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State Dependent Regulation of the Neural Circuit for C. Elegans Feeding

Abstract
Rhythmic muscular contractions are essential for many different behaviors, from locomotion to respiration.
These behaviors are modulated by changes in the external environment, such as temperature shifts and
presence of predators, and by internal states, such as hunger and sleep. The roundworm Caenorhabditis
elegans feeds on bacteria through rhythmic contraction and relaxation of its pharynx, a neuromuscular pump
innervated by a nearly independent network of just 20 neurons. Feeding rate is modulated by many
environmental and physiological factors, but feeding generally persists throughout the life of the worm,
ceasing only during sleep. The mechanisms by which the pharyngeal nervous system controls feeding during
wake and sleep are poorly understood. I used optogenetics, genetics, and pharmacology to define the
cholinergic pharyngeal circuitry that regulates feeding rate during wake, and then used similar approaches to
examine how feeding is inhibited during sleep. I identified a four-neuron circuit that regulates feeding rate
during wake and found that it is degenerate, meaning that multiple different classes of neurons can stimulate
feeding in a similar manner. I also found that feeding quiescence is generated by distinct mechanisms during
two behaviorally indistinguishable sleep states: cholinergic motor neurons are inhibited during stress-induced
sleep, while the muscle is directly inhibited during developmentally timed sleep. Thus, as in mammals and
despite its behavioral homogeneity, sleep in C. elegans is not a physiologically homogenous state. These
results provide insight into the function of a highly conserved neural circuit that generates robust rhythmic
behavior, and illustrate how this circuit can be altered in different ways to produce the same behavioral output
during two distinct sleep states.
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ABSTRACT 
 

STATE DEPENDENT REGULATION OF THE NEURAL CIRCUIT FOR 

 C. ELEGANS FEEDING 

Nicholas F Trojanowski 

David Raizen, MD, Ph.D. 

Christopher Fang-Yen, Ph.D. 

 

Rhythmic muscular contractions are essential for many different behaviors, from 

locomotion to respiration. These behaviors are modulated by changes in the external 

environment, such as temperature shifts and presence of predators, and by internal states, 

such as hunger and sleep. The roundworm Caenorhabditis elegans feeds on bacteria 

through rhythmic contraction and relaxation of its pharynx, a neuromuscular pump 

innervated by a nearly independent network of just 20 neurons. Feeding rate is modulated 

by many environmental and physiological factors, but feeding generally persists 

throughout the life of the worm, ceasing only during sleep. The mechanisms by which the 

pharyngeal nervous system controls feeding during wake and sleep are poorly 

understood. I used optogenetics, genetics, and pharmacology to define the cholinergic 

pharyngeal circuitry that regulates feeding rate during wake, and then used similar 

approaches to examine how feeding is inhibited during sleep. I identified a four-neuron 

circuit that regulates feeding rate during wake and found that it is degenerate, meaning 

that multiple different classes of neurons can stimulate feeding in a similar manner. I also 

found that feeding quiescence is generated by distinct mechanisms during two 

behaviorally indistinguishable sleep states: cholinergic motor neurons are inhibited 
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during stress-induced sleep, while the muscle is directly inhibited during developmentally 

timed sleep. Thus, as in mammals and despite its behavioral homogeneity, sleep in C. 

elegans is not a physiologically homogenous state. These results provide insight into the 

function of a highly conserved neural circuit that generates robust rhythmic behavior, and 

illustrate how this circuit can be altered in different ways to produce the same behavioral 

output during two distinct sleep states. 
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CHAPTER 1:  Introduction and Overview 

Rhythmic muscle contractions are essential for a wide array of animal behaviors, from 

locomotion to feeding. These behaviors can be modulated both by external factors, such 

as temperature, and by internal states, such as sleep. The mechanisms underlying the 

generation of these behaviors vary widely. Some muscles, like the vertebrate heart, 

generate rhythmic contractions by intrinsic oscillations of membrane currents (Yaniv et 

al., 2015), while others, like the limb muscles that generate vertebrate locomotion, 

require complex neural network interactions to produce their rhythmicity (Kiehn et al., 

2010).  

The mechanisms that underlie rhythmic behaviors are best understood in invertebrates 

such as leeches, crustaceans, and molluscs, where a small number of neurons and relative 

ease of electrophysiological recordings allow detailed analysis of the activity of 

individual neurons and muscles. Over the past five decades, researchers have taken 

advantage of the ability to electrophysiologically identify the functional synaptic 

connectivity between neurons in these systems to determine the roles of intrinsic and 

synaptic properties of individual neurons in producing network output (Stent et al., 1979; 

Marder and Calabrese, 1996; Selverston, 2010). This approach has provided insight into 

how single neurons can function in multiple different circuits (Selverston, 2010), the 

ways in which activity and neuromodulators influence circuit output (Marder et al., 

2014), and mechanisms by which networks maintain stable output despite variability in 

many underlying parameters (Golowasch, 2014). 
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In parallel with these electrophysiological studies, researchers have employed other 

model systems to study the genetic basis of rhythmic behaviors. Work initiated by 

Seymour Benzer on the fruit fly Drosophila melanogaster (Benzer, 1971; Konopka and 

Benzer, 1971) and by Sydney Brenner on the nematode Caenorhabditis elegans 

(Brenner, 1973; 1974) led to the development of a wide array of genetic tools for 

identifying the roles of individual neural and muscular genes in producing rhythmic 

behaviors in these organisms (Xu and Kim, 2011; Owald et al., 2015). However, just as 

leeches, crustaceans, and gastropods are not amenable to genetic approaches, Drosophila 

and C. elegans are not as suitable for electrophysiological manipulations. As a result, 

until recently these two broad fields of invertebrate research progressed largely 

independently (Marder et al., 2005). However, the development of optical methods for 

manipulating and monitoring neural activity has begun to bridge this gap (Kerr et al., 

2000; Nagel et al., 2005). These methods enable analysis of the physiology and 

functional connectivity of C. elegans neural circuits using a conceptual approach similar 

to that developed in leeches, crustaceans, and gastropods while leveraging the extensive 

genetic toolkit available in C. elegans. 

 

C. elegans is an excellent model organism for investigating the neural and genetic 

basis of rhythmic behaviors 

C. elegans develops through four larval stages, each lasting 12-16 hours and followed by 

a molt, before becoming a 1 mm long adult three days after hatching (Corsi et al., 2015). 

C. elegans is one of the anatomically simplest model animals, and the synaptic 
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connections of its 302 neurons have been fully mapped (Albertson and Thomson, 1976; 

White et al., 1986; Hall and Russell, 1991; Jarrell et al., 2012). Despite its simplicity, C. 

elegans performs many behaviors seen in higher organisms (de Bono and Maricq, 2005), 

and its neurochemistry of synaptic transmission is strikingly similar to that of mammals 

(Bargmann, 1998). There are 91 genes predicted to encode neuropeptides and at least 100 

potential neuropeptide receptor genes in C. elegans, a quarter of which have clear 

vertebrate homologs (Janssen et al., 2010; Hobert, 2013). Several of these neuropeptide 

signaling pathways have evolutionarily conserved functions (de Bono and Bargmann, 

1998; Pierce et al., 2001; Beets et al., 2012; Garrison et al., 2012).  

Although the synaptic connectivity of the C. elegans nervous system was first described 

decades ago, we are still a long way from understanding how the whole system works: 

the connections between neurons are simply too numerous to discern the function of any 

individual neuron simply by its connectivity, save for classifying some neurons as 

sensory or motor (Ward et al., 1975; White et al., 1986). Therefore, to understand how 

the nervous system works, identification of functional connectivity is necessary 

(Bargmann and Marder, 2013). In larger invertebrates, functional connectivity is 

determined by electrophysiological manipulations, but C. elegans neurons are too small 

and inaccessible for this approach to be practical (Avery et al., 1995). Instead, studies of 

functional connectivity in C. elegans have typically used laser ablation to identify the 

functions of neurons, where neurons are killed in young larvae and behavioral changes 

are assayed in adults (Sulston and White, 1980; Bargmann and Avery, 1995; Fang-Yen et 

al., 2012). Laser ablation has proven effective for determining the roles of neurons in 

some sensory behaviors, including mechanosensation (Chalfie et al., 1985), 
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chemosensation (Bargmann and Horvitz, 1991a; 1991b), and thermosensation (Mori and 

Ohshima, 1995), but this approach is insensitive to redundancy and compensatory effects, 

so interpreting data can be challenging.  

The limitations of laser ablation can be overcome by taking advantage of the 

transparency of the worm and applying recently developed optical techniques, including 

light-sensitive ion channels and pumps and fluorescent Ca2+ sensors, to directly identify 

the roles of individual neurons in behavior (Zhang et al., 2007a). By selectively 

manipulating the activity of single neurons (Guo et al., 2009; Leifer et al., 2011; Stirman 

et al., 2011; Kocabas et al., 2012), sequential and nondestructive stimulation or inhibition 

of individual or multiple neurons with high temporal precision can provide a more 

complete picture of dynamic network function than one based on more sparse and 

destructive measurements. 

 

C. elegans feeds via rhythmic contraction of a neuromuscular pump 

In the wild, C. elegans lives in and feeds on rotting vegetation (Frézal and Félix, 2015), 

though in the lab it subsists on a diet of E. coli bacteria grown on agar plates (Brenner, 

1974). C. elegans feeds through its pharynx, a neuromuscular pump with tri-radial 

symmetry (Albertson and Thomson, 1976) (Fig. 1). Pumping typically occurs 200-300 

times per minute in the presence of food (Croll and Smith, 1978) and 20-60 times per 

minute in the absence of food (Horvitz et al., 1982), and is affected by many different 

factors including behavioral state (Raizen et al., 2008), touch (Chalfie et al., 1985), 

odorants (Li et al., 2012), mating (Gruninger et al., 2006), aging (Croll et al., 1977), 
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development (Cassada and Russell, 1975), cellular stress (Jones and Candido, 1999), 

food quality (Soukas et al., 2009), satiety (You et al., 2008), starvation (Avery and 

Horvitz, 1990), feeding history (Song et al., 2013), presence of food (Croll and Smith, 

1978), bacterial infection (Wei et al., 2003), and hypoxia (Sharabi et al., 2014). 

Anatomically and functionally, the pharynx is divided into three regions along the 

anterior-posterior axis (Fig. 1). The anterior part of the pharynx is known as the corpus, 

and contains the procorpus and the metacorpus. The posterior part of the pharynx, the 

terminal bulb, houses the three cuticular plates known as the grinder. The isthmus 

connects the corpus to the terminal bulb (Albertson and Thomson, 1976). 

The muscle fibers of the pharynx are perpendicular to the lumen, so the luminal space 

increases when the muscles contract. The muscle cells also function as epithelial cells, as 

they directly abut the lumen and may secrete parts of each new cuticle formed during 

larval molts (Albertson and Thomson, 1976; George-Raizen et al., 2014). In between 

each of the three muscle cells are marginal cells (Fig. 2), which provide structural support 

for the pharynx (Avery and Horvitz, 1989). The muscles and marginal cells are 

apparently all electrically coupled (Starich et al., 1996; Li et al., 2003; Starich et al., 

2003), allowing for coordinated contraction and relaxation.  

Feeding occurs as two distinct but coupled pharyngeal behaviors, pumping and peristalsis 

(Albertson and Thomson, 1976; Shimozono et al., 2004; Song and Avery, 2012). A pump 

begins when the corpus and anterior isthmus muscles contract and bacterial food is 

sucked into the lumen (Doncaster, 1962). Nearly simultaneously, the terminal bulb 

muscles contract: the anterior terminal bulb muscles open the lumen in front of the 
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grinder, while the posterior terminal bulb muscles, whose fibers are oriented obliquely 

relative to the anterior-posterior axis of the pharynx, pull the grinder plates posteriorly to 

crush any bacteria present in the terminal bulb. After approximately 200 ms, the muscles 

of the corpus, anterior isthmus, and terminal bulb begin to return to their resting position 

(Seymour et al., 1983). The anterior tip of the corpus relaxes more rapidly than the rest of 

the corpus, and the corpus relaxes slightly before the anterior isthmus, so that bacteria are 

trapped at the anterior ends of the corpus and isthmus after relaxation (Avery and 

Shtonda, 2003; Lieven, 2003; Fang-Yen et al., 2009). Finally, bacteria crushed by the 

grinder pass through the pharyngeal-intestinal valve to the intestine (Doncaster, 1962). 

The second pharyngeal behavior, peristalsis, is an anterior to posterior wave along the 

posterior isthmus that begins while the muscles of the anterior isthmus are contracted and 

transports bacteria from the anterior isthmus to the anterior end of the terminal bulb. 

Peristalsis occurs after approximately 1 out of every 4 pumps (Avery and Horvitz, 1987).  

 

C. elegans feeding is controlled by the pharyngeal nervous system 

The pharynx is innervated by a highly interconnected subnetwork of just 20 neurons 

comprised of 14 types, collectively known as the pharyngeal nervous system (Albertson 

and Thomson, 1976) (Table 1). The pharyngeal neurons are embedded in the pharyngeal 

muscle, which is surrounded by a thick basement membrane (Fig. 2). The neuronal 

processes run along grooves through or adjacent to the muscles, and many of these 

neurons have sensory endings in the pharyngeal lumen (Albertson and Thomson, 1976). 

Pumping persists after the entire pharyngeal nervous system is killed (Avery and Horvitz, 
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1989), albeit at a decreased rate, demonstrating that the pharyngeal nervous system is not 

required for pumping. However, acetylcholine (ACh) appears to be necessary for 

pumping, as mutants lacking ACh do not pump (Rand, 1989).  

Just 2 classes of pharyngeal neurons are essential for grossly normal and effective 

pharyngeal behavior, the cholinergic MC and M4 motor neurons (Avery and Horvitz, 

1987; 1989). The pair of bilaterally symmetric MC neurons are essential for rapid 

pumping, as the pumping rate is reduced nearly 10-fold and the worms become thin and 

pale, like starved worms, after the MC neurons are ablated, though the pattern of muscle 

contraction is not dramatically altered (Avery and Horvitz, 1989; Raizen et al., 1995). 

Activation of the MC neurons by serotonin (5-hydroxytryptamine or 5-HT), a key 

regulator of pharyngeal behavior, stimulates rapid pumping (Niacaris and Avery, 2003; 

Song and Avery, 2012). Ablation of the M4 neuron abolishes peristalsis (Avery and 

Horvitz, 1987) and causes a small and variable decrease in pump rate (Raizen et al., 

1995) possibly due to the luminal distension of the corpus that occurs in the absence of 

peristalsis. Peristalsis rate increases when the M4 neuron is activated by 5-HT (Song and 

Avery, 2012), and M4 can stimulate pumping under certain conditions (Chiang et al., 

2006; Song and Avery, 2012; Steciuk et al., 2014). 

Laser ablation of the other three classes of cholinergic pharyngeal neurons, I1, M1, and 

M2, causes more mild behavioral defects (Avery and Horvitz, 1989; Raizen et al., 1995; 

Bhatla et al., 2015). Ablation of the M1 motor neuron does not affect pump rate, but 

alters the behavioral response to ultraviolet light. When M1 is intact, exposure to 

ultraviolet light causes a decrease in pump rate and altered muscle coordination, such that 
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the anterior tip of the corpus no longer relaxes before the rest of the corpus so the food 

that has just entered the lumen is spit out. Ablation of M1 abolishes this spitting behavior 

(Bhatla et al., 2015). The paired I1 interneurons form the only synaptic connections 

between the pharyngeal and non-pharyngeal nervous systems, a pair of electrical 

synapses with the non-pharyngeal RIP interneurons (Ward et al., 1975; Albertson and 

Thomson, 1976). Ablation of the I1 neurons does not affect pumping rate in the presence 

of food but does cause a decrease in pumping rate in the absence of food, suggesting a 

role for the I1 neurons in maintaining basal pumping (David Raizen, personal 

communication). The I1 neurons are also required for the decrease in pumping rate in 

response to ultraviolet light (Bhatla et al., 2015). Ablation of the paired M2 motor 

neurons causes a slight but statistically significant decrease in pumping rate (Raizen et 

al., 1995), but nothing else is known about their function.  

Among the nine classes of non-cholinergic pharyngeal neurons, four are glutamatergic: 

I2, M3, I5, and MI. Ablation of the paired M3 motor neurons increases pump duration, 

suggesting that the M3 neurons promote muscle relaxation (Avery, 1993a). The I5 

interneuron likely inhibits the M3 neurons, as I5 ablation causes an M3-dependent 

decrease in pump duration (Avery, 1993a). The paired I2 neurons are required for 

pumping inhibition in response to ultraviolet light and act in parallel with the I1 neurons 

(Bhatla and Horvitz, 2015; Bhatla et al., 2015). Nothing is known about the function of 

the MI neuron. The paired serotonergic NSM neurons humorally regulate locomotion in 

response to the presence of food (Sawin et al., 2000; Ranganathan et al., 2001; Harris et 

al., 2010; 2011; Cunningham et al., 2012; Gürel et al., 2012; Flavell et al., 2013), and can 

modulate pumping rate under some conditions (Gruninger et al., 2006; Li et al., 2012). 
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Essentially nothing is known about the function of the M5, I3, I4, and I6 neurons, whose 

neurotransmitter(s) have not been identified. Nearly all of the pharyngeal neurons express 

neuropeptide genes (Schinkmann and Li, 1992; Li et al., 1999; Nathoo et al., 2001; Kim 

and Li, 2004) and many neuropeptides affect pumping rate (Rogers et al., 2001; 

Papaioannou et al., 2005; 2008; Cheong et al., 2015), but it is not known when these 

peptides are released or the mechanisms by which they affect feeding.  

Nearly all that is known about the function of the pharyngeal nervous system has come 

from laser ablation experiments (Avery and Horvitz, 1987; 1989; Avery, 1993a; Raizen 

and Avery, 1994; Raizen et al., 1995; Chiang et al., 2006; Bhatla and Horvitz, 2015; 

Bhatla et al., 2015). Although this approach is powerful for identifying roles of critical 

neurons, it is less useful for identifying neurons with redundant functions, as this would 

require ablating many different combinations of neurons. Further, since ablation can only 

cause permanent reduction of function and behavior is typically assayed multiple days 

after ablation, interpretation of all results of ablation experiments are clouded by the 

possibility of developmental compensation (Steger et al., 2005). Optogenetic approaches 

are sensitive to redundancy and can be used to dynamically and bidirectionally 

manipulate neural activity, and have been used to study the function of neural circuits in 

C. elegans at single neuron resolution (Fang-Yen et al., 2015). However, these 

approaches have not yet been applied to the pharyngeal nervous system.  
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Many genes regulating the pharyngeal action potential have been identified 

The pharyngeal muscle action potential consists primarily of five different currents 

(Shtonda and Avery, 2005) (Table 2). The action potential is typically initiated by the 

opening of the nicotinic ACh receptor (nAChR) containing the non-α EAT-2 subunit 

(Raizen et al., 1995; McKay et al., 2004). This receptor appears to function post-

synaptically to the MC neurons, as eat-2 mutants are pale and thin like MC-ablated 

animals (Avery and Horvitz, 1989; Avery, 1993b; Raizen et al., 1995) and EAT-2 is 

expressed in pharyngeal muscle postsynaptic to the MC neurons (McKay et al., 2004). 

EAT-2 interacts with EAT-18, a novel single-pass transmembrane protein of unknown 

function that appears to be required for proper localization of all pharyngeal nicotinic 

receptors (Raizen et al., 1995; McKay et al., 2004).  

Electrical recordings of the pharyngeal muscle, electropharyngeograms (EPGs), reveal 

that during pumping at rates similar to those seen in the presence of food, small 

depolarizations precede each action potential (Raizen et al., 1995). These small 

depolarizations require both the EAT-2 subunit and the MC neurons and are absent 

during pumping at rates similar to those seen in the absence of food or after MC ablation, 

further evidence that the MC neurons promote rapid pumping by depolarizing the muscle 

via the EAT-2-containing receptor (Raizen et al., 1995). The activity patterns of the MC 

neurons have not yet been determined, so it is not clear if these depolarizations represent 

post-synaptic potentials generated by discrete excitation of the muscle by action 

potentials fired by the MC neurons, or if they represent opening of the EAT-2-containing 

receptor that is not triggered by rhythmic activity of the MC neurons. 
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The depolarization produced by opening the EAT-2-containing receptors activates the 

low-threshold T-type Ca2+ channel that contains the α1 subunit CCA-1 (Shtonda and 

Avery, 2005; Steger et al., 2005), which further depolarizes the muscle until it reaches the 

activation threshold for the L-type Ca2+ channel that contains the α1 subunit EGL-19 

(Shtonda and Avery, 2005). EGL-19 inactivates slowly, creating a depolarization that 

lasts ~200 ms, similar to the long action potentials of the vertebrate heart (Lee et al., 

1997). When the EAT-2 nAChR subunit is mutated, the resting membrane potential 

spontaneously depolarizes and action potentials arise spontaneously when the membrane 

potential reaches the CCA-1 threshold, suggesting that pharyngeal excitability can be 

homeostatically regulated (Steger et al., 2005).  

The glutamatergic M3 neurons modulate the timing of muscle relaxation by firing a 

series of action potentials that activate the glutamate-gated Cl- channel AVR-15 during 

muscle contraction (Avery, 1993a; Raizen and Avery, 1994; Dent et al., 1997; Li et al., 

1997; Lee et al., 1999a). The M3 neurons have putative sensory endings adjacent to the 

pharyngeal muscle, suggesting their firing may be triggered directly by muscle 

contraction (Raizen and Avery, 1994). Along with inactivation of the L-type Ca2+ 

channel EGL-19, M3 activity promotes the activation of the hyperpolarization-activated 

K+ channel EXP-2 (Davis et al., 1999; Fleischhauer et al., 2000; Espinosa et al., 2001; 

Shtonda and Avery, 2005). Although EXP-2 is molecularly similar to the Kv family of 

K+ channels, its functional properties are more akin to those of the human HERG 

channel: it activates slowly but inactivates rapidly (Davis et al., 1999; Fleischhauer et al., 

2000). A current with the same properties as the EXP-2 current was first identified in the 

pharyngeal muscle of the nematode Ascaris lumbricoides, where it was termed the 
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“negative spike current” (Byerly and Masuda, 1979) due to its similarity to the voltage 

gated Na+ channel (Campbell and Hille, 1976), but with inverse voltage dependence. 

Resting membrane potential in the pharyngeal muscle is regulated by the Na+/K+ ATPase 

EAT-6 (Davis et al., 1995), in addition to other unidentified channels (Franks et al., 2002; 

Vinogradova et al., 2006). 

ACh can also regulate pumping through the muscarinic ACh receptor GAR-3, which acts 

upstream of Gαq signaling (Brundage et al., 1996; Robatzek and Thomas, 2000; Steger 

and Avery, 2004). Loss of GAR-3 decreases pump duration, suggesting GAR-3 signaling 

is involved in muscle contraction (Steger and Avery, 2004). The identity of the neuron 

releasing the ACh that activates GAR-3 is unknown.  

 

Feeding is inhibited during two conserved C. elegans sleep states 

Feeding persists throughout the life of the worm, ceasing only during sleep (Raizen et al., 

2008; Hill et al., 2014). In mammals, sleep states are identified by changes in brain-wide 

activity patterns recorded by electroencephalography (EEG). However, since C. elegans 

is not amenable to in vivo electrophysiology, its sleep states are identified by reversible 

cessation of feeding and locomotion, increased threshold for arousal, and homeostatic 

response to deprivation, behavioral characteristics of sleep conserved across species 

(Campbell and Tobler, 1984; Allada and Siegel, 2008; Cirelli and Tononi, 2008; Siegel, 

2008; Zimmerman et al., 2008). By these criteria, C. elegans has two sleep states: 

developmentally-timed sleep (DTS or lethargus) occurs during larval transitions 

immediately preceding each of the four molts (Cassada and Russell, 1975; Singh and 
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Sulston, 1978; Raizen et al., 2008), whereas stress-induced sleep (SIS) can occur at any 

developmental stage in response to cellular stressors (Jones and Candido, 1999; Hill et 

al., 2014). These states are behaviorally indistinguishable.  

Many pathways that regulate sleep in the fruit fly Drosophila melanogaster, a well-

established invertebrate sleep model (Cirelli, 2009), also have a role in DTS or SIS. EGF 

(Van Buskirk and Sternberg, 2007; Hill et al., 2014) and FMRFamide (Nelson et al., 

2014) signaling pathways, which regulate Drosophila sleep (Foltenyi et al., 2007; Lenz et 

al., 2015), have been implicated in SIS regulation. DTS is coupled to a larval timing 

mechanism that involves the C. elegans homolog of the PERIOD gene (Jeon et al., 1999; 

Monsalve et al., 2011), a core member of the circadian clock in Drosophila (Konopka 

and Benzer, 1971). Many other regulatory signaling pathways are conserved between 

DTS and Drosophila sleep, including PDF signaling (Parisky et al., 2008; Choi et al., 

2013), PKA signaling (Hendricks et al., 2001; Belfer et al., 2013; Iwanir et al., 2013; 

Nagy et al., 2013; Nelson et al., 2013), neuropeptide Y signaling (Choi et al., 2013; He et 

al., 2013; Shang et al., 2013), Gαo signaling (Raizen et al., 2008; Guo et al., 2011; 

Schwarz and Bringmann, 2013), Notch signaling (Seugnet et al., 2011; Singh et al., 

2011), insulin signaling (Driver et al., 2013; Cong et al., 2015), PKG signaling (Raizen et 

al., 2008; Donlea et al., 2012), glutamate signaling (Choi et al., 2015; Tomita et al., 

2015), and more (Singh et al., 2014).  

There is also evidence that DTS and SIS may serve functions similar to the putative 

functions of mammalian sleep. DTS has been implicated in synaptic plasticity (Dabbish 

and Raizen, 2011) and synthetic metabolism (Frand et al., 2005; Driver et al., 2013) and 
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SIS is important for recovery following exposure to cellular stressors (Hill et al., 2014), 

while mammalian sleep is associated with changes in synaptic plasticity (Tononi and 

Cirelli, 2014), anabolic metabolism (Mackiewicz et al., 2007), and stress response (Toth 

and Krueger, 1988; Rampin et al., 1991). State-dependent neural processing, a well-

established feature of mammalian sleep (Livingstone and Hubel, 1981), has also been 

demonstrated during C. elegans sleep (Choi et al., 2013; Cho and Sternberg, 2014; Choi 

et al., 2015). Although there are likely important differences between sleep regulation in 

worms and mammals, such as the lack of ~24-hour regulation of C. elegans sleep, the 

many conserved aspects of C. elegans sleep suggest that insights gained from C. elegans 

may be applicable to sleep in higher organisms.  

 

DTS and SIS require different interneurons  

Three classes of peptidergic neurons have been implicated in DTS and SIS regulation: the 

GABAergic RIS interneuron and the paired glutamatergic RIA interneurons are required 

for quiescence during DTS (Nelson et al., 2013; Turek et al., 2013), while the ALA 

neuron is required for quiescence during SIS (Van Buskirk and Sternberg, 2007; Hill et 

al., 2014) (Table 3). The RIS interneuron is active during DTS and required for 

locomotion quiescence during this state. Activation of RIS inhibits locomotion, an effect 

that requires neuropeptide processing but not GABA synthesis, suggesting that RIS 

releases an unidentified somnogenic neuropeptide (Turek et al., 2013). The RIA 

interneurons also release a neuropeptide, NLP-22, which inhibits both feeding and 

locomotion during DTS (Nelson et al., 2013; Serrano-Saiz et al., 2013). During SIS, the 
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ALA interneuron, releases the seven neuropeptides encoded by the gene flp-13 (Table 4) 

in response to EGF signaling (Van Buskirk and Sternberg, 2007; Hill et al., 2014; Nelson 

et al., 2014). The FLP-13 neuropeptides are not required for quiescence during DTS 

(Nelson et al., 2014), suggesting that the mechanisms that underlie the cessation of 

feeding and locomotion in these two behaviorally indistinguishable states may be distinct. 

However, sensory neuron Ca2+ levels are decreased during DTS as well as after 

overexpression of the EGF ligand LIN-3 (mimicking SIS) (Cho and Sternberg, 2014), 

indicating that the physiology immediately proximal to the increased arousal threshold is 

similar between these two states. Therefore, it is unclear if the NLP-22 and FLP-13 

neuropeptides act via the same or different neural and molecular pathways to inhibit 

feeding and locomotion during DTS and SIS. 

 

Objective 

The goal of this thesis was to use optogenetics, pharmacology, and genetics to understand 

the neural and genetic mechanisms that underlie C. elegans feeding behavior during wake 

and sleep. In Chapter 2, I will describe experiments I performed to understand how 

cholinergic neurons regulate feeding. In Chapter 3, I investigate how the neural circuit 

that regulates feeding is altered when feeding is inhibited during two sleep states. I will 

discuss my conclusions and future directions in Chapter 4. The Appendix contains a 

detailed protocol for optogenetically manipulating individual neurons.  
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Figure 1.1: Lateral view of the pharynx. The procorpus and metacorpus draw bacterial 

food into the lumen, where it is transported to the terminal bulb by the isthmus. The 

cuticular grinder plates crush the bacteria before it is transported to the intestine. 

Micrograph reproduced from wormatlas.com. 
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Figure 1.2: Cross section of the pharynx. The muscles of the tri-radially symmetric 

pharynx are oriented with their fibers perpendicular to the lumen. Marginal cells provide 

structural support, and the entire organ is surrounded by a thick basement membrane. 

Neuronal processes run adjacent or through the muscle cells. Electron micrograph 

reproduced from wormatlas.com. 
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Table 1.1: C. elegans pharyngeal neurons 

Cell # NT NP Function 

NSM 2 5-HT Y Humorally regulates locomotion rate in response to food 

M1 1 ACh 

 

Promotes spitting in response to UV light 

M2 2 ACh Y Ablation causes slight decrease in feeding rate 

M3 2 Glutamate Y Promotes relaxation via the AVR-15 receptor 

M4 1 ACh Y Required for peristalsis 

M5 1 

 

Y 

 MC 2 ACh Y Promotes rapid pumping via the EAT-2 receptor 

MI 1 Glutamate Y 

 I1 2 ACh Y Inhibits pumping in response to UV light 

I2 2 Glutamate Y Inhibits pumping in response to UV light 

I3 1 

 

Y 

 I4 1 

 

Y 

 I5 1 Glutamate Y Inhibits M3 

I6 1 

 

Y 

 ACh: Acetylcholine; NT: Neurotransmitter; NP: Neuropeptide genes 
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Table 1.2: Genes expressed in pharyngeal muscle that affect pumping 

Name Function Role in pharyngeal pumping 

EAT-2 
Nicotinic ACh receptor non-α 

subunit 

Initiates action potential, depolarizes the 

membrane to CCA-1 threshold 

EAT-18 
Novel single-pass transmembrane 

protein 

Required for proper localization of all 

the pharyngeal nicotinic receptors 

CCA-1 T-type Ca2+ channel a1 subunit 
Promotes depolarization to the EGL-19 

threshold 

EGL-19 L-type Ca2+ channel a1 subunit 
Necessary for the plateau phase of the 

action potential 

AVR-15 Glutamate-gated Cl- channel 
Modulates muscle repolarization timing 

in response to M3 activity 

EXP-2 Kv type K+ channel 
Negative spike channel, required for 

rapid muscle repolarization 

EAT-6 Na+/K+ ATPase Controls resting membrane potential 

GAR-3 Muscarinic ACh receptor Promotes muscle contraction 
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Table 1.3: Neurons implicated in the regulation of C. elegans sleep 

Cell # NT NP Function 

RIS 1 GABA Y Neuropeptide release required for DTS quiescence 

RIA 2 Glutamate Y Secrete NLP-22 neuropeptide during DTS 

ALA 1 

 

Y Secretes FLP-13 neuropeptides during SIS 

NT: Neurotransmitter; NP: Neuropeptide genes 
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Table 1.4: C. elegans sleep-associated neuropeptides 

Neuropeptide Sequence 

FLP-13-1 AMDSPLIRFamide 

FLP-13-2 AADGAPLIRFamide 

FLP-13-3 APEASPFIRFamide 

FLP-13-4 ASPSAPLIRFamide 

FLP-13-5 SPSAVPLIRFamide 

FLP-13-6 ASSAPLIRFamide 

FLP-13-7 SAAAPLIRFamide 

NLP-22 SIAGRAGFRPamide 
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Abstract 

Degenerate networks, in which different elements can perform the same function or yield 

the same output, are ubiquitous in biology. Degeneracy contributes to the robustness and 

adaptability of networks in varied environmental and evolutionary contexts. However, 

how degenerate neural networks regulate behavior in vivo is poorly understood, 

especially at the genetic level. Here, I identify degenerate neural and genetic mechanisms 

that underlie excitation of the pharynx (feeding organ) in the nematode C. elegans using 

cell-specific optogenetic excitation and inhibition. I show that the pharyngeal neurons 

MC, M2, M4, and I1 form multiple direct and indirect excitatory pathways in a robust 

network for control of pharyngeal pumping. I1 excites pumping via MC and M2 but not 

M4. I identify nicotinic and muscarinic receptors through which the pharyngeal network 

regulates feeding rate. These results identify two different mechanisms by which 

degeneracy is manifest in a neural circuit in vivo.  
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Introduction 

All living systems possess mechanisms for maintaining their function in varied internal 

and external environments. One mechanism which generates this adaptability is 

degeneracy, the ability of distinct elements to perform the same function or yield the 

same output under specific conditions (Tononi et al., 1999). Degeneracy is a ubiquitous 

property of biological systems at all levels of organization (Edelman and Gally, 2001), 

and supports robustness and adaptability by providing the capability to produce a variety 

of actions, both overlapping and unique, depending on context (Tononi et al., 1999). The 

degeneracy of a system has been proposed to correlate with its complexity (Tononi et al., 

1999; Edelman and Gally, 2001). However, studies in the crustacean stomatogastric 

ganglion have demonstrated that even small neural circuits can be highly degenerate; 

similar functional network performance can be achieved with many different network 

parameters but using the same structural elements (Prinz et al., 2004; Saideman et al., 

2007; Grashow et al., 2010; Marder and Taylor, 2011; Gutierrez et al., 2013; Rodriguez 

et al., 2013). However, the mechanisms by which different network activity patterns 

generate similar behaviors in vivo are poorly understood.  

Here I investigate degeneracy in the pharyngeal nervous system of the nematode C. 

elegans. The worm feeds on bacteria via rhythmic contractions and relaxations of the 

pharynx, which trap the bacteria, crush it, and transport it to the intestine (Doncaster, 

1962) (Fig 1A,B). The pharynx has two stereotyped behaviors: (1) pumping, which is a 

rhythmic contraction and relaxation of the corpus, anterior isthmus, and terminal bulb, 

and (2) isthmus peristalsis, which normally occurs after one out of every three to four 
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pumps, and transports food particles from the anterior isthmus to the terminal bulb and 

intestine.  

The pharynx is innervated by a well-mapped and highly interconnected pharyngeal 

nervous system containing 20 identified neurons of 14 types and fewer than 60 unique 

chemical and electric synapses (Albertson and Thomson, 1976), though the pathways of 

non-synaptic transmission are poorly understood. The pharyngeal nervous system is 

synaptically connected to the 282-neuron somatic nervous system by a single pair of gap 

junctions (Albertson and Thomson, 1976). 

Pharyngeal pumping requires the neurotransmitter acetylcholine (Avery and Horvitz, 

1990; Alfonso et al., 1993), which is synthesized by 5 pharyngeal neuron types (Fig. 

1A,C). By using laser ablation to kill individual neuron classes, Avery and colleagues 

identified the paired cholinergic MC cells as the only neurons required for rapid feeding 

(Avery and Horvitz, 1989; Raizen et al., 1995). However, ablation of other cholinergic 

pharyngeal motor neurons, such as M2 and M4, only slightly decreases feeding rate 

(Avery and Horvitz, 1989; Raizen et al., 1995), demonstrating that the network that 

regulates feeding rate is robust to the absence of some neurons. In fact, feeding continues 

even after ablation of all pharyngeal neurons, albeit in a slow and uncoordinated manner 

(Avery and Horvitz, 1989).  

Work with other nematode species suggests that the pharyngeal nervous system is highly 

evolutionarily adaptable and more functionally complex than the C. elegans ablation 

results alone indicate. The structural connectivity of the pharyngeal nervous system of the 

nematode Pristionchus pacificus has recently been shown to be very similar to that of C. 
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elegans (Bumbarger et al., 2013). Although C. elegans and P. pacificus diverged 

approximately 300 million years ago (Pires-daSilva and Sommer, 2004; Dieterich et al., 

2008) and have different feeding strategies, there is near-perfect homology of pharyngeal 

neurons between these species (Bumbarger et al., 2013). Strikingly, the morphologies of 

the neuronal processes are nearly identical, and a remarkable number of connections are 

conserved (Bumbarger et al., 2013). As in C. elegans, M4 ablation in P. pacificus causes 

a mild decrease in feeding rate (Chiang et al., 2006). M2 ablation in the nematode 

Panagrolaimus sp. PS1159 also causes a mild decrease in feeding rate (Chiang et al., 

2006). Pharyngeal neuron homology has also been observed in nematode species with 

very diverse pharyngeal functions (Zhang and Baldwin, 2000; Ragsdale et al., 2010). 

This evolutionary adaptability and robustness suggests that the nematode pharyngeal 

nervous system is highly degenerate, but this hypothesis has not been directly tested.  

Testing for degeneracy and functional complexity requires identification of distinct 

neural elements or networks capable of producing identical outputs. In laser ablation 

experiments, neurons are killed in young larvae and behavior is observed in adult worms 

(Avery and Horvitz, 1987; 1989; Avery, 1993a; Raizen et al., 1995). This approach 

causes irreversible elimination of neuron function, is potentially confounded by 

redundancy and compensatory changes during development, and may fail to uncover 

effects on adult feeding behavior due to early larval lethality (Avery and Horvitz, 1987). 

Optogenetic tools, which permit temporally precise manipulation of neural activity, can 

overcome limitations of laser ablation and directly identify roles of individual neurons in 

generating or regulating behavior (Zhang et al., 2007a). Functional dissection of neural 

circuits using optogenetics requires either cell-specific opsin expression (Schmitt et al., 
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2012) or selective illumination of the neuron of interest after broad opsin expression 

(Guo et al., 2009; Leifer et al., 2011; Stirman et al., 2011; Kocabas et al., 2012).  

To determine the roles of cholinergic pharyngeal neurons in pumping regulation and the 

pathways through which they act, I developed a technique for optogenetic manipulation 

of single neuron activity in vivo. Because pharyngeal behavior is completely internal to 

the animal, immobilizing the worms affords increased spatial resolution such that it is 

possible to simultaneously optogenetically manipulate individual pharyngeal neurons and 

record behavior. I confirm the endogenous excitatory role of MC and identify 

endogenous degenerate excitatory roles for M2, M4, and I1 in a robust network that 

regulates feeding rate. I identify the neurons that act post-synaptically to I1, and I 

illuminate degeneracy at the genetic level by identifying two molecular mechanisms that 

mediate the stimulatory role of MC.  
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Materials and Methods 

Worm strains 

ZM3265 lin-15(n765ts) X; zxIs6[Punc-17::ChR2(H134R)::YFP; lin-15(+)] V, ZX499 

lin-15(n765ts) X; zxIs5[Punc-17::ChR2(H134R)::YFP; lin-15(+)] X, and ZX830 lite-

1(ce314) X; zxEx620[Punc-17::Mac::YFP; Pelt-2::mCherry] were gifts from A. 

Gottschalk (Liewald et al., 2008; Husson et al., 2012). After verification of expression in 

cholinergic pharyngeal neurons, I crossed ZM3265 into LX929 vsIs48[Punc-17::GFP] 

X, which has bright cytoplasmic GFP fluorescence in cholinergic neurons, to create 

YX11 lin-15(n765ts) X; zxIs6[Punc-17::ChR2(H134R)::YFP; lin-15(+)] V; 

vsIs48[Punc-17::GFP] X. I then crossed YX11 into DA1113 eat-2(ad1113) II (Avery, 

1993b), DA1110 eat-18(ad1110) I (Raizen et al., 1995), and CB933 unc-17(e245) IV 

(Brenner, 1974)to create YX46 eat-2(ad1113) II; vsIs48[unc-17::GFP] X; zxIs6[Punc-

17::ChR2(H134R)::YFP; lin-15(+)] V, YX47 eat-18(ad1110) I; vsIs48[Punc-17::GFP] 

X; zxIs6[Punc-17::ChR2(H134R)::YFP; lin-15(+)], and YX48 unc-17(e245) IV; 

vsIs48[Punc-17::GFP] X; zxIs6[Punc-17::ChR2(H134R)::YFP; lin-15(+)], respectively. 

Since gar-3 and zxIs6 are both located on chromosome V, I had difficulty obtaining gar-

3; zxIs6 cross progeny and adopted a different approach for experiments involving gar-3. 

I crossed VC657 gar-3(gk305) ) (Liu et al., 2007) with DA1110 and with ZX499 to form 

YX66 eat-18(ad1110) I; gar-3(gk305) V and YX68 gar-3(gk305) V; zxIs5[Punc-

17::ChR2(H134R)::YFP; lin-15(+)] X, respectively. I identified the presence of the 

gk305 deletion mutation by PCR followed by agarose gel electrophoresis (primer 

sequences were TGTTCTGAGTTTTTGCATTAAA and 

GGACATTTTCTGTATTTCTTTTTAC. I crossed YX66 into YX68 to create YX69 eat-
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18(ad1110) I; gar-3(gk305) V; zxIs5[Punc-17::ChR2(H134R)::YFP; lin-15(+)] X. To 

rescue the gar-3 defect, I used an Eppendorf FemtoJet microinjection system on a Leica 

DMIRB inverted DIC microscope to inject the fosmid WRM0627cH05 at 10 ng/µL, in 

combination with 5 ng/µL pCFJ104(myo-3::mCherry). I performed all experiments 

involving inhibition with ZX830. I grew all worms in the dark at 20°C on NGM 

(Brenner, 1974) plates inoculated with 250 µL of a suspension of OP50 bacteria in LB 

medium. Where needed, I added 2 µL of 100 mM all-trans retinal (ATR) in ethanol to the 

bacterial suspension immediately before seeding. I stored ATR-seeded plates at 4°C for 

up to one week before use. All optogenetics experiments were performed on first-day 

adult hermaphrodites. 

 

Laser ablations 

I performed MC and M2 laser ablations as described (Bargmann and Avery, 1995; Fang-

Yen et al., 2012). Briefly, I immobilized L1 larvae in 15 mM sodium azide on 5% 

agarose pads within 4 hours after hatching. With differential interference contrast (DIC) 

optics on a Leica DM5500B upright microscope equipped with a 100x Plan Apo oil-

immersion objective lens with N.A.=1.4, I identified and ablated neurons with 60-80 

pulses from a Photonics Micropoint laser. All ablations were confirmed via observation 

of DIC and/or fluorescence 2-3 days after the operation. All animals with collateral 

damage were discarded. Controls for laser ablation experiments were subject to the same 

immobilization protocols as operated animals but the laser was not fired. 
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Optogenetic stimulation of individual neurons 

I mounted worms on 10% agarose pads containing 10 mM serotonin (5-HT) and 

immobilized them using 1.5 µL of a 2.5% (v/v) suspension of 50 nm diameter 

polystyrene beads (Kim et al., 2013). I included 5 mM atropine in the agarose pad where 

indicated; I reduced the 5-HT concentration to 5 mM for these atropine experiments to 

compensate for the increased ionic concentration. This atropine concentration is half that 

previously used to study the roles of muscarinic receptors in C. elegans feeding behavior 

(You et al., 2006). The C. elegans cuticle and intestinal lining generally limit drug 

uptake, and it is not unusual for polar drugs to be applied at concentrations 1000-fold 

higher than their predicted target affinities (Holden-Dye and Walker, 2007).  

For each worm, I first illuminated the entire head with blue light for <1s in order to image 

the fluorescent cholinergic neurons. Next, I subjected each relevant neuron type to a 

stimulus protocol consisting of 10 cycles of 5 second illumination and 5 second darkness. 

The stimulus area was determined by outlining a region slightly larger than the neural cell 

body – about 2-3 µm in diameter – to allow constant stimulation as the neural cell bodies 

move during the pump. unc-17 mutants did not immobilize well, likely due to their 

coiling behavior, so for these worms I used a larger spot of illumination, often covering 

the entire metacorpus. I performed experiments within 90 minutes of worm 

immobilization, and performed each experiment on 7-10 animals unless otherwise 

indicated. This sample size was selected based on pilot data. For additional description of 

the approach, see the results section.  
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Microscopy and imaging 

I used a setup similar to that described previously (Leifer et al., 2011) (Fig. 1E). I 

performed optogenetic experiments on a Leica DMI3000B microscope with a Leica Plan 

Apo 63X oil immersion objective lens with N.A.= 1.4. To optogenetically stimulate 

individual neurons, I expanded a 473 nm laser beam (SLOC Lasers) using a telescope 

composed of two planoconvex lenses and projected it onto a 1024 by 768 pixel digital 

micromirror device (DMD) (Discovery 4100 DLP, Texas Instruments/Digital Light 

Innovations). I aligned the DMD such that when the DMD was in the ‘on’ state, the 

reflected beam was aligned with the optical axis of the microscope objective after 

entering the microscope through a right side auxiliary port. The light from the DMD was 

projected onto the back of the objective using an optical system composed of 3 lenses and 

a dichroic mirror. I mounted the dichroic mirror, which reflects 473 nm light while 

allowing transmission of wavelengths greater than 500 nm, on a custom filter cube in the 

microscope filter turret. The irradiance of the laser at the objective was approximately 37 

mW/mm2, well above the saturation irradiance of ChR2 (Grossman et al., 2011). To 

image behavior, I placed a red filter in the transillumination light path. I used an image 

splitter (Photometrics DV2) to simultaneously record fluorescence and bright-field 

images. I acquired images at a rate of 32.7 frames per second on a cooled CCD camera 

(Andor iXon 885). I analyzed the images using custom MATLAB scripts, as well as the 

freely available package PIVlab, a Time-Resolved Digital Particle Image Velocimetry 

Tool for MATLAB.  
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Software and analysis 

I used Andor SOLIS software to acquire images. I controlled the DMD using the 

Discovery 4100 software; DMD scripts were created in MATLAB using custom scripts. 

After data acquisition, I used MATLAB to identify times when the stimulation was 

switched between off and on states and to determine pumping rate and other parameters. 

MATLAB scripts are available upon request. Student’s t-test was used for all statistical 

comparisons unless otherwise noted, and each bar represents mean +/- SEM. Sample 

sizes are given in the figure captions.  

 

Measurement of ChR2 expression 

ChR2 expression was approximated by calculating the average fluorescence pixel values 

of a region surrounding the cell body of each pharyngeal neuron that expressed 

zxIs6[Punc-17::ChR2(H134R)::YFP; lin-15(+)] V).  
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Results 

Optogenetic manipulation of specific pharyngeal neurons in intact, behaving 

animals 

I used a digital micromirror device (DMD) and laser with 473 nm wavelength to 

illuminate individual neurons (Guo et al., 2009; Leifer et al., 2011) in worms expressing 

specific opsins in all cholinergic neurons. To excite neurons, I used a YFP-tagged blue 

light-sensitive Channelrhodopsin-2 (ChR2) (Nagel et al., 2003; 2005). To inhibit neurons, 

I used a YFP-tagged blue light-powered proton pump (Mac) from Leptosphaeria 

maculans (Waschuk et al., 2005; Chow et al., 2010; Husson et al., 2012). In some 

experiments, I co-expressed cytoplasmic GFP along with YFP-ChR2 in order to more 

easily visualize the neurons. I physically immobilized the animals against agarose pads 

using polystyrene nanoparticles (Kim et al., 2013). This immobilization causes a 

cessation of pumping, so I added 10 mM serotonin (5-HT) to the agarose pads to induce a 

submaximal basal pumping rate; a nonzero but submaximal pumping rate allowed me to 

measure inhibitory as well as excitatory effects. To locate each cholinergic pharyngeal 

neuron, I first acquired a full-field fluorescence image of the worm’s head (Fig. 1C). I 

then specified a region for illumination based on the fluorescence image, and used the 

DMD to illuminate the specified region (Fig. 1D). To image behavior and fluorescence 

simultaneously on the same camera while avoiding non-specific opsin activation, I 

performed the experiments with a red glass filter in the transillumination light path (Fig. 

1E). I imaged the worms through a DualView2 image splitter with RFP and GFP filters: 

the RFP channel captured DIC images and the GFP channel captured fluorescence, which 
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allowed me to both ensure proper targeting of each neuron and to correlate behavior with 

neuron stimulation.  

 

Machine vision quantification of pharyngeal behavior during optogenetic 

stimulation 

I used a particle image velocimetry (PIV) algorithm in MATLAB to track the velocity of 

a region of the anterior terminal bulb to quantify pumping rate (red box in Fig. 1B). The 

velocity was found to be biphasic in shape (Fig. 1F). Each positive spike in velocity 

represented movement of the grinder toward the posterior, and each negative spike 

represented its return to the resting position. For each experiment I set a velocity 

threshold, the crossing of which signified a single pump. This threshold was set to 

approximately half of the maximum velocity. I wrote MATLAB scripts to calculate the 

average pump rate during stimulus intervals (blue bars in Fig. 1F and 1G), which were 

determined post-hoc by automated detection of changes in fluorescence occurring when a 

GFP and/or YFP-expressing neuron is illuminated. My system for automated detection of 

pharyngeal pumps was in excellent agreement with results from a manual counting of 

pumps based on slow-motion review of videos, with 99.3% sensitivity and 99.5% 

specificity.  

 

The MC motor neurons are excitatory for pharyngeal pumping 

The paired MC neurons have cell bodies in the metacorpus, putative sensory endings in 

the pharyngeal lumen near the posterior end of the procorpus, and form synapses with 
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pharyngeal muscles in the posterior metacorpus and anterior isthmus (Fig 1A, C) 

(Albertson and Thomson, 1976). Because laser ablation of the MC neurons in young 

larvae causes an 83% decrease in pump rate in adult animals (Raizen et al., 1995), I 

hypothesized that optogenetic stimulation of the MCs would increase pump rate. Indeed, 

I found that optogenetic excitation of the MC neurons stimulated pumping (Fig. 2A). MC 

illumination did not excite pumping in the absence of the essential ChR2 cofactor all-

trans retinal (ATR) (Fig. 2A), indicating that the increased pump rate during MC 

illumination was due to activation of ChR2. 

Processes of other cholinergic neurons pass close to the MC cell bodies (Fig. 1A, C) 

(Albertson and Thomson, 1976), raising the possibility that the optogenetic illumination 

was stimulating pumping via non-targeted neurons. To test this possibility, I performed 

larval ablation of the MC neurons and tested whether stimulation of the region 

corresponding to the usual location of the MC cell bodies results in an increased pumping 

rate. I found no increase in pump rate (Fig. 2A), indicating that off-target effects of this 

optogenetic stimulation are negligible. 

Serial section electron microscopic analysis of the pharyngeal nervous system has shown 

that the MC neurons make no chemical synapses onto other neurons and possess gap 

junction connections only with the paired M2 neurons (Albertson and Thomson, 1976). 

To determine whether the behavioral effect of optogenetic stimulation of MC occurs 

wholly via effects on M2, I performed optogenetic excitation of the MCs in animals in 

which the M2 neurons were laser-ablated. Stimulation of the MCs still excited pumping 

after the ablation of the M2 neurons (Fig. 2A), demonstrating that the MCs can directly 

stimulate pumping.  
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The M2 motor neurons are excitatory for pharyngeal pumping 

Anatomical data suggest that the paired M2 neurons make chemical synapses only onto 

pharyngeal muscles in the isthmus and metacorpus (Fig 1A, C) (Albertson and Thomson, 

1976). However, ablation of the M2 neurons in young larvae results in only a 16% 

decrease in pump rate in adults (Raizen et al., 1995), suggesting a minor role for the M2s 

in pumping regulation. To my surprise, I found that optogenetic stimulation of the M2s 

increased pump rate to a similar level as that observed during MC stimulation (Fig. 2B). 

As with the MCs, this effect was ATR-dependent (Fig. 2B) and did not occur when the 

same region was stimulated after M2 ablation (Fig. 2B), demonstrating that specific 

activation of the M2s excites pumping. Furthermore, M2 excitation stimulated pumping 

in the absence of the MC neurons (Fig. 2B), demonstrating that the M2s, like the MCs, 

can stimulate pumping directly.  

 

The M4 motor neuron is excitatory for pharyngeal pumping and isthmus peristalsis 

The M4 neuron synapses only on the pharyngeal muscles in the isthmus and terminal 

bulb (Fig 1A, C) (Albertson and Thomson, 1976) and is the only neuron required for 

isthmus peristalsis (Avery and Horvitz, 1987; 1989). Laser-ablation experiments have 

shown a 28% reduction in pump rate in adult animals after M4 ablation in young larvae 

(Raizen et al., 1995). However, interpretation of this experiment is confounded by the 

peristalsis defect seen after M4 ablation: defective peristalsis causes both starvation, 

which itself causes a reduction in pump rate (Avery and Horvitz, 1990), and distention of 
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the corpus by bacteria, which may affect pharyngeal behavior via abnormal activation of 

mechanosensory endings (Avery and Horvitz, 1987; Raizen et al., 1995). My optogenetic 

approach allowed me to directly test whether M4 could stimulate pumping rate in well-

fed animals with normal peristalsis. I found that optogenetic excitation of the M4 neuron 

caused an increase in pumping to a similar level as that observed during MC or M2 

stimulation (Fig. 2C). No cholinergic pharyngeal neurons send processes behind the M4 

cell body, so the effect of M4 stimulation is due to specific activation of M4. Consistent 

with its proposed role in regulating isthmus peristalsis, optogenetic excitation of M4 

caused a greater proportion of pumps to be followed by peristalsis than during MC 

stimulation. During five 10-second intervals of M4 stimulation in two worms, 97% of 

pumps (N=179 pumps) were followed by isthmus peristalsis, whereas during stimulation 

of MC in the same worms only 41% (N=204 pumps) were followed by peristalsis 

(p<0.0002, Mann-Whitney U test). M4 excitation caused an increase in pump rate in the 

absence of both the MCs and the M2s (Fig. 2C), demonstrating that M4 can directly 

stimulate pumping. 

 

Stimulation of the M1 motor neuron does not excite pumping 

The M1 neuron sends a process from the terminal bulb to the anterior end of the corpus, 

where it forms synapses on the anterior pharyngeal muscles (Fig 1A, C) (Albertson and 

Thomson, 1976). M1 ablation causes only an 8% reduction in pump rate (Raizen et al., 

1995). In contrast to the other cholinergic pharyngeal neurons, I did not find M1 

optogenetic stimulation to affect pump rate (Fig. 2D). This is unlikely to be explained by 

a lower level of expression of ChR2 in M1 since the average fluorescence intensity of 
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ChR2::YFP in M1 was similar to that measured in MC, M2, and M4 (MC: 93.8 ± 7.1; 

M2: 101.2 ± 11.0; M4: 91.2 ± 10.7; M1: 71.6 ± 16.7, Mean ± SEM, arbitrary units, N=6, 

p>0.79 1-way ANOVA with Dunn’s Multiple Comparison Test). These results suggest 

that M1 stimulation does not excite pharyngeal pumping. 

 

The I1 interneurons excite pumping through the MCs and M2s 

The paired I1 neurons form the only synaptic connections between the somatic and 

pharyngeal nervous systems, and are the only cholinergic pharyngeal neurons that do not 

synapse onto pharyngeal muscle (Albertson and Thomson, 1976). Ablation of the I1 

neurons has no effect on the pump rate in the presence of food (Raizen et al., 1995). 

Electron microscopy data indicated that the I1s are presynaptic to six classes of neurons, 

including the MCs and the M2s but not M4 (Albertson and Thomson, 1976). Optogenetic 

stimulation of the I1 neurons increases pumping rate in an ATR-dependent manner to a 

level similar to that seen with MC or M2 stimulation (Fig. 3B). No cholinergic 

pharyngeal neurons send processes behind the I1 cell body, so the effect of I1 stimulation 

is due to specific activation of I1. I1 stimulation excited pumping following the ablation 

of either the MCs or the M2s, but not following ablation of both neuron types (Fig. 3B), 

demonstrating that the I1s can stimulate pumping through the MCs, through the M2s, or 

through both the MCs and the M2s.  
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The MC, M2, and M4 motor neurons stimulate pumping endogenously 

My optogenetic experiments with ChR2 showed that the MC, M2, M4, and I1 neurons 

are capable of stimulating pumping. However, it does not necessarily follow that these 

neurons endogenously regulate pumping rate. To determine if these neurons stimulate 

pumping endogenously, I expressed the proton pump Mac in the cholinergic neurons 

(Husson et al., 2012) and individually inhibited these neurons using methods otherwise 

identical to those used with ChR2. I found that optogenetic inhibition of the MCs, the 

M2s, or M4 reduced pump rate, indicating that an endogenous function of these neurons 

is to stimulate pumping (Fig. 4A). By contrast, optogenetic inhibition of M1 had no effect 

on pump rate, suggesting that M1 is not required for pump rate regulation. Simultaneous 

inhibition of the MCs and the M2s caused a greater inhibition of pumping than inhibition 

of either alone, consistent with an endogenous role for the M2s in pumping rate 

regulation (Fig. 4A). 

 

The I1 interneurons regulate pumping endogenously via the MCs and the M2s 

As with MC, M2, and M4, I found that I1 inhibition caused a decrease in pumping (Fig. 

4B). To test whether the I1s endogenously act through the MCs and the M2s to regulate 

pump rate, as my ChR2 experiments suggested, I simultaneously inhibited the I1s and 

either the MCs, the M2s, or both the MCs and the M2s. Inhibition of the I1s 

simultaneously with inhibition of the MCs caused a stronger reduction in pump rate than 

inhibition of the MCs alone, suggesting that the I1s can function independently of the 

MCs. Similarly, inhibition of the I1s simultaneously with inhibition of the M2s caused a 

stronger pump rate reduction than inhibition of the M2s alone, suggesting that the I1s can 
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function independently of the M2s. However, inhibition of the I1s simultaneously with 

inhibition of both the MCs and the M2s did not cause slower pumping than that seen with 

inhibition of the MCs and the M2s alone (Fig. 4B), indicating that effect of I1 inhibition 

on pumping rate requires the MCs and the M2s. Together with my ChR2 stimulation 

data, these results indicate that the I1s endogenously excite pumping via both the MCs 

and the M2s. 

 

The MC neurons can stimulate pumping through a non-nicotinic mechanism 

Mutations in the gene eat-2, which encodes a nicotinic acetylcholine receptor subunit 

expressed in pharyngeal muscle postsynaptic to the MCs (McKay et al., 2004), causes a 

reduced pump rate that mimics the phenotype observed after MC ablation (Avery, 1993b; 

Raizen et al., 1995). This observation suggested that the mechanism by which the MC 

neurons stimulate feeding is via activation of a nicotinic acetylcholine receptor 

containing EAT-2. Therefore, I expected that stimulation of the MCs in eat-2 mutants 

would not increase pump rate. To my surprise, I found that stimulation of the MC 

neurons in eat-2 mutants causes an increase in pumping, albeit less than in wild-type 

worms (Fig. 5 vs. Fig. 2A). Stimulation of the same region following MC ablation in wild 

type worms did not cause an increase in pumping (Fig. 2A), demonstrating that this effect 

is not due to off-target excitation of nearby processes. These results demonstrate that the 

MCs can stimulate pumping through an EAT-2-independent mechanism.  

To test the possibility that the MCs can stimulate pumping via an alternative nicotinic 

ACh receptor in the absence of EAT-2, I studied animals lacking EAT-18, a single 
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transmembrane protein required for the pharyngeal response to bath-applied nicotine 

(Raizen et al., 1995; McKay et al., 2004). In eat-18 mutants, the staining of the pharynx 

with alpha-bungarotoxin, which binds to nicotinic acetylcholine receptors, is also 

eliminated (McKay et al., 2004). As in the absence of EAT-2, optogenetic stimulation of 

the MCs resulted in a pumping increase in the absence of EAT-18 (Fig. 5), suggesting 

that the MCs can excite pumping via a non-nicotinic mechanism.  

 

The MC neurons directly stimulate pumping via a non-nicotinic cholinergic 

mechanism 

To further explore the nature of the EAT-2- and EAT-18-independent MC-induced 

pumping, I examined mutants for the gene unc-17, which encodes a transporter required 

for loading acetylcholine into vesicles prior to release (Alfonso et al., 1993). Since unc-

17 null mutations are lethal, I used the hypomorphic allele e245, which had a variable 

basal pumping rate during immobilization. Stimulation of the pharyngeal metacorpus, 

which includes the MC cell bodies and processes, did not increase pumping rate in unc-

17 mutants (Fig. 5), demonstrating that MC stimulation of pumping requires cholinergic 

neurotransmission.  

The MCs may stimulate pumping via a cholinergic non-nicotinic mechanism by acting 

directly on pharyngeal muscle, or they may act via their electrical connections to the 

M2s. To distinguish between these possibilities, I tested the effect of MC stimulation in 

eat-18 mutants in which I ablated the M2 neurons. MC stimulation still increased 
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pumping in eat-18 mutants in the absence of the M2s, (Fig. 5), demonstrating that the 

MCs can activate pumping directly via a cholinergic non-nicotinic mechanism.  

 

The MC neurons stimulate pumping in part via the muscarinic receptor GAR-3 

Ionotropic cholinergic receptors insensitive to nicotine have been identified in C. elegans 

(Richmond and Jorgensen, 1999; Francis et al., 2005; Touroutine et al., 2005), suggesting 

the possibility that MC stimulates pumping in an eat-18 genetic background through such 

a channel. Alternatively, the MCs may be acting through a muscarinic receptor. To 

distinguish between these possibilities, I used the muscarinic antagonist atropine (You et 

al., 2006). In the presence of atropine, MC stimulation failed to excite pumping in eat-18 

mutants (Fig. 5), demonstrating that in the absence of eat-18, the MCs stimulate pumping 

via an atropine-sensitive receptor and hence likely a muscarinic acetylcholine receptor. 

The C. elegans genome contains three genes that encode for muscarinic receptors: gar-1 

(Lee et al., 1999b), gar-2 (Lee et al., 2000), and gar-3 (Hwang et al., 1999). Of these, 

only gar-3 has been reported to be expressed in pharyngeal muscle (Steger and Avery, 

2004). Loss of GAR-3 has been shown to cause decreased action potential duration in 

pharyngeal muscle, and excessive GAR-3 signaling can cause muscle contraction to 

outlast muscle depolarization (Steger and Avery, 2004), consistent with an excitatory role 

for GAR-3 in response to MC stimulation. I therefore tested if the MCs excite pumping 

via GAR-3 in an eat-18 mutant background. MC stimulation did not excite pumping in 

eat-18; gar-3 double mutants (Fig. 5), demonstrating that the MCs activate pumping in 

part through the muscarinic acetylcholine receptor GAR-3. A transgene containing the 
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gar-3 gene restored the ability of MC stimulation to excite pumping in eat-18; gar-3 

double mutants (Fig 5), confirming that the gar-3 mutation caused the defect in the 

ability of the MCs to excite pumping in the absence of EAT-18.  
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Discussion 

By optogenetically manipulating individual C. elegans neurons while recording feeding 

behavior, I have shown that the cholinergic MC, M2, and M4 motor neurons stimulate 

pharyngeal pumping in a degenerate manner (Fig. 6), and that the cholinergic I1 

interneurons stimulate pumping via the MCs and the M2s. By analysis of mutants I 

identified nicotinic and muscarinic pathways through which the MCs regulate pumping 

rate. Taken together, these results demonstrate that this robust and evolutionarily 

adaptable network is degenerate at both the neural and genetic levels, and that the same 

behavior can be stimulated by multiple neurons and through different types of receptors.  

 

An optogenetic approach reveals novel functions for multiple neurons 

While optogenetic tools have played an important role in clarifying the functional 

dynamics of identified neural networks, to my knowledge they have not been previously 

used to identify new functional roles of circuit elements in C. elegans (Husson et al., 

2013). In contrast to laser ablation, single neuron optogenetic manipulation allowed me to 

test the roles of individual neurons in regulating behavior while avoiding the possibilities 

of developmental compensation and ablation-induced developmental abnormalities, 

phenomena which would be expected to occur in degenerate networks (Marder and 

Taylor, 2011). For example, M4 ablation results in early larval lethality (Avery and 

Horvitz, 1987), which prevents accurate assessment of its effects on feeding rates in adult 

animals. In eat-2 mutants, the resting membrane potential of the terminal bulb is 

depolarized and unstable relative to wild type worms (Steger et al., 2005). It is possible 



  
45 

that similar compensation occurs after ablation of pharyngeal neurons, either in the 

muscle or other neurons.  

The candidate neuron and gene approach I demonstrate here is especially well-suited for 

identifying components of degenerate networks, in which ablation of individual classes of 

neurons may not cause obvious phenotypes. For example, although laser ablation of the 

M2s yields only a small reduction in pumping rate (Raizen et al., 1995), I found that M2 

excitation directly stimulates rapid pumping. It is possible that other excitatory 

cholinergic neurons, such as the MCs and M4, replace this function of the M2s after their 

ablation. Likewise, while gar-3 mutants have only subtle feeding defects (Steger and 

Avery, 2004), I found that the MCs can act via GAR-3 to stimulate pumping in the 

absence of EAT-18. Indeed, one characteristic of degenerate neural networks is that 

specific faults in the system, such as focused neurological lesions, often do not cause 

changes in outputs (Gazzaniga, 1995). 

My approach is also well suited for identifying the molecular mechanisms through which 

individual neurons can stimulate pumping. I have identified two distinct cholinergic 

receptors post-synaptic to the MCs, and I expect that receptors downstream of other 

neurons could be identified by a similar approach of testing whether optogenetic 

stimulation of individual neurons can still stimulate pumping in mutants for candidate 

genes. For example, testing the effects of mutations in different nicotinic acetylcholine 

receptor subunits expressed in pharyngeal muscle on the excitatory effects of stimulating 

the M2s or M4 should lead to the identification of the receptors postsynaptic to these 

neurons.  
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Another advantage of my approach is its ability to individually assess the function of 

multiple classes of neurons in the same animal. Studies in the crustacean stomatogastric 

ganglion have observed significant animal-to-animal variability in the tuning of neuron 

conductance parameters despite similar network output (Prinz et al., 2004; Marder, 

2011). Therefore, sequentially and nondestructively manipulating the activity of 

individual or multiple neurons in a single animal can provide a more complete picture of 

network function than one based on more sparse measurements in multiple animals.  

 

Degeneracy at two levels allows robust responses to unpredictable environmental 

and physiological signals 

My work has revealed that a circuit that tightly regulates response to various intrinsic and 

extrinsic cues has degeneracy at both the neural and genetic levels. Feeding rate in C. 

elegans is influenced by a multitude of factors, including mechanosensation (Chalfie et 

al., 1985), chemosensation (Li et al., 2012), heat stress (Jones and Candido, 1999), aging 

(Huang et al., 2004), mating (Gruninger et al., 2006), starvation (Avery and Horvitz, 

1990), food quality (Soukas et al., 2009), feeding history (Song et al., 2013), satiety (You 

et al., 2008), molting (Cassada and Russell, 1975), sleep (Raizen et al., 2008), and 

infection (Los et al., 2013). Degeneracy at multiple levels may play a role in the ability of 

the pharyngeal nervous system to integrate these inputs to determine feeding rate (Greer 

et al., 2008; Cunningham et al., 2012; Li et al., 2012). The neural degeneracy of the 

system allows multiple neurons to perform similar functions in response to different 

modulators, while the genetic degeneracy allows neurotransmitters and neuropeptides to 

differentially activate subsets of neurons or muscles, or to activate different cell signaling 
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cascades within the same neuron or muscle. Having improved the definition of the circuit 

that regulates feeding rate, we are now in a better position to understand the circuit 

mechanisms by which intrinsic and extrinsic cues affect behavior.  

 

Depolarization and 5-HT stimulation of the same pharyngeal neuron can cause 

similar or distinct behaviors 

Serotonin (5-HT) is a potent modulator of many C. elegans behaviors, including feeding 

(Chase and Koelle, 2007). I found that basal pumping is almost completely abolished in 

immobilized worms in the absence of 5-HT, but MC, M2, M4, or I1 stimulation caused a 

small but variable increase in pump rate (data not shown). This is likely because when the 

worm is immobilized, the stimulus-response curve of the neurons is not linear, so that 

even a large stimulus causes only a small neural response.  

The 5-HT G-protein coupled receptor SER-7 is expressed in many pharyngeal neurons 

including the MCs, the M2s, and M4 (Fig. 6) (Hobson et al., 2006). 5-HT stimulates 

pumping primarily by activating SER-7 in the MCs (Song and Avery, 2012). I suspect 

that the basal pumping rate I observe in the presence of 5-HT is also due to activation of 

SER-7 in the MCs, since MC ablation dramatically decreases the pump rate on 5-HT in 

my experiments (Fig. 2A). Interestingly, while activation of SER-7 in M4 causes 

increased peristalsis but not pumping (Song and Avery, 2012), I found that optogenetic 

stimulation of M4 causes an increase in both pumping and peristalsis rates. It is likely 

that depolarization and SER-7 activation stimulate intracellular pathways that are at least 
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partially distinct, which in turn evokes neurotransmitter release that may differ in 

location, amount, or molecular identity.  

 

Functional conservation and evolutionary adaptability of the pharyngeal nervous 

system 

It has been postulated that the processes of evolution and natural selection necessarily are 

accompanied by degeneracy (Edelman and Gally, 2001), but this is a challenging idea to 

test experimentally. The prevalence of evolutionarily divergent nematode species and the 

relative ease with which their pharyngeal nervous systems can be anatomically mapped 

makes them interesting models for studying the role of degeneracy in evolution. 

However, despite the apparent simplicity of the anatomic connectivity of the pharynx, 

inferring the function of the pharyngeal nervous system from the wiring diagram alone is 

difficult. The sign of physiological connections is often unknown and the number of 

synapses between two cells does not always correlate with the importance of this 

connection (Chalfie et al., 1985; Bargmann and Marder, 2013), and non-synaptic 

communication can also play important roles in regulating behavior. For example, though 

the M2s form 60 synapses on pharyngeal muscle and the MCs form just four (Albertson 

and Thomson, 1976; Avery and Thomas, 1997; McKay et al., 2004; Avery and You, 

2012), I find that effects of stimulation of these two neuron types on pumping rate in 

immobilized animals are equivalent (Fig. 2A, B). Thus, without knowledge of the 

functional connectivity, it is difficult to interpret the differences between the wiring of C. 

elegans and other species, such as Pristionchus pacificus, in an evolutionary context 

(Bumbarger et al., 2013).  



  
49 

Laser ablation data from other nematode species may be informative. Ablation of M4 

causes a reduction in isthmus peristalsis in every species in which it has been tested, 

including P. pacificus, demonstrating a conserved function (Chiang et al., 2006). The 

M2s synapse on the anterior pharyngeal muscle in C. elegans and P. pacificus, and 

ablation of the M2s in Panagrolaimus sp. PS1159 causes a decrease in anterior isthmus 

peristalsis, a behavior observed in neither C. elegans nor P. pacificus (Chiang et al., 

2006). Ablation of either the MCs or M4 in P. pacificus and either the M2s or M4 in 

Panagrolaimus sp. PS1159 causes a decrease in pumping rate (Chiang et al., 2006), 

demonstrating that the networks regulating feeding are also degenerate in these species. 

While further experiments are necessary to draw firm conclusions, these data are 

consistent with evolutionary adaptability, functional conservation, and degeneracy of 

pharyngeal nervous system function in different species.  

 

A circuit-level framework for feeding modulation 

By identifying the pathways of cholinergic input that regulate pharyngeal pumping rate 

(Fig. 6), this work defines a framework within which I can investigate how feeding is 

integrated with other physiological processes and behaviors in response to changing 

environmental and internal states. The method described here can be used to further 

develop this circuit-level framework by identifying roles for the remaining nine classes of 

pharyngeal neurons, as well as the molecular mechanisms through which they interact. 

This method can also be combined with genetically encoded Ca2+ indicators to visualize 

intracellular Ca2+ dynamics during optogenetic manipulation (Husson et al., 2013). The 
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functional connectivity of the pharyngeal circuit forms a foundation for exploring how 

mutations affect the activity of a degenerate network and how the network adapts to 

robustly regulate behavior.  
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Figure 2.1: Optogenetic stimulation of the pharyngeal cholinergic nervous system 

and machine vision quantification of pumping. A: Cholinergic pharyngeal neurons. 

Only one of each of the paired I1, MC, and M2 neurons is shown. In A-D, anterior is to 

the left and ventral is toward the bottom. B: DIC image of the pharynx. Red box denotes 

region used for velocity calculations. C: wide field GFP fluorescence image of the same 

field of view as in B. The blue circle represents a stimulus region for an MC soma. D: 

GFP fluorescence image of the same field of view as in B and C, during selective 

illumination of an MC soma. E: Experimental schematic. A laser beam with wavelength 

473 nm is shaped by a DMD and enters a microscope to selectively stimulate neurons of 

interest expressing either GFP and ChR2 or Mac. Pharyngeal behavior is imaged using a 

red filter and DIC optics. F: Velocity from machine vision algorithm during ChR2-

mediated stimulation of the MCs. Each peak in the velocity represents a pump. G: Mean 

pump rate from nine intervals of MC excitation in each of 10 worms. In F and G, the blue 

bar denotes timing of laser illumination.  
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Figure 2.2: Cholinergic motor neurons MC, M2, and M4, but not M1, are excitatory 

for pumping. A: MC stimulation excites pumping in an all-trans retinal (ATR) 

dependent manner. This effect is abolished when the MCs are ablated but not when the 

M2s are ablated. N=10, 7, 10, 9 animals for each pair of bars, respectively. B: M2 

stimulation excites pumping in an ATR-dependent manner. This effect is abolished when 

the M2s are ablated but not when the MCs are ablated. N=10, 7, 10, 9 animals for each 

pair of bars, respectively. C: M4 stimulation excites pumping in an ATR-dependent 

manner. This effect persists when the MCs and the M2s are ablated. N=10, 7, 7 animals 

for each pair of bars, respectively. D: M1 stimulation does not excite pumping. N=9, 7 
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animals for each pair of bars, respectively. 10 mM 5-HT was used for each experiment. 

Each bar represents mean +/- SEM. Statistical significance was calculated using the two-

tailed Student’s t-test. * and ** denote p<0.05 and p<0.01 respectively. 
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Figure 2.3: The I1 interneurons stimulate pumping via the MCs and the M2s. I1 

stimulates pumping in an all-trans retinal (ATR) dependent manner and in the absence of 

either the MCs or the M2s but not both. N=10, 7, 10, 9, 7 animals for each pair of bars, 

respectively. 10 mM 5-HT was used for each experiment. Each bar represents mean +/- 

SEM. Statistical significance was calculated using the two-tailed paired Student’s t-test. * 

and ** denote p<0.05 and p<0.01 respectively. 
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Figure 2.4: Optogenetic inhibition of pharyngeal cholinergic neurons inhibits 5-HT-

stimulated pumping. A: Optogenetic inhibition of the MCs, the M2s, and M4, but not 

M1, inhibits 5-HT-stimulated pumping. Simultaneous inhibition of the MCs and the M2s 

causes an inhibition of pumping greater than that observed during inhibition of either the 

MCs or the M2s alone, consistent with an endogenous role for the M2s in pumping 

regulation. “None” indicates that no neurons were inhibited. N=15 for control, 14 for the 

MCs, 13 for the M2s, 9 for M4, and 4 for M1. B: Inhibition of the I1s inhibits 5-HT-

stimulated pumping. Simultaneous I1 inhibition increased the effects of individual MC 

inhibition or M2 inhibition, but not of combined MC and M2 inhibition, indicating that I1 

stimulates pumping endogenously via the MCs and the M2s. N=9 for each bar. 10 mM 5-

HT was used for each experiment. Each bar represents mean +/- SEM. Statistical 

significance was calculated using the two-tailed Student’s t-test. * and ** denote p<0.05 

and p<0.01 respectively. 
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Figure 2.5: The MCs can directly excite pumping via both nicotinic and muscarinic 

receptors. Optogenetic MC stimulation increases pumping in both eat-2 and eat-18 

nicotinic receptor mutants but not in unc-17 (vesicular acetylcholine transporter) mutants, 

demonstrating that MC can act via a non-nicotinic cholinergic pathway in addition to the 

known EAT-2/EAT-18 nicotinic pathway. Serial section electron microscopy suggests 

that the MCs and M2s form gap junctions; MC stimulation directly increases pumping in 

the absence of the M2s in eat-18 mutants. MC stimulation does not increase pumping in 

eat-18 mutants in the presence of the muscarinic antagonist atropine. GAR-3 is a 

muscarinic receptor expressed in pharyngeal muscle, MC stimulation does not increase 

pumping in eat-18; gar-3 double mutants. Injection of a transgene containing the gar-3 

genomic region restores the ability of MC stimulation to excite pumping in eat-18; gar-3 

mutants. N=10, 10, 8, 9, 9, 10, 10 animals for each pair of bars respectively. 10mM 5-HT 

was used for each experiment except those with atropine, where I used 5 mM 5-HT and 5 

mM atropine. Each bar represents mean +/- SEM. Statistical significance was calculated 

using the two-tailed Student’s t-test. * and ** denote p<0.05 and p<0.01 respectively.   
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Figure 2.6: Model of the cholinergic network regulating feeding rate. The MCs, the 

M2s, and M4 can directly stimulate pumping, and the I1s can stimulate pumping via the 

MCs and the M2s. The MCs and the M2s are connected by gap junctions. The serotonin 

receptor SER-7 is expressed in the MCs, the M2s, and M4. The MCs stimulate pumping 

via a nicotinic receptor containing EAT-2 and EAT-18 and also via the GAR-3 

muscarinic receptor. 
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Abstract 

Electrophysiological recordings have enabled identification of physiologically distinct yet 

behaviorally similar states of mammalian sleep. In contrast, sleep in other vertebrates and 

invertebrates has generally been identified behaviorally, and therefore regarded as a 

physiologically uniform state characterized by quiescence of feeding and locomotion, 

reduced responsiveness, and rapid reversibility. The nematode Caenorhabditis elegans 

sleeps under two conditions: developmentally timed sleep (DTS) occurs during larval 

transitions, while stress-induced sleep (SIS) occurs in response to exposure to cellular 

stressors. Behaviorally, DTS and SIS appear identical. Here I use optogenetic 

manipulations of neural and muscular activity, pharmacology, and genetic perturbations 

to uncover circuit and molecular mechanisms of DTS and SIS. I find that locomotion 

quiescence induced by DTS- and SIS-associated neuropeptides occurs via their action on 

the nervous system, though their neural target(s) and/or molecular mechanisms likely 

differ. Feeding quiescence during DTS results from a loss of pharyngeal muscle 

excitability, whereas feeding quiescence during SIS results from a loss of excitability in 

the nervous system. Finally, I demonstrate that the pharyngeal cuticle in the terminal bulb 

is remodeled during DTS. Together these results indicate that, as in mammals, sleep is 

subserved by different mechanisms during distinct sleep states in C. elegans. 
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Introduction 

Over the past 15 years, the study of small non-mammalian genetic models such as 

zebrafish, fruit flies, and roundworms has yielded many insights into the mechanisms of 

sleep regulation (Crocker and Sehgal, 2010). Electrophysiological characterization of 

sleep states, which is routinely used to identify sleep and its sub-stages in mammals, is 

difficult in these smaller organisms, and consequently sleep in non-mammals has 

typically been defined as a behavioral state characterized by quiescence of feeding and 

locomotion with an elevated arousal threshold and rapid reversibility (Allada and Siegel, 

2008; Zimmerman et al., 2008). However, electroencephalography (EEG) has revealed 

that despite its apparent behavioral homogeneity, mammalian sleep is not a 

physiologically homogenous state (Loomis et al., 1937). For example, despite appearing 

behaviorally essentially identical, REM and non-REM sleep are regulated by different 

circuit and neurochemical mechanisms (Siegel, 2005).  

The presence of distinct states of mammalian sleep raises the important question of 

whether behaviorally indistinguishable sleep states can be physiologically distinct in 

animals for which EEG is not feasible. In the nematode C. elegans, two behaviorally 

indistinguishable sleep states have been observed. Developmentally timed sleep (DTS), 

or lethargus, occurs during larval transitions preceding each molt (Raizen et al., 2008), 

and is coupled to a larval timing mechanism involving LIN-42, a homolog of the 

circadian timing protein PERIOD (Jeon et al., 1999; Monsalve et al., 2011). Stress-

induced sleep (SIS) follows exposure to conditions that induce cellular stress, and 

requires the epidermal growth factor (EGF) LIN-3 (Hill et al., 2014). Both states are 

characterized by a cessation of locomotion and feeding as well as reduced responsiveness 
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to weak sensory stimuli, and animals in DTS or SIS resume movement but not feeding in 

response to a strong mechanical stimulation (Cassada and Russell, 1975; Jones and 

Candido, 1999; Raizen et al., 2008; Hill et al., 2014). Sensory neuron Ca2+ levels are 

decreased both during DTS as well as after somatic overexpression of EGF (mimicking 

SIS), demonstrating that the physiology immediately proximal to increased arousal 

threshold is similar between these states (Cho and Sternberg, 2014). The molecular 

genetic regulation of DTS (Choi et al., 2013; Nelson and Raizen, 2013; Schwarz and 

Bringmann, 2013; Singh et al., 2014) has several similarities to the regulation of 

circadian-timed sleep in Drosophila (Renn et al., 1999; Hendricks et al., 2001; Joiner et 

al., 2006; Parisky et al., 2008; Guo et al., 2011; He et al., 2013), while the molecular 

genetic regulation of SIS (Nelson et al., 2014) has similarities to the regulation of stress-

induced sleep in Drosophila (Zimmerman et al., 2008; Lenz et al., 2015), demonstrating 

conserved mechanisms of quiescence regulation between C. elegans and other animals.  

Recent evidence suggests that there might be differences in the underlying molecular and 

circuit mechanisms that regulate behavioral quiescence during DTS and SIS. For 

example, disruption of the function of the ALA interneuron results in severely defective 

quiescence after cellular stress (Hill et al., 2014) but only minor changes in quiescence 

during larval development (Van Buskirk and Sternberg, 2007), while key 

neurotransmitters used by the ALA interneuron to induce quiescence, the seven 

FMRFamide-like neuropeptides encoded by the flp-13 gene, are required for normal 

quiescence during SIS but not DTS (Nelson et al., 2014).  
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In this study, I aimed to elucidate differences and similarities in the circuit and molecular 

mechanisms underlying behavioral quiescence during DTS and SIS. My results suggest 

that despite the outwardly identical appearance of DTS and SIS, feeding and locomotion 

inhibition arise from fundamentally distinct circuit and molecular mechanisms during 

these states.  
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Materials and Methods 

Worm strains and cultivation 

I performed all experiments with hermaphrodites. Unless otherwise specified, animals 

were cultivated on the surface of NGM agar in a 20ºC incubator. To conditionally 

overexpress nlp-22 and flp-13, I used the strains NQ251 qnIs142 [Phsp-16.2::nlp-22; 

Phsp-16.2::GFP; Pmyo-2::mCherry; unc-119(+)] (Nelson et al., 2013) and NQ570 

qnIs303[Phsp-16.2::flp-13; Phsp-16.2::GFP; Prab-3::mCherry] (Nelson et al., 2014), 

respectively. The mutant strains I used in my candidate screen are KG421 gsa-1(ce81gf) 

I (Schade et al., 2005), KG518 acy-1(ce2gf) III (Schade et al., 2005), KG744 pde-

4(ce268) II (Charlie et al., 2006), KG532 kin-2(ce179) X (Schade et al., 2005), JT734 

goa-1(sa734) I (Robatzek and Thomas, 2000), PS998 goa-1(sy192dn) I (Mendel et al., 

1995), CG21 egl-30(tg26gf) I (Doi and Iwasaki, 2002), JT609 eat-16(sa609) I (Hajdu-

Cronin et al., 1999), KP1097 dgk-1(nu62) X (Nurrish et al., 1999), NL594 gpa-12(pk322) 

X (Jansen et al., 1999), MJ500 tpa-1(k501) IV (Tabuse and Miwa, 1983), DA467 eat-

6(ad467) V (Avery, 1993b), MT6129 egl-19(n2368gf) IV (Lee et al., 1997), VC223 tom-

1(ok285) I (Dybbs et al., 2005), NM1968 slo-1(js379) V (Wang et al., 2001), DR1089 

unc-77(e625gf) IV (Brenner, 1974), MC339 unc-64(md130) III (Saifee et al., 1998), CB5 

unc-7(e5) X (Brenner, 1974), MT9455 tbh-1(n3247) X (Alkema et al., 2005), MT1074 

egl-4(n479) IV (Trent et al., 1983). Other strains I used include N2 (Brenner, 1974), 

VC1669 aptf-1(gk794) II (Turek et al., 2013), NQ596 nlp-22(gk509904) X (Nelson et al., 

2013), NQ602 flp-13(tm2427) IV (Nelson et al., 2014), NQ670 qnEx95[Phsp16.2::nlp-

22; Pmyo-2::mCherry; unc-119(+)] (Nelson et al., 2013), NQ230 ceh-17(np1) I; 

qnEx95[Phsp16.2::nlp-22; Pmyo-2::mCherry; unc-119(+)] (Nelson et al., 2013), NQ777 
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ceh-17(np1) I; qnIs303[Phsp-16.2::flp-13; Phsp-16.2::GFP; Prab-3::mCherry] (Nelson 

et al., 2014), ZM3265 lin-15(n765ts) X; zxIs6[Punc-17::ChR2(H134R)::YFP; lin-15(+)] 

V (Liewald et al., 2008), YX11 vsIs48[Punc-17::GFP] X; zxIs6[Punc-

17::ChR2(H134R)::YFP; lin-15(+)] V (Trojanowski et al., 2014), YX62 qnIs142[Phsp-

16.2::nlp-22; Phsp-16.2::GFP; Pmyo-2::mCherry; unc-119(+)]; vsIs48[Punc-17::GFP] 

X; zxIs6[Punc-17::ChR2(H134R)::YFP; lin-15(+)] V, YX63 qnIs303[Phsp-16.2::flp-13; 

Phsp-16.2::GFP; Prab-3::mCherry]/+; vsIs48[Punc-17::GFP] X; zxIs6[Punc-

17::ChR2(H134R)::YFP; lin-15(+)] V, SJU8 kin-2(ce179); qnEx448[Punc-17::kin-2(+); 

Pmyo-3::mCherry], NQ902 kin-2(ce179) X; qnIs303[Phsp-16.2::flp-13; Phsp-

16.2::GFP; Prab-3:mCherry]; qnEx448[Punc-17::kin-2(+); Pmyo-3::mCherry], NQ903 

kin-2(ce179) X; qnIs142[Phsp-16.2::nlp-22; Phsp-16.2::GFP; Pmyo-2::mCherry; unc-

119(+)]; qnEx448[Punc-17::kin-2(+); Pmyo-3::mCherry], NQ820 qnEx390[Pmyo-

2::GCaMP6s::SL2::dsRed; rol-6(d)], CX16557 kyIs5640[Pmyo-2::Chrimson; Pelt-

2::his-4.4-mCherry], and NQ904 qnEx390[Pmyo-2::GCaMP6s::SL2::dsRed; rol-6(d)]; 

kyIs5640[Pmyo-2::Chrimson; Pelt-2::his-4.4-mCherry]. 

 

Strain construction 

To rescue the kin-2 defect specifically in cholinergic neurons, we used an Eppendorf 

FemtoJet micro-injection system on a Leica DMIRB inverted differential interference 

contrast (DIC) microscope to inject Punc-17::kin-2::unc-54utr in CFJ151 at 25 ng/µL in 

combination with 5 ng/µL of pCFJ104(Pmyo-3::mCherry). We created the Punc-17::kin-

2::unc-54utr construct using standard Gateway cloning procedures. Briefly, we 
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recombined Punc-17 in pDONR P4P1r and kin-2 cDNA in pDONR221 into the CFJ151 

destination vector. To create qn390, we used overlap extension PCR (Nelson and Fitch, 

2011) to generate Pmyo-2::GCaMP6s::SL2::dsRed. We then injected Pmyo-

2::GCaMP6s::SL2::dsRed at 20 ng/µL and pRF4 at 100 ng/µL into N2. We created 

Pmyo-2::Chrimson by subcloning the myo-2 promoter into the pSM-Chrimson vector 

(Gordus et al., 2015) using FseI and AscI. To generate kyIs5640, we injected Pmyo-

2::Chrimson at 0.4 ng/µL in combination with 5 ng/µL Pelt-2::his-4.4-mCherry. The 

resulting extrachromosomal array spontaneously integrated during the course of strain 

maintenance (Mello et al., 1991). 

To construct the strains used to test gene mutation effects on the behavioral quiescence 

conferred by neuropeptide overexpression, we followed the red fluorescent reporter on 

the transgene array (Pmyo-2::mCherry or Prab-3::mCherry) and the visible phenotypes 

of the gene mutation. In cases where the phenotype of the gene mutation was difficult to 

identify, we made use of balanced chromosomes marked with GFP fluorescence (Edgley 

et al., 2006). 

 

Acute heat shock 

Unless otherwise indicated, I triggered stress-induced sleep by acute heat shock, 

performed as described in “protocol 1” by Nelson et al. (Nelson et al., 2014). I heat-

shocked day one adults at 35ºC in a water bath for 30 minutes on standard NGM agar 

plates seeded with DA837. I then counted pumping rate as previously described (Raizen 

et al., 2012) for individual worms between 35 and 45 minutes after the end of heat shock.  
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Conditional neuropeptide overexpression 

Unless otherwise indicated, to induce neuropeptide overexpression I placed day one 

adults on NGM agar plates seeded with DA837 in a 33ºC water bath for 30 minutes and 

allowed them to recover at room temperature for 2-3 hours, at which time the effects of 

acute heat shock had worn off (Nelson et al., 2013; 2014). To screen for mutants with 

abnormal flp-13- or nlp-22-induced quiescence, I tested all of the candidate strains 

overexpressing one neuropeptide gene on the same day, and the experimenter was 

blinded to the genotype of the strains. I counted the number of pumps per 20 seconds and 

the number of body bends per 20 seconds (where one full back and forth movement of 

the anterior body was counted as one body bend) for each of 12-15 worms. I tripled each 

value to convert to pumps per minute or body bends per minute. For experiments testing 

the effect of ceh-17 mutation on nlp-22 and flp-13 overexpression induced quiescence, I 

used NQ670 and NQ570 as the respective control strains.  

 

Effects of 5-HT 

To test the effect of 5-HT on feeding after neuropeptide overexpression, during SIS, or 

during DTS, I immobilized worms on agarose pads containing 10 mM 5-HT as 

previously described (Trojanowski et al., 2014).  
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Single neuron optogenetics 

I performed optogenetic stimulation of single neurons after neuropeptide overexpression 

as previously described (Trojanowski et al., 2014), except the worms were first submitted 

to the conditional neuropeptide overexpression protocol, as described above. I examined 

worms between 2 and 3 hours after heat shock.  

 

Wide-field optogenetics 

To stimulate pharyngeal neurons during SIS or DTS, I grew ZM3265 worms on OP50 

containing all-trans retinal (ATR) as previously described (Trojanowski et al., 2014). For 

SIS, I performed acute heat shock as described above, except plates seeded with ATR-

containing OP50 were used. I then illuminated these worms with blue light (using GFP 

optics, irradiance = 0.66 mW/mm2) from a mercury halide lamp on a Leica MZ16F 

stereomicroscope, and quantified pump rate in 20-second intervals (Raizen et al., 2012). I 

tripled these values to calculate pumps per minute.  

 

Pharyngeal muscle optogenetics 

I performed optogenetic stimulation of pharyngeal muscle during wake and DTS 

similarly to stimulation of single neurons, with some modifications because Chrimson 

was not tagged with a fluorescent protein. First, I stimulated the entire head region of the 

worm instead of only the pharynx by setting the digital micromirror device (DMD) to 

illuminate the entire field of view. Next, I used a pulse generator (Stanford Research 
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Systems DG535) to generate 5V pulses of a specified duration and frequency and 

connected this output to the modulation input of the laser to control stimulus timing. To 

identify the stimulus interval on the camera, I attached a red collimated LED to the same 

pulse generator output via a relay and directed this light towards the objective, allowing 

me to detect a small increase in bright-field intensity when the laser was on. All other 

aspects of the experiment were unchanged.  

 

Ca2+ imaging 

I performed experiments using GCaMP6s the same way as pharyngeal muscle 

optogenetics experiments with slight modifications. With the laser continuously 

illuminating the field of view, I recorded the Pmyo-2::GCaMP6s signal for about 30 s 

(1000 frames at 30 frames per second). I then identified the maximum and minimum 

fluorescence values in a region of the metacorpus during this time, and calculated the 

difference between these values to determine the maximum fluorescence change during 

this interval. The laser power I used here was the same as for optogenetics experiments.  

 

Time-lapse imaging 

To image the pharynx during L4 DTS, we immobilized the animals against agarose pads 

using polystyrene nanoparticles (Kim et al., 2013). Images were captured at 3.75 frames 

per second using an Imaging Source DMK 31BU03 camera on a Leica DM 2500 P 

upright microscope at 63X and analyzed using IC Capture 2.2 software (Imaging Source).  
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Statistics 

For the candidate mutant screens, I used Dunnett’s multiple comparison tests to 

determine which mutants were significantly different from the control. For the single 

neuron optogenetics, I performed a one-way ANOVA to determine if there was an effect 

of neuron stimulation on pumping rate. For stress-induced sleep experiments, I used a 

Mann-Whitney test without post-hoc correction to determine which mutants were 

significantly different from the control. See figure legends for details.  
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Results 

Feeding quiescence during SIS does not require pathways that regulate DTS 

Two classes of neurons are known to be required for normal quiescence during DTS: the 

paired RIA neurons, which release the neuropeptide NLP-22, and the RIS neuron, which 

requires the AP2 transcription factor APTF-1 (Nelson et al., 2013; Turek et al., 2013). 

The ALA neuron, which secretes the neuropeptides encoded by flp-13, is the only neuron 

known to be required for SIS (Van Buskirk and Sternberg, 2007; Hill et al., 2014; Nelson 

et al., 2014) (Fig. 1A). Although SIS and DTS are behaviorally indistinguishable, it is 

unclear to what extent there is overlap between the mechanisms of behavioral quiescence 

during these states.  

While flp-13 mutants have defective feeding and locomotion quiescence after cellular 

stress induction, their quiescence during larval transitions is normal (Nelson et al., 2014). 

To further compare the mechanisms of quiescence during DTS and SIS, I examined SIS 

feeding quiescence in mutants with defective DTS. While I detected differences in SIS 

feeding quiescence between wild-type worms and flp-13 mutants, neither nlp-22 mutants 

nor aptf-1 mutants displayed a defect in SIS feeding quiescence, demonstrating that these 

DTS-promoting factors are not required for quiescence during SIS (Fig. 1B). Thus, some 

factors required for quiescence during SIS are not necessary for quiescence during DTS, 

and vice versa.  
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Overexpression of flp-13 or nlp-22 neuropeptide genes inhibits feeding and 

locomotion 

I next sought to identify conserved pathways that regulate quiescence downstream of the 

ALA and RIA interneurons during SIS and DTS, respectively. Quiescence during SIS 

requires the release of the FMRFamide-like FLP-13 neuropeptides from the ALA 

interneuron (Nelson et al., 2014), and quiescence during DTS requires the release of the 

NLP-22 neuropeptide, which is structurally similar to the mammalian neuropeptide 

Neuromedin S, from the RIA interneuron. nlp-22 mRNA cycles in phase with mRNA of 

lin-42 (Jeon et al., 1999), the C. elegans homolog of the PERIOD gene, and an nlp-22 

loss-of-function mutation decreases quiescence during DTS (Nelson et al., 2013). 

Likewise, flp-13 mRNA is increased after organismal stress, and a flp-13 loss-of-function 

mutation decreases quiescence during SIS (Nelson et al., 2014). 

I conditionally overexpressed these neuropeptides under control of the heat shock 

promoter (Phsp-16.2::flp-13 and Phsp-16.2::nlp-22) to robustly induce quiescent 

behavioral states mimicking SIS and DTS (Nelson et al., 2013; 2014). This approach, 

similar to one recently used to study somnogenic neuropeptides in zebrafish (Woods et 

al., 2014), was selected for four reasons. First, in contrast to chronic loss-of-function 

experiments using genetic mutants, these conditional overexpression experiments are not 

subject to redundancy, compensation, or other developmental or physiological defects 

that may be part of the loss-of-function phenotype. Second, expressing the neuropeptides 

at supraphysiological levels is likely to activate all or nearly all of the receptors of these 

neuropeptides, so their effects will be limited only by the expression patterns of their 

receptors. Third, prolonged overexpression of the somnogenic peptides provides the 
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experimental advantage of inducing a behavioral state lasting longer than the endogenous 

behavior, facilitating the identification of defects in these behaviors and characterization 

of downstream signaling pathways. Finally, the temporal control afforded by this 

conditional approach allowed me to compare quiescence induced by the two peptides in 

the same early adult stage, minimizing effects of developmental time on behavior. It is 

important to note that while flp-13 and nlp-22 have been implicated in SIS and DTS 

respectively, it is unlikely that overexpression of these neuropeptide genes faithfully 

recapitulates all aspects of these sleep states.  

Since SIS is triggered by acute activation of the ALA neuron by heat shock, it is possible 

that the somnogenic effects of overexpressing these neuropeptide genes using the heat 

shock-inducible promoter are affected by ALA activation, and the quiescence I observe 

does not reflect purely the somnogenic actions of the neuropeptides. While I attempt to 

avoid effects of SIS in my neuropeptide overexpression experiments by observing the 

animals at least two hours after heat exposure and by inducing gene expression with a 

less stressful 33ºC stimulus (Nelson et al., 2014), it remains possible that residual effects 

of SIS influence the behavior of these animals. To test for this possibility, I 

overexpressed nlp-22 and flp-13 in the ceh-17 mutant background, which lacks a 

functional ALA neuron (Pujol et al., 2000). I found that worms with a ceh-17 mutation 

were indistinguishable from controls two hours after transgene induction with respect to 

both locomotion (nlp-22 overexpression: control: 1.0 ± 0.2 body bends per minute 

(bbpm), ceh-17: 1.6 ± 0.3 bbpm, p=0.51; flp-13 overexpression: control: 0.6 ± 0.2 bbpm, 

ceh-17: 1.0 ± 0.2 bbpm, p=0.54; mean ± SEM, n=15) and feeding (nlp-22 

overexpression: control: 30.6 ± 4 pumps per minute (ppm), ceh-17: 15.2 ± 1.9 ppm, 
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p=0.26; flp-13 overexpression: control: 20.4 ± 4.1 ppm, ceh-17: 16.2 ± 2.1 ppm, p=0.72; 

mean ± SEM, n=15), demonstrating that ALA activation is not required for the 

quiescence observed after flp-13 or nlp-22 overexpression.  

 

Activation of the Gαq or Gαs pathways inhibits both flp-13- and nlp-22-induced 

locomotion quiescence 

To identify conserved genes that regulate locomotion quiescence induced by 

overexpression of flp-13 or nlp-22, I crossed strains overexpressing these neuropeptides 

into strains containing mutations in candidate genes with vertebrate homologs. Candidate 

genes were those that cause increased neurotransmitter release, increased membrane 

excitability, hyperactive locomotion, defective behavioral quiescence, or resistance to 

anesthetics. I focused in particular on strains with increased neurotransmitter release due 

to increased Gαq and Gαs signaling (Fig. 2, adapted from (Perez-Mansilla and Nurrish, 

2009)), since these mutants show hyperactive locomotion and some have defects in DTS 

locomotion quiescence (Belfer et al., 2013; Iwanir et al., 2013; Schwarz and Bringmann, 

2013; Singh et al., 2014), and therefore they might be resistant to the effects of 

somnogenic neuropeptides.  

The Gαq signaling pathway acts antagonistically to Gαo signaling in C. elegans and 

promotes neurotransmitter release by increasing diacylglycerol (DAG) levels (Miller et 

al., 1999), while the Gαs pathway acts downstream of DAG to increase neurotransmitter 

release (Reynolds et al., 2005). Hyperactivation of the Gαq signaling pathway can be 

achieved either directly, using a gain-of-function mutation in the Gαq gene egl-30 (Doi 



  
74 

and Iwasaki, 2002), or indirectly, using loss-of-function mutations in the Gαo gene goa-1 

(Miller et al., 1996), the regulator of G-protein signaling (RGS) gene eat-16 (Hajdu-

Cronin et al., 1999), or the diacylglycerol kinase theta (DGK-θ) gene dgk-1 (Miller et al., 

1999). Hyperactivation of the Gαs signaling pathway can also be achieved either directly, 

using gain-of-function mutations in the Gαs gene gsa-1 (Schade et al., 2005) or the 

adenylate cyclase type IX gene acy-1 (Schade et al., 2005), or indirectly, using loss-of-

function mutations in the phosphodiesterase-4 gene pde-4 (Charlie et al., 2006) or the 

cAMP-dependent protein kinase (PKA) regulatory subunit gene kin-2 (Schade et al., 

2005).  

I also examined strains with mutations that increased neurotransmitter release by other 

means, including loss-of-function mutations in the tomosyn gene tom-1 (Dybbs et al., 

2005) and the BK channel gene slo-1 (Wang et al., 2001), as well as mutations that 

generally increased membrane excitability, including a gain-of-function mutation in the 

L-type Ca2+ channel gene egl-19 (Lee et al., 1997) and a loss-of-function mutation in the 

Na+/K+ transporter α-subunit gene eat-6 (Davis et al., 1995). I also tested strains with 

mutations that confer resistance to anesthesia, including a gain-of-function mutation in 

the NALCN channel subunit gene unc-77 (Humphrey et al., 2007; Morgan et al., 2007; 

Yeh et al., 2008), a loss-of-function mutation in the innexin gene unc-7 (Starich et al., 

1996), and a neomorphic mutation affecting the syntaxin gene unc-64 (van Swinderen et 

al., 1999). Finally, I tested strains with mutations that caused defects in various types of 

behavioral quiescence, including loss-of-function mutations in the cGMP-dependent 

protein kinase (PKG) gene egl-4 (Raizen et al., 2008), the Gα12 gene gpa-12 (van der 

Linden et al., 2003), the protein kinase C epsilon (PKC-ε) gene tpa-1 (van der Linden et 
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al., 2003), and the tyramine β-hydroxylase gene tbh-1 (Alkema et al., 2005). Table 1 lists 

all mutants tested and their effects on relevant signaling pathways and cell physiology.  

Mutations that increase Gαq or Gαs signaling suppressed the locomotion quiescence 

induced by overexpression of either flp-13 or nlp-22 (Fig. 3A, B, Table 2). However, 

while overexpression of nlp-22 in mutants with activated Gαs signaling caused 

qualitatively normal locomotion, overexpression of flp-13 in the same mutants caused 

aberrant locomotion characterized by uncoordinated twitches and accordion-like 

contractions. Gαq pathway genes are expressed in neurons but not in body wall muscles 

(Nurrish et al., 1999; Bastiani et al., 2003), and cholinergic neuron stimulation during 

DTS causes contraction of body wall muscle (Dabbish and Raizen, 2011), suggesting that 

FLP-13 and NLP-22 neuropeptides both act on neurons to inhibit locomotion.  

To test if these neuropeptides are acting via cholinergic neurons to regulate locomotion, 

we rescued the function of kin-2, the PKA regulatory subunit, in cholinergic neurons 

using the unc-17 promoter and assessed the effect of neuropeptide overexpression on 

locomotion. I found that after restoring kin-2 function in cholinergic neurons, locomotion 

was strongly inhibited after overexpression of either neuropeptide gene (Fig. 3C), 

demonstrating that decreased PKA signaling in cholinergic neurons is important for 

inhibiting locomotion downstream of these neuropeptides. However, since I observed 

different locomotion phenotypes after overexpressing flp-13 or nlp-22 in backgrounds 

with activated Gαs signaling, these neuropeptides likely act on different molecular targets 

and/or different subsets of cholinergic neurons.  
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Feeding quiescence induced by flp-13 overexpression but not nlp-22 overexpression 

is suppressed by activation of the Gαq or Gαs pathways  

C. elegans feeds by rhythmic contraction of its pharynx, a neuromuscular pump 

possessing 20 neurons of 14 types (Albertson and Thomson, 1976). Pharyngeal 

contractions are easiest to measure by observing movement of the grinder, cuticular 

plates in the posterior region of the pharynx, the terminal bulb (Raizen et al., 2012). To 

identify conserved signaling pathways that regulate feeding quiescence downstream of 

flp-13 and nlp-22, I overexpressed these neuropeptide genes in the mutant backgrounds 

described above and in Table 1. As with locomotion quiescence, feeding quiescence 

induced by flp-13 overexpression was strongly suppressed by mutations that increase 

neurotransmitter release by activating either the Gαq or Gαs signaling pathways (Fig. 4A, 

Table 2), which are present in all or nearly all neurons (Ségalat et al., 1995; Korswagen et 

al., 1997; Bastiani et al., 2003). In these mutants, feeding rates were substantially higher 

than the control feeding rate, even though in the absence of neuropeptide overexpression 

many of these strains feed at rates similar to that of the control (Song and Avery, 2012). 

In addition, some mutations that increase neurotransmitter release by other mechanisms 

or confer resistance to anesthesia also suppressed the feeding quiescence caused by flp-13 

overexpression (Fig. 4A). In contrast, none of the mutants tested suppressed the feeding 

quiescence induced by nlp-22 overexpression (Fig. 4B). These results indicate that FLP-

13 and NLP-22 neuropeptides promote feeding quiescence via distinct molecular 

mechanisms.  
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FLP-13 inhibits feeding by acting on neurons; NLP-22 inhibits feeding downstream 

of neurons 

Since flp-13-induced feeding quiescence is suppressed by mutations that increase 

neurotransmitter release but nlp-22-induced feeding quiescence is not, I hypothesized that 

the FLP-13 neuropeptides promote feeding quiescence by acting on the nervous system 

and that the NLP-22 neuropeptide promotes feeding quiescence by acting directly on the 

pharyngeal muscle. To test this hypothesis, we rescued the function of kin-2, the PKA 

regulatory subunit, in cholinergic neurons and assessed the effect of neuropeptide 

overexpression on feeding rate. I found that restoring kin-2 function in cholinergic 

neurons restored pumping levels after flp-13 overexpression to that of the control, while 

restoring kin-2 function in cholinergic neurons after nlp-22 overexpression did not affect 

feeding rate (Fig. 5A). 

Three classes of pharyngeal cholinergic motor neurons, the paired MC and M2 neurons 

and the single M4 neuron, stimulate pharyngeal pumping (Avery and Horvitz, 1989; 

Raizen et al., 1995; Trojanowski et al., 2014). Based on the above results, I predicted that 

flp-13-induced feeding quiescence, but not nlp-22-induced feeding quiescence, could be 

overcome by perturbations that excite pharyngeal cholinergic motor neurons. To test this 

hypothesis, I used both pharmacological and optogenetic approaches.  

First, I tested the effects of the neuromodulator serotonin (5-hydroytryptamine or 5-HT) 

on feeding quiescence induced by flp-13 or nlp-22 overexpression. 5-HT stimulates 

pharyngeal pumping primarily via the SER-7 5-HT receptor and downstream Gαs 

signaling in pharyngeal cholinergic motor neurons (Hobson et al., 2006; Song and Avery, 
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2012). Therefore, the effects of neuropeptides that promote feeding quiescence by acting 

on or upstream of pharyngeal motor neurons should be suppressed by 5-HT, while the 

effects of neuropeptides that act downstream of the motor neurons should be unaffected 

by 5-HT. I found that nlp-22-induced feeding quiescence was not suppressed by the 

excitatory effects of 5-HT, consistent with the NLP-22 acting downstream of the 

pharyngeal motor neurons (Fig. 5B). In contrast, flp-13-induced feeding quiescence was 

fully suppressed by 5-HT, consistent with the FLP-13 neuropeptides acting on or 

upstream of the pharyngeal motor neurons (Fig. 5B).  

An alternative explanation for these differential effects that would be consistent with both 

neuropeptides suppressing feeding by the same mechanisms is that nlp-22 is 

overexpressed at higher levels than flp-13, and that 5-HT can overcome mild 

overexpression but not strong overexpression. I tested this possibility two ways, both 

making use of the fact that the transgenes expressing the neuropeptides were under the 

control of a heat-inducible promoter, and I could thus vary the degree of transgene 

overexpression. First, I induced different degrees of expression of each neuropeptide 

transgene by varying the duration of the animals’ exposure to 33°C. In the presence of 

food, an environmental stimulant to feeding rate, but in the absence of exogenous 5-HT, 

overexpression of either neuropeptide gene caused a similar reduction in feeding rate 2-3 

hours after heat exposure that was a function of the duration of prior heat exposure (and 

thus a function of neuropeptide expression) (Fig. 5C). In contrast, in the presence of 

exogenous 5-HT but not food, overexpression of flp-13 and nlp-22 produced different 

effects on feeding rate. Similar to its effect in the presence of food, nlp-22 overexpression 

caused a dose-dependent reduction in feeding rate in the presence of 5-HT. In contrast, 
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even strong overexpression of flp-13 failed to inhibit feeding in the presence of 5-HT 

(Fig. 5D).  

As a second way of testing whether the different effects of 5-HT after overexpressing 

nlp-22 or flp-13 were due to differential overexpression of transgenes, I exposed the 

animals to 29°C, instead of 33°C, for 30 minutes to induce a lower level of transgene 

expression. This lower induction temperature had the additional advantage of being less 

likely to trigger quiescence on the basis of acute heat exposure (Avery and Horvitz, 1989; 

Raizen et al., 1995; Nelson et al., 2014; Trojanowski et al., 2014). Animals carrying 

transgenes with the heat shock promoter driving either flp-13 or nlp-22 overexpression 

showed feeding quiescence two hours after this 30-minute 29°C heat exposure (Phsp-

16.2::flp-13: 182.1 ± 8.7 ppm before heat, 20.1 ± 8.6 ppm after heat, p<0.001; Phsp-

16.2::nlp-22: 145.2 ± 5.2 ppm before heat, 9.3 ± 3.6 ppm after heat, p<0.001; mean ± 

SEM, n=10), demonstrating that both transgenes were expressed at sufficiently high 

levels to induce quiescence even at this milder activation temperature. At an earlier time 

point (35 minutes) following the same 30-minute 29°C heat exposure, worms 

overexpressing flp-13 but not worms overexpressing nlp-22 showed feeding quiescence 

(Phsp-16.2::flp-13: 181.2 ± 8.7 ppm before heat, 11.4 ± 5.2 ppm 35 minutes after heat, 

p<0.001; Phsp-16.2::nlp-22: 145.2 ± 5.2 ppm before heat, 136.2 ± 16.3 ppm 35 minutes 

after heat, p=0.61; mean ± SEM, n=10). These observations suggest that the differential 

effects of 5-HT on feeding quiescence are not explained by reduced activation of the flp-

13 transgene relative to the nlp-22 transgene.  
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Next, I used an optogenetic approach to test where the NLP-22 and FLP-13 

neuropeptides act in relation to depolarization of cholinergic pharyngeal motor neurons 

(Fig. 5E). While 5-HT activates pumping via these neurons, optogenetic stimulation via 

the light-sensitive cation channel Channelrhodopsin-2 (ChR2) of individual cholinergic 

motor neurons in the presence of 5-HT induces an even greater increase in feeding rate 

during wake (Trojanowski et al., 2014). I stimulated single pharyngeal motor neurons and 

monitored resulting changes in feeding rate. I found that stimulation of any of the 

excitatory cholinergic neurons MC, M2, or M4 caused an increase in feeding rate after 

flp-13 overexpression, but not after nlp-22 overexpression (Fig. 5F). These results further 

support the hypothesis that the FLP-13 neuropeptides act on or upstream of the 

pharyngeal cholinergic neurons, while the NLP-22 neuropeptide acts downstream of 

cholinergic neuron excitation, likely on the pharyngeal muscle.  

 

Feeding quiescence during SIS is abolished by activation of the Gαq but not the Gαs 

pathway 

Having gained insight into the mechanisms through which the NLP-22 and FLP-13 

neuropeptides control feeding, I next asked whether feeding is regulated by similar 

mechanisms in their associated sleep states. Because I found that mutations that increase 

Gαs or Gαq signaling suppressed flp-13-induced feeding quiescence, I hypothesized that 

these mutations would also suppress feeding quiescence during SIS. I found that 

mutations that increased Gαs signaling did not affect feeding quiescence during SIS, 

while mutations that increased Gαq signaling did suppress feeding quiescence during SIS 
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(Fig. 6). Thus, activation of Gαs signaling suppresses feeding quiescence induced by flp-

13 overexpression but does not suppress the feeding quiescence observed during SIS, 

while activation of Gαq signaling suppresses feeding quiescence after either flp-13 

overexpression or during SIS. These results suggest that other neurotransmitters released 

by ALA affect feeding quiescence during SIS, perhaps by acting downstream of Gαs 

signaling.  

I also found that a loss-of-function mutation in egl-4 (PKG) suppressed feeding 

quiescence during SIS (Fig. 6), suggesting that EGL-4 acts downstream of or in parallel 

to ALA activation. Since the egl-4 mutation did not suppress feeding quiescence in 

response to flp-13 overexpression (Fig. 4A and Table 2), egl-4 may be acting downstream 

of or in parallel to a neurotransmitter distinct from FLP-13 that is released from ALA. 

Alternatively, FLP-13 released by flp-13 overexpression under the heat shock promoter 

may act on receptors that are not engaged by FLP-13 released from ALA. These 

possibilities are not mutually exclusive. 

 

The pharyngeal nervous system can excite feeding during SIS but not DTS 

Based on my results from animals overexpressing either flp-13 or nlp-22, I hypothesized 

that feeding is inhibited at the level of the pharyngeal motor neurons during SIS, while 

during DTS feeding is inhibited downstream of motor neuron excitation. To test this 

hypothesis, I again used both pharmacological and optogenetic approaches. First, I placed 

worms in either SIS or DTS on agarose pads containing 5-HT to determine if excitation 

of pharyngeal neurons with 5-HT could stimulate feeding during these states. I found that 
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worms in SIS but not DTS pumped in the presence of 5-HT, suggesting feeding 

quiescence during SIS occurs at the level of or upstream of pharyngeal cholinergic motor 

neurons, while feeding is inhibited at a level downstream of pharyngeal cholinergic 

motor neuron during DTS (Fig. 7A). 

Absence of feeding induction by 5-HT during DTS could be explained by decreased 5-

HT responsiveness during this state. Alternatively, it could be explained by reduced 

excitability of the motor neurons, or by reduced excitability of pharyngeal muscle 

downstream of motor neuron excitation. To further delineate the circuit mechanism of 

feeding cessation during SIS and DTS, I optogenetically depolarized pharyngeal 

cholinergic motor neurons during these states. To minimize the effects of animal 

immobilization on behavior and to provide as strong an excitatory input to pumping as 

possible, I used wide-field blue light illumination to stimulate ChR2 in all cholinergic 

neurons in worms on bacterially seeded agar plates. As with nlp-22 overexpression, 

stimulation of cholinergic neurons did not result in feeding during DTS (Fig. 7B). 

However, as with flp-13 overexpression, cholinergic neuron stimulation caused feeding 

during SIS. These results are consistent with NLP-22 inhibiting pharyngeal muscle 

during DTS, and FLP-13 inhibiting pharyngeal cholinergic motor neurons during SIS.  

 

Pharyngeal muscle excitability is altered during DTS 

My result that depolarization of pharyngeal neurons during DTS did not stimulate feeding 

suggests that feeding is inhibited at the level of the muscle during this state. However, 

another possible explanation is that neurotransmitter release is blocked during DTS. To 
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directly test if feeding was inhibited at the level of the muscle during DTS, I attempted to 

optogenetically stimulate pharyngeal muscle. I had difficulty expressing ChR2 in 

pharyngeal muscle, so instead we used the light-sensitive cation channel Chrimson 

(Klapoetke et al., 2014), which expressed well. The peak excitation wavelength of 

Chrimson is approximately 590 nm, but it retains adequate sensitivity (about 25% of 

peak) to 473 nm blue light (Klapoetke et al., 2014), so I used the same laser and power to 

stimulate Chrimson as I did ChR2. I found that optogenetic stimulation of pharyngeal 

muscle increased feeding rate during wake, but this effect was abolished during DTS 

(Fig. 7C). Thus, even when pharyngeal muscle was optogenetically depolarized it did not 

contract, suggesting that either the coupling between excitation and contraction is altered 

during DTS or that Ca2+ levels in the muscle are not rising sufficiently to generate 

contractions.  

To test whether this uncoupling between muscle depolarization and contraction is 

upstream or downstream of increased Ca2+ levels, I imaged Ca2+ levels in the metacorpus 

region of the pharyngeal muscle (Avery and You, 2012) using the genetically encoded 

Ca2+ sensor GCaMP6s (Chen et al., 2013). During wake, I detected fluctuations in 

GCaMP6s fluorescence in the metacorpus (Fig. 7D, 7E); such Ca2+ transients are 

associated with pharyngeal pumps (Kerr et al., 2000; Akerboom et al., 2013). These 

fluctuations in GCaMP6s fluorescence were absent during DTS, demonstrating that Ca2+ 

levels in the muscle do not oscillate during DTS (Fig. 7D, 7F). Ca2+ transients during 

DTS were undetectable even when pharyngeal muscle was optogenetically depolarized 

(Fig. 7D), demonstrating that pharyngeal excitability is fundamentally altered during 

DTS such that Ca2+ levels cannot rise and trigger muscle contraction.  
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Pharyngeal cuticle is replaced during DTS 

To examine whether any morphological changes associated with molting during DTS 

could explain why pharyngeal muscle excitability is impaired during DTS, I performed 

time-lapse analysis of an animal in the fourth larval stage (L4) DTS molt. I found that in 

early DTS, the cuticular plates in the posterior part of the pharynx, the grinder, gradually 

moved anteriorly (Fig. 8). As DTS progressed, this grinder became smaller in size and a 

new, larger grinder formed posterior to the L4 grinder, in a position similar to the one that 

the grinder previously occupied. Since defective molting is lethal (Frand et al., 2005), 

these results suggest that the decreased pharyngeal excitability observed during DTS may 

allow the proper deposition of new cuticle.  
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Discussion 

My results show that, despite the behavioral similarities of DTS and SIS, the quiescence-

inducing mechanisms downstream of neuropeptide release are distinct in these states. 

Overexpression of the DTS-associated neuropeptide gene nlp-22 inhibits feeding via 

action on pharyngeal muscle and acts on the nervous system to inhibit locomotion. In 

contrast, the SIS-associated FLP-13 neuropeptides inhibit feeding via the pharyngeal 

nervous system and inhibit locomotion by acting on the nervous system through a 

different mechanism from that of NLP-22 (Fig. 9). Further, I found that stimulation of 

pharyngeal motor neurons excites feeding during SIS but not during DTS, and even direct 

stimulation of pharyngeal muscle does not excite feeding during DTS. It is important to 

note that I have focused on two particular behavioral programs observed during sleep in 

all animals: quiescence of feeding and locomotion. Other aspects of sleep behavior, such 

as an elevated sensory arousal threshold, were not studied here and may be regulated by 

mechanisms different from those regulating feeding and locomotion quiescence. 

Nevertheless, to my knowledge this is the first in vivo demonstration that a non-

mammalian animal can express mechanistically distinct types of quiescence during sleep 

states. These results raise the possibility that in other animals (e.g. fruit flies, zebrafish), 

quiescence during sleep under different conditions may be regulated by different 

mechanisms despite behavioral similarities. Indeed, there are already suggestions that this 

is the case. For example, mechanisms of regulation of locomotion quiescence in young 

Drosophila adults are partially distinct from mechanisms in older Drosophila adults 

(Kayser et al., 2014). 
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Could the effects of neuropeptide overexpression be due to altered temporal 

dynamics of SIS? 

In my neuropeptide overexpression experiments, I used heat to induce somatic 

transcription of the NLP-22 or FLP-13 neuropeptides. However, as demonstrated here 

and previously, heat exposure can also directly trigger behavioral quiescence via 

induction of cellular stress (Cassada and Russell, 1975; Jones and Candido, 1999; Raizen 

et al., 2008; Nelson et al., 2013; Hill et al., 2014). Therefore, it is possible that the 

quiescence-inducing effects of neuropeptide overexpression are confounded by the 

quiescence observed during SIS. To minimize this possibility, I used a lower temperature, 

33°C versus 35°C, and a later analysis time point, 2-3 hours after heat exposure versus 

35-45 minutes after heat exposure, to examine quiescence in response to neuropeptide 

overexpression. Acute feeding quiescence is less severe after 33°C exposure than after 

35°C exposure (Nelson et al, 2014), and the behavioral effects of a 30-minute heat shock 

at 33°C dissipate fully by two hours after heat exposure (Lee et al., 1997; Nelson et al., 

2013; 2014). I also repeated the neuropeptide overexpression experiments in ceh-17 

mutants, which have defective SIS (Hill et al., 2014; Nelson et al., 2014), and found no 

changes in the quiescence observed in response to neuropeptide overexpression. Finally, I 

found that 35 minutes after a mild heat shock at 29°C, worms overexpressing flp-13 were 

quiescent while worms overexpressing nlp-22 were not. This suggests that the behavioral 

effects of nlp-22 overexpression are not due to an interaction between neuropeptide 

overexpression and recovery of cellular stress. Since I did observe acute feeding 

quiescence using the milder 29°C exposure in animals carrying the Phsp-16.2::flp-13 
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transgene but not in wild-type animals (Nelson et al, 2014), it is possible that 

overexpression of flp-13 may amplify the acute stress response, affirming the important 

role of flp-13 in SIS.  

 

Feeding quiescence during DTS results from altered pharyngeal muscle excitability 

My results indicate that pharyngeal muscle is not excitable during DTS. Even with direct 

optogenetic stimulation of pharyngeal muscle, no Ca2+ increase was observed during 

DTS, suggesting that Ca2+ entry is impaired during this state. Insofar as pharyngeal Ca2+ 

increase during feeding occurs primarily via the L-type voltage-gated Ca2+ channel EGL-

19 (Lee et al., 1997; Shtonda and Avery, 2005), my results suggest that the EGL-19 Ca2+ 

current is decreased during DTS. Transcriptional expression of the egl-19 gene is 

unchanged during DTS (George-Raizen et al., 2014), so the reduction in the EGL-19 

current is likely due to a post-transcriptional change. This change could occur directly, 

via modulation of EGL-19 protein expression or function, or indirectly, via an increase in 

inhibitory currents carried by potassium and/or chloride channels. My data also suggest 

that NLP-22 directly inhibits pharyngeal muscle during DTS, though it must act in 

parallel to other mechanisms because feeding quiescence is weakened but not abolished 

in nlp-22 mutants (Nelson et al., 2013). NLP-22, like other neuropeptides, may act 

through a G-protein coupled receptor to inhibit feeding. Alternatively, like certain small 

peptides such as Drosophila SLEEPLESS (Koh et al., 2008), it may act like a toxin and 

interact with ion channels directly (Wu et al., 2010; Dean et al., 2011; Wu et al., 2014). 

The receptor for NLP-22 is unknown.  
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Why is quiescence during DTS and SIS engaged differently? 

While feeding and locomotion quiescence are both characteristics of DTS, recent data 

from many labs supports my conclusion that feeding and locomotion are inhibited at 

different levels. Several mutants have been described with impaired locomotion 

quiescence throughout DTS (Raizen et al., 2008; Singh et al., 2011; Belfer et al., 2013; 

Choi et al., 2013; Nelson et al., 2013; Schwarz and Bringmann, 2013; Turek et al., 2013; 

Singh et al., 2014), and DTS locomotion quiescence can be reduced by mechanical 

stimulation (Raizen et al., 2008; Driver et al., 2013; Nagy et al., 2014). However, 

mutations that suppress locomotion quiescence do not appear to affect feeding 

quiescence, as no mutant has been described to feed throughout DTS. It is possible that 

feeding quiescence during DTS is essential for viability.  

The differing mechanisms for behavioral quiescence during DTS and SIS may reflect the 

relative importance of the different types of quiescence for survival. DTS is accompanied 

by a molt (Singh and Sulston, 1978) and occurs at the end of each of the four larval 

stages, when the worm has not yet reached reproductive maturity. The completion of 

each molt is essential for survival and reproduction (Frand et al., 2005), so there is strong 

selection for worms that can molt successfully. The correct replacement of the 

pharyngeal cuticle appears to be a vital part of DTS, as defective pharyngeal molting can 

be lethal (Singh and Sulston, 1978). By inhibiting feeding at the level of muscle 

excitability, the worm increases the likelihood that the pharyngeal cuticle will form 

properly, since no stray neural impulses or neuromodulation could trigger muscle 
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contraction that might disrupt cuticular assembly. Interestingly, mutations that severely 

decrease quiescence during SIS can also have a small effect on quiescence during DTS 

(Van Buskirk and Sternberg, 2007), suggesting that molting may be stressful and weakly 

stimulate SIS. 

In contrast to the precise timing of DTS, the environmental stresses that trigger SIS can 

happen at any point in the life of a worm and no SIS-associated structural or 

morphological changes have been identified. Failure to engage proper SIS is rarely lethal 

in the first 24 hours after stress (Hill et al., 2014), so pharyngeal contraction during this 

state may not be as detrimental to survival. In fact, by inducing quiescence at the level of 

the nervous system, the worm retains the ability to use other neuromodulators, such as 5-

HT, to stimulate feeding during SIS. This implies that although quiescence increases the 

likelihood of survival in response to cellular stressors (Hill et al., 2014), there may be 

conditions under which feeding during this state is beneficial.  

 

DTS and SIS may be functionally conserved, and are regulated by evolutionarily 

conserved signaling pathways 

There is no evidence to suggest that DTS and SIS represent evolutionary forms of sub-

types of mammalian sleep. However, DTS and SIS may serve functions similar to 

different aspects of mammalian sleep: DTS, which occurs in phase with cycling of the C. 

elegans homolog of the PERIOD gene (Monsalve et al., 2011), has been implicated in 

synaptic plasticity (Dabbish and Raizen, 2011) and synthetic metabolism (Frand et al., 

2005; Driver et al., 2013), while SIS is important for survival following physiological 
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stressors (Hill et al., 2014). Likewise, mammalian sleep has been implicated in synaptic 

plasticity (Tononi and Cirelli, 2014), anabolic metabolism (Mackiewicz et al., 2007), and 

stress responses (Toth and Krueger, 1988; Rampin et al., 1991).  

The signaling pathways investigated here, as well as other previously identified 

regulators of DTS (Raizen et al., 2008; Singh et al., 2011; Belfer et al., 2013; Choi et al., 

2013; Driver et al., 2013; Iwanir et al., 2013; Nagy et al., 2013; Nelson et al., 2013; 

Schwarz and Bringmann, 2013; Turek et al., 2013; Nagy et al., 2014; Singh et al., 2014) 

and SIS (Hill et al., 2014; Nelson et al., 2014), are found in many cell and neuron types 

and are highly conserved. These pathways have been implicated in sleep regulation in a 

variety of species (Allada and Siegel, 2008; Zimmerman et al., 2008; Crocker and 

Sehgal, 2010; Nelson and Raizen, 2013; Singh et al., 2014), but their ubiquitous 

expression patterns have made identification of specific cellular and circuit functions for 

these pathways challenging (but see (Crocker et al., 2010)). By identifying how these 

genes affect circuits that regulate different sleep states, we will gain insight into the 

mechanisms and functions of sleep across all species.  
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Figure 3.1: Quiescence during DTS and SIS is mediated by different neuropeptides. 

A: Schematic representing the known pathways that control quiescence during DTS and 

SIS. In DTS, the RIA neurons release NLP-22, while the RIS neuron releases an 

unidentified peptide. The aptf-1 gene is required for the function of the RIS neuron and 

the ceh-17 gene is required for the function of the ALA neuron. During SIS, the ALA 

neuron releases the FLP-13 neuropeptides. It is unknown how these neuropeptides lead to 

behavioral quiescence. B: Feeding quiescence during SIS does not require pathways that 

regulate DTS. Mutants defective in RIA and RIS signaling (nlp-22 and aptf-1 mutants, 

respectively) have normal feeding quiescence during SIS. Each point represents an 

observation from one worm, and the horizontal bar represents the median of each group. 

N=15 for each group. Statistical significance was calculated using the Mann-Whitney 

test. *P<0.05. 
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Figure 3.2: Schematic representation of the Gαq and Gαs pathways that regulate 

neurotransmitter secretion in C. elegans. Gαq signaling causes increased 

diacylglycerol (DAG) levels, while the Gαs pathway causes increased cAMP levels. C. 

elegans proteins names are shown in uppercase letters and mammalian homolog names 

are shown in parentheses. The blue box surrounds the Gαq pathway, while the red box 

surrounds the Gαs pathway. Proteins labeled in blue inhibit neurotransmitter release, 

while those in green promote release. Lines ending in arrows are positive regulation; lines 

ending in balls are negative regulation. Figure modeled after Perez-Mansilla and Nurrish, 

2009. 
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Figure 3.3: Activation of Gαq or Gαs pathways impairs locomotion quiescence 

caused by flp-13 or nlp-22 overexpression. A: Mutations that increase Gαq or Gαs 
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signaling impair locomotion quiescence after flp-13 overexpression. B: Mutations that 

increase Gαq or Gαs signaling impair locomotion quiescence after nlp-22 overexpression. 

For A and B, each bar represents the mean ± SEM of body bends for 12-15 worms during 

a 20-second window. Each bar represents the data obtained for a different mutant strain 

containing the designated overexpression transgene. For detailed genotypes and data, see 

Table 2. ‘gf’ denotes gain-of-function mutation, ‘dn’ denotes dominant negative 

mutation. The others are loss of function mutations. Statistical significance was 

calculated using one-way ANOVA followed by Dunnett’s multiple comparison tests. 

*P<0.05, †P<0.01, ‡P<0.001. C: Rescuing kin-2 function in cholinergic neurons using 

the unc-17 promoter rescues the effects of the kin-2 mutation on locomotion quiescence 

after flp-13 or nlp-22 overexpression. ‘Con’ designates the flp-13 overexpression and nlp-

22 overexpression control strains, NQ570 or NQ251, respectively. N=13-15. Each bar 

represents mean ± SEM. Statistical significance was calculated using one-way ANOVA 

followed by Dunnett’s multiple comparison tests. *P<0.05, **P<0.01, ***P<0.001. 
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Figure 3.4: Activation of Gαq or Gαs pathways impairs feeding quiescence caused 

by flp-13 overexpression but not that caused by nlp-22 overexpression. A: Mutations 

that increase Gαq or Gαs signaling impair feeding quiescence after flp-13 overexpression 

relative to the control flp-13 overexpression strain. B: Mutations that increase Gαq or 

Gαs signaling do not affect feeding rate after nlp-22 overexpression relative to the control 

nlp-22 overexpression strain. ‘gf’ denotes gain-of-function mutation, ‘dn’ denotes 

dominant negative mutation. The others are loss of function mutations. Each bar 
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represents the mean ± SEM of pharyngeal pumps for 12-15 worms during a 20-second 

window for a different mutant strain containing the designated overexpression transgene. 

Statistical significance was calculated using a one-way ANOVA followed by Dunnett’s 

multiple comparison tests. *P<0.05, †P<0.01, ‡P<0.001. 
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Figure 3.5: FLP-13 inhibits pharyngeal pumping by acting on neurons, but NLP-22 

inhibits feeding downstream of motor neuron excitation. A: Rescuing kin-2 function 
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in cholinergic neurons using the unc-17 promoter rescues the effect of the kin-2 mutation 

on feeding quiescence induced by flp-13 overexpression but does not affect feeding 

quiescence induced by nlp-22 overexpression. ‘Con’ designates the flp-13 overexpression 

and nlp-22 overexpression control strains, NQ570 or NQ251, respectively. N=13-15. 

Each bar represents mean ± SEM. Statistical significance was calculated using one-way 

ANOVA followed by Dunnett’s multiple comparison tests. B: In immobilized worms, 5-

HT blocks the inhibitory effect of flp-13 overexpression on feeding but not that of nlp-22 

overexpression on feeding. N=10. Each bar represents mean ± SEM. Statistical 

significance was calculated using Student’s t-test. C: flp-13 overexpression and nlp-22 

overexpression cause similar effects on feeding in worms in the presence of food when 

overexpressed to similar degrees. N=9-15. Each point represents mean ± SEM. Statistical 

significance was calculated using a two-way ANOVA. D: The difference in the effects of 

5-HT on feeding rate in immobilized worms after flp-13 overexpression and nlp-22 

overexpression is not affected by the degree of neuropeptide overexpression. N=9-15. 

Each point represents mean ± SEM. Statistical significance was calculated using a two-

way ANOVA. E: Schematic of the excitatory cholinergic pharyngeal neurons and SER-7 

5-HT receptor. F: Optogenetic excitation of the pharyngeal cholinergic motor neurons 

MC, M2, and M4 stimulates pumping in immobilized worms after flp-13 overexpression 

but not after nlp-22 overexpression. N=10. Each bar represents mean ± SEM. Statistical 

significance was calculated using a one-way ANOVA. *P<0.05, **P<0.01, ***P<0.001. 
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Figure 3.6: Activation of Gαq but not Gαs pathway impairs feeding quiescence 

during SIS. Mutants with increased DAG levels due to activation of the Gαq pathway 

have increased feeding during SIS, but mutants with an activated Gαs pathway do not. In 

addition, an egl-4 mutation impairs feeding quiescence during SIS. Each point represents 

an observation from one worm, and the horizontal bar represents the median of each 

group. N=15 for each group. Statistical significance was calculated using the Mann-

Whitney test. *P<0.05, **P<0.01. 
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Figure 3.7: The pharyngeal nervous system can excite feeding during SIS but not 

during DTS. A: 10 mM 5-HT stimulates feeding during SIS but not during DTS. N=8-
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10. B: Optogenetic excitation of all cholinergic pharyngeal neurons (AChN) by wide-

field fluorescence stimulates feeding in worms on bacterially seeded agar plates during 

SIS but not DTS. N=13 for each group. C: Optogenetic excitation of pharyngeal muscle 

stimulates feeding in the presence of 10 mM 5-HT during wake but not during DTS. 

N=10. D: Ca2+ transients are absent from pharyngeal muscle during DTS, and cannot be 

stimulated by muscle excitation. The difference between maximum and minimum 

GCaMP6s intensity of a region of the metacorpus of the pharynx during an 

approximately 30 second interval was calculated for each condition to measure the 

magnitude of Ca2+ transients. N=10. E: GCaMP6s fluorescence from a region of the 

metacorpus from one representative worm during wake. F: GCaMP6s fluorescence from 

a region of the metacorpus from one representative worm during DTS. a.u. denotes 

arbitrary units in D, E, and F. Statistical significance was calculated using Student’s t-

test. *P<0.05, **P<0.01, ***P<0.001. 
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Figure 3.8: The pharyngeal cuticle is replaced during DTS. Pictures show a wild-type 

posterior pharynx at the start (0 minutes after pumping cessation), early (30 minutes after 

pumping cessation), early middle (45 minutes after pumping cessation), and end (150 

minutes after pumping cessation) of the fourth larval stage (L4) DTS molt. Thin and thick 

arrows denote the L4 and adult grinders, respectively. Red dashed line represents the 

position of the L4 grinder at the beginning of the L4 DTS molt. Anterior is to the left. 
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Figure 3.9: Model for quiescence regulation during SIS and DTS. Green ovals 

represent somatic interneurons and blue text represents molecular mechanisms. Solid 

lines with arrowheads represent positive regulation, and solid lines with balls on the end 

represent negative regulation. Dotted lines represent conceptual rather than molecular 

connections A: During DTS, an unidentified larval timer causes the RIA interneurons to 

release NLP-22. NLP-22 inhibits feeding by acting directly on pharyngeal muscles, and 

inhibits locomotion via cholinergic neurons. The RIS interneuron also regulates feeding 

and locomotion quiescence during DTS. B: Cellular stress triggers release of LIN-3/EGF 

from an unknown source, which then activates the ALA interneuron, causing release of 

FLP-13 and other neurotransmitter(s). FLP-13 inhibits feeding and locomotion by acting 

on pharyngeal and somatic (non-pharyngeal) cholinergic neurons, respectively. 
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Table 3.1: Mutants studied in Figures 3 and 4 

Gene Δ Vertebrate homolog Reason chosen Reference 

gsa-1 G Gαs 
reduced lethargus quiescence;  

resistant to isoflurane 

(Saifee et al., 2011;  

Schwarz and Bringmann, 2013) 

acy-1 G Adenylate cyclase reduced lethargus quiescence (Iwanir et al., 2013) 

pde-4 L PDE4 reduced lethargus quiescence (Singh et al., 2014) 

kin-2 L PKA regulatory subunit 
reduced lethargus quiescence;  

resistant to isoflurane 

(Saifee et al., 2011;  

Belfer et al., 2013) 

goa-1 D Gαi/o reduced lethargus quiescence (Singh et al., 2014) 

goa-1 L Gαi/o resistant to halothane (van Swinderen et al., 2001) 

egl-30 G Gαq 
reduced lethargus quiescence;  

resistant to halothane 

(Hawasli et al., 2004;  

Schwarz and Bringmann, 2013) 

eat-16 L Gαq RGS resistant to halothane and isoflurane (van Swinderen et al., 2001) 

dgk-1 L DGK-θ resistant to halothane (van Swinderen et al., 2002) 

gpa-12 L Gα12 activation inhibits feeding (van der Linden et al., 2003) 

tpa-1 L PKCδ suppresses effects of gpa-12 activation (van der Linden et al., 2003) 

eat-6 L Na+/K+ ATPase depolarized pharyngeal muscle (Davis et al., 1995) 

egl-19 G L-type Ca2+ channel prolonged pharyngeal action potential (Lee et al., 1997) 

tom-1 L Tomosyn increased neurotransmission (Dybbs et al., 2005) 

slo-1 L BK channel 
increased neurotransmission;  

resistant to halothane 

(Wang et al., 2001;  

Hawasli et al., 2004) 

unc-77 G NALCN channel resistant to halothane (Humphrey et al., 2007) 

unc-64 N Syntaxin resistant to halothane and isoflurane (van Swinderen et al., 1999) 

unc-7 L Innexin resistant to halothane (Morgan et al., 1990) 

tbh-1 L 
Tyramine β-

hydroxylase 
opposes 5-HT response (Wragg et al., 2007) 

egl-4 L PKG reduced lethargus quiescence (Raizen et al., 2008) 

Δ: change in function; D: dominant negative; N: neomorph; G: gain; L: loss 
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Table 3.2: Detailed data for Figures 3 and 4 

Gene Δ  
mutant; flp-13 overexpression        mutant; nlp-22 overexpression 

ppm SD Sig bpm SD Sig N ppm SD Sig bpm SD Sig N 

gsa-1 G 133.5 55.6 *** 13.5 8.4 *** 14 31.6 24.0 ns 13.8 8.5 *** 15 

acy-1 G 69.6 69.1 * 3.2 4.0 ns 15 39.6 25.6 ns 11.0 8.5 *** 15 

pde-4 L 130.5 74.8 *** 3.8 4.1 ns 12 22.2 28.5 ns 7.4 6.3 ** 15 

kin-2 L 132.6 61.4 *** 2.4 3.0 ns 15 22.0 14.9 ns 10.6 8.4 *** 15 

goa-1 D 91.6 64.1 *** 6.8 5.5 *** 15 24.0 15.3 ns 3.6 4.1 ns 15 

goa-1 L 103.0 55.7 *** 7.2 5.8 *** 15 23.4 27.9 ns 6.8 4.6 ** 15 

egl-30 G 78.4 57.1 ** 5.0 4.5 * 15 38.8 27.1 ns 4.2 4.9 ns 15 

eat-16 L 71.2 44.6 * 7.2 8.1 *** 15 3.6 3.6 ns 5.2 5.6 ns 15 

dgk-1 L 136.4 43.7 *** 5.2 7.2 * 15 41.4 46.7 ns 1.2 1.5 ns 15 

gpa-12 L 87.8 85.5 *** 0.4 1.1 ns 15 11.6 9.5 ns 1.6 2.2 ns 15 

tpa-1 L 64.2 52.7 * 0.8 1.4 ns 15 21.6 18.6 ns 0.6 1.2 ns 15 

eat-6 L 59.6 34.6 ns 2.4 2.4 ns 14 36.8 34.6 ns 1.0 1.9 ns 15 

egl-19 G 90.4 64.4 *** 0.4 1.5 ns 15 16.0 13.2 ns 1.4 2.7 ns 15 

tom-1 L 24.2 41.8 ns 0.2 0.8 ns 15 24.6 31.4 ns 1.4 2.5 ns 15 

slo-1 L 32.6 25.8 ns 2.2 5.4 ns 15 50.2 50.6 ns 1.0 1.9 ns 15 

unc-77 G 33.8 41.9 ns 0.2 0.8 ns 15 32.8 27.5 ns 1.0 1.5 ns 15 

unc-64 N 27.0 34.8 ns 0.4 1.1 ns 14 16.8 18.6 ns 1.0 2.4 ns 15 

unc-7 L 87.2 57.6 *** 0.0 0.0 ns 15 27.8 16.8 ns 1.2 1.9 ns 15 

tbh-1 L 8.2 23.9 ns 0.0 0.0 ns 15 45.8 42.1 ns 1.8 4.1 ns 15 

egl-4 L 9.4 24.2 ns 0.4 1.1 ns 15 37.4 34.1 ns 0.8 1.8 ns 15 

None 

 

5.8 12.2   0.2 0.8   15 28.0 30.9   1.0 1.9   15 

Δ: change in function; D: dominant negative; N: neomorph; G: gain; L: loss  

Underlined indicates twitching phenotype; ppm indicates pumps/minute; bpm indicates body bends/minute  

* p<0.05, ** p<0.01, *** p<0.001, by Dunnett’s multiple comparison test after one way ANOVA.  
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CHAPTER 4:  General Discussion and Future Directions 

The goal of this work was to understand how the neural circuit controlling C. elegans 

feeding operates during wake and sleep. Using pharmacological, genetic, and optogenetic 

approaches, I identified a small circuit of cholinergic neurons that degenerately controls 

pumping rate. I subsequently identified two distinct mechanisms that underlie feeding 

quiescence during different sleep states, revealing that behaviorally indistinguishable 

invertebrate sleep states can be physiologically distinct. 

I found that although ablation of most cholinergic pharyngeal neurons does not affect 

behavior, optogenetic manipulation of these neurons revealed their functions. Though 

they have been investigated by laser ablation, the functions of many somatic neurons are 

also poorly understood (de Bono and Maricq, 2005). By acutely stimulating and 

inhibiting individual neurons, it will be possible to identify roles for redundant or 

degenerate neurons, for which ablation has no effect, in a state dependent manner. For 

example, a systematic screen similar to the one I performed could identify neurons that 

promote or inhibit egg laying or defecation in different behavioral states, such as sleep or 

starvation.  

 

The pharyngeal nervous system is robust, evolvable, and degenerate 

Degeneracy, the ability of structurally distinct elements of a system to perform the same 

function under certain conditions (Tononi et al., 1999), is ubiquitous throughout biology. 

The nature of these elements can vary widely, from nucleotides to entire organs (Edelman 
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and Gally, 2001). Theoretical work suggests that degeneracy represents a compromise 

between robustness, or the insensitivity of a system to a specific set of conditions, and 

evolvability, or the capacity of a system to generate new phenotypes (Whitacre and 

Bender, 2010).  

Laser ablation experiments have previously demonstrated the robustness of the 

pharyngeal nervous system, as killing most classes of pharyngeal neurons has no obvious 

effect on feeding (Avery and Horvitz, 1989; Raizen et al., 1995). However, I have 

demonstrated that acute excitation or inhibition of many classes of pharyngeal 

cholinergic neurons does affect feeding rate, in apparent conflict with the laser ablation 

results. A possible explanation for this discrepancy is that the system may be 

homeostatically regulated, such that when some neurons are destroyed then others will 

compensate to replace their function. Recent theoretical experiments have demonstrated 

that homeostatic compensation after alterations in circuit function, such as might be 

caused by laser ablation, can lead to either restoration of function or pathological 

alteration of function, depending on the alteration (O'Leary et al., 2014). Thus, perhaps 

after ablation of M2 the homeostatic mechanisms allow for recovery of function, while 

these mechanisms produce aberrant behavior after MC ablation. Detailed analysis of 

neural activity patterns is required to further explore these ideas.  

The evolvability of the pharyngeal nervous system has only become apparent more 

recently. The predatory nematode Pristionchus pacificus, which diverged from C. 

elegans approximately 300 million years ago (Pires-daSilva and Sommer, 2004), has 

morphological features consistent with its altered diet, such as the tooth-like denticle that 
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it uses to prey on beetles and other nematodes. Despite this difference in morphology and 

feeding strategy, C. elegans and P. pacificus have a very similar synaptic connectivity of 

their pharyngeal nervous systems, and the morphologies of pharyngeal neuronal process 

are nearly identical (Bumbarger et al., 2013). There is also evidence of functional 

conservation between the species: the M4 neuron is required for peristalsis and can 

promote pumping in C. elegans, and M4 ablation in P. pacificus causes a mild decrease 

in peristalsis and pumping rates (Chiang et al., 2006; Song and Avery, 2012; Steciuk et 

al., 2014). Just as I found in C. elegans, the M2 neurons are excitatory for pumping in a 

third species of nematode, Panagrolaimus sp. PS1159 (Chiang et al., 2006). Anatomical 

reconstructions of pharyngeal nervous systems of even more diverse nematode species, 

including the fungal feeder Aphelenchus avenae (Ragsdale et al., 2010), reveal at least 

partial anatomical homology with C. elegans pharyngeal nervous system, though the 

functional homology of pharyngeal neurons is difficult to test due to the lack of 

transgenic tools available in these species. While it is unclear if these similarities in 

function and morphology are due to independent evolution from a common ancestor with 

a very different pharyngeal nervous system structure or represent only slight deviations 

from an ancestor with a pharyngeal nervous system similar to those described, the 

structure of the pharyngeal nervous system appears to have evolutionarily advantageous 

properties (Katz and Lillvis, 2014). Experimental evolution in E. coli has shown that 

evolvability is subject to natural selection (Woods et al., 2011), suggesting that in fact the 

structure and function of pharyngeal nervous system of C. elegans and other nematodes 

may have been selected for because of its evolvability. 
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As expected from a system that is robust and evolvable, I found that the pharyngeal 

nervous system has neural and genetic degeneracy: the cholinergic MC, M2, and M4 

motor neurons each can directly stimulate pumping, and the MC neurons can act via 

nicotinic or muscarinic acetylcholine receptors. The implications of neural degeneracy 

are best understood in the crustacean stomatogastric nervous system, where 

computational and experimental studies have found that different neuromodulators can 

invoke similar activity patterns on the single neuron (Harris-Warrick and Flamm, 1987) 

or network level (Saideman et al., 2007; Rodriguez et al., 2013), and similar network 

outputs can be achieved through different combinations of cellular parameters (Prinz et 

al., 2004; Schulz et al., 2007; Goaillard et al., 2009; Gutierrez et al., 2013). In this 

system, as well as in the leech heartbeat system, a high degree of individual variability 

has been found in a population of animals that produce similar behaviors in their native 

conditions (Bucher et al., 2005; Norris et al., 2007a; 2007b), suggesting that natural 

selection has set constraints on the output of the system rather than on the mechanisms by 

which the system generates the output (Edelman and Gally, 2001). Thus, each animal can 

respond in a different manner to changes in environment or physiology, leading to 

subsequent selection for animals that respond favorably to any prolonged change in 

conditions. This difference in fitness after a change in conditions has been observed in 

the mollusc, where individual variability is not apparent under normal conditions but is 

revealed by different responses to an injury (Sakurai et al., 2014). If this change in 

environment persists, organisms that have responded in a favorable way will be selected 

for over organisms that respond less favorably even if their initial fitness was similar, as 
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has been demonstrated by experimental evolution in E. coli (Ostrowski et al., 2005; 

2008). 

In this context, it is intriguing to speculate how the neural and genetic degeneracy of the 

pharyngeal nervous system contributes to the fact that species that have diverged for 300 

million years perform different pharyngeal behaviors despite having the same 

complement of neurons with similar morphology (Bumbarger et al., 2013). For a system 

to be degenerate it must have multi-functional components, and many pharyngeal 

neurons are both highly connected and have sensory endings and neuromuscular synapses 

(Albertson and Thomson, 1976, WormWiring.org), suggesting these neurons are indeed 

multi-functional. I did not directly examine individual variability in the ability of 

different classes of cholinergic neurons to stimulate pumping, but the degeneracy of the 

pharyngeal nervous system suggests worms can produce similar feeding behavior by 

different mechanisms. This means that some worms might respond differently to certain 

perturbations, and the subsequent differences in fitness will lead to the development of 

new species with similar underlying neural circuits and genetics (Edelman and Gally, 

2001). For example, if different lines of C. elegans were to evolve in isolation under the 

same conditions for tens of thousands of generations, as was done experimentally with E. 

coli (Wiser et al., 2013), the gross morphology of the pharyngeal nervous system may be 

similar across each line, but the underlying mechanisms of feeding regulation may vary 

in ways that can be revealed by exposing the lines to different environments.  

In addition to providing robustness, degeneracy can be a means for allowing a system to 

respond appropriately to a given perturbation under different behavioral states (Gutierrez 
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et al., 2013). Depending on other cellular or network parameters, or during different 

behavioral states, the same neuromodulator can have disparate effects on network 

function (Gutierrez and Marder, 2014). The relatively simple behavioral repertoire of C. 

elegans means that its behavior is readily quantified, so behavioral states and effects of 

neuromodulator manipulation can be clearly distinguished (de Bono and Maricq, 2005). 

While activation of MC, M2, or M4 has similar effects on pumping rate in my 

experiments, it is possible that under different conditions their effects on behavior will 

diverge. Testing this will require performing similar experiments on worms raised or 

maintained under different conditions, such as different types of food or atmospheric 

conditions, or in the presence of various neuromodulators.  

 

Many aspects of pharyngeal nervous system function are still not well understood 

Although we now have evidence that multiple pharyngeal cholinergic neurons control 

pumping, we do not yet know the activity patterns of these neurons under any conditions. 

Electrophysiological recordings from pharyngeal muscle show MC-dependent 

depolarizations that resemble post-synaptic potentials, suggesting the MC neurons may 

provide rhythmic input onto pharyngeal muscle (Raizen et al., 1995). However, I have 

shown that tonic depolarization of the MC neurons or pharyngeal muscle is sufficient to 

drive rapid pumping, suggesting the MC neurons may not have rhythmic activity. 

Electrophysiological recordings from the neurons is not yet possible, so an important next 

step will be to develop and implement fluorescent Ca2+ and voltage reporters with 

sufficient speed and signal-to-noise ratio to monitor the activity of these neurons. Whole 
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brain activity imaging has recently been performed in C. elegans (Schrödel et al., 2013; 

Prevedel et al., 2014), an approach that can be applied to the pharyngeal nervous system 

using a recently identified gene promoter fragment specific to pharyngeal neurons 

(Stefanakis et al., 2015). Once activity patterns are determined for each neuron in a 

particular context, we will be able to better understand how pumping is controlled on a 

single pump basis, and how various environmental and physiological factors are 

integrated to set pump rate.  

Although MC, M2, and M4 are degenerate in terms of their ability to stimulate pumping, 

and EAT-2 and GAR-3 are degenerate for the ability to respond to MC stimulation, this 

may only be true when pump rate is used as the sole output measurement of the system. 

In reality, the pharynx consists of 20 muscle cells that do not contract in perfect 

synchrony (Fang-Yen et al., 2009), so it is possible that pumps stimulated by different 

neurons are not functionally identical. Indeed, recent work suggests that the M1 motor 

neurons are involved in an additional pharyngeal behavior, spitting, that requires altered 

patterns of muscle contraction (Bhatla et al., 2015). High speed imaging of pharyngeal 

pumping during stimulation of various neurons will likely reveal differences in muscle 

contraction patterns during feeding and help to define more precise roles for each class of 

cholinergic neurons.  

In order to directly relate my results to data from the well-established invertebrate neural 

circuits of the leech, crustacean, and mollusc, activity patterns of C. elegans pharyngeal 

neurons must be identified. However, while quantifying neural activity in C. elegans is 

difficult, C. elegans is more genetically tractable than many other invertebrates. Since the 
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genetic basis of neuronal function and synaptic neurotransmission is highly conserved 

(Bargmann, 1998), the genetic basis of degeneracy in C. elegans is likely to be similar 

with that in mammals. Thus, identification of genetic mechanisms that control 

degeneracy, robustness, and evolvability in C. elegans will shed light on how these 

processes function in higher animals, complementing the circuit approaches used in other 

invertebrates. 

 

FLP-13 and NLP-22 generate similar behaviors via different mechanisms 

Overexpression of FLP-13 or NLP-22 causes essentially identical cessation of feeding 

and locomotion, but I found that these neuropeptides act via different pathways. Two 

FLP-13 receptors have recently been identified in the Raizen lab, DMSR-1 (Michael 

Iannacone, Jessie Zhou, Jinzhou Yuan, and David Raizen, personal communication) and 

FRPR-4 (Matthew Nelson and David Raizen, submitted). Preliminary experiments reveal 

that neither receptor is expressed in pharyngeal or somatic motor neurons, so FLP-13 

may act on interneurons or inhibitory motor neurons, or via additional receptors.  

The pathways acting downstream of NLP-22 overexpression are less clear, as multiple 

attempts by me (unpublished observations) and by others (Jinzhou Yuan and Kun He 

Lee, personal communication) to use a forward genetic screen to identify mutants that 

suppressed the effects of NLP-22 overexpression have not yielded any strong 

suppressors, implying that either NLP-22 acts on multiple receptors or the NLP-22 

receptor is essential for survival. Neither cholinergic neuron stimulation after NLP-22 

overexpression or during DTS nor direct muscle stimulation during DTS stimulated 
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pumping, suggesting pharyngeal muscle is inexcitable under these conditions. The 

difficulty suppressing this pumping quiescence suggests that it is important for survival, 

perhaps because it prevents the deleterious effects of the disruption of pharyngeal cuticle 

formation during the molt (Frand et al., 2005; Straud et al., 2013; George-Raizen et al., 

2014), but the mechanisms generating this quiescence are unclear. There are multiple 

possible explanations for decreased muscle excitability during DTS: Ca2+ may be highly 

buffered, voltage gated Ca2+ channels may be blocked, or the membrane conductance 

may be dramatically increased. Intracellular recordings from pharyngeal muscle during 

DTS will be informative in distinguishing these possibilities.  

 

Peptidergic regulation of sleep may also be degenerate 

Although C. elegans has just 302 neurons, it has at least 91 neuropeptide genes encoding 

more than 250 unique neuropeptides (Janssen et al., 2010; Hobert, 2013). The 

somnogenic neuropeptide genes nlp-22 and flp-13 were identified from a neuropeptide 

gene overexpression screen in the Raizen lab that is less than 25% complete, so more 

somnogenic neuropeptides likely remain to be identified. Additionally, null mutations in 

flp-13 or nlp-22 reduce but do not abolish SIS and DTS quiescence, suggesting other 

neuropeptides act in parallel to promote quiescence. In support of this notion, zebrafish 

neuropeptides associated with sleep/wake states do not each promote unique aspects of 

sleep/wake behavior, but appear to act degenerately to regulate partially overlapping 

clusters of behaviors (Richter et al., 2014). For example, galanin and nociceptin have 

similar effects on waking activity but opposite effects on movement duration (Woods et 
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al., 2014). Given the number of neuropeptides in C. elegans, it seems likely that the 

peptidergic regulation of behavioral quiescence in C. elegans is equally complex, with 

neuropeptides acting in parallel to NLP-22 and FLP-13 with similar but not identical 

effects on different aspects of behavior. In other words, the regulation of feeding 

inhibition during C. elegans sleep may be degenerate.  

Degeneracy may explain the ubiquity of sleep as well as the difficulty in ascertaining the 

primary function of sleep across species. If different subprograms of sleep can be 

triggered in multiple ways, then individual variability in the use of these mechanisms 

would be expected. As conditions change over time, different species evolve that use a 

unique subset of these mechanisms. As species continue to evolve, the subsets of 

mechanisms used to regulate sleep will begin to differ, as will the physiological processes 

that are best suited to occur during sleep. Therefore, while sleep may be important across 

different species, the processes happening during sleep could vary widely. This may 

explain the dramatic differences in sleep duration seen across mammals (Siegel, 2008) 

and part of the challenge in defining the precise function of sleep.  

 

Behaviorally identical states are not necessarily physiologically homogenous 

Until the mid-1930s, sleep in all animals was identified by three behavioral 

characteristics: decreased responsiveness to environmental stimuli, reversibility, and an 

increased threshold to arousal (Kleitman, 1929). Until the development of the 

electroencephalogram (EEG) allowed the first observation of ongoing neural activity in 

the human brain during sleep (Gibbs et al., 1935; Loomis et al., 1935a), it was thought 
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that during sleep the brain was essentially at rest (Kleitman, 1929). Subsequent research 

revealed that EEG activity patterns during sleep are variable (Loomis et al., 1935b; 1936) 

and thus mammalian sleep can be divided into physiologically distinct states based on 

EEG activity patterns (Blake and Gerard, 1937; Loomis et al., 1937). More recently, the 

discovery that sleep can be triggered by both circadian (Borbély, 1982) and non-circadian 

factors (Krueger et al., 1982), such as bacterial infection (Toth and Krueger, 1988), 

through at least partly distinct neural pathways (Saper et al., 2005; 2012) suggests a 

second type of heterogeneity in sleep. While the functional and physiological differences 

between REM and non-REM sleep are widely appreciated, the differences between 

stress- or infection-induced sleep and circadian sleep, or between sleep in infants and 

adults (Blumberg et al., 2014), are less well understood. 

As was the case in humans before the development of the EEG (Kleitman, 1929), sleep in 

non-mammals is defined by behavioral criteria: locomotion and feeding quiescence, rapid 

reversibility, reduced sensory responsiveness, and homeostasis (Campbell and Tobler, 

1984; Allada and Siegel, 2008; Cirelli and Tononi, 2008; Siegel, 2008; Zimmerman et al., 

2008). When combined with my data presented here, it becomes clear that recently 

identified sleep states in other model organisms, including the zebrafish Danio rerio 

(Zhdanova et al., 2001) and Drosophila (Hendricks et al., 2000), may not be as 

physiologically homogenous as they superficially appear. In fact, there is already 

evidence for the complexity of behavioral sleep states in Drosophila. A recent study 

found that daytime sleep and nighttime sleep are regulated by at least partly distinct 

mechanisms (van Alphen et al., 2013), while another group found that different circuits 

regulate sleep in young and older flies (Kayser et al., 2014), and a third group showed 
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that mutations that decrease stress-induced sleep do not have a strong effect on baseline 

sleep (Lenz et al., 2015). Together, these results demonstrate that even though there is no 

evidence of REM/non-REM sleep in flies and sleep appears behaviorally homogenous, 

Drosophila has physiologically distinct sleep states. It would be surprising if sleep in all 

species were not similarly complex.   
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Abstract 

Optogenetic approaches have proven powerful for examining the role of neural circuits in 

generating behaviors, especially in systems where electrophysiological manipulation is 

not possible. Here I describe a method for optogenetically manipulating single 

pharyngeal neurons in intact C. elegans while monitoring pharyngeal behavior. This 

approach provides bidirectional and dynamic control of pharyngeal neural activity 

simultaneously with a behavioral readout, and has allowed me to test hypotheses about 

the roles of individual pharyngeal neurons in regulating feeding behavior.  
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Introduction 

The nematode C. elegans is a powerful tool for studying the function of neural circuits, in 

large part due to its genetic tractability and known synaptic connectivity (Xu and Kim, 

2011; Bargmann and Marder, 2013). Since it is not currently possible to 

electrophysiologically manipulate the activity of the C. elegans nervous system in intact 

animals (Goodman et al., 2012), the primary method for studying the roles of specific 

neurons in behavior has been ablation of these neurons in young larvae using a laser 

beam, and observation of behavior in adults (Bargmann and Avery, 1995; Fang-Yen et 

al., 2012). However, laser ablation is a permanent, unidirectional manipulation of a 

neural circuit that does not easily allow the assessment of functional redundancy or 

developmental compensation (Steger et al., 2005). It is therefore suboptimal for 

understanding dynamic phenomena like neural activity.  

Optogenetic techniques, which involve using light-sensitive ion channels to manipulate 

neural activity and behavior, are ideal for precise temporal control of neural activity in 

behaving animals, as they afford bidirectional and dynamic manipulation (Deisseroth, 

2010). To date, most optogenetic experiments in C. elegans have been performed by 

illuminating the entire worm after expressing light-sensitive proteins in a desired subset 

of neurons (Husson et al., 2013). However, the cellular specificity of this approach – and 

therefore its utility for functionally dissecting neural circuits – has been limited by the 

difficulty of finding a promoter that drives gene expression only in the desired neurons. 

Genetic intersection approaches have been used (Davis et al., 2008; Voutev and Hubbard, 

2008; Schmitt et al., 2012; Wei et al., 2012), but even these are not guaranteed to provide 

the desired overlap. Furthermore, when using promoters with high cellular specificity a 
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different strain is required to study each subset of neurons, making it impossible to study 

the functions of multiple neurons in a single worm. To solve this problem, multiple 

groups have developed different methods for using patterned light to illuminate arbitrary 

parts of the worm corresponding to neurons of interest. The first of these studies was 

done using immobilized worms and optically monitoring Ca2+ levels in neurons of 

interest (Guo et al., 2009). More recent work has used locomotion as a behavioral readout 

of circuit function (Leifer et al., 2011; Stirman et al., 2011; Kocabas et al., 2012). 

Here, I describe a method for using spatially restricted optogenetic illumination to 

investigate the behavioral effects of manipulating individual neurons in the pharynx 

(feeding organ). The pharyngeal neural circuit is one of the simplest in the worm, 

containing 20 neurons of 14 classes. However, experiments in which each of the 14 

classes of pharyngeal neurons were ablated found only 3 classes for which ablation 

caused a clearly identifiable deficit in feeding behavior (Avery and You, 2012), perhaps 

due to circuit redundancy. Using an optogenetic approach, I uncovered genetic and neural 

degeneracy in the circuit for excitation of pharyngeal pumping (Trojanowski et al., 2014). 

I use a digital micromirror device (DMD) to focus light in defined patterns on worms that 

express light sensitive excitatory (e.g. blue-light-sensitive ion channel Channelrhodopsin-

2 (ChR2)) (Zhang et al., 2007b) or inhibitory microbial opsins (e.g. blue-light-powered 

proton pump (Mac) from Leptosphaeria maculans) (Waschuk et al., 2005; Chow et al., 

2010; Okazaki et al., 2014). To stimulate single neurons, I take advantage of the fact that 

the pharynx is internal and use polystyrene beads to immobilize worms (Kim et al., 

2013). This affords submicron spatial resolution without pharmacological manipulation. I 
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use particle image velocimetry to automatically track movement of pharyngeal muscles 

during optogenetic manipulations. This approach improves on both the lack of specificity 

present in typical optogenetic experiments and the lack of sensitivity and intra-observer 

variability inherent in manual observation (Raizen et al., 2012).  
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Materials 

Optical table (at least 1.5 m X 1.2 m surface) 

473 nm laser (e.g. Shanghai Laser and Optics Century model BL473T3-150) 

Leica DMI3000B inverted microscope and associated filter cubes 

Leica Plan Apo 63X oil immersion objective lens with N.A.= 1.4 

Photometrics DV2 multichannel imaging system 

Cooled CCD camera with software capable of 30 frames per second (e.g. Andor iXon 

885 and Andor SOLIS software) 

1024 by 768 pixel digital micromirror device (DMD) with Discovery 4100 Explorer 

software (Discovery 4100 DLP, Texas Instruments/Digital Light Innovations) 

Power meter (e.g. Coherent FieldMate) 

MATLAB software  

 

Aluminum mounting box for DMD control board (approx. 15 cm X 20 cm) 

6.24 mm focal length aspheric lens (e.g. Thorlabs C110TME-A) 

75 mm focal length planoconvex lens (e.g. Thorlabs LA1608-A) 

100 mm focal length, 2-inch diameter achromatic lens (e.g. Thorlabs AC508-100-A) 
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2 200 mm focal length, 2-inch diameter achromatic lenses (e.g. Thorlabs AC508-200-A) 

~7 mirrors (e.g. Thorlabs PF20-03-P01 and PF10-03-P01) 

2 irises (e.g. Thorlabs ID15) 

Longpass dichroic filter (e.g. Thorlabs DMLP490R) 

Hardware for mounting each optic 

Post holders (e.g. Thorlabs UPH3) 

Posts (e.g. Thorlabs TR3) 

Lens and mirror mounts (e.g. Thorlabs LMR1, LMR2, KM100, KM200) 

Post clamps (e.g. Thorlabs RA45) 

1/4"-20 cap screws (e.g. Thorlabs HW-KIT2) 

8-32 cap screws (e.g. Thorlabs HW-KIT3) 

 

Sodium fluorescein 

NGM buffer (NGM from (Stiernagle, 2006) but without agar, cholesterol, or peptone) 

Agarose 

Serotonin HCl 
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Slides and coverslips 

0.5 mm thick plastic shim stock (Ardus Yellow 0.020 Inches) 

250 mL beaker 

50 mL centrifuge tube  

Disposable spatulas (e.g. VWR International 80081-188) 

2.5% (v/v) suspension of 50 nm diameter polystyrene beads (Polysciences 08691-10) 

Nematode strains expressing opsins in neurons of interest 
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Methods 

The methods will be described in 5 sections: A: Building the rig; B: Constructing the 

worm strains; C: Immobilizing the worms; D: Performing the experiments; and E: 

Analyzing the data.  

 

Building the rig 

In the optical setup, a laser beam is first expanded in diameter by about 10 times by a 

telescope consisting of two lenses (Fig. 1). This laser beam is routed via mirrors to the 

DMD, which restricts the beam to a set of a pixels selected by computer. Next, the image 

on the DMD is relayed to an intermediate image plane of the microscope with 2X 

magnification using lenses with focal lengths 100 mm and 200 mm. Finally the image is 

relayed again to the worm via a relay lens system composed of a 200 mm focal length 

lens and the objective lens. The steps for constructing this setup are described below, and 

a schematic is depicted in Figure 1.  

 

Before starting work, obtain the appropriate laser protection eyewear, light curtains, and 

other safety equipment. Consult your laser safety protection officer to determine what is 

needed. 
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1. Place the microscope and laser on an optical table and secure them so that they will not 

inadvertently move in relationship to the rest of the table. (see Note 1) 

2. Mount each mirror or lens in an appropriate mount, and attach each mount to a post 

and post holder. Fasten post holders to the table in an out of the way location so that they 

are secure while you are performing the other steps.  

3. Mount the DMD by attaching the DMD to a KM200 mirror mount and attaching the 

control board to the mounting case using screws and board standoffs. Ensure that the 

DMD power cable can be plugged in to the control board after mounting.  

4. Place two irises in the path of the laser, and adjust them and the laser so that the laser 

beam is perfectly horizontal and passes directly through the center of the irises.  

5. Place the 6.24 mm focal length lens and the 75 mm focal length lens so they are 81.24 

mm apart (the sum of the focal lengths), beyond the irises. The lenses should be oriented 

according to their design specifications, with the sides designed for short conjugate 

distance facing each other.  

6. Align these lenses so the beam passes through the center of the lenses and is collimated 

(i.e. neither converging nor diverging) after exiting the 75 mm focal length lens. (see 

Note 2) 

7. Install a filter cube and dichroic filter that reflects light from the desired port through 

the back of the objective. For GFP optics, use a longpass dichroic filter that reflects 
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wavelengths shorter than 500 nm and transmits wavelengths longer than 500 nm. (see 

Note 3) 

8. Place one of the 200 mm lenses 200 mm away from the back of the objective, along 

the light path, with the rounded side facing the microscope. (see Note 4) 

9. Place the other 200 mm lens 400 mm beyond the first 200 mm lens, along the light 

path. The curved side should face away from the microscope. (see Note 5). 

10. Place the 100 mm lens 300 mm beyond the furthest 200 mm lens. The curved side 

should face the 200 mm lens. 

11. Place the DMD 100 mm beyond the 100 mm lens. Screw down loosely, as the 

position will likely need to be adjusted later. (see Note 6)  

12. Plug in the DMD and use the Discovery 4100 Explorer software to set it so that all 

the mirrors are in the ON position.  

13. Use mirrors as necessary to project the laser beam onto the DMD. (see Note 7) 

14. Adjust the angle of the DMD so that with the mirrors in the ON position, the laser 

beam is reflected along the optical path of the microscope, through the center of the 100 

and 200 mm lenses. (see Note 8) 

15. Place a glass slide at an angle in the light path shortly after the beam leaves the laser 

by taping the slide to an optical post. (see Note 9) 
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16. Set up the power meter so the light reflected off the glass slide hits the center of the 

sensor. 

17. Place a red filter in the transillumination light path to enable behavioral observation 

during the optogenetics experiments without off-target stimulation effects.  

18. To allow independent analysis of the green (GFP/targeting) and red 

(brightfield/behavior) signals, attach the DV2 and camera to the imaging port of the 

microscope.  

19. Align the DV2 according to the instructions that come with the device. (see Note 10)  

20. Register the DMD coordinates to the field of view of the camera. Create a series of 

images that contain a square moving in a matrix across the DMD. (see Note 11) 

21. Prepare a slide with a thin layer of 1 M sodium fluorescein in water or glycerol 

between two shims under a coverslip and place it on the microscope stage.  

22. Pass the series of images to the DMD (step 20) and record where (if at all) a 

fluorescent spot appears on the camera. 

23. Compute the correspondence matrix of the coordinates passed to the DMD and 

coordinates where fluorescence was detected.  

24. Use this matrix to define an image transformation between the DMD and the camera.  
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Creating worm strains 

1. In general, the same strains that are used for whole worm optogenetics can be used for 

this method. (see Note 12) 

2. These worms should be grown in the dark following standard procedures. Where 

needed, add 2 µL of 100 mM all-trans retinal (ATR) in ethanol to the bacterial 

suspension immediately before seeding. (see Note 13) 

3. Laser ablations, if desired, can be performed as previously described (Bargmann and 

Avery, 1995; Fang-Yen et al., 2012).  

 

Preparing agarose pads 

1. Prepare 6 slides by placing 0.5 mm thick shims, approximately 1 cm by 2 cm, on each 

end of each slide.  

2. Prepare agarose pads by mixing 0.20 g agarose and 4 mg 5-HT into 2 mL of NGM 

(10% agarose, 10 mM 5-HT) in a 50 mL centrifuge tube. (see Note 14)  

3. Swirl the mixture gently so that the agarose is evenly dispersed in the liquid rather than 

a large clump, but avoid getting too much of the mixture on the sides of the tube. 

4. Rest the lid on top of the centrifuge tube, but do not screw it on. 

5. Place the centrifuge tube in a 250 mL beaker.  
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6. Fill the beaker to ~50 mL with tap water, just above the level of liquid in the centrifuge 

tube.  

7. Microwave the beaker and centrifuge tube for 50 seconds at high power, at which point 

the agarose mixture should be clear, and may have some bubbles.  

8. Using a disposable plastic spatula, place a drop of agarose mixture about 1 cm in 

diameter onto the middle of a slide prepared with shims and immediately cover this slide 

with a second slide (see Note 15).  

9. Make slides until all the agarose has been used. (see Note 16)  

10. Allow slides to set for at least 1 minute before adding worms.  

Steps 11-16 should be performed quickly for optimal immobilization 

11. Load 1.5 µL of a 2.5% (v/v) suspension of 50 nm diameter polystyrene beads into a 

20 µl pipettor (Kim et al., 2013). (see Note 17)  

12. Remove top slide from one of the pads and place the slide with the pad onto a plate 

lid on the microscope stage.  

13. Use bacteria to stick up to 10 worms onto the bottom of a worm pick, but do not put 

them on the pad yet.  

14. Expel the 1.5 uL of beads onto the pad.  

15. Gently, and as quickly as possible, place the pick into the beads and allow the worms 

to transfer into the beads on the pad. (see Note 18) 
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16. Quickly place a coverslip on top of the pad to immobilize the worms.  

17. Wait 5-10 minutes before performing experiments to allow the worms to habituate.  

 

Performing the experiments 

1. Set the frame rate of the camera and the laser power. (see Note 19).  

2. Place a slide on the microscope stage and find a worm at 10x on the microscope under 

brightfield illumination. (see Note 20) 

3. Switch to 63x and move the pharynx of the worm into the center of the field of view 

under brightfield illumination. (see Note 21)  

4. Manually take a z-stack of the pharyngeal neurons by illuminating the entire field 

using the DMD, and focusing through the relevant regions. This illumination period 

should be less than 1 second.  

5. If desired, use MATLAB convert the images into JPEG files. MATLAB scripts for this 

and all other steps are available upon request. (see Note 22). 

6. Identify the images in the z-stack that most clearly show the neurons of interest.  

7. Use the roipoly function in MATLAB to select the regions of these images you would 

like to use to stimulate each neuron. (see Note 23 and Fig. 2B and C)  
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8. Use MATLAB to create an image mask that that contains the value 1 for the region 

you outlined in the previous step and the value 0 elsewhere, and transform this file into 

DMD coordinates using the transformation computed in step A23. (see Note 24) 

9. Create a Discovery 4100 script that tells the DMD which images to display and at 

which times they should be displayed. (see Note 25) 

10. Acquire a baseline recording of behavior without any illumination. (see Note 26) 

11. Run each script while recording from both the red and green channels. (see Note 27) 

 

Analyzing the data 

The following steps should be repeated for each experiment. 

1. If desired, convert the images into JPEG files. (see Note 22) 

2. Use the roipoly function in MATLAB to draw a ROI around the brightest part of the 

neuron that was stimulated during the experiment. (see Note 28) 

3. Use MATLAB to track the pixel intensity of this region over the course of experiment.  

4. Use MATLAB to identify the times at which the intensity of this region sharply 

increased or decreased. These are the times at which the stimulus was turned on and off, 

respectively.  

5. Use MATLAB to select the rectangular region of the terminal bulb just anterior to the 

grinder. (see Note 29 and Fig. 2A)  



  
134 

6. Using the freely available package PIVlab, a Time-Resolved Digital Particle Image 

Velocimetry Tool for MATLAB, track the velocity this region over time. (see Note 30) 

7. Use this trace of velocity over time to identify the times at which a pump occurred by 

drawing a threshold and recording the times at which a positive-going threshold crossing 

occurs. (see Note 31) 

8. Determine the number of pumps that occur during each interval in which the stimulus 

is on or off. (see Note 32)  

9. Divide the number of pumps in a stimulus interval by the length of that stimulus 

interval to find the average pump rate. (see Note 33) 
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Notes 

Note 1: My setup uses a Leica DMI3000B inverted microscope with a Leica Plan Apo 

63X oil immersion objective lens with N.A.= 1.4. Any microscope with a port that allows 

direct access to the back of the objective should suffice. An inverted microscope may be 

easier to set up due to the lower height of the fluorescence illumination path, but an 

upright microscope could be used as well.  

Note 2: The distance between the 6.24 mm lens and the 75 mm lens must be ~81.24 mm, 

but the distances from 75 mm lens to the irises, between the irises, and between the irises 

and the laser, can be arbitrary. My rig is partially designed to work with a 532 nm laser as 

well as a 473 nm laser, so I use a system of mirrors and a dichroic beam splitter to allow 

me to use these two lasers through the same optical path. If you only wish to use one 

laser, you can aim it directly through the irises, though I find it useful to have the beam 

reflect off at least one mirror before entering the irises, because it is easier to precisely 

adjust the tilt angle of the mirror than that of the laser.  

Note 3: For the Leica DMI3000B, the fluorescent light port in the rear of the microscope 

contained optics of unknown parameters, so I used a side auxiliary port and custom filter 

cube (Nuhsbaum Inc.) that allowed direct access to the back of the objective. 

Note 4: You should adjust this position so that a sharp back-scattered image through the 

objective forms 200 mm away beyond the lens. It is difficult to measure the 200 mm 

distance from the back of the objective to this lens precisely, so you may need to adjust 

this lens empirically later. If this lens needs to be adjusted after all the other lenses are set 
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up, it may be easier to adjust the position of the microscope rather than move all the 

optics. 

Note 5: Due to spatial constraints, I put a mirror between the 200 mm lenses. This is fine 

so long as the total distance along the light path between the lenses is 400 mm. 

Note 6: The 100 mm distance here should be adjusted empirically so that a crisp back-

scattered image from the microscope appears on the DMD and is centered on the grid of 

mirrors, covering it completely.  

Note 7: The laser beam should just barely cover the DMD. If this is not the case, then you 

likely need to adjust the two smaller lenses so that the beam is not changing in size after 

it exits the 75 mm lens.  

Note 8: To do this, the light must be incident onto the DMD from the lower right, if you 

are facing the DMD. I find that is easiest to use multiple mirrors to reflect the laser beam 

at the correct angle, as this provides multiple degrees of freedom for adjustment 

Note 9: This will allow a large amount of the light to pass through but will reflect a small 

fraction without disrupting the direction of the laser beam. You can measure the light 

power reflected and the light power at the objective to determine the percentage of light 

that is reflected, and use this relationship to determine the light power at the objective at 

any time.  

Note 10: Alternatively, a beam splitter could be built in house with similar optics to those 

in the DV2.  
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Note 11: In order to target a specific region of the microscope stage, you must first 

identify the DMD coordinates that correspond to this region. This process will need to be 

repeated if any of the optics are inadvertently bumped, so make sure that all of the optics 

are tightly fastened to the table before beginning this step.  

Note 12: It is essential that the opsin of interest is tagged with an appropriate fluorescent 

protein (I used blue light to excite ChR2 and Mac, so I used opsins tagged with YFP or 

GFP). However, I found that for some transgenes the ChR2::YFP was not bright enough 

to resolve neuron processes (for example, zxIs6[unc-17p::ChR2(H134R)::YFP + lin-

15(+)]), likely because the ChR2 is membrane bound. After confirming expression in the 

relevant cell bodies, I crossed strains containing dim transgenes into a strain that 

expressed cytoplasmic GFP under the same promoter (I used vsIs48[unc-17::GFP]). I 

found this particularly useful for looking at off-target effects during ablation experiments, 

were I wanted to determine the effect of stimulating processes near a cell body after 

killing the cell body.  

Note 13: I stored ATR-seeded plates at 4°C for up to one week before use. 

Note 14: I make the agarose mixture fresh for each experiment. 5-HT is necessary for 

inducing a basal pumping rate during immobilization. Other drugs can be added at this 

step as desired, though I found that adding too many ionic salts (more than 10mM) 

caused the polystyrene beads to clump and made immobilization difficult. 
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Note 15: I have found that the flexibility of the plastic spatulas makes it easier to get all 

the agarose out of the centrifuge tube, compared to stainless steel spatulas, and their low 

thermal mass may prevent premature cooling of the agarose. 

Note 16: I am usually able to make 6 slides from 2 mL of agarose solution. 

Note 17: I store 100 µL aliquots of polystyrene beads at 4°C between uses. 

Note 18: When the pads contain 5-HT, the beads clump quickly after they are added to 

the pad, which reduces the quality of immobilization. Thus, I try to have the beads on the 

pad for as little time as possible before I add the cover slip.  

Note 19: I use an exposure time of 30 ms, which produces a frame rate of 32.7 Hz. I set 

the laser power so that the irradiance of the laser at the objective is approximately 37 

mW/mm2, well above the saturation irradiance of ChR2 (Grossman et al., 2011). These 

settings can be adjusted to increase the visibility of the fluorescent signal, if necessary.  

Note 20: Because of the way the DV2 splits the camera field of view, it is important that 

the head of the worm is close to aligned with the long direction of each channel’s field of 

view (within ~30 degrees). If the head is not aligned in this manner, rotate the slide or 

select a different worm on the slide. Do not rotate the camera, or you will have to re-

register the DMD and camera images.  

Note 21: It is important that the grinder is visible in the camera’s field of view, since its 

motion will later be used to quantify feeding rate. It is also important that the locations of 
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the neurons of interest are visible in the camera. For pharyngeal neurons, this should not 

be an issue as long as the worm is aligned as described in Note 20. 

Note 22: The Andor iXon 885 and Andor SOLIS software produce images as multipage 

TIFF files. I find it easier to work with JPEG files than multipage TIFF files, but this is a 

lossy compression and may increase noise.  

Note 23: This should be a region slightly larger than the cell body – about 2-3 µm in 

diameter – to allow constant stimulation as the neural cell bodies move during the pump. 

It is important that the neuron of interest remains in this region during the entire 

experiment, because the fluorescent signal from this neuron will be used to determine the 

times of stimulation post hoc. Counterintuitively, I found it difficult to immobilize some 

paralyzed mutants, in which case I found it necessary to use a substantially larger 

stimulus region to ensure the neuron of interest was stimulated during the entire 

experiment.  

Note 24: The DMD mirrors can be set in either the ON or OFF position, so I pass an 

image that contains 1s (representing ON) in locations corresponding to the area of the 

stage I wish to illuminate and 0s (representing OFF) elsewhere.  

Note 25: The DMD works by reading in images that represent the pattern it should 

display and displaying this pattern, then pausing for a defined period, then reading in the 

next file, and so on. For my experiments, I begin with an all-off image for 5 seconds, 

followed by 5 seconds of illumination of the neuron of interest, followed by an all-off 

image for 5 seconds, repeating up to 10 times and ending with an all-off image. 
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Note 26: I record the baseline for 30 seconds. 

Note 27: I wait 2-3 minutes between running each script, i.e. between each neuron I 

stimulate. I found that the behavior was most robust when experiments were performed 

within 90 minutes of immobilization.  

Note 28: Here I find it better to use a ROI smaller than that used for the experiment, 

because it is easier to detect changes in brightness when just looking at the brightest parts 

of the neuron.  

Note 29: I found that using a rectangle that extends from the anterior edge of the terminal 

bulb to the grinder, and is just slightly wider than the grinder, provides the best signal.  

Note 30: Tracking the velocity of this region over time will show a series of spikes, each 

representing a pump: a positive change in velocity represents the movement of the 

grinder towards the posterior, and a negative change in velocity represents anterior 

movement. 

Note 31: I found that using a threshold of half of the maximum velocity provided high 

sensitivity and specificity, though a wide range of threshold values will give the same 

result on a good recording.  

Note 32: I did this for each stimulus interval by finding the number of pumps for which 

the value (pump time – stimulus time) was greater than 0 but less than the time between 

when the stimulus turned on and when it turned off.  

Note 33: The pumping rate during the stimulus-off windows is sometimes lower the 
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initial baseline, likely due to post-excitatory inhibition, so I typically do not use these 

values for looking at the effect of neuron stimulation. Rather, I use the pumping rate that 

I get from step D10 as the baseline.  
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Figure A.1: Setup for single neuron stimulation of pharyngeal neurons. Light leaves 

the blue laser and is reflected off a mirror (black line) and dichroic beam splitter. A small 

percentage of the light is then reflected to a power meter to monitor laser output. The 

light then passes through two irises before being expanded through a telescope composed 

of two lenses. The beam is then, through a series of mirrors, reflected onto the DMD 

(brown box) such that it covers the entire grid of mirrors. This beam then passes through 

a series of lenses along the light path. It then enters the microscope through an auxiliary 

port, where it is reflected by a dichroic on a custom filter cube into the back of the 

objective. The stage of the microscope is illuminated with red light. This red light and the 

green light emitted by fluorescent proteins then pass through a DV2 beam splitter, which 

separates the red and green channels, which are then recorded by a camera. 
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Figure A.2: Stimulation of single pharyngeal neurons. A: DIC image of the pharynx. 

Black box denotes region used for velocity calculations. B: wide field GFP fluorescence 

image of the same field of view as in A. The arrow points to an MC soma. C: GFP 

fluorescence image of the same field of view as in A and B, during selective illumination 

of an MC soma. D: Velocity from PIV algorithm during ChR2-mediated stimulation of 

the MC neurons. Each peak in the velocity represents a pump. The blue bar represents 

timing of laser illumination.   
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