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Making Detailed Predictions Makes (Some) Predictions Worse

Abstract
In this paper, we investigate whether making detailed predictions about an event makes other predictions
worse. Across 19 experiments, 10,895 participants, and 415,960 predictions about 724 professional sports
games, we find that people who made detailed predictions about sporting events (e.g., how many hits each
baseball team would get) made worse predictions about more general outcomes (e.g., which team would win).
We rule out that this effect is caused by inattention or fatigue, thinking too hard, or a differential reliance on
holistic information about the teams. Instead, we find that thinking about game-relevant details before
predicting winning teams causes people to give less weight to predictive information, presumably because
predicting details makes information that is relatively useless for predicting the winning team more readily
accessible in memory and therefore incorporated into forecasts. Furthermore, we show that this differential
use of information can be used to predict what kinds of games will and will not be susceptible to the negative
effect of making detailed predictions.
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ABSTRACT 

 

MAKING DETAILED PREDICTIONS MAKES (SOME) PREDICTIONS WORSE 

Theresa F. Kelly 

Joseph P. Simmons 

 

In this paper, we investigate whether making detailed predictions about an event makes 

other predictions worse. Across 19 experiments, 10,895 participants, and 415,960 

predictions about 724 professional sports games, we find that people who made detailed 

predictions about sporting events (e.g., how many hits each baseball team would get) 

made worse predictions about more general outcomes (e.g., which team would win). We 

rule out that this effect is caused by inattention or fatigue, thinking too hard, or a 

differential reliance on holistic information about the teams. Instead, we find that 

thinking about game-relevant details before predicting winning teams causes people to 

give less weight to predictive information, presumably because predicting details makes 

information that is relatively useless for predicting the winning team more readily 

accessible in memory and therefore incorporated into forecasts. Furthermore, we show 

that this differential use of information can be used to predict what kinds of games will 

and will not be susceptible to the negative effect of making detailed predictions. 
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INTRODUCTION 

Good decisions often depend on good predictions. For example, an investment 

decision hinges on one’s forecast of the market, an admission decision hinges on one’s 

forecast of an applicant’s success, and a consumer choice hinges on one’s forecast of a 

product’s quality. Thus, understanding the factors that affect prediction quality can also 

help people make better decisions.  

In this paper, we will demonstrate that making detailed predictions about an event 

can make other predictions about that event worse. For example, asking people to predict 

how many hits each baseball team will get in an upcoming game (a detailed prediction) 

before predicting which team will win the game (a more general prediction) can make 

their winning team predictions worse. This suggests that, counter to lay beliefs, thinking 

through as many details about an event as possible could do more harm than good. 

Prior research on detailed predictions 

The question of whether asking more detailed prediction questions makes predictions 

worse was first investigated by Yoon, Suk, Goo, Lee, and Lee (2013). Specifically, they 

investigated whether more detailed versions of prediction questions led to less accurate 

predictions about general outcomes. For example, predicting the final score of a soccer 

game is a more detailed version of predicting the winning team because it not only 

requires forecasters to determine which team they think will win, but also requires them 

to consider additional details (e.g., whether it will be a low- or high-scoring game, how 

many runs the victor will win by, etc.). In their investigation, Yoon and colleagues (2013) 

asked participants to predict the outcomes of soccer games by either simply indicating 

whether they thought the home team would win, lose, or tie the game, or by entering the 
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exact final score of the game. 1  In three experiments (N = 65, N = 86, N = 100 

participants; n = 16, n = 18, n = 16 games), they found that winning team predictions 

were less accurate when participants predicted the final score than when they simply 

indicated a win, loss, or tie for the home team (p = .019, p = .037, p = .045). That is, 

giving a more detailed version of the winning team prediction (i.e., the score) worsened 

winning team prediction accuracy.  

Yoon and colleagues claimed that this effect occurred because predicting scores is 

more difficult and therefore makes people think too hard about which team will win, and 

that thinking harder about their predictions made their predictions worse (e.g., 

Dijksterhuis, Bos, Nordgren, & van Baaren, 2006; Dijksterhuis, Bos, van der Leij, & van 

Baaren, 2009). However, as we will explain in more detail later, problems with their 

design coupled with the fact that their samples were too small to reliably detect 

differences in prediction accuracy means that whether and how detailed predictions affect 

predictions about more general outcomes are open questions. We propose that making 

detailed predictions makes forecasts of more general outcomes worse because doing so 

brings to mind additional information that is not useful for predicting which team will 

win the game. Furthermore, forecasters use this relatively useless information in their 

predictions, meaning that they necessarily give less weight to more important information. 

For example, asking people to predict how many hits each baseball team will get might 

lead them to think about the quality of each teams’ pitchers and batters, and so when they 

are subsequently asked to predict the winning team, information about pitchers and 

batters is top-of-mind and therefore used in their forecasts. Importantly, while this 
                                                 
1 Yoon et al. (2013) refer to score predictions as “specific” predictions rather than “detailed” predictions.  
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information might be diagnostic in isolation, it would provide little or no diagnostic 

information over and above the information already contained within the teams’ win/loss 

records given that the quality of the teams’ players directly affects how many games they 

win.2 Therefore, we propose that detailed predictions can make predictions about other 

outcomes worse by causing forecasters to think about and use relatively useless 

information in their predictions, taking focus away from more predictively valid 

information (e.g., the teams’ win/loss records).  

This hypothesis stems from three well-established findings from the psychology of 

forecasting. First, people do not (and often cannot) consider all of the relevant 

information when making predictions. Second, the information that people do consider 

tends to be the information that is most accessible in memory, even if this information is 

not the most predictively valid information available. Finally, forecasters are largely 

unable to accurately weigh each piece of information according to its predictive value, 

meaning that they tend to give too much weight to less useful information and too little 

weight to more useful information in forecasts. Together, these three tendencies suggest 

that drawing people’s attention to less important details about an event should make 

predictions about more general outcomes worse. Importantly, in this account people are 

not thinking more or less hard about their predictions. Rather, they are simply thinking 

about different information and using that information suboptimally. 

                                                 
2 It should also be noted that people often overestimate the value of redundant information for forecasting 
and thus give redundant information too much weight in their predictions (Kahneman & Tversky, 1973; 
Slovic, 1966; Soll, 1999). 
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Forecasters only consider a subset of relevant information 

When trying to predict the outcome of a future event, people are naturally inclined to 

imagine ways in which that event might unfold. For example, people trying to predict 

how much they would enjoy going on a camping trip with friends might first imagine 

what activities they would do on the trip, what the weather would be like, how well 

everyone would get along, etc. Furthermore, people use how easy it is to imagine 

scenarios leading to a certain outcome (e.g., enjoying the trip) to estimate how likely that 

outcome is to occur, and so people rely heavily on the scenarios that they happen to 

imagine to make predictions about the future (Kahneman & Tversky 1981; Tversky & 

Kahneman 1973). However, people tend to only consider a handful of possible scenarios, 

and potentially important but unimagined scenarios are not incorporated into forecasts, 

leading to poor and inconsistent predictions (for reviews, see Dunning, 2007; Kahneman 

& Lovallo, 1993; Lagnado & Sloman, 2004; Lovallo & Kahneman, 2003). Thus, this 

scenario-based method of forecasting is vulnerable to a variety of errors stemming from 

the forecaster’s inability to exhaustively consider all of the relevant information for the 

prediction.   

One example of such an error is focusing too narrowly on the target event and failing 

to consider other factors that, while not directly related to the event, would significantly 

affect outcomes. For example, when trying to predict how long it will take to complete a 

shopping trip, people are likely to build scenarios around things that are directly related 

to “getting shopping done” such as driving to the store, looking for products, waiting in 

line at checkout, etc., but are unlikely to consider other intervening factors that would 

also affect how long it takes them to shop, such as getting stuck in traffic or coming down 
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with a cold (Dunning, 2007). Similarly, past research has found that when people try to 

predict how much an event will affect their future well-being, they focus too heavily on 

the direct impact of the event itself but fail to consider that other events in their lives will 

also contribute to their overall well-being (Schkade & Kahneman, 1998; Wilson & 

Gilbert, 2005; Wilson, Wheatley, Meyers, & Gilbert, 2000). For example, Wilson and 

colleagues (2000) found that college football fans overestimated how long their 

emotional well-being would be affected by their football team winning or losing a game 

because they largely did not consider how other future events would also affect their 

happiness (e.g., studying for exams, going to parties). 

Forecasters also have difficulty considering information that is either abstract or not 

explicitly presented to them at the time of the prediction. For example, when estimating 

the likelihood that a complex system such as a car will fail, one strategy is to construct a 

“fault tree” by listing all the things that could go wrong, such as “dead battery” or 

“defective fuel system” (concrete causes), and adding a category for “all other problems” 

(abstract causes). Then, the forecaster estimates the probability of failure for each 

category to determine the total probability of failure for the entire system. However, 

Fischhoff, Slovic, & Lichtenstein (1978) found that people did not appropriately transfer 

probabilities to the “all other problems” category when some of the concrete causes for 

failure were omitted from the fault tree. To illustrate with a simplified example, if 

comparing a tree that consists of “dead battery”, “defective fuel system”, and “all other 

problems” to a pruned tree consisting of only “dead battery” and “all other problems”, the 

probability given to “all other problems” in the pruned tree would be considerably lower 

than the sum of the probabilities given to “defective fuel system” and “all other problems” 
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in the full tree. In fact, the participants in Fischhoff et al.’s (1978) experiments were 

largely insensitive to what information was missing from fault trees and therefore 

significantly underestimated the probability of a system failure in trees that listed fewer 

concrete sources of failure. Fischhoff and colleagues (1978) concluded that scenarios that 

are not explicitly presented to forecasters are “out of sight, out of mind”, and are not 

incorporated into forecasts. Importantly, even though people were able to improve their 

predictions by generating their own list of concrete causes belonging to the “all other 

problems” category (Dube-Rioux & Russo, 1988), they did not appear to do so unless 

explicitly prompted. 

Additionally, one of the most common omissions from forecasters’ predictions about 

the future is information about what has happened in similar situations in the past 

(Dunning, 2007; Kahneman & Lovallo, 1993; Lagnado & Sloman, 2004; Lovallo & 

Kahneman, 2003). For example, imagine someone wants to predict how long it will take 

her to complete a work project. Rather than considering all of the factors that might 

influence how the project would progress (e.g., what resources she has at her disposal, the 

availability of her teammates, what other tasks will be competing for her attention, etc.), 

she could instead base her prediction on how long it has taken her to complete similar 

projects in the past. Buehler and Griffin (2003), however, found that when people 

predicted how long it would take them to complete tasks such as Christmas shopping or 

class assignments, they mostly reported thinking about what they expected to happen in 

the future and rarely reported thinking about how long it took them to complete similar 

tasks in the past (see also Buehler, Griffin, & Ross, 1994). Furthermore, participants who 

were asked to think about their future plans made significantly less accurate predictions 
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than those who were not. In fact, in many if not most cases, thinking about the outcomes 

of similar past events generates superior predictions than imagining what might happen in 

the future (Dawes, 1996; Grove, Zald, Lebow, Snitz, & Nelson, 2000; Lovallo & 

Kahneman, 2003; Meehl, 1954). This is partially because the kinds of information that 

forecasters frequently fail to consider usually has similar effects on the likelihood of 

certain outcomes occurring in the future as they did on those outcomes occurring in the 

past. However, information about past cases is rarely used as the basis for forecasts 

(Dawes, 1996; Grove & Meehl, 1996; Lagnado & Sloman, 2004). 

Forecasters use the information that is most accessible in memory 

Given that people only consider a subset of the information available to them when 

making predictions, it is important to understand the factors that influence what 

information they think about. As mentioned in the previous section, the easier it is to 

imagine scenarios leading to a certain outcome, the greater the perceived likelihood is 

that the outcome will occur. This means that predictions are primarily influenced by the 

information that comes most easily to mind, and so the outcomes or scenarios that are 

most available (or “accessible”) in memory get incorporated into forecasts.  

Indeed, research on this availability heuristic has frequently demonstrated that 

incidents that come to mind easily are judged to be more likely (Morewedge & Todorov, 

2012; Plous, 1993; Tversky & Kahneman, 1973; Tversky & Kahneman, 1974). There are 

multiple factors that contribute to what information becomes readily available in memory. 

The most straightforward reason is that some cue is frequently observed in conjunction 

with a particular outcome, and over time, people learn the association between the cue 

and the outcome (i.e., the cue is “ecologically valid”; Bruswick & Kamiya, 1953). For 
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example, people who see dark clouds outside will predict a high chance of rain because 

they have observed throughout their lives that dark clouds are usually followed by rain. 

In such cases, these cues (e.g., dark clouds) are highly available because they are truly 

correlated with outcomes (e.g., rain).  

However, there are other factors that affect the availability of information in memory 

that are not related to how likely different outcomes are, such as how vividly and how 

recently an event was observed. For example, the judged likelihood of being in a car 

accident goes up immediately after seeing an overturned car on the side of the road, and 

people believe that shark attacks and plane crashes are more likely than they actually are 

because these events are featured prominently in the news (Plous, 1993; Tversky & 

Kahneman, 1973). Similarly, people erroneously estimate that there are more words that 

begin with the letter “r” than words that have “r” as the third letter because it is easier to 

generate instances of the former case (e.g., red, rabbit, radio) than the latter (e.g., card, 

three, perfume; Tversky & Kahneman, 1973). In another illustration of the use of non-

predictive but highly available information, Morewedge and Todorov (2012) found that 

people over-weighted atypical past behaviors in predictions about future behaviors 

because atypical behaviors are more memorable, and Bastardi and Shafir (1998) found 

that choosing to wait for information (e.g., waiting to find out the exact amount of debt a 

mortgage applicant has) made this information more cognitively available and increased 

its weight in judgments. Together, these findings mean that the most available 

information is not always the most important information, but even so it is still likely to 

be used in forecasts. Thus, increasing the availability of relatively unimportant 

information should make predictions worse. 
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Also, because recently formed judgments are more available in memory, judgments 

that people make earlier can have a downstream influence on subsequent judgments. For 

example, in Feldman and Lynch’s (1988) accessibility-diagnosticity framework, answers 

to previous questions are often used to approximate the answers to subsequent similar 

questions in surveys (e.g., I might not immediately know how much I value animal 

welfare, but I just told someone that I love dogs, so I am probably willing to donate $10 

to the Animal Welfare Society). This is because preferences and beliefs are constructed 

on the spot unless a pre-existing preference or belief is accessible in memory and 

sufficiently diagnostic for the question at hand, in which case the pre-existing cognition 

will be used instead. In fact, past research has identified several cases and conditions in 

which answers to prior questions are used to approximate answers to subsequent 

questions (Lynch, Marmorstein, and Weigold 1988; Menon & Raghubir, 2003; Menon, 

Raghubir, & Schwarz, 1995; Simmons, Bickart, and Lynch, 1993). Also, as with the 

literature on the availability heuristic, Feldman and Lynch (1988) identify that other 

determinants of the accessibility of information in memory include how recently it was 

activated, how vivid it is, cues from the environment (e.g., priming), etc. This means that 

not only will recent judgments be highly accessible, but the information that was used to 

make them will also be more accessible as well. These findings suggest that when 

forecasters make predictions that are similar to other recent predictions, their previous 

predictions and the information they considered when making them will be highly 

accessible in memory and therefore likely to be used in their subsequent forecasts. 
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Forecasters do not weigh information properly 

So far we have discussed how forecasters only use a subset of available information, 

and how the information they use is heavily influenced by what is most accessible in 

memory. Another important component of forecasting, however, is how people use the 

information they think about. Even if people were capable of considering all of the 

relevant information about a prediction, they would still have a hard time weighing that 

information properly. A wealth of past research has found that, in both judgments and 

predictions, people tend to assign suboptimal weights to the information they consider.  

For example, research on the dilution effect shows that giving people information that 

provides little or no additional predictive power generally makes their predictions worse 

(Edgell et al., 1996; Nisbett, Zukier, & Lemley, 1981; Troutman & Shanteau, 1977; 

Zukier, 1982). For example, Nisbett and colleagues (1981) had graduate students in 

social work rate the likelihood that a hypothetical client was a child abuser based on 

information that was judged by other social work students to be diagnostic (e.g., “he was 

abused by his stepfather”) and information that was judged to be nondiagnostic (e.g., “he 

manages a hardware store”). They found that, holding the amount of diagnostic 

information constant, increasing the amount of nondiagnostic information about the client 

decreased his judged likelihood of being an abuser. Indeed, this detrimental effect of 

adding nondiagnostic information to predictions has been found across a wide variety of 

domains, including accounting (Hackenbrack, 1992; Hoffman & Patton, 1997; Shelton, 

1999), legal decisions (Smith, Stasson, & Hawkes, 1998), and consumer choice (Meyvis 

& Janiszewski, 2002).  
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One explanation given to why adding nondiagnostic information makes predictions 

worse is that doing so makes the target seem more or less representative of various 

outcomes (Lichtenstein, Earl, & Slovic, 1975; Nisbett et al., 1981; but see also Tetlock, 

Lerner, & Boettger, 1996). The representativeness heuristic proposed by Tversky and 

Kahneman is a mental shortcut whereby people base their judgments and predictions on 

how similar (i.e., representative) a situation is to a particular outcome, or how similar a 

target is to a particular category (Kahneman & Tversky, 1972; Kahneman & Tversky, 

1973; Tversky & Kahneman, 1971; Tversky & Kahneman, 1974). For example, people 

judge the likelihood that a man named Tom is an engineer versus a lawyer based on how 

well characteristics about Tom (e.g., that he likes mathematical puzzles) are 

representative of a stereotypical engineer versus a stereotypical lawyer (Kahneman & 

Tversky, 1973). In many cases, judgments of representativeness override more objective 

information about the distribution of outcomes in the population (e.g., Tom was selected 

from a population that contains 70% lawyers).  

However, past research has demonstrated that adding nondiagnostic information 

makes predictions worse even in cases where judgments of representativeness are 

unaffected or irrelevant (Dana, Dawes, & Peterson, 2013; LaBella & Koehler, 2004; 

Nelson, Bloomfield, Hales, and Libby, 2001; Simmons & Lynch, 1991; Tetlock & 

Boettger, 1989). This is because, in general, people are bad at weighing different pieces 

of information relative to their predictive strength (Buehler et al., 1994; Griffin & 

Tversky, 1992; Grove et al., 2000; Helzer & Dunning, 2012; Hutchinson & Alba, 1991; 

Slovic, 1975; Slovic & Lichtenstein, 1971; Soll, 1999; Weaver, Garcia, & Schwarz, 

2012; Yaniv, 2004), and give too much weight to information that has relatively low 
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predictive power and too little weight to information that has relatively high predictive 

power. For example, Hall, Ariss, and Todorov (2007) found that participants who were 

only given the win/loss records and half-time scores of basketball games were better at 

predicting winning teams than participants who were additionally given the names of the 

teams. This was because, while the teams’ identities (and therefore their reputations) did 

have some predictive power in isolation, they did not provide any predictive power over 

and above the information that was already available (the win/loss records and half time 

scores). However, participants did not seem to realize this and gave the team names too 

much weight in their predictions. Similarly, people are largely unable to discount the 

weight given to information that is largely redundant with existing information (Slovic, 

1966; Slovic & Lichtenstein, 1971; Soll, 1999), and people also often give more weight 

to the strength of evidence (e.g., how positive a letter of recommendation is) than to the 

validity of evidence for predicting outcomes (e.g., how accurately recommendation 

letters predict future performance) (Griffin & Tversky, 1992; Nelson et al., 2001). Given 

that forecasters are bad at properly integrating and weighing information when making 

predictions, it stands to reason that drawing forecasters’ attention to less important details 

about the outcomes they are trying to predict would make their predictions worse. 

The present research: How do detailed predictions affect prediction quality? 

While much research has shown that giving people non-diagnostic information 

worsens their predictions, our investigation focuses on how prediction quality might be 

affected by the way predictions are elicited. Specifically, we investigate whether asking 

people to make detailed predictions affects the quality of their predictions about other 

outcomes.  
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Although Yoon and colleague’s (2013) finding that people who predicted final scores 

made less accurate winning team predictions than people who only selected winners 

seems to provide preliminary evidence that making detailed predictions can make other 

predictions worse, this evidence is limited. First, whereas participants in the “Winner” 

(non-detailed) condition were incentivized for correctly predicting the winning team, 

those in the “Score” (detailed) condition were incentivized for correctly predicting the 

exact final score. It is possible that participants in the Score condition were less 

motivated to think carefully about their predictions since predicting exact final scores is 

much harder (and therefore much less likely to pay off) than predicting winning teams. 

Second, because participants in the Score condition gave their predictions using a more 

complicated entry method (typing in each team’s score) it is possible that they simply 

made more mistakes than those in the Winner condition. Finally, another potential 

problem with Yoon et al.’s design is their definition of prediction quality. In their studies, 

they assessed the quality of predictions by comparing the accuracy of predictions across 

conditions. However,  accuracy in sports predictions is a very unreliable, and thus poor, 

measure of prediction quality; moreover, as we will later show, detecting differences in 

prediction accuracy would likely require hundreds of games and thousands of participants 

rather than the tens of games and participants recruited by Yoon and colleagues. Taken 

together, it is unclear whether Yoon et al.’s (2013) result would replicate using a better 

measure of prediction quality, and if so, whether it would emerge when the conditions 

have the same incentives and the same chance of making mistakes. This means that 

whether and how detailed predictions makes predictions about more general outcomes 

worse are open questions. 
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A few observations from past research on the psychology of forecasting suggests that 

making detailed predictions would have a detrimental effect on subsequent related 

predictions. First, people only consider a subset of relevant information when making 

predictions, and the information they think about depends on how available/accessible it 

is in their minds. This suggests that information considered when making detailed 

predictions will also be considered when making other similar predictions (so long as that 

information seems sufficiently relevant). For example, if people are first asked to predict 

how many hits each baseball team will get, they are likely to continue thinking about 

information related to how many hits each team will get when predicting which team will 

win the game. 

Additionally, people do not weigh the information they think about properly, and tend 

to give too much weight to information that is relatively unimportant and therefore too 

little weight to information that is more important. This suggests that considering 

information that relatively unimportant for making the more general prediction will take 

weight away from more important information and make predictions worse. 

To investigate the question of whether making detailed predictions actually makes 

predictions worse, we report the results of 19 experiments examining 415,960 predictions 

from 10,895 participants about the outcomes of 724 professional sporting events and find 

that making detailed predictions (e.g., the exact final score) does generally make winning 

team predictions worse as our theory suggests. Next, we will explore possible alternative 

explanations of this effect. We will show that detailed predictions do not worsen 

predictions by increasing inattention or fatigue, thinking too hard, or decreasing self-

reported consideration of the teams’ overall competencies. Instead, we will show that 
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thinking about game-relevant details before predicting the winning team causes people to 

give less weight to important diagnostic information, presumably because the detailed 

information becomes more accessible in memory. Finally, we demonstrate that the 

dilution of more useful information means that not all games will show this effect, and 

that knowing how people use the information available to them allows us to predict what 

kinds of events will and will not be affected by detailed predictions. 

 

GENERAL METHODS 

In 19 experiments, we randomly assigned participants to make detailed or non-

detailed predictions about upcoming sporting events and then examined whether people 

who made detailed predictions made worse predictions. Professional sports is a uniquely 

useful context for studying predictions because sporting events occur frequently, have a 

limited number of possible outcomes (win/lose/tie), yield timely and unambiguous results, 

and are easy to incentivize. It is also easy to find a large sample of participants who have 

some knowledge about the prediction context and are interested and motivated to predict 

the outcomes (i.e., sports fans).  

In total, we collected 415,960 predictions about 724 sporting events. Ten experiments 

investigated predictions of Major League Baseball (MLB) games, five investigated 

predictions of National Hockey League (NHL) games, three investigated predictions of 

National Basketball Association (NBA) games, and one investigated predictions of 

Fédération Internationale de Football Association (FIFA) World Cup matches. 
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Sample 

Across 19 experiments, we recruited 10,896 participants from Amazon’s Mechanical 

Turk website for an average of 573 participants per experiment and 191 participants per 

experimental condition.3 Most participants were male (71.7%) and the sample’s average 

age was 32 years old (SD = 10.0).4 Each study was advertised as a “survey for [sport] 

fans” because we wanted participants to have some knowledge about the sport they were 

predicting; however, they were not required to prove any knowledge about the sport to 

participate. Participants were paid 50 to 75 cents for completing each 10-20 minute 

survey and they earned an additional 5 cents for each correct winning team prediction 

(the few exceptions to this incentive scheme are described below). The average 

participant earned $1.72 (SD = $0.61) in total. 

Procedure 

All experiments had similar procedures.5 In each study, participants were asked to 

predict the outcomes of 29-48 upcoming sports games (M = 38 games per study, SD = 

6.7). We sought to have participants predict as many games as possible without making 

the survey too long and without asking them to predict games that were too far in the 

future, and so the number of games varied by the sport asked about in the experiment. For 

example, while there are about fifteen Major League Baseball games per day during the 

regular baseball season, the number of National Basketball Association and National 
                                                 
3 We did not screen out participants who had participated in previous prediction studies because each new 
study required predictions about novel games, and we did not believe that participants needed to be blind to 
different conditions for the effect to occur. Furthermore, carryover effects between studies would lower the 
likelihood of finding significant differences between prediction conditions. Across our sample, 57.2% of 
participants had not previously participated in a prediction experiment. 
4 The age calculations exclude five participants who reported ages less than 18 and seven who reported 
ages greater than 100.  
5 The complete survey designs for each experiment are reported in Appendix A1. 
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Hockey League games per day varies considerably (typically between two and twelve 

games per day). As a consequence, experiments that asked about baseball games had 

participants predict 39-45 games (three days’ worth) while experiments that asked about 

basketball or hockey games had participants predict 29-32 games (four days’ worth). 

Participants made their predictions all at once 0-3 days before the games, with the 

exception of the 48 FIFA World Cup Group Stage predictions in Experiment 12, which 

were made 1-15 days before the games. 

We manipulated how we elicited participants’ predictions. In all experiments, we 

randomly assigned participants to make their predictions by either selecting the winning 

team for each game (the “Winner” condition) or by entering the final score for each 

game—a more detailed version of the winning team prediction (the “Score Only” or 

“Score + Winner” conditions). 6 Experiments 1-3 included a Score Only condition in 

which participants predicted each game’s final score without separately selecting the 

winning team. In this condition, we inferred participants’ winner predictions from their 

score predictions, as was done by Yoon and colleagues (2013). However, comparing 

winning team predictions between “Winner” and “Score Only” conditions is problematic 

because the mechanics of entering scores versus simply selecting winners could produce 

artifactual differences between conditions. For example, condition differences could 

emerge if participants are more likely to make errors when entering scores than when 

selecting winning teams. To remedy this, Experiments 2-19 included a “Score + Winner” 

                                                 
6 Because Major League Baseball games, National Basketball Association games, and National Hockey 
League games cannot end in a draw, we did not allow participants to enter tied scores or select a tied game 
for these games (676 out of 724 in our sample). Because soccer games can end in a draw, we allowed 
participants to enter tied scores and select “Draw” for the 48 FIFA soccer games in our sample (Experiment 
12). 
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condition in which participants both entered their predicted final score for a game and 

then separately selected their predicted winning team. 7  This allowed us to make an 

apples-to-apples comparison between the Winner condition’s winner predictions and the 

Score + Winner condition’s winner predictions. Figure 1 shows examples of the Winner 

and Score + Winner conditions.  

                                                 
7 In every experiment except one (Experiment 2), participants in the Score + Winner condition predicted 
the score before predicting the game’s winner. In Experiment 2, they predicted the score after predicting 
the game’s winner. 
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Figure 1. Example of the Winner and Score + Winner conditions (Experiment 4). 

 
 

All predictions were incentivized. Experiments 1-3 followed Yoon et al.’s (2013) 

incentive scheme of paying a smaller amount (5 cents) for each correct winning team 
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prediction and a larger amount (40 cents) for each correct final score prediction.8 In 

Experiment 3, we manipulated whether participants in the Score + Winner condition 

earned 5 cents for each correct winning team prediction or 40 cents for each correct final 

score prediction. Note that incentivizing different outcomes (exact final scores vs. 

winning teams) using different amounts (5 vs. 40 cents) across different conditions 

introduces potential confounds when comparing the quality of winning team predictions 

between conditions. For this reason, Experiments 4-19 held incentives constant across all 

conditions (5 cents for each correct winning team prediction, with the exception of three 

experiments described subsequently, in which the incentives were larger for half of the 

games). In these studies, we paid all participants in all conditions for correctly predicting 

the winning teams; they were never incentivized for accurately predicting any additional 

details (e.g., scores, hits, etc.). 

As previously mentioned, the 19 experiments investigated different sports: baseball, 

basketball, hockey, and soccer. But they also differed in more meaningful ways. Most 

importantly, although all experiments included Winner and Score conditions, many 

experiments also included conditions in which participants predicted other details about 

the game in addition to predicting the winning team. We included these other conditions 

because we were interested in whether making any detailed predictions about the game 

would make winning team predictions worse. In some conditions, these detailed 

predictions were relevant to the game; for example, in three of the baseball experiments 

(Experiments 4, 8, and 10), participants in the Hits + Winner condition predicted both the 

                                                 
8 Our payment amounts differed slightly from Yoon et al.’s, who paid 10 cents for each correct winning 
team prediction and 40 cents for each correct final score prediction.  
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number of hits each baseball team would accumulate and which team would win the 

game. In other conditions, the predicted details were irrelevant to the game; for example, 

in one of the hockey experiments (Experiment 16), participants in the Crowd + Winner 

condition predicted what percentage of the crowd at the game would be American 

citizens as well as the winning team. Our theory suggests that making any detailed 

predictions that are relevant to the game should make winning team predictions worse to 

the extent that they prompt forecasters to think about less useful information that gets 

incorporated into their subsequent winning team predictions. All detailed predictions 

were classified as either “relevant” or “irrelevant” a priori, and the conditions and 

predictions in each experiment are described in greater detail in the Results section and in 

the note to Table 1.  

Experiments also varied in the information given to participants about each game. For 

all games, participants were told the date, start time, location, the visiting and home 

teams,9 and, in the baseball experiments, the names of the starting pitchers.10 In addition, 

although most experiments also gave participants each team’s win/loss records (i.e., the 

numbers of games won and lost so far that season), Experiments 6 and 12 did not give 

                                                 
9 Because Experiment 12 investigated FIFA World Cup matches that all took place in Brazil, only one team 
(Brazil’s national team) out of 32 could be considered the “home” team. Thus, in this experiment, neither 
team was designated as “home” or “visiting”. 
10 We also ran 8 additional experiments in which we gave participants each team’s “Points Scored” (the 
total number of points scored by that team so far that season) and “Points Allowed" (the total number of 
points scored against that team so far that season) for football and hockey games, and each team’s 
“Average Points Scored” (the average number of points scored by that team per game so far that season) 
and “Average Points Allowed" (the average number of points scored against that team per game so far that 
season) for basketball games. However, we chose not to include these experiments in our analyses because 
we are worried that differences between prediction conditions in these studies (namely, between Winner 
and Score + Winner) may have arisen because people who are asked about winners only look at the 
win/loss records and people who are asked about scores only look at the points scored or average points 
scored records. It should be noted that the effects we report are stronger when we include the data from 
these 8 experiments. The designs of these experiments included in Appendix A1. 
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any record information for the teams.11 This allowed us to examine whether providing 

this information was necessary to produce the hypothesized effect.  

Prediction Quality 

We were interested in investigating whether making detailed predictions affects the 

quality of people’s predictions. For this reason, in all experiments we compare 

participants’ predictions to well-calibrated sports betting markets, which publish odds set 

by professional oddsmakers. For each game, oddsmakers use attributes such as team 

records, home field advantage, and other information to determine the probability that 

each team will win, and those probabilities are reflected in the odds that they set for each 

game. These odds provide accurate probability estimates: For example, the home team 

won 57.1% of the games when the odds indicated that they had a 55-60% chance of 

winning in our data. Importantly, these odds indicate which team is the “likely winner,” 

meaning that it is more likely to win the game than the opposing team.  In our analyses, 

predicting that the likely winner will win the game is considered a “wise” prediction.12 In 

all experiments, we assess the wisdom of participants’ winning team predictions, 

regardless of prediction condition and what other detailed predictions they made.  

                                                 
11 Experiment 6 also had two conditions in which participants were given team records (wins, losses, points 
scored, and points allowed) and two conditions in which participants were not given any records. For the 
reasons stated in the previous footnote, only the two conditions that did not give record information are 
included in the analyses presented here. However, we found the same detrimental effect of predicting the 
score in both the conditions with records, t(27) = 2.29, p = .030, and without records, t(27) = 3.16, p = .004. 
12 We could have also defined a wise prediction as a prediction in favor of the team with the superior 
win/loss record. However, there are other important game attributes other than win/loss records that 
significantly affect the probability that a team will win. For example, one of the notable differences 
between predictions based on win/loss records and market odds is that sports betting markets take home 
field advantage—which is known to affect game outcomes—into account. For this reason, using market 
odds is the superior method of defining wise predictions. Indeed, the market odds are more correlated with 
actual game outcomes (r(699) = 0.21, p < .001) than records alone (r(699) = 0.13, p < .001). However, the 
patterns of results are largely consistent between the two specifications of wise predictions, and we report 
the results of the main analyses defining wise predictions as choosing the team with the better win/loss 
record in Appendix A3.   
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Of course, another possible measure of prediction quality is accuracy. And, indeed, 

this was the measure used by Yoon and colleagues (2013). However, accuracy is not an 

appropriate measure of prediction quality in this context, as a wise prediction is one that 

predicts that the most probable outcome will occur, regardless of whether that outcome 

actually occurs. To illustrate, consider a biased coin that comes up heads 60% of the time. 

A noisy and imprecise measure of prediction quality is whether someone’s prediction 

about the outcome of the coin flip was accurate. A much better measure of prediction 

quality is whether they predicted “heads”. Similarly, sports outcomes are extremely 

noisy—across the 724 games in our data, the likely winner won only 57.7% of the time—

and so it would take many thousands of predictions about hundreds of games to detect 

whether one condition makes more accurate predictions than another.13  In this case, a 

better measure of prediction quality is whether people predicted the teams that were most 

likely to win as opposed to the teams that actually won.14 

Additional Measures 

Winning Team Probabilities. In experiments 7, 9, 11, and 14-19, immediately after 

predicting the outcomes of all games, participants indicated how likely each team would 

be to win the game. Specifically, we asked participants to revisit each game and imagine 

that the two teams played that exact same game 100 times, meaning that each of those 

100 games would have the same time, location, players, injuries, etc. as the actual game 

(see Appendix A2 for the exact wording of these instructions). Participants then reported 

                                                 
13 In fact, across all 724 games in our dataset, we find no significant effects of predicting scores on winning 
team prediction accuracy. Thus, although we replicate Yoon et al.’s (2013) main result using a good 
measure of prediction quality, we do not replicate their result using the measure of prediction quality that 
they used. 
14 We report the results of our main analyses using accuracy as the dependent measure in Appendix A3. 
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how many games out of 100 they thought each team would win, and we converted these 

responses into probabilities of each team winning the actual game. These self-reported 

probabilities did not end up providing consistent evidence of participants’ prediction 

processes, so we report their results in Appendix A2. 

Reliance on Global vs. Local Information. In Experiments 1-16, we also collected 

Yoon and colleagues’ (2013) measures of self-reported reliance on “global” and “local” 

information for making predictions, where “global information” refers to holistic, overall 

impressions of the teams, and “local information” refers to more nuanced information 

about specific aspects of the teams (e.g., their offensive capabilities). After participants 

made their predictions, we asked participants to “Please indicate the degree to which you 

considered each of these factors while making your predictions” and had them rate how 

much they considered three global factors (“overall impression of the two teams”, 

“overall performance of the two teams in the past years”, “overall performance of the two 

teams in recent years”) and three local factors (“the teams’ offensive abilities”, “the 

teams’ defensive abilities”, “the teams’ coaching abilities”) on a scale from 1 (“not 

considered at all”) to 7 (“seriously considered”). For experiments examining predictions 

about baseball games, we included an additional local factor (“the teams’ pitching 

abilities”) that was not included in, nor relevant for, Yoon et al.’s (2013) investigation of 

soccer matches. All global and local considerations were presented in randomized order. 

Following Yoon et al. (2013), we averaged participants’ ratings of the three global factors 

into a single measure of “global considerations” (α = .68) and the four local factors into a 

single measure of “local considerations” (α = .85) so we could attempt to replicate their 

mediation analysis showing that people who predicted scores made worse winning team 
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predictions because they considered global factors less. The results of these analyses are 

reported in detail in the Results section. 

Sports Knowledge. We also collected information about participants’ knowledge and 

familiarity with the sport league they made predictions about (e.g., Major League 

Baseball). In all 19 experiments, after participants made all of their predictions, we asked 

them eight questions designed to measure their knowledge and familiarity with the sport 

league. These questions were designed to vary in difficulty, and consisted of matching 

fairly well-known players to their teams, and matching teams to their division in the 

league. The instructions encouraged participants to leave the question blank rather than 

guess if they did not know the answer. The number of questions they answered correctly 

serves as our measure of participants’ knowledge about the sport. 15  Participants’ 

knowledge scores varied considerably (M = 4.58, SD = 2.91), with 12.6% of the sample 

answering no questions correctly and 23.7% of the sample answering all eight questions 

correctly. 

Other Measures. Additionally, at the end of each experiment, we collected other 

exploratory measures (for example, prediction confidence and motivation). These 

additional measures ended up providing little insight into our investigation, so we report 

them and their results in Appendix A2. Finally, in all studies participants reported their 

                                                 
15 In experiments 6-19, we also had participants self-report “How closely do you follow [sport league]?” 
and “How knowledgeable are you about [sport league]?” on scales from 1 (“not at all” / “not at all 
knowledgeable”) to 7 (“extremely closely” / “extremely knowledgeable”). However, the percentage of wise 
predictions participants made was more strongly correlated with the number of knowledge questions they 
answered correctly (r(10369) = 0.22, p < .001) than it was with either their self-reported sports following  
or self-reported sports knowledge (both rs(7783) = 0.15, ps < .001), so we use their knowledge question 
scores as the main measure of knowledge in our analyses. The measured knowledge questions always came 
after the self-reported knowledge questions in all experiments that included both. 
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Mechanical Turk ID at the beginning of each experiment and their gender and age at the 

end of each experiment.  

 
Table 1. Experiments 1-19: Percentage of participants making wise predictions in each 

prediction condition. 

Experi-
ment 

Sport 
League 

# of 
subjects 

# of 
games 

Winner 
Only 

Score 
Only 

Score  
+ Winner 

Relevant  
+ Winner 

Irrelevant  
+ Winner 

1 MLB 316 41 67.3%a 61.4%b - - - 
2 MLB 508 39 73.3%a 67.4%b 69.7%ab - - 
3 MLB 635 45 63.4%a 57.5%b 60.2%c - - 
4 MLB 631 45 70.8%a - 66.6%b 66.8%b - 
5 MLB 634 42 60.1% - 58.8% 58.8% 60.2% 

6 NHL 309 29 53.5%a - 49.8%b - - 
7 MLB 337 45 56.6%a - 53.9%b - - 
8 MLB 625 44 56.7% - 55.7% 55.8% - 
9 MLB 422 41 60.9% - 59.7% - - 

10 MLB 728 45 59.3% - 58.4% 58.5% - 
11 MLB 525 42 63.4%a - 61.8%b - - 
12 FIFA 622 48 61.2%a - 57.8%b - - 
13 NBA 420 32   70.3% - 70.9% - - 
14 NHL 541 32 70.0% - 70.8% - - 
15 NBA 775 32 74.1% - 72.9% 72.4% 72.6% 

16 NHL 711 30 73.3% - 72.4% 71.4% 73.0% 
17 NHL 811 31 74.8%a - 70.8%b - 75.2%a 

18 NBA 828 30 78.4% - 76.5% - 78.3% 

19 NHL 518 31 69.7%a - 65.4%b - - 
Note. Each row shows the mean percentage of participants choosing the likely winners across games within 
each condition for that experiment. Within each row, means with different subscripts differ at p < .05 using 
within-subjects pairwise t-tests and the Holm-Bonferroni correction for multiple comparisons (Holm, 1979). 
Experiment 3 manipulated whether the Score + Winner condition was paid based on the accuracy of their 
score prediction or their winner prediction; the Score + Winner column collapses across these two 
conditions. Experiments 4, 8, and 10 included two Relevant + Winner conditions, a condition in which 
participants first predicted total runs and a condition in which participants first predicted each team’s hits; 
the Relevant + Winner column collapses across these two conditions. The relevant predictions made in 
Experiments 5, 15, and 16 were total runs scored, free throws attempted by each team, and saves made by 
each team, respectively. Experiments 17 and 18 included two Irrelevant + Winner conditions, a condition in 
which participants predicted the temperature outside the indoor stadium at the start of the game and a 
condition where participants predicted the high temperature in the game city on July 4th 2015 (about 6 
months after the game); the Irrelevant + Winner column collapses across these two conditions. The 
irrelevant predictions made in Experiments 5, 15 and 16 were total game time, temperature outside the 
stadium at game time, and percentage of U.S. citizens in the crowd, respectively. FIFA = Fédération 
Internationale de Football Association; MLB = Major League Baseball; NBA = National Basketball 
Association; NHL = National Hockey League. 
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RESULTS 

Most of our analyses analyze responses at the game level, examining for each game 

whether more participants made wise predictions when they were simply asked to select 

the winning team than when they were also (or instead) asked to make a detailed 

prediction. Using game as the level of analysis has the benefit of controlling for 

differences across games, while also allowing us to explore whether effects emerge for 

some games and not others. We could have instead analyzed these data at the participant 

level, examining the percentage of wise predictions each participant made, or at the 

prediction level, examining whether each individual prediction was wise or unwise. 

These alternative methods of analysis yield similar results and are reported in Appendix 

A3.  

Does predicting scores make winner predictions worse?  

We expected participants’ winning team predictions to be worse when they were 

asked to predict final scores in addition to (or instead of) selecting winning teams. As 

shown in Table 1 and Figure 2, this expectation was confirmed. Participants in the 

Winner condition (M = 65.5%, SD = 25.3%) made wiser predictions than participants in 

the Score Only and Score + Winner conditions (M = 63.0%, SD = 23.9%), t(708) =11.92, 

p < .001. 16 , 17  This is a small- to medium-sized effect: d = .45. 18  This pattern was 

observed in 17 of 19 experiments, it was statistically significant in 12 of them, and it was 
                                                 
16 For 15 of the 724 games in our sample, oddsmakers assigned an equal probability of winning to both 
teams, and so there was no “likely winner” for these games. Thus, data from these 15 games are excluded 
from all analyses that hinge on using betting market odds to identify a likely winner. 
17 For experiments containing both Score Only and Score + Winner conditions (Experiments 2 and 3), this 
analysis and the data reported in Figure 2 collapse these conditions into a single Score condition.   
18 For a paired-samples t-test, Cohen’s d is computed by dividing the mean difference by the standard 
deviation of the difference. In this analysis, the standard deviation of the difference was 5.5% and so 
Cohen’s d is (.655-.633)/.055 = .45.  
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in the expected direction for the majority of the games in our sample (68.1%), Χ2(1, N = 

724) = 92.43, p < .001.  

  

Figure 2. Experiments 1-19: The difference in the percentage of wise predictions in the 

Winner vs. Score conditions. 

 
Note. Errors bars indicate ±1 standard error adjusted to show within-subjects variation (Cousineau, 2005; 
Morey, 2008). Experiment 1’s result compares the Winner to the Score Only condition, and the results from 
Experiment 2 and 3 compare the Winner condition to the average of the Score Only and Score + Winner 
conditions. The results of Experiments 4-19 compare the Winner condition to the Score + Winner condition.   

 

Further analyses revealed that the negative effect of making score predictions was 

robust to variations across experiments and conditions. First, we observed the effect 

across sports. The Winner condition significantly outperformed the Score conditions in 

predictions of all sports except NBA basketball, for which the effect was marginal.19 We 

                                                 
19 Respectively, the separate t-tests for baseball, basketball, hockey, and soccer were: t(421) = 9.45, p 
< .001; t(92) = 1.92, p = .058; t(146) = 5.74, p < .001; t(46) = 5.38, p < .001. 
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also observed the effect across incentive structures. In Experiment 3, we manipulated 

whether the Score + Winner condition was incentivized for predicting the exact final 

score or for predicting the winner. It did not matter: The Winner condition significantly 

outperformed both, ts(44) > 3.25, p’s < .003, and the two Score + Winner conditions did 

not differ from each other, t(44) = 1.07, p = .29. Finally, in Experiments 6 and 12, we did 

not give participants any team records as they made their predictions. This also did not 

matter: Participants in the Score + Winner condition still fared worse than participants in 

the Winner condition, ts > 3.15, ps < .004.  

Does predicting other event details make predictions worse? 

So far, we have seen evidence that predicting final scores makes winning team 

predictions worse. A final score prediction is a special type of detailed prediction in that 

it is a more detailed version of the winning team prediction, as one’s final score 

prediction unambiguously reveals which team they think will win the game. Therefore, 

people who predict final scores presumably also have to think about which team will win 

the game as well as other information when making their predictions. However, if 

predicting final scores makes predictions worse because it increases the accessibility of 

information that is not useful for predicting the winner, then we would expect predictions 

about any relevant game details to have this effect. For example, asking participants to 

predict how many times each hockey team’s goalie will block the opposing team from 

scoring might cause them to think more about the capabilities of the teams’ goalies, and 

although this information might be useful in isolation, it would probably not provide 

diagnostic information over and above the teams’ win/loss records since a goalie’s ability 

directly affects how often his team wins. 
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In six of our experiments, we included conditions in which participants made detailed 

predictions about a different game outcome other than the final score before predicting 

the winner. For example, the number of hits each baseball team accumulates 

(Experiments 4, 8, and 10), the number of free throws each basketball team attempts 

(Experiment 15), or the number of saves each hockey team’s goalie makes (Experiment 

16) are relevant to the game because they influence the game’s outcome. Similarly, the 

number of total runs in a baseball game (Experiments 4, 5, 8, and 10) is a relevant 

prediction because the game might unfold differently depending on whether the contest is 

low-scoring or high-scoring.20  

Across six experiments (n  = 238 games), participants in conditions that predicted 

relevant details other than the score before predicting the winning teams predicted the 

likely winners to win less often (M = 63.1%, SD = 25.5%) than participants in conditions 

that only predicted winning teams (M = 64.9%, SD = 27.2%), t(231) = 5.60, p < .001.21 

This is a small-to-medium-sized effect: d = .37. We can also test whether predicting non-

score relevant details worsens winner predictions as much as predicting the score does. 

The difference between the Score + Winner condition (M = 63.2%, SD = 25.2%) and 

conditions in which participants predicted non-score relevant details was not significant, 

t(231) = 0.35, p = .72. These analyses are consistent with the hypothesis that predicting 

                                                 
20 Also, it is commonplace in sports betting for people to bet on whether the combined number of points 
scored by both teams will fall above or below a pre-specified total called the “over/under”. 
21 Three of these experiments (4, 8, and 10) included two conditions asking participants to predict a 
relevant detail (other than the score) before predicting the winner. Specifically, in these experiments 
participants predicted either the number of hits each of two baseball teams would accrue (Hits + Winner 
condition) or the total number of runs that would be scored in the game (Runs + Winner condition). The 
analysis reported in the text averages across these two conditions. However, the results remain significant if 
we run the analyses using only the Runs + Winner condition from these three experiments, t(231) = 5.70, p 
< .001, or using only the Hits + Winner condition from these three experiments, , t(231) = 4.39, p < .001. 
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any relevant detail about an event will make predictions about more general outcomes 

worse. Next, we will focus on evaluating different possible explanations for why making 

detailed predictions makes predictions worse. 

Figure 3. Experiments 4, 5, 8, 10, 15, and 16: The average percentage of participants 

making wise predictions in the Winner, Score + Winner, and Relevant + Winner 

conditions. 

 
Note. Errors bars indicate ±1 standard error adjusted to show within-
subjects variation (Cousineau, 2005; Morey, 2008). 

 

Are predictions worse because people pay less attention? 

So far, we have found that participants in the Winner condition, who are required to 

make simple categorical predictions (Winner condition), make better predictions than 

those in detailed conditions, who were additionally (or instead) required to make multiple, 

more difficult, free-entry predictions. It could be the case, then, that people who make 
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detailed predictions make worse winning team predictions because they are more likely 

to become fatigued or confused, or are more likely to stop paying attention to the 

prediction task than participants in the Winner condition. 

To investigate this, five of our experiments included conditions in which people were 

asked to predict an irrelevant detail before predicting the winning team. In our 

experiments, an “Irrelevant” detailed prediction is one that is unrelated to how the game 

will unfold. Importantly, while information about irrelevant details would be more 

accessible after making irrelevant detailed predictions, it should not feel sufficiently 

relevant to inform winning team predictions, and therefore should be omitted from 

consideration. In Experiment 5, participants in the Time + Winner condition predicted the 

duration of each baseball game in hours and minutes. In Experiment 16, participants in 

the Crowd + Winner condition predicted the percentage of fans in attendance who would 

be United States citizens for each game (many NHL hockey games attract non-American 

fans, especially those played in or near Canada). In Experiments 15 and 18 (basketball), 

and in Experiment 17 (hockey) participants in the Temperature + Winner condition 

predicted the outdoor temperature at the location and start time of each (indoor) game. 

Finally, Experiments 17 and 18 included an additional irrelevant detailed prediction in 

which participants predicted the high temperature in the game’s location on July 4th, 2015 

(approximately 6 months after the game).  

Like the participants who predicted scores and other relevant details about the game, 

participants who predicted irrelevant details made multiple, more difficult, free-entry 

predictions. Thus, if the fatigue or confusion that comes from making multiple detailed 
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predictions is driving the effect, we should find that predictions are worse among those 

who predicted these irrelevant details as well.  

However, this was not so. Across five experiments (n = 165 games), those who 

predicted an irrelevant event detail prior to predicting the winning team fared no worse 

(M = 71.0%, SD = 27.7%) than those who only predicted the winner (M = 71.2%, SD = 

27.7%), t(161) = 0.81, p = .42. If this effect exists, we estimate it to be tiny: d = .06. 

Furthermore, this null effect can be put into context by the fact that participants who 

predicted irrelevant event details significantly outperformed participants who predicted 

final scores (M = 69.4%, SD = 26.2%), t(161) = 3.64, p < .001. This is a small- to 

medium-sized effect: d = .29.22 

Thus, whereas predicting relevant details about the games resulted in winning team 

predictions that closely resembled those of the participants who predicted final scores, 

predicting irrelevant event details resulted in winning team predictions that closely 

resembled those of the participants who only predicted the winners. This suggests that the 

negative effect of making detailed predictions on winning team prediction quality is not 

due to increased levels of fatigue, confusion, or inattention, but rather because it makes 

them think differently about the event itself. 

 

                                                 
22 Two of these experiments (17 and 18) included two conditions asking participants to predict a irrelevant 
detail before predicting the winner. Specifically, in these experiments participants predicted either the 
temperature outside the arena at the time and location of the game (Temperature + Winner condition) or the 
temperature in the game city on July 4th 2015 (July 4th + Winner condition). The analysis reported in the 
text averages across these two conditions. However, the results remain qualitatively identical if we run the 
analyses using only the Temperature + Winner condition from these two experiments (Winner vs. 
Irrelevant: t(161) = 1.14, p = .26; Score vs. Irrelevant: t(161) = 3.44, p < .001) or using only the July 4th + 
Winner condition from these two experiments (Winner vs. Irrelevant: t(161) = 0.47, p = .64; Score vs. 
Irrelevant: t(161) = 3.67, p < .001). 
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Figure 4. Experiments 5 and 15-18: The average percentage of participants making wise 

predictions in the Winner, Score + Winner, and Irrelevant + Winner conditions. 

 
Note. Errors bars indicate ±1 standard error adjusted to show within-
subjects variation (Cousineau, 2005; Morey, 2008) 

 

Are predictions worse because people think harder? 

Some researchers have claimed that conscious, deliberative thinking can sometimes 

lead to worse choices and predictions than unconscious, intuitive thinking (e.g., 

Dijksterhuis et al., 2006, and Dijksterhuis et al., 2009; however, the existence of this 

unconscious thought advantage has been challenged in a recent meta-analysis by 

Nieuwenstein et al., 2015). This raises the question of whether predicting scores makes 

winner predictions worse because predicting scores is more difficult and therefore causes 

people to think harder, as Yoon et al. (2013) interpreted their results to indicate. 

To test whether thinking harder makes predictions worse, we ran three experiments 

(13, 14, 19; n = 95 games) in which we incentivized participants to think harder about 
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some games than others. Again, participants were randomly assigned to only predict 

winning teams (Winner condition) or to predict final scores in addition to predicting 

winning teams (Score + Winner condition). Additionally, within-subjects, half of the 

games were assigned to either be worth either a smaller bonus (5 cents) or a much larger 

bonus (25 cents in Experiments 13 and 14, and 20 cents in Experiment 19—very large 

bonuses for a single question in a Mechanical Turk study). Which games were worth 

small and large bonuses was randomized between-subjects.23  

We expected participants to think harder about the games that were worth a much 

larger bonus than usual. After making their predictions, participants reported “Overall, 

how carefully did you think about each game before making your winning team 

predictions?” and “Overall, how much effort did you invest in thinking about and making 

your predictions?” separately for the low- and high-incentive games. 24  Participants’ 

ratings of thinking carefully about predictions and investing effort in making predictions 

were highly consistent (αs = .90 for both the low- and high-incentive games), so we 

averaged the two responses into a single measure of “thinking hard” about predictions. 

Participants reported thinking harder about the high-incentive games than the low-

                                                 
23 In Experiments 13 and 14, we first informed participants that they would be rewarded a 5-cent bonus 
each time they correctly predicted the winning team. After making sixteen predictions, they reported 
“Overall, how carefully did you think about each game before making your winning team predictions?” and 
“Overall, how much effort did you invest in thinking about and making your predictions?” We then 
informed them that the amount of the bonus had been increased to 25 cents per correct winning team 
prediction for a remaining block of games. They then made predictions about an additional sixteen games 
and rated how carefully they thought about and how much effort they invested in making predictions for 
just those sixteen 25-cent games. In Experiment 19, we informed participants at the outset that some games 
would be worth more than others. They then made all thirty low- and high-incentive predictions at once. 
The amount of the bonus (5 cents vs. 20 cents) was displayed prominently and alternated between games. 
After making all of their predictions, they rated how carefully they thought about and how much effort they 
invested in making their predictions separately for the 5-cent games and the 20-cent games. 
24 This wording is taken from Experiment 13 and 14. The wording of these questions was slightly different 
in Experiment 19, and is reported Appendix A2. 
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incentive games in both the Winner condition (M = 5.80, SD = 1.16 vs. M = 5.44, SD = 

1.25, t(748) = 13.36, p < .001) and Score + Winner condition (M = 5.85, SD = 1.14 vs. M 

= 5.50, SD = 1.22, t(685) = 12.56, p < .001). However, participants in the Score + Winner 

condition did not report thinking significantly harder about either low- or high-incentive 

games than participants in the Winner condition (ts < 0.91, ps > .36).  

If predicting scores worsens predictions because it makes people think harder, then 

making people think harder should decrease the quality of their predictions, especially 

among those in the Winner condition, who were presumably not thinking as hard as 

participants in the Score + Winner condition before. This was not the case. Participants in 

the Winner condition did not make significantly worse predictions when the stakes were 

higher (M = 70.0%, SD = 17.4%) than when they were lower (M = 70.1%, SD = 16.8%), 

t(94) = 0.23, p = .82, and participants in the Score + Winner condition made directionally 

wiser predictions when the stakes were higher (M = 69.2%, SD = 17.2%) than when they 

were lower (M = 68.7%, SD = 15.8%), t(94) = 1.21, p = .23. Furthermore, regardless of 

incentive, participants who reported thinking harder actually made a greater percentage 

of wise predictions, b = 0.87%, t(2889) = 3.73, p < .001. 25 , 26  Finally, as usual, 

participants in the Winner condition made wiser predictions than participants in the Score 

+ Winner condition for both low- and high-incentive games, ts > 2.25, ps < .027. These 

                                                 
25 Analysis includes fixed effects for experiment. 
26 Dijksterhuis et al. (2009) found that the unconscious thought advantage was moderated by “expertise” as 
defined by above-median self-reported knowledge, such that only experts derived an advantage from 
unconscious thinking when they made predictions about soccer game outcomes. However, we found no 
such moderation of self-reported knowledge on the effect of thinking hard on average prediction quality, b 
= -0.19%, t(2798) = -1.27, p = .17. Furthermore, amongst the 124 participants who reported the highest 
level of sports knowledge, thinking hard was marginally positively correlated with making a greater 
percentage of wise low- and high-incentive predictions, r(246) = 0.11, p < .10. 
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results suggest that thinking hard about predictions does not explain why people who 

make detailed predictions make worse winning team predictions.   

 

Figure 5. Experiments 13, 14, and 19: The average percentage of participants making 

wise predictions in the Winner and Score + Winner conditions for low- versus high-

incentives. 

 
Note. Errors bars indicate ±1 standard error adjusted to show within-subjects variation (Cousineau, 2005; 
Morey, 2008) 
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predicting scores and prediction accuracy. We did not replicate these results. Across 16 

experiments (experiments 1-16, n = 6,541 participants) we found that predicting scores 

had no effect on self-rated reliance on global considerations, b = -0.006, t(6525) = 0.19, p 

= .85. We did find that that predicting the score had a very small but marginally positive 

effect on ratings of local considerations, b = 0.071, t(6525) = 1.83, p = .067, and that an 

increase in local considerations had a small but significant effect on the percentage of 

wise predictions made, b = 0.206%, t(6525) = 2.53, p = .012. However, a bootstrap 

mediation analysis (Preacher & Kelley, 2011) revealed that this increase in local 

considerations did not even partially mediate the effect of predicting the score on winning 

team prediction quality, bindirect effect = 1.57 x 10-4, 95% CI = [-1.78 x 10-5, 4.04 x 10-4]. 

Thus, we believe it is unlikely that detailed predictions make predictions worse because 

they cause people to consider global factors less or local factors more. 

Do people who make detailed predictions use useful information less? 

Although our data do not reveal exactly what information participants were thinking 

about when making their predictions, we can examine how participants used the 

information that we gave them. Each experiment (with the exception of Experiments 6 

and 12) gave participants at least two pieces of information: win/loss records and home 

team status. Both win/loss records and home field advantage are diagnostic for 

determining how likely a team is to win a game, and together these variables account for 

66% of the variation in the probabilities set by Vegas oddsmakers for the games in our 

dataset.  

We used logistic regressions to estimate how much a team’s win/loss record and 

home team status influenced each participant’s likelihood of predicting the team to win 
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the game. 27  Specifically, for each participant in each experiment, we estimated the 

probability they would predict the team to win the game based on whether or not that 

team had the better record (specifically, whether they had won a greater percentage of 

games than their opponent) and whether or not that team was the home team. 28  

Additionally, we expected that people’s use of win/loss records and home field advantage 

would depend on how competitive the game was. We defined a maximally competitive 

game as one in which the teams have near-identical win/loss records (indicating they are 

evenly matched), and a non-competitive game as one in which one team has a much 

better win/loss record than the other (indicating they are very unevenly matched). Our 

measure for the competitiveness of the game was the absolute difference between the two 

teams’ Win Percentages, for which values ranged from 0 (the teams had identical Win 

Percentages) to 1 (one team had won every game and the other team had lost every 

game). We predicted that as games became less competitive (i.e., as the disparity between 

the teams’ win/loss records became more extreme), people would rely more on which 

team had the better record and less on home field advantage for making predictions. 

Thus, we interacted dummies for whether the team had the better record and whether the 

team was the home team with how competitive the game was:  

 

                                                 
27  These analyses do not include Experiments 6 and 12 because we did not provide win/loss record 
information for these experiments.  
28 Since we are analyzing how characteristics of teams affect participants’ likelihood of predicting them to 
win, the data were recoded so that each team was a separate observation with whether the team was 
predicted to win as the dichotomous dependent variable and home team status and the teams’ record 
information as predictor variables. This means that each prediction generated two observations: one for the 
chosen team and one for the unchosen team. To adjust for the fact that these team pairs contribute the same 
information, we clustered standard errors by participant-game.  
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 𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝𝑙𝑝𝑙𝑝𝑝 𝑙ℎ𝑝 𝑙𝑝𝑡𝑡 𝑙𝑙 𝑤𝑙𝑤)  =  𝛽0  + 𝛽1 𝑏𝑝𝑙𝑙𝑝𝑝 𝑝𝑝𝑝𝑙𝑝𝑝 +  𝛽2 ℎ𝑙𝑡𝑝 𝑙𝑝𝑡𝑡 + 

𝛽3 𝑏𝑝𝑙𝑙𝑝𝑝 𝑝𝑝𝑝𝑙𝑝𝑝 ∗ |𝑝𝑝𝑝𝑙𝑝𝑝 𝑝𝑙𝑑𝑑𝑝𝑝𝑝𝑤𝑝𝑝| + 𝛽4 ℎ𝑙𝑡𝑝 𝑙𝑝𝑡𝑡 ∗ |𝑝𝑝𝑝𝑙𝑝𝑝 𝑝𝑙𝑑𝑑𝑝𝑝𝑝𝑤𝑝𝑝| 

 

Once we estimated the weights given to team records and home field advantage for 

each participant in each experiment, we analyzed how detailed predictions affected 

information use by comparing these weights between participants in different prediction 

conditions. 

Table 2 reports the marginal effects of having the better record, being the home team, 

and the competitiveness of the game on the likelihood of predicting a team to win for 

participants in the Winner condition. When games were maximally competitive (i.e., 

when teams had near-identical Win Percentages),29 participants in the Winner condition 

were 17.0% more likely on average to predict the team to win when it had the better 

record than when its opponent had the better record, and 13.6% more likely on average to 

predict the team to win when it was the home team than when it was the visiting team. 

We can also see how the use of this information changes as games become less 

competitive. As expected, we find that people relied on whether the team had the better 

record more and whether the team was the home team less as the disparity between the 

teams’ records increased.  

 

                                                 
29 The twelve games where the two teams had identical Win Percentages were dropped from this analysis 
because neither team had the better win/loss record.  
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Table 2. Experiments 1-5, 7-11, and 13-19: How much weight participants in the Winner 

condition gave to win/loss records and home field advantage when making predictions. 

Coefficients Winner 

better record 0.170  *** 

home team 0.136  *** 

| record difference |  -3.302  *** 

better record * | record difference | 2.522  *** 

home team * | record difference | -1.172  *** 
Note. * p < .05, ** p < .01, *** p < .001. 

 

Next we examine how participants’ use of win/loss records and home field advantage 

differed between prediction conditions. However, because the various types of detailed 

predictions spanned different experiments and therefore different sets of games, we 

cannot directly compare the coefficients for information use in the detailed prediction 

conditions to the coefficients in Table 2, because they would be estimated from different 

populations. For this reason, Table 3 reports the differences in information use from the 

Winner condition for each type of detailed prediction conditions (Score, Relevant, and 

Irrelevant) in the experiments that include both. By using the Winner condition as a 

benchmark in each set of games (i.e., games with Score conditions, games with Relevant 

conditions, games with Irrelevant conditions), we can see how participants’ use of team 

records and home field advantage changed based on the type of detailed predictions they 

made.  

In Table 3, a positive coefficient indicates that participants who made detailed 

predictions gave that information more weight than participants in the Winner condition, 

and a negative coefficient indicates that they gave that information less weight. Figure 6 
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similarly displays the marginal effects of having the better record and being the home 

team on the likelihood of predicting the team to win separately for the Winner and 

detailed prediction conditions for each set of games.  

Table 3 and Figure 6 reveal that participants who predicted scores gave significantly 

less weight to both which team had the better record and which team was playing at home 

than participants in the Winner condition, and participants who predicted other relevant 

details gave directionally less weight to which team had the better record and 

significantly less weight to which team was playing at home. Furthermore, these 

decreases in weight were greater for home field advantage than for having the better 

record. Interestingly, the people who predicted irrelevant details gave these two cues 

directionally more weight than people in the Winner condition; however, these 

differences were not significant. These results show that people who made relevant 

detailed predictions (including final scores) gave less weight to important diagnostic 

information than people who only predicted winning teams. This is the pattern we would 

expect if people who make relevant detailed predictions consider less important 

information while making winning team predictions. 
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Table 3. Experiments 1-5, 7-11, and 13-19: Differences in information weights from the 

Winner condition in the detailed prediction conditions. 

Coefficients Score Relevant Irrelevant 
better record -0.058  *** -0.020   0.035  
home team -0.116  *** -0.079  *** 0.037   
| record difference | 0.149   0.237   -0.033   
better record * | record difference | -0.677  ** -0.513   -0.419  
home team * | record difference | 0.381  *** 0.036       0.448  
Number of participants in sample 5,537 1,958 1,541 
Number of games in sample 644 235 162 
Note. * p < .05, ** p < .01, *** p < .001.  

 
Figure 6. Experiments 1-5, 7-11, and 13-19: The increase in the likelihood of predicting a 

team to win when it had the better record and when it was the home team for Winner vs. 

Score conditions (A), Winner vs. Relevant detailed conditions (B), and Winner vs. 

Irrelevant detailed. 

 
Note. Errors bars indicate ±1 standard error of the interaction between information use and prediction 
condition (Winner vs. detailed). The coefficients for chart A only include games that had final score 
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prediction conditions (n = 644 games), the coefficients for chart B only include games that had non-score 
relevant prediction conditions (n = 235 games), and the coefficients for chart C only include games that had 
irrelevant prediction conditions (n = 162 games). 
 

Which games will show the effect? 

If detailed predictions cause people to give less weight to the teams’ win/loss records 

and home team status, then detailed predictions might not always make predictions 

worse. Consider two different types of games in our sample. In some games, the home 

team had the better record, meaning that both of the cues that people rely on to predict the 

winner (win/loss records and home field advantage) indicate that the home team is more 

likely to win. Since making detailed predictions causes people to give less weight to both 

of these cues, the difference in prediction quality between the non-detailed and relevant-

detailed conditions should be most pronounced for these games. The right-hand side of 

Figure 7 shows this to be the case: When the home team had the better record, people 

who predicted relevant details about the game were considerably less likely to predict the 

home team to win.  

Now consider a different type of game: one for which the visiting team had the better 

record. For these games, the cues that people rely on to predict the winner point in 

opposite directions: choosing the team with the better record would result in predicting 

the visiting team, whereas choosing the team that with the home field advantage would 

result in predicting the team with the inferior record. Since making detailed predictions 

causes people to be less likely to predict the team with the better record but more likely to 

predict the visiting team (since they largely ignore home field advantage), the difference 

between the non-detailed and detailed conditions might not emerge for these games. The 
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left-hand side of Figure 7 shows this to be the case: When the visiting team had the better 

record, people who predicted relevant game details did not predict any differently those 

whose who only predicted winners.  

 

Figure 7. Experiments 1-5, 7-11, and 13-19: The percentage of participants predicting 

that the home team would win by prediction condition and difference in win/loss records. 

Note. Errors bars indicate ±1 standard error adjusted to show within-subjects variation (Cousineau, 2005; 
Morey, 2008). 

 

Similarly, we can examine the effect that the consistency of the two cues has on the 

propensity to make wise predictions. The right side of Figure 8 illustrates that when the 

information we give them is diagnostically consistent (the home team also has the better 
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predictions than people who only predict winners (M = -4.8%, t(295) = 13.64, p < .001), 

but when the information we give them is inconsistent (the home team has the inferior 

record), this difference is much smaller (M = -0.9%, t(354) = 3.60, p < .001). 

Figure 8. Experiments 1-19: The percentage of participants making wise predictions by 

whether the home team also had the better record. 

 
Note. Errors bars indicate ±1 standard error adjusted to show within-subjects variation (Cousineau, 2005; 
Morey, 2008). 

 

Thus, by understanding the process by which detailed predictions affect prediction 
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when giving less weight to both of these cues will not (as when the visiting teams have 

better records).  

This finding is important because it allows us to predict how this effect will play out 

in other prediction contexts. To predict when the effect will emerge, it will be important 

to first identify which cues are given less weight by people making detailed predictions. 

Then, one needs to consider how giving that cue less weight would affect the wisdom of 

predictions. When the available information offers conflicting diagnoses, giving all cues 

less weight might not actually alter the quality of those predictions, and so making 

detailed predictions might have no effect on the quality of other predictions. Moreover, if 

these cues are normally overweighted rather than underweighted, then making detailed 

predictions may actually improve prediction quality.  

 

GENERAL DISCUSSION 

In this paper, we investigated whether and why making detailed predictions about an 

event makes predictions of other outcomes worse. We found that asking participants to 

make predictions about any relevant detail in sports games resulted in worse winning 

team predictions. We also largely ruled out the possibility that this effect could be 

explained by inattention or fatigue, thinking too hard, or thinking about global 

impressions of the teams less. Rather, our data suggest that making detailed predictions 

makes other similar predictions worse by influencing what information forecasters did 

(and did not) incorporate into their predictions. We further found that detailed predictions 

only negatively affected games for which there was consistent diagnostic information—

namely, games for which the home team also had the better record.   
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We already knew from past research that the information given to forecasters affects 

the quality of their predictions; however, to the best of our knowledge it was unknown 

whether asking forecasters to make additional similar predictions could also affect 

prediction quality. We believe that this happens because having people predict the details 

of an event makes them think about additional information that is unimportant for 

predicting other related outcomes; however, once this information is made accessible in 

memory, people are more likely to use it in their forecasts, decreasing the weight given to 

more important information. This suggests that a relatively simple way to improve 

predictions could be to take a top-down approach and start by first predicting the most 

general outcomes and then letting those forecasts guide predictions of more detailed 

outcomes. Importantly, this prescription is not intuitive, as most decision-makers feel 

compelled to try to think through all of the available details about an event before making 

their forecasts (Lovallo & Kahneman, 2003). 

Our results also reveal that a negative effect of making detailed predictions on 

subsequent related predictions is not universal. Because participants who predicted game 

details used both home team status and record advantage less, we only found a sizeable 

detrimental effect when both pieces of information favored the same team (i.e., the home 

team had the better record), in which case the effect of the reduction in the use of the two 

cues was compounded, and the effect was largely eliminated when each piece of 

information favored a different team (i.e., the visiting team had the better record), in 

which case the effect of the reduction of the use of the two cues partially canceled out.  

In fact, if predicting additional details about an event decreases the weight placed on 

heavily weighted cues, then we can imagine cases where making detailed predictions 
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could actually make subsequent predictions better. In our experiments, participants 

generally had a good sense that having the better record and being the home team were 

predictive of winning the game, and that, for most games, having the better record is 

more important than being the home team. However, what about circumstances where 

people do not have good intuitions about what information is important? For example, 

someone who wants to forecast demand for a novel piece of wearable technology might 

believe that computing capability is more important to consumers than stylishness, when 

in fact the reverse might be true. In this case, having the forecaster make additional 

detailed predictions (e.g., which of the product’s features will be most attractive?) might 

inadvertently make his forecasts better because doing so would reduce the weight given 

to an over-weighted attribute. This example emphasizes the importance of understanding 

how forecasters are already using the information available to them in order to 

understand how making additional detailed predictions would affect their other 

predictions. 

Another point of concern moving forward is that it is not clear how people integrate 

conflicting information when making predictions in this context, and it is also not clear 

how predicting other details would affect how forecasters combine conflicting cues. Past 

research on how people use conflicting information is mixed, with some finding that the 

less important of the conflicting cues is largely ignored (Keeley & Doherty, 1972; Mertz 

& Doherty, 1974; Slovic, 1966; Yaniv, 2004), others saying that people are able to 

integrate the inconsistent cues in a roughly linear fashion (Lichtenstein et al., 1975; York, 

Doherty, & Kamouri, 1987), and others still saying that whether the inconsistent 

information is disregarded or integrated varies based on other attributes, such as task 
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predictability (Brehmer, 1972). The fact that the differences between detailed and non-

detailed prediction conditions is smaller for games with conflicting cues is consistent 

with both omission and linear combination models of conflicting cue use. Overall, this 

suggests that identifying forecasters’ intuitive weights and methods for combining 

conflicting information in the specific prediction context being examined would likely be 

a necessary precursor for predicting whether making detailed predictions would make 

other predictions worse.  
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APPENDIX A1: EXPERIMENTAL INSTRUCTION AND DESIGNS 

All experiments had similar designs. In the interest of clarity and brevity, we first 

present an example of a prototypical experiment. Then, we will present the details of each 

individual experiment in terms of the predictions that were made, the different 

experimental conditions, and how they differed from the prototypical design. Any 

questions about the instructions, stimuli, or survey designs should be directed to Theresa 

Kelly. 

 

Example Experiment 

In the example below, each image represents a separate page in the survey. The 

images used in the example are taken from Experiment 8.  

 

Figure A1 1. Example Experiment: Informed consent. 
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Figure A1 2. Example Experiment: Winner condition instructions. 

 

 

Figure A1 3. Example Experiment: Winner condition predictions. 

 
Note. The game shown in the example above was followed by the other 12 games scheduled to be played 
that same day displayed one after the other on the same page. After the first page of games, the next page 
followed the exact same format, including the instructions at the top of the page, but for all of the games for 
the next day. This repeated for as many days as were included in the experiment. In this example, there 
were three days of games and therefore three pages of predictions. 
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Figure A1 4. Example Experiment: Score + Winner condition instructions. 

 

  

Figure A1 5. Example Experiment: Score + Winner predictions. 

 
Note. Participants were restricted from entering tied scores. The game shown in the example above was 
followed by the other 12 games scheduled to be played that same day displayed one after the other on the 
same page. After the first page of games, the next page followed the exact same format, including the 
instructions at the top of the page, but for all of the games for the next day. This repeated for as many days 
as were included in the experiment. In this example, there were three days of games and therefore three 
pages of predictions.  
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Figure A1 6. Example Experiment: Prediction strategy. 

 
Note. Participants were required to enter a minimum of 25 characters. 

 

Figure A1 7. Example Experiment: “Global” and “local” considerations. 

 
Note. The order of items was randomized between participants. The item “the teams’ pitching abilities” 
only appeared for Major League Baseball games and was omitted for all experiments using other sports. 
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Figure A1 8. Example Experiment: Winner condition confidence and motivation. 

 

 

Figure A1 9. Example Experiment: Score + Winner condition confidence and motivation. 

Note. See the “additional measures” section of the Supplement for the exact wording of the confidence and 
motivation questions for predictions other than the winning team and final score. 
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Figure A1 10. Example Experiment: Self-reported following and knowledge. 
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Figure A1 11. Example Experiment: Measured knowledge. 

Note. The order of questions was randomized between participants. Players and teams used varied between 
experiments. Participants were not required to answer any of these questions. 
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Figure A1 12. Example Experiment: Gender, age, and contact. 

 

 

Figure A1 13. Example Experiment: Survey completion. 
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Individual Experiments 

Each experiment is accompanied by a Experiment Design Table that provides 

information about the number and types of predictions in the experiment, the different 

conditions, what record information was given, and ways that the experiment deviated 

from the Example Experiment in the previous section.  

For each experiment, we also give one example of the predictions made in each 

condition. The separate instructions page for a new condition is only given for first 

experiment that that condition appears in (e.g., the Hits + Winner condition appears in 

Experiments 4, 8, and 10, but we only give the instructions in the description of 

Experiment 4). 

All the games for a single day were displayed on a single page with the exception of 

Experiments 13, 14, and 17-19. Descriptions of how the display format of the predictions 

for these experiments are explained in their respective Experiment Design Tables. 

The experiments in this section do NOT repeat all of the measures collected. 

However, any additional measures that differed from the Example Experiment are 

described in the Experiment Design Table. To see what these individual measures look 

like, refer to the “Additional Measures” supplement. 
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Experiment 1 

Table A1 1. Experiment 1 design. 

Predictions 41 Major League Baseball games played on June 4th (15 games), 
June 5th (15 games), and June 6th (11 games) in 2013. 

Run Date June 3rd, 2013 
Conditions Winner, Score Only 
Record information Wins, losses, probable pitchers 
Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Prediction strategy 
⋅ Motivation and confidence 
⋅ Self-reported following and knowledge 
⋅ Which sports they are interested in being contacted about. 

Measures NOT in 
the example that 
ARE included in 
this experiment 

⋅ Maximizing Tendency Scale (included for an unrelated 
study). 

Other deviations 
from the example 
format 

⋅ The Winner condition was incentivized 5 cents for correctly 
predicting the winner and the Score Only condition was 
incentivized 40 cents for correctly predicting the exact final 
score. 

⋅ Participants were not reminded of the payoff amounts for 
each game (e.g. “If you correctly predict the winner of this 
game, you will earn $0.05”).  
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Figure A1 14. Experiment 1: Winner condition predictions. 
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Figure A1 15. Experiment 1: Score Only condition predictions. 
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Experiment 2 

Table A1 2. Experiment 2 design. 

Predictions 39 Major League Baseball games played on June 11th (15 
games), June 12th (15 games), and June 13th (9 games) in 2013.  

Run Date June 10th, 2013 
Conditions Winner, Score Only, Score + Winner 
Record information Wins, losses, probable pitchers 
Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Prediction strategy 
⋅ Motivation and confidence 
⋅ Self-reported following and knowledge 
⋅ Which sports they are interested in being contacted about. 

Measures NOT in 
the example that 
ARE included in 
this experiment 

⋅ Maximizing Tendency Scale (included for an unrelated 
experiment). 

Other deviations 
from the example 
format 

⋅ The Winner condition was incentivized 5 cents for correctly 
predicting the winner and the Score Only and Score + 
Winner conditions were incentivized 40 cents for correctly 
predicting the exact final score. 

⋅ Participants were not reminded of the payoff amounts for 
each game. 

⋅ The winner selection question was displayed before the score 
entry in the Score + Winner condition for each game. 
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Figure A1 16. Experiment 2: Winner condition predictions. 
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Figure A1 17. Experiment 2: Score Only condition predictions. 
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Figure A1 18. Experiment 2: Score + Winner condition predictions. 

Note. Participants were incentivized for correctly predicting the exact final score. 
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Experiment 3 

Table A1 3. Experiment 3 design. 

Predictions 45 Major League Baseball games played on July 19th (15 
games), July 20th (15 games), and July 21st (15 games) in 2013. 

Run Date July 18th, 2013. 

Conditions Winner, Score Only, Score + Winner (bonus for winner), Score 
+ Winner (bonus for score) 

Record information Wins, losses, probable pitchers 
Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Self-reported following and knowledge 
⋅ Which sports they are interested in being contacted about. 

Other deviations 
from the example 
format 

⋅ The Winner condition and one of the Score + Winner 
conditions were incentivized $0.05 for correctly predicting 
the winner, while the Score Only condition and the other 
Score + Winner condition were incentivized $1.50 for 
correctly predicting the exact final score. 

 

Figure A1 19. Experiment 3: Winner condition predictions. 
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Figure A1 20. Experiment 3: Score Only condition predictions. 
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Figure A1 21. Experiment 3: Score + Winner condition predictions (incentivized for 

correct winning team selection). 
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Figure A1 22. Experiment 3: Score + Winner condition predictions (incentivized for 

correct exact final score). 
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Experiment 4 

Table A1 4. Experiment 4 design. 

Predictions 45 Major League Baseball games played on July 26th (15 
games), July 27th (15 games), and July 28th (15 games) in 2013. 

Run Date July 26th, 2013. 
Conditions Winner, Score + Winner, Hits + Winner, Runs + Winner 
Record information Wins, losses, probable pitchers 
Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Self-reported following and knowledge,  
⋅ Which sports they are interested in being contacted about. 

 

Figure A1 23. Experiment 4: Winner condition predictions. 

 

 



  

72 

Figure A1 24. Experiment 4: Score + Winner condition predictions. 
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Figure A1 25. Experiment 4: Hits + Winner condition instructions. 

 

 

Figure A1 26. Experiment 4: Hits + Winner condition predictions. 
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Figure A1 27. Experiment 4: Runs + Winner condition instructions. 

 

 

Figure A1 28. Experiment 4: Runs + Winner condition predictions. 
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Experiment 5 

Table A1 5. Experiment 5 design. 

Predictions 
42 Major League Baseball games played on September 16th (12 
games), September 17th (15 games), and September 18th (15 
games) in 2013. 

Run Date September 16th, 2013 
Conditions Winner, Score + Winner, Runs + Winner, Time + Winner 
Record information Wins, losses, probable pitchers 
Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Self-reported following and knowledge 
⋅ Which sports they are interested in being contacted about. 

 

Figure A1 29. Experiment 5: Winner condition predictions. 
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Figure A1 30. Experiment 5: Score + Winner condition predictions. 

 

 



  

77 

Figure A1 31. Experiment 5: Runs + Winner condition predictions. 
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Figure A1 32. Experiment 5: Time + Winner instructions. 

 

 

Figure A1 33. Time + Winner condition predictions. 
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Experiment 6 

Table A1 6. Experiment 6 design. 

Predictions 
29 National Hockey League games played on January 16th (11 
games), January 17th (2 games), January 18th (13 games), and 
January 19th (3 games) played in 2014. 

Run Date January 16th, 2014 

Conditions Predictions (Winner vs. Score + Winner) X Records (record info 
vs. no records) 

Record information Wins, losses, goals scored, goals allowed 
 

Figure A1 34. Experiment 6: Winner condition predictions (with records). 
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Figure A1 35. Experiment 6: Score + Winner condition predictions (with records). 
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Figure A1 36. Experiment 6: Winner condition predictions (without records). 

 

 

Figure A1 37. Experiment 6: Score + Winner condition predictions (without records). 
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Experiment 7 

Table A1 7. Experiment 7 design. 

Predictions 45 Major League Baseball games played on May 2nd (15 games), 
May 3rd (15 games), and May 4th (15 games) in 2014. 

Run Date May 2nd, 2014 
Conditions Winner vs. Score + Winner 
Record information Wins, losses, probable pitchers 
Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Prediction strategy 

Measures NOT in 
the example that 
ARE included in 
this experiment 

⋅ Base rates 
⋅ How difficult was the survey to understand 

Other deviations 
from the example 
format 

⋅ After making their predictions, participants in all conditions 
revisited each game and said how many times the home team 
would win if they played that exact game 100 times. 

 

Figure A1 38. Experiment 7: Winner condition predictions. 
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Figure A1 39. Experiment 7: Score + Winner condition predictions. 
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Figure A1 40. Experiment 7: Base rates instructions (all conditions). 

 

 

Figure A1 41. Experiment 7: Base rates (all conditions). 



  

85 

Experiment 8 

This experiment is a replication of Experiment 4 with changes in the display format 

and two additional sets of measures after the predictions.  

 

Table A1 8. Experiment 8 design. 

Predictions 44 Major League Baseball games played on May 5th (13 games), 
May 6th (15 games), and May 7th (16 games) in 2014. 

Run Date May 5th, 2014 
Conditions Winner, Score + Winner, Hits + Winner, Runs + Winner  
Record information Wins, losses, probable pitchers 
Measures NOT in 
the example that 
ARE included in 
this experiment 

⋅ Outcome variability  
⋅ Outcome usefulness for predicting the winner 

 

Figure A1 42. Experiment 8: Winner condition predictions. 
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Figure A1 43. Experiment 8: Score + Winner condition predictions. 
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Figure A1 44. Experiment 8: Hits + Winner condition predictions. 
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Figure A1 45. Experiment 8: Runs + Winner condition predictions. 
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Experiment 9 

The format of this experiment is an exact replication of Experiment 7, with the 

exception that the question about how difficult the survey was to understand was changed 

to “how confusing were the instructions”. 

 

Table A1 9. Experiment 9 design. 

Predictions 41 Major League Baseball games played on June 3rd (15 games), 
June 4th (15 games), and June 5th (11 games) in 2014. 

Run Date June 3rd, 2014 
Conditions Winner vs. Score + Winner 
Record information Wins, losses, probable pitchers 
Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Prediction strategy 

Measures NOT in 
the example that 
ARE included in 
this experiment 

⋅ Base rates 
⋅ How confusing were the instructions in the survey 

Other deviations 
from the example 
format 

⋅ After making their predictions, participants in all conditions 
revisited each game and said how many times the home team 
would win if they played that exact game 100 times.  
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Experiment 10 

The format of this experiment is an exact replication of Experiment 8. 

 

Table A1 10. Experiment 10 design. 

Predictions 44 Major League Baseball games played on June 6th (14 games), 
June 7th (15 games), and June 8th (15 games) in 2014. 

Run Date June 6th, 2014. 
Conditions Winner, Score + Winner, Hits + Winner, Runs + Winner  
Record information Wins, losses, probable pitchers 
Measures NOT in 
the example that 
ARE included in 
this experiment 

⋅ outcome variability 
⋅ outcome usefulness for predicting the winner  

 

Experiment 11 

The format of this experiment is an exact replication of Experiments 7 and 9. 

 

Table A1 11. Experiment 11 design. 

Predictions 42 Major League Baseball games played on June 9th (12 games), 
June 10th (15 games), and June 11th (15 games) in 2014. 

Run Date June 9th, 2014 
Conditions Winner vs. Score + Winner 
Record information Wins, losses, probable pitchers 
Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Prediction strategy 

Measures NOT in 
the example that 
ARE included in 
this experiment 

⋅ Base rates 
⋅ How confusing were the instructions in the survey 

Other deviations 
from the example 
format 

⋅ After making their predictions, participants in all conditions 
revisited each game and said how many times the home team 
would win if they played that exact game 100 times. 

 



  

91 

Experiment 12 

Table A1 12. Experiment 12 design. 

Predictions 

48 Fédération Internationale de Football Association (FIFA) 
2014 World Cup Group Stage matches played on June 12th to 
June 15th (11 games), June 16th to June 19th (12 games), June 
20th to June 23rd (13 games), and June 24th to June 26th (12 
games). 

Run Date June 11th, 2014 
Conditions Winner, Score + Winner 
Record information Wins, losses, probable pitchers 
Measures NOT in 
the example that 
ARE included in 
this experiment 

⋅ Team liking ratings 

Other deviations 
from the example 
format 

⋅ Each page spans multiple days; 4 pages of predictions total. 
⋅ There are no “home” and “visiting” team designations. 
⋅ No team records were given.  
⋅ Participants were permitted to enter tied scores and to choose 

“Draw” for the game outcome. 
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Figure A1 46. Experiment 12: Winner condition predictions. 
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Figure A1 47. Experiment 12: Score + Winner condition predictions. 
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Experiment 13 

Table A1 13. Experiment 13 design. 

Predictions 
32 National Basketball Association games played on November 
12th (8 games), November 13th (4 games), November 14th (10 
games), and November 15th (10 games). 

Run Date November 12th, 2014 
Conditions Winner, Score + Winner 
Record information Wins, losses 
Measures in the 
example that are 
NOT included in 
this experiment 

• Prediction strategy  

Measures NOT in 
the example that 
ARE included in 
this experiment 

• How carefully they thought about their predictions 

• How much effort they invested in making their predictions 

Other deviations 
from the example 
format 

⋅ Participants first made 16 predictions about games that were 
worth 5 cents for correct winning team predictions, then 
answered self-report measures for those 16 games, then 
made an additional 16 predictions about games that were 
worth 25 cents for correct winning team predictions, then 
answered self-report measures for those 16 games. 

⋅ Before each set of 16 predictions, participants had to pass a 
comprehension check indicating how much they would get 
paid for each correct prediction.  

⋅ Which games were worth the 5 cent bonus and 25 cent bonus 
was randomized between subjects. Half of the games on each 
day were assigned to be either 5-cent or 25-cent games, and 
so each page only displayed half of the days’ games since 5-
cent games and 25-cent games were predicted separately. 
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Figure A1 48. Experiment 13: Winner condition instructions (small bonus). 

 

 

Figure A1 49. Experiment 13: Winner condition predictions (small bonus). 
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Figure A1 50. Experiment 13: Winner condition instructions (large bonus). 

 

 

Figure A1 51. Experiment 13: Winner condition predictions (large bonus). 
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Figure A1 52. Experiment 13: Score + Winner condition instructions (small bonus). 

 

 

Figure A1 53. Experiment 13: Score + Winner condition predictions (small bonus). 

 

  



  

98 

Figure A1 54. Experiment 13: Score + Winner condition instructions (large bonus). 

 

 

Figure A1 55. Experiment 13: Score + Winner condition predictions (large bonus). 
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Experiment 14 

 Experiment 14 was a replication of Experiment 13 in the domain of hockey. The only 

difference in the design is that we added the base rates task to the end of the survey. 

Table A1 14. Experiment 14 design. 

Predictions 
32 National Hockey League games played on November 20th (12 
games), November 21st (4 games), November 22nd (12 games), 
and November 23rd (4 games). 

Run Date November 20th, 2014 
Conditions Winner, Score + Winner 

Record information Wins, losses (with regulation losses and overtime losses 
displayed separately) 

Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Prediction strategy  

Measures NOT in 
the example that 
ARE included in 
this experiment 

⋅ Base rates 
⋅ How carefully they thought about their predictions 
⋅ How much effort they invested in making their predictions 
⋅ How confusing were the instructions in the survey  

Other deviations 
from the example 
format 

⋅ Participants first made 16 predictions about games that were 
worth 5 cents for correct winning team predictions, then 
answered self-report measures for those 16 games, then 
made an additional 16 predictions about games that were 
worth 25 cents for correct winning team predictions, then 
answered self-report measures for those 16 games. 

⋅ Before each set of 16 predictions, participants had to pass a 
comprehension check indicating how much they would get 
paid for each correct prediction.  

⋅ Which games were worth the 5 cent bonus and 25 cent bonus 
was randomized between subjects. Half of the games on each 
day were assigned to be either 5-cent or 25-cent games, and 
so each page only displayed half of the days’ games since 5-
cent games and 25-cent games were predicted separately. 

⋅ Participants in all conditions revisited each game and said 
how many times the home team would win if they were to 
play that exact game 100 times. 
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Experiment 15 

Table A1 15. Experiment 15 design. 

Predictions 
32 National Basketball Association games played on December 
10th (10 games), December 11th (2 games), December 12th (12 
games), and December 13th (8 games). 

Run Date December 10th, 2014 

Conditions Winner, Score + Winner, Free Throws + Winner, Temperature + 
Winner 

Record information Wins, losses 
Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Prediction strategy  

Measures NOT in 
the example that 
ARE included in 
this experiment 

⋅ Base rates 
⋅ How confusing were the instructions in the survey 

Other deviations 
from the example 
format 

⋅ Participants were paid 60 cents for completing the study. 
⋅ After making their predictions, participants in all conditions 

revisited each game and said how many times each team 
would win if they were to play that exact game 100 times. 
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Figure A1 56. Experiment 15: Winner condition predictions. 
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Figure A1 57. Experiment 15: Score + Winner condition predictions. 
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Figure A1 58. Experiment 15: Free Throws + Winner condition instructions. 

 

 

Figure A1 59. Experiment 15: Free Throws + Winner condition predictions. 

  



  

104 

Figure A1 60. Experiment 15: Temperature + Winner condition instructions. 

 

 

Figure A1 61. Experiment 15: Temperature + Winner condition predictions. 
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Experiment 16 

Table A1 16. Experiment 16 design. 

Predictions 
30 National Hockey League games played on December 11th (10 
games), December 12th (4 games), December 13th (13 games), 
and December 14th (3 games). 

Run Date December 11th, 2014 

Conditions Winner, Score + Winner, Saves + Winner, Temperature + 
Winner 

Record information Wins, losses 
Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Prediction strategy  

Measures NOT in 
the example that 
ARE included in 
this experiment 

⋅ Base rates 
⋅ How confusing were the instructions in the survey 

Other deviations 
from the example 
format 

⋅ Participants were paid 75 cents for completing the study. 
⋅ After making their predictions, participants in all conditions 

revisited each game and said how many times each team 
would win if they were to play that exact game 100 times. 
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Figure A1 62. Experiment 16: Winner condition predictions. 
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Figure A1 63. Experiment 16: Score + Winner condition predictions. 

 

 



  

108 

Figure A1 64. Experiment 16: Saves + Winner condition instructions. 

 

Figure A1 65. Experiment 16: Saves + Winner condition predictions. 
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Figure A1 66. Experiment 16: Crowd + Winner condition instructions. 

 

 

Figure A1 67. Experiment 16: Crowd + Winner condition predictions. 
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Figure A1 68. Experiment 16: Base rates (all conditions). 

 

 

 



  

111 

Experiment 17 

Table A1 17. Experiment 17 design. 

Predictions 
31 National Hockey League games played on January 17th (12 
games), January 18th (4 games), January 19th (7 games), and 
January 20th (8 games). 

Run Date January 17th, 2015 

Conditions Winner, Score + Winner, Temperature + Winner, July 4th + 
Winner 

Record information Wins, losses 
Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Prediction strategy  
⋅ Global and local considerations 

Measures NOT in 
the example that 
ARE included in 
this experiment 

⋅ “This Time” and “Usually” considerations 
⋅ Base rates 
⋅ How confusing were the instructions in the survey 

Other deviations 
from the example 
format 

⋅ Participants were paid 75 cents for completing the study. 
⋅ Each prediction was displayed on its own page individually 

instead of grouping predictions by day. 
⋅ After making their predictions, participants in all conditions 

revisited each game and said how many times each team 
would win if they were to play that exact game 100 times. 

 

Figure A1 69. Experiment 17: Winner condition predictions. 
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Figure A1 70. Experiment 17: Score + Winner condition predictions. 

 

 

Figure A1 71. Experiment 17: Temperature + Winner condition predictions. 
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Figure A1 72. Experiment 17: July 4th + Winner condition instructions. 

 

 

Figure A1 73. Experiment 17: July 4th + Winner condition predictions. 
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Figure A1 74. Experiment 17: Base rates (all conditions). 
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Experiment 18 

Experiment 18 is an exact replication of Experiment 17 except using NBA games 

instead of NHL games. 

 

Table A1 18. Experiment 18 design. 

Predictions 
27 National Basketball Association games played on January 
19th (9 games), January 20th (2 games), January 21st (12 games), 
and January 22nd (4 games). 

Run Date January 19th, 2015 

Conditions Winner, Score + Winner, Temperature + Winner, July 4th + 
Winner 

Record information Wins, losses 
Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Prediction strategy  
⋅ Global and local considerations 

Measures NOT in 
the example that 
ARE included in 
this experiment 

⋅ “This Time” and “Usually” considerations 
⋅ Base rates 
⋅ How confusing were the instructions in the survey 

Other deviations 
from the example 
format 

⋅ Participants were paid 75 cents for completing the study. 
⋅ Each prediction was displayed on its’ own page individually 

instead of grouping by day. 
⋅ After making their predictions, participants in all conditions 

revisited each game and said how many times each team 
would win if they were to play that exact game 100 times. 
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Experiment 19 

Table A1 19. Experiment 19 design. 

Predictions 
31 National Hockey League games played on January 29th (11 
games), January 30th (5 games), January 31st (11 games), and 
February 1st (4 games). 

Run Date January 19th, 2015 
Conditions Winner, Score + Winner 
Record information Wins, losses 
Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Prediction strategy  
⋅ Global and local considerations 

Measures NOT in 
the example that 
ARE included in 
this experiment 

⋅ “This Time” and “Usually” considerations 
⋅ Base rates 
⋅ How confusing were the instructions in the survey 

Other deviations 
from the example 
format 

⋅ Each prediction was displayed on its’ own page individually 
instead of grouping by day. 

⋅ Participants were told at the beginning of the survey that 
some games would be worth 5-cents and some games would 
be worth 20-cents for correct winner predictions. Before 
making any predictions, they had to pass a comprehension 
check to show they understood the bonus scheme. 

⋅ The 5-cent games and 20-cent games alternated and which 
games were worth the 5 cents and which were worth 20 cents 
was randomized between subjects.  

⋅ Participants gave self-report measures (e.g., motivation and 
confidence) separately for the 5-cent and 20-cent games. 

⋅ After making their predictions, participants in all conditions 
revisited each game and said how many times each team 
would win if they were to play that exact game 100 times. 
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Figure A1 75. Experiment 19: Bonus instructions. 

 

 

Figure A1 76. Experiment 19: Winner condition predictions (small bonus). 
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Figure A1 77. Experiment 19: Winner condition predictions (large bonus). 

 

 

Figure A1 78. Experiment 19: Score + Winner condition predictions (small bonus). 
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Figure A1 79. Experiment 19: Score + Winner condition predictions (large bonus). 

 

 

Figure A1 80. Experiment 19: Base rates (all conditions). 
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Excluded Experiments 

We also ran 8 additional experiments in which we gave participants each team’s 

“Points Scored” (the total number of points scored by that team so far that season) and 

“Points Allowed" (the total number of points scored against that team so far that season) 

for football and hockey games, and each team’s “Average Points Scored” (the average 

number of points scored by that team per game so far that season) and “Average Points 

Allowed" (the average number of points scored against that team per game so far that 

season) for basketball games. However, we chose not to include these experiments in the 

main analyses because we were worried that differences between prediction conditions in 

these studies (namely, between Winner and Score + Winner) may have arisen because 

people who are asked about winners only look at the win/loss records and people who are 

asked about scores only look at the points scored or average points scored data. It should 

be noted that the effects we report are stronger when we include the data from these 8 

experiments.  
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Experiment E1 

Table A1 20. Experiment E1 design. 

Predictions 14 National Football League games played on September 29th 
(13 games) and September 30th (1 game) in 2013. 

Run Date September 27th, 2013 
Conditions Winner, Score + Winner, Points + Winner 
Record information Wins, losses, points scored, points allowed 
Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Self-reported following and knowledge 
⋅ Which sports they are interested in being contacted about. 

Other deviations 
from the example 
format 

⋅ All games were displayed on a single page 

 

Figure A1 81. Experiment E1: Winner condition predictions. 
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Figure A1 82. Experiment E1: Score + Winner condition predictions. 

 

  



  

123 

Figure A1 83. Experiment E1: Points + Winner condition instructions. 

 

 

Figure A1 84. Experiment E1: Points + Winner condition predictions. 
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Experiment E2 

The format of this experiment is an exact replication of Experiment E1. 

 

Table A1 21. Experiment E2 design. 

Predictions 
13 National Football League games played on October 24th (1 
game), October 27th (11 games), and October 28th (1 game) in 
2013. 

Run Date October 24th, 2013 
Conditions Winner, Score + Winner, Points + Winner 
Record information Wins, losses, points scored, points allowed 
Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Self-reported following and knowledge 
⋅ Which sports they are interested in being contacted about. 

Other deviations 
from the example 
format 

⋅ All games were displayed on a single page 

 

Experiment E3 

The format of this experiment is an exact replication of Experiments E1 and E2. 

 

Table A1 22. Experiment E3 design. 

Predictions 
13 National Football League games played on October 31st (1 
game), November 3rd (11 games), November 4th (1 game) in 
2013. 

Run Date October 30th, 2013 
Conditions Winner, Score + Winner, Points + Winner 
Record information Wins, losses, points scored, points allowed 
Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Self-reported following and knowledge 

⋅ Which sports they are interested in being contacted about. 

Other deviations 
from the example 
format 

⋅ All games were displayed on a single page 
⋅ Each of the 8 measured knowledge questions was displayed 

on a separate page. 
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Experiment E4 

In this experiment we manipulated the sport (basketball vs. hockey) between subjects. 

 

Table A1 23. Experiment E4 design. 

Predictions 

33 National Basketball Association games played on November 
29th (13 games), November 30th (7 games), December 1st (8 
games), and December 2nd (5 games) in 2013. 
30 National Hockey League games played on November 29th (12 
games), November 30th (11 games), December 1st (3 games), 
December 2nd (4 games) in 2013. 

Run Date November 26th, 2013 

Conditions Predictions (Winner vs. Score + Winner) X Sport (NBA vs. 
NHL) 

Record information Wins, losses, average points scored (NBA), average points 
allowed (NBA), goals scored (NHL), goals allowed (NHL) 

Measures in the 
example that are 
NOT included in 
this experiment 

⋅ Self-reported following and knowledge. 

Other deviations 
from the example 
format 

⋅ Each of the 8 measured knowledge questions was displayed 
on a separate page. 
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Figure A1 85. Experiment E4: Winner condition predictions (NBA). 
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Figure A1 86. Experiment E4: Score + Winner condition predictions (NBA). 
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Figure A1 87. Experiment E4: Winner condition predictions (NHL). 
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Figure A1 88. Experiment E4: Score + Winner condition predictions (NHL). 
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Experiment E5 

Table A1 24. Experiment E5 design. 

Predictions 
32 National Hockey League games played on December 27th (10 
games), December 28th (8 games), December 29th (10 games), 
and December 30th (4 games) in 2013. 

Run Date December 26th, 2013 
Conditions Winner, Score + Winner, Crowd + Winner 
Record information Wins, losses, goals scored, goals allowed 

 

Figure A1 89. Experiment E5: Winner condition predictions. 
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Figure A1 90. Experiment E5: Score + Winner condition predictions. 

 

  



  

132 

Figure A1 91. Experiment E5: Crowd + Winner condition instructions. 

 

 

Figure A1 92. Experiment E5: Crowd + Winner condition predictions. 
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Experiment E6 

Table A1 25. Experiment E6 design. 

Predictions 
26 National Hockey League games played on February 6th (11 
games), February 7th (5 games), and February 8th (10 games) in 
2014. 

Run Date February 6th, 2014 

Conditions Predictions (Winner vs. Score + Winner) X  
No majority winner prediction vs. Majority winner prediction 

Record information Wins, losses, goals scored, goals allowed 
 

Figure A1 93. Experiment E6: Winner condition predictions (no majority winner 

prediction). 
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Figure A1 94. Experiment E6: Score + Winner condition predictions (no majority winner 

prediction). 
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Figure A1 95. Experiment E6: Winner condition instructions (with majority winner 

prediction). 
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Figure A1 96. Experiment E6: Winner condition predictions (with majority winner 

prediction). 
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Figure A1 97. Experiment E6: Score + Winner condition instructions (with majority 

winner prediction). 
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Figure A1 98. Experiment E6: Score + Winner condition predictions (with majority 

winner prediction). 

  



  

139 

Experiment E7 

Table A1 26. Experiment E7 design. 

Predictions 
33 National Basketball Association games played on February 
18th (9 games), February 19th (11 games), February 20th (3 
games), and February 21st (10 games) in 2014. 

Run Date February 18th, 2014 

Conditions Predictions (Winner vs. Score + Winner) X  
No majority winner prediction vs. Majority winner prediction 

Record information Wins, losses, average points scored, average points allowed 
 

Figure A1 99. Experiment E7: Winner condition predictions (no majority winner 

prediction). 
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Figure A1 100. Experiment E7: Score + Winner condition predictions (no majority 

winner prediction). 
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Figure A1 101. Experiment E7: Winner condition predictions (with majority winner 

prediction). 
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Figure A1 102. Experiment E7: Score + Winner condition (with majority winner 

prediction). 
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Experiment E8 

Table A1 27. Experiment E8 design. 

Predictions 
32 National Basketball Association games played on March 14th 
(10 games), March 15th (6 games), March 16th (9 games), and 
March 17th (9 games) in 2014. 

Run Date March 14th, 2014 

Conditions Winner, Score + Winner, Free Throws + Winner, Temperature + 
Winner 

Record information Wins, losses, average points scored, average points allowed 
 

Figure A1 103. Experiment E8: Winner condition predictions. 
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Figure A1 104. Experiment E8: Score + Winner condition predictions. 
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Figure A1 105. Experiment E8: Free Throws + Winner condition instructions. 

 

 

Figure A1 106. Experiment E8: Free Throws + Winner condition predictions. 
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Figure A1 107. Experiment E8: Temperature + Winner condition instructions. 

 

 

Figure A1 108. Experiment E8: Temperature + Winner condition predictions. 
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APPENDIX A2: ADDITIONAL MEASURES 

All additional measures were collected after participants made all of their predictions. 

The additional measures are reported in the order that they appeared in the corresponding 

experiments. Not all measures appeared in all experiments. 

To account for both observed and unobserved differences between experiments, the 

means for each variable we report are mean-centered by experiment and added to the 

overall average for that measure across all experiments and conditions. All correlations 

are also based on these mean-centered values. Significance tests are based on fixed-

effects linear models. 

Finally, the analyses reported in this document are only based on data from the 19 

experiments included in the paper. Furthermore, in all instances a participant’s 

“prediction quality” is defined as the percentage of games where they predicted that the 

team favored by well-calibrated markets would win (see the “Prediction Quality” section 

of the main paper for more details).  

 

Winning team probabilities / base rates (Experiments 7, 9, 11, 14-19) 

On a separate page, immediately after making their predictions for all games, 

participants were given instructions informing them that they will be asked to report how 

likely each team was to win each game. Then on the following pages they were asked to 

imagine for each game that the two teams played that exact same game 100 times and to 

indicate how many times each team would win. 

We included these questions because we wanted to explore whether people were 

thinking that the upcoming games would be different from games in the past (e.g., “I 
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know that the Braves usually beat the Pirates, but I think this time will be different and 

the Pirates will win.”). If making detailed predictions changed people’s beliefs about 

which teams were typically more likely to win, then doing so should affect their winning 

team probabilities as well as their predictions. If, however, making detailed predictions 

make people more likely to believe that the upcoming games would somehow be unique 

and that “this time will be different”, their winning team probabilities should be 

unchanged. 

In Experiments 7, 9, 11, and 14-15, participants gave their win probabilities by 

entering how many times out of 100 the home team would win. In Experiments 16-19 

they gave their probabilities by entering how many times out of 100 both teams would 

win (and the numbers were required to sum to 100). 

 

Figure A2 1. Winning team probability instructions. 

In this portion of the survey, you will see the same [X] [sports league] games 
scheduled to be played from today, Thursday January 29th through Sunday February 
1st. 
 
For each game, we will ask you to imagine that the two teams played that exact 
game 100 times. 
 
What we mean by "that exact game" is that each of the 100 times the game is played, 
the game would begin with the exact same starting conditions as the actual game. 
 
For example, the location of the game, the home team, the win/loss records of each 
team, the player lineup, player injuries, etc. would all be the same at the beginning of 
each of the 100 games as they are at the beginning of the actual game. 
 
For each game, we will ask you to tell us how many times you think [the home team / 
each team] would win if they played that exact game 100 times. 
 

Note.  “X” is the number of games they made predictions for in the experiment and “sports league” is the 
sport league of the games (e.g., Major League Baseball). 
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Then, on the next few pages, participants revisited each game and reported how may 

times out of 100 they thought each team would win if they were to play that exact game 

100 times. 

 

Figure A2 2. Winning team probability question format (Experiments 7, 9, 11, and 14-15). 

Imagine these two teams played this exact game 100 times. 

How many games (out of 100) 
do you think the [home team] 
would win?  

 

Figure A2 3. Winning team probability question format (Experiments 16-19). 

Imagine these two teams played this exact game 100 times. 

 How many games (out of 100) would the [visiting team] win? 

 How many games (out of 100) would the [home team] win? 

 

Quality of winning team probabilities. Each winning team probability can be coded as 

either agreeing with the wise prediction (i.e., they said the market favorite would win 

more than 50 out of 100 games) or disagreeing with the wise prediction. Then we can 

compare the average percentage of winning team probabilities that agreed with the 

market favorites across prediction conditions to see if making detailed predictions 

changed people’s beliefs about whether the market favorite was likely to win. 
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Table A2 1. Average % of winning team probabilities that agreed with the market favorite. 

Winner 
Score 

+ Winner 
Relevant 
+ Winner 

Irrelevant 
+ Winner 

72.2% 
(.108) 

71.8% 
(.113) 

71.5% 
(.114) 

71.8% 
(.124) 

Note. All means in the table are mean-centered with experiment as the grouping factor. Within each row, 
means with different subscripts differ at p < .05 using within-subjects pairwise t-tests and the Holm-
Bonferroni correction for multiple comparisons (Holm, 1979). 

 

Consistency of winning team probabilities with predictions. Each winning team 

probability can be coded as either consistent with the participants’ own predictions (i.e., 

they said that the team they predicted to win the actual game would more than 50 out of 

100 games) or inconsistent. Then we can compare the average percentage of consistent 

predictions across prediction conditions to see if making detailed predictions made 

people more likely to deviate from their own beliefs about which teams were more likely 

to win. 

 

Table A2 2. Average % of winning team probabilities that were consistent with the 

participants' own predictions. 

Winner 
Score 

+ Winner 
Relevant 
+ Winner 

Irrelevant 
+ Winner 

82.3%a 
(.162) 

79.9%b 
(.113) 

79.5%b 
(.114) 

80.9%ab 
(.124) 

Note. All means in the table are mean-centered with experiment as the grouping factor. Within each row, 
means with different subscripts differ at p < .05 using within-subjects pairwise t-tests and the Holm-
Bonferroni correction for multiple comparisons (Holm, 1979). 
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Prediction strategy (Experiments 3-6, 8, 10, 12) 

On a separate page, immediately after making their predictions for each game, 

participants described the strategies they used to make their predictions in an open-ended 

format. Participants were required to enter a minimum of 25 characters to proceed to the 

next page of the survey. 

 

Figure A2 4. Prediction strategy question format. 

Briefly describe what strategies you used to make your 
predictions: 

 
 

In early studies, responses were read by the authors for exploratory purposes. None of 

the prediction strategy responses for any experiments have been formally coded or 

analyzed because we did not believe that participants would be aware of how the 

manipulations affected their thought processes (Nisbett & Wilson, 1977). 

 

“Global” and “local” considerations (Experiments 1-16, E1-E8) 

On a separate page, participants rated how much they considered each of several 

factors when making their predictions on a scale from 1 to 7 (see labels below). The 

display order of these items was randomized between subjects. 

We used the exact “global” considerations (items 1-3 below, α = .68) and “local” 

considerations (items 4-6 below, α = .85) from Yoon et al. (2013). Yoon and colleagues 
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describe “global” information as “comprehensive data that indicate the overall 

circumstances of the issue (e.g., past performance of two teams)”, and “local” 

information as information that “although more specific and detailed, reveals only partial 

information and is therefore less informative about the overall picture of the event (e.g., 

the offense ability of two teams)” (p. 5). For experiments that used baseball predictions, 

we added a fourth “local” consideration specific to baseball (item 7) that did not appear 

in Yoon et al. (2013). 

 

Figure A2 5. "Global" and "local" considerations question format. 

Please indicate the degree to which you considered each of these factors while 
making your predictions: 

 
 

not 
considered  

at all 
     seriously 

considered 

overall impression 
of the two teams O O O O O O O 

overall 
performance of the 
two teams in the 
past years 

O O O O O O O 

overall 
performance of the 
two teams in recent 
years 

O O O O O O O 

the teams’ 
offensive abilities O O O O O O O 

the teams’ 
defensive abilities O O O O O O O 

the teams’ 
coaching abilities O O O O O O O 

the teams’ pitching 
abilities [baseball 
only] 

O O O O O O O 
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Table A2 3. Means and standard deviations of "global" and "local" considerations. 

 
Winner Score† 

Relevant  
+ Winner 

Irrelevant  
+ Winner 

overall impression of the two 
teams 

5.45a 
(1.47) 

5.55b 
(1.40) 

5.54ab 
(1.45) 

5.51ab 
(1.43) 

overall performance of the two 
teams in the past years 

4.53 
(1.84) 

4.46 
(1.83) 

4.44 
(1.86) 

4.49 
(1.79) 

overall performance of the two 
teams in recent years 

4.89 
(1.77) 

4.84 
(1.74) 

4.84 
(1.77) 

4.83 
(1.69) 

Global considerations 4.95 
(1.34) 

4.95 
(1.30) 

4.94 
(1.31) 

4.94 
(1.27) 

the teams’ offensive abilities 4.47a 
(1.82) 

4.70b 
(1.78) 

4.70b 
(1.76) 

4.60ab 
(1.72) 

the teams’ defensive abilities 3.98 
(1.79) 

4.06 
(1.77) 

4.11 
(1.75) 

4.13 
(1.70) 

the teams’ coaching abilities 3.41 
(1.76) 

3.35 
(1.74) 

3.35 
(1.72) 

3.49 
(1.75) 

the teams’ pitching abilities 
[baseball only] 

4.85 
(1.96) 

4.85 
(1.89) 

4.87 
(1.96) 

5.15 
(1.88) 

Local considerations 4.11 
(1.57) 

4.18 
(1.51) 

4.20 
(1.49) 

4.22 
(1.53) 

Note. †Score includes all conditions where participants predicted the final score. All means in the table are 
mean-centered with experiment as the grouping factor. Within each row, means with different subscripts 
are significantly different at p < .05 with pairwise t-tests and the Holm-Bonferroni correction for multiple 
comparisons. 
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Table A2 4. Correlations of "global" and "local" considerations with winning team 

prediction quality. 

 Winner Score† 
Relevant  
+ Winner 

Irrelevant  
+ Winner 

overall impression of the two 
teams .06*** .12*** .03 .10* 

overall performance of the two 
teams in the past years -.04* .00 -.11*** -.11* 

overall performance of the two 
teams in recent years .01 .04* -.04 .01 

Global considerations .01 .06*** -.06* -.01 

the teams’ offensive abilities .05** .11*** .04 .09* 

the teams’ defensive abilities -.01 .00 -.08** .04 

the teams’ coaching abilities -.07*** -.06*** -.11*** -.01 

the teams’ pitching abilities 
[baseball only] .16*** .13*** .12*** .07 

Local considerations .02 .05** -.02 .05 

Note. * p < .05, ** p < .01, *** p < .001. †Score includes all conditions where participants predicted the 
final score. 

 

“This time” vs. “usually” considerations (Experiments 17-19) 

In the last three experiments, instead of asking about “local” and “global” factors, we 

asked participants several questions designed to identify whether they were thinking of 

the upcoming games as unique or distinct from games in the past. They rated how much 

they thought about past performance (items 1, 3, and 5) and how much they thought 

about expected future performance (items 2, 4, and 6) on a scale from 1 to 7 (see labels 

below). 
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Figure A2 6. "This time" and "usually" considerations question format. 

Please indicate the degree to which you considered each of these factors while 
making your predictions: 

 
 

not 
considered  

at all 
     seriously 

considered 

The overall 
performance of the 
two teams so far this 
season 

O O O O O O O 

Whether I expected  
either team to 
perform better or 
worse that game 
than they usually do 

O O O O O O O 

The typical quality of 
the teams’ offenses O O O O O O O 

How the teams’ 
offensive lineups will 
look that game 

O O O O O O O 

The typical quality of 
the teams’ defenses O O O O O O O 

How the teams’ 
defensive lineups 
will look that game. 

O O O O O O O 
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Table A2 5. Means and standard deviations of "this time" and "usually" considerations. 

 
Winner 

Score  
+ Winner 

Irrelevant  
+ Winner 

The overall performance of the two teams so 
far this season 

6.15 
(1.07) 

6.02 
(1.20) 

6.15 
(1.07) 

Whether I expected  either team to perform 
better or worse that game than they usually do 

4.58 
(1.58) 

4.60 
(1.61) 

4.58 
(1.58) 

The typical quality of the teams’ offenses 4.61 
(1.62) 

4.75 
(1.63) 

4.61 
(1.62) 

How the teams’ offensive lineups will look 
that game 

3.98 
(1.75) 

4.08 
(1.75) 

3.98 
(1.75) 

The typical quality of the teams’ defenses 4.42 
(1.65) 

4.61 
(1.65) 

4.42 
(1.65) 

How the teams’ defensive lineups will look 
that game. 

3.92 
(1.74) 

4.03 
(1.73) 

3.92 
(1.74) 

Note. All means in the table are mean-centered with experiment as the grouping factor. Within each row, 
means with different subscripts are significantly different at p < .05 with pairwise t-tests and the Holm-
Bonferroni correction for multiple comparisons. 

 

Table A2 6. Correlations of "this time" and "usually" considerations with winning team 

prediction quality. 

 Winner 
Score  

+ Winner 
Irrelevant  
+ Winner 

The overall performance of the two teams so 
far this season .13*** .23*** .31*** 

Whether I expected  either team to perform 
better or worse that game than they usually do -.11** -.11** -.12*** 

The typical quality of the teams’ offenses -.07. -.03 -.05 

How the teams’ offensive lineups will look 
that game -.13*** -.11** -.11** 

The typical quality of the teams’ defenses -.09* -.10* -.10** 

How the teams’ defensive lineups will look 
that game. -.14*** -.13*** -.15*** 

* p < .05, ** p < .01, *** p < .001. †Score includes all conditions where participants predicted the score.
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Confidence and motivation (Experiments 3-19, E1-E8) 

On a separate page, participants rated both how confident they were in their 

predictions and how motivated they were to make accurate predictions on scales from 1 

to 7 (see labels below). They made these ratings for each type of prediction they made; 

for example, participants in the Score + Winner condition would rate their confidence and 

motivation for both their final score predictions and their winning team predictions. For 

each type of prediction, the motivation question was always immediately followed the 

confidence question. For participants who made detailed predictions, they rated the 

motivation and confidence for the detailed predictions before the winning team 

predictions (i.e., the same order that they made the predictions in the survey). All 

confidence and motivation questions for all predictions were displayed on a single page. 

 

Figure A2 7. Confidence and motivation question format. 

Overall, how confident were you in the [outcome] predictions that you made? 

not at all 
confident      extremely 

confident 

O O O O O O O 

Overall, how motivated were you to correctly predict the [outcome] for each game? 

not at all 
motivated      extremely 

motivated 
O O O O O O O 

Note. For confidence questions, [outcome] was replaced with the appropriate prediction type for the 
participant’s condition assignment: {“final score”, “hits”, “total runs”, “game time”, “total points”, 
“predictions you made about the % of U.S. citizens in the crowd”, “free throw”, “temperature”, “winning 
team”}. For the motivation questions, [outcome] was replaced with the appropriate prediction type for the 
participant’s condition assignment: {“final score”, “number of hits each team will get”, “total number of 
runs scored”, “total game time”, “total points scored”, “% of U.S. citizens in the crowd”, “number of free 
throws each team will attempt”, “temperature outside the arena at the start of each game”, “winning team”}. 
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Table A2 7. Means and standard deviations of confidence and motivation. 

 
Winner Score† 

Relevant  
+ Winner 

Irrelevant  
+ Winner 

confidence in winner 
prediction  

4.83 
(1.15) 

4.82 
(1.33) 

4.90 
(1.24) 

4.79 
(1.19) 

confidence in detailed 
prediction - 3.84a 

(1.50) 
3.67b 
(1.52) 

3.81a 
(1.53) 

motivation to correctly 
predict winner 

6.11a 
(1.07) 

6.01b 
(1.16) 

6.09ab 
(1.15) 

6.03ab 
(1.04) 

motivation to correctly 
predict detail - 5.16a 

(1.63) 
4.91b 
(1.76) 

4.87b 
(1.73) 

Note. †Score includes all conditions where participants predicted the final score. All means in the table are 
mean-centered with experiment as the grouping factor. Within each row, means with different subscripts 
are significantly different at p < .05 with pairwise t-tests and the Holm-Bonferroni correction for multiple 
comparisons. 

 

Table A2 8. Correlations of confidence and motivation with winning team prediction 

quality. 

 
Winner Score† 

Relevant  
+ Winner 

Irrelevant  
+ Winner 

confidence in winner 
prediction  .11*** .15*** .09*** .16*** 

confidence in detailed 
prediction - -.01 -.03 -.04 

motivation to correctly 
predict winner .15*** .20*** .19*** .20*** 

motivation to correctly 
predict detail - .05** .02 -.05 

Note. * p < .05, ** p < .01, *** p < .001. †Score includes all conditions where participants predicted the 
final score.  
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Thinking carefully and effortfully (Experiments 13, 14, 19) 

These questions were included in three experiments where we manipulated the 

incentives for correct predictions within-subjects for different games. The ordering and 

format of these questions differed between Experiments 13-14 and Experiment 19. 

In Experiments 13 and 14, we first informed participants that they would be rewarded 

a 5-cent bonus each time they correctly predicted the winning team. After making sixteen 

predictions, they reported “Overall, how carefully did you think about each game before 

making your winning team predictions?” and “Overall, how much effort did you invest in 

thinking about and making your predictions?” We then informed them that the amount of 

the bonus had been increased to 25 cents per correct winning team prediction for a 

remaining block of games. They then made predictions about an additional sixteen games 

and rated how carefully they thought about and how much effort they invested in making 

predictions for just those sixteen 25-cent games.  

In Experiment 19, we informed participants at the beginning of the survey that some 

games would be worth more than others. They then made all thirty low- and high-

incentive predictions at once. The amount of the bonus (5 cents vs. 20 cents) was 

displayed prominently and alternated between games. After making all of their 

predictions, they rated how carefully they thought about and how much effort they 

invested in making their predictions separately for the 5-cent games and the 20-cent 

games. 
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Figure A2 8. Thinking carefully and effortfully question format. 

Overall, how carefully did you think about [each game / each of the 5 cent games / 
each of the 20 cent games] before making your winning team predictions? 

not at all 
carefully      extremely 

carefully 

O O O O O O O 

Overall, how much effort did you invest in thinking about and making your predictions 
[for the 5 cent games / for the 20 cent games]? 

no effort 
at all      

extreme 
amounts of  

effort 
O O O O O O O 

 

Table A2 9. Means and standard deviations of careful and effortful thinking. 

 Winner Score + Winner 

careful (small incentive games) 5.47 
(1.30) 

5.45 
(1.29) 

careful (large incentive games) 5.84 
(1.20) 

5.83 
(1.19) 

effort (small incentive games) 5.41 
(1.32) 

5.53 
(1.25) 

effort (large incentive games) 5.78 
(1.20) 

5.86 
(1.17) 

Note. All means in the table are mean-centered with experiment as the grouping factor. Within each row, 
means with different subscripts are significantly different at p < .05 with pairwise t-tests and the Holm-
Bonferroni correction for multiple comparisons. 
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Table A2 10. Correlations of careful and effortful thinking with winning team prediction 

quality. 

 Winner Score + Winner 

careful (small incentive games) .04 .14*** 

careful (large incentive games) .06 .14*** 

effort (small incentive games) .01 .11** 

effort (large incentive games) .02 .16*** 
Note. * p < .05, ** p < .01, *** p < .001.  

 

Outcome variability (Experiments 8, 10) 

On a separate page, participants were first asked to imagine that two teams played 

two games with the exact same starting conditions (players, location, weather, etc.). Then 

they were asked to rate how likely each type of outcome was to be different in the second 

game than in the first game on scales from 1 to 7 (see labels below). They made these 

ratings for each type of outcome they made predictions about; for example, participants 

in the Hits + Winner condition first rated how likely the exact number of hits scored by 

each team was to be different in the second game than in the first game, and then they 

rated how likely the winning team was to be different in the second game than in the first 

game. 
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Figure A2 9. Outcome variability instructions. 

In the following questions, we will ask you to imagine that two teams play each 
other twice, and that both games have the exact same starting conditions. This 
means that the teams, the stadium, team records, player lineups, starting pitchers, 
player injuries, streaks, etc. would all be exactly the same at the start of both games. 

 

Figure A2 10. Outcome variability question format. 

If two teams played each other in two games with the exact same starting conditions, 
how likely is it that the [outcome] of the first game would be different from the 
[outcome] of the second game? 

it would 
definitely not 
be different 

very unlikely 
to be 

different 

somewhat 
unlikely 

to be different 

somewhat 
likely 

to be different 

very likely 
to be 

different 

it would 
definitely 

be different 

O O O O O O 
Note. [Outcome] was replaced with the appropriate game outcome for the participant’s condition: {“exact 
final score”, “exact number of hits per team”, “combined total number of runs scored”, “winning team”}.  

 

Table A2 11. Means and standard deviations of outcome variability. 

 
Winner 

Score 
+ Winner 

Hits 
+ Winner 

Runs 
+ Winner 

winner prediction variability 3.49 
(0.903) 

3.47 
(0.810) 

3.58 
(0.845) 

3.62 
(0.849) 

detailed prediction variability - 4.43 
(1.029) 

4.46 
(0.986) 

4.54 
(0.891) 

Note. All means in the table are mean-centered with experiment as the grouping factor. Within each row, 
means with different subscripts are significantly different at p < .05 with Holm-Bonferroni-corrected 
pairwise t-tests. 

 

Table A2 12. Correlations of outcome variability with winning team prediction quality. 

 
Winner 

Score 
+ Winner 

Hits 
+ Winner 

Runs 
+ Winner 

winner prediction variability .01 -.10 -.02 .01 

detailed prediction variability - .14* .11* .15** 
Note. * p < .05, ** p < .01, *** p < .001. 



  

163 

Outcome usefulness for predicting the winning team (Experiments 8, 10) 

On the same page as the outcome variability questions, and after those questions, 

participants were asked how useful the detailed outcome they made predictions about was 

for predicting which team won the game on a scale from 1 to 5 (see labels below). 

Participants in conditions that only made winning team predictions were not asked this 

question.  

 

Figure A2 11. Outcome usefulness for predicting the winning team question format. 

Imagine you knew the [outcome] in a MLB baseball game. How much would this help 
you predict who won that game? 

completely 
useless for 

predicting the 
winner 

slightly useful 
for predicting 

the winner 

moderately 
useful for 

predicting the 
winner 

extremely 
useful for 

predicting the 
winner 

I could tell with 
certainty who 
won the game 

O O O O O 
Note. [Outcome] was replaced with one of the following, depending on condition: {“exact number of runs 
that each team scored (i.e. the final score)”, “exact number of hits that each team got”, “combined total 
number of runs scored during the game”}. Rationally, the exact final score should always be rated 5, the 
combined total number of runs scored during the game should always be rated 1, and the exact number of 
hits each team got should be rated somewhere in-between.  

 

Table A2 13. Means and standard deviations of outcome usefulness for predicting the 

winning team. 

Exact final score Exact number of hits Total number of runs 

3.74a 
(1.03) 

3.40b 
(0.79) 

2.74c 
(1.05) 

Note. All means in the table are mean-centered with experiment as the grouping factor. Within each row, 
means with different subscripts are significantly different at p < .05 with Holm-Bonferroni-corrected 
pairwise t-tests.
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Table A2 14. Correlations of outcome usefulness for predicting the winning team with 

winning team predictions quality. 

Exact final score Exact number of hits Total number of runs 

.01 .02 -.08 

Note. * p < .05, ** p < .01, *** p < .001. 

 

Team liking (Experiment 12) 

On a separate page, participants rated how much they disliked or liked each of the 32 

teams that played in the 2014 FIFA World Cup on a 7-point scale from -3 to +3 (see 

labels below). Teams were listed in alphabetical order and the scale labels repeated every 

7 teams. 

 

Figure A2 12. Team liking question format. 

In general, how much do you like or dislike each team? 

 
I hate 
this 

team 

I very 
much 
dislike 

this 
team 

I 
somewhat 
dislike this 

team 

I neither 
like nor 
dislike 

this 
team 

I 
somewhat 

like this 
team 

I very 
much 
like 
this 

team 

I love 
this 

team 

Algeria O O O O O O O 
Argentina O O O O O O O 
Australia O O O O O O O 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

Uruguay O O O O O O O 
Note. Participants gave liking ratings for all 32 teams in the 2014 FIFA World Cup: Algeria, Argentina, 
Australia, Belgium, Bosnia and Herzegovina, Brazil, Cameroon, Chile, Colombia, Costa Rica, Côte 
d’Ivoire, Croatia, Ecuador, England, France, Germany, Ghana, Greece, Honduras, Iran, Italy, Japan, Korea 
Republic, Mexico, Netherlands, Nigeria, Portugal, Russia, Spain, Switzerland, United States, Uruguay.  
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Table A2 15. Means and standard deviations of liking ratings by country. 

United States England Brazil Spain 

1.91 
(1.27) 

0.85 
(1.23) 

0.85 
(1.31) 

0.58 
(1.14) 

Germany Argentina Italy Netherlands 

0.55 
(1.27) 

0.49 
(0.99) 

0.46 
(1.15) 

0.41 
(0.92) 

Australia Portugal Switzerland Japan 

0.37 
(0.88) 

0.33 
(0.99) 

0.30 
(0.79) 

0.30 
(1.03) 

Belgium Chile France Colombia 

0.28 
(0.80) 

0.23 
(0.85) 

0.22 
(1.17) 

0.18 
(0.86) 

Uruguay Mexico Costa Rica Ecuador 

0.18 
(0.80) 

0.17 
(1.26) 

0.16 
(0.81) 

0.12 
(0.79) 

Greece Korea Republic Honduras Cameroon 

0.06 
(0.83) 

0.06 
(0.97) 

0.04 
(0.75) 

0.04 
(0.79) 

Côte d’Ivoire Croatia Nigeria Bosnia-Herzegovina 

0.03 
(0.84) 

0.03 
(0.77) 

0.01 
(0.77) 

-0.04 
(0.73) 

Algeria Ghana Russia Iran 

-0.10 
(0.66) 

-0.12 
(1.04) 

-0.20 
(1.07) 

-0.50 
(1.05) 

Note. Countries are listed in descending order by average liking rating. 

 

The liking ratings for the different countries’ teams did not differ significantly 

between conditions, so instead we present the average liking ratings by country in 

descending order.
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Effect of team liking on winning team predictions. 

How much more participants liked one team versus the other was significantly 

positively correlated with predicting that team to win the game, r(29182) = 0.26, p < .001. 

However, there was no interaction between how much more participants liked the 

superior team than the inferior team and whether or not they predicted the score on 

winning team prediction quality. 

 

Predicted the 
superior team to win 

values: {0, 1} 
= 

Difference in liking  
(superior minus inferior team) 

values: [-6, +6] 
X 

Predicted the score  
(Score+Winner condition) 

values: {0, 1} 
 

Table A2 16. Effect of liking on winning team prediction quality. 

Coefficients Estimate Std. Error t value Pr(>|t|)  

(Intercept) 0.607 0.004 157.36 < 0.001 *** 

liking difference 0.096 0.003 32.79 < 0.001 *** 

predicted score -0.032 0.006 -5.70 < 0.001 *** 

liking difference 
x predicted score -0.005 0.004 -1.31 0.19  

Note. *p < .05, **p < .01, ***p < .001.  
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Self-reported sports following and knowledge (Experiments 6-19, E5-E8) 

On a separate page, participants rated how closely they followed the sport league used 

in the experiment (e.g., Major League Baseball) and how knowledgeable they were about 

that sport league on scales from 1 to 7 (see labels below). 

 

Figure A2 13. Self-reported sports following and knowledge question format. 

How closely do you follow [sport league]? 

not at all      extremely 
closely 

O O O O O O O 

How knowledgeable are you about [sport league]? 

not at all 
knowledgeable      extremely 

knowledgeable 

O O O O O O O 
Note. [Sport league] was replaced with the relevant sport for the experiment: {“MLB baseball”, “NFL 
football”, “NHL hockey”, “NBA basketball”, “FIFA soccer”} 

 

Figure A2 14. Histograms of responses for self-reported sports knowledge and following. 
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Table A2 17. Means and standard deviations of self-reported sports knowledge and 

following. 

 Winner 
Score +  
Winner 

Relevant + 
Winner 

Irrelevant 
+ Winner 

self-reported sports knowledge  4.62 
(1.47) 

4.60 
(1.45) 

4.60 
(1.53) 

4.56 
(1.45) 

self-reported sports following 4.62 
(1.48) 

4.58 
(1.45) 

4.60 
(1.53) 

4.56 
(1.45) 

Note. All means in the table are mean-centered with experiment as the grouping factor. Within each row, 
means with different subscripts are significantly different at p < .05 with pairwise t-tests and the Holm-
Bonferroni correction for multiple comparisons. 

 

Table A2 18. Correlations of self-reported sports knowledge and following with winning 

team prediction quality. 

 Winner 
Score  

+ Winner 
Relevant  
+ Winner 

Irrelevant 
+ Winner 

self-reported sports knowledge  .15*** .17*** .13*** .11*** 

self-reported sports following .15*** .16*** .15*** .13*** 

Note. * p < .05, ** p < .01, *** p < .001. 

 

Measured knowledge (Experiments 1-19, E1-E8) 

On a separate page, participants answered 8 questions designed to assess their 

knowledge of the sport league used in the study. The display order of these questions was 

randomized between participants. The questions used varied between experiments. 

Participants were encouraged to leave the questions blank if they didn’t know the answer 

rather than guessing the answer. 
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Two of the eight questions were about which division a given sports team belonged to. 

For each of these questions, participants were prompted to select the division that a given 

team belonged to from a drop-down list containing all divisions in the sports league. 

Major League Baseball has two major leagues with three divisions each for a total of six 

divisions, the National Football League has two major conferences with four divisions 

each for a total of eight divisions, the National Hockey League has two major 

conferences with two divisions each for a total of four divisions, and the National 

Basketball Association has two major conferences with three divisions each for a total of 

six divisions. The two sports teams were chosen so that there was one from each of the 

two major leagues/conferences. The teams used in these questions varied between 

experiments. 

Six of the eight questions asked about which teams relatively well-known players 

played for. For each of these questions, participants were prompted to select the team that 

a given player played for from a drop-down list containing all teams in the sports league. 

For baseball and basketball, players were chosen so that there was one player from each 

of the six different divisions in the league. For hockey, players were chosen so that there 

was at least one player from each of the four different divisions, and the remaining two 

players were drawn from teams from different conferences. For football, players were 

chosen so that each player was from a different division and there were three players 

from each conference. The players used in these questions varied between experiments.  

For the 2014 FIFA World Cup (Experiment 12), all eight questions were about which 

teams various players belonged to, and players were chosen at random from a list of the 

top 25 well-known players in FIFA that were participating in the World Cup in 2014. 
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Figure A2 15. Measured sports knowledge instructions. 

In this section, we will ask you 8 questions designed to assess your [sports league] 
knowledge. Please answer each of the following questions to the best of your ability. 
 
Please do NOT look up the answers while completing this section. It is important for 
us to have an accurate sense of your baseball knowledge. Your bonus payment 
will not be affected by how you answer these questions. 
 
If you do not know an answer, please leave it blank and move on to the next question. 

 

Figure A2 16. Example of measured knowledge question format (team/division 

matching). 

In which division do the [sports team] play? 

 

 
 

Figure A2 17. Example of measured knowledge question format (player/team matching). 

Which MLB team does [player] play for? 
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Figure A2 18. Histogram of measured knowledge scores. 

 

 

Unlike most self-reported measures, knowledge scores did not follow a normal 

distribution. Rather, most participants scored either on the low end or the high end of the 

range, and relatively few people in the middle of the range. 

 

Table A2 19. Means and standard deviations of measured knowledge scores. 

Winner Score† 
Relevant  
+ Winner 

Irrelevant  
+ Winner 

4.62 
(2.86) 

4.56 
(2.85) 

4.61 
(2.96) 

4.53 
(2.73) 

Note. †Score includes all conditions where participants predicted the final score. All means in the table are 
mean-centered with experiment as the grouping factor. Within each row, means with different subscripts 
are significantly different at p < .05 with pairwise t-tests and the Holm-Bonferroni correction for multiple 
comparisons. 
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Table A2 20. Correlations of measured sports knowledge with winning team prediction 

quality. 

Winner Score† 
Relevant  
+ Winner 

Irrelevant  
+ Winner 

.23*** .23*** .20*** .23*** 

Note. * p < .05, ** p < .01, *** p < .001. †Score includes all conditions where participants predicted the 
final score. 

 

Maximizing Tendency Scale (Experiments 1-2) 

This scale was included at the end of Experiments 1 and 2 on a separate page after all 

other measures other than age, gender, and optional contact information. These questions 

were included as a pilot for a separate research question, and so we will not discuss them 

further. 
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Figure A2 19. Maximizing Tendency Scale question format. 

 completely 
disagree   

neither 
agree 
nor 

disagree 

  completely  
agree 

No matter what it 
takes, I always try to 
choose the best thing. 

O O O O O O O 

I don't like having to 
settle for "good 
enough". 

O O O O O O O 

I am a maximizer. O O O O O O O 

No matter what I do, I 
have the highest 
standards for myself. 

O O O O O O O 

I will wait for the best 
option no matter how 
long it takes. 

O O O O O O O 

I never settle for 
second best. O O O O O O O 

I am uncomfortable 
making decisions 
before I know all of my 
options. [Reverse-
coded] 

O O O O O O O 

Whenever I'm faced 
with a choice, I try to 
imagine what all the 
other possibilities are, 
even ones that aren't 
present at the moment. 

O O O O O O O 

I never settle. O O O O O O O 

 completely 
disagree   

neither 
agree 
nor 

disagree 

  completely  
agree 
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Gender and age (Experiments 1-19, E1-E8) 

On a separate page, participants reported their gender and age.  

 

Figure A2 20. Gender and age question format. 

What is your gender? 

O Male 

O Female 
 

How old are you? 

 
 

Averages and correlations. Across all experiments, most participants were male 

(73.2%) and an average of 30.9 years old (SD = 9.9). Being female was significantly 

negatively correlated with making wise predictions, r(10,323) = -.07, p < .001, and age 

was uncorrelated with wise predictions. 

 

Instruction difficulty/confusion (Experiments 7, 9, 11, 14-19) 

On same page as gender and age, after these questions, participants reported how 

difficult the survey was to understand (Experiment 7) or how confusing the instructions 

were (Experiments 9,  11, 14-19) on scales from 1 to 4 (see labels below). We included 

this question in all experiments where participants reported winning team probabilities 

because we were worried that some participants would be confused by the instructions to 

imagine two teams playing the exact same game 100.  
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Figure A2 21. Question difficulty question format (Experiment 7). 

How difficult was this survey to understand? 

not at all  
difficult 

slightly  
difficult 

moderately  
difficult 

extremely 
difficult 

O O O O 

 

Figure A2 22. Question difficulty question format (Experiments 9, 11, and 14-19). 

How confusing were the instructions in this survey? 

not at all  
confusing 

slightly  
confusing 

moderately 
confusing 

extremely 
confusing 

O O O O 

 

Table A2 21. Summary of responses to question difficulty. 

 
not at all 

[difficult/confusing] 
slightly 

[difficult/confusing] 
moderately 

[difficult/confusing] 
extremely 

[difficult/confusing] 

N 4009 952 330 52 

% 87.0% 10.3% 2.4% 0.3% 

 

Across experiments, the vast majority of participants rated the survey to be “not at all 

[difficult/confusing]”. 
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Contact for future studies (Experiments 1-19, E1-E8) 

On the same page as gender and age, after all other questions, participants were asked 

whether they would like to be contacted to participate in future sports studies, and if so, 

to give a contact e-mail address. We did not use the information collected in this section 

to recruit for any experiments. 

 

Figure A2 23. Contact for future studies sport selection. 

Would you like to participate in future studies that allow you to win money by making 
predictions about sports? If so, check the boxes for the sports you are interested in 
and enter your email address in the box below: 

□ Major League Baseball  

□ National Basketball Association  

□ National Football League  

□ National Hockey League  

□ Fédération Internationale de Football Association (FIFA) [Experiment 12 only] 
Note. The checklist for different sports leagues was only used in Experiments 6-19 and E4-E8. For 
Experiments 1-5 and E1-E3, participants were asked “Would you like to participate in future studies that 
allow you to win money by making predictions about [Major League Baseball / the National Football 
League]? If so, please enter your email address in the box below.” This statement was then followed by the 
email entry box and privacy disclaimer displayed below. 

 

Figure A2 24. Contact for future studies e-mail entry. 

(If you enter your email address then University of Pennsylvania researchers may 
occasionally email you links to surveys about the sports you selected. We will NEVER 
share your email address with anyone). 
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APPENDIX A3. ALTERNATIVE ANALYSES 

In this document, we report several alternative analyses for each of the main findings 

reported in the Results section of the main text. 

 

Definition of Prediction Quality 

Our research investigates how making detailed predictions about sports affects 

prediction quality. In the main text, we defined wise predictions as choosing the team 

favored by betting markets. However, there are several possible ways to define a wise 

prediction:  

• Odds: Choosing the team favored by well-calibrated betting markets (the 

definition used in the main text). 

• Records: Choosing the team that had won a greater percentage of past games. 

• Accuracy: Choosing the team that actually won the game. 

In the main text we explain why the best definition for a wise prediction is choosing 

the team favored by well-calibrated betting markets (“Odds”), but in this Appendix we 

reproduce the main results for all three definitions. 

 

Level of Analysis 

We also chose to analyze wise predictions in the main text at the game level, 

examining for each game whether a greater percentage of participants made wise 

predictions when they were simply asked to select the winning team than when they were 
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also (or instead) asked to make a detailed prediction. However, there are multiple ways 

we could have analyzed wise predictions: 

• Game-Level Analysis: Treat each game as an observation and compare the 

percentage of participants making wise predictions between different conditions 

as within-subjects measures (the method used in the main text).  

• Participant-Level Analysis: Treat each participant as an observation and 

compare the average percentage of wise predictions made by participants in 

different conditions. 

• Prediction-Level Analysis: Treat each prediction as an observation and compare 

the percentage of wise predictions between conditions. 

In the main text, we explain that using game as the level of analysis has the benefit of 

controlling for differences across games, while also allowing us to explore whether 

effects emerge for some games and not others. However, the other methods outlined 

above are reported in this Appendix. 

 

Summary of experimental results  

The tables in this section report alternative analyses for the data presented in Table 1 

in the main text displaying the percentage of wise predictions made in each condition in 

each experiment. 
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Table A3 1. Game-Level Analyses. Experiments 1-19: The average percentage of 

participants making wise predictions in each prediction condition for each experiment. 

 
Exper-
iment 

Sport 
League 

# of 
subjects 

# of 
games 

Wise 
Prediction 

Winner 
Only 

Score 
Only 

Score 
+Winner 

Relevant 
+Winner 

Irrelevant 
+Winner 

1 MLB 316 41 
Odds 67.3%a 61.4%b - - - 

Records 69.5%a 65.1%b - - - 
Accuracy 53.5% 52.4% - - - 

2 MLB 508 39 
Odds 73.3%a 67.4%c 69.7%b - - 

Records 78.8%a 72.5%c 75.0%b - - 
Accuracy 42.2%b 46.4%a 44.2%ab - - 

3 MLB 635 45 
Odds 63.4%a 57.5%c 60.2%b - - 

Records 71.5%a 65.2%c 71.7%b - - 
Accuracy 52.7% 51.5% 51.2% - - 

4 MLB 631 45 
Odds 70.8%a - 66.6%b 66.8%b - 

Records 76.9%a - 72.2%c 74.0%b - 
Accuracy 51.9% - 49.8% 50.0% - 

5 MLB 634 42 
Odds 60.1% - 58.8% 58.8% 60.2% 

Records 78.9%ab - 76.8%b 79.2%a 78.9%ab 

Accuracy 49.2% - 48.5% 48.8% 48.3% 

6 NHL 309 29 
Odds 53.5%a - 49.8%b - - 

Records 58.4%a - 55.4%b - - 
Accuracy 56.8% - 54.4% - - 

7 MLB 337 45 
Odds 56.6%a - 53.9%b - - 

Records 73.1%a - 70.4%b - - 
Accuracy 47.2% - 47.2% - - 

8 MLB 625 44 
Odds 56.7% - 55.7% 55.8% - 

Records 73.6%a - 71.2%b 71.4%b - 
Accuracy 51.8% - 51.6% 51.1% - 

9 MLB 422 41 
Odds 60.9% - 59.7% - - 

Records 73.4% - 74.0% - - 
Accuracy 44.4%b - 45.9%a - - 

10 MLB 728 45 
Odds 59.3% - 58.4% 58.5% - 

Records 77.4%a - 75.2%b 76.3%ab - 
Accuracy 54.4% - 54.7% 54.7% - 

11 MLB 525 42 
Odds 63.4%a - 61.8%b - - 

Records 71.6% - 70.5% - - 
Accuracy 46.6% - 46.8% - - 

(table continued on next page)
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Exper-
iment 

Sport 
League 

# of 
subjects 

# of 
games 

Prediction 
Quality  

Winner 
Only 

Score 
Only 

Score 
+Winner 

Relevant 
+Winner 

Irrelevant 
+Winner 

12 FIFA 622 48 
Odds 61.2%a - 57.8%b - - 

Records - - - - - 
Accuracy 49.7% - 48.4% - - 

13 NBA 420 32 
Odds 70.3% - 70.9% - - 

Records 79.1%a - 77.8%b - - 
Accuracy 62.1% - 61.7% - - 

14 NHL 541 32 
Odds 70.0% - 70.8% - - 

Records 82.0% - 81.4% - - 
Accuracy 55.4% - 55.9% - - 

15 NBA 775 32 
Odds 74.1% - 72.9% 72.4% 72.6% 

Records 86.2%a - 84.6%b 83.7%b 83.4%b 

Accuracy 60.2% - 60.7% 60.2% 59.4% 

16 NHL 711 30 
Odds 73.3% - 72.4% 71.4% 73.0% 

Records 81.6%ab - 80.6%bc 78.0%d 79.3%cd 

Accuracy 55.2% - 54.6% 54.4% 55.9% 

17 NHL 811 31 
Odds 74.8%a - 70.8%b - 75.2%a 

Records 83.6%a - 80.3%b - 83.4%a 

Accuracy 53.8% - 52.6% - 53.4% 

18 NBA 828 30 
Odds 78.4% - 76.5% - 78.3% 

Records 83.7%a - 81.5%b - 82.6%ab 

Accuracy 68.5% - 67.2% - 68.8% 

19 NHL 518 31 
Odds 69.7%a - 65.4%b - - 

Records 79.4% - 77.2% - - 
Accuracy 50.0% - 50.3% - - 

Note. Each row shows the average percentage of participants making wise predictions across games within 
each condition for that experiment. “Odds” indicates wise predictions defined as choosing the team favored 
by betting markets, “Records” indicates wise predictions defined as choosing the team that had won a 
greater percentage of games, and “Accuracy” indicates wise predictions defined as choosing the team that 
actually won the game. Within each row, means with different subscripts differ at p < .05 using within-
subjects pairwise t-tests and the Holm-Bonferroni correction for multiple comparisons (Holm, 1979). The 
percentages of wise predictions defined by records are not calculated for Experiment 12 because the FIFA 
teams in the World Cup did not have comparable win/loss records. Experiment 3 manipulated whether the 
Score + Winner condition was paid based on the accuracy of their score prediction or their winner 
prediction; the Score + Winner column collapses across these two conditions. Experiments 4, 8, and 10 
included two Relevant + Winner conditions, a condition in which participants first predicted total runs and 
a condition in which participants first predicted each team’s hits; the Relevant + Winner column collapses 
across these two conditions. The relevant predictions made in Experiments 5, 15, and 16 were total runs 
scored, free throws attempted by each team, and saves made by each team, respectively. Experiments 17 
and 18 included two Irrelevant + Winner conditions, a condition in which participants predicted the 
temperature outside the indoor stadium at the start of the game and a condition where participants predicted 
the high temperature in the game city on July 4th 2015 (about 6 months after the game); the Irrelevant + 
Winner column collapses across these two conditions. The irrelevant predictions made in Experiments 5, 
15 and 16 were total game time, temperature outside the stadium at game time, and percentage of U.S. 
citizens in the crowd, respectively. FIFA = Fédération Internationale de Football Association; MLB = 
Major League Baseball; NBA = National Basketball Association; NHL = National Hockey League. 
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Table A3 2. Participant-Level Analyses. Experiments 1-19: The average percentage of 

wise predictions made by participants in each prediction condition for each experiment. 

 
Exper-
iment 

Sport 
League 

# of 
subjects 

# of 
games 

Prediction 
Quality 

Winner 
Only 

Score 
Only 

Score 
+Winner 

Relevant 
+Winner 

Irrelevant 
+Winner 

1 MLB 316 41 
Odds 67.2%a 60.8%b - - - 

Records 69.5%a 64.8%b - - - 
Accuracy 53.5% 52.4% - - - 

2 MLB 508 39 
Odds 73.2%a 67.6%b 69.5%b - - 

Records 78.7%a 72.5%b 74.7%b - - 
Accuracy 42.2%c 46.4%a 44.2%b - - 

3 MLB 635 45 
Odds 63.4%a 57.7%c 60.2%b - - 

Records 71.5%a 65.4%b 71.7%a - - 
Accuracy 52.6%a 51.6%ab 51.2%b - - 

4 MLB 631 45 
Odds 70.8%a - 66.6%b 66.7%b - 

Records 77.0%a - 72.2%b 74.1%ab - 
Accuracy 51.8% - 49.8% 50.0% - 

5 MLB 634 42 
Odds 60.1% - 59.0% 58.8% 60.1% 

Records 78.9% - 77.1% 79.2% 78.6% 
Accuracy 49.2% - 48.4% 48.7% 48.1% 

6 NHL 309 29 
Odds 53.5%a - 49.6%b - - 

Records 58.4%a - 55.2%b - - 
Accuracy 56.8%a - 54.2%b - - 

7 MLB 337 45 
Odds 56.5%a - 53.6%b - - 

Records 73.1% - 70.5% - - 
Accuracy 47.1% - 46.9% - - 

8 MLB 625 44 
Odds 56.8% - 55.8% 56.2% - 

Records 73.6% - 71.3% 71.6% - 
Accuracy 51.8% - 51.7% 51.0% - 

9 MLB 422 41 
Odds 60.9% - 59.7% - - 

Records 73.4% - 73.9% - - 
Accuracy 44.4% - 45.6% - - 

10 MLB 728 45 
Odds 59.4% - 58.5% 58.5% - 

Records 77.3% - 75.1% 76.2% - 
Accuracy 54.4% - 54.8% 54.8% - 

11 MLB 525 42 
Odds 63.4%a - 61.6%b - - 

Records 71.6% - 70.6% - - 
Accuracy 46.6% - 47.0% - - 

(table continued on next page)
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Exper-
iment 

Sport 
League 

# of 
subjects 

# of 
games 

Prediction 
Quality 

Winner 
Only 

Score 
Only 

Score 
+Winner 

Relevant 
+Winner 

Irrelevant 
+Winner 

12 FIFA 622 48 
Odds 61.2%a - 57.7%b - - 

Records - - - - - 
Accuracy 49.6%a - 48.4%b - - 

13 NBA 420 32 
Odds 70.3% - 70.7% - - 

Records 79.2% - 77.8% - - 
Accuracy 62.2% - 61.6% - - 

14 NHL 541 32 
Odds 69.9% - 70.9% - - 

Records 82.0% - 81.2% - - 
Accuracy 55.3% - 55.9% - - 

15 NBA 775 32 
Odds 74.2% - 72.9% 72.4% 72.7% 

Records 86.2% - 84.6% 83.7% 83.4% 
Accuracy 60.3% - 61.0% 60.4% 59.8% 

16 NHL 711 30 
Odds 73.3% - 72.2% 71.4% 73.0% 

Records 81.6% - 80.4% 78.0% 79.1% 
Accuracy 55.2% - 54.7% 54.4% 56.0% 

17 NHL 811 31 
Odds 74.9%a - 70.2%b - 75.0%a 

Records 83.7%a - 79.9%b - 83.2%a 

Accuracy 54.0%a - 52.4%b - 53.5%ab 

18 NBA 828 30 
Odds 78.4% - 76.5% - 78.2% 

Records 83.7% - 81.5% - 82.4% 
Accuracy 68.5% - 67.2% - 68.8% 

19 NHL 518 31 
Odds 69.7%a - 64.5%b - - 

Records 79.4%a - 76.4%b - - 
Accuracy 49.9% - 50.8% - - 

Note. Each row shows the average percentage of wise predictions made by participants in each condition 
for that experiment. “Odds” indicates wise predictions defined as choosing the team favored by betting 
markets, “Records” indicates wise predictions defined as choosing the team that had won a greater 
percentage of games, and “Accuracy” indicates wise predictions defined as choosing the team that actually 
won the game. Within each row, means with different subscripts differ at p < .05 using between-subjects 
pairwise t-tests and the Holm-Bonferroni correction for multiple comparisons (Holm, 1979). The 
percentages of wise predictions defined by records are not calculated for Experiment 12 because the FIFA 
teams in the World Cup did not have comparable win/loss records. Experiment 3 manipulated whether the 
Score + Winner condition was paid based on the accuracy of their score prediction or their winner 
prediction; the Score + Winner column collapses across these two conditions. Experiments 4, 8, and 10 
included two Relevant + Winner conditions, a condition in which participants first predicted total runs and 
a condition in which participants first predicted each team’s hits; the Relevant + Winner column collapses 
across these two conditions. The relevant predictions made in Experiments 5, 15, and 16 were total runs 
scored, free throws attempted by each team, and saves made by each team, respectively. Experiments 17 
and 18 included two Irrelevant + Winner conditions, a condition in which participants predicted the 
temperature outside the indoor stadium at the start of the game and a condition where participants predicted 
the high temperature in the game city on July 4th 2015 (about 6 months after the game); the Irrelevant + 
Winner column collapses across these two conditions. The irrelevant predictions made in Experiments 5, 
15 and 16 were total game time, temperature outside the stadium at game time, and percentage of U.S. 
citizens in the crowd, respectively. FIFA = Fédération Internationale de Football Association; MLB = 
Major League Baseball; NBA = National Basketball Association; NHL = National Hockey League. 
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Table A3 3. Prediction-Level Analyses. Experiments 1-19: The percentage of wise 

predictions made in each prediction condition for each experiment. 

 
Exp 

# 
Sport 

League 
# of 

subjects 
# of 

games 
Prediction 

Quality 
Winner 

Only 
Score 
Only 

Score 
+Winner 

Relevant 
+Winner 

Irrelevant 
+Winner 

1 MLB 316 41 
Odds 67.3%a 61.4%b - - - 

Records 69.5%a 65.1%b - - - 
Accuracy 53.5% 52.4% - - - 

2 MLB 508 39 
Odds 73.3%a 67.4%c 69.8%b - - 

Records 78.8%a 72.5%c 75.0%b - - 
Accuracy 42.2%c 46.4%a 44.3%b - - 

3 MLB 635 45 
Odds 63.4%a 57.6%c 60.2%b - - 

Records 71.6%a 65.3%b 71.8%a - - 
Accuracy 52.7% 51.5% 51.1% - - 

4 MLB 631 45 
Odds 70.8%a - 66.6%b 66.8%b - 

Records 76.9%a - 72.2%c 74.0%b - 
Accuracy 51.9%a - 49.8%b 50.0%b - 

5 MLB 634 42 
Odds 60.2% - 58.8% 58.8% 60.2% 

Records 78.9%a - 76.8%b 79.2%a 78.9%a 

Accuracy 49.2% - 48.5% 48.8% 48.3% 

6 NHL 309 29 
Odds 53.5%a - 49.8%b - - 

Records 58.4%a - 55.4%b - - 
Accuracy 56.8%a - 54.3%b - - 

7 MLB 337 45 
Odds 56.6%a - 53.9%b - - 

Records 73.1%a - 70.4%b - - 
Accuracy 47.2% - 47.1% - - 

8 MLB 625 44 
Odds 56.8% - 55.8% 56.0% - 

Records 73.6%a - 71.2%b 71.5%b - 
Accuracy 51.8% - 51.6% 51.1% - 

9 MLB 422 41 
Odds 60.9% - 59.8% - - 

Records 73.4% - 74.1% - - 
Accuracy 44.4% - 45.8% - - 

10 MLB 728 45 
Odds 59.4% - 58.6% 58.6% - 

Records 77.4%a - 75.2%b 76.2%ab - 
Accuracy 54.5% - 54.8% 54.8% - 

11 MLB 525 42 
Odds 63.4%a - 61.8%b - - 

Records 71.6% - 70.5% - - 
Accuracy 46.6% - 46.8% - - 

(table continued on next page)
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Exp 
# 

Sport 
League 

# of 
subjects 

# of 
games 

Prediction 
Quality 

Winner 
Only 

Score 
Only 

Score 
+Winner 

Relevant 
+Winner 

Irrelevant 
+Winner 

12 FIFA 622 48 
Odds 61.2%a - 57.8%b - - 

Records - - - - - 
Accuracy 49.7%a - 48.4%b - - 

13 NBA 420 32 
Odds 70.3% - 70.9% - - 

Records 79.1% - 77.8% - - 
Accuracy 62.1% - 61.6% - - 

14 NHL 541 32 
Odds 70.0% - 70.8% - - 

Records 82.0% - 81.4% - - 
Accuracy 55.4% - 56.0% - - 

15 NBA 775 32 
Odds 74.1% - 72.9% 72.4% 72.6% 

Records 86.2%a - 84.6%ab 83.7%b 83.4%b 

Accuracy 60.2% - 60.8% 60.3% 59.5% 

16 NHL 711 30 
Odds 73.3% - 72.4% 71.4% 73.0% 

Records 81.6%a - 80.6%ab 78.0%c 79.2%bc 

Accuracy 55.2% - 54.6% 54.4% 55.8% 

17 NHL 811 31 
Odds 74.8%a - 70.8%b - 75.1%a 

Records 83.6%a - 80.3%b - 83.4%a 

Accuracy 53.8% - 52.6% - 53.4% 

18 NBA 828 30 
Odds 78.4%a - 76.5%b - 78.3%a 

Records 83.7%a - 81.5%b - 82.6%ab 

Accuracy 68.5% - 67.2% - 68.8% 

19 NHL 518 31 
Odds 69.7%a - 65.4%b - - 

Records 79.4%a - 77.2%b - - 
Accuracy 50.0% - 50.3% - - 

Note. Each row shows the percentage of wise predictions made in each prediction condition for that 
experiment. “Odds” indicates wise predictions defined as choosing the team favored by betting markets, 
“Records” indicates wise predictions defined as choosing the team that had won a greater percentage of 
games, and “Accuracy” indicates wise predictions defined as choosing the team that actually won the game. 
Within each row, means with different subscripts differ at p < .05 using pairwise proportion tests and the 
Holm-Bonferroni correction for multiple comparisons (Holm, 1979). The percentages of wise predictions 
defined by records are not calculated for Experiment 12 because the FIFA teams in the World Cup did not 
have comparable win/loss records. Experiment 3 manipulated whether the Score + Winner condition was 
paid based on the accuracy of their score prediction or their winner prediction; the Score + Winner column 
collapses across these two conditions. Experiments 4, 8, and 10 included two Relevant + Winner 
conditions, a condition in which participants first predicted total runs and a condition in which participants 
first predicted each team’s hits; the Relevant + Winner column collapses across these two conditions. The 
relevant predictions made in Experiments 5, 15, and 16 were total runs scored, free throws attempted by 
each team, and saves made by each team, respectively. Experiments 17 and 18 included two Irrelevant + 
Winner conditions, a condition in which participants predicted the temperature outside the indoor stadium 
at the start of the game and a condition where participants predicted the high temperature in the game city 
on July 4th 2015 (about 6 months after the game); the Irrelevant + Winner column collapses across these 
two conditions. The irrelevant predictions made in Experiments 5, 15 and 16 were total game time, 
temperature outside the stadium at game time, and percentage of U.S. citizens in the crowd, respectively. 
FIFA = Fédération Internationale de Football Association; MLB = Major League Baseball; NBA = 
National Basketball Association; NHL = National Hockey League. 
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Does predicting scores make winner predictions worse?   

The tables in this section report alternative analyses for the result reported in the main 

text that predicting scores in addition to predicting winning teams yields worse winning 

team predictions than only predicting winning teams.  

 

Table A3 4. Game-Level Analyses. Experiments 2-19: The average percentage of 

participants making wise predictions in the Winner and Score + Winner conditions. 

 
 Prediction Quality Winner Only Score + Winner 

Odds 65.4%a 63.3%b 

Records 75.9%a 74.2%b 

Accuracy 52.3% 51.9% 
Note. Each row shows the average percentage of participants making wise predictions in each condition 
across all games in all experiments that included a Score + Winner condition. “Odds” indicates wise 
predictions defined as choosing the team favored by betting markets, “Records” indicates wise predictions 
defined as choosing the team that had won a greater percentage of games, and “Accuracy” indicates wise 
predictions defined as choosing the team that actually won the game. Within each row, means with 
different subscripts differ at p < .05 using within-subjects pairwise t-tests and the Holm-Bonferroni 
correction for multiple comparisons (Holm, 1979).  
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Table A3 5. Participant-Level Analyses. Experiments 2-19: The average percentage of 

wise predictions made by participants in the Winner and Score + Winner conditions. 

 
 Prediction Quality Winner Only Score + Winner 

Odds 67.1%a 64.9%b 

Records 77.4%a 75.8%b 

Accuracy 53.7% 53.4% 
Note. Each row shows the average percentage of wise predictions made by participants in each condition 
across all games in all experiments that included a Score + Winner condition. To account for both observed 
and unobserved differences between experiments, the means for each condition are mean-centered by 
experiment and added to the overall average across all experiments and conditions. “Odds” indicates wise 
predictions defined as choosing the team favored by betting markets, “Records” indicates wise predictions 
defined as choosing the team that had won a greater percentage of games, and “Accuracy” indicates wise 
predictions defined as choosing the team that actually won the game. Within each row, means with 
different subscripts differ at p < .05 using between-subjects pairwise t-tests and the Holm-Bonferroni 
correction for multiple comparisons (Holm, 1979).  

 

Table A3 6. Prediction-Level Analyses. Experiments 2-19: The percentage of wise 

predictions made in the Winner and Score + Winner conditions. 

 
 Prediction Quality Winner Only Score + Winner 

Odds 66.2%a 64.1%b 

Records 76.8%a 75.4%b 

Accuracy 53.1%a 52.7%b 

Note. Each row shows the percentage wise predictions made in each condition across all games in all 
experiments that included a Score + Winner condition. To account for both observed and unobserved 
differences between games, the means for each condition are mean-centered by game and added to the 
overall average across all games and conditions. “Odds” indicates wise predictions defined as choosing the 
team favored by betting markets, “Records” indicates wise predictions defined as choosing the team that 
had won a greater percentage of games, and “Accuracy” indicates wise predictions defined as choosing the 
team that actually won the game. Within each row, means with different subscripts differ at p < .05 using 
within-subjects pairwise t-tests and the Holm-Bonferroni correction for multiple comparisons (Holm, 
1979). 
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Does predicting other event details make predictions worse?  

The tables in this section report alternative analyses for the data presented in Figure 3 

in the main text showing that making other kinds of detailed predictions that are relevant 

to the game also negatively affected prediction quality. 

 

Table A3 7. Game-Level Analyses. Experiments 4, 5, 8, 10, 15, and 16: The average 

percentage of participants making wise predictions in the Winner, Score + Winner, and 

Relevant + Winner conditions. 

 
 Prediction Quality Winner Only Score + Winner Relevant + Winner 

Odds 64.9%a 63.2%b 63.1%b 

Records 78.6%a 76.1%b 6.6%b 

Accuracy 53.4% 52.9% 52.8% 
Note. Each row shows the average percentage of participants making wise predictions in each condition 
across all games in all experiments that included a Relevant + Winner condition. “Odds” indicates wise 
predictions defined as choosing the team favored by betting markets, “Records” indicates wise predictions 
defined as choosing the team that had won a greater percentage of games, and “Accuracy” indicates wise 
predictions defined as choosing the team that actually won the game. Within each row, means with 
different subscripts differ at p < .05 using within-subjects pairwise t-tests and the Holm-Bonferroni 
correction for multiple comparisons (Holm, 1979).  
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Table A3 8. Participant-Level Analyses. Experiments 4, 5, 8, 10, 15, and 16: The average 

percentage of wise predictions made by participants in the Winner, Score + Winner, and 

Relevant + Winner conditions. 

 
 Prediction Quality Winner Only Score + Winner Relevant + Winner 

Odds 66.0%a 64.5%b 64.4%b 

Records 79.4%a 77.1%b 77.4%b 

Accuracy 54.1% 53.7% 53.5% 
Note. Each row shows the average percentage of wise predictions made by participants in each condition 
across all games in all experiments that included a Relevant + Winner condition. To account for both 
observed and unobserved differences between experiments, the means for each condition are mean-
centered by experiment and added to the overall average across all experiments and conditions. “Odds” 
indicates wise predictions defined as choosing the team favored by betting markets, “Records” indicates 
wise predictions defined as choosing the team that had won a greater percentage of games, and “Accuracy” 
indicates wise predictions defined as choosing the team that actually won the game. Within each row, 
means with different subscripts differ at p < .05 using between-subjects pairwise t-tests and the Holm-
Bonferroni correction for multiple comparisons (Holm, 1979).  

 

Table A3 9. Prediction-Level Analyses. Experiments 4, 5, 8, 10, 15, and 16: The 

percentage of wise predictions made in the Winner, Score + Winner, and Relevant + 

Winner conditions. 

 
 Prediction Quality Winner Only Score + Winner Relevant + Winner 

Odds 65.2%a 63.6%b 63.5%b 

Records 78.8%a 76.4%c 76.9%b 

Accuracy 53.7% 53.2% 53.1% 
Note. Each row shows the percentage of wise predictions made in each condition across all games in all 
experiments that included a Relevant + Winner condition. To account for both observed and unobserved 
differences between games, the means for each condition are mean-centered by game and added to the 
overall average across all games and conditions. “Odds” indicates wise predictions defined as choosing the 
team favored by betting markets, “Records” indicates wise predictions defined as choosing the team that 
had won a greater percentage of games, and “Accuracy” indicates wise predictions defined as choosing the 
team that actually won the game. Within each row, means with different subscripts differ at p < .05 using 
within-subjects pairwise t-tests and the Holm-Bonferroni correction for multiple comparisons (Holm, 
1979).  
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Are predictions worse because people pay less attention? 

The tables in this section report alternative analyses for the data presented in Figure 4 

in the main text showing that making detailed prediction that are irrelevant to the game 

did not affect prediction quality. 

 

Table A3 10. Game-Level Analyses. Experiments 5 and 15-18: The average percentage of 

participants making wise predictions in the Winner, Score + Winner, and Irrelevant + 

Winner conditions. 

 
 Prediction Quality Winner Only Score + Winner Irrelevant + Winner 

Odds 71.2%a 69.4%b 71.0%a 

Records 82.6%a 80.6%b 81.4%b 

Accuracy 56.8% 56.1% 56.5% 
Note. Each row shows the average percentage of participants making wise predictions in each condition 
across all games in all experiments that included an Irrelevant + Winner condition. “Odds” indicates wise 
predictions defined as choosing the team favored by betting markets, “Records” indicates wise predictions 
defined as choosing the team that had won a greater percentage of games, and “Accuracy” indicates wise 
predictions defined as choosing the team that actually won the game. Within each row, means with 
different subscripts differ at p < .05 using within-subjects pairwise t-tests and the Holm-Bonferroni 
correction for multiple comparisons (Holm, 1979).  
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Table A3 11. Participant-Level Analyses. Experiments 5 and 15-18: The average 

percentage of wise predictions made by participants in the Winner, Score + Winner, and 

Irrelevant + Winner conditions. 

 
 Prediction Quality Winner Only Score + Winner Irrelevant + Winner 

Odds 72.7%a 70.6%b 72.4%a 

Records 83.0%a 80.9%b 81.6%b 

Accuracy 57.9% 57.2% 57.8% 
Note. Each row shows the average percentage of wise predictions made by participants in each condition 
across all games in all experiments that included an Irrelevant + Winner condition. To account for both 
observed and unobserved differences between experiments, the means for each condition are mean-
centered by experiment and added to the overall average across all experiments and conditions. “Odds” 
indicates wise predictions defined as choosing the team favored by betting markets, “Records” indicates 
wise predictions defined as choosing the team that had won a greater percentage of games, and “Accuracy” 
indicates wise predictions defined as choosing the team that actually won the game. Within each row, 
means with different subscripts differ at p < .05 using between-subjects pairwise t-tests and the Holm-
Bonferroni correction for multiple comparisons (Holm, 1979).  

 

Table A3 12. Prediction-Level Analyses. Experiments 5 and 15-18: The percentage of 

wise predictions made in the Winner, Score + Winner, and Irrelevant + Winner 

conditions. 

 
 Prediction Quality Winner Only Score + Winner Irrelevant + Winner 

Odds 71.9%a 70.0%b 71.7%a 

Records 82.8%a 80.8%c 81.7%b 

Accuracy 57.4% 56.7% 57.2% 
Note. Each row shows the percentage of making wise predictions made in each condition across all games 
in all experiments that included an Irrelevant + Winner condition. To account for both observed and 
unobserved differences between games, the means for each condition are mean-centered by game and 
added to the overall average across all games and conditions. “Odds” indicates wise predictions defined as 
choosing the team favored by betting markets, “Records” indicates wise predictions defined as choosing the 
team that had won a greater percentage of games, and “Accuracy” indicates wise predictions defined as 
choosing the team that actually won the game. Within each row, means with different subscripts differ at p 
< .05 using within-subjects pairwise t-tests and the Holm-Bonferroni correction for multiple comparisons 
(Holm, 1979).  
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Are predictions worse because people think harder? 

The tables in this section report alternative analyses for the data presented in Figure 5 

in the main text showing that incentivizing people to think harder about their predictions 

did not negatively affect winning team prediction quality, although having them predict 

scores did. 

 

Table A3 13. Game-Level Analyses. Experiments 13, 14, and 19: The average percentage 

of participants making wise predictions in the Winner and Score + Winner conditions for 

low- versus high-incentives. 

 
 Prediction 

Quality 
Winner Only 
low incentive 

Winner Only 
high incentive 

Score + Winner 
low incentive 

Score + Winner 
high incentive 

Odds 70.1%a 70.0%ab 68.7%c 69.2%bc 

Records 79.2%b 80.7%a 77.7%c 79.3%b 

Accuracy 55.9%ab 56.0%ab 56.4%a 55.5%b 

Note. Each row shows the average percentage of participants making wise predictions in each condition 
across all games in all experiments that varied incentives for accuracy within-subjects. “Odds” indicates 
wise predictions defined as choosing the team favored by betting markets, “Records” indicates wise 
predictions defined as choosing the team that had won a greater percentage of games, and “Accuracy” 
indicates wise predictions defined as choosing the team that actually won the game. Within each row, 
means with different subscripts differ at p < .05 using within-subjects pairwise t-tests and the Holm-
Bonferroni correction for multiple comparisons (Holm, 1979).  
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Table A3 14. Participant-Level Analyses. Experiments 13, 14, and 19: The average 

percentage of wise predictions made by participants in the Winner and Score + Winner 

conditions for low- versus high-incentives. 

 
 Prediction 

Quality 
Winner Only 
low incentive 

Winner Only 
high incentive 

Score + Winner 
low incentive 

Score + Winner 
high incentive 

Odds 70.0% 69.7% 68.5% 68.7% 

Records 79.4% 80.8% 78.0% 79.4% 

Accuracy 55.3% 55.3% 56.0% 55.1% 
Note. Each row shows the average percentage of wise predictions made by participants in each condition 
across all games in all experiments that varied incentives for accuracy within-subjects. To account for both 
observed and unobserved differences between experiments, the means for each condition are mean-
centered by experiment and added to the overall average across all experiments and conditions. “Odds” 
indicates wise predictions defined as choosing the team favored by betting markets, “Records” indicates 
wise predictions defined as choosing the team that had won a greater percentage of games, and “Accuracy” 
indicates wise predictions defined as choosing the team that actually won the game. Within each row, 
means with different subscripts differ at p < .05 using between-subjects pairwise t-tests and the Holm-
Bonferroni correction for multiple comparisons (Holm, 1979).  

 

Table A3 15. Prediction-Level Analyses. Experiments 13, 14, and 19: The percentage of 

wise predictions made in the Winner and Score + Winner conditions for low- versus 

high-incentives. 

 
 Prediction 

Quality 
Winner 

low incentive 
Winner 

high incentive 
Score + Winner 
low incentive 

Score + Winner 
high incentive 

Odds 70.0% 69.9% 68.8% 69.0% 

Records 79.5%b 81.0%a 78.2%c 79.7%b 

Accuracy 55.4% 55.6% 56.0% 55.3% 
Note. Each row shows the percentage of making wise predictions made in each condition across all games 
in all experiments that varied incentives for accuracy within-subjects. To account for both observed and 
unobserved differences between games, the means for each condition are mean-centered by game and 
added to the overall average across all games and conditions. “Odds” indicates wise predictions defined as 
choosing the team favored by betting markets, “Records” indicates wise predictions defined as choosing the 
team that had won a greater percentage of games, and “Accuracy” indicates wise predictions defined as 
choosing the team that actually won the game. Within each row, means with different subscripts differ at p 
< .05 using within-subjects pairwise t-tests and the Holm-Bonferroni correction for multiple comparisons 
(Holm, 1979). 
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Are predictions worse because people think less globally or more locally? 

Only a single measure of overall global and local considerations was collected per 

person, so these results cannot be analyzed at the game-level or prediction-level. 

 

Do people who make detailed predictions use useful information less? 

The tables in this section report alternative analyses for the data presented in Tables 2 

and 3 in the main text showing the weights given to win/loss records and home field in 

winning team predictions. 

 

Table A3 16. Game-Level Analyses. Experiments 1-5, 7-11, and 13-19: The change in the 

percentage of  participants in the Winner condition choosing the team to win based on 

win/loss records and home field advantage. 

Coefficients Winner Only 
better record 0.355 *** 

home team 0.125 *** 

| record difference |  -0.587 *** 

better record * | record difference | 1.565 *** 

home team * | record difference | -0.451 *** 
Note. * p < .05, ** p < .01, *** p < .001. Weights are estimated using Ordinary Least Squares regression. 
Because each game generates two observations (one for each team) standard errors are clustered by game. 
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Table A3 17. Participant-Level Analyses. Experiments 1-5, 7-11, and 13-19: The average 

weights participants in the Winner condition gave to win/loss records and home field 

advantage. 

 Coefficients Winner Only 
better record 0.170 *** 

home team 0.136 *** 

| record difference |  -3.302 *** 

better record * | record difference | 2.522 *** 

home team * | record difference | -1.172 *** 
Note. * p < .05, ** p < .01, *** p < .001. Average marginal weights are estimated by using logistic 
regressions to estimate marginal weights for each participant in each experiment and averaging marginal 
weights across participants within conditions. Because each participant generates two observations per 
prediction (one for each team) standard errors for each participant’s weights are clustered by participant-
game. 

 

Table A3 18. Prediction-Level Analyses. Experiments 1-5, 7-11, and 13-19: The weights 

given to win/loss records and home field advantage in the Winner condition. 

 Coefficients Winner Only 
better record 0.265 *** 

home team 0.153 *** 

| record difference |  -1.544 *** 

better record * | record difference | 3.418 *** 

home team * | record difference | -0.448 *** 
Note. * p < .05, ** p < .01, *** p < .001. Marginal weights are estimated using logistic regression. Because 
each prediction generates two observations (one for each team) standard errors are clustered by experiment-
participant-game. 
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Table A3 19. Game-Level Analyses. Experiments 1-5, 7-11, and 13-19: Differences from 

the Winner condition in the change in the percentage of  participants choosing the team to 

win based on win/loss records and home field advantage. 

 Coefficients Score† Relevant Irrelevant 
better record -0.058 *** -0.029 *** -0.002  
home team -0.073 *** -0.053 *** 0.032 ** 

| record difference | -0.104 *** -0.034  0.064 *** 

better record * | record difference | 0.036  -0.112 ** -0.132 *** 

home team * | record difference | 0.181 *** 0.188 *** 0.004   

Number of participants in sample 5,537 1,958 1,541 

Number of games in sample 644 235 162 
Note. * p < .05, ** p < .01, *** p < .001. †Score includes all conditions where participants predicted the 
final score. Weights are estimated using Ordinary Least Squares regression. Because each game generates 
two observations (one for each team) standard errors are clustered by game. 

 

Table A3 20. Participant-Level Analyses. Experiments 1-5, 7-11, and 13-19: Differences 

from the Winner condition in the average weights given to win/loss records and home 

field advantage. 

 Coefficients Score† Relevant Irrelevant 
better record -0.058 *** -0.020  0.035  
home team -0.116 *** -0.079 *** 0.037  
| record difference | 0.149  0.237  -0.033  
better record * | record difference | -0.677 ** -0.513  -0.419  
home team * | record difference | 0.381 *** 0.036  0.448   

Number of participants in sample 5,537 1,958 1,541 

Number of games in sample 644 235 162 
Note. * p < .05, ** p < .01, *** p < .001. †Score includes all conditions where participants predicted the 
final score. Average marginal weights are estimated by using logistic regressions to estimate marginal 
weights for each participant in each experiment and averaging marginal weights across participants within 
conditions. Because each participant generates two observations per prediction (one for each team) 
standard errors for each participant’s weights are clustered by participant-game. 
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Table A3 21. Prediction-Level Analyses. Experiments 1-5, 7-11, and 13-19: Differences 

from the Winner condition in the weights given to win/loss records and home field 

advantage. 

Coefficients Score† Relevant Irrelevant 
better record -0.068 *** -0.018  0.037 * 

home team -0.120 *** -0.077 *** 0.056 ** 

| record difference | -0.009  0.221 * 0.281 *** 

better record * | record difference | -0.169 ** -0.583 *** -0.583 *** 

home team * | record difference | 0.231 *** 0.180  0.067   

Number of participants in sample 5,537 1,958 1,541 

Number of games in sample 644 235 162 
Note. * p < .05, ** p < .01, *** p < .001. †Score includes all conditions where participants predicted the 
final score. Marginal weights are estimated using logistic regression. Because each prediction generates 
two observations (one for each team) standard errors are clustered by experiment-participant-game. 
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Which games will show the effect? 

The tables in this section report alternative analyses for the data presented in Figure 8 

in the main text showing that making relevant detailed predictions had a considerably 

larger negative effect on prediction quality when both cues agreed (the home team had 

the better record) than when they disagreed (the visiting team had the better record). 

 

Table A3 22. Game-Level Analyses. Experiments 1-19: The percentage of participants 

making wise predictions by prediction condition and which team had the better record. 

 Visiting Team Has Better Record Home Team Has Better Record 

Prediction 
Quality 

Winner &  
Irrelevant 

Score & 
Relevant 

Winner &  
Irrelevant 

Score & 
Relevant 

Odds 55.5%c 54.7%d 79.0%a 74.6%b 

Records 72.4%c 72.8%c 81.4%a 76.4%b 

Accuracy 51.3% 51.2% 54.4% 54.0% 
Note. Each row shows the average percentage of participants making wise predictions in each condition 
across all games in all experiments. “Odds” indicates wise predictions defined as choosing the team 
favored by betting markets, “Records” indicates wise predictions defined as choosing the team that had 
won a greater percentage of games, and “Accuracy” indicates wise predictions defined as choosing the 
team that actually won the game. Within each row, means with different subscripts differ at p < .05 using 
within-subjects pairwise t-tests and the Holm-Bonferroni correction for multiple comparisons (Holm, 
1979).  
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Table A3 23. Participant-Level Analyses. Experiments 1-19: The average percentage of 

wise predictions made by participants by prediction condition and which team had the 

better record. 

 Visiting Team Has Better Record Home Team Has Better Record 

Prediction 
Quality 

Winner &  
Irrelevant 

Score & 
Relevant 

Winner &  
Irrelevant 

Score & 
Relevant 

Odds 55.5%c 54.8%d 78.2%a 74.2%b 

Records 73.1%c 73.6%c 80.7%a 75.9%b 

Accuracy 51.2% 51.2% 54.0% 53.7% 
Note. Each row shows the average percentage of wise predictions made by participants in each condition 
across all games in all experiments. To account for both observed and unobserved differences between 
experiments, the means for each condition are mean-centered by experiment and added to the overall 
average across all experiments and conditions. “Odds” indicates wise predictions defined as choosing the 
team favored by betting markets, “Records” indicates wise predictions defined as choosing the team that 
had won a greater percentage of games, and “Accuracy” indicates wise predictions defined as choosing the 
team that actually won the game. Within each row, means with different subscripts differ at p < .05 using 
between-subjects pairwise t-tests and the Holm-Bonferroni correction for multiple comparisons (Holm, 
1979).  

 

Table A3 24. Prediction-Level Analyses. Experiments 1-19: The percentage of wise 

predictions made by prediction condition and which team had the better record. 

 Visiting Team Has Better Record Home Team Has Better Record 

Prediction 
Quality 

Winner &  
Irrelevant 

Score & 
Relevant 

Winner &  
Irrelevant 

Score & 
Relevant 

Odds 55.5%c 54.8%d 79.3%a 75.8%b 

Records 73.0%c 73.4%c 81.6%a 77.4%b 

Accuracy 51.1% 51.1% 55.5% 55.1% 
Note. Each row shows the percentage of making wise predictions made in each condition across all games 
in all experiments. To account for both observed and unobserved differences between games, the means for 
each condition are mean-centered by game and added to the overall average across all games and 
conditions. “Odds” indicates wise predictions defined as choosing the team favored by betting markets, 
“Records” indicates wise predictions defined as choosing the team that had won a greater percentage of 
games, and “Accuracy” indicates wise predictions defined as choosing the team that actually won the game. 
Within each row, means with different subscripts differ at p < .05 using within-subjects pairwise t-tests and 
the Holm-Bonferroni correction for multiple comparisons (Holm, 1979). 
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