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Abstract
Perceptual representations of auditory stimuli—which are called auditory streams or objects—are derived
from the auditory system's ability to segregate and group stimuli based upon spectral, temporal, and spatial
features. However, it remains unclear how our auditory system encodes these auditory streams at the level of
the single neuron. In order to address this question directly, we first validated an animal model of auditory
streaming. Specifically, we trained rhesus macaques to report their streaming percept using methodologies and
controls similar to those presented in previous human studies. We found that the monkeys' behavioral reports
were qualitatively consistent with those of human listeners. Next, we recorded from neurons in the primary
auditory cortex while monkeys simultaneously reported their streaming percepts. We found that A1 neurons
had frequency-tuned responses that habituated, independent of frequency content, as the auditory sequence
unfolded over time; and we report for the first time that firing rate of A1 neurons was modulated by the
monkeys’ choices. This modulation increased with listening time and was independent of the frequency
difference between consecutive tone bursts. Overall, our results suggest that A1 activity contributes to the
sensory evidence underlying the segregation and grouping of acoustic stimuli into distinct auditory streams.
However, because we observe choice-related activity based upon firing rate alone, our data are at partially at
odds with Micheyl et al.’s (2005) prominent hypothesis, which argued that frequency-dependent habituation
may be a coding mechanism for the streaming percept.
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ABSTRACT 
 

THE NEURAL AND BEHAVIORAL CORRELATES OF AUDITORY STREAMING 

Kate L. Christison-Lagay 

Yale E. Cohen 

Perceptual representations of auditory stimuli—which are called auditory streams or objects—are 

derived from the auditory system's ability to segregate and group stimuli based upon spectral, 

temporal, and spatial features. However, it remains unclear how our auditory system encodes 

these auditory streams at the level of the single neuron.  In order to address this question directly, 

we first validated an animal model of auditory streaming. Specifically, we trained rhesus 

macaques to report their streaming percept using methodologies and controls similar to those 

presented in previous human studies. We found that the monkeys' behavioral reports were 

qualitatively consistent with those of human listeners. Next, we recorded from neurons in the 

primary auditory cortex while monkeys simultaneously reported their streaming percepts.  We 

found that A1 neurons had frequency-tuned responses that habituated, independent of frequency 

content, as the auditory sequence unfolded over time; and we report for the first time that firing 

rate of A1 neurons was modulated by the monkeys’ choices. This modulation increased with 

listening time and was independent of the frequency difference between consecutive tone bursts. 

Overall, our results suggest that A1 activity contributes to the sensory evidence underlying the 

segregation and grouping of acoustic stimuli into distinct auditory streams. However, because we 

observe choice-related activity based upon firing rate alone, our data are at partially at odds with 

Micheyl et al.’s (2005) prominent hypothesis, which argued that frequency-dependent habituation 

may be a coding mechanism for the streaming percept. 
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1 CHAPTER 1: INTRODUCTION 

1.1 OVERVIEW 

Imagine, for a moment, that you are at a cocktail party. You are surrounded in a sea of 

sound: music plays in the background; your conversation partner is telling you a story; the person 

behind you is noisily eating tortilla chips; somewhere in the room, a group of fellow party-goers 

are engaged in a lively debate; and a cell phone is ringing. Each of these sound sources (e.g., the 

phone, the stereo speaker, the voices) produces an acoustic stimulus that happens in close 

temporal and spatial proximity to one another and likely has many similar frequency components. 

These acoustic stimuli reach your ears as an unlabeled mixture, and somehow, you are readily—

and for normal listeners, seemingly effortlessly—able to segregate this mixture into distinct 

sounds. But how is our auditory system able to transform this enmeshed mixture of acoustic 

information into these distinct perceptual representations (i.e., sounds, such as the music or the 

cell phone’s ring)? 

A fundamental component of this transformation is the auditory system’s ability to 

detect, extract, segregate, and group the spatial, spectral, and temporal regularities in the acoustic 

environment into distinct perceptual units (Bizley et al., 2009a; Bizley et al., 2013a; Bizley et al., 

2013b; Bregman, 1990; McDermott, 2009; Russ et al., 2008b; Shinn-Cunningham, 2008; 

Sussman et al., 2005; Tsunada et al., 2011a; Tsunada et al., 2012; Winkler et al., 2009). In 

auditory neuroscience, discrete perceptual units are often called auditory objects, and multiple 

auditory objects that are grouped over time are called auditory streams; in common parlance, 

both can be called sounds (Bregman, 1990; McDermott, 2009; Shinn-Cunningham, 2008; 

Sussman et al., 2005; Winkler et al., 2009). These auditory perceptual units are not necessarily 

discrete: they can span multiple acoustic events that unfold over time (Bizley et al., 2013a; 
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Bregman, 1990; Fishman et al., 2004; Fishman et al., 2001a; Micheyl et al., 2005; Micheyl et al., 

2007; Sussman et al., 2007). This enables listeners to follow the individual musical notes that 

form a song or to hear the sound of someone walking as ‘footsteps’.  

The study of auditory perception (sometimes also called auditory scene analysis 

(Bregman, 1990)) can be broadly categorized into two complementary approaches: a 

psychophysical approach that tackles the acoustic and temporal principles underlying a listener’s 

ability to group and segregate auditory stimuli into discrete sounds; and a second that examines 

how the brain instantiates the above-stated principles. The latter approach can be further divided 

based on the scale of neural processing and has been studied from the level of the single-cell 

recordings up through whole-brain imaging. Below, we discuss both approaches as they relate to 

both the behavioral and neural correlates of auditory streaming.  

1.2 REGULARITIES AND STREAM FORMATION: PSYCHOPHYSICS 

Before addressing how the brain encodes auditory objects and streams, it is helpful to 

understand the types of acoustic and temporal cues that lead to the formation of auditory 

perceptions. Bregman’s (1990) theory suggests that auditory percepts are formed by detecting and 

grouping the spectrotemporal regularities (e.g., harmonicity, spatial location, etc.) in the acoustic 

environment. That is, the brain assumes that acoustic features that are harmonically related, occur 

at the same location, have close temporal proximity etc. are likely to have arisen from the same 

sound source and should be grouped together and represented as a single distinct ‘sound’. 

(Bregman, 1990; Grimault et al., 2002; Hill et al., 2011; Singh, 1987; van Noorden, 1975; 

Vliegen et al., 1999)). In contrast, dissimilar features (e.g., ones not harmonically related or from 

different locations) should be segregated and heard as two or more distinct sounds.  

An excellent and simple example of how listeners use regularities to group (and 
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segregate) acoustic information is the acoustical stimulus that is discussed in Chapters 2 and 3 of 

this thesis, sometimes known as the galloping tones paradigm or the ABA paradigm (Bregman, 

1990; Carlyon et al., 2001; Cusack, 2005; Elhilali et al., 2009; Micheyl et al., 2005; Micheyl et 

al., 2007). Typically, this stimulus is composed of an interleaved (asynchronous) sequence of 

tone bursts at two frequencies (‘tone A’ and ‘tone B’; Fig. 3-1-1). Listeners hear this stimulus in 

one of two ways: (1) with all of the tone bursts grouped into one stream that sounds like a 

galloping rhythm; or (2) with the different frequency tone bursts segregated, and, thus, eliciting 

the percept of two distinct auditory streams.  

Interestingly, the likelihood of hearing one or two auditory streams can be titrated by 

systematically varying the acoustic properties of this sequence. For example, when the frequency 

difference between the tone bursts in this auditory sequence is small (e.g., ≤1 semitone 

difference), listeners reliably report hearing one stream. On the other hand, when the frequency 

difference between these tone-burst sequences is large (e.g., ≥10 semitones), listeners reliably 

report hearing two separate streams. When the frequency difference is intermediate between these 

two extremes, listeners reports vary on a trial-by-trial basis (and, indeed, within trials as well 

(Micheyl et al., 2007)). The amount of time that a listener hears a sequence will also influence 

his/her reports. When listening for a short time, listeners are more likely to report a sequence with 

an intermediate frequency difference as one stream, but with further listening, they are more 

likely to report two streams (Bregman, 1990; Cusack et al., 2004; Micheyl et al., 2005). Finally, 

the temporal proximity of the tone bursts (i.e., whether tones are played synchronously or 

asynchronously) also affects a listener’s choices. When the tone bursts are presented 

synchronously (Fig. 3-1-1, insert), instead of asynchronously as described above, listeners report 

hearing one stream, regardless of the frequency differences between the two tones (Elhilali et al., 
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2009).  

Although this auditory sequence has been used extensively in human studies to study the 

psychophysical mechanisms of human audition, there have not been any studies that explicitly 

tested streaming abilities of non-human animals using techniques comparable to those used in 

humans. Therefore, it remains unclear whether non-human animals, in fact, perceive streams in 

the same way as humans. We address this question in Chapter 2 by training rhesus monkeys to 

report their streaming percepts using a task and conditions comparable to those used in human 

psychophysical studies. We found that monkeys’ behavioral reports were qualitatively consistent 

with those of human listeners.  

Because the streaming task using monkeys was validated as a behavioral model, we were 

able to use the task to study the neural coding that underlies this behavior, and more generally, 

auditory perception. The next sections provide an introduction to what is known about the 

auditory processing of perceptual information, and previous work studying the neural correlates 

of auditory streaming.  

1.3 A NEURAL PATHWAY FOR AUDITORY PERCEPTION: THE VENTRAL AUDITORY PATHWAY 

 How and where does perception occur in the auditory system? Correlates of auditory 

perception can be found as early as the cochlear nucleus (Pressnitzer et al., 2001; Pressnitzer et 

al., 2008), and stimulus-specific adaptation (a proposed mechanism for encoding auditory 

streams) is found in the auditory thalamus (Anderson et al., 2009; Antunes et al., 2010) and 

auditory cortex (Szymanski et al., 2009; Taaseh et al., 2011; Xu et al., 2014). However, because 

we are interested in studying the neural correlates of perception, the following discussion will 

focus on the contribution of the cortex to streaming and, in particular, the contribution of the 

‘ventral’ auditory pathway. 
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The ventral auditory pathway is one of two pathways that are generally thought to 

process auditory information in the cortex; and it is thought to process a sound’s identity, content 

and meaning (consequently, it is sometimes referred to as the ‘what’ pathway) (Kaas et al., 1999; 

Romanski et al., 1999). The other pathway, the ‘dorsal’ pathway, contributes to sound 

localization and audiomotor action. We should note that this parsing of the auditory brain is not 

universally accepted and other variants have been proposed (Griffiths, 2008; Rauschecker, 2012; 

Rauschecker et al., 2009). Because the question of the grouping and segregation of acoustic 

information into streams is a question of sound identity, the ventral pathway is the more obvious 

pathway to target for our initial study; it remains an open question, though, whether and how the 

dorsal pathway might contribute to auditory perception in those situations when stimuli can be 

segregated using spatial information. 

In the rhesus macaque, the ventral pathway begins in the core auditory fields, primary 

auditory cortex (A1) and field R; Chapter 3 describes recordings from A1 in monkeys that are 

reporting streaming percepts. The core areas project to the anterolateral (AL) and middle-lateral 

belt regions of the auditory cortex (Kaas et al., 2000; Rauschecker et al., 2000), which, in turn, 

project directly and indirectly to the ventrolateral prefrontal cortex (vlPFC) (Romanski et al., 

1999). Although only A1 was targeted in the current study, these other regions represent 

appealing future recording targets to study the transformation of neural activity during the 

streaming task along the entire ventral auditory pathway.  

There is no universal consensus on what information is coded in each region of the 

ventral auditory pathway. In fact, there remains a great deal of debate over even what acoustic 

features are preferentially processed in each of these regions, let alone the contribution of these 

regions to ‘higher order’ processing, such as categorization or choice. Nonetheless, it is thought 
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that neurons in this pathway encode increasingly more complex attributes of a stimulus the 

further along the pathway one progresses. Generally speaking, neurons in the core auditory fields 

seem to be sensitive to a number of low-level acoustic features, such as frequency, intensity, and 

location, as well as some more derived properties, such as timbre and stimulus novelty (Bendor et 

al., 2005; Bizley et al., 2009a; Bizley et al., 2010; Bizley et al., 2009b; Bizley et al., 2013b; Javitt 

et al., 1994; Razak, 2011; Schebesch et al., 2010 ; Ulanovsky et al., 2004; Versnel et al., 1998 ; 

Wang et al., 1995; Watkins et al., 2011; Werner-Reiss et al., 2008; Zhou et al., 2010). Further 

along, AL neurons respond preferentially to band-pass noise, frequency-modulated sweeps, and 

vocalizations (Christison-Lagay et al., 2014b; Kikuchi et al., 2010; Rauschecker et al., 2000; 

Rauschecker et al., 2004; Rauschecker et al., 1995; Tian et al., 2004; Tian et al., 2001; Tsunada et 

al., 2011a). The auditory belt and parabelt regions show an even greater degree of stimulus 

selectivity, such as selectivity for vocalizations (Chang et al., 2010; Leaver et al., 2010; Obleser 

et al., 2009; Obleser et al., 2010; Obleser et al., 2006). Additionally, other nearby auditory fields 

show a preference for voices (Perrodin et al., 2011; Petkov et al., 2008). Finally, vlPFC neurons 

are modulated more by the cognitive components of audition, such as non-spatial auditory 

attention, auditory working memory, and the referential meaning of vocalizations (Cohen et al., 

2009c; Gifford III et al., 2005b; Lee et al., 2009; Ng et al., 2013; Plakke et al., 2013; Plakke et al., 

2015; Russ et al., 2008a; Russ et al., 2008b). 

As previously mentioned, there is still a great degree of controversy about where choice-

modulated neural activity emerges in the pathway. For example, some studies of A1 neurons have 

found that neural activity correlates with a monkey’s reports of category identify (Selezneva et 

al., 2006), pitch (Bizley et al., 2013b) and amplitude modulation (Niwa et al., 2012b). Other 

studies have suggested that A1 may contain choice-related activity pertinent to streaming (see the 
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next section, Regularities and Stream formation: neural basis for discussion; (Elhilali et al., 2009; 

Micheyl et al., 2005)).  

However, there is another body of literature that suggests that neural correlates of 

perception are not found until later portions of the ventral pathway (either later areas of the 

auditory cortex (Chang et al., 2010; Gutschalk et al., 2008; Mesgarani et al., 2012), or the vlPFC 

(Lee et al., 2009; Russ et al., 2008a; Tsunada et al., 2011b)). MEG data, for example, suggest that 

the neural correlates of a listener hearing a sound, while engaged in an informational-masking 

paradigm, are found in the secondary (belt) auditory cortex (Gutschalk et al., 2008); and 

correlates of perceptual judgments about communication sounds (species-specific vocalizations 

and speech sounds) have also been found in belt region of the auditory cortex and higher auditory 

cortices (Chang et al., 2010; Mesgarani et al., 2012). In recent studies of phonemic categorization, 

although neural correlates of categorization were found in higher auditory cortex, perceptual 

judgments were not. Instead, choice-related activity emerged at the level of the vlPFC (Lee et al., 

2009; Russ et al., 2008a; Tsunada et al., 2011a). 

It is unclear why some studies find choice-related activity as early as the core auditory 

cortex and others do not find it until much further downstream. However, it is possible that the 

choice and complexity of stimuli and task contribute to the difference. The studies that find 

choice-related activity in A1 used relatively simple tasks and/or stimuli (such as the 

discriminating pitch or depth of amplitude modulation); these stimuli can be represented directly 

in the firing rates of A1 neurons. However, choice activity attendant to tasks that use complex 

stimuli, such as vocalizations, or tasks in which the decisions is based on more derived stimulus 

properties is not seen in the auditory cortex(Tsunada et al., under review). Thus, choice-related 

activity may emerge where neurons are able to represent sensory evidence relevant to the choice; 
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and therefore, choice-related activity may originate in more than just one area. This conclusion 

assumes that these choice signals represent a feed-forward process and do not reflect feedback 

from higher-decision areas (Nienborg et al., 2014). 

1.4 REGULARITIES AND STREAM FORMATION: NEURAL BASIS 

As discussed earlier, there has been extensive psychophysical work using the streaming 

task with humans. However, thus far, the study of the neural correlates of streaming have been 

studied only in A1 using passive-listening paradigms, or paradigms in which the monkeys were 

not required to report streaming percepts (Fishman et al., 2004; Fishman et al., 2001a; Micheyl et 

al., 2005). These studies have shown that in response to alternating tone sequences, neurons in A1 

responses adapt to tones over time as a function of its frequency and repetition rate. Specifically, 

A1 neurons have been reported to respond more to their best frequency (alternately defined as the 

frequency that elicits the highest response at a fixed intensity, or the frequency that elicits a 

reliable response at the lowest intensity) and are less suppressed by repeated presentations of this 

frequency than this ‘non-best’ frequency (defined as frequencies away from the best frequency) 

(Fishman et al., 2004; Fishman et al., 2001a; Micheyl et al., 2005). 

This pattern of A1 activity is consistent with the hypothesis that stream segregation is 

represented in a place code (Eggermont, 2001; Steinschneider et al., 1990); see Fig 1-2. In this 

theory, place along A1’s tonotopic map would encode the number of perceived streams perceived 

as a function of the spatial separation between active neural populations: one stream is perceived 

when there is one peak of activity, whereas two streams are perceived when there are two 

discernable peaks of activity. A place code could effectively use differential rates of habituation 

to encode the number of streams: neurons habituated more to non-best frequencies, and therefore, 

after repeated presentations of a tone, neurons may respond robustly only to their best 
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frequencies. This leads to two distinct neural populations on A1’s tonotopic map, with each 

population responding only to its best frequency, and each encoding a separate stream. It is 

important to note that the term ‘place code’ here refers to the neural population’s combination of 

spatial and rate codes, and does not imply that there is a ‘labeled line’ or specific place that 

encodes 1 versus 2 streams in the primary auditory cortex.  

This kind of neural place code, however, is insufficient to explain other aspects of 

streaming. As described earlier, Elhilali et al. (2009) found that when the tone bursts are 

presented synchronously—instead of asynchronously as is typical with studies of auditory 

streaming—listeners report hearing one stream. This is observation seems at odds with this 

neural-place coding hypothesis. Because of this discrepancy, Elhilali et al. (2009) proposed a 

different model of stream segregation in which the timing of activity encodes streams: their 

hypothesis argues that streams are formed on the basis of the detection of neural populations with 

temporally coherent activity. Thus, for both synchronous tone sequences or alternating sequences 

with small frequency separations, the active neural population(s) would respond simultaneously, 

which would be read out downstream as evidence for a single stream. On the other hand, tone 

sequences with large frequency separations produce two neural populations responding at 

different times, and would be interpreted as two distinct auditory streams.  

Likely, both the neuronal arrangement (e.g., topographical/tonotopic) and temporal pattern 

of activity play roles in stream formation. However, a strict interpretation of temporal coherence 

is also likely insufficient, as recent studies have found that temporally coherent sounds can, in 

fact, be segregated into multiple, discrete streams under certain conditions (Micheyl et al., 2010; 

Micheyl et al., 2013a; Micheyl et al., 2013b). Although the current work does not directly address 

either of these models, the results of the study presented in Chapter 3 support a mechanism to 
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encode streams that would use a combination of place and temporal dynamics.  

1.5 CONCLUSIONS 

 In spite of the progress that has been made in the study of the neural mechanisms 

involved in auditory streaming, the neural code underlying the relationship between the acoustic 

features of an auditory stimulus, neural activity, and the listener’s percept remains unclear. 

Ultimately, neither psychophysical studies nor human-imaging studies can provide sufficient 

insight into the neural code underlying perceptual processing: the relationship between perception 

and neural activity can only be evaluated by directly testing both simultaneously. Although 

previous studies have provided a great deal of insight into how the brain encodes acoustic stimuli, 

few studies have directly and systematically tested neural activity using the same behavioral tests 

and stimuli used in humans. The studies described in Chapters 2 and 3 aimed to address this gap 

in the literature by (1) directly testing whether non-human animals stream sounds in a manner 

consistent with humans and (2) studying the way in which A1 neurons encode both the acoustic 

and behavioral aspects of the task.  
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1.6 FIGURES 

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1-1: Schematic of the auditory stimulus to test auditory streaming.  
The auditory stimulus is an asynchronous sequence of two types of tone bursts: tone A and tone 
B. Typically, tones A and B were presented asynchronously but were at times presented 
simultaneously (see inset at upper left).  Small frequency differences (<1 semitone), short 
listening durations, and synchronous tone presentation bias listeners towards perceiving one 
stream; larger frequency (>10 semitones) and long listening durations bias listeners towards  
perceiving two streams. The units on the x- and y-axes are arbitrary.  
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Figure 1-2: Putative neural mechanism mediating auditory streaming.  
Panel A presents an example of an alternating tone sequence as used in the streaming task. Tones 
at two frequencies (A and B) are presented in an alternating fashion; here, the frequency different 
should be considered ‘intermediate’.  Panel B shows an example of the neural response to a 
streaming sequence with intermediate frequency separation early in the sequence presentation.  
The top row shows the response of two neurons, with best frequencies at either tone A’s 
frequency (shown in black) or tone B’s frequency (shown in gray).  Early in the sequence 
presentation, both neurons respond robustly to both frequencies.  This is shown schematically in 
the bottom row: the filled gray area represents the topographic locations in A1 that would respond 
to both tone A and tone B frequencies.  Panel C shows the neural response later in the same trial.  
The top row shows the response of same two neurons after frequency-specific habituation has 
occurred.  There is still a robust response to the neuron’s best frequency, but each neuron has 
stopped responding to the other frequency.  The bottom row shows schematically how frequency-
specific habituation reduces the area of cortex responding to a given frequency, and leads to two 
separate populations of neurons that encode the stimulus.  Modified from Christison-Lagay et al. 
(2015). 
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2 CHAPTER 2: BEHAVIORAL CORRELATES OF AUDITORY STREAMING IN 
RHESUS MACAQUES. 

 

Modified from Christison-Lagay KL, Cohen YE. (2014). Behavioral correlates of auditory 
streaming in rhesus macaques. Hearing Research 309: 17-25. DOI:10.1016/j.heares.2013.11.001 
 

2.1 ABSTRACT 

Perceptual representations of auditory stimuli (i.e., sounds) are derived from the auditory 

system's ability to segregate and group the spectral, temporal, and spatial features of auditory 

stimuli—a process called ‘auditory scene analysis’. Psychophysical studies have identified 

several of the principles and mechanisms that underlie a listener's ability to segregate and group 

acoustic stimuli. One important psychophysical task that has illuminated many of these principles 

and mechanisms is the ‘streaming’ task. Despite the wide use of this task to study psychophysical 

mechanisms of human audition, no studies have explicitly tested the streaming abilities of non-

human animals using the standard methodologies employed in human-audition studies. Here, we 

trained rhesus macaques to participate in the streaming task using methodologies and controls 

similar to those presented in previous human studies. Overall, we found that the monkeys' 

behavioral reports were qualitatively consistent with those of human listeners, thus suggesting 

that this task may be a valuable tool for future neurophysiological studies. 

2.2 INTRODUCTION 

One of the fundamental tasks of the auditory system is to transform low-level sensory 

representations of acoustic stimuli into perceptual representations (i.e., sounds) that can guide 

behavior (Bizley et al., 2013a; Griffiths et al., 2004; Shamma et al., 2010; Shinn-Cunningham, 

2008). These perceptual representations form the core building blocks of our hearing experience 
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(Bregman, 1990; Griffiths et al., 2004; Shamma, 2008) and are derived from the auditory 

system’s ability to segregate and group the spectral, temporal, and spatial features of auditory 

stimuli—a process called ‘auditory scene analysis’ (Bregman, 1990; McDermott, 2009; Winkler 

et al., 2009). Auditory scene analysis enables a listener to follow, for example, the melody that is 

carried by a banjo in a band or to track a friend’s voice in a noisy restaurant (McDermott, 2009; 

Shinn-Cunningham, 2008). 

Psychophysical studies have identified several of the principles and mechanisms that 

underlie a listener’s ability to segregate and group acoustic stimuli (Horvath et al., 2001; Rahne et 

al., 2009; Sussman, 2005; Sussman et al., 2007). One important psychophysical task that has 

illuminated many of these principles and mechanisms is the ‘streaming’ task (Bregman, 1990; 

Carlyon et al., 2001; Cusack, 2005; Elhilali et al., 2009; Micheyl et al., 2007). Typically, the 

streaming task is a one-interval, two-alternative forced choice task in which an auditory 

stimulus—composed of an interleaved sequence of tone bursts (Fig. 2-1)—is presented and a 

listener reports whether she heard one or two streams. By varying the spectral, temporal, and 

other properties of this sequence, the probability that a listener reports one or two streams is 

systematically altered. For example, when the frequency difference between the tone bursts in the 

two sequences is small (e.g., <1 semitone difference), listeners systematically report hearing one 

stream. On the other hand, when the frequency difference between these tone-burst sequences is 

large (e.g., ≥10 semitones), listeners systematically report hearing two separate streams. When 

the frequency difference is intermediate between these two extremes, the reports become less 

reliable: on alternating trials, listeners report hearing one or two streams. 

Despite the wide use of this task (and variants of it) to study psychophysical mechanisms 

of human audition (Shamma et al., 2011), no studies have explicitly tested the streaming abilities 
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of non-human animals using the standard methodologies employed in human-audition studies. 

Instead, previous studies have indirectly tested streaming (Izumi, 2002; Ma et al., 2010; Noda et 

al., 2012). For example, in Ma et al. (2010), ferrets reported hearing a ‘target’ tone that was 

embedded in a tone-burst sequence. This experimental strategy to test streaming is reasonable 

because many non-human animals process auditory stimuli and hear sounds in a manner similar 

to that of human listeners (Izumi, 2002; Kuhl et al., 1975b; Kuhl et al., 1982; Miller et al., 2001; 

Petkov et al., 2003; Petkov et al., 2007; Recanzone et al., 2008). Consequently, it was assumed 

that, like humans (Elhilali et al., 2009), these ferret listeners could only detect the target tone 

when the auditory stimulus was segregated into two streams.  

However, if the goal of testing the auditory perceptual abilities of non-human animals is 

to develop them as models of human-brain function, it is imperative to use methodologies and 

controls that are comparable to those used with human listeners so that valid inferences can be 

made regarding human audition and cognition. Here, we trained rhesus macaques to participate in 

a streaming task using methodologies and controls similar to those presented in previous human 

studies. Overall, we found that the monkeys’ behavioral reports were consistent with those of 

human listeners, thus suggesting that this task may be a valuable tool for future 

neurophysiological studies. 

2.3  EXPERIMENTAL PROCEDURE 

2.3.1 Experimental Chamber 

Psychophysical sessions were conducted in a darkened room with sound-attenuating 

walls. A monkey (Macaca mulatta; Monkey H or Monkey S) was seated in a primate chair in the 

center of the room. A touch-sensitive joystick was attached to the chair. The monkey moved the 
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joystick during the behavioral task to indicate his behavioral report. 

2.3.2 Auditory Stimulus 

The auditory stimulus was a sequence tone bursts (40-ms duration with a 5-ms cos2 ramp 

at a sound level of 65 dB SPL) that alternated between two types of tone bursts, called here ‘tone 

A’ and ‘tone B’. The inter-tone-burst interval was 13 Hz. Auditory stimuli were generated using 

the RX6 digital-signal-processing platform (TDT Inc.) and were presented by a studio-monitor 

speaker (Yamaha MSP7). 

2.3.3 Behavioral Task 

The streaming task was a single-interval, two-alternative-forced-choice discrimination 

task that required the monkey to report whether he heard one or two streams (Fig. 2-2). A trial 

began with the presentation of the auditory sequence (Fig. 2-1). Following offset of the auditory 

stimulus, an LED was illuminated, and the monkey had 3000 ms to move the joystick (a) to the 

right to report one stream or (b) to the left to report two streams.  

 Training Procedure and Reward Structure 

During the initial training sessions, tones A and B were presented at frequency 

differences that, in humans (Cusack, 2005; Micheyl et al., 2005), elicit reliable reports of one or 

two streams (i.e., ≤1.0 or ≥10 semitones, respectively). On these trials, the monkey received 

consistent feedback: he was only rewarded for reporting a ‘correct’ response. Specifically, when 

the frequency difference between tone A and tone B was ≤1.0 semitone, the monkey was 

rewarded when he moved the joystick to the right. When the frequency difference was ≥10 

semitones, the monkey was rewarded when he moved the joystick to the left. 
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After the monkey’s performance stabilized (i.e., they were performing significantly 

above chance during entire behavioral sessions), we presented auditory sequences that contained 

both the ‘extreme’ frequency differences (≤1.0 or ≥10 semitones) as well as frequency differences 

that were ‘intermediate’ between these two extremes (i.e., >1 and <10 semitones). Because 

stimuli with these intermediate frequency differences do not elicit reliable reports of one or two 

streams in human listeners (Bregman, 1990; Bregman et al., 2000; Cusack, 2005; Elhilali et al., 

2009; Micheyl et al., 2007), there was not a ‘correct’ answer. Consequently, on these trials, the 

monkeys did not receive consistent feedback: they received rewards on 50% of randomly selected 

trials; the decision to reward was independent of their behavioral report. 

 Behavioral-testing Strategy 

We manipulated four parameters of the tone-sequence: the frequency difference between 

tones A and B; the duration of the auditory sequence; the temporal relationship between tones A 

and B; and the frequency of tone A. These first three parameters manipulations tested whether the 

monkeys’ reports were modulated in a manner consistent with human listeners’ reports 

(Bregman, 1990; Elhilali et al., 2009; Micheyl et al., 2007). The last parameter manipulation 

controlled for the possibility that the monkeys were not actually reporting the number of heard 

streams but, instead, reported two streams whenever they heard a stimulus that contained high 

frequencies. 

Next, we describe the details of these manipulations. First, on a trial-by-trial basis, we 

randomly varied the frequency difference between tones A and B. During ~93% of these trials, 

we presented those frequency differences that provided consistent feedback (i.e., ≤1.0 or ≥10 

semitones). For the remaining trials (~7% of the trials or ~44 trials/day), we presented those 

frequency differences that did not provide consistent feedback (i.e., >1 and <10 semitones). 
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Second, on a trial-by-trial basis, we randomly varied tone A’s frequency (range: 865–2226 Hz; 

mean: 1500 Hz). Third, on a trial-by-trial basis, we varied the sequence duration (i.e., ‘listening 

duration’; 180–2022 ms; mean: 778 ms). Fourth, on a subset of days, we manipulated the 

temporal relationship between tones A and B. On most days, tones A and B were presented in 

their standard asynchronous format; see Figure 2-1. However, on select days, tones A and B were 

presented simultaneously on a randomly subset of trials (~27%); see Figure 2-1 inset. The time 

between the onsets of the simultaneous was 13 Hz, the same as the asynchronous timing. When 

tones A and B were presented simultaneously, their frequency difference was always 10 

semitones. For the simultaneous trials, the monkeys received rewards independent of their 

behavioral response. 

2.3.4 Data Analyses 

We quantified the monkeys’ performance by calculating the probability of the monkey 

reporting two streams (i.e., the monkey moved the joystick to the left). This analysis was 

conducted as a function of the (a) the frequency difference between tones A and B, (b) the 

frequency of tone A, (c) listening duration, and (d) the temporal relationship between tones A and 

B. The 95%-confidence interval on each of these probability values was calculated using the 

following formula: 1.96*(p*(1-p)/n)0.5 (Zar, 1996). p was the probability (i.e., the proportion of 

trials when the monkey reported two streams), and n was the number of trials.  The monkeys’ 

performance was considered reliable when the 95%-confidence interval did not overlap with 

chance performance (i.e., 0.5). A Wilcoxon test was also used to determine whether a probability 

value differed from chance; the p-values that are reported in the text reflect the results of this test. 

Probability values that were generated from different stimulus-parameter manipulations (e.g., for 
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the upper half of listening durations and the lower half of listening durations) were considered to 

be significantly (p<0.05) different when the 95%-confidence intervals for the two conditions did 

not overlap.  

In a second set of analyses, we conducted two different bootstrap procedures. These 

bootstrap procedures were conducted to establish performance thresholds, which were then used 

to identify runs of trials that exceeded these thresholds. The first bootstrap procedure generated a 

‘null’ distribution. This null distribution reflected the probability that the monkeys responded 

randomly: that is, their responses were independent of the stimulus. To generate this distribution, 

we first identified those trials in which the frequency difference between tones A and B was 0.5, 

1, 10, or 12 semitones and then shuffled the relationship between these frequency differences and 

the monkeys’ reports. Since these frequency differences generate consistent reports in human 

listeners (Bregman, 1990; Cusack, 2005; Elhilali et al., 2009; Micheyl et al., 2007), when we 

shuffled the relationship, we hypothesized that we could systematically divorce the stimulus from 

the response. In contrast, because other frequency differences (i.e., 3 and 5 semitones) do not 

generate consistent reports in human listeners, there is no ‘incorrect’ answer and the stimulus 

cannot be divorced from the response. Therefore, we did not include these trials within our 

shuffling procedure. Next, we selected, with replacement, N of these shuffled stimulus-report 

pairings; N was the number of trials/day. We then determined whether a shuffled pair was 

‘correct’ (e.g., frequency difference was ≤1 semitones and the report was ‘one stream’) or 

‘incorrect’ (e.g., the frequency difference was ≤1 semitones and the report was ‘two streams’). 

Third, to simulate the temporal dynamics of a behavioral session, we treated these shuffled pairs 

as if they consecutive trials of a behavioral testing session.  We then analyzed performance as a 

function of different running-average window sizes (i.e., 10, 20 or 50 consecutive shuffled 
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stimulus-response pairings). This procedure was repeated 1000 times for each behavioral session. 

From this procedure, we generated, as a function of each window size, a distribution of running 

averages. Finally, we calculated the ‘running-average window (RAW) threshold’. In one variant, 

we calculated the RAW threshold from each session’s running-average distribution: the RAW 

threshold was defined as the upper boundary of each distribution’s 95% confidence interval. In a 

second variant, all of the individual session distributions were pooled together (as a function of 

window size), and the ‘population’ RAW threshold was defined as the upper boundary of this 

pooled distribution’s 95% confidence interval. 

The second bootstrap procedure generated a distribution of simulated data that, unlike the 

first bootstrap procedure, maintained the relationship between the auditory stimulus and the 

monkeys’ responses. This bootstrap procedure tested whether, within an experimental session(s), 

there were temporal epochs or ‘runs’ of performance that were above chance. First, for each 

experimental session, we identified those trials in which the frequency difference between tones 

A and B was 0.5, 1, 10, or 12 semitones; analogous to the logic described above, we did not use 

the other frequency-difference values. Next, while maintaining the relationship between the 

stimuli and response, we shuffled the order of the trials. This procedure maintained the 

relationship between the stimulus and response but disrupted the temporal order of these 

stimulus-response pairings. Finally, to simulate the temporal dynamics of a behavioral session, 

we analyzed performance as a function of different running-average window sizes (i.e., 10, 20 or 

50 consecutive shuffled stimulus-response pairings). This procedure was repeated 1000 times for 

each behavioral session. Like with the first bootstrap procedure, we calculated the RAW 

threshold using the session-by-session-data or the pooled data.  

To compare the monkeys’ performance with the bootstrapped performance, we extracted 
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consecutive blocks of data that contained 10, 20, or 50 trials in which the frequency difference 

was 0.5, 1, 10, or 12 semitones. However, because the actual dataset contained trials from all of 

the tested-frequency differences, the actual length of the data block could be longer than the 

window size. For example, if the window size was 20 trials, the data block might contain 25 

trials: 20 trials in which the frequency difference was 0.5, 1, 10, or 12 semitones and 5 trials in 

which the frequency difference was 3 or 5 semitones. When the monkey’s performance on the 

0.5, 1, 10, and 12 semitone trials exceeded the RAW threshold, the entire trial block (including 

trials in which the frequency difference was 3 or 5 semitones) was considered ‘suprathreshold’. 

To be clear, the determination of ‘suprathreshold’ was only based on the 0.5-, 1-, 10-, and 12-

semitone trials because only these trial types were used in the bootstrap procedure. Using the 

suprathreshold data, we calculated, as a function of each window size and each frequency 

difference, the probability that the monkey reported two streams. These values were generated 

from individual behavioral sessions or from the dataset that was generated when the individual 

sessions were pooled together, analogous to that done with the bootstrap procedures. Finally, this 

analysis was conducted independently for each of the RAW thresholds that were calculated from 

each of the two bootstrap procedures (see Table 2-1 for percentage of trials that exceed the RAW 

thresholds). 

2.4 RESULTS 

2.4.1 Monkeys’ reports are modulated by the frequency difference between tones A and B 

The results from 388 behavioral sessions are shown in Figure 2-3; because monkeys S 

and H had comparable behavior, we pooled their behavioral data. Figure 2-3 plots the probability 

(i.e., the proportion of trials) that the monkeys reported two auditory streams as a function of 
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frequency difference between tones A and B. When the frequency difference was ≤1 semitone, 

the probability that the monkeys reported two streams was less than chance. That is, the 

probability plus/minus its 95%-confidence interval was less than and did not include 0.5 (i.e., 

chance performance): 0.5-semitone difference: p=0.454±0.005, p<0.05; 1-semitone difference: 

p=0.465±0.006, p<0.05. The interpretation of this result is that the monkeys reliably reported one 

stream. When the frequency difference was ≥10 semitones, a different pattern emerged: the 

probability that the monkeys reported two streams exceeded chance: 10-semitone difference: 

p=0.550±0.007, p<0.05; 12-semitone difference: p=0.551±0.005, p<0.05. The monkeys’ reports 

for the intermediate frequency differences (3 and 5 semitones) were between the reports for the 

other frequency differences; however, only the 5-semitone difference did not differ from chance 

(3-semitone difference: p=0.464±0.018, p<0.05; 5-semitone difference: p=0.487±0.020, p>0.05).  

Although our behavioral data were reliable, the monkeys’ behavior clearly did not differ 

substantially from 0.5 and was poor relative to human performance (Bregman, 1990; Cusack, 

2005; Micheyl et al., 2007). However, during the behavioral sessions, we observed short periods 

(i.e., 10-50 consecutive trials) of high performance. To gain further insight into this observation, 

we conducted further analyses of their behavior using two different bootstrap procedures.  

In the first bootstrap procedure, we shuffled the relationship between the auditory 

stimulus and the monkeys’ responses to generate a null distribution. This distribution tested the 

hypothesis that, over short windows of trials, the monkeys performed better than chance and were 

using the stimulus to guide their choices. Panels A and B in Figure 2-4 show the RAW thresholds 

that were generated from this procedure and the respective suprathreshold subset of behavioral 

data (see Methods). Figure 2-4A shows the monkeys’ performance when the RAW thresholds 

were calculated from the population data. This threshold calculation is a reflection of 
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performance for a given running average relative to the monkeys’ general behavior. Figure 2-4B 

shows the monkey’s performance using the session-by-session RAW thresholds.  These 

thresholds provide a measure of performance relative to a particular day’s behavior. We again 

found that monkeys (a) significantly reported one stream at the smallest frequency differences; 

(b) significantly reported two streams at the largest frequency differences; and (c) for 

intermediate frequency differences, behavior did not differ from chance (i.e., it fell below the 

running-average threshold). More specifically, for running windows of 10 trials (green data), we 

found that the monkeys’ behavior was ~30% better than their overall behavior that was shown in 

Figure 2-3. The monkeys’ performance improved modestly for larger running-average windows 

(blue and red data): for windows of 50 trials (red data), behavior improved by ~10%. Like the 

data in Figure 2-3, this bootstrap analysis indicated that the monkeys’ behavior was guided by the 

stimuli.  However, unlike the data shown in Figure 2-3, this bootstrap analysis indicated that—

under certain circumstances—the monkeys’ performance can closely approximate the 

performance of human listeners.  

To further evaluate these windows of high performance, we performed a second 

bootstrap procedure. In this procedure (and unlike the first one), we maintained the integrity of 

the stimulus-response pairings but shuffled the temporal order of these pairings. This procedure 

tested explicitly the reliability of the running-average windows; that is, this procedure tested 

whether there were short ‘runs’ of performance that were above chance. Figures 2-4C and 2-4D 

show the monkeys’ performance for those runs of trials that exceeded the bootstrap’s 

performance at each of the RAW thresholds. Once again, we identified runs of trials in which the 

monkeys’ behavior exceeded the RAW thresholds. We again found that short running-average 

windows of 10 trials (green data) were ~30% than the overall data in Figure 2-3; with more 
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modest gains of ~10% over the overall data for windows of 50 trials (red data). 

Together, all three analyses indicate that the monkeys successfully learned the streaming 

task. Using all of the data (Fig. 2-3), we found that their performance was reliable, and the pattern 

of their behavior was consistent—albeit poorer—than human performance. However, 

importantly, we found periods of high performance, defined as having a running average that fell 

above the RAW thresholds. These periods of high performance, which more closely 

approximated human performance, were found in windows of 10-50 trials (Fig. 2-4).  

2.4.2 The monkeys’ behavior was independent of tone A’s frequency 

Next, we tested whether the trial-by-trial variability in the frequency of tone A (range: 

865-2226 Hz) affected the monkeys’ behavioral reports. As a reminder, because the frequency of 

tone B was based on tone A’s frequency, when we changed tone A’s frequency, we changed the 

frequency content of the auditory sequence. This analysis is important because if the monkeys 

were using a strategy of reporting ‘two streams’ whenever they heard a high-frequency stimulus, 

then changing the frequency of tone A should affect their behavior. However, if the monkeys 

were simply reporting the number of heard streams, their reports should be independent of tone 

A’s frequency. The results of this analysis are shown in Figure 2-5. In this Figure, we again plot 

the probability that the monkeys’ reported two streams as a function of the frequency difference 

between tones A and B. However, here, we subdivided the data: the ‘low-frequency’ data 

contained the monkeys’ reports when the tone A’s frequency was between 865-1500 Hz (the 

lower half of the distribution of tone A frequencies), whereas the ‘high-frequency’ data contained 

reports when tone A’s frequency was 1501-2226 Hz (the upper half of the distribution of tone A 

frequencies). Using the two bootstrap procedures (see Methods), we calculated the running-
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average thresholds independently for both the low-frequency and high-frequency data groups; 

because data for all RAW thresholds followed the same pattern, Figure 2-5 only shows the data 

relative to the 20-trial RAW threshold. As can be seen, for each of those frequency differences 

that exceeded the bootstrap threshold (i.e., 0.5, 1, 10 and 12 semitones), in most cases, the 

confidence intervals on the monkeys’ reports for the low-frequency data overlapped with those of 

the high-frequency data. That is, the frequency of tone A did not significantly (p>0.05) affect the 

monkeys’ reports. When the confidence intervals did not overlap, we could not identify any 

consistent trend between the frequency of tone A and the monkeys’ reports. These results are 

consistent with the hypothesis that the monkeys’ reports were independent of tone A’s frequency.  

2.4.3 Longer stimulus durations biased the monkeys to report two streams  

Next, we tested how the trial-by-trial variability in the amount of that the monkeys’ 

listened to the auditory sequence time (listening duration; 180-2022 ms) affected their behavior. 

We divided the behavioral into trials when the listening duration was 180-770 ms (the lower half 

of the distribution of listening durations) and into trials when the listening duration was 771-2022 

ms (the upper half of the distribution of listening durations). The results of this analysis are 

shown in Figure 2-6; because data for all RAW thresholds followed the same pattern, Figure 2-6 

only shows the data relative to the 20-trial RAW threshold. As can be seen, for each of those 

frequency differences that exceeded the bootstrap threshold (i.e., 0.5, 1, 10 and 12 semitones), the 

confidence intervals on the monkeys’ reports for the longer-duration data never overlap with, and 

are always higher than, those of the shorter-duration sequences. Like human listeners (Micheyl et 

al., 2007), longer-duration sequences biased the monkeys to report ‘two streams’ more often than 

shorter-duration sequences.  
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2.4.4 Simultaneous presentation of tones A and B biases the monkeys to report one 

stream 

Finally, we tested whether the temporal relationship of tone A and tone B affected the 

monkeys’ behavioral reports. If, as discussed above, the monkeys were simply reporting ‘two 

streams’ whenever they perceived a high-frequency stimulus, their reports should not depend on 

the tones A and Bs’ temporal relationship. However, if the monkeys were reporting the number of 

heard streams, then, like human listeners (Elhilali et al., 2009), their reports should be biased 

toward reporting one stream when tone A and B were presented simultaneously and even when 

the frequency difference between tones A and B is large (e.g., ≥ 10 semitones).  

Because the simultaneous presentation of tones A and B sounded different than the 

normal asynchronous presentation, we limited its presentation to a small subset of behavioral 

sessions (N = 18). Consequently, this data set was not large enough for our bootstrap procedure.  

Finally, to maximize the informative trials with the least exposure to the simultaneous trials as 

possible, we limited this presentation to a 10-semitone frequency difference. 

Figure 2-7 shows the results of this analysis. As noted above, when the tones were 

asynchronous and the frequency difference was 10 semitones, the probability that the monkeys 

reported two streams was significant (p=0.524±0.007; p<0.05; this proportion represents the 

monkeys’ behavior during those sessions when simultaneous tones were also presented). 

However, when tones A and B were presented simultaneously, the monkeys were more likely to 

report one stream (10 frequency semitones: p=0.459±0.051). This proportion of trials was 

significantly (p<0.05) smaller than the one when tones A and B were presented asynchronously. 

However, it is not different than chance performance (0.5; p>0.05). Nonetheless, this result is 

consistent with the hypothesis that the simultaneous presentation of tones A and B biased the 
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monkeys toward reports of ‘one stream’. 

2.5 DISCUSSION 

The streaming task has been used extensively to test auditory perception in humans. 

Here, we demonstrated for the first time that rhesus macaques’ behavioral reports were consistent 

with those of human listeners. We found that monkeys reported small frequency differences as 

one stream, large ones as two streams, and intermediate ones as either one or two streams. We 

further found that the monkeys’ reports were independent of the absolute frequency content of the 

stimulus but that longer listening durations biased the monkeys toward reporting two streams. 

Moreover, simultaneous presentation of tones A and B biased the monkey toward reporting one 

stream. Below, we discuss the interpretation of our findings, as well as caveats regarding 

performance and implications for auditory processing across species.  

Although our current findings are consistent with human studies, training monkeys on the 

streaming task presented challenges that are not faced in training humans on this task. Namely, 

monkeys could not be explicitly told to report one or two streams. Therefore, without controls, 

our results could have been interpreted as the monkeys merely reporting any stimulus with a high 

frequency as two streams and anything else as one stream. However, three controls support the 

hypothesis that the monkeys were reporting the number of heard streams. First, by presenting 

tone A across a range of frequencies that spanned nearly 2.5 octaves—considerably larger than 

the frequency difference between tones A and B—we demonstrated that the monkeys’ reports 

were independent of the frequency of tone A (Fig. 2-5). Second, like human listeners (Micheyl et 

al., 2007), longer stimulus durations biased the monkeys to report two streams. This result is 

consistent with findings that the perception of two streams ‘builds up’ over time (Elhilali et al., 

2009; Micheyl et al., 2007) and is inconsistent with a hypothesis of simply reporting frequency 
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differences. Finally, similar to human listeners (Elhilali et al., 2009), when the tone bursts were 

presented simultaneously and the frequency difference was large (which normally elicits reports 

of ‘two streams), the monkeys’ reports were biased toward those of ‘one stream’ (Fig. 2-7).   

Overall, these controls are consistent with the hypothesis that the monkeys reported the number 

of heard streams.  

Simultaneously presenting tones was a particularly important control because it showed 

that the monkeys were actually reporting their streaming percept instead of merely reporting 

whether or not they heard a high frequency tone. When tones were presented asynchronously, 

monkeys might have used a strategy in which they categorized whether or not a high frequency 

tone was present. However, because the synchronously presented chord has a high frequency tone 

but monkeys were biased towards reporting one stream, a frequency-content categorization 

cannot wholly explain their performance. Furthermore, it should be noted that all of our 

frequency separations were distinguishable by rhesus macaques, and therefore, monkeys should 

be able to distinguish the tones in each trial (Sinnott et al., 1985) (and therefore, monkeys must 

based their decision on stream percept, not by categorizing whether they heard one repeated 

frequency, or two alternating frequencies). 

Although the monkeys’ performance was reliable and the three stimulus controls yielded 

results qualitatively similar to those of humans, the monkeys overall performance (Fig. 2-3) 

indicated that this task was difficult. However, in observing the monkeys’ performance, it was 

apparent that there were times when the monkeys had short runs of good performance. Indeed, 

our two bootstrap procedures indicated that the monkeys used the stimulus to guide their behavior 

and had high levels of performance over windows of 10-50 trials (Fig. 2-4) that more closely 

mirrored that of human-performance levels (Cusack, 2005; Elhilali et al., 2009; Micheyl et al., 
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2007). Importantly, since trials with a given frequency difference were randomly distributed 

within a session, these periods of high performance did not represent runs of ‘easy’ trials (e.g., 

blocks when the same frequency difference was presented multiple times in succession). 

How do our results fit into the general comparative psychophysical literature? Our 

findings support this literature, much of which has found that humans and non-human animals 

similarly process auditory stimuli. For example, several sets of studies have found that humans, 

monkeys, quail and chinchillas have similar categorical boundaries for human phonemes (Kuhl et 

al., 1975b; Kuhl et al., 1982). Similarly, monkeys exhibit amodal completion in a manner similar 

to humans (Miller et al., 2001; Petkov et al., 2003; Petkov et al., 2007) and group sounds in a 

manner similar to humans (Izumi, 2002). Other studies have demonstrated that non-human 

animals parse the auditory scene like human listeners (Aulanko et al., 1993; Coath et al., 2005; 

DeWitt et al., 2012; Narayan et al., 2007; Noda et al., 2012). Finally, our data are consistent with 

those studies that used indirect assays of streaming (Izumi, 2002; Ma et al., 2010; Noda et al., 

2012).  

Where in the brain is this information being processed? Several studies have recorded 

from the monkey primary auditory cortex while monkeys were listening passively to auditory 

sequences similar to those used in our study (Fishman et al., 2004; Fishman et al., 2001a; Micheyl 

et al., 2005). Although the monkeys were not actively engaged in a streaming task during these 

studies, the pattern of neural activity indicated that this cortical region may be involved in the 

grouping and segregation of auditory stimuli into auditory streams. Indeed, other sets of findings 

in the core and belt regions of the auditory cortex have also hinted at a role for these brain regions 

in auditory scene analysis (Bendor et al., 2006; Fishman et al., 2004; Fishman et al., 2000; 

Fishman et al., 2001a; Fishman et al., 2001b; Micheyl et al., 2007; Niwa et al., 2012b; Tomasello, 
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2008; Wang et al., 2008). More generally, the ventral auditory pathway, which is specialized for 

mediating auditory perception (Bizley et al., 2013a; Cohen, 2012; Kaas et al., 1999; Rauschecker 

et al., 2009; Romanski et al., 2009), likely plays a role in the neural computations that allow a 

listener to segregate or group an auditory stimulus into one or more auditory streams. 

Finally, this task will provide a powerful tool to disassociate brain activity that is related 

to the features of the auditory stimulus from activity that is related to a listeners’ behavioral 

report. In particular, since listeners reports vary, on a trial-by-trial basis, for sequences with 

intermediate frequency differences (>1 semitone and <10 semitones), this stimulus can be 

considered akin to a ‘bistable percept’ (Andersen et al., 1996; Bregman, 1990; Logothetis et al., 

1989; Parker et al., 1998). In other words, by holding the stimulus constant and analyzing neural 

responses as a function of the listener’s behavioral report, we can identify and differentiate 

between the brain regions and the computations that underlie auditory scene analysis, auditory 

perception and decision-making. 

2.6 CONCLUSION 

In conclusion, we have shown that monkeys can be trained to perform the streaming task. 

Moreover, their behavioral reports are consistent with human reports across a variety of 

experimental manipulations. These findings add further evidence that monkeys group and 

segregate acoustic stimuli similarly to humans. Therefore, they provide an excellent model to 

study the neural coding that underlies this behavior, and more generally, auditory perception.   
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2.7  FIGURES 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2-1: Schematic of the auditory stimulus to test auditory streaming.  
The auditory stimulus was an asynchronous sequence of two types of tone bursts: tone A and tone 
B. Typically, tones A and B were presented asynchronously but were at times presented 
simultaneously (see inset at upper left). The frequency of tone A, the frequency difference 
between the tones A and B (ΔF), and the listening duration (i.e., the duration of the auditory 
sequence) varied on a trial-by-trial basis. The units on the x- and y-axes are arbitrary.  
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Figure 2-2: Schematic of the streaming task.  
The streaming task is a one-interval, two-alternative, forced-choice task requiring a monkey to 
report whether he heard one or two auditory streams by moving a joystick to the right (one 
stream) or left (two streams). When the frequency difference between tones A and B was ≤1 
semitone or ≥10 semitones, the monkeys received a juice reward for reporting the correct answer. 
For all other frequency differences, the monkeys received a reward on 50% of randomly selected 
trials; the decision to reward was made independent of their behavioral report.  
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Figure 2-3:Behavioral performance: all data and all sessions.  
The average performance of both monkeys from all of the behavioral sessions reported in this 
manuscript (except for those trials when tone A and B were presented simultaneously; see Fig. 2-
7). The center of each bar indicates the average probability (i.e., the proportion of trials) that the 
monkeys reported two streams; the length of the bars indicates the 95% confidence interval. The 
gray dashed line represents chance performance (0.5) of answering one or two streams.  
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Figure 2-4: Behavioral performance: behavior relative to the bootstrapped RAW 
thresholds.  
The data on the top row show the monkeys’ behavior relative to a bootstrapped null distribution 
(i.e., one in which there is no relationship between the stimulus and the monkeys’ responses). The 
data on the bottom row show the monkeys’ behavior relative a second bootstrap distribution that 
maintained the integrity between the stimulus and the monkeys’ responses but shuffled the 
temporal order. This bootstrap procedure tested explicitly whether there were significant temporal 
runs of performance. For data in the left column, the RAW thresholds were calculated from data 
that was pooled across all behavioral sessions. For data in the right column, the RAW thresholds 
were calculated on a session-by-session basis. The color of each of the solid lines illustrates the 
upper and lower boundaries of the different RAW thresholds: green is 10 trials, blue is 20 trials, 
and red is 50 trials. The center of each bar indicates average suprathreshold performance; the 
color of the data points is consistent with the color of the threshold values. The length of the bars 
indicates the 95% confidence interval. If error bars from one color are not visible, it is because 
the confidence intervals for multiple conditions overlap completely. The gray dashed line 
represents chance performance (0.5) of answering one or two streams.  
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Figure 2-5: Behavioral performance: dependence on the frequency of tone A.  
The data in each row and column are organized analogous to that in Figure 2-4. The dotted lines 
illustrate the upper and lower boundaries of the 20-trial RAW threshold; the other thresholds are 
not shown. The data in black indicate average suprathreshold performance when the frequency of 
tone A was relatively low (865-1500 Hz). The data in gray indicate average suprathreshold 
performance when the frequency of tone A was relatively high (1501-2226 Hz). The center of 
each bar indicates average suprathreshold performance; the length of the bars indicates the 95% 
confidence interval. If error bars from one color are not visible, it is because the confidence 
intervals for multiple conditions overlap completely. The gray dashed line represents chance 
performance (0.5) of answering one or two streams. 
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Figure 2-6: Behavioral performance: dependence on listening duration.  
The data in each row and column are organized analogous to that in Figure 2-4. The dotted lines 
illustrate the upper and lower boundaries of the 20-trial RAW threshold; the other thresholds are 
not shown.  The data in black indicate average suprathreshold performance when the listening 
duration was short (180-770 ms). The data in gray indicate average suprathreshold performance 
when the listening duration was long (771-2022 ms). The center of each bar indicates average 
suprathreshold performance; the length of the bars indicates the 95% confidence interval. If error 
bars from one color are not visible, it is because the confidence intervals for multiple conditions 
overlap completely. The gray dashed line represents chance performance (0.5) of answering one 
or two streams.  
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Figure 2-7: Behavioral performance: dependence on the temporal structure of tones A and 
B.  
The black bar indicates average performance for trials when tones A and B were presented 
asynchronously. The gray bar indicates average performance for trials when tones A and B were 
presented simultaneously. The center of each bar indicates the average probability (i.e., the 
proportion of trials) that the monkeys reported two streams; the length of the bars indicates the 
95% confidence interval.   
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Table 2-1: Monkeys’ performance exceeds RAW threshold for a reliable proportion of trials 
The table summarizes the proportion of trials in which the monkeys’ performance exceeded the 
RAW threshold.  For all bootstrap procedures and RAW thresholds, the monkeys performance 
exceeded chance.   
  

Bootstrap Type
Temporal

 (Population)
Temporal

 (By session)
Null

 (By session)
 Null 

(Population)

Tr
ia

ls
 in

 R
AW

10

20

50 .09 .12 .06 .07

.1 .11 .05 .06

.08 .08 .08 .07
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3 CHAPTER 3: THE CONTRIBUTION OF PRIMARY AUDITORY CORTEX TO 
AUDITORY STREAMING 

3.1 ABSTRACT 

The contribution of the auditory cortex to perception remains controversial. While monkeys 

reported whether a temporal sequence of tone bursts was heard as one or two auditory streams, 

we recorded from sites in primary auditory cortex (A1). Like earlier work, A1 had frequency-

tuned responses that habituated, independent of frequency content, as the auditory sequence 

unfolded over time. We report for the first time that A1 firing rate was modulated by the 

monkeys’ choices; this modulation increased with listening time. Thus, A1 activity contributes to 

the sensory evidence underlying the segregation and grouping of acoustic stimuli into distinct 

auditory streams. However, because this modulation happens even the absence of frequency-

dependent differences in habituation, it puts our data at odds with a prominent hypothesis 

proposed by Micheyl et al.’s (2005), arguing for frequency-dependent habituation as a coding 

mechanism for this streaming percept. We propose that task-dependent differences in frequency 

tuning underlie these different findings.  

3.2 INTRODUCTION  

Auditory perception is mediated in the ventral auditory pathway (Bizley et al., 2013a; 

Hackett, 2011; Rauschecker et al., 2009; Romanski et al., 2009). In rhesus monkeys, this pathway 

begins in core auditory cortex, which includes primary auditory cortex (A1) and area R. Although 

there is broad agreement that the ventral pathway has a critical role in auditory perception, there 

is not a consensus on the distinct contributions of different regions of this pathway to perception 

(Bizley et al., 2013a; Giordano et al., 2012; Rauschecker, 2012). In particular, there remains 

considerable controversy regarding the contribution of the auditory cortex to perception (Binder 
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et al., 2004; Bizley et al., 2013b; Gutschalk et al., 2005; Lemus et al., 2009; Mesgarani et al., 

2012; Niwa et al., 2012a; Niwa et al., 2013; Tsunada et al., 2011a).  

To directly address a contribution of A1 to auditory perception, we recorded neural 

activity in rhesus monkeys while they simultaneously participated in an auditory-streaming task. 

During this task, which used conditions comparable to those in human studies (Christison-Lagay 

et al., 2014a), monkeys reported whether a temporal sequence of tone bursts—in which tone 

bursts alternated between two frequencies—was heard as one auditory stream or two auditory 

streams; an auditory stream is a single perceptual auditory unit, akin to a visual object (Bizley et 

al., 2013a; Bregman, 1990). Although with certain combinations of tone-burst frequencies, 

listeners reliably report one or two auditory streams, for other combinations, their reports vary 

trial-by-trial, despite the fact that the auditory stimulus is physically identical (Bregman, 1990; 

Griffiths et al., 2004; McAdams et al., 1979). This is advantageous because it allows a 

differentiation between neural representations of an acoustic stimulus versus representations of a 

reported percept.  

We found that, like earlier work (Fishman et al., 2004; Fishman et al., 2001a; Micheyl et 

al., 2005), A1 neurons had frequency-tuned responses that habituated, independent of frequency 

content, as the auditory sequence unfolded over time. Our study substantially advanced these 

prior findings by directly identifying a relationship between A1 firing rates and the perceptual 

reports of the monkey. Specifically, we found that the tone-burst-by-tone-burst firing rate of A1 

neurons was modulated by the monkeys’ choices, which increased with listening time. These 

findings provide the first direct evidence that A1 activity can contribute to the sensory evidence 

underlying the segregation and grouping of acoustic stimuli into distinct auditory streams. 

However, because this modulation happens even the absence of frequency-dependent differences 
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in habituation, it puts our data at odds with a prominent hypothesis proposed by Micheyl et al.’s 

(2005), arguing for frequency-dependent habituation as a coding mechanism for this streaming 

percept. We propose that task-dependent differences in frequency tuning underlie these different 

findings.  

3.3 EXPERIMENTAL PROCEDURE 

The University of Pennsylvania Institutional Animal Care and Use Committee approved 

all experimental protocols. All surgical procedures were conducted under general anesthesia and 

using aseptic surgical techniques. 

3.3.1 Experimental chamber.  

Behavioral training and recording sessions were conducted in an electrically shielded, 

darkened room with sound-absorbing walls. During each session, a monkey (Macaca mulatta; 

monkey H or monkey S) was seated in a primate chair in the center of the room. A calibrated 

speaker (model MSP7, Yamaha) was placed in front of the monkey at a distance of 1.5 m and at 

eye level. A touch-sensitive joystick was attached to the primate chair; the monkey moved the 

joystick to indicate his behavioral report. All auditory stimuli were generated using the RX6 

digital-signal-processing platform (TDT Inc.) and were transduced by the Yamaha speaker.  

3.3.2 Targeting of the primary auditory cortex. 

 From MRI images of each monkey’s skull and brain, the stereotactic location of A1 was 

identified using the Brainsight software package (Rogue Technologies). A1 was located on the 

surface of the superior temporal gyrus (Fig. 3-3A; monkey H: right hemisphere; monkey S: left 

hemisphere). A1 was further defined by its neural response properties (Kajikawa et al., 2005; 
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Kajikawa et al., 2011; Kusmierek et al., 2009; Rauschecker et al., 2004; Recanzone et al., 2000). 

3.3.3 Auditory tasks and stimuli.  

The ‘best-frequency’ task identified the best frequency of an A1 recording site. The 

‘streaming’ task tested the ability of a monkey to segregate a tone-burst sequence into one or two 

auditory streams (Christison-Lagay et al., 2014a). Data from the best-frequency task were 

integrated into the stream task, as described below. 

 Best-frequency task.  

A monkey listened passively while individual tone bursts were presented in a random 

order. The tone bursts (100-ms duration with a 5-ms cos2 ramp; 65 dB SPL) varied between 0.4–4 

kHz in one-quarter octave steps. 

 Streaming task.  

The streaming task was a single-interval, two-alternative-forced-choice discrimination 

task that required a monkey to report whether he heard one or two auditory streams. 500 ms after 

the monkey grasped the joystick, we presented a temporal sequence of tone bursts. Following 

offset of the auditory sequence, an LED was illuminated, which signaled the monkey to indicate 

his behavioral report. The monkey moved the joystick to the (1) right to report ‘one auditory 

stream’ or (2) left to report ‘two auditory streams’ (Fig. 3-1A).  

Each tone burst (40-ms duration with a 5-ms cos2 ramp; 65 dB SPL; 13-Hz inter-tone-

burst-interval) in the temporal sequence alternated between two frequencies: ‘tone A’ and ‘tone 

B’; Fig. 3-1B. Tone A was always set to a recording site’s best frequency (see Data-collection 

strategy below), whereas tone B was presented either at 0.5, 3, 5, or 12 semitones above this best 

frequency. The frequency of tone B and the duration (mean: 750±150 ms) of each tone-burst 
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sequence (i.e., ‘listening time’) varied on a trial-by-trial basis.  

 Training procedure and reward schedule.  

Initially, a monkey was trained on tone-burst sequences in which tones A and B were 

separated either by ≤1.0 or ≥10 semitones. These frequency differences were chosen because, in 

human listeners (Bregman, 1990; Cusack, 2005; Micheyl et al., 2005) and recently confirmed in 

monkeys (Christison-Lagay et al., 2014a), they reliably elicit reports of one or two streams, 

respectively. The monkey was only rewarded for correct responses. A response was correct when 

(1) the frequency difference between tone A and tone B was ≤1.0 semitone, and the monkey 

moved the joystick to the right; or (2) the frequency difference was ≥10 semitones, and he moved 

the joystick to the left (Fig. 3-1A). 

Following the stabilization of a monkey’s performance with these tone-burst sequences, 

we presented sequences that contained ‘intermediate’ frequency differences (i.e., 3 and 5 

semitones). These sequences do not elicit reliable reports of either one or two streams in human 

or monkey listeners (Bregman, 1990; Christison-Lagay et al., 2014a; Cusack, 2005; Elhilali et al., 

2009; Micheyl et al., 2007). Because on these trials, there was not a ‘correct’ answer, we 

rewarded the monkey on 50% of randomly selected trials, independent of his behavioral report. 

3.3.4 Neural-recording methodology.  

Prior to a recording session, a tungsten microelectrode (~1.0MΩ @ 1 kHz; Frederick 

Haër & Co.) was lowered through a recording chamber and into the brain using a skull-mounted 

microdrive (MO-95, Narishige). Software, which was written in OpenEx (TDT Inc.), Labview 

(NI Inc.), and Matlab (The Mathworks Inc.), synchronized behavioral control with stimulus 

production and data collection. Neural signals were sampled at 24 kHz, amplified (RA16PA and 
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RZ2, TDT Inc.), and stored for online and offline analyses. Online spike sorting was conducted 

using OpenSorter (TDT Inc.). 

3.3.5 Data-collection strategy.  

While the electrode advanced through the brain, we presented white-noise bursts 

(duration: 100 ms; 65 dB SPL; 50 ms inter-tone-interval), which served as a ‘search’ stimulus to 

identify auditory-responsive sites. Once a responsive neuron was isolated, the monkey 

participated in the best-frequency task. A neuron was ‘auditory’ if the firing rate elicited by tone 

bursts was significantly (t-test, p<0.05) greater than the firing rate during a baseline silent period. 

‘Best frequency’ was the frequency that elicited the largest response relative to a baseline period 

of silence. In those instances, when we could record multiple neurons from at a single site, the 

site’s (and, hence, each neuron’s) best frequency was calculated from the responses of the best-

isolated single unit; typically, all of the neurons at a single recording site had comparable best 

frequencies. Only auditory neurons were further tested. Next, the monkey participated in the 

streaming task. On a trial-by-trial basis, tone B’s frequency and listening time were randomly 

varied; the frequency of tone A was always set to the best frequency. 

3.3.6 Behavioral analyses.  

Behavioral analyses were similar to those that we reported earlier (Christison-Lagay et 

al., 2014a). We quantified the monkeys’ performance by calculating the probability that the 

monkey reported hearing two streams, as a function of (1) the frequency difference between tones 

A and B and (2) listening time. The monkeys’ performance for a particular frequency difference 

was considered significant when it did not overlap with chance performance (i.e., 0.5; Wilcoxon 

signed-rank test, p<0.05).  
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Because the monkeys’ performance was variable, we developed a bootstrap procedure to 

establish the monkeys’ performance thresholds and identify runs of trials that exceeded these 

thresholds (Christison-Lagay et al., 2014a). The bootstrap procedure generated a distribution of 

simulated data that shuffled the order of trials but maintained the relationship between a particular 

auditory stimulus and a monkey’s response. This bootstrap procedure tested whether, within an 

experimental session, there were temporal epochs or ‘runs’ of trials that were above chance: for 

each experimental session, we identified those trials in which the frequency difference between 

tones A and B was 0.5 or 12 semitones; we included these frequency differences because they 

generate consistent reports in human listeners (Bregman, 1990; Cusack, 2005; Elhilali et al., 

2009; Micheyl et al., 2007). We did not include 3 and 5 semitone frequency differences because 

they do not generate consistent reports in human listeners: there is no ‘incorrect’ answer. While 

maintaining the relationship between the stimuli and response, we shuffled the order of the trials. 

This procedure maintained the relationship between the stimulus and response but disrupted the 

temporal order of these stimulus-response pairings. Then, to simulate the temporal dynamics of a 

behavioral session, we analyzed performance as a function 20 consecutive shuffled stimulus-

response pairings. This procedure was repeated 1000 times for each behavioral session. From this 

procedure, we generated a distribution of running averages. Finally, we calculated the ‘running-

average window (RAW) threshold’. We calculated the RAW threshold from each session’s 

running-average distribution: the RAW threshold was defined as the upper boundary of the 

distribution’s 95% confidence interval.  

To compare the monkeys’ performance with the bootstrapped performance, we extracted 

consecutive blocks of data that contained 20 trials in which the frequency difference was 0.5 or 

12 semitones. Because the actual dataset contained trials from all of the tested-frequency 
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differences, the actual length of the data block could be longer than the window size. For 

example, for the window size of 20 trials, a data block might contain 23 trials: 20 trials in which 

the frequency difference was 0.5 or 12 semitones and 3 trials in which the frequency difference 

was 3 or 5 semitones. When the monkey’s performance on the 0.5 and 12 semitone trials 

exceeded the RAW threshold, the entire trial block (including trials in which the frequency 

difference was 3 or 5 semitones) was considered ‘suprathreshold’; the determination of 

‘suprathreshold’ was only based on the performance during the 0.5- and 12-semitone trials 

because only these trial types were used in the bootstrap procedure. Using the suprathreshold 

data, we calculated, as a function of each frequency difference, the probability that the monkey 

reported two streams. 

3.3.7 Neural analyses. 

 Neural signals were re-sorted offline into individual single units using an automatic spike-sorting 

procedure (Quian Quiroga et al., 2006; Tsunada et al., 2011a). Data are reported in terms of 

average firing rate per tone burst. Data were aligned relative the onset of each auditory-stimulus 

sequence and each neuron’s response latency. Additionally, because each stimulus sequence had 

a different (listening) duration, analyses were restricted to the time period encompassed by the 

first 12 tone bursts, which captured 68% of the data across all of the recording sessions.  

 Neural analyses to test relationship between neural activity and choice behavior. 

 Choice probability quantifies the ability of an ROC-based ideal observer to use spiking 

activity to discriminate choices for identical stimuli (Britten et al., 1996; Gu et al., 2007; 

Purushothaman et al., 2005; Russ et al., 2008a; Tsunada et al., 2011a). On a neuron-by-neuron 

and a tone-burst-by-tone-burst basis and as a function of semitone separation, we conducted this 
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ROC analysis after forming two distributions of firing-rate values based on a monkey’s reports 

(i.e., ‘1 auditory stream’ versus ‘2 auditory streams’). A choice-probability value of 0.5 indicates 

that an ideal observer could not use firing rate to distinguish between reports of ‘one stream’ and 

‘two streams’; whereas a choice-probability value of 1.0 indicates that an ideal observer could 

perfectly predict, using firing rate alone, whether a monkey reported ‘one stream’ or ‘two 

streams’. 

3.4 RESULTS 

3.4.1 Psychophysical performance 

Monkeys H and S reported whether a temporal sequence of tone bursts, in which the tone 

bursts alternated between two frequencies (see Fig. 3-1B), was heard as one or two auditory 

streams. The results from 108 sessions (Monkey H: 61 sessions; Monkey S: 47 sessions) are 

shown in Fig. 3-2. Because the monkeys had comparable performance, we pooled their 

behavioral data. These data were only from the recording sessions reported here and reproduce 

our previous behavioral findings (Christison-Lagay et al., 2014a). Fig. 3-2 plots the probability 

that the monkeys reported ‘two auditory streams’ as a function of the semitone separation 

between tones A and B. When the frequency difference was 0.5 semitones, the monkeys’ 

performance was significantly (probability of two-stream reports=0.368±0.02, Wilcoxon signed-

rank test, p<0.05) less than chance, indicating they were more likely to report ‘1 auditory 

stream’. In contrast, when the semitone separation was 12 semitones, the monkeys reliably 

(probability of two-stream reports=0.577±0.021, Wilcoxon signed-rank test, p<0.05) reported ‘2 

auditory streams’. When the frequency difference was 3 or 5 semitones, the monkeys’ 

performance was intermediate between these two extreme semitone values. That is, although they 



 

 

56 

reliably (3 semitone-tone separation: probability of two-stream reports=0.419±0.026, Wilcoxon 

signed-rank test, p<0.05; 5 semitone-tone separation: probability of two-stream 

reports=0.398±0.023, Wilcoxon signed-rank test, p<0.05) reported ‘1 auditory stream’, they were 

significantly (Wilcoxon rank-sum test, p<0.05) more likely to report ‘2 auditory streams’ relative 

to the 0.5-semitone condition and significantly (Wilcoxon rank-sum test, p<0.05) less likely to 

report ‘2 auditory streams’ relative to the 12-semitones condition. 

Although it is clear that the monkeys’ struggled with this difficult task, we observed short 

runs of trials in which the monkeys clearly were performing well. To quantify this observation, 

we analyzed the monkeys’ behavior relative to a bootstrapped simulation. In this simulation, we 

maintained the relationship between a stimulus-response pairing (e.g., 0.5 semitones and a report 

of ‘1 auditory stream’) but shuffled the temporal order of these pairings. This procedure 

quantified explicitly whether there were significant short runs of performance that exceeded 

chance. We found that the monkeys’ performance, relative to this bootstrapped distribution (i.e., 

the RAW threshold), increased modestly for 0.5- and 12-semitone trials (Fig. 3-2B). For 

intermediate semitone separations, behavioral performance across times of high performance, 

relative to overall performance, was the same, indicating that behavioral performance was stable 

across each session. Overall, the monkeys’ pattern of behavior was consistent with—albeit poorer 

than—human performance (Christison-Lagay et al., 2014a). We emphasize that this is the first 

time that a non-human animal has been trained to directly report their auditory-streaming percepts 

in a manner comparable to human listeners (but see (Itatani et al., 2014; Izumi, 2002; Noda et al., 

2013)). 
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3.4.2 Recording-site localization 

Because A1 is the earliest stage of processing in the ventral auditory pathway, we 

focused on understanding how its neural responses might contribute to auditory perception. We 

isolated 108 A1 single units (Fig. 3-3A; 61 from monkey H and 47 from monkey S). Similar to 

previous work (Fu et al., 2004; Kajikawa et al., 2005; Kikuchi et al., 2010; O'Connell et al., 2014; 

Recanzone et al., 2000), A1 neurons were sharply frequency tuned (Fig. 3-3B and 3C) and had 

relatively short latencies (Fig. 3-3D). In our population, best frequencies ranged from 400 Hz to 

3940 Hz; the median best frequency was 1984 Hz. Median latency (i.e., the first of two or more 

consecutive time bins that were >2 s.d. above a baseline period of silence) was 15 ms. 

3.4.3 A1 responsivity during the streaming task: frequency sensitivity and habituation 

During the streaming task, A1 neurons had auditory-driven spiking activity that was 

modulated by the frequency content and time course of the auditory sequence (single neuron: Fig. 

3-4A; population activity: Fig. 3-4B). As expected, A1 neurons responded better to tone A, which 

was at a neuron’s best frequency, than to the tone Bs, which were 0.5-12 semitones above this 

best frequency. Additionally, like previous reports (Fishman et al., 2004; Fishman et al., 2001a; 

Micheyl et al., 2005), the firing rate of A1 neurons habituated as the auditory sequence unfolded 

over time. However, as discussed below, unlike these previous reports, habituation was not 

frequency dependent. 

 Frequency tuning is broader during the streaming task than during the best-frequency task. 

  Fig. 3-5 plots the average frequency-response profiles during the streaming and best-

frequency tasks. For the streaming-task data, we show the average firing rate in response to the 

first presentation of tone A (A1) and tone B (B1) from each semitone separation; we chose this 
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strategy to ensure that neural responses due to frequency tuning did not get conflated with 

changes in firing rate due to habituation (see below). For the best-frequency-task data, we only 

plot those frequency values that overlap with those presented during the streaming task. During 

the streaming task, we found that the average firing rate in response to the best frequency (i.e., 0 

semitones) was significantly (2-factor ANOVA [task × frequency] and post-hoc tests, p<0.05) 

higher than the firing rates in response to the other frequency values and that the firing rates in 

response to these other frequency values were not significantly (p>0.05) different from one 

another. In contrast, during the best-frequency task, A1 firing rates generally decreased 

significantly (p<0.05) as frequency increased. Further, except at the best frequency, firing rates 

were significantly (p<0.05) higher during the streaming task than during the best-frequency task 

(see Supplemental Fig 3-1 for neuron-by-neuron comparison of normalized firing rates for the 

best frequency and streaming tasks). Together, these analyses indicate that A1 firing rates were 

less frequency selective during the streaming task than during the best-frequency task. 

 The firing rate of A1 neurons habituate—independent of frequency—as the auditory 

sequence unfolds over time.  

Because, in previous reports, frequency-dependent habituation of A1 firing rate was 

proposed to be a coding mechanism for the streaming percept (Fishman et al., 2004; Fishman et 

al., 2001a; Micheyl et al., 2005), it was important to determine whether habituation manifested 

itself when our monkeys were actively reporting their streaming percepts. Indeed, we found that 

A1 firing rates habituated (single neuron: Fig. 3-4A; population activity: Fig. 3-4B). A1 neurons 

responded most vigorously to the first presentation of tone A (A1). They were less responsive to 

the next tone burst (the first presentation of a tone B [B1]) and further decreases in firing rate 

with subsequent tone-burst presentations (A2…B6).  Some individual A1 neurons displayed a 
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small amount of frequency-dependent habituation (e.g., see responses to tone B1 in Fig. 3-4A). 

However, on average, this habituation was frequency independent (Fig. 3-4B), even for our most 

sharply tuned neurons (Fig. 3-4C). (A neuron was defined as ‘sharply tuned’ if it had a bandwidth 

of <1000 Hz at 25% of maximum firing rate; this was quantified by finding the two most 

disparate frequency bins in the neuron’s tuning curve that elicited firing rates of >25% of the 

firing rate at the neuron’s best frequency.) 

This frequency-independent habituation can be seen most clearly in Fig. 3-4D, where we 

removed habituation’s mean effect from each A1 response profile. To do this, we calculated the 

mean A1 response across all semitones (black line in Fig. 3-4B) and subtracted this from each 

neuron’s response as a function of semitone separation. This subtraction procedure demonstrated 

that A1 spiking activity was not significantly (2-factor ANOVA [semitone difference × tone-burst 

position]; both main and interaction effects: p>0.05) modulated by either semitone separation or 

‘tone-burst position’ (i.e., tone burst A1, tone burst B1, etc.). This finding is consistent with the 

idea that A1 neurons during the streaming task had frequency-independent habituation. 

To further quantify these observations, we used an ROC analysis (Green et al., 1966) to 

test the effects of semitone separation and habituation on A1 spiking activity. On a neuron-by-

neuron basis, we calculated the ROC value between the average firing rate elicited by the first 

presentation of tone A and each subsequent tone burst (B1A2…B6). An ROC value of 0.5 

indicates that an ideal observer could not distinguish between the firing rate elicited by tone A1 

and the firing rate elicited by any other tone burst in the sequence; whereas a value of 1 indicates 

that this observer could perfectly distinguish between these two responses. This analysis 

generally indicated that, independent of semitone separation, ROC values significantly (3-factor 

ANOVA with post-hoc tests [semitone difference × tone-burst position × neural population {all 
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versus sharply tuned}]; semitone-separation main effect: p>0.05; tone-burst position main effect: 

p<0.05; neural-population main effect: p<0.05; interactions: p>0.05) increased with tone-burst 

position and that sharply tuned neurons had larger ROC values than the overall population. Once 

again, this ROC analysis is consistent with a finding of frequency-independent habituation.  

3.4.4 A1 neurons are modulated by the monkeys’ choices 

Finally, we tested choice probability (Fig. 3-7), which quantifies the ability of an ROC-

based ideal observer to use A1 firing rate to discriminate between the monkeys’ choices (‘1 

stream’ versus ‘2 streams’) for identical stimulus conditions. In this analysis, choice probability 

was calculated using the tone-burst-by-tone burst firing rates (i.e., not normalized to tone A1’s 

response). A three-factor ANOVA with post-hoc tests (frequency difference × tone-burst position 

× neural population [all versus sharply tuned versus supra-RAW threshold trials]; semitone-

separation main effect: p<0.05; tone-burst-position main effect: p<0.05; neural-population main 

effect: p<0.05; frequency difference × tone-burst position: p>0.05; other interactions: p<0.05) 

indicated that, in general, as the auditory sequence unfolded over time, choice-probability values 

increased and became significantly different than chance following (on average) the onset of the 

fourth tone burst, peaking at ~0.75 and that choice probability was modulated by semitone 

difference. However, this latter effect was minimal because it was driven by the 5-semitone 

choice probability values, which tended to be slightly larger than the other values. Finally, 

sharply tuned A1 neurons had significantly (p<0.05) larger choice-probability values than the 

other two populations; whereas the choice-probability values from the supra-RAW-trials did not 

differ significantly (p>0.05) from the entire population, indicating that the monkeys’ behavioral 

performance did not influence choice-probability values. Because the monkeys’ choices can be 
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read out directly from their tone-burst-by-tone-burst firing rates, these results are contrary to 

previous predictions (Fishman et al., 2004; Fishman et al., 2001a; Micheyl et al., 2005) which 

suggested that frequency-dependent habituation was what encoded the monkeys’ choices can be 

read out directly from, instead of necessarily requiring frequency-dependent habituation (for 

further data regarding choice-modulated activity, see Supplemental Fig. 3-2 for an example 

distribution of choice probability values and Supplemental Fig. 3-3 for the affect of choice on 

firing rate). 

3.5 DISCUSSION 

The principles underlying human listeners’ perceptual organization of their acoustic 

environment have been elucidated by testing how they group and segregate auditory stimuli into 

one or more auditory streams (Bizley et al., 2013a; Bregman, 1990; Griffiths et al., 2004; Winkler 

et al., 2009). We recently reported that rhesus macaques stream auditory stimuli in a manner 

comparable to human listeners, with a task that uses the same criteria as human studies 

(Christison-Lagay et al., 2014a). Here, for the first time, we recorded A1 spiking activity while 

rhesus macaques reported their streaming percepts. Our most important finding was that A1 

activity was modulated by the monkeys’ reports of “1 auditory stream” versus “2 auditory 

streams”; this modulation increased with listening time and could be read out from the neurons’ 

tone-by-tone firing rates. These findings contribute to our knowledge of how incoming auditory 

information is converted into a perceptual choice. However, because we find that tone-by-tone 

firing rate was modulated by choice, the findings are at odds with a prominent hypothesis by 

Micheyl et al. (2005), who argued that the streaming percept was encoded using a mechanism 

that required frequency-dependent habituation. 

To understand why our findings are at odds with Micheyl et al. (2005), it is important to 
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first consider our finding that A1 frequency tuning was broader during our streaming task than 

during the best-frequency task (Fig. 3-5). This task-dependent tuning is consistent with previous 

work, demonstrating that A1 neurons sculpt their frequency sensitivity to the ongoing demands of 

a behavioral task (Aizenberg et al., 2013; Fritz et al., 2003; Fritz et al., 2012; Recanzone et al., 

1993; Scheich et al., 2012; Shepard et al., 2012). In our case, because a neuron’s best frequency 

(tone A) and a relatively wide range of frequencies above this value (the tone Bs) were all task 

relevant, we posit that A1 responsivity increased for all of these frequency values, resulting in 

broader frequency tuning relative to the best-frequency task. In other situations, if a task requires 

listeners to make fine frequency judgments, it can result in sharper frequency tuning (Recanzone 

et al., 1993).  

Thus, one possible explanation for the difference between our finding and that of Micheyl 

et al. (2005) may relate to our aforementioned discussion of task-dependent frequency tuning. 

Specifically, we hypothesize that because in their study, the monkeys did not have to report their 

streaming percepts, the frequency tuning of their A1 neurons was relatively sharp and led to 

findings of frequency-specific rates of habituation. However, when the monkeys have to attend to 

the auditory sequence and report their streaming percepts, frequency tuning broadens, frequency-

dependent habituation is eliminated (Figs. 3-4 through 3-6), and tone-burst-by-tone-burst firing 

rate emerges as a likely coding mechanism for the streaming percept. This broader frequency 

tuning during the active reporting of streaming percepts discounts a simple place code mechanism 

but is consistent with a mechanism that would use a combination of place and temporal code 

(Elhilali et al., 2009).   

Broader frequency tuning may also explain the differences in tone masking observed 

between the current study and Fishman et al. (2004) and Fishman et al. (2001a).  Fishman et al. 
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(2004) and Fishman et al. (2001a) reported that as tone B’s frequency moved further from tone 

A’s frequency, the more robust tone A’s subsequent responses were; and inversely, that when 

tones A and B had similar frequencies, both tones elicited only small responses; this effect was 

attributed to forward masking (the exact mechanisms of which are not yet well-understood, but 

likely arise from a combination of post-synaptic inhibition and another mechanism such as 

synaptic depression (Wehr et al., 2005). Interestingly, although this forward-masked response is 

robust in Fishman et al, Micheyl et al. (2005) shows a much weaker modulation of tone A by tone 

B; and the current study finds no such modulation, but rather, reports that each successive tone 

presentation is smaller, and that frequency separation does not affect this response reduction. This 

is not necessarily to say that forward masking does not occur in the current study—indeed, 

masking has been shown to effect up to 5 seconds (Werner-Reiss et al., 2006): thus, masking 

could potentially affect responsivity throughout the duration of an entire trial. Furthermore, the 

specific effect of attention on forward-masking is not well understood: most studies have been 

preformed on anesthetized animals (Brosch et al., 1997; Brosch et al., 1999; Calford et al., 1995; 

Lu et al., 2000; Reale et al., 2000; Ulanovsky et al., 2003), and the few that have been performed 

on awake animals have shown variable affects of attention (Gottlieb et al., 1989; Werner-Reiss et 

al., 2006). Therefore, it is possible that our broader frequency tuning may also have affected the 

degree of frequency-dependence forward masking. 

An additional caveat to the apparent discrepancy between our work and that of Micheyl 

et al. (2005) is that our auditory sequence and listening times were different than those reported 

by Micheyl et al. However, we do not believe that these differences can wholly account for the 

observed discrepancy. Indeed, because our analysis period already overlaps with the period of 

maximum neural habituation seen in Micheyl et al., it is unlikely that we would see the 
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emergence of frequency-dependent habituation even if our task had incorporated Micheyl et al.’s 

longer listening times. Nevertheless, it is still possible that if our study’s task parameters more 

closely matched theirs, we might have seen frequency-dependent habituation. More work is 

needed to resolve this question and to determine whether an area downstream of A1 might use a 

coding mechanism like that suggested by Micheyl et al. (2005).  

Another caveat to our findings is that while we report the mean choice probability values, 

the choice probability values are not always normally distributed (see Supplemental Fig. 3-2 for 

an example distribution of choice probability values).  As can be seen, over time, an increasing 

portion of the population reaches a choice probability value of 1.  Such values are generally not 

observed in either sensory or motor cortices, with typical choice probability values ranging from 

~0.2 or 0.3 to ~0.7 or 0.8 (Bizley et al., 2013b; Cohen et al., 2009b; Heuer et al., 2004; Merten et 

al., 2013; Nienborg et al., 2014; Yang et al., 2010).  Although having many neurons with choice 

probability values of 1 is unusual, several of the above mentioned studies, as well as another 

recent study in the primary auditory cortex, have neurons with choice probability values of 1 

(Niwa et al., 2012b).  It is not entirely clear why such a large subset of neurons in the current 

study yield high choice probability values, several possible explanations can be ruled out.  We 

can rule out movement artifact as a possible explanation, as all of the data reported occurs before 

the monkeys were allowed to move the joystick (and trials with early movement were treated as 

errors and not used in the choice-probability analysis).  Moreover, the effect cannot be explained 

as a regular loss of single-unit isolation over the course of a trial.  First, trials of all types were 

pseudorandomly interleaved and behavior across the session was comparable, so loss of single-

unit isolation should affect all choice probability values similarly.  Furthermore, firing rates 

rebounded on a trial-by-trial basis (see Supplemental Fig. 3-4). The high choice probability 
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values cannot be attributed to faulty electrodes or other recording problems, as simultaneously 

recorded neurons at the same recording site show different choice probability values (see 

Supplemental Fig. 3-5). It is likely that the high values are due to habituation and a very short bin 

(40 ms).  Under these conditions, the later tone presentations are increasingly likely to have very 

few, if any, spikes present for one of the choice conditions (Supplemental Fig. 3-3 shows how a 

behavioral report of ‘two streams’ is associated with lower firing rates). 

The specific contribution of the auditory cortex to choice behavior is not clear. Consistent 

with our current findings (Figs. 3-6 and 3-7), recent studies (Bizley et al., 2013b; Niwa et al., 

2013) have demonstrated that A1 has choice activity. In contrast, previous work from our group 

(Tsunada et al., 2011a; Tsunada et al., 2013) and others (Lemus et al., 2009) indicates that 

auditory-cortex neurons are not reliably modulated by choice. We suggest that one potential 

explanation for this apparent contradiction may be that tasks requiring decisions about relatively 

low-level stimulus features (e.g., pitch, amplitude modulation, stream segregation (Bizley et al., 

2013b; Niwa et al., 2013), current report) might be represented directly (Nienborg et al., 2014) in 

the responses of individual neurons in the early ventral auditory pathway. In contrast, tasks that 

require a relatively high-level decision about the acoustic content of a stimulus (Lemus et al., 

2009; Tsunada et al., 2011a; Tsunada et al., 2013) may be represented later in the ventral 

pathway.  

One interpretation of A1 choice activity, like findings from other systems (Britten et al., 

1996; Celebrini et al., 1994; Gu et al., 2007; Law et al., 2008), is that it reflects a feed-forward 

mechanism that uses A1 activity as sensory evidence for the eventual decision (Shadlen et al., 

1996). Alternatively, these signals might represent feedback once the decision is formed 

elsewhere in ventral pathway (Nienborg et al., 2009; Niwa et al., 2013; Russ et al., 2008a). Future 
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work should focus on identifying the temporal window in which to conduct analyses that relate 

neural activity with behavior in order to differentiate between these two possibilities (Cohen et 

al., 2009a; Nienborg et al., 2009).
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3.6 FIGURES          

 

 

 

Figure 3-1: Task and stimulus.  
(A) The monkey indicated his choice by moving a joystick to the right to report ‘one auditory 
stream’ or to the left to report ‘two auditory streams’. The monkey made his report following 
offset of the auditory stimulus. (B) The auditory stimulus was a temporal sequence of tone bursts. 
On a trial-by-trial basis, we varied the frequency difference (ΔF) between tone A and tone B and 
the duration of the tone sequence (listening time); tone A was always at a neuron’s best 
frequency. 
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Figure 3-2: Psychophysical performance on the streaming task.  
(A) Average psychometric performance for both monkeys is plotted as the proportion of trials in 
which the monkey reported “two streams” as a function of frequency (in semitones). 0 semitones 
represents each neuron’s best frequency. The center of each bar indicates average performance. 
The length of the bars indicates the 95% confidence interval. The gray dashed line represents 
chance performance (0.5) of reporting one or two streams. (B) Psychometric behavior related to 
bootstrapped RAW threshold. This bootstrap procedue maintained the integrity between the 
stimulus and the monkeys’ responses but shuffled the temporal order and tested explicitly 
whether there were significant temporal runs of high performance. RAW thresholds were 
calculated from session-by-session data. The center of each bar indicates average suprathreshold 
performance. The length of the bars indicates the 95% confidence interval. The solid line 
illustrates the upper and lower boundaries of the RAW threshold. The gray dashed line in 
represents chance performance (0.5) of answering one or two streams. 
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Figure 3-3: Recording locations and A1 response properties.  
(A) Sagittal and coronal MRI sections of monkey H’s brain at the level of the superior temporal 
gyrus. The yellow regions indicate the targeted location of A1. (B) Single-neuron and (C) 
population frequency-response profiles. These response profiles are plotted relative to a neuron’s 
best frequency (BF). Vertical dotted lines indicate BF. (D) Population response profile. The 
vertical dotted line indicates stimulus onset of each tone burst. For all of the panels, firing rate is 
normalized relative to a baseline period of silence. Thick lines indicate mean values; shading 
indicates s.e.m.  
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Figure 3-4: A1 sensitivity to stimulus frequency and tone presentation.  
(A) Single-neuron example of A1 firing rate in response to the acoustic sequence; data are 
combined from reports of ‘one stream’ and ‘two streams’. Color corresponds to semitone 
separation; see legend. Data are aligned relative to each tone burst in the sequence. The first tone 
burst is designated as ‘A1’; the second as ‘B1’, the third as ‘A2’ etc. (B) Population response 
profile, plotted as in A. The thick black line indicates the average response across all semitone 
separations. (C) Population response profile showing only neurons that are sharply tuned for 
frequency (i.e., those with a bandwidth of <1000 Hz at 25% of maximum firing rate; see main 
text for more details), plotted as in A. For panels A-C, firing rate is normalized relative to the 
mean firing rate elicited by tone A1. (D) Population response profile in which the mean A1 
response across all semitones (thick black line in B) was subtracted from each neuron’s response 
as a function of semitone separation. Thick lines indicate mean values; shading indicates s.e.m.  
Inset at upper right is a schematic of the neural tuning during the streaming and best frequency 
tasks for reference; see Fig. 3-5 for full version. 
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Figure 3-5: A1 frequency selectivity during streaming and best-frequency tasks.  
Population frequency-response profiles during the streaming (solid line) and best-frequency 
(dashed line) tasks. The response profiles are restricted to frequency values common to those in 
both tasks. Thick lines indicate mean values; shading indicates s.e.m. To compare the sharpness 
of tuning across the two conditions, firing rate in the streaming task is normalized relative to the 
mean firing rate elicited by tone A1 and relative to the mean firing rate elicited by the best 
frequency in the best-frequency task. 
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Figure 3-6: ROC analysis for A1 habituation sensitivity during streaming task.  
ROC-based neural selectivity for tone bursts over time, relative to tone A1’s firing rate. Data are 
combined from reports of “one stream” and “two streams”. The first tone burst is designated as 
“A1”; the second as “B1”, the third as “A2” etc. The entire population of neurons is shown in 
panel A, whereas panel B shows only neurons that are sharply tuned for frequency (i.e., those 
with a bandwidth of <1000 Hz at 25% of maximum firing rate; see main text for more 
details). Color corresponds to frequency difference; see legend. Thick lines indicate mean values; 
shading indicates s.e.m. Asterisks indicate mean ROC values that were significantly (0.5; t-
test, p<0.05; see legend) different than chance. 
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Figure 3-7: Choice selectivity of A1 neurons: tone-burst-by-tone-burst firing rate.  
Distributions of choice probability relative to each tone burst in the sequence. Choice probability 
is calculated using mean firing rates elicited by each tone burst and not normalized as done in Fig. 
3-7. The first tone burst is designated as ‘A1’; the second as ‘B1’, the third as ‘A2’ etc. Color 
corresponds to semitone separation; see legend. Panel A shows the entire population; panel B 
shows the subset of neurons that are sharply tuned for frequency (i.e., those with a bandwidth of 
<1000 Hz at 25% of maximum firing rate; see main text for more details); and panel C shows 
data from the subset of trials in which behavior exceeded the RAW thresholds. To more readily 
compare how choice probability evolved over time, we averaged the three populations of 
neurons’ (A-C) choice-probability values across semitone separation (D). The entire population is 
plotted in the solid black line; sharply tuned neurons are shown in the hashed line; trials in which 
the RAW threshold was exceeded are shown in dashed line. Thick lines indicate mean values; 
shading indicates s.e.m. In panels A-C, asterisks indicate mean choice-probability values that 
were significantly different than chance (0.5; t-test, p<0.05; see legend).  In panel D, horizontal 
lines indicate mean choice-probability values that were significantly different than chance (0.5; t-
test, p<0.05; see legend). 
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3.7 SUPPLEMENTAL FIGURES 

 
 
 
 
 
 
 
 

 
Supplemental Figure 3-1: Neuron-by-neuron frequency selectivity during streaming and 
best-frequency tasks.  
Normalized firing rates for single neurons in response to tone B1 in the streaming task (x-axis) are 
plotted against the normalized firing rate for single neurons to a 12 semitone tone burst in the 
best-frequency task. 12 semitones was chosen because it was used in both the streaming and best-
frequency tasks. Gray dotted line shows the line of unity.  The firing rates elicited during the best-
frequency task were significantly lower than those elicited during the streaming task  (t-test, 
p<0.05).    
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Supplemental Figure 3-2: Example distribution of choice probability values: 5 semitone 
trials 
The distributions of choice probability relative to each tone burst in the sequence for 5 semitones. 
The first tone burst is designated as ‘A1’; the second as ‘B1’, the third as ‘A2’ etc.  This 
distribution was used to calculate the population choice probability values, as shown in Fig. 3-7, 
panel A.  
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Supplemental Figure 3-3 Response profile as a function of choice during the streaming task.  
Population response profile of A1 firing rate in response to the acoustic sequence for 5 semitone 
trials; data are separated by reports of ‘one stream’ and ‘two streams’.  The solid line indicates the 
average firing rate for choosing one stream; the dotted line indicates the average firing rate for 
choosing two streams; thick lines indicate mean values; shading indicates s.e.m. Data are aligned 
relative to each tone burst in the sequence. The first tone burst is designated as ‘A1’; the second as 
‘B1’, the third as ‘A2’ etc.  
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Supplemental Figure 3-4 Successive trials show recovery from habituation. 
Representative example of a neuron’s firing rate to successive trials of the same type.  Colors 
indicate trial number.  Even though the neuron ceases to fire in response to the tones for the latter  
tone bursts (shown in red), the blue line indicates that the neuron began firing again at the start of 
the next trial. Data are aligned relative to each tone burst in the sequence. The first tone burst is 
designated as ‘A1’; the second as ‘B1’, the third as ‘A2’ etc.  
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Supplemental Figure 3-5 Neurons simultaneously recorded from the same site show 
different choice modulation. 
Example of the choice probabilities from two neurons recorded simultaneously from the same site 
shows that neurons at the same site may exhibit different choice-related activity.  Shown in the 
response to 12-semitone trials. Colors indicate neuron identity. Data are aligned relative to each 
tone burst in the sequence. The first tone burst is designated as ‘A1’; the second as ‘B1’, the third 
as ‘A2’ etc.  
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4 CHAPTER 4: DISCUSSION 
In this dissertation, we have examined the neural and behavioral correlates of auditory 

streaming in rhesus macaques. Our results demonstrated for the first time that rhesus macaques' 

behavioral reports were qualitatively consistent with those of human listeners. Specifically, we 

found that their reports were modulated by frequency separation, listening duration, and temporal 

overlap in a manner consistent with humans and that their behavioral reports were independent of 

the absolute frequency content of the stimulus. We also found that, like previous studies (Fishman 

et al., 2004; Fishman et al., 2001a; Micheyl et al., 2005), A1 neurons had frequency-tuned 

responses that habituated as the auditory sequence unfolded over time. More significantly, we 

showed for the first time that firing rate of A1 neurons was modulated by the monkeys’ choices. 

These findings provide the first direct evidence that (1) monkeys stream auditory stimuli in a 

manner consistent with human listeners, and (2) A1 activity can contribute to the sensory 

evidence underlying the segregation and grouping of acoustic stimuli into distinct auditory 

streams. In this chapter, we discuss the further implications of our findings, caveats to the current 

studies, challenges faced in the course of the studies, and future directions.  

4.1 THE IMPORTANCE AND CHALLENGES OF USING THE STREAMING TASK 

Results from previous studies suggest that humans and animals stream auditory stimuli in 

a comparable manner (Itatani et al., 2014; Izumi, 2002; Ma et al., 2010; Moerel et al., 2012; Noda 

et al., 2013; Russ et al., 2008a; Tsunada et al., 2011a), but these studies used tasks that indirectly 

measured streaming and assumed that animals stream sounds like human listeners. This 

assumption is not unreasonable because humans and animals have similar auditory perceptual 

abilities (Izumi, 2002; Kuhl et al., 1975a; Kuhl et al., 1982; Petkov et al., 2003; Petkov et al., 

2007; Recanzone et al., 2008). However, until it is demonstrated that humans and animals stream 
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auditory stimuli in a comparable manner, the use of these indirect measures presents a potential 

problem: if animals and humans do not stream comparably, then these indirect measures would 

not be a valid model for human hearing. To avoid this potential fallacy, comparable 

methodologies must be used to explicitly test human versus animal auditory perception.  

Although directly validating monkeys as a model human streaming was important, it was 

difficult to implement the standard methodologies used in human steaming studies. This was 

foremost because the behavioral task was incredibly challenging for the animals. This manifested 

in two ways: a 3+ year time to train the animals on the task and difficulty with motivating the 

monkeys to complete large numbers of trials. It is unclear exactly why the task was difficult for 

monkeys, as animals have been successfully trained on a number of complex tasks (including in 

our lab (Christison-Lagay et al., 2014b; Russ et al., 2007; Tsunada et al., 2011a)).  

One possible explanation is that the streaming percept is somewhat abstract (even to 

human listeners). To illustrate this point: regardless of whether one or two streams is perceived, 

human listeners always report hearing two frequencies—it’s simply that sometimes the two 

frequencies in the auditory sequence merge together into a single percept that sounds like 

‘galloping’, and sometimes the listeners distinctly hear two streams that are composed of tone 

bursts with different frequencies (Bregman, 1990). Thus, a successfully trained monkey listener 

must learn the difficult concept of reporting the number of streams, not the number of 

frequencies; see Chapter 2 for control analyses that indicate that the monkeys were not simply 

reporting the number of frequencies or the relative frequency difference.  

Despite the apparent difficulty of the task, we noted time periods when the monkeys 

performed quite well. To test this observation, we developed the RAW thresholds (see Chapters 2 

and 3 for further description) to extract epochs of good performance. As discussed in Chapter 2, 
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monkeys’ performance during these ‘on task’ trials (those that are supra-RAW threshold) clearly 

indicates that monkeys reports are comparable to human reports. It is important to note that while 

the supra-RAW threshold trials show this conclusion most clearly, their overall performance was 

also consistent with human behavior.  

4.2 THE NEURAL ENCODING OF AUDITORY STREAMS 

Previous neurophysiology studies of auditory streaming have recorded neural activity in 

A1 either during passive-listening tasks (Fishman et al., 2004; Fishman et al., 2001a) or during 

active-listening conditions in tasks that were not directly related to auditory streaming (Lakatos et 

al., 2013; Micheyl et al., 2005). These studies provide important insights into A1 activity, but 

they could not offer direct insights into whether A1 activity codes the monkeys streaming 

percepts.  

Our study (Chapter 3) is the first study to directly test the relationship between A1 

spiking activity and streaming percepts. Consistent with previous studies, we found that A1 

neurons had frequency-tuned responses that habituated (Fishman et al., 2004; Fishman et al., 

2001a; Micheyl et al., 2005); and additionally found, for the first time, that activity in A1 neurons 

was modulated by the monkeys’ choices.  

To put our finding of choice activity in A1 into context, Micheyl et al. (2005) proposed 

that habituation in A1 neurons could encode perceptual choice, and Elhilali et al. (2009) proposed 

that temporal coherence of activity across regions of A1 could be a correlate of perceptual choice. 

Although the specifics of our results are at odds with Micheyl et al. (2005)’s hypothesis (i.e., we 

find that tone-by-tone firing rate alone, rather than frequency-dependent habituation, is sufficient 

to encode choice, see Chapter 3 for further discussion), our data provide the first direct evidence 

that A1 contributes to encoding the streaming percept. Similarly, several recent studies have 
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found that A1 activity is modulated as a function of behavioral report (Bizley et al., 2011; Niwa 

et al., 2012b). Therefore, our study adds to a growing body of literature that suggests that areas as 

early as A1 may be contributing to perceptual choices. 

Although our findings on choice-related activity in A1 are consistent with those from 

several other studies, they differ from work previously released from a number of laboratories, 

including our own, in which choice-related activity is not observed until much later in the ventral 

pathway. The specific reasons for this discrepancy are unclear, but it seems probable that it may 

arise from differences between the auditory stimuli and/or the task demands (See Chapter 3 for 

further discussion).  

One caveat to our findings is our selection of neurons. To find neurons, we used a search 

stimulus of white-noise bursts; and once a putative neuron was isolated, we determined its best 

frequency. Only neurons that exhibited significant activity to tones during the best-frequency task 

(relative to a baseline silent period, t-test, p<0.05) were tested further. This procedure biased our 

neural population (1) to be sensitive to white noise and (2) to have best frequencies in our range 

(400-4000 Hz). Recent studies have reported that different classes of cells in the auditory cortex 

having different response profiles: for example, pyramidal neurons are more likely to be sharply 

tuned than interneurons, whereas interneurons are more sensitive to acoustic categories than 

pyramidal neurons (Moore et al., 2013; Tsunada et al., 2012).  It is likely that our neural 

population included both pyramidal and interneurons; indeed, our sharply tuned neurons were 

more likely pyramidal cells, whereas the rest of the population may have been a mix of pyramidal 

and interneurons.  Interestingly, our sharply tuned neurons exhibited higher choice probability 

values than the combined population.  This offers an intriguing possibility: perhaps pyramidal 

neurons are more modulated by choice; or perhaps they play a greater role in the accumulation of 
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sensory evidence that will contribute to choice or other cognitive processes (Hussar et al., 2012; 

Mitchell et al., 2007). Further study into the cell-class specific contribution to auditory streaming 

is merited.  

4.3 FUTURE DIRECTIONS 

Our use of standard methodologies employed in human audition studies was a crucial 

addition to the literature, because it showed that monkeys report streaming percepts in a manner 

consistent with human listeners across a variety of test and control conditions. Because the 

current studies validated monkeys as a model of human auditory streaming perceptions, future 

studies can use indirect measures of streaming. This is advantageous, because, as mentioned 

above, it takes considerable time for the monkeys to learn the streaming task. However, monkeys 

have been shown to successfully (and relatively quickly) learn several possible alternative tasks. 

Using a task that monkeys could learn faster and perform with higher accuracy would allow for 

faster data collection, with potentially a greater number of trials. One such variation of the task 

would be an oddball detection task in which the monkeys report a stimulus that deviates from the 

norm (e.g., in intensity or frequency); clever manipulation of the dynamics of the stimulus can be 

used to test streaming indirectly, by manipulating what is deviant relative to the norm of a given 

stream. Auditory oddball paradigms have been used successfully with animals in the past (Gifford 

et al., 2003; Itatani et al., 2014; Mehta et al., 2000; Russ et al., 2008a), and represent a feasible 

and appealing alternative task to direct reports of streaming.  

Further study using the streaming task or alternatives is needed to more completely 

understand the neural encoding of streaming. First, in order to properly understand how a 

neuron’s tuning affects its activity in this task, it is important to simultaneously record neurons 

with different best frequencies. This would help elucidate the population response across A1 as 
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well as identify potential contributions of neurons that are not tuned to tone A (i.e., the best 

frequency) and the contribution of those neurons whose best frequencies overlap with the tone 

Bs. Additionally, it would be interesting to compare the neural activity when tone bursts are 

presented either synchronously or asynchronously. Previous work from Elhilali et al. (2009) only 

compared this activity in passively listening ferrets, but it is important to examine how active 

listening affects the temporal coherence of A1 activity. 

One other characteristic of sounds that was not manipulated in the current study, but is 

known to influence the grouping and segregation of acoustic stimuli, is the stimulus’ spatial 

components. Therefore, a version of the task which manipulates the location of the tones (e.g., all 

tone As came from one location, all tone Bs from another; tones A and B’s locations move, or 

come from random locations) would shine light on contribution of spatial information to early 

stream formation. Addressing the role of space in stream formation is particularly interesting 

because spatial information is generally considered characteristic encoded by dorsal auditory 

pathway. Therefore, examining the effect of space on stream segregation should be done in both 

dorsal and ventral pathways to further elucidate how these pathways differentially encode 

information and, potentially, how they communicate (Cohen et al., 2004; Cusack, 2005; Gifford 

III et al., 2005a; Rauschecker, 2011; Rauschecker, 2012; Rauschecker et al., 2009). For example, 

when there is a spatial component to stream formation or segregation, is there greater coherence 

between the activity between the dorsal and ventral auditory pathways?  

Finally, the primary auditory cortex is just the beginning of the ventral auditory pathway. 

Using the same task used in the studies in Chapters 2 and 3, or a variation of the task as described 

above, the neural responses further along the ventral auditory pathway should be recorded. This 

will be a key to understanding how these neural signals evolve, and will give further insight into 



 

 

89 

how auditory stream formation and perception occur.  
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