the coefficients u

may be described by the following system,

[
〈φj , (κ2 −∆)x̃〉

]n
j=1

d
= [〈φj ,W 〉]nj=1 (3.3.11)

Using the linearity of the operators and the fact that x̃ =
∑n

i=1 uiφi, then the left hand
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side can be simplied as,

[
〈φj , (κ2 −∆)x̃〉

]n
j=1

=

[
n∑
i=1

〈φj , (κ2 −∆)φi〉ui

]n
j=1

(3.3.12)

=

[
n∑
i=1

(κ2〈φj , φi〉 − 〈φj ,∆φi〉)ui

]n
j=1

(3.3.13)

=

[
n∑
i=1

(κ2〈φj , φi〉+ 〈∇φj ,∇φi〉)ui

]n
j=1

(3.3.14)

= (κ2C + G)u (3.3.15)

The line (3.3.13) follows from using the first Neumann boundary condition and the Green’s

identity (3.3.3), where the boundary contribution is nullified.

Lemma 3.3.2. If f, g ∈ L2(Ω) and W is a cylindrical Wiener process then,

E(〈f,W 〉〈g,W 〉) = 〈f, g〉 (3.3.16)

This statement is the formalization of the calculation:

E
2∏
i=1

∫
Ωi

fi(ωi)W (ωi)dωi = E
∫
∏

i Ωi

2∏
i=1

fi(ωi)W (ωi)d
∏
i

ωi (3.3.17)

=

∫
∏

i Ωi

2∏
i=1

fi(ωi)δ0(ω)d
∏
i

ωi (3.3.18)

=

∫
Ω

2∏
i=1

fi(ω)dω (3.3.19)

because the ‘white noise’ process has infinite trace, the interchange of operations above

is invalid and the rigorous derivation is given in Da Prato and Zabczyk (1992). Hence

(κ2C + G)u ∼ N(0,C) or u ∼ N(0, (κ2C + G)ᵀC−1(κ2C + G)).
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To obtain the case α = 1, the Galerkin approximation is not used. Although {φi}ni=1

remains the basis, the test functions in this case are the functions {(κ2−∆)1/2φi}ni=1. Then

the weak solutions are given by the system of stochastic equations,

[
〈(κ2 −∆)1/2φj , (κ

2 −∆)1/2x̃〉
]n
j=1

d
=
[
〈(κ2 −∆)1/2φj ,W 〉

]n
j=1

(3.3.20)

which written in matrix form of (3.3.15) as, where the use of (3.3.4) substitutes the use of

(3.3.3)

(κ2C + G)u
d
=
[
〈(κ2 −∆)1/2φj ,W 〉

]n
j=1

(3.3.21)

by using (3.3.4) again and the covariance of the Wiener process, (3.3.16), we have that

(κ2C+G)u ∼ N(0, (κ2C+G)). Then the precision of u is (κ2C+G)ᵀ(κ2C+G)†(κ2C+G) =

(κ2C+G), where † is the generalized inverse. Hence it is not quite obvious the space spanned

by the test functions in this case, the solution is not a valid Galerkin approximation.

For higher order solutions consider the following heuristic, let x̃(α) be the approximate

solution for α. Let x̃ be the weak solution to the following: (κ2 −∆)x̃ = x̃α then applying

the k-th order operator to both sides yields (κ2 − ∆)(α+2)/2x̃ = (κ2 − ∆)α/2(κ2 − ∆)x̃ =

(κ2 −∆)α/2x̃α = W . Hence, one find the distribution for the coefficients of the case α + 2

from the distribution of the coefficients for α. In the language of finite elements, we require

for all the test functions using Green’s identity again (3.3.3),

(κ2C + G)u(α+2) =
[
〈φj , (κ2 −∆)x̃(α+2)〉

]n
j=1

=
[
〈φj , x̃(α)〉

]n
j=1

= Cu(α) (3.3.22)

If the precision of u(α) is Qα, then given that C is symmetric, the precision of Cu(α) is

C−1QαC−1. Hence, the precision of Cu(α+2) is then (κ2C+G)ᵀC−1QαC−1(κ2C+G). For

a given integer α, all the precision matrices for the coefficients describing the weak solution
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Figure 11: Example of a B-spline basis function on a triangulated subset of the plane.

can be calculated started from one of the two base cases.

3.4. Meshes & Splines

We consider solution domains approximated as triangulated meshes. The surface is repre-

sented by a series of nodes or points in space and edges or links between pairs of nodes.

As the surface is triangulated, another description of the surface may be given in triples

of nodes representing points in a triangle. On a triangulated area, the outer boundary is

piece-wise linear. If the sampling location of the data is the collection {si}mi=1 then we will

refer to the collection of nodes in the meshas {ωi}ni=1. For the B-spline basis, the piece-wise

linear basis φi is indexed by the node i,

φi(ω) =


1 ωi

0 ωj ∈ Ni

(3.4.1)

where if Ni is the set of points connected to i in the mesh through the edges of a triangle.

On R2, the B-spline basis can be easily visualized in figure 11.

The exact numerical calculation from working with these B-spline functions is outlined in

the following.
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3.4.1. Calculation of Covariance Matrices

Let T be the set of triangles forming the triangulation and for each node i, let Ti be the set

of triangles supporting the function φi - all triangles who share the node i in common. To

compute the precision matrix Q, one must evaluate the following integrals:

C̃i,i = 〈φi, 1〉Ω =

∫
Ti
φi(ω)dS(ω) (3.4.2)

Ci,j = 〈φi, φj〉Ω =

∫
Ti∩Tj

φi(ω)φj(ω)dS(ω) (3.4.3)

Gi,j = 〈∇φi,∇φj〉Ω =

∫
Ti∩Tj

∇φi(ω)ᵀ∇φj(ω)dS(ω) (3.4.4)

Bi,j = 〈φi, (∇φj)ᵀn〉∂Ω =

∫
∂(Ti∩Tj)∩∂Ω

φi(ω){∇φj(ω)ᵀn(ω)}dS(ω) (3.4.5)

Each integral over the set of triangles can be decomposed into a sum over each triangle,

ie. Ci,j =
∫
T∈Ti∩Tj φi(ω)φj(ω)dS(ω). Thus, the integrals are evaluated over each triangle

seperately then aggregated together.

3.4.2. Quadrature

Each point in triangle T can be parameterized in two dimensions (θ1, θ2) by noting that T

is convex. If the three corner nodes of the triangle are (xi, yi, zi), then each point on the

interior can be represented as,


x

y

z

 = (1− θ1 − θ2)


x1

y1

z1

+ θ1


x2

y2

z2

+ θ2


x3

y3

z3

 (3.4.6)

Similarly the mapping F : (θ1, θ2)→ (x, y, z) is,
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
x

y

z

 =


x2 − x1 x3 − x1

y2 − y1 y3 − y1

z2 − z1 z3 − z1


θ1

θ2

+


x1

x2

x3

 (3.4.7)

The Jacobian of this transformation is then,

det


1 x2 − x1 x3 − x1

1 y2 − y1 y3 − y1

1 z2 − z1 z3 − z1

 = det


1 1 1

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

 = 2 |T | (3.4.8)

For a basis φi supported on the triangle T at the node i. It is immaterial the labeling of the

other nodes. To evaluate the following integrals, re-parameterize the domain of integration

to the cannonical triangle T0 (given by the vertices (0, 0), (1, 0), (0, 1)). For the integrals in

3.4.2,

∫
T
φi(s)ds =

∫
T0

φi ◦ F(θ) det(F)dθ (3.4.9)

= det(F)
|T0|
3

3∑
i=1

φi([xi, yi, zi]
ᵀ) =

|T |
3

(3.4.10)

(3.4.10) is using the three point quadrature rule for approximating integrals over triangular

regions. For the B-spline basis, φ is a first order polynomial and the formula is exact.

Lastly, recall that det(F) = 2|T |.
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∫
T
φi(s)ds =

∫
T0

φi ◦ F(θ) det(F)dθ (3.4.11)

= det(F)
|T0|
3

3∑
i=1

φi([xi, yi, zi]
ᵀ) =

|T |
3

(3.4.12)

Similarly for the integrals in 3.4.3,

∫
T
φi

2(s)ds = det(F)
|T0|
3

3∑
i=1

φi
2
([
x

(m)
i , y

(m)
i , z

(m)
i

]ᵀ)
=
|T |
6

(3.4.13)

where
{[
x

(m)
i , y

(m)
i , z

(m)
i

]ᵀ}3

i=1
is the set of midpoints on the triangle T . Here because for

the B-spline basis φ2 is a second order polynomial, we require a higher order quadrature

scheme to obtain an exact value for the integral. Again for the cross-terms, the midpoint

rule is needed,

∫
T
φiφj(s)ds = det(F)

|T0|
3

3∑
i=1

φiφj
([
x

(m)
i , y

(m)
i , z

(m)
i

]ᵀ)
=
|T |
12

(3.4.14)

Note, every parameterization and labeling of i, j yields the same value, and hence not much

attention is paid to this choice.

3.4.3. Sparsification

For the precision matrices of the weak solutions for α = 2, (3.3.9), and the higher order

solutions,(3.3.10), the choice of C−1 is often replaced by C̃−1 (from (3.4.2)). The practical

reason for this is that for the B-spline basis although C is sparse, there is no garauntee on

the sparsity of its inverse and hence the sparsity of the precision. Recall that Cij = 〈φi, φj〉Ω

and the row sum of C is then
∑n

j=1〈φi, φj〉 = 〈φi, 1〉 because {φi} forms a partition of unity.

Hence this approximation is called the loaded mass approximation as it concentrates the

elements of C onto the diagonal of the matrix.
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An interpretation of this is as follows, recall the entries of C and the integral, but instead

of using the midpoint quadrature rule to compute the exact value, consider the first order

scheme using the verticies, for T ∈ Ti ∩ Tj

∫
T
φiφj(s)ds ≈ |T |

3
δ0(i, j) (3.4.15)

For sufficiently fine grids, this approximation is negligible, but being that C̃ is diagonal and

hence it’s inverse will preserve the sparsity of Q.

3.4.4. Gradient

Although the integrals in equation 3.4.4 can be calculated in a similar manner to the above

using a change of variables, for this particular basis, it is simpler to derive the expressions

directly based on its simplicity. For a given triangle T with nodes labeled s0, s1, s2, define

the vectors v0 = s2 − s1,v1 = s0 − s2,v2 = s1 − s0 and let φi be the linear basis function

centered on node i. There are a few equivalent expressions for the values of the gradients,

in maintaining convention with Lindgren and Rue (2007), ∇φ0 and ∇φ1 are derived here

using v0 and v1.

As the B-spline function φ0 is equal to one at s0 and must be equal to zero alone the line

ps1 + (1 − p)s2. As v0 and v1 share node s2 in common, v0
ᵀv1

v0
ᵀv0

v0 is the projection of v1

in the direction of −v0. The vector v1 − v0
ᵀv1

v0
ᵀv0

v0 is then the rejection or the shortest path

from the vector v0 to the point s0. As the derivative in the direction v0
ᵀv1

v0
ᵀv0
− v1 should be

normalized to be −1, the normalized gradient is,

∇φ0 =
v1 − v0

ᵀv1
v0

ᵀv0
v0

‖v1 − v0
ᵀv1

v0
ᵀv0

v0‖2
(3.4.16)

The reason that the direction of ∇φ0 must be along the rejection is that it must be orthog-

onal to v0 in the plane formed by {s0, s1, s2}. If the form of φ0 is φ0(s) = 1 + 〈∇φ0, s− s0〉,
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then for all sp = ps1 + (1− p)s2, φ0(x) must equal zero.

1− 〈∇φ0, s0〉+ 〈∇φ0, sp〉 = 1 + p〈∇φ0,v2〉+ (1− p)〈∇φ0,−v1〉 (3.4.17)

= 1− 〈∇φ0,v1〉 − p〈∇φ0,v0〉 (3.4.18)

As this expression must equal zero for all p ∈ [0, 1], it must be that 〈∇φ0,v0〉 is also equal

to zero.

Now as the B-spline basis forms a partition of unity (φ0 +φ1 +φ2 = 1), it is only necessary

to compute ∇φ1 as well to obtain all three gradients. To express ∇φ1 in terms of v0 and

v1, compute the shortest path from v1 to s1 which can be expressed by projecting −v0 onto

v1 then taking the rejection as −v0 − v1
ᵀ(−v0)
v1

ᵀv1
v1. Similarly to normalize the derivative in

the direction of the shortest path from s1 to v1, the final expression is,

∇φ1 =
−v0 − v1

ᵀ(−v0)
v1

ᵀv1
v1

‖v0 − v1
ᵀv0

v1
ᵀv1

v1‖2
(3.4.19)

These gradients are constant over each triangle T when taken with respect to the canonical

basis as the B-spline basis is linear.

∫
T
∇φi(ω)ᵀ∇φj(ω)dS(ω) = |T |∇φ0

ᵀ∇φ1 (3.4.20)

Let θ2 be the angle between −v0 and v1, then the inner product can be calculated using

the fact that −v0
ᵀv1 = ‖v0‖‖v1‖ cos θ2 and |T | = 1

2‖v0‖‖v1‖ sin θ2,
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∇φ0
ᵀ∇φ1 =

v1 − v0
ᵀv1

v0
ᵀv0

v0

‖v1 − v0
ᵀv1

v0
ᵀv0

v0‖2
−v0 − v1

ᵀ(−v0)
v1

ᵀv1
v1

‖v0 − v1
ᵀv0

v1
ᵀv1

v1‖2
(3.4.21)

=
v1 + v0‖v1‖ cos θ2/‖v0‖

‖v1‖2 sin2 θ2

−v0 − v1‖v0‖ cos θ2/‖v1‖
‖v0‖2 sin2 θ2

(3.4.22)

=
v0

ᵀv1(1− cos2 θ2)

‖v0‖2‖v1‖2 sin4 θ2
(3.4.23)

=
v0

ᵀv1

‖v0‖2‖v1‖2 sin2 θ2
(3.4.24)

=
v0

ᵀv1

4|T |2
(3.4.25)

By symmetry, ∇φ0
ᵀ∇φ2 = v0

ᵀv2
4|T |2 and ∇φ1

ᵀ∇φ2 = v1
ᵀv2

4|T |2 . As
∑3

i=1∇φi is equal to zero,

then so must ∇φjᵀ
∑3

i=1∇φi equal zero therefore vi
ᵀvi = ‖vi‖2

4|T | . Hence the contribution of

the triangle T to the matrix given by 3.4.4 is,

[Gi,j(T )]i,j=0,1,2 =
1

4|T |


‖v0‖2 v0

ᵀv1 v0
ᵀv2

v1
ᵀv0 ‖v1‖2 v1

ᵀv2

v2
ᵀv0 v2

ᵀv1 ‖v2‖2

 (3.4.26)

3.4.5. Boundary

The last component to be evaluated are the contributions from the boundary integrals of

the form,

∫
∂(Ti∩Tj)∩∂ω

φi(ω)∇φj(ω)ᵀn(ω)dS(ω) (3.4.27)

n(ω) is the outward pointing normal vector with respect to the boundary. For triangles

contained in the common set Ti ∩ Tj , these are boundary (line) integrals over the edges

which are in common with the boundary of the domain of interest ∂ω. For a given triangle,
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it is possible for any number of its edges to belong to the boundary and depending on which

edge of the triangle is the boundary and the (node) labeling of the function, the evaluation

will vary. As a starting point consider the evaluation for φ0 and φ1 over the edge E1. Recall

that E1 is the edge connecting points s2 to s0. As E1 is a line, then the normal vector

relative to this boundary is constant in ω, thus the integral can be simplified in this setting

as follows,

∫
E1

φ0(ω)∇φ1(ω)ᵀn(ω)dS(ω) = ∇φ1
ᵀn

∫
E1

φ0(ω)dS(ω) (3.4.28)

As the boundary is E1, the orthogonal direction to v1 is the same direction as ∇φ1 in the

plane formed by {s0, s1, s2. Because it is outward with respect to the boundary, the correct

vector is −∇φ1 or pointing away from s0 and towards E1. After normalizing −∇φ1 to be

unitary, n is −∇φ1‖v0‖ sin(θ2) (where θ2 is the angle between −v0 and v1). To evaluate the

integral parameterize the line integral using v1t + s2 for t ∈ [0, 1] and using the change of

variables dω = ‖v1‖dt. Using the fact that 〈∇φ0,v1〉 is equal to one the integal is evaluated

as,

∫
E1

φ0(ω)dS(ω) =

∫
ω∈E1

φ0(ω)dω (3.4.29)

=

∫
ω∈E1

1− 〈∇φ0, s0〉+ 〈∇φ0, ω〉dω (3.4.30)

=

∫
t∈[0,1]

[
1− 〈∇φ0, s0〉+ 〈∇φ0, s2 + v1t〉

]
‖v1‖dt (3.4.31)

=

∫
t∈[0,1]

[
1− 〈∇φ0,v1〉(1− t)

]
‖v1‖dt =

‖v1‖
2

(3.4.32)

From equation 3.4.25,
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∇φ1
ᵀn

∫
E1

φ0(ω)dS(ω) = −〈∇φ0,∇φ1〉
1

2
‖v0‖‖v1‖ sin(θ2) (3.4.33)

= −〈∇φ0,∇φ1〉|T | (3.4.34)

=
−v0

ᵀv1

4|T |
(3.4.35)

By symmetry then the contribution from E1 of a triangle for the three basis functions

supported on the triangle is for the integral in equation 3.4.27 is,

[Bi,j(E1)]i,j=0,1,2 = − 1

4|T |


v0

ᵀv1 ‖v1‖2 v2
ᵀv1

0 0 0

v0
ᵀv1 ‖v1‖2 v2

ᵀv1

 (3.4.36)

The middle row follows from the fact that φ1 is equal to zero on the line E1 and the middle

column follows Bi,1 = −Bi,0 − Bi,2 as
∑

i∇φi is equal to zero. Further, the contributions

when the edges E0 and E2 belong to the boundary are as follows,

[Bi,j(E0)]i,j=0,1,2 = − 1

4|T |


0 0 0

‖v0‖2 v1
ᵀv0 v2

ᵀv0

‖v0‖2 v1
ᵀv0 v2

ᵀv0

 (3.4.37)

[Bi,j(E2)]i,j=0,1,2 = − 1

4|T |


v0

ᵀv2 v1
ᵀv2 ‖v2‖2

v0
ᵀv2 v1

ᵀv2 ‖v2‖2

0 0 0

 (3.4.38)

To compute the entry Bi,j examine all the triangles in the common support Ti ∩ Tj who

have edges in common with the boundary. For each edge type on a triangle labeling, the

contribution is computed as above and summed over edges.
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Figure 12: Example four intersecting tent deformations, representing four streets, on a
regular grid of [0, 1]× [0, 1].

3.5. Methodology

The most basic approach for representing street barriers on a mesh is to model city blocks

of households as polygons and to insert internal nodes in between these blocks along street

paths. Initially, all of these inserted internal nodes are in two-dimensions. However, we

can parameterize the altitude of these nodes which controls the height of these tent-like

deformations. Larger values of h are more extreme deformations which we hope to represent

larger barriers to the spatial distribution.

Proposition 3.5.1. For triangles in a triangulated mesh in R2, reflecting the altitude co-

ordinates of the nodes across the origin does not alter the entries of the precision matrix of

Q, constructed using the B-spline basis.

In other words, the sign of h has no effect, nor can it be identified. The reason is obvious,

from the construction of Q, changing the sign of the altitude in the triangle preserves the

area of the triangle and all the angles, which is all that is used to construct Q.

3.5.1. Inference

The interest in this work is performing inference on the parameter h. For a single parameter

h this problem can be implemented using standard Bayesian techniques so long as the

likelihood of h, fh, is not computationally expensive. After a certain magnitude, it is not
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Figure 13: For α = 2, continuous fields simulated using identical deformation magnitudes
but opposite signs. Single vertical fold beginning at x = 6.5 and ending at x = 7.5, the
raised nodes are the ones along x = 7.

clear how well h may be identified. For this reason a good starting point for priors on h,

is the exponential distribution, f(h) ∝ exp{−λh} for a positive hyper-parameter λ, where

the mass of the distribution declines rapidly.

For the continuous observation process of corruption by unit white noise, the process is laid

out as,

h ∼ fh (3.5.1)

u ∼ N(0,Q(h)) (3.5.2)

x = Φu (3.5.3)

y ∼ N(x, I) (3.5.4)

Φi,j , φj(si) is the evaluation of the j-th basis function on the location of the i-th observa-

tion si. This matrix Φ brings up a brief technical aside. In this application, {sj}mj=1 ∈ R2
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and for our simple deformation model, none of the sampling locations lie in triangles on

the deformations (ie, we have no observations that lie in between city blocks). However, in

simulations similar to the one in figure 13, there are a number of sampling points located

on the deformed triangles. In these cases, after deformation, the original sampling location

is no longer a point in the mesh and it is necessary to alter the sampling location as well.

There are two immediate principled approaches that use the plane defined by the three

triangle nodes after deformation: first, projecting the sampling location into the altered

plane or second using the equation of the altered plane and the first two coordinates of

the sampling location to obtain the altitude of the location. For very large deformations

(meshes with large values of h), relative to the area of the triangle, the projection approach

produces undesirable results. To produce the simulations in figure 13, we took the second

approach.

3.5.2. Metropolis Sampler

We now describe a standard Metropolis-Hastings algorithm for inference on h, whose input

is a prior on h and a noisy observation y. In this implementation, new values of h are

proposed on the log-scale to enforce positivity and τh is used to tune the acceptance rate.

The proposal for sampling a new set of coefficients u is similar to a Gibbs step, using the

conditional distribution given the other parameters in the model. We found that given the

strong auto-correlation between h and u that it is best to jointly accept and reject all the

parameters at once. The performance of this sampler on data generated using the continuous

observation process when h = 8 under the Mátern model with α = 2 and κ = 1e − 8 is

shown in figure 13. The posterior mean of h using an exponential prior for h with λ = 1 is

reasonably close to the generating value of h.

Metropolis-Hastings Sampler

1. For i = 1, . . . , N for a fixed N

2. Draw [hi+1,ui+1]ᵀ from a proposal distribution
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2.1. log hi+1 ∼ N(log hi, τh)

2.2. Assemble Qi+1 , Q(hi+1)

2.3. ‡ : ui+1 ∼ f(ui+1|Qi+1,y) = N((Qi+1 + ΦᵀΦ)−1Φᵀy,Qi+1 + ΦᵀΦ)

3. Calculate the transition probabilities

3.1. qi+1 , q(ui+1|Qi+1)q(hi+1|hi)

3.2. qi , q(ui|Qi)q(hi|hi+1)

4. Calculate the model likelihood pi+1 , p(y|ui+1)p(ui+1|Qi+1)p(hi+1)

5. Accept [hi+1,ui+1]ᵀ with probability min
(pi+1qi
piqi+1

, 1
)

‡: if the sampling locations lie on modified triangles it becomes necessary to introduce the

deterministic dependency between Φ and h, for example Φi+1 = Φ(hi+1).

3.5.3. Laplace Approximation

For the typical applications in this subject, where the data is usually discrete (number of

insects found) or binary (infestation status), a link function such as the probit or logit links

are introduced to produce the observed data. We focus on the probit link for the binary

infestation status application. For the probit link on simulated data, we found that the

estimates for h were severely biased compared to the generating values of h.

In contrast, the authors of Lindgren et al. (2011) implemented their work using the inte-

grated nested Laplace approximation (INLA) as researched by one of the authors in Rue

et al. (2009). The necessity of nested Laplace approximations is necessitated by the need to

produce marginals of {ui|y}ni=1 where y is the observed data and coefficients for the weak

solution. However, to approximate the marginal h|y, it is sufficient to use a single Laplace

approximation as in Tierney and Kadane (1986). The model here is similar to (3.5.1) ex-

cept for the observation process Probit(yi) =
∑n

j=1 ujφj(si). The Laplace approximation is
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Figure 14: Trace plot for h for data generated using the Mátern-like model (α = 2 and
κ = 1e − 8 and h = 8) and the continuous observation process. The posterior draws of h,
using the prior: P(h) ∝ exp(−h), are well centered around the generating value of h.

given in (3.5.7),

p(h|y) ∝ p(y, h) (3.5.5)

=

∫
u
p(y|u)p(u|h)p(h)du (3.5.6)

≈ p(h)p(y,u?|h)

∫
u

exp

{
−1

2
(u− u?)ᵀH(u− u?)

}
du (3.5.7)

=
p(h)p(y,u?|h)√

det(H/2π)
(3.5.8)

where u? is the mode or u? = arg max p(y,u|h) and the dependence of u? on h is clear and

Hij = −
[

∂2

∂ui∂uj
log p(y,u|h)

]
u=u?

.

Laplace Approximation to p(h|y)
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Figure 15: For data generated with a single fold (as in figure 13) and h = 5, a comparison
of the Laplace approximation to the density P(h|y) compared to the empirical histogram
of the posterior samples of h drawn by the MCMC, demonstrating the bias in Metropolis
sampler, for binary response data.

1. Initialize a sequence of {hi}Ni=1, for each value hi

2. Find the maxmimum of log p(y,u|hi) at the mode u?i , u?(hi) using a Newton or

quasi-Newton method

3. Calculate for Hi , H(u?i ), det Hi

4. After enumeration, fit a spline through the approximate values of the density and

integrate to find the normalizing constant

The size of the discretization for h dictates the run time, where for the last step the density

must decay reasonably quickly with respect to the limits of the discretization to obtain a
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reasonably correct normalization. For certain observation models, the Newton step may

require modification for semi-definiteness of the Hessian matrix, see Nocedal and Wright

(1999) for modified schemes. Given the long mixing times of the Metropolis sampler and

high auto-correlation between samples, the Laplace approximation provides an attractive

deterministic alternative. However, to obtain posteriors for u requires the implementation

of the full integrated nested Laplace approximation. For the purposes of this work, the

center calculated from the approximate density appeared to be much less biased than the

Monte Carlo estimate.

3.6. Results

In order to analyze the Mariano Melgar data, we constructed a mesh using the household

locations in the survey along with the corner nodes of the block polygons. We added

additional nodes along the centers of the six widest streets, which run in between the city

block polygons and constructed a Delaunay triangulation, taking the block polygons as

constraints.

Our model to analyze the effect of streets in Mariano Melgar is the following,

log

(
P(yi = 1|xi, t)

1− P(yi = 1|xi, t)

)
=

n∑
j=1

ujφj(si) + t u ∼ Mátern(α, κ, h) (3.6.1)

where si is the sampling location of observation i, α is the smoothness parameter which is

fixed at 1 (the roughest possible), and κ is the range parameter. The parameter of interest,

h, is the height parameter of the tent deformations representing the streets. For the Mariano

Melgar data, we used a uniform prior between 0 and 500 on h, reasoning that an effective

value of h higher than 500 would be unreasonably high, given that distances in the UTM

coordinate system are based in meters. We used a standard diffuse N(0, 1e−8) prior on the

intercept t and selected a κ = 0.004, based on the likelihood values at the mode calculated
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Figure 16: Constraint Delaunay triangulation of Mariano Melgar, Arequipa, Peru contain-
ing 17,674 nodes and 35,275 triangles, taking polygons, representing the city blocks, as
constraints.

using the Laplace approximation (u? from equation (3.5.8)). Visually, the maximizer for

the spatial effect, calculated using this value of κ, is appropriately smooth as shown in figure

19.

One point of interest was the sensitivity of our results to the choice of the range parameter

κ on the posterior of the deformation parameter given the data. Based on the maximizing

likelihoods calculated in the process of computing the Laplace approximation (section 3.5.3)

as well as visual checks of the maximizing value of the latent spatial parameter, u, such

as in figure 19, we narrowed the reasonable range for κ down to [0.001, 0.010]. To evaluate
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Figure 17: For a deformation parameter of h = 53, these are the six widest roadways of
Mariano Melgar, Arequipa, Peru of interest modeled using the tent deformation.
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Figure 18: Approximate posterior distribution, P(h|y), using the Laplace approximation
for the Mátern model with α = 1 and κ = 0.004 on the survey data.
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Figure 19: Plot of the maximizing field of the model likelihood induced by h = 53, which
was the estimated posterior mode from the data.

the sensitivity of our findings to κ, we found the approximate posterior distribution for κ

varying on a grid from 0.001 to 0.010 by increments of 0.001 and noted the posterior mode

and means of these distributions. The resulting modes and centers are shown in table 4

Although larger range parameters decrease the posterior mode of h, the posterior mean of

h is consistently higher than 70 meters, which indicates that these are major barriers to

the distribution of the insect. As these are the six widest streets or more appropriately

boulevards, it confirms the belief that insect infestations should have difficulty crossing

these barriers.

Sensitivity Analysis on Approximate Posterior to Choice of Range Parameter κ

κ Mode Center

0.001 113.5499 163.9871

Continued on next page
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Table 4 – continued from previous page

κ Mode Center

0.002 88.1494 130.1704

0.003 67.8249 105.5682

0.004 53.0433 89.1542

0.005 42.2523 78.7410

0.006 34.2092 72.7253

0.007 28.0824 70.0058

0.008 23.3328 69.8496

0.009 19.5946 71.7986

0.010 16.6102 75.5831

Table 4: Mode and means of the posterior distribution of the deformation parameter P(h|y)
on the Mariano Melgar survey due to varying κ, the range parameter in the Mátern model.

3.7. Discussion

We found by modeling the six widest streets of Mariano Melgar that these streets are

major barriers to the distribution of infestation across the region. We are confident that

its posterior mean of this height is above seventy meters, regardless of the choice of κ.

Further across all choices of parameters, the model indicates that the posterior distribution

of the height is well away from zero. We feel that there is strong evidence to support the

conclusion that streets do act as a physical barrier to how insects are distributed in an

urban environment.

The methodology that we propose can be well-integrated into existing Bayesian approaches

to data analysis. While we propose a simple model for these street barriers, this approach

can be expanded to include other classes of shapes for these barriers. These results indi-
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cate that streets are an important urban barrier, but it is also raises additional questions

regarding the shapes of these barriers, which our analysis does not yet address. If streets

are the primary urban boundaries, these results suggest that sampling and spraying should

be based around areas cordoned off by major roadways. We hope that these results can be

used to aid the design of sampling and insecticide application for public health campaigns.
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CHAPTER 4 : Conclusion

In this thesis, we have investigated two issues in epidemiological studies, observation error

and spatial boundaries, using Bayesian hierarchical models. In order to approach these

issues, we have adapted and proposed new models based on using Gaussian Markov random

fields to capture the spatial variation present in the data. The motivation behind using these

models primarily is not only their flexibility but also their computational tractability for

large data sets. We have shown that these models fit well on simulated data as well as

actual data collected by the Peruvian Ministry of Health, and that the frameworks created

by these models answer interesting and often proposed questions by epidemiologists.

4.1. Summary

In chapter 2, we proposed a Bayesian hierarchical model that models the heterogeneity in

observation error from human inspectors. Because the the insect infestation is spatially-

distributed, the fact that inspectors themselves are aggregated in space created an issue

of identifiability. We concluded that post-observation the issue of identifiability can not

be remedied. However, we demonstrated through simulation that the correlation between

inspector sensitivity and infestation intensity through space drove the estimation error. We

showed that the greater the degree of this correlation, the greater the amount of error using

the Bayesian posterior estimates. We demonstrated how randomized household assignment

of inspectors produces better estimates of infestation probability per household. Because

of the impracticality of this assignment for large regions of space, we showed how random-

ization over a smaller positive region can be used to learn the relative accuracies of various

inspectors and reduce error over the entire region.

In chapter 3, we introduced a novel approach for spatial models on curved surfaces, where

physical boundaries in space are modeled using these curved deformations. Because most

spatial modeling is done on a flat domain, this function approximation approach using

stochastic partial differential equations circumvents a number of difficulties. We parame-
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terized these deformations and took the Bayesian approach to parameter estimation. We

showed on simulated data that existing techniques such as Monte Carlo and Laplace approx-

imation that inference is well-behaved. As an application of our methodology, we demon-

strated on the Mariano Melgar survey data that streets are a major geographic barrier to

the distribution of the Triatoma infestans insect.

4.2. Extensions & Future Work

One open extension is to analyze repeated measurements over time using the following

stochastic partial differential equation,

∂x(ω, t)

∂t
+ (κ2 −∆)x(ω, t) = W (ω, t) (4.2.1)

where W (ω, t) is stochastically-white in space and time noise. Representing the above

equation as, dx+ (κ2 −∆)xdt = Wdt and using the approximation x =
∑n

i=1 ui(t)φ, then

the quantities 〈dx, φj〉 and 〈(κ2 −∆)xdt, φj〉 have the following representations:

〈dx, φj〉 =

n∑
i=1

〈φi, φj〉dui(t) (4.2.2)

〈(κ2 −∆)xdt, φj〉 =

n∑
i=1

〈(κ2 −∆)φi, φj〉ui(t)dt (4.2.3)

If Cij , 〈φi, φj〉 and Hij , 〈(κ2 −∆)φi, φj〉, then the weak solution to the above equation

may be represented as,

Cdut + Hutdt = εt (4.2.4)

where εt ∼ N(0, ,Cdt), then using a foward Euler scheme with the increment ∆ti = ti+1− ti,
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Figure 20: After adding additional nodes along boundaries, additional parameters can be
added to select for even more complex boundary deformations.

the system may be written down as,

C(uti+1 − uti) + ∆tiHuti = εti (4.2.5)

where εti ∼ N(0, ,∆tiC). The evolution of ut during each time step is as follows,

uti+1 = (I−∆tC
−1H)uti + wti (4.2.6)

where wti ∼ N(0,∆tiC
−1) with similar boundary equations to simplify H, this evolution

equation can be integrated straightforwardly into existing methods for state space estima-

tion.

Another extension of interest to increase the complexity of the deformation shapes. Cur-

rently we use a 3-point, tent to represent a street, it is certainly possible to add additional

points along the streets so that the deformations are depicted as Bézier curves. Depend-

ing on the location and height of these knots, it’s possible to represent the thickness of the

streets. Adding additional parameters to represent these features, it is possible to determine

in greater detail the shape of the deformation.
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APPENDIX

A.1. Correlated Inspector Distribution Simulation Details

A.1.1. Region Division

In order to divide the Mariano Melgar data into regions, the simple approach taken here was

divide the data along the vertical axis in half, and across the horizontal axis in thirds. To

minimize the difference in the number of households between the most and least populated

regions the coordinate system was first rotated.

Although the Mariano Melgar data set contains forty unique inspectors, after examining the

distribution of the number of total households labeled by each inspector, it was found that

a small handful inspected less than 50 households in total. Further, the average number of

households inspected by each inspector was in the neighborhood of 200 houses.

To determine the number of inspectors held in each region, the region was divided into sub-

blocks of around 200 houses which for Mariano Melgar meant that the regions respectively

held: 10, 13, 7, 12, 12, and 7 inspectors. Excluding the largest region, the second, this

amounts to 48 sub-blocks to be assigned. In following the data, 32 unique inspectors were

chosen such that a subset of 16 would be assigned to two regions and the rest only one.

A.1.2. Presence-absence Simulation

To create, heterogeneity among the regions in terms of vector presence, six separate GMRF

were used to simulate the presence-absence data y. In practice, the precision parameter

was kept constant and only the intercept was varied to induce different levels of intensity.

In general, the intensity levels were chosen to match the inspector sensitivities such that

rate of infestation× inspector accuracy remained constant over regions 1, 4, and 5. Region

2 was selected as the reference region, as the level of infestation was high. Due to the large

amounts of data missing in regions 3 and 6, very low infestation intensity were specified. The
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Figure 21: Division of Mariano Melgar into six regions for simulated examples.

reason being firstly, we require areas of low infestation to assign highly accurate inspectors.

More importantly in practice, mixing for this region is very slow due to the amount of

missing data - strong dependence on a good starting point for the sampling is required in

these regions.

A.2. Inspector Assignments and Household Labeling

Once inspector accuracies and presence-absence is simulated, inspectors are drawn according

to the discrete distribution given in equation 2.5.1. The partition function is taken over

all configurations such that a unique subset of half the inspectors is assigned to different

regions. This last requirement is made so that a randomly selected inspector chosen to

appear twice in the assignment is not assigned to identical regions. The intention of these

multiple assignments is so that some inspectors are distributed in aggregations in multiple

regions of the map as in the data.
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This process is done in the simulations at first to the exclusion of region 2. For simulations

in which the frame of reference is excluded, a random subset of 13 of the total 32 inspectors

is drawn and assigned to this region.

Once inspector to region assignments are complete, individual household level assignments

are done according to the following,

For each region i, let {ni, Ii, Li}mi=1 be a tupple consisting of a constant ni denoting the size

of each block in region i, Ii an index set of the inspectors assigned to region i from above,

and lastly Li an index set denoting the individual household locations belonging to region

i. Note |Li denotes the restriction of the matrix to the locations in Li

Algorithm 1 Sampling Household Labels

1: procedure SampleH({ni, Ii, Li}mi=1, t, k,H)
2: for all i ∈ {1, . . . ,m} do
3: for all k ∈ {1, . . . , |Ii|} do
4: if |Li| > ni then
5: Sample {xj}j∈Li ∼ N(t, kQ|Li)
6: Sample {yj}j∈Li ∼ Bern(p = Φ({xj}j∈Li))|

∑
j∈Li

yj = ni
7: for all l ∈ {j : yj∈Li = 1} do
8: Hl ← k
9: end for

10: Li ← Li − {j : yj∈Li = 1}
11: else
12: for all l ∈ Li do
13: Hl ← k
14: end for
15: end if
16: end for
17: end for
18: end procedure

Procedures for simulating draws from a conditional Bernoulli distribution are given in Chen

and Liu (1997). Simulated data is drawn according to the binomial model using the simu-

lated y and β with the exact pairing of the indices as drawn from above.
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A.3. Gibbs Sampler

The Gibbs sampling scheme for the model is provided below. In practice the transfer from

the continuous risk to the binary presence-absence outcome is handled through the use of

the parameter expansion as in Albert and Chib (1993). An analogous formulation using

the logit link can be found in Holmes and Held (2006).

y0 = u + t+ ε (A.3.1)

y1 = 1y0,i>0 (A.3.2)

where recalling u is the centered GMRF N(0, kuQ) with the sum-to-zero constraint and t

is the intercept. The if the prior on t is given by N(µ, τ), where τ is the precision, the prior

on ku is given by Γ(k, θ), where k and θ represent the scale and shape parameters, and the

prior on β is B(a, b), then the Gibbs sampler is given by,

1. (ku|u) ∼ Γ
(
n−1

2 + k, 1
2utQu

)

2. (

[
u, t

]t
|ku,y0) ∼ N

(kuQ + I 1

1t n+ τ


−1  y0

1ty0 + µ+ τ

 ,
kuQ + I 1

1t n+ τ

)

3. (y0,i|ui, t, y1,i) ∼


N(ui + t, 1|y0,1 > 0) if y1,i = 1

N(ui + t, 1|y0,1 < 0) if y1,i = 0

4. (y1,i|ui, βj) ∼ Bern

(
pi =


(1−βj)Φ(ui+t)

(1−βj)Φ(ui+t)+(1−Φ(ui+t))
if INAi = 0

Φ(ui + t) if INAi = 1

)
, where location i

is labeled with inspector j
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Figure 22: Posterior predictive distribution of the Moran’s I statistics calculated from sim-
ulated data from posterior draws of y and β.

5. (βi|y|ni , z|ni) ∼ B(
∑

j∈ni
yjzj + a,

∑
j∈ni

yj(1− zj) + b), where ni denotes the house-

holds labeled inspector i

A.4. Posterior Predictive Check

A posterior predictive check using the Moran’s I statistic was used to address the appro-

priateness of the binomial inspection error model. Using the sampled values of presence-

absence, y and the inspection sensitivities, β, ‘newly-observed’ data sets were sampled

according to the binomial inspection model. From figure 22, the Moran’s I found in the

actual data tends to be on the higher side compared to simulated data from posterior draws.

Although the model captures a reasonable large amount of the spatial correlation found in

the data, these results suggest some room for improvement for future modeling.
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