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Microfluidic Pumping With Surface Tension Force and
Magnetohydrodynamic Drive

Abstract
Micropumping is difficult to design and control as compared to their macro-scale counterparts due to the size
limitation.

The first part of this dissertation focuses on micropumping with surface tension forces. A simple, single-action,
capillary pump/valve consisting of a bi-phase slug confined in a non-uniform conduit is described. At low
temperatures, the slug is solid and seals the conduit. Once heated above its melting temperature, the liquid
slug moves spontaneously along a predetermined path due to surface tension forces imbalance. This technique

can be easily combined with other propulsion mechanisms such as pressure and magnetohydrodynamics
(MHD).

The second part of this dissertation focuses on MHD micropumping, which provides a convenient,
programmable means for propelling liquids and controlling fluid flow without a need for mechanical pumps
and valves. Firstly, we examined the response of a model one dimensional electrochemical thin film to time-
independent and time-dependent applied polarizations, using the Nernst-Planck (NP) model with
electroneutrality and the Poisson-Nernst-Planck (PNP) model without electro -neutrality, respectively. The
NP model with well designed boundary conditions was v developed, proved capable of describing the bulk
behavior as accurate as the full PNP model. Secondly, we studied the MHD propelled liquid motionin a
uniform conduit patterned with cylinders. We proved equivalence in MHD and pressure driven flow patterns
under certain conditions. We examined the effect of interior obstacles on the electric current flow in the
conduit and showed the existence of particular pillar geometry that maximizes the current. Thirdly, we looked
at MHD flow of a binary electrolyte between concentric cylinders. The base flow was similar to the pressure
driven flow in the same setup. The first order perturbation fields, however, behave differently as the traditional
Dean’s flow. We carried out one-dimensional linear stability analysis for the unbounded small gap situation
and solved it as an eigenvalue problem. Two-dimensional nonlinear simulation was performed for finite gap
size or bounded situations. We observed strong directionality of the applied electric field for the onset of
stability. Results in this study could help enhance the stability of the system or introduce secondary motion
depending on the nature of the applications.
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ABSTRACT
MICROFLUIDIC PUMPING WITH SURFACE TENSION FORCE
AND MAGNETOHYDRODYNAMIC DRIVE
Mian Qin
Advisor: Dr. Haim H. Bau
Micropumping is difficult to design and control asmpared to their macro-scale
counterparts due to the size limitation.

The first part of this dissertation focuses on wpeMmping with surface tension
forces. A simple, single-action, capillary pumpikealconsisting of a bi-phase slug
confined in a non-uniform conduit is described.léw temperatures, the slug is solid
and seals the conduit. Once heated above its mekimperature, the liquid slug
moves spontaneously along a predetermined pathtausurface tension forces
imbalance. This technique can be easily combingl @ther propulsion mechanisms
such as pressure and magnetohydrodynamics (MHD).

The second part of this dissertation focuses on MidRropumping, which
provides a convenient, programmable means for fnogdiquids and controlling
fluid flow without a need for mechanical pumps amdves. Firstly, we examined the
response of a model one dimensional electrocherth@alfiim to time-independent
and time-dependent applied polarizations, usingNbmst-Planck (NP) model with
electroneutrality and the Poisson-Nernst-Planck RPNnodel without electro

-neutrality, respectively. The NP model with wedlsigned boundary conditions was



developed, proved capable of describing the bullaber as accurate as the full PNP
model. Secondly, we studied the MHD propelled kigmotion in a uniform conduit
patterned with cylinders. We proved equivalencéMidD and pressure driven flow
patterns under certain conditions. We examinecetfeet of interior obstacles on the
electric current flow in the conduit and showed thastence of particular pillar
geometry that maximizes the current. Thirdly, wekied at MHD flow of a binary
electrolyte between concentric cylinders. The és& was similar to the pressure
driven flow in the same setup. The first order pexation fields, however, behave
differently as the traditional Dean’s flow. We c¢ad out one-dimensional linear
stability analysis for the unbounded small gapagitin and solved it as an eigenvalue
problem. Two-dimensional nonlinear simulation wasf@rmed for finite gap size or
bounded situations. We observed strong directitnafi the applied electric field for
the onset of stability. Results in this study cobkelp enhance the stability of the

system or introduce secondary motion dependingnemature of the applications.
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electrolyte with z,=-z,=1. D;=D;=10""m?/s , C, =
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5.11

10*mol/m3. R, = 0.5m. R, = 0.505m.B = 0.4T. p = 103kg/m3.

The critical Dean numbddn, at the onset of instability, predicted by
linear stability analysis, as a function of the wamumberk. The
electrodes’ current is controlled. The white andygareas correspond,
respectively, to stabler(< 0) and unstableg( > 0) states. The symbols
correspond to finite element solutions of the nwedir equations. The
solid and hollow symbols correspond, respectivigysubcritical Dn™)

and supercritical I{n*) cases. The symbols are located{/atDn~,

Dn*} = {2.39,4.02, 8.04},{3.77, 5.63, 7.24},{5.05, 6.43, 9.65} and
{7.12, 10.45,14.47}. The other conditions are the same as in Fig..5.7108
The scaled eigenvectors, ¢, g,v and j, as functions ofx. Constant
electric current is imposed across the electrodes= 8.04. k = 2.39.

(@ j,=01, 0¢=0011; (b) j,=-0.1, o=-0.016. Other
parameters arethesame asinFig. 8. 7. ...cciiiiieeiinnnnnn. 112
The concentration distribution of when (a)j* = —0.1, Dn = 8.04;

(b) j* = 0.05, Dn = 4.02; and (c)j* = 0.1, Dn = 8.04. The black
solid lines in (c) are the streamlines associatégld the secondary flow

in the r — z plane. The arrow shows the flow direction. (d) diiie
current flux distribution for case (c). All the ethparameters used are
thesame asiNnFig. 5.7, o i i i et ii i ettt ittt tieeeeeaaannnns 113

The critical Dean numbddn, at the onset of instability as a function
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of the wave number. An infinitely long annular cardwith controlled
electric potential applied across the electrodég. White and gray areas
correspond, respectively, to stabte< 0) and unstableds( > 0) cases.
The hollow Pn*) and solid Pn~) symbols correspond, respectively to
subcritical and supercritical cases. The symbols &cated a
{k,Dn" | Dn*} ={1,3.93|4.69} (2.5,4.46 | 5.45} and
(4,5.73]7.34} . j,=6x10"3. a=0.5. D} =D} =10°m?/s ,
C, = 10*mol/m3®. R, =05m. R, =0505m. B=04T . p=
103kg/m3. =103 Pa " Se e e ettt eeeeeeeeeeeeennenannaannnnn 115
5.12 lon concentration distributiom; in the controlled potential case
described in Fig. 5.10. (a) subcritical stabm = 5.73. (b) supercritical
state Dn = 7.34. The solid lines are the streamlines of the seannd
flow. k = 4. All the other parameters are the same as useigirb.11 116
5.13 The critical Dean number at the onset of lyibtg as a function of the
wave number. Controlled potential case. The whited gray areas
correspond, respectively, to stabte< 0) and unstables( > 0) states.
The dotted line with solid squares correspondsh® dolution of the
linear stability problem with Nernst boundary cdmats. The solid line
corresponds to the Butler-Volmer boundary condgiavith j, = 103
and a = 0.5. All electrolyte properties are the same as usded. 5.7 118
5.14 The kinetic energy of the secondary flojm, ||?> as a function ofr;.

D;=D,=1. j*=015. [=2. The dotted line with circles
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corresponds to results of the simplified, two-disienal model. The
dashed line with crosses shows results of the astisstric model. The
inset depicts the relative difference between thm@imate model and
exact model predictions as a function”f . . ......... ... ... 120
MHD flow in an annulus of height= 2m/2.39. (a) Concentration
distribution ¢; and the (u,w) streamlines when aj* = 0.1; (b)
Concentration distributionc; and the (u,w) streamlines wher
j*=—-0.1. (c) Electric current distribution in case (a).) (Hlectric
current distribution in case (b). All the othergmeters are the same
ASUSEAINFIQ. 5.7 et e et ieeeeeeneeecccaeannaaannnns 121
The intensity of the secondary floy, ||*> as a function of the current
density j*. The dashed line with squares, dashed line circesl
dashed line with triangles correspond, respectivelycapped conduits
with height | = 2m/2.39,2n/5, and 2m/10. The solid line with
crosses correspond to an infinitely long annulardedt with periodic
boundary conditions in the axialz) direction and wave numb

k = 2.39. All other parameters are the same as in Fig..5.7....... 122
The intensity of the secondary flolu,||? (a) and the average
azimuthal velocity|| are depicted as functions of the aspect rétio
when the current is controlledj{| = 0.1). The dashed line and the

hollow circles correspond, respectively, to positiand negative

currents. The relative difference between the sitgrof the secondary
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The intensity of the secondary floWu,||> as a function of the
potential difference between the electrodag,{;). The dashed line
with squares, dashed line circles, and dashed \With triangles
correspond, respectively, to capped conduits wight 7, 7/2 and
n/4. The solid line with crosses correspond to annitgly long
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The intensity of the secondary floyu, || (a), the average azimuthal
velocity || (b), and the average current flux (c) as functiohghe
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dashed line and the hollow circles correspond,aesgely, to positive
and negative currents. (d) The relative differebhetveen the intensity

of the secondary flowu, ||? (dashed line), average azimuthal velocity

(solid line), and average current flux as functiohthe aspect ratid. . 126

XXii



CHAPTER 1: Introduction

1.1 L ab-on-a-chip

There’re a few terms that have become popular énethgineering world in recent
years: micro total analysis system (UTAS), lab-ashigp (LOC), micro-fluidics,
micro-electro-mechanical- system (MEMS) and thesmarcounterparts (NEMS).
These terms refer to devices that significantly dseale the conventional laboratory
tools and integrate the current experimental devifenctions. In the sequence
they're put, each term has broader meaning tharmptéeious one: e.g., LOC is a
device that integrates on a single substrate ongeweral laboratory functions and
deals with the handling of extremely small volunfeflaids; while micro-fluidics
include mechanical flow control elements aside fratated above. A typical
microfluidic device usually consists of the followi fluid channels, micromixers,
microvalves, micropumps and calibrating devices.riods purposes covering
mechanical, chemical and biological fields couldrealized on these small devices,
e.g., flow separation, liquid chromatograph, HIiMtedgion and DNA amplification,
see Ziober et al. 2008 for an example.

The advantages of microfluidic technology over thaditional bench-top
methods include: 1) small fluid volume, which meamsiuced consumption of
reagents and production of waste, also requires dample volume for diagnostics,
say one tiny drop of blood sample instead of a;t@)esmall reactor size, which
means shorter diffusion distances and shorter rnsspdimes to heating/cooling,

leading to faster diagnosis; 3) high surface tounw ratios, which means ample
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reaction surfaces and active binding sites, alst fi@at dissipation; 4) integrated
functionality and enhanced compactness of the ®st®) massive parallelization
due to compactness, which allows high-throughpuatlyesis; 6) low cost, since it
usually involves cheap plastics and massive fatiica making disposable chips
possible; 7) safer platform for chemical, radioaetor biological studies because of
integration of functionality and less human integfece during the process; 8) easy
storage, better portability, less energy consumptad etc.. For the overview of
problems associated with microfluidics, such adeJbeating, channel geometry and
flow resistance, see Bayraktar & Pidugu, 2006 amatset al. 2005.

Any microfluidic device, regardless of its functmnsubstrate material,
fabrication technique and structural design, rezguprecise handling of small liquid
volumes, usually in the pico liter range. The snilalid volumes in these systems
needs to be stored, pumped, mixed, dispensed ervide manipulated to achieve
desired mechanical, biological or chemical effeéisr example, PCR (polymerase
chain reaction) reagents may need to be firstatced from separate fluid reservoirs
into a mixing chamber and then be transported anaifgyent temperature regions
on the microchip so that the DNA templates couldlicglly undergo denaturation,
annealing and elongation processes and finallyeaehmnassive duplicatiorrig. 1) .
For the fluid transport purposes mentioned aboassipe and active control of fluid
motion is desired, which are generally referredganicropumping and microvalving
techniques. For a review on microvalving, see OhABn, 2006. We focus on

micropumping in the following text.



3D Mixi DNA D@IAan:plicon and UPT
channe IW Isolation PCR mixing/incubation 100 Denatore DNA
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and air ports andair ports Time © 1 2 3 4

Fig. 1 a) A polycarbonate based microfluidic devioe oral cancer screening and
detection (Ziober et al. 2008); b) the principleRER reactions (by Dr. Steven M.

Carr).

1.2 Micropumping Techniques

There’re two categories of micropumping technigaesording to Laser and
Santiago, 2004: 1) displacement micropumping, thclg reciprocating, rotary and
aperiodic pumping; 2) dynamic micropumping, utiigicentrifugal, electroosmotic,
electrohydrodynamic, magnetohydrodynamic forces atod The various dynamic
micropumping methods are referred to as “Contindtmyg micropumping” in Woias,
2005.

Micropumping could be very challenging in a few e&d. First, small pump
size is desirable due to the limited space on ti@ochip. Rigorously miniaturize
part by part a normal sized pump will be extremaifficult and expensive, if not
impossible. Second, although high pumping rate aseally not required in
microfluidics, precise metering of fluid volume avégreat importance. Even if the
absolute difference is minute, the relative erroll e significant. The result is

especially noticeable for highly sensitive bioladicand medical diagnosis and
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treatments. Third, due to the decreased channelaizompanied by the increased
flow resistance, pressure gradient required bynheopump is not insignificant.
Surface forces (e.g., surface tension, if multiphfé®~ and interfaces are present) are
becoming more important due to the increased seiidaea to volume ratio and could
act adversely to the pumping. Reliability, power n&amption, cost and

biocompatibility are critical issues to micropumgioo.

1.3 Surface Tension

Surface tension force driven fluid has many distiadvantages. As a passive
pumping method, it requires no consumption of epefdgso, as a surface force, it
scales with the size of the conduit to the secomtroand is comparatively more
important in micro-scales compared to the othewyldoctes (inertia, gravity and etc.).
Examples of how surface tension forces could beedti to propel fluid motion are
summarized in Bico & Quere, 2002. The balance dfase tension could be broken
by capillary imbibition, conical shaped conduit,rfage hydrophilicity gradient,
reactive surface, photosensitive surface and teayrer ununiformity. For more

background of surface tension based micropumpefgr to chapter 2.1.

1.4 M agnetohydrodynamic Flow
Among the dynamic pumping methods, magneto-hydradyc (MHD)
pumping draws much attention. The biological saspdege usually electrically

conductive and could carry electric current flomdgr an applied magnetic field, the
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electric and magnetic field interaction resultd_orentz force, which in turn, drives
fluid motion (Qian & Bau, 2009). The operation o&ID pump requires no moving
element. The generated flow rate is easily adjlsstiay tuning the amount of applied
current/voltage. For more background of MHD basecropumping, refer to chapter

3.1,4.1and 5.1.

1.5 Organization of the Dissertation

We discussed surface tension force and MHD bas&d flumping in more
details in the following chapters. Chapter 2 stade&perimentally and theoretically
the surface tension based micro —pumping usingepbhange materials. Chapter 3
studies theoretically and numerically the electeoltal response of weakly
conducting electrolyte under AC and DC applied ppédions. Chapter 4 studies the
MHD micropumping in weakly conducting electrolytehich is confined in a uniform
conduit and surrounding circular cylinders. Chaptstudies the MHD flow behavior
in curved channels, including base flow pattern atability analysis. Chapter 6

Concludes.



CHAPTER 2: Surface Tension Based Phase Change Pump / Valve

2.1 Introduction

In microfluidic applications, it is often necessaoyinduce and control fluid motion in
minute conduits. Since frequently the devices asighed to be disposable, it is
desirable to achieve these objectives inexpensiaety reliably. Given the relatively
large ratio of surface area to volume in microfiaidevices, it is natural to attempt to
utilize surface forces for flow control.

One of the early examples of the use of surfacee®rto move liquids is
imbibition by capillaries and porous materials. Wasrn’s 1921 derived a theory of
the dynamics of imbibition in circular capillari@s contact, on one side, with a large
body of liquid and confirmed his theoretical prditios with experimental
observations. Imbalance of surface tension foreasihduces fluid motion may result
from various factors such ag the presence of single meniscus as in Washburn’s
work; (ii) non-uniform geometry such as a cone-shaped cofduang et al. 2007);
(iii) variations in surface tension resulting from &tidns in chemical composition
(Weislogel 1997) and/or temperature (Mazouchi 1984y (v) variations in contact
angle due to varying surface properties inducechmmical reactions (De Gennes
1998, Sumino et al. 2005), light (Ichimura et @0Q), and electric fields (Yun et al.
2002). The surface-induced forces can propel imbisdiquid slugs that, in turn, can
displace the working fluid, provide diffusion bam$ between solutions of various
compositions, and open and close connections.

To be useful, the surface tension-driven flow mostur at will under
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operator’s control. To avoid spontaneous, undesinetion, we propose the use of
phase change material. During storage and inagtivie slug is maintained in solid
state, frozen in position. When fluid motion, pumgi and valving are desired, the
slug is heated to above its melting temperatureceOn liquid state, the slug motion
occurs spontaneously by the action of surface $or@Gée motion can be further
enhanced with other pressure sources. When theesofitheat is removed, the slug
returns to its frozen, immobile state.

There are many examples in the literature of plchsege valves (Bico & Quere
2002, Oh & Ahn 2006). In some instances, the wayKinid itself has been frozen
(ice valve) to close a flow passage (Hobbs & Pis20@B3). In other cases, researchers
used low-temperature melting paraffin. Occasionalsigners took advantage of the
volume change associated with the paraffin’s phas@nge to actuate a flexible
membrane (Yoo et al. 2007, Chen et al. 2005, Bedeah 2006, Klintberg et al. 2003,
Lee & Lucyszyn 2005, Yang & Lin 2006, Carlen & Mastgelo 2002, Selvaga
-napathy et al. 2003, Klintberg et al. 2003). lhestinstances, the molten material
was displaced and moved out of the way with extepnassure force (Song et al.
2008) or with magnetic force when the paraffin plhvgs laden with magnetic
particles (Liu et al. 2004). When in solid statee paraffin valves were reported to
withstand pressures of at least 50psi without lgak&iu et al. 2004).

In the current work, we combine phase-change natesih surface tension
forces to facilitate pumping and valving. In théldwing part of this chapter, | first

provide a theory for the surface tension-driven iorotof the fluid. Second, |
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demonstrate that this pumping performance can bened. Third, | describe a few
examples of implementations and compares experahenbservations with
theoretical predictions. Then | present the disonssand conclusions.
2.2 Theory

In this section, we study the plug motion oncesiin a liquid state. Consider
the closed loop depicted in Fig. 2.1 consistingtwb cylindrical conduits with
diametersd, and d, (d,>d,). The two menisci between the immiscible liquidrpa
are initially located in conduits of different diaters. Normally, material 2 is in solid
state. Here, we follow the chain of events onceaitiR has been heated above its
melting temperature and is in its liquid state.

Ap, = 4y,,cos06,

d,

liquid 2

e

Figure 2.1 A closed loop consisting of two cylindrical contduof diametersd, and
d, containing two immiscible liquids 1 and 2. One iseos is located in the small
tube and the other in the large tube.

According to the Young equation, the pressure jum@®ss the interfaces
between liquid 1 and liquid 2 are, respectivelyp, =4y;,cosd, [, in the small
conduit and Ap, =4y;,cos9, [d, in the large conduit. In the aboveg,, is the

interfacial surface tension; ané, and &, are, respectively, the contact angles
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between liquid 1 and liquid 2 in the small and érgonduits. Sinced, <d,,
Ap, > Apg and the liquids will move in the counterclockwidieection. The driving
force is

F =ny,,(d,cos8,-d, cod,) . 2.1
The above expression can also be derived basedengyeconsiderations.

When the slug is in motion, the contact angle wlilhnge as a result of the
combined effects of the viscous force, which phmes tneniscus at the conduit’s wall,
and the surface tension, which preserves the sgaheshape of the meniscus. This
dynamic effect decreases the curvature of the amlvgnnterface and increases that
of the receding interface (Fig. 2.2). We use a &mmodel to describe this contact

angle hysteresis (Bico & Quere 2002).

Py Py P

N

Lt P \J
=1

V, < d liquid 1 liquid 2

Figure 2.2 The shapes of the advancing and receding menisenwhe slug moves

Va

b liquid 1 d e

towards the left.
The contact angle of the advancing interface (Haffrh975):
1/3
6, =[6r ffCa+9)]| 2.2
is a function of the capillary number

Ca=uly,,, 2.3
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which represents the ratio of the viscous and titerfacial force. In the above,is

the average velocity of the fluid in the condulf,=In(d,/2a), and a is a
molecular length scale on the order of a few aogsét For example, when

d,=4mm and a=6A (Bico & Quere 2002, Hoffman 1975); ~15. To recover

3
the equilibrium contact angle at zero velocity, @sts 5=g—e|_, where 6, is the

equilibrium contact angle.
When liquid 2 is wetting, downstream of the recedinterface, a film is
deposited along the conduit’s wall with thickneBsetherton 1961)
h, =1.34R[Ca*®. 2.4
As a result, the radius of curvature of the recgdaireniscus is smaller than the
actual radius of the conduit (Fig. 2.2b) by (BicdQuere 2002)
h=29h, . 2.5
Moreover, since the liquid wets itsel}, =0. The above model indicates that
the motion dynamics is independent of the largedadis material. This is consistent
with our experimental observations (see sectioh 2.4
In our analysis, we assume that the apparatus @&Il. is horizontal and
neglect gravitational forces. This is justified whihe ratio of the gravitational force

|Ap| gd12
4y,

and the surface tension force as given by the Bamdber Bo = is small.

In the above,Ap=p, — p, is the difference between the densities of fluidand 2

and g is the gravitational acceleration. For examplegemwthe two substances are oil

and air (\p =80Ckg/m*), the tube diameter i¢dmm, and the interfacial tension is
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00IN /m, the Bond number is~0.2.

The momentum equation in the smaller capillary

d 0.2
(g}ul) = (pD - pU) 41 + ﬂdlylzcosﬁl- 87T[,Ul(|l-|1)+ Iu;ﬂ_'lu 2.6

where the various lengths are defined in Fig. 202. and p, are, respectively, the
pressures upstream and downstream (assuming fltive inounterclockwise direction)
of the small conduit.m, |, and u (i =12) are, respectively, the total mass, the
total length, and the velocity of the fluids in dot i. 44 and g, are, respectively,
the viscosities of liquid 1 and liquid 4,, is the length occupied by fluid 1 in conduit
i attimet. In the above, we assume that the flow along mbshe length of the
conduit obeys Poiseuille law (parabolic velocityofie) and both liquids are
incompressible. Similarly, in the large diametenduoit

d(myu,) rrd,?

dt

=(p - Pp) —711(d, = 2h) yp, = 8] g, (1,=1,) + 1) 4 Ju. 2.7

The total liquid mass in conduit is:
2

d
m zl:pl(li _Iit)+p2|it TI 2.8

The velocity of the fluids in the small diametendait is:

_dhe

u, = : 2.9
odt
The velocity in the large diameter conduit is:
dl,,
=——=. 2.10
2 dt
Conservation of mass requires that
d12(|11_|10):d22(|2o_| z)- 2.11

Combining equations (2.6-2.11) and eliminating phessure terms, we obtain
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the second order, nonlinear differential equatmn if, as a function of time

d2,
dt?

2 —
A(n) d, (cosé’l_d2 21)

d dl dl
+B(n) g b G | FLC(L, + DM G = ez G-I
1 2
2.12

In the above,

nd,” d,?
A(n) = (/02 - pl)(d_]éllo + lzoj + pl{Fzzll + |2]’

2 1

B(n) = (o, - pl)(d—zz L J

nd’ d,’
32 d, nd’
C(n)==—(u, - 2 1
(=17 (7 ﬂl)( s j
32 nd,” d,’
and D(n) :d_zz(l'IZ _ﬂl)(d_zlzllo"'lzoj"'ﬂl(ﬁ?ll"'lzj

are time-independent. We introduced the variahleto accommodate situations
when a large conduit empties into small diameter conduits. Additional details are

provided later in this chapter. Here, in the singtenduit case,n=1. The initial

conditions are:l, (0) =I,, and 0"1(;—50) =0.

Since, in general, equation (2.12) cannot be soésexttly. It is desirable to
derive approximate, asymptotic solutions for a &ecial cases. In the limit of short
time (t - 0) and the fluids initially at rest, the velocity imall, the surface tension

forces are balanced with the inertial forcés-0, 6 =6,, and equation (2.12)

reduces to:

2.13

d3, _, d?(cosf, d,- 4
[A(l) + B(ﬂm]? - 4y12d_12 dl d22 :
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In the short time limit,

d’(cosd. 1
oy Yo le _ ©
J/lZdlZ( dl dzj ) |

+1. .
AQD + B, v

2.14

I, ()=

: .d : L
Only when the diameter ratl%—1 <cosd,, the net surface tension force is in
2

the direction as in Fig. 2.2 and drives the ligmdtion in the according direction.

When % >cosd, >0, the net surface tension force is smaller thao zed could
2

not drive the liquid motion. When the interfacetle small conduit curves toward the
opposite direction¢osé,, <0), the liquid motion is going to be reversed, akqifiid
1 and liquid 2’s positions are switched.

At long times, inertial terms can be neglected and has a balance between

surface tension and viscous forces, equation (2eif)ces to

d, , d?fcosg d,-d
[C(l)llt + D(l)] dt - 4yZI.Z d12 ( dl d22 . 2.15
13 2 213 2/3
In the above,§ =| 6l ﬁ%+5 and h=194 d_lzﬁ (%j .
y dt Sy dt

When the two fluids have the same viscosities 1/,, C(1) = 0. The time-dependent
term in equation (2.15) drops out and time-independow is established.

Another special case occurs when one of the flisdsgas (say, liquid 1). In
this case, p, << p, and g << u,. In other words, one can neglect both the inertia

and the viscous resistance of fluid 1. EquatiodZPwith n=1 reduces to
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d,> nd? nd,? d4, d,> nd\(d,Y’
pz{(ﬁlz d22 |11+ d_22|10+|20 F'*p le d22 dt

4(d, - 2n)y _ i, 32, |( d) _ nd,’ nd,’ dl, _
+ nd;? nd;’ ycosg, + d,2 |lnd* d? ly + d,? Lot 15 at 0.

2.16

Furthermore, when the ratio of the diameters igedd,/d, <<1), and 4, is
velocity-independent, equation (2.16) simplifiesthe classical Bosanquet equation

(Bosanquet 1923). This equation can be integrated to yield

d 16 > 4 Y
l, —2*+—v)l =~ ——"2cosbt =0,
LI d12 2t d, p, 1 2.17
and again to yield
_ b bt b
Lt)= e —— |+—-—, :
() \/e (a2+lmzj N 2.18
where a:16'/22 and b:M. When an analytical solution is not possible

dl dlpZ
(i.e., when g, is a function of the velocity), the equations ¢enreadily integrated
numerically to render,, as a function oft.
Equation (2.11) indicates that the velocity of thierface in the large conduit
is significantly slower than that in the small cartdWhen it is desirable to increase
the velocity of the meniscus in the large condaitfew smaller conduits can be

combined in parallel. A few possible arrangemengsdepicted in Fig. 2.3.

u, a _—
u, v g
3
un C
, —_—

o ®) (©
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Figure 2.3 Various embodiments of multiple parallel small doits connected to a
single large conduit.

Below, we considern small diameter conduits branching from a singlgdar
diameter conduit. In the arrangement depicted o Pi3a, the number of small
conduits is restricted by the cross-sectional avéathe large conduit. In the
arrangement depicted in Fig. 2.3b, the number @llstonduits is unrestricted.

The theory developed earlier in this section camXtended to accommodate
the cases depicted in Fig. 2.3. To this end, wéewni+1 momentum equationsn
equations for the small conduits and one equatioritfe large conduit. The small
conduits can vary in diameters facilitating variodisplacement rates in various
conduits. To model the flow, we need to solve forvelocities u; in the small
conduits and the pressure differences across tigghlef each tube. For conciseness,
we consider here only the case of small conduits with identical diameters and
initial menisci positions.

The lengths of the columns fluid 2 in the smalldsil,, (t) ) can be calculated

using equation (2.12) witm >1.

2
When liquid 1 is a gas anadgf2 >>1, equation (2.16) is identical to equation
n

1

(2.17) and independent ofi. In other words, when the sum of small tubes’
cross-sectional areas is much smaller than the adrd@e large tube’s cross-section,
the number of small tubes does not affect the flagtion in the individual small

conduits. In contrast, the flow rate in the largadauit is proportional to the number
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of the small conduits{). Thus, by connecting a few small conduits to theyd

conduit, one can increase the average velocitgefiuid in the large conduit.

2

d , e
When §2>>1 and the small conduits are identical in size baveh
n 1

different initial liquid menisci positions, the gl motion in any small conduit can be
predicted with equation (2.17) independently of akieer small conduits. For example,
consider a case with two small conduits branchimognfa large conduit. Figs. 2.4a
and 2.4b depict, respectively, the liquid displaeatnin each of the small conduits
when the ratio between the small conduits’ diametet large conduit’s diameter is
0.4 and 0.5 and the initial lengths of the liquauenns are differentl{; =1cm and

l,, =1mm). The figures depict the predictions of the apprate model assuming that
the small conduits (1 and 3) are independent di etwer (denoted with ‘a’ in Fig. 4)
and that accounts for the interdependence of tlee thomentum equations (denoted
with ‘e’ in Fig. 2.4). When the diameter ratio isA0the “approximate” and “exact”
results coincide (Fig. 2.4a). When the diameteiorat 0.5, there is a significant
difference between the “approximate” and “exacsufes (Fig. 2.4b). d, = 198mm,
=0, 4, =0064Pals, y,=0034N/m, p =0 p,=83%kg/m’, I, ,=00Im,

l,, =00Im, 1,,=0.00In and 6§, =57°. In (a), d,=d;=079mm and in (b)

d, =d, =1mm.
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Figure 2.4 The displacement of the liquid column in the sncalhduits 1 and 3 kaen

2 2
d; >>>1 (a)and d, 5
1 1

~1 (b). The subscriptee and a denote, respectively, the

“exact” (coupled model) and “approximate” (uncowpiaodel) predictions.

The concepts described above can be extendedltmémultiple generations
of branches as in Fig. 2.3c.
2.3 Optimization

Consider the case of a single large conduit of diemd, and a single small
conduit of diameterd,, i.e., similar to the case depicted in Fig. 2.2 Weénote the
diameters’ ratiom=d,/d,. As d, decreases, both the driving surface tension and
the viscous drag increase albeit at different réges terms of equation (2.12)). One
would expect therefore that there exists an optueineter ratiom that minimizes
the amount of time that it takes the meniscus teec@ predetermined distance.
Alternatively, one can seek the diameter ratip that maximizes the length of the
liquid displacement in the large conduit

J =il (t,). 2.19

in the time intervalO<t<t; . To find the optimalm that maximizesJ, we start

from equation (2.12) and assume that the contagieas velocity-independent (i.e.,
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6, =6, and h=0). Below, we rewrite equation (2.12) in terms of.

{(pz—pl)( : —mzjln +

1 d?l
:01(F|1 + Izj + (:02 - pl)(m2|10 + Izo)} 3

m at?
1 d, ) 4 cost),
+(p2—pl)[ﬁ—m2j[d—?j +d—ym2(1—Tej . 220
2

d,’

32 1 1 dl
+_|:(IUl B IUZ)(mZ _leh * 'ul[mll + IZJ + (qu - ,ul)(m2|10 + |20)}d_11:t =0

As before, the above equation can be significasitlyplified when liquid 1 is

a gas. Further simplification can be obtained [aizeng that the inertial forces play a

significant role only for

a short time interval exftthe onset of motion. We illustrate

the effect of inertial forces through an exampleséming liquid 1 to be a gas and

neglecting its inertia and viscous drag, Fig. 2epidts the normalized inertia terms

(solid line) and the viscous drag (dotted line)flofd 2 as functions of time. The

forces were normalized

with the surface tensiocdoklVitness that the inertial force

decays rapidly. Whert > 1.5ms, the inertial force is smaller than 1% of the aug

tension force and can be safely neglected.

normalized force

1

0.5

\_

time Ms
A 0.5 1 1.5 2 2.5

=

L]

s
TrE tamr e aE s B L EEEE EE E BEE

Figure 2.5 The normaliz

2 are depicted as func

ed inertia (solid line) and viscouagif{dotted line) of liquid

tions of time. The forcesramemalized with the interfacial
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force.  d, = 0.8mm, d, =2mm, 0, =83kg/m’, 1, = 0064Pa (3,

Y1, =0.0220N/m, I,y=1,,=00Im and 6, =60".

Assuming that fluid 1 is a gas and neglecting ineterms, equation (2.20)

reduces to
4 cosé, \ , 32u 1 d, _
—dflllz(l—_. )"' d222|:_(“|2_ 4)|11+(|||2|10+|20)j| d%l =0. 2.21

The above equation can be integrated in closed .fdgging the initial

condition |, (0) =1,, we get:

(mz _%j(lltz - |102)_ 2(m2|10 + IZO)(Ilt - |10)_%m2(1_Lrnsaajtf =0. 2.22
2

We now can express the objective functidn explicitly as a function ofm

and t;:

Im+m“lzo—Jluf +2m“llazo+m5{m3|;+ d.H{cost, - )(1—m6)tf}

4
j= o 2.23

Fig. 2.6 depictsJ as a function ofm when t, =100s. The solid line and
the symbols correspond, respectively, Jo values calculated with expression (2.19)
and values calculated using the differential equnsti(without neglecting the inertial
terms). The figure illustrates that equation (2.28)vides an excellent approximation
for the objective functionJ and that an optimal diameter ratiom exists

(m,, = 0437 for the conditions of Fig. 6) for which the dispéenent length can be

optimized.
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Figure 2.6 The objective functionJ is depicted as a function of the diameter ratio
m. p, =830kg/m®, i, = 0064Pals, y,, =0.022N/m, I, =1,,= 00Im, d, =2mm
and 8 =60°. The solid line is obtained from equation (2.23¢d dots are obtained

from brute force solution of equation (2.12).

2.4 Experiments

To demonstrate the validity of the theory and tosirate that some of the
ideas articulated in the theoretical section carplieinto practice, we carried out a
sequence of experiments. In the first set of expents, we monitored a liquid slug
displacing air as function of time in an open cahdfithe type depicted in Fig. 2.3a.
In the second set of experiments, we describedidqoél-liquid displacement in a
closed loop as in Fig. 2.1. In the third set of@xmpents, we describe a spontaneously
moving phase change valve. In all the cases, & laige empties into multiple small
tubes = 3).
2.4.1 Liquid-Air Displacement

The experimental setup is shown in Fig. 2.7. Theipseonsists of three

flexible Teflon tubes of diameted, inserted into a large polycarbonate tube of
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diameter d,. Fluid 1 was a gas.€., air). Fluid 2 was light paraffin oil.

: .
g~

big tube

small tubes

1cm

Figure 2.7 Experimental setup of a big polycarbonate tubeneoted with three small
Teflon tubes. Dyed oil replaces air.

The thermophysical properties of the working fluwere either measured or
were obtained from the vendors. To facilitate imaggof the transparent paraffin oil,
we mixed the oil with oil-based ink (Speedball )nd@he contact angle between the
paraffin oil and a Teflon surface is estimated ¢o 366+ 4° (Brassard et al. 2008).
The product y;,cosf = 9.3mN/m was measured by monitoring the capillary rise of
a column of paraffin oil in a vertical Teflon cdpily tube. We estimate
Y., ~11.6nN /m. The viscosity of the clear paraffin oil was esited to be
M, =64.ImPal$s by measuring the terminal velocity of a settlirgytizle suspended
in the liquid. The density of the paraffin oil &5°C is p, =83Cg/m’, obtained
from the manufacturer’s data.

Fig. 2.8 depicts the displacement of fluid 12 )(as a function of time. The

solid lines and the symbols correspond to theaktcedictions and experimental
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observations. The various symbols correspond todifferent conditions listed in

Table 2.1. The theoretical predictions are in g@gfeement

observations with less than 9% discrepancy.

11t m
0.1l A
0.08 t / 4+
0.06 | 2
006 o
0.02
E ts
200 600 800 1200

N N

with experimental

Figure 2.8 The displacement length, is depicted as a function of time. The

symbols and solid lines correspond, respectivelythe experimental data and the

theoretical predictions. The small and large tules respectively, made of Teflon

and polycarbonate. The initial conditions are tated in Table 2.1.

The experiments were repeated with large condugéderof PVC and glass.

Consistent with the theory presented in sectiah@ material of the large conduit had

little or no effect on the displacement as a funcf time.

1 (red, upright 2 (black 3 (blue cross) 4 (green, solid
triangle) rhombus) square)
l,, (M) 0.015 0.005 0.0095 0.008
l,, (M) 0.015 0.01 0.013 0.017

Table 2.1 List of initial lengths of fluid 2 in the small darge conduits for Fig. 2.8.

2.4.2 Liquid-Liquid Displacement

In the above, we discussed the displacement of pghaffin oil with air. We
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encountered, however, a few difficulties when afitng to carry out experiments
with two liquids such as oil and water.

A small PVC tube was connected to a big glass atbene end (Fig. 2.9).
Depending on the sequence of injection, the PV toiay be pre-wetted with
paraffin oil (Fig. 2.10b) or not pre-wetted with rp#iin oil (Fig. 2.10a). In the
non-pre-wetted case (Fig. 2.10a), we observedquidlimotion once the other end of
the two tubes were connected to form a closed ldoghe pre-wetted case (Fig.
2.10b), the oil-water interface in the small tubeved towards the water side on the
existing oil film. The different phenomena resultifrom these two set-ups are
because that additional energy is required to dgvalprecursor film in front of the
interface (Bico & Quere 2002). However, this motdid not last for long because of
the interfacial instability between the core wateead and the surrounding oil film
(see Fig. 2.11b). This instability caused a wavteriiace. Disturbance amplified
eventually to break the core water thread intoaitgal drops suspended in oil, which
minimizes the surface energy. The water slugs heéldttshape and were asymmetric
in the advancing and receding menisci. This caasklitional resistance to the fluid
motion and finally terminated the liquid displacemerig. 2.11d is an experimental
picture which clearly displays the interfacial msility between the core (oil) and the

water film along the hydrophilic glass tube’s wall.
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Figure 2.9 A big glass tube connected to a small PVC tubedfilvith clear paraffin
oil and red dyed water. The counter clockwise nmostarts when the PVC tube is
pre-wetted with paraffin oil and ends when the casger thread breaks into slugs

suspended in oil.

a) b)
— step 1
r— { — =
—{-ﬂ:{lﬁ] _— step 2
step 3

-l

step 4

B water
£ il

Figure 2.10 Filling sequence a) the small tube is not pre-geetvith paraffin oil. No

motion is observed upon completing step 4. Fillsgguence b) renders the entire
small tube coated with a film of paraffin oil. Ligumotion sets up counter-clockwise
at the completion of step 4. The motion slows dand finally stops when the water

core starts forming isolated slugs surrounded by oi
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a) e
b) Co ]
) XX

Figure 2.11 a) A schematic of the paraffin oil displacing wat@wvards the right in a
uniform tube. b) Instability develops as the licuichove, causing the annular flow
interface transition to a wavy shape (known asatimeular flow mode). c) Instability
magnifies and the core thread of water breaks datensmall droplets surrounded by
oil, minimizing the surface energy (known as thgldaflow mode). d) Experimental
picture of oil (center thread) displacing water téyufilm) in a 200um diameter
glass tube at flow ratel485/./s towards the right (photo obtained in our
collaborator Dr. Doyoung Byun'’s lab).

When we replace water with air in the above sethp, situation is much
simpler. The oil displaces air easily without achéer pre-wetting oil film along the
tube’s surface. The oil slug proceeds smoothly itrticcupies the entire length of the
small tube.

2.4.3 A Thermally-Actuated Valve

To explore the possibility of using a spontaneoustying slug as a valve, we
constructed the device shown in Fig. 2.12. Fig2&.And b are, respectively, a
schematic depiction and a photograph of the exmeral device. The device was

fabricated with polycarbonate. The device cong$ta main, large conduit equipped
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with a branching, side conduitand three smaller conduits connected to the main
conduit. One of the smaller conduits has also adiiag side conduit. We used a low
temperature melting fluid such as Steedman’s waxaid& et al. 2000)
(Sigma-Aldrich Inc.) as liquid 2. At room tempenauthe wax was solid and blocked
the conduit. Once the temperature was increasedeabite melting temperature

(T, =37°C), the wax melted and motion set-up spontaneously.

side channels
! ]

small conduit

l big conduit

intermediate region

Liquid 1

Figure 2.12 A conceptual embodiment of thermally-actuated phasange valve (a)
and a device fabricated with polycarbonate b).

Initially, when the wax (substance 2) was solidbliicked the passage from
side branch to the main tub® while passaged, I11, andlV were maintained open.
Upon the melting, the wax (fluid 2) moved spontarstp to open passage
Depending on their position, passadéslll, 1V could remain open or be closed
either simultaneously or gradually. The timing loé tclosing of passagés, |11, and
IV can be controlled either by their position or bpetitive melting and freezing of
the wax. The operation of the device is featured uideo available in the Supporting
Information.

2.5 Discussion
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According to our experimental observations, spogdas liquid-air
displacement is able to be achieved by designiegtiannel geometries and choosing
the small tube material thus the interface cundimgction.

The liquid-liquid displacement has more complicasicthan the liquid-gas
displacement. For example, the interface instgbiig dependent on the local
roughness of the tube, the pre-wetting film thidshand other subtle factors, making
it difficult to control.

Tube geometries other than cylindrical could alsoused for the capillary
pump. The Laplace pressure across the liquid-liquitiquid-gas interfaces need to
be calculated according to the tube cross-sectitmser sharp corners in the
cross-sectional geometry should be avoided, otlsertfie more wetting liquid might
run along the edges.

To further assist the phase change process, weusgynixture of wax and
ferrofluids which has large quantities of metaltjgées inside, thus enhances the heat
conduction. We may also use laser heating (Pagk 007) which claims to be able
to achieve the phase change in seconds.

Here we established a theory which successfullgipi® the experimental
observations of liquid motion. The discrepancy tesw the theoretical calculation
and the experimental data is less than 10%. Thexesaveral factors that may
contribute to the discrepancies. First, the accatedl inaccuracies in the viscosity,
surface tension and contact angle values of thadlimay be significant. Second, as

the interfacial properties are highly sensitive @éavironmental conditions, the
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temperature fluctuations in the surroundings mayp &ad to the difference between
the theory and the experiment. Third, instead ofirftatwo straight sections of
uniform cylindrical tubes as in the theory, we hauwaved small tubes for the
experiments, which may cause additional curvatuitheé interface. Last but not least,
our simplified theoretical model ignores the detaif flow around the sudden step
change in the tube diameters.
2.6 Conclusion

In this study we demonstrated the use of capifilarge to spontaneously open
or close a phase change valve. A one dimensiomardic model predicted well the
experimental results. We proposed an optimizaticimesie based on the dynamic
model and get good agreement between the optimizaésult and the brute force
solutions of the dynamic model. This valve was smdw be able to achieve both

close to open and open to close switching withoosds.
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CHAPTER 3: Electrolyte Responseto AC / DC Polarizations

3.1 Introduction

Upon imposing an electric polarization, ions in tectrolyte are set in motion and
participate in reactions: the motions take placethe liquid phase, including
migration due to the electric potential gradienffudion due to the concentration
gradient and convection when liquid motion presetite electrochemical reactions
take place at the electrode—electrolyte interfadé®e bulk electrolyte is electrically
neutral and its performance is purely resistivehwie resistance depending on the
local concentrations. The interface regions arl mccharges and are usually called
the electric double layer (EDL), including a comp&tern layer and a diffuse layer.
The EDLs are in dynamic equilibrium with the bulkder constant polarizations,
performing as resistors. When time—dependent paiaoins are present, the EDLs
would undergo significant charging/discharging m@sses, showing capacitive
behaviors. The ion transfer kinetics could be dbedrby the Poisson equation and
the Nernst—Planck (NP) equations (PNP model) (Bfmmteet al. 2001). In the bulk
electrolyte where neutrality holds, the electridgmbial doesn’t need to be solved.
However, in the EDLs where neutrality conditiondathe Poisson equation needs to
be solved, which is coupled to the ion concentratidDue to the great difference
between the length scales of the bulk and the EE, mesh generation and
numerical calculation become difficult, which cfdf a proper description of the EDL,
such as an equivalent boundary condition for th&.bihe electrochemical reactions

on the electrode surfaces are often described é¥Bthler—\Volmer type equation for
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Faradaic current injection. This highly non-lineboundary condition further
complicates the problem.

We study the response of a model one—dimensioratrethemical thin film to
both time—independent and time—dependent appliddripations. For the time—
independent case, Bazant et al. 2005 carried ouditahed asymptotic study for thin
EDL situation and compared the asymptotic solutigiin the numerical results. We
examine the ion transport in four different kind$ electrolyte and applied
current/voltage conditions. Both numerical simwa and analytical solutions are
obtained. In the time—dependent case, Bazant é08¥ studied the response of a
symmetric binary electrolyte to a step change geltaising linearized PNP equations
with the Laplace transforms for small voltages abthined numerical solutions for
large voltages. Their analysis was based on idgallgrizable (blocking) electrodes
where no current injection is possible. We solvsal full PNP model for both ideally
polarizable electrodes and current injection etetds, in the context of a tri-ion
RedOx electrolyte. A simplified model studying onilge electro-neutral bulk is
developed, under the proper boundary conditionsdiyature the capacitive—resistive
behavior of the double layer. The simplified mogethen validated by comparing its
result with that from the corresponding full model.

3.2 Theory

Consider a pair of parallel plate electrodes latattex =0 and L, respectively.

The space in between the electrodes is filled \aithelectrolyte solution. Once an

electric polarization (current or potential difface) is applied at the electrodes, the
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transport of thei -th speciesc is governed by the Nernst-Planck equation:

oc _ _ -
e om (i=1..1), 3.1

where the mass flux of specias

m =uc —D.0c - zv,Flg, 3.2
consists of convective, diffusive and electro-miiyeterms. In the aboveD, and
v, =D, /(RT) are, respectively, the diffusivity and the mopildf the i-th species.
z is the valance of the-th ion. | is the total number of ion specief. is the
Faraday constantg is the electric potential. For static electrolytkat we consider
in this chapter, the convective term vanishes.

The electric potential satisfies the Poisson equati

-0e,0¢)=F)_zc, 3.3

i=1

where &, is the dielectric permittivity of the solvent. Tlarrent flux in the bulk

electrolyte equals the sum of the ions’ net chélme:

|
l,=F) zm, 3.4

i=1
For reversible reactions at the electrodes’ susfac@x+ne < Red, the
species’ fluxes are given by the Butler-Volmer (B\¥guation (Newman &

Thomas-Alyea 2004):

AM., _ Jo| Coxanm gl-anF IRT)(v=gy5) _ CRed d /b P IRT =) | = _p [, 35
F COx,ave CRed ,ave

where a is the charge transfer coefficient for the cathodeaction, n is the

number of electrons exchanged in the reactign,is the exchange current’s density,
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Cox and cp, are, respectively, the concentrations of the aediand reduced

species. Subscripave and d/b refers to the average in the bulk and the interfac
of the diffuse layer and the bulk, respectively. almultiple reactions take place at
the electrodes' surfaces, a separate BV equatineeded for each reacting pair. The

net current flux at the surface of the electrode is

jE:F(ZRedrﬁRed-i-ZOxrﬁOx) 36
Typically, the bulk of the solution is electricaltgutral (EN):

> z¢ =0. 3.7

=
When considering the electrolyte response to fiymmtential, the EDL is in
equilibrium and the current flux across the EDLsirgariant: j. = j,. Equation
(3.1-3.3) will be solved, subjecting to the bourydaonditions in equation (3.5).
However, using the EN condition in equation (3tfg potential and concentrations in
the NP equations could be decoupled and no sepegatgion for potential needs to
be solved. The potential doesn’'t satisfy Laplaceatign though, which seems a
straight forward conclusion from equations (3.3) #B.7). The RHS of equation (3)
will be a second order small quantity if asymptatmalysis is carried out as in Bazant
et al. 2005.

The full PNP model (equations 3.1-3.3) needs tedbeed for the AC problem
for both the Debye layer and the bulk, since chageilibrium and EN condition
both fail in the Debye layer. A suitable boundaondition is shown as in Fig. 3.1,

with the stern layer acting as a capacitor of capace c, in parallel with a
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nonlinear resistor. The electric current is ableptss through the resistor path,
allowing Faradaic current injection, and meanwlularge/discharge the capacitor,

adjusting the potential difference across the dteyer.

CS

J_ || ;
Fa— <+— PNP'Model

o~ WW—

3

5 R

Q.

(¢

Stern layer Debye layer Bulk

Figure 3.1 A physical picture of the electrolyte structurgwelectric double layers
next to one of the electrodes. Circuit element di@svn to illustrate the boundary
conditions for the full PNP model.

From the stern model, which assumes the capacit#ritbe compact layerc, to

be constant, two Robin type boundary conditiondctdne obtained for the Poisson

equation (Bazant et al. 2005):

@«0)- ), —f'j‘” (0)=v(0)
X
q , 3.8
aL)+ 2,221y = v(L)
dx

£, . , .
Here A, =— is the effective thickness of the compact layerare the externally
C

S

applied potentials at the electrodes. These boyratarditions could be understood as

extrapolating the potential across the thicknesb®ftern layer.
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Since the EDL thickness is usually in then range and is much smaller than
the distance between the electrodes, numericatuliff is expected in solving the
full problem. A proper model that studies only tiectroneutral bulk but still captures
the behavior of the electrochemical cell is stasdelow, with equivalent boundary

conditions as sketched in Fig. 3.2.

Cs Cd
| | | |
] | | | | A
Jee—o " NP Model
- VW=
8 R Frumkin
S Correction
]
Stern layer Debye layer Bulk

Figure 3.2 A physical picture of the electrolyte structurgwelectric double layers
next to one of the electrodes. Circuit element di@svn to illustrate the boundary
conditions for the reduced NP model.

Note that the BV equation is used only across tmpact layer, which means
that in equation (3.6), concentrations and potéatidhe d /b interfaces should be
replaced by the corresponding quantities at fie interfaces. This is called the
Frumkin correction to the BV condition (Frumkin B)5For Gouy—Chapman profiles
for the equilibrium diffuse layer at leading order,

c, ~ean) 3.9

The concentration at the/d and thed/b interfaces are related by:
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C . C
'Ox,s/d —e I , Red,s/d - e( 310

COx,d/b CRed,d/b

where ¢=@,, —@,, Is the zeta potential.

The capacitance of the stern layer and the diffayger are as following:

ES —
C, :/1— ,Cyq = 3.11

M

The diffuse layer capacitance could also be obtalme numerically extrapolate the
potential profile from the PNP results and reldte time derivative of the capacitive
voltage and the injection current. The total caj@awoe of the two layers can be

calculated as:

¢ = 1 _ e
i+i A+ A, 3.12
Cs Cd

The potential drop across the stern layer and #igy® layer would be proportional to

their capacitances, which means that

V- C
- ] 3.13
Brg =% G
where 0= A,/ A,. The potential drop across the stern layer:
o
V=@ =—=(V=¢) 3.14

1+90
For time dependent applied potential, a generah fimr the EDL charging and
discharging is:

dv=a,) _

G o = e = oo 3.15

When the applied potential is periodic and of terf ", we have:
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bs % _ 1
je =, iwg,

) 3.16

where i =+/-1 and w is the frequency.
The dimensionless equations that normalize distanoencentrations,

potentials, current densities and time with ¢, RT/F and D,Fc /L, L?/D,

are:
oC D, oM, . ~ oC 0P
—=—-——1 (i=1..)), M,=—"-2C — :
oT D, oX ( ) oX 4 oX 3.17
0°d _ 1
-2 ==Y zC 3.18
Xz 285
ﬁEMRed — Jo COx,d/b e—w/d—anw _ CRed,d/b elP/6+(1—a)an = [MOX 3.19
COx,b CRed,b
dD(O)—Jed—q)(O):V(O)
dXx
do 3.20
PD+E— D)=V QD
dx
1
[c=c, 3.21
X=0
— | .
J, =X zM, 3.22
i=1
jE = ZRedMRed + ZOXMOX 323
div-o,,.)
COTM:JE _‘]b 3.24
. . . : ._q)d/b _ 1
and for sinusoidal applied potentiak =- 3.25
Je—J, WG,
o ERT _2¢ _
where LP:(\/—tbd,b)m_ , E=A/L, A= 26F? CS—? , C,=2¢ and
_2¢
° 1+9°
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3.3 Time-Independent Applied Polarizations

In this section, we study the steady state respohs@ electrolyte to a fixed
applied potential/ current. The electric doubleelayould be in equilibrium in all
these cases and only the electro-neutral bulk nietle considered. Electric current
is conserved in the entire domain of interest. iéesthave J = J. everywhere in the
direction perpendicular to the surface of the etetds.
3.3.1A symmetric binary electrolyte (A*'B*") under current density j,

As in the case of electroplating, only the catipasticipate in the electrode
reactions (assume single electron transfek}’ +ze" = A(s). The anode is made of
A(S) so that the total numbers oA*" and B* ions both remain constants

according to time. The governing equations forthknowns C,,C, and &®:

dc, do _ J.

ax TESax T

dC, _ . do _ 3.26
ax ~ZCergx Y

zC,-zLC,=0

Assume z =z,=1 are the charges of the cations and anions, regelctWe have
C,=C, everywhere from the electro-neutrality equation2§33). Adding and
subtracting equations (3.26-1) and (3.26-2) de@sifile concentrations and potential,
leading to the solutions

Je (1
C1:CZ:1+7E(E—X)

1+J2E(;_x) 3.27
o=In| 212
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1
that satisfy the mass conservation q‘f CdX =1 and boundary conditior>(0) = O.

X=0
We solved numerically the dimensionless Nernst-€daproblem using COMSOL

and the compared the numerical results with théyaca results, shown as in Fig.

Dimensionless concentration 0 Dimensionless potential
125 —Numerical —Numerical
1.2 : 3 : —=— Analytical -0.05 —&- Analytical
1.15 : -0.1
-0.15
o 1.1
- -0.2
©1.05 ®
3 £-0.25
g1 H
= % -0.3
g0.95 a
5 0.35
© 09
-0.4
ges -0.45
0.8 05
0.75 -
0 0.1 02 03 04 05 06 07 08 09 1 055

0 01 02 03 04 05 06 07 08 09 1
X

X

Figure 3.3 Comparison of COMSOL numerical solutions (solice)irand analytical

solutions (solid line with symbols) as in equatigB3). a) dimensionless

concentrations; b) dimensionless potential.

3.3.2A binary electrolyte ( A*'B*") under applied potential V
Consider two ion species with charge numl®rand z, co-exist in the
electrolyte. The electrode reaction i#*"+ze = A(S). The dimensionless ion

concentrations satisfying the mass transfer equsts following:

aC, oo 4P Je

ax TaSax T2

dc, _ . do _ 3.28
ax  ZCrgx 0

zC,-zLC,=0

Instead of having a constant current flux goingtigh the electrolyte, we impose
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potentials of 0 and V on the electrodes.

The boundary conditions can be written as:

Jg = J,{C(0)e" 2O —g =} at X =0

3.29
J.= Jo{e—ﬂzll‘l’(l)—V] _Cl(l)e(l—a)zll‘l’(l)—V]} at X =1
The mass conservations are now:
1 1 Zl
[cdx=1 [ cax==2, 3.30
X=0 X=0 22
Equations (3.28) yield the solution for the concatibns:
C.(X) :1+"E—22(1—XJ =4¢,(x) 331
z(z,+2,)\ 2 z,
and for the potential drop in electrolyte:
1
Ad =0 (1)-d(0) =2 InY e 3.32
z, J-J
2 +
where J* :M is the dimensionless limiting diffusion-migraticarrent in
z,

the cell, corresponding to the ion depletion cdoditC, (0) = 0.

Using the solution in equations (3.31) and (3.32)eliminate ®(0) from
equations (3.29) leads to an implicit expressiantfie polarization curveJ. (V). A
convenient form is obtained as the following equadi(3.33) and (3.34):
)

1_375 +(1+ \]Elj e(l—a)z{iln(jtjj—v} 3.33
J J

Je =J,E™ Kl—%}E—l} 3.34

The solutions to equations (3.33) and (3.34) aottqd as in Fig. 3.4. Finite element

E = ezlqa(o) -
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simulations of the problem with COMSOL for diffeteparameters ofJ* and o

are also plotted as in Fig. 3.4.

z1=1,z2=1, j0=0.001.

4F i L e
L O Analytical il
- 357 FEMLAB e
2 gl | O Analytical
= — —FEMLAB 0 /7
S 25 | 2 Analytical| ¢ “ma 3
€ || FEMLAB L
o 3| pe
‘g ‘rf
o 1.5} ﬁt\
2
z 17
S
2 pst
ok}
.E 0 c L 1 1 1 1
© 0 10 20 30 40 S0 60 70

dimensionless applied voltage V

Figure 3.4 Polarization curveJ, (V) determined analytically by equation (39) and
(40) (symbols) and by COMSOL simulations (lineg).=z,=1,J,=0.001 1)

a=05;2) a=0.3;3) a=0.7.

3.3.3 A binary dectrolyte (A*"C*") with supporting electrolyte (B=2"'C*") under
applied potential V

Assume three types of ion&*", B%" and C*” co-exist in the electrolyte,
with their concentrationsC,, C, and C, satisfying the non-dimensional time

independent NP and EN equations:

£+ Zlcl do = i
dX dX z

dc, do
C,—=0
dx T4 2 dx : 3.35
dC, do
-2C.—=0
dx % *dx

z:I.Cl + ZZCZ = 23C3
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The solution toC, and C, can be obtained as in Grigin 1993:

C,(X) =C,(0)e "

C;(X) = NC,(0)e**) >

Multiplying equation (3.35-1), (3.35-2) and (3.3p43y z,z, and —z, respectively

and summing them together, then reduce with equd835-4) to get: (for case of

2=2,2,=2,=1)
X _ 1
—=—/(3C,-C
o 7. (3C,-C,) 3.37
The mass conservation for ions (the concentratimascaled toc,, the ratio _& =k,
G
bar denotes average):
1 1 1
[ cax =k [ cax=1-2, [ Ccax=1 3.38
X=0 X=0 X=0
Denote
AD = D(1)-P(0) 3.39
and
y=¢e"° 3.40

Substitute equation (3.36) to (3.38) for mass caad®n for C, and C, to get the

following expressions:

2
CZ(O) (3N Iny+y™ —1) =1- X 3.41
E
2
NCO) 3N (y-1)-ny]=1 3.42
23

Reduce (3.41) and (3.42) to get the expressionNoras a function ofy:
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J-kY Iny+3(y- ) - (- X ) 3.43
3(y-D- %)

N(y)=(2-Kk)Iny+

The integration of equation (3.37) fromP(0) to ®(1) equals 1, leads to the
expressions ofC,(0) and J. as functions ofN and y:

c.(0)= 23N~ y ')y -1)
2 N[3N(y-1)-Iny]

3.44

) 2[3N (y1/2 —1)+ y—1/2_ :qz

= 3.45
: N[3N(y-1)- Iny]

Equations (3.44) and (3.45) together with the etentutrality condition (3.35-4) and

(3.36) yield the following expression fo€,(0) and C,(1) intermsof N and y:

C,(0) :1(N -1)C,(0)
12 3.46
=Ny -y ") C,(0)

If the currents at the electrodes are relatedd@atncentrations and over-potentials by

the Butler-Volmer boundary conditions:

Je =3, {—Cléo) PO g <°)} at X =0

JE — Jo {e—Za[dD(l)—V] _ Clk(l) ez(1—01¢(1)—v]} at X =1

3.47

Equating the right hand side of equations (3.47afhyl (3.47-2) and note that
®(1) = d(0)+ In\/y, ®(0) could be expressed in terms gf and V :
20(0) — 1+70 )

e =
C @) Q2 inyV) o C,(0) 3.48
k k

Equations (3.45), (3.47-1) and (3.48) can be catedl numerically for theJ. (V)

curve.
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We usedk =1/3,a0 = 0.5J,= 1V = .. We solved the problem with COMSOL

and compared the analytical and numerical resalshawn in Fig . 3.5.

3 L
. o Analytical
i JE—
> 25t Comsol
£z
T 2t
=
=
£ 1.5r
3
Q
2 10
@
§
5 0.57
c
b}
g o s 1 1 1 1
R 5 10 16 20 25 30

dimensionless applied voltage V

Figure 3.5 Comparison of the current — voltage relation catad by analytical

solution (symbols) and the COMSOL simulation res(gplid line).

3.3.4 A RedOx electrolyte (A*"C*” / B®%'C*") under an applied potential V
Two types of cations undergo RedOx reactidk:” +(z —z,)e" = B*". The

mass transfer equations and the electro-neutedjtitions are as following:

oC,, ~do__ I

ax ATax z-2,

&\, 4% Dl

dx dX D, z-2, 3.49
dc, do

7S - C_=

dx % dx

Zlcl + ZZCZ = ZC£:3

Assume z =3,z, = 2,z, = 1. The concentrations are scaled@g — =k. Summing

NpliNel

equations (3.55-1), (3.55-2) and (3.55-3) yields:
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D 1 3-k
C1+C2:JE(1_EQJI:@§_X)+T_C3 3.50

Multiplying equation (3.49-1) With%, adding it with equation (3.49-2) and use

2

dao =i% from equation (3.49-3) yields:
dX C, dX
Dl Dl Dl —_
12—C +| 6+ 2= |C, |dC,+|| 3+ 6= |C,+ &€,|dC,= ( 3.51
D2 D2 D2

The solution to equation (3.51) could be obtainadherically. In the following, we

will consider the simplest case of the fixed ratfaliffusion coefﬁcientsR :2 o)
2

that equation (3.51) can be integrated to be (Kdiarkt al. 1995):
(C.+C,)(3C,+2C,)=m 3.52
Here m is an integration constant.

The above equation (3.52) is equivalent to:

J 1 3-k
Cl-|Ef=-X [+=—|C.+m=0
’ {4[€2 j 2} ’ 353

Leading to:

2 _
_b+vb"—4m 354

C
3 2

where bzitﬁl—xj+3;k.
4 (2 2

For a given k value, we could obtain numericallgn as a function ofJ. through
the conservation of mass fdC,. The expressions of the concentrations are as

following:

C=3C,-D 3.55
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C,=30-4C,

c :b+,/b2—(1—k)2

3 2

For the Butler-Volmer boundary condition,

3=, {01(0) se-awe __Co(0) e_m} s X 20

k @-3)/2
3.56
JE - Jo Cz(l) e—a[qa(l)—v] _ Cl(l) e(l—a)[qa(l)—v] at X =1
1-%k)/2 k
From equation (3.55-1), (3.55-2) and (3.56), weadnie to obtain:
o0 =2k C,(0)+C, () exg" 557

1-3 C,(0)+C, (1) exp™ ™)

The numerical solution for thel. ~V curve could be obtained from equation

(3.56-1), (3.57) andA® from integratingd—(D:i%. We find out thatm is
dX C, dX

. . . 1-k

just weakly dependent od. (Fig. 3.6). We assumel. =0 and obtalnm:T.

Using this m value does lead to almost identical solutionshef 8. ~V relation.

04@s o O numerica! |
= quadratic
o]
0.3995 o
£ 0
0.399
o
%
@
0.3985
0 0.1 0.2 0.3 04 0.5

J_E

Figure3.6 m~J. curve from analytical solution (symbols) and adyaéc fitting
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curve (solid) from the mass conservation.
The numerical solutions om at different J. values are plotted as in Fig.
3.6. The comparison ofl. ~V curves of the COMSOL simulation result and the

analytical solution as developed above is showFign3.7.

05
-
-
42‘ 04'
W
c
Job]
© 0.3
=
o
3 0.2}
%)
o :
€ o4 o Analytical |
2 x m=(1-k)/2
S COMSOL
E ole o . . . .
© o 10 20 30 40 50 60

dimensionless applied potential ¥V

Figure 3.7 J. ~V curve from analytical solution with exaech values as in Fig.
7 (circles), analytical solution witm=(1-k)/2 (cross symbols) and COMSOL

simulation (solid line).a =0.5k = 0.2J, = 0.00.

3.4. Time-Dependent Applied Polarizations

First we consider the case of ideally polarizalkcteodes, where the ionic fluxes
vanish at the electrodes. A model problem studied@azant et al. 2004 is a dilute,
completely disscociatedz: z electrolyte, limited by two parallel, planar, bkieg
electrodes atx ==L and with applied potentialxv. When the applied potential is
much smaller than the thermal voltage <<k,T/ze), the equations could be

linearized into the Debye-Falkenhagen equation haglace transform gives a
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solution of the problem, as could be found in Baztral. 2004 part IV. Performing
the numerical inverse Laplace transform by Mathe&aatwe’re able to obtain the
potential and concentration distribution exactlg game as in Bazant et al. 2004 for
different parameters. The comparison between theenigal Laplace inversion
solution and the COMSOL solution are plotted asFig. 3.8. The electrodes are
located at dimensionless coordinadé=+1 and are subjected to dimensionless

potentials +0.1.

Figure 3.8 Dimensionless charge density =(C,—C,)/2 (within the EDL close to
the left electrode-1< X <-0.8) and dimensionless potenti@ for dimensionless
voltage V =0.1. Lines correspond td =0, 0.1, 0.5, 1 and 2 according to directions
shown. t =0 in the left figure overlaps with the x-axis and@ shown.

The reduced model described by equations (3.17)5)3s numerically solved
with COMSOL. The comparison of the full and reduoa transport model with
Butler-Volmer type of current injection is showniasFig. 3.9. The applied potential
is of magnitudeV =0.1 and frequencyw=7mw. 6=0.1. £=0.05. J,=0.001.

a =0.5.

-47 -



Potential [v]
b 0

—0.25
—05
—0.75

0015

001

1.25
—15
—1.75

0.005 [

Potential [v]
o

0005 e ossss et

001 F -

-0.015
-1

Figure 3.9 Comparison of the full PNP model with extrapolattmoundary condition
for the stern layer (dashed lines), full PNP moaligh leaky capacitor model for the
stern layer (solid lines) and reduced NP model Wetiky capacitor model for the
EDL (dotted lines with symbols). Results are basedbinary electrolyte (1:1)
subjected to applied potential with magnitude=0.1 and frequencyw=rr.
Different colors correspond td =0:0.25:2. 6=0.1. £=0.05. J,=0.001.
a =0.5. Half domain of the symmetric response is shown.

We also included in both the Fig. 3.10 and Figl3le full model with a
capacitor type of boundary condition for the stiayrer, which is close to but different
from the result from the linear extrapolation tyggboundary condition as in equation
(3.20). Note that for applied potentisd =0.1cos(iT ) the time response of the

reduced model agrees with the full models onlyraffe> 0.2.
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Figure 3.10 Dimensionless current injectiod. as functions of dimensionless
applied potentialV from the full PNP model with extrapolation boungar
condition for the stern layer (red dash dotted)linlee full PNP model with leaky
capacitor model for the stern layer (black soliee)iand the reduced NP model with
leaky capacitor model for the EDL (blue dotted liméh symbols).V =0.1.

w=7m. 0=0.1. £=0.05. J,=0.001

—--full-e
— full-c
~&- reduced
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Figure 3.11 Current injection J. as functions of time from the full PNP model
with extrapolation boundary condition for the stéager (red dash dotted line), the
full model with leaky capacitor model for the stéayer (black solid line) and the

reduced model with leaky capacitor model for theLE@®Iue dotted line with

symbols).V =0.1. w=m. 0=0.1. £=0.05. J,=0.001.

3.5 Conclusion

The physical model of a one dimensional electrolgell was summarized.
The DC responses to applied current/ potential wstrtglied for four cases of
electrolytes by solving the electroneutral NernsBk equations. The
current-voltage relations were obtained analytycalhd compared to the numerical
results. The AC response were obtained by solvirggfull Poisson-Nernst-Planck
model. A reduced model accounting only the eleeutral bulk was developed, with
proper boundary conditions for the non-neutral deuayers. The results from the
full and reduced model were compared to verify thidity of the reduced model,
which overcomes the numerical difficulty associatgth the distinct size difference

between the double layer and the electrolytic cell.
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CHAPTER 4: Magneto-Hydrodynamic Flow around Cylinders
4.1 Introduction

A lab-on-a-chip (LOC) device is a minute chemicabgessing plant that
integrates on a single substrate common laborgdmgesses ranging from filtration
and mixing to separation and detection. To achibese tasks, it is often necessary to
propel and stir liquids and control fluid flow. $& in many applications, one uses
solutions that are electrically conductive, one t@msmit electric currents through
these solutions. When the device is subjected texégrnal magnetic field provided
by either permanent magnets or electromagnetsl#utric current interacts with the
magnetic field to produce Lorentz body forces, Wwhim turn, drive fluid motion.
This phenomenon is commonly referred to as maghgtioedynamics and has been
utilized, among other things, to pump fluids in roftuidic conduits (Qian and Bau
2005;Jang and Lee 2000; Lemoff and Lee 200&ventis and Gao 200Westet al.
2002 and 2003Zhonget al. 2002;Eijkel et al. 2003;Bao and Harrison 2003a and
2003b; Arumuganet al. 2005 and 2006; Aguilagt al. 2006; Nguyen and Kassegne
2008), control fluid flow in microfluidic networksvithout a need for mechanical
pumps and valves (Bagt al. 2003); stir and mix fluids (Baet al. 2001; Yiet al.
2002; Xiang and Bau 2003Qian and Bau 2005; Gleeson and West 2002; \&est
2003; Gleesoret al. 2004); and enhance mass transfer next to eledredefaces
(Boum and Alemany 1999; Lioubashevskial. 2004; Alemany and Chopart 2007).
For a recent review of a few applications of MHDnircrofluidics, see Qian and Bau

(2009).
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Most of the literature pertaining to MHD focuseslmuid metals and ionized
gases (Davidson 2001). In contrast, in microfluidpplications, one typically deals
with electrolyte solutions. The modeling of MHD s of electrolyte solutions differs
from that of liquid metals since the local electoenductivity is a function of the
electrolytes’ concentration, which, in turn, deperah the flow field. Nernst-Plank
equations for the ions’ flux (Newman 1991), the MaxStokes momentum equation
(Batchelor 1967), and Maxwell’s equations for thagmetic field need to be solved
concurrently. Additionally, one often needs to adas non-linear electrode kinetics
and the possible production of undesirable prodottslectrochemical reactions at
the electrodes’ surfaces. Another potential unddsphenomenon is electrophoretic
migration of charged molecules and patrticles in ekectric fields induced by the

electrodes.

Fortunately, for electrolytes with low magnetic mpdétivity and a low
magnetic Reynolds number, the determination ohthgnetic field can be decoupled
from that of the ion concentration, fluid flow, aetectric fields, and electric current
induction can be neglected.

The typical MHD pump consists of an electrolytéefl conduit with a
rectangular cross-section whose opposite wall€a@aged with electrodes. It has long
been known that when the electrolytes are subjetded uniform magnetic field
directed parallel to the electrodes’ surfaces, MeID flow is equivalent to
pressure-driven flow (Ho 2007). We show that thasiiealence also exists in some

other circumstances that are common in microfluidicstems. We utilize the
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equivalence between MHD-driven flow and pressuieedr flow to obtain the flow
patterns of MHD flow in conduits patterned withlgil arrays. Such conduits can
serve as chromatographic and separation columnasodtalytic reactors. The pillars
provide increased surface area and solid supporstédionary phases and catalytic
surfaces (to facilitate and enhance heterogenezactions). MHD—driven flow is of
particular interest to chromatography as it allemg to drive fluid flow in a closed
loop, in effect, providing an “infinitely long cohan” (Martin 1958; Eijkelet al. 2004).
In a traditional, linear, separation column, théuom length must be selected in
advance, which is not always feasible when dealith unknown analytes or with
analytes that have slighttlifferent partition coefficients. No such advanceWwledge
is needed in the case of the closed loop chromapbgr The closed-loop
chromatograph also allows for real-time detection.

In the case of the column patterned with the pélaay, we show that when
the current is controlled (known), one can deduee MHD flow rate by using
literature data available for pressure-driven flowa similar geometry. When the
potential difference between the electrodes isctir@rol parameter, the equivalence
between the pressure-driven flow and the MHD-drivieaw cannot be applied
directly to obtain the flow field, and we solve tlwupled Nernst-Planck and
Navier-Stokes equations to obtain the concentratarrent, and flow fields. In the
latter case, we can verify the computations by cmng our computed drag
coefficients with literature data available for {pr@ssure-driven flow.

This chapter is organized as follows. Section dtbduces the mathematical
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model and outlines the various assumptions thalydiop the conditions typically
prevailing in microfluidic systems. Section 4.3 yes the existence of a “Lorentz
potential” under special conditions and thus thaiejence between MHD-driven
and pressure-driven flow under those conditionsti®e 4.4 reviews briefly MHD
flow in a uniform conduit. The analysis accounts doncentration gradients induced
by the electric field. Additionally, we redefineethefficiency of the MHD pump
energy conversion and estimate the temperatureaserin the MHD pump. Section
4.5 studies MHD flow in a conduit patterned witlpilar array. Section 4.6 studies
Taylor dispersion associated with MHD flow in ateegular conduit. Section 4.7

concludes.

4.2 Mathematical Model

Consider an electrolyte solution consisting loftypes of ionic species with

concentrationsc (i =1,....]) subjected to external electric and magnetic fieldse

mass transport of theé-th ion is described by the Nernst-Planbl} equation:
— =-0[N, (i=1..)), 4.1

where the mass flux of specigs

N; =ug - DG - zv,F¢ (Og-uxb) 4.2
is comprised of convective, diffusive, electro-naiive, and inductive terms. In the
above, u is the fluid velocity; D, and v, =D, /(RT) are, respectively, the
diffusivity and the mobility of thei -th ion species;z is the valence of the ™ jon

species; R is the gas constanfl is the absolute temperatur& is the Faraday
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constant; ¢ is the electric potential; ant is the magnetic field vector. We adopt
here the convention that bold and regular lettepasent, respectively, vectors and
scalars.

The electric potential satisfies the Poisson equati

-0fe,0¢)=F> zc, 4.3

i=1
where &, is the dielectric permittivity of the solvent.

Typically, in a homogeneous solution, net chargstsonly in narrow regions
next to solid surfaces (electric double laydt§L) and the bulk of the solution is

nearly electrically neutral:
> 76 =0. 4.4

The electric current flux is

|
j=FY.zN, =-F> zD0G -0, (Og-uxb), 45
i=1

i=1

where o;

ionic

|
=F?) z% is the ionic conductivity of the electrolyte satut.

i=1

The fluid motion satisfies the Navier-Stok&S) equation:
Jdu _ 2
P E+UDDU __Dp+/UD U+fEM) 4.6

where the electromagnetic body force
foy =F, +fg +Tc. 4.7
The Lorentz force

f_=jxb; 4.8
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the magnetophoretic force (when the ions are feaggmatic and/or paramagnetic)

—_ /Ym (m) 2.
f.=2"c'™0b ; 4
0B 2(_0 i 9

and the electrostatic force

|
fe =FOpD zc . 4.10

=
In the above, p and y are, respectively, the fluid density and viscagsity
¢, =1.257x 10°N[A is the magnetic permeability of the vacuurp; is the
dynamic pressure;y,, is the molar susceptibility; and the subscript denotes
paramagnetic ions. Due to the small dimensions afrafiuidic conduits, we
neglected buoyancy effects in equation (4.6). Weplamize, however, that body
forces due to density variations may, on occagiteny a significant role even when
device dimensions are relatively small. See, faneple, Qiaret al. (2006).

The electrolyte satisfies the continuity equation:

Ui =0. 4.11

Equations (4.1-4.11) constitute the standard model.

In the model presented above, we neglected thecatdmagnetic field. This is
justified since, in all our applications, the matim&eynolds numbelRe, = — <<1.
v

In the above,u is the average flow velocityH is a length scale associated with

the f|0W1 and v = (Coo.ionic)_l

Is the “magnetic diffusivity”. For example, when
g=1mm/s, H=1mm and g, =1.2%hm™m™ (0.1M KCI at 25°C), Re, ~10%

and the magnetic induction can be safely neglediki. approximation is valid even
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in the case of liquid metals. For example, in thsecof mercury (conductivity of
10°ohm™“m™), Re, ~10°. Thus, in what follows, we assume that the exierna
imposed magnetic field is unperturbed by the flow.

When the applied magnetic field is uniforrb #|b|ez) and the bulk of the
electrolyte solution satisfies the electro-neutyalcondition, both f; and f.
vanish, leaving the Lorentz force as the only bddyce. The dimensionless
Navier-Stokes equation becomes:

Re(‘j—‘fmvﬁ)_ﬁpwlﬁKzz,z‘z(% +2,6,V ) xb+Ha’ (i xb)xb 4.12
or i=1 .

In the above,Ha=H |b| Gionic. is the Hartmann number. The velocity, length, time
7

concentration, potential, magnetic field, pressared diffusion coefficients are,

F2H |b| D,C,AV,, u
, the conduit’s heightH, =%, the
URT H

respectively, scaled withu, =

average concentratioi, % bl % and D, = | |/ . Re=Pb s
D, u

F |b| D,c,H
My

the Reynolds numberK = is the ratio between the Lorentz force and

the viscous force.

The  dimensionless  currentj =+ = —K X!, zD; (Vé + z,6,VP) +

Haz(u X b) where j, = ,L12|(;)| AV,, is the externally applied potential difference.

Overhats denote dimensionless quantities and orseranote domain averages.
When the Hartmann number is small, the inductiomeru term in equation (4.12)

can be neglected. This is generally the case imaffiddic systems operating with
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electrolyte solutions. For example, whét =1mm, |b|=0.4T, x=10°Pal$ and
0. ~lohm™m™ (0.1M KCI at 25°C), the Hartmann numbeHa~10”. In
contrast, in the case of liquid metals such as amgr¢conductivity 10°ohm™'m™),
Ha~10 and the induction current term in equation (4.h2)st be taken into
account.

Equation (4.4) suggests that there is no accunoulatf charge in the bulk of
the solution. Therefore, the current flux is soldab(divergence free).

0g=o. 4.13

Applying equation (4.13) to equation (4.5) and eetihg the induction term,

we obtain the equation for the electric potentiaihie bulk of the solution:
|
0o.09)+F> z00D0c)=0. 4.14
i=1
Witness that equation (4.14) reduces to Ohm'’s laly when one can neglect

|
the term FZ;D [{D,0c ). This would be the case when all the ionic spehimse
i=1

similar diffusivities or when the concentration tdisutions are nearly uniform. The
flow field affects equation (4.14) indirectly thiglu its effect on the concentration
field (equation 4.2).

When reversible reactions of the tygex+ne < Red take place at the
electrodes’ surfaces, the species’ fluxes at teetrldes’ surfaces are given by the

Butler-Volmer BV) equation:

Jo| Cox (- C -
n DNRed ZE __Oxe( ank/RT) ___Red e[(l a)nF/RT]r]i| =-n DNox ) 4.15
COx CRed
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where j, is the exchange current fliwg is the charge transfer coefficient for the
cathodic reaction,n is the number of electrons exchanged in the macti
n=¢-V,, is the overpotential, andc,, and c, are, respectively, the
concentrations of the oxidized and reduced spetiéise electrodes’ surfaces. is a
unit vector normal to the electrode’s surface dedcaway from the fluid. When
concurrent, multiple reactions take place at thextebdes’ surfaces, a separate BV
equation is needed for each reacting pair. Alldsslirfaces, other than the electrodes,
are impermeable.

The boundary conditions associated with the mormmergquation are no slip
at all solid surfaces. In the problems considere hwe specify periodic conditions
for the flow velocities at the inlet and outlet.

Electrical neutrality exists in the bulk of the wbn, but not next to solid
surfaces. Typically a surface in contact with anesys solution acquires a net charge,
which attracts counterions to form a thin (a femaraeters in thickness) electrical
double layer consisting mostly of counterions. Electric field’s component tangent
to the surface propels the ions in the electric bflouayer and gives rise to
electroosmotic flow. When the device’s length sealmuch greater than the thickness
of the EDL, the flow in the EDL is approximated the Smoluchowski slip velocity
(Probstein 1994).

u, =-JE, I u, 4.16
where the zeta potentiaf is the potential difference across the EDL aBdis the

electric field. The subscript/ denotes the vector component tangent to the
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solid/liquid interface.

4.3 On the Existence of MHD Potential in Some Special Cases

Many microfluidic systems are planar (i.e., pataltethe x-y plane, Fig. 1).
Since the conduits’ depth8\ in the z-direction) are relatively small, the magnetic
field is nearly uniform and parallel to the—direction, i.e., b :|b|ez, where e, is a
unit vector in the z—direction. Often, the electrodes and embedded fesitsuch as
pillars, are parallel to thez—axis and extend the entire conduit’s depth. SeelFgr
an example. Under these conditions, the current dlind the Lorentz force can be
expressed, respectively, with vectorsj(x,y)=j,(x,y)e +],(X,y)e, and
fL(x,y):|b|(jy(x,y)eX—jx(x,y)ey) that are independent of the-— coordinate.
Although we used in the above Cartesian coordindtes same holds true for any
cylindrical coordinate system (Moon and Spencer8)9&iven that the electric
current flux is solenoidal and) is constant, the Lorentz forck is irrotational
(curl-free). To see this, consider

Oxf =0x(jxb)=j(0bd)-b(0G)+(bm)j-(jd)b=0. 4.17

The first and last terms on the RHS of equatiol7q¥.vanish becaus®é is a
constant. The second term vanishes because theielearrent flux is solenoidal
(00 =0). The third term vanishes because, in our padrcehse,b and j are
orthogonal andj doesn't vary in the direction ob (the z-direction). In other

words, the Lorentz force is a conserving vectddfiand one can define the “Lorentz
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Figure 4.1 A schematic depiction of a segment of a flow cangatterned with
pillars. The image on the left is a top view ane itthage on the right is cross-section

A-A. The red, dotted line denotes periodic boundamyditions

We emphasize that the Lorentz “potential” existalyoin the special
circumstances outlined above. Although these cistantes occur frequently in
microfluidic systems, theglo not apply to MHD flows in general. Unless the outlined
special circumstances are satisfied, the Loremtzfwsnot curl-free.

Since in microfluidic systems the Reynolds numiseypically small, one can
neglect inertial effects in equation (4.12). In thiesence of magnetophoretic and
electrostatic forces, the dimensionless Stokestenuean be rewritten as

V(p+2)+V=0 4.19

A —_
y —_ —_

so that the pressure can be modified to includé.dinentz “potential,” = :W. On
Jo
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account of the continuity equation, we also have

[?(p+3) =0. 4.20
Hence, when the boundary conditions are equivakiet, MHD flow patterns are
similar to pressure driven flow patterns.

In this section, we have shown that under spedialimstances, which often
occur in microfluidic systems, the MHD flow is egalent to pressure-driven flow.
Consequently, one can utilize the wealth of datailable in the literature for
pressure-driven flows to infer MHD flow patterns, \&we demonstrate through a few

examples in the following sections.

4.4 MHD Flow in a Conduit with a Uniform Cross-Section (MHD Pump)
Consider a straight conduit with rectangular cresstion of widthW and
height H (Fig. 1b without the pillar). The opposing wallstbe conduit = i%)

are plated with electrodes along the conduit’sredgngth L. An external potential
difference AV,, is imposed across the electrodes. It is well-knowat the classical
expression for fully-developed, pressure driverwfl@Vhite 2006) can be used to
describe the velocity profile of low Hartman numb&HD flow in a conduit with a
uniform, rectangular cross-section. Indeed, thisaispecial consequence of the

derivation presented in section 3. The flow ratéB&su et al. 2003):

_1(_dp_ .
Q—RH( dx+1y|b|j- 4.21
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where R, = is the hydraulic resistance of the pump and

_192H
Z

tanh . Witness that the sum iy converges

h I+ 2 yw
o (1+ 2n) 2H

rapidly and, in many cases, just the first two telimthe series provide an adequate

approximation. In the absence of an external presgtadient, the average velocity is

proportional to they- component of the current flu§,. The stall pressure is
Apy, =|b|1 /W =|b|j,L, where | = j LW is the total current transmitted between

the electrodes. Equation (4.21) can be rewrittea stightly different form

A
Q= Qma{l—ij : 4.22
Apy,

In the above,Q

max

is the flow rate in the absence of adverse (bac&¥sure and

Ap, is the back pressure.

4.4.1 Current-Potential Relationship in the MHD Pump

In contrast to the case of liquid metals, in theecaf electrolyte solutions, the
current density is not a linear function of thegydial difference across the electrodes.
Furthermore, as the potential difference acrossethetrodes increases, the current
eventually reaches a limiting value.

To illustrate the complex current-potential depert#de we consider the
reversible reactionA*" +(z -z,)e" = B*" of the RedOx specie®*", B*", and
C*". A specific example consists of the solutiéie®, Fe**, and Cl~ with the
reducing reactionFe* +e~ - Fe** at the cathode and the oxidizing reaction

Fe* - Fe* +e  at the anode. The steady state, dimensionlesdiegsid4.1) and
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(4.2) reduce to:

g, _.dg_ I
+78 L =-
dy 4 d)A/A Zl_ZZ,_\
0Cbpye 992 _Digly 4.23
dy y » L4,
dé, _ . dg
-2C =0
&

In the above, the concentrations are normalizeth Wit and the current’'s density
with D,FC,/H . In general, equations like (4.23) must be solwemerically. Here,
we consider a special case which allows us to plataelatively simple expression for
the current-potential relationship.

Let ¢=9C,. When =3, z,=2, and z =1 (as in the case of
ferri/fferro-chloride), and D,/D,=3/4 , one obtains (Grigin 1993)
(6,+¢,)(3¢,+26,)=m , where m is an integration constant. Using mass
conservation, one can determime as a function offy for any g. In the absence
of current (ny =0), m=(1-9g)/2. It turns out thatm is nearly independent ofy.
Using the Butler-Volmer boundary conditions (15) wbtain an implicit relation
between the current and the electrodes’ potenifi@rence (Qin and Bau, 2009) (Fig.
2). The hollow circles, crosses, and solid lineregpond, respectively, to the exact
solution (which does not assume fixed), an analytic solution that assumes
m~ (1-g)/2, and a finite element solution of the NP equatiadigness that as the
potential difference between the electrodes ine@gashe current flux initially
increases slowly, then nearly linearly, and, evalhuit saturates at higher values of

the potential difference. WhenD, =10°m*/s, €,=IM and H =1mm, the
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maximum (limiting) current isj, . =45.3A /m? (Fig. 2). For a conduit with width
W =1mm, flow viscosity #=107°Pals$, and magnetic fieldb| = 0.4T , the predicted

average MHD velocity is ~0.6 mm/s.

0.5

04+

0.3+

o
0.2+
finite element
0.1r o m=(1-g)~2 1
X exactm
0 .-A-. 1 1 1
0 10 20 30 40 50 60

AV,
Figure 4.2 The dimensionless current flux as a function o tthimensionless
electrodes’ potential difference calculated by s@\wthe full NP equations with finite
elements (solid line), using the approximatiom~ (1-g)/2 (hollow circles), and
using exactm values (crosses)a =0.5. g=0.2. ie:10‘3. The dimensionless,
limiting current j,,, =0.47. D,/D,=4/3.D,=D,

One take-away message is that, generally, in elgt#rsolutions, the current
iIs a nonlinear function of the potential differenaeross the electrodes. A linear
relationship between the current and the potediftdrence can be assumed only for
a limited range of operating conditions. The secohbservation is the existence of a
limiting current. In other words, the amount ofatiec current that can be transmitted

through the electrolyte solution does not increasanotonically with increasing

potential difference due to mass transfer limitagio(diffusion limited reaction).
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Although, in practice, further increases in the eptial difference across the
electrodes may increase the current flux, thiseiase will typically be due to other
(usually undesirable) electrochemical interactiahthe electrode surfaces such as the
electrolysis of water. In a closed system, the tedéesis of water will cause the
formation of a gas blanket along the electrodedases that will greatly reduce the

amount of current transmitted in the solution.

4.4.2 The Average Veocity and Efficiency of the MHD Pump

Kabbaniet al. (2007) and Ho (2007) investigated the flow ratd tre average
velocity in the MHD pump as functions of the cortttudimensions when the current
injection is controlled. Since, in most applicasprone controls the electrodes’
potentials rather than the current, we briefly camitrhere on the situation when the
potential difference between the electrodes is rotlat. The current fluxj, is
inversely proportional to the distance betweendleetrodesH . The flow rate in the

FC,J,

b| D
absence of external back pressu@;HllT YH?W and the fluid’s average

velocity is

- |b| D,FT, ],

H. 4.24
12u X

The above expression is valid when the entire cibsdlength is decorated with
active electrodes.

Fig. 4.3 depicts the average flow velocity as acfiom of the conduit’'s height
and width when |b|=0.4T , D,=D,=10°m’/s, G=C,=0.2M , G,=1M ,
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A\?ext =32, fy =0.42, and x=10°Pal$. We assume thalV is sufficiently small

compared to the size of the source of the magfietit so that the magnetic field is

nearly uniform inside the conduit.

[oe]

)]

N

o

average flow velocity (mm/s)
al N

H (mm) W (mm)

Figure 4.3 The average velocity of MHD flow as a function bétconduit heightH
and width W (equation 4.24).b|=0.4T , D,=10°m*/s, G,=IM, j, =0.42,
and y=10"Pals

At a fixed conduit width, as the heigHtincreases,u first increases, attains
a maximum atH ~W , and then decreases. This behavior results frenditag force
attaining a minimum in a squareH(=W) cross-section while the total Lorentz

driving force is nearly independent of the conduhtieight. The latter is true because

the current’s density is inversely proportionalthe distance between the electrodes

(j,01/H) and the Lorentz force is the product of the mégrfeeld, the current's
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density and the fluid’s volume. Thus, the totalctis independent of the distance
between the electrodes.

In the limit of H >>W , we approach the case of flow between two, irdinit
parallel plates, and the resistance imposed bytdipe (y=H/2) and bottom
(y=-H/2) walls (the electrodes) can be neglected. Undsrdincumstance, along
most of the conduit’s cross-section, the velocityfipe is parabolic in the-direction
and independent of The drag force is proportional tbl /W and the Lorentz force
is proportional toW . Thus, the average velocity is proportional\Wé’ / H . Witness
the parabolic increase in the average velocity with and the inverse proportionality
to H in Fig. 4.3 whenH is large andW is small. AsW increases, the drag
induced by the surfacey=+H /2 starts to play a role and the rate of increase of
the average velocity withW declines. WhenW is large, the average velocity is
independent ofW .

The MHD-induced velocities are relatively small. id@ppreciable velocities

can be attained with higher conductivity electresytFor example, in the case of the
RedOx pair FeGIFeCh ( D,=6.04x10"m’ ks , D,=7.19x10"m’ k ,
D, =2.03x 10°m’ /s, and exchange current densify =10°A/m?, Qian and Bau,
2005) at maximum solute concentrations=1.54M ¢, = 2.084 , and ¢, =8.73M ,
the limiting current density j =208.1A /" and the average flow velocity
u=2.9mm/swhen W =H =1mm and |b|=0.4T .

We define the MHD pump’s efficiency as the poweeded to drive the flow,

which includes the power needed to overcome thg dral the power invested to
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overcome the adverse (back) pressure, normalizeth wie electrical power
consumed.

eff — ApstalIQ ]
AV,

4.25

Our definition of the efficiency differs from thaff Laser and Santiago (2004) and
Ramos (2007), who treated the power needed to onerche drag as internal pump
loss and did not include it in the numerator of aon (4.25). Given that the entire
length of conduits in microfludic devices may beuipged with electrodes and

backpressure may be absent, it is appropriateuntdbe work carried out against the

drag as part of the pump’s output. In view of etpraf4.22), the maximum efficiency

is attained in the absence of backpressup, €0), i.e., eff :%. This
ext

efficiency is four times larger than the value népd in Laser and Santiago (2004)

(Fig. 4.4).

present

L&S 2004

Ap,

v

AV APy
Figure 4.4 The pumping efficiency as defined in the presentkwand as defined in

Laser and Santiago, 2004.
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Upon substituting the expressions for the flow @t the pressure drop, we

can rewrite the efficiency (in the absence of baekgure) as:

b°DF%, J,

:|| " Sl YH?. 4.26

12uRT AV,

Equation (4.26) suggests that for a given condentngetry, the efficiency depends on
the ratio jy/A\ZM. Fig. 4.5 depicts the ratiq}/m}@(t as a function ofAV,, .

Witness that this ratio attains its maximum whAﬁm =32 and J} =0.42.

0.014
0.012}
0.01} o @
p /
" 0.008} /
<
~
-2 0.006 o
0.004} /

0.002}
e

AV,

et
Figure 4.5 The ratio of k/A\?M as a function ofA\?ext. The conditions are the
same as in Fig. 4.2

Fig. 4.6 depicts the maximum efficiency as a fumttof the conduit’s height
and width when |b|=0.4T , D,=D,=10°m’/s , D,=4/3x10°m’/s ,

A A

€ =C,=0.2M, T, =1IM, AV, =32, j,=0.42 and x=10"Pals.
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Figure 4.6 The maximum MHD pumping efficiency (equation 4.26)a function of
the conduit’s heightH and width W. A\Zm =32 and all the other parameters are
the same as in Fig. 4.3

Fig. 4.6 suggests that MHD pumps operating witltteddyte solutions have
extremely low efficiency. The efficiency of the pproan be somewhat increased by
using higher electrolyte molar concentrations tcrease the electric conductivity of
the solution.

Almost all the energy dissipated in the MHD pumpc@verted into heat.
Nevertheless, the temperature increase of therelget solution is relatively small.
This is because of the relatively small dimensiohghe conduits encountered in
microfluidics, which facilitate highly efficient la¢ interaction with the ambient.

To estimate the temperature increase that one xygcein MHD flow, we
consider the particular example of a conduit withlramxlmm cross-section
embedded in a2mm thick polycarbonate (pc) sheet. Fig. 4.7 depithe
cross-section of the conduit and the substratehiciwthe conduit is embedded. The

heat transfer coefficient at the surface of thetptas assumed to béa~ 5N /m’ [K
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which is at the low end of heat transfer coeffitserworresponding to natural
convection in air. When the applied potential A%/, =40RT /F , the current’s

density is j, = 45.3A /m?, and the heat dissipation per unit volume46.5kW /m®,

the maximum temperature in the conduit 8.5K above the ambient temperature.

The thermal properties used arep,,, =100kg /m* , C =1.2J /kgK ,

p, fluid

Kggg =0.2W /ImK ,  p =130kg /m* , C, . =4.18J /kgK and

k. =0.6V /mK

Figure 4.7 Temperature distribution (contours of constantgerature) in and around
a MHD conduit embedded in a polycarbonate sheeg. dtip size is8mmx 2mm

and the conduit’s cross-section 1Ismmx1mm

4.5 MHD Flow in a Conduit Patterned with a Pillar Array

In this section, we consider a uniform, long cahgatterned with a pillar array.
Fig. 4.1 depicts one unit cell of depiV. The pillar diameter isd and the pillar’'s
center is at the conduit's mid-width (Fig. 4.1a)e Wécus on a two-dimensional case
(W>>H,L) in the absence of an external pressure gradWatfirst consider the
case when the current supplied to the unit cedbrgrolled (known) and one wishes to
determine the flow pattern and the flow rate. Tis #nd, we take advantage of results

available in the literature for pressure-drivemf$o
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Integrating equation (4.19) over the volume of ries¢, we have, in the

absence of external pressure differences:

(ﬁf)‘l’wds = Fdrag,cylinder + Fdrag,walls
= j j j Ib| j, (%, y)e,dV 4.27
=|b|IL[&,

where t,, is the stress tensor at the conduit’s walls aedthar’s surface. The stress
includes both pressure and viscous contributiddsis the surface enclosing the

Fdrag

HUW

volume V . The drag coefficientA = . In the Stokes regime, the drag

coefficients associated with both the cylinder #melconduit wall depend only on the
geometry (Faxen 1946). Once the total current figecl is known, one can use the
drag coefficient and the equivalency between presgtiven flow and MHD flow to

compute the average velocity

|bjIL

u= .
:u(/‘cylinder + Aans )W

4.28

The drag coefficient of a single circular pillarapéd midway between two
long, flat plates as a function of the ratio of {i#ar’s diameter and the distance
between the plates is available in Harrison (19Edxen (1946) and Ben Richeual.
(2004). There's also a wealth of data for drag ficehts of pressure driven flow
around pillar arrays. For example, Sangani and v&eri (1982) provide drag
coefficients of square and hexagonal pillar arrays.

For conciseness, we consider here in detail ongyngle row of uniformly

spaced pillars confined between two parallel etetds (Fig. 4.1)We carried out one
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set of finite element simulations in which we sfiedi the pressure drop across the
length of the conduit, obtained the flow field, ashetermined the drag coefficient. In
another set of simulations, we applied a poterdiierence across the electrode,
specified the electrolyte’s properties and solvied Nernst Planck equations with
electro-neutrality (section 2) with finite elemeidsobtain the current distribution, the
Lorentz body force, and the corresponding dragfwoexfits. In both cases, periodic
velocity boundary conditions were specified at floav inlet (x=-L/2) and exit
(x=1L/2). Fig. 4.8 depicts the drag coefficient associateth the pillar and the
conduit’s walls as functions of the pillar’s diametnormalized with the conduit’s
width (H). The solid lines and symbols correspond, respelgti to the drag
coefficients obtained with the pressure-driven fl@wnulations and the MHD
simulations. The dashed line and hollow circlesregpond to the pillar’'s drag
coefficient, and the solid line and hollow squatesrespond to the drag coefficient
associated with the conduit’s walls. The unit cifhensions areH =L =1mm. The
electrolyte solution consisted of three ionic speawith D, =(1,4/3,1x 10°m* &,

¢ =(0.2,0.2,1M, and z =(3,2,—1). In the Butler-Volmer equation, we specified
a=0.5 and j,=10°A/m*. Given the theory presented in section 4.3 on the
equivalence between MHD flow and pressure-drivewfiit is not surprising that the

drag coefficients associated with these two flovesidentical.
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Figure 4.8 The drag coefficient at the pillar's surface (dashine and hollow circles)
and at the conduit’s surface (solid line and holkyuares) as functions of the pillar’s
diameter normalized with the conduit’s width (HheTlines and symbols correspond,
respectively, to pressure-drive flow and the solutf the NP-NS model. For MHD
flow, we wused |b|=04T , D,=D,=10°m’/s ., D,=4/3x10°m*/s
z=32=22=-1, §=c,=02M , §=IM , AV, =25, p=1Ckg/m*

(=10°Pals, H=W=1mm, ¢=0.5 and j,=10°A/m’

When the total current is given, it is a simple t@ato take advantage of the
data available in the literature for pressure-drivilows to determine the MHD
velocity profile and the flow rate. The same metlad be applied to situations when
the fluid is subjected to both Lorentz body foraed apressure gradients (either
assisting or adverse). Since the momentum equasiolinear at low Reynolds
numbers, one can simply superpose MHD and presbiwen flows.

Matters get more complicated when the potentiafeddhce between the

electrodes is the control input rather than thetate current. In this case, to obtain

-75 -



the concentration distribution, one requires knalgke of the flow field and to obtain
the flow field, one needs to know the current, wahien turn, depends on the
concentration distribution. Since the various feldre coupled nonlinearly, one
cannot take advantage of superposition. When tliectef of advection on the
concentration distribution cannot be neglected,d&ta available in the literature for
pressure driven flow can only be used to verifylt¢éD computations.

Next, we consider a case when the electrode patatifference is controlled
and the current is not apriori known. To obtain terent distribution, we solve the
Nernst-Planck equations with Buttler-Volmer bourydaonditions together with the
Navier-Stokes equations (section 4.2). Fig. 4.pide the total, dimensionless
current in the unit cell as a function af/H when the effects of advection on the
concentration distribution are neglected (zero &eulimber, solid line) and when the
effect of the flow on the concentration distributi@dashed line with hollow squares)
is accounted for. Fig. 4.9a and 4.9b corresponsphedively, to a dimensionless
potential difference between the electrodes of 2@l &0. Clearly advection
significantly affects the current both quantitaljveand qualitatively. When
d/H =0.44 and A\Zm =25, neglecting advection leads to a current undenasé
of ~25% (Fig. 9a). WherA\?M =40, neglecting advection leads to up to a 45%
underestimate in the current (Fig. 4.9b). As thdeptal difference across the
eIectrodesA\?M increases, the magnitude of the velocity increasdgection effects

become more important, and the error resulting fnr@glecting advection increases.

a) b)
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Figure 4.9 The averagey -component of the dimensionless current flux asretion
of d/H in the absence (solid line) and the presence édhsime with hollow
squares) of MHD flow. The potential difference beén the electrodes iA\?M =25

(a) and 40 (b). All other conditions are the sasénd-ig. 4.8

In the absence of advection (solid lines in Fig)4as the pillar diameter
increases, the current decreases monotonically iBhintuitively expected. As the
pillar diameter increases, the area available toeat flow decreases and one would
expect the current to decrease. Counter to intyittmowever, when convection is
accounted for (dashed lines in Fig. 8), as theupdiameter increases from zero, the
limiting current initially increases, attains a nraym, and then decreases.

A similar trend is evident in Fig. 4.10. The figudepicts the average
dimensionless current flux in thedirection as a function of the potential differenc
between the eIectrodeA\?M when d/H =0, 0.036, 0.11, 0.16, 0.25, 0.36, 0.71 and
0.8. The electrolyte solution is the same as in Bi§. As the potential difference
A\7EM increases, the current initially increases slovthen nearly linearly, and

eventually reaches an asymptotic, limiting valqiﬁim. Witness that the currents
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associated withO<d /H < 0.36 are higher than the one associated withH =0.
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Figure 4.10 The average dimensionless current flul?;,( as a function of the applied
dimensionless potential differenc:ﬁ\7ext when d/H =0, 0.036, 0.11, 0.16, 0.25,
0.36, 0.71 and 0.8. All other conditions are thmeas in Fig. 4.8

What then is the mechanism by which the pillarspree enhances the
current flow in certain circumstances? One possidplanation is, that in the
presence of the pillar, the magnitude of the v&oai, (0,y) in the region above and
beneath the pillar tﬂ/2<|y| <H /2) increases above the corresponding value
upstream of the pillar. This, in turn, increases tloncentration gradients next to the
electrodes’ surfaces and enhances the diffusianigribution to the current flow. Fig.
4.11a depicts the concentration fietl in the presence of the pillar and the MHD
flow when A\7ext =25 and d/H =0.2. The solid longitudinal lines and the transverse
solid lines represent, respectively, concentratontour lines and current flux lines.
Fig. 4.11b depicts the concentration fietd in the presence of a pillar and in the
absence of flow motion. Fig. 4.11c depicts the eom@tion field ¢, in the absence

of the pillar. In the last case, the concentrafietd is independent of the flow. In
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cases (b) and (c), the concentration field is symmwith respect to they =0 axis
while in Fig. 4.11a, due to transverse velocity poments in the vicinity of the pillar,
the concentration field is asymmetric with respgecthe y=0 axis. In other words,
in the presence of the pillar, there is a tran®/@edocity component that contributes
to electrolyte advection. To better demonstrate éfiect of the pillar on the
concentration distribution, Figs. 4.11d and 4.1Bpid, respectively,c(x,H /2)
along the surface of the cathode as a functiorxofind ¢ (0,y) as a function ofy

in the presence of motion (solid lines), in an alseof the pillar (dotted line with
hollow circles), and in the presence of the pilad the absence of motion (dashed
line). Witness that in the presence of the pillad éhe flow, the concentration af,
next to the electrode’s surface (in the vicinity =0, solid line, Fig. 4.11d) is
significantly higher than in the absence of a pi(l#otted line with hollow circles) or
in the presence of a pillar without flow (dasheake)i The latter case demonstrates
clearly that, in the absence of flow, the preseot¢he pillar adversely affect the
current flow. The average current is lower thanthe absence of a pillar. In the
presence of both a pillar and flow, the concerdratiext to the electrode’s surface is
higher than otherwise and, thus, the average dufhex is higher. Similarly, Fig.
4.11e shows that the concentration gradient isdsgim the presence of the pillar and
MHD flow (solid line) and lowest in the presenceaopillar and an absence of flow
(dashed line). In summary, on the one hand, tharpgduces the cross-sectional area
available to the current flow and increases thg,doath adversely affecting the flow

rate. On the other hand, the pillar indirectly niiedi that concentration field, which
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enhances current flow. These two competing effieetd to an optimal pillar size that

maximizes current flow.
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Figure4.11 (a) The concentration fielat, in the presence of a cylinded (H =0.2)

and MHD flow. (b) The concentration field far, in the presence of a cylinder

(d/H =0.2) and in the absence of motion. (c) The concepinatield c, in the

absence of a cylinder. The color code and the sofditudinal lines in (a), (b), and

(c) correspond, respectively, to concentration amhcentration contours. The

transverse solid lines are the current fluxes. dimews are velocity vectors. (d) The

concentration distributiorc, (x,—H /2) along the surface of the cathode as a function

of x in the presence of motion (solid line), in theexixe of the cylinder (dotted line

with hollow circles), and in the presence of théinder and an absence of motion



(dashed line). (e) The concentration distributigif0,y) as a function ofy in the
presence of motion (solid line), in the absencthefcylinder (dotted line with hollow
circles), and in the presence of the cylinder amélasence of motion (dashed line).
A\Zm = 25. All other conditions are the same as in Fig. 4.8

The pillar could contribute to current flow in yahother way. The electric
double layer surrounding the pillar is rich in ipmgich is described macroscopically
as surface conduction. The Bikerman-Dukhin numbeantfies the ratio of the
surface conductivity to the bulk conductivity (Bat&t al. 2006, Chu and Bazant
2006). Since MHD devices typically operate with re@te DC potential and thin
electric double layers, the double layer remainar requilibrium and the Dukin
number is much smaller than 1, leading to negleggulrface conductance.

In the range of parameters considered here andstemiswith equation (4.26),
the flow rate is linearly proportional to the totalrrent. Fig. 4.12epicts the average
flow velocities as functions of the current whelW H =0.11, 0.16, 0.25, 0.36, 0.50
and 0.71. Fig. 4.18epicts the average flow velocity as a functiorthe pillar size
when the dimensionless potential difference betwienelectrodes isA\?M =25.
Although the current attains its maximum value dé&tH =0.4, the flow rate
decreases monotonically ad/H increases from zero. In other words, the
presence of the pillar enhances the drag to aegreatent than the propulsive force

(which is proportional to the current).
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Figure 4.12 The average flow velocityd as a function of the average dimensionless
current 1?9 when d/H =0.11 (square), 0.16 (circle), 0.25 (upright tria)gl0.36
(cross), 0.50 (downward triangle) and 0.71 (diamowdl other conditions are the

same as in Fig. 4.8
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Figure 4.13 The average flow velocityi as a function ofd/H at A\Zm =25. All
other conditions are the same as in Fig. 418 H =0 denote the situation of flow in
an empty straight channel.

4.6 Dispersion Associated with MHD Flow with Slip BC

Consider solvent laden with analytes driven throtighcolumn by MHD flow.
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The analytes are assumed to be dilute, do nottafiecsolvent’s properties, and do
not interact among themselves. The chromatograplungitudinal dispersion
coefficient depends sensitively on the velocityfieo Since the velocity profile of
MHD flow can be controlled by judicious patterniofthe electrodes, one can seek
electrode pattern that yield velocity profiles, alniin turn minimize the dispersion
coefficient. The objective of this section is tondnstrate that the dispersion
coefficient in a MHD chromatograph can be reducgdjpropriate patterning of the
electrodes.

Consider a uniform MHD conduit with a rectangulaioss-section as
depicted in Fig. 4.14. The conduit’s width W and its height isH . The electrodes
are located along the channel walls that are mhrédl the x axis. A uniform
magnetic field is directed along-— axis. The conduit is filled with a RedOx
electrolyte solution that undergoes a reversibéetien at the electrodes’ surfaces. A
potential difference is applied between the tomteteles (located along the surface
y=H/2) and the bottom electrodes (located along theasarfy=—H/2). The
current transmitted in the electrolyte solutionemacts with the magnetic field to
produce Lorentz body force that propels the flmidhie z—direction.

Suppose that the top and bottom surfaces are divial® N segments
each. Here, we will carry out calculations fof =10 and we assume that the
arrangement is symmetric with respect to the axis 0. Each segment can be either
an active electrode or an insulating surface. Tsuenfluid motion, we fix the four

segments next to the corners to be active eledrdaffle number the other segments
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away from the corners =1,2,3 and 4. See Fig. 4.14. We wish to find which

segments should be active so that the dispersiefficdent is minimized. In other
words, we consider an optimization space consisthghe variablesg , where
E =1 indicates that segmerit is active andE =0 indicates that segmerit is

insulated.

anode

\4 | | cathode

& N
< >

Figure 4.14 Cross-section of MHD flow channel. Top and bottohannel walls are
partially coated with electrodes.

Note that the conduit cross-section is uniform, ¥kcity vector only has
component in thez— direction and does not affect the concentrati@hdfi(fully
developed flow). Thus, we can solve the two dimamali electrochemical current
injection problem independently of the flow fieldlso note that at small Reynolds
numbers and in the absence of an external apptiesspre gradient, equationf)
reduces tog0°w+ j,b, =0, which allows us to determine the flow velocity(x, y)
in the z-direction once the current density flux has bealtudated. We assume
uniform magnetic field with known intensity.

Recently, Yan et al. 2010 developed a model tHatval one to estimate the
longitudinal dispersion coefficient in a periodi@dium. The model can be applied to

the open column chromatograph as a special caseeslimate the dispersion
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coefficient, one needs to compute the closure bliagd by solving the closure

equations:
of 2 (w)™
w—-D_[°f=—| w- : )
oz " ( 1+ k"J 4.29
of (wy™
D —=|-D_+10 , .
™ on ( n K J 4.30
jfdv+y5j fdA=0, 431
Vin Ans '

For detail derivation of the model, see Yan efall0.

Once the function f(x,y) is known, the dispersion tensor could be

calculated using the expression:

— i _ re\m y_d m (k")2 Vm m m
D—D{1+Vm A{ fdA} (w'f) +Vm (W) A{ fdA+—(1+k")2—kVAns<W> (W) 4.32
W,

In the above,w denote the velocity fieldk ":V—is the retention factor;

D,, is the molecular diffusivity;0 is the thickness of the stationary phage;is
the partition coefficient at the interface. Subgtsim and s denote, respectively,
the mobile and stationary phases. The bracket gai> denotes volume average.
w'=w—(w".

We carried out numerical simulations for the prablepecified above and
tabulated the longitudal dispersion coefficiedt in Table 1. The 8 configuration
(with E, =1 and E ,,=0) provides the smallest longitudinal dispersionftcient.
The 8" configuration provides a dispersion coefficientiethis about 40% of the

dispersion coefficient in the case when the ertorduit surfaces are covered with

electrodes (the normal cas€jg. 4.15shows the concentration field (grey scale for
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distribution of c,), the velocity field (blue lines for the contoumds) and the current

fluxes (red lines) associated with the optimalisgtt

E i=1 2 3 4 D/D,
1 0 0 0 0 376.46
2 0 0 0 1 307.02
3 0 0 1 0 167.92
4 0 0 1 1 394.74
5 0 1 0 0 90.39
6 0 1 0 1 236.93
7 0 1 1 0 162.61
8 0 1 1 1 309.44
9 1 0 0 0 219.72
10 1 0 0 1 147.99
11 1 0 1 0 101.63
12 1 0 1 1 233.60
13 1 1 0 0 101.17
14 1 1 0 1 157.95
15 1 1 1 0 118.07
16 1 1 1 1 218.72
Table 4.1 16 possibilities of electrode arrangements fordtoss-section depicted
in Fig. 4.14 and the corresponding dispersion aoefits. ‘1’ and ‘0’ denote
respectively, the electrode to be ‘active’ and §pas.’
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Figure 4.15 Concentration field and velocity field whek, =1 and E ,,=0. The
grayscale surface plot shows distribution of speage The blue lines are the velocity
contour lines. The red lines are the current fluxése red blocks symbolize the

locations of active electrodes.

4.7 Conclusions

We describe the mathematical model for MHD flowset#ctrolyte solutions
in microfluidic systems. In general, the model rieggithe concurrent solution of the
Nernst-Planck equations and the momentum equatidms.flow field modifies the
concentration field and the concentration fieldeef$ the electric current, which, in
turn, affects the body force in the momentum eguatMHD has the advantage of
providing a convenient means to pump and stir §uéehd control fluid flow with
electrical signals and without a need for movinghamical components. Flow can be
directed along any desired path in a microfluidetwork without a need for any

valves. The disadvantage of MHD is that it invohaesolumetric force that does not
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scale favorably as the conduit size decreases. tiDps operating with electrolyte
solutions also have very low conversion efficierayonly a very small fraction of the
electric power is converted into work. More serigagrtcomings include the need to
operate with electrolyte solutions that undergecersible reactions to avoid bubble
formation and undesirable electrochemical electn@detions and the limitation on
the maximum amount of current that can be transnhiih the solutions. It seems
that MHD are most likely to benefit applicationswtich conduit sizes range from
hundreds of micrometers to millimeters — a rangkeofth scales in which the MHD
drive provides significantly higher flow rates thalectroosmosis.

We have shown that when the Reynolds number is tlosvmagnetic field is
uniform, and the electric field is orthogonal te ttnagnetic field, the Lorentz body
force is irrotational and one can define a “Lorérpptential. In other words, the
MHD flow is equivalent to pressure-driven flow, aoke can use data available in the
literature for pressure-driven flow to deduce th&iM flow patterns. The above
conditions often prevail in microfluidic systemseWitilized this equivalence in two
examples. The first example consisted of a unifeonduit. Here, the equivalence
between MHD flow and pressure-driven flow has bkeown for many years. The
second example consisted of a conduit patterneld piltars. This is a somewhat
more general case as the electric flux is neitimédixectional nor uniform as in the
first example. The equivalence between MHD flow amessure-driven flow allows
us to utilize drag coefficients available in theedature for pressure-driven flow to

calculate the MHD flow patterns provided that tb&alk electric current is controlled.
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The use of the MHD — pressure driven flow equive¢erequires caution, however,
since the emergence of secondary flows such asewalye when the fluid goes
around a bend (Yi and Bau 2003) or a curve wiltmgsthe analogy between MHD
and pressure-driven flows.

When the electric potential difference across theeteodes is the control
variable, the equivalence between the pressuremrand MHD flow cannot be
utilized directly and one needs to compute the entration, current, and flow fields
simultaneously by solving the coupled Nernst-Plagio#t Navier-Stokes equations.

We also computed the electric current, concentmataend flow field in a
conduit and demonstrated that an optimal pillanditer exists that maximizes the
current flow. It is plausible that even higher @ntrtransmission can be obtained by
optimizing the shape of the pillar. However, maximélow rate still happens in the
absence of pillars.

Finally, we showed that the dispersion coefficiagsociated with MHD flow
in a rectangular channel could be minimized throdgkigning the electrode settings,

and thus modifies the flow field.
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CHAPTER 5: Magneto-Hydrodynamic Flow of Binary Electrolytein
a Concentric Annulus
5.1 Introduction

Magneto-hydrodynamic (MHD) driven flow is of intstein many applications
since one can induce fluid motion without a neadniechanical pumps and the flow
velocity can be readily controlled by adjusting therent or the potential applied to
electrodes (Qian & Bau 2009). Here, we consider Mty of a binary electrolyte
confined in a conduit bent into a donut with anenmadiusR; and an outer radius
R,. We use the cylindrical coordinate systé®, 0,Z), whereR, ©, and Z are,
respectively, the radial, azimuthal, and axial dowates. The innerR(= R,) and
outer R = R,) surfaces of the annulus double-up as electrodles. electrolyte is
subjected to a uniform magnetic field directed pakéo the annulus axiZ). When
a potential difference is applied across the ebelets, radial current flows in the
solution. The current interacts with the axial metic field to produce an azimuthal
Lorentz body force, which, in turn induces azimuftaw.

When the cylindrical annulus is infinitely long, nely azimuthal flow, analogous
to the celebrated Dean’s pressure-driven flow (D&828 and Ito, 1951), is possible.
The flow stability can be characterized with theaBD@umberDn = Re,/d/R,. Here
Re = |V|d/v is the Reynolds numbei/ is the average azimuthal velocity; is
the kinematic viscosity; and = R, — R; is the width of the gap between the two
cylinders. When the Dean number is smaller thariteal value, the azimuthal flow

is stable. When the Dean number exceeds its dritiaue, due to centrifugal
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acceleration, the purely azimuthal flow loses ditgband gives rise to convective
rolls in the transvers® — Z plane (Chandrasekhar, 1961, and Drazin and Reid,
2010). As the Dean number increases above a trabae so does the complexity of
the flow (Winters et al., 1987). When the heighttbé annulus is finite, purely
azimuthal flows are not possible and transverseuldtion exists for all Dean
numbers.

Various researchers studied pressure-driven flomsurved tubes with different
cross-sections such as circular (i.e., Bara el@82, and Berger & Talbot, 1983, Soh
1988, Bara et al. 1992, Bovendeerd et al. 1987 tdbma et al., 2009, Cheng et al.
1976, and Verkaik et al., 2009), elliptical (Cumirip55, and Silva et al., 1999),
square (Soh 1988, Boutabaa et al., 2009, and Hweytral., 1977), and rectangular
(Silva et al. 1999, Targett et al. 1995, De Vridf@81, and Yanase et al. 2002). Since
the annular geometry has applications in heat exgdra, the associated convective
heat transfer has been studied by Avramenko €2@03), Cheng & Akiyama (1970),
Gyves & Irvine (2000), and Mondal et al. (2008) .théiss that pressure-driven flow in
a perfectly closed loop is impractical. By necegsdiie closed loop approximates a
spiral geometry (Targett et al., 1995).

In contrast, MHD flow provides a practical meanguaipelling fluids in a closed
loop (Zhong et al., 2002, and Eijkel et al., 2003likhov (1959), Khalzov (2008),
Hunt & Williams (1968), Hunt & Malcolm (1968), Hug Stewartson (1969), Baylis
(1964 & 1971), and Kobayashi (1977) studied théikta of annular MHD flow of

liquid metals and found that the magnetic field yides a stabilizing effect and
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suppresses the evolution of secondary flows.

Hence to forth, the problem of MHD flow of electyt# solutions in a concentric
annulus and its stability has not been addressed.case of electrolyte solutions is
significantly different than that of liquid metalss the flow patterns affect the
concentration field, which, in turn, affects theadbelectric conductivity (Qin & Bau,
2010). These types of problems are of interest gnodher things, in electroplating,
where it is desirable to maintain unidirectionatifauthal) flow to assure plating
uniformity and avoid secondary flows that may causen-uniform material
deposition (Marshalls & Mocskos, 1999) and in ladjgyroscopes for navigation
systems (Laughlin 2007).

More generally, in recent years, there has beewiggointerest in studying the
interplay between hydrodynamic stability and electiemistry. For example, Volgin
and Davydov (2006) review the literature pertainity the electrochemical
Rayleigh-Benard problem. In this chapter, we stdoly the first time, the MHD
motion of a binary electrolyte in an annulus arsl stability characteristics. This
chapter is organized as follows. Section 5.2 inioe$ the mathematical model.
Section 5.3 derives a closed-form solution for ¢herent flux and concentration and
velocity fields in an infinitely long annulus. Sext 5.4 examines the linear stability
of the azimuthal flow derived in section 5.3 andirdmtes why electrochemical
effects have a destabilizing effect when the curiendirected outwardly and a
stabilizing effect when the current is directed amdly. Section 5.5 describes the

MHD flow in a finite-height annular conduit. Seatié.6 concludes.
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5.2 Mathematical Model

Consider a binary electrolyte}\/llef,2 confined between two concentric
cylinders of radiiR;, and R, (R, > R;). M*t is the metal ion andi?z is the anion.
d = R, — R, is the gap between the cylinders. We consider lsages when the
annulus is infinitely long and when it has a fiflgagth L. The cylinders’ surfaces in
contact with the liquid are coated with mefdl (same material as the cations) and
serve as electrodes. We use the cylindrical coatdiaystem(R, ©, Z) with its origin
at the cylinders’ center. The symboés, eg, and e, denote, respectively unit
vectors in the radialR), azimuthal ), and axial Z) directions Fig. 5.1). The
electrolyte is subjected to a uniform magneticdfi = —Be,. When a potential
difference is imposed between the electrodes’ peliectric current flux]J is
transmitted in the solution. The electric curremteracts with the magnetic field to
produce a Lorentz body force, which in turn, indudeid motion. The electrolyte
undergoes the backward reaction Mft + z,e~ & M(s) at the anode and the
forward reaction at the cathode. We consider geffity short times so that the
geometry of the electrodes does not change appieciaring the process.

The ions’ concentrations satisfy the Nernst-Plasgliation (Newman, 2004)

aC;
oT*

-V-H;, (i=1,2), 5.1
where C; and C, are, respectively, the concentrationsMf: and A%z; T* is time;

H; = UC; — D;VC; — zv;FC;(V® — U x B) 5.2
is the ionic flux of species; U = Uey + Veg + We, is the velocity vectorD;, z,

and v; = D;/(R,T) are, respectively, the diffusion coefficient, vade, and mobility
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of speciesi. F is the Faraday constanf, is the absolute temperaturg;, is the
ideal gas constant; an@ is the electric potential. We adopt here the cotigarthat

regular fonts represent scalar quantities whilel betters represent vectors.

Figure 5.1 A schematic depiction of the flow cell and theiwgltical coordinate
system (R, 0,Z). The electrolyte is confined in a concentric ansulvith an inner
radius R; and an outer radiu®,. The electrodes coincide with the cylindrical

surfaces.

With the exception of very thin electric double day next to the electrodes and

other solid surfaces, the electro-neutrality canditequires that

ZiCi = 0. 53

N

i=1

The fluid motion satisfies the Navier-Stokes equrati

ou
p(aT*+U-VU>=—VP+uV2U+]><B. 54
The fluid is incompressible:
V-U=0. 5.5

In the above,p is the electrolyte’s density? is the hydrodynamic pressure;
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and u is the dynamic viscosity. The terjnx B in equation (5.4) is the Lorentz body
force. We assume that the solution is dilute; tiateon properties are independent of
the ion concentrations and are uniform throughbatdolution; and buoyancy forces
are negligible. The latter assumption is not alwagsd and, in fact, in many
electrochemical processes buoyancy may play anrianuorole (Qian et al., 2006).
Nevertheless, since we wish to focus on centrifgffgcts, we neglect buoyancy in
this work.

The electron exchange reactions at the electraiefice are described by the

Butler-Volmer kinetics (Bard & Faulkner, 2001):

n-H | _ = ]—e{&e_azlp/RuT(Vgxt_d)) — e(l_a)zlp/RuT(Vgxt_cb)} 56

1IR=RyR; = C, . .
Additionally, when the annulus if of a finite lemgt
n- H1|Z=O,L = 0 57

In the above,V,,; is the external potential difference imposed atbg electrodes,
C, is the uniform cation bulk concentration before turrent was switched-orf, is
the exchange current fluxy is the transfer coefficientp is an outward unit vector,
and @ is the potential in the solution next to the eledé.

Mass conservation requires that

Ry L

_ (RZ—R?)L
ijlR dR dz=cl%. 5.8
R, O

All solid surfaces are impermeable to the inercsgseA?2,
n- H2|R=R1,R2;Z=O,L = 0. 5.9

The fluid velocity satisfies non-slip conditionsadit solid surfaces
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U|R=R1,R2;Z=O,L = 0. 5.10

The electric current flux:

2
] = FZZ[H[. 5.11
i=1

Taking advantage of electro neutrality, we eliméntite potential from equation

(5.1) to obtain the advection-diffusion equation

aC;
aT"

where D* = (z, — z,)D;D;/(z,D; — z,D;) and

=D*V2Ci —U'VCi, 5.12

V- (CVD) = — R;Tz*vzci 5.13
where z* = (Dy — D3)/(Diz, — D3z,).

Next, we convert the equations to a dimensionless.f To this end, we use the
distance between the electrodés= R, — R; as the length scaldj, = u/pd as the
velocity scale; the viscous sheat/,/d as the stress/pressure scal¢ll, = pd?/u
as the time scale; the diffusive fluX, = C,D;/d as the ion flux scale], = FH, as
the electric current density scale; the thermalepu&l R,T/F as the electric
potential scale; and the average concentrationhef speciesM?: , C; as the
concentration scale. Furthermore, we define thenmeaius R, = (R, + R,)/2.
Below, with the exceptions of,,; and D;, we express the dimensionless variables
with the lower case version of their dimensiongbper case counterparts. The
dimensionless applied potential is denoted Hs;=V...F/R,T and the
dimensionless diffusion coefficier®?; = D;/D;. The dimensionless time is denoted

by t.
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The dimensionless equations are:

aCl'_ 1V h
at  Sc v

h; = Sc-uc; — D;[Vc; + zic;(Vp — yu X e,)],

and

Jdu
ot

In the above,Sc=v/D; is the Schmidt number.

+u-Vu=—-Vp+ V?u+k(j.eg — jge,).

5.14

5.15

5.16

The Lorentz number

x =VBF/(R,T). k = JoB - d?/uU, = pFd*BC,D; /u? is the ratio of the Lorentz

force and the viscous shear. In electrolyte sahstioy << 1 and one can neglect the

induced electromagnetic force in (5.15). In thisamier, we focus only on the

axi-symmetric problemad/dfd = 0) and jo = 0. The boundary conditions for ion

fluxes h; are

n-hf_. . = je{cle—a’Z1(Vext_¢) — e(l_a)zl(vext—(l))}
-y

and
n- h2|r=r1,r2 = 0.

The electroneutrality condition requires that

2
ZiC; = 0.
i=1

The electric current density

2
i = Z Zihi'
=1

L

Mass conservation requires that

2 1

f f cirdr dz = ryl.

rn O
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The dimensionless form of equation (5.12)-(5.13)dmees:

dc; 1
— =5V (Scruc; = DVey), >-22
where D = D*/D; and

V- (c;Vp) = —z*V?c,. 5.23

5.3 Steady Flow of Binary Electrolytein an Infinitely Long Annulus (I - +o0)

The Dean problem of pressure driven flow betweem ¢ancentric cylinders has
been studied extensively. Here, we consider théogoas MHD flow. While the
Dean problem cannot be realized in a concentrialasnthe MHD flow can. When
the flow is one-dimensional, the MHD flow is equimat to pressure-driven flow (Qin
& Bau 2010) and we can adopt the classical soludto®ean flow (Goldstein, 1938).
We use the subscript “b” to denote the various dédeet variables associated with the
purely azimuthal flow.

Since the electric current is divergence-free dleetrical current flux

L

. ]
@) =22 5.24

)

where j* = j,. (1) is the current flux at the mid-distance between ¢kectrodes

ro = 11 + 1/2. The azimuthal velocity is:

roN2
Kj*T T T
v, (r) = / Or (r) In= —In-=2|. 5.25
2 1_(7”_2)2 m r
i

Fig. 5.2 depictsv, as afunctionofx =r—r; (0 < x < 1) for various values
of r;. Digilov (2007) derived equation (5.25) for MHDo# of liquid metals in the

limit of a small Hartmann number. Since the magtetwf the current flux and thus
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the body force decreases asincreases, the velocity attains its maximum vahude
interval r; <r <1, (0 <x <0.5). Whenrn; < 1, the velocity maximum is attained

at x » 1/e, and equation (5.25) simplifies to

KJj
vy (x) = — xInx. 5.26
4
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Figure 5.2 The azimuthal velocity, (normalized with its maximum value) as a
function of x whenr; =0, 0.2, 0.5, 1, 2,and . The vertical lines ak = 1/e
and x = 1/2 correspond, respectively, to the positions of #eéocity maximum

when the curvature is large and small.

As r; increases, the position of the velocity maximumftshtowards r,
(x =0.5). Whenr; > 1 (small curvature), the velocity profile can be apgmated

as:

Kj*

v, (%) = %x(l —x). 5.27
The latter expression is identical to the velogitgfile of pressure-driven (Poiseuille)
flow between two long parallel plates. The ReynaidmberRe = v,,.

Next, we compute the concentration distribution. thes end, we solve the
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Nernst-Planck equations (5.14) and (15)

d (c1p Z1C1p\ APy —10) /217
—- 0 5.28
dr (CZb) + (ZZCZb) dr ( 0 )

By introducing the scaled coordinate=Inr (n; =Inr; <n <lnr, =1,), we

convert equation (5.28) into a form similar to tbee encountered in a planar

geometry

%(CZb) + (chzb) dT[ - ( 0 ) - (0) 5.29
In the above, the definition of the new varialde is apparent from the context. The

solution of equation (5.29) together with the elecéutrality condition (5.19) and

mass conservation (5.21) is

Az, 1 7’12771 - 7’22772
-1— -2 5.30
‘b (21— 23) g 2 27y
Cop = 7, Cip, 5.31
and
1
¢p =G — Z_ln[4TOZ1(Z1 — Z5)C1p]- 5.32

2

The constant; in equation (5.32) is determined by one of thetebeles’ potentials.
When an electric potential difference is appliedbas the electrode pair instead
of the electric current, one needs to use the BWdemer boundary conditions (5.17).
Solving equation (5.17) and (5.30-5.32) providedheent-voltage relation.
Fig. 5.3 depicts the current flux as a function of the pased difference AV,,;)
across the electrode pair whep=1, z, = -1, ,/r, =2/3 , andD; =D, = 1.
The exchange current densify = 103. The symbols and the solid line correspond,

respectively, to the analytical solution and firetement solution of the Nernst-Planck
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equations. The excellent agreement between the neahend analytical results

partially verifies the numerical code, which welwise later in the chapter.

4 ,a/a—'_a—_e_(

—Finite Element
= Analytic

-4
-15 0 15
AVext

Figure 5.3 The electric current flux as a function of thequtal difference between
the electrodes. The dimensionless inner radius 2. Binary, symmetric electrolyte,
z, = —z, = 1. Dimensionless diffusion coefficient®); = D, = 1. Exchange current
density: j, = 103. The symbols (squares) and the line corresporshertively, to

analytical solution and finite element simulation.

4z1(21-2)(1-6)?
Z,(862-1-21né)

The positive (outward)j; = and the negative (inward)

e 424(21-23)(1-6)?
- 25(62-1-262Iné)

diffusion-limited electric current fluxes are, pestively,
obtained by setting;,(n =1n,) = 0 and ¢;;,(n = n,) = 0 in equation (5.30). In the
above, § =r,/r; > 1 is the radii ratio,r; =1/(6—-1), n,=6/(6—1), and
ro=(6+1)/(2(6 — 1)). The forward and backward limiting current fluxaiffer in
magnitude |j;| > |jZ|). For example, for the conditions of Fig. 533.48 < j* <
4.56. Fig. 5.4 depicts the ratio of the outward and inward lingticurrent fluxes

lj:1/1jz] as a function of the radii rati6. When 6~0(1), |jil/ljZ]1~(26 +1)/3
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(dotted line in Fig. 5.4). Whed >» 1, |ji|/ljz]~ (2Ind — 1) (dashed line in Fig.

5.4).
12 £
v
e ,
>~ S
#ispe //
4 AL —1j1/1):]
7»"// --large §
// - small §
10° 10" 102 10°
0

Figure 5.4 The ratio between the outward and the inward iimgitcurrent fluxes
(Iji1/1jz]) as a function of the radii ratié. Dy =D, =1, z; = -z, =1, and
jo = 103. The dashed line2{né — 1) corresponds to the larg® asymptote. The

dotted line is the smald asymptote(2§ + 1)/3.

Fig. 5.5 depicts the concentratioey;,, as a function of the radial coordinate
under conditions of outward (dashed line) and inl@olid line) limiting current
fluxes. In the inward current flow case, the coniion c,;, builds up next to the
surface of the outer electrode and depletes nexstinface of the inner electrode. In
the outward current case, the opposite is trueceSthe surface area of the outer
electrode isé times larger than that of the inner electrode, theximum
concentrations in the case of outer directed ctiigefarger than that in the case of
inward directed current. Accordingly, the concettragradient in the inward current

case is smaller than in the outward current cas®jging less diffusive flux, and thus
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less net current density.

_j:

C1p
/

r

Figure 5.5 The concentratiorr,;, as functions of the radius under limiting current
conditions when the current is directed outwardlgshed line) and inwardly (solid

line). All other conditions are the same as in Bi§.

Next, we consider the case of a small gap size>(1), i.e., small curvature and
nearly planar geometry. In this case, the elecicent flux j,.,~j* is independent

of radial position. Equations (5.30-5.32) reduce to

cip =1 —]_—(Zx - 1), 5.33
J1
Cop = 7, C1ip, 534
and
1
d)b = G —_— Z_ln(jlclb). 535
2

The potential difference across the gap

1 i +j°
A = p(x = 0) — p(x = 1) = ——InZ2 ].*, 5.36
Z; J1—]

where j; = 2z,(z, — z;)/z, is the dimensionless limiting diffusion-migration

current.
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With the aid of the Butler-Volmer boundary conditjowe obtain the
current-voltage relatiorfrig. 5.6 depicts the electric current flux as a functionto
potential differenceAV,,; = Vor:(x = 0) — V,,:(x = 1) when the exchange current
density j, = 1073, 1072, 107%,1, 10, 10?and 103. z;, = -2z, =1, D, =D, =1,
and a =0.5.

At large values of the exchange current dengitythe Butler-Volmer relation
(5.17) reduces to the Nernst equation at both baieslx = 0 and x = 1:

1
d)b = Vext - —lIlClb. 537
Z1

With the aid of equation (5.36) , the current-ptidirelation could be expressed as:

. , ZyAVeyxt
* = j; tanh ——————. .
J) Jitan 20z, - 1) 5.38

Fig. 5.6 compares the predictions of the Nernst ehogolid line) with the

Butler-Volmer model whenj, = 103 (stars). Witness that both models provide

nearly identical results when the exchange cuisclarge.

4 P e e S S S
/ - g -~
/ e /V <
/ / /
7 / / /
/ / / /
1 4 ¢ /
/ / / -
s ol f / ; ~j.=0.001
/ / ’ -_0‘01
' g / 4 --0.1
. / / 1
/
: J --10
, 7 / 100
s 7
2 . . * 1000
e v ~ —Nernst
0 g -
0 10 20 30 40
AVext

Figure 5.6 The current flux as a function of the potentiaffedence between the
electrodes when the exchange current density

jo=1073,1072,1071,1,10%,10%,and 103 . The curvature is neglected. Binary,
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symmetric electrolytez, = —z, =1, and D, = D, = 1. Butler-Volmer electrode
kinetics are used witlw = 0.5. The solid line corresponds to predictions obtaine

with the Nernst equation.

5.4 The Stability of the Azimuthal Flow

In this section, we study for the first time, thaehr stability of the MHD
azimuthal flow in an infinitely long annulus. Inehclassical Dean problem, at
sufficiently high azimuthal velocities, centrifugatcelerations destabilize the purely
azimuthal flow and give rise to convective rollstive transverse- — z plane. In the
electrochemical problem, the secondary flows mottiky concentration distribution
and, thus, the current flux, which, in turn, affethe Lorentz body force. Hence, the
stability characteristics of the electrochemicablpjem are expected to significantly
differ from those of the classical pressure-drivieaan problem.

The analysis presented here is restricted to amlasrwith small curvature
(small gap approximation). Following Dean’s (1928jginal treatment, we neglect
the effect of centrifugal accelerations on the b#ea. Centrifugal effects are,
however, accounted for in the perturbation equation

We perturb the base flow variables (equations 5.14) with small disturbances,
which we denote with the superscript tilde. For regke, the concentration field
assumes the forna; = ¢;;, + €¢;, wheree < 1, ¢;;, Is the base solution (obtained in
section 5.3), and; is the first order perturbation. All other depenteariables are

similarly perturbed. The perturbed variables areontuced into the equations and
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only terms ofO(¢) are retained. Furthermore, we decompose the peattans into
normal modes, i.e.,

&; = ¢i(x)e ke, 5.39
where o is the growth ratek is the wave numbeand ¢; is a function ofx only. In
the above, we assume that two-dimensional distedsarare less stable than
three-dimensional ones. This assumption is comgigtigh Squire’s theorem (Khalzov
et al. 2006, Drazin & Reid, 2010). Accordingly, wensider only two-dimensional
disturbances and all the perturbation variablesratependent o (i.e., /36 = 0).

Invoking the small curvature approximatioh/x <« d/dx, and omitting the
superscript tildef), we obtain theO(¢) linearized momentum equations:
(E2—k?—-0)(E®? —k¥g = vx(1 —x), 5.40
(E2—k? —o)v + Kj, = Ak?g(1 — 2x), 5.41
and the continuity equation
Eu + ikw = 0. 5.42
The impermeability and no-slip boundary conditiahsc = 0 and x = 1 are:

g=Eg=v=0. 5.43
For convenience, we introduced in the above theated, radial velocity g = u -
r/(kj*k?). The operatorE = d/dx. A = 72%,%/r, = 72Dn?, where Dn is the
Dean numbemDn = |ﬁb|m. Equations (5.40-5.43) witlk = 0 are identical to
the ones associated with the classical Dean prolflrazin and Reid, 2010). The
term kj, is due to the Lorentz body force. This term cosphe hydrodynamics and

the electrochemistry.
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From equations 5.22 and 5.23, we obtain, respdgtithe linearized mass

conservation equations for specigs

Sc Sc
E?¢, = <B-a+k2) 1 +B-ch1b. 5.44
The equation for the potentia is:

c1pE*¢p = —z"(E* — k*)c; + k*cyp¢ — c1E*¢p, — Ec1Ey,

5.45
- ECled).
The linearized flux of species is:
hix = Sc- Ucip — DiECi - ZiDi(CibEd) + CiE¢b)' 5.46
The perturbation in the electric flux is:
2 2
Jx = Z Zihiy = — z ziDi[Ec; + z;(cipEd + c;Edyp)]
i=1 i=1 5.47
= (D, — 1)z1Ecy + (2D, — 71)(21¢1pEP + z1¢1Epp)
The perturbed concentrations satisfy the electudrakty condition
ZiC; = 0. 5.48

2
i=1

Below, we consider two types of boundary conditioimsthe first instant, we
assume that the current flux is specified at tleeteddes’ surfaces. This problem is
mostly of theoretical interest as it is difficuld tontrol the local current flux in
practice. In the second instance, we specify thetieldes’ potentials.

In each case, we solve the eigenvalue problem &4&) and the appropriate
electrochemical boundary conditions (to be spetifiater) with finite elements.
Briefly, we select a wave numbér and either the base currefit or the applied

potential AV,,;. The growth rates(Dn, k) is then calculated as a function of the
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Dean numberDn and the wave numbeét. The Dean number at marginal stability
Dny(k) nullifies the real part of the growth rate, i.eeal(o(Dny, k)) = 0. We seek
the most dangerous wave numberk, that minimizesDn, (k). In all our calculations,
we find the growth rater to be real, and the principle of exchange of itghio hold.

To check our algorithm, we consider the hypothétease of non-zero base
velocity andj, = 0. In this case, thecj, term in equation (5.41) vanishes and the
stability problem reduces to the classical Dearbler. Our finite element solution
reproduces the well-known, classical resultsof, = 35.92 and k, = 3.95 (Dean,
1928, and Drazin & Reid, 2010). The bifurcatingusioin consists of convective rolls

inthe r — z plane.

5.4.1 The Case of Controlled Current
When the current flux is specified, the perturbatio the current is zero. The

corresponding boundary conditionsxat= 0,1 are

Ec, = 0 5.49
and
E
Ep = — BP0 5.50
C1p

To determine the marginal stability curve, we chldted the growth rater as a
function of Dn for a givenk. Fig. 5.7 depictso as functions ofDn whenk =1
(dashed line), 2.39 (solid line), and 4 (dashedidat). In all casespg is real. At
criticality, ¢ = 0. This calculation was done for a binary and symimetiectrolyte.

z, = —z, = 1, diffusion coefficientsD," = D," = 10~°m?/s, C; = 10*mol/m3.

-108 -



R, =05m. R, =0.505m. B =04T. p=10%kg/m3. u=10"3Pa-s, and

j* >0
/' --k=1
0.02 / —k=2.39
/ --k=4
;
S g -
] it £ 7
/
//
v
¢/(
-0.02
0 576775 15
Dn

Figure 5.7 The disturbance growth rate as a function of the Dean number when
k=1 (dashed line), 2.39 (solid line), and 4 (dastietlline). Binary electrolyte with
z,=-2z,=1. D} =D; =10""m?/s, C; =10*mol/m®. R, =05m. R, =

0.505m.B = 0.4T. p =103kg/m3. u=10"3Pa-s.
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Figure 5.8 The critical Dean numbebn, at the onset of instability, predicted by
linear stability analysis, as a function of the wawumberk. The electrodes’ current

is controlled. The white and gray areas correspoaghectively, to stabler(< 0) and
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unstable § > 0) states. The symbols correspond to finite elensehitions of the
nonlinear equations. The solid and hollow symbatsrespond, respectively, to
subcritical (On~) and supercritical Pn*) cases. The symbols are located at
{k, Dn~, Dn*} = {2.39,4.02, 8.04}, {3.77, 5.63, 7.24}, {5.05, 6.43, 9.65}and

{7.12, 10.45,14.47}. The other conditions are the same as in Fig. 5.7.

Fig. 5.8 depicts the Dean number at marginal stability) as a function of the
wave numberk for the same conditions as in Fig. 5The white and gray regions
correspond, respectively, to stable € 0) and unstableo(> 0) states. Both the
critical Dean numberDn, = 5.7 and the critical wave numbek, = 2.39 are
smaller than that in the classical Dean’s problemerestingly, whenj* < 0, the base
state is linearly stable fail values of the Dean number.

The linear stability results were compared with tbgults of numerical solutions
of the full nonlinear equations. The computatiod@main consisted of a segment of
the annulus with heigh® < z < 2m/k. Periodic boundary conditions imposed in the
z —direction, i.e, all the dependent variables satifg condition: a(x,z,t) =
a(x,z+ 2n/k,t). In the calculations, we used: = 2.39, 3.77, 5.05 and 7.12.
When the calculations converged to the azimuthaasebflow, the state was
designated as stable. When the calculation congletgea state that consisted of
convective cells in thec — z plane, the state was designated as unstablel theal
cases considered here, the calculations eventoaflyerged to a steady-state. The

numerically identified stable and unstable statesdenoted, respectively, with solid
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and hollow squares in Fig. 5.8. The finite elensaiutions of the nonlinear equations
are consistent with the predictions of the lingab#ity theory.

In all cases, consistent with the principle of extuype of stability, the transients
were monotonic and no oscillations were observdw: finite element simulations
suggest that the bifurcation from the azimuthaleb#igw to the three-dimensional
flow is supercritical.

Fig. 5.9 depicts the scaled eigenfunctions (dashed line),¢ (dotted line with
squares), g (dot-dashed line),v (solid line), andj, (solid line with circles) as
functions of x when Dn =8.04, and k=2.39. In Fig. 5.9a,j, =0.1 and
o = 0.011. In Fig. 5.9b,j, = —0.1 and 0 = —0.016. All the other parameters are
the same as in Fig. 5.7. Witness the significafferdince in the structure of the
eigenvectors between the case of the outwardlctéidecurrent (Fig. 5.9a) and the
inwardly directed current (Fig. 5.9b). When thereuat is directed outwardly (Fig.
5.9a), the perturbations, g, j, andc; remain of the same sign for all valuesxf
and resemble a symmetric behavior about 0.5. In contrast, when the current is
directed outwardly, all the depicted eigenvectotsange sign in the domain
0 < x < 1, and exhibit asymmetric behavior about= 0.5.

Fig. 5.10 depicts a sample of the finite element solutiothefnonlinear problem.
The colors correspond to the concentratign The lines are the streamlines of the
secondary flow in the- — z plane. Fig. 5.10a describes the case of inwardéctbd
current of magnitudg* = —0.1 and Dn =~ 8. Fig. 5.10b depicts the case when the

outward currentj* = 0.05 and Dn = 4. This corresponds to a subcritical state
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(Dn < Dny). Consistent with the predictions of the lineatbdity theory, there are no
secondary flows in this case, and the concentratistribution is uniform in thez
direction. Fig. 5.10c depicts the concentration #loav fields when the outward
current j* = 0.1 and Dn = 8 are supercritical Ijn > Dn,). Consistent with the
predictions of the linear stability analysis, coctee rolls appear in the — z plane.
The center of rotation is at~r., wherer, is slightly larger tharry. This flow
pattern is consistent with the eigenvectors degiote-ig. 5.9a. Fig. 5.10d depicts the
magnitude of the current flux under the same cambtas in Fig. 5.10c.

Fig. 5.10c should be contrasted with Fig. 5.10dh@&igh both cases correspond
to the same Dean number, there are no seconddsypmasent in the case of the
inward current flow (a) while secondary flow is peat in the case of the outward
current flow (c). Consistent with the results of fmear stability theory, the nonlinear
simulations predict absence of secondary flowshia tase of inward (negative)
current.

In conclusion, when the base current is directedtwardly, the
magnetohydrodynamic Dean problem is less stabla tha pressure-driven one,
while when the base current is directed outwarlthlly, opposite is true. So, what are
the mechanisms that modify the stability charasties of the classical Dean problem?
To answer this question, we need to consider theamcentration field in the annulus.
When the current is directed outwardly, the ion carration next to the inner
surface(electrode) is larger than in the bulk efgblution. See Fig. 5.10a and Fig. 5.5.

When due to the Dean (centrifugal) instabilityjdlmotion is induced away from the
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inner surface, the fluid advects ions into the bofikhe solution. This increases the
local electric conductivity and the current flux.itdéss the concentration “plumes”
next to the bottom and top boundaries next ondfiehbind side of Fig. 5.10c. This, in
turn, enhances the Lorentz body force, increasesottal azimuthal velocity and the
resulting centrifugal acceleration, thereby enhagdhe instability. For this reason,
the eigenvectors associated with the perturbedtdiesnc,, g, v andj, all have

the same sign (Fig. 5.9a). And, for this reasomr, tiagnetohydrodynamic Dean

problem is less stable than the pressure-driven one
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Figure 5.9 The scaled eigenvectors, ¢,g,v and j, as functions ofx. Constant

electric current is imposed across the electrodes= 8.04. k = 2.39. (a) j, = 0.1,
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o =0.011; (b) j, = —0.1, ¢ = —0.016. Other parameters are the same as in Fig.

5.7.

When the base current is directed inwardly, the goncentration next to the
inner surface is smaller than in the bulk of thluson. See Fig. 5.10b and Fig. 5.5.
When centrifugal effects (Dean instability) causeraalial, outward convective
disturbance, the advection reduces the local iowweatration and the corresponding
electric conductivity away from the surface, whiahturn causes a reduction in the
Lorentz body force, a reduction in the azimuthaloggy, and a reduction in the
centrifugal acceleration, which mitigates the dffet the disturbance. Thus, the
disturbance is suppressed. Thus, when the currentdirected inwardly,

electrochemical effects suppress centrifugal inktigis.

Max: 1.03 Max: 0.1006

1.02 0.1004

1.01 0.1002

1 01

0.99 0.0998

0.98 0.0996
Min: 0.97 d)

Min: 0.0994
Figure 5.10 The concentration distribution af, when (a)j* = —0.1, Dn = 8.04;

a) b)

(b) j* = 0.05, Dn = 4.02; and (c)j* = 0.1, Dn = 8.04. The black solid lines in (c)

are the streamlines associated with the seconttawyirh the » — z plane. The arrow

- 114 -



shows the flow direction. (d) Electric current flakstribution for case (c). All the
other parameters used are the same as in Fig. 5.7.
5.4.2 The Case of Controlled Potential and Butler-Volmer Boundary conditions

In this section, we consider the more realisticecaghen the potential
difference between the electrodes is controllea ifijected current, as a function of
the overpotential and the concentration, is giverine Butler-Volmer equation. The

perturbed (linearized) Buttler-Volmer boundary ciiotis at the electrodes’ surfaces

are:
n-hy, = jo[(crpazi@ + cy)e™ @ Vext=@0) 4
5.51
(1- a)Z1¢e(1—a)zl(Vext—¢b)]
and
n-h,, =0. 5.52
Together with equation (46), we obtain the bounaaryditions:
h c,E
E¢ - _ 1x 1 ¢b 553
(21 — 22)C1p C1p
and
h
Ee, = —*2 5.54
Z1— 2

We solve the linear stability problem in a simil@ay to what we have done in
the previous section. Briefly, we specify the wanenber and the Dean number and
compute the eigenvalue = o(Dn, k). As in the controlled current case, is always
real and the principle of exchange of stabilityyaits. We then determine the value of
Dn, (k) that correspond t@ = 0.

Fig. 5.11 depicts the critical Dean numbém, as a function of the wave
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number. The white and gray areas correspond tdesfab< 0) and unstabled( > 0)
cases. When using the same electrolyte and conslitas specified in Fig. 5.7
(outwardly  directed base current), exchange currerdensity  of
jo=6x10"%3and a = 0.5, we find that the critical Dean numbém, = 4.17 and
the critical wave numberk, = 0.74. Expectedly, since the potential boundary
condition is less restrictive than the current feondition (section 5.4.1), the critical
Dean number in the potential-controlled case isliem#énan in the current-controlled
case. When the base current is directed inwardéyazimuthal flow is stable for all

Dean numbers.

o /
7 |
o unstable /
S e :

stable

- o Unstable
4 L = Stable

Figure 5.11 The critical Dean numbebn, at the onset of instability as a function of
the wave number. An infinitely long annular condwith controlled electric potential
applied across the electrodes. The white and gragsacorrespond, respectively, to
stable ¢ < 0) and unstable o( > 0) cases. The hollowDn*) and solid Dn™)
symbols correspond, respectively to subcritical angercritical cases. The symbols
are located at {k,Dn~ |Dn*}={1,3.93]|4.69} , {2.54.46]|545} and

{4,5.73|7.34}. j,=6x1073.a = 0.5.D; = D; = 10™°m?/s, C; = 10*mol/m3.
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R, =0.5m. R, =0.505m.B = 0.4T. p =103kg/m3. u=10"3Pa-s.

The predictions of linear stability theory were qmared with the results of the
nonlinear, finite element simulations of equatiof®sl14-5.16) and Butler-Volmer
boundary conditions. The simulations were carrietl for an annuli with heights
l =2n/k, wherek =1, 2.5, and 4, and periodic boundary conditions at the top and
bottom boundaries. The results of the numericaluktions are summarized with
symbols in the stability diagram (Fig. 5.11). Tlicsand hollow squares correspond,
respectively, to subcritical Dn = 3.93, 4.46,and 5.73) and supercritical jn =
4.69,5.45,and 7.34) flows. The finite elements, nonlinear solutiorre @onsistent
with the predictions of the linear stability anasys

Fig. 5.12a and 5.12b depict, respectively, the ltesof the nonlinear finite
elements simulations when the electrodes’ potenéigd controlled. Fig. 5.12a and Fig.
5.12b correspond, respectively, to the subcrititBh = 5.73) and supercritical
(Dn = 7.34) concentrations and flow fields in the— z plane whenk = 4 and the
base current is outwardly directed. All other cdiotdis are the same as in Fig. 5.11.
When the base current is inwardly directed, thaefialement calculations converged

to a purely azimuthal flow consistent with predicts of linear stability analysis.
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Figure 5.12 lon concentration distributiort; in the controlled potential case
described in Fig. 5.10. (a) subcritical staien = 5.73. (b) supercritical state
Dn = 7.34. The solid lines are the streamlines of the seapntlow. k = 4. All the

other parameters are the same as used in Fig. 5.11.

5.4.3 The Case of Controlled Potential with Nernst Boundary condition
When the electrode kinetics is rapid (large exckarngrent), the Butler-Volmer
equations can be simplified to the Nernst boundaamditions (equation 5.37). The
perturbed boundary conditions are then:
€1

= 5.55
¢ Z1C1p

and
Eci = ¢c1pEd + c1E¢y,. 5.56

To verify the linear stability analysis presentadsection 5.4.2, we repeated the linear
stability calculations using the simpler boundaonditions (5.55) and (5.56). All
other parameters are the same as in Fig. Fifl 5.13 depictsDn, as a function of

k as obtained using Butler-Volmer electrode kinetiten j, = 103 (solid line) and
the Nernst condition (symbols). The agreement betwealculations based on the
Butler-Volmer kinetics and the Nernst kinetics sarly perfect in the case of large

exchange current density.

5.5An Annuluswith a Finite Height (1 < o)

When the annulus has a finite height, purely azivalutlow is not possible and
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secondary flows will always be present in the- z plane. We first examine the
range of validity of the small gap approximatiorhigh we have employed in section
5.4. Then, we compare the intensity of the seconflaws between the cases of the

outward and inward currents.

2.9 \T
4\ /
07 \‘ unstable /
\

2:4 stable \ __ /

w

\w/ o
= Nernst
2.3
1 15 2 2!5 3 35 4
k

Figure 5.13 The critical Dean number at the onset of instgbdis a function of the
wave number. Controlled potential case. The whie gray areas correspond,
respectively, to stabler(< 0) and unstables( > 0) states. The dotted line with solid
squares corresponds to the solution of the lin¢abilgy problem with Nernst
boundary conditions. The solid line correspondsthie Butler-Volmer boundary
conditions withj, = 10® and a = 0.5. All the electrolyte properties are the same as

used for Fig. 5.7.

5.5.1 The Range of Validity of the Small Gap Approximation
When the conduit curvature is small, often the gtvas-dimensional model (the

Dean’s approximation) is employed (Dean 1928) ashawe done in section 5.4. To
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assess the validity of the Dean approximation inaase, we compare the predictions
of the two-dimensional model with the predictiorfstile axisymmetric model. The

corresponding axi-symmetric momentum and continegomtions are, respectively,

ou ou op 0%*u 0%*u v?

-~ T R T E 5.57
”ar+Waz 6r+6r2+622+r'
v ov 0%v 0%v
- . R T 5.58
Yot Tt et o
ow ow op 0*w 0*w
- - _ v, "4 5.59
“ar+Waz az+8r2+822'
and
ou_ ow_ o 5.60
or 0z

Additionally, one needs to solve the Nernst-Plaecjiations (5.14-5.15) for the
concentration field.

We characterize the intensity of the secondary flothe » — z plane with its
kinetic energy|lu, ||? = ¢p(u? + w?)dxdz. Fig. 5.14 depicts ||u,||> as a function
of the curvaturer; when [ = 2. Non-slip boundary conditions are imposedzat 0
and z = . The crosses and circles correspond to axi-synereetd two-dimensional
predictions. The inset depicts the relative diffeee (o) between the axi-symmetric
and two-dimensional simulations as a functionrpf When r; > 40 (curvature of
0.025), the difference between the two models ptiedis is smaller thari%. The
two-dimensional model overestimates the kineticgyef the secondary flow. This
is consistent with results previously obtainedgoessure-driven Dean flow. Finlay &
Nandakumar (1990) and Yanase et al. (1994) argresghectively, that the Dean

approximation is applicable when the curvaturemslter than 0.1 and 0.01.
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Figure 5.14 The kinetic energy of the secondary fldju ||*> as a function ofr,.
D; =D, =1. j* =0.15. | = 2. The dotted line with circles corresponds to ressof
the simplified, two-dimensional model. The dashad Wwith crosses shows results of
the axisymmetric model. The inset depicts the indaidifference between the

approximate model and exact model predictionsfasion of r;.

5.5.2 The Effect of Current Direction on Secondary Convection

A somewhat unexpected result of our linear stabdialysis of the flow in the
azimuthal flow in the infinitely tall annulus isdhstrong dependence on the direction
of the current flow. While in the infinitely longnaulus secondary flows evolve only
when the current is directed outwardly, the sitwatis quite different in the case of
the finite-height annulus. As we have noted earkdnen the annulus is of finite
height, secondary flows are always present regssdiethe current’s direction. These
secondary flows are due to pressure gradients ddaysthe non-slip floor and ceiling.

Fig. 5.15 depicts the flow patterns and the comeéinnh distributions (a and b)
and the current fluxes intensity (c and d) whendineent is directed outwardly (a and

c) and when the current is directed inwardly (b @a)d The annulus height=
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21 /2.39. No slip conditions are specified at= 0 and z = L. All other conditions

are the same as in Fig. 5.7. In both cases, thendacy flow is directed towards the
outer cylinder at the mid-height plane, and retuovsards the inner cylinder next to
the top and bottom boundaries. When the currerdinscted outwardly, the ion

concentrations are higher close to the inner cgliisd surface. These ions are
advected outwardly forming a higher concentratibigher electric conductivity

“plume” at the annulus’ midheight plane, which riésun a higher current density,
larger Lorentz force, and enhanced azimuthal veldé€iig. 5.15a). In contrast, when
the current is directed inwardly, the midheightnglacontains fewer ions than in the
absence of secondary flows (Fig. 5.15b) and thardyiforce is slightly reduced. As
the result, the azimuthal velocity in the case loé tutwardly-directed current
(average azimuthal velocity 61.13) is larger tharthie case of the inwardly directed

current (average azimuthal velocity 61.12).

Max: 1.01 Max: 0.1003

1.008
0.1002
1.006
1.004 0.1001
1.002
1 0.1
0.998
0.0999
0.996
0.994 0.0998
0.992
Min: 0.99 Cl d, Min: 0.0997

Figure 5.15 MHD flow in an annulus of height = 27/2.39. (a) Concentration

a) b)

distribution ¢; and the (u,w) streamlines when aj* = 0.1; (b) Concentration
distribution ¢; and the(u,w) streamlines when* = —0.1. (c) Electric current

distribution in case (a). (d) Electric current disition in case (b). All the other
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parameters are the same as used in Fig. 5.7.

To characterize the intensity of the secondary fle use the two-dimensional
kinetic energy/|lu, ||%. Fig. 5.16 depicts ||u,||* as a function of the current flux.
The solid line with crosses and the dashed liné safuares correspond, respectively,
to an infinite height annulus witk = 2.39 and a finite annulus withh = 27 /2.39 =
2.63. The dashed lines with circles and triangles cpoed, respectively, to finite
annulus with height = 1.26 and 0.63. When the annulus is infinite and the current
is negative,|lu,||? = 0 for all Dean numbers. When the annulus is infirated
j* >0 is smaller than its critical valudlu, ||> = 0. Once j* exceeds its critical

value, secondary flows bifurcate supercriticallgdhu, ||> increases ag* increases.
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Figure 5.16 The intensity of the secondary floj, ||*> as a function of the current
density j*. The dashed line with squares, dashed line cireled dashed line with
triangles correspond, respectively, to capped cismeith height! = 2r/2.39, 2rt/5,
and 2w /10. The solid line with crosses correspond to annitdly long annular
conduit with periodic boundary conditions in theahXz) direction and wave number

k = 2.39. All the other parameters are the same as in51g.

-123 -



When the annulus has finite height, secondary flavesalways present. As the
current density|j*| and the Dean numbédbn increase so doefu, ||?. For similar
Dn, |lu,||* associated with the positive (outward) currerdrily slightly larger than
llu,||* associated with the negative current. For exampleen [ = 2r/2.39,
j*=0.1, Dn = 6.11, ||lu ||? =0.2860. The reverse current* = —0.1 leads to
llu, ||> = 0.2856. The equivalent, purely pressure-driven flow gates convection

intensity |lu, || = 0.2858. In summary,||lu,||? > |lu||?

Positive j* Pressure Driven

and When the

”uJ-HZNegative j* 1% Ginite annutus > 11 nfinite Annutus -
cross-sectional aspect ratio decreases, the convection intensity decreases most
likely due to the drag associated with the flood aeiling. The figure suggests that
when the annulus has a finite height, the floor eeiting are the major causes for
secondary flow and not the Dean instability.

Fig. 5.17a depicts the intensity of the secondary flfjw, || as a function of the
annulus aspect ratid (0.63 <[ < 2.63). The dashed line corresponds to positive
current flux j* = 0.1 and the circles correspond to negative curremt filu= —0.1.

The two curves are nearly overlapping. Consistdtit Wwig. 5.16, ad increases, the
retarding effect of the floor and ceiling decreasasd ||u,||?> increases until it
attains an asymptotic value independent. dfhe flow field in the case of the finite
length annulus is fundamentally different than Ire tcase of the infinite height

annulus no matter how lardas. Fig. 5.17b depicts the relative differencewmssn

llu,|I?> in the case of the outward current and the castheofinward current as a
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function ofl. The difference is most pronounced at small | @aland it decreases to

about 0.15% as | increases.
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Figure 5.17 The intensity of the secondary floJu,||? (@) and the average
azimuthal velocity|| are depicted as functions of the aspect ratiwhen the
current is controlled|(*| = 0.1). The dashed line and the hollow circles corredpon
respectively, to positive and negative currentse Télative difference between the
intensity of the secondary flou, ||? (c) and the average azimuthal velocity (d) as

functions of the aspect ratib

Similar behavior is observed when the electrodesteqtial difference is

controlled.Fig. 5.18 depicts||lu,||? as a function of the applied external potential
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difference AV,,;. The solid line with crosses denote an infinitewdaos with k = 4.
The dashed lines with squares, circles, and treangbrrespond to finite annuli with
l=mn,n/2 andr/4. For conditions similar to the ones specified img.F5.11,
AV, = 11.32, and the resulting current fluj*|~0.1. When the current is positive
(negative), the intensity of the secondary floys, || = 0.2850 (0.2832). The

equivalent pressure-driven flow gives|lu, || = 0.2843 . Here again,

> Ju||? . and

2 2
|l Positive AVgyt > Jlull Pressure Driven Negative AVt

2 2
”uJ-” Finite Annulus > ”uJ-” Infinite Annulus”

g ' -=- ' d, |:3.14' JZ[J:(E‘
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Figure 5.18 The intensity of the secondary floj, ||> as a function of the potential
difference between the electrod@d/{(,;). The dashed line with squares, dashed line
circles, and dashed line with triangles correspardpectively, to capped conduits
with height 7, /2 and /4. The solid line with crosses correspond to aimit&ly
long annular conduit with periodic boundary corahs in the axialA) direction and

wave numberk = 4. All the other parameters are the same as ing-g..

Fig. 5.19a, b, and c depict, respectively, the secondamy’flantensity |lu, ||?,
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the average azimuthal velocity, the average current densifyas functions of the
aspect ratid (0.63 <[ < 3.14). The dashed line and the hollow circles corredpon
respectively to the case d,,, = 15 and the case oAV,,, = —15. Fig. 5.19d
depicts the relative differences between the albmuantities when the current is
positive and when the current is negative as fonstiof the annulus aspect ratio
When the electrodes’ potential difference is cdhedy the current flux distribution
(which is responsible for the Lorentz body forcdfetls more greatly between the
positive and negative potential cases than in timérolled current case. This leads to
a greater difference in the controlled potentisdecdetween the intensities of the
secondary flows when the current is positive andatiee than in the controlled

current case.
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Figure 5.19 The intensity of the secondary floju,||? (a), the average azimuthal
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velocity || (b), and the average current flux (c) as functiohshe aspect ratid

when the potential is controlledA{,,:| = £15). The dashed line and the hollow
circles correspond, respectively, to positive amegative currents. (d) The relative
difference between the intensity of the secondiy f|ju, || (dashed line), average
azimuthal velocity (solid line), and average cutréux as functions of the aspect

ratio L.

In contrast to the case of the infinitely tall alusy in the case of the finite-height
annulus the differences between the flow inducedhieyoutwardly-directed current
and the inwardly-directed current are not largasTé because the secondary flow is
primarily driven by the pressure gradients indubgdhe floor and ceiling and only

weakly modified by the Dean instability.

5.6 Conclusions

In this study, we provided base solutions of cotragions’ distributions, velocity
profile, and current flux field of MHD flow in annaular conduit when the cylinders
are infinitely long. The azimuthal flow is simildo the celebrated Dean flow. In
contrast to the Dean flow, the MHD flow describeztdhcan actually be attained in
practice.

We examined, for the first time, the linear stapibf the azimuthal flow in the
infinitely long annulus. The computed disturbancewgh rate at loss of stability was

always real and the principle of exchange of sitgidilolds. We delineated the effect
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of electrochemistry on the Dean instability. We rfduhat when the current flow is
directed outwardly (positive), the MHD problem igrsficantly less stable than the
Dean problem and secondary flows bifurcate frombifige, azimuthal flow at a Dean
number much smaller than in the pressure-driver.dasother words, in the case of
outwardly-directed current, electrochemical effdwase a destabilizing effect. When
the current was directed inwardly (negative), taenaithal flow was linearly stable
for all Dean numbers. In other words, in the inward-deéotase, electrochemical
effects stabilize the flow.

The predictions of the linear stability analysisraveompared and favorably
agreed with finite element solutions of the nordinproblem. Consistent with linear
stability theory, the nonlinear simulations indeedhat the disturbances grow/decay
monotonically and that the bifurcation in the cadeoutwardly directed current is
supercritical.

Finite element analysis was carried out to stuéynmiagnetohydrodyamic flow in
the capped (finite length) annulus. When the armubi of finite height, pure
azimuthal flows are inadmissible and the flow iwajs three-dimensional, regardless
of the direction of the current. The secondary flewprimarily caused by pressure
gradients induced by the presence of the floor @iling (non-slip) and the Dean
instability plays a relatively minor role in modify the flow field. As a result, the
differences in the intensity of the secondary cative between the outwardly
-directed current and inwardly-directed currentratatively small, albeit the intensity

of the secondary convection is always greatererféhmer case.
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Chapter 6: Conclusions and Outlook

Microfluidics is an exciting, new area that is rexmmnizing biotechnology in
many different ways. Microfluidics allows reseanch® manipulate macromolecules,
transport biochemical species and particles, strgents, and carry out massive,
parallel experiments in a very time-efficient antexpensive way. Microfluidic
devices are used in drug discovery and to faalitaédical diagnostics both in the lab

and at the point of care.

This dissertation has focused on the pumping mestmenof microfluidic devices.
Pumps are essential components of many microflddidces as they are needed to
induce and control fluid motion. In this thesisdiscussed two different pumping
mechanisms. First, | induced fluid motion usingface tension imbalance. The
variations in the surface tension forces were algethe non-uniform geometry of
the micro-conduit, which in turn, drives the fluichotion. Second, | studied
magneto-hydrodynamic pumping, resulting from theeraction between externally
applied electric and magnetic fields, or the Lozeforce. In the following content of
this chapter, | summarize the main results of mgoawplished work, and, when

appropriate, provide suggestions for future work.

6.1 Phase Change Valves and | mmiscible Displacement

In the first part of the thesis, | demonstrated tke of surface tension forces
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to move slugs of liquid. When the ends of a slugvefting liquid reside in segments
of a conduit with different diameters, the slug Iwiénd to move towards the
cross-section with the smaller diameter. The slagjon can be used to either close or
open valves. To prevent unwanted motion of the,ghmgyslug is normally kept frozen.
When valve closing or opening is needed, the dugeated and melted to achieve the
desired actuation. A one dimensional dynamic meged constructed to describe the
slug’s dynamics. Experimental devices were constrland tested and the theoretical
predictions were compared and favorably agreed @igperimental observations. We
proposed an optimization scheme for the maximurw flate based on the dynamic
model and got good agreement between the optimiza@sult and the brute force
solutions of the dynamic model. The valving schaperated successfully both when
the slug displaced air and liquid. When attemptioguse this scheme to pump a
second liquid, we encountered interfacial instéibsgi at the interface between the
more wetting fluid that migrates along the condustirface and the less wetting fluid
that formed the core of the flow.

In most of my experiments, | used slugs made o&ffiarand conduits with
circular cross-sections. Many microfludic systems, daowever, made with plastics
and the conduits have a rectangular cross-sectiren the molten paraffin slug
displaces air or water in a rectangular conduif essult of surface tension forces, the
paraffin will progress rapidly along the cross-gmts corners. This process, over
time would result in the disappearance of the piitee form of the paraffin slug.

One possible way to maintain the integrity of thstgn is to embed magnetizable
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particles in the paraffin. In the presence of amemral magnetic field, the inter

particle forces will maintain the paraffin togethArfollow up work may analyze the

behavior of a suspension of magnetic particles el in paraffin in the presence
of an external magnetic field.

| also observed interfacial instabilities when ranltparaffin (oil) was used to

displace water in circular conduits. When the canadias made of glass, a thin film

of water was left along the surface of the tube e water was displaced by the oil
forming an annular shell around the oil. Eventyalhe oil water interface lost

stability and wave evolved along the interface. isTphenomenon is undesirable in
most cases. A possible remedy to suppress thess ofpnstabilities may be through

the use of magnetic particles and a magnetic field.

6.2 Electrochemical Cell Subjected to Time-Alter nating Potential
Next, | explored the use of magnetohydrodynamiqsutmp liquids. The basic

idea is to transmit current in an electrolyte soluin the presence of a magnetic field.
The current interacts with the magnetic field todarce Lorentz body force, which in
turns drives fluid motion.  Since the fluid motiorodifies the ions’ concentrations in
solution, the electric problem and the momentumagqgaos are coupled. To better
understand electric current transmission in eléggosolutions, | investigated a
one-dimensional electrolytic cell and examined therent-potential relationship
under DC conditions. To this end, | solved the Neflanck equations together with

the electroneutrality condition. The current-volagelations were obtained
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analytically and compared to the numerical restlken, | examined the AC response
when the potential difference between the elecso@gies periodically in time. The
theoretical study consisted of solving the full $3min-Nernst-Planck equations. Since
the solution of the full Poisson-Nernst-Planck dopmes is computationally intensive,
approximate boundary conditions were derived st dm@ can solve time-periodic
problems by solving the Nernst-Planck equationthenbulk (with electroneutrality
condition) and without a need to resolve the electouble layer. The predictions of
the approximate model were critically compared whih predictions of the full model.
For the cases investigated, the difference betweerexact and approximate model
predictions was smaller than 6%. The use of thecqapate model allows one to
overcome the numerical difficulty associated wilie ttwo vastly different length
scales: the macroscopic size of the electrolytearel the nanosclae thickness of the
electric double layer associated with modeling teb®hemical processes including

problems associated with magnetohydrodynamic flbelectrolyte solutions.

6.3. MHD Flow and Equivalence with Pressure-Driven Flow

| constructed a mathematical model for MHD flowsetéctrolyte solutions in
microfluidic systems. In general, the model reguitke concurrent solution of the
Nernst-Planck equations and the momentum equatidms.flow field modifies the
concentration field and the concentration fielceeff$ the electric current, which, in
turn, affects the body force in the momentum egmatMHD has the advantage of

providing a convenient means to pump and stir §udehd control fluid flow with
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electrical signals and without a need for movinghamical components. Flow can be
directed along any desired path in a microfluidetwork without a need for any
valves and its direction can be reversed simplydwersing electrode polarity. The
disadvantage of MHD is that it involves a volumetforce that does not scale
favorably as the conduit size decreases. MHD puoyerating with electrolyte
solutions also have very low conversion efficierayonly a very small fraction of the
electric power is converted into work. More serigasrtcomings include the need to
operate with electrolyte solutions that undergocersible reactions to avoid bubble
formation and undesirable electrochemical electn@detions and the limitation on
the maximum amount of current that can be tranenhitt the solutions. It seems that
MHD are most likely to benefit applications in whiconduit sizes range from
hundreds of micrometers to millimeters - a rangéenfth scales in which the MHD
drive provides significantly higher flow rates thalectroosmosis.

| have shown that when the Reynolds number is tbe, magnetic field is
uniform, and the electric field is orthogonal te ttnagnetic field, the Lorentz body
force is irrotational and one can define a “Lorérpptential. In other words, the
MHD flow is equivalent to pressure-driven flow, ande can use the large body of
data available in the literature for pressure-drifiow to deduce the MHD flow
patterns and drag coefficients. The above conditiofien prevail in microfluidic
systems. | utilized this equivalence in two exaraplehe first example consisted of a
uniform conduit. Here, the equivalence between Mi¢i and pressure-driven flow

has been known for many years. The second exaropkasted of a conduit patterned
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with pillars. This is a somewhat more general casethe electric flux is neither
unidirectional nor uniform as in the first examplghe equivalence between MHD
flow and pressure-driven flow allows me to utilideag coefficients available in the
literature for pressure-driven flow to calculate tliHD flow patterns provided that
the total electric current is controlled. The udetlee MHD-pressure driven flow
equivalence requires caution, however, since thergemce of secondary flows such
as may evolve when the fluid goes around a bendufdi Bau 2003) or a curve will
destroy the analogy between MHD and pressure-drileems. Conduits patterned
with pillars may be useful in application rangingprh separation processes and
catalytic reactors where large solid liquid intedais desired to heat exchangers,
where the pillars act as fins.

| also computed the electric current, concentratzomd flow field in a conduit and
demonstrated that an optimal pillar diameter exitst$ maximizes the current flow. It
is plausible that even higher current transmissiam be obtained by optimizing the
shape of the pillar. However, maximum flow ratdl diappens in the absence of
pillars.

The conduits with pillar arrays can be used as maoki for chromatographic
separation with the pillars providing support foe tstationary phase. In this case, it
would be desirable to optimize the shape of thargil their pattern, and the flow field

to minimize Taylor-Aris dispersion and to minimittee hydrodynamic drag.

6.4 MHD Flow in a Concentric Annulus
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When secondary flows evolve such as when the fgods around a bend, the
MHD-pressure driven flow equivalence no longer &xi#t is of interest to determine
the circumstances under which secondary MHD flowshe. | considered MHD
flow of a symmetric, binary electrolyte in a contren annulus. In the case of
infinitely long annulus, | obtained the velocitelfil, concentrations’ distributions, and
current flux field as functions of the potentialffeience between the cylindrical
electrodes. The azimuthal flow is similar to théebeated Dean flow. | then examined
the linear stability of the azimuthal flow in thafinitely long annulus. The computed
disturbance growth rate at loss of stability wawagls real and the principle of
exchange of stability held. | found, for the fitétne, that electrochemical effects
greatly modify the stability characteristics of thew. When the electric current is
directed outwardly (positive), the MHD Dean problensignificantly less stable than
the pressure-driven, classical Dean problem andnsiecy flows bifurcate from the
base, azimuthal flow at a Dean humber much smidiéar in the pressure-driven case.
In other words, in the case of outwardly-directadent, electrochemical effects have
a destabilizing effect. When the current was deécinwardly (negative), the
azimuthal flow was linearly stable fa@l Dean numbers. In other words, when the
electric current is directed inwardly (negativelgotrochemical effects stabilize the
flow. The predictions of the linear stability ansity were compared and favorably
agreed with finite element solutions of the nordinproblem. Consistent with linear
stability theory, the nonlinear simulations indeedhat the disturbances grow/decay

monotonically and that the bifurcation in the cadeoutwardly directed current is
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supercritical.

When the annulus has finite length, purely azimiutloav is no longer possible.
The non-slip floor and ceiling cause pressure @rdi within the annular cross
-section, which in turn induces secondary flow. §hwhen the annulus is of finite
height, pure azimuthal flow is inadmissible and tiogv is always three-dimensional
regardless of the direction of the current. Fitement analysis was carried out to
determine the flow field in the finite length anasil | find that the secondary flow is
primarily caused by pressure gradients induced Hey gresence of the floor and
ceiling. When the length of the annulus is moder#lte Dean instability plays a
relatively minor role in modifying the flow fieldAs a result, the differences in the
intensity of the secondary convection between thevardly-directed current and
inwardly-directed current are relatively small, etbthe intensity of the secondary
convection is always greater in the former case.

There are many possible extensions of this workmin pioneering work, |
focused on a binary, symmetric electrolyte. Simdaalysis can be carried out for
other solutions such as RedOx electrolytes thaergudreversible reactions at the
electrode surfaces and in presence of excess gumgpelectrolyte. It is likely, that in
the presence of abundant supporting electrolyte, dlectric conductivity will be
insensitive to the concentration distribution oé tteacting species and the stability
characteristics of the MHD flow will be more in énwith that of the classical,
pressure-driven Dean flow. And perhaps, most ingmily, the predictions of my

theory still require experimental verification.
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