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Regulation and Kinase Activity of the Trk Family of Receptor Tyrosine
Kinases

Abstract
The tropomyosin-related kinase (Trk) family consists of three receptor tyrosine kinases (RTKs) called TrkA,
TrkB, and TrkC. These RTKs are regulated by the neurotrophins, a class of secreted growth factors responsible
for the development and function of neurons. Given the high homology between the Trks and their use of
overlapping signaling pathways, the key question to be addressed is how the activation of the different Trks
can lead to distinct cellular outcomes. To this end, I first sought to determine the mechanism of
autoregulation for the Trk tyrosine kinase domain (TKD). The Trk TKDs are members of the insulin receptor
kinase (IRK) superfamily and recent data suggest that the IRK family displays a wide array of autoinhibitory
mechanisms. To determine where TrkA and the closely related Ror2 TKD (from an unconventional Wnt
receptor) lie in this spectrum, we determined the crystal structures of the kinase domains of these RTKs. In
both cases, the conformation of the activation loop resembles the IRK activation loop conformation, with
subtle but notable differences in the case of Ror2. These findings aid in understanding the range of
autoinhibitory mechanisms of the IRK family, in addition to providing a foundation for deciphering
consequences of TKD mutations in this family. I also observed crystallographic dimers of the inactive TrkA
TKD that resemble those seen for other RTK TKDs - which may aid in understanding the reported pre-
formed inactive TrkA dimers observed in cells. To understand the molecular basis for differences in signaling
specificity of the Trk receptors, I investigated whether the TrkA and TrkB TKDs differ in their intrinsic kinase
activities. I show that the TrkA TKD autophosphorylates itself faster than its TrkB counterpart. However, this
difference of autophosphorylation is not due to a difference in kinase activity per se. Rather, my data indicate
that the difference in autophosphorylation may arise because of self-association of the TrkA TKD that does
not occur with TrkB. My work sheds light on potential differences between TrkA and TrkB signaling, as well as
providing a quantitative understanding of Trk TKD activation, which is useful for effective and selective
inhibitor design.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Biochemistry & Molecular Biophysics

First Advisor
Mark A. Lemmon

Keywords
Autophosphorylation, Kinase structure, Neurotrophin Receptors, Receptor Tyrosine Kinase, TrkA, TrkB

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1194

http://repository.upenn.edu/edissertations/1194?utm_source=repository.upenn.edu%2Fedissertations%2F1194&utm_medium=PDF&utm_campaign=PDFCoverPages


Subject Categories
Biochemistry | Biophysics

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1194

http://repository.upenn.edu/edissertations/1194?utm_source=repository.upenn.edu%2Fedissertations%2F1194&utm_medium=PDF&utm_campaign=PDFCoverPages


	  
	  

REGULATION AND KINASE ACTIVITY OF THE TRK FAMILY OF RECEPTOR 

TYROSINE KINASES 

Stephen C. Artim 

A DISSERTATION 

in 

Biochemistry and Molecular Biophysics 

Presented to the Faculties of the University of Pennsylvania 

in 

Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

2014 

Supervisor of Dissertation       

_____________________     

Mark A. Lemmon       

Professor and Chair, Department of Biochemistry and Biophysics     

 

Graduate Group Chairperson 

_____________________ 

Kathryn M. Ferguson, Associate Professor of Physiology 

 

Dissertation Committee  

Michael Atchison, Professor of Animal Biology 

Ben Garcia, Associate Professor of Biochemistry and Biophysics 

Virginia Lee, Professor in Alzheimer’s Research in Department of Pathology and Lab Medicine 

Ronen Marmorstein, Professor of Biochemistry and Biophysics 

David Speicher, Professor and Director in Computational and Systems Biology, The Wistar Institute 

Todd Strochlic, Assistant Professor of Biochemistry and Molecular Biology, Drexel University 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REGULATION AND KINASE ACTIVITY OF THE TRK FAMILY OF RECEPTOR TYROSINE 

KINASES 

COPYRIGHT 

2014 

Stephen Charles Artim 

 

This work is licensed under the  
Creative Commons Attribution- 
NonCommercial-ShareAlike 3.0 
License 
 
To view a copy of this license, visit 

http://creativecommons.org/licenses/by-ny-sa/2.0/



iii	  
	  

ACKNOWLEDGMENT 
	  

I would like to first thank my mentor, Mark Lemmon, for all of his support, 

dedication and guidance throughout my graduate school years. He has taught me many 

skills for which I am grateful. 

I thank my thesis committee for all of their wonderful insight and suggestions. 

I also thank all members of the Lemmon laboratory, past and present, for their 

support and for fostering a fun, intellectual, and motivated laboratory environment. They 

include Nick Bessman, Katarina Moravcevic, Jon Kenniston, Diego Alvarado, Daryl 

Klein, Fumin Shi, Neo Wu, Kelsey Speer, Matt Rapp, Jin Park, Sung Hee Choi, Jason 

Moore, Jeannine Mendrola, Dan Freed, Camilla Oxely, and Pamela Burgess-Jones. I 

would also like to thank members of the Ferguson and Van Duyne laboratories, past and 

present, for their helpful discussions. 

A special thank you to all of my friends and family who continue to support me. I 

thank my wife Ashley, my mother and father, two brothers and family for their love 

and support, and for believing in me. 

I thank all of the teachers that have helped me to be where I am today. Many of 

them did what they could with the very few resources available, but their tenacity and 

care for their students was always evident. I am grateful for what they have done for me. 

I thank the University of Pennsylvania VMD/PhD program, especially Michael 

Atchison and the rest of the executive committee. 

 

  



iv	  
	  

ABSTRACT 
 

REGULATION AND KINASE ACTIVITY OF THE TRK FAMILY OF RECEPTOR 

TYROSINE KINASES 

Stephen C. Artim 

Mark A. Lemmon 

The tropomyosin-related kinase (Trk) family consists of three receptor tyrosine kinases 

(RTKs) called TrkA, TrkB, and TrkC. These RTKs are regulated by the neurotrophins, a 

class of secreted growth factors responsible for the development and function of 

neurons.  Given the high homology between the Trks and their use of overlapping 

signaling pathways, the key question to be addressed is how the activation of the 

different Trks can lead to distinct cellular outcomes. To this end, I first sought to 

determine the mechanism of autoregulation for the Trk tyrosine kinase domain (TKD). 

The Trk TKDs are members of the insulin receptor kinase (IRK) superfamily and recent 

data suggest that the IRK family displays a wide array of autoinhibitory mechanisms. To 

determine where TrkA and the closely related Ror2 TKD (from an unconventional Wnt 

receptor) lie in this spectrum, we determined the crystal structures of the kinase domains 

of these RTKs. In both cases, the conformation of the activation loop resembles the IRK 

activation loop conformation, with subtle but notable differences in the case of Ror2. 

These findings aid in understanding the range of autoinhibitory mechanisms of the IRK 

family, in addition to providing a foundation for deciphering consequences of TKD 

mutations in this family. I also observed crystallographic dimers of the inactive TrkA TKD 

that resemble those seen for other RTK TKDs – which may aid in understanding the 

reported pre-formed inactive TrkA dimers observed in cells. To understand the molecular 

basis for differences in signaling specificity of the Trk receptors, I investigated whether 
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the TrkA and TrkB TKDs differ in their intrinsic kinase activities. I show that the TrkA 

TKD autophosphorylates itself faster than its TrkB counterpart. However, this difference 

of autophosphorylation is not due to a difference in kinase activity per se. Rather, my 

data indicate that the difference in autophosphorylation may arise because of self-

association of the TrkA TKD that does not occur with TrkB. My work sheds light on 

potential differences between TrkA and TrkB signaling, as well as providing a 

quantitative understanding of Trk TKD activation, which is useful for effective and 

selective inhibitor design. 
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Chapter 1:  

Introduction 
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1.1 Cellular communication mediated by Receptor Tyrosine Kinases (RTKs) 
 

The ability of cells to interpret extracellular clues and respond accordingly either by 

proliferating, migrating, or differentiating is crucial for maintaining homeostasis. A major 

advance in understanding how cells communicate with surrounding cells and the 

environment occurred in the 1950s when Rita Levi-Montalcini and Stanley Cohen 

discovered the first soluble growth factor from mouse salivary-gland extracts and snake 

venom (Cohen and Levi-Montalcini, 1957; Levi-Montalcini, 1952; Levi-Montalcini and 

Cohen, 1960). This growth factor was termed nerve growth factor (NGF), since applying 

NGF to cells resulted in neurite outgrowth. However, understanding of how the cells 

recognize NGF and respond accordingly remained elusive. In the early 1960s, Cohen 

then discovered another growth factor termed epidermal growth factor (EGF) (Cohen, 

1962; 1965), but how NGF and EGF dictated the cellular response remained a mystery. 

In 1978, Cohen and co-workers demonstrated the existence of a specific receptor for 

EGF (the EGF receptor or EGFR) and showed that, upon binding of EGF, there was an 

increase of cellular phosphorylation (Carpenter et al., 1978). Twenty years earlier, Gene 

Kennedy had described the first protein kinase by discovering that a liver enzyme 

catalyzed the phosphorylation of a protein, casein (Burnett and Kennedy, 1954). 

Subsequently, Fischer and Krebs discovered that phosphorylase kinase catalyzes the 

transfer of a gamma phosphate from ATP to a serine side-chain in phosphorylase b, 

(Fischer and Krebs, 1955; Fischer et al., 1959; Krebs and Fischer, 1956). Also during 

this time, phosphatases were identified as enzymes that remove phosphates from 

proteins. These discoveries in the 1970s and 1980s solidified the idea that the reversible 

modifications of phosphorylation and dephosphorylating catalyzed by kinases and 
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phosphatases represent a wide and significant mechanism utilized to modify protein 

function (Cohen, 2002).  

Many of the initial studies showed that phosphorylation only occurs on serine or 

threonine residues. However, the discovery that the Rous sarcoma viral protein kinase, 

v-src, was responsible for transformation (Collett and Erikson, 1978) led Tony Hunter to 

discover that v-src phosphorylated proteins on tyrosine residues (Hunter and Sefton, 

1980). These studies also showed that deregulated tyrosine kinase activity is involved in 

tumorigenesis (Gschwind et al., 2004; Hunter and Eckhart, 2004).  

In the 1980s, data from various groups working on EGFR (Ushiro and Cohen, 1980), 

insulin receptor (IR) (Kasuga et al., 1982), and platelet-derived growth factor receptor 

(PDGFR) (Ek et al., 1982) demonstrated that growth factors bind and activate receptors 

with intrinsic tyrosine kinase activity. Surprisingly, the major substrates for 

phosphorylation by RTKs were shown to be the RTKs themselves (Cohen, 2002). In the 

late 1980s, Tony Pawson discovered the existence of src homology-2 (or SH2) domains 

as non-catalytic domains crucial for modulating signaling effects of tyrosine kinases. He 

and others then showed that SH2 domains recognize specific phosphorylated tyrosines 

on RTKs and other signaling proteins (Anderson et al., 1990; Sadowski et al., 1986). 

Upon ligand binding, autophosphorylation of dimeric RTKs creates tyrosine 

phosphorylated motifs recognized by SH2 domains and protein tyrosine binding (PTB) 

domains. During the 1990s, various studies culminated in a mechanistic link between 

RTKs and signaling cascades such as the small GTPase Ras – mitogen activated 

kinase (MAPK) pathway, ultimately leading to gene transcription that results in an array 

of cellular responses depending on the RTK and ligand (Cohen, 2002; Gschwind et al., 

2004). These discoveries revealed that RTKs transmit extracellular information to the 
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interior of the cell by initiating a kinase-dependent signaling cascade that ultimately 

leads to a cellular response according to the extracellular stimulus. 

Also in the 1990s, the receptor for NGF was determined to be Trk, a tyrosine kinase 

originally identified as tropomyosin-related kinase (trk), discovered previously in colon 

cancer (Kaplan et al., 1991a; 1991b; Klein et al., 1991a). It was later revealed that the trk 

oncogene was a fusion protein of dimerizing domains of non-muscle tropomyosin and 

the tyrosine kinase domain (TKD) of the TrkA receptor (Greco et al., 2010). Other 

neurotrophin ligands and receptors have been discovered and now the Trk RTK family 

consists of three members: TrkA, TrkB, and TrkC (Barbacid, 1994). 

The RTK family in humans is now known to comprise 58 members that fall into 20 

different families.  Most RTKs play key roles in crucial cellular processes such as 

proliferation and differentiation, cell migration, cell-cycle control, cell survival and 

metabolism (Gschwind et al., 2004; Lemmon and Schlessinger, 2010). 

 

1.2.  Role of the Trk family in the nervous system 
 

The Trk family of neurotrophin receptors is crucial for the development and maintenance 

of the nervous system. The family consists of three members, TrkA (NTRK1), TrkB 

(NTRK2) and TrkC (NTRK3). Neurotrophin ligands primarily bind to specific receptors – 

nerve growth factor (NGF) to TrkA, brain-derived neurotrophic factor (BDNF) and 

neurotrophin-4/5 (NT4) to TrkB, and neurotrophin-3 (NT3) to TrkC (Brodeur et al., 2009). 

Evolutionarily, RTK appearance is thought to coincide with the transition to 

multicellularity, allowing complex interactions to occur between cells and their 
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environments (Casaletto and McClatchey, 2012; King, 2004). Indeed, homologues of 

most RTKs exist in Drosophila and in C. elegans (Sopko and Perrimon, 2013).  

However, Trk signaling has been considered a vertebrate innovation due to the lack of 

evidence of Trk receptors in many invertebrate species including Drosophila and C. 

elegans (Benito-Gutierrez et al., 2006). The lack of invertebrate Trk receptors was 

thought to be due a reduced need for plasticity in the nervous system of insects 

(Bothwell, 2006). However, evidence has been presented for the existence of Trk-related 

receptors in the marine mollusk (Aplysia californica), the snail (Lymnaea stagnalis) and 

recently in the amphioxus (Branchiostoma floridae) (Benito-Gutierrez et al., 2006), 

suggesting that there was a common ancestor that had some form of a Trk receptor 

(Sossin, 2006b).  One study argues that the common ancestral kinase was a precursor 

to the Trk, MuSK, Ror and discoidin domain receptor (DDR) families. A subsequent split 

is then thought to have created the DDR family and a common ancestor of Trk, MuSK, 

and Ror which eventually split into three separate families by the time of a bilaterian 

ancestor (Sossin, 2006a). 

In mammals, the expression of the neurotrophins and their receptors occurs at early 

stages of neurogenesis (Barbacid, 1994; Bartkowska et al., 2010). The expression of 

each Trk family member is complex and depends on the developmental stage and type 

of cell. Generally, TrkA expression is confined to very specific structures of the central 

nervous system (CNS) and peripheral nervous system (PNS), whereas TrkB and TrkC 

have more widespread expression in the CNS and PNS.  Interestingly, the expression of 

TrkA is often distinct from TrkB/TrkC expression in the CNS and PNS (Bartheld and 

Fritzsch, 2006). Moreover, TrkA expression is essential for the development of normal 
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sympathetic neurons. In contrast, TrkB is rarely expressed in sympathetic neurons 

(Brodeur et al., 2009). 

Knockout mice null for TrkA, TrkB, or TrkC demonstrated distinct, but some overlapping, 

abnormalities of the central and peripheral nervous system (Brodeur et al., 2009) – 

generally correlating with the known expression patterns. For example, TrkA knockout 

mice have severe cell loss and morphological changes in structures that were known to 

express TrkA, such as ganglia in the sympathetic nervous system. In contrast, TrkB 

knockout mice do not demonstrate morphological changes in structures known to 

express TrkB. This suggests that some of the functions of TrkB can be fulfilled by other 

mechanisms, perhaps TrkC, since TrkB/TrkC are co-expressed in many structures in the 

nervous system (Barbacid, 1994). 

The initial focus of Trk expression studies was restricted to neuronal cells.  However, it is 

now clear that Trk expression does occur in non-neuronal cells (Shibayama and 

Koizumi, 1996). The role of Trk family members in non-neuronal cells is not well 

understood. There are two isoforms of TrkA, differing by only six amino acids in the 

extracellular domain, which do have specific expression patterns. The TrkA isoform Ι 

contains 790 amino acids and is expressed in non-neuronal tissue, whereas isoform ΙΙ 

contains 796 amino acids and is expressed primarily in neuronal tissue (Barbacid, 1994; 

Barker et al., 1993). 

 

1.3. RTK structure and function 
	  

Each RTK consists of an extracellular region (ECR) that binds its regulatory ligand, a 

single transmembrane domain (TM) and an intracellular domain (ICD) that contains the 
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juxtamembrane region (JM), a tyrosine kinase domain (TKD), and a C-tail region (Figure 

1.1).  

Activation of RTKs involves ligand binding to the extracellular region, which leads to RTK 

oligomerization and resulting activation of the intracellular kinase domain.  The active 

kinase trans-autophosphorylates tyrosines in its neighboring ICD in the receptor dimer, 

thereby both enhancing catalytic activity and providing sites for the (SH2 domain-

dependent) recruitment of signaling molecules that subsequently activate downstream 

pathways controlling transcription, metabolism, cell cycle progression, and survival 

(Lemmon and Schlessinger, 2010; Schlessinger, 2003; Ullrich and Schlessinger, 1990). 

To prevent aberrant signaling, autoregulatory mechanisms appear to exist in all RTKs, 

which maintain the kinase domain in an inactive or autoinhibited conformation until it is 

activated by extracellular ligand-induced oligomerization (Hubbard, 2004; Schlessinger, 

2003; Ullrich and Schlessinger, 1990). 

Interestingly, there is a subset of RTKs such as the insulin receptor (IRK) and insulin like 

growth factor 1 receptor (IGF1R) that already exists at the plasma membrane as 

disulfide linked dimers (De Meyts, 2004; 2008). Furthermore, there are many reports of 

other RTKs such as EGFR (Chung et al., 2010; Clayton et al., 2005; Gadella and Jovin, 

1995), TrkA (Paul S Mischel, 2002; Shen and Maruyama, 2011), and TrkB (Shen and 

Maruyama, 2012) existing as pre-formed oligomers at the cell surface . The nature of 

these inactive oligomers is unclear, since it is still recognized that ligand binding is 

necessary to obtain a fully active RTK oligomer in which the constituent subunits are 

oriented in the correct conformation for optimal autophosphorylation and subsequent 

phosphorylation of downstream signaling molecules (Lemmon and Schlessinger, 2010).  
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Figure 1.1. RTK domain structure. ECR=Extracellular region, TM= Transmembrane 

domain, ICD = Intracellular domain, JM= Juxtamembrane region, TKD= tyrosine kinase 

domain, CT=C-tail 

	  

	  

1.4. Structure of the tyrosine kinase domain (TKD) 
 

In 1991, the first protein kinase X-ray crystal structure was solved when Taylor and 

coworkers solved the structure of cAMP dependent protein kinase (PKA) (Knighton et 

al., 1991a; 1991b). PKA is a serine/threonine kinase, although subsequent structures 

demonstrate that all protein kinases possess a conserved core composing two lobes, a 

N-terminal small lobe (N-lobe) and a C-terminal large lobe (C-lobe). The N-lobe usually 

consists of five β-strands (β1-5) and one α-helix (αC). Also in the 1990s, structures of 

the insulin receptor kinase (IRK) in the inactive and active states were solved (Hubbard, 

1997; Hubbard et al., 1994). The IRK and PKA structures revealed that the inactive 
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structures are in an ‘open’ conformation where as the active kinase structures are in a 

‘closed’ conformation (Figure 1.2). The N-lobe has been shown to be quite dynamic, 

and movement of αC and the N-lobe towards the C-lobe is crucial for catalysis. Thus, the 

orientation of αC (cyan in Figures 1.2 and 1.3) with respect to the C-lobe can be 

indicative of an inactive (outward orientation of αC) or active (inward orientation of αC) 

structure. The predominately helical C-lobe is thought to be more rigid, and contains 

seven helixes (αD through αI) as well as four short β-strands (β6 through β9). Key 

features of an inactive and active kinase structure are shown for IRK in Figures 1.2 and 

1.3 and discussed in more detail below. 

Between the N-lobe and the C-lobe resides the substrate cleft, where ATP, divalent 

cations, and peptide substrate bind (Figure 1.2B and 1.3). The glycine rich phosphate 

binding loop (P-loop) between β1-2 in the N-lobe (orange in Figures 1.2 and 1.3) 

accommodates nucleotide binding and is able to make backbone interactions with ATP. 

The movements of αC mentioned above aid in ATP binding by promoting formation of a 

salt bridge (Figure 1.2B and 1.3B) between a glutamate acid in αC (Glu1047 in IRK) and 

a conserved lysine in β1 (Lys1030 in IRK), which is important in positioning the β1 lysine 

to interact with the α- and β- phosphates of ATP (Huse and Kuriyan, 2002; Jura et al., 

2011). Also essential for ATP binding is coordination of magnesium ions in the active 

site by a conserved aspartate residue (Asp1150 in IRK) of the DFG (Asp-Phe-Gly) motif 

within the activation loop in the C-lobe (Huse and Kuriyan, 2002). Peptide substrate 

binds in the cleft, with the tyrosine substrate directed towards ATP and another 

conserved aspartate residue in the C-lobe known as the catalytic base (Asp1132 in IRK). 

The N-lobe and the C-lobe are connected by the β5-αD loop, also known as the hinge 

region (black in Figures 1.2 and 1.3). Motion and dynamics in the hinge region have 
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been noted to be important for kinase activation (Hoofnagle et al., 2001; 2004; Lee et al., 

2005; Sours et al., 2014; Xiao et al., 2014). Accordingly, one mechanism of 

autoinhibition proposed for FGFR1 is a network of interactions at the hinge region that 

act as a “molecular brake” by holding the kinase in an inactive conformation (Chen et al., 

2007).  

A sequence insert (green in Figures 1.2 and 1.3) within the kinase domain also exists in 

RTKs to varying degrees, with some RTKs having no appreciable kinase insert domain 

(KID) and others having inserts of up to 100 amino acids (Locascio and Donoghue, 

2013; Ullrich and Schlessinger, 1990). Many of the KIDs are thought to be important 

sites of phosphorylation, since they often contain key tyrosines, serines, or threonines. 

However, there are several RTKs that have a recognizable short KID loop that do not 

contained a tyrosine, serine, or threonine and have been termed “non functional” KIDs 

(Locascio and Donoghue, 2013). The question remains whether the ~10-20 amino acid 

“non functional” KID loops have additional roles in these RTKs.  

Within the C-lobe is the activation loop (magenta in Figures 1.2 and 1.3), one of the 

most important regions of the kinase domain since it is known to influence both substrate 

binding and kinase activity (Kornev and Taylor, 2010). The activation loop is 20-35 

amino acids long, and is defined by the highly conserved DFG motif at the N-terminus 

and the APE (Ala-Pro-Glu) motif at the C-terminus (Nolen et al., 2004). As shown in 

Figure 1.2A, the activation loop of IRK is situated in the substrate cleft so that a key 

tyrosine (Tyr1162 in IRK) projects towards the catalytic base (Asp1132 in IRK ) in the 

inactive structure. However, phosphorylation of the activation loop causes a 

conformational change making the substrate-binding pockets available for substrate to 
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bind as shown in the active IRK structure in Figure 1.2B. (See below for more 

information regarding the autoregulation of TKDs.) 

Strikingly, crystal structures of all protein kinases solved in their active state share very 

similar characteristics and remarkably similar structures, whereas inactive (autoinhibited) 

kinases adopt an array of different configurations that seem to be family-specific (or 

receptor-specific); suggesting a wide diversity in autoinhibitory mechanisms (Huse and 

Kuriyan, 2002; Lemmon and Schlessinger, 2010). Indeed, the details of kinase 

autoinhibition have been shown to differ even within an RTK family where the kinase 

domains share 90% sequence identity (the FGFR family (Lew et al., 2007)). The 

mechanism of kinase autoinhibition remains unknown for the Trk receptors, and may 

differ between TrkA and TrkB, which share ~67% identity in the ICD and 88% in the TKD 

(Brodeur et al., 2009).   
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Figure 1.2. Inactive and active structures of the IRK TKD. (A) Inactive structure of the 

IRK TKD in cartoon representation with side chains of residues discussed in the text in 

stick representation. Notice that the activation loop (magenta) is located in the cleft 

between the N-lobe and C-lobe.  (B) Active structure of IRK TKD in the same orientation 

as the inactive structure in (A). Notice that the N-lobe rotates towards the C-lobe in the 

active structure compared to the inactive structure. The activation loop in the IRK active 

structure is phosphorylated and no longer obstructs the substrate binding pockets. The 

following are colored for clarity: P-loop (orange), αC (cyan), hinge (black), KID (green), 

and activation loop (magenta). 
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Figure 1.3. Substrate binding pockets.  (A) ATP, Mg2+ and peptide substrate bind in a 

cleft between the N-lobe and C-lobe of the IRK TKD (shown in surface representation 

with specific features colored as in Figure 1.2).  (B) Amino acids essential for catalysis 

include Asp1150 (part of the Asp-Phe-Gly motif) which coordinates the magnesium ions in 

the active site and Asp1132, the catalytic base. Also shown is the Glu1047-Lys1030 salt-

bridge, which orients Lys1030 for coordination of ATP.  
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1.5. Autoregulatory mechanisms in RTK TKDs. 
	  

As mention previously, crystal structures of the insulin receptor TKD in its inactive 

conformation show how an activation loop tyrosine (Tyr1162) projects into the active site, 

preventing binding of substrate and restraining the rest of the loop to block ATP binding 

(Figure 1.4, ‘Inactive A’: activation loop = black line). Upon extracellular ligand binding, 

tyrosines in the activation loop become autophosphorylated in trans, causing a 

conformational change that allows substrate and ATP to bind the kinase, with the 

activation loop “relaxing” into a configuration that aids catalysis (Figure 1.4, ‘Active’) 

(Blume-Jensen and Hunter, 2001; Hubbard, 2004). The Trk receptors also have 

tyrosines in their activation loop, in a YxxxYY motif similar to that seen in IRK, which 

have been shown to be autophosphorylated upon TrkA and TrkB activation in cells 

(Cunningham et al., 1997; Guiton et al., 1995; 1994). 

Biochemical, mutational, and crystallographic studies of several RTKs (EphB, Flt3, and 

MuSK) have demonstrated that the intracellular JM region can alternatively autoinhibit 

the kinase domain (Griffith et al., 2004; Till et al., 2002; Wybenga-Groot et al., 2001). 

The precise mode of this autoinhibition is RTK-specific, but generally involves the JM 

region making contacts with the kinase domain that stabilizes the inactive conformation 

(Figure 1.4, ‘Inactive B’: JM = red line). In these cases, autophosphorylation of tyrosines 

in the JM region releases the inhibitory effect. There is one tyrosine in the JM region of 

both TrkA (Y490 in isoform Ι, or Y496 in isoform ΙΙ) and TrkB (Y516), within an NPxY 

motif. Several other RTKs (insulin receptor, and FGFR1) employ JM-mediated 

autoregulatory mechanisms that do not require phosphorylation of the JM region for 

reversal. Specific residues within the JM region are crucial for correctly stabilizing 

structural elements within the kinase domain (insulin receptor), or are important for 
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defining optimal interactions between juxtaposed kinase domains in the activated dimer 

(FGFR1) (Bae et al., 2010; Hubbard, 2004). In the case of TrkA and TrkC, mutation of 

the single JM tyrosine to phenylalanine had little effect on autophosphorylation in cell 

based studies (Obermeier et al., 1994; Stephens et al., 1994). However, mutation of the 

corresponding JM tyrosine to phenylalanine in TrkB did diminish autophosphorylation in 

cell based assays (Minichiello et al., 1998; Postigo et al., 2002). Interestingly, recent 

work in the Lemmon laboratory determined that the JM region of EGFR serves as a 

kinase-activating (rather than autoinhibitory) element (Hubbard, 2009; Jura et al., 2009; 

Red Brewer et al., 2009; Thiel and Carpenter, 2007), underscoring the importance of 

understanding the function of this region in all RTKs. 

Additional autoregulatory mechanisms have been shown that involve the C-tail of the 

RTK blocking its active site, as demonstrated for the Tie2 receptor and suggested for 

EGFR (Figure 1.4, ‘Inactive C’: C-tail = green line). Both Tie2 and EGFR have relatively 

long C-tails, whereas the C-tail in the Trk receptors is quite short (just 15 residues). 
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Figure 1.4. Autoregulatory mechanisms of kinase domains. Various kinase inactive 

configurations are compared to the active form. The mechanisms for autoinhibition can 

involve the activation loop (A), JM (B) and C-tail (C). Black line = activation loop. Red 

line = JM. Green line= C-tail.  

 

 

1.6. The Trk TKDs are part of the IRK TKD superfamily 
	  

A classic paper by Hanks et al. in 1988 was the first of its kind to classify all the known 

protein kinases into families according to primary sequence as well as identify many of 

the conserved features of a kinase domain. That study identified a subset of RTKs that 

have similar TKDs and, in particular, a unique motif in their activation loops. This subset 

of RTKs is known as the IRK TKD family (Hanks et al., 1988). Since the study by Hanks 

et al. additional kinases have been discovered that contain this motif and have been 

included in the IRK TKD family (Morris et al., 1994). An alignment of members of the IRK 

TKD family (Figure 1.5A) demonstrates that all members possess a YxxxYY motif in 
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their activation loop. As a comparison, Figure 1.5B shows an alignment of IRK with 

EGFR and FGFR1, RTKs that do not have the YxxxYY motif.  As mentioned above, the 

activation loop of IRK acts almost like a pseudosubstrate, with the middle tyrosine of the 

YxxxYY binding as if it were a substrate (Hubbard et al., 1994). Once the tyrosines of the 

YxxxYY motif become autophosphorylated, the activation loop drastically changes 

conformation, allowing ATP and peptide substrate access to the substrate binding 

pockets (Hubbard, 1997). Since all the other members of the IRK TKD family contain the 

YxxxYY motif, all members were considered likely to utilize the same mechanism of 

autoinhibition and activation. 

Earlier crystal structures of the IGF1R and MuSK TKDs agreed with the hypothesis that 

RTKs with the YxxxYY motif all have a similar activation loop conformation in the 

inactive structure – further suggesting these RTKs all have the same autoinhibition 

mechanism as IRK. However, subsequent structures of the inactive TKDs of Met and Alk 

surprisingly revealed quite distinct activation loop conformations, challenging the 

hypothesis that all IRK family members are regulated the same way. High resolution 

structures of a certain IRK TKD family members, notably from the Trk, Ror, and DDR 

families, were notably absent from the protein data bank (PDB). A thorough examination 

of all the inactive TKDs from IRK family members will help elucidate the mechanism of 

autoregulation within this family as well as aiding interpretation of TKD mutations of IRK 

TKD family members. 
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Figure 1.5. Alignment of IRK family TKDs. (A) Activation loop sequences from an 

alignment of IRK TKD family members. (B) As a comparison, activation loop sequences 

from an alignment with IRK, TrkA, EGFR, and FGFR. 

 

 

1.7. RTK signaling specificity 
	  

Once activated by extracellular ligand, the TKDs of RTKs trans-autophosphorylate 

tyrosines in the ICD further, both enhancing catalytic activity and creating 

phosphotyrosine binding sites for SH2 and PTB domains in docking molecules and 

downstream effectors (Figure 1.6). Docking molecules (e.g. Shc and FRS2) interact via 

additional adapter proteins (such as Grb2 and Crk) with GTPase exchange factors 

(GEFs) that activate small GTPases such as Ras (via Sos) and Rap1 (via C3G). The 
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activation of these small GTPases in turn activates B-Raf or C-Raf to promote signaling 

through the MAPK pathway (Lemmon and Schlessinger, 2010) (Figure 1.6). The 

resulting activation of Erk leads to transcription factor activation, gene expression and 

cellular responses (Murphy and Blenis, 2006) (Figure 1.6). This highly simplified linear 

description of RTK signaling is shared by many of the RTKs, even though the cellular 

fates upon receptor activation are quite varied. 

In the past 20 years, RTK signaling has been well studied using rat pheochromocytoma 

(PC12) cells. Important early experiments analyzed signaling differences between 

activated TrkA and EGFR in these cells. Despite engaging similar complements of 

downstream signaling molecules, TrkA activation leads to PC12 cell differentiation, 

whereas EGFR activation leads to cell proliferation (Marshall, 1995). These classic 

experiments revealed that NGF-induced TrkA activation produces sustained Erk 

activation in PC12 cells, whereas EGFR activation promotes only transient Erk 

activation. It is now quite well established that the duration of Erk activation following a 

signal determines the effect of that signal on cellular fate (i.e. differentiation vs. 

proliferation) (Murphy and Blenis, 2006). One way in which the different time courses of 

Erk activation are ‘interpreted’ to achieve this involves phosphorylation-dependent 

regulation of immediate early gene product stability (Murphy and Blenis, 2006; Murphy et 

al., 2004). Both transient and sustained Erk activation leads to induction of immediate 

early genes (IEG). Several IEG products, such as c-Fos, are quite unstable, but are 

stabilized by Erk phosphorylation. If Erk activation is transient, the lifetime of the IEG 

products is very short. However, when (and only when) Erk activation is sustained, Erk 

phosphorylates and stabilizes IEG products such as c-Fos, allowing them to induce 
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expression of ‘late response’ genes involved in differentiation (Murphy and Blenis, 2006; 

Murphy et al., 2004). 

The origin of the differences in time course of Erk activation remains quite unclear, 

however. Over the years, studies have variously implicated differences in receptor 

internalization, receptor levels, receptor localization, differential use of small GTPases, 

and engagement of distinct feedback loops to explain how TrkA and EGFR signaling 

cause differentiation and proliferation respectively in PC12 cells (Murphy and Blenis, 

2006). 

Earlier studies comparing signaling by TrkA and EGFR in PC12 cells identified key 

network properties that may explain the sustained and transient modes of Erk activation 

respectively. York et al. (York et al., 1998) reported that, whereas Erk activation by 

EGFR signaling occurs largely through the Grb2/Sos/Ras pathway, TrkA signaling also 

engages the FRS2/Crk/C3G/Rap1 pathway. A key difference between these pathways is 

that the Grb2/Sos/Ras pathway contains several negative feedback loops, including 

receptor activation of Ras-GAP and inhibitory Erk phosphorylation of Sos (Lemmon and 

Schlessinger, 2010). By contrast, Rap1’s GAP is not activated by RTKs, and the C3G 

Rap1 exchanger is not subject to negative feedback. Negative feedback is likely to 

cause EGFR-induced Erk activation to be transient, and the relative lack of this feedback 

in TrkA signaling via Rap1 allows a more sustained response. Another study suggested 

that formation of a long-lived complex between TrkA and the FRS2 docking protein may 

increase the longevity of its signaling to Erk, and thus more sustained Erk activation 

(Kao et al., 2001). 
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Additional modulation of the network is achieved by the underappreciated role of protein 

phosphatases. Recent studies have revealed that the phospho-turnover of RTKs at the 

cell surface is very rapid. This suggests that the activity of RTKs has to exceed a 

threshold controlled in part by surrounding phosphatase activity to increase levels of 

autophosphorylation (Kleiman et al., 2011).  

Interestingly, overexpression of EGFR or IRK converts the cellular proliferation response 

normally observed for EGFR and IRK activation in PC12 cells into cellular differentiation. 

These studies reveal that the strength per se of the initiating signal can be a determinant 

of downstream signaling and cellular response (Dikic et al., 1994; Traverse et al., 1994). 
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Figure 1.6. Simple schematic of RTK signaling. Growth factor binding to its receptor 

induces dimerization and activation of the TKD.  Autophosphorylation by the TKD 

creates docking motifs for adapter molecules (green). These molecules interact with 

GEFs (grey) that activate small GTPases (purple) that in turn activate the MAPK 

pathway (yellow).   The MAPK pathway consists of Raf, Mek and Erk. Activation of Erk 

leads to activation of transcription factors that elicit cellular responses. 
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1.8. RTKs in disease 
	  

The important role of RTKs in initiating cellular signaling and dictating cellular response 

is evident by the prevalence of aberrant activity of RTKs in various diseases and in 

particular cancer. In fact, many RTKs were originally identified as agents promoting 

tumorigenesis. For example, in the 1980s viral oncogenes from the simian sarcoma virus 

and avian erythroblastosis virus respectively were determined to transform cells through 

autocrine activation of PDGFR (by expressing its ligand) and constitutively signaling by 

an activated EGFR variant (Lemmon and Schlessinger, 2010). Furthermore, several 

RTKs were initially identified when parts of their coding sequence was found in aberrant 

soluble fusion proteins that promote tumorigenesis. The Trk (tropomyosin related kinase) 

receptors were first identified from the trk oncogene in colon cancer, which encodes an 

oncogenic fusion protein created by chromosomal rearrangement that juxtaposes the 

coding region for the TrkA TKD with non-muscle tropomyosin, creating a constitutively 

active tropomyosin/TrkA TKD fusion oncoprotein (Greco et al., 2010). These discoveries 

highlight some of the mechanisms of RTK dysfunction in cancers. In the case of human 

cancer, aberrant RTK activation can occur by chromosomal translocation (as with trks), 

autocrine activation, overexpression, or gain-of-function mutations (Casaletto and 

McClatchey, 2012; Lemmon and Schlessinger, 2010). 

Recent increased sequencing efforts have lead to abundance of data regarding TKD 

mutations of RTKs in cancer. Interpreting the significance of these mutations remains a 

challenge, since it is increasingly evident that many mutations revealed by sequencing 

are “passenger” mutations rather than the “driver” mutations that are actually promoting 

cell proliferation and tumorigenesis (Dancey et al., 2012). Structural studies have been 

instrumental in understanding the consequences of mutations.  
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There are various reports of TKD mutations activating the TKD by disturbing 

autoinhibitory mechanisms that normally keep the TKD inactive until ligand binds and 

induces activation. For example, structural studies of the intracellular domain of the stem 

cell factor receptor (KIT) elucidated the autoinhibitory mechanisms utilized by WT KIT 

and demonstrated that cancer mutations disturb these autoinhibitory mechanisms 

(Corless and Heinrich, 2008; Lemmon and Schlessinger, 2010). Mutations in the EGFR 

TKD identified in non-small-cell lung cancer (NSCLC) have also been shown by 

structural and biochemical studies to release the EGFR TKD from the autoinhibitory 

mechanisms that normally hold the WT EGFR TKD in an inactive state (Choi et al., 

2006; Zhang et al., 2006). Thus, understanding the mechanism of autoregulation of 

TKDs is vital for understanding the consequences of TKD mutations. 

However, not all RTKs have been as thoroughly studied structurally and biochemically 

as KIT and EGFR. For example, the mechanism of autoinhibition for the Trk family was 

not clearly known at the time of starting this thesis, because there were no kinase 

domain structures available for any member of the Trk family. The mechanism of TKD 

activation in the case of oncogenic TrkA TKD-containing fusion proteins is thought to 

involve dimerization mediated by the fusion partner, which frequently contains coiled-

coiled domains (Greco et al., 2010). However, if and how mutations activate Trk family 

members in the intact RTK context is not known. There are reports of mutations of Trk 

family members in acute myeloid leukemia (Tomasson et al., 2008), colorectal (Bardelli 

et al., 2003), lung (Davies et al., 2005; Ding et al., 2008; Marchetti et al., 2008), and 

breast cancers (Stephens et al., 2005) but without structural and biochemical analysis 

the consequences of these mutations are difficult to predict. Prior to this study, 

interpretation of some of these mutations was based on homology models of other RTKs 
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(Tomasson et al., 2008). However, previous reports suggested that at least TrkA has a 

unique autoinhibitory mechanisms – based on the observation that activating mutations 

of conserved residues in Met and Kit have a distinct effect in TrkA and in one case 

abrogates kinase activity of TrkA (Miranda et al., 2002). Thus, interpretation of the 

mutations of Trk family members in cancer has proven to be challenging since it was not 

yet known if these mutations were “passengers” or “driver” mutations. Along with 

mutations of Trk family members in certain cancers, there are other reports that have 

identified TrkA loss-of-function mutations in congenital insensitivity to pain with 

anhidrosis (Indo, 2001). 

The Trk family has also been implicated in neuroblastoma, a cancer of the sympathetic 

nervous system and one of most common pediatric neoplasms (Brodeur et al., 2009). 

The clinical outcomes of neuroblastoma vary greatly, ranging from benign cases that 

spontaneously regress to malignant cases leading to fatality. Unfortunately, the majority 

of cases that occur in children older than one year are malignant with long-term survival 

less than 40% (Brodeur, 2003; Brodeur et al., 2009; Maris et al., 2007). The 

heterogeneous nature of neuroblastoma is an intriguing biological and clinical dilemma. 

An interesting correlation is that tumor characteristics are closely related to the 

expression of TrkA and TrkB. Studies have shown that expression of TrkA occurs in 

biologically favorable neuroblastomas, whereas expression of TrkB occurs in biologically 

unfavorable neuroblastomas (Brodeur et al., 1997; 2009). At the start of this study there 

was no evidence of mutations of TrkA or TrkB in neuroblastoma, but sequencing efforts 

were just starting to increasingly look at the TKDs of TrkA and TrkB. 

Structural and biochemical studies not only provide insight into the consequences of 

certain mutations, but also provide a framework to therapeutically target the TKDs that 



27	  
	  

promote turmorigenesis. A thorough understanding of the autoregulatory mechanisms of 

TKDs is crucial for effective therapies. This requirement was clearly illustrated in recent 

studies with B-Raf inhibitors, underscoring the consequences of not fully understanding 

the activation mechanism of a kinase and the organization of the network in which it is 

embedded. Although certain B-Raf inhibitors have proven very successful in treating 

some melanomas (driven by mutated B-Raf), the very same inhibitors can actually 

increase cell proliferation by driving the MAPK pathway in other cellular contexts 

(Cichowski and Janne, 2010). 
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Chapter 2:  

Assessing the range of kinase autoinhibition mechanisms in the insulin 
receptor family 
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NB.	  The	  work	  presented	  in	  this	  chapter	  was	  in	  collaboration	  with	  Dr.	  Jeannine	  Mendrola	  from	  
the	  Lemmon	  lab	  and	  can	  also	  be	  found	  in	  Artim	  et	  al.	  (2012)	  Biochem.	  J.	  448,	  213–220.	  	  Work	  
contributed	  by	  Dr.	  Jeannine	  Mendrola	  (J.M.)	  is	  noted	  in	  the	  appropriate	  figure	  and	  table	  
legends.	  

	  

2.1.  Introduction 
	  

Recent clinical success with targeted inhibitors of the EGFR, B-Raf, and ALK kinases 

underscore both the promise and the challenges of ‘personalized’ cancer medicine 

(Dancey et al., 2012; Yauch and Settleman, 2012).  Well-defined activating mutations in 

each of these kinases have been identified as oncogenic “drivers”, promoting 

uncontrolled proliferative or cell survival signaling that can be curbed with specific kinase 

inhibitors.  As genomic analysis of tumors burgeons, however, it is becoming 

increasingly clear that many mutations found in cancer are “passengers” rather than 

drivers (Dancey et al., 2012).  The ability to determine which mutations in a tumor are 

oncogenic drivers – and thus which signaling nodes should be targeted therapeutically – 

will be crucial for advancing personalized medicine in oncology. 

For protein kinases – including receptor tyrosine kinases (RTKs), which are frequently 

found as oncogenic drivers in cancer (Lemmon and Schlessinger, 2010) – a key goal is 

to understand which mutations increase constitutive kinase activity and signaling.  The 

EGF receptor provides an excellent illustration of how structural understanding of kinase 

activation mechanisms (Zhang et al., 2006) can explain driver mutations in non-small 

cell lung cancer (NSCLC) (Sharma et al., 2007).  The inactive EGFR TKD is 

autoinhibited by intramolecular interactions between a short α-helix in its activation loop 

and another important helix (αC) that is consequently displaced from the position it 

adopts in the active kinase.  This mode of autoinhibition closely resembles that seen in 
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Src family and cyclin-dependent kinases (CDKs) (Jura et al., 2011).  Known driver 

mutations activate EGFR by destabilizing these intramolecular autoinhibitory 

interactions.  Intriguingly, oncogenic driver mutations that destabilize very similar 

autoinhibitory interactions are also found in ALK (anaplastic lymphoma kinase) (Bossi et 

al., 2010; Bresler et al., 2011; Lee et al., 2010), a member of the large insulin receptor 

kinase (IRK) subfamily of RTKs (Manning et al., 2002; Morris et al., 1994) that is 

important in neuroblastoma (Carpenter and Mossé, 2012).  Despite the fact that the ALK 

TKD shows closest sequence similarity to IRK family members, the autoinhibitory 

interactions that define its inactive conformation most closely resemble those in EGFR, 

Src and CDKs (Hubbard et al., 1994; Jura et al., 2011).  As in EGFR, ALK TKD 

structures reveal hydrophobic interactions between a small α-helix in the activation loop 

and the crucial αC helix that stabilize the inactive kinase conformation (Bossi et al., 

2010; Lee et al., 2010).  The side-chains of the ALK residues most frequently mutated in 

neuroblastoma (Carpenter and Mossé, 2012) (Phe1174 and Arg1275) make important 

contributions to these autoinhibitory interactions, and their mutation causes constitutive 

ALK activation.  Indeed, Phe1174 and Arg1275 in ALK are structurally equivalent to EGFR 

residues Val769 and Leu861 (Bresler et al., 2011), at which activating mutations are also 

seen in NSCLC (Sharma et al., 2007). 

Structural studies have revealed a spectrum of autoinhibitory mechanisms for IRK family 

RTKs.  ALK lies at one extreme, with an EGFR/Src/CDK-like mode of autoinhibition.  

IRK lies at the other, with a very different autoinhibitory activation loop conformation that 

simultaneously occludes the ATP-binding site and projects a key tyrosine side-chain 

(Tyr1162) into the substrate-binding site (Hubbard et al., 1994). The autoinhibitory 

mechanisms of inactive IGF1R (Munshi et al., 2002) and MuSK (Till et al., 2002) kinases 
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closely resemble that seen in IRK, with very similar activation loop configurations.  

However, structures of the inactive TKDs of the IRK family members Met (Wang et al., 

2006) and Ron (Wang et al., 2010) have quite distinct activation loop conformations.  

Since mutations that disrupt autoinhibitory interactions are known to be important 

oncogenic drivers in ALK (and Met), it seems clear that understanding the mechanism of 

TKD autoinhibition will be important for predicting which mutations are likely to be 

significant for IRK family RTKs in cancer or other diseases in which RTK activation is 

important.  Since the cases of Met, ALK, and Ron demonstrate that not all IRK family 

RTKs are regulated in the same way as IRK, we were motivated to ask how other 

kinases in this family are regulated.  Notably absent from the list of IRK-family TKDs with 

known structure are members of the Trk, Ror, and DDR subfamilies, which have all been 

implicated in cancer (Brodeur et al., 2009; Hammerman et al., 2011; Rebagay et al., 

2012) and other diseases.  Here, we describe crystal structures to 2.4Å resolution of the 

inactive TKDs from TrkA (a receptor for nerve growth factor (Huang and Reichardt, 

2003)) and Ror2 (now known to be a Wnt receptor (Green et al., 2008)).  In the context 

of the other IRK family structures, these new results provide a useful framework for 

interpreting the consequences of TKD mutations in this family. 

 

2.2.  Overview of TrkA and Ror2 Structures 
	  

Both the TrkA and Ror2 TKD structures were solved in their unphosphorylated inactive 

forms (Figure 2.1), with no bound nucleotide. Data collection and refinement statistics 

are shown in Table 2.1.  The TrkA and Ror2 structures exhibit the common kinase 

topology consisting of an N-terminal lobe and a larger C-terminal lobe. The N-terminal 
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lobe consists of a twisted five-stranded β-sheet plus one conserved α-helix, called αC, 

that plays a key role in the transition from an inactive to an active conformation (Huse 

and Kuriyan, 2002).  The larger C-terminal lobe is predominantly helical, and also 

contains the activation loop that undergoes key conformational changes upon activation 

– contributing to the catalytic and substrate binding sites in the active conformation of 

the TKD, but instead playing an autoinhibitory role in the inactive conformation. 
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Figure 2.1.  Structures of TrkA and Ror2 TKDs 

Structures of inactive TKDs from TrkA (left) and Ror2 (right) in cartoon representation.  

The amino- and carboxy-terminal lobes (N-lobe and C-lobe) are labeled, as is the 

catalytically important αC helix.  The activation loops are labeled and highlighted in cyan 

(TrkA) and magenta (Ror2).  Side-chains in the DFG motif of TrkA (Asp668, Phe669, 

Gly670) and the equivalently located DLG motif in Ror2 (Asp633, Leu634, Gly635) are shown, 

and tyrosines from the YxxxYY motif are shown in stick representation.  Also shown is 

the invariant lysine in strand β3 (Lys544 in TrkA, Lys507 in Ror2), which forms a salt bridge 

with αC Glu524 in Ror2 (but not TrkA).  The catalytic base aspartate (Asp650 in TrkA, 

Asp615 in Ror2) is also shown and labeled.  Molecule A was used for Ror2-TKD.  The N- 

and C-terminal residues of the modeled structure are marked where visible in the 

orientation shown. (Ror2 TKD was crystallized and the structure solved by J.M.) 
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Table 2.1.  Data collection and refinement statistics (molecular replacement) 

Each dataset was collected from a single crystal. Values for the highest-resolution shell 
are shown in parentheses. (Ror2 TKD was crystalized and the structure solved by J.M.) 

   
 TrkA Ror2 
   
Data collection   
  Space group H32 C2221 
  Cell dimensions   
      a, b, c (Å) 105.0, 105.0, 203.3 102.8, 112.9, 114.8 
      α, β, γ  (°)  90, 90, 120 90, 90, 90 
  Resolution (Å) 50.0-2.4 46.9-2.4 
  Rsym 0.065 (0.553) 0.112 (0.565) 
  I/σ 52.9 (5.3) 21.9 (4.1) 
  Completeness (%) 99.9 (100) 100 (99.9) 
  Redundancy 11.1 (11.3) 7.5 (7.3) 
Refinement   
  Resolution (Å) 2.4 2.4 
  No. reflections 17195 26251 
  Rwork / Rfree 0.20/0.25 0.17/0.20 
  No. atoms   
      Protein 2261 4274 
      Ion 0 16 (4 x NO3

-) 
      Water 77 228 
  B-factors   
      Protein 76.3 39.1 
      Ion  49.6 
      Water 62.6 38.3 
  R.m.s. deviations   
      Bond lengths (Å) 0.004 0.003 
      Bond angles (°) 0.758 0.643 
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2.3.  Autoinhibition of TrkA and Ror2 TKDs 
	  

Both the TrkA and Ror2 TKDs share one of the key autoinhibitory features of IRK 

(Hubbard et al., 1994), projecting the second tyrosine of the YxxxYY (Tyr-Xaa-Xaa-Xaa-

Tyr-Tyr motif found in the activation loop of IRK family kinases into the (tyrosine) 

substrate binding site.  As shown in Figure 2.2A, tyrosines Tyr680 of TrkA and Tyr645 of 

Ror2 occupy the same position as Tyr1162 in IRK (Hubbard et al., 1994) (marked with an 

asterisk in Figure 2.2A), and make similar interactions with both the catalytic base 

aspartate (Asp650 and Asp615 in TrkA and Ror2 respectively, Asp1132 in IRK) and an 

arginine conserved in IRK family kinases (Arg654 and Arg619 in TrkA and Ror2 

respectively, Arg1136 in IRK).  The activation loop conformations of the TrkA and Ror2 

TKDs are very similar to those seen in IRK, MuSK, and IGF1R (Hubbard et al., 1994; 

Munshi et al., 2002; Till et al., 2002) (Figure 2.2A), whereas the ALK, Met, and Ron 

activation loops are quite different (Figure 2.2B), as discussed below. 

The TrkA and Ror2 TKDs in their inactive conformations also mirror other key aspects of 

the autoinhibitory mechanisms originally described for IRK (Hubbard et al., 1994) – 

although Ror2 has several unique features that suggest a slightly different mode of 

autoinhibition.  The activation loop conformation in both the TrkA and Ror2 TKDs is such 

that it directly occludes the space in which the phosphate moieties of ATP would bind to 

an active kinase – as previously described for inactive IRK, MuSK, and IGF1R (Hubbard 

et al., 1994; Munshi et al., 2002; Till et al., 2002).  As shown in Figure 2.3, backbone 

and/or side-chain atoms in the region following the DFG (Asp-Phe-Gly) motif occlude the 

phosphate-binding site, as seen in particular for Met671 and Ser672 of TrkA and Leu636 of 

Ror2.  A switch from this so-called “DFG-out” (inactive) conformation seen in TrkA, Ror2 

and inactive IRK to an “DFG-in” (active) configuration reverses this inhibition in the 
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active IRK structure, as seen at the left of Figure 2.3.  Like IRK, inactive TrkA also 

places the side-chain of its DFG motif phenylalanine (Phe669) into the binding site for the 

adenine ring to further block ATP binding.  This feature is common to IRK (Phe1151), 

MuSK, and IGF1R.  However, Ror2 does not mimic this aspect of the autoinhibitory 

interactions – and has the Phe of its Asp-Phe-Gly motif replaced with a leucine.  The 

unusual DLG (Asp-Leu-Gly) motif in Ror2 adopts an “DFG-out”-like conformation 

(Figures 2.1 and 2.3), but it is displaced approximately 4-4.5Å away from the ATP-

binding site compared with that in IRK and TrkA, and therefore does not impact the 

location adopted by the adenine ring in active kinases.  Instead, the side-chain of Tyr555, 

two positions from the gatekeeper residue (Phe553) at the end of strand β5 (and quite 

distant from the Asp-Phe-Gly motif), occupies an unusual position for inactive kinases, 

and occludes the predicted binding site for the ATP adenine ring (Figure 2.3).  The 

corresponding residue is a tyrosine in numerous other TKDs, although it is replaced by 

phenylalanine or leucine in others.  Regardless of the residue identity, however, the 

side-chain orientation in all other inactive IR family TKDs, as well as EGFR, FGFRs, and 

Src family TKDs is orthogonal to that of Tyr555 in Ror2, suggesting that the ability of this 

tyrosine to occlude the ATP binding site may be a feature unique to Ror2.  It will be 

interesting to determine whether Tyr555 is a phosphorylation site in Ror2, and whether 

phosphorylation (or mutation) of this residue enhances kinase activity. 
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Figure 2.2.  Comparison of activation loop configurations in IRK family kinases 

Known inactive conformation structures of IRK family kinases (in addition to TrkA and 

Ror2) were overlaid on that of the insulin receptor (PDB 1IRK (Hubbard et al., 1994): 

grey – with the TKD shown in surface representation), and their activation loops colored.  

(A) The activation loops of MuSK (PDB 1LUF (Till et al., 2002): orange), TrkA (cyan), 

Ror2 molecule A (magenta) and IGF1R (PDB 1M7N (Munshi et al., 2002): yellow) align 

well with that of IRK.  (B) The activation loops of Ron (PDB 3PLS (Wang et al., 2010): 

red), Met (PDB 2G15 (Wang et al., 2006): blue), and ALK (PDB 3L9P (Lee et al., 2010): 

green) are more widely variable and are compared with that of IRK (grey).  Tyrosine 

side-chains in the YxxxYY motif are shown, and the substrate-mimicking tyrosine (Tyr1162 

in IRK) is marked with a red asterisk. 
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Figure 2.3.  ATP binding-site occlusion by the activation loop in inactive IRK, 

TrkA, and Ror2 TKDs 

Structures of the inactive TKDs from IRK (Hubbard et al., 1994), TrkA, and Ror2 were 

overlaid on the structure of active IRK (PDB 1IR3) determined with bound peptide 

substrate and a non-hydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP) 

(Hubbard, 1997).  Close-up views of residues surrounding the binding site for AMP-PNP 

(shown from the 1IR3 structure) are shown for inactive IRK (activation loop colored 

grey), TrkA (activation loop colored cyan), and Ror2 (activation loop colored magenta).  

Whereas the 1IR3 (active) structure readily accommodates AMP-PNP, the nucleotide 

binding site is directly occluded by the activation loop in inactive IRK, TrkA, and Ror2 – 

with backbone and side-chain clashes with the phosphate groups.  In addition, the Asp-

Phe-Gly motif phenylalanine (Phe1151 in IRK and Phe669 in TrkA) blocks the binding site 

for the adenine ring of AMP-PNP.  This inhibitory interaction is not maintained in Ror2, 

which has a Phe-to-Leu substitution in the DFG motif (yielding DLG), and Tyr555 from 

elsewhere in the TKD takes on a similar role. 
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2.4.  Comparison with ALK, Met, Ron, and IRK autoinhibition 
	  

In contrast with the TKDs depicted in Figure 2.2A, the activation loops of inactive ALK, 

Met, and Ron do not interfere directly with ATP binding, and adopt a diverse array of 

conformations (Figure 2B).  Tyrosines in the YxxxYY motif of ALK and Met do not project 

into the substrate binding site in the manner described above for TrkA, Ror2, and IRK.  

In Ron, Tyr1238 does occupy the substrate tyrosine site, but approaches from quite a 

different orientation than is seen in IRK and the other TKDs shown in Figure 2.2.  

Autoinhibition of ALK, Met, and Ron instead relies substantially on direct interactions 

between the activation loop and the αC helix – both displacing the αC helix from the 

position it adopts in active kinases and distorting the activation loop.  This mode of 

autoinhibition is not employed by IRK (Hubbard et al., 1994) and is also not seen for 

MuSK or TrkA.  Ror2 lies between these two scenarios.  In addition to occluding the 

ATP-binding site like IRK, the Ror2 TKD activation loop also directly contacts the αC 

helix (Figure 2.4).  It does so through predicted hydrogen bonds between Asp633 from 

the DLG motif and a αC arginine side-chain (Arg528), made possible because of the 4-

4.5Å displaced position of this motif away from the active site in Ror2.  It is interesting 

that the αC helix is displaced further from the position adopted in active kinases in the 

case of inactive Ror2 than in the TrkA, IRK, MuSK, or IGF1R counterparts, and is closer 

to the position for the αC helix seen in Met and Ron.  Thus, Ror2 appears to employ a 

“hybrid” mode of autoinhibition that involves both direct occlusion of the ATP-binding site 

and activation loop/αC interactions.  By contrast, TrkA very closely resembles IRK. 

The different modes of IRK family kinase autoinhibition are also reflected in their normal 

(ligand-dependent) activation mechanisms.  The TKDs in Figure 2.2A resemble IRK, 
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with the initial activating event likely to be autophosphorylation of the tyrosine side-chain 

projecting into the substrate-binding site (Tyr680 in TrkA, Tyr645 in Ror2, Tyr1162 in IRK, 

Tyr1135 in IGF1R, and Tyr754 in MuSK) – thus reversing autoinhibition (Hubbard et al., 

1994; Till et al., 2002).  Phosphorylation of other tyrosines in the characteristic activation 

loop YxxxYY motif in these kinases disrupts additional autoinhibitory interactions (mostly 

with C-lobe residues) and/or stabilizes the active conformation.  The TKDs depicted in 

Figure 2.2B vary.  Since Ron places the side-chain of Tyr1238 from its activation loop in 

the substrate-binding site to inhibit the kinase, autophosphorylation of this tyrosine is 

likely to play a key role in receptor activation (Wang et al., 2010).  In both ALK and Met, 

YxxxYY motif tyrosines instead stabilize autoinhibitory activation loop/αC interactions in 

the inactive state, without directly impacting the substrate-binding site.  In Met, the 

Tyr1234 side-chain (equivalent to IRK Tyr1162) directly contacts αC, and its 

phosphorylation is required for Met activation (Wang et al., 2006).  Similarly, Tyr1278 in 

ALK (the first tyrosine in the YxxxYY motif) contributes directly to autoinhibitory 

activation loop/αC interactions, and its phosphorylation has been reported to be the 

initial event in ALK activation (Tartari et al., 2008). 
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Figure 2.4.  DFG motif conformation and activation loop/αC interactions in TrkA 

and Ror2 TKDs 

Left:  Close-up of the DFG motif region in TrkA-TKD, with the DFG motif itself colored 

cyan.  Note the absence of salt-bridge between the β3 invariant lysine (Lys544) and αC 

glutamate (Glu560) – for which complete side-chain density was not seen.  Van der 

Waal’s contacts between the Phe589 and Leu564 side-chains are likely to contribute to 

stabilization of the αC position. 

Right:  Close-up of the DFG motif equivalent in Ror2-TKD (colored magenta), which has 

the sequence DLG – with Leu634 replacing the normal phenylalanine at this position in 

other kinases.  Note that the β3 invariant lysine (Lys507) forms a salt-bridge with the αC 

helix glutamate (Glu524) even in the inactive Ror2 kinase (as also seen in ALK and Met), 

although the displaced αC helix position prevents Lys507 from contributing to an active-

like ATP-binding site.  The DLG motif of Ror2-TKD in the activation loop also interacts 

directly with the αC helix, thus stabilizing the inactive state through a mode that more 

closely resemble autoinhibition in Met, ALK, or EGFR.  Arg528 in the αC helix interacts 
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directly with both backbone and side-chain of Asp633 in the DLG motif to stabilize this 

conformation.  Mutations at Arg528 might be predicted to activate Ror2. 

 

2.5.  Possible relevance of TrkA and Ror2 TKD dimers 
	  

RTKs are well known to signal as dimers, with extracellular ligand binding inducing either 

dimerization or the transition from an inactive dimeric form to an active dimer (Lemmon 

and Schlessinger, 2010).  Accordingly, functional significance has been attached to 

dimers of both active and inactive TKDs.  Since the Ror2 TKD crystallized with two 

molecules in the asymmetric unit, we were therefore interested to ask whether any Ror2 

or TrkA TKD dimer – non-crystallographic or crystallographic – might be functionally 

relevant, perhaps as an ‘inactive dimer’ of the sort suggested for a symmetric EGFR 

TKD structure (Jura et al., 2009).  During the course of this work, other structures of Trk 

receptor kinases (Albaugh et al., 2012; Bertrand et al., 2012; Wang et al., 2012) and 

Ror2 were published or released in the Protein Data Bank (PDB).  It was therefore 

important to determine whether these other structures share any crystal packing modes 

with the TrkA and Ror2 structures described in the present paper. 

The unpublished Ror2 (PDB entry 3ZZW) contains two molecules in the asymmetric unit, 

in common with our structure.  In both cases, the two Ror2 TKD molecules form an 

antiparallel dimer, burying a total surface area of 1,725Å2 (our structure) and 2,640Å2 

(3ZZW) on the two TKDs.  However, the surfaces involved in each interface are quite 

different.  Within the Ror2 monomer, all of the structural features described here are 

maintained in 3ZZW, with the exception that molecule B in 3ZZW has a different DLG 

motif configuration and position – slightly closer to the “DFG out” conformation seen in 



43	  
	  

inactive IRK – so that the characteristic Asp633/Arg528 hydrogen bond shown in Figure 

2.4 (between activation loop and αC helix) cannot form.   

Of the two TrkA TKD structures in the PDB, one (entry 4AOJ) has an inhibitor bound 

(AZ-23), which forces the Asp-Phe-Gly motif into an “in” (rather than “out”) conformation, 

and much of the activation loop is missing.  Otherwise, this structure closely resembles 

the TrkA structure described here.  There are three molecules in the 4AOJ asymmetric 

unit, but no crystallographic or non-crystallographic packing mode is shared with our 

TrkA structure.  Recently published inhibitor-bound TrkB (Bertrand et al., 2012) and TrkC 

(Albaugh et al., 2012) structures also closely resemble our TrkA structure, although all 

but one (PDB code 4ASZ (Bertrand et al., 2012)) has an inhibitor bound, either 

displacing the DFG motif or flipping it into an “in” configuration.  A TrkA structure with no 

inhibitor bound (Bertrand et al., 2012) was subsequently released (PDB entry 4F01).  

This closely resembles our structure and, interestingly, does appear to share one 

crystallographic dimer interface as described below. 

We used the PISA (Protein Interfaces, Surfaces and Assemblies) server (Krissinel and 

Henrick, 2007) to search the PDB for crystal packing modes between TKDs similar to 

those seen for our Ror2 and TrkA structures.  No examples were seen of TKDs that 

pack like Ror2, but close relatives of one of the TrkA crystallographic dimers were seen 

both in inhibitor-bound TrkC (PDB entry 3V5Q (Albaugh et al., 2012)) and eight PDB 

entries describing structures of the inactive TKD from fibroblast growth factor receptor-1 

(FGFR1).  This crystallographic TrkA dimer is shown in Figure 2.5A.  A total surface 

area of 1,314 Å2 is buried in the interface of this dimer, in which the two copies of the αC 

helix are parallel and directly contact one another.  Further contacts are made between 

the C-terminus of the αC helix in one molecule and the C-terminus of the αE helix in its 
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neighbor.  In addition, the N-terminus of each molecule projects towards the active site 

of its neighbor, terminating with uninterpretable electron density within the active site – 

possibly reflecting a mode of intermolecular autoinhibition in an inactive dimer.  The N-

terminus shows similar behavior in the crystallographic TrkC dimer seen in PDB entry 

3V5Q, which buries a surface area of 1,136Å2.  Moreover, Mohammadi et al. 

(Mohammadi et al., 1996) highlighted a remarkably similar dimer when they first reported 

the structure of the inactive FGFR1 TKD (PDB entry 1FGK) – burying a surface area of 

1,657Å2.  The fact that this dimer is seen for three different inactive TKDs, including one 

(FGFR1) that is only distantly related, suggests that it may be functionally relevant for 

inactive RTK TKDs.  A second non-crystallographic TrkA TKD dimer, shown in Figure 

5B, is shared by our TrkA structure and that of Bertrand et al. (Bertrand et al., 2012) 

(PDB entry 4F01) – although was not seen for other TKDs in the PDB.  This dimer buries 

~1,500 Å2, primarily contributed by side-chains from the ‘hinge’ region that links β5 in the 

N-lobe and αD in the C-lobe, the kinase insert domain (between helices αD and αE), 

and strand β1 in the N-lobe.  These interactions could also contribute directly to TKD 

autoinhibition in an inactive dimer. 

As for many other RTKs, preformed inactive dimers of TrkA (Shen and Maruyama, 2011) 

and TrkB (Shen and Maruyama, 2012) have been reported based on crosslinking and 

complementation experiments, formation of which appears to require the intracellular 

domain.  It is possible that one or both of the symmetric dimers of TrkA TKDs shown in 

Figure 5 plays a role in stabilizing such dimers, along similar lines to a proposed 

symmetric inactive dimer of EGFR that was observed crystallographically (Jura et al., 

2009).  Since the tyrosines of the activation loop YxxxYY motif are distant from the dimer 

interface in both dimers shown in Figure 2.5, their trans-autophosphorylation following 
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extracellular nerve growth factor binding would require a substantial rearrangement of 

such an inactive dimer if it exists in cells. 

 

Figure 2.5.  Inactive TrkA TKD dimers 

Two orthogonal views of crystallographic dimers of TrkA TKDs.  One TrkA TKD is 

colored cyan, and the other grey.  (A) A dimer that is also found in an inhibitor-bound 

TrkC TKD crystal structure (PDB entry 3V5Q (Albaugh et al., 2012)) and in inactive 

FGFR1 TKD structures.  The αC helix, which is responsible for the majority of the 

interactions is labeled, as is αE, the C-terminus of which also makes contributions to the 

dimer interface.  The N- and C-termini of the TKD are marked.  Note the projection of the 

N-terminus towards the TKD active site – a feature that is also seen in the TrkC 

crystallographic dimer from 3V5Q.  (B) A dimer that is also found in another TrkA TKD 
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structure (PDB entry 4F0I (Bertrand et al., 2012)), which involves the ‘hinge’ region, 

kinase insert domain and strand β1.  This dimer could help maintain the inactive 

configuration through restraints on the hinge region, for example.  No evidence for TrkA 

TKD dimerization in solution was obtained in analytical ultracentrifugation studies (not 

shown).  Tyrosines in the YxxxYY motif within the activation loop are colored black, to 

highlight the fact that they are quite distant in this dimer from the active site of the 

neighboring TKD that may trans-phosphorylate them.  The tyrosine trans-

autophosphorylation events that lead to TrkA activation could not occur in the context of 

this inactive dimer, but would require its reorganization upon extracellular ligand binding 

– or association with additional receptor molecules. 

 

	  

2.6.  Activating mutations in IRK family TKDs 
	  

Figure 2.6 summarizes mutations found in the TKDs of IRK family receptor tyrosine 

kinases in cancer patients, from the COSMIC (Catalog Of Somatic Mutations In Cancer) 

database (Forbes et al., 2010) and a survey of the literature.  Patient mutations are 

found in all of the TKDs discussed here, except for Ron (not pictured in Figure 2.6).  

Two main points emerge from this inspection.  First, ALK and Met – IRK family TKDs 

with autoinhibitory interactions that do not involve direct occlusion of substrate- or ATP-

binding sites – have been found mutated most frequently in cancer patients.  With the 

caveat that this is a limited dataset, this observation may suggest that these TKDs are 

the most ‘vulnerable’ to mutational activation in cancer.  Second, many of the cancer-

associated mutations in ALK and Met are found in the activation loop and αC helix (red 
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in Figure 2.6), presumably reflecting an activating disruption of activation loop/αC helix 

interactions.  Only two such mutations have been reported in these regions of Ror2, 

whereas only a single example is seen in TrkA and IGF1R and no examples have been 

reported in MuSK.  Since stabilization of the autoinhibitory activation loop/αC 

interactions seen in ALK and Met (and in EGFR) is distributed over a large number of 

residues, we suggest that there are many positions at which activating oncogenic driver 

mutations can occur – which may increase their frequency.  By contrast, where 

autoinhibitory interactions involve projection of an activation loop tyrosine into the 

substrate binding site, they are more ‘focused’ on that particular tyrosine – which will 

reduce the probability of oncogenic mutation.  Accordingly, just as activating mutations in 

the TKD itself are rare in IGFR1R and MuSK, we expect them also to be quite infrequent 

in TrkA and Ror2 (and close relatives) based on the structures presented here. 
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Figure 2.6.  Somatic mutations in IRK family kinases in cancer 

IRK family TKDs in their inactive conformation (PDB IDs listed in Figure 2) are shown in 

the same orientation as Figure 1, with the activation loop colored cyan.  Sites at which 

mutations have been reported in cancer patients – in the literature or Catalog Of Somatic 

Mutations In Cancer (COSMIC: http://www.sanger.ac.uk/genetics/CGP/cosmic/) 

database (Forbes et al., 2010) – are represented as spheres, colored red if the 

mutations lie in the activation loop or αC helix.  Note that the region of contact between 

the activation loop and αC helix is the site of many mutations in Met and ALK.  TKDs 

without this autoinhibitory feature have fewer mutations to date, and fewer in the 

activation loop or αC.  These analyses identify a vulnerability in ALK and Met for 
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oncogenic mutations as described in the text.  Ron is not included because no mutations 

in this TKD have yet been described.  IRK is included for comparison. 

 

 

2.7.  Conclusions 
	  

In conclusion, we describe crystal structures of the TrkA and Ror2 TKDs in their inactive 

states.  The structures reveal that TrkA closely resembles IRK in its mode of 

autoinhibition (and presumably activation), relying only on occlusion of the substrate- 

and ATP-binding sites by the activation loop.  On the other hand, Ror2 autoinhibition 

combines several elements; its activation loop occludes the substrate- and ATP-binding 

sites as seen in IRK, but with additional unique contributions from a tyrosine side-chain 

close to the gatekeeper residue.  Moreover, interactions between the activation loop and 

αC contribute to Ror2 autoinhibition, suggesting that additional sites of vulnerability for 

activating mutations in Ror2 may exist that are not present in IRK, IGF1R and TrkA.  We 

also describe a model for an inactive TrkA TKD dimer that closely resembles inactive 

dimers seen for the TKDs of TrkC and FGFR1. 

Accession codes.  Coordinates and structure factors of the TrkA and Ror2 TKDs have 

been deposited with PDB under the accession codes 4GT5 (TrkA) and 4GT4 (Ror2). 

 

 

  



50	  
	  

 

 

 

 

 

 

 

 

Chapter 3:  

Origin of signaling differences between TrkA and TrkB 
 

 

 

 

 

 

 

 

 

  



51	  
	  

3.1.   Introduction 
	  

Receptor tyrosine kinases (RTKs) play a central role in the fate of the cell by transmitting 

extracellular signals across the cellular membrane to initiate signaling cascades that 

dictate various cellular behaviors in response to ligand binding to a specific RTK. Ligand 

binding to the extracellular domain of RTKs promotes oligomerization, in turn activating 

trans-autophosphorylation of the intracellular tyrosine kinase domains (TKD). 

Autophosphorylation of the TKD activates the kinase further and also produces docking 

sites for downstream signaling molecules. Engagement of these signaling pathways 

leads to various cellular outcome such as proliferation, differentiation, or apoptosis 

(Lemmon and Schlessinger, 2010).  As with many kinases, aberrant activity of TKDs 

either by mutation or altered expression can causes disease.  Hence, kinase activity is 

exquisitely controlled by various factors including autoregulatory mechanisms and 

substrate specificity (Lemmon and Schlessinger, 2010; Ubersax and Ferrell, 2007). 

TrkA and TrkB are members of the tropomyosin-related kinase (Trk) neurotrophin family 

of RTKs and are the receptors for nerve growth factor (NGF) and brain-derived growth 

factor (BDNF), respectively. Even though TrkA and TrkB appear to engage similar 

signaling networks when activated by their respective ligands, several studies have 

shown that activation of TrkA and TrkB in the same cell type can produce quite different 

cellular outcomes or responses. One important clinical example is seen in 

neuroblastoma, where TrkA expression (and activation) promotes cell differentiation and 

a favorable prognosis, whereas TrkB expression and activation causes cell proliferation 

and a grave prognosis for neuroblastoma patients (Borrello et al., 1993; Kogner et al., 

1993; Matsumoto et al., 1995; Nakagawara et al., 1994a; 1993; 1994b; Suzuki et al., 
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1993). How can two homologous RTKs, both thought to engage similar downstream 

signaling pathways, produces opposite cellular responses?  

Classical studies in rat pheochromocytoma (PC12) cells investigating RTK signaling 

involved in differentiation and proliferation upon activation of endogenous TrkA and 

EGFR (or IRK), respectively, showed that TrkA activation results in a sustained 

phospho-Erk response whereas activation of EGFR results in a transient phospho-Erk 

response (Marshall, 1995; Murphy and Blenis, 2006). The duration of Erk activation has 

been shown to correlate directly with differentiation (sustained) or proliferation (transient) 

by phosphorylation-dependent regulation of immediate early gene product stability 

(Murphy et al., 2004). Other studies have demonstrated that feedback loops are involved 

in creating a sustained signal (positive feedback) versus a transient signal (negative 

feedback) (Murphy and Blenis, 2006). Yet, a question still remains as how the input of 

the signaling cascade affects the dynamics of the network. Overexpression of EGFR (or 

IRK) results in a sustained phospho-Erk signal and cellular differentiation indicating that 

the strength of signal from an RTK is an essential determinant of the cellular response 

(Dikic et al., 1994; Traverse et al., 1994). 

Differences in receptor signal strength can be influenced by receptor intrinsic kinase 

activity, receptor density, receptor endocytosis and trafficking (Murphy and Blenis, 

2006). The intrinsic kinase activity of RTKs is central to the function of RTKs and could 

affect other processes such as receptor trafficking. Thus, examination of the intrinsic 

kinase activities of the RTK TKDs is a first step for assessing the origin of any signaling 

differences. 
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Our hypothesis is that intrinsic properties of the TKDs of the relevant RTKs might define 

the differences in dynamics and nature of the responses to the individual receptors.  For 

example, differences in the properties of the closely related TrkA and TrkB kinases may 

play a role in the disparate cellular response upon TrkA and TrkB activation in certain 

cell types.  Varying levels of catalytic activity and autophosphorylation between highly 

homologous kinases often involved in distinct cellular phenotypes has been reported for 

the Tec family, Src family, and FGFR family of kinases (Iseki et al., 1999; Joseph et al., 

2013; Latour et al., 1996; Lew et al., 2007).  In the case of the Tec family, a recent report 

showed that a difference of six amino acids in the activation loop of Itk and Btk was the 

source of Btk’s increased kinase activity. An Itk kinase harboring Btk’s activation loop 

was more active and produced an elevated and sustained phospho-Erk signal in T cells 

(Joseph et al., 2013). 

In this study, we investigated whether there are differences in kinase activity between 

TrkA and TrkB TKDs. We show that TrkA autophosphorylates itself faster than does 

TrkB. However, this difference of autophosphorylation is not due to a difference in kinase 

activity per se, since the kinetic parameters of TrkA and TrkB TKDs were all very similar 

when phosphorylation of peptide substrates was assessed. We also report data 

suggesting that the difference in autophosphorylation may be due to self-association of 

the TrkA TKD that does not occur with its TrkB counterpart. This study sheds light on 

potential differences between TrkA and TrkB signaling as well as providing a deeper 

quantitative understanding of Trk TKD activation, which is potentially useful for effective 

and selective inhibitor design. 
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3.2.  Generation and characterization of TrkA and TrkB kinase domain 
constructs. 
	  

A sequence and structure alignment (Figure 3.1) was performed to facilitate the design 

of analogous TrkA (residues 498-796) and TrkB (residues 542-838) TKD constructs used 

for protein expression. The TKD constructs used in this study also contain the C-terminal 

tail (C-tail) since the C-tail in the Trk receptors is only 15 amino acids long. Notice that 

the TKDs are very similar except for the kinase insert domain (KID). The TrkA and TrkB 

kinase domain proteins were expressed in baculovirus-infected Sf9 cells and purified as 

described in Materials and Methods (Chapter 5). Circular dichroism (CD) spectroscopy 

was first used to assess general secondary structure features of TrkA and TrkB. As seen 

in Figure 3.2A, the general profiles of TrkA and TrkB are very similar and indicative of 

both proteins being similarly folded and over 65% α-helix (as expected). To assess the 

thermal stability of these proteins, I also performed temperature melts monitored by CD 

spectroscopy.  TrkA and TrkB TKD proteins were diluted into a compatible buffer for CD 

analysis (25mM NaH2PO4 �K2HPO4 pH7.4, 150mM NaCl) at a concentration of 2 µM, 

and were subjected to increasing temperatures from 1 to 97°C (See Chapter 5, Materials 

and Methods), and CD was monitored at 222 nm (the α-helix signature minimum). The 

apparent Tm values for both the TrkA and TrkB TKDs were above 37°C (Figure 3.2B), 

indicating that these proteins are stable during the experimental conditions I used to 

study these proteins.  Specifically, Tm values were 39.5˚C and 47.9˚C for TrkA and TrkB 

TKDs respectively. Sedimentation equilibrium analytical ultracentrifugation experiments 

were also performed to ensure that the TrkA and TrkB TKD proteins do not aggregate in 

solution. As shown in Figure 3.3, both TrkA and TrkB TKDs are primarily monomeric in 

solution at concentrations of 16.7 µM and 17.6 µM, respectively, with apparent molecular 
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weights of 35 kDa for TrkA-TKD and 31 kDa for TrkB-TKD. The residuals for a fit of the 

data to a single monomeric species were small and randomly distributed, indicating no 

systematic deviation (and therefore a reasonable fit). 

 

 

Figure 3.1. Alignment of TrkA and TrkB intracellular domains.  

A sequence alignment of human TrkA (P04629-1) and TrkB (Q16620-4) intracellular 

domains showing the secondary structure for the TrkA TKD used to design constructs. 

Indicated on the alignment are the boundaries of the TrkA and TrkB constructs. The N-
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terminal boundary immediately precedes the kinase domain, whereas the C-terminal 

boundary of the construct coincides with the C-terminus of the full-length protein. Also 

shown below the sequences are key motifs of each kinase domain including the hinge 

region (blue box), kinase insert domain (KID, magenta box) and the activation loop (grey 

box). Clustal Omega was used to generate the alignment and ESPript 

(http://espript.ibcp.fr) was used to generate the figure (Gouet, 2003; Sievers et al., 

2011). 
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Figure 3.2. TrkA and TrkB TKDs have similar secondary structure composition 

and are stable at 37°C.  

(A) The CD spectra of TrkA and TrkB TKDs show similar features indicating that neither 

of these constructs are grossly misfolded. The predicted helix and sheet composition 

determined by the K2D3 server (Louis-Jeune et al., 2011) is 69.7% helix and 1.5% sheet 

for TrkA-TKD and 66.2% helix and 2.9% sheet for TrkB-TKD. CD measurements in the 

far UV spectral region (195-260 nm) were performed on an Aviv 62A DS 

spectropolarimeter.  (B) Plotting the CD thermal melts of TrkA and TrkB TKDs 

demonstrate that both proteins are stable at 37°C.  Samples were heated from 1°C to 

97°C in 1°C increments with the circular dichroism at 222 nm being measured at each 

step. 
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Figure 3.3. TrkA and TrkB TKDs are largely monomeric in solution.  

Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) experiments were 

performed with 16.7 µM of TrkA-TKD and 17.6 µM of TrkB-TKD to assess protein self-

association. To analyze the data, the natural logarithm (ln) of absorbance at 280 nm was 

plotted against a function of the radius squared (r
2
-ro

2
)/2, where r is the radial position in 

the sample and ro is the radial position of the meniscus. This analysis provides a straight 

line (for a single species) with slope proportional to the molecular mass of the species. 

Data collected at 10,000 rpm with best-fit lines are shown for TrkA-TKD (A) and for TrkB-
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TKD (B).  The apparent molecular weights calculated for the TrkA and TrkB TKDs are 35 

kDa and 31 kDa, respectively. The predicted molecular weights based on sequence for 

TrkA and TrkB TKDs are 34.8 kDa and 35.1 kDa, respectively.  It is important to note 

that the TrkA-TKD sample for AUC was not treated with phosphatases during purification 

whereas the TrkB sample was treated with phosphatases during purification. 

Regardless, the apparent molecular weights suggest that these proteins are mostly 

monomeric in solution and there are no signs of significant aggregation.  

 

	  

3.3.  An autophosphorylation assay reveals differences between TrkA and 
TrkB TKDs. 
	  

Autophosphorylation of the Trk receptors following their activation is well established 

(Kaplan et al., 1991a; 1991b; Klein et al., 1991a; 1991b; Soppet et al., 1991; Squinto et 

al., 1991). The full-length Trk receptors contain five known sites of autophosphorylation. 

Three sites reside in the activation loop as part of the YxxxYY motif, one site lies in the 

juxtamembrane (JM) region, and another lies in the C-terminal tail (CT) (Guiton et al., 

1994; Loeb et al., 1994; Middlemas et al., 1994; Stephens et al., 1994). The TrkA and 

TrkB TKDs used for this study do not contain the JM region – since its removal was 

necessary for the production of high levels of homogenous protein – so I only monitored 

phosphorylation at four tyrosines in my in vitro studies. 

For an initial qualitative approach to visualizing the progression of TrkA and TrkB TKD 

autophosphorylation, I used native PAGE. However, the native gels were difficult to 

interpret due to more than expected species identified on the gels (Figure 3.4). We 
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speculate that these species may arise from heterogeneity of the starting material arising 

from various types of post translational modification (see below results from mass 

spectrometry of the starting material), or different combinations of 

autophosphosphorylation site usage. 

For a better, more quantitative, approach to monitoring progression of 

autophosphorylation, I added trace amounts of γ-32P ATP to the autophosphorylation 

reaction and visualized its incorporation into the TKD by SDS PAGE-based 

autoradiography. The image captured by a Phoshorimager was then analyzed using 

ImageStudio software, and normalized using the near infrared fluorescence signal from 

protein-bound Coomassie blue stain from the same gel. As shown in Figure 3.5, TrkA 

TKD autophosphorylation occurred faster than TrkB TKD autophosphorylation at both 

37° and RT. Interestingly, once both TrkA-TKD and TrkB-TKD autophosphorylation 

peaked, there was an apparent loss of signal over time. This presumably represents 

dephosphorylation of the TrkA and TrkB TKD proteins. 

  



61	  
	  

 

 

Figure 3.4. Initial native PAGE analysis of TKD autophosphorylation.  

Native gels of samples from autophosphorylation reactions with (A) TrkA TKD and (B) 

TrkB TKD at 10 µM, incubated at 37°C for the indicated times. Both of these constructs 

have four tyrosines that are known to be autophosphorylated, yet at times there are 5-6 

bands on the native gel, presumably reflecting different combinations of 

autophosphorylation site usage or due to heterogeneous starting material. 
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Figure 3.5. TrkA-TKD autophosphorylates faster than TrkB-TKD.  

(A) Autoradiographs and Coomassie gel of a time course of TrkA and TrkB TKD 

autophosphorylation, using 10 µM protein at 37°C. (B) Quantitation of the 

autoradiography signal normalized by the amount of protein in each lane detected by 

Coomassie stain for the autophosphorylation reactions at 37°C. (C) Autoradiographs and 

Coomassie gel of autophosphorylation reactions performed at RT. (D) Quantitation of 

the RT autophosphorylation experiment as described above. 
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3.4.  TrkA and TrkB TKDs autodephosphorylate in a similar manner 
	  

As mentioned above, the initial autophosphorylation reactions demonstrated a loss of 

32P signal over time.  It was important first to determine whether this reflected a 

contaminating phosphatase, since phosphatase contamination would impact the 

interpretation of the autophosphorylation assays. Mass spectrometry analysis of the 

purified product did show trace amounts of the baculovirus phosphatase (BVP). BVP 

was initially classified as a protein phosphatase, but subsequent reports have suggested 

that BVP is only a modest protein phosphatase and is a much more potent RNA 5’-

triphosphatase (Takagi et al., 1998).  Furthermore, the activity of BVP is greatly reduced 

by 1 mM MgCl2 or 200 µM sodium vanadate (Gross and Shuman, 1998; Kim and 

Weaver, 1993; Sheng and Charbonneau, 1993). The TrkA and TrkB 

autophosphorylation reactions contain 10 mM MgCl2, arguing that BVP should be 

inhibited under these reaction conditions.  

That the observed dephosphorylation was not simply due to a contaminating 

phosphatase was demonstrated by experiments using several different phosphatase 

inhibitors including sodium vanadate and the ‘Halt’ phosphatase inhibitor cocktail. None 

of these treatments significantly altered the dephosphorylation profile as compared with 

the control experiment lacking phosphatase inhibitors (Figure 3.6). Moreover, 

preparations generated using a new purification scheme were more homogeneous (see 

Chapter 3.5) and showed no signs of phosphatase contamination by mass 

spectrometric analysis.   

There are numerous scattered reports in the literature demonstrating ‘futile’ ATPase 

activity of kinases, reversal of the kinase reaction, or substrate dephosphorylation by 
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kinases (Al-Hasani et al., 1994; Argetsinger and Shafer, 1992; Bae et al., 2010; Chen et 

al., 2000; Favelyukis et al., 2001; Fukami and Lipmann, 1983; Gruppuso et al., 1992; 

Kim et al., 2001; Mendelow et al., 1993; O'Brian and Ward, 1991; Parast et al., 1998; 

Paudel and Carlson, 1991; Pike et al., 1986; Ward and O'Brian, 1992; Yang et al., 2004).  

PKA, PKC, phosphorylase kinase, and p38 MAP kinase have all been shown to have 

intrinsic ATPase activity.  For PKA and PKC, at least, this ATPase activity is dependent 

on solvent accessibility of the substrate binding pocket (Chen et al., 2000; Mendelow et 

al., 1993; O'Brian and Ward, 1991; Paudel and Carlson, 1991; Ward and O'Brian, 1992; 

Yang et al., 2004). There are reports that Src, CaM-kinase II, VEGFR2 TKD, and IRK 

can reverse the kinase reaction with generation of ATP – in an ADP-dependent manner 

(Argetsinger and Shafer, 1992; Fukami and Lipmann, 1983; Kim et al., 2001; Parast et 

al., 1998; Pike et al., 1986). On the other hand, there are clear reports of IRK 

autodephosphorylation generating free inorganic phosphate – which is inconsistent with 

reversal of the kinase reaction. These IRK studies showed that autodephosphorylation is 

dependent on the kinase active site, since staurosporine (a promiscuous ATP 

competitive kinase inhibitor) and EDTA both abolish dephosphorylation (Al-Hasani et al., 

1994; Gruppuso et al., 1992). There is additional evidence in the literature of 

autodephosphorylation of IGF1R and FGFR1 (Bae et al., 2010; Favelyukis et al., 2001).  

Thus, there is clear precedent for the observation that RTKs autodephosphorylate. It is 

important to note that many of the above mentioned kinases utilize some variation of 

pseudosubstrate autoinhibition as a mechanism of autoregulation. 

Autodephosphorylation of the TrkA and TrkB TKDs occurred to varying degrees 

depending on the reaction conditions. One of the factors that seemed to play a role in 

dephosphorylation was the concentration of Trk TKD protein, as shown for TrkA in 
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Figure 3.7. Higher concentrations (10 µM TrkA) clearly accelerate autophosphorylation 

as well as autodephosphorylation compared to reactions with 1 µM TrkA, suggesting that 

both may be intermolecular reactions. 

Taken together, the dephosphorylation of TrkA and TrkB TKDs appears unlikely to be 

caused by phosphatase contamination. I decided not to pursue the 

autodephosphorylation of TrkA and TrkB TKDs any further, since this is a phenomenon 

reported in the literature for other kinases, and appears to be substantially slower than 

basal RTK dephosphorylation by protein tyrosine phosphatases that is seen in a cellular 

context (Kleiman et al., 2011).  Moreover, autodephosphorylation occurs in a similar 

manner for both TrkA and TrkB TKDs (Figure 3.5), so is unlikely to be an important 

factor that underlies their signaling differences. These data do argue that the difference 

in rates of autophosphorylation between TrkA and TrkB TKDs is intrinsic to their TKDs, 

however, and is not simply due to contaminating phosphatases. 
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Figure 3.6. Phosphatase inhibitors do not affect dephosphorylation of TrkA-TKD. 

 Autophosphorylation reactions of TrkA-TKD at 10 µM were performed in the absence of 

phosphatase inhibitor as in Figure 3.4, but also in the presence of sodium vanadate, 

‘Halt’ cocktail phosphatase inhibitor (including sodium fluoride, sodium orthovanadate, 

sodium pyrophosphate, and β-glycerophosphate), or ‘PhosStop’ cocktail phosphatase 

inhibitor (a proprietary blend of phosphatase inhibitors). (A) Autoradiographs and 

Coomassie gel of a time course of TrkA-TKD autophosphorylation at 37°C without or 

with phosphatase inhibitors. (B) Quantitation of the autoradiography signal normalized 

by the amount of loaded protein detected by Coomassie stain. 
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Figure 3.7. Concentration dependence of autodephosphorylation of TrkA-TKD. 

Autophosphorylation reactions were performed either with 1µM or 10 µM TrkA-TKD.  

(A) Autoradiographs and Coomassie gel of TrkA-TKD autophosphorylation at 37°C. 

(B) Quantitation of the autoradiography signal normalized by the amount of protein 

loaded detected by Coomassie stain. 
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3.5.  Optimizing purification scheme to ensure homogenous TKDs as 
starting material 
	  

Initial attempts to analyze the autophosphorylation of TrkA and TrkB TKDs suggested 

that the proteins from Sf9 cells are modified. SDS PAGE Western blotting with a general 

phosphotyrosine antibody (pY20) of TrkA and TrkB TKD autophosphorylation reactions 

did not yield detectable signal at the zero minute time point. However, there was a weak 

signal from one of the phosphospecific antibodies (pY676) for both TKDs, demonstrating 

that the starting material is phosphorylated (shown clearly in Figure 3.10).  Figure 3.8 

shows that TrkA TKD autophosphorylates faster than TrkB-TKD, but we were concerned 

about interpreting these results if the two proteins are differently modified during 

overexpression in Sf9 cells. I therefore used the PhosTag gel approach to further 

monitor phosphorylation of the starting material and the autophosphorylation reactions. 

PhosTag gels are polyacrylamide gels with the PhosTag acrylamide reagent coordinated 

with Zn2+ in the resolving gel. Phosphorylated species bind to the acrylamide-associated 

metal and hence migrate more slowly during gel electrophoresis (Kinoshita and 

Kinoshita-Kikuta, 2011). It is evident by Coomassie stain and Western blotting of 

autophosphorylation reactions analyzed on PhosTag gels that the starting material 

(0 minute time point) is already modified to some degree, particularly for the TrkB TKD 

(Figure 3.8C,D) 

We performed LC MS/MS mass spectrometry to investigate post translational 

modification of the TrkA and TrkB TKD starting material.  Figure 3.9 shows the peptides 

identified and post translational modification of the TrkA-TKD and TrkB-TKD starting 

material. These mass spectrometry data confirmed the Western blotting data that both 

TrkA and TrkB TKDs were tyrosine phosphorylated to some degree. To address 
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heterogeneity concerns of the starting material, I therefore developed a purification 

scheme including phosphatase treatments and additional steps of purification (see 

Chapter 5, Material and Methods). As shown in Figure 3.9 and Figure 3.10, this new 

purification scheme was successful in producing a more homogenous sample as well as 

ensuring no phosphatase contamination.  Figure 3.9C,D shows there is much less post 

translational modification of the TrkA and TrkB TKD samples following the optimized 

purification scheme. There are still trace amounts of phosphorylation of TrkA and TrkB 

TKDs, but not in the regions of the TKD that we are most concerned with, namely the 

activation loop and the C-terminal tail.  Phosphospecific Western blotting was also used 

to examine sample quality of the TrkA-TKD and TrkB-TKD starting materials during all 

subsequent optimized purifications (Figure 3.10). 
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Figure 3.8. Initial assessment of TKD autophosphorylation by phosphospecific 

antibodies and PhosTag gels.  

TrkA-TKD and TrkB-TKD autophosphorylation assays were analyzed using SDS PAGE 

Western blotting probed with Trk antibodies (red) and phosphospecific antibodies 

(pY676, pYY680/681, pY791; human TrkA isoform II numbering) (green). (A) SDS PAGE 
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Western blots of TrkA and TrkB TKD autophosphorylation reactions and (B) quantitation 

of the normalized signals from these plots. (C) PhosTag SDS PAGE Western blots and 

(D) Coomassie stained PhosTag gel of TrkA and TrkB TKD autophosphorylation 

reactions. 
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Figure 3.9. Mass Spectrometry analysis of TrkA-TKD and TrkB-TKD plus or minus 

phosphatase treatment. TrkA-TKD (A) and TrkB-TKD (B) samples not treated with 

phosphatases. TrkA-TKD (C) and TrkB-TKD (D) samples treated with phosphatase and 

subject to more purification steps. Samples were submitted to the Wistar Institute 

proteomic facility for in-solution digestion and LC-MS/MS analysis. The amino acid 

peptide coverage of the mass spectrometry analysis is showed by grey lines below the 

Trk sequences. Modified residues are highlighted in green (oxidation), purple 

(acetylation), and brown (phosphorylation). The activation loop (boxed region in the 

peptide coverage map) tyrosines are no longer phosphorylated after phosphatase 

treatment.   
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Figure 3.10. Monitoring protein phosphorylation during purification. 

 (A) Phosphospecific Western blotting of purified protein stock that was also used for the 

LC-MS/MS mass spectrometry analysis. (B) PhosTag SDS PAGE phosphospecific 

Western blotting of TrkA and TrkB TKD samples taking during the phosphatase 

treatment phase of the optimized purification scheme. (C) Another example of PhosTag 
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SDS PAGE phosphospecific Western blotting of TrkA-TKD during protein purification to 

ensure the starting material is mostly dephosphorylated. 

 

 

3.6.  TrkA-TKD autophosphorylates faster than TrkB-TKD, and the order of 
phosphorylation site usage is the same for both TrkA and TrkB TKDs. 
	  

The sequential order of phosphorylation has been shown to be vital for stepwise 

increments of kinase activity for kinases that are dependent on phosphorylation of 

activation loop residues for full activity (Favelyukis et al., 2001; Furdui et al., 2006). 

Thus, differences in order can impact both the autophosphorylation profile and ultimate 

kinase activity. Studies with FGFR, EGFR and Ret RTKs have shown that pathogenic 

mutations can disturb the autophosphorylation order of the WT receptor, illustrating 

further that differences in order of autophosphorylation can impact cellular phenotype in 

important ways (Kim et al., 2012; Lew et al., 2009; Plaza-Menacho et al., 2014). 

The autophosphorylation sites of TrkA and TrkB have been identified previously, and 

autophosphorylation occurs at analogous sites in TrkA and TrkB (Guiton et al., 1994; 

Loeb et al., 1994; Middlemas et al., 1994; Stephens et al., 1994).  The order of 

phosphorylation of these sites has not been directly studied for either TrkA or TrkB.  

Comparison of the published order of autophosphorylation for other members of the IRK 

TKD family (Table 3.1) reveals a diversity that does not necessarily correlate with the 

class of activation loop conformation discussed in Chapter 2. IRK autophosphorylation 

proceeds in the same order as seen for IGF1R, but autophosphorylation of the MuSK, 

Met and Alk kinases are all distinct. The Met and Alk activation loop conformations (in 
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their inactive structures) are distinct from other IRK TKD family members (Figure 2.2), 

so it is not surprising that these kinases employ different orders of autophosphorylation 

from that seen with IRK and IGF1R. However, the MuSK TKD activation loop 

superimposes very well with IRK, IGF1R and TrkA in crystal structures (Figure 2.2), so it 

seems surprising that MuSK employs a different order of autophosphorylation site usage 

than IRK and IGF1R. This observation also opens up the question as to what is the site 

usage order in the Trk TKDs. 

Table 3.1. Previously reported autophosphorylation orders for the IRK TKD family. 

RTK 1st Site 2nd Site 3rd Site Sequence References 
IRK YxxxpYY pYxxxpYY pYxxxpYpY Y1162, 

Y1158, 
Y1163 

(Wei et al., 1995) 

IGF1R YxxxpYY pYxxxpYY pYxxxpYpY Y1135, 
Y1131, 
Y1136 

(Favelyukis et al., 2001) 

MuSk YxxxpYY & 
JM-pY 

pYxxxpYpY - Y754/Y552, 
Y750/Y755 

(Till et al., 2002) 

Met YxxxYpY YxxxpYpY  Y1235, 
Y1234 

(Chiara, 2003) 

Alk pYxxxYY - - Y1278 (Donella-Deana et al., 
2005) 

 

 

I used Western blotting with phosphospecific antibodies to visualize the order of 

autophosphorylation for the TrkA and TrkB TKDs. The concentrations of Trk TKD used 

for the autophosphorylation experiments were between 1 µM and 10 µM which is 

consistent with the estimated concentration of RTKs on the cell surface (Lemmon et al., 

1997). The antibodies used recognize phosphorylation at either the first tyrosine of the 

pYxxxYY motif (anti pY676; TrkA numbers are listed), the second and third tyrosines of 

the YxxxpYpY motif (anti pYY680/681) or the C-terminal tail tyrosine (anti pY791) of 
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TrkA and TrkB. The specificity of antibodies targeting Trk autophosphorylation 

(pYY680/681 and pY791) sites has been previously tested with mutagenesis and 

peptide competition assays (Choi et al., 2001; Segal et al., 1996).  

TrkA and TrkB TKD autophosphorylation assays were conducted at 15°C in order to be 

able to distinguish differences, and samples taken at the different time points were 

subjected to either SDS PAGE or PhosTag SDS PAGE for Western blotting and 

Coomassie staining. Each Western blot was probed with a phosphospecific antibody and 

a total Trk antibody. For the SDS PAGE Western blots each phosphospecific signal was 

normalized for total Trk. Normalized signal from a phosphospecific antibody was then 

expressed as a fraction of the maximum signal seen with that antibody for TrkA or TrkB 

autophosphorylation respectively. Using these data, the normalized relative signals for 

each phosphospecific antibody could be compared directly between sites and TKDs 

(Figure 3.11). Quantitation of these Western blots revealed once again that TrkA TKD 

autophosphorylation at all sites occurs more rapidly than that seen for the TrkB TKD.  

The order of autophosphorylation, however, appears to be the same for TrkA and TrkB 

TKDs in the context of the phosphospecific antibodies used here to monitor 

autophosphorylation.  PhosTag SDS PAGE was utilized to further characterize the order 

and rate of autophosphorylation of TrkA and TrkB TKDs. The PhosTag acrylamide 

reagent coordinates Zn2+, which is able to bind phosphates of any phosphorylated 

species. Binding of the phosphorylated proteins to PhosTag-Zn2+ lowers their mobility, 

resulting in band shifts related to the number of phosphates incorporated in a particular 

phosphorylated species (and thus the degree of PhosTag-Zn2+) binding. 

Phosphospecific Western blotting was used to identify the various phosphorylated 

species during a time course of autophosphorylation (Figure 3.11). Assignment of the 
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phosphorylated species is shown on the Coomassie-stained gel in Figure 3.11D. The 

data from various SDS PAGE and PhosTag SDS PAGE phosphospecific Western blots 

were compiled to determine the order of autophosphorylation for TrkA and TrkB TKDs. 

The autophosphorylation experiments were repeated under various conditions, and the 

rate of TrkA-TKD autophosphorylation was always faster than seen with TrkB-TKD.  

Furthermore, the order of autophosphorylation for TrkA and TrkB TKDs appeared to be 

similar for all the conditions we tested. For example, the conclusions made above for the 

autophosphorylation reactions at 15°C hold true for autophosphorylation reactions 

performed at 37°C and monitored by phosphospecific Western blotting as described 

above (Figure 3.12). 

Monitoring autophosphorylation by Western blotting with phosphospecific antibodies 

does have some limitations. First, there may be other sites of autophosphorylation that 

we are missing in this analysis. However, if there were additional sites of 

autophosphorylation, we would have expected the presence of additional bands or a 

different band pattern on the PhosTag gels. Another caveat to using phosphospecific 

antibodies is that resolution can be limited if there is an antibody that recognizes more 

than one site. One of the antibodies does recognize a dual phosphorylation event in the 

activation loop (YxxxpYpY), and the specificity of this antibody as been previously tested 

(Segal et al., 1996). Unfortunately, there are no reliable commercially available 

antibodies for either of the corresponding singly phosphorylated species.  Thus, the first 

autophosphorylation event of TrkA-TKD and TrkB-TKD that was detected was by the 

dual specific antibody.  There are mass spectrometry based experiments that I could 

have utilized to examine further the first autophosphorylation event. However, I decided 

not to pursue any further the order of autophosphorylation since the order of 
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autophosphorylation appeared to be similar for TrkA and TrkB TKDs and my goal was to 

investigate differences between these TKDs.   

Intriguingly, the order of autophosphorylation site usage for TrkA and TrkB TKDs 

appears to resemble that seen for Met, rather than IRK/IGFR1 (Table 3.1), with tyrosines 

680 and 681 (TrkA) being phosphorylated essentially at the same time (or in no defined 

order).  Both TrkA and TrkB TKDs gave the same results under the conditions we tested.  

The elevated rate of TrkA-TKD autophosphorylation compared to that seen for TrkB-

TKD is clear and reproducible in these experiments, and could possibly underlie some of 

the observed signaling differences. 
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Figure 3.11. Autophosphorylation is a similarly ordered process for TrkA and TrkB 

TKDs.  

Autophosphorylation assays performed at 15°C with 5 µM TrkA and TrkB TKDs in the 

presence of 1 mM ATP and 10 mM MgCl2 in a buffer containing 100 mM HEPES pH 7.4, 

150 mM NaCl, 2 mM DTT and ‘Halt’ phosphatase cocktail inhibitor. Samples were taken 

at the indicated times and analyzed by SDS PAGE and PhosTag SDS PAGE Western 

blotting and Coomassie stain. (A) SDS PAGE Western blotting with phosphospecific 

antibodies specified to the left of the images. (B) The normalized relative signals from 

the Western blots were determined first by normalizing each phosphospecific signal with 

the total Trk signal. Each normalized signal was then divided and by the maximum signal 

per phosphospecific antibody per reaction. The resulting plot of normalized relative 

signal of each phosphospecific antibody clearly shows that TrkB-TKD 

autophosphorylation is slower than TrkA-TKD autophosphorylation. This analysis also 

reveals that the order of autophosphorylation appears to be similar for the TrkA and TrkB 

TKDs. (C) PhosTag SDS PAGE Western blotting with phosphospecific antibodies. (D) 

Coomassie stained PhosTag gel of autophosphorylation reaction with bands labeled 

according to phosphospecific Western blotting experiments. 
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Figure 3.12. Autophosphorylation of TrkA and TrkB TKDs at 37°C. 

 Autophosphorylation assays performed at 37°C with 1 µM TrkA and TrkB TKDs in the 

presence of 1 mM ATP and 10 mM MgCl2 in a buffer containing 100 mM HEPES pH 7.4, 

150 mM NaCl, 2 mM DTT and ‘Halt’ phosphatase cocktail inhibitor. Samples were taken 

at the indicated times and analyzed monitored by SDS Western blotting with 

phosphospecific antibodies. (A) Two-color Western blots probed with the indicated 

phosphospecific antibodies (green signal) and pan Trk antibodies (red signal). (B) The 

normalized relative signals from the Western blots were determined by normalizing each 
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phosphospecific signal with the total Trk signal, and then dividing each normalized signal 

by the maximum signal per blot. The normalized relative signal is plotted for each 

antibody and shows that all the TrkA-TKD autophosphorylation events occur before the 

TrkB-TKD autophosphorylation events at this TKD concentration. 

 

 

3.7.  Kinetic parameters of TrkA and TrkB TKD peptide phosphorylation do 
not explain differences in autophosphorylation rates 
	  

The difference in autophosphorylation shown for the TrkA and TrkB TKDs could be a 

result of a difference in the intrinsic kinase activities of the two species. To test this 

hypothesis, I employed a more quantitative analysis of enzyme activity, monitoring 

kinase activity by following the incorporation of 32P from 32P-γ-ATP into a peptide 

mimicking the activation loop of either TrkA (SRDIYSTDYYRVGGRTMLPIR) or TrkB 

(SRDVYSTDYYRVGGHTMLPIR). Table 3.2 lists the kinetic parameters measured in 

these assays, and Figure 3.13 shows representative data used to obtain the kinetic 

parameters. As mentioned previously, the TrkA and TrkB TKD proteins are subjected to 

two treatments of phosphatases to ensure the proteins are fully dephosphorylated (see 

subchapter 3.5 and Chapter 5, Materials and Methods).  Experiments were 

performed both with fully dephosphorylated TKDs, in order to quantitate activity of the 

maximally autoinhibited form seen in the crystal structure described in Chapter 2, as well 

as (almost) fully phosphorylated TKDs – as a measure of maximal activity and the 

activation consequences of autophosphorylation.  To obtain phosphorylated TrkA and 

TrkB TKDs for the latter assays, autophosphorylation was allowed to proceed, and was 
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quenched at a predetermined time at which autophosphorylation was known to peak 

(prior to dephosphorylation as monitored by SDS PAGE and PhosTag SDS PAGE 

phosphospecific Western blotting). It should be noted that the phosphorylated TrkA and 

TrkB TKD preparations are heterogeneous mixes of phosphorylated species, based on 

PhosTag gels (Figure 3.14). We were unable to phosphorylate TrkA and TrkB TKDs 

completely, since allowing the autophosphorylation reaction to progress for longer also 

resulted in increased dephosphorylation – which we can only inhibit with procedures that 

will also inhibit kinase activity (see above). 

Table 3.2 shows that the inactive (unphosphorylated) TrkA and TrkB TKDs have very 

similar kinetic parameters. Upon autophosphorylation, there is a dramatic change in the 

kinetic parameters for both TrkA-TKD and TrkB-TKD.  Values for kcat increase by ~60-

100-fold, with smaller changes in Km, ATP (~10-fold reduction) and Km, peptide (~5-fold 

reduction) resulting in overall increases in catalytic efficiency in the range of 400-600 

fold.  These changes in kinetic parameters between unphosphorylated and 

phosphorylated TrkA and TrkB TKDs are in the range as those reported for other RTKs 

that rely on phosphorylation of activation loop tyrosines for full activity (Cobb et al., 1989; 

Favelyukis et al., 2001; Furdui et al., 2006; Till et al., 2002). The active TrkA and TrkB 

TKD kinetic parameters are also very similar to one another, indicating that TrkA and 

TrkB TKDs show very similar catalytic capacity when presented with a peptide substrate 

while at nanomolar concentrations. However there is a subtle difference in the catalytic 

efficiency that may contribute but not does explain the observed slower rate of TrkB-TKD 

autophosphorylation. The catalytic efficiency for ATP is ~1.8-fold decreased for TrkB-

TKD in both the inactive and active states. 
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Table 3.2 Summary of kinetic parameters of TrkA and TrkB TKDs in the inactive 

(dephosphorylated) or active (phosphorylated) states. Data are shown as mean ± 

standard deviation of at least 3 experiments. 

 kcat, ATP Km, ATP kcat/ Km, ATP kcat, peptide Km, peptide kcat/ Km, peptide 
kinase (min-1) (mM) (min-1 mM-1) (min-1) (mM) (min-1 mM-1) 
TrkA 19.7 ± 2.2 2.09 ± 0.52 9.8 ± 2.5 20.3 ± 0.6 2.18 ± 0.13 9.3 ± 0.8 
TrkB 16.6 ± 6.6 3.20 ± 1.69 5.8 ± 1.9 9.7 ± 3.2 1.17 ± 0.42 9.4 ± 5.2 
       
pTrkA 1144 ± 346 0.18 ± 0.05 6204 ± 673 1456 ± 239 0.364 ± 0.04 3991 ± 309 
pTrkB 1033 ± 421 0.29 ± 0.14 3641 ± 423 1482 ± 211 0.390 ± 0.06 3815 ± 266 
 

 

Despite this similarity in catalytic properties, it is clear that there is a reproducible 

difference in the autophosphorylation rates seen for the TrkA and TrkB TKDs. One 

important observation may provide part of the explanation for this autophosphorylation 

difference despite similar kcat and Km values in peptide phosphorylation assays. In the 

process of identifying suitable conditions for the quantitative peptide-based kinase assay 

described here, I explored many conditions. During these pilot experiments, I found that 

unphosphorylated TrkA-TKD displayed a greater dependence on concentration for 

activation than TrkB-TKD, and the effect was quite substantial. Kinase assays in which 

only TrkA or TrkB concentrations were varied are shown in Figure 3.15. Non-linear initial 

velocity plots were seen for several different TrkA TKD concentrations, evident as low as 

60 nM (Figure 3.15A), whereas initial velocities for TrkB-TKD are quite linear, even at 

386 nM protein (Figure 3.15C). The concentration dependence of TrkA-TKD activation 

is clearer in plots of initial velocity normalized for concentration.  Even higher 

concentration data overlay quite well when this is done for TrkB-TKD (Figure 3.15D), as 
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they should if there is no concentration dependence.  By contrast, none of the TrkA-TKD 

initial velocities overlay after 2 minutes (Figure 3.15B).  

It seems reasonable to propose that the concentration dependence of TrkA-TKD activity 

is related to its enhanced rate of autophosphorylation in the assays described above.  

The fact that the TrkA and TrkB TKDs appear to have similar kinase activities is striking, 

given the reproducible finding that TrkA-TKD autophosphorylation is faster than TrkB-

TKD autophosphorylation. The observations that TrkA-TKD lacks a lag phase for 

autophosphorylation and displays a strong concentration dependence of activation led 

us to explore the possibility that TrkA-TKD self-associates under the conditions of these 

experiments. 
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Figure 3.13. Representative data for obtaining enzymatic parameters for TrkA and 

TrkB TKDs.  

Michaelis-Menten plots determining Km and kcat for ATP (left) or peptide (right) 

substrates. (A) For Km, ATP  determination, dephosphorylated TrkA-TKD at 30 nM and 

dephosphorylated TrkB-TKD at 400 nM were assayed with variable ATP concentrations  

(5 mM to 0.039 mM) in the presence of fixed 2 mM peptide substrate and 10 mM MgCl2.   

(B) For Km, peptide  determination, dephosphorylated TrkA-TKD at 30 nM and 

dephosphorylated TrkB-TKD at 400 nM were assayed with variable peptide 

concentrations (4 mM to 0.031 mM), fixed 2 mM ATP and 10 mM MgCl2. (C) Km, ATP 
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determined using phosphorylated TrkA-TKD and phosphorylated TrkB-TKD, both at 8 

nM. Reaction conditions included a fixed 2 mM concentration of peptide corresponding 

to their respective activation loops, variable ATP concentrations (5 mM to 0.039 mM) 

and 10 mM MgCl2.  (D) For Km, peptide   with phosphorylated TrkA and TrkB TKDs, assays 

were performed as in (C), but peptide concentration was varied (4 mM to 0.031 mM) and 

ATP concentration fixed at 2 mM ATP. 

 

 

Figure 3.14. Generation of phospho-TKD species.  

Autophosphorylation assays were conducted to generate phosphorylated TrkA and TrkB 

TKDs for enzymatic studies. Western blotting of PhosTag gels with phosphospecific 

antibodies were used to monitor the reactions. (A) 10 µM TrkA-TKD was incubated at 

room temperature with 1 mM ATP, 10 mM MgCl2 in a buffer containing 100 mM HEPES 
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pH 7.4, 150 mM NaCl, 2 mM DTT and Halt phosphatase cocktail inhibitor. At 5 minutes, 

the reaction was quenched with EDTA to achieve a final concentration of 100mM. (B) 

7.5 µM TrkB-TKD was incubated at 30°C with 1 mM ATP, 10 mM MgCl2 in a buffer 

containing 100 mM HEPES pH 7.4, 150 mM NaCl, 2 mM DTT and Halt phosphatase 

cocktail inhibitor. At 4 minutes, the reaction was quenched with EDTA to achieve a final 

concentration of 100mM. 
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Figure 3.15. Differences in concentration dependence of activation for TrkA and 

TrkB TKDs.  

Peptide-based radioactive kinase assays with 2 mM ATP, 2 mM peptide substrate, 10 

mM MgCl2+ and various concentrations of TrkA and TrkB TKDs were used to determine 

the optimal concentration of TrkA-TKD or TrkB-TKD for further kinase assays. (A) 

Plotting the moles of phosphate incorporated versus time for each concentration of TrkA-
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TKD to determine initial rates of reactions shows curvature in most of these reaction 

profiles. (B) Normalizing initial rates for concentration of TrkA-TKD results in an obvious 

concentration dependence. (C) Initial rates for TrkB-TKD determined as above appear to 

be more linear in the higher concentrations than reactions with TrkA-TKD. (D) 

Normalized initial rates for TrkB-TKD overlay well when normalized for concentration, 

indicating that TrkB-TKD activity (unlike that of TrkA-TKD) is concentration independent. 

 

 

3.8.  TrkA-TKD crystallographic dimer not observed in TrkB-TKD crystal 
structures 
	  

In a study comparing the inactive structures of the TrkA and TrkB TKDs, Bertrand et al. 

2012 reported that the TrkA kinase insert domain (KID) interacts with the hinge region 

(loop connecting N-lobe and C-lobe), intramolecularly (Figure 3.16). Notably, Glu615 and 

Asp616 in the KID of TrkA interact with Arg593 and His594 in the hinge region, respectively, 

in the same molecule. However, none of these hinge region – KID interactions are 

observed in any of the TrkB-TKD structures now available, as a result of displacement of 

the TrkB KID by the C-terminal tail of TrkB. Hence, the authors postulated that the TrkA 

hinge region may be more rigid than the TrkB hinge region (Bertrand et al., 2012). 

Several studies have indicated that hinge region dynamics are important for catalytic 

activity of kinases such as Erk (Hoofnagle et al., 2001; 2004; Lee et al., 2005; Sours et 

al., 2014; Xiao et al., 2014). In the case of FGFR2, hinge region interactions are thought 

to serve as “brakes” that hold the kinase in an inactive conformation (Chen et al., 2007). 

In FGFR2, interactions are seen between the hinge region (β5-αD loop) and the N-lobe 
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(Chen et al., 2007). TrkA and TrkB TKDs have similar interactions between the kinase 

hinge and the N-lobe, but both have far fewer interactions than observed in FGFR2. The 

hinge region in TrkA predominantly interacts with the KID, which is part of the C-lobe 

(Bertrand et al., 2012). 

Since the TrkA TKD autophosphorylates faster than that of TrkB (and has similar activity 

in peptide phosphorylation assays), it seems highly unlikely that the intramolecular 

hinge/KID interactions seen in the TrkA-TKD structure (4F01) reduce TrkA-TKD activity.  

However, a dimer that ‘repurposes’ some of these interactions for intermolecular 

interactions, seen in a crystallographic dimer in our studies of TrkA-TKD (PDB 4GT5) 

may provide an explanation.  This dimer shares a similar interface with a crystallographic 

dimer also seen in the TrkA TKD structure reported by Bertrand et al., 2012 (PDB 4F0I) 

(Figure 2.5B) (Artim et al., 2012; Bertrand et al., 2012). The dimers observed in these 

TrkA TKD structures are slightly different, but share much of the same dimer interface 

(Figure 3.17 and Table 3.3-3.4).  The fact that TrkA-TKD activity is concentration 

dependent may suggest that it self-associates, and the interactions in this dimer may be 

important for dimerization (and possibly altered upon self-association with allosteric 

effects on kinase activity).  TrkA TKD dimerization could drive its own activation, and this 

might cause the observed difference in autophosphorylation rates between TrkA and 

TrkB. 

The two TrkA TKD crystal structures in which similar dimers were seen are from very 

similar constructs, yet the reported crystallization conditions are different. Furthermore, 

the two TrkA TKD crystal structures are described by different space groups (4GT5 

space group is H32 whereas 4F0I space group is P41212) and a different number of 

molecules are present in the asymmetric unit (4GT5 has one molecule in asymmetric 
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unit whereas 4F0I has two).  These facts suggest that the dimer may therefore have 

some relevance.  Closer inspection of this TrkA TKD dimer interface also identified 

several key residues in the kinase insert domain (KID) and hinge region of TrkA that 

form a network of interactions (Figure 3.17C). In both structures, Tyr591 and Arg593 in the 

hinge region of one monomer interact with Gly614 and Glu615, respectively in the KID of a 

symmetry mate.  Another interaction across the interface that was consistent between 

the TrkA TKD structures was the main chain carbonyl group of Leu611 in the KID of one 

monomer forming a predicted hydrogen bond with the Arg599 side-chain from αD of its 

symmetry mate. Interestingly, many of the residues involved in intramolecular and 

intermolecular interactions in the TrkA KID-hinge region including Arg593, Arg599, Lys609, 

Leu611, Glu615, Asp616, and Ala618 (human TrkA numbering) are replaced by different 

amino acids in TrkB (Tables 3.3, 3.4, 3.5). The TrkB KID loop is also shorter by two 

amino acids compared to the TrkA KID loop. These sequences differences in TrkB may 

contribute to the TrkB KID loop being displaced in the inactive TrkB TKD crystal 

structure (PDB ASZ) by the TrkB C-terminal tail and thus is in a different conformation 

than the TrkA KID loop (Figure 3.18).  

Comparing the TrkB and TrkA TKD structures that are now available in the PDB also  

reveals slight shifts in the position of key elements – notably for the P-loop and αC helix, 

which are both relatively shifted towards the C–lobe in the TrkA TKD structures. The 

movements are subtle, and could just be the result of crystal packing. However, as 

shown in Figure 3.18, the αC helix in TrkA-TKD (cyan) is shifted ~18° towards the C-

lobe compared to αC of TrkB-TKD (magenta). As a result the entire N-lobe of TrkA-TKD 

is shifted ~13° towards its C-lobe (Figure 3.18).  This shift of the TrkA-TKD N-lobe is 

noticeable in all of the now-available inactive TrkA-TKD structures (two without inhibitor 
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and one with inhibitor) and TrkB-TKD structures (one without inhibitor and three with 

inhibitor), which are shown overlaid in Figure 3.18.  

The intermolecular KID/hinge interactions seen in TrkA-TKD crystals (Figure 3.17) are 

not seen in any available TrkB-TKD structure.  TrkB-TKD does not form this dimer, and 

in any case, the KID loop of TrkB is in a distinct conformation due to displacement by the 

C-terminal tail of TrkB. The C-terminal tail of TrkB does not contact the hinge region or 

the β6-β7 loop as the KID does in the TrkA structures (Figure 3.18). Instead, the C-

terminal tail makes various contacts with the displaced KID loop and the lip of the 

activation loop of a symmetry mate. 
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Figure 3.16. TrkA-TKD intramolecular interactions not seen in TrkB-TKD.  

(A) The TrkA TKD (PDB 4F0I, chain A) inactive structure reported by Bertrand et al. in 

cartoon representation. KID/hinge intramolecular interactions they reported are boxed. 

(B) Close up of KID/hinge intramolecular interactions illustrating that Glu615 and Asp616 in 

the KID of TrkA interact with Arg593 and His594 in the hinge region, respectively. For 

consistency, all TrkA sequence numbering refers to human isoform ΙΙ and also used in 

PDB 4GT5. 

  



100	  
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Figure 3.17. TrkA-TKD dimer interface in two TrkA-TKD structures.  

The TrkA-TKD KID/hinge dimer interface shown in surface and cartoon representation. 

(A) Surface representation of the KID/hinge dimer in 4GT5 and chain A of 4F0I (4F0I-A). 

Note that the N-lobe of the monomer colored grey is headed into the plane of the page. 

(B) In the same orientation as the surface representation, cartoon representation is 

shown of the same dimer for 4GT5 and 4F0IA. (C) A close-up view of the KID/hinge 

region (boxed area in B) is shown for 4GT5 and 4F0I-A. Intermolecular and 

intramolecular interactions are shown. The residues involved in common interactions 

observed in both inactive structures are labeled. Note that the interfaces share many of 

the same interactions, but there are subtle differences due to the interface in 4GT5 being 

symmetric and the interface in 4F0I being asymmetric. Chain B of 4F0I is omitted from 

this figure for clarity, but the interactions of chain B are listed in Tables 3.3 and 3.4 along 

with a full list of interactions shown in this figure. 
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Figure 3.18. Comparison of TrkA and TrkB inactive TKD structures.  

(A) Overlay of the two inactive TrkA-TKD (cyan) structures without inhibitor (4GT5 and 

4F0I) with the TrkB-TKD (magenta) structures without (4ASZ) or with (4AT4 and 4AT5) 

inhibitor. Notice the shift of αC and N-lobe towards the C-lobe of the TrkA-TKD 

structures. This shift corresponds to ~18° and ~13° for αC and N-lobe between the TrkA 

(4GT5) and TrkB (4ASZ) TKD structures. On the right, the structures are rotated 45° out 
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of the plane of the page as shown, to illustrate the different conformation of the KID loop 

in TrkA and TrkB. (B) In the same orientation as the right side of part A, a surface 

representation of inactive TrkA-TKD (4GT5) is shown in grey, with cartoon 

representation of the TrkA KID (4GT5 and 4F0I) detailed in cyan. The TrkB KID and C-

terminal tail (from 4ASZ, 4AT4, and 4AT5) are shown in magenta in cartoon 

representation. Even though the N-lobe and αC of the inhibitor bound TrkA-TKD 

structure (4AOJ) superimposes well with the other TrkA structures, it is omitted from this 

figure because of a disordered activation loop and KID. Also omitted is one of the TrkB 

inhibitor bound structures (4AT3) because of unique P-loop and activation loop 

conformations that are probably due to the presence of inhibitor. 

 

Table 3.3. KID/hinge region intermolecular interactions. Summary of the KID/Hinge 

dimer interface interactions in the inactive TrkA TKD structures (PDB 4GT5 and PDB 4F0I). The 

two molecules in the 4F0I structure are designated 4F0I-A (chain A) and 4F0I-B (chain B). 

Sequence numbering refers to numbering from 4GT5. Residues highlighted are different in the 

TrkB TKD sequence. 

Molecule in A.U. Symmetry Mate    
Residue Location Residue Location 4GT5 4F0I-A 4F0I-B 

Trp514 β1 Gly614 KID X   
Tyr591 Hinge Gly614 KID X  X 
Tyr591 Hinge Glu615 KID  X  
Arg593 Hinge Glu615 KID X  X 
Arg599 αD Leu611 KID X X X 
Asp607 KID Lys609 KID  X  
Leu611 KID Arg599 αD X X X 
Gly614 KID Trp514 β1 X X  
Gly614 KID Tyr591 Hinge X X  
Glu615 KID Arg593 Hinge X X  
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Table 3.4. KID/hinge region intramolecular interactions. Summary of interactions of the 

KID/hinge region within a monomer in the inactive TrkA TKD structure (PDB 4GT5 and PDB 

4F0I). The two molecules in the 4F0I structure are designated 4F0I-A (chain A) and 4F0I-B (chain 

B). Sequence numbering refers to numbering from 4GT5. Residues highlighted are ones that are 

not present or different in the TrkB sequence. 

Residue Location Residue Location 4GT5 4F0I-A 4F0I-B 
Arg599 αD His594 Hinge   X 
His604 KID Ala618 KID  X X 
Glu615 KID Arg593 Hinge  X X 
Asp616 KID Arg593 Hinge X   
Asp616 KID His594 Hinge X X X 
Asp616 KID Gly661 β6- β7 loop X X X 
Asp616 KID Gln660 β6- β7 loop    
Gln660 β6- β7 loop Arg593 Hinge  X  

 

 

Table 3.5. KID/hinge region amino acid differences between TrkA and TrkB.  

TrkA TrkB Location 
Trp514 Arg558 β1 
Arg593 Lys637 Hinge 
Arg599 Lys643 αD 
Lys609 Val653 KID 
Leu611 Met655 KID 
Glu615 Asn659 KID 
Asp616 - KID 
Ala618 Pro660 KID 
Gln660 Glu702 β6- β7 loop 
Gly661 Asn703 β6- β7 loop 
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3.9.  TrkA mutant slows down the progression of TrkA-TKD 
autophosphorylation 
	  

The structural observations outlined above prompted us to hypothesize that the 

dimerization interface seen in crystal structures of TrkA-TKD (but not TrkB-TKD) may 

play a role in the enhanced TrkA-TKD autophosphorylation rate, and the concentration 

dependence of its activation.  To test this hypothesis, I used site-directed mutagenesis to 

mutate part of the TrkA KID loop to the corresponding residues seen in the TrkB KID 

loop. Figure 3.19 shows an alignment of TrkA, TrkB, and the TrkA KID mutant. Note that 

this TrkA-TKD KID mutant now has a shorter KID loop (by 2 residues), and lacks Glu615 

and Asp616, which are central in intermolecular and intramolecular interactions 

respectively in the TrkA-TKD KID/hinge dimer, as discussed above (Table 3.3 and 3.4).  

To examine the functional consequences of these KID mutations, I employed a 

radioactive autophosphorylation assay to monitor the autophosphorylation profile for 

TrkA, TrkA KID, and TrkB TKDs. As shown in Figure 3.20A, the TrkA and TrkB TKDs 

again differed in their rates of autophosphorylation. Furthermore, the TrkA KID mutant 

does display a slightly slower rate of autophosphorylation than wild-type TrkA-TKD, but 

is not reduced to the rate seen for TrkB-TKD autophosphorylation. A paired t test was 

performed for each time point to determine significant differences in the 

autophosphorylation profiles between TrkA, TrkA KID, and TrkB TKDs. Significant 

differences occur from 0.75 minutes to 3 minutes (Figure 3.20B), with the largest 

differences between TrkA, TrkA KID, and TrkB occurring in the earlier time points. This 

time region corresponds to the lag phase of the autophosphorylation profile observed in 

Figure 3.11 and 3.12. The data from these autophosphorylation experiments were also 

plotted to determine what is the time taken for TrkA, TrkA KID, and TrkB TKDs to reach 

half maximal autophosphorylation. These plots, along with the statistical significance of 
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the values obtain for half maximal autophosphorylation, are shown in Figure 3.22. As 

expected, TrkA-TKD reaches half maximal autophosphorylation faster than TrkA KID 

and TrkB TKDs. Thus, the TrkA KID mutant does appear to reduce TrkA TKD 

autophosphorylation to some extent, but autophosphorylation of the TrkA KID mutant 

remains significantly more rapid than that seen for TrkB-TKD. 

Taken together, these data are consistent with the crystallographically observed TrkA-

TKD dimer interface playing some role in the accelerated autophosphorylation of TrkA-

TKD – since mutating part of this interface does significantly disturb TrkA-TKD 

autophosphorylation. However, the effect is clearly only partial, possibly because we did 

not fully abolish dimerization with the KID mutations made. Indeed, according to the 

crystal structures there are other interactions in the crystallographic dimer interface that 

might also play an important role. There may also be other phenomena causing TrkA-

TKD to autophosphorylate faster. Another plausible explanation for a more transient lag 

phase for TrkA-TKD autophosphorylation is that autophosphorylation of TrkA-TKD itself 

may promote dimerization, which in turn would further promote autophosphorylation in 

an effective positive feedback loop.  Indeed, we have observed phosphorylation-

enhanced dimerization of the EGFR intracellular region, providing a possible precedent 

for such an effect (Sung Hee Choi, unpublished observations). 
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Figure 3.19.  Alignment of TrkA, TrkA KID mutant and TrkB in the KID region.   

This alignment illustrates how part of the KID loop involved in the TrkA-TKD dimer 

interface was replaced with residues from the TrkB KID loop. The magenta box below 

the sequences designates the KID loop. 
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Figure 3.20. Perturbations of the autophosphorylation profile of the TrkA-TKD KID 

mutant.  

(A) Radioactive autophosphorylation assays at RT with 4 µM of TrkA-TKD, TrkA KID-

TKD, or TrkB TKD protein (B) Histogram plot of relative moles of phosphate incorporated 

per mole of enzyme for time points from 0 to 5 minutes. A paired t test was used to 

compare data obtained with TrkA (n=3), TrkA KID (n=2), and TrkB TKDs (n=2), to 

determine statistical significance of differences with significance (P < 0.05) denoted with 

an asterisk. 
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Figure 3.21. Comparison of the time to the half maximal level of TKD 

autophosphorylation.  

(A) Data from Figure 3.20 were replotted and fit with a four-parameter logistic equation 

to obtain time to half maximal autophosphorylation. Curves were fit to the 0 to 30 minute 

data (inset), but only the data from 0 to 10 minute are shown for clarity. (B) Histogram of 
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the time to half maximal autophosphorylation for TrkA, TrkA KID, and TrkB TKDs. A 

paired t test was used to determine statistical significance (P < 0.05) denoted as an 

asterisk. 

 

 

3.10. Phosphorylation of TrkA-TKD may promote its self-association 
	  

To investigate further whether phosphorylated TrkA dimerizes, I produced 

phosphorylated TrkA (pTrkA) and mock treated TrkA (mTrkA) TKDs, the latter having 

been treated as if to fully phosphorylate the protein, except for the omission of ATP. Both 

pTrkA and mTrkA TKDs were then purified by size exclusion chromatography (SEC). 

The chromatogram from SEC revealed that pTrkA TKD elutes earlier than mTrkA TKD, 

indicating a higher molecular weight or spatial extent for the pTrkA species (Figure 

3.22). However, preliminary results with pTrkB and mTrkB TKDs also showed a similar 

elution pattern.  Both pTrkA and pTrkB TKDs may have an exposed region 

(phosphorylated activation loop, perhaps) of the TKD creating an increase in shape 

leading to both pTrkA and pTrkB TKDs eluting earlier.  

I next used sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) in an 

effort to determine whether pTrkA-TKD dimerizes weakly. The pTrkA and mTrkA TKD 

samples described above were each loaded at a concentration of 16.7 µM and 

sedimented at various speeds. A difference in sedimentation was observed between 

mTrkA and pTrkA TKDs, as shown in Figure 3.23. The AUC data were analyzed by 

plotting the logarithm (ln) of absorbance at 280 nm versus the radius squared (r
2
-ro

2
)/2. 
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The slopes of the linear fits of the data were used to calculate the apparent masses of 

mTrkA and pTrkA TKDs. A difference of ~6 kDa was observed between the calculated 

masses of mTrkA and pTrkA TKD species, consistent with a weak self-association of 

pTrkA-TKD. 

 

 

Figure 3.22. Difference in size exclusion chromatography profiles between mTrkA 

and pTrkA TKDs.  

Size exclusion chromatography (SEC) profiles of mTrkA-TKD (black line), pTrkA-TKD 

(red line) and standards (grey dashed line). The molecular weight of the standards 

(BioRad) in kDa is listed above each standard peak. Preliminary results indicate a similar 

elution pattern for pTrkB and mTrkB TKDs. 
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Figure 3.23. Sedimentation equilibrium analytical ultracentrifugation experiments 

with mTrkA and pTrkA TKDs.  

Sedimentation equilibrium analytical ultracentrifugation experiments were performed with 

16.7 µM of pTrkA-TKD and 16.7 µM of mTrkA-TKD to assess whether there is any 

difference in behavior of these two species in solution. To analyze the data, we 

generated a plot of the natural logarithm (ln) of absorbance at 280 nm versus the radius 

squared (r
2
-ro

2
)/2, where r is the radial position in the sample and ro is the radial position 

of the meniscus. For a single species, this analysis provides a straight line with slope 

proportional to the molecular mass of that single species (or weight average molecular 
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weight of multiple species). Data collected at 10,000 rpm (A) and 15,000 rpm (B) both 

show a difference of ~6 kDa between the calculated masses of mTrkA and pTrkA TKDs. 

 

 

3.11. Conclusions 
	  

TrkA and TrkB are homologous RTKs that are thought to initiate similar signaling 

pathways upon ligand-induced activation of their TKDs. However, various reports have 

demonstrated that TrkA and TrkB expression and activation result in quite distinct 

cellular outcomes when TrkA and TrkB are expressed in the same cell type. The 

different outcomes appear to be correlated with sustained activation of the Erk pathway 

when TrkA is engaged by its ligand (leading to differentiation) and by more transient 

activation of the Erk pathway when receptors such as TrkB, EGFR, and IR are activated 

by their ligands (leading to proliferation, at least in the case of PC12 cells).  Thus, it 

appears that the difference in signaling specificity may arise not from activation of 

different signaling components per se, but from different kinetics of activation – likely 

with the engagement of different positive and/or negative feedback elements in the 

pathway.  Recent reports demonstrated that homologous kinases in the same family 

may have different intrinsic kinase activities and activation kinetics (Joseph et al., 2013; 

Latour et al., 1996; Lew et al., 2007). Furthermore, previous studies have demonstrated 

that the strength of an initiating signal from an RTK can dictate the cellular response 

(Dikic et al., 1994; Traverse et al., 1994). Therefore, we sought to determine whether 

there is an intrinsic difference between the TKDs of TrkA and TrkB that may underlie the 

distinct cellular responses downstream of TrkA and TrkB activation.  
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We show that the isolated TrkA TKD autophosphorylates faster than TrkB TKD.  This 

faster autophosphorylation rate cannot be explained by differences in the order of 

autophosphorylation site usage. The TrkA and TrkB TKDs appear to have similar 

intrinsic kinase activities, raising the question of what is the source of the difference in 

autophosphorylation rates. Notably, TrkB-TKD autophosphorylation has a non-linear lag 

phase that was not present in TrkA-TKD. Previous reports have characterized a non-

linear phase of TrkB autophosphorylation (Iwasaki et al., 1997). The authors concluded 

that the non-linear phase is the result of slow cis phosphorylation that occurs prior to 

trans phosphorylation. However, the dominant result observed in those experiments was 

trans phosphorylation. The cis phosphorylation described by the authors only occurred 

during conditions with very low concentrations of ATP. Furthermore, the reaction 

conditions are very different from the conditions used in this study. Most importantly, 

Iwasaki et al. were using ng/µl concentrations of full length TrkB intracellular domain with 

20 µM to 100 µM of ATP in the presence of MnCl2 instead of MgCl2 (Iwasaki et al., 

1997). 

To address the difference of autophosphorylation between TrkA and TrkB TKDs, we 

describe a unique TrkA-TKD crystallographic dimer that is not observed in the TrkB-TKD 

structures. We used site directed mutagenesis to disrupt this dimer and show that these 

mutations do have a minor effect on slowing autophosphorylation when compared to WT 

TrkA-TKD.  The fact that the effect is modest may reflect incomplete disruption of the 

dimer, or may suggest (as we suspect is likely) that additional mechanism also 

contribute to the faster rate of TrkA-TKD autophosphorylation. Indeed, our data further 

suggest that phosphorylation of TrkA-TKD may also promote dimerization, suggesting 

that the elevated rate of TrkA-TKD autophosphorylation compared to TrkB-TKD may be 
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caused in part by TrkA self-association.  Such a self-association, phosphorylation-

induced mechanism could promote a stronger and more sustained TrkA-mediated signal 

in the cell when TrkA is activated. Indeed, an autophosphorylation-induced activation of 

an RTK would constitute a positive feedback loop, which is exactly what would be 

required for the switch-like sustained response seen with TrkA differentiative signaling. A 

similar phenomenon, although not yet defined in molecular terms, has also been 

observed in vitro for the EGFR intracellular domain (unpublished).  Further cellular 

studies are needed to test whether this TrkA-TKD self-association may play a role in 

dictating the nature and kinetics of the cellular response seen upon TrkA activation by its 

ligands. 
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4.1.  Conclusions 
	  

The similar activation loop conformation of many of the IRK TKD family members 

suggests that these kinases utilize the same autoregulatory mechanisms. As discussed 

in Chapter 2, there is a subset of IRK TKD family members that have a different 

activation loop conformation and these kinases possess a different autoregulatory 

mechanism. Analysis of the reported cancer related mutations of the IRK TKD family 

members clearly demonstrates that mutations occur more frequently or over a wider 

range of residues in IRK TKD family members that do not utilize pseudosubstrate 

inhibition, whereas the IRK TKDs that employ pseudosubstrate inhibition have very few 

reported cancer mutations. Instead, some of the RTKs in the IRK TKD family (IR, IGF1R, 

Trk) that use pseudosubstrate inhibition show altered expression in cancer more often 

(or rather) than mutations (Belfiore and Malaguarnera, 2011; Davidson et al., 2003; 

Lagadec et al., 2009; Larsson et al., 2006; Tanaka et al., 2009). Indeed, many of the 

initially reported TrkB cancer mutations present in the activation loop have now been 

shown not to be gain of function mutations (Harada et al., 2011).  

Altered or increased expression of an RTK can impact the signaling network in which it 

is embedded in a multitude of ways. Overexpression can overload receptor trafficking 

pathways, thus ultimately producing more receptors at the cell surface. However, in the 

case of PC12 cells, over expression of RTKs (EGFR and IR) and activation causes cells 

to differentiate. Altered and/or overexpression of an RTK could cause “novel” protein 

interactions that modulate and drive the network into a proliferative response. Proteomic 

approaches should be able to determine the existence of novel RTK-protein interactions 

that would dictate the signaling specificity. Along with proteomic approaches, I would 
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argue that a thorough and quantitative analysis of the kinetics of RTK activation is 

needed to understand and interpret the effect of RTK expression in a particular cell type.   

In Chapter 3, I address signaling specificity differences between activation of TrkA and 

TrkB.  TrkA and TrkB are very homologous proteins, yet activation and expression of 

each in neuroblastoma cells produces quite distinct cellular outcomes. It is noteworthy 

that neuroblastoma cells are of sympathetic origin and TrkA is known to play important 

roles in the development and maintenance of the sympathetic nervous system. On the 

contrary, TrkB is rarely expressed in the sympathetic nervous system. Thus, 

quantitatively understanding the kinetics of TrkA and TrkB activation is essential to 

fathom the resulting differences upon their expression and activation in neuroblastoma 

cells. Furthermore investigating the activation of TrkA and TrkB will provide insight into 

what are also other factors that shapes the signaling response in a particular cell type, 

for example the threshold of activation set by surrounding phosphatases. 

I show that indeed the activation of TrkA and TrkB could be distinct since TrkA TKD 

autophosphorylates itself faster than TrkB TKD and that this, in part, may be due to an 

increased self-association of the TrkA TKD. Upon TrkA activation by ligand binding, a 

self-association mechanism could promote a stronger and more sustained TrkA-

mediated signal in the cell. Indeed, a stronger ability to autophosphorylate and induced 

activation of an RTK could contribute to a sustained response seen with TrkA 

differentiative signaling. Further cellular studies are needed to test whether this TrkA-

TKD self-association and faster rate of autophosphorylation aids in shaping the 

downstream signaling network causing sustained Erk activation and cellular 

differentiation upon TrkA activation by its ligand. 
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There are reports that show that homologous protein-tyrosine kinases with distinct 

catalytic activities have specific roles in the cellular context in which they are normally 

expressed. For example, the members of the Tec family, Itk and Btk are soluble kinases 

exclusively expressed in T cells and B cells, and downstream of T cell and B cell 

receptor activation, respectively (Joseph et al., 2013). Joseph et al. demonstrated that 

Btk’s increase kinase activity (increase in kcat) is due to dynamics of its activation loop 

and an Itk chimera harboring Btk’s activation loop displays an increase in kinase activity 

(Joseph et al., 2013). Importantly, this Itk chimera changed the shape of the signaling 

network in T cells to a sustained cellular signal. Differences in intrinsic kinase activity 

have also been shown between ZAP-70 and Syk, members of the Syk family of 

nonreceptor protein-tyrosine kinases that are expressed in distinct hemopoietic cells 

(Latour et al., 1996).  

These examples along with the data presented in this dissertation suggest that kinase 

activity is an imporatant component of the signaling network in which that particular 

kinase is embedded. The type of difference of kinase activity (increase kcat) within the 

Tec and Syk families could undoubtedly be distinct from any differences within an RTK 

family since each is uniquely embedded (receptor compared to soluble tyrosine kinase) 

in the signaling network.  

Quantitatively understanding the kinase activity at various levels of the network will be 

fruitful in understanding the spatial threshold set by phosphatase. In particular, studies 

need to be performed in various cell lines to determine if cell specific responses of 

expressing and activating a RTK is determined by a quantitative relationship between 

kinase activity compared to the surrounding phosphatase.  
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4.2.  Future Directions 
	  

The work described in this dissertation provides a foundation for future biochemical and 

structural studies of the Trk family. The autoinhibitory mechanism utilized by the Trk 

TKDs is similar to IRK and involves pseudosubstrate autoinhibition by the activation 

loop. Further structural and biochemical studies of Trk intracellular domain (ICD) 

constructs that include the juxtamembrane region would be insightful in fully 

understanding the regulatory mechanisms of the Trk family.  In the case of TrkA, 

mutation of the single JM tyrosine in TrkA to phenylalanine had little effect on 

autophosphorylation (Obermeier et al., 1994; Stephens et al., 1994), whereas mutation 

of the corresponding JM tyrosine to phenylalanine in TrkB did diminish 

autophosphorylation in cell-based assays (Minichiello et al., 1998; Postigo et al., 2002).  

The full-length ICD constructs tend to have poor expression, but now that the 

experimental framework is established it should be feasible to obtain enough protein to 

determine the influence (if any) of the juxtamembrane region of TrkA and TrkB on the 

kinase activity and autophosphorylation in vitro.  

I have shown that the isolated TrkA TKD autophosphorylates itself faster than its TrkB 

counterpart and this may be due in part to TrkA-TKD self-association that is not 

observed for TrkB.  Further analytical ultracentrifugation studies are needed to 

thoroughly investigate the characteristics of TrkA-TKD self-association. It will be 

interesting to perform these studies under various conditions to determine if binding of 

ATP or inhibitor influences TrkA self-association. Performing analytical 

ultracentrifugation studies with the TrkA KID mutant will also be informative to determine 

whether the mutations studied hinder TrkA-TKD self-association. Further mutations to 

disturb the crystallographic dimer interface would also aid in characterizing the residues 
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important for TrkA-TKD self-association. Analytical ultracentrifugation experiments with 

phosphorylated TrkB-TKD and mock treated TrkB-TKD need to be conducted to truly 

determine if phosphorylation promoting dimerization is exclusively occurring in TrkA or if 

it is a more general phenomenon.  If it is a more general phenomenon, further 

characterizing the TrkA KID/hinge region interactions role on autophosphorylation will be 

key in understanding the intrinsic differences between the TrkA and TrkB TKDs. 

The studies in this dissertation were performed with soluble TrkA and TrkB TKDs. To 

mimic ligand-induced RTK dimerization, the histidine-tagged TrkA and TrkB TKD should 

be clustered (via its histidine tag) on the surface of small unilamellar vesicles containing 

lipid molecules with a nickel-nitrilotriacetate head group (Ni-NTA DOGS). This approach 

has been shown to mimic ligand-induced activation for the EGFR TKD (Zhang et al., 

2006) and ALK (Bresler et al., 2011). TKD clustering on the surface of the Ni-NTA-

containing vesicles promotes trans-autophosphorylation (and thus activation), and has 

also been shown for EGFR (Zhang et al., 2006) to drive allosteric components of 

dimerization-induced activation. Autophosphorylation assays of TrkA and TrkB TKDs 

that are clustered on lipid vesicles will begin to determine the physiological significance 

of differences in autophosphorylation.  

A vital next step in this project is to determine the significance of the faster TrkA-TKD 

autophosphorylation and ligand-independent TrkA self-association in cells. The best 

approach for the cell experiments would be to generate chimeric receptors containing 

the extracellular region of PDGFR and either the TrkA or TrkB intracellular domain to 

truly investigate the role of the intracellular domain including the TKD in defining the 

difference between TrkA and TrkB signaling. This approach would allow for expression 

matching which will be vital for interpreting any result (see below). Thus, once the proper 
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cells system is established, it will be essential to first validate the rate difference in 

autophosphorylation of TrkA and TrkB in cells. Introducing TrkA KID/hinge region 

mutations in the cellular context will be very informative to measure the 

autophosphorylation and downstream signaling response. 

These cell culture experiments may prove to be difficult because the cell type chosen will 

greatly affect the results. These experiments should be conducted in several cell types, 

starting with neuroblastoma cell lines as well as PC12 cells since there is a wealth of 

knowledge regarding the signaling network in these contexts.  Furthermore, PC12 cells 

can behave like sympathetic neurons when subjected to NGF and this may due to the 

fact that chromaffin cells (the cell type PC12 originate from) are derived from the same 

neural crest progenitor as sympathetic neurons (Greene 1976). However, TrkB is not 

normally expressed in PC12 cells and expressing TrkB and activating it in PC12 does 

lead to differentiation. This result could simply be due to overexpressing TrkB and not 

obtaining the level of TrkB needed for a proliferative response. Previous reports have 

shown that overexpressing EGFR and IRK converts the normal proliferative response 

upon activation of EGF and insulin into a differentiative response. Thus, expression 

levels of TrkA and TrkB need to be carefully matched in all future cell experiments. 

The above-mentioned biochemical and structural experiments along with the cellular 

experiments will be instrumental to truly understand the origin of signaling differences 

between TrkA and TrkB expression and activation. Furthermore, a deeper quantitative 

understanding and how it relates to the TrkA and TrKB signaling differences in the 

cellular context will be required for safe and specific therapies targeting TrkA or TrkB.  

  



123	  
	  

 
	  

	  

	  

	  

	  

	  

	  

	  

	  

Chapter 5:  

Materials and Methods. 
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5.1. Plasmid Construction 
	  

DNA encoding the intracellular domain residues 498-796 of human TrkA (NCBI 

reference sequence NM_002529.3) and residues 542-838 of human TrkB (NCBI 

reference sequence XP_005252001.1) were amplified by PCR to include a coding 

sequence for an N-terminal hexahistidine tag and unique EcoRI and XhoI restriction 

sites for TrkA and TrkB. Residues 452-753 of human Ror2 (NCBI reference sequence 

NM_004560.3) was also amplified by PCR to include a coding sequence for an N-

terminal hexahistidine tag and unique SpeI and XhoI restriction sites for Ror2.  

Appropriately digested fragments were subcloned into the pFastBac1 vector (Invitrogen) 

using the indicated restriction sites.  The Bac-to-Bac expression system (Invitrogen) was 

then used for generation of recombinant baculoviruses and for protein expression in 

Spodoptera frugiperda Sf9 cells.  

 

5.2. Protein Production and Purification 
	  

Sf9 cells at 1.5-2 x 106/ml were infected with recombinant baculovirus, and harvested by 

centrifugation after 3 days.  Sf9 cells expressing histidine-tagged TrkA498-796 (~7 liters of 

medium) were lysed by sonication in 100 ml of 50 mM NaKPO4, pH 8.0, containing 300 

mM NaCl, 5% glycerol, 10 mM imidazole, 10 mM 2-mercaptoethanol, 0.5 mM PMSF and 

protease inhibitor cocktail (Roche).  The lysate was then mixed with Ni-NTA beads 

(Qiagen) for 1 hour at 4°C.  Beads were washed in 50 column-volumes of lysis buffer 

(described above), and bound TrkA-TKD was eluted with increasing concentrations of 

imidazole in 25 mM MES, pH 6, containing 300 mM NaCl, 5% (w/v) glycerol, 10 mM 2-

mercaptoethanol, 0.5 mM PMSF and protease inhibitor cocktail (Roche).  Eluted protein 
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was then further purified using a Fractogel SO3
- cation exchange column (EMD) 

equilibrated with 25 mM MES, pH 6, containing 5% glycerol, 2 mM DTT and eluting with 

a gradient from 10 mM to 1 M NaCl.  TrkA was then applied to a HiTrap Butyl Sepharose 

HP column (GE Healthcare) in 25 mM MES, pH 6, containing 150 mM NaCl and 2 mM 

DTT, eluting with a gradient from 0.8 M to 0 M (NH4)2SO4, and subjected to a final step 

of size exclusion chromatography using a Superdex 200 column (GE Healthcare) 

equilibrated in 25 mM MES, pH 6, containing 250 mM NaCl and 2 mM DTT. 

 

Sf9 cells expressing histidine-tagged Ror2 TKD (~8 liters of medium) were lysed by 

sonication in 150 ml of lysis buffer, composed of 20 mM NaKPO4, pH 8.0, containing 200 

mM NaCl, 10 mM 2-mercaptoethanol, 1 mM PMSF, 10 µM benzamidine, 2.3 µM 

leupeptin, 2 µM aprotinin, and 3 µM pepstatin (Sigma).  Cell lysates containing Ror2 

TKD protein were mixed with Ni-NTA beads (Qiagen) for 30 minutes at 4°C, which were 

then washed with lysis buffer prior to elution of protein in lysis buffer containing 200 mM 

imidazole.  Eluted protein was passed through a Fractogel TMAE column (EMD) 

equilibrated with 25 mM Tris-HCl, pH 8, containing 100 mM NaCl and 2 mM DTT to 

remove anionic contaminants, and was then passed through a CHT2.1 hydroxyapatite 

column (Bio-Rad) equilibrated in 20 mM HEPES, pH 8, containing 2.5 mM NaKPO4, 200 

mM NaCl, 2 mM DTT, and 1 mM PMSF, prior to loading on to a HiTrap Butyl Sepharose 

HP column (GE Healthcare) in 25 mM Tris-HCl, pH 8, containing 125 mM NaCl and 2 

mM DTT.  Ror2-TKD was eluted from butyl sepharose with a gradient from 0.5 M to 0 M 

(NH4)2SO4 in this same buffer, and then subjected to size exclusion chromatography 

using a Superdex 200 column (GE Healthcare) equilibrated in 20 mM Tris-HCl, pH 7.5, 

containing 120 mM NaCl and 1 µM TCEP. 
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The purification scheme described above for TrkA-TKD was used for the crystallization 

studies and initial autophosphorylation assays. However, the purification scheme was 

optimized for further studies of TrkA and TrkB TKDs due to heterogeneity of post 

translation modification and to ensure no phosphatase contamination. The cells were 

lysed and bound to Ni-NTA beads as described above for TrkA-TKD. However, the 

bound TrkA or TrkB TKD was eluted with increasing concentrations of imidazole in 50 

mM NaKPO4, pH8, containing 300 mM NaCl, 5% (w/v) glycerol, 10 mM 2-

mercaptoethanol, 0.5 mM PMSF and protease inhibitor cocktail (Roche).  Eluted protein 

was then further purified using a Fractogel SO3
- cation exchange column (EMD) 

equilibrated with 25 mM MES, pH 6, containing 5% glycerol, 2 mM DTT and eluting with 

a gradient from 10 mM to 1 M NaCl.  TrkA and TrkB TKD proteins were concentrated to 

~ 5-6 mls and treated with YopH phosphatase at 2 µM for 1 hour at 30° in the presence 

of 1mM EDTA. Pilot experiments with YopH had lower activity at a higher pH an 

observation previously reported. Furthermore, EDTA was added during the phosphatase 

treatment since protein tyrosine phosphatase activity is not dependent on metals and in 

some cases metal ions can inhibit their activity. (Lu and Zhu, 2011; Zhang et al., 1992; 

Zhang, 2003). YopH was purified away using a Fractogel SO3
- cation exchange column 

(EMD) equilibrated with 25 mM HEPES, pH 8, containing 5% glycerol, 2 mM DTT. YopH 

is highly basic and binds very effectively to the cation exchange column at pH 8 where 

as both TrkA and TrkB TKDs do not bind.  TrkA and TrkB TKD proteins were then 

concentrated to a volume of ~5-6 ml and treated with 2 µM λ phosphatase in the 

presence of 5 mM MnCl2 for 1 hour at 30°. Pilot experiments and previous reports 

showed greater activity of λ phosphatase at pH 8 and with MnCl2 (Barik, 1993; Zhuo et al., 

1993). λ phosphatase was purified away by using a Fractogel SO3
- cation exchange 
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column (EMD) equilibrated with 25 mM MES, pH 6, containing 5% glycerol, 2 mM DTT 

and eluting with a gradient from 10 mM to 1 M NaCl.  TrkA or TrkB TKD was then 

applied to a HiTrap Butyl Sepharose HP column (GE Healthcare) in 25 mM MES, pH 6, 

containing 150 mM NaCl and 2 mM DTT, eluting with a gradient from 0.8 M to 0 M 

(NH4)2SO4, and subjected to a final step of size exclusion chromatography using a 

Superdex 200 column (GE Healthcare) equilibrated in 25 mM Hepes, pH 8, containing 

150 mM NaCl and 2 mM DTT. 

 

YopH BL21 cells were grown in 1 liter of LB with 50 µg/ml streptomyocin at 37°C until a 

density of ~0.6 OD600 nm. At that point, the cells were cooled down to 18°C and induced 

with 1mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and grown overnight. Cells were 

harvested by centrifugation at 2,000 x g for 15 minutes at 4°C. Cells were lysed by 

sonication in 50 mM Hepes, pH 7.4, 300 mM NaCl, 10% glycerol, 10 mM imidazole, 10 

mM 2-mercaptoethanol, 0.5 mM PMSF and protease inhibitor cocktail (Roche). Protein 

lysate was incubated with Ni-NTA beads (Qiagen) for 1 hour at 4°C and then washed 

with 20 mM imidazole prior to eluting with 300 mM imidazole. YopH was then loaded on 

to a Fractogel SO3
- cation exchange column (EMD) equilibrated with 25 mM MES, pH 6, 

containing 5% glycerol, 2 mM DTT and eluting with a gradient from 10 mM to 1 M NaCl. 

Fractions corresponding to the peak were pooled, concentrated and loaded on to a size 

exclusion Superdex 200 column (GE Healthcare) equilibrated in 25 mM MES, pH 6, 

containing 250 mM NaCl and 2 mM DTT. 

λ phosphatase was expressed and purified essentially as described (Zhuo et al., 1993). 

However, the first purification step was phenyl-sepharose chromatography and not Bio-

Gel A chromatography. Instead, after the phenyl-sepharose column, the λ phosphatase 

fractions were pooled, concentrated and loaded on to a size exclusion (Superdex 200) 
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column (GE Healthcare) equilibrated in 25 mM Tris, pH 7.5, containing 150 mM NaCl. 

Purified λ phosphatase was stored at -80°C at 20 mg/ml in the buffer used for size 

exclusion chromatography plus a final concentration of 10% glycerol. 

 

5.3. Crystallization and Structure Determination 
	  

Crystals were obtained using the hanging drop vapor diffusion method, by mixing equal 

volumes of protein and reservoir solutions and equilibrating over the reservoir solution at 

21˚C.  For TrkA498-796 TKD, protein was concentrated to ~6 mg/ml in 25 mM MES, pH 6, 

containing 250 mM NaCl and 2 mM DTT and then diluted with water to 3.25 mg/ml.  

Crystals were obtained with a reservoir solution of 1.5 M NaCl, 0.1 M MES pH 6.5, and 

0.2 M Na/K phosphate.  For Ror2452-753, protein was concentrated to 7.2 mg/ml in 20 mM 

Tris-HCl, pH7.5, containing 125 mM NaCl, and 1 µM TCEP, and crystals were obtained 

over a reservoir containing 20% PEG3350 and 0.2 M Mg(NO3)2 (Hampton Research 

PEG Ion Screen 16).  Prior to flash freezing in liquid nitrogen, TrkA498-796 crystals were 

cryo-protected in reservoir solution containing 40 % (w/v) dextrose, and Ror2452-753 

crystals were cryo-protected in reservoir solution containing 20% (w/v) glycerol.  

Diffraction data were collected at beamline 23ID-B of GM/CA@APS (Advanced Photon 

Source) and were processed using HKL2000 (Otwinowski and Minor, 1997) (Table 1).  

TrkA498-796 crystallized in space group H32 with one molecule in the asymmetric unit, and 

Ror2452-753 crystallized in space group C2221 with 2 molecules in the asymmetric unit. 

 Structures were solved by molecular replacement with Phaser (Collaborative 

Computational Project, 1994), using coordinates for the MuSK tyrosine kinase domain 

(PDB 1LUF) (Till et al., 2002) as search model.  Cycles of manual building/rebuilding 

using Coot (Emsley and Cowtan, 2004) were alternated with rounds of refinement 
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employing REFMAC (Collaborative Computational Project, 1994), plus composite omit 

maps calculated with CNS (Brunger et al., 1998).  Later stages employed PHENIX 

(Adams et al., 2010), with TLS refinement (Winn et al., 2001).  PROCHECK (Laskowski 

et al., 1993) identified no residues in the disallowed region of the Ramachandran plot.  

Structure figures were generated using PyMOL (The PyMOL Molecular Graphics 

System, Version 1.5.0.4, Schrödinger, LLC). Data collection and refinement statistics are 

shown in Table 1. The final refined TrkA model includes amino acids 498-534, 537-548, 

550-610, and 614-793.  There is additional density close to the N-terminus of TrkA 

structure that we could not model confidently, projecting towards the active site.  The 

final Ror2 structure is missing density for residues 452-463 at the N-terminus.  In 

addition, residues 512, 516, 576-580, and 752-753 in chain A could not be confidently 

modeled, and nor could residues 515, 573-580, and 753 in chain B.  Cys694 in both chain 

A and chain B of the Ror2 TKD appears to form a disulfide bond with an equivalent 

residue in a symmetry mate. 

 

5.4. Circular dichroism 
	  

TrkA and TrkB TKD proteins were diluted to 2 µM into a buffer containing 25 mM 

NaH2PO4 �K2HPO4 pH7.4, 150 mM NaCl. CD spectra and thermal melting curves were 

obtained on an Aviv 62A DS spectropolarimeter (Aviv Associates, NJ) with a 1 mm 

pathlength sample holder. The wavelength scan was performed at 1°C. The thermal 

melting curves were obtained by heating samples from 1°C to 97°C in 1°C increments 

with the circular dichroism at 222 nm being measured at each step. Mean residue 

ellipticity was determined using the formula MRE = θd*0.1*MRW/(d*c), where θd = 
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observed ellipticity (mdeg), MRW = mean residue weight (MW of protein/number of 

residues), d = pathlength in cm, c = concentration of protein in mg/ml. The K2D3 server 

was used to predict the helical and sheet composition of TrkA and TrkB TKDs (Louis-

Jeune et al., 2011).   

 

5.5. Sedimentation equilibrium analytical ultracentrifugation experiments 
	  

All sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) experiments were 

performed at 4°C using a Beckman Coulter™ Optima XL-A instrument. Initial SE AUC 

experiments to assess protein aggregation were performed with 16.7 µM of TrkA-TKD 

and 17.6 µM of TrkB-TKD. The TrkA-TKD sample for AUC was not treated with 

phosphatases during purification where as the TrkB-TKD sample was treated with 

phosphatases during purification. Data shown were collected at 10,000 rpm. To assess 

the behavior of pTrkA-TKD and mTrkA-TKD in solution, SE AUC experiments were 

performed with 16.7 µM of pTrkA-TKD and 16.7 µM of mTrkA-TKD. Data were collected 

at 10,000 rpm and 15,000 rpm. 

To analyze the data, we generated a plot of the natural logarithm (ln) of absorbance at 

280 nm versus a function of the radius squared (r
2
-ro

2
)/2, where r is the radial position in 

the sample and ro is the radial position of the meniscus. This analysis provides a straight 

line with slope proportional to the molecular mass for a single species. 
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5.6. Autophosphorylation Assays  
	  

All autophosphorylation reactions were conducted in the presence of 1 mM ATP (Sigma-

Aldrich) and 10 mM MgCl2 in a buffer containing 100 mM HEPES pH 7.4, 150 mM NaCl, 

2 mM DTT and 1x ‘Halt’ phosphatase inhibitor cocktail (Thermo Scientific #1862495), 

which contains sodium fluoride, sodium orthovanadate, sodium pyrophosphate, and β-

glycerophosphate. Figure legends indicate the concentration of TrkA and TrkB TKD 

proteins, which ranged from 1 to 10 µM and indicate the temperature the reactions were 

incubated which ranged from 15°C -37°C. The autophosphorylation reactions were 

analyzed by various gel-based methods including native PAGE, SDS-PAGE 

autoradiography, SDS-PAGE Western blotting, and PhosTag SDS-PAGE. The 

autophosphorylation reactions analyzed by native PAGE and SDS-PAGE 

autoradiography did not contain 1x Halt phosphatase inhibitor cocktail unless indicated 

in the figure legend. For the phosphatase inhibitor comparison experiment, ‘PhosStop’ 

inhibitor cocktail inhibitor (a proprietary blend of phosphatase inhibitors) was purchased 

from Roche. 

 

5.7. Gel based Assays 
	  

Native PAGE was conducted following the Laemmli protocol (Laemmli, 1970), except 

that SDS was not included in the gel or electrophoresis buffers. Thus, samples were 

separated on a 7.5 % native gel with a pH 6.8 Tris-HCl stacking gel and a pH 8.8 Tris-

HCl resolving gel. The electrophoresis running buffer used was a Tris-glycine pH 8.8 

buffer. Gels were stained at room temperature with Coomassie brilliant blue R-250. 

Coomassie stained native gels were imaged on a Kodak Image Station 440 CF.  
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Autoradiographs and Coomassie gels were used to monitor a time course of TrkA and 

TrkB autophosphorylation. Samples were separated on a 12.5% Laemmli gel by SDS-

PAGE, gels were stained at room temperature with Coomassie brilliant blue R-250, 

destained and then dried using a gel dryer (Thermo electron corporation). Dried gels 

were applied to a storage phosphor screen for overnight exposure.  Phosphor screens 

were then imaged using a Storm 820 phosphorimager (Molecular Dynamics®). The 

autoradiography signal was normalized by the amount of protein in each lane detected 

by Coomassie stain. 

For SDS PAGE Western blotting, samples were separated on a 12.5% Laemmli gel, 

transferred to nitrocellulose and then blocked with blocking buffer (LI-COR Biosciences 

blocking buffer diluted 1:2 with PBS). Membranes incubated with primary antibody 

diluted in blocking buffer overnight at 4°C, washed with PBS with 1% Tween, and then 

incubated with secondary antibody diluted in blocking buffer. Membranes were washed 

with PBS with 1% Tween and then subjected to a final wash with just PBS. Membranes 

were imaged using the Odyssey® FC (LI-COR Biosciences) imaging station. 

PhosTag gels were made using the PhosTag™ acrylamide reagent (Wako Pure 

Chemical Industries, Ltd., catalog # AAL-107) along with ZnCl2 as previously described 

(Kinoshita and Kinoshita-Kikuta, 2011)). The composition of reagents for optimal 

separation of phosphorylated Trk TKD species was 25 µM PhosTag™ acrylamide 

reagent and a 10% acrylamide gel using acrylamide:bis solution (29:1). Gels were run at 

a constant 70V for 3 hours. PhosTag gels were stained at room temperature for ~15-20 

minutes with Coomassie brilliant blue R-250. For Western blotting, prior to transferring to 

nitrocellulose, PhosTag gels were soaked in transfer buffer containing 1mM EDTA for 15 
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minutes and then washed for 15 minutes in transfer buffer without EDTA. The rest of the 

Western blot protocol was performed as described above. 

For Western blotting, the goat anti-pan-Trk antibody (catalog number: sc-11-g) and 

rabbit anti-phospho-Trk pY676 (catalog number: sc-130222) antibodies were used at a 

1:500 dilution and are from Santa Cruz. The rabbit anti-phospho Trk pYY680/681 

(catalog number: 4621)) and rabbit anti-pY791 (catalog number: 4168) were used at 

1:1000 dilution. Note that the Cell Signaling phospho antibodies are sold using the TrkA 

isoform I numbering, thus pYY674/675 and pY785 corresponds to pYY680/681 and 

pY791 in isoform II, respectively. The secondary antibodies used were IRDye® 800CW 

donkey anti-rabbit IgG (# 926-32213) and IRDye® 680RD donkey anti-goat IgG (# 926-

68074) from LI-COR Biosciences. 

The normalized relative signals from the Western blots were determined first by 

normalizing each phosphospecific signal with the total Trk signal. Each normalized 

signal was then divided and by the maximum signal per phosphospecific antibody per 

reaction. 

 

5.8 Generation and purification of phospho-Trk TKD 
	  

Autophosphorylation reactions were conducted to generate phospho-Trk for enzymatic 

studies. Western blotting of PhosTag gels with phosphospecific antibodies (see Western 

blotting methods) were used to monitor the reactions. TrkA-TKD at 10 µM was incubated 

at room temperature with 1 mM ATP, 10 mM MgCl2 in a buffer containing 100 mM 

HEPES pH 7.4, 150 mM NaCl, 2 mM DTT. At 5 minutes, the reaction was quenched with 
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EDTA to achieve a final concentration of 100mM. TrkB-TKD at 7.5 µM was incubated at 

30°C with 1 mM ATP, 10 mM MgCl2 in a buffer containing 100 mM HEPES pH 7.4, 150 

mM NaCl, 2 mM DTT and 1x Halt phosphatase inhibitor cocktail. At 4 minutes, the 

reaction was quenched with EDTA to achieve a final concentration of 100mM. Samples 

were spin filtered with SpinX columns and loaded on to a Superdex 200 column (GE 

Healthcare) equilibrated in 25 mM Hepes, pH 8, containing 150 mM NaCl and 2 mM 

DTT and 1x Halt phosphatase inhibitor cocktail. BioRad gel filtration standards (# 151-

1901) were used to assess pTrk and mTrk TKD elution peaks. 

 

5.9. Quantitative kinase assays 
	  

The quantitative kinase assays employed a peptide mimic of the TrkA and TrkB 

activation loop. The TrkA activation loop peptide (SRDIYSTDYYRVGGRTMLPIR) and 

TrkB peptide (SRDVYSTDYYRVGGHTMLPIR) were purchased from CanPeptide. 

Reactions were performed at room temperature in a buffer containing 100 mM HEPES 

pH 7.4, 150 mM NaCl, 0.5 mg/ml BSA,  2 mM DTT, 10 mM MgCl2,1x Halt phosphatase 

inhibitor cocktail and trace amounts of γ-32P ATP (20-40 µCi). For Km, ATP determination, 

TrkA and TrkB TKDs were assayed with variable ATP concentrations  (5 mM to 0.039 

mM) in the presence of fixed 2 mM peptide substrate and 10 mM MgCl2.  For Km, peptide 

determination, TrkA and TrkB TKDs were assayed with variable peptide concentrations 

(4 mM to 0.031 mM), fixed 2 mM ATP and 10 mM MgCl2. The protein concentration used 

for these experiments were 30 nM dephosphorylated TrkA-TKD, 400 nM 

dephosphorylated TrkB-TKD and 8 nM of both phosphorylated TrkA and phosphorylated 

TrkB TKDs.  
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Samples were taken at each time point, spotted onto pieces of P81 phosphocellulose 

squares (Millipore # 20-134), and immediately quenched with 0.5% phosphoric acid. The 

phosphocellulose squares were then washed extensively with 0.5% phosphoric acid and 

dried with acetone. A Tri-Carb 2900TR liquid scintillation analyzer (PerkinElmer) was 

used to measure the incorporated radioactivity of each phosphocellulose square. Initial 

rates were determined under conditions of <10% product formation – ensuring linearity – 

converted to specific activity, normalized for enzyme concentration and data fit to the 

Michaelis-Menten equation (vo = vmax[S]/(Km+[S])) using GraphPad Prism version 5.0. 

 

5.10. Radioactive autophosphorylation assays 
	  

Radioactive autophosphorylation assays were performed at RT with 4 µM of TrkA-TKD, 

TrkA KID, or TrkB TKD protein in the presence of 2mM ATP, 10 mM MgCl2 100 mM 

HEPES pH 7.4, 150 mM NaCl, 2 mM DTT, 1x Halt phosphatase inhibitor cocktail and 

trace amounts of γ-32P ATP (40 µCi). Samples taken at each time point were processed 

as above for the quantitative kinase assay samples. Counts from the scintillation 

analyzer were converted to moles of phosphate incorporated using measured γ-32P-ATP 

specific activity and then normalized to enzyme concentration. Each reaction data set 

was converted to percent maximum moles of phosphate incorporated normalized to 

enzyme concentration. 

Data were plotted and analyzed by several methods. Histogram plots were generated to 

compare relative moles of phosphate incorporated per mole of enzyme for time points 

from 0 to 5 minutes. A paired t test was used to compare data obtained with TrkA-TKD 

(n=3), TrkA KID-TKD (n=2), and TrkB-TKD (n=2), to determine statistical significance of 
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differences, with significance (P < 0.05) denoted with an asterisk. Data were also plotted 

and fitted with a four-parameter logistic equation to obtain time to half maximal 

autophosphorylation. Curves were fit to the 0 to 30 minute data. Histogram plots were 

used to compare the time to half maximal autophosphorylation for TrkA, TrkA KID, and 

TrkB TKDs. A paired t test was used to determine statistical significance (P < 0.05) 

denoted as an asterisk. GraphPad Prism version 5.0 was used to plot the data and 

perform the paired t tests.  
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