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Microfluidic Pumping With Surface Tension Force and
Magnetohydrodynamic Drive

Abstract
Micropumping is difficult to design and control as compared to their macro-scale counterparts due to the size
limitation.

The first part of this dissertation focuses on micropumping with surface tension forces. A simple, single-action,
capillary pump/valve consisting of a bi-phase slug confined in a non-uniform conduit is described. At low
temperatures, the slug is solid and seals the conduit. Once heated above its melting temperature, the liquid
slug moves spontaneously along a predetermined path due to surface tension forces imbalance. This technique
can be easily combined with other propulsion mechanisms such as pressure and magnetohydrodynamics
(MHD).

The second part of this dissertation focuses on MHD micropumping, which provides a convenient,
programmable means for propelling liquids and controlling fluid flow without a need for mechanical pumps
and valves. Firstly, we examined the response of a model one dimensional electrochemical thin film to time-
independent and time-dependent applied polarizations, using the Nernst-Planck (NP) model with
electroneutrality and the Poisson-Nernst-Planck (PNP) model without electro -neutrality, respectively. The
NP model with well designed boundary conditions was v developed, proved capable of describing the bulk
behavior as accurate as the full PNP model. Secondly, we studied the MHD propelled liquid motion in a
uniform conduit patterned with cylinders. We proved equivalence in MHD and pressure driven flow patterns
under certain conditions. We examined the effect of interior obstacles on the electric current flow in the
conduit and showed the existence of particular pillar geometry that maximizes the current. Thirdly, we looked
at MHD flow of a binary electrolyte between concentric cylinders. The base flow was similar to the pressure
driven flow in the same setup. The first order perturbation fields, however, behave differently as the traditional
Dean’s flow. We carried out one-dimensional linear stability analysis for the unbounded small gap situation
and solved it as an eigenvalue problem. Two-dimensional nonlinear simulation was performed for finite gap
size or bounded situations. We observed strong directionality of the applied electric field for the onset of
stability. Results in this study could help enhance the stability of the system or introduce secondary motion
depending on the nature of the applications.
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ABSTRACT 

MICROFLUIDIC PUMPING WITH SURFACE TENSION FORCE 

AND MAGNETOHYDRODYNAMIC DRIVE 

Mian Qin 

Advisor: Dr. Haim H. Bau 

Micropumping is difficult to design and control as compared to their macro-scale 

counterparts due to the size limitation. 

The first part of this dissertation focuses on micropumping with surface tension 

forces. A simple, single-action, capillary pump/valve consisting of a bi-phase slug 

confined in a non-uniform conduit is described. At low temperatures, the slug is solid 

and seals the conduit. Once heated above its melting temperature, the liquid slug 

moves spontaneously along a predetermined path due to surface tension forces 

imbalance. This technique can be easily combined with other propulsion mechanisms 

such as pressure and magnetohydrodynamics (MHD). 

The second part of this dissertation focuses on MHD micropumping, which 

provides a convenient, programmable means for propelling liquids and controlling 

fluid flow without a need for mechanical pumps and valves. Firstly, we examined the 

response of a model one dimensional electrochemical thin film to time-independent 

and time-dependent applied polarizations, using the Nernst-Planck (NP) model with 

electroneutrality and the Poisson-Nernst-Planck (PNP) model without electro 

-neutrality, respectively. The NP model with well designed boundary conditions was 
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developed, proved capable of describing the bulk behavior as accurate as the full PNP 

model. Secondly, we studied the MHD propelled liquid motion in a uniform conduit 

patterned with cylinders. We proved equivalence in MHD and pressure driven flow 

patterns under certain conditions. We examined the effect of interior obstacles on the 

electric current flow in the conduit and showed the existence of particular pillar 

geometry that maximizes the current. Thirdly, we looked at MHD flow of a binary 

electrolyte between concentric cylinders. The base flow was similar to the pressure 

driven flow in the same setup. The first order perturbation fields, however, behave 

differently as the traditional Dean’s flow. We carried out one-dimensional linear 

stability analysis for the unbounded small gap situation and solved it as an eigenvalue 

problem. Two-dimensional nonlinear simulation was performed for finite gap size or 

bounded situations. We observed strong directionality of the applied electric field for 

the onset of stability. Results in this study could help enhance the stability of the 

system or introduce secondary motion depending on the nature of the applications. 
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H  and width W  (equation 4.24). 0.4T=b , 9 2
1 10 /D m s−= , 
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same as in Fig. 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

70 

4.6 The maximum MHD pumping efficiency (equation 4.26) as a function 

of the conduit’s height H  and width W . ˆ 32extV∆ =  and all the other 

parameters are the same as in Fig. 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

 

71 
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9 2
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9 2
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310 Pa sµ −= ⋅ , 1H W mm= = , 0.5α =  and 6 210 /ej A m−= . . . . . . . . .  

 

 

 

 

 

 

 

74 

4.9 The average y -component of the dimensionless current flux as a 
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xvi 

between the electrodes is ˆ 25extV∆ =  (a) and 40 (b). All other 

conditions are the same as in Fig. 4.8. . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

76 
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4.11 (a) The concentration field 1c  in the presence of a cylinder 
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4.13 The average flow velocity u  as a function of /d H  at ˆ 25extV∆ = . 
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5.4 The ratio between the outward and the inward limiting current fluxes 

(|"&∗ |/|"(∗ |) as a function of the radii ratio ). !
 = !� = 1, �
 = −�� =
1, and "# = 10$. The dashed line (2ln) − 1) corresponds to the large ) 

asymptote. The dotted line is the small ) asymptote (2) + 1)/3. . . . .  
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flow. : = 4. All the other parameters are the same as used in Fig. 5.11.  

 

 

 

116 
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CHAPTER 1: Introduction 

1.1 Lab-on-a-chip 

There’re a few terms that have become popular in the engineering world in recent 

years: micro total analysis system (µTAS), lab-on-a-chip (LOC), micro-fluidics, 

micro-electro-mechanical- system (MEMS) and their nano-counterparts (NEMS). 

These terms refer to devices that significantly downscale the conventional laboratory 

tools and integrate the current experimental devices’ functions. In the sequence 

they’re put, each term has broader meaning than the previous one: e.g., LOC is a 

device that integrates on a single substrate one or several laboratory functions and 

deals with the handling of extremely small volume of fluids; while micro-fluidics 

include mechanical flow control elements aside from stated above. A typical 

microfluidic device usually consists of the following: fluid channels, micromixers, 

microvalves, micropumps and calibrating devices. Various purposes covering 

mechanical, chemical and biological fields could be realized on these small devices, 

e.g., flow separation, liquid chromatograph, HIV detection and DNA amplification, 

see Ziober et al. 2008 for an example.  

The advantages of microfluidic technology over the traditional bench-top 

methods include: 1) small fluid volume, which means reduced consumption of 

reagents and production of waste, also requires less sample volume for diagnostics, 

say one tiny drop of blood sample instead of a tube; 2) small reactor size, which 

means shorter diffusion distances and shorter response times to heating/cooling, 

leading to faster diagnosis; 3) high surface to volume ratios, which means ample 
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reaction surfaces and active binding sites, also fast heat dissipation; 4) integrated 

functionality and enhanced compactness of the systems; 5) massive parallelization 

due to compactness, which allows high-throughput analysis; 6) low cost, since it 

usually involves cheap plastics and massive fabrication, making disposable chips 

possible; 7) safer platform for chemical, radioactive or biological studies because of 

integration of functionality and less human interference during the process; 8) easy 

storage, better portability, less energy consumption and etc.. For the overview of 

problems associated with microfluidics, such as Joule heating, channel geometry and 

flow resistance, see Bayraktar & Pidugu, 2006 and Sharp et al. 2005. 

Any microfluidic device, regardless of its functions, substrate material, 

fabrication technique and structural design, requires precise handling of small liquid 

volumes, usually in the pico liter range. The small fluid volumes in these systems 

needs to be stored, pumped, mixed, dispensed or otherwise manipulated to achieve 

desired mechanical, biological or chemical effects. For example, PCR (polymerase 

chain reaction) reagents may need to be first introduced from separate fluid reservoirs 

into a mixing chamber and then be transported among different temperature regions 

on the microchip so that the DNA templates could cyclically undergo denaturation, 

annealing and elongation processes and finally achieve massive duplication (Fig. 1) . 

For the fluid transport purposes mentioned above, passive and active control of fluid 

motion is desired, which are generally referred to as micropumping and microvalving 

techniques. For a review on microvalving, see Oh & Ahn, 2006. We focus on 

micropumping in the following text. 



- 3 - 

  

Fig. 1 a) A polycarbonate based microfluidic device for oral cancer screening and 

detection (Ziober et al. 2008); b) the principle of PCR reactions (by Dr. Steven M. 

Carr). 

 

1.2 Micropumping Techniques 

There’re two categories of micropumping techniques according to Laser and 

Santiago, 2004: 1) displacement micropumping, including reciprocating, rotary and 

aperiodic pumping; 2) dynamic micropumping, utilizing centrifugal, electroosmotic, 

electrohydrodynamic, magnetohydrodynamic forces and etc. The various dynamic 

micropumping methods are referred to as “Continuous flow micropumping” in Woias, 

2005. 

Micropumping could be very challenging in a few aspects. First, small pump 

size is desirable due to the limited space on the microchip. Rigorously miniaturize 

part by part a normal sized pump will be extremely difficult and expensive, if not 

impossible. Second, although high pumping rate are usually not required in 

microfluidics, precise metering of fluid volume are of great importance. Even if the 

absolute difference is minute, the relative error will be significant. The result is 

especially noticeable for highly sensitive biological and medical diagnosis and 
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treatments. Third, due to the decreased channel size accompanied by the increased 

flow resistance, pressure gradient required by the micropump is not insignificant. 

Surface forces (e.g., surface tension, if multiphase flow and interfaces are present) are 

becoming more important due to the increased surface area to volume ratio and could 

act adversely to the pumping. Reliability, power consumption, cost and 

biocompatibility are critical issues to micropumping, too. 

 

1.3 Surface Tension 

Surface tension force driven fluid has many distinct advantages. As a passive 

pumping method, it requires no consumption of energy. Also, as a surface force, it 

scales with the size of the conduit to the second order and is comparatively more 

important in micro-scales compared to the other body forces (inertia, gravity and etc.). 

Examples of how surface tension forces could be utilized to propel fluid motion are 

summarized in Bico & Quere, 2002. The balance of surface tension could be broken 

by capillary imbibition, conical shaped conduit, surface hydrophilicity gradient, 

reactive surface, photosensitive surface and temperature ununiformity. For more 

background of surface tension based micropumping, refer to chapter 2.1. 

 

1.4 Magnetohydrodynamic Flow 

 Among the dynamic pumping methods, magneto-hydrodynamic (MHD) 

pumping draws much attention. The biological samples are usually electrically 

conductive and could carry electric current flow. Under an applied magnetic field, the 
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electric and magnetic field interaction results in Lorentz force, which in turn, drives 

fluid motion (Qian & Bau, 2009). The operation of a MHD pump requires no moving 

element. The generated flow rate is easily adjustable by tuning the amount of applied 

current/voltage. For more background of MHD based micropumping, refer to chapter 

3.1, 4.1 and 5.1. 

 

1.5 Organization of the Dissertation 

We discussed surface tension force and MHD based fluid pumping in more 

details in the following chapters. Chapter 2 studies experimentally and theoretically 

the surface tension based micro –pumping using phase change materials. Chapter 3 

studies theoretically and numerically the electrochemical response of weakly 

conducting electrolyte under AC and DC applied polarizations. Chapter 4 studies the 

MHD micropumping in weakly conducting electrolyte, which is confined in a uniform 

conduit and surrounding circular cylinders. Chapter 5 studies the MHD flow behavior 

in curved channels, including base flow pattern and stability analysis. Chapter 6 

Concludes.
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CHAPTER 2: Surface Tension Based Phase Change Pump / Valve 

2.1 Introduction 

In microfluidic applications, it is often necessary to induce and control fluid motion in 

minute conduits. Since frequently the devices are designed to be disposable, it is 

desirable to achieve these objectives inexpensively and reliably. Given the relatively 

large ratio of surface area to volume in microfluidic devices, it is natural to attempt to 

utilize surface forces for flow control. 

One of the early examples of the use of surface forces to move liquids is 

imbibition by capillaries and porous materials. Washburn’s 1921 derived a theory of 

the dynamics of imbibition in circular capillaries in contact, on one side, with a large 

body of liquid and confirmed his theoretical predictions with experimental 

observations. Imbalance of surface tension forces that induces fluid motion may result 

from various factors such as (i) the presence of single meniscus as in Washburn’s 

work; (ii) non-uniform geometry such as a cone-shaped conduit (Zhang et al. 2007); 

(iii) variations in surface tension resulting from variations in chemical composition 

(Weislogel 1997) and/or temperature (Mazouchi 1999); and (iv) variations in contact 

angle due to varying surface properties induced by chemical reactions (De Gennes 

1998, Sumino et al. 2005), light (Ichimura et al. 2000), and electric fields (Yun et al. 

2002). The surface-induced forces can propel immiscible liquid slugs that, in turn, can 

displace the working fluid, provide diffusion barriers between solutions of various 

compositions, and open and close connections. 

To be useful, the surface tension-driven flow must occur at will under 
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operator’s control. To avoid spontaneous, undesired motion, we propose the use of 

phase change material. During storage and inactivity, the slug is maintained in solid 

state, frozen in position. When fluid motion, pumping, and valving are desired, the 

slug is heated to above its melting temperature. Once in liquid state, the slug motion 

occurs spontaneously by the action of surface forces. The motion can be further 

enhanced with other pressure sources. When the source of heat is removed, the slug 

returns to its frozen, immobile state. 

There are many examples in the literature of phase change valves (Bico & Quere 

2002, Oh & Ahn 2006). In some instances, the working fluid itself has been frozen 

(ice valve) to close a flow passage (Hobbs & Pisano 2003). In other cases, researchers 

used low-temperature melting paraffin. Occasionally, designers took advantage of the 

volume change associated with the paraffin’s phase change to actuate a flexible 

membrane (Yoo et al. 2007, Chen et al. 2005, Boden et al. 2006, Klintberg et al. 2003, 

Lee & Lucyszyn 2005, Yang & Lin 2006, Carlen & Mastrangelo 2002, Selvaga 

-napathy et al. 2003, Klintberg et al. 2003). In other instances, the molten material 

was displaced and moved out of the way with external pressure force (Song et al. 

2008) or with magnetic force when the paraffin plug was laden with magnetic 

particles (Liu et al. 2004). When in solid state, the paraffin valves were reported to 

withstand pressures of at least 50psi without leakage (Liu et al. 2004). 

In the current work, we combine phase-change material with surface tension 

forces to facilitate pumping and valving. In the following part of this chapter, I first 

provide a theory for the surface tension-driven motion of the fluid. Second, I 
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demonstrate that this pumping performance can be optimized. Third, I describe a few 

examples of implementations and compares experimental observations with 

theoretical predictions. Then I present the discussions and conclusions. 

2.2 Theory 

In this section, we study the plug motion once it is in a liquid state. Consider 

the closed loop depicted in Fig. 2.1 consisting of two cylindrical conduits with 

diameters 1d  and 2d  ( 12 dd > ). The two menisci between the immiscible liquid pair 

are initially located in conduits of different diameters. Normally, material 2 is in solid 

state. Here, we follow the chain of events once liquid 2 has been heated above its 

melting temperature and is in its liquid state. 

 

Figure 2.1 A closed loop consisting of two cylindrical conduits of diameters 1d  and 

2d  containing two immiscible liquids 1 and 2. One meniscus is located in the small 

tube and the other in the large tube. 

According to the Young equation, the pressure jumps across the interfaces 

between liquid 1 and liquid 2 are, respectively, 12 1 14 cos /Ap dγ θ∆ =  in the small 

conduit and 12 2 24 cos /Bp dγ θ∆ =  in the large conduit. In the above, 12γ  is the 

interfacial surface tension; and 1θ  and 2θ  are, respectively, the contact angles 
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between liquid 1 and liquid 2 in the small and large conduits. Since 21 dd < , 

BA pp ∆>∆  and the liquids will move in the counterclockwise direction. The driving 

force is 

( )12 1 1 2 2cos cosF d dπγ θ θ= − . 2.1 

The above expression can also be derived based on energy considerations. 

When the slug is in motion, the contact angle will change as a result of the 

combined effects of the viscous force, which pins the meniscus at the conduit’s wall, 

and the surface tension, which preserves the spherical shape of the meniscus. This 

dynamic effect decreases the curvature of the advancing interface and increases that 

of the receding interface (Fig. 2.2). We use a simple model to describe this contact 

angle hysteresis (Bico & Quere 2002). 

 

Figure 2.2 The shapes of the advancing and receding menisci when the slug moves 

towards the left. 

The contact angle of the advancing interface (Hoffman 1975): 

( ) 1/3

1 6 Caθ δ= Γ⋅ +    2.2 

is a function of the capillary number 

12/Ca uµ γ= , 2.3 
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which represents the ratio of the viscous and the interfacial force. In the above, u is 

the average velocity of the fluid in the conduit, ( )1ln 2d aΓ = , and a  is a 

molecular length scale on the order of a few angstroms. For example, when 

1 4d mm=  and 6a A
°

=  (Bico & Quere 2002, Hoffman 1975), ~ 15Γ . To recover 

the equilibrium contact angle at zero velocity, one sets 
Γ

=
6

3
eθδ , where eθ  is the 

equilibrium contact angle. 

When liquid 2 is wetting, downstream of the receding interface, a film is 

deposited along the conduit’s wall with thickness (Bretherton 1961) 

2/31.34h R Ca∞ = ⋅ . 2.4 

As a result, the radius of curvature of the receding meniscus is smaller than the 

actual radius of the conduit (Fig. 2.2b) by (Bico & Quere 2002) 

∞= hh 9.2 . 2.5 

Moreover, since the liquid wets itself, .02 =θ  The above model indicates that 

the motion dynamics is independent of the large conduit’s material. This is consistent 

with our experimental observations (see section 2.4). 

In our analysis, we assume that the apparatus (Fig. 2.1) is horizontal and 

neglect gravitational forces. This is justified when the ratio of the gravitational force 

and the surface tension force as given by the Bond number 
12

2
1

4γ
ρ gd

Bo
∆

=  is small. 

In the above, 21 ρρρ −=∆  is the difference between the densities of fluids 1 and 2 

and g  is the gravitational acceleration. For example, when the two substances are oil 

and air ( 3/800 mkg=∆ρ ), the tube diameter is mm1 , and the interfacial tension is 
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mN /01.0 , the Bond number is 2.0~ . 

The momentum equation in the smaller capillary 

( ) ( ) ( )[ ]
2

1 1 1
1 12 1 1 1 1 2 1 1D U t t

d m u d
= p - p + d cos - 8 l - l + l u

dt 4
π π γ θ π µ µ . 2.6 

where the various lengths are defined in Fig. 2.2. Up  and Dp
 
are, respectively, the 

pressures upstream and downstream (assuming flow in the counterclockwise direction) 

of the small conduit. im , il  and iu ( 2,1=i ) are, respectively, the total mass, the 

total length, and the velocity of the fluids in conduit i . 1µ  and 2µ  are, respectively, 

the viscosities of liquid 1 and liquid 2. itl  is the length occupied by fluid 1 in conduit 

i  at time t . In the above, we assume that the flow along most of the length of the 

conduit obeys Poiseuille law (parabolic velocity profile) and both liquids are 

incompressible. Similarly, in the large diameter conduit 

( ) ( ) ( ) ( )
2

2 2 2
2 12 1 2 2 2 2 22 8

4U D t t

d m u d
p p d h l l l u

dt

π π γ π µ µ= − − − − − +   . 2.7 

The total liquid mass in conduit i  is: 

( )
2

1 2 4
i

i i it it

d
m l l l

πρ ρ= − +   . 2.8 

The velocity of the fluids in the small diameter conduit is: 

dt

dl
u t1

1 = . 2.9 

The velocity in the large diameter conduit is: 

dt

dl
u t2

2 −= . 2.10 

Conservation of mass requires that 

( ) ( )2 2
1 1 10 2 20 2t td l l d l l− = − . 2.11 

Combining equations (2.6-2.11) and eliminating the pressure terms, we obtain 
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the second order, nonlinear differential equation for tl1  as a function of time 

( ) ( ) ( ) ( )[ ]
2 2

1 1 1 2 1 2
1 1 122 2 2

11 2

cos 2
4t t t

t t

d l dl dl d d hd
A n B n l C n l D n

dt dt dt ddt nd d
θγ −  + + + = −      

. 

                                                               2.12 

In the above, 

( ) ,)( 212
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120102
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122
2

32
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nd

d
nD µµµ  

are time-independent. We introduced the variable n  to accommodate situations 

when a large conduit empties into n  small diameter conduits. Additional details are 

provided later in this chapter. Here, in the single conduit case, 1=n . The initial 

conditions are: ( )1 100tl l=  and 
( )

0
01 =

dt

dl t . 

Since, in general, equation (2.12) cannot be solved exactly. It is desirable to 

derive approximate, asymptotic solutions for a few special cases. In the limit of short 

time ( 0→t ) and the fluids initially at rest, the velocity is small, the surface tension 

forces are balanced with the inertial forces, 0~h , e11 θθ = , and equation (2.12) 

reduces to: 

[ ]
2 2

1 2 1 2
10 122 2 2

11 2

cos 2
(1) (1) 4td l d d h

A B l
ddt d d

θγ − + = − 
 

. 2.13 
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In the short time limit, 

10
2

10

21

1
2

1

2
2

12

1 )1()1(

1cos
2

)( lt
lBA

ddd

d

tl

e

t +
+









−

=

θγ
. 

2.14 

Only when the diameter ratio ed

d
1

2

1 cosθ< , the net surface tension force is in 

the direction as in Fig. 2.2 and drives the liquid motion in the according direction. 

When 0cos 1
2

1 >> ed

d θ , the net surface tension force is smaller than zero and could 

not drive the liquid motion. When the interface in the small conduit curves toward the 

opposite direction ( 0cos 1 <eθ ), the liquid motion is going to be reversed, as if liquid 

1 and liquid 2’s positions are switched. 

At long times, inertial terms can be neglected and one has a balance between 

surface tension and viscous forces, equation (2.12) reduces to 

[ ]
2

1 2 1 2
1 12 2 2

11 2

cos 2
(1) (1) 4t

t

dl d d h
C l D

dt dd d
θγ − + = − 

 
. 2.15 

In the above, 

3/1

11
1 6 
















+⋅Γ= δ

γ
µθ

dt

dl t  and 
3/2

1

3/2

1
2

2

2
1943.1 


















=

dt

dl

d

d
h t

γ
µ

. 

When the two fluids have the same viscosities 21 µµ = , (1) 0C = . The time-dependent 

term in equation (2.15) drops out and time-independent flow is established. 

Another special case occurs when one of the fluids is a gas (say, liquid 1). In 

this case, 21 ρρ <<  and 21 µµ << . In other words, one can neglect both the inertia 

and the viscous resistance of fluid 1. Equation (2.12) with 1=n  reduces to 
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222 2 2 2 2
1 12 1 1 2 1

2 1 10 20 22 2 2 2 2 2
1 2 2 1 2

2 4 2 2
12 2 2 2 1 1

1 1 10 202 3 2 4 2 2
1 1 2 1 2 2

4( 2 ) 4 32
cos 0.

t t
t

t
t

d l dld nd nd d nd
l l l

dtnd d d dt nd d

dld h d d nd nd
l l l

dtnd nd d nd d d

ρ ρ

γ µγ θ

      − + + + −               

−    + − + − + + =       

 2.16 

Furthermore, when the ratio of the diameters is large ( 1 2 1d d << ), and 1θ  is 

velocity-independent, equation (2.16) simplifies to the classical Bosanquet equation 

(Bosanquet 1923). This equation can be integrated once to yield 

0cos
416

1
2

12

1

2
122

1

1
1 =−+ t

d
l

ddt

dl
l t

t
t θ

ρ
γν , 2.17 

and again to yield 

1 2 2 2
10

( ) at
t

b bt b
l t e

a l a a
−  

= + − + 
, 2.18 

where 
2

1

216

d
a

ν=  and 
21

112 cos4

ρ
θγ

d
b = . When an analytical solution is not possible 

(i.e., when 1θ  is a function of the velocity), the equations can be readily integrated 

numerically to render tl1  as a function of t . 

Equation (2.11) indicates that the velocity of the interface in the large conduit 

is significantly slower than that in the small conduit. When it is desirable to increase 

the velocity of the meniscus in the large conduit, a few smaller conduits can be 

combined in parallel. A few possible arrangements are depicted in Fig. 2.3. 
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Figure 2.3 Various embodiments of multiple parallel small conduits connected to a 

single large conduit. 

Below, we consider n  small diameter conduits branching from a single large 

diameter conduit. In the arrangement depicted in Fig. 2.3a, the number of small 

conduits is restricted by the cross-sectional area of the large conduit. In the 

arrangement depicted in Fig. 2.3b, the number of small conduits is unrestricted. 

The theory developed earlier in this section can be extended to accommodate 

the cases depicted in Fig. 2.3. To this end, we write 1+n  momentum equations: n  

equations for the small conduits and one equation for the large conduit. The small 

conduits can vary in diameters facilitating various displacement rates in various 

conduits. To model the flow, we need to solve for n  velocities iu  in the small 

conduits and the pressure differences across the length of each tube. For conciseness, 

we consider here only the case of n  small conduits with identical diameters and 

initial menisci positions. 

The lengths of the columns fluid 2 in the small tubes ( )(1 tl t ) can be calculated 

using equation (2.12) with 1>n . 

When liquid 1 is a gas and 12
1

2
2 >>

nd

d
, equation (2.16) is identical to equation 

(2.17) and independent of n . In other words, when the sum of small tubes’ 

cross-sectional areas is much smaller than the area of the large tube’s cross-section, 

the number of small tubes does not affect the fluid motion in the individual small 

conduits. In contrast, the flow rate in the large conduit is proportional to the number 
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of the small conduits (n ). Thus, by connecting a few small conduits to the large 

conduit, one can increase the average velocity of the liquid in the large conduit. 

When 12
1

2
2 >>

nd

d
 and the small conduits are identical in size but have 

different initial liquid menisci positions, the liquid motion in any small conduit can be 

predicted with equation (2.17) independently of the other small conduits. For example, 

consider a case with two small conduits branching from a large conduit. Figs. 2.4a 

and 2.4b depict, respectively, the liquid displacement in each of the small conduits 

when the ratio between the small conduits’ diameter and large conduit’s diameter is 

0.4 and 0.5 and the initial lengths of the liquid columns are different (10 1l cm=  and 

30 1l mm= ). The figures depict the predictions of the approximate model assuming that 

the small conduits (1 and 3) are independent of each other (denoted with ‘a’ in Fig. 4) 

and that accounts for the interdependence of the three momentum equations (denoted 

with ‘e’ in Fig. 2.4). When the diameter ratio is 0.4, the “approximate” and “exact” 

results coincide (Fig. 2.4a). When the diameter ratio is 0.5, there is a significant 

difference between the “approximate” and “exact” results (Fig. 2.4b).  ,98.12 mmd =

,01 =µ ,0641.02 sPa ⋅=µ ,/034.012 mN=γ ,01 =ρ 3
2 830 / ,kg mρ =  ,01.010 ml =  

,01.020 ml = 30 0.001l m=  and o571 =θ . In (a), mmdd 79.031 ==  and in (b) 

mmdd 131 == . 
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Figure 2.4 The displacement of the liquid column in the small conduits 1 and 3 when 

1
2

1

2
2 >>

nd

d
  (a) and 1~2

1

2
2

nd

d
 (b). The subscripts e  and a  denote, respectively, the 

“exact” (coupled model) and “approximate” (uncoupled model) predictions. 

The concepts described above can be extended to include multiple generations 

of branches as in Fig. 2.3c. 

2.3 Optimization 

Consider the case of a single large conduit of diameter 2d  and a single small 

conduit of diameter 1d , i.e., similar to the case depicted in Fig. 2.1. We denote the 

diameters’ ratio 1 2m d d= . As 1d  decreases, both the driving surface tension and 

the viscous drag increase albeit at different rates (see terms of equation (2.12)). One 

would expect therefore that there exists an optimal diameter ratio m  that minimizes 

the amount of time that it takes the meniscus to cover a predetermined distance. 

Alternatively, one can seek the diameter ratio m  that maximizes the length of the 

liquid displacement in the large conduit 

)(1
2

ft tlmJ = . 2.19 

in the time interval ftt <<0 . To find the optimal m  that maximizes J , we start 

from equation (2.12) and assume that the contact angle is velocity-independent (i.e., 
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eθθ =1  and 0=h ). Below, we rewrite equation (2.12) in terms of m . 
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. 2.20 

As before, the above equation can be significantly simplified when liquid 1 is 

a gas. Further simplification can be obtained by realizing that the inertial forces play a 

significant role only for a short time interval after the onset of motion. We illustrate 

the effect of inertial forces through an example. Assuming liquid 1 to be a gas and 

neglecting its inertia and viscous drag, Fig. 2.5 depicts the normalized inertia terms 

(solid line) and the viscous drag (dotted line) of fluid 2 as functions of time. The 

forces were normalized with the surface tension force. Witness that the inertial force 

decays rapidly. When mst 5.1> , the inertial force is smaller than 1% of the surface 

tension force and can be safely neglected.  

 

Figure 2.5 The normalized inertia (solid line) and viscous drag (dotted line) of liquid 

2 are depicted as functions of time. The forces are normalized with the interfacial 
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force. ,8.01 mmd =  ,22 mmd =  ,/830 3
2 mkg=ρ  ,064.02 sPa ⋅=µ  

mN /0229.012 =γ , mll 01.02010 ==  and o
e 60=θ . 

Assuming that fluid 1 is a gas and neglecting inertial terms, equation (2.20) 

reduces to 

( ) ( )2 2 2 12
1 10 202 4

2 2

cos 324 1
1 0e t

t

dl
m m l m l l

d m dtd m
θ µγ    − + − − + + =     

. 2.21 

The above equation can be integrated in closed form. Using the initial 

condition 101 )0( ll t =  we get: 
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We now can express the objective function J  explicitly as a function of m  

and ft : 
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. 2.23 

Fig. 2.6 depicts J  as a function of m  when st f 100= . The solid line and 

the symbols correspond, respectively, to J  values calculated with expression (2.19) 

and values calculated using the differential equations (without neglecting the inertial 

terms). The figure illustrates that equation (2.23) provides an excellent approximation 

for the objective function J  and that an optimal diameter ratio m  exists 

( 437.0=optm  for the conditions of Fig. 6) for which the displacement length can be 

optimized. 
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Figure 2.6 The objective function J  is depicted as a function of the diameter ratio 

m. mllmNsPamkg 01.0  ,/0229.0  ,064.0  ,/830 2010122
3

2 ===⋅== γµρ , 2 2d mm=  

and o601 =θ . The solid line is obtained from equation (2.23). Red dots are obtained 

from brute force solution of equation (2.12). 

 

2.4 Experiments 

To demonstrate the validity of the theory and to illustrate that some of the 

ideas articulated in the theoretical section can be put into practice, we carried out a 

sequence of experiments. In the first set of experiments, we monitored a liquid slug 

displacing air as function of time in an open conduit of the type depicted in Fig. 2.3a. 

In the second set of experiments, we described the liquid-liquid displacement in a 

closed loop as in Fig. 2.1. In the third set of experiments, we describe a spontaneously 

moving phase change valve. In all the cases, a large tube empties into multiple small 

tubes ( 3=n ). 

2.4.1 Liquid-Air Displacement 

The experimental setup is shown in Fig. 2.7. The setup consists of three 

flexible Teflon tubes of diameter 1d  inserted into a large polycarbonate tube of 

0.1 0.2 0.3 0.4 0.5
m

0.000025

0.00005

0.000075

0.0001

0.000125

0.00015

J
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diameter 2d . Fluid 1 was a gas (i.e., air). Fluid 2 was light paraffin oil. 

 

Figure 2.7 Experimental setup of a big polycarbonate tube connected with three small 

Teflon tubes. Dyed oil replaces air. 

The thermophysical properties of the working fluids were either measured or 

were obtained from the vendors. To facilitate imaging of the transparent paraffin oil, 

we mixed the oil with oil-based ink (Speedball Inc.). The contact angle between the 

paraffin oil and a Teflon surface is estimated to be °± 46.36  (Brassard et al. 2008). 

The product mmN /3.9cos12 =θγ  was measured by monitoring the capillary rise of 

a column of paraffin oil in a vertical Teflon capillary tube. We estimate 

12 ~ 11.6 /mN mγ . The viscosity of the clear paraffin oil was estimated to be 

2 64.1mPa sµ = ⋅  by measuring the terminal velocity of a settling particle suspended 

in the liquid. The density of the paraffin oil at C°25  is 3
2 /830 mkg=ρ , obtained 

from the manufacturer’s data. 

Fig. 2.8 depicts the displacement of fluid 2 (tl1 ) as a function of time. The 

solid lines and the symbols correspond to theoretical predictions and experimental 
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observations. The various symbols correspond to the different conditions listed in 

Table 2.1. The theoretical predictions are in good agreement with experimental 

observations with less than 9% discrepancy. 

 

Figure 2.8 The displacement length tl1  is depicted as a function of time. The 

symbols and solid lines correspond, respectively, to the experimental data and the 

theoretical predictions. The small and large tubes are, respectively, made of Teflon 

and polycarbonate. The initial conditions are tabulated in Table 2.1. 

The experiments were repeated with large conduits made of PVC and glass. 

Consistent with the theory presented in section 2, the material of the large conduit had 

little or no effect on the displacement as a function of time. 

 
1 (red, upright 

triangle) 
2 (black 

rhombus) 
3 (blue cross) 4 (green, solid 

square) 

10l  (m) 0.015 0.005 0.0095 0.008 

20l  (m) 0.015 0.01 0.013 0.017 

Table 2.1 List of initial lengths of fluid 2 in the small and large conduits for Fig. 2.8. 

 

2.4.2 Liquid-Liquid Displacement 

In the above, we discussed the displacement of light paraffin oil with air. We 
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encountered, however, a few difficulties when attempting to carry out experiments 

with two liquids such as oil and water. 

A small PVC tube was connected to a big glass tube at one end (Fig. 2.9). 

Depending on the sequence of injection, the PVC tube may be pre-wetted with 

paraffin oil (Fig. 2.10b) or not pre-wetted with paraffin oil (Fig. 2.10a). In the 

non-pre-wetted case (Fig. 2.10a), we observed no liquid motion once the other end of 

the two tubes were connected to form a closed loop. In the pre-wetted case (Fig. 

2.10b), the oil-water interface in the small tube moved towards the water side on the 

existing oil film. The different phenomena resulting from these two set-ups are 

because that additional energy is required to develop a precursor film in front of the 

interface (Bico & Quere 2002). However, this motion did not last for long because of 

the interfacial instability between the core water thread and the surrounding oil film 

(see Fig. 2.11b). This instability caused a wavy interface. Disturbance amplified 

eventually to break the core water thread into isolated drops suspended in oil, which 

minimizes the surface energy. The water slugs had bullet shape and were asymmetric 

in the advancing and receding menisci. This caused additional resistance to the fluid 

motion and finally terminated the liquid displacement. Fig. 2.11d is an experimental 

picture which clearly displays the interfacial instability between the core (oil) and the 

water film along the hydrophilic glass tube’s wall. 
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Figure 2.9 A big glass tube connected to a small PVC tube filled with clear paraffin 

oil and red dyed water. The counter clockwise motion starts when the PVC tube is 

pre-wetted with paraffin oil and ends when the core water thread breaks into slugs 

suspended in oil. 

 

 

Figure 2.10 Filling sequence a) the small tube is not pre-wetted with paraffin oil. No 

motion is observed upon completing step 4. Filling sequence b) renders the entire 

small tube coated with a film of paraffin oil. Liquid motion sets up counter-clockwise 

at the completion of step 4. The motion slows down and finally stops when the water 

core starts forming isolated slugs surrounded by oil. 
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d)  

 

Figure 2.11 a) A schematic of the paraffin oil displacing water towards the right in a 

uniform tube. b) Instability develops as the liquids move, causing the annular flow 

interface transition to a wavy shape (known as the annular flow mode). c) Instability 

magnifies and the core thread of water breaks down into small droplets surrounded by 

oil, minimizing the surface energy (known as the Taylor flow mode). d) Experimental 

picture of oil (center thread) displacing water (outer film) in a mµ200  diameter 

glass tube at flow rate sL /85.14 µ  towards the right (photo obtained in our 

collaborator Dr. Doyoung Byun’s lab). 

When we replace water with air in the above setup, the situation is much 

simpler. The oil displaces air easily without a need for pre-wetting oil film along the 

tube’s surface. The oil slug proceeds smoothly until it occupies the entire length of the 

small tube. 

2.4.3 A Thermally-Actuated Valve 

To explore the possibility of using a spontaneously moving slug as a valve, we 

constructed the device shown in Fig. 2.12. Fig. 2.12a and b are, respectively, a 

schematic depiction and a photograph of the experimental device. The device was 

fabricated with polycarbonate. The device consists of a main, large conduit equipped 
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with a branching, side conduit I and three smaller conduits connected to the main 

conduit. One of the smaller conduits has also a branching side conduit. We used a low 

temperature melting fluid such as Steedman’s wax (Staiger et al. 2000) 

(Sigma-Aldrich Inc.) as liquid 2. At room temperature, the wax was solid and blocked 

the conduit. Once the temperature was increased above the melting temperature 

( CTm °= 37 ), the wax melted and motion set-up spontaneously.  

 

 

Figure 2.12 A conceptual embodiment of thermally-actuated phase change valve (a) 

and a device fabricated with polycarbonate b).  

Initially, when the wax (substance 2) was solid, it blocked the passage from 

side branch I to the main tube V while passages II, III, and IV were maintained open. 

Upon the melting, the wax (fluid 2) moved spontaneously to open passage I. 

Depending on their position, passages II, III, IV could remain open or be closed 

either simultaneously or gradually. The timing of the closing of passages II, III, and 

IV can be controlled either by their position or by repetitive melting and freezing of 

the wax. The operation of the device is featured in a video available in the Supporting 

Information. 

2.5 Discussion 
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According to our experimental observations, spontaneous liquid-air 

displacement is able to be achieved by designing the channel geometries and choosing 

the small tube material thus the interface curving direction. 

The liquid-liquid displacement has more complications than the liquid-gas 

displacement. For example, the interface instability is dependent on the local 

roughness of the tube, the pre-wetting film thickness and other subtle factors, making 

it difficult to control. 

Tube geometries other than cylindrical could also be used for the capillary 

pump. The Laplace pressure across the liquid-liquid or liquid-gas interfaces need to 

be calculated according to the tube cross-sections. Inner sharp corners in the 

cross-sectional geometry should be avoided, otherwise the more wetting liquid might 

run along the edges. 

To further assist the phase change process, we may use mixture of wax and 

ferrofluids which has large quantities of metal particles inside, thus enhances the heat 

conduction. We may also use laser heating (Park et al. 2007) which claims to be able 

to achieve the phase change in seconds. 

Here we established a theory which successfully predicts the experimental 

observations of liquid motion. The discrepancy between the theoretical calculation 

and the experimental data is less than 10%. There are several factors that may 

contribute to the discrepancies. First, the accumulated inaccuracies in the viscosity, 

surface tension and contact angle values of the liquid may be significant. Second, as 

the interfacial properties are highly sensitive to environmental conditions, the 
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temperature fluctuations in the surroundings may also lead to the difference between 

the theory and the experiment. Third, instead of having two straight sections of 

uniform cylindrical tubes as in the theory, we have curved small tubes for the 

experiments, which may cause additional curvature in the interface. Last but not least, 

our simplified theoretical model ignores the details of flow around the sudden step 

change in the tube diameters. 

2.6 Conclusion 

In this study we demonstrated the use of capillary force to spontaneously open 

or close a phase change valve. A one dimensional dynamic model predicted well the 

experimental results. We proposed an optimization scheme based on the dynamic 

model and get good agreement between the optimization result and the brute force 

solutions of the dynamic model. This valve was shown to be able to achieve both 

close to open and open to close switching within seconds. 
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CHAPTER 3: Electrolyte Response to AC / DC Polarizations 

3.1 Introduction 

Upon imposing an electric polarization, ions in the electrolyte are set in motion and 

participate in reactions: the motions take place in the liquid phase, including 

migration due to the electric potential gradient, diffusion due to the concentration 

gradient and convection when liquid motion presents; the electrochemical reactions 

take place at the electrode–electrolyte interfaces. The bulk electrolyte is electrically 

neutral and its performance is purely resistive, with the resistance depending on the 

local concentrations. The interface regions are rich in charges and are usually called 

the electric double layer (EDL), including a compact Stern layer and a diffuse layer. 

The EDLs are in dynamic equilibrium with the bulk under constant polarizations, 

performing as resistors. When time–dependent polarizations are present, the EDLs 

would undergo significant charging/discharging processes, showing capacitive 

behaviors. The ion transfer kinetics could be described by the Poisson equation and 

the Nernst–Planck (NP) equations (PNP model) (Bonnefont et al. 2001). In the bulk 

electrolyte where neutrality holds, the electric potential doesn’t need to be solved. 

However, in the EDLs where neutrality condition fails, the Poisson equation needs to 

be solved, which is coupled to the ion concentrations. Due to the great difference 

between the length scales of the bulk and the EDL, the mesh generation and 

numerical calculation become difficult, which call for a proper description of the EDL, 

such as an equivalent boundary condition for the bulk. The electrochemical reactions 

on the electrode surfaces are often described by the Butler–Volmer type equation for 
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Faradaic current injection. This highly non–linear boundary condition further 

complicates the problem. 

We study the response of a model one–dimensional electrochemical thin film to 

both time–independent and time–dependent applied polarizations. For the time–

independent case, Bazant et al. 2005 carried out a matched asymptotic study for thin 

EDL situation and compared the asymptotic solution with the numerical results. We 

examine the ion transport in four different kinds of electrolyte and applied 

current/voltage conditions. Both numerical simulations and analytical solutions are 

obtained. In the time–dependent case, Bazant et al. 2004 studied the response of a 

symmetric binary electrolyte to a step change voltage, using linearized PNP equations 

with the Laplace transforms for small voltages and obtained numerical solutions for 

large voltages. Their analysis was based on ideally polarizable (blocking) electrodes 

where no current injection is possible. We solved the full PNP model for both ideally 

polarizable electrodes and current injection electrodes, in the context of a tri-ion 

RedOx electrolyte. A simplified model studying only the electro-neutral bulk is 

developed, under the proper boundary conditions that capture the capacitive–resistive 

behavior of the double layer. The simplified model is then validated by comparing its 

result with that from the corresponding full model. 

3.2 Theory 

Consider a pair of parallel plate electrodes located at 0x =  and L , respectively. 

The space in between the electrodes is filled with an electrolyte solution. Once an 

electric polarization (current or potential difference) is applied at the electrodes, the 
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transport of the i -th species ic  is governed by the Nernst-Planck equation: 

( )1,....,i
i

c
m i l

t

∂ = −∇ ⋅ =
∂

�
, 3.1 

where the mass flux of species i ,  

i i i i i im uc D c z Fν φ= − ∇ − ∇� �
, 3.2 

consists of convective, diffusive and electro-migrative terms. In the above, iD  and

/( )i iD RTν =  are, respectively, the diffusivity and the mobility of the i -th species. 

iz  is the valance of the i -th ion. l  is the total number of ion species. F  is the 

Faraday constant. φ  is the electric potential. For static electrolytes that we consider 

in this chapter, the convective term vanishes. 

The electric potential satisfies the Poisson equation: 

( )
1

l

s i i
i

F z cε φ
=

−∇ ⋅ ∇ = ∑ , 3.3 

where sε  is the dielectric permittivity of the solvent. The current flux in the bulk 

electrolyte equals the sum of the ions’ net charge flow: 

1

l

b i i
i

j F z m
=

= ∑
� �

, 3.4 

For reversible reactions at the electrodes’ surfaces: Ox ne Red−+ ⇔ , the 

species’ fluxes are given by the Butler-Volmer (BV) equation (Newman & 

Thomas-Alyea 2004): 

[ ] // (1 ) / ( ), / , /( / )( )0

, ,

d bd b nF RT vOx d b Red d bnF RT v
Red Ox

Ox ave Red ave

c cj
n m e e n m

F c c
α φα φ − −− −⋅

 
= − = − ⋅ 

  

� � � �
, 3.5 

where α  is the charge transfer coefficient for the cathodic reaction, n  is the 

number of electrons exchanged in the reaction, 0j  is the exchange current’s density, 
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Oxc  and Redc  are, respectively, the concentrations of the oxidized and reduced 

species. Subscript ave  and /d b  refers to the average in the bulk and the interface 

of the diffuse layer and the bulk, respectively. When multiple reactions take place at 

the electrodes' surfaces, a separate BV equation is needed for each reacting pair. The 

net current flux at the surface of the electrode is: 

( )E Red Red Ox Oxj F z m z m= +
� � �

 3.6 

Typically, the bulk of the solution is electrically neutral (EN): 

1

0
l

i i
i

z c
=

=∑ . 3.7 

When considering the electrolyte response to fixed potential, the EDL is in 

equilibrium and the current flux across the EDLs is invariant: E bj j=
� �

. Equation 

(3.1-3.3) will be solved, subjecting to the boundary conditions in equation (3.5). 

However, using the EN condition in equation (3.7), the potential and concentrations in 

the NP equations could be decoupled and no separate equation for potential needs to 

be solved. The potential doesn’t satisfy Laplace equation though, which seems a 

straight forward conclusion from equations (3.3) and (3.7). The RHS of equation (3) 

will be a second order small quantity if asymptotic analysis is carried out as in Bazant 

et al. 2005. 

The full PNP model (equations 3.1-3.3) needs to be solved for the AC problem 

for both the Debye layer and the bulk, since charge equilibrium and EN condition 

both fail in the Debye layer. A suitable boundary condition is shown as in Fig. 3.1, 

with the stern layer acting as a capacitor of capacitance sc  in parallel with a 
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nonlinear resistor. The electric current is able to pass through the resistor path, 

allowing Faradaic current injection, and meanwhile charge/discharge the capacitor, 

adjusting the potential difference across the stern layer. 

 

Figure 3.1 A physical picture of the electrolyte structure with electric double layers 

next to one of the electrodes. Circuit element was drawn to illustrate the boundary 

conditions for the full PNP model. 

From the stern model, which assumes the capacitance of the compact layer sc  to 

be constant, two Robin type boundary conditions could be obtained for the Poisson 

equation (Bazant et al. 2005): 

(0) (0) (0)

( ) ( ) ( )

s

s

d
v

dx
d

L L v L
dx

φφ λ

φφ λ

− =

+ =
, 3.8 

Here s
s

sc

ελ =  is the effective thickness of the compact layer. v  are the externally 

applied potentials at the electrodes. These boundary conditions could be understood as 

extrapolating the potential across the thickness of the stern layer. 

Stern layer Debye layer Bulk 

PNP Model 

E
lectrode 

sc

sR

bj
�

Ej
�
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Since the EDL thickness is usually in the nm  range and is much smaller than 

the distance between the electrodes, numerical difficulty is expected in solving the 

full problem. A proper model that studies only the electroneutral bulk but still captures 

the behavior of the electrochemical cell is stated as below, with equivalent boundary 

conditions as sketched in Fig. 3.2. 

 

Figure 3.2 A physical picture of the electrolyte structure with electric double layers 

next to one of the electrodes. Circuit element was drawn to illustrate the boundary 

conditions for the reduced NP model. 

Note that the BV equation is used only across the compact layer, which means 

that in equation (3.6), concentrations and potential at the /d b  interfaces should be 

replaced by the corresponding quantities at the /s d  interfaces. This is called the 

Frumkin correction to the BV condition (Frumkin 1955). For Gouy–Chapman profiles 

for the equilibrium diffuse layer at leading order, 

/( )~ d bc e φ φ−
±

∓ , 3.9 

The concentration at the /s d  and the /d b  interfaces are related by: 
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, /

, /

Ox s d

Ox d b

c
e

c
ς−= , , /

, /

Red s d

Red d b

c
e

c
ς=  3.10 

where / /s d d bς φ φ= −  is the zeta potential. 

The capacitance of the stern layer and the diffuse layer are as following: 

s
s

s

c
ε
λ

= , s
d

d

c
ε
λ

= . 3.11 

The diffuse layer capacitance could also be obtained by numerically extrapolate the 

potential profile from the PNP results and relate the time derivative of the capacitive 

voltage and the injection current. The total capacitance of the two layers can be 

calculated as: 

0

1
1 1

s

s d

s d

c

c c

ε
λ λ

= =
++

 
3.12 

The potential drop across the stern layer and the Debye layer would be proportional to 

their capacitances, which means that 

/

/ /

s d d

s d d b s

v c

c

φ δ
φ φ

− = =
−

, 3.13 

where /s dδ λ λ= . The potential drop across the stern layer: 

/ /( )
1s d d bv v

δφ φ
δ

− = −
+

 3.14 

For time dependent applied potential, a general form for the EDL charging and 

discharging is: 

/
0

( )d b
E b

d v
c j j

dt

φ− = − , 3.15 

When the applied potential is periodic and of the form iwte , we have: 
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/ /

0

1e s d b

E bj j iwc

φ φ− =
−

, 3.16 

where 1i = −  and w  is the frequency. 

The dimensionless equations that normalize distance, concentrations, 

potentials, current densities and time with L , 1c , /RT F  and 1 1 /D Fc L , 2
1/L D  

are: 

( )
1

1,....,i i iC D M
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T D X
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E Red Red Ox OxJ z M z M= +
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/
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( )d b
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d V
C J J
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− Φ = −  3.24 

and for sinusoidal applied potential: /

0

1d b

E b

V

J J iwC

− Φ =
−

 3.25 

where /( )
1d bV
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3.3 Time-Independent Applied Polarizations 

In this section, we study the steady state response of an electrolyte to a fixed 

applied potential/ current. The electric double layer would be in equilibrium in all 

these cases and only the electro-neutral bulk needs to be considered. Electric current 

is conserved in the entire domain of interest. We thus have EJ J=  everywhere in the 

direction perpendicular to the surface of the electrodes. 

3.3.1 A symmetric binary electrolyte ( 1 1z zA B+ − ) under current density 0j  

As in the case of electroplating, only the cations participate in the electrode 

reactions (assume single electron transfer): 1
1 ( )zA z e A s+ −+ ⇔ . The anode is made of 

( )A s  so that the total numbers of 1zA +  and 1zB −  ions both remain constants 

according to time. The governing equations for the unknowns 1 2,C C  and Φ : 

1
1 1

1

2
2 2

1 1 2 2

0

0

EdC Jd
z C

dX dX z

dC d
z C

dX dX
z C z C

Φ+ = −

Φ− =

− =

 
3.26 

Assume 1 2 1z z= =  are the charges of the cations and anions, respectively. We have 

1 2C C=  everywhere from the electro-neutrality equation (3.26-3). Adding and 

subtracting equations (3.26-1) and (3.26-2) decouples the concentrations and potential, 

leading to the solutions 

( )
( )

1 2

1
1

2 2

1
1

2 2ln
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E

E

E

J
C C X

J
X

J

= = + −
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 

 3.27 
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that satisfy the mass conservation of 
1

0

1i

X

C dX
=

=∫  and boundary condition (0) 0Φ = . 

We solved numerically the dimensionless Nernst-Planck problem using COMSOL 

and the compared the numerical results with the analytical results, shown as in Fig. 

3.3. 

  

Figure 3.3 Comparison of COMSOL numerical solutions (solid line) and analytical 

solutions (solid line with symbols) as in equation (33). a) dimensionless 

concentrations; b) dimensionless potential. 

 

3.3.2 A binary electrolyte ( 1 2z zA B+ − ) under applied potential V  

Consider two ion species with charge number 1z  and 2z  co-exist in the 

electrolyte. The electrode reaction is: 1 1 ( )zA z e A s+ −+ ⇔ . The dimensionless ion 

concentrations satisfying the mass transfer equations as following:  

1
1 1

1

2
2 2

1 1 2 2

0

0

EdC Jd
z C

dX dX z

dC d
z C

dX dX
z C z C

Φ+ = −

Φ− =

− =

. 
3.28 

Instead of having a constant current flux going through the electrolyte, we impose 
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potentials of 0  and V  on the electrodes. 

The boundary conditions can be written as: 

{ }1 1(1 ) (0) (0)
0 1(0) 0z z

EJ J C e e at Xα α− Φ − Φ= − =  

[ ] [ ]{ }1 1(1) (1 ) (1)
0 1(1) 1z V z V

EJ J e C e at Xα α− Φ − − Φ −= − =  
3.29 

The mass conservations are now: 

1 1
1

1 2
20 0

1, ,
X X

z
C dX C dX

z= =

= =∫ ∫  3.30 

Equations (3.28) yield the solution for the concentrations: 
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1 2
1 1 2 2

1
( ) 1 ( )

2
EJ z z

C X X C X
z z z z
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 3.31 

and for the potential drop in electrolyte: 

( ) ( )
1

1
2

1
1 0 ln E

E

J J

z J J

+∆Φ = Φ − Φ =
−

 3.32 

where 
( )1 1 21

2

2z z z
J

z

+
=  is the dimensionless limiting diffusion-migration current in 

the cell, corresponding to the ion depletion condition ( )1 0 0C = . 

Using the solution in equations (3.31) and (3.32) to eliminate ( )0Φ  from 

equations (3.29) leads to an implicit expression for the polarization curve ( )EJ V . A 

convenient form is obtained as the following equations (3.33) and (3.34): 
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J
α−   = − −  
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 3.34 

The solutions to equations (3.33) and (3.34) are plotted as in Fig. 3.4. Finite element 
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simulations of the problem with COMSOL for different parameters of 1J  and α  

are also plotted as in Fig. 3.4. 

 

Figure 3.4 Polarization curve ( )EJ V  determined analytically by equation (39) and 

(40) (symbols) and by COMSOL simulations (lines). 1 2 01, 0.001.z z J= = =  1) 

0.5α = ; 2) 0.3α = ; 3) 0.7α = . 

 

3.3.3 A binary electrolyte ( 31 zzA C −+ ) with supporting electrolyte ( 32 zzB C −+ ) under 

applied potential V  

Assume three types of ions 1zA + , 2zB +  and 3zC −  co-exist in the electrolyte, 

with their concentrations 1C , 2C  and 3C  satisfying the non-dimensional time 

independent NP and EN equations: 
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The solution to 2 3C and C  can be obtained as in Grigin 1993: 

[ ]

[ ]

( ) (0)
2 2

( ) (0)
3 2

( ) (0)

( ) (0)

X

X

C X C e

C X NC e

− Φ −Φ

Φ −Φ

=

=
 3.36 

Multiplying equation (3.35-1), (3.35-2) and (3.35-3) by 1 2 3,z z and z−  respectively 

and summing them together, then reduce with equation (3.35-4) to get: (for case of 

1 2 32, 1z z z= = = ) 

( )3 2

1
3

E

dX
C C

d J
= −

Φ
 3.37 

The mass conservation for ions (the concentrations are scaled to 3c , the ratio 1

3

c
k

c
= , 

bar denotes average): 

1 1 1

1 2 3

0 0 0

, 1 2 , 1
X X X

C dX k C dX k C dX
= = =

= = − =∫ ∫ ∫ . 3.38 

Denote 

(1) (0)∆Φ = Φ − Φ  3.39 

and 

2y e ∆Φ=  3.40 

Substitute equation (3.36) to (3.38) for mass conservation for 2C  and 3C  to get the 

following expressions: 

( )
2

12(0)
3 ln 1 1 2

2 E

C
N y y k

J
−+ − = −  3.41 

( )
2

2(0)
3 1 ln 1

2 E
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N y y

J
− − =    3.42 

Reduce (3.41) and (3.42) to get the expression for N  as a function of y : 
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2 2 1(2 ) ln 3( 1)( 1)(1 2 )
( ) (2 ) ln

3( 1)(1 2 )

k y y y k
N y k y

y k

−− + − − −
= − +

− −
 3.43 

The integration of equation (3.37) from (0)Φ  to (1)Φ  equals 1, leads to the 

expressions of 2(0)C  and EJ  as functions of N  and y : 

[ ]
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 3.45 

Equations (3.44) and (3.45) together with the electro-neutrality condition (3.35-4) and 

(3.36) yield the following expression for 1(0)C  and 1(1)C  in terms of N  and y : 
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If the currents at the electrodes are related to the concentrations and over-potentials by 

the Butler-Volmer boundary conditions: 
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 3.47 

Equating the right hand side of equations (3.47-1) and (3.47-2) and note that 

(1) (0) ln yΦ = Φ + , (0)Φ  could be expressed in terms of y  and V : 
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3.48 

Equations (3.45), (3.47-1) and (3.48) can be calculated numerically for the ( )EJ V  

curve. 
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We used 01/ 3, 0.5, 1, 1k J Vα= = = = . We solved the problem with COMSOL 

and compared the analytical and numerical results as shown in Fig . 3.5. 

 

Figure 3.5 Comparison of the current – voltage relation calculated by analytical 

solution (symbols) and the COMSOL simulation results (solid line). 

 

3.3.4 A RedOx electrolyte ( 3 31 2/z zz zA C B C− −+ + ) under an applied potential V  

Two types of cations undergo RedOx reaction: 1 2
1 2( )z zA z z e B+ +−+ − ⇔ . The 

mass transfer equations and the electro-neutrality equations are as following: 
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 3.49 

Assume 1 2 33, 2, 1z z z= = = . The concentrations are scaled to 3c , 1

3

c
k

c
= . Summing 

equations (3.55-1), (3.55-2) and (3.55-3) yields: 
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Multiplying equation (3.49-1) with 1

2

D

D
, adding it with equation (3.49-2) and use 

3

3
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Φ =  from equation (3.49-3) yields: 
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The solution to equation (3.51) could be obtained numerically. In the following, we 

will consider the simplest case of the fixed ratio of diffusion coefficients 1

2

3

4

D

D
=  so 

that equation (3.51) can be integrated to be (Kharkats et al. 1995): 

( ) ( )1 2 1 23 2C C C C m+ + =  3.52 

Here m  is an integration constant. 

The above equation (3.52) is equivalent to: 

2
3 3

1 3
0

4 2 2
EJ k

C X C m
 −  − ⋅ − + + =  

  
 3.53 

Leading to:  

2

3

4

2

b b m
C

+ −=  3.54 

where 
1 3

4 2 2
EJ k

b X
− = ⋅ − + 

 
. 

For a given k  value, we could obtain numerically m  as a function of EJ  through 

the conservation of mass for 3C . The expressions of the concentrations are as 

following: 

1 33 2C C b= −  3.55 
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2 33 4C b C= −  

( )22

3

1

2

b b k
C

+ − −
=  

For the Butler-Volmer boundary condition,  

[ ] [ ]

(1 ) (0) (0)1 2
0

(1) (1 ) (1)2 1
0

(0) (0)
0

(1 3 ) / 2

(1) (1)
1

(1 3 ) / 2

E

V V
E

C C
J J e e at X

k k

C C
J J e e at X

k k

α α

α α

− Φ − Φ

− Φ − − Φ −

 
= − = − 

 = − = − 

 3.56 

From equation (3.55-1), (3.55-2) and (3.56), we are able to obtain: 

( )

( )( )
(0) 2 2

1
1 1

(0) (1)exp2

1 3 (0) (1)exp

V

V

C Ck
e

k C C

α

α

−∆Φ
Φ

− −∆Φ

+= ⋅
− +

 3.57 

The numerical solution for the ~EJ V  curve could be obtained from equation 

(3.56-1), (3.57) and ∆Φ  from integrating 3

3

1 dCd

dX C dX

Φ = . We find out that m  is 

just weakly dependent on EJ  (Fig. 3.6). We assume 0EJ =  and obtain 
1

2

k
m

−= . 

Using this m  value does lead to almost identical solutions of the ~EJ V  relation. 

 

Figure 3.6 ~ Em J  curve from analytical solution (symbols) and a quadratic fitting 
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curve (solid) from the mass conservation. 

The numerical solutions of m  at different EJ  values are plotted as in Fig. 

3.6. The comparison of ~EJ V  curves of the COMSOL simulation result and the 

analytical solution as developed above is shown in Fig. 3.7. 

 

Figure 3.7 ~EJ V  curve from analytical solution with exact m  values as in Fig. 

7 (circles), analytical solution with (1 ) / 2m k= −  (cross symbols) and COMSOL 

simulation (solid line). 00.5, 0.2, 0.001k Jα = = = . 

 

3.4. Time-Dependent Applied Polarizations 

First we consider the case of ideally polarizable electrodes, where the ionic fluxes 

vanish at the electrodes. A model problem studied by Bazant et al. 2004 is a dilute, 

completely disscociated :z z  electrolyte, limited by two parallel, planar, blocking 

electrodes at x L= ±  and with applied potentials v± . When the applied potential is 

much smaller than the thermal voltage ( bv k T ze<< ), the equations could be 

linearized into the Debye-Falkenhagen equation and Laplace transform gives a 
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solution of the problem, as could be found in Bazant et al. 2004 part IV. Performing 

the numerical inverse Laplace transform by Mathematica, we’re able to obtain the 

potential and concentration distribution exactly the same as in Bazant et al. 2004 for 

different parameters. The comparison between the numerical Laplace inversion 

solution and the COMSOL solution are plotted as in Fig. 3.8. The electrodes are 

located at dimensionless coordinate 1X = ±  and are subjected to dimensionless 

potentials 0.1± . 

  

Figure 3.8 Dimensionless charge density 1 2( ) / 2C Cρ = −  (within the EDL close to 

the left electrode 1 0.8X− < < − ) and dimensionless potential Φ  for dimensionless 

voltage 0.1V = . Lines correspond to 0t = , 0.1, 0.5, 1 and 2 according to directions 

shown. 0t =  in the left figure overlaps with the x-axis and is not shown. 

The reduced model described by equations (3.17)-( 3.25) is numerically solved 

with COMSOL. The comparison of the full and reduce ion transport model with 

Butler-Volmer type of current injection is shown as in Fig. 3.9. The applied potential 

is of magnitude 0.1V =  and frequency w π= . 0.1δ = . 0.05ε = . 0 0.001J = . 

0.5α = . 
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Figure 3.9 Comparison of the full PNP model with extrapolation boundary condition 

for the stern layer (dashed lines), full PNP model with leaky capacitor model for the 

stern layer (solid lines) and reduced NP model with leaky capacitor model for the 

EDL (dotted lines with symbols). Results are based on binary electrolyte (1:1) 

subjected to applied potential with magnitude 0.1V =  and frequency w π= . 

Different colors correspond to 0 : 0.25 : 2T = . 0.1δ = . 0.05ε = . 0 0.001J = . 

0.5α = . Half domain of the symmetric response is shown. 

We also included in both the Fig. 3.10 and Fig. 3.11 the full model with a 

capacitor type of boundary condition for the stern layer, which is close to but different 

from the result from the linear extrapolation type of boundary condition as in equation 

(3.20). Note that for applied potential 0.1cos( )V Tπ= , the time response of the 

reduced model agrees with the full models only after 0.2T > . 
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Figure 3.10 Dimensionless current injection EJ  as functions of dimensionless 

applied potential V  from the full PNP model with extrapolation boundary 

condition for the stern layer (red dash dotted line), the full PNP model with leaky 

capacitor model for the stern layer (black solid line) and the reduced NP model with 

leaky capacitor model for the EDL (blue dotted line with symbols). 0.1V = . 

w π= . 0.1δ = . 0.05ε = . 0 0.001J = . 
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Figure 3.11 Current injection EJ  as functions of time from the full PNP model 

with extrapolation boundary condition for the stern layer (red dash dotted line), the 

full model with leaky capacitor model for the stern layer (black solid line) and the 

reduced model with leaky capacitor model for the EDL (blue dotted line with 

symbols). 0.1V = . w π= . 0.1δ = . 0.05ε = . 0 0.001J = . 

 

3.5 Conclusion 

The physical model of a one dimensional electrolytic cell was summarized. 

The DC responses to applied current/ potential were studied for four cases of 

electrolytes by solving the electroneutral Nernst-Planck equations. The 

current-voltage relations were obtained analytically and compared to the numerical 

results. The AC response were obtained by solving the full Poisson-Nernst-Planck 

model. A reduced model accounting only the electroneutral bulk was developed, with 

proper boundary conditions for the non-neutral double layers. The results from the 

full and reduced model were compared to verify the validity of the reduced model, 

which overcomes the numerical difficulty associated with the distinct size difference 

between the double layer and the electrolytic cell. 
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CHAPTER 4: Magneto-Hydrodynamic Flow around Cylinders 

4.1 Introduction 

A lab-on-a-chip (LOC) device is a minute chemical processing plant that 

integrates on a single substrate common laboratory processes ranging from filtration 

and mixing to separation and detection. To achieve these tasks, it is often necessary to 

propel and stir liquids and control fluid flow. Since, in many applications, one uses 

solutions that are electrically conductive, one can transmit electric currents through 

these solutions. When the device is subjected to an external magnetic field provided 

by either permanent magnets or electromagnets, the electric current interacts with the 

magnetic field to produce Lorentz body forces, which, in turn, drive fluid motion. 

This phenomenon is commonly referred to as magneto-hydrodynamics and has been 

utilized, among other things, to pump fluids in microfluidic conduits (Qian and Bau 

2005; Jang and Lee 2000; Lemoff and Lee 2000; Leventis and Gao 2001; West et al. 

2002 and 2003; Zhong et al. 2002; Eijkel et al. 2003; Bao and Harrison 2003a and 

2003b; Arumugam et al. 2005 and 2006; Aguilar et al. 2006; Nguyen and Kassegne 

2008), control fluid flow in microfluidic networks without a need for mechanical 

pumps and valves (Bau et al. 2003); stir and mix fluids (Bau et al. 2001; Yi et al. 

2002; Xiang and Bau 2003; Qian and Bau 2005; Gleeson and West 2002; West et al. 

2003; Gleeson et al. 2004); and enhance mass transfer next to electrodes’ surfaces 

(Boum and Alemany 1999; Lioubashevski et al. 2004; Alemany and Chopart 2007). 

For a recent review of a few applications of MHD in microfluidics, see Qian and Bau 

(2009). 
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Most of the literature pertaining to MHD focuses on liquid metals and ionized 

gases (Davidson 2001). In contrast, in microfluidic applications, one typically deals 

with electrolyte solutions. The modeling of MHD flows of electrolyte solutions differs 

from that of liquid metals since the local electric conductivity is a function of the 

electrolytes’ concentration, which, in turn, depends on the flow field. Nernst-Plank 

equations for the ions’ flux (Newman 1991), the Navier-Stokes momentum equation 

(Batchelor 1967), and Maxwell’s equations for the magnetic field need to be solved 

concurrently. Additionally, one often needs to consider non-linear electrode kinetics 

and the possible production of undesirable products of electrochemical reactions at 

the electrodes’ surfaces. Another potential undesired phenomenon is electrophoretic 

migration of charged molecules and particles in the electric fields induced by the 

electrodes.  

Fortunately, for electrolytes with low magnetic permittivity and a low 

magnetic Reynolds number, the determination of the magnetic field can be decoupled 

from that of the ion concentration, fluid flow, and electric fields, and electric current 

induction can be neglected. 

The typical MHD pump consists of an electrolyte-filled conduit with a 

rectangular cross-section whose opposite walls are coated with electrodes. It has long 

been known that when the electrolytes are subjected to a uniform magnetic field 

directed parallel to the electrodes’ surfaces, the MHD flow is equivalent to 

pressure-driven flow (Ho 2007). We show that this equivalence also exists in some 

other circumstances that are common in microfluidic systems. We utilize the 
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equivalence between MHD-driven flow and pressure-driven flow to obtain the flow 

patterns of MHD flow in conduits patterned with pillar arrays. Such conduits can 

serve as chromatographic and separation columns and as catalytic reactors. The pillars 

provide increased surface area and solid support for stationary phases and catalytic 

surfaces (to facilitate and enhance heterogeneous reactions). MHD–driven flow is of 

particular interest to chromatography as it allows one to drive fluid flow in a closed 

loop, in effect, providing an “infinitely long column” (Martin 1958; Eijkel et al. 2004). 

In a traditional, linear, separation column, the column length must be selected in 

advance, which is not always feasible when dealing with unknown analytes or with 

analytes that have slightly different partition coefficients. No such advance knowledge 

is needed in the case of the closed loop chromatograph. The closed-loop 

chromatograph also allows for real-time detection. 

In the case of the column patterned with the pillar array, we show that when 

the current is controlled (known), one can deduce the MHD flow rate by using 

literature data available for pressure-driven flow in a similar geometry. When the 

potential difference between the electrodes is the control parameter, the equivalence 

between the pressure-driven flow and the MHD-driven flow cannot be applied 

directly to obtain the flow field, and we solve the coupled Nernst-Planck and 

Navier-Stokes equations to obtain the concentration, current, and flow fields. In the 

latter case, we can verify the computations by comparing our computed drag 

coefficients with literature data available for the pressure-driven flow. 

This chapter is organized as follows. Section 4.2 introduces the mathematical 
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model and outlines the various assumptions that apply for the conditions typically 

prevailing in microfluidic systems. Section 4.3 proves the existence of a “Lorentz 

potential” under special conditions and thus the equivalence between MHD-driven 

and pressure-driven flow under those conditions. Section 4.4 reviews briefly MHD 

flow in a uniform conduit. The analysis accounts for concentration gradients induced 

by the electric field. Additionally, we redefine the efficiency of the MHD pump 

energy conversion and estimate the temperature increase in the MHD pump. Section 

4.5 studies MHD flow in a conduit patterned with a pillar array. Section 4.6 studies 

Taylor dispersion associated with MHD flow in a rectangular conduit. Section 4.7 

concludes. 

 

4.2 Mathematical Model 

Consider an electrolyte solution consisting of l  types of ionic species with 

concentrations ic  ( )1,....,i l=  subjected to external electric and magnetic fields. The 

mass transport of the i -th ion is described by the Nernst-Planck (NP) equation: 

( 1,..., )i
i

c
i l

t

∂ = −∇⋅ =
∂

N , 4.1 

where the mass flux of species i  

( )i i i i i i ic D c z Fcν φ= − ∇ − ∇ − ×N u u b  4.2 

is comprised of convective, diffusive, electro-migrative, and inductive terms. In the 

above, u  is the fluid velocity; iD  and /( )i iD RTν =  are, respectively, the 

diffusivity and the mobility of the i -th ion species; iz  is the valence of the i th ion 

species; R  is the gas constant; T  is the absolute temperature; F  is the Faraday 
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constant; φ  is the electric potential; and b  is the magnetic field vector. We adopt 

here the convention that bold and regular letters represent, respectively, vectors and 

scalars. 

The electric potential satisfies the Poisson equation: 

( )
1

l

s i i
i

F z cε φ
=

−∇ ⋅ ∇ = ∑ , 4.3 

where sε  is the dielectric permittivity of the solvent. 

Typically, in a homogeneous solution, net charge exists only in narrow regions 

next to solid surfaces (electric double layers, EDL) and the bulk of the solution is 

nearly electrically neutral: 

1

0
l

i i
i

z c
=

≈∑ . 4.4 

The electric current flux is 

1 1

( )
l l

i i i i i ionic
i i

F z F z D c σ φ
= =

= = − ∇ − ∇ − ×∑ ∑j N u b , 4.5 

where 2 2

1

l

ionic i i i
i

F z cσ ν
=

= ∑  is the ionic conductivity of the electrolyte solution. 

The fluid motion satisfies the Navier-Stokes (NS) equation: 

2
EMp

t
ρ µ∂ + ⋅∇ = −∇ + ∇ + ∂ 

u
u u u f , 4.6 

where the electromagnetic body force 

EM L B E∇= + +f f f f . 4.7 

The Lorentz force 

L = ×f j b ; 4.8 
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the magnetophoretic force (when the ions are ferromagnetic and/or paramagnetic) 

( ) 2

02
mm

B ic
χ
ς∇ = ∇f b ; 4.9 

and the electrostatic force 

1

l

E i i
i

F z cφ
=

= ∇ ⋅∑f . 4.10 

In the above, ρ  and µ  are, respectively, the fluid density and viscosity; 

6 2
0 1.257 10 N Aς − −= × ⋅  is the magnetic permeability of the vacuum; p  is the 

dynamic pressure; mχ  is the molar susceptibility; and the subscript m  denotes 

paramagnetic ions. Due to the small dimensions of microfluidic conduits, we 

neglected buoyancy effects in equation (4.6). We emphasize, however, that body 

forces due to density variations may, on occasion, play a significant role even when 

device dimensions are relatively small. See, for example, Qian et al. (2006). 

The electrolyte satisfies the continuity equation: 

0∇ ⋅ =u . 4.11 

Equations (4.1-4.11) constitute the standard model. 

 In the model presented above, we neglected the induced magnetic field.  This is 

justified since, in all our applications, the magnetic Reynolds number Rem

uH

υ
= <<1.  

In the above, u  is the average flow velocity; H  is a length scale associated with 

the flow; and ( ) 1
0

−= ionicσςυ  is the “magnetic diffusivity”. For example, when 

1 /u mm s= , 1H mm=  and 1 1
0 1.29ohm mσ − −=  (0.1M KCl at 25oC ), 12Re ~ 10m

−  

and the magnetic induction can be safely neglected. This approximation is valid even 
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in the case of liquid metals. For example, in the case of mercury (conductivity of 

6 1 110 ohm m− − ), 6Re ~ 10m
− . Thus, in what follows, we assume that the external, 

imposed magnetic field is unperturbed by the flow. 

When the applied magnetic field is uniform ( z=b b e ) and the bulk of the 

electrolyte solution satisfies the electro-neutrality condition, both B∇f  and Ef  

vanish, leaving the Lorentz force as the only body force. The dimensionless 

Navier-Stokes equation becomes: 

. 
4.12 

In the above, ionicHa H
σ

µ
= b  is the Hartmann number. The velocity, length, time, 

concentration, potential, magnetic field, pressure and diffusion coefficients are, 

respectively, scaled with 
2

0
0

q extF H D c V
u

RTµ
∆

=
b

, the conduit’s height H , 0u

H
, the 

average concentration qc , 
RT
F

, b , 0u

H

µ
, and 0

1 1

1 1l l

i ii i

D
z D= =

=∑ ∑ . 0Re
u Lρ
µ

= is 

the Reynolds number. 0

0

K qF D c H

uµ
=

b
 is the ratio between the Lorentz force and 

the viscous force. 

The dimensionless current Ŵ = YZ[ = −\∑ �^!_^`̂a
 bc,̂^ � �^ ,̂^cIde �
Ha�bMg × hi e, where 0

0 2

u
j

H

µ=
b

. extV∆  is the externally applied potential difference. 

Overhats denote dimensionless quantities and overbars denote domain averages. 

When the Hartmann number is small, the induction current term in equation (4.12) 

can be neglected. This is generally the case in microfluidic systems operating with 
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electrolyte solutions. For example, when 1H mm= , 0.4T=b , 310 Pa sµ −= ⋅  and 

1 1~ 1ionic ohm mσ − −  (0.1M KCl at 25oC ), the Hartmann number 2~ 10Ha − . In 

contrast, in the case of liquid metals such as mercury (conductivity 6 1 110 ohm m− − ), 

~ 10Ha  and the induction current term in equation (4.12) must be taken into 

account. 

Equation (4.4) suggests that there is no accumulation of charge in the bulk of 

the solution. Therefore, the current flux is solenoidal (divergence free). 

0∇ ⋅ =j . 4.13 

Applying equation (4.13) to equation (4.5) and neglecting the induction term, 

we obtain the equation for the electric potential in the bulk of the solution: 

( ) ( )
1

0
l

ionic i i i
i

F z D cσ φ
=

∇ ⋅ ∇ + ∇ ⋅ ∇ =∑ . 4.14 

Witness that equation (4.14) reduces to Ohm’s law only when one can neglect 

the term ( )
1

l

i i i
i

F z D c
=

∇ ⋅ ∇∑ . This would be the case when all the ionic species have 

similar diffusivities or when the concentration distributions are nearly uniform. The 

flow field affects equation (4.14) indirectly through its effect on the concentration 

field (equation 4.2). 

When reversible reactions of the type Ox ne Red−+ ⇔  take place at the 

electrodes’ surfaces, the species’ fluxes at the electrodes’ surfaces are given by the 

Butler-Volmer (BV) equation: 

[ ](1 ) /( / ) nF RTnF RTe Ox Red
Red Ox

Ox Red

j c c
e e

F c c
α ηα η −− 

⋅ = − = − ⋅ 
 

n N n N , 4.15 
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where ej  is the exchange current flux, α  is the charge transfer coefficient for the 

cathodic reaction, n  is the number of electrons exchanged in the reaction, 

extVη φ= −  is the overpotential, and Oxc  and Redc  are, respectively, the 

concentrations of the oxidized and reduced species at the electrodes' surfaces. n  is a 

unit vector normal to the electrode’s surface directed away from the fluid. When 

concurrent, multiple reactions take place at the electrodes’ surfaces, a separate BV 

equation is needed for each reacting pair. All solid surfaces, other than the electrodes, 

are impermeable. 

The boundary conditions associated with the momentum equation are no slip 

at all solid surfaces. In the problems considered here, we specify periodic conditions 

for the flow velocities at the inlet and outlet. 

Electrical neutrality exists in the bulk of the solution, but not next to solid 

surfaces. Typically a surface in contact with an aqueous solution acquires a net charge, 

which attracts counterions to form a thin (a few nanometers in thickness) electrical 

double layer consisting mostly of counterions. The electric field’s component tangent 

to the surface propels the ions in the electric double layer and gives rise to 

electroosmotic flow. When the device’s length scale is much greater than the thickness 

of the EDL, the flow in the EDL is approximated by the Smoluchowski slip velocity 

(Probstein 1994): 

// // /su Eε ζ µ= − , 4.16 

where the zeta potential ζ  is the potential difference across the EDL and E  is the 

electric field. The subscript //  denotes the vector component tangent to the 
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solid/liquid interface. 

 

 

4.3 On the Existence of MHD Potential in Some Special Cases 

Many microfluidic systems are planar (i.e., parallel to the x-y plane, Fig. 1).  

Since the conduits’ depths (W  in the z − direction) are relatively small, the magnetic 

field is nearly uniform and parallel to the z − direction, i.e., z=b b e , where ze  is a 

unit vector in the z − direction. Often, the electrodes and embedded features, such as 

pillars, are parallel to the z − axis and extend the entire conduit’s depth. See Fig. 1 for 

an example. Under these conditions, the current flux and the Lorentz force can be 

expressed, respectively, with vectors ( , ) ( , ) ( , )x x y yx y j x y j x y= +j e e  and 

( )( , ) ( , ) ( , )L y x x yx y j x y j x y= −f b e e  that are independent of the z − coordinate. 

Although we used in the above Cartesian coordinates, the same holds true for any 

cylindrical coordinate system (Moon and Spencer 1988). Given that the electric 

current flux is solenoidal and b  is constant, the Lorentz force Lf  is irrotational 

(curl-free). To see this, consider 

( ) ( ) ( ) ( ) ( ) 0L∇ × = ∇ × × = ∇ ⋅ − ∇ ⋅ + ⋅∇ − ⋅∇ =f j b j b b j b j j b . 4.17 

The first and last terms on the RHS of equation (4.17) vanish because b  is a 

constant. The second term vanishes because the electric current flux is solenoidal 

( 0∇ ⋅ =j ). The third term vanishes because, in our particular case, b  and j  are 

orthogonal and j  doesn’t vary in the direction of b  (the z-direction). In other 

words, the Lorentz force is a conserving vector field, and one can define the “Lorentz 
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potential” Ξ  such that 

L = −∇Ξf . 4.18 

Figure 4.1 A schematic depiction of a segment of a flow conduit patterned with 

pillars. The image on the left is a top view and the image on the right is cross-section 

A-A. The red, dotted line denotes periodic boundary conditions 

 

 We emphasize that the Lorentz “potential” exists only in the special 

circumstances outlined above. Although these circumstances occur frequently in 

microfluidic systems, they do not apply to MHD flows in general. Unless the outlined 

special circumstances are satisfied, the Lorentz force is not curl-free. 

Since in microfluidic systems the Reynolds number is typically small, one can 

neglect inertial effects in equation (4.12). In the absence of magnetophoretic and 

electrostatic forces, the dimensionless Stokes equation can be rewritten as  

 4.19 

so that the pressure can be modified to include the Lorentz “potential,” 
0

ˆ
j

ΞΞ =
b

. On 
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account of the continuity equation, we also have 

2ˆ ˆˆ( ) 0p∇ + Ξ = . 4.20 

Hence, when the boundary conditions are equivalent, the MHD flow patterns are 

similar to pressure driven flow patterns. 

In this section, we have shown that under special circumstances, which often 

occur in microfluidic systems, the MHD flow is equivalent to pressure-driven flow. 

Consequently, one can utilize the wealth of data available in the literature for 

pressure-driven flows to infer MHD flow patterns, as we demonstrate through a few 

examples in the following sections. 

 

4.4 MHD Flow in a Conduit with a Uniform Cross-Section (MHD Pump) 

Consider a straight conduit with rectangular cross-section of width W  and 

height H  (Fig. 1b without the pillar). The opposing walls of the conduit (
2

H
y = ± ) 

are plated with electrodes along the conduit’s entire length L . An external potential 

difference extV∆  is imposed across the electrodes. It is well-known that the classical 

expression for fully-developed, pressure driven flow (White 2006) can be used to 

describe the velocity profile of low Hartman number, MHD flow in a conduit with a 

uniform, rectangular cross-section. Indeed, this is a special consequence of the 

derivation presented in section 3. The flow rate is (Bau et al. 2003): 








 +−= by
H

j
dx

dp

R
Q

1
. 4.21 
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where 
3

12
HR

WH

µ
χ

=  is the hydraulic resistance of the pump and 

5 5
0

192 1 (1 2 )
1 tanh

(1 2 ) 2n

H n W

W n H

πχ
π

∞

=

+= −
+∑ . Witness that the sum in χ  converges 

rapidly and, in many cases, just the first two terms in the series provide an adequate 

approximation. In the absence of an external pressure gradient, the average velocity is 

proportional to the y −  component of the current flux yj . The stall pressure is 

/stall yp I W j L∆ = =b b , where yI j LW=  is the total current transmitted between 

the electrodes. Equation (4.21) can be rewritten in a slightly different form 










∆
∆−=

stall

b

p

p
QQ 1max . 4.22 

In the above, maxQ  is the flow rate in the absence of adverse (back) pressure and 

bp∆  is the back pressure. 

4.4.1 Current-Potential Relationship in the MHD Pump 

In contrast to the case of liquid metals, in the case of electrolyte solutions, the 

current density is not a linear function of the potential difference across the electrodes. 

Furthermore, as the potential difference across the electrodes increases, the current 

eventually reaches a limiting value. 

To illustrate the complex current-potential dependence, we consider the 

reversible reaction 1 2
1 2( )z zA z z e B+ +−+ − ⇔  of the RedOx species +1zA , +2zB , and 

−3zC . A specific example consists of the solution +3Fe , +2Fe , and Cl−  with the 

reducing reaction +−+ →+ 23 FeeFe  at the cathode and the oxidizing reaction 

−++ +→ eFeFe 23  at the anode. The steady state, dimensionless equations (4.1) and 
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(4.2) reduce to: 
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1 1

1 2

ˆ2 1
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2 1 2
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dy dy z z
jdc Dd
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dc d

z c
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φ

φ

φ

+ = −
−

+ = ⋅
−

− =

 4.23 

In the above, the concentrations are normalized with 3c  and the current’s density 

with 1 3 /D Fc H . In general, equations like (4.23) must be solved numerically. Here, 

we consider a special case which allows us to obtain a relatively simple expression for 

the current-potential relationship. 

Let 1 3c gc= .  When 1 23, 2z z= = , and 3 1z =  (as in the case of 

ferri/ferro-chloride), and 1 2/ 3 / 4D D = , one obtains (Grigin 1993) 

( )( )1 2 1 2ˆ ˆ ˆ ˆ3 2c c c c m+ + = , where m  is an integration constant. Using mass 

conservation, one can determine m  as a function of ˆ
ˆ

yj  for any g . In the absence 

of current ( ˆ
ˆ 0yj = ), (1 ) / 2m g= − . It turns out that m  is nearly independent of ̂̂yj . 

Using the Butler-Volmer boundary conditions (15), we obtain an implicit relation 

between the current and the electrodes’ potential difference (Qin and Bau, 2009) (Fig. 

2). The hollow circles, crosses, and solid line correspond, respectively, to the exact 

solution (which does not assume fixed m ), an analytic solution that assumes 

~ (1 ) / 2m g− , and a finite element solution of the NP equations. Witness that as the 

potential difference between the electrodes increases, the current flux initially 

increases slowly, then nearly linearly, and, eventually, it saturates at higher values of 

the potential difference. When 9 2
1 10 /D m s−= , 3 1c M=  and 1H mm= , the 
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maximum (limiting) current is 2
,lim 45.3 /yj A m=  (Fig. 2). For a conduit with width 

1W mm= , flow viscosity 310 Pa sµ −= ⋅ , and magnetic field 0.4T=b , the predicted 

average MHD velocity is ~0.6 mm/s. 

 

Figure 4.2 The dimensionless current flux as a function of the dimensionless 

electrodes’ potential difference calculated by solving the full NP equations with finite 

elements (solid line), using the approximation ~ (1 ) / 2m g−  (hollow circles), and 

using exact m  values (crosses). 0.5α = . 0.2g = . 3ˆ 10ej
−= . The dimensionless, 

limiting current ˆ ,lim
ˆ 0.47yj = . 2 1/ 4 / 3D D = . 1 3D D=  

One take-away message is that, generally, in electrolyte solutions, the current 

is a nonlinear function of the potential difference across the electrodes. A linear 

relationship between the current and the potential difference can be assumed only for 

a limited range of operating conditions. The second observation is the existence of a 

limiting current. In other words, the amount of electric current that can be transmitted 

through the electrolyte solution does not increase monotonically with increasing 

potential difference due to mass transfer limitations (diffusion limited reaction). 
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Although, in practice, further increases in the potential difference across the 

electrodes may increase the current flux, this increase will typically be due to other 

(usually undesirable) electrochemical interactions at the electrode surfaces such as the 

electrolysis of water. In a closed system, the electrolysis of water will cause the 

formation of a gas blanket along the electrodes’ surfaces that will greatly reduce the 

amount of current transmitted in the solution. 

4.4.2 The Average Velocity and Efficiency of the MHD Pump 

Kabbani et al. (2007) and Ho (2007) investigated the flow rate and the average 

velocity in the MHD pump as functions of the conduit’s dimensions when the current 

injection is controlled. Since, in most applications, one controls the electrodes’ 

potentials rather than the current, we briefly comment here on the situation when the 

potential difference between the electrodes is controlled. The current flux yj  is 

inversely proportional to the distance between the electrodes H . The flow rate in the 

absence of external back pressure: ˆ1 3 2
ˆ

12
yD Fc j

Q H Wχ
µ

=
b

 and the fluid’s average 

velocity is 

ˆ1 3
ˆ

12
yD Fc j

u Hχ
µ

=
b

. 4.24 

The above expression is valid when the entire conduit’s length is decorated with 

active electrodes. 

Fig. 4.3 depicts the average flow velocity as a function of the conduit’s height 

and width when 0.4T=b , 9 2
1 3 10 /D D m s−= = , 1 2 0.2c c M= = , 3 1c M= , 
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ˆ 32extV∆ = , ˆ
ˆ 0.42yj = , and 310 Pa sµ −= ⋅ . We assume that W is sufficiently small 

compared to the size of the source of the magnetic field so that the magnetic field is 

nearly uniform inside the conduit. 

 

Figure 4.3 The average velocity of MHD flow as a function of the conduit height H  

and width W  (equation 4.24). 0.4T=b , 9 2
1 10 /D m s−= , 3 1c M= , ˆ

ˆ 0.42yj = , 

and 310 Pa sµ −= ⋅  

At a fixed conduit width, as the height H increases, u  first increases, attains 

a maximum at ~H W , and then decreases. This behavior results from the drag force 

attaining a minimum in a square (H W= ) cross-section while the total Lorentz 

driving force is nearly independent of the conduit’s height. The latter is true because 

the current’s density is inversely proportional to the distance between the electrodes 

( 1/yj H∝ ) and the Lorentz force is the product of the magnetic field, the current’s 
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density and the fluid’s volume. Thus, the total force is independent of the distance 

between the electrodes. 

In the limit of H W>> , we approach the case of flow between two, infinite 

parallel plates, and the resistance imposed by the top ( / 2y H= ) and bottom 

( / 2y H= − ) walls (the electrodes) can be neglected. Under this circumstance, along 

most of the conduit’s cross-section, the velocity profile is parabolic in the z-direction 

and independent of y. The drag force is proportional to /H W  and the Lorentz force 

is proportional to W . Thus, the average velocity is proportional to 2 /W H . Witness 

the parabolic increase in the average velocity with W  and the inverse proportionality 

to H  in Fig. 4.3 when H  is large and W  is small. As W  increases, the drag 

induced by the surfaces / 2y H= ±  starts to play a role and the rate of increase of 

the average velocity with W  declines. When W  is large, the average velocity is 

independent of W .  

The MHD–induced velocities are relatively small. More appreciable velocities 

can be attained with higher conductivity electrolytes. For example, in the case of the 

RedOx pair FeCl3/FeCl2 ( 10 2
1 6.04 10 /D m s−= × , 10 2

2 7.19 10 /D m s−= × , 

9 2
3 2.03 10 /D m s−= × , and exchange current density 6 210 /ej A m−= , Qian and Bau, 

2005) at maximum solute concentrations 1 21.54 , 2.05c M c M= = , and 3 8.73c M= , 

the limiting current density 2208.1 /j A m=  and the average flow velocity 

2.9 /u mm s= when 1W H mm= =  and 0.4T=b . 

We define the MHD pump’s efficiency as the power needed to drive the flow, 

which includes the power needed to overcome the drag and the power invested to 
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overcome the adverse (back) pressure, normalized with the electrical power 

consumed. 

IV

Qp
eff

ext

stall

∆
∆= . 4.25 

Our definition of the efficiency differs from that of Laser and Santiago (2004) and 

Ramos (2007), who treated the power needed to overcome the drag as internal pump 

loss and did not include it in the numerator of equation (4.25). Given that the entire 

length of conduits in microfludic devices may be equipped with electrodes and 

backpressure may be absent, it is appropriate to count the work carried out against the 

drag as part of the pump’s output. In view of equation (4.22), the maximum efficiency 

is attained in the absence of backpressure ( 0bp∆ = ), i.e., 
IV

Qp
eff

ext

stall

∆
∆= max . This 

efficiency is four times larger than the value reported in Laser and Santiago (2004) 

(Fig. 4.4). 

 

Figure 4.4 The pumping efficiency as defined in the present work and as defined in 

Laser and Santiago, 2004. 

maxQ

Q

bp∆
stallp∆/ 2stallp∆

max / 2Q

present 

L&S 2004 
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Upon substituting the expressions for the flow rate and the pressure drop, we 

can rewrite the efficiency (in the absence of backpressure) as: 

2 2
ˆ1 3 2

ˆ

ˆ12
y

ext

jD F c
eff H

RT V
χ

µ
= ⋅ ⋅

∆
b

. 4.26 

Equation (4.26) suggests that for a given conduit geometry, the efficiency depends on 

the ratio 
ˆ

ˆˆ /y extj V∆ . Fig. 4.5 depicts the ratio 
ˆ

ˆˆ /y extj V∆  as a function of êxtV∆ . 

Witness that this ratio attains its maximum when ̂ 32extV∆ =  and ˆ
ˆ 0.42yj = . 

 

Figure 4.5 The ratio of ˆ
ˆˆ /y extj V∆  as a function of êxtV∆ . The conditions are the 

same as in Fig. 4.2 

Fig. 4.6 depicts the maximum efficiency as a function of the conduit’s height 

and width when 0.4T=b , 9 2
1 3 10 /D D m s−= = , 9 2

2 4 / 3 10 /D m s−= × , 

1 2 0.2c c M= = , 3 1c M= , ˆ 32extV∆ = , ˆ
ˆ 0.42yj = , and 310 Pa sµ −= ⋅ . 
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Figure 4.6 The maximum MHD pumping efficiency (equation 4.26) as a function of 

the conduit’s height H  and width W . ˆ 32extV∆ =  and all the other parameters are 

the same as in Fig. 4.3 

Fig. 4.6 suggests that MHD pumps operating with electrolyte solutions have 

extremely low efficiency. The efficiency of the pump can be somewhat increased by 

using higher electrolyte molar concentrations to increase the electric conductivity of 

the solution.  

Almost all the energy dissipated in the MHD pump is converted into heat. 

Nevertheless, the temperature increase of the electrolyte solution is relatively small. 

This is because of the relatively small dimensions of the conduits encountered in 

microfluidics, which facilitate highly efficient heat interaction with the ambient. 

To estimate the temperature increase that one may expect in MHD flow, we 

consider the particular example of a conduit with a 1 1mm mm×  cross-section 

embedded in a 2mm  thick polycarbonate (pc) sheet. Fig. 4.7 depicts the 

cross-section of the conduit and the substrate in which the conduit is embedded. The 

heat transfer coefficient at the surface of the plastic is assumed to be 2~ 5 /h W m K⋅ , 
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which is at the low end of heat transfer coefficients corresponding to natural 

convection in air. When the applied potential is 40 /extV RT F∆ = , the current’s 

density is 245.3 /yj A m= , and the heat dissipation per unit volume is 346.5 /kW m , 

the maximum temperature in the conduit is ~0.5K  above the ambient temperature. 

The thermal properties used are: 31000 /fluid kg mρ = , , 1.2 /p fluidC kJ kg K= ⋅ , 

0.21 /fluidk W m K= ⋅ , 31300 /pc kg mρ = , , 4.18 /p pcC kJ kg K= ⋅  and 

0.6 /pck W m K= ⋅  

 

Figure 4.7 Temperature distribution (contours of constant temperature) in and around 

a MHD conduit embedded in a polycarbonate sheet. The chip size is 8 2mm mm×  

and the conduit’s cross-section is 1 1mm mm×  

 

4.5 MHD Flow in a Conduit Patterned with a Pillar Array 

 In this section, we consider a uniform, long conduit patterned with a pillar array. 

Fig. 4.1 depicts one unit cell of depth W . The pillar diameter is d  and the pillar’s 

center is at the conduit’s mid-width (Fig. 4.1a). We focus on a two-dimensional case 

( ,W H L>> ) in the absence of an external pressure gradient. We first consider the 

case when the current supplied to the unit cell is controlled (known) and one wishes to 

determine the flow pattern and the flow rate. To this end, we take advantage of results 

available in the literature for pressure-driven flows. 
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Integrating equation (4.19) over the volume of interest, we have, in the 

absence of external pressure differences: 

, ,

( , )

w drag cylinder drag walls

y x

x

d

j x y dV

IL

= +

=

= ⋅

∫∫
∫∫∫

τ S F F

b e

b e

�

 4.27 

where wτ  is the stress tensor at the conduit’s walls and the pillar’s surface. The stress 

includes both pressure and viscous contributions. S  is the surface enclosing the 

volume V . The drag coefficient dragF

uW
λ

µ
= . In the Stokes regime, the drag 

coefficients associated with both the cylinder and the conduit wall depend only on the 

geometry (Faxen 1946). Once the total current injection I  is known, one can use the 

drag coefficient and the equivalency between pressure driven flow and MHD flow to 

compute the average velocity 

( )cylinder walls

IL
u

Wµ λ λ
=

+
b

. 4.28 

The drag coefficient of a single circular pillar placed midway between two 

long, flat plates as a function of the ratio of the pillar’s diameter and the distance 

between the plates is available in Harrison (1924), Faxen (1946) and Ben Richou et al. 

(2004). There’s also a wealth of data for drag coefficients of pressure driven flow 

around pillar arrays. For example, Sangani and Acrivos (1982) provide drag 

coefficients of square and hexagonal pillar arrays. 

For conciseness, we consider here in detail only a single row of uniformly 

spaced pillars confined between two parallel electrodes (Fig. 4.1). We carried out one 
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set of finite element simulations in which we specified the pressure drop across the 

length of the conduit, obtained the flow field, and determined the drag coefficient. In 

another set of simulations, we applied a potential difference across the electrode, 

specified the electrolyte’s properties and solved the Nernst Planck equations with 

electro-neutrality (section 2) with finite elements to obtain the current distribution, the 

Lorentz body force, and the corresponding drag coefficients. In both cases, periodic 

velocity boundary conditions were specified at the flow inlet ( / 2x L= − ) and exit 

( / 2x L= ). Fig. 4.8 depicts the drag coefficient associated with the pillar and the 

conduit’s walls as functions of the pillar’s diameter normalized with the conduit’s 

width ( H ). The solid lines and symbols correspond, respectively, to the drag 

coefficients obtained with the pressure-driven flow simulations and the MHD 

simulations. The dashed line and hollow circles correspond to the pillar’s drag 

coefficient, and the solid line and hollow squares correspond to the drag coefficient 

associated with the conduit’s walls. The unit cell dimensions are 1H L mm= = . The 

electrolyte solution consisted of three ionic species with 9 2(1,4 / 3,1) 10 /iD m s−= × , 

(0.2,0.2,1)ic M= , and (3,2, 1)iz = − . In the Butler-Volmer equation, we specified 

0.5α =  and 6 210 /ej A m−= . Given the theory presented in section 4.3 on the 

equivalence between MHD flow and pressure-driven flow, it is not surprising that the 

drag coefficients associated with these two flows are identical. 
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Figure 4.8 The drag coefficient at the pillar’s surface (dashed line and hollow circles) 

and at the conduit’s surface (solid line and hollow squares) as functions of the pillar’s 

diameter normalized with the conduit’s width (H). The lines and symbols correspond, 

respectively, to pressure-drive flow and the solution of the NP-NS model. For MHD 

flow, we used 0.4T=b , 
9 2

1 3 10 /D D m s−= = , 
9 2

2 4 / 3 10 /D m s−= × , 

1 2 33, 2, 1z z z= = = − , 1 2 0.2c c M= = , 3 1c M= , ˆ 25extV∆ = , 
3 310 /kg mρ = , 

310 Pa sµ −= ⋅ , 1H W mm= = , 0.5α =  and 6 210 /ej A m−=  

 

When the total current is given, it is a simple matter to take advantage of the 

data available in the literature for pressure-driven flows to determine the MHD 

velocity profile and the flow rate. The same method can be applied to situations when 

the fluid is subjected to both Lorentz body force and pressure gradients (either 

assisting or adverse). Since the momentum equation is linear at low Reynolds 

numbers, one can simply superpose MHD and pressure-driven flows. 

Matters get more complicated when the potential difference between the 

electrodes is the control input rather than the electric current. In this case, to obtain 
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the concentration distribution, one requires knowledge of the flow field and to obtain 

the flow field, one needs to know the current, which, in turn, depends on the 

concentration distribution. Since the various fields are coupled nonlinearly, one 

cannot take advantage of superposition. When the effects of advection on the 

concentration distribution cannot be neglected, the data available in the literature for 

pressure driven flow can only be used to verify the MHD computations. 

Next, we consider a case when the electrode potential difference is controlled 

and the current is not apriori known. To obtain the current distribution, we solve the 

Nernst-Planck equations with Buttler-Volmer boundary conditions together with the 

Navier-Stokes equations (section 4.2).  Fig. 4.9 depicts the total, dimensionless 

current in the unit cell as a function of /d H  when the effects of advection on the 

concentration distribution are neglected (zero Peclet number, solid line) and when the 

effect of the flow on the concentration distribution (dashed line with hollow squares) 

is accounted for. Fig. 4.9a and 4.9b correspond, respectively, to a dimensionless 

potential difference between the electrodes of 25 and 40. Clearly advection 

significantly affects the current both quantitatively and qualitatively. When 

/ 0.44d H =  and ˆ 25extV∆ = , neglecting advection leads to a current underestimate 

of ~25% (Fig. 9a). When ˆ 40extV∆ = , neglecting advection leads to up to a 45% 

underestimate in the current (Fig. 4.9b). As the potential difference across the 

electrodes êxtV∆  increases, the magnitude of the velocity increases, advection effects 

become more important, and the error resulting from neglecting advection increases. 

a)  b) 
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Figure 4.9 The average y -component of the dimensionless current flux as a function 

of /d H  in the absence (solid line) and the presence (dashed line with hollow 

squares) of MHD flow. The potential difference between the electrodes is ˆ 25extV∆ =  

(a) and 40 (b). All other conditions are the same as in Fig. 4.8 

 

In the absence of advection (solid lines in Fig. 4.8), as the pillar diameter 

increases, the current decreases monotonically. This is intuitively expected. As the 

pillar diameter increases, the area available to current flow decreases and one would 

expect the current to decrease. Counter to intuition, however, when convection is 

accounted for (dashed lines in Fig. 8), as the pillar diameter increases from zero, the 

limiting current initially increases, attains a maximum, and then decreases. 

A similar trend is evident in Fig. 4.10. The figure depicts the average 

dimensionless current flux in the y-direction as a function of the potential difference 

between the electrodes êxtV∆  when /d H = 0, 0.036, 0.11, 0.16, 0.25, 0.36, 0.71 and 

0.8. The electrolyte solution is the same as in Fig. 4.9. As the potential difference 

êxtV∆  increases, the current initially increases slowly, then nearly linearly, and 

eventually reaches an asymptotic, limiting value ˆ ,
ˆ

y limj . Witness that the currents 
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associated with 0 / 0.36d H< <  are higher than the one associated with / 0d H = . 

 

Figure 4.10 The average dimensionless current flux ˆ
ˆ

yj  as a function of the applied 

dimensionless potential difference êxtV∆  when /d H = 0, 0.036, 0.11, 0.16, 0.25, 

0.36, 0.71 and 0.8. All other conditions are the same as in Fig. 4.8 

 What then is the mechanism by which the pillar presence enhances the 

current flow in certain circumstances? One possible explanation is, that in the 

presence of the pillar, the magnitude of the velocity (0, )xu y  in the region above and 

beneath the pillar ( / 2 / 2d y H< < ) increases above the corresponding value 

upstream of the pillar. This, in turn, increases the concentration gradients next to the 

electrodes’ surfaces and enhances the diffusion’s contribution to the current flow. Fig. 

4.11a depicts the concentration field 1c  in the presence of the pillar and the MHD 

flow when êxtV∆ =25 and / 0.2d H = . The solid longitudinal lines and the transverse 

solid lines represent, respectively, concentration contour lines and current flux lines. 

Fig. 4.11b depicts the concentration field 1c  in the presence of a pillar and in the 

absence of flow motion. Fig. 4.11c depicts the concentration field 1c  in the absence 

of the pillar. In the last case, the concentration field is independent of the flow. In 
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cases (b) and (c), the concentration field is symmetric with respect to the 0y =  axis 

while in Fig. 4.11a, due to transverse velocity components in the vicinity of the pillar, 

the concentration field is asymmetric with respect to the 0y =  axis. In other words, 

in the presence of the pillar, there is a transverse velocity component that contributes 

to electrolyte advection. To better demonstrate the effect of the pillar on the 

concentration distribution, Figs. 4.11d and 4.11e depict, respectively, 1( , / 2)c x H  

along the surface of the cathode as a function of x  and 1(0, )c y  as a function of y  

in the presence of motion (solid lines), in an absence of the pillar (dotted line with 

hollow circles), and in the presence of the pillar and the absence of motion (dashed 

line). Witness that in the presence of the pillar and the flow, the concentration of 1c  

next to the electrode’s surface (in the vicinity of 0x = , solid line, Fig. 4.11d) is 

significantly higher than in the absence of a pillar (dotted line with hollow circles) or 

in the presence of a pillar without flow (dashed line). The latter case demonstrates 

clearly that, in the absence of flow, the presence of the pillar adversely affect the 

current flow. The average current is lower than in the absence of a pillar. In the 

presence of both a pillar and flow, the concentration next to the electrode’s surface is 

higher than otherwise and, thus, the average current flux is higher. Similarly, Fig. 

4.11e shows that the concentration gradient is highest in the presence of the pillar and 

MHD flow (solid line) and lowest in the presence of a pillar and an absence of flow 

(dashed line). In summary, on the one hand, the pillar reduces the cross-sectional area 

available to the current flow and increases the drag, both adversely affecting the flow 

rate. On the other hand, the pillar indirectly modifies that concentration field, which 
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enhances current flow. These two competing effects lead to an optimal pillar size that 

maximizes current flow. 

a) 

 

b) 

 

c) 

  

d) 

 

e) 

 

Figure 4.11 (a) The concentration field 1c  in the presence of a cylinder (/ 0.2d H = ) 

and MHD flow. (b) The concentration field for 1c  in the presence of a cylinder 

( / 0.2d H = ) and in the absence of motion. (c) The concentration field 1c  in the 

absence of a cylinder. The color code and the solid longitudinal lines in (a), (b), and 

(c) correspond, respectively, to concentration and concentration contours. The 

transverse solid lines are the current fluxes. The arrows are velocity vectors. (d) The 

concentration distribution 1( , / 2)c x H−  along the surface of the cathode as a function 

of x  in the presence of motion (solid line), in the absence of the cylinder (dotted line 

with hollow circles), and in the presence of the cylinder and an absence of motion 
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(dashed line). (e) The concentration distribution 1(0, )c y  as a function of y  in the 

presence of motion (solid line), in the absence of the cylinder (dotted line with hollow 

circles), and in the presence of the cylinder and an absence of motion (dashed line). 

ˆ 25extV∆ = . All other conditions are the same as in Fig. 4.8 

The pillar could contribute to current flow in yet another way. The electric 

double layer surrounding the pillar is rich in ions, which is described macroscopically 

as surface conduction. The Bikerman-Dukhin number quantifies the ratio of the 

surface conductivity to the bulk conductivity (Bazant et al. 2006, Chu and Bazant 

2006). Since MHD devices typically operate with moderate DC potential and thin 

electric double layers, the double layer remains near equilibrium and the Dukin 

number is much smaller than 1, leading to negligible surface conductance. 

In the range of parameters considered here and consistent with equation (4.26), 

the flow rate is linearly proportional to the total current. Fig. 4.12 depicts the average 

flow velocities as functions of the current when /d H = 0.11, 0.16, 0.25, 0.36, 0.50 

and 0.71. Fig. 4.13 depicts the average flow velocity as a function of the pillar size 

when the dimensionless potential difference between the electrodes is ˆ 25extV∆ = . 

Although the current attains its maximum value at / 0.4d H = , the flow rate 

decreases monotonically as /d H  increases from zero.  In other words, the 

presence of the pillar enhances the drag to a greater extent than the propulsive force 

(which is proportional to the current). 
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Figure 4.12 The average flow velocity u  as a function of the average dimensionless 

current ˆ
ˆ

yj  when /d H = 0.11 (square), 0.16 (circle), 0.25 (upright triangle), 0.36 

(cross), 0.50 (downward triangle) and 0.71 (diamond). All other conditions are the 

same as in Fig. 4.8 

 

 

Figure 4.13 The average flow velocity u  as a function of /d H  at ˆ 25extV∆ = . All 

other conditions are the same as in Fig. 4.8. / 0d H =  denote the situation of flow in 

an empty straight channel. 

4.6 Dispersion Associated with MHD Flow with Slip BC 

Consider solvent laden with analytes driven through the column by MHD flow. 
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The analytes are assumed to be dilute, do not affect the solvent’s properties, and do 

not interact among themselves. The chromatographic, longitudinal dispersion 

coefficient depends sensitively on the velocity profile. Since the velocity profile of 

MHD flow can be controlled by judicious patterning of the electrodes, one can seek 

electrode pattern that yield velocity profiles, which, in turn minimize the dispersion 

coefficient. The objective of this section is to demonstrate that the dispersion 

coefficient in a MHD chromatograph can be reduced by appropriate patterning of the 

electrodes. 

Consider a uniform MHD conduit with a rectangular cross-section as 

depicted in Fig. 4.14. The conduit’s width is W  and its height is H . The electrodes 

are located along the channel walls that are parallel to the x  axis. A uniform 

magnetic field is directed along x − axis. The conduit is filled with a RedOx 

electrolyte solution that undergoes a reversible reaction at the electrodes’ surfaces. A 

potential difference is applied between the top electrodes (located along the surface 

/ 2y H= ) and the bottom electrodes (located along the surface / 2y H= − ). The 

current transmitted in the electrolyte solution interacts with the magnetic field to 

produce Lorentz body force that propels the fluid in the z − direction.  

Suppose that the top and bottom surfaces are divided into N  segments 

each.  Here, we will carry out calculations for 10N =  and we assume that the 

arrangement is symmetric with respect to the axis 0y = . Each segment can be either 

an active electrode or an insulating surface. To ensure fluid motion, we fix the four 

segments next to the corners to be active electrodes. We number the other segments 
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away from the corners 1,2,3i =  and 4 . See Fig. 4.14. We wish to find which 

segments should be active so that the dispersion coefficient is minimized. In other 

words, we consider an optimization space consisting of the variables iE , where 

1iE =  indicates that segment i  is active and 0iE =  indicates that segment i  is 

insulated. 

 

Figure 4.14 Cross-section of MHD flow channel. Top and bottom channel walls are 

partially coated with electrodes. 

Note that the conduit cross-section is uniform, the velocity vector only has 

component in the z −  direction and does not affect the concentration field (fully 

developed flow). Thus, we can solve the two dimensional electrochemical current 

injection problem independently of the flow field. Also note that at small Reynolds 

numbers and in the absence of an external applied pressure gradient, equation (4.6) 

reduces to 2 0y xw j bµ∇ + = , which allows us to determine the flow velocity ( , )w x y  

in the z -direction once the current density flux has been calculated. We assume 

uniform magnetic field with known intensity. 

Recently, Yan et al. 2010 developed a model that allows one to estimate the 

longitudinal dispersion coefficient in a periodic medium. The model can be applied to 

the open column chromatograph as a special case. To estimate the dispersion 
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coefficient, one needs to compute the closure variable f  by solving the closure 

equations: 

m
2

m = -
1 ''

f w
w D f w

z k

 ∂ 〈 〉− ∇ −  ∂ + 
, 4.29 

m

m m 1 ''

f w
D D

n k
γδ ∂ 〈 〉= − + ∂ + 

, 4.30 

m ms

0
V A

fdV fdAγδ+ =∫ ∫ , 4.31 

For detail derivation of the model, see Yan et al. 2010. 

Once the function ( , )f x y  is known, the dispersion tensor could be 

calculated using the expression: 

( )
( )

ms ms

2

m m m mm
m 2

m m ms

''1
1 '

1 ''A A

k V
D D fdA w f w fdA w w

V V k Ak

γδ
γ

 
= + − 〈 〉 + 〈 〉 + 〈 〉 〈 〉 

+  
∫ ∫  4.32 

In the above, w  denote the velocity field; s

m

''
V

k
V

γ= is the retention factor; 

mD  is the molecular diffusivity; δ  is the thickness of the stationary phase; γ  is 

the partition coefficient at the interface. Subscripts m  and s  denote, respectively, 

the mobile and stationary phases. The bracket pair < >  denotes volume average. 

m'w w w= − 〈 〉 . 

We carried out numerical simulations for the problem specified above and 

tabulated the longitudal dispersion coefficient D  in Table 1. The 5th configuration 

(with 2 1E =  and 1,3,4 0E = ) provides the smallest longitudinal dispersion coefficient. 

The 5th configuration provides a dispersion coefficient which is about 40% of the 

dispersion coefficient in the case when the entire conduit surfaces are covered with 

electrodes (the normal case). Fig. 4.15 shows the concentration field (grey scale for 
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distribution of 1c ), the velocity field (blue lines for the contour lines) and the current 

fluxes (red lines) associated with the optimal setting. 

iE  1i =  2 3 4 / mD D  

1 0 0 0 0 376.46 
2 0 0 0 1 307.02 
3 0 0 1 0 167.92 
4 0 0 1 1 394.74 
5 0 1 0 0 90.39 
6 0 1 0 1 236.93 
7 0 1 1 0 162.61 
8 0 1 1 1 309.44 
9 1 0 0 0 219.72 
10 1 0 0 1 147.99 
11 1 0 1 0 101.63 
12 1 0 1 1 233.60 
13 1 1 0 0 101.17 
14 1 1 0 1 157.95 
15 1 1 1 0 118.07 
16 1 1 1 1 218.72 

Table 4.1 16 possibilities of electrode arrangements for the cross-section depicted 

in Fig. 4.14 and the corresponding dispersion coefficients. ‘1’ and ‘0’ denote, 

respectively, the electrode to be ‘active’ and ‘passive.’  
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Figure 4.15 Concentration field and velocity field when 2 1E =  and 1,3,4 0E = . The 

grayscale surface plot shows distribution of species 1c . The blue lines are the velocity 

contour lines. The red lines are the current fluxes. The red blocks symbolize the 

locations of active electrodes. 

4.7 Conclusions 

We describe the mathematical model for MHD flows of electrolyte solutions 

in microfluidic systems. In general, the model requires the concurrent solution of the 

Nernst-Planck equations and the momentum equations. The flow field modifies the 

concentration field and the concentration field affects the electric current, which, in 

turn, affects the body force in the momentum equation. MHD has the advantage of 

providing a convenient means to pump and stir fluids and control fluid flow with 

electrical signals and without a need for moving mechanical components. Flow can be 

directed along any desired path in a microfluidic network without a need for any 

valves. The disadvantage of MHD is that it involves a volumetric force that does not 
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scale favorably as the conduit size decreases. MHD pumps operating with electrolyte 

solutions also have very low conversion efficiency, as only a very small fraction of the 

electric power is converted into work. More serious shortcomings include the need to 

operate with electrolyte solutions that undergo reversible reactions to avoid bubble 

formation and undesirable electrochemical electrode reactions and the limitation on 

the maximum amount of current that can be transmitted in the solutions.  It seems 

that MHD are most likely to benefit applications in which conduit sizes range from 

hundreds of micrometers to millimeters – a range of length scales in which the MHD 

drive provides significantly higher flow rates than electroosmosis. 

We have shown that when the Reynolds number is low, the magnetic field is 

uniform, and the electric field is orthogonal to the magnetic field, the Lorentz body 

force is irrotational and one can define a “Lorentz” potential. In other words, the 

MHD flow is equivalent to pressure-driven flow, and one can use data available in the 

literature for pressure-driven flow to deduce the MHD flow patterns. The above 

conditions often prevail in microfluidic systems. We utilized this equivalence in two 

examples. The first example consisted of a uniform conduit. Here, the equivalence 

between MHD flow and pressure-driven flow has been known for many years. The 

second example consisted of a conduit patterned with pillars. This is a somewhat 

more general case as the electric flux is neither unidirectional nor uniform as in the 

first example. The equivalence between MHD flow and pressure-driven flow allows 

us to utilize drag coefficients available in the literature for pressure-driven flow to 

calculate the MHD flow patterns provided that the total electric current is controlled. 
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The use of the MHD – pressure driven flow equivalence requires caution, however, 

since the emergence of secondary flows such as may evolve when the fluid goes 

around a bend (Yi and Bau 2003) or a curve will destroy the analogy between MHD 

and pressure-driven flows. 

When the electric potential difference across the electrodes is the control 

variable, the equivalence between the pressure-driven and MHD flow cannot be 

utilized directly and one needs to compute the concentration, current, and flow fields 

simultaneously by solving the coupled Nernst-Planck and Navier-Stokes equations.  

We also computed the electric current, concentration, and flow field in a 

conduit and demonstrated that an optimal pillar diameter exists that maximizes the 

current flow. It is plausible that even higher current transmission can be obtained by 

optimizing the shape of the pillar. However, maximum flow rate still happens in the 

absence of pillars. 

Finally, we showed that the dispersion coefficient associated with MHD flow 

in a rectangular channel could be minimized through designing the electrode settings, 

and thus modifies the flow field. 
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CHAPTER 5: Magneto-Hydrodynamic Flow of Binary Electrolyte in 

a Concentric Annulus 

5.1 Introduction 

Magneto-hydrodynamic (MHD) driven flow is of interest in many applications 

since one can induce fluid motion without a need for mechanical pumps and the flow 

velocity can be readily controlled by adjusting the current or the potential applied to 

electrodes (Qian & Bau 2009). Here, we consider MHD flow of a binary electrolyte 

confined in a conduit bent into a donut with an inner radius �
 and an outer radius 

��. We use the cylindrical coordinate system (�, Θ, �), where �, Θ, and � are, 

respectively, the radial, azimuthal, and axial coordinates. The inner (� = �
) and 

outer (� = ��) surfaces of the annulus double-up as electrodes. The electrolyte is 

subjected to a uniform magnetic field directed parallel to the annulus axis (�).  When 

a potential difference is applied across the electrodes, radial current flows in the 

solution.  The current interacts with the axial magnetic field to produce an azimuthal 

Lorentz body force, which, in turn induces azimuthal flow.   

When the cylindrical annulus is infinitely long, purely azimuthal flow, analogous 

to the celebrated Dean’s pressure-driven flow (Dean, 1928 and Ito, 1951), is possible. 

The flow stability can be characterized with the Dean number Dn = Relm/�
. Here 

Re = |Tn|m/o
 
 is the Reynolds number; Tn  is the average azimuthal velocity; o is 

the kinematic viscosity; and m = �� − �
  is the width of the gap between the two 

cylinders. When the Dean number is smaller than a critical value, the azimuthal flow 

is stable. When the Dean number exceeds its critical value, due to centrifugal 
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acceleration, the purely azimuthal flow loses stability and gives rise to convective 

rolls in the transverse � − � plane (Chandrasekhar, 1961, and Drazin and Reid, 

2010). As the Dean number increases above a critical value so does the complexity of 

the flow (Winters et al., 1987). When the height of the annulus is finite, purely 

azimuthal flows are not possible and transverse circulation exists for all Dean 

numbers.  

Various researchers studied pressure-driven flows in curved tubes with different 

cross-sections such as circular (i.e., Bara et al., 1992, and Berger & Talbot, 1983, Soh 

1988, Bara et al. 1992, Bovendeerd et al. 1987, Boutabaa et al., 2009, Cheng et al. 

1976, and Verkaik et al., 2009), elliptical (Cuming, 1955, and Silva et al., 1999), 

square (Soh 1988, Boutabaa et al., 2009, and Humphrey et al., 1977), and rectangular 

(Silva et al. 1999, Targett et al. 1995, De Vriend 1931, and Yanase et al. 2002). Since 

the annular geometry has applications in heat exchangers, the associated convective 

heat transfer has been studied by Avramenko et al. (2003), Cheng & Akiyama (1970), 

Gyves & Irvine (2000), and Mondal et al. (2008). Witness that pressure-driven flow in 

a perfectly closed loop is impractical. By necessity, the closed loop approximates a 

spiral geometry (Targett et al., 1995).  

In contrast, MHD flow provides a practical means of propelling fluids in a closed 

loop (Zhong et al., 2002, and Eijkel et al., 2003). Velikhov (1959), Khalzov (2008), 

Hunt & Williams (1968), Hunt & Malcolm (1968), Hunt & Stewartson (1969), Baylis 

(1964 & 1971), and Kobayashi (1977) studied the stability of annular MHD flow of 

liquid metals and found that the magnetic field provides a stabilizing effect and 
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suppresses the evolution of secondary flows.   

Hence to forth, the problem of MHD flow of electrolyte solutions in a concentric 

annulus and its stability has not been addressed. The case of electrolyte solutions is 

significantly different than that of liquid metals as the flow patterns affect the 

concentration field, which, in turn, affects the local electric conductivity (Qin & Bau, 

2010). These types of problems are of interest among other things, in electroplating, 

where it is desirable to maintain unidirectional (azimuthal) flow to assure plating 

uniformity and avoid secondary flows that may cause non-uniform material 

deposition (Marshalls & Mocskos, 1999) and in liquid gyroscopes for navigation 

systems (Laughlin 2007).  

More generally, in recent years, there has been growing interest in studying the 

interplay between hydrodynamic stability and electrochemistry. For example, Volgin 

and Davydov (2006) review the literature pertaining to the electrochemical 

Rayleigh-Benard problem. In this chapter, we study for the first time, the MHD 

motion of a binary electrolyte in an annulus and its stability characteristics. This 

chapter is organized as follows. Section 5.2 introduces the mathematical model. 

Section 5.3 derives a closed-form solution for the current flux and concentration and 

velocity fields in an infinitely long annulus. Section 5.4 examines the linear stability 

of the azimuthal flow derived in section 5.3 and delineates why electrochemical 

effects have a destabilizing effect when the current is directed outwardly and a 

stabilizing effect when the current is directed inwardly. Section 5.5 describes the 

MHD flow in a finite-height annular conduit. Section 5.6 concludes. 
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5.2 Mathematical Model 

Consider a binary electrolyte pJqrstqu  confined between two concentric 

cylinders of radii �
 and �� (�� > �
). pqr is the metal ion and squ is the anion. 

m = �� − �
 is the gap between the cylinders. We consider both cases when the 

annulus is infinitely long and when it has a finite length v. The cylinders’ surfaces in 

contact with the liquid are coated with metal p (same material as the cations) and 

serve as electrodes. We use the cylindrical coordinate system (�, Θ, �) with its origin 

at the cylinders’ center. The symbols wx , wy, and wz  denote, respectively unit 

vectors in the radial (�), azimuthal (Θ), and axial (�) directions (Fig. 5.1). The 

electrolyte is subjected to a uniform magnetic field { = −6wz. When a potential 

difference is imposed between the electrodes’ pair, electric current flux |  is 

transmitted in the solution. The electric current interacts with the magnetic field to 

produce a Lorentz body force, which in turn, induces fluid motion. The electrolyte 

undergoes the backward reaction of pqr � �
�( ↔ p(1)  at the anode and the 

forward reaction at the cathode. We consider sufficiently short times so that the 

geometry of the electrodes does not change appreciably during the process.  

The ions’ concentrations satisfy the Nernst-Planck equation (Newman, 2004) ~2^~8∗ = −c ∙ �^, (� = 1, 2), 5.1 

where 2
 and 2� are, respectively, the concentrations of pqr and squ; 8∗ is time; 

�^ = �2^ − !∗̂c2^ − �^�^�2^(cΦ − � × {) 5.2 

is the ionic flux of species �; � = �wx � Twy ��wz is the velocity vector; !∗̂, �^, 
and �^ = !∗̂/(��8) are, respectively, the diffusion coefficient, valence, and mobility 



- 94 - 

of species �. � is the Faraday constant; 8 is the absolute temperature; �� is the 

ideal gas constant; and Φ is the electric potential. We adopt here the convention that 

regular fonts represent scalar quantities while bold letters represent vectors.  

 

Figure 5.1 A schematic depiction of the flow cell and the cylindrical coordinate 

system (�, Θ, ��. The electrolyte is confined in a concentric annulus with an inner 

radius �
  and an outer radius �� . The electrodes coincide with the cylindrical 

surfaces. 

 

With the exception of very thin electric double layers next to the electrodes and 

other solid surfaces, the electro-neutrality condition requires that  

��^2^
�

^a

� 0. 5.3 

The fluid motion satisfies the Navier-Stokes equation: 

9 � ~�~8∗ � � ∙ c�� �  c= � <c
�� � | K {. 5.4 

The fluid is incompressible: 

c ∙ � � 0. 5.5 

In the above, 9 is the electrolyte’s density; = is the hydrodynamic pressure; 

   
�� �
 

� 

� 

0 � 
Θ 
0 
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and < is the dynamic viscosity. The term | × { in equation (5.4) is the Lorentz body 

force. We assume that the solution is dilute; the solution properties are independent of 

the ion concentrations and are uniform throughout the solution; and buoyancy forces 

are negligible. The latter assumption is not always valid and, in fact, in many 

electrochemical processes buoyancy may play an important role (Qian et al., 2006). 

Nevertheless, since we wish to focus on centrifugal effects, we neglect buoyancy in 

this work. 

The electron exchange reactions at the electrodes’ surface are described by the 

Butler-Volmer kinetics (Bard & Faulkner, 2001):   

� ∙ �
|xaxr,xu = �#� �2
2
̅ �(�qr�/x��(����∗ (�) − �(
(�)qr�/x��(����∗ (�)�. 5.6 

Additionally, when the annulus if of a finite length, 

� ∙ �
|zaA,� = 0. 5.7 

In the above, T#JU∗  is the external potential difference imposed across the electrodes, 

2
̅ is the uniform cation bulk concentration before the current was switched-on, �# is 

the exchange current flux, - is the transfer coefficient, � is an outward unit vector, 

and Φ is the potential in the solution next to the electrode.  

Mass conservation requires that 

� �2
�	m�	m��
A

xu
xr

= 2
̅ (��� − �
�)v2 . 5.8 

All solid surfaces are impermeable to the inert species squ, 
� ∙ ��|xaxr,xu;zaA,� = 0. 5.9 

The fluid velocity satisfies non-slip conditions at all solid surfaces 
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�|xaxr,xu;zaA,� = 0. 5.10 

The electric current flux: 

| = ���^�^
�

^a

. 5.11 

Taking advantage of electro neutrality, we eliminate the potential from equation 

(5.1) to obtain the advection-diffusion equation 

~2^
~8∗ = !∗∇�2^ − � ∙ ∇2^, 5.12 

where !∗ = (�
 − ��)!
∗!�∗/(�
!
∗ − ��!�∗) and 

∇ ∙ (2^∇Φ) = −��8� �∗c�2^ 5.13 

where �∗ = (!
∗ − !�∗)/(!
∗�
 − !�∗��). 
Next, we convert the equations to a dimensionless form. To this end, we use the 

distance between the electrodes m = �� − �
 as the length scale; �A = </9m as the 

velocity scale; the viscous shear <�A/m as the stress/pressure scale; m/�A = 9m�/< 

as the time scale; the diffusive flux �A = 2
̅!
∗/m as the ion flux scale; �A = ��A as 

the electric current density scale; the thermal potential ��8/�  as the electric 

potential scale; and the average concentration of the species pqr  , 2
̅  as the 

concentration scale. Furthermore, we define the mean radius �A = (�
 � ��)/2. 

Below, with the exceptions of T#JU and !^, we express the dimensionless variables 

with the lower case version of their dimensional, upper case counterparts. The 

dimensionless applied potential is denoted as T#JU = T#JU∗ �/��8  and the 

dimensionless diffusion coefficient !^ = !∗̂/!
∗. The dimensionless time is denoted 

by �. 
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The dimensionless equations are: ~,^~� = − 1Scc ∙ �^, 5.14 

�^ = Sc ∙ M,^ − !^ c,^ � �^,^(cI − ¡M × wq)¢, 5.15 

and   ~M~� � M ∙ cM = −c£ � c�M � ¤("¥w¦ − "¦w¥). 5.16 

In the above, Sc = o/!
∗   is the Schmidt number.  The Lorentz number  

¡ = o6�/(��8). ¤ = �A6 ∙ m�/<�A = 9�m�62
̅!
∗/<� is the ratio of the Lorentz 

force and the viscous shear. In electrolyte solutions, ¡ ≪ 1 and one can neglect the 

induced electromagnetic force in (5.15). In this chapter, we focus only on the 

axi-symmetric problem (~/~¨ = 0) and "¦ = 0. The boundary conditions for ion 

fluxes �^ are 

� ∙ �
|¥a¥r,¥u = "#©,
�(�qr(����(ª) − �(
(�)qr(����(ª)« 5.17 

and  

� ∙ ��|¥a¥r,¥u = 0. 5.18 

The electroneutrality condition requires that 

��^,^
�

^a

= 0. 5.19 

The electric current density 

Y = ��^�^
�

^a

. 5.20 

Mass conservation requires that 

� �,
�	m�	m�
`

A

¥u

¥r
= �A�. 5.21 
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The dimensionless form of equation (5.12)-(5.13) becomes: ~,^~� = − 1Scc ∙ (Sc ∙ M,^ − !c,^), 5.22 

where ! = !∗/!
∗ and 

c ∙ (,^cI) = −�∗c�,^. 5.23 

 

5.3 Steady Flow of Binary Electrolyte in an Infinitely Long Annulus (¬ → �∞) 

The Dean problem of pressure driven flow between two concentric cylinders has 

been studied extensively. Here, we consider the analogous MHD flow. While the 

Dean problem cannot be realized in a concentric annulus, the MHD flow can. When 

the flow is one-dimensional, the MHD flow is equivalent to pressure-driven flow (Qin 

& Bau 2010) and we can adopt the classical solution for Dean flow (Goldstein, 1938).  

We use the subscript “b” to denote the various dependent variables associated with the 

purely azimuthal flow.  

Since the electric current is divergence-free, the electrical current flux 

"¥,�(�) = "∗�A� , 5.24 

where  "∗ = "¥,�(�A) is the current flux at the mid-distance between the electrodes  

�A = �
 � 1/2. The azimuthal velocity is: 

��(�) = ¤"∗�A2 � ­1 − ®��� ¯�1 − ®���
¯� ln
���
 − ln ��� °. 5.25 

Fig. 5.2 depicts �� as a function of � = � − �
  (0 ≤ � ≤ 1) for various values 

of �
. Digilov (2007) derived equation (5.25) for MHD flow of liquid metals in the 

limit of a small Hartmann number. Since the magnitude of the current flux and thus 
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the body force decreases as � increases, the velocity attains its maximum value in the 

interval �
 < � < �A (0 � � � 0.5). When �
 ≪ 1, the velocity maximum is attained 

at � → 1/�,  and equation (5.25) simplifies to 

����� � ¤"
∗

4 �ln�. 5.26 

 

Figure 5.2 The azimuthal velocity ��  (normalized with its maximum value) as a 

function of � when �
 � 0, 0.2, 0.5, 1, 2, and	∞. The vertical lines at � � 1/� 

and � � 1/2 correspond, respectively, to the positions of the velocity maximum 

when the curvature is large and small. 

 

As �
  increases, the position of the velocity maximum shifts towards �A 

(� � 0.5). When �
 ≫ 1 (small curvature), the velocity profile can be approximated 

as:  

����� � ¤"
∗

2 ��1  ��. 5.27 

The latter expression is identical to the velocity profile of pressure-driven (Poiseuille) 

flow between two long parallel plates. The Reynolds number Re � �̅�. 

Next, we compute the concentration distribution. To this end, we solve the 
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Nernst-Planck equations (5.14) and (15) mm� ®,
�,��¯ � ®�
,
���,��¯mI�m� = ®−�A"∗/�
�0 ¯. 5.28 

By introducing the scaled coordinate ³ = ln�  (³
 = ln�
 < ³ < ln�� = ³� ), we 

convert equation (5.28) into a form similar to the one encountered in a planar 

geometry mm³ ®,
�,��¯ � ®�
,
���,��¯mI�m³ = ®−�A"∗/�
0 ¯ = ®s0¯. 5.29 

In the above, the definition of the new variable s  is apparent from the context. The 

solution of equation (5.29) together with the electroneutrality condition (5.19) and 

mass conservation (5.21) is 

,
� = 1 − s��(�
 − ��) ´³ � 12 � �
�³
 − ���³�2�A µ, 5.30 

,�� = −�
�� ,
� , 5.31 

and  

I� = ¶ − 1�� ln 4�A�
(�
 − ��),
�¢. 5.32 

The constant ¶ in equation (5.32) is determined by one of the electrodes’ potentials. 

When an electric potential difference is applied across the electrode pair instead 

of the electric current, one needs to use the Butler-Volmer boundary conditions (5.17). 

Solving equation (5.17) and (5.30-5.32) provide the current-voltage relation.  

Fig. 5.3 depicts the current flux as a function of the potential difference (∆T#JU) 
across the electrode pair when �
 = 1, �� = −1, �
/�� = 2/3 , and !
 = !� = 1. 

The exchange current density "# = 10$. The symbols and the solid line correspond, 

respectively, to the analytical solution and finite element solution of the Nernst-Planck 
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equations. The excellent agreement between the numerical and analytical results 

partially verifies the numerical code, which we will use later in the chapter.  

 

Figure 5.3 The electric current flux as a function of the potential difference between 

the electrodes. The dimensionless inner radius �
 = 2. Binary, symmetric electrolyte, 

�
 �  �� � 1. Dimensionless diffusion coefficients: !
 � !� � 1. Exchange current 

density: "# � 10$. The symbols (squares) and the line correspond, respectively, to 

analytical solution and finite element simulation.   

 

The positive (outward) "&∗ � 4qr�qr(qu��
(·�u
qu�·u(
(�¸¹·�  and the negative (inward) 

"(∗ � 4qr�qr(qu��
(·�u
qu�·u(
(�·u¸¹·�  diffusion-limited electric current fluxes are, respectively, 

obtained by setting ,
��³ � ³
� � 0 and ,
��³ � ³�� � 0 in equation (5.30). In the 

above, ) � ��/�
 B 1  is the radii ratio, �
 � 1/�)  1� , �� � )/�)  1� , and 

�A � �) � 1�/�2�)  1��. The forward and backward limiting current fluxes differ in 

magnitude (|"&∗ | B |"(∗ |). For example, for the conditions of Fig. 5.3,  3.48 ± "∗ ±

4.56. Fig. 5.4 depicts the ratio of the outward and inward limiting current fluxes 

|"&∗ |/|"(∗ | as a function of the radii ratio ). When )~»�1�, |"&∗ |/|"(∗ |~�2) � 1�/3 



- 102 - 

(dotted line in Fig. 5.4). When ) ≫ 1, |"&∗ |/|"(∗ |~ (2ln)  1) (dashed line in Fig. 

5.4). 

 

Figure 5.4 The ratio between the outward and the inward limiting current fluxes 

(|"&∗ |/|"(∗ |) as a function of the radii ratio ) . !
 � !� � 1, �
 �  �� � 1, and 

"# � 10$. The dashed line (2ln)  1) corresponds to the large ) asymptote. The 

dotted line is the small ) asymptote �2) � 1�/3. 

 

Fig. 5.5 depicts the concentration ,
� as a function of the radial coordinate � 

under conditions of outward (dashed line) and inward (solid line) limiting current 

fluxes. In the inward current flow case, the concentration ,
� builds up next to the 

surface of the outer electrode and depletes next the surface of the inner electrode. In 

the outward current case, the opposite is true. Since the surface area of the outer 

electrode is )  times larger than that of the inner electrode, the maximum 

concentrations in the case of outer directed current is larger than that in the case of 

inward directed current. Accordingly, the concentration gradient in the inward current 

case is smaller than in the outward current case, providing less diffusive flux, and thus 
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less net current density.  

 

Figure 5.5 The concentration ,
� as functions of the radius � under limiting current 

conditions when the current is directed outwardly (dashed line) and inwardly (solid 

line). All other conditions are the same as in Fig. 5.3. 

 

Next, we consider the case of a small gap size (�
 ≫ 1), i.e., small curvature and 

nearly planar geometry. In this case, the electric current flux "¥,�~"∗ is independent 

of radial position. Equations (5.30-5.32) reduce to 

,
� � 1  "
∗

"
 �2�  1�, 5.33 

,�� �  �
�� ,
� , 5.34 

and  

I� � ¶  1
�� ln�"
,
��. 5.35 

The potential difference across the gap 

∆I � I��� � 0�  I��� � 1� �  1�� ln
"
 � "∗
"
  "∗, 5.36 

where "
 � 2�
���  �
�/��   is the dimensionless limiting diffusion-migration 

current.  
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With the aid of the Butler-Volmer boundary condition, we obtain the 

current-voltage relation. Fig. 5.6 depicts the electric current flux as a function of the 

potential difference ∆T#JU � T#JU�� � 0�  T#JU�� � 1� when the exchange current 

density "# � 10($, 	10(�, 	10(
, 1, 	10
, 10�	and 10$. �
 �  �� � 1, !
 � !� � 1, 

and  - � 0.5.  

At large values of the exchange current density "#, the Butler-Volmer relation 

(5.17) reduces to the Nernst equation at both boundaries � � 0 and � � 1: 

I� � T#JU  1
�
 ln,
� . 5.37 

With the aid of equation (5.36) , the current-potential relation could be expressed as: 

"∗ � "
 tanh ��∆T#JU
2���  1�. 5.38 

Fig. 5.6 compares the predictions of the Nernst model (solid line) with the 

Butler-Volmer model when "# � 10$  (stars). Witness that both models provide 

nearly identical results when the exchange current is large.  

 

Figure 5.6 The current flux as a function of the potential difference between the 

electrodes when the exchange current density 

"# � 10($, 10(�, 10(
, 1, 10
, 10�, and	10$ . The curvature is neglected. Binary, 



- 105 - 

symmetric electrolyte, �
 = −�� = 1, and !
 = !� = 1. Butler-Volmer electrode 

kinetics are used with - = 0.5. The solid line corresponds to predictions obtained 

with the Nernst equation. 

 

5.4 The Stability of the Azimuthal Flow 

In this section, we study for the first time, the linear stability of the MHD 

azimuthal flow in an infinitely long annulus. In the classical Dean problem, at 

sufficiently high azimuthal velocities, centrifugal accelerations destabilize the purely 

azimuthal flow and give rise to convective rolls in the transverse � − � plane. In the 

electrochemical problem, the secondary flows modify the concentration distribution 

and, thus, the current flux, which, in turn, affects the Lorentz body force. Hence, the 

stability characteristics of the electrochemical problem are expected to significantly 

differ from those of the classical pressure-driven, Dean problem. 

The analysis presented here is restricted to an annulus with small curvature 

(small gap approximation). Following Dean’s (1928) original treatment, we neglect 

the effect of centrifugal accelerations on the base flow. Centrifugal effects are, 

however, accounted for in the perturbation equations.  

We perturb the base flow variables (equations 5.14-5.16) with small disturbances, 

which we denote with the superscript tilde. For example, the concentration field 

assumes the form ,^ = ,^� � ¾,̃^, where ¾ ≪ 1, ,^� is the base solution (obtained in 

section 5.3), and ,̃^ is the first order perturbation. All other dependent variables are 

similarly perturbed. The perturbed variables are introduced into the equations and 
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only terms of »(¾) are retained. Furthermore, we decompose the perturbations into 

normal modes, i.e.,  

,̃^ = ,̂^(�)�ÀU&^Áq, 5.39 

where . is the growth rate; : is the wave number, and ,̂^ is a function of � only. In 

the above, we assume that two-dimensional disturbances are less stable than 

three-dimensional ones. This assumption is consistent with Squire’s theorem (Khalzov 

et al. 2006, Drazin & Reid, 2010). Accordingly, we consider only two-dimensional 

disturbances and all the perturbation variables are independent of ̈  (i.e., ~/~¨ = 0). 

Invoking the small curvature approximation, 1/� ≪ ~/~�, and omitting the 

superscript tilde (_ ), we obtain the »(¾) linearized momentum equations: 

(E� − :� − .)(E� − :�); = ��(1 − �), 5.40 

(E� − :� − .)� � ¤"J = Λ:�;(1 − 2�), 5.41 

and the continuity equation 

EQ � �:R = 0. 5.42 

The impermeability and no-slip boundary conditions at � = 0 and � = 1 are: 

; = 	E; = 	� = 0. 5.43 

For convenience, we introduced in the above the rescaled, radial velocity  ; = Q ∙
�
/(¤"∗:�). The operator E = m/m� . Λ = 72�̅��/�
 = 72Dn� , where Dn  is the 

Dean number Dn = |�̅�|l1/�
. Equations (5.40-5.43) with ¤ = 0 are identical to 

the ones associated with the classical Dean problem (Drazin and Reid, 2010). The 

term ¤"J is due to the Lorentz body force. This term couples the hydrodynamics and 

the electrochemistry. 
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From equations 5.22 and 5.23, we obtain, respectively, the linearized mass 

conservation equations for species 1: 

E�,
 = �Sc! ∙ . � :�� ,
 � Sc! ∙ QE,
� . 5.44 

The equation for the potential I is: 

,
�E�I = −�∗(E� − :�),
 � :�,
�I − ,
E�I� − E,
EI�
− E,
�EI. 5.45 

The linearized flux of species � is: 

ℎ^J = Sc ∙ Q,^� − !^E,^ − �^!^(,^�EI � ,^EI�). 5.46 

The perturbation in the electric flux is: 

"J =��^ℎ^J�
^a
 = −��^!^ E,^ � �^(,^�EI � ,^EI�)¢�

^a
  

									= (!� − 1)�
E,
 � (��!� − �
)(�
,
�EI � �
,
EI�) 
5.47 

The perturbed concentrations satisfy the electro-neutrality condition 

��^,^�
^a
 = 0. 5.48 

Below, we consider two types of boundary conditions. In the first instant, we 

assume that the current flux is specified at the electrodes’ surfaces. This problem is 

mostly of theoretical interest as it is difficult to control the local current flux in 

practice. In the second instance, we specify the electrodes’ potentials. 

In each case, we solve the eigenvalue problem (5.40-5.48) and the appropriate 

electrochemical boundary conditions (to be specified later) with finite elements. 

Briefly, we select a wave number : and either the base current "∗ or the applied 

potential ∆T#JU. The growth rate .(Dn, :) is then calculated as a function of the 
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Dean number Dn and the wave number :. The Dean number at marginal stability 

DnA(:) nullifies the real part of the growth rate, i.e., realb.(DnA, :)e = 0. We seek 

the most dangerous wave number :A that minimizes DnA(:). In all our calculations, 

we find the growth rate . to be real, and the principle of exchange of stability to hold. 

To check our algorithm, we consider the hypothetical case of non-zero base 

velocity and "J = 0. In this case, the ¤"J term in equation (5.41) vanishes and the 

stability problem reduces to the classical Dean problem. Our finite element solution 

reproduces the well-known, classical results of DnA = 35.92 and :A = 3.95 (Dean, 

1928, and Drazin & Reid, 2010). The bifurcating solution consists of convective rolls 

in the � − � plane.  

 

5.4.1 The Case of Controlled Current 

When the current flux is specified, the perturbation in the current is zero. The 

corresponding boundary conditions at � = 0,1 are 

E,
 = 0 5.49 

and 

EI = −,
EI�,
� . 5.50 

To determine the marginal stability curve, we calculated the growth rate .  as a 

function of Dn for a given :. Fig. 5.7 depicts . as functions of Dn when : = 1 

(dashed line), 2.39 (solid line), and 4 (dashed-dot line). In all cases, σ is real. At 

criticality, . = 0. This calculation was done for a binary and symmetric electrolyte. 

�
 = −�� = 1 , diffusion coefficients !
∗ = !�∗ = 10(/0�/1 , 2
̅ = 10405�/0$ . 
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�
 = 0.50 . �� � 0.5050 . 	6 � 0.48 . 9 � 10$:;/0$ . < � 10($=> ∙ 1 , and 

"∗ B 0.  

 

Figure 5.7 The disturbance growth rate . as a function of the Dean number when 

k=1 (dashed line), 2.39 (solid line), and 4 (dashed-dot line). Binary electrolyte with  

�
 �  �� � 1 . !
∗ � !�∗ � 10(/0�/1 , 2
̅ � 10405�/0$ . �
 � 0.50 . �� �

0.5050.	6 � 0.48.  9 � 10$:;/0$. < � 10($=> ∙ 1. 

 

 

Figure 5.8 The critical Dean number DnA at the onset of instability, predicted by 

linear stability analysis, as a function of the wave number :. The electrodes’ current 

is controlled. The white and gray areas correspond, respectively, to stable (. � 0) and 
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unstable (. > 0) states. The symbols correspond to finite element solutions of the 

nonlinear equations. The solid and hollow symbols correspond, respectively, to 

subcritical (Dn( ) and supercritical (Dn& ) cases. The symbols are located at 

C:, 	Dn(	, Dn&D = C2.39, 4.02, 8.04D , C3.77, 5.63, 7.24D , C5.05, 6.43, 9.65D and 

C7.12, 10.45, 14.47D. The other conditions are the same as in Fig. 5.7. 

 

Fig. 5.8 depicts the Dean number at marginal stability (DnA) as a function of the 

wave number : for the same conditions as in Fig. 5.7. The white and gray regions 

correspond, respectively, to stable (. < 0) and unstable (. > 0) states. Both the 

critical Dean number DnÇ = 5.7  and the critical wave number :Ç = 2.39  are 

smaller than that in the classical Dean’s problem. Interestingly, when "∗ < 0, the base 

state is linearly stable for all values of the Dean number.  

The linear stability results were compared with the results of numerical solutions 

of the full nonlinear equations. The computational domain consisted of a segment of 

the annulus with height 0 < � < 2P/:. Periodic boundary conditions imposed in the 

� −direction, i.e, all the dependent variables satisfy the condition: >(�, �, �) =
>(�, � � 2P/:	, �). In the calculations, we used: : = 2.39, 3.77, 5.05		and		7.12. 

When the calculations converged to the azimuthal  base flow, the state was 

designated as stable. When the calculation converged to a state that consisted of 

convective cells in the � − � plane, the state was designated as unstable. In all the 

cases considered here, the calculations eventually converged to a steady-state. The 

numerically identified stable and unstable states are denoted, respectively, with solid 
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and hollow squares in Fig. 5.8. The finite element solutions of the nonlinear equations 

are consistent with the predictions of the linear stability theory. 

In all cases, consistent with the principle of exchange of stability, the transients 

were monotonic and no oscillations were observed. The finite element simulations 

suggest that the bifurcation from the azimuthal base flow to the three-dimensional 

flow is supercritical.  

Fig. 5.9 depicts the scaled eigenfunctions ,
 (dashed line), 	I (dotted line with 

squares), 	; (dot-dashed line), 	� (solid line), and "J (solid line with circles) as 

functions of �  when Dn = 8.04 , and : = 2.39 . In Fig. 5.9a, "� = 0.1  and 

. = 0.011. In Fig. 5.9b, "� = −0.1 and . = −0.016. All the other parameters are 

the same as in Fig. 5.7. Witness the significant difference in the structure of the 

eigenvectors between the case of the outwardly directed current (Fig. 5.9a) and the 

inwardly directed current (Fig. 5.9b). When the current is directed outwardly (Fig. 

5.9a), the perturbations �, ;, "J and ,
 remain of the same sign for all values of �, 

and resemble a symmetric behavior about � = 0.5. In contrast, when the current is 

directed outwardly, all the depicted eigenvectors change sign in the domain 

0 < � < 1, and exhibit asymmetric behavior about � = 0.5.  

Fig. 5.10 depicts a sample of the finite element solution of the nonlinear problem. 

The colors correspond to the concentration ,
. The lines are the streamlines of the 

secondary flow in the � − � plane. Fig. 5.10a describes the case of inwardly directed 

current of magnitude "∗ = −0.1 and Dn ≈ 8. Fig. 5.10b depicts the case when the 

outward current "∗ = 0.05  and Dn ≈ 4 . This corresponds to a subcritical state 
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(Dn < DnA). Consistent with the predictions of the linear stability theory, there are no 

secondary flows in this case, and the concentration distribution is uniform in the � 
direction. Fig. 5.10c depicts the concentration and flow fields when the outward 

current "∗ = 0.1 and Dn ≈ 8 are supercritical (Dn > DnA ). Consistent with the 

predictions of the linear stability analysis, convective rolls appear in the � − � plane. 

The center of rotation is at �~�É, where �É is slightly larger than �A. This flow 

pattern is consistent with the eigenvectors depicted in Fig. 5.9a. Fig. 5.10d depicts the 

magnitude of the current flux under the same conditions as in Fig. 5.10c.  

Fig. 5.10c should be contrasted with Fig. 5.10a. Although both cases correspond 

to the same Dean number, there are no secondary rolls present in the case of the 

inward current flow (a) while secondary flow is present in the case of the outward 

current flow (c). Consistent with the results of the linear stability theory, the nonlinear 

simulations predict absence of secondary flows in the case of inward (negative) 

current. 

In conclusion, when the base current is directed outwardly, the 

magnetohydrodynamic Dean problem is less stable than the pressure-driven one, 

while when the base current is directed outwardly, the opposite is true. So, what are 

the mechanisms that modify the stability characteristics of the classical Dean problem? 

To answer this question, we need to consider the ion concentration field in the annulus. 

When the current is directed outwardly, the ion concentration next to the inner 

surface(electrode) is larger than in the bulk of the solution. See Fig. 5.10a and Fig. 5.5. 

When due to the Dean (centrifugal) instability, fluid motion is induced away from the 
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inner surface, the fluid advects ions into the bulk of the solution. This increases the 

local electric conductivity and the current flux. Witness the concentration “plumes” 

next to the bottom and top boundaries next on the left hand side of Fig. 5.10c. This, in 

turn, enhances the Lorentz body force, increases the local azimuthal velocity and the 

resulting centrifugal acceleration, thereby enhancing the instability. For this reason, 

the eigenvectors associated with the perturbed quantities ,
, ;, � and "J all have 

the same sign (Fig. 5.9a). And, for this reason, the magnetohydrodynamic Dean 

problem is less stable than the pressure-driven one. 

a) 

 

Figure 5.9 The scaled eigenvectors ,
, I, ;, � and "J as functions of �. Constant 

electric current is imposed across the electrodes. Dn � 8.04. : � 2.39. (a) "� � 0.1, 
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. = 0.011; (b) "� �  0.1, . �  0.016. Other parameters are the same as in Fig. 

5.7. 

 

When the base current is directed inwardly, the ion concentration next to the 

inner surface is smaller than in the bulk of the solution. See Fig. 5.10b and Fig. 5.5. 

When centrifugal effects (Dean instability) cause a radial, outward convective 

disturbance, the advection reduces the local ion concentration and the corresponding 

electric conductivity away from the surface, which in turn causes a reduction in the 

Lorentz body force, a reduction in the azimuthal velocity, and a reduction in the 

centrifugal acceleration, which mitigates the effect of the disturbance. Thus, the 

disturbance is suppressed. Thus, when the current is directed inwardly, 

electrochemical effects suppress centrifugal instabilities. 

 

a)   b)   c)     d)  

Figure 5.10 The concentration distribution of ,
 when (a) "∗ �  0.1, Dn � 8.04; 

(b) "∗ � 0.05, Dn � 4.02; and (c) "∗ � 0.1, Dn � 8.04. The black solid lines in (c) 

are the streamlines associated with the secondary flow in the �  � plane. The arrow 
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shows the flow direction. (d) Electric current flux distribution for case (c). All the 

other parameters used are the same as in Fig. 5.7. 

5.4.2 The Case of Controlled Potential and Butler-Volmer Boundary conditions 

In this section, we consider the more realistic case when the potential 

difference between the electrodes is controlled. The injected current, as a function of 

the overpotential and the concentration, is given by the Butler-Volmer equation. The 

perturbed (linearized) Buttler-Volmer boundary conditions at the electrodes’ surfaces 

are: 

� ∙ �
J = "#Ê(,
�-�
I � ,
)�(�qr(����(ªË) �(1 − -)�
I�(
(�)qr(����(ªË)Ì  5.51 

and 

� ∙ ��J = 0. 5.52 

Together with equation (46), we obtain the boundary conditions: 

EI = − ℎ
J(�
 − ��),
� − ,
EI�,
�  5.53 

and 

E,
 = ℎ
J���
 − ��. 5.54 

We solve the linear stability problem in a similar way to what we have done in 

the previous section. Briefly, we specify the wave number and the Dean number and 

compute the eigenvalue . = .(Dn, :). As in the controlled current case, . is always 

real and the principle of exchange of stability prevails. We then determine the value of 

DnA(:) that correspond to . = 0.  

Fig. 5.11 depicts the critical Dean number !ÍA as a function of the wave 
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number. The white and gray areas correspond to stable (. < 0) and unstable (. B 0) 

cases. When using the same electrolyte and conditions as specified in Fig. 5.7 

(outwardly directed base current), exchange current density of  

"# � 6 K 10($	and		- � 0.5, we find that the critical Dean number !ÍA � 4.17 and 

the critical wave number :A � 0.74 . Expectedly, since the potential boundary 

condition is less restrictive than the current flux condition (section 5.4.1), the critical 

Dean number in the potential-controlled case is smaller than in the current-controlled 

case. When the base current is directed inwardly, the azimuthal flow is stable for all 

Dean numbers. 

   

Figure 5.11 The critical Dean number DnA at the onset of instability as a function of 

the wave number. An infinitely long annular conduit with controlled electric potential 

applied across the electrodes. The white and gray areas correspond, respectively, to 

stable (. � 0) and unstable (. B 0) cases. The hollow (Dn&) and solid (Dn() 

symbols correspond, respectively to subcritical and supercritical cases. The symbols 

are located at C:, Dn(	|	Dn&D � C1, 3.93	|	4.69D , C2.5, 4.46	|	5.45D  and 

C4, 5.73	|	7.34D. "# � 6 K 10($.	- � 0.5.	!
∗ � !�∗ � 10(/0�/1, 2
̅ � 10405�/0$. 
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�
 = 0.50. �� � 0.5050.	6 � 0.48.  9 � 10$:;/0$. < � 10($=> ∙ 1. 

 

The predictions of linear stability theory were compared with the results of the 

nonlinear, finite element simulations of equations (5.14-5.16) and Butler-Volmer 

boundary conditions. The simulations were carried out for an annuli with heights 

� � 2P/:, where : � 1, 2.5, and	4, and periodic boundary conditions at the top and 

bottom boundaries. The results of the numerical simulations are summarized with 

symbols in the stability diagram (Fig. 5.11). The solid and hollow squares correspond, 

respectively, to subcritical (Dn � 3.93, 4.46, and	5.73 ) and supercritical (Dn �

4.69, 5.45, and	7.34) flows. The finite elements, nonlinear solutions are consistent 

with the predictions of the linear stability analysis.  

Fig. 5.12a and 5.12b depict, respectively, the results of the nonlinear finite 

elements simulations when the electrodes’ potentials are controlled. Fig. 5.12a and Fig. 

5.12b correspond, respectively, to the subcritical (Dn � 5.73 ) and supercritical 

(Dn � 7.34) concentrations and flow fields in the �  � plane when : � 4 and the 

base current is outwardly directed. All other conditions are the same as in Fig. 5.11. 

When the base current is inwardly directed, the finite element calculations converged 

to a purely azimuthal flow consistent with predictions of linear stability analysis. 

a)    b)    c)  
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Figure 5.12 Ion concentration distribution ,
  in the controlled potential case 

described in Fig. 5.10. (a) subcritical state 	Dn = 5.73 . (b) supercritical state 

Dn = 7.34. The solid lines are the streamlines of the secondary flow. : = 4. All the 

other parameters are the same as used in Fig. 5.11. 

 

5.4.3 The Case of Controlled Potential with Nernst Boundary condition 

When the electrode kinetics is rapid (large exchange current), the Butler-Volmer 

equations can be simplified to the Nernst boundary conditions (equation 5.37). The 

perturbed boundary conditions are then: 

I = ,
�
,
� 5.55 

and 

E,
 = ,
�EI � ,
EI�. 5.56 

To verify the linear stability analysis presented in section 5.4.2, we repeated the linear 

stability calculations using the simpler boundary conditions (5.55) and (5.56). All 

other parameters are the same as in Fig. 5.11. Fig. 5.13 depicts DnA as a function of 

: as obtained using Butler-Volmer electrode kinetics when "# = 10$ (solid line) and 

the Nernst condition (symbols). The agreement between calculations based on the 

Butler-Volmer kinetics and the Nernst kinetics is nearly perfect in the case of large 

exchange current density. 

 

5.5 An Annulus with a Finite Height (� < ∞) 

When the annulus has a finite height, purely azimuthal flow is not possible and 
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secondary flows will always be present in the � − � plane. We first examine the 

range of validity of the small gap approximation, which we have employed in section 

5.4. Then, we compare the intensity of the secondary flows between the cases of the 

outward and inward currents.  

 

Figure 5.13 The critical Dean number at the onset of instability as a function of the 

wave number. Controlled potential case. The white and gray areas correspond, 

respectively, to stable (. < 0) and unstable (. B 0) states. The dotted line with solid 

squares corresponds to the solution of the linear stability problem with Nernst 

boundary conditions. The solid line corresponds to the Butler-Volmer boundary 

conditions with "# � 10$ and - � 0.5. All the electrolyte properties are the same as 

used for Fig. 5.7. 

 

5.5.1 The Range of Validity of the Small Gap Approximation 

When the conduit curvature is small, often the quasi-two-dimensional model (the 

Dean’s approximation) is employed (Dean 1928) as we have done in section 5.4. To 
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assess the validity of the Dean approximation in our case, we compare the predictions 

of the two-dimensional model with the predictions of the axisymmetric model. The 

corresponding axi-symmetric momentum and continuum equations are, respectively, 

Q ~Q~� � R ~Q~� = −~£~� � ~�Q~�� � ~�Q~�� � ��� , 5.57 

Q ~�~� � R ~�~� = ¤"¥ � ~��~�� � ~��~�� , 5.58 

Q ~R~� � R ~R~� = −~£~� � ~�R~�� � ~�R~�� , 5.59 

and ~Q~� � ~R~� = 0. 5.60 

Additionally, one needs to solve the Nernst-Planck equations (5.14-5.15) for the 

concentration field. 

We characterize the intensity of the secondary flow in the � − � plane with its 

kinetic energy ‖MN‖� = ∯(Q� �R�)m�m�. Fig. 5.14 depicts ‖MN‖� as a function 

of the curvature �
 when � = 2. Non-slip boundary conditions are imposed at � = 0 

and � = �. The crosses and circles correspond to axi-symmetric and two-dimensional 

predictions. The inset depicts the relative difference (%) between the axi-symmetric 

and two-dimensional simulations as a function of �
. When �
 > 40 (curvature of 

0.025), the difference between the two models predictions is smaller than 1%. The 

two-dimensional model overestimates the kinetic energy of the secondary flow. This 

is consistent with results previously obtained for pressure-driven Dean flow. Finlay & 

Nandakumar (1990) and Yanase et al. (1994) argued, respectively, that the Dean 

approximation is applicable when the curvature is smaller than 0.1 and 0.01. 
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Figure 5.14 The kinetic energy of the secondary flow ‖MN‖O as a function of �
. 
!
 = !� = 1. "∗ � 0.15. � � 2. The dotted line with circles corresponds to results of 

the simplified, two-dimensional model. The dashed line with crosses shows results of 

the axisymmetric model. The inset depicts the relative difference between the 

approximate model and exact model predictions as a function of �
.  

 

5.5.2 The Effect of Current Direction on Secondary Convection 

A somewhat unexpected result of our linear stability analysis of the flow in the 

azimuthal flow in the infinitely tall annulus is the strong dependence on the direction 

of the current flow. While in the infinitely long annulus secondary flows evolve only 

when the current is directed outwardly, the situation is quite different in the case of 

the finite-height annulus. As we have noted earlier, when the annulus is of finite 

height, secondary flows are always present regardless of the current’s direction. These 

secondary flows are due to pressure gradients caused by the non-slip floor and ceiling. 

Fig. 5.15 depicts the flow patterns and the concentration distributions (a and b) 

and the current fluxes intensity (c and d) when the current is directed outwardly (a and 

c) and when the current is directed inwardly (b and d). The annulus height � �
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2P/2.39. No slip conditions are specified at � � 0 and � � �. All other conditions 

are the same as in Fig. 5.7. In both cases, the secondary flow is directed towards the 

outer cylinder at the mid-height plane, and returns towards the inner cylinder next to 

the top and bottom boundaries. When the current is directed outwardly, the ion 

concentrations are higher close to the inner cylinder’s surface. These ions are 

advected outwardly forming a higher concentration/ higher electric conductivity 

“plume” at the annulus’ midheight plane, which results in a higher current density, 

larger Lorentz force, and enhanced azimuthal velocity (Fig. 5.15a). In contrast, when 

the current is directed inwardly, the midheight plane contains fewer ions than in the 

absence of secondary flows (Fig. 5.15b) and the driving force is slightly reduced. As 

the result, the azimuthal velocity in the case of the outwardly-directed current 

(average azimuthal velocity 61.13) is larger than in the case of the inwardly directed 

current (average azimuthal velocity 61.12).   

a) b)      c)   d)     

Figure 5.15 MHD flow in an annulus of height � � 2P/2.39. (a) Concentration 

distribution ,
  and the �Q, R� streamlines when a) "∗ � 0.1; (b) Concentration 

distribution ,
  and the �Q, R� streamlines when "∗ �  0.1. (c) Electric current 

distribution in case (a). (d) Electric current distribution in case (b).  All the other 
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parameters are the same as used in Fig. 5.7. 

To characterize the intensity of the secondary flow, we use the two-dimensional 

kinetic energy ‖MN‖�. Fig. 5.16 depicts ‖MN‖� as a function of the current flux "∗. 
The solid line with crosses and the dashed line with squares correspond, respectively, 

to an infinite height annulus with : � 2.39 and a finite annulus with � � 2P/2.39 �

2.63. The dashed lines with circles and triangles correspond, respectively, to finite 

annulus with height � � 1.26 and 0.63. When the annulus is infinite and the current 

is negative, ‖MN‖� � 0 for all Dean numbers. When the annulus is infinite and 

"∗ B 0 is smaller than its critical value, ‖MN‖� � 0. Once "∗ exceeds its critical 

value, secondary flows bifurcate supercritically and ‖MN‖� increases as "∗ increases. 

 

Figure 5.16 The intensity of the secondary flow ‖MN‖O as a function of the current 

density "∗. The dashed line with squares, dashed line circles, and dashed line with 

triangles correspond, respectively, to capped conduits with height � � 2P/2.39, 2P/5, 

and 2P/10. The solid line with crosses correspond to an infinitely long annular 

conduit with periodic boundary conditions in the axial (�) direction and wave number 

: � 2.39. All the other parameters are the same as in Fig. 5.7. 
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When the annulus has finite height, secondary flows are always present. As the 

current density |"∗| and the Dean number Dn increase so does ‖MN‖�. For similar 

Dn, ‖MN‖� associated with the positive (outward) current is only slightly larger than 

‖MN‖�  associated with the negative current. For example, when � = 2P/2.39 , 

"∗ = 0.1, Dn = 6.11, ‖MN‖� = 0.2860 . The reverse current "∗ = −0.1 leads to 

‖MN‖� = 0.2856. The equivalent, purely pressure-driven flow generates convection 

intensity ‖MN‖� = 0.2858. In summary, ‖MN‖�ÐÑÒÓÔÓÕÖ	Z∗ >	‖MN‖�Ð×ÖÒÒØ×Ö	Ù×ÓÕÖ¹ >
	‖MN‖�ÚÖÛÜÔÓÕÖ	Z∗  and ‖MN‖�ÝÓ¹ÓÔÖ	Þ¹¹Ø¸ØÒ >	‖MN‖�ß¹àÓ¹ÓÔÖ	Þ¹¹Ø¸ØÒ . When the 

cross-sectional aspect ratio �  decreases, the convection intensity decreases most 

likely due to the drag associated with the floor and ceiling. The figure suggests that 

when the annulus has a finite height, the floor and ceiling are the major causes for 

secondary flow and not the Dean instability. 

Fig. 5.17a depicts the intensity of the secondary flow ‖MN‖� as a function of the 

annulus aspect ratio � (0.63 < � < 2.63). The dashed line corresponds to positive 

current flux "∗ = 0.1 and the circles correspond to negative current flux "∗ = −0.1. 

The two curves are nearly overlapping. Consistent with Fig. 5.16, as l increases, the 

retarding effect of the floor and ceiling decreases, and ‖MN‖� increases until it 

attains an asymptotic value independent of l. The flow field in the case of the finite 

length annulus is fundamentally different than in the case of the infinite height 

annulus no matter how large l is. Fig. 5.17b depicts the relative difference between 

‖MN‖� in the case of the outward current and the case of the inward current as a 
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function of l. The difference is most pronounced at small l values and it decreases to 

about 0.15% as l increases.   

a) b)  

c) d)  

Figure 5.17 The intensity of the secondary flow ‖MN‖�  (a) and the average 

azimuthal velocity |�̅| are depicted as functions of the aspect ratio � when the 

current is controlled (|"∗| � 0.1). The dashed line and the hollow circles correspond, 

respectively, to positive and negative currents. The relative difference between the 

intensity of the secondary flow ‖MN‖� (c) and the average azimuthal velocity (d) as 

functions of the aspect ratio �.  

 

Similar behavior is observed when the electrodes’ potential difference is 

controlled. Fig. 5.18 depicts ‖MN‖� as a function of the applied external potential 



- 126 - 

difference ∆T#JU. The solid line with crosses denote an infinite annulus with : � 4. 

The dashed lines with squares, circles, and triangles correspond to finite annuli with 

� � P, P/2  and	P/4 . For conditions similar to the ones specified in Fig. 5.11, 

∆T#JU � 11.32, and the resulting current flux |"∗|~0.1. When the current is positive 

(negative), the intensity of the secondary flows ‖MN‖� � 0.2850 (0.2832). The 

equivalent pressure-driven flow gives ‖MN‖� � 0.2843 . Here again,  

‖MN‖�ÐÑÒÓÔÓÕÖ	∆���� B	‖MN‖�Ð×ÖÒÒØ×Ö	Ù×ÓÕÖ¹ B	‖MN‖�ÚÖÛÜÔÓÕÖ	∆����  and  

‖MN‖�ÝÓ¹ÓÔÖ	Þ¹¹Ø¸ØÒ B	‖MN‖�ß¹àÓ¹ÓÔÖ	Þ¹¹Ø¸ØÒ. 

 

Figure 5.18 The intensity of the secondary flow ‖MN‖O as a function of the potential 

difference between the electrodes (∆T#JU). The dashed line with squares, dashed line 

circles, and dashed line with triangles correspond, respectively, to capped conduits 

with height P, P/2 and P/4.  The solid line with crosses correspond to an infinitely 

long annular conduit with periodic boundary conditions in the axial (�) direction and 

wave number : � 4. All the other parameters are the same as in Fig. 5.11. 

 

Fig. 5.19a, b, and c depict, respectively, the secondary flow’s intensity ‖MN‖�, 
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the average azimuthal velocity �̅, the average current density á ̅ as functions of the 

aspect ratio l (0.63 � � � 3.14). The dashed line and the hollow circles correspond, 

respectively to the case of ∆T#JU � 15 and the case of ∆T#JU �  15. Fig. 5.19d 

depicts the relative differences between the above quantities when the current is 

positive and when the current is negative as functions of the annulus aspect ratio �. 

When the electrodes’ potential difference is controlled, the current flux distribution 

(which is responsible for the Lorentz body force) differs more greatly between the 

positive and negative potential cases than in the controlled current case. This leads to 

a greater difference in the controlled potential case between the intensities of the 

secondary flows when the current is positive and negative than in the controlled 

current case. 

a) b)  

c) d)  

Figure 5.19 The intensity of the secondary flow ‖MN‖� (a), the average azimuthal 
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velocity |�̅| (b), and the average current flux (c) as functions of the aspect ratio � 
when the potential is controlled (|∆T#JU| = ±15). The dashed line and the hollow 

circles correspond, respectively, to positive and negative currents. (d) The relative 

difference between the intensity of the secondary flow ‖MN‖� (dashed line), average 

azimuthal velocity (solid line), and average current flux as functions of the aspect 

ratio �. 
 

In contrast to the case of the infinitely tall annulus, in the case of the finite-height 

annulus the differences between the flow induced by the outwardly-directed current 

and the inwardly-directed current are not large. This is because the secondary flow is 

primarily driven by the pressure gradients induced by the floor and ceiling and only 

weakly modified by the Dean instability. 

 

5.6 Conclusions 

In this study, we provided base solutions of concentrations’ distributions, velocity 

profile, and current flux field of MHD flow in an annular conduit when the cylinders 

are infinitely long. The azimuthal flow is similar to the celebrated Dean flow. In 

contrast to the Dean flow, the MHD flow described here can actually be attained in 

practice. 

We examined, for the first time, the linear stability of the azimuthal flow in the 

infinitely long annulus. The computed disturbance growth rate at loss of stability was 

always real and the principle of exchange of stability holds. We delineated the effect 
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of electrochemistry on the Dean instability. We found that when the current flow is 

directed outwardly (positive), the MHD problem is significantly less stable than the 

Dean problem and secondary flows bifurcate from the base, azimuthal flow at a Dean 

number much smaller than in the pressure-driven case. In other words, in the case of 

outwardly-directed current, electrochemical effects have a destabilizing effect. When 

the current was directed inwardly (negative), the azimuthal flow was linearly stable 

for all Dean numbers. In other words, in the inward-directed case, electrochemical 

effects stabilize the flow.   

The predictions of the linear stability analysis were compared and favorably 

agreed with finite element solutions of the nonlinear problem. Consistent with linear 

stability theory, the nonlinear simulations indicate that the disturbances grow/decay 

monotonically and that the bifurcation in the case of outwardly directed current is 

supercritical. 

Finite element analysis was carried out to study the magnetohydrodyamic flow in 

the capped (finite length) annulus. When the annulus is of finite height, pure 

azimuthal flows are inadmissible and the flow is always three-dimensional, regardless 

of the direction of the current. The secondary flow is primarily caused by pressure 

gradients induced by the presence of the floor and ceiling (non-slip) and the Dean 

instability plays a relatively minor role in modifying the flow field. As a result, the 

differences in the intensity of the secondary convection between the outwardly 

-directed current and inwardly-directed current are relatively small, albeit the intensity 

of the secondary convection is always greater in the former case. 
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Chapter 6: Conclusions and Outlook 

Microfluidics is an exciting, new area that is revolutionizing biotechnology in 

many different ways. Microfluidics allows researchers to manipulate macromolecules, 

transport biochemical species and particles, stir reagents, and carry out massive, 

parallel experiments in a very time-efficient and inexpensive way. Microfluidic 

devices are used in drug discovery and to facilitate medical diagnostics both in the lab 

and at the point of care.  

 

This dissertation has focused on the pumping mechanisms of microfluidic devices. 

Pumps are essential components of many microfluidic devices as they are needed to 

induce and control fluid motion. In this thesis, I discussed two different pumping 

mechanisms. First, I induced fluid motion using surface tension imbalance. The 

variations in the surface tension forces were caused by the non-uniform geometry of 

the micro-conduit, which in turn, drives the fluid motion. Second, I studied 

magneto-hydrodynamic pumping, resulting from the interaction between externally 

applied electric and magnetic fields, or the Lorentz force. In the following content of 

this chapter, I summarize the main results of my accomplished work, and, when 

appropriate, provide suggestions for future work. 

 

 

6.1 Phase Change Valves and Immiscible Displacement 

In the first part of the thesis, I demonstrated the use of surface tension forces 
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to move slugs of liquid. When the ends of a slug of wetting liquid reside in segments 

of a conduit with different diameters, the slug will tend to move towards the 

cross-section with the smaller diameter. The slug motion can be used to either close or 

open valves. To prevent unwanted motion of the slug, the slug is normally kept frozen. 

When valve closing or opening is needed, the slug is heated and melted to achieve the 

desired actuation. A one dimensional dynamic model was constructed to describe the 

slug’s dynamics. Experimental devices were constructed and tested and the theoretical 

predictions were compared and favorably agreed with experimental observations. We 

proposed an optimization scheme for the maximum flow rate based on the dynamic 

model and got good agreement between the optimization result and the brute force 

solutions of the dynamic model. The valving scheme operated successfully both when 

the slug displaced air and liquid. When attempting to use this scheme to pump a 

second liquid, we encountered interfacial instabilities at the interface between the 

more wetting fluid that migrates along the conduit’s surface and the less wetting fluid 

that formed the core of the flow.  

In most of my experiments, I used slugs made of paraffin and conduits with 

circular cross-sections. Many microfludic systems are, however, made with plastics 

and the conduits have a rectangular cross-section. When the molten paraffin slug 

displaces air or water in a rectangular conduit, as a result of surface tension forces, the 

paraffin will progress rapidly along the cross-section’s corners. This process, over 

time would result in the disappearance of the piston-like form of the paraffin slug. 

One possible way to maintain the integrity of the piston is to embed magnetizable 
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particles in the paraffin. In the presence of an external magnetic field, the inter 

particle forces will maintain the paraffin together. A follow up work may analyze the 

behavior of a suspension of magnetic particles embedded in paraffin in the presence 

of an external magnetic field. 

I also observed interfacial instabilities when molten paraffin (oil) was used to 

displace water in circular conduits. When the conduit was made of glass, a thin film 

of water was left along the surface of the tube when the water was displaced by the oil 

forming an annular shell around the oil.  Eventually, the oil water interface lost 

stability and wave evolved along the interface.  This phenomenon is undesirable in 

most cases. A possible remedy to suppress these types of instabilities may be through 

the use of magnetic particles and a magnetic field. 

 

6.2 Electrochemical Cell Subjected to Time-Alternating Potential 

Next, I explored the use of magnetohydrodynamics to pump liquids. The basic 

idea is to transmit current in an electrolyte solution in the presence of a magnetic field. 

The current interacts with the magnetic field to produce Lorentz body force, which in 

turns drives fluid motion.  Since the fluid motion modifies the ions’ concentrations in 

solution, the electric problem and the momentum equations are coupled. To better 

understand electric current transmission in electrolyte solutions, I investigated a 

one-dimensional electrolytic cell and examined the current-potential relationship 

under DC conditions. To this end, I solved the Nernst-Planck equations together with 

the electroneutrality condition. The current-voltage relations were obtained 
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analytically and compared to the numerical results. Then, I examined the AC response 

when the potential difference between the electrodes varies periodically in time. The 

theoretical study consisted of solving the full Poisson-Nernst-Planck equations. Since 

the solution of the full Poisson-Nernst-Planck equations is computationally intensive, 

approximate boundary conditions were derived so that one can solve time-periodic 

problems by solving the Nernst-Planck equations in the bulk (with electroneutrality 

condition) and without a need to resolve the electric double layer.  The predictions of 

the approximate model were critically compared with the predictions of the full model. 

For the cases investigated, the difference between the exact and approximate model 

predictions was smaller than 6%. The use of the approximate model allows one to 

overcome the numerical difficulty associated with the two vastly different length 

scales: the macroscopic size of the electrolyte cell and the nanosclae thickness of the 

electric double layer associated with modeling electrochemical processes including 

problems associated with magnetohydrodynamic flow of electrolyte solutions. 

 

6.3. MHD Flow and Equivalence with Pressure-Driven Flow 

I constructed a mathematical model for MHD flows of electrolyte solutions in 

microfluidic systems. In general, the model requires the concurrent solution of the 

Nernst-Planck equations and the momentum equations. The flow field modifies the 

concentration field and the concentration field affects the electric current, which, in 

turn, affects the body force in the momentum equation. MHD has the advantage of 

providing a convenient means to pump and stir fluids and control fluid flow with 
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electrical signals and without a need for moving mechanical components. Flow can be 

directed along any desired path in a microfluidic network without a need for any 

valves and its direction can be reversed simply by reversing electrode polarity. The 

disadvantage of MHD is that it involves a volumetric force that does not scale 

favorably as the conduit size decreases. MHD pumps operating with electrolyte 

solutions also have very low conversion efficiency, as only a very small fraction of the 

electric power is converted into work. More serious shortcomings include the need to 

operate with electrolyte solutions that undergo reversible reactions to avoid bubble 

formation and undesirable electrochemical electrode reactions and the limitation on 

the maximum amount of current that can be transmitted in the solutions. It seems that 

MHD are most likely to benefit applications in which conduit sizes range from 

hundreds of micrometers to millimeters - a range of length scales in which the MHD 

drive provides significantly higher flow rates than electroosmosis. 

I have shown that when the Reynolds number is low, the magnetic field is 

uniform, and the electric field is orthogonal to the magnetic field, the Lorentz body 

force is irrotational and one can define a “Lorentz” potential. In other words, the 

MHD flow is equivalent to pressure-driven flow, and one can use the large body of 

data available in the literature for pressure-driven flow to deduce the MHD flow 

patterns and drag coefficients. The above conditions often prevail in microfluidic 

systems. I utilized this equivalence in two examples. The first example consisted of a 

uniform conduit. Here, the equivalence between MHD flow and pressure-driven flow 

has been known for many years. The second example consisted of a conduit patterned 
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with pillars. This is a somewhat more general case as the electric flux is neither 

unidirectional nor uniform as in the first example. The equivalence between MHD 

flow and pressure-driven flow allows me to utilize drag coefficients available in the 

literature for pressure-driven flow to calculate the MHD flow patterns provided that 

the total electric current is controlled. The use of the MHD-pressure driven flow 

equivalence requires caution, however, since the emergence of secondary flows such 

as may evolve when the fluid goes around a bend (Yi and Bau 2003) or a curve will 

destroy the analogy between MHD and pressure-driven flows. Conduits patterned 

with pillars may be useful in application ranging from separation processes and 

catalytic reactors where large solid liquid interface is desired to heat exchangers, 

where the pillars act as fins. 

I also computed the electric current, concentration, and flow field in a conduit and 

demonstrated that an optimal pillar diameter exists that maximizes the current flow. It 

is plausible that even higher current transmission can be obtained by optimizing the 

shape of the pillar. However, maximum flow rate still happens in the absence of 

pillars. 

The conduits with pillar arrays can be used as columns for chromatographic 

separation with the pillars providing support for the stationary phase.  In this case, it 

would be desirable to optimize the shape of the pillars, their pattern, and the flow field 

to minimize Taylor-Aris dispersion and to minimize the hydrodynamic drag.   

 

6.4 MHD Flow in a Concentric Annulus 
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When secondary flows evolve such as when the fluid goes around a bend, the 

MHD-pressure driven flow equivalence no longer exists. It is of interest to determine 

the circumstances under which secondary MHD flows evolve. I considered MHD 

flow of a symmetric, binary electrolyte in a concentric annulus. In the case of 

infinitely long annulus, I obtained the velocity field, concentrations’ distributions, and 

current flux field as functions of the potential difference between the cylindrical 

electrodes. The azimuthal flow is similar to the celebrated Dean flow. I then examined 

the linear stability of the azimuthal flow in the infinitely long annulus. The computed 

disturbance growth rate at loss of stability was always real and the principle of 

exchange of stability held. I found, for the first time, that electrochemical effects 

greatly modify the stability characteristics of the flow. When the electric current is 

directed outwardly (positive), the MHD Dean problem is significantly less stable than 

the pressure-driven, classical Dean problem and secondary flows bifurcate from the 

base, azimuthal flow at a Dean number much smaller than in the pressure-driven case. 

In other words, in the case of outwardly-directed current, electrochemical effects have 

a destabilizing effect. When the current was directed inwardly (negative), the 

azimuthal flow was linearly stable for all Dean numbers. In other words, when the 

electric current is directed inwardly (negative), electrochemical effects stabilize the 

flow. The predictions of the linear stability analysis were compared and favorably 

agreed with finite element solutions of the nonlinear problem. Consistent with linear 

stability theory, the nonlinear simulations indicate that the disturbances grow/decay 

monotonically and that the bifurcation in the case of outwardly directed current is 
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supercritical.  

When the annulus has finite length, purely azimuthal flow is no longer possible. 

The non-slip floor and ceiling cause pressure gradients within the annular cross 

-section, which in turn induces secondary flow. Thus, when the annulus is of finite 

height, pure azimuthal flow is inadmissible and the flow is always three-dimensional 

regardless of the direction of the current. Finite element analysis was carried out to 

determine the flow field in the finite length annulus. I find that the secondary flow is 

primarily caused by pressure gradients induced by the presence of the floor and 

ceiling. When the length of the annulus is moderate, the Dean instability plays a 

relatively minor role in modifying the flow field. As a result, the differences in the 

intensity of the secondary convection between the outwardly-directed current and 

inwardly-directed current are relatively small, albeit the intensity of the secondary 

convection is always greater in the former case. 

There are many possible extensions of this work. In my pioneering work, I 

focused on a binary, symmetric electrolyte. Similar analysis can be carried out for 

other solutions such as RedOx electrolytes that undergo reversible reactions at the 

electrode surfaces and in presence of excess supporting electrolyte. It is likely, that in 

the presence of abundant supporting electrolyte, the electric conductivity will be 

insensitive to the concentration distribution of the reacting species and the stability 

characteristics of the MHD flow will be more in line with that of the classical, 

pressure-driven Dean flow. And perhaps, most importantly, the predictions of my 

theory still require experimental verification. 
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