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Theoretical and Observational Viability of Modified Gravity

Abstract
The origin of the late-time cosmic acceleration is one of the most intriguing problems of modern physics; the
standard theoretical explanation requires extreme fine-tuning to match observations. Resolution of this puzzle
may require modifications to either the assumption that all matter has positive pressure or to the theory of
gravity itself on cosmological distance scales. In this dissertation we explore the viability of several promising
modifications to gravity unified by the presence of a Vainshtein-type screening mechanism suppressing the
modifications within the solar system. In order to remain theoretically and observationally viable, a theory of
modified gravity must:

1. be free of unphysical degrees of freedom that lead to instabilities,

2. produce a stable phase of cosmic acceleration,

3. allow stable field configurations around astrophysical objects, and

4. be consistent with measured limits on the strength of fifth forces in various environments.

We study three models: that of a scalar called the galileon that mediates a gravitational-strength fifth force, a
braneworld-inspired theory of multiple galileons, and the theory of a massive graviton coupled to a galileon.
We show that the massive graviton -- galileon theory satisfies the first condition for viability but fails the
second and that the multi-galileon theory fails the third condition. The theory of a single galileon satisfies the
first three conditions; the last is known to be satisfied in the case of an isolated object. We develop a formalism
to make more precise predictions regarding the galileon forces in multi-body systems. Finally, we consider the
topological defect solutions of more general scalar theories with noncanonical kinetic terms and show that
domain walls can mimic the field profile and energy density of a canonical domain wall, though the two are
distinguishable by their fluctuation spectra.
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ABSTRACT

Theoretical and Observational Viability of Modified Gravity

Melinda M. Andrews

Mark Trodden

The origin of the late-time cosmic acceleration is one of the most intriguing

problems of modern physics; the standard theoretical explanation requires extreme

fine-tuning to match observations. Resolution of this puzzle may require modifica-

tions to either the assumption that all matter has positive pressure or to the theory

of gravity itself on cosmological distance scales. In this dissertation we explore the

viability of several promising modifications to gravity unified by the presence of a

Vainshtein-type screening mechanism suppressing the modifications within the so-

lar system. In order to remain theoretically and observationally viable, a theory of

modified gravity must:

1. be free of unphysical degrees of freedom that lead to instabilities,

2. produce a stable phase of cosmic acceleration,

3. allow stable field configurations around astrophysical objects, and

4. be consistent with measured limits on the strength of fifth forces in various

environments.
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We study three models: that of a scalar called the galileon that mediates a

gravitational-strength fifth force, a braneworld-inspired theory of multiple galileons,

and the theory of a massive graviton coupled to a galileon. We show that the mas-

sive graviton – galileon theory satisfies the first condition for viability but fails the

second and that the multi-galileon theory fails the third condition. The theory of a

single galileon satisfies the first three conditions; the last is known to be satisfied in

the case of an isolated object. We develop a formalism to make more precise pre-

dictions regarding the galileon forces in multi-body systems. Finally, we consider

the topological defect solutions of more general scalar theories with noncanonical

kinetic terms and show that domain walls can mimic the field profile and energy

density of a canonical domain wall, though the two are distinguishable by their

fluctuation spectra.
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Chapter 1

Introduction

Since ancient times, the origin, current state, and eventual fate of the universe have

intrigued scientists and philosophers. It is only in recent times that we have begun

to obtain observational evidence with which to answer these questions. The current

state of the field of cosmology is a playground for theorists: guided by excellent and

ever-growing data, we attempt to resolve the numerous theoretical puzzles posed

by the observed behavior of the universe on the largest scales.

In this thesis, we will investigate the theoretical and observational viability of

a class of theories modifying the infrared behavior of gravity, motivated by the

hope of explaining the late-time cosmic acceleration. In Section 1.1 we will intro-

duce the evidence for the cosmic acceleration; in Section 1.2 we will discuss the

observationally-favored cosmological constant and the problems with its theoretical

interpretation, and in Section 1.3 introduce dark energy and modified gravity as
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possible alternatives to a cosmological constant.

1.1 The accelerating universe

Given that the action of gravity on all known forms of matter is attractive, it is

reasonable within the context of a big bang universe to assume that the expansion

of the universe would decelerate. However, as we will review here the observa-

tional evidence conclusively indicates that instead the expansion of the universe is

accelerating.

The evidence for this relies on measurements of the distance to astrophysical

objects as a function of the redshift experienced by photons due to the expansion

of the spacetime they travel through. It is consistent with current observations

to assume that the universe on large scales is homogeneous and isotropic, with no

curvature [7, 191, 168, 169] and thus the cosmic expansion is characterized solely

by the scale factor a(t), or equivalently by the Hubble expansion rate H(t) ≡ 1
a
da
dt

.

Rather than using time, it is observationally more convenient to use the red-

shift experienced by light emitted at a given time: for a monotonic a(t) as in the

standard big bang cosmology this is a one-to-one equivalence. Light emitted at a

wavelength λe will be redshifted by the expansion of spacetime such that the ob-

served wavelength is λo = a(to)
a(te)

λe; the standard parameter used in place of time

is

z ≡ λo − λe
λe

=
a(to)

a(te)
− 1 (1.1.1)

2



and thus z = 0 for nearby objects whose light was emitted recently and z = ∞

corresponds to the big bang singularity.

There are two different methods typically used to measure distance to astro-

physical objects: the luminosity distance dL and the angular diameter distance dA.

The luminosity distance is defined such that the apparent luminosity of an object

with intrinsic luminosity L at a distance dL from the observer is Lapp = L
4πd2

L
. Sim-

ilarly, the angular diameter distance is defined such that the observed angular size

θ of an object is related to its absolute size x by x = dAθ. Taking into account the

effects on light traveling over cosmological distances, these distances are related to

the expansion history via

dL = (1 + z)

∫ z

0

dz′

H(z′)

dA =
1

1 + z

∫ z

0

dz′

H(z′)
(1.1.2)

and thus integral constraints on the expansion history can be obtained given that

we are able to observe the redshift of light emitted by systems with either a known

intrinsic luminosity (“standard candles”) or size (“standard rulers”).

The first evidence for late-time cosmic acceleration [189, 184] came from the

observation of type 1a supernovae (SN1a), which serve as standard candles due to a

known relationship between their peak intrinsic luminosity and the time scale over

which the luminosity evolves after peak. Current SN1a results are included in the

SNLS3 [195] and Union2.1 [196] compilations.

There are two types of standard ruler used to constrain the expansion history,

3



both originating in the physics of the early universe. The first is the sound horizon

scale imprinted into the cosmic microwave background radiation (CMB) indicating

the distance traveled by sound waves in the time from the big bang to the time when

photons decouple from baryons. This distance scale survives in the distribution of

structures in the later universe, known as the baryon acoustic oscillation (BAO)

scale. Recent BAO data includes the 6dFGS [42], SDSS-II [182], BOSS [11], and

WiggleZ [43] surveys.

These three observables rule out the possibility of a non-accelerating universe.

The combined constraints on the fraction of the total energy density which drives

acceleration ΩΛ versus the fraction of the total energy density composed of clustering

matter Ωm in the context of the standard ΛCDM model of cosmology is plotted in

Figure 1.1.

1.2 The cosmological constant problem

The current standard model of cosmology, ΛCDM, includes contributions to the

energy density of the universe from radiation, baryonic matter, cold dark matter,

and a cosmological constant (CC) Λ which has equation of state p = −ρ and

thus drives cosmic acceleration and does not evolve as the universe expands. This

model is observationally very successful; however, the measured value of the CC is

theoretically very challenging to explain.

The zero-point energy density of quantum fields is independent of the expansion

4
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Figure 1.1: Constraints on the energy content of the late-time ΛCDM universe [41].

ΩΛ 6= 0 to high significance, indicating an accelerating universe.

of spacetime, and thus contributes to the value of the CC. Näıvely, this includes a

contribution

Evacuum =
∑

i

gisi

∫ ∞

0

d3k

(2π)3

√
k2 +m2

i (1.2.1)

from a collection of species with masses mi, degeneracy factors gi, and si = +1

for bosons and −1 for fermions, which yields an infinite CC. Supposing that some

new physics enters at an energy scale ΛUV and that contributions to the vacuum

energy from energies about ΛUV are zero yields a contribution of order Λ4
UV to the

5



CC. The observed CC is of order (meV)4, an energy scale at which new physics is

ruled out by experiment. Thus the “bare” value of the CC must be fine-tuned to at

least one part in 1060 (for new physics at the TeV energy scale probed by the Large

Hadron Collider) such that the value “dressed” by the large quantum zero-point

contributions matches the observed value.

This problem is often split into the “old” cosmological constant problem of why

the CC is very close to zero and the “new” cosmological constant problem of why

the CC is not equal to zero. There are several proposed resolutions to the “old”

cosmological constant problem (see [177] for a review). One such is the proposition

of a symmetry mechanism, analogous to the U(1) gauge symmetry that forbids

the existence of a photon mass, forbidding the existence of a cosmological constant

term. For example, as seen in Equation 1.2.1, unbroken supersymmetry causes each

contribution with si = +1 to be canceled by a contribution with si = −1 and thus

Evacuum = 0; however, the nondetection of supersymmetric partners of the stan-

dard model particles up to TeV-scale energies indicates supersymmetry is broken at

too high an energy scale to solve the old cosmological constant problem. Another

suggestion is to assert that the zero-point energy is not any more “real” in gravity

than it is in other fields of physics. The Casimir effect and the vacuum polarization

contribution to the Lamb shift are often cited as cases where the vacuum energy

has an observable consequence, but as discussed in [149] these effects can be for-

mulated without reference to vacuum fluctuations and thus it is debatable whether

6



they provide evidence that the zero-point energy should be taken as “real” (having

observational consequences).

We will assume in ensuing chapters that there exists such a resolution which sets

the CC to zero and proceed to study a class of theories which address the “new”

cosmological constant problem. We note here that there is a proposed resolution to

both “old” and “new” CC problems in the form of an anthropic argument in the

context of a multiverse theory [205]. Supposing that the universe is described by a

theory with many different possible vacua, and that the actual solution in reality

samples all such vacua, even if a very small CC is rare it is nevertheless likely that

observers living in collapsed structures will measure a small CC due to the tendency

of a large CC to prevent the formation of such observers. This resolution to the CC

problem suffers from difficulty with interpreting probabilities in such a multiverse

(the “measure problem”) [208, 9] and from limited ability to predict the results of

new experiments.

1.3 Alternatives to a cosmological constant

Despite the observational success of the ΛCDM model, due to the theoretical chal-

lenge of explaining the value of the CC it is worthwhile to explore alternative expla-

nations for the origin of the cosmic acceleration. Such alternative models, even if

eventually falsified, lead to the development of new observational tests with which

to confront the standard paradigm. There are two broad classes of alternatives

7



to the CC: one may consider a new dynamical matter component, dubbed “dark

energy”, that behaves approximately as a cosmological constant at late times; or

one may consider a modification to general relativity (GR) on large distance scales

that mimics the effect of a cosmological constant.

The distinction between the two classes is somewhat fuzzy - many modified

gravity theories are in fact equivalent to a theory of dark energy [206]. This is easy

to see through the equations of motion: unmodified GR satisfies

Gµν = 8πGTmatter
µν (1.3.1)

with gravitational degrees of freedom on the left and matter content on the right.

One may modify gravity by adding a term f(gµν) dependent on the spacetime metric

gµν to the left hand side, but this is equivalent to adding the term 8πGT dark energy
µν

to the right hand side for T dark energy
µν = − 1

8πG
f(gµν). The dark energy component

so defined is conserved due to the Bianchi identity ∇µGµν = 0 and the conserva-

tion of matter ∇µTµν = 0. Observationally, it is standard to classify models with

no anisotropic stress (for which the stress-energy tensor T dark energy
µν is invariant un-

der spatial rotations) as dark energy and those with anisotropic stress as modified

gravity.

Typically, dark energy as first presented in [188, 58] (also called “quintessence”)

is taken to be a scalar field φ with potential V (φ), which has the equation of state

w ≡ p/ρ given by

w =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (1.3.2)

8



This scalar field behaves like a cosmological constant w ≈ −1 when 1
2
φ̇2 � |V (φ)|.

Depending on the choice of potential, one may obtain an attractor solution for

which the late-time behavior of the dark energy is approximately a cosmological

constant for a broad range of initial conditions. Additionally, motivated by the

“coincidence problem” that the dark energy density and matter density are of the

same order at the present time (which in general requires a fine-tuning of the initial

conditions), one may construct potentials which lead to “tracker” solutions where

the dark energy mimics the dominant energy component until eventually coming to

dominate at late times [217].

The observational constraints on a varying equation of state w(z) still allow for a

range of interesting behavior, as shown in Fig. 1.2. However, a scalar field with the

observed energy density that does not cluster on observable scales must generically

have a very small mass and absent or very weak coupling to ordinary matter. Such

a situation is very unnatural as a particle physics theory, as quantum corrections

will generally spoil this fine tuning [183, 163, 60].

Modifications to gravity are commonly also effected by the inclusion of an extra

scalar degree of freedom which mediates a gravitational-strength fifth force. Such

a fifth force is strongly constrained by solar system and pulsar tests to have a

negligible effect on dynamics (see Section 20 of [41]). Thus a successful theory of

modified gravity must incorporate a screening mechanism which leads to a small

fifth force within dense structures but a large effect on cosmological scales. Such

9



10 25. Dark energy

to examine, but differences in cases where they are available are small. The SN, BAO,
and CMB data sets, probing a wide range of redshifts with radically different techniques,
are mutually consistent with the predictions of a flat ΛCDM cosmology. We have not
included the z = 2.5 BAO measurement from the BOSS Lyman-α forest [24] on this
plot, but it is also consistent with this fiducial model. Other curves in the lower panel of
Figure 25.1 show the effect of changing w by ±0.1 with all other parameters held fixed.
However, such a single-parameter comparison does not capture the impact of parameter
degeneracies or the ability of complementary data sets to break them, and if one instead
forces a match to CMB data by changing h and Ωm when changing w then the predicted
BAO distances diverge at z = 0 rather than converging there.
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Figure 25.2: Constraints on the present matter fraction Ωm and dark energy model
parameters. Dark and light shaded regions indicate 68.3% and 95.4% confidence
levels, respectively. “CMB” is Planck+WP, “BAO” is the combination of SDSS-II,
BOSS, and 6dFGS, and “SN” is Union2. (a) The present dark energy fraction ΩΛ
vs. Ωm, assuming a ΛCDM model. CMB data, especially when combined with
BAO constraints, strongly favor a flat universe (diagonal dashed line). (b) The dark
energy equation of state w vs. Ωm, assuming a constant value of w. The dashed
contours show the 68.3% and 95.4% CL regions for the combination of WMAP9 and
BAO data. Curves on the left vertical axis show the probability distributions for
w (normalized arbitrarily), after marginalizing over Ωm, for the CMB+BAO and
CMB+BAO+SN combinations (yellow and black, respectively), using Planck+WP
CMB data, and for the WMAP9+BAO combination (dashed black). (c) Constraints
on the two parameters of the dark energy model with a time-dependent equation of
state given by Eq. (25.4): w(z = 0.5) and wa = −dw/da.

Figure 25.2a plots joint constraints on Ωm and ΩΛ in a ΛCDM cosmological model,
assuming w = −1 but not requiring spatial flatness. The SN constraints are computed
from the Union2 sample, and the CMB, CMB+BAO, and CMB+BAO+SN constraints
are taken from MCMC chains provided by the Planck Collaboration [38]. We do not
examine BAO constraints separately from CMB, because the constraining power of BAO
relies heavily on the CMB calibration of rs. The SN data or CMB data on their own
are sufficient to reject an ΩΛ = 0 universe, but individually they allow a wide range
of Ωm and significant non-zero curvature. The CMB+BAO combination zeroes in on a
tightly constrained region with Ωm = 0.309±0.011 and Ωtot = 1.000±0.0033. Combining

December 18, 2013 11:57

Figure 1.2: Constraints on the equation of state of dark energy and its time evo-

lution. Dark and light shading indicate 1σ and 2σ contours, respectively. (a)

Constraints in the ΩΛ-Ωm plane within ΛCDM. (b) Constraints on a constant w

not fixed to −1. (c) Constraints on a time-dependent w with wa = −dw
da

. [41]

screening mechanisms either rely on the form of the potential (as in the chameleon

and symmetron mechanism) or a nonstandard kinetic structure (as in the Vainshtein

mechanism).

The chameleon mechanism [157] relies on a form for the scalar field potential and

coupling to matter that produces an environment-dependent mass for the scalar. As

illustrated in Fig. 1.3, this results in a massive scalar in high-density environments

which mediates a very short-range force and a light scalar in low-density environ-

ments which mediates a long-range force. This mechanism is realized in so-called

f(R) theories of modified gravity [61, 59] which modify the action of GR via

SGR =
M2

Pl

2

∫
d4x
√−gR → Sf(R) =

M2
Pl

2

∫
d4x
√−gf(R) (1.3.3)

where f(R) is an arbitrary function of the Ricci scalar that recovers f(R) ' R in
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high-curvature regions [50]. See [80] for a review of f(R) theories.

6

ρ

φ)V(

effV (φ)

φ

Mβ φ/        )Plexp(

FIG. 2: The chameleon effective potential Veff (solid curve) is the sum of two contributions: one from the actual potential

V (φ) (dashed curve), and the other from its coupling to the matter density ρ (dotted curve).

φφ

Veff

ρSmallρLarge

Veff

FIG. 3: Chameleon effective potential for large and small ρ, respectively. This illustrates that, as ρ decreases, the minimum

shifts to larger values of φ and the mass of small fluctuations decreases. (Line styles are the same as in Fig. 2.)

III. PROFILE FOR A COMPACT OBJECT

In order to study the observable consequences of our model, in particular with regards to EP violations and fifth

force mediation, we must first understand the profile that φ acquires on Earth and in the solar system. Therefore,

in this Section, we derive an approximate solution for φ in the case where the source is a compact object, which we

idealize as being perfectly spherical and having homogeneous density.

Thus consider a static, spherically-symmetric body of radius Rc, homogeneous density ρc and total mass Mc =

Figure 1.3: Effective potential for a chameleon field with contributions from the

potential (dashed curve) and coupling to matter density ρ (dotted curve); the mass

of small fluctuations about the minimum is large in high-density regions and small

in low-density regions. [157]

The symmetron mechansism [141] also relies on the interplay of the potential

and coupling to matter, but results in an environment-dependent coupling to matter

which vanishes in high-density regions rather than an environment-dependent mass.

The symmetron moves in a symmetry-breaking potential V (φ) = −µ2φ2/2 + λφ4/4

and has a universal coupling to matter φ2ρ/2M2; this yields an environment-

dependent effective potential which results in a nonzero field value φ = µ/
√
λ in

low-density regions and confines the field near φ = 0 in high-density regions as il-

lustrated in Fig. 1.4, thus suppressing the effects of the symmetron on the dynamics

11



of matter on solar system scales.

Φ

VeffHΦL

(a) Effective potential in regions of high am-

bient density. The VEV is 0.

Φ

VeffHΦL

(b) Effective potential in regions of low am-

bient density.

Figure 1: Schematic plots of the symmetron effective potential, illustrating the symmetry breaking

phase transition.

present. The dependence of the symmetron effective potential on the matter density has implica-

tions for the cosmological evolution of the scalar field. Since the matter density redshifts in time,

the effective potential is time-dependent and results in a phase transition when the matter density

falls below a critical value. We will choose parameters such that the phase transition occurs in

the recent past (ztran∼< 1).

A key question is whether the evolution allows the scalar field to reach the symmetry-

breaking vacuum by the present epoch, as assumed in the analysis of solar system tests and other

phenomenological studies. The short answer is that the coupling to matter efficiently drives the

field towards the symmetry-restoring point, so that for a broad range of initial conditions it reaches

φ ' 0 well before the phase transition. How the field makes it there, however, is an interesting

story, as summarized below.

In Section 3 we describe the symmetron evolution during the radiation- and matter-dominated

eras of standard big bang cosmology. The effective mass squared of the symmetron due to its cou-

pling to matter fields is m2
eff ∼ T µµ/M

2 ∼ (1− 3w)ρ/M2, where w is the equation of state. During

the radiation-dominated era, T µµ is dominated by the (subdominant) non-relativistic component,

hence m2
eff ∼ ΩmH

2M2
Pl/M

2. At early times, therefore, m2
eff � H2, and the symmetron remains

essentially frozen at its initial value, denoted by φrad−i. As the universe cools and Ωm increases,

eventually m2
eff ' H2, and the symmetron starts rolling and undergoes damped oscillations around

4

Figure 1.4: Effective potential for a symmetron field. The effect of the symmetron

on the dynamics of matter is suppressed for small φ, as realized in high-density

environments. [142]

It has been shown observationally in [150] and as a no-go theorem in [203] that

chameleon-like scalars (including the symmetron) cannot account for the cosmic ac-

celeration without including a dark energy component – that is, any self-acceleration

in a chameleon-like theory is not a result of a true modification of gravity. The no-

go theorem relies on a proof that for a theory in which the solar system is screened

to the level required by observations,

• the Compton wavelength of the scalar is at most ∼ Mpc-scale, and thus me-

diates too short-range of a force to affect large scale structures, and

• the relationship between the Jordan-frame metric, in which observations are

made, and the Einstein-frame metric, acceleration in which is indicative of a

12



dark energy component, is nearly constant over the age of the universe. That

is, acceleration in the (observed) Jordan frame requires acceleration in the

Einstein frame, which indicates the presence of dark energy.

This result indicates that screening mechanisms depending only on the potential

and matter coupling of a single scalar field are disfavored in models attempting to

explain the cosmic acceleration. The third screening mechanism we discuss here is

one that relies on a modification to the kinetic energy of the fifth-force mediator.

The Vainshtein screening mechanism [198] is effected in a variety of theories with

nonlinear derivative self-interactions. In low-density regions, the largest derivative

term is the standard kinetic energy; the field thus approximately obeys a stan-

dard Poisson equation which results in a gravitational-strength fifth force. Unlike

the chameleon mechanism, the unscreened force may have infinite range. In high-

density regions the nonlinear derivative interactions dominate the standard kinetic

term, causing the minimum-energy configuration to prefer small derivatives; as the

force is the gradient of the scalar field, this results in a suppressed fifth force near

astrophysical objects.

In Chapters 3-6 of this thesis we will investigate the theoretical and observa-

tional viability of several modified gravity theories displaying Vainshtein screening.

In Chapter 7 we will broaden the scope of our study to include general theories of a

scalar field with nonlinear derivative self-interactions but with no requirement that

the theory realize the Vainshtein screening mechanism. We will consider the possi-
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bility of distinguishing such a theory from a canonical scalar field theory through

observations of topological defects.

Topological defect solutions to classical field theories have applications in many

areas in physics, and in particular may have important implications for the evolution

of the universe [200, 1, 171, 75]. In the early universe, such defects may have formed

as the universe cooled and various gauge or global symmetry groups were broken.

Some defects, such as GUT monopoles, can lead to potential cosmological problems

which historically inspired the development of the theory of cosmic inflation. Other

defects, such as cosmic strings, are potentially observable in the present day; for

example by affecting the spectrum of perturbations observed in the microwave back-

ground and matter distributions (although defects cannot play the dominant role in

structure formation). Further, the microphysics of such objects may be important

in some circumstances, such as weak scale baryogenesis [48, 47, 46, 49]. Another

interesting possibility arises if the strings are superconducting, as originally pointed

out by Witten [209], since the evolution of a network of such superconducting cosmic

strings can differ from a nonsuperconducting one. In particular, the supercurrent

along loops of string can build up as the loop radiates away its energy, affecting the

endpoint of loop evolution. This supercurrent can become large enough to desta-

bilize the loop or may compete with the tension of the string loop and result in

stable remnants, known as vortons [74], with potentially important consequences

for cosmology [45, 62]. We will show in this thesis that it is possible for a domain
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wall in a noncanonical theory to be indistinguishable from a canonical defect.
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Chapter 2

Vainshtein-screened modified

gravity theories

Vainshtein screening appears in a broad group of modified gravity theories. In this

chapter we will review the history of this class of theories, leading up to the theories

under investigation in the later chapters of this thesis. A number of the theories are

observationally ruled out or subject to theoretical inconsistencies, but have inspired

the development of many currently viable theories.

2.1 Fierz-Pauli massive gravity

The Vainshtein mechanism has its origin in the attempt to develop a consistent

theory of a massive graviton. At the linearized level, as shown by Fierz and Pauli

[117], there exists only one possible mass term that is both Lorentz-invariant and
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does not introduce a new negative-energy degree of freedom (a “ghost”). The action

includes the linearized Einstein-Hilbert action of GR (the kinetic term for a graviton

hµν), a mass term, and the standard GR coupling of the gravition to matter with

stress-energy T µν :

SFP =

∫
d4x

M2
Pl

4

[
1

2
hµνEµν,αβhαβ −

1

2
m2
(
hµνh

µν − h2
)]

+
1

2
hµνT

µν . (2.1.1)

While GR describes two degrees of freedom (two spin-two helicities), the massive

theory propagates five degrees of freedom - two tensors, two vectors, and a scalar.

It was discovered by van Dam, Veltman and Zakharov [199, 214] that one does

not recover GR when the graviton mass is taken to zero in the Fierz-Pauli massive

gravity theory; light bending in the m → 0 theory is different from the GR result

by 25%. This result is the so-called vDVZ discontinuity and is the result of the fact

that the new scalar does not decouple from matter in the m→ 0 limit.

It is in the context of attempting to resolve this discontinuity that the Vainshtein

mechanism was first discovered [198] – presumably the linear Fierz-Pauli theory is

corrected by higher-order nonlinear terms, which Vainshtein discovered grow as

the graviton mass is decreased. Supposing a spherically symmetric source of mass

M , a new length scale called the Vainshtein radius and given by rv ∼
(

M
m4M2

Pl

)1/5

appears, below which nonlinearities dominate over the linear Fierz-Pauli term. As

the graviton mass is taken to zero, the Vainshtein radius diverges and thus the

linear theory is not a valid approximation at any distance from the source. The

Vainshtein screening effect in Fierz-Pauli massive gravity is studied numerically in
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[26], confirming the recovery of GR near the source.

However, it was shown by Boulware and Deser [44] that generic nonlinear com-

pletions of the Fierz-Pauli theory propagate not five but six degrees of freedom,

one of which has a wrong-sign kinetic term and thus is known as the Boulware-

Deser (BD) ghost. Until very recently, the presence of the BD ghost was thought

to preclude any consistent theory of a massive graviton.

2.2 Dvali-Gabadadze-Porrati braneworld gravity

A partial resolution to the problem of the existence of a ghost-free theory of mas-

sive gravity comes in the form of the Dvali-Gabadadze-Porrati (DGP) braneworld

gravity model [111], though it is not immediately obvious that this theory de-

scribes a massive graviton. The DGP model describes a 4 + 1 (4 space and 1 time)

-dimensional gravitational sector with matter confined to a (3 + 1)-dimensional

brane; the action is given by

SDGP =
M3

5

2

∫
d5X
√
−GR(G) +

M2
4

2

∫
d4x
√−gR(g)

+

∫
d4xLmatter(g,matter fields) (2.2.1)

with X and G the 5-dimensional (5D) coordinates and metric, x and g the 4-

dimensional (4D) coordinates and induced 4-dimensional metric on the brane, and

MD the D-dimensional Planck mass.

The interpretation of this theory as a massive gravity theory is elucidated by
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considering the effective 4-dimensional description obtained by linearizing about

flat space and integrating out the bulk (see Section 10.2 of [140] for a derivation),

giving the action

S =

∫
d4x

M2
4

4

[
1

2
hµνEµν,αβhαβ −

1

2
m
(
hµν
√
−�hµν − h

√
−�h

)]
+

1

2
hµνT

µν

(2.2.2)

with the mass parameter m = 2M3
5/M

2
4 . Note the similarity to the Fierz-Pauli

action of Eq. (2.1.1); here, however, the mass m2 is replaced by the operator m
√
−�.

The DGP model thus describes a graviton composed of a continuum of massive

states – a resonance with width m. As shown in [187], the linearized version of

the DGP model suffers from the vDVZ discontinuity, but the pathology is cured at

nonlinear order.

The DGP theory describes a gravitational force law that appears 4-dimensional

on short distances but transitions to weaker 5-dimensional gravity at a distance

rc ∼ m−1, and thus due to the weakening of gravity in the IR is of interest as a

possible solution to the CC problem. The cosmological solutions [98] bear this out:

DGP cosmology has two branches of possible solutions, given by ε = ±1 in the

modified Friedmann equation

H2 =

(√
ρ

3M2
Pl

+
m2

4
+ ε

m

2

)2

. (2.2.3)

We recover standard cosmology on both branches when m � H (or equivalently

for Hubble radii much smaller than the crossover radius to 5-dimensional behavior),

but the behavior of the solutions when the Hubble radius enters the 5-dimensional
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regime differs strongly between the two branches. The “normal” branch, ε = −1,

exhibits a transition to fully 5-dimensional behavior and hence effects an IR mod-

ification of gravity, but does not produce cosmic acceleration in the absence of a

dark energy component. The “self-accelerating” branch, ε = +1, transitions not

to 5-dimensional gravity but to a de Sitter phase of accelerating expansion with

H ∼ m sourced by the intrinsic curvature of the brane.

However, the DGP model is ruled out as an explanation for the late-time cosmic

acceleration due to the presence of a ghost instability in the self-accelerating branch

(see [164] for a review) and confrontation with observations [166, 194, 204, 116, 115].

It has been shown that the normal branch is free from ghosts [174], but is subject to

observational constraints [213] requiring m . 0.1H0 and thus any departure from

GR is too small to be of interest.

2.3 Galileons

It is interesting to study the DGP model in a limit that distills out the nonlinear-

ities responsible for the Vainshtein mechanism [167, 174]. This is achieved in the

decoupling limit

M4, M5, Tµν →∞ Λ ≡ M2
5

M4

= constant,
Tµν
M4

= constant (2.3.1)

for which the 4-dimensional graviton decouples from the scalar component corre-

sponding to the position of the brane in the extra dimension (denoted π) whose
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linearization is responsible for the vDVZ discontinuity. This limit maintains the

nonlinear derivative self-interactions of π with a strength set by the mass scale

Λ. The resulting scalar-tensor theory reproduces the interesting effects of DGP

on scales below the Hubble radius, including the self-accelerating behavior. It is

therefore interesting to consider generalizing the scalar-tensor theory obtained from

the decoupling limit of DGP in search of a ghost-free self-accelerating effective field

theory.

Just such a generalized theory is presented in [175], where it is noted that the

cubic derivative interaction term that arises for the DGP decoupling limit π is the

unique cubic interaction satisfying:

• despite being higher-derivative in the action, the equations of motion are

nonetheless second-order, and

• the action is invariant under the Galilean symmetry π(x)→ π(x) + bµx
µ + c.

By dropping the DGP origin and including all terms consistent with these two

conditions, one obtains a theory of a scalar field dubbed the “galileon” with five

possible derivative self-interaction terms. The action is given by

Sπ =

∫
d4x

(
5∑

i=2

αi
Λ3(i−2)

Li +
π

MPl

T

)
, (2.3.2)

where, defining the matrix Πµ
ν ≡ ∂µ∂νπ and the notation [A] ≡ Aµµ (for any matrix
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A),

L2 = −1

2
(∂π)2 (2.3.3)

L3 = −3

4
(∂π)2[Π] (2.3.4)

L4 = −1

2
(∂π)2

(
[Π]2 − [Π2]

)
(2.3.5)

L5 = − 5

24
(∂π)2

(
[Π]3 − 3[Π][Π2] + 2[Π3]

)
. (2.3.6)

As hoped, this theory allows for ghost-free self-accelerating solutions that recover

GR in the solar system due to the Vainshtein mechanism [175]. However, the theory

is not completely free from pathologies, most notably the superluminal propagation

of galileon signals inside the screened region. The extent to which this challenges

the viability of galileon theories as a possible description of reality is under debate;

the authors of [6] argue that such superluminality is evidence of macroscopic nonlo-

cality and precludes the possibility that the galileons are the low-energy limit of an

ultraviolet (UV)-complete theory. There are two concerns that must be addressed

in order for a theory with superluminal signal propagation to be viable: the possi-

bility of causality violation, and the non-analyticity of the S-matrix which obstructs

UV completion. The first concern is addressed in [55, 28, 154]: the authors argue

that the formation of causality-violating closed timelike curves requires leaving the

regime of validity of the effective field theory, and thus is likely prevented by large

backreaction analogously to the chronology protection conjectured by [139] in GR.

The second concern is addressed by the existence of dualities mapping a galileon

theory displaying Vainshtein screening and superluminal signal propagation to a
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free field theory on both the classical [85, 92, 71] and quantum [153] level. Thus

the S-matrix of the dual galileon theory must be analytic, and there should be no

obstruction to UV completion of galileon theories.

The galileon theory is still viable given current observational constraints. The

most precise constraints on modifications to gravity come from solar system and

pulsar measurements, but in such an environment the effects of the galileon are

expected to be very small due to screening. The prediction for orbital precession of

a test body about an isolated source due to a cubic galileon (where α4 = α5 = 0)

is within the range of detectability for near-future lunar laser ranging experiments

[148, 112], but the inclusion of the quartic interaction term reduces the expected

observational effects below the reach of even proposed future measurements [12].

These results are valid so long as it is consistent to neglect the effects of other

nearby astrophysical bodies; in Chapter 6 of this thesis we develop the formalism to

treat the n-body problem subject to a cubic galileon-mediated fifth force and raise

some concerns about the validity of one-body results.

The issue of galileon radiation (of interest for binary pulsar observations) is ad-

dressed in [95, 97, 66]. Unlike gravitational waves, the galileon radiates a monopole

and dipole from such systems and thus the chances of observable results are en-

hanced over static systems; however, the monopole, dipole, and quadrupole are

found to be suppressed far below observable levels due to Vainshtein screening in

the case of both cubic and quartic galileons. The formalism developed is plagued by
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an uncontrolled multipole expansion – radiation in higher multipoles is enhanced

versus in low multipoles, a possible indication that the treatment of this system as

a small perturbation above a static, spherically-symmetric system is not valid.

Numerical solutions have been employed to confront galileon models with cos-

mological data in the form of redshift space distortions, type 1a supernovae, CMB,

and BAO data [178, 82, 30, 10, 29, 173, 172, 31]. The results show that the cubic

galileon is disfavored by a poor fit to the large-scale CMB, but the full galileon

theory is favored over ΛCDM by CMB measurements alone and slightly disfavored

by the combination of CMB and lower-redshift observations.

There are a number of ways investigated in the literature to generalize galileons.

The original theory is only valid on flat space; it is an obvious direction to co-

variantize the theory of galileons [99, 102], however, this construction necessitates

abandoning the Galilean symmetry in order to maintain second-order equations of

motion. It can also be shown that while the DGP model only produces the cubic

galileon interaction, it is possible to construct a variety of galileon-like theories in

the context of higher-dimensional braneworld models [124, 126]. Other generaliza-

tions include higher-spin galileons [100], higher-derivative actions with second-order

equations of motion but no Galilean symmetry [103], and supersymmetric galileons

[156]. We will study in greater detail in Chapter 5 of this thesis the extension to a

theory of multiple galileons [145, 100, 181, 179].
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2.4 de Rham-Gabadadze-Tolley massive gravity

While the DGP theory presents a theory of a graviton with a soft mass that is free

of the BD ghost, until 2010 there was no known ghost-free theory of a graviton with

a hard mass. Such a theory was presented by de Rham, Gabadadze, and Tolley

(dRGT) in [86, 89] – while Boulware and Deser’s argument applies to generic choices

of the nonlinear completion of the Fierz-Pauli mass term, the dRGT theory is the

unique ghost-free (as shown by [137, 90]) choice of nonlinear completion. The dRGT

theory requires the introduction of a nondynamical reference metric fµν , which we

shall take to be Minkowski, and is given by the action (as in Eq. (2.3.2), square

brackets denote traces of matrices)

SdRGT =

∫
d4x
√−g

[
M2

Pl

2
R(g) +M2

Plm
2 (L2 + α3L3 + α4L4)

]
, (2.4.1)

where the mass term depends on K ≡ δµν −
√
gµσfσν via

L2 =
1

2!

(
[K]2 − [K2]

)
(2.4.2)

L3 =
1

3!

(
[K]3 − 3[K][K2] + 2[K3]

)
(2.4.3)

L4 =
1

4!

(
[K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3]− 6[K4]

)
. (2.4.4)

The reasoning behind this choice of interaction terms is more clear in the de-

coupling limit: MPl → ∞ and m → 0 with Λ3 ≡ (m2MPl)
1/3 fixed. In this limit,

the matrix K is replaced by the matrix of second derivatives of a scalar field ∂µ∂νπ;

it is then evident that the choice of the Fierz-Pauli mass term L2 is exactly the one

that produces a total derivative term. The higher interactions thus are chosen to
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have this same property. They are also precisely the interaction terms that raise the

strong coupling scale from Λ5 = (MPlm
4)

1/5
as found by Vainshtein to the higher

scale Λ3, thus expanding the regime of validity of this theory.

We have suggestively referred to the scalar appearing in the decoupling limit

as π; this scalar is in fact a galileon (as suggested by the similarity between Equa-

tions (2.3.2) and (2.4.1)). Thus, to the extent that the full massive gravity theory is

probed by its decoupling limit, the interesting qualities of galileons (self-acceleration

and Vainshtein screening) also apply to dRGT massive gravity. The dRGT decou-

pling limit also introduces a phenomenologically interesting new disformal coupling

to matter ∂µπ∂νπT
µν . As shown in [40], the presence of this coupling precludes

asymptotically flat solutions with near-source Vainshtein screening; all such solu-

tions must have cosmological asymptotics. Interestingly, these restricted solutions

are free of superluminality. The disformal coupling also produces interesting obser-

vational effects, particularly the enhancement of gravitational lensing [210].

Beyond the decoupling limit, it becomes apparent that due to the Hamiltonian

constraint that removes the BD ghost, dRGT massive gravity has no nontrivial flat

or closed homogeneous cosmological solutions [72]. However, both a universe with

very small curvature [129] and a universe with unobservable inhomogeneity [72] re-

main possible within massive gravity. In the latter case, inhomogeneity enters as a

result of the introduction of a new length scale m−1; so long as this length scale is

sufficiently large (m . 0.1H0), the observable universe will be well-approximated
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by a standard homogeneous and isotropic Friedmann-Robertson-Walker (FRW) uni-

verse. Exact solutions of this type are reviewed in [201], but each requires a restric-

tive assumption and a general treatment will require numerical solution.

The case of an open FRW universe is more easily approached analytically, but

suffers from strong coupling of the vector and scalar degrees of freedom due to their

vanishing kinetic terms on the cosmological solution [131, 76]. Motivated in part

by the desire to remove this pathology, a number of extensions of dRGT massive

gravity have been explored. A simple extension of the theory is to consider a non-

Minkowski reference metric (such as a de Sitter or FRW metric); this modified

theory also has unstable FRW cosmological solutions for the physical metric [155].

The nondynamical reference metric can also be promoted to a dynamical second

metric, resulting in a bimetric theory of gravity [135] which is capable of reproducing

the observed expansion history [202]. One may also promote the mass to a function

of the scalar to obtain the mass-varying extension [147], however, this theory does

not support sufficiently long periods of self-acceleration [144]. Another extension

introduces a new scalar degree of freedom, the quasidilaton [73], which enforces

a scaling symmetry of the reference metric relative to the physical metric. The

quasidilaton theory is unstable to scalar perturbations [132].

In Chapters 3 and 4 of this thesis we investigate the absence of the BD ghost

and the presence of the strong-coupling problem about FRW cosmological solutions

in the theory of a galileon coupled to massive gravity [118]. This theory improves
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upon the galileon coupled to GR in that both second-order equations of motion and

the Galilean symmetry are preserved when coupling to massive gravity.

One may argue that in return for all of these concerns, we have merely traded

a fine-tuning of the CC for a fine-tuning of the graviton mass. However, while a

small value for the CC is not technically natural and is generically ruined by large

quantum corrections, a small value for the graviton mass is technically natural

due to the enhanced symmetry (unbroken diffeomorphisms) when m → 0 [87].

This is manifested in the decoupling limit by the fact that quantum corrections to

the galileon terms are higher-derivative and thus do not correct the galileon terms

themselves [174, 175]. The result is that quantum corrections to the graviton mass

are bounded by

δm2 . m2

(
Λ3

MPl

)
(2.4.5)

and thus parametrically smaller than the mass. As shown in Fig. 2.1, taking quan-

tum corrections into effect there are three distance regimes of interest in Vain-

shtein screening - a small region in which quantum corrections dominate, a large

Vainshtein-screened region in which nonlinear scalar interactions dominate, and an

asymptotic linear regime.

For an in-depth review of the topics covered in this chapter, see [140, 83].
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Figure 4: Regimes for massive gravity with cutoff Λ3 = (MPm
2)1/3, and some values within the

solar system. The values are much more reasonable than those of the Λ5 theory.

As in the Λ5 theory, quantum corrections are generically expected to ruin the various

classical tunings for the coefficients, but the tunings are still technically natural because the

corrections are parametrically small. For example, cutting off loops by Λ3, we generate the

operator ∼ 1
Λ2
3
(�φ̂)2, which corrects the mass term. The canonically normalized φ̂ is related

to the original dimensionless metric by h ∼ 1
Λ3
3
∂∂φ̂, so the generated term corresponds in

unitary gauge to Λ4
3h

2 = M2
pm

2
(

Λ3

Mp

)
h2, representing a mass correction δm2 ∼ m2

(
Λ3

Mp

)
.

This mass correction is parametrically smaller than the mass itself and so the hierarchy

m � Λ3 is technically natural. This correction also ruins the Fierz-Pauli tuning, but the

pathology associated with the de-tuning of Fierz-Pauli, the ghost mass, is m2
g ∼ m2

δm2/m2 ∼ Λ2
3,

safely at the cutoff.

We should mention another potential issue with the Λ3 theory. It was found in [136] that

lagrangians of the galileon type inevitably have superluminal propagation around spherical

background solutions. No matter what the choice of parameters in the lagrangian, if the

solution is stable, then superluminality is always present at distances far enough from the

source (see also [159]). It has been argued that such superluminality is a sign that the

theory cannot be UV completed by a standard local Lorentz invariant theory [160], though

others have argued that this is not a problem [161]. In addition, the analysis of [136] was

for pure galileons only, and the scalar-tensor couplings of the massive gravity lagrangian can

potentially change the story. These issues have been studied within massive gravity in [162].

96

Figure 2.1: Division of distance regimes by importance of quantum effects and by

linear or nonlinear dominant scalar interactions, with typical values for the solar

system. [140]
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Chapter 3

Ghost-freeness of massive gravity

coupled to galileons

In this chapter we prove in full generality that the theory of a massive graviton

coupled to a Galilean-invariant scalar field as developed in [118] propagates only

the correct degrees of freedom (five degrees of freedom in the massive graviton and

one in the galileon) and thus is free of the Boulware-Deser ghost.

Apart from generalizing dRGT, the construction of [118] is of interest because it

provides a method of coupling the galileons to (massive) gravity while preserving the

Galilean invariance. When coupling to ordinary massless gravity, non-minimal cou-

plings must be added to ensure second-order equations of motion, and the Galilean

symmetry is broken [102, 99]. In the present construction, there is no such problem,

suggesting that the galileons more naturally couple to a massive graviton.
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In [118], it was shown that the theory is ghost-free, for a flat bulk metric, in the

decoupling limit, and for a certain simplifying choice of parameters. In this chapter,

using methods similar to those of [143], we demonstrate that the full theory, for any

bulk metric GAB, to all orders beyond the decoupling limit, and for all choices of

parameters, has the primary constraint necessary to eliminate the Boulware-Deser

ghost. This chapter is based on work done in collaboration with Garrett Goon,

Kurt Hinterbichler, James Stokes, and Mark Trodden [13].

3.1 Background

It has long been known that the Fierz-Pauli action [117] provides a consistent de-

scription of the linear fluctuations of a massive graviton in flat spacetime. Nonlinear

theories of massive gravity tend to propagate an extra, unphysical degree of freedom

known as the Boulware-Deser (BD) ghost [44]. The presence of a ghost-like degree

of freedom leads to an instability by which the vacuum decays into positive- and

negative-energy states.

A general Lagrangian for nonlinear massive gravity can be formulated by intro-

ducing a nondynamical reference metric ḡµν (e.g. the Minkowski one, ḡµν = ηµν) and

constructing a potential of the form V (gµσḡσν). The potential explicitly breaks dif-

feomorphism invariance and it is expected that the theory generally propagates 12

phase-space degrees of freedom, rather than the 10 necessary to describe a massive

graviton. The extra degree of freedom is the BD ghost.
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The problem of finding a ghost-free nonlinear theory was only recently solved by

de Rham, Gabadaze and Tolley (dRGT) [86, 89]. The dRGT theory is a 3-parameter

family of potentials whose special structure ensures that there is a dynamical con-

straint which removes the ghost degree of freedom. This has been demonstrated by

explicitly counting degrees of freedom in the Hamiltonian formalism [137, 136], and

through other methods [88, 90, 170, 143].

3.2 Coupling the galileon to massive gravity

The galileon theory [175] was first explored as an extension of the 5-dimensional

DGP model [111], and the full galileon theory can be shown to arise as the 4-

dimensional effective theory of a 5-dimensional braneworld model by the inclusion

of Lovelock terms (the unique extensions to the Einstein-Hilbert action which re-

tain second-order equations of motion) [96]. Deriving the galileons as brane-bending

modes in an extra-dimensional model ensures the Galilean symmetry, as it is de-

scended from the bulk isometries; thus a braneworld picture is well-suited to devel-

oping extensions of the galileon theory.

Massive gravity can also be described in terms of a codimension-0 brane in

a 4-dimensional bulk by disassociating the metric on the brane from the induced

metric (which is taken to be nondynamical) and including interactions of the dRGT

form between the two metrics. In this case, the brane-bending modes become pure

gauge Stueckelberg fields that restore the diffeomorphism invariance broken by the
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mass term [18]. The Stueckelberg method involves introducing four auxiliary scalars

φA(x) through the replacement ḡµν → ∂µφ
A∂νφBηAB; the original theory is recovered

by choosing unitary gauge φA = δAµ x
µ.

By generalizing the brane construction of massive gravity (without specifying

the bulk metric) to a D-dimensional bulk with D ≥ 4, one obtains a theory with

D − 4 embedding fields which cannot be gauged away and these become physical

Dirac-Born-Infeld (DBI) scalars coupled to the physical metric through the dRGT

potential [118]. Thus the nondynamical induced metric is given in terms of the bulk

coordinates φA (so that now A,B, · · · run over D values) and bulk metric GAB(φ)

by

ḡµν = ∂µφ
A∂νφ

BGAB(φ) . (3.2.1)

Apart from the dRGT terms, curvature invariants constructed solely from ḡµν

and extrinsic curvatures of the embedding can be included in the action. The

leading term in the derivative expansion is the DBI action ∼
∫

d4x
√−ḡ, and higher

Lovelock invariants give galileons [96, 145]. The theory will possess a galileon-like

internal symmetry for every isometry of GAB, and the resulting galileons will be the

generalized curved space galileons discussed in [126, 124, 54].

The dynamical variables are the physical metric gµν and the D scalars φA, which

appear through the induced metric (3.2.1). The action is

S=SEH[g] +Smix[g, ḡ] +Sgalileon[ḡ] . (3.2.2)

Here SEH[g] is the Einstein-Hilbert action for gµν , with a possible cosmological
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constant Λ,

SEH[g] =
M2

Pl

2

∫
d4x
√−g (R[g]− 2Λ) . (3.2.3)

The action mixing the two metrics is

Smix[g, ḡ] = −M
2
Plm

2

8

3∑

n=1

βnSn

(√
g−1ḡ

)
, (3.2.4)

where
√
g−1ḡ is the matrix square root of the matrix gµσḡσν , and Sn(M) of a

matrix M are the symmetric polynomials1 Sn(M) = M
[µ1
µ1 · · ·Mµn]

µn . The βn are

three free parameters (one combination of which is redundant with the mass m).

Sgalileon[ḡ] stands for any Lagrangian constructed from diffeomorphism invariants of

ḡ (and extrinsic curvatures of the embedding) whose equations of motion remain

second order in time derivatives. The possible terms in Sgalileon[ḡ] are the Lovelock

invariants and their boundary terms (see [96] and Sec. IV.B of [145] for a discussion).

The structure of the dRGT-DBI coupled system (3.2.2) is nearly identical to that of

ghost-free bigravity [135], the difference being that one of the two metrics is induced

from a target space, and so it fundamentally depends on the embedding scalars.

1Our anti-symmetrization weight is [µ1 . . . µn] =
1
n! (µ1 · · ·µn + · · · ). See appendix A of [143]

for more details on the symmetric polynomials.
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3.3 Vierbein formulation

Following [143], due to the presence of matrix square roots we will find it convenient

to write the theory in terms of vierbein variables2, which can be thought of as the

square root of the metric. We write the physical metric and induced metric in terms

of vierbeins EA = E A
µ dxµ, ĒA = Ē A

µ dxµ,

gµν = E A
µ E B

ν ηAB, ḡµν = Ē A
µ Ē B

ν ηAB, (3.3.1)

where ηAB is the 4-dimensional Minkowski metric. For the induced metric ḡµν , we

write the vierbein in an upper triangular form

Ēµ
B =



N̄ N̄ iēi

a

0 ēi
a


 . (3.3.2)

Here N̄ and N̄ i are ADM lapse and shift variables, and ēi
a is an upper triangular

spatial dreibein for the spatial part of the induced metric and ēia its inverse trans-

pose (in what follows i, j, . . . are spatial coordinate indices raised and lowered with

the spatial metric ḡij, and a, b, . . . are spatial Lorentz indices raised and lowered

with δab). These are obtained in terms of φA by solving

ḡ00 = φ̇Aφ̇BGAB(φ) = −N̄2 + N̄ iN̄i

ḡ0i = φ̇A∂iφ
BGAB(φ) = N̄i

ḡij = ∂iφ
A∂jφ

BGAB(φ) = ēi
aēj

bδab . (3.3.3)

2See also [105, 108] for covariant methods of degree of freedom counting in the vierbein formu-

lation of massive gravity.
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The upper triangular vierbein (3.3.2) has 10 components, and is merely a repack-

aging of the 10 components of ḡµν (which in turn depend on the φA).

For the physical metric gµν , we parameterize its 16-component vierbein as a

local Lorentz transformation (LLT) Λ, which has 6 components, times a vierbein Ê

which is constrained in some way so that it has only 10 components,

Eµ
A = ΛA

BÊµ
B . (3.3.4)

The freedom to choose the constraints for Ê allows us to make different aspects of

the theory manifest. The mixing term (3.2.4), in terms of vierbeins, takes the form

Smix ≡ −
M2

Plm
2

8

3∑

n=1

βn
n!(4− n)!

S
(n)
mix,

S
(1)
mix =

∫
εABCDĒ

A ∧ EB ∧ EC ∧ ED,

S
(2)
mix =

∫
εABCDĒ

A ∧ ĒB ∧ EC ∧ ED,

S
(3)
mix =

∫
εABCDĒ

A ∧ ĒB ∧ ĒC ∧ ED. (3.3.5)

The dynamical vierbein has 16 components, 6 more than the metric. If we

choose the 6 constraints which Ê must satisfy to be the symmetry condition,

Êµ[AĒ
µ
B] = 0, (3.3.6)

then we can show using the arguments in [143] (see also [104] for subtleties) that the

extra 6 fields in Λ are auxiliary fields which are eliminated by their own equations

of motion, setting Λ = 1, and the resulting theory is dynamically equivalent to the

metric formulation (3.2.2).
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Instead, we take Ê to be of upper triangular form

Êµ
A =



N N iei

a

0 ei
a


 . (3.3.7)

Here the spatial dreibein e a
i is arbitrary, containing 9 components. The LLT Λ in

(3.3.4) depends now on 3 boost parameters pa and can be written as

Λ(p)AB =



γ pb

pa δab + 1
1+γ

papb


 , (3.3.8)

where γ ≡ √1 + papa. Using this decomposition, the 16-component vierbein Eµ
A

is parameterized in terms of the three components of pa, one N , three components

of N i and the nine components of ei
b.

3.4 Hamiltonian analysis

We start the Hamiltonian analysis by Legendre transforming with respect to the

spatial vierbein e a
i , defining canonical momenta πia = ∂L

∂ė a
i

. Since Smix contains

no time derivatives of the physical metric, and Sgalileon has no dependence on the

physical metric at all, the expressions for the canonical momenta are the same as

their GR counterparts. In particular, there will be three primary constraints

Pab = ei[aπ
i
b] = 0 . (3.4.1)

In GR, these are first class constraints which generate local rotations.
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The Einstein-Hilbert part of the action takes the form3

SEH =

∫
d4x πiaė

a
i −

1

2
λabPab −NC (e, π)−N jCj (e, π) . (3.4.2)

The anti-symmetric λab holds the three Lagrange multipliers for the three primary

constraints (3.4.1). The N and N i appear as Lagrange multipliers enforcing respec-

tively the Hamiltonian and momentum constraints of GR: C = 0, Ci = 0.

We now look at the mixing terms (3.3.5). The contributions to Lmix are of the

form ∼ εµνρσεABCDEµ
AEν

BĒρ
CĒσ

D, containing various numbers of copies of E and

Ē. From (3.3.2), (3.3.7) and (3.3.8), we see that the µ = 0 components of Eµ
A and

Ēµ
A are strictly linear in their respective lapses and shifts and the µ = i components

are independent of the lapse and shift. Therefore, due to the anti-symmetry of the

epsilons, the entire mixing term is linear in the lapses and shifts, so we may write

Lmix = −NCmix(e, ē, p)−N iCmix,i(e, ē, p)− N̄ C̄mix(e, ē, p)

− N̄ iC̄mix,i(e, ē, p)−Hmix(e, ē, p) . (3.4.3)

The lapse and shift remain as Lagrange multipliers, and the pa appear alge-

braically. We now solve the constraint enforced by N i for the pa: Ci + Cmix,i = 0⇒
3See [107] or Appendix B of [143] for details of the Hamiltonian formulation of GR in vierbein

form.
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pa = pa(e, ē, π). Plugging back into the action we obtain

S =

∫
d4x πiaė

a
i −

1

2
λabPab −N [C (e, π) + Cmix(e, ē, π)]

− N̄ C̄mix(e, ē, π)− N̄ iC̄mix,i(e, ē, π)

−Hmix(e, ē, π) + Lgalileon(ē, N̄ , N̄ i) . (3.4.4)

It remains to Legendre transform with respect to the scalars φA, which appear

through the dependence of N̄ , N̄ i and ē a
i , as determined by (3.3.3). In order to avoid

dealing with the complications of diffeomorphism invariance, we first fix unitary

gauge, setting the first four fields equal to the space-time coordinates: φµ = xµ

(this can be done consistently in the action, since the missing equations of motion

are implied by the remaining equations). The Lagrangian (3.4.4) then depends on

the remaining D−4 scalars and their time derivatives. Crucially, we see from (3.3.3)

that while N̄ and N̄i depend on time derivatives of the scalars, the ēi
a’s do not, and

this in turn implies that the momenta conjugate to the scalars are independent of

the dynamical lapse N . Thus, when the scalar velocities are eliminated in terms

of the momenta, the action will remain linear in N . (If this were not the case,

the lapse would no longer be a Lagrange multiplier, but would instead become an

auxiliary field which does not impose a constraint on the remaining variables.) The

phase space is spanned by the nine independent components of e a
i , the physical

scalars, and the canonical momenta. Since the interaction terms break the local

rotation invariance of GR, the three primary constraints (3.4.1) associated with the

local rotations will generate secondary constraints and form three second class pairs,
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thus removing three degrees of freedom. The constraint enforced by N is precisely

the special primary constraint needed to remove the Boulware-Deser sixth degree

of freedom, leaving five degrees of freedom for the massive graviton. Analogously

to what happens in massive gravity, we expect this special primary constraint to

generate a secondary constraint to eliminate the ghost’s conjugate momentum [136].

We have implicitly assumed that Sgalileon can be written in such a way that the

D− 4 unitary gauge scalar fields appear with at most first time derivatives, so that

we may define canonical momenta in the usual way. This is not immediately obvious,

because the higher-order galileons in Sgalileon possess higher-derivative interactions.

However, the higher-derivative interactions within Sgalileon are special in that they

generate equations of motion which are no higher than second order in time. This

means it should be possible, after integrations by parts, to express these Lagrangians

in terms of first time derivatives only (though we shouldn’t expect to be able to do

the same with both the spatial and time derivatives simultaneously). For example,

take the case of a flat 5D target space, so that there is a single physical scalar φ.

The unitary gauge induced metric is ḡµν = ηµν+∂µφ ∂νφ. The first higher-derivative

galileon is the cubic, coming from the extrinsic curvature term

SK ∼
∫

d4x
√−ḡK̄ ∼

∫
d4x

∂µ∂νφ ∂
µφ ∂νφ

1 + (∂φ)2
. (3.4.5)

Looking at the structure of the possible higher-order time derivatives, the only
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offending term is

φ̈φ̇2

1 + (∂φ)2
⊂ LK . (3.4.6)

Expanding the denominator in powers of (∂φ)2 we see that every term in this

expansion is of the form φ̈φ̇n(~∇φ)2m for some integer m and n. Integrating by

parts, we can express each one in terms of first time derivatives only: φ̈φ̇n(~∇φ)2m ∼

d
dt

(φ̇n+1)(~∇φ)2m ∼ φ̇n+1 d
dt

(~∇φ)2m. The same can be done with the higher galileons

and with a curved bulk (see for example the Hamiltonian analysis of [215, 193] in

the nonrelativistic case).

3.5 Implications

There exists [124, 126, 125] a wide range of novel scalar field theories with inter-

esting properties such as Vainshtein screening and non-renormalization theorems in

common with the original galileon models of [167, 175]. These properties hold out

the hope that such models may be of use both in particle physics and as a possible

way to modify gravity in the infrared. However, coupling such fields to general

relativity in a way that preserves their symmetries and second-order equations of

motion seems to be impossible [102]. Instead, galileon-like scalar fields seem to most

naturally couple to dRGT massive gravity [118].

The consistency of such a proposal rests on the preservation of the hard-won

ghost-free structure of the dRGT theory. In this chapter, we have shown for the first
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time that a theory of nonlinear massive gravity coupled to DBI scalars in such a way

as to preserve the generalized Galilean shift symmetry and the property of having

second-order equations of motion is ghost free. Our proof is based on the vierbein

formulation of massive gravity, in which the Hamiltonian analysis simplifies. Our

analysis shows that the dRGT-DBI system provides a consistent framework in which

models of interest to cosmology [144] may be developed.
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Chapter 4

Strong coupling in massive gravity

– galileon cosmology

As introduced in Chapter 2, modifying gravity by the introduction of an additional

scalar, called the galileon, has interesting cosmological consequences: the galileon

theory allows for the possibility of an accelerating cosmology without introducing

any dark energy. However, in order to covariantize galileons while maintaining sec-

ond order equations of motion one must break the defining assumption of Galilean

symmetry [102, 99]. On the other hand, the dRGT theory is a covariant theory of a

massive graviton whose longitudinal degree of freedom in the decoupling limit is a

galileon [86]. This comes at the cost that a flat or closed homogeneous and isotropic

self-accelerating cosmological solution is forbidden.

Although the dRGT theory possesses a self-accelerating solution with negatively
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curved spatial slices [129], the study of fluctuations on top of this background has

shown that the kinetic terms for the vector and scalar perturbations vanish [131],

indicating that they are strongly coupled. The vanishing of these terms can be

remedied by departing from isotropic and homogeneous cosmologies [130, 77] or

by introducing new degrees of freedom. There are many ways to achieve the latter

option, and several possibilities have been explored in the so-called quasidilaton [73,

134, 132, 113] and mass-varying extensions of dRGT [72, 147, 132]. (See [78] for

a review of these aspects of cosmological solutions in various versions of massive

gravity.)

In this chapter we perform a study of cosmological perturbations for the natural

extension of dRGT introduced in [118] – massive gravity galileons – in which Dirac-

Born-Infeld (DBI) scalars couple to the massive graviton in such a way that the

scalars possess generalized Galilean shift symmetries [118]. This theory has been

shown to be ghost free in the decoupling limit [118] and in full generality using

the vierbein formalism [13] (see also [159]), and admits a self-accelerating branch

that is a generalization of that discovered for massive gravity itself [144]. We study

fluctuations around the self-accelerating branch and show that the kinetic terms for

the scalar and vector modes vanish, just as they do in pure dRGT theory. This

chapter is based on work done in collaboration with Kurt Hinterbichler, James

Stokes, and Mark Trodden [15].
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4.1 Massive gravity – galileon theory

The construction of massive gravity coupled to galileons is carried out using an

extension of the probe brane approach [96, 145, 125, 126, 124, 54] for constructing

general galileon models and the bimetric approach for constructing the dRGT non-

linear massive gravity theory [138, 135]. We introduce a physical metric gµν and a

second, induced metric ḡµν which is the pull-back through a dynamical embedding

φA(x) into a 5-dimensional Minkowski space with metric ηAB = diag(−1, 1, 1, 1, 1),

ḡµν = ηAB∂µφ
A∂νφ

B . (4.1.1)

The action contains three kinds of terms:

S=SEH[g] +Smix[g, ḡ] +Sgalileon[ḡ] . (4.1.2)

The first part SEH[g] is the Einstein-Hilbert action for gµν

SEH[g] =
M2

Pl

2

∫
d4x
√−g R[g] . (4.1.3)

The second part is the action mixing the two metrics,

Smix[g, ḡ] = M2
Plm

2

∫
d4x
√−g(L2 + α3L3 + α4L4) , (4.1.4)

where

L2 =
1

2

(
[K]2 − [K2]

)
,

L3 =
1

6

(
[K]3 − 3[K][K2] + 2[K3]

)
,

L4 =
1

24

(
[K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3]− 6[K4]

)
,
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and where the brackets are traces of powers of the matrix Kµν = δµν−
√
gµσḡσν . The

final part is the DBI galileon action Sgalileon[ḡ] consisting of the Lovelock invariants

constructed from ḡ, and their boundary terms (see [96, 127, 126] and Sec. IV.B of

[145]; we use normalizations consistent with [127, 126]),

Sgalileon = Λ4

∫
d4x
√−ḡ

{
− a2 +

a3

Λ
[K̄]− a4

Λ2

(
[K̄]2 − [K̄2]

)

+
a5

Λ3

(
[K̄]3 − 3[K̄][K̄2] + 2[K̄3]

)}
, (4.1.5)

where K̄µν is the extrinsic curvature of the brane embedding φA(x) into the flat 5-

dimensional Minkowski space and indices are raised with ḡµν (since the bulk is flat,

we may use Gauss-Codazzi to eliminate all intrinsic curvatures in favor of extrinsic

curvatures).

Note that we have set the cosmological constant and a possible tadpole term in

Sgalileon to zero. This ensures the existence of a flat space solution with constant π.

Restoring these terms does not change our essential conclusion.

4.2 Background cosmology and self-accelerating

solutions

For our purposes, we take a Friedmann-Robertson-Walker (FRW) ansatz for the

physical metric

ds2 = −N2(t)dt2 + a2(t)Ωijdx
idxj , Ωij = δij +

κ

1− κr2
xixj , (4.2.1)
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where κ < 0 is the spatial curvature.

As shown in [144], this model does not admit nontrivial cosmological solutions

for a flat FRW ansatz with a homogeneous fiducial metric, just as pure dRGT mas-

sive gravity does not [72], and there are no solutions for κ > 0 since the fiducial

Minkowski metric cannot be foliated by closed slices. (There are, however, known

solutions to pure dRGT massive gravity with FRW physical metric and and inho-

mogeneous Stueckelberg sector [72, 128], that is, solutions where the physical metric

is FRW but the fiducial metric is not also FRW in the same coordinates.)

The embedding (the Stueckelbergs) is chosen so that the fiducial metric has the

symmetries of an open FRW spacetime [129],

φ0 = f(t)
√

1− κ~x2, φi =
√
−κf(t)xi, φ5 ≡ π(t) . (4.2.2)

where f(t) plays the role of a Stueckelberg field which restores time reparametriza-

tion invariance. The induced metric then takes the form

ḡµνdx
µdxν =

(
−ḟ(t)2 + π̇(t)2

)
dt2 − κf(t)2Ωij(~x)dxidxj. (4.2.3)

Note that we can obtain the extended massive gravity mass terms from the dRGT

mass terms by replacing ḡµν with ḡµν + ∂µπ∂νπ.

This ansatz leads to the mini-superspace action

SEH = 3M2
Pl

∫
dt

[
− ȧ

2a

N
+ κNa

]
, (4.2.4)

Smix = 3M2
Pl

∫
dtm2

[
NF (a, f)−G(a, f)

√
ḟ 2 − π̇2

]
, (4.2.5)
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where

F (a, f) =a(a−
√
−κf)(2a−

√
−κf) +

α3

3
(a−

√
−κf)2(4a−

√
−κf)

+
α4

3
(a−

√
−κf)3 , (4.2.6)

G(a, f) =a2(a−
√
−κf) + α3a(a−

√
−κf)2 +

α4

3
(a−

√
−κf)3 . (4.2.7)

Varying with respect to N , we obtain the Friedmann equation,

H2

N2
+
κ

a2
+m2F (a, f)

a3
= 0 . (4.2.8)

The equations obtained by varying the action with respect to f and π, respec-

tively, are

δS

δf
= 3M2

Plm
2∂G

∂a

(
ȧ

ḟ

√
ḟ 2 − π̇2 −N

√
−κ
)

+
π̇

ḟ
Π̇ = 0 , (4.2.9)

δS

δπ
= −Π̇ = 0 , (4.2.10)

where we have defined the quantity

Π =
(

3M2
Plm

2G+ a2Λ4
(√
−κf

)3
) π̇√

ḟ 2 − π̇2

− 3a3Λ3
(√
−κ
)3
f 2


 π̇√

ḟ 2 − π̇2




2

+ 6a4Λ2
(√
−κ
)3
f


 π̇√

ḟ 2 − π̇2




3

− 6a5Λ
(√
−κ
)3


 π̇√

ḟ 2 − π̇2




4

. (4.2.11)

The acceleration equation obtained by varying with respect to a is redundant, due

to the time reparametrization invariance of the action.

In contrast to GR, these equations enforce a constraint: the combination ḟ δS
δf

+

π̇ δS
δπ

becomes

∂G(a, f)

∂a

(
ȧ

√
ḟ 2 − π̇2 −

√
−κNḟ

)
= 0 , (4.2.12)
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the analogue of which for pure massive gravity is responsible for the well-known

absence of flat FRW solutions in that theory.

There exist two branches of solutions depending on whether the constraint equa-

tion is solved by setting ∂G
∂a

= 0 or instead by setting ȧ

√
ḟ 2 − π̇2 − √−κNḟ = 0.

In this work we shall focus on the former choice, since this corresponds to de Sitter

space – the self-accelerating branch of the theory [144], in which the metric takes

the same form as the self-accelerating solution of the original massive gravity theory.

Defining

X ≡
√−κf
a

, (4.2.13)

we find an algebraic equation for f that can be written in the form Jφ = 0, where

Jφ ≡ 3− 2X + α3(1−X)(3−X) + α4(1−X)2 . (4.2.14)

The solutions read

f(t) =
1√−κX±a(t) , X± ≡

1 + 2α3 + α4 ±
√

1 + α3 + α2
3 − α4

α3 + α4

. (4.2.15)

These are the same self-accelerated solutions that were found in pure massive grav-

ity [129]. The solution for the extra galileon field π can then be determined by

solving (4.2.10).

4.3 Perturbations

We now turn to the primary issue addressed in this paper – the behavior of per-

turbations around this background cosmological solution. To obtain the quadratic
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action for perturbations, we work in unitary gauge for the Stueckelberg fields φ0

and φi and expand the metric and π fields to second order in fluctuations around

the background. We write the metric as gµν = g
(0)
µν + δgµν , with

δgµν =



−2N2Φ NaBi

NaBj a2hij


 . (4.3.1)

Here, Φ, Bi and hij are the small perturbations, N and a are the background lapse

and scale factor, and we henceforth raise and lower Latin indices with respect to

Ωij.

The vector perturbation Bi can be decomposed into transverse and longitudinal

components via

Bi = BT
i + ∂iB , DiBT

i = 0, (4.3.2)

where Di denotes the covariant derivative with respect to Ωij. The tensor perturba-

tions hij decompose into a transverse traceless component hTTij , a transverse vector

ET
i , a longitudinal component E, and a trace Ψ as follows:

hij = 2ΨΩij +

(
DiDj −

1

3
Ωij4

)
E +

1

2
(DiE

T
j +DjE

T
i ) + hTTij , (4.3.3)

where 4 ≡ DiDi, and the transverse traceless conditions read

DihTTij = hTT i
i = 0, DiET

i = 0 . (4.3.4)

We denote the remaining dynamical scalar field – the galileon perturbation – by

τ , via

φ5 = π + τ . (4.3.5)
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4.3.1 Preliminaries

Before writing the full quadratic actions for the various perturbations, we first write

some intermediate expressions obtained from the expansions of the mass terms

(4.1.4). This will serve to highlight the manner in which the kinetic terms vanish,

and illustrate the similarities with pure dRGT.

For convenience, we introduce the quantities

s =

√
1− (π̇/ḟ)2 , r =

ḟa

N
√−κf , (4.3.6)

and we will continue to use Jφ to denote the quantity (4.2.14) which vanishes on

the equations of motion.

Expanding the mass term to linear order in the fluctuations yields

Smix = S
(0)
mix +

∫
dx4Na3

√
Ω

[
−
(

Φ +
1

2
h

)
ρg +

1

2
M2

Plm
2
g(1− rs)XhJφ

+M2
Plm

2
g(rπ̇/ḟ

2s)Y τ̇

]
, (4.3.7)

where we have defined

ρg ≡ −M2
Plm

2
g(1−X)

[
3(2−X) + α3(1−X)(4−X) + α4(1−X)2

]
, (4.3.8)

Y ≡ X(1−X)
[
3 + 3α3(1−X) + α4(1−X)2

]
. (4.3.9)

When the background equations of motion for the Stueckelberg fields are satis-

fied, the terms linear in the metric match the corresponding terms of pure massive

gravity. This suggests that we follow the massive gravity analysis of [131] and define

S̃mix[gµν , τ ] ≡ Smix[gµν , τ ] +

∫
d4x
√−gρg ≡M2

Plm
2
g

∫
d4xNa3

√
ΩL̃mix . (4.3.10)
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Expanding to second order in perturbations we have,

L̃(0)
mix =− rsY, (4.3.11)

L̃(1)
mix =3(1− rs)XJφΨ + (rπ̇/ḟ 2s)Y τ̇ , (4.3.12)

L̃(2)
mix =

1

2

r

s

1

ḟ 2s2
Y τ̇ 2 +

1

2

(
6ΦΨ +

BT
i B

T i

1 + rs

)
XJφ + 3

r

s

π̇

ḟ 2
XJφτ̇Ψ

+
π̇√−κḟf

(
r

1 + rs

)
XJφτ4B −

1

2κf 2

[(
1− r2

1 + rs

)
XJφ +

r

s
Y

]
τ4τ

+
1

8
(1− rs)

(
12Ψ2 − 2hTTij h

TTij + ET
j 4ETj

)
XJφ

+
1

8
m−2
g M2

GW

(
24Ψ2 − hTTij hTT ij +

1

2
ET
j 4ETj

)
, (4.3.13)

where we have defined a quantity which will turn out to be the graviton mass term:

m−2
g M2

GW ≡ XJφ + (1− rs)X2 [1 + α3(2−X) + α4(1−X)] . (4.3.14)

Here we have not imposed any equations of motion on the background. We note

that all of the terms in (4.3.13) which depend upon Φ or Bi are proportional to

Jφ, and therefore vanish on the de Sitter self-accelerating branch, on which Jφ = 0.

As we will see, this implies the vanishing of the graviton scalar and vector kinetic

terms on this background.

4.3.2 Tensor perturbations

We now write the full second-order action obtained from expanding (4.1.2) and

decomposing the perturbations according to (4.3.1) and (4.3.2), (4.3.3).

The tensor perturbations take the same form as in pure massive gravity, but
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with a different time-dependent mass term,

S
(2)
tensor =

M2
Pl

8

∫
d4x
√

ΩNa3
[ 1

N2
ḣTTijḣTTij +

1

a2
hTTij(4− 2κ)hTTij

−M2
GWh

TTijhTTij

]
, (4.3.15)

where M2
GW , in terms of the definitions (4.3.6), (4.2.13) made above, takes the

following value on the de Sitter self-accelerating branch,

M2
GW = ±(rs− 1)m2

gX
2
±

√
1 + α3 + α2

3 − α4 . (4.3.16)

As in pure massive gravity, the tensor perturbation maintains the correct sign

for both the kinetic and gradient terms. However, the new mass term implies a

more complicated region of parameter space in which the tensors are non-tachyonic,

M2
GW > 0 (the sign of the mass term is given by the sign of ±(rs − 1)). Note,

however, that even if this term is negative, so that we have a tachyonic instability,

then barring any fine tuning such instabilities are of order the Hubble scale if we

have chosen m ∼ H to ensure late-time acceleration of the correct magnitude. This

agrees qualitatively with the result found in pure massive gravity.

4.3.3 Vector perturbations

Since the vector field BT
i obtained from δg0i does not appear in the Lagrangian

with any time derivatives, it can be eliminated as an auxiliary field. Leaving the

background fields arbitrary for the moment, we find the solution

BT
i =

a(1 + rs) (−4− 2κ)

2 [(1 + rs)(−4− 2κ) + 2a2Jφm2X]N
ĖT
i . (4.3.17)

53



This matches the result of pure dRGT theory BT
i = a

2N
ĖT
i when the Stueckelberg

equation of motion for the de Sitter self-accelerating branch is imposed, Jφ = 0. It is

instructive, however, to leave the backgrounds arbitrary so that we can explicitly see

the kinetic term vanish. Substituting the general expression for the non-dynamical

vector we obtain

S
(2)
vector =

M2
Pl

8

∫
d4x
√

Ω a3N

{
TV (ĖT

i )2

−
[

1

2
M2

GW (−4− 2κ) + Jφk
2m2(1− rs)

]
(ET

i )2

}
, (4.3.18)

where

TV =
a2Jφm

2X (−4− 2κ)

[(1 + rs)(−4− 2κ) + 2a2Jφm2X]N2
. (4.3.19)

The vanishing of the vector kinetic terms is now obvious on the de Sitter self-

accelerating branch where Jφ = 0. The vector Lagrangian has the same form as

pure dRGT theory, only with a different time-dependent mass,

S
(2)
vector = −M

2
Pl

16

∫
d4x
√

Ω a3NM2
GW (−4− 2κ)(ET

i )2. (4.3.20)

4.3.4 Scalar perturbations

The analysis of the scalar perturbations simplifies considerably on the de Sitter

self-accelerating branch since all the terms mixing scalar degrees of freedom from

the graviton with the fluctuation of the galileon vanish when Jφ = 0, as can be

seen from the expression (4.3.13). The scalars Φ and B coming from perturbations

of δg00 and δg0i appear without time derivatives and we may eliminate them as
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auxiliary fields. We obtain (this time imposing the self-accelerating background

equation of motion Jφ = 0)

Φ =
κ4

6a2H2
E − 4

6HN
Ė − κ

a2H2
Ψ +

1

HN
Ψ̇ (4.3.21)

B =
4

6aH
E +

a

2N
Ė − 1

aH
Ψ (4.3.22)

which are the same as in pure dRGT theory. The calculation of the graviton scalar

quadratic action mirrors the dRGT case and we find that the kinetic terms vanish

and the action once again has the same form as pure dRGT, only with a modified

time-dependent mass,

S
(2)
scalar =

M2
Pl

2

∫
d4x
√

Ω a3N

(
6M2

GWΨ2 +
1

6
M2

GW4(−4− 3κ)E2

)
. (4.3.23)

We now turn to the expansion of the galileon action (4.1.5), using (4.3.5). We

start by expanding the lowest galileon, the DBI term (the one proportional to a2 in

(4.1.5)) to quadratic order in τ . We obtain SDBI = −a2Λ4
∫
d4xNa3

√
ΩLDBI, where

L(0)
DBI = rsX4 , (4.3.24)

L(1)
DBI = −

(
r

s

π̇

ḟ 2
τ̇

)
X4 , (4.3.25)

L(2)
DBI = −1

2

r

s

(
1

ḟ 2s2
τ̇ 2 +

1

κf 2
τ4τ

)
X4 . (4.3.26)

From L(2)
DBI we see that the effect of including the DBI Lagrangian is to shift Y →

Y + (a2Λ4/m2M2
Pl)X

4 in the quadratic action (4.3.13). Note that on the de Sitter

self-accelerating branch, where Jφ = 0, this is equivalent to shifting the brane

tension by

Λ4 → Λ̃4 = Λ4 +
m2M2

Pl

a2

Y±
X4
±
. (4.3.27)
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We therefore see that on the self-accelerating de Sitter branch, the galileon has the

correct-sign kinetic term provided

m2M2
Pl

a2Λ4

Y±
X4
±
> −1 . (4.3.28)

It is clear that this constraint can always be satisfied by choosing a2Λ4 appropriately

large. Note that the background Stueckelberg and galileon fields do not lead to any

simplification for the DBI quadratic action.

The higher galileon terms in (4.1.5) can be similarly expanded to quadratic

order. After imposing the background equation for the Stueckelberg/galileon and

its time derivatives, we obtain Sgalileon = Λ4
∫
d4xNa3

√
ΩLgalileon, where

L(2)
galileon =− r

ḟ 2s3

[
−1

2
a2 + 3

a3

Λ

(
π̇

sf ḟ

)
− 9

a4

Λ2

(
π̇

sf ḟ

)2

+ 12
a5

Λ3

(
π̇

sf ḟ

)3
]
X4τ̇ 2

− r

s

1

κf 2

[
1

2
a2 +

a3

Λ

π̇

sf ḟ
− a4

Λ2

3π̇4 + 11ḟ 2π̇2 − 2ḟ 4

s2f 2ḟ 4

+ 6
a5

Λ3

3π̇4 + 2ḟ 2π̇2 + 2ḟ 4

s3f 3ḟ 5
π̇

]
X4τ4τ . (4.3.29)

The conditions for stability can now be read off by requiring that these kinetic terms

have the correct sign.

4.4 Implications

We have examined the nature of cosmological perturbations around the

self-accelerating branch of the massive gravity galileon theory of [118], in which the

galileon fields couple covariantly to massive gravity while simultaneously retaining
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both their symmetry properties and their second-order equations of motion. This

construction provides a more general framework within which we may ask self-

consistent questions about the implications of both massive gravity and galileon

models. Such an approach is important both for the wider goal of understanding

the general implications of modified gravity models, and also for probing the extent

to which particular features of massive gravity are peculiar to the specific restrictive

structure of that theory.

One of the more striking results of dRGT massive gravity is that the kinetic

terms for both vector and scalar perturbations vanish around the phenomenolog-

ically interesting self-accelerating branch of the theory. The main result of our

analysis is that the vanishing of these kinetic terms is preserved around the anal-

ogous de Sitter branch in the more general class of theories, suggesting that this

is a generic result tied to the existence of self-accelerating homogeneous solutions

in theories with this general structure. This is partly upheld by ghost-free bimet-

ric gravity, for which there are two branches of FRW solutions: one for which the

ratio of Hubble constants for the two metrics is constant, and one for which it is

non-constant. The first branch is the analogue of the solution studied here, and

exhibits the same vanishing of kinetic terms for one vector and one scalar degree

of freedom; on the second branch, however, all 7 degrees of freedom are dynamical

[67]. Furthermore, we have verified that the tensor perturbations are ghost-free, and

that while the details of the analysis of their mass terms differs from that in pure
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massive gravity, any tachyonic modes are similarly unstable on Hubble timescales.

An obvious extension of this work is to study the behavior of the same pertur-

bations around the other branch of cosmological solutions identified in [144] (this

work is underway). One may also wish to search for the equivalent to the pure

dRGT massive gravity solutions which display flat, approximately FRW cosmolog-

ical solutions at the cost of an inhomogeneous Stueckelberg sector as in [72, 128],

about which the kinetic terms for scalar perturbations no longer vanish [211, 165].

It will also be interesting to ask whether the fluctuations of the galileon around

these accelerating solutions can be kept subluminal, in contrast to the situation

around flat space [127].
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Chapter 5

Instabilities of spherical solutions

with multiple galileons and SO(N)

symmetry

There has been much recent interest in theories of gravity arising from scenarios

with extra spatial dimensions. Many examples of these are based on the Dvali-

Gabadadze-Porrati (DGP) model [111, 110] – a (4 + 1)-dimensional theory with

action consisting simply of separate Einstein-Hilbert terms in the bulk and on a

codimension-1 brane, to which standard model particles are also confined. The

model results in a 4D gravitational force law at sufficiently small scales, which

transitions to a 5D gravitational force law at a crossover length scale rc ∼M2
Pl/M

3
5 ,

determined by the 5D and 4D gravitational couplings M5 and MPl respectively. To
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yield interesting cosmological dynamics, this crossover scale is usually chosen to be

of order the horizon size.

Much of the phenomenology of the DGP model is captured by its decoupling

limit MPl, M5 → ∞ with the strong-coupling scale Λ5 ∼ M2
5/MPl kept fixed [167,

174]. In this limit, the difference between DGP gravity and general relativity is

encoded in the behavior of a scalar degree of freedom, π. The dynamics of this scalar

are invariant under internal Galilean transformations π → π + c + bµx
µ, with c a

constant and bµ a constant vector. This symmetry proves to be extremely restrictive,

with a leading order self-interaction term that is a higher-derivative coupling cubic

in π, and yet yields second-order equations of motion. Higher-order couplings with

these properties were derived independently of the DGP model [175, 102, 99, 176]

and dubbed “galileons.” See [63, 192, 161, 160, 158, 212, 70, 79, 81] for cosmological

studies of galileon theories.

It is natural to explore induced gravity models in codimension greater than

one [109, 119, 162, 84, 91, 152, 68, 69, 93, 94], and recently multi-galileon actions

arising in the relevant 4-dimensional decoupling limit have been derived [145, 100,

181, 179]. The theories studied in [145] are invariant under individual Galilean

transformations of the π fields, and also under an internal SO(N) symmetry rotating

the fields into one another, thus forbidding the existence of terms containing an odd

number of π fields, in contrast to the codimension one DGP case. In this chapter

we explore the nature of spherically symmetric solutions in theories with an SO(N)
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internal symmetry among the galileon fields, and couplings to matter that respect

this symmetry. This chapter is based on work done in collaboration with Kurt

Hinterbichler, Justin Khoury, and Mark Trodden [14].

Spherical solutions for a more general bi-galileon action were discussed in [180],

for the specific case of a linear coupling ∼ πT to matter, where T is the trace of

the matter energy-momentum tensor. This form of coupling arises from decoupling

limits of DGP-like theories, because π arises through a conformal mixing with the

graviton. However, while this coupling is therefore the natural form to consider in

the case of a single galileon field, it breaks the new internal symmetry satisfied by

multiple galileons (and breaks the Galilean symmetry if the matter is dynamical).

We instead study general non-derivative couplings to matter fields which respect

the SO(N) internal symmetry.

At the background level, our solution can always be rotated to lie along a sin-

gle field direction, say π1, while the other field variables remain trivial, thus ex-

hibiting spontaneous symmetry breaking. The solution exhibits Vainshtein screen-

ing [198, 101], characteristic of galileon theories: we find π1 ∼ r sufficiently close

to the source, whereas π1 ∼ 1/r far away, with the crossover scale determined by

a combination of the galileon self-interaction scale and the coupling to the source.

However, when we turn to the stability of spherically symmetric solutions under

small perturbations, we find that, sufficiently close to the source, perturbations in π1

suffer from gradient instabilities along the angular directions. Morever, they propa-
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gate superluminally along both the radial and angular directions (in the regime that

angular perturbations are stable). Perturbations in the remaining N − 1 galileon

fields are stable but propagate superluminally in the radial direction.

The gradient instability and superluminal propagation found here for the π1 field

are multi-field generalizations of single galileon instabilities [175]. Our findings thus

present significant hurdles for SO(N) galileon models with non-derivative matter

coupling. One of the main lessons to be drawn is that more general matter couplings,

including derivative interactions, are necessary for the phenomenological viability of

SO(N) multi-galileon theories. For instance, the coupling ∼ ∂µπ
I∂νπIT

µν naturally

arises from brane-world constructions [96, 145] and maintains both the Galilean and

the internal rotation symmetries.

5.1 Multi-galileon theory from extra dimensions

In codimension N , the 4-dimensional effective theory contains N fields πI , I =

1 · · ·N , representing the N brane-bending modes of the full (4 + N)-dimensional

theory. The extended symmetry of the vacuum Lagrangian is

δπI = ωIµx
µ + εI + ωIJπ

J , (5.1.1)

where ωIµ, εI and ωIJ are constant transformation parameters. (See [145] for the

geometric setup and origin of this symmetry). This transformation consists of a

Galilean invariance acting on each of the πI fields, and an SO(N) rotation symme-
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try under which πI transforms as a vector. The unique 4-dimensional Lagrangian

density respecting this is [181, 145]

Lπ = − 1

2
∂µπ

I∂µπI − λ
[
∂µπ

I∂νπ
J
(
∂λ∂

µπJ∂
λ∂νπI − ∂µ∂νπI�πJ

)]
,

where λ is a coupling with dimension [mass]−6, containing the strong interaction

mass scale. The I, J indices are raised and lowered with δIJ .

It remains to couple this theory to matter. The natural coupling we might

consider, the lowest dimension coupling that preserves the Galilean and internal

rotation symmetries, is ∼ ∂µπ
I∂νπIT

µν . This is the coupling that naturally arises

from brane matter in the construction of [96, 145]. However, for static nonrelativistic

sources T µν ∼ ρδµ0 δ
ν
0 , and since ∂0π = 0 for static solutions there are no nontrivial

spherically symmetric solutions with this coupling.

Linear couplings Llinear ∼ πT arise naturally from DGP-like setups, since the

π’s conformally mix with the graviton. These lead to spherical solutions [180], but

break the SO(N) internal symmetry.

We therefore do not consider these couplings further, and instead concentrate

on the most general non-derivative coupling that preserves the SO(N) symmetry.

Lcoupling =
T

2
P (π2) , (5.1.2)

where P is an arbitrary function of the invariant π2 ≡ πIπI .
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5.2 Spherically symmetric solutions

Our focus is on the existence and viability of spherically symmetric solutions sourced

by a delta function mass distribution1

T = −Mδ3(r) . (5.2.1)

The equations of motion, including the coupling (5.1.2), are

MP ′
(
π2(0)

)
πI(0)δ3(~r) = �πI − λ

[
�πI

(
∂µ∂νπJ∂

µ∂νπJ −�πJ�πJ
)

+ 2∂µ∂νπ
I
(
∂µ∂νπJ�πJ − ∂µ∂λπJ∂ν∂λπJ

)]
,

(5.2.2)

where P ′(X) ≡ dP/dX. Restricting to spherically symmetric configurations πI(r),

this reduces to

1

r2

d

dr

[
r3
(
yI + 2λyIy2

)]
= MP ′

(
π2(0)

)
πI(0)δ3(~r) , (5.2.3)

where

yI ≡ 1

r

dπI

dr
, (5.2.4)

and y2 ≡ yIyI . Note that, due to the shift symmetry of the Lagrangian, the

equations of motion of galileon fields always take the form of a total derivative.

Thus we can integrate once to obtain the equations of motion

yI + 2λyIy2 =
M

4πr3
P ′
(
π2(0)

)
πI(0) . (5.2.5)

1Note that stable, nontrivial solutions without a source do not exist [114].
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Dividing these equations by each other, we obtain the relations

dπI/dr

dπJ/dr
=
πI(0)

πJ(0)
, (5.2.6)

which, when integrated from the origin, gives

πI(r)

πJ(r)
=
πI(0)

πJ(0)
. (5.2.7)

The various components of the solution are therefore always proportional to each

other. Thus, by a global SO(N) rotation, we can rotate the solution into one

direction in field space, say the I = 1 direction, so that the solution takes the form

π1 ≡ π and πI = 0 for I 6= 1. This model therefore exhibits a kind of spontaneous

symmetry breaking of the internal SO(N) symmetry, since any nontrivial solution

must pick a direction in field space.

Equation (5.2.5) now takes the form

y + 2λy3 =
M

4πr3
P ′
(
π2(0)

)
π(0) . (5.2.8)

As r ranges from zero to infinity, the left-hand side is monotonic, and is positive

or negative depending on the sign of P ′ (π2(0))π(0). For there to be a continuous

solution for y as a function of r, the left-hand side must be invertible when it is

positive (negative). For a solution to exist, this requires (for nontrivial λ)

λ > 0 . (5.2.9)

Thus y is also positive (negative), is monotonic with r, and ranges from zero to

(negative) infinity as r ranges from infinity to zero. This in turn implies that dπ/dr

does not cross zero, and hence π is monotonic.
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Equation (5.2.8) yields a solution for y, and hence dπ/dr, as a function of r

and the parameters of the theory. Integrated from r = 0 to infinity, this will

give a relation between π(0) and the asymptotic value of the field π(∞). The

asymptotic field value is essentially a modulus of the theory – it will be set by

whatever cosmological expectation value is present. It is a physically meaningful

parameter as it affects the coupling to the source by determining π(0).

Near the source, where the nonlinear term dominates, the solution is linear in

r,

πr�r∗(r) ∼ π(0) +

[
M

8πλ
P ′
(
π2(0)

)
π(0)

]1/3

r , (5.2.10)

whereas far from the source, where the linear term dominates, the solution goes like

1/r,

πr�r∗(r) ∼ π(∞)− M

4π
P ′
(
π2(0)

)
π(0)

1

r
, (5.2.11)

where the transition between these regimes occurs at the radius

r∗ ∼
(
λM2

[
P ′
(
π2(0)

)
π(0)

]2)1/6

. (5.2.12)

Note that this crossover radius, and hence the distance at which nonlinearities

become important, depends on the modulus π(0). The equation of motion for π(r)

is readily solved numerically, and the solution obtained is plotted schematically in

Fig. 5.1.
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r � r∗ r � r∗

π(0)

π ∼ r

π ∼ −1

r

π(∞)

π

r ∼ r∗

Figure 5.1: Schematic sketch of the solution for π(r).

5.3 Perturbations: stability and subluminality

While the existence of static, spherically-symmetric configurations is encouraging,

there are, of course, other important checks that our solution must pass to be

physically viable. Specifically, following [175], we must study the stability of these

spherically-symmetric solutions and to determine the speed at which fluctuations

propagate, since superluminal propagation can be an obstacle to finding an ultra-

violet completion of the effective theory [6].

We expand the field in perturbations around the background solution πI0 ,

πI = πI0 + δπI . (5.3.1)

Away from the source, the linearized equations of motion for the perturbations are
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of the form

−Kt
I(r)∂

2
t δπ

I +
1

r2
∂r
(
r2Kr

I (r)∂rδπ
I
)

+KΩ
I (r)∂2

Ωδπ
I = 0 , (5.3.2)

where the coefficients Kt
I(r), K

r
I (r) and KΩ

I (r) depend on r through the background

field πI(r). We find

Kt
1 =

1

3r2

d

dr

[
r3
(
1 + 18λy2

)]
,

Kr
1 = 1 + 6λy2 ,

KΩ
1 =

1

2r

d

dr

[
r2
(
1 + 6λy2

)]
,

Kt
I 6=1 =

1

3r2

d

dr

[
r3
(
1 + 6λy2

)]
,

Kr
I 6=1 = 1 + 2λy2 ,

KΩ
I 6=1 =

1

2r

d

dr

[
r2
(
1 + 2λy2

)]
. (5.3.3)

Applying the implicit function theorem to the function F (y, r) = y + 2λy3 −

M
4πr3P

′ (π2(0)) π(0) = 0, we have

dy

dr
= −∂rF

∂yF
= −3

r

y + 2λy3

1 + 6λy2
. (5.3.4)
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This allows us to eliminate dy/dr from (5.3.3):

Kt
1 =

(1− 6λy2)
2

1 + 6λy2
,

Kr
1 = 1 + 6λy2 ,

KΩ
1 =

1− 6λy2

1 + 6λy2
,

Kt
I 6=1 =

1 + 12λ2y4

1 + 6λy2
,

Kr
I 6=1 = 1 + 2λy2 ,

KΩ
I 6=1 =

1 + 2λy2

1 + 6λy2
. (5.3.5)

Stability of the spherically symmetric background solutions against small per-

turbations requires K > 0 for all K’s. The I 6= 1 directions in field space are stable,

but the π1 direction exhibits a gradient instability sufficiently close to the source

along the angular directions. In other words, KΩ
1 < 0 near the source. Therefore,

localized perturbations can be found near the source that lower the energy of the

solution through their gradients. This instability plagues very short-wavelength

fluctuations, right down to the UV cutoff, so decay rates are dominated by the

shortest distances in the theory and cannot be reliably computed within the effec-

tive theory.

Equations (5.3.5) also allow us to compute the speeds of propagation of our
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small perturbations, in both the radial and angular directions. These are given by

(c2)r1 =
Kr

1

Kt
1

=

(
1 + 6λy2

1− 6λy2

)2

,

(c2)Ω
1 =

KΩ
1

Kt
1

=
1

1− 6λy2
,

(c2)rI 6=1 =
Kr
I 6=1

Kt
I 6=1

=
(1 + 2λy2) (1 + 6λy2)

1 + 12λ2y4
,

(c2)Ω
I 6=1 =

KΩ
I 6=1

Kt
I 6=1

=
1 + 2λy2

1 + 12λ2y4
. (5.3.6)

Note that (c2)r1 > 1, and hence these perturbations always propagate superlumi-

nally. The same is true of (c2)Ω
1 , in regions where these perturbations are stable. The

speed (c2)rI 6=1 is always superluminal, and (c2)Ω
I 6=1 is always subluminal. Whether

superluminal propagation of signals is problematic for a low-energy effective the-

ory is still an arguable issue, but it seems that at the least it may preclude the

possibility of embedding the theory in a local, Lorentz-invariant UV completion [6].

5.4 Other constraints

It is interesting to note in passing that if a mechanism exists to tame the instabilities

we have identified, then precision tests of gravity within the solar system already

place useful constraints on multi-galileon theories. The galileon is screened at radii

below the Vainshtein radius r∗, given by Equation (5.2.12), restoring the behavior

of general relativity. Requiring the solar system to be screened to r ∼ 1016 m thus

yields a constraint on λ and π(0). However, lunar laser ranging data constrain

the departure from the gravitational potential predicted by GR to satisfy δΦ
Φ
<
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2.4 × 10−11 (at radius r = 3.84 × 1010 cm), and we may translate this into a

constraint on a different combination of λ and π(0).

For example, consider the choice of P (X)MPl ∼
√
πIπI , giving a linear coupling

between the radial π field and matter. In the interesting case when the constraints

are saturated, and detection of an effect is therefore imminent, the relevant con-

straint simply becomes

1

λ1/6
. 10−9 eV . (5.4.1)

Note that this is an extremely low cutoff for the effective theory, as is also found in

the DGP model.

5.5 Implications

We have derived spherically-symmetric solutions in an SO(N) multi-galileon the-

ory with general, non-derivative couplings to matter. These solutions exhibit a

Vainshtein screening effect, characteristic of galileon models. However, a study of

the behavior of fluctuations around these solutions shows that one of the fields

has imaginary sound speed along the angular directions, signaling an instability to

anisotropic modes of arbitrarily short wavelength. Moreover fluctuations inevitably

propagate superluminally.

These results raise serious concerns about the phenomenological viability of

SO(N) multi-galileon theories. (Of course, this does not preclude their effective-

ness in early universe physics [56, 70], for instance during inflation, as long as they
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become massive or decouple before the present epoch.) A key input in our analysis

is the restriction to non-derivative coupling to matter. The main lesson to be drawn

is that more general, derivative couplings are necessary. For instance, the lowest-

dimensional coupling invariant under the Galilean and internal rotation symmetries

is ∼ ∂µπ
I∂νπIT

µν . This coupling in fact naturally arises in the higher-codimension

brane picture [96]. As mentioned earlier, the galileon fields are oblivious to static,

spherically-symmetric sources in this case; thus exhibiting a screening mechanism.

However, they will be excited by orbital motion, and we leave a study of the phe-

nomenological implication of this coupling to future work.

Our analysis also highlights a distinct advantage to explicitly breaking the sym-

metry (5.1.1), for example through the introduction of a sequence of regulating

branes of different codimensions, as in the cascading gravity case [84, 91, 8]. The

explicit breaking of SO(N) symmetry allows for more general terms in the action,

which can lead to a healthier phenomenology [180].

Finally, should a creative cure for our instabilities be found, then we have demon-

strated that precision solar system tests of gravity set interesting constraints on

multi-galileon theories.
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Chapter 6

Galileon forces in the solar system

In exploring the possible space of allowed modifications to general relativity (GR),

one of the most stringent constraints is provided by precision tests within the solar

system, which agree with GR to a high degree [207]. If one is interested, for example,

in infrared modifications of GR, in which late-time cosmic acceleration may be

addressed, then one must satisfy these constraints while simultaneously seeking

dynamics that depart strongly from GR on large scales. Thus, a viable modified

gravity theory that explains cosmic acceleration is expected to display a screening

mechanism that results in the behavior of the theory in high-density regions differing

significantly from that on cosmological scales, where densities are relatively low.

In this chapter we wish to initiate the analytic study of long-range forces medi-

73



ated by galileons, a class of scalar particles appearing in various attempts to modify

gravity at large distances and exhibiting what is known as the Vainshtein screening

mechanism. (See [175] for the derivation of the action used here and [198, 101] for

discussion of the Vainshtein screening mechanism. Also see [146] for numerical work

on the static Vainshtein-screened 2-body problem.) Possible astrophysical tests of

galileon theories are discussed in [57, 210, 112, 97, 66, 95], and the theory and its

many extensions [102, 99, 96, 100, 179, 106, 145, 14, 127, 156, 126, 197, 124, 54,

125, 216, 123, 122, 118] have been of particular interest due to their cosmological

consequences. This chapter is based on work done in collaboration with Yi-Zen Chu

and Mark Trodden [12].

The primary hurdle to understanding both gravitational and Vainshtein-screened

forces is the presence of the nonlinear graviton and galileon self-interactions. In GR,

gravitational forces within the solar system cannot be computed exactly but they

can be treated perturbatively, because the Einstein-Hilbert Lagrangian
M2

Pl

2

√
|g|R

written in a weakly curved spacetime

gµν ≡ ηµν +
hµν
MPl

, MPl ≡
1√

8πGN

,

is a series taking the schematic form
∑∞

n=2 ∂
2hn/Mn−2

Pl . (That is, higher nonlin-

earities contain exactly two derivatives but higher powers of h/MPl.) To lowest

order, h/MPl scales as the typical Newtonian potential GNm/r � 1 generated by

the masses in the solar system, where GN is Newton’s constant, m is a typical mass

and r is the distance from the mass. Thus, each increasing order in nonlinearity
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scales as h/MPl � 1, and is hence a small perturbation relative to the previous or-

der. Moreover, the 1/(distance) form of the Newtonian potential, and its nonlinear

(and relativistic) corrections, is valid for any separation distance from a massive

body within the solar system. In GR it is the Schwarzschild radius of the mass in

question (when h/MPl ∼ 1) that characterizes when nonlinearities will dominate

the dynamics. Even for the sun, the most massive object in our solar system, its

Schwarzschild radius is a mere 3 km while its physical radius is 7× 105 km.

However, because the mass scale Λ associated with the nonlinear self-interactions

of galileons π is much smaller than the mass scale Mpl ∼ 1/
√
GN associated with

gravitational interactions, the force law produced by galileons does not remain the

same for all relevant separation distances. To see this, we first note that the galileon

Lagrangian written in flat spacetime takes the schematic form

5∑

n=2

(∂π)2(∂2π)n−2/Λ3(n−2) ,

where the degree of nonlinearity is measured by the powers of ∂2π/Λ3 in a given

term. Galileons couple to the trace of the stress-energy of matter, with an inter-

action Lagrangian πT/MPl. For an isolated static body of mass M , we may define

1/Λ3 ≡ (MPl/M)r3
v, where rv is the Vainshtein radius of the object. Far away from

M the galileon potential is the familiar π/MPl ∼ M/(M2
Plr) form. However, when

one gets closer to the source M than r . rv – i.e. once (MPl/M)r3
v∂

2π ∼ 1 – the

nonlinearities will begin to dominate the dynamics. Typically, for galileons to be

relevant cosmologically, Λ ∼ (MPlH
2
0 )1/3 ∼ 1/103 km (H0 is the current Hubble
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parameter). This means the sun’s Vainshtein radius rv ∼ 103 light years and solar

system dynamics takes place deep within the nonlinear regime of the sun’s (hypo-

thetical) galileon field. Furthermore, the solar system is a multi-body system; to

develop a quantitative understanding of its dynamics it is also necessary to compute

self-consistently the galileon forces exerted by the rest of the planetary bodies in

the presence of the sun. For instance, properly calculating the earth-moon galileon

force is important if one wishes to use precision lunar laser ranging measurements

to constrain the galileon’s existence.

In this work, we approximate the sun and its planetary companions as point

masses and assume that the solar system is held together primarily by weak field

gravity described by GR – we will assume galileon forces are subdominant. We will

focus only on the modification of solar system dynamics due to galileons, and thus

attempt to solve the galileon theory in exactly flat spacetime. This is justified as

the interaction of galileons and gravity can be taken into account perturbatively,

and we will show that these corrections are subdominant. However, we do not take

into account the effects of cosmological boundary conditions as in [27].

To capture the effects of nonlinearities we will first solve the galileon field π̄

due to the sun. We proceed to solve for the static Green’s function of the galileon

fluctuations about π̄, and then use a field theoretic framework to examine the

effective action of these point masses. This effective action framework is very similar

in spirit to that developed in [120] for the two-body problem in GR (and extended
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in [64] to the n-body case). We will exploit the fact that the solar system is a

nonrelativistic system and therefore, to zeroth order, the galileon potential between

two point masses M1,2 is simply M1M2/M
2
Pl multiplied by the static Green’s function

of the galileon wave equation linearized about π̄. Recently, in [66], this static

potential was solved exactly for the purely cubic galileon theory. Here, we will

extend that work and find an exact solution for the maximally quartic galileon

case. Using these exact solutions, we will also demonstrate how one may compute

the general galileon force law using the perturbation theory approach developed in

[65].

This chapter will be organized as follows: in Section 6.1.1 we introduce the

galileon theory and discuss the galileon force sourced by the sun, including the re-

sulting planetary perihelion precession. In Section 6.1.2 we obtain the full static

propagator for galileon interactions in the presence of a large central mass for both

the minimum and maximum quartic interaction strengths allowed by stability re-

quirements, and then extend these results to more generic parameter values using

perturbation theory. In Section 6.2.1 we explain the power counting of Feynman

diagrams in the field-theoretic framework and present the resulting form for the

effective action as an expansion in two small parameters. In Section 6.2.2 we pro-

vide concrete results in the region outside the Vainshtein radius of the large central

source, followed in Section 6.2.3 by a discussion of why this calculation should not

be trusted in the region inside the Vainshtein radius. We discuss the results in
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Section 6.3.

6.1 Force laws

6.1.1 The background

Galileon theory

We wish to examine the following theory to understand how Vainshtein-screened

scalar forces impact the dynamics of astrophysical systems:

S ≡ Sπ + Spoint particles . (6.1.1)

As derived in [175], Sπ encodes the dynamics of a scalar field π with derivative

self-interactions consistent with a Galilean shift symmetry π → π + bµx
µ + c, and

yields second-order equations of motion. The action is given by

Sπ =

∫
d4x

(
5∑

i=2

αi
Λ3(i−2)

Li +
π

MPl

T

)
, (6.1.2)
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where, defining the matrix Πµ
ν ≡ ∂µ∂νπ and the notation [A] ≡ Aµµ (for any matrix

A),

L2 = −1

2
∂π · ∂π (6.1.3)

L3 = −1

2
[Π]∂π · ∂π (6.1.4)

L4 = −1

4

(
[Π]2 ∂π · ∂π − 2[Π]∂π · Π · ∂π −

[
Π2
]
∂π · ∂π + 2 ∂π · Π2 · ∂π

)
(6.1.5)

L5 = −1

5

(
[Π]3 ∂π · ∂π − 3 [Π]2 ∂π · Π · ∂π − 3[Π]

[
Π2
]
∂π · ∂π + 6[Π]∂π · Π2 · ∂π

+ 2
[
Π3
]
∂π · ∂π + 3

[
Π2
]
∂π · Π · ∂π − 6 ∂π · Π3 · ∂π

)
. (6.1.6)

We have chosen the coupling to matter (π/MPl)T , which arises naturally from DGP-

like models and is the lowest-order coupling term. This choice is Galilean-invariant

in flat spacetime and for an external source; away from these assumptions the

Galilean symmetry is broken but the theory is nevertheless interesting as the sim-

plest realization of the Vainshtein screening mechanism. Another possible coupling

which arises in the decoupling limit of massive gravity is the disformal coupling

(∂µπ∂νπ/M
4
Pl)T

µν . This coupling is parametrically smaller than the coupling to

the trace of the stress-energy tensor so long as the galileon is sub-Planckian and

quantum corrections to the galileon terms are irrelevant (αq = ∂2/Λ2 � 1 [145]):

∂µπ∂νπ

M4
Pl

T µν ∼ π

MPl

T

(
αq

(
Λ

MPl

)2
π

MPl

)
(6.1.7)

The disformal coupling is not only higher order, it is also zero in the case of a static,

nonrelativistic source such as we consider here. As discussed in [210], however, this

coupling is important for lensing calculations (for which the lowest-order coupling
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is zero).

We consider as matter a collection of point particles whose motion is left arbi-

trary, aside from a large central mass M� which is pinned at the origin:

Spoint particles = −M�
∫
dtM −

N∑

a=1

ma

∫
dta

√
−ηµνvµavνa . (6.1.8)

Via the standard definition Tµν = − 2√−η
δSpp

δηµν
the trace of the stress-energy tensor to

which the galileon couples is

T = −M�δ3(~x)−
N∑

a=1

maδ
3(~x− ~xa(t))

√
1− va(t)2 . (6.1.9)

Strategy Our approach to understanding galileon forces between well-separated

bodies lying deep within the Vainshtein radius of the central mass M� is as follows.

We shall first solve for the galileon profile π̄ generated by M�. This means setting

to zero all the {ma} and solving the resulting π-equation from the variation of

(6.1.1) (note that the shift symmetry ensures that the equation of motion is a total

derivative, and thus can be integrated to obtain an algebraic equation for π̄′ [175])

α2

(
π̄′

r

)
+ 2

α3

Λ3

(
π̄′

r

)2

+ 2
α4

Λ6

(
π̄′

r

)3

=
M�

4πMPlr3
, (6.1.10)

which we rewrite as

y + 2y2 + 2xy3 =
1

8z3
(6.1.11)

in terms of y ≡ α3

α2Λ3

(
π̄′

r

)
, x ≡ α2α4

α2
3

, and z3 ≡ πα2
2

2α3

(
r
rv

)3

. The cubic equation for

y has only one solution that is both real and satisfies the boundary condition that

y(z → 0) = 0:

y = 2

√
1− 3

2
x

3x

[{
cos

cosh

}(
θ(z)

3

)
−
{

cos

cosh

}(
θ(0)

3

)]
, (6.1.12)
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where

θ(z) =

{
cos−1

cosh−1

}(−32 + 72x+ 27x2z−3

32
(
1− 3

2
x
)3/2

)
(6.1.13)

and cos or cosh is chosen such that θ(z) is real.

We then carry out perturbation theory about π̄, replacing in (6.1.1)

π(t, ~x) = π̄(r) + φ(t, ~x) . (6.1.14)

Isolating the quadratic-in-φ terms of (6.1.1), we obtain the general form

Skin ≡ −
1

2

∫
d4x
√−η

[
−Kt(r)(∂tφ)2 +Kr(r)(∂rφ)2 +KΩ(r)(∂Ωφ)2

]
,

where Kt(r), Kr(r) and KΩ(r) are functions of the background field π̄(r) given by

(with occurrences of ∂ry eliminated using the equation of motion)

Kt(r) = α2




1 + 4y + 12(1− x)y2 + 24
(
x− 2

α2
2α5

α3
3

)
y3 + 12

(
3x2 − 4

α2
2α5

α3
3

)
y4

1 + 4y + 6xy2




Kr(r) = α2

(
1 + 4y + 6xy2

)
(6.1.15)

KΩ(r) = α2

(
1 + 2y + 2(2− 3x)y2

1 + 4y + 6xy2

)
.

For an arbitrary static, spherically-symmetric background, we may re-express the

action as the kinetic term of a massless scalar field in a curved spacetime (see [28]

for a prior example of this procedure), namely

Skinetic = −1

2

∫
d4x
√
−g̃g̃µν∂µφ∂νφ , (6.1.16)

with the effective metric

g̃µν ≡ diag

(
−
√
Kr

Kt

KΩ,

√
Kt

Kr

KΩ, r
2
√
KtKr, r

2 sin2 θ
√
KtKr

)
. (6.1.17)
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The first order of business is then to solve the static Green’s function of the resulting

massless scalar wave operator,

�̃xG (~x, ~y) = �̃yG (~x, ~y) = − δ(3)(~x− ~y)
4
√
−g̃(x) 4

√
−g̃(y)

. (6.1.18)

where �̃ ≡ g̃µν∇̃µ∇̃ν and ∇̃ is the covariant derivative with respect to the effective

metric in Eq. (6.1.17). Strictly speaking, to probe the dynamical content of our

scalar equation linearized about π̄, one would need to solve the full time-dependent

retarded Green’s function Gret(x, y). However, this is not an easy task. Therefore,

because we are interested primarily in the forces between planetary bodies moving

at speeds much less than unity (relative to the solar system’s center of energy), we

shall in this chapter seek its static limit,

G(~x, ~y) ≡
∫ ∞

−∞
dx0Gret(x, y) =

∫ ∞

−∞
dy0Gret(x, y) .

Before proceeding, let us observe from (6.1.10) that the quintic galileon self-

interactions do not contribute to the background field π̄. In fact, as discussed in

[175], any time-independent galileon π trivially satisfies the portion of the equations

arising from L5. This (as expressed by the α5-independence of Kr and KΩ) means

the static Green’s function obtained for α4 = 0 in [66] and the maximally quartic

case we shall consider in Section 6.1.2 are also solutions in the presence of an

arbitrary nonzero α5. The quintic interactions become relevant, however, for the

full time-dependent Green’s function.
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Precession of Mercury

We begin by asking: what is the contribution to the precession of perihelia of

planetary orbits due to the galileon field of the sun? This has been calculated

in [148] for galileons with only the cubic interaction term; here we extend the

calculation to the case of the full galileon theory with cubic, quartic, and quintic

interactions. To zeroth order, the galileon field in the solar system is primarily

governed by the field due to the sun, (6.1.10). As the orbits of the planets are well

within the sun’s Vainshtein radius, the most nonlinear term dominates and hence

the background solution is (up to an additive constant) well approximated by

π̄ =
M�r

2(πα4)1/3MPlr2
v

. (6.1.19)

Thus, we wish to consider the perihelion precession induced by a potential

Ψ = −GM�
r

+
π̄

MPl

∼ GM�

(
−1

r
+ Cr

)
, C =

8π

2(πα4)1/3r2
v

. (6.1.20)

Following the standard procedure for such calculations as found in any GR textbook,

we find that to second order in the eccentricity e for a planet with semi-major axis

a, the perihelion precession induced by the galileons relative to that induced by GR

is

∆φgalileon

∆φGR

= −8π2/3

3α
1/3
4

a3

rsr2
v

, (6.1.21)

with rs the Schwarzschild radius of the sun. The galileon-induced precession thus

decreases the precession per orbit from GR by an amount suppressed by the distance

ratio a3/(rsr
2
v). For the Sun-Mercury system, this is an effect atO(10−10)∆φGR, and
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hence is unobservable by all current and near-future methods of measurement. Note

that this is the correct result only if the quartic interaction term dominates the cubic

one at the orbit of the planet in question, or in other words, when rMercury � r34

(see (6.1.25) below). If we wish to consider the crossover from this behavior to the

cubic-dominated precession which is several orders of magnitude larger, we must

consider the full galileon force law.

This precession calculation treats every object in the solar system, other than

the sun itself, as a test body with negligible mass. However, due to the highly

nonlinear nature of the galileon field in the solar system, it is important to go

beyond this one-body problem. We proceed henceforth to investigate the dynamics

of objects due to galileon interactions between such objects within the background

field of a large central mass.

6.1.2 Forces between smaller masses

To lowest order in galileon self-interactions, the scalar force between two test masses

in the presence of the sun can be determined from the curved-space Green’s function

with the effective metric as obtained from (6.1.15) and (6.1.17). We seek a full

Green’s function solution as an expansion in spherical harmonics via the ansatz

G(~r, ~r′) =
∞∑

`=0

∑̀

m=−`
R>,`(r>)R<,`(r<)Y m

` (Ω)Y m
` (Ω′)∗ , (6.1.22)

where r> and r< are, respectively, the larger and smaller of r and r′. Henceforth,

R`(r) should be understood to mean the piecewise-defined function that is R>,`
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when r = r> and R<,` when r = r<. The main obstacle to finding a solution is then

whether or not the radial equation

[
Kr(r)R

′′
` (r) +Kr(r)

(
2 +

rK ′r(r)

Kr(r)

)
1

r
R′`(r)−KΩ(r)

`(`+ 1)

r2
R`(r)

]
R`(r

′)

= − 1

r2
δ(r − r′) (6.1.23)

is solvable. Because π̄′′ in the Kis can be exchanged for y = π̄′/r via the equation

of motion, (6.1.23) depends on the background field solely through y, for arbitrary

choices of the parameters αi.

First note that the stability requirement that all the Kis be positive restricts

the viable parameter space to

α2 > 0 α3 ≥
√

3

2
α2α4 α4 ≥ 0 α5 ≤

3α2
4

4α3

, (6.1.24)

as discussed in [175] (this analysis is modified for a spacetime which is not asymp-

totically Minkowski - see [27]). We will focus on the case where α5 = 0, since the

quintic term has little effect on the analysis – it does not affect the background so-

lution and only appears in Kt and hence is irrelevant for the static Green’s function.

Note also that there are three different distance regimes relevant to the problem.

The first is the regime far from the sun (i.e., the central mass) beyond which

the nonlinearities are unimportant, the second is the intermediate-distance regime

where the cubic term dominates the dynamics, and the final one is the near-source

regime where the quartic term dominates over the cubic term in determining the

dynamics. The linear-nonlinear transition happens at a scale r23 and the cubic-
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quartic transition at a second scale r34, as defined by:

r3
23 =

α3M

α2
2MPlΛ3

, r3
34 = x2r3

23 , (6.1.25)

where it is convenient to define a new parameter x controlling the relative impor-

tances of the cubic and quartic terms, via

0 ≤ x ≡ α2α4

α2
3

≤ 2

3
. (6.1.26)

The bounds on the magnitude of x are a consequence of the stability conditions

above.

In Fig. 6.1 we plot the components of the effective metric for a range of differ-

ent values of x in the allowed range, and in Fig. 6.2 we demonstrate the effects on

the radial and angular sound speeds for these same values. As is well-known for

the galileons, radial waves propagate superluminally; note that larger quartic in-

teraction strength correlates with faster maximum propagation speed. It is unclear

whether such superluminality presents a problem for the viability of the theory; [6]

argues that it is an indicator that the theory cannot be UV completed and is macro-

scopically nonlocal, whereas [55, 53, 28, 154, 20] argue that causality is preserved

despite superluminal signal propagation and hence the theory is no less safe than

GR under the Hawking Chronology Protection Principle. Additionally, [85] shows

that for a specific choice of parameters, the galileon theory (with accompanying

Vainshtein mechanism and superluminal signals) is dual to a free field theory, and

thus has an analytic S-matrix and is causal.
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It is also apparent from Fig. 6.2 that near the large central mass, the angular

galileon modes propagate highly subluminally for galileon theories with a nonzero

quartic term. As discussed in [175], this limits the validity of the static approx-

imation we have made: the static limit is valid in the regime where the galileon

propagation speed is much faster than the speed with which astrophysical objects

move. Clearly then, near the sun for example, it is necessary to solve the fully

time-dependent system.
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Figure 6.1: The effective metric seen by galileon fluctuations about the spherically-

symmetric background for various relative strengths x ≡ α2α4/α
2
3 of the cubic and

quartic terms.
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Figure 6.2: The propagation speed of galileon fluctuations about the spherically-

symmetric background for various relative strengths of the cubic and quartic terms.

Color coding is as in Fig. 6.1.

While explicitly solving (6.1.23) is not possible for general parameter choices,

the special values for which we can make progress are when x lies at the edges of

its allowed range: x = 0, 2/3. The choice x = 0 is the already-solved case of only

cubic interactions (r34 → 0). To explore the new phenomena exhibited when the

quartic term is present, we therefore consider the choice of maximal quartic term,

x = 2
3
. First, however, we review the results for cubic galileons.

Cubic galileons

Our first step is to find the (static) cubic galileon propagator - the Green’s function

of the wave equation linearized about π̄. For α4 = α5 = 0, the terms in (6.1.15)
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become

Skin =

∫
d4x

[
φ

(
2

Λ3
�π̄�− 2

Λ3
∇µ∇ν π̄∇µ∇ν +

1

2
�
)
φ

]
(6.1.27)

=

∫
d4x

[(
3 +

2

Λ3
�π̄
)

(∂tφ)2 −
(

3 +
4

Λ3

π̄′

r

)
(∂rφ)2

−
(

3 +
2

Λ3
(π̄′′ +

π̄′

r
)

)
(∂Ωφ)2

]
,

with the background π̄ obtained by solving the quadratic equation in (6.1.10) with

the boundary condition π̄′(r →∞) = 0:

π̄′

r
=
α2Λ3

4α3

(
−1 +

√
1 +

2

π

(r23

r

)3
)
. (6.1.28)

This equation can be integrated to obtain

π̄(z) = −
(

2

π

)2/3
M

8α2MPlr23

[
Γ
(

1
3

)2

21/3Γ
(

2
3

) +
√
z

(
z3/2 − 4 2F1

(
−1

2
,
1

6
,
7

6
,−z3

))]
,

(6.1.29)

in terms of the dimensionless radial variable z ≡
(
π
2

)1/3 r
r23

.

As we shall now see, viewing φ as a massless scalar propagating in a curved ge-

ometry makes some of the relevant questions conceptually clear. Firstly, it is known

that – see, for instance, [133, 186, 185] – signals in curved space do not propagate

solely on the light cone; there is also a tail of signals propagating everywhere within

the light cone. Secondly, it makes superluminal propagation of fluctuations inside

the Vainshtein radius manifest.

For the case at hand, using the solution (6.1.28), the relevant functions are

easily read off, and in the limits r � r23 (outside Vainshtein) and r � r23 (inside
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Vainshtein), they are given by the approximate expressions

Kt(r) ∼





α2 r � r23

3
4
α2z

−3/2 r � r23

,

Kr(r) ∼





α2 r � r23

α2z
−3/2 r � r23

, (6.1.30)

KΩ(r) ∼





α2 r � r23

1
4
α2z

−3/2 r � r23

.

Hence, the effective metric approaches the flat one far outside the Vainshtein radius,

whereas deep inside the Vainshtein radius

g̃µν =

√
3

2π
α2

(r23

r

)3/2

diag

(
−1

3
,

1

4
, r2, r2 sin2 θ

)
. (6.1.31)

It is now immediately apparent that well outside the Vainshtein radius, fluctuations

propagate precisely luminally, as in flat space. Well inside the Vainshtein radius,

the behavior of null geodesics tells us that

c2
r = − g̃tt

g̃rr
=
Kr

Kt

c2
θ = −r2 g̃tt

g̃θθ
=
KΩ

Kt

(6.1.32)

and in particular, the radial fluctuations propagate superluminally (c2
r = 4

3
) and the

angular fluctuations propagate subluminally (c2
θ = 1

3
).

Although at zeroth order the propagator well outside the Vainshtein radius is

simply the flat-space propagator, it is less straightforward to calculate the prop-

agator well inside the Vainshtein radius, for which we must solve for the Green’s
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function of the differential operator g̃µν∇̃µ∇̃ν , obeying (see (6.1.18))

(
−3∂2

t + 4∂2
r +

2

r
∂r +

~L2

r2

)
G (~r, ~r′) = − 2

α2

√
2π

(
r

r23

)3/2

δ3 (~r − ~r′) . (6.1.33)

For simplicity we will focus on the static propagator. As already alluded to, this

treatment assumes that the static force law is a good description of the dynamics

despite the existence of galileon wave tails propagating inside, not on, the light-cone.

Strictly speaking this assumption needs to be checked via an actual calculation.

However, we argue, on physical grounds, that this is a valid assumption as long

as the speed of propagation of galileons is much larger than the velocity of the

astrophysical objects whose dynamics we wish to study.

We begin by defining a new variable

~ρ =
√
zr̂ , (6.1.34)

where r̂ ≡ ~r/|~r|. In terms of this variable, we now define a rescaled Green’s function

g(~ρ, ~ρ′) =
G(~r, ~r′)

ρρ′
, ρ ≡ |~ρ| , (6.1.35)

which we find obeys Poisson’s equation for a point mass in the new variable ρ;

namely −δij(∂/∂ρi)(∂/∂ρj)G = δ3(~r− ~r′). Thus, the rescaled g(ρ, ρ′) has the stan-

dard flat-space propagator solution and therefore the galileon propagator

〈φ(r)φ(r′)〉static = iδ(t− t′)G(r, r′) (6.1.36)

must contain the term

(π
2

)1/3 iδ(t− t′)
2πα2r23

ρρ′

|~ρ− ~ρ′| . (6.1.37)
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As discussed in detail in [66], the full propagator also must include homogeneous

solutions to impose the boundary condition that when one of the endpoints is taken

to coincide with the central large mass, the propagator merely renormalizes the

mass in the background solution. Taking this into account we have [66]

〈φ(r)φ(r′)〉 =
(π

2

)1/3 iδ(t− t′)
2πα2r23

[
ρρ′

|~ρ− ~ρ′| − ρ− ρ
′ +

Γ
(

1
6

)
Γ
(

1
3

)

6
√
π

]
. (6.1.38)

Although it is extremely useful to have a closed form solution for this propagator,

we will see in the remainder of the chapter that calculating the dynamics of objects

subject to this force beyond first order is technically quite difficult.

For completeness we also record here the exact solution (valid for all radii)

derived in [66]:

G3 (~r, ~r′) =
(π

2

)1/3 1

4πα2r23

(
Γ
[

1
3

]
Γ
[

1
6

]

3
√
π

− 2
√
z> 2F1

[
1

6
,
1

2
;
7

6
;−z3

>

])

+
(π

2

)1/3 1

α2r23

∞∑

`=1

∑̀

m=−`

Y m
` [θ, φ]Y m

` [θ′, φ′]∗

2`+ 1
z
`+1

2
<

× 2F1

[
1

6
− `

6
,
1

2
+
`

2
;
7

6
+
`

3
;−z3

<

](
2z
− `

2
> 2F1

[
`

6
+

1

3
,− `

2
;
5

6
− `

3
;−z3

>

]

+
`! Γ

[
−1

6
(2`+ 1)

]
√
π Γ
[

1
3
(2`+ 1)

]z
`+1

2
> 2F1

[
1

6
− `

6
,
1

2
+
`

2
;
7

6
+
`

3
;−z3

>

])
. (6.1.39)

Maximally quartic galileons

Choosing now the x = 2
3

case, the background solution then obeys the equation

π̄′

r
=
α2Λ3

2α3

(
−1 +

3

√
1 +

3

2π

(r23

r

)3
)
. (6.1.40)
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This expression can be integrated to yield

π̄(z̃) = −
(

3

2π

)2/3
M

4α2MPlr23

[
Γ
(

1
3

)2

3Γ
(

2
3

) + z̃

(
z̃ − 2 2F1

(
−1

3
,
1

3
;
4

3
;−z̃3

))]
,

(6.1.41)

where we have chosen the integration constant to impose π̄(r → ∞) = 0 and

introduced the new variable z̃ ≡
(

2π

3

)1/3
r

r23

. Note that this z̃ is a rescaling of z

defined for the x = 0 case.

The functions Ki which appear in the static Green’s function equation are, in

terms of our new variable z̃,

Kr(z̃) =
α2

z̃2
(1 + z̃3)2/3 , KΩ(z̃) =

α2z̃

(1 + z̃3)1/3
. (6.1.42)

Substituting these into (6.1.23) it is then possible to obtain two independent solu-

tions

R1(z̃) = 2F1

(
`+ 1

3
,− `

3
,
2

3
,−z̃3

)

R2(z̃) = z̃ 2F1

(
1− `

3
,
`+ 2

3
,
4

3
,−z̃3

)
, (6.1.43)

so that the full radial dependence of the Green’s function for each mode ` takes the

form

g`(z̃, z̃
′) ≡ R>,`(z̃>)R<,`(z̃<)

=

(
R1(z̃>) + C2>R2(z̃>)

)(
C1<R1(z̃<) + C2<R2(z̃<)

)
. (6.1.44)

In this form we have already imposed continuity at r = r′. To fix the constants

C2>, C1< and C2<, we shall need to impose the following boundary conditions.
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Discontinuous first derivative Firstly, the first derivative of g`(z̃, z̃
′) with respect

to z̃ needs to be discontinuous at z̃ = z̃′, so that its second derivative gives us the

needed δ(z̃ − z̃′). Specifically, by integrating �̃G(z̃, z̃′) = δ(3)(z̃ − z̃′)/ 4
√
|g(z̃)g(z̃′)|

with respect to z̃ about the point z̃ = z̃′, one may show that

r′2Kr(r
′) (∂r> − ∂r<)

(
R`(r)R`(r

′)
)∣∣
r=r′

= −1 . (6.1.45)

At this point,

C2< = C1<C2> +

(
2π

3

)1/3
1

α2r23(1 + z̃′3)2/3(R1∂z̃R2 − ∂z̃R1R2)

∣∣∣∣∣
z̃=z̃′

. (6.1.46)

Note that the second term of Eq. (6.1.46) is a constant by the equations of motion

obeyed by the radial mode functions Ri – the differential equation obeyed by qi(z̃) ≡

(1 + z̃3)1/3Ri(z̃) contains no first derivative terms. In fact, we have normalized Ri

such that (1 + z̃′3)2/3(R1∂z̃R2 − ∂z̃R1R2) = 1. Hence

C2< = C1<C2> +

(
2π

3

)1/3
1

α2r23

. (6.1.47)

Observer at infinity Next, for fixed z̃<, the static Green’s function must vanish

as z̃> →∞, for all ` ≥ 0. Using the identity

2F1(α, β; γ; z̃) =
Γ[γ]Γ[β − α]

Γ[β]Γ[γ − α]
(−z̃)−α 2F1

(
α, α + 1− γ;α + 1− β;

1

z̃

)
(6.1.48)

+
Γ[γ]Γ[α− β]

Γ[α]Γ[γ − β]
(−z̃)−β 2F1

(
β, β + 1− γ; β + 1− α;

1

z̃

)

on g`(z̃, z̃
′) in Eq. (6.1.44) results in (for z̃ � 1) two terms of the form C̃1z̃

`
>

and C̃2z̃
−`−1
> . These are the familiar flat-space radial solutions. Requiring that
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limz̃>→∞ g`(z̃, z̃
′)→ 0 means C̃1 = 0, which in turn leads us to

C2> = −Γ
(

2
3

)
Γ
(
1 + `

3

)

Γ
(

4
3

)
Γ
(
`+1

3

) . (6.1.49)

Monopole solution The z̃ → 0 boundary condition we must satisfy is

δπ̄(z̃′) = − δM
MPl

G(0, z̃′) (6.1.50)

where δπ̄(r′) indicates the O(δM) part of π̄(M + δM). That is, since the static

Green’s function is the field observed at z̃′ produced by a static point source at z̃,

when z̃ = 0 this should simply amount to shifting the total mass of the point mass

already present at the origin.

Furthermore, since the background is spherically symmetric, g`(0, r
′) should only

be nonzero for ` = 0. This gives the condition

C1<(` = 0)

[
1 + C2>(` = 0)z̃′ 2F1

(
1

3
,
2

3
,
4

3
,−z̃′3

)]

=
1

3

(
2π

3

)1/3 Γ
(

1
3

)2

Γ
(

2
3

) 1

α2r23

[
1− 3

Γ
(

2
3

)

Γ
(

1
3

)2 z̃
′
(

2 2F1

(
−1

3
,
1

3
,
4

3
,−z̃′3

)
− 3
√

1 + z̃′3
)]

.

(6.1.51)

One can check that the z̃′-dependent parts are equal, and thus

C1<(` = 0) =
1

3

(
2π

3

)1/3 Γ
(

1
3

)2

Γ
(

2
3

) 1

α2r23

, C1<(` > 0) = 0 . (6.1.52)
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Result Hence the full static propagator for the maximally quartic galileon is

G4(r, r′) =

(
2π

3

)1/3
1

α2r23

{
1

4π

[
Γ
(

1
3

)2

3Γ
(

2
3

) − z̃> 2F1

(
1

3
,
2

3
,
4

3
,−z̃3

>

)]
(6.1.53)

+
∞∑

`=1

∑̀

m=−`

[
2F1

(
− `

3
,
`+ 1

3
,
2

3
,−z̃3

>

)

− ` Γ
(

2
3

)
Γ
(
`
3

)

Γ
(

1
3

)
Γ
(
`+1

3

) z̃> 2F1

(
1− `

3
,
`+ 2

3
,
4

3
,−z̃3

>

)]

× z̃< 2F1

(
1− `

3
,
`+ 2

3
,
4

3
,−z̃3

<

)
Y m
` (Ω)Y m

` (Ω′)∗
}
.

Unlike in the cubic case, we did not find a closed-form Green’s function in the

near-source limit.

Generic quartic term from perturbation theory

By exploiting the effective metric picture, we now adopt reasoning similar to that

leading up to Equations (53) and (56) of [65] to illustrate how one may perturba-

tively solve the static Green’s function near the points x = 0 and x = 2/3, using

the exact solutions we have obtained there. Let us set x = ε and x = 2/3− ε (near

x = 0 and x = 2/3 respectively), where 0 < ε � 1. Then the effective metric in

(6.1.17) may be written as a power series in ε, namely

g̃µν = ˜̄gµν + εhµν +O(ε2) , (6.1.54)

where ˜̄gµν is the effective metric for either x = 0 or x = 2/3. Denote the exact

Green’s function solutions at either x = 0 or x = 2/3 as Ḡ(~r1, ~r2) and the solution

for arbitrary x = ε or x = 2/3 − ε as G(~r1, ~r2). First we consider the following
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integral

∫
d3r∂µ

(
|g̃| 12 Ḡ (~r1, ~r) g̃

µν∂νG (~r, ~r2)− |˜̄g| 12G (~r1, ~r) ˜̄gµν∂νḠ (~r, ~r2)
)
. (6.1.55)

Here, the derivatives are with respect to the 4-coordinate r, and all the metric-

related quantities are evaluated at ~r. Since both geometries g̃ and ˜̄g are independent

of time, the time derivative term (µ = 0) is automatically zero. Therefore (6.1.55)

is really the integral of a total spatial divergence, and if we assume the Green’s

functions fall off sufficiently quickly at infinity (6.1.55) is identically zero. On the

other hand, if we carry out the ∂µ derivatives, for example ∂µ

(
|g̃| 12 Ḡ∇̃µG

)
=

|g̃| 12
(
∇̃µḠ∇̃µG+ Ḡ�̃rG

)
, and proceed to employ the equations �̃Ḡ = −δ3(~r1 −

~r2)/|˜̄g|1/2, �̃G = −δ3(~r1 − ~r2)/|g̃|1/2, and the time-independence of the Green’s

functions, we deduce that G and Ḡ obey the integral equation

G (~r1, ~r2) = Ḡ (~r1, ~r2) (6.1.56)

−
∫
d3r
(
|g̃| 12 g̃ij∂iḠ (~r1, ~r) ∂jG (~r, ~r2)− |˜̄g| 12 ˜̄gij∂iG (~r1, ~r) ∂jḠ (~r, ~r2)

)
.

By iterating this integral equation and expanding the full metric in terms of the

“background metric” ˜̄gαβ and the perturbation hαβ, we see that up to O(ε), the

static Green’s function reads

G (~r1, ~r2) = Ḡ (~r1, ~r2)− ε
∫
d3r|˜̄g| 12∂iḠ (~r1, ~r)

(
1

2
˜̄gµνhµν ˜̄gij − hij

)
∂jḠ (~r, ~r2) ,

(6.1.57)

where the perturbation with upper indices is defined as hij ≡ ˜̄giµ ˜̄gjνhµν . We remark

in passing that, by iterating (6.1.56) repeatedly, perturbation theory can be carried
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out, in principle, to arbitrary order in ε. The background Green’s function is an

expansion in spherical harmonics with coefficients R>,`(r>)R<,`(r<), where

x = 0 : (6.1.58)

R<,`=0(r<) =
(π

2

)1/3 1

α2r23

Γ
(

1
3

)
Γ
(

7
6

)

Γ
(

1
2

)

R<,` 6=0(r<) =
(π

2

)1/3 1

α2r23(2`+ 1)
z
`+1

2
< 2F1

(
1− `

6
,
`+ 1

2
,
2`+ 7

6
,−z3

<

)

R>,`(r>) = 2z
− `

2
> 2F1

(
`+ 2

6
,− `

2
,
5− 2`

6
,−z3

>

)

+
`! Γ

(
−1

6
(2`+ 1)

)
√
π Γ
(

1
3
(2`+ 1)

)z
`+1

2
> 2F1

(
1− `

6
,
`+ 1

2
,
2`+ 7

6
,−z3

>

)

x =
2

3
: (6.1.59)

R<,`=0(r<) =

(
2π

3

)1/3
1

α2r23

Γ
(

1
3

)
Γ
(

4
3

)

Γ
(

2
3

)

R<,` 6=0(r<) =

(
2π

3

)1/3
1

α2r23

z̃< 2F1

(
1− `

3
,
`+ 2

3
,
4

3
,−z̃3

<

)

R>,`(r>) = 2F1

(
− `

3
,
`+ 1

3
,
2

3
,−z̃3

>

)

− Γ
(

2
3

)
Γ
(
1 + `

3

)

Γ
(

4
3

)
Γ
(
`+1

3

) z̃> 2F1

(
1− `

3
,
`+ 2

3
,
4

3
,−z̃3

>

)
.

Via the orthonormality of the spherical harmonics, integrating-by-parts the an-

gular derivatives, using the eigenvalue equation for the Y m
` s, and changing the radial

integration variable to z (or z̃), we arrive at the formula

G (~r1, ~r2) = Ḡ (~r1, ~r2)− ε
∑

`,m

Y m
` (Ω1)Y m

` (Ω2)∗
(
R>,`(r1)R>,`(r2)I>>,` (6.1.60)

+R>,`(r>)R<,`(r<)I><,` +R<,`(r1)R<,`(r2)I<<,`

)
+O(ε2) .

Only one-dimensional integrals remain. Defining M (r) to be the radial ij = rr
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and ΩABM (Ω) to be the angular ij = AB components of the (diagonal) matrix

|˜̄g| 12
(

1
2
˜̄gµνhµν ˜̄gij − hij

)
, where ΩAB = diag(1, 1/ sin2 θ) is the inverse metric on a

2-sphere, we find that

I>>,` ≡
∫ z<

0

dz
[
(∂zR<,`(z))2M (r)(z) + `(`+ 1) (R<,`(z))2M (Ω)(z)

]
(6.1.61)

I><,` ≡
∫ z>

z<

dz
[
∂zR>,`(z)M (r)(z)∂zR<,`(z) + `(`+ 1)R>,`(z)M (Ω)(z)R<,`(z)

]

(6.1.62)

I<<,` ≡
∫ ∞

z>

dz
[
(∂zR>,`(z))2M (r)(z) + `(`+ 1) (R>,`(z))2M (Ω)(z)

]
. (6.1.63)

For x = ε, we have z ≡
(
π
2

)1/3 r
r23

and

M (r)(z) =
α2r23

6(4π)1/3

√
z

1 + z3

[
2
(
1 + z3

) (√
1 + z−3 − 1

)
− 1
]

(6.1.64)

M (Ω)(z) =
α2r23

6(4π)1/3

1√
1 + z−3

[(
2− z−3

)√
1 + z−3 − 3

4z3(1 + z3)
− 2

]
. (6.1.65)

For x = 2/3− ε, we have z̃ ≡
(

2π
3

)1/3 r
r23

and

M (r) (z̃) =
α2r23

(18π)1/3

1
3
√

1 + z̃3

[
3z̃3
(

3
√

1 + z̃−3 − 1
)
− 1
]

(6.1.66)

M (Ω) (z̃) =
α2r23

(18π)1/3

1
3
√

1 + z̃−3 (1 + z̃3)

[
3
(
1 + z̃3

) (
3
√

1 + z̃−3 − 1
)
− 1
]
. (6.1.67)

For ` = 0, the integrals (6.1.63), (6.1.62) and (6.1.61) can be evaluated exactly.

Referring to (6.1.58) and (6.1.59), we see that R<,0 is a constant for both x = 0, 2/3.
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This means the only nonzero integral is I<<,`=0, which is given by

I<<,`=0(x ≈ 0) =

(
2

π

)1/3
α2r23

18

(√
z>

1 + z3
>

+
3

z>
− 4

Γ
(

1
3

)
Γ
(

4
3

)

21/3Γ
(

2
3

) R>,0(z>)

)

(6.1.68)

I<<,`=0 (x ≈ 2/3) =

(
3

2π

)1/3
α2r23

3

(
3

3
√

1 + z̃3
>

− z̃>

3

√
(1 + z̃3

>)2

− 2
Γ
(

1
3

)
Γ
(

4
3

)

Γ
(

2
3

) R>,0(z̃>)

)
. (6.1.69)

These expressions enable us to perform a check on the Green’s function pertur-

bation theory: the ` = 0 piece of the static Green’s function, when r< → 0, should

now correspond to the O(ε)-accurate coefficient of δM/MPl of the background solu-

tion π̄ of the central mass, upon shifting it by M →M+δM . One may confirm this

by inserting in (6.1.60) the expressions in (6.1.58), (6.1.59), (6.1.68) and (6.1.69);

and comparing the result with the following expressions for π̄. When x = ε, the

O(ε) correction to Eq. (6.1.29) is given by

π̄(z) =π̄x=0(z)− ε
(

2

π

)2/3
M

36α2MPlr23

[
Γ
(

1
3

)2

21/3Γ
(

2
3

)

+
√
z

(
3

2
z3/2 − 1

2

√
1 + z3 − 4 2F1

(
−1

2
,
1

6
,
7

6
,−z3

))
− 3

4z

]
. (6.1.70)

Similarly, when x = 2
3
− ε, the O(ε) correction to Eq. 6.1.41 is given by

π̄(z̃) = π̄x=2/3(z̃)− ε
(

3

2π

)2/3
M

6α2MPlr23

[
Γ
(

1
3

)2

3Γ
(

2
3

) + z̃

(
3

2
z̃ − 2F1

(
1

3
,
2

3
,
4

3
,−z̃3

))

− 3

2

(
1 + z̃3

)2/3

]
. (6.1.71)
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For ` ≥ 1, the integrals in (6.1.61), (6.1.62), and (6.1.63) consist of terms with

products of two 2F1s and ra(1+r3)b, where a and b are integers or rational numbers.

They likely cannot be performed exactly, but it is possible that, in the limits r1, r2 �

r23 and r1, r2 � r23 – by writing the 2F1s appropriately so that they may be replaced

with the first few terms of their Taylor series – an approximate expression may be

obtained. We leave these technical issues to possible future work.

6.2 Nonlinearities

Having now obtained (exactly or perturbatively, depending on the choice of pa-

rameters) the propagator for galileons in the presence of a large central mass, we

wish to study perturbatively the motion of astrophysical objects subject to the full

nonlinear galileon force. We will proceed using the field theoretic effective action

framework derived for GR for a two-body system in [120] and generalized to n-body

systems in [64]. For simplicity, we will henceforth restrict the analysis to only the

cubic interactions (x = 0 case).

6.2.1 Diagrammatic construction of perturbation theory

With a closed-form static propagator well within and well outside the Vainshtein

radius in hand, we now consider the construction of the perturbative expansion.

The approach we will use is familiar from quantum field theory – we will construct

an effective action by integrating out φ = π − π̄, leaving an action dependent only
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on the positions and velocities of the point particles:

eiSeff[~xa,~va] =

∫
Dφ eiS[φ,~xa,~va] . (6.2.1)

The functional integral can be performed up to an irrelevant overall factor N by

eiSeff[~xa,~va] = N exp

[
iSint

[
1

i

δ

δJ

]]
exp

[
−1

2

∫
d4xd4yJ(x)〈φ(x)φ(y)〉J(y)

]∣∣∣∣
J=0

,

(6.2.2)

where the interaction part of the action Sint

[
1
i
δ
δJ

]
is defined as Sint = S−Skin, with

all occurrences of φ replaced by 1
i
δ
δJ

. Expanding the interaction exponential then

leads to an infinite series of terms, which can be represented graphically as Feynman

diagrams. The dictionary of what each graphical object means mathematically

is given in Table 6.1. Complete diagrams are created by Wick contracting each

occurrence of φ with a corresponding occurrence of φ in another diagram piece.

Note that, since we are interested in the classical galileon force, we neglect all

loop diagrams and consider only tree-level diagrams. This procedure is completely

equivalent to the Born approximation, and in particular, one need not worry about

properly defining the measure for the path integral for noncanonical field theories.

The classical effective action is thus given by

eiSeff = e
∑

(fully-connected tree-level diagrams) . (6.2.3)

It is important to understand how each Feynman diagram scales with the physical

scales of the problem at hand, so that we may identify the relevant expansion

parameters to organize our calculations and also understand the domain of their
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validity. We begin by noting that, since the galileon only appears as a propagator,

it is appropriate to consider it to scale as the square root of the propagator in

Eq. (6.1.38):

φ ∼
√
〈φφ〉 ∼ v1/2

r
3/4
v r1/4

. (6.2.4)

Were we to be interested in the results of our calculation in a world without

a spin-2 graviton, it would be necessary to understand the analogue of the virial

theorem for a purely scalar force. Technically, the virial theorem should be derived

by requiring that the kinetic energy of the test masses scale in the same way as the

one-graviton exchange (potential) between the large central mass and a test mass.

Thus, the purely galileon virial velocity is derived as

S0 ≡ mvgalr ∼
mM

M2
Plvgal

(
r

rv

)3/2

⇒ v2
gal ∼

M

M2
Plr

(
r

rv

)3/2

. (6.2.5)

However, we are obviously motivated by the eventual goal of including gravity, and

so it is appropriate here to invoke the standard GR virial theorem where necessary:

v2
GR ∼

M

M2
Plr

. (6.2.6)

In the case of test masses well outside the Vainshtein radius, the virial theorem for

the galileon case matches that of the GR case, and the propagator is the standard

flat-space one.

The diagrams that result, what they represent, and how they scale under both

versions of the virial theorem are collected in Table 6.1 for both inside and outside

the Vainshtein radius. The effective action is given by the sum of diagrams that
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propagator r ≪ rv r ≫ rv(
π

2α2α3

)1/3 iδ(t − t′)
2πrv

[
ρρ′

|~ρ − ~ρ′| − ρ − ρ′ +
Γ
(
1
6

)
Γ
(
1
3

)

6
√

π

]
iδ(t − t′)

4πα2|~r − ~r′|

diagram Feynman rule scaling

− i

2

∫
d4x

√
−g̃g̃00∂0φ∂0φ v2

mi
−i

∫
dt

mi

MPl
φ S̃

1/2
0

mi
v2 −i

∫
dt

mi

MPl
v2i φ S̃

1/2
0 v2

− iMPlr
3
v

M

∫
d4x(∂iφ)2∇2φ S̃

−1/2
0 ǫ

v2 − iMPlr
3
v

M

∫
d4x

[
(∂iφ)2∂2

0φ + (∂0φ)2∇2φ
]

S̃
−1/2
0 ǫv2

Table 6.1: Ingredients for power counting and calculation of diagrams in the effective

action.

can be constructed from these basic pieces, and arranges itself into an expansion in

two parameters:

Seff = S̃0(1 + v2 + · · · )(1 + ε+ · · · ) , (6.2.7)

with the values of S̃0 and ε depending on the choice of virial theorem and on the
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distance regime via

S̃0 =





S0
m
M

r � rv with vgal or r � rv

S0
m
M

(
r
rv

)3/2

r � rv with vGR

, ε =





m
M

r � rv

m
M

(
rv
r

)3
r � rv

.

(6.2.8)

Note that well within the Vainshtein radius and using the GR virial theorem,

the overall amplitude of the effective action S̃0 is suppressed relative to the GR

amplitude by a factor of
(
r
rv

)3/2

. This is one manifestation of the screening mecha-

nism within the Vainshtein radius. Also note that the second expansion parameter

is, indeed, small, given that the masses whose dynamics we are considering are

small compared to that sourcing the background. However, as we will discuss later

in more detail, when distance hierarchies are taken into account this parameter

can become large in some regions of interest for comparison with astrophysical ob-

servations. This problem is not present outside the Vainshtein radius due to the

additional small factor of
(
rv
r

)3
.

We can now justify our consideration of galileons in flat space by arguing that,

at least deep within the Vainshtein radius of the sun, galileon-graviton interactions

are suppressed relative to galileon self-interactions by multiplicative factors of ε, v2

and/or (r/rv). If we denote the graviton propagator by a double wavy line, the

effective interaction between planets orbiting the sun is, at first order in h/MPl,

described by the Feynman graphs

105



∼ S̃0εv
2

(
r

rv

)3/2

and ∼ S̃0ε
2v2 .

Diagrams with more graviton lines would be suppressed by higher powers of

GNmi/r ∼ v2. To arrive at these scaling relations, we first covariantize the ac-

tion in Eq. (6.1.2), replacing partial derivatives with covariant ones, and expand

about flat spacetime: gµν = ηµν +hµν/Mpl. Then, because gravity is dominant over

galileon forces here, we use the GR virial theorem.

Additionally, we can confirm that the correction to the gravitational force of the

sun on the planets due to galileon-graviton interactions is small due to Vainshtein

screening. This is done by (perturbatively) solving for hµν(x)/MPl by expanding

the covariantized action in Eq. (6.1.2) about flat spacetime and evaluating on the

galileon background π = π̄.

Explicitly, the correction coming from the (h/MPl)(∂π̄)2 interaction is given by

1

MPl

〈hµν(x)〉π̄π̄ =

∫
d4y

[
α2

2

(
ηακηβλ − 1

2
ηαβηκλ

)
〈hµν(x)hαβ(y)〉∂κπ̄(y)∂λπ̄(y)

]

(6.2.9)

∼ Ψh
π̄

MPl

(
r

rv

){3/2,2}
(6.2.10)

for {purely cubic, nonzero quartic} galileon theories. Here, Ψh ∼ GNM�/r is the

Newtonian gravitational potential of the sun. Because the first order general rel-

ativistic correction to hµν(x)/MPl begins at O(Ψ2
h), we see that galileon-graviton
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interactions are suppressed as long as π̄
MPl

(
r
rv

){3/2,2}
� Ψh.

Similarly, the (h/MPl)∂
2π̄(∂π̄)2/Λ3 interaction term yields a correction that

reads

1

MPl

〈hµν(x)〉π̄π̄π̄ =

∫
d4y

[
α3

2Λ3

(
ηαρηβσηκλ + ηαβηκρηλσ − 2ηαρηκβηλσ

)

× 〈hµν(x)hαβ(y)〉∂κ∂λπ̄(y)∂ρπ̄(y)∂σπ̄(y)

]

(6.2.11)

∼ Ψh
π̄

MPl

(
r

rv

){0,1}
(6.2.12)

and the (h/MPl)(∂
2π̄)2(∂π̄)2/Λ6 interaction term (which is of course absent in the

purely cubic galileon theory) gives us

1

MPl

〈hµν(x)〉π̄π̄π̄π̄

=

∫
d4y
[ (
− α4

4Λ6

)
〈hµν(x)hαβ(y)〉

(
Mαβγδκλρσ∂γ∂δπ̄(y)∂ρ∂σπ̄(y)∂κπ̄(y)∂λπ̄(y)

+Nαβγδκλρσ∂γ∂δ∂σπ̄(y)∂κπ̄(y)∂λπ̄(y)∂ρπ̄(y)
)]

(6.2.13)

∼ Ψh
π̄

MPl

, (6.2.14)
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with

Mαβγδκλρσ =− 2ηακηβληγδηρσ − 1

2
ηαβηγδηκληρσ − 2ηαβηγδηκσηλρ + 6ηακηβγηδληρσ

− 8ηακηβρηγληδσ + 3ηαβηγληδρηκσ − 1

2
ηαβηγσηδρηκλ + ηαγηβδηκληρσ

+ 2ηαγηβδηκσηρλ + 3ηαληβκηγσηδρ − 2ηαδηβρηγληκσ (6.2.15)

Nαβγδκλρσ =− ηαβηγδηκληρσ + ηαβηγληδκηρσ + ηακηβληγδηρσ − ηαδηβκηγληρσ

+ ηαγηβδηκληρσ . (6.2.16)

Thus, we may consistently neglect gravity when considering galileon forces due to

the sun’s galileon field π̄ – for instance in perihelion precession calculations – and

when computing the effective potential between the planetary bodies themselves,

as long as these phenomena are taking place deep within the Vainshtein radius of

the sun.

In the next section we will describe how to calculate the dynamics due to cubic

galileon forces in the region where the point masses in question lie well outside the

sun’s and each other’s Vainshtein radii.

6.2.2 Outside the Vainshtein radius

The procedure for calculating the galileon forces perturbatively is straightforward in

the case where the two interacting particles are well outside the Vainshtein radius.

This is because, as expected, the galileon theory behaves as a simple scalar-tensor

theory in this regime, and nonlinear interaction terms can be treated perturbatively.
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Thus, using the convention

�̃〈φφ〉 = −iδ
4(r − r′)√−g̃ , (6.2.17)

the galileon propagator takes the flat-space form

〈φ(r)φ(r′)〉 =
iδ(t− t′)

4πα2|~r − ~r′|
. (6.2.18)

We wish to understand how each term of our effective action scales with the physical

scales of the solar system. In general relativity the effective action of the solar

system arranges into an expansion in v2 via Seff = S0(1 + v2 + · · · ). This expansion

in only powers of v2 neglects the large disparity of distances and masses present in

the solar system. This subtlety will be important in the galileon case, where we

will find that once the planetary bodies in question get too close to each other, for

example in the sun-earth-moon configuration, one loses perturbative control over

the effective action calculation at hand. The same issue does not present a problem

in GR within the solar system, because GNm/|~ri−~rj| � 1 regardless of the planet’s

mass m and separation distance |~ri − ~rj|.

Leaving aside, for the moment, the issue of the disparity of distances and masses,

the power counting of diagrams in Table 6.1 is straightforward. As described in

[120], the relevant time scale in the dynamics of objects orbiting a central mass is

set by their velocity, and so it is sensible to consider all factors of time to scale as r
v
.

An additional subtlety to consider is the virial theorem used to organize potential

terms within the expansion, as we have discussed.
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These arguments lead to the scaling given in Table 6.1 and to the resulting

conclusion that the additional expansion parameter is m
M

(
rv
r

)3
. Using this, we can

then calculate the effective action via Eq. (6.2.3) as discussed above.

At the first few orders, the calculation is relatively simple. At O(S̃0), only the

one-galileon-exchange diagram contributes, giving

S
(0)
eff = − m1m2

4πα2M2
Pl

∫
dt

|~r1 − ~r2|
, (6.2.19)

while at O(S̃0ε), only the three-galileon-vertex diagram is relevant, yielding

S
(ε)
eff =

α3m1m2m3

8π2α3
2M

2
PlM

r3
v

∫
dt

(
R̂13 · R̂23

R2
13R

2
23

− R̂12 · R̂23

R2
12R

2
23

+
R̂12 · R̂13

R2
12R

2
13

)
, (6.2.20)

with ~Rab = ~ra − ~rb.

We now see concretely, e.g. when object 2=object 3, that the small correc-

tion L(ε) ∼ m2

M

(
rv
R12

)3

L(0), or, in terms of the Vainshtein radius of object 2,

L(ε) ∼
(
rv,2
R12

)3

L(0). The expansion does not depend at all on the existence of

the large central mass, but now it becomes clear that the relevant distance scale

is the Vainshtein radius of the small masses whose dynamics we are considering.

Thus, to remain within the regime for which perturbation theory about the flat

galileon background is valid, the small masses must be well-separated from each

other as well as from the large central mass.

At O(S̃0v
2) things are, in principle, a little more complicated. There are three

diagrams that contribute: the v2 corrections to the point-particle Lagrangian for

each mass involved in the one-galileon-exchange diagram, and the exchange of the
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O(v2) part of the propagator. This last diagram may be equivalently described as

the insertion of the two-time-derivative part of the kinetic term. The first approach

is simpler calculationally if one knows the full time dependence of the propagator,

which we do not in the current case. However, even though we have not solved the

time dependent propagator here, the diagram in question turns out to be propor-

tional to the analogous diagram in GR, for which we know the full time-dependent

propagator. Thus, the relevant contribution is

S
(v2)
eff =− m1m2

4πα2M2
Pl

∫
dt
v2

1 + v2
2

R12

− m1m2

8πα2
2M

2
Pl

∫
dt

(
~v1 · ~v2

R12

+
1

R3
12

(~R12 · ~v1)(~R12 · ~v2)

)
. (6.2.21)

6.2.3 Breakdown of the perturbative expansion

As mentioned in Section 6.2.2, the effective action expansion we have outlined proves

to be valid when one does not take into account distance hierarchies (e.g. the fact

that the distance from the earth to the sun is much larger than the distance from

the earth to the moon). Let us now reconsider the expansion, taking this into

consideration. We will keep track of two separate distance scales: r, the distance

of a dynamical object from the large central mass, and R, the separation between

two arbitrary dynamical objects.

Well within the Vainshtein radius, the propagator in Eq. (6.1.38) now scales as

〈φφ〉 ∼ v

r
3/2
v
√
r

(
1 +

r

R

)
, (6.2.22)
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where the first term originates from the solution sourced by the δ function and the

second term from the homogeneous solutions. Thus, we must correct each appear-

ance of φ by the addition of a factor ∼
(
1 + r

R

)
. Note that this is a conservative

estimate in the situation where R� r, since we have treated time and space deriva-

tives as scaling like v
r

and 1
r
, respectively. When acting on the propagator given

in Eq. (6.1.38), derivatives will also produce terms which scale as 1
R

. Such terms

would introduce even larger corrections to instances of φ with derivatives acting on

them.

These considerations correct the zeroth- and first-order (in either small param-

eter) diagrams as in Table 6.2. The new effective action amplitude is therefore

Ŝ0 = S̃0

(
1 + r

R

)
and the new expansion parameters are

v2
(

1 +
r

R

)
and ε̂ = ε

(
1 +

r

R

)2

. (6.2.23)

This effect produces an enhancement in the overall strength of galileon interac-

tions as seen in Ŝ0, as well as a breakdown of the expansion for sufficiently small

separations between astrophysical objects. As an example, consider the earth-moon

system: the sun is about 1000 times more distant from the earth than the moon,

and the earth is about 106 times less massive than the sun. Thus for the dynamics

of the earth-moon system, the “small” expansion parameter

ε̂ =
mearth

Msun

(
1 +

rsun-earth

Rearth-moon

)2

∼ O(1) . (6.2.24)

In particular, this means that this formalism – approximating the galileon force

by the first-order force obtained from the one-galileon-exchange diagram – cannot
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r ∼ R r ≫ R

mi mj
(
1 + r

R

)
mi mj

mi mj
(
1 + r

R

)2 mi mj

mi
v2

mj
(
1 + r

R

)
mi

v2
mj

mi mj

mk

(
1 + r

R

)3

mi mj

mk

Table 6.2: A conservative estimate of corrections introduced by the consideration

of object separations much smaller than the distance from either object to the large

central mass.

be used to constrain Λ using lunar laser ranging experimental data, since the cor-

rections to this force are large. In the case of the force acting between the earth

and the moon, diagrams with no velocity corrections but any number of galileon

vertices all enter at the same order and hence any truncation of the expansion at

finite order yields an error in the force of order the result calculated.
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This conclusion is qualitatively similar to that reached in [174], which led to an

even larger region in which the perturbative expansion is not valid. In that view,

the earth’s Vainshtein radius renormalized by the presence of the sun is r̃3
v,⊕ =

(1 AU)3M⊕
M�

. Thus the quantity m
M

(
r
R

)3 ∼
(
r̃v
R

)3
and the perturbative expansion

about the background sourced by the sun breaks down at a distance from the earth

of order the earth’s Vainshtein radius in the presence of the sun.

Note that there is no analogous breakdown of the PPN expansion in GR, since

(
vearth

c

)2 ∼ 10−8 is smaller than the mass ratio. Nor is there a problem for a system

similar to the earth and the moon located outside the sun’s Vainshtein radius, as ε

in this region has an additional small multiplicative factor
(
rv
r

)3
.

The importance of galileon self-interactions in determining astrophysical dynam-

ics may mean that finite size effects, such as tidal forces acting on planetary bodies

or the influence of their intrinsic multipole moments, could play a more significant

role than their gravitational counterparts, relative to the lowest order forces between

structureless test masses. We may take account of such effects through the addition

of non-minimal terms to the world line action
∫
dt(m/MPl)π. Of course, whenever

we encounter an ultraviolet (UV) divergence when computing one of the relevant

diagrams, the introduction of such counterterms is unavoidable. For comparison,

in the case of GR, tidal effects first appear at O(v10) and are highly subdominant

[120].
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6.3 Implications

In this chapter we have studied a number of topics crucial to a complete under-

standing of the effects of galileons on the dynamics of the solar system. We have

obtained for the first time the first-order effects of the full quintic galileon theory.

This includes the contribution to the precession of planetary perihelion due to the

galileon field π̄ of the sun, as well as the static propagator for galileon fluctuations

about π̄. The inclusion of the higher interaction terms leads to a qualitatively dif-

ferent force law which yields a parametrically smaller perihelion precession than the

cubic case. (The cubic case could potentially be observable with next-generation

observations [112].) However, the presence of higher interaction terms exacerbates

the superluminal propagation of radial perturbations as well as the very subluminal

propagation of angular perturbations deep within the Vainshtein radius of the sun.

To understand the effects of the cubic galileon theory on solar system dynamics,

we have constructed a perturbative framework to calculate its effective action in

the nonrelativistic limit, about the background π̄ sourced by the sun. Apart from

the typical speed v, there is an additional expansion parameter ε introduced by

nonlinear galileon interactions. As a concrete example of the framework, we have

calculated the first-order corrections in v2 and in ε for the case where the objects

whose galileon force we are interested in are outside the Vainshtein radius of the

large central mass. Unfortunately, for the earth-moon system, we have shown that

the additional expansion parameter ε becomes O(1), and thus that nonlinearities
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render the perturbative framework inadequate.

Even for well separated masses, where the perturbative expansion is valid, a

concrete calculation of the corrections due to the nonlinear galileon interactions

presents a technical challenge. If this could be done, it would yield a quantitative

answer to the question of what the Vainshtein radius of the earth is in the presence

of the sun. The closed-form propagator obtained in (6.1.38) is only valid in the

region deep within the Vainshtein radius; the full propagator in (6.1.39) involves a

spherical harmonic expansion. Corrections at O(ε) involve an integral over all space

of the propagator and hence require the full infinite sum form of the propagator. The

integrals necessary to perform this calculation are not known, nor is there reason to

believe it would yield a result that can be then summed into a closed-form solution.
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Chapter 7

Doppelgänger defects:

noncanonical theories

masquerading as canonical

In this chapter, we abandon the requirement of Vainshtein screening to investigate

new features of topological defects in scalar field theories with generic noncanonical

kinetic terms. In particular, we study kinetic terms with more than two derivatives,

but which lead to second-order equations of motion. These scalar field theories

are similar to those employed in k-essence models which have been studied in the

context of cosmic acceleration and were introduced in [22, 21, 19]. Kinetic terms

of this general type also play an important role in other interesting models, such

as those of ghost condensation [17] or galileon [175] fields. The topological defects
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present in this general class of theories are often termed “k-defects,” and some

aspects of these objects have been studied in earlier works [23, 24, 190, 5, 151, 38,

25, 34, 2, 114].

In this chapter, based on work done in collaboration with Matt Lewandowski,

Mark Trodden, and Daniel Wesley [16], we report on some surprising aspects of

k–defects, especially k-domain walls and their associated instantons. We find that

there are very reasonable choices for the k-defect kinetic term – such as the Dirac-

Born-Infeld (DBI) form – for which there are no static defect solutions in a range of

parameters, despite the fact that the potential may have multiple minima. Thus,

unlike canonical scalar field theories, knowledge of the homotopy groups of the

vacuum manifold is sometimes insufficient to classify the spectrum of topological

defects. Due to the close connection between domain walls and instantons, this

result also constrains certain instanton solutions to noncanonical 4-dimensional ef-

fective theories.

Perhaps more surprisingly, it is also possible for k-defects to masquerade as

canonical scalar field domain walls. By this, we mean the following: given a scalar

field φ with canonical kinetic term and potential V (φ), then, up to rigid translations

x→ x + c, the field profile φ(x) and energy density E(x) are uniquely determined

for a solution containing a single wall. We show that there always exists a class of k-

defect Lagrangians which generate precisely the same field profile and energy density

profile as the unique canonical defect. To an observer who measures the field profile
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and energy density of the configuration, any k-defect in this class precisely mimics

the canonical domain wall. Nevertheless, despite having identical defect solutions,

we show that these two theories are not reparameterizations of each other, since the

fluctuation spectra about the walls are different.

Most of our analytical work is carried out for scalar field theories with domain

wall solutions. In order to study the generalization to other topological defects, we

carry out a numerical investigation of global cosmic string k-defect solutions. For

the natural generalization of the DBI kinetic term, we show it is possible to match

either the field profile or energy density of the canonical global string, but not both

simultaneously. Thus while we are unable to find an analogue of the doppelgänger

domain walls in this case, we cannot conclusively show they do not exist.

This chapter is organized as follows. In Section 7.1 we describe the general theory

of k-defects and use the specific example of the Dirac-Born-Infeld (DBI) action to

illustrate how the question of existence of defects is more complicated than the

canonical case. We also discuss instanton solutions to the DBI action and compare

our conclusions to existing discussions in the literature. Section 7.2 introduces

the idea of doppelgänger domain walls, which can precisely mimic the field profile

and energy density of a canonical domain wall. We establish conditions for the

existence of doppelgängers, and discuss the fluctuation spectra about doppelgänger

and canonical walls. In Section 7.3 we employ numerical methods to search for

doppelgänger cosmic strings, but are unsuccessful. We conclude in Section 7.4.
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7.1 Existence and properties of k-defects and in-

stantons

Our discussion focuses on two families of models involving a scalar field. The first

family consists of canonical scalar field theories of the form

S =

∫ [
−1

2
(∂φ)2 − V (φ)

]
d4x , (7.1.1)

where we use the (− + ++) metric signature, set ~ = c = 1, and define (∂φ)2 ≡

ηµν(∂µφ)∂νφ. Although we focus our discussion on four spacetime dimensions, es-

sentially all of our conclusions regarding domain walls apply in any spacetime di-

mension > 2, since all but one of the spatial dimensions are spectators.

The second family of models generalizes the canonical scalar field theory by

including additional derivatives of φ. This family is described by actions of the

form

S =

∫
[P (X)− V (φ)] d4x , (7.1.2)

where we define

X = (∂φ)2 = −φ̇2 + (∇φ)2 . (7.1.3)

We refer to a Lagrangian of the form (7.1.2) as a “P (X) Lagrangian.” (Note that

there are multiple conventions for the definition of X in the literature). The canon-

ical scalar field theory corresponds to P (X) = −X/2. While there are more than

two derivatives of φ in the Lagrangian, by assuming that the Lagrangian depends

120



only on X and φ as in (7.1.2) we guarantee that the resulting equations of motion

are second order.

In this section, we show that static domain walls need not exist for all parameter

ranges of a wide variety of P (X) theories, even when the potential in (7.1.2) pos-

sesses multiple disconnected minima. We demonstrate this result using a specific

form of P (X), corresponding to the Dirac-Born-Infeld (DBI) kinetic term. We then

adapt these results to study the properties of Coleman-de Luccia-type instantons

in 4-dimensional effective theories with DBI kinetic terms.

7.1.1 Domain walls in näıve DBI

A simple and well-motivated form of P (X) is contained in the DBI action, given by

P (X) = M4 −M2
√
M4 + (∂φ)2 , (7.1.4)

where M is a mass scale associated with the kinetic term, which we will refer to

as the “DBI mass scale.” When (∂φ)2 � M4, this kinetic term reduces to the

canonical one. In what follows, we set M = 1, and hence normalize all mass scales

to the DBI mass scale. A kinetic term of the form (7.1.4) can arise naturally in

various ways: for example, it is the 4-dimensional effective theory describing the

motion of a brane with position φ in an extra dimension. Often these kinetic terms

appear along with additional functions of φ, known as “warp factors.” These do not

influence our conclusions in an essential way and so, for now, we will use the simple

form (7.1.4) to illustrate our conclusions, and return to the case with warp factors
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in Section 7.1.2.

We refer to the P (X) Lagrangian defined by Eq. (7.1.4) as the “näıve” DBI

theory since one is merely adding a potential function V (φ) to the DBI kinetic

term (7.1.4). There are other, and in some respects better, ways to generalize a pure

DBI term and include interactions. We will discuss one such extension extensively in

Section 7.2. Nonetheless, the P (X) Lagrangian defined by Eq. (7.1.4) is commonly

employed in the literature, and will provide an instructive example of k-defects

possessing a number of interesting properties, as we now discuss.

The canonical wall

As a warm-up, we first study the canonical domain wall profile. We assume that all

fields depend on only one spatial coordinate z, and are independent of time. With

these assumptions, there exists a conserved quantity J with dJ/dz = 0, defined by

J = φ′
∂L

∂φ′
− L = −1

2
φ′2 + V (φ) , (7.1.5)

where L is the Lagrangian density. We assume that the potential is positive semidef-

inite and has discrete zero-energy minima at φ = φ±, such that V (φ±) = 0, with

φ− < φ+. Assuming boundary conditions where φ = φ± at z = ±∞, we have that

V = φ′ = 0 at z = ±∞. Therefore J = 0 at infinity, and since it is conserved, it

vanishes everywhere. This implies that Eq. (7.1.5) can be rewritten as

φ′2 = 2V (φ) , (7.1.6)

which can be straightforwardly integrated to yield the usual domain wall solution.

122



To compute the energy density of the solution, we use the fact that

H = φ̇
∂L

∂φ̇
− L = −L , (7.1.7)

where H is the Hamiltonian density and the second equality follows from our as-

sumption that the configuration is static. Using Eq. (7.1.6) we have that the energy

density E(φ) is given by

H = E(φ) = 2V (φ) . (7.1.8)

In general, the energy density cannot be expressed as a function of the field only,

but must include the gradient. A relation like (7.1.8) is only true because we have

a conserved quantity for static configurations, which relates the field value and its

gradient. Thus, all of the physics of the static canonical domain wall is encoded in

the conserved quantity J .

The näıve DBI wall

We can carry out a similar derivation for the DBI wall in a P (X) theory defined by

Equations (7.1.2) and (7.1.4). Recalling we have set M = 1, the conserved quantity

J is given by

J =
1√

1 + φ′2
− 1 + V (φ) . (7.1.9)

As in the canonical case described in Section 7.1.1, we assume that the potential

is positive semidefinite and has discrete zero-energy minima at φ = φ±, such that

V (φ±) = 0, with φ− < φ+. We also assume the same boundary conditions, so that
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φ = φ± at z = ±∞. Since V = φ′ = 0 at z = ±∞, J must vanish everywhere.

Hence, inverting (7.1.9) yields

φ′2 =
1

[1− V (φ)]2
− 1 . (7.1.10)

This expression is the analogue of Eq. (7.1.6), and can be integrated to give the

field profile once V (φ) is specified. Given a static configuration, the energy density

is then given by

E(φ) =
V (φ) [2− V (φ)]

1− V (φ)
, (7.1.11)

where we have used Eq. (7.1.9) and the fact that J = 0 everywhere.

Unlike the canonical case, it is apparent that problems may arise when integrat-

ing Eq. (7.1.10). In the canonical case, so long as V (φ) is bounded for φ ∈ [φ−, φ+],

we have φ′ finite everywhere. This is no longer the case with Eq. (7.1.10). If there

is any φ1 ∈ [φ−, φ+] such that V (φ1) > 1, then Eq. (7.1.10) implies that φ′ is unde-

fined. The problem can be traced back to Eq. (7.1.9), in which the first two terms

on the right-hand side can sum to any number between zero (when φ′ vanishes) and

−1 (when |φ′| is infinite). Thus, at any point where V (φ) > 1, there is simply no

value of φ′ which will allow the requirement that J = 0 everywhere to be satisfied.

We conclude that there are no nontrivial static solutions to the theory defined by

Eq. (7.1.4) if V (φ) > 1 at any φ ∈ [φ−, φ+].

To study the nature of the singularity, suppose we have integrated Eq. (7.1.10)

from φ = φ− at z = −∞ and have encountered a value φ = φ1 at which V (φ1) = 1.
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Assume that this value is reached at z = z1. For a generic function V (φ) we have

V (φ1 + ∆φ) = 1 + v′∆φ+O(∆φ2) , (7.1.12)

where v′ = V ′(φ)|φ=φ1 . Retaining only terms up to first order in ∆φ and using

Eq. (7.1.10) leads to

φ′ = − 1

v′∆φ
, (7.1.13)

which has the solution

φ(z) = φ1 +

√
−2(z − z1)

v′
. (7.1.14)

Hence, φ is well-defined when z < z1, before the singularity is reached. It is not

defined for z > z1, and at z = z1 there is cusp-type singularity in the field, at which

the field value is finite but the gradient and all higher derivatives become infinite.

It is natural to ask whether this singularity is integrable; that is, whether the

solution can be continued past the singular point at z = z1. We now show that the

solution cannot be continued, and hence there are no global solutions to Eq. (7.1.4)

with the desired boundary conditions. We prove this claim for the simple case in

which there is only one connected interval of field space between the minima for

which V (φ) > 1 (the generalization to the case where there are multiple discon-

nected regions where V (φ) > 1 is straightforward).
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The relevant region of field space is naturally divided into three intervals

I− ≡ [φ−, φ1) ,

I0 ≡ (φ1, φ2) ,

I+ ≡ (φ2, φ+] .

The intervals I± include the minima of V (φ) and all field values for which V (φ) < 1.

The interval I0 includes the field values for which V (φ) > 1. At the boundary points

φ1 and φ2 of I0, V (φ) = 1 and φ′ reaches ±∞. We have shown that solutions of

Eq. (7.1.4) with the desired boundary conditions can be constructed which take

values in I±, but now claim that these solutions cannot be continued into I0.

The key to proving our claim is to employ the quantity J , which must be con-

served by the equations of motion, and is well-defined for any value of φ′ (even

φ′ = ±∞). First, suppose that we have a candidate continuation of the solution on

I− into I0. Using this continuation, we choose any point z∗ for which φ(z∗) ∈ I0,

and use φ(z∗) and φ′(z∗) to evaluate J . Since V (φ) > 1 at z∗, then by inspection

of Eq. (7.1.9), we conclude that J > 0 at z∗. Since J is conserved by the equations

of motion, then J must assume this same positive definite value for all points in

I0. Inspection of Eq. (7.1.9) reveals that, when J > 0, φ′ is finite when V (φ) = 1.

Hence, if we approach φ1 while remaining in I0, then the limiting value of φ′ at φ1 is

finite. On the other hand, we have already shown that J = 0 in I−, and when J = 0

we have that φ′ = ±∞ when V (φ) = 1. Thus if we approach φ1 while remaining in

I− we have φ′ = ±∞ at φ = φ1.
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Thus, if there were a global solution, then φ′ would approach a finite value from

one side of φ1, and an infinite value from the other side. This means that the

purported global solution would not match smoothly across the singularity at φ1; a

contradiction. Hence we conclude that global solutions do not exist.

While the above statements are strictly correct within the context of the spe-

cific Lagrangian we have used, there are potential problems in treating the DBI

Lagrangian as an effective field theory near the singularity at φ1. Expanding the

Lagrangian L about a static background solution φ(z) gives terms of the form

δ2L ⊃ −
δφ′(z)2

2 (1 + φ′(z)2)3/2
(7.1.15)

at quadratic order in the fluctuation δφ(z). Hence the kinetic term for fluctuations

vanishes as we approach the point z1 where φ = φ1 and φ′(z) → ∞. Near the sin-

gularity, the effective theory is strongly coupled, quantum corrections to Eq. (7.1.4)

are large, and the precise functional form of Eq. (7.1.4) is not trustworthy. Whether

these corrections invalidate our conclusions is an open question. Nonetheless, our

analysis shows that the topological structure of the vacuum is not enough to guar-

antee the existence of topological defects in models with extra derivatives.

7.1.2 Application to instantons

Domain wall solutions are closely related to the solutions to Euclidean field theories

employed in constructing instantons. This is because the lowest-energy Euclidean

configurations typically depend on a single coordinate, and thus have essentially
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the same structure as domain wall solutions. Although there are some differences,

the correspondence becomes exact in the thin-wall limit. For example, to study the

Coleman-de Luccia instanton occurring in a canonical field theory one considers the

Euclidean action

SE = 2π2

∫ [
1

2
φ′2 + V (φ)

]
ρ3 dρ , (7.1.16)

where ρ is the Euclidean radial coordinate, and in this subsection only we take

φ′ ≡ ∂φ/∂ρ. Instantons are solutions of the equations of motion of this action. The

main difference between the action (7.1.16) and the canonical domain wall action

is the presence of the ρ3 factor in the integration measure. When the thickness of

the wall is much smaller than ρ – the “thin wall limit” – the measure factor can be

neglected, and the instanton problem reduces to the domain wall problem. Thanks

to this correspondence, we can apply some of our domain wall techniques to the

study of instantons in higher derivative theories.

The properties of instanton solutions for DBI actions of the form (7.1.4) have

been studied previously. In particular, in [52] a generalization of Eq. (7.1.4) was

considered, of the form

S =

∫ [
f(φ)−1

(
1−

√
1 + f(φ)(∂φ)2

)
− V (φ)

]
d4x , (7.1.17)

where the function f(φ) is the “warp factor.” The corresponding Euclidean action

is

SE = 2π2

∫ [
f(φ)−1

(
−1 +

√
1 + f(φ)φ′2

)
+ V (φ)

]
ρ3 dρ . (7.1.18)
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The authors of [52] pointed out that solutions for φ develop cusp-like behavior once

V (φ) became large. It was argued that this corresponded to instantons where the

field profile is multi-valued, and the graph of (z, φ(z)) traces out an S-curve, as

illustrated in Figure 2 of [52] and Figure 4 of [51]. Geometrically, if φ is interpreted

as the position of a brane in an extra dimension, this would correspond to the

brane doubling back upon itself. However, if we treat the action (7.1.18) as a 4-

dimensional effective theory, then, as we shall explain below, these solutions only

exist for special choices of the functions f(φ) and V (φ).

To apply our previous results, we must generalize them to include the measure

factor and the warp factor. Since we are concerned entirely with the Euclidean

equations of motion arising from Eq. (7.1.18), which are not affected by constants

multiplying the Lagrangian, it is convenient to absorb a factor of −2π2 into SE,

and thus consider the Euclidean Lagrangian

LE =
[
f(φ)−1

(
1−

√
1 + f(φ)φ′2

)
− V (φ)

]
ρ3 ≡ L̂Eρ

3 . (7.1.19)

The Lagrangian LE incorporates the effects of the warp factor and the measure

factor, while L̂E incorporates warp factor effects alone. For static solutions, the

conserved quantity corresponding to L̂E is

Ĵ = f(φ)−1

[
1√

1 + φ′2f(φ)
− 1 + V (φ)

]
, (7.1.20)

which may be compared to Eq. (7.1.9). It is important to stress that Eq. (7.1.20)

is not a precise conservation law: Ĵ arises from L̂E, whereas the full equations of
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motion arise from LE, which contains the measure factor ρ3. The full equations of

motion imply that

∂Ĵ

∂z
=

(
3

ρ

)
φ′2√

1 + f(φ)φ′2
, (7.1.21)

and this non-conservation of Ĵ describes important physics. Just as in the canonical

instanton, this is what enables tunneling between minima of V (φ) with different

vacuum energies, an essential feature of the Coleman-de Luccia instanton. However,

in the thin-wall limit, where the width of the instanton solution is much less than

ρ, the total change in Ĵ will be very small across the instanton wall. Hence, if we

focus only on the instanton wall itself, Ĵ is effectively conserved.

The approximate conservation of Ĵ enables us to employ some of our domain

wall techniques from Section 7.1.1 to the instanton problem, and to show that there

is no solution to the Euclidean equations of motion in which φ curls back on itself.

Suppose such a solution did, in fact, exist. Folding back upon itself would occur

when φ′ = ∞, and we denote the value of φ at which this occurs as φ∗, and the

corresponding value of ρ by ρ∗. Using (7.1.20) and working backwards, we find this

defines a value of Ĵ given by

Ĵ∗ =
V (φ∗)− 1

f(φ∗)
. (7.1.22)

Approximate conservation of Ĵ means that we can take Ĵ = Ĵ∗ when dealing with

physics in the vicinity of the wall. Despite the fact that the point φ = φ∗ is in some

sense singular, Ĵ must be the same on either side of this point. This is because,

clearly, Ĵ is approximately conserved away from singular points (such as φ∗). If we
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denote Ĵ± as the value of Ĵ for φ < φ∗ and φ > φ∗, respectively, then the only way

to ensure that limφ→φ+
∗

=∞ and limφ→φ−∗ =∞ is to have Ĵ+ = Ĵ− = Ĵ∗.

We now focus on a closed interval Iε in φ, of radius ε, and centered on φ = φ∗,

so Iε = [φ∗ − ε, φ∗ + ε]. Assuming f(φ) is smooth, given any δ > 0 we can choose

ε > 0 so that

1

f(φ)
√

1 + φ′2f(φ)
≤ δ ∀ φ ∈ Iε . (7.1.23)

Conservation of Ĵ then implies

∣∣∣∣∣
V (φ)− 1

f(φ)
− Ĵ∗

∣∣∣∣∣ ≤ δ ∀ φ ∈ I . (7.1.24)

Using the definition (7.1.22) and taking the δ → 0 limit, we can rewrite this condi-

tion as

f ′(φ∗)

f(φ∗)
=

V ′(φ∗)

V (φ∗)− 1
. (7.1.25)

If this condition is not satisfied, it is impossible to continue the solution through

the singular point. Any deviation from Eq. (7.1.25) leads to a singular solution,

and no fold is possible. For generic functions f and V , the condition (7.1.25) is not

satisfied, and hence the required instanton solutions do not exist.

To illustrate these results, we can consider the case f(φ) = 1, corresponding

to the näıve DBI action studied in Section 7.1.1. The cusp is located at φ = φ∗

where V (φ∗) = 1, and hence Ĵ∗ = 0. In order to fold back upon itself, φ must be

greater than φ∗ on one branch of the solution, and less than φ∗ on the other. Hence

V (φ) > 1 on one branch, and V (φ) < 1 on the other, for generic V (φ). However,
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from Eq. (7.1.20) it is clear that there is no solution for φ′ when V (φ) > 1, and

hence the solution cannot be continued through the fold. This ultimately arises

because the condition (7.1.25) cannot be satisfied if we take f(φ) = 1.

7.2 Doppelgänger domain walls

In Section 7.1.1, we showed that domain walls in P (X) theories can be very different

from those in canonical scalar field theories. However, in this section, we show

that in a particular class of higher-derivative theories, the walls can actually be

remarkably similar to their canonical counterparts! Indeed, the background solution

for these walls is completely indistinguishable from the canonical wall, with the same

energy density and field profile. As we shall see, the two solutions differ only in

their fluctuation spectra.

7.2.1 An example: masquerading DBI

Motivating the action

Rather than diving immediately into a general analysis, it is instructive to begin

with a simple and physically motivated example – the DBI action. One way of

deriving the DBI kinetic term is to consider φ to be the coordinate of an extended

object in an extra-dimensional space. Such objects can be described by the Nambu-

Goto action, which is simply their surface area multiplied by the tension. If we take
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the higher-dimensional space to have coordinates XN with N = 0, ...4 then the

action is

SNG = −T
∫ √

− det

[
ηMN

∂XM

∂xµ
∂XN

∂xν

]
d4x , (7.2.1)

where T is the tension, and ηMN is the metric in the full 5-dimensional space, which

we take to be Minkowskian. Taking the embedding defined by

XN = xN , N = 0, ...3, X4 = φ(xµ) (7.2.2)

leads precisely to the P (X) in Eq. (7.1.4), modulo a constant which only serves to

set the energy of the vacuum to zero.

This extra-dimensional setup provides a useful geometrical picture for the origin

of the DBI kinetic term. However, it is not clear how the simple addition of a

potential V (φ), as we have done in Section 7.1.1, can be interpreted in this picture.

If we hew to the extra-dimensional picture, it would seem that any new terms we

add to the DBI action should correspond to geometrical quantities, such as the

surface area of the membrane in the higher dimensional space. Such an approach

also ensures that these additional terms will be compatible with the coordinate

reparameterization symmetry of the action (7.2.1).

Guided by these considerations, we study actions in which the tension T is pro-

moted to a function of the spacetime coordinates XM , so that Eq. (7.2.1) becomes

SNG = −
∫
T (X)

√
− det

[
ηMN

∂XM

∂xµ
∂XN

∂xν

]
d4x . (7.2.3)

Descending to the 4-dimensional theory, we find that such a system cannot be
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described by a P (X)-type Lagrangian (7.1.2) because of the way in which X and

φ are coupled. The resulting action is

S =

∫ [
1− (1 + U(φ))

√
1 + (∂φ)2

]
d4x , (7.2.4)

where, as in Section 7.1.1, we have set M = 1, where M is the mass scale associated

with the DBI kinetic term. We have also added a constant to the Lagrangian density

in order to ensure that the energy density vanishes when φ′ = 0 and U(φ) = 0.

When gradients are small and (∂φ)2 �M4, the Lagrangian is approximately

L = 1− (1 + U(φ))
√

1 + (∂φ)2 ∼ 1

2
φ̇2 − 1

2
(∇φ)2 − U(φ) , (7.2.5)

and hence U(φ) is analogous to the potential in the canonical theory. However, as

we shall see below, it plays a somewhat different role in the full theory.

Dirac-Born-Infeld doppelgängers

We are now ready to study defect solutions corresponding to the action (7.2.4). For

this action, the conserved quantity J is

J =
1 + U(φ)√

1 + φ′2
− 1 . (7.2.6)

As before, we assume that U(φ) has two discrete minima φ± where U(φ±) = 0 and

take boundary conditions where φ = φ± at z = ±∞. Thanks to the boundary

conditions, J = 0 at infinity, and therefore J vanishes everywhere because it is

conserved. Inverting Eq. (7.2.6) gives

φ′2 = U(φ) [U(φ) + 2] , (7.2.7)
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which can be integrated to find the field profile for the defect. The Hamiltonian

energy density of the defect is given by

E(φ) = −1 + [1 + U(φ)]
√

1 + φ′2 = U(φ) [U(φ) + 2] , (7.2.8)

where in the second equality we have used the expression (7.2.6) and the fact that

J vanishes.

The curious properties of the doppelgänger walls arise from the fact that the

right-hand sides of (7.2.7) and (7.2.8) are identical: the energy density is equal to

φ′2. The only other case we have seen thus far with this property was the canonical

domain wall, as seen in Equations (7.1.6) and (7.1.8). This property was not shared

by the näıve DBI domain wall, as can be seen from Equations (7.1.10) and (7.1.11).

This means that, for static solutions arising from the action (7.2.4), we can define

an effective potential function V̂ (φ) for the DBI wall by

V̂ (φ) ≡ 1

2
U(φ) [U(φ) + 2] . (7.2.9)

Note that minima of U(φ) where U(φ) = 0 are also minima of V̂ (φ) where V̂ (φ) = 0.

With the identification (7.2.9), Equations (7.2.7) and (7.2.8) are precisely the same

as the analogous equations for the canonical domain wall (7.1.6) and (7.1.8), but

with the substitution V → V̂ . By inverting (7.2.9), we find

U(φ) = −1 +

√
1 + 2V̂ (φ) . (7.2.10)

So, we conclude with the somewhat surprising result that:
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Given a canonical scalar field theory with a positive semi-definite poten-

tial V (φ) ≥ 0 which supports domain wall solutions, there exists a choice

for U(φ) in the DBI theory (7.2.4), given by setting V̂ = V in (7.2.10),

which guarantees domain walls with precisely the same field profile and

energy density.

In the next two subsections, we present two pieces of evidence which support the idea

that our claim is somewhat surprising. First, we show that a claim of this nature

cannot be made for arbitrary theories with extra derivatives: generically, there is

no way to choose a potential function so that the higher-derivative wall mimics the

canonical one. We reinforce this argument by deriving an explicit condition for the

existence of doppelgänger defects. Second, we numerically compute the fluctuation

spectra about the background domain wall solution, and find they are very different

for the canonical wall and the DBI one. This shows that the DBI theory (7.2.4) is

not a rewriting of the canonical scalar field theory, despite having solutions with

identical field profiles and energy density.

7.2.2 When do doppelgänger defects exist?

A counterexample - other P (X) theories

While we have shown that the action (7.2.4) possesses doppelgänger solutions, this

is not a generic property of theories with higher derivatives. The P (X) theory with

a DBI kinetic term studied in Section 7.1.1 already provides one example where
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a P (X)-type theory always leads to domain wall solutions which differ from those

of a canonical field theory, with either a different field profile or a different energy

density (or both). The DBI wall with a P (X) action of the type (7.1.4) can never

mimic a canonical domain wall because, for a canonical wall, we always have that

φ′2 = E(φ) . (7.2.11)

In the P (X) DBI case, this would require the expressions on the right-hand side

of Equations (7.1.10) and (7.1.11) to be equal. A quick calculation shows that this

can only happen if V (φ) = 0, and hence the P (X) DBI wall can never mimic a

canonical wall.

As another example, we consider a different P (X) theory defined by

P (X) = −1

2
X + αX2 , (7.2.12)

where α is a real parameter with dimensions of [mass]−4. When X � α, this reduces

to the canonical scalar field theory. Following the techniques used previously, we

find that this theory possesses a conserved quantity J given by

J = −1

2
φ′2 + 3αφ′4 + V (φ) , (7.2.13)

where V (φ) is the potential associated with the theory. One might suppose that,

since this theory is a deformation of the canonical one, a deformation of the potential

would suffice to mimic the canonical wall. Again assuming that the potential is

positive semidefinite and has discrete zero-energy minima at φ = φ±, with φ− < φ+,
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so that V (φ±) = 0, and assuming boundary conditions where φ = φ± at ±∞, we

find the first integral

φ′2 =
1−

√
1− 48αV (φ)

12α
, (7.2.14)

whereas

E(φ) = φ′2 − 4αφ′4 . (7.2.15)

Since E(φ) 6= φ′2, we see that there is no choice of the potential for which the theory

defined by Eq. (7.2.12) mimics a canonical wall, so long as α 6= 0.

Conditions for doppelgänger defects in more general actions

The discussion in the previous section does not imply the absence of other dop-

pelgänger actions. As we now show, there are infinitely many higher-derivative

actions which can mimic canonical domain walls. However, these other actions are

“rare” in the sense that they are technically non-generic in the space of all scalar

field actions. We make this statement more precise below.

Consider the family of scalar field actions which have second-order equations

of motion. Such an action is defined by a Lagrangian which is a function of both

X = (∂φ)2 and φ,

L = L(X,φ) , (7.2.16)

containing the much smaller family of P (X) actions as a special case. We denote

the canonical action by L0, so that

L0(X,φ) = −1

2
X − V (φ) . (7.2.17)
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The conserved quantity for the general Lagrangian (7.2.16) is given by

J = 2X
∂L

∂X
− L , (7.2.18)

whereas for the canonical action J0 = −X + V (φ). Without loss of generality we

assume that the domain wall boundary conditions are such that J = 0 everywhere.

This can always be enforced by shifting L by a constant L(X,φ) → L(X,φ) + c,

which does not affect the equations of motion and only shifts the zero point of the

energy density. For the canonical action, this implies that we can impose V (φmin) =

0 for the global minima φmin of V .

What is required of a higher-derivative action so that it can mimic a canonical

scalar field action? The first requirement is that both actions must have the same

field profile φ0(z) as a solution to their respective equations of motion. The sec-

ond requirement is that the energy density of this field profile be the same when

evaluated using the Hamiltonians associated with their respective actions.

We employ a geometrical construction to investigate these requirements. Instead

of viewing L and L0 as functions, it is helpful to think of them as surfaces hovering

over the (X,φ) plane, with a height given by L(X,φ) or L0(X,φ), respectively.

These surfaces are referred to as the “graphs” of the functions L and L0.

We first consider the second requirement, that the field profile φ0(z) has the

same Hamiltonian energy densities in the two theories. Suppose we have already

established that the same field profile φ0(z) is a solution to both actions. We denote

by φ− the value of φ at z = −∞ and by φ+ the value at z = +∞ for this solution.

139



The specified solution traces out a curve C on the (X,φ) plane given in parametric

form by

C : z 7→ (X0(z), φ0(z)) . (7.2.19)

Since the configurations are static, the energy density is simply −L. Hence we can

satisfy the first requirement if and only if

L(X,φ) = L0(X,φ) on C . (7.2.20)

L and L0 need not agree everywhere, but they must agree when evaluated on points

on C. Geometrically, Eq. (7.2.20) means that the graphs of L and L0 must intersect,

and the projection of this intersection on to the (X,φ) plane must contain C.

We next consider the first requirement, that the equations of motion for either

action admit the specified field profile φ0(z) as a solution. We assume that φ0(z)

is a solution to the canonical theory, and derive the requirement that it also be a

solution to L. Recall that, for static configurations, actions of the form (7.2.16)

always admit a first integral obtained by solving the equation J = 0 for φ′2. Hence,

J must vanish when evaluated on the solution to the canonical theory. That is,

φ0(z) will be a solution to the higher-derivative scalar field theory if and only if

2X
∂L

∂X
− L = 2X

∂L0

∂X
− L0 on C (7.2.21)

which, using Eq. (7.2.20), yields

∂L

∂X
=
∂L0

∂X
on C . (7.2.22)
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Hence, we require that the derivatives of L and L0 with respect to X agree on C.

Note that we never need to match derivatives with respect to φ – while ∂L/∂φ does

enter the equations of motion, it does not enter our conserved quantity and hence

is not required to find a solution.

We conclude that:

An action L(X,φ) mimics a domain wall φ0(z) of the canonical scalar

field theory L0 (that is, has the same field profile and energy density) if

and only if the graphs of L and L0 intersect above the curve C : z 7→

(X0(z), φ0(z)) in the (X,φ) plane, and if ∂L/∂X = ∂L0/∂X along the

intersection.

This geometrical picture, when combined with the two constraints (7.2.20) and

(7.2.22), allows us to make a powerful statement about how “rare” doppelgänger

actions are. The graphs of L and L0 are codimension-one surfaces in the same three-

dimensional space. Hence, they will generically intersect along a one-dimensional

curve. Thus, we should not be surprised if two actions satisfy the constraint (7.2.20),

which is essentially the statement that the graphs intersect along a one-dimensional

curve. However, two codimension-one manifolds will generically intersect “trans-

versely” – the span of their tangent spaces will equal the tangent space of the man-

ifold at the intersection (R3 in this case). The condition (7.2.22) implies that the

graphs of L and L0 do not intersect trasversely. Thus, the existence of doppelgänger

walls depends on constructing graphs in R3 which intersect non-generically. This
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Figure 7.1: An illustration of the geometrical interpretation of doppelgänger actions.

The graphs of L(X,φ) and L0(X,φ) intersect along a single curve, whose projection

on to the (X,φ) plane is the curve C discussed in the text. Here we plot the graph

of L0 − L for the DBI action and the curve C (in black). The intersection of the

graphs of L and L0 is non-generic, since the first derivatives of the L − L0 surface

vanish along C.
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geometrical interpretation is illustrated in Figure 7.1, where we have compared a

canonical action with V (φ) = (1/4)(φ2 − 1)2 and its doppelgänger Lagrangian.

Another way of putting this result is that, given any function ∆L(X,φ), such

that

∆L(X,φ) = 0 on C and
∂∆L

∂X
= 0 on C , (7.2.23)

then we can construct another action

L(X,φ) = L0(X,φ) + ∆L(X,φ) , (7.2.24)

which will have the same domain wall solution as L0. Clearly there are infinitely

many functions ∆L satisfying (7.2.23), though they are non-generic in the same

sense as non-transversely intersecting pairs of surfaces are non-generic.

7.2.3 DNA tests for defects: fluctuation spectra for dop-

pelgängers

The existence of doppelgänger defects raises the question of whether such objects

are merely a reparameterization of the original, canonical scalar field wall. As

we shall demonstrate here, the fluctuation spectra of the doppelgänger walls are

distinctly different from those of canonical walls. Among other differences, when

the doppelgänger walls are deeply in the DBI regime (V0/M
4 large), they have

far more bound states than the canonical wall. Since the fluctuation spectra are

different, the two theories cannot be reparameterizations of each other.
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We find the action and equation of motion for the fluctuations by taking

φ(t, z) = φ0(z) + δφ(t, z) , (7.2.25)

where φ0(z) is a static background solution to the equations of motion and δφ(t, z)

the fluctuation. We then expand the Lagrangian to quadratic order in δφ. The term

linear in δφ vanishes since φ0(z) satisfies the equations of motion, and the purely

quadratic piece is of the form

δ2L = A(z)δφ̇2 +B(z)δφ2 + C(z)δφ′2 +D(z)δφδφ′ . (7.2.26)

For the canonical action, A = 1/2, B = −V ′′(φ0(z))/2, C = −1/2, and D = 0. For

other cases, these coefficients depend on the particular background solution φ0(z)

and on the specific action used.

Since the action is independent of t, different frequencies do not mix and we can

study an individual mode with frequency ω by taking

δφ(t, z) = e−iωtδφ(z) . (7.2.27)

This leads to the quadratic action

δ2L = (ω2A(z) +B(z))δφ2 + C(z)δφ′2 +D(z)δφδφ′ , (7.2.28)

yielding the equation of motion

C

A
δφ′′ +

C ′

A
δφ′ +

[
D′ − 2B

2A

]
δφ = ω2δφ . (7.2.29)

Finding the energies of the flutuation modes amounts to finding values of ω so that

Eq. (7.2.29) is satisfied by a normalizable function δφ.
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The problem (7.2.29) is an eigenvalue problem of the Sturm-Liouville type. Ide-

ally, it would be in the form of a Schrödinger equation, which would allow us to

readily identify free and bound states by analogy to the corresponding quantum

mechanical system. Unfortunately, in general Eq. (7.2.29) is not of Schrödinger

type, thanks to the presence of the δφ′ term. However, in many interesting cases

the quantity

E0 ≡
D′ − 2B

2A
(7.2.30)

tends to a constant far away from the wall. Hence, evaluating (7.2.30) far away

from the wall defines an analogue to the “binding energy” of various fluctuation

modes. We call modes with ω2 < E0 the “bound states,” and modes with ω2 > E0

“free states.” This definition gives reasonable agreement with our expectations for

bound and free states, as we discuss below.

The eigenvalue problem (7.2.29) can be solved numerically using a simple finite

element approach. We have computed the lowest-lying eigenmodes for a canonical

wall with potential

V (φ) =
V0

4

(
φ2 − φ2

0

)2
(7.2.31)

and some of its doppelgänger walls, assuming periodic boundary conditions with

periodicity much larger than the wall width. Some of these solutions are shown in

Figure 7.2. These figures show the energies ω2 of these fluctuation modes, normal-

ized to the binding energy E0 defined in Eq. (7.2.30), which is itself shown by the

black horizontal line in the figure. As can be seen, our definition of bound states is
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Figure 7.2: The lowest-lying fluctuation eigenmodes for various domain walls. The

vertical position of each eigenmode is the eigenvalue ω2 normalized by the binding

energy E0. Shown are the spectra for a canonical scalar field wall with V0/M
4 = 0

(leftmost panel) and then some of its doppelgängers with V0/M
4 = 0.1, 1, and 10

respectively. As the ratio V0/M
4 increases, the wall possesses more bound states.

The lowest-lying state is identical for each wall, reflecting the fact that these walls

share a background field profile.
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reasonable, since the eigenmodes possess the properties one would expect of bound

states (such as compact support) when their energies are below E0, and the prop-

erties of free states (such as oscillatory behavior) when their energies are above E0.

Since the eigenspectra are different, we can conclude that the two theories, while

possessing an identical background solution, are in fact distinct theories.

The figures also show that there are many more bound states for the dop-

pelgänger wall when we increase the mass scale of the potential relative to the DBI

scale. These bound states are possible because the DBI action “weights” gradient

energy much less in the interior of the domain wall, and hence even highly oscil-

latory fluctuation modes can remain as bound states. Physically, the presence of

these bound states means that the doppelgänger wall possesses additional oscillation

modes which the canonical wall does not.

7.3 k-strings

It is natural to ask whether it is also possible to find doppelgängers of other defect

solutions, such as global strings or monopoles. This question is somewhat difficult

to answer since higher codimension defects are generally less analytically tractable

than the domain wall. In particular, the existence of the conserved quantity J in the

codimension-one (domain wall) case allowed us to find the field profile and energy

density and construct a doppelgänger existence proof. No analogous quantity is

available for higher codimension defects, such as global strings or monopoles.
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In this section, we generalize the one-field DBI action to a two-field system, and

investigate some properties of the correponding global string solutions. Since we

have no conserved quantity, we take a numerical approach and directly integrate

the equations of motion. Using our two-field DBI model, we find no doppelgänger

global string solutions. Nevertheless, since we cannot treat the two-field system

analytically, we cannot prove a ‘no-go’ theorem and hence the existence of higher

codimension doppelgänger defects remains an open question.

The canonical global string solution can be found by starting from the action

with two real scalar fields

S =

∫ [
−1

2
(∂φ1)2 − 1

2
(∂φ2)2 − V (φ1, φ2)

]
d4x , (7.3.1)

where the potential V (φ1, φ2) respects a global O(2) symmetry, corresponding to

rotations in the (φ1, φ2) plane. To study string solutions, we assume the field

configuration is static and cylindrically symmetric, employ polar coordinates (r, θ)

in real space, and use the rotational symmetry to decompose the fields in terms of

new functions φ and Θ as

φ1(r, θ) = φ(r) cos Θ(Nθ), φ2(r, θ) = φ(r) sin Θ(Nθ) , (7.3.2)

where N ∈ Z is the winding number of the string. Restricting ourselves to strings

of unit winding number N = 1, the entire action may then be written in terms of

the single function φ(r). The equation of motion for this field is

φ′′ +
φ′

r
− φ

r2
− ∂V

∂φ
= 0 , (7.3.3)
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where φ′ = ∂φ/∂r. Given a potential V (φ) which admits a defect solution, that is,

V (0) 6= 0 and there exists φ0 > 0 such that V (φ0) = 0 is a minimum, the string

solution is subject to the boundary conditions that φ(0) = 0 and φ→ φ0 as r →∞.

It is then straightforward to solve for the string field profile using the relaxation

method.

There are many multi-field generalizations of the basic DBI kinetic term (7.1.4)

which appear in the literature. Typically these generalizations reduce to the usual

DBI kinetic term when there is only a single field. Based on our experience with the

doppelgänger solutions, the best-motivated generalization is analogous to (7.2.3),

based on a generalization of the Nambu-Goto action with two extra dimensions

given by

SNG = −
∫
T (X)

√
− det

[
ηMN

∂XM

∂xµ
∂XN

∂xν

]
d4x , (7.3.4)

where, as before, the tension T is a function of the embedding coordinates. We

depart from (7.2.3) by taking six-dimensional embedding coordinates XN , with

N = 0...5 and

XN = xN : N = 0, ...3, X4 = φ1(xµ) , X5 = φ2(xµ) . (7.3.5)

Hence, the 4-dimensional theory contains two real scalar fields φ1,2 with an O(2)

global symmetry. With a suitable choice of tension T (X), we can construct DBI

generalizations of the usual global string.

At this point, we can follow a similar procedure to that carried out in the case

of the canonical global string. The reduction of the fields in the case of the unit
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winding number string proceeds exactly as before, with the same decomposition

defined by Eq. (7.3.2). If we use this decomposition in (7.3.4) we find

SNG = 2π

∫ [
r − (1 + U(φ))

√
(r2 + φ2)(1 + φ′2)

]
dr , (7.3.6)

where, as before, we have rewritten T = 1 + U(φ) and added a constant to the

Lagrangian so that the energy is zero when φ′ = 0 and U(φ) = 0. Note that there

is no factor of r next to the differential, since the action (7.3.4) already correctly

accounts for the volume measure in four dimensions.

To investigate whether doppelgänger strings can be constructed, we assume a

symmetry-breaking potential U(φ) = U0(φ2 − 1)2 in the DBI theory and solve via

the relaxation method for the DBI field profile. Given the field profile φ(r) of the

DBI string, we solve numerically for the potential in the canonical scalar field theory

which gives the same field profile. With this potential function, we compute the

energy density in the canonical theory. In the examples we study, we find that

the energy densities are different in the two theories. Analogous results hold if we

match energy densities between the DBI and canonical theory – we find the field

profile does not match. Hence we do not find any doppelgänger defects.

When taking the field profiles to be equal, we can construct a potential such

that the DBI field profile is a solution to the canonical equations of motion by

integrating the canonical equation of motion for φ, setting the potential to be 0 at

large r:

V (φ) =

∫ φ0

φ

(
φ̃′′ +

φ̃′

r
− φ̃

r2

)
dφ̃ . (7.3.7)
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Figure 7.3: Energy density as a function of radius for a DBI string and a canonical

string with identical field profiles. The DBI potential is given by U(φ) = 10(φ2−1)2.

For the examples we have studied, this leads to a total energy density which differs

from the DBI energy density, as shown in Figure 7.3.

We also consider the case where the energy densities are constrained to be equal.

In this case, after solving for the field profile and energy density of the DBI string,

we then similarly solve for the field profile of the canonical string while maintaining

the canonical potential as V = EDBI− 1
2

(
φ′2canonical +

φ2
canonical

r2

)
. The results are shown

in Figure 7.4.

The two approaches, both constraining the field profiles to be equal and con-

straining the energy densities to be equal, yield a DBI string which is observably
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different from the canonical string for the examples we have studied. Thus we have

found no examples of doppelgänger solutions for cosmic strings.

7.4 Implications

Nonperturbative field configurations such as topological defects may be formed

during phase transitions in the early universe, and their interactions and dynamics

can have significant effects on cosmic evolution. In the case of a scalar field with a

canonical kinetic term, the behavior of such configurations has been understood for

some time. The resulting constraints on the types and scales of symmetry breaking
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are well-understood, and the possibilities for interesting cosmological phenomena

have been thoroughly investigated.

However, in recent years, particle physicists and cosmologists have become in-

terested in noncanonical theories, such as those that might drive k-inflation and

k-essence. Ghost-free and stable examples of such theories can be constructed, and

as such one may take them seriously as microphysical models. Several authors have

then studied the extent to which the properties of topological defects are modified

by the presence of a more complicated kinetic term.

In this chapter we have studied k-defect solutions to the DBI theory in some

detail, discussing walls and strings, and clarifying the existence criteria and the

behavior of instantons in these theories. Furthermore, we have addressed the ques-

tion of whether k-defects, and in particular k-walls and global k-strings, can mimic

canonical defects. We have demonstrated that given a classical theory with a canon-

ical kinetic term and a spontaneously broken symmetry with a vacuum manifold

admitting domain wall solution, there exists a large family of general Lagrangians

of the P (φ,X) form which admit domain wall solutions with the same field profiles

and same energy per unit area. These doppelgänger defects can mimic the field

profile and energy density of canonical domain walls. Nevertheless, we have also

shown that the fluctuation spectrum of a doppelgänger is different from its canoni-

cal counterpart, allowing one in principle to distinguish a canonical defect from its

doppelgänger.
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In the case of cosmic strings we have been unable to prove a similar result.

Despite investigating several examples for the potential function in the DBI theory,

we have been unable to find cases where there is a canonical theory which results

in a matching energy density and field profile. However, since we have less analytic

control in the case of defects of higher codimension, we have not been able to

prove a ’no-go’ theorem. Hence the existence of doppelgänger defects for strings or

monopoles remains an open question.

The subject of doppelgänger or “twinlike” defects has generated interest among

the scientific community, leading to studies in the context of kink-antikink collisions

[121], multifield models [37, 35], noncanonical theories with defects that mimic those

of a different noncanonical theory [36], cosmologies with nonzero curvature [33],

doppelgängers that share fluctuation spectra as well as field profiles and energy

densities [4], gauge theories [32], and further exploration of the space of twinned

models [39, 3].
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Chapter 8

Conclusions

In this thesis, we have investigated the theoretical consistency and potential ob-

servational testability of several infrared modifications of gravity belonging to the

Vainshtein-screened class. This class of theories passes precision tests of gravity by

recovering general relativistic behavior near astrophysical objects due to nonlinear

derivative self-interactions. Many of the member theories also implement acceler-

ating cosmologies in the absence of any dark energy component, and thus pose a

possible solution to the cosmological constant problem. Due to non-renormalization

by quantum corrections, the amount of acceleration is a technically natural quantity

and thus does not require fine-tuning to match the observed value.

One such theory is that of a scalar subject to a Galilean symmetry coupled to

a massive graviton. We have shown in this thesis that this theory propagates the

appropriate two tensor, two vector, and two scalar degrees of freedom and thus is

155



not plagued by instability due to the presence of the Boulware-Deser ghost generic

to theories where the graviton gains a mass. The homogeneous and isotropic cos-

mological solutions of ghost-free massive gravity with no extra scalars suffer from

strong coupling of the scalar and vector perturbations, and thus are phenomeno-

logically not viable. We find that the analogous branch of cosmological solutions

in the massive gravity theory coupled to a galileon suffers the same strong-coupling

problem; however, there remains an unexplored branch of solutions which may be

of interest.

We also investigate the theory of N multiple galileons subject to an SO(N)

symmetry (as derived from a codimension-N braneworld theory). We find that

Schwarzschild-like solutions of this theory are unstable, raising serious concerns

about the model’s phenomenological viability. Such a result suggests that the

derivative coupling arising from such a braneworld construction, which respects

both the SO(N) and Galilean symmetries, should be included in the analysis. Ad-

ditionally, a derivation such as the cascading gravity setup which breaks the SO(N)

symmetry by introducing a hierarchy of codimension-one branes may display more

stable behavior.

In the interest of deriving precise theoretical predictions of the force mediated

by a galileon in the solar system, where observations give the strongest constraints

on departures from general relativity, we develop a formalism to perturbatively cal-

culate the n-body galileon-mediated interactions in the presence of a large screened
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body. This formalism presents a proof of concept for use in general theories of

modified gravity exhibiting a screening mechanism. However, in the case studied

we find the form of the galileon propagators derived herein present an obstacle

to analytical calculation of corrections to the first-order forces. Additionally, the

perturbative scheme breaks down for similar-mass objects separated by a distance

small compared to the distance to the screening mass. In particular, one of the small

parameters controlling the perturbative expansion is order one for the earth-moon

system in the presence of the sun. Thus the first-order force typically used to con-

strain the theory using lunar laser ranging should in fact recieve sizeable corrections

from higher-order galileon interactions.

Vainshtein-screened modified gravity theories remain an interesting alternative

to the standard cosmological constant for driving late-time cosmic acceleration.

Much work remains to develop precise and unique theoretical predictions of these

modifications to gravity in order to distinguish them from the standard paradigm.

Additionally, we found that it is possible to construct theories with nonstandard

derivative structure such that certain observations cannot distinguish the theory

from a canonical one. In particular, we found a class of P (φ,X) Lagrangians such

that the domain wall solutions have identical field profile and energy density to

a canonical domain wall. We investigated numerically the existence of such solu-

tions for the higher-codimension cosmic strings, but found no doppelgänger strings.

However, this does not constitute a proof of their nonexistence.
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There are a number of observed cosmological phenomena, in particular the late-

time cosmic acceleration and inflation, that require the introduction of new funda-

mental physics. Theories that introduce new scalars with noncanonical kinetic terms

have a number of interesting properties such as the Vainshtein screening mechanism,

non-renormalization by quantum corrections, non-unit sound speed, and violation

of energy positivity conditions (e.g. the null energy condition). These theories pose

a theoretical challenge due to their nonlinear nature, and thus much more work

is required to make predictions of comparable precision to the existing observa-

tional constraints. The search for a way to distinguish between these theories and

the standard paradigm will continue to produce interesting new observational tests

which will either lead to the discovery of new physics or increase the robustness of

our understanding of the standard models. Regardless of which of these outcomes

is realized, the study of nonstandard explanations for cosmological phenomena will

add to our understanding of the fundamental physics describing the universe.
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