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Abstract
This dissertation is composed of two essays in the field of empirical industrial organization. They both
examine how network structures arise in and affect markets. I focus on two industries. The first one is the
airline industry, and the second one is the motion picture industry.

The first essay (chapter) studies airline networks. Airlines often match higher pas-

senger density with higher flight frequency. Meanwhile, a higher frequency reduces schedule delays, creating
better service quality. This suggests that, on airline networks, the value of a link to passengers increases with
the density on that link. I estimate a discrete choice model for U.S. airlines with endogenous link density. The
model allows me to account for changes in frequencies in counterfactual experiments. I derive implications for
airline pricing, market concentration and hub-and-spoke networks.

The second essay studies product entry in the presence of firm learning from the market outcomes of past
products. Focusing on the U.S. motion picture industry, I construct a network capturing the similarity
amongst the movies released in the last decades. I develop and estimate a model of how the network evolves.
Risk averse firms make go/no go decisions on candidate products that arrive over time and can be either novel
or similar to various previous products. I demonstrate that learning is an important factor in entry decisions
and provide insights on the innovation vs. imitation tradeoff. In particular, I find that one firm benefits
substantially from the learning by the other firms. I find that big-budget movies benefit more from imitation,
but small-budget movies favor novelty. This leads to interesting market dynamics that cannot be produced by
a model without learning.
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ABSTRACT

Yanhao Wei

Holger Sieg

This dissertation is composed of two essays in the field of empirical industrial orga-

nization. They both examine how network structures arise in and affect markets. I

focus on two industries. The first one is the airline industry, and the second one is

the motion picture industry.

The first essay (chapter) studies airline networks. Airlines often match higher pas-

senger density with higher flight frequency. Meanwhile, a higher frequency reduces

schedule delays, creating better service quality. This suggests that, on airline net-

works, the value of a link to passengers increases with the density on that link. I

estimate a discrete choice model for U.S. airlines with endogenous link density. The

model allows me to account for changes in frequencies in counterfactual experiments.

I derive implications for airline pricing, market concentration and hub-and-spoke net-

works.

The second essay studies product entry in the presence of firm learning from the

market outcomes of past products. Focusing on the U.S. motion picture industry, I

construct a network capturing the similarity amongst the movies released in the last

decades. I develop and estimate a model of how the network evolves. Risk-averse

firms make go/no go decisions on candidate products that arrive over time and can

be either novel or similar to various previous products. I demonstrate that learning

is an important factor in entry decisions and provide insights on the innovation vs.

imitation tradeoff. In particular, I find that one firm benefits substantially from

the learning by the other firms. I find that big-budget movies benefit more from

imitation, but small-budget movies favor novelty. This leads to interesting market

dynamics that cannot be produced by a model without learning.
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Preface

Within economics, the field of industrial organization is concerned with the struc-

ture of industries and the behavior of firms and individuals in these industries. In

terms of empirical work, the most active strand of empirical research into the 1980s

consisted of cross-industry regression analyses, which has its roots in the “structure-

conduct-performance” paradigm. Unfortunately, most studies in this literature lacked

convincing econometric strategies for the identification of causal effects. This con-

cern, together with the development of clearer theoretical foundations for analyzing

imperfect markets set the stage for a dramatic shift in the 1980s towards “New Em-

pirical Industrial Organization.” The new wave of research set out to understand the

institutional details of particular industries and to use this knowledge to write down

and estimate models that can be used for counterfactual analysis. The findings are

then generalized to other contexts, and the developed empirical methods can often

be applied in multiple settings.

The study of networks has emerged in diverse disciplines, for example, physics, biol-

ogy, computer science, and psychology, as a means of analyzing systems with inter-

dependent components. The earliest known paper in this field is the famous Seven

Bridges of Königsberg written by Euler in 1736, which led to the development of

graph theory. In the 1930s, psychologist Jacob Moreno used a network to represent

the friendship between schoolchildren, which laid the foundation for the study of social

networks. Recently, social networks have become the focus of widespread attention in

economics and business research. In contrast, the limited attention given to product



xi

networks is perhaps surprising, given their economic importance. Understanding the

networks of “things” is particularly relevant for industrial organization, whose basic

objects of analysis go beyond consumers to encompass products and firms.

In this dissertation, I attempt to help fill this gap. My dissertation is composed of two

essays (chapters). Each studies one specific industry, and pays particular attention

to how network structures arise in and affect the markets. The first essay studies

the airline industry, where the network structure is made of cities and the airways

that connect them. The second essay studies the motion picture industry, where

the network represents the similarity relations between movies. In the first essay,

the products that form the basis of the analysis are the “links” of the network. In

contrast, in the second essay, the products are the “nodes” of the network. In each

case, the products are interdependent and that interdependence is captured by the

network structure. For the airline network, I pay more attention to the implications

of the observed network structure, and use those implications to reason why the

observed network has emerged in the first place. For the movie network, I focus

on the mechanism behind the emergence of the network, and explicitly model its

formation dynamics.
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Chapter 1

Demand on Airline Networks

Abstract

Airlines often match higher passenger density with higher flight frequency. Mean-

while, a higher frequency reduces schedule delays, creating better service quality.

This suggests that, on airline networks, the value of a link to passengers increases

with the density on that link. I estimate a discrete choice model for the U.S. air-

lines with endogenous link density. The model allows me to account for changes in

frequencies in counterfactual experiments. I derive implications for airline pricing,

market concentration and hub-and-spoke networks.

1.1 Introduction

Airline carriers in the U.S. operate large-scale networks. In the network of a carrier,

cities are linked by direct flights. The flux of passengers, or the “link density,” is mostly

satisfied with an appropriate flight frequency.1 On the other hand, a higher frequency
1See, for example, Givoni and Rietveld (2009). They compare the two means to meet demand:

increasing aircraft size or frequency. They find that carriers give priority to frequency.
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reduces passengers’ schedule delays and creates better service quality.2 This suggests

that the value of a link to passengers, and more generally the value of the network,

increases with the number of passengers on that link or network. The implication

coincides with the more general notion of “network effects.”

There have been increasing discrete choice applications in the airline industry to

examine its demand and cost structure and conduct policy analysis (e.g., Berry et

al., 2006; Peters 2006; Armantier and Richard, 2008; Berry and Jia, 2010). However,

researchers seem to have missed the opportunity to study in greater detail the relation

between demand and link density. For example, because any decrease in demand

can reinforce itself by lowering densities, the eventual impact of a higher price on

demand should be larger than that in a standard model without network effects.

This has implications on airline pricing and should affect the cost estimates in the

BLP framework (Berry et al., 1995). More importantly, in a counterfactual analysis,

one should probably account for the changes in frequencies and consequent impact

on demand, instead of treating frequency as a fixed product characteristic.

In Section 1.2 of this chapter, I develop a discrete choice model that incorporates the

relation between density and demand. In the model, potential passengers in a city-

pair market choose which route to fly. A route may consist of one or more segments.

In a carrier’s network, a link can be used as a segment for multiple routes in different

markets, and the link density equals the aggregate demand for these routes. On the

other hand, the demand for a route is affected by the densities of its segment(s).

For example, averse to empty planes, US Airways probably sets the flight frequency

between Philadelphia and Los Angeles based on how many people actually fly on

the link. Meanwhile, a passenger is more willing to fly on the link if the frequency

is higher, making at least a part of her itinerary more smooth. Given this two-way

relation, I model demand naturally as a fixed point.
2In the transportation literature, the demand impact of flight frequency has been well known

as the “S-curve” effect. For more recent studies, see Wei and Hansen (2005) and Hansen and Liu
(2015).
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In Section 1.3 and 1.4, I estimate the model with data from the Airline Origin and

Destination Survey (DB1B). The endogenous variables include density as well as price.

Following previous applications, I regard the network structure as exogenous and

construct instruments from it.3 On the demand side, the estimation is conceptually

similar to the estimation of peer effects through social networks (Bramoullé et al.,

2009). It makes use of the hub-and-spoke structure of airline networks to resolve

the potential “reflection” problem (Manski, 1993). On the cost side, marginal costs

are inferred from the assumption of Bertrand-Nash equilibrium under the fixed-point

formulation of demand.

The estimates indicate significant effects of link density on demand. This can be seen

from the estimated price elasticities. A one percent increase in the overall price level is

estimated to cause 1.19 percent initial decrease in the aggregate demand, close to what

was found in previous studies. However, subsequent reductions in density will have

further negative impact on demand. Taking it into account, the eventual decrease

in the aggregate demand amounts to 1.89 percent. This higher price elasticity leads

to higher marginal cost estimates. I compare the estimates with accounting numbers

and find them reflective of the low profitability of the industry.

The model provides an opportunity to examine counterfactual experiments while ac-

counting for changes in the flight frequencies. Meanwhile, it introduces some compu-

tational challenges because the densities are endogenous and all the city-pair markets

are tied together by the network structure. In Section 1.5, I first address these chal-

lenges, then examine two counterfactual questions. First, what would happen had a

low-cost carrier like Southwest exited the market? The result suggests a particularly

strong association with market concentration and profitability, thanks to network ef-

fects. Second, what would happen if the network of a large carrier were separated in

to two? The result suggests that a hub network works substantially better at a larger

scale due to the higher densities that it creates. This could help us better understand
3I acknowledge that the instruments could be invalid in a “larger” model where carriers make

network choices based on unobservables. See Section 1.3.2 for more discussions.
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how hubbing emerged as a dominant feature of airline networks. At the end, I also

discuss the potential use of the model for merger simulations.

While the analysis is focused on airlines, the empirical framework in this chapter

could be applicable to other industries with similar properties. For example, in retail

chains, customers find it more worthwhile to visit a nearby store if it offers more

items. On the other hand, the variety in the store likely depends on the size of the

customer base from the nearby zip code areas. Such structure should have important

implications on how retailers choose prices and store locations.

1.2 Model

The conceptual framework has carriers simultaneously set prices and flight frequen-

cies, given long-run decisions such as market entry and hub locations. One could,

perhaps, argue for a model with two stages, where carriers first set frequencies and

then compete on prices. However, it should be noted that this is not required by the

institutional setup: “airlines have great flexibility, even in the short term, with respect

to prices, capacities, and schedules” (Norman and Strandenes, 1994). It is also com-

mon in the transportation literature to model prices and frequencies as simultaneous

decisions.4

Underlying my model is the assumption that carriers always adjust flight frequencies

to match densities. The purpose is to allow for a tractable model within the stan-

dard empirical framework for analyzing differentiated goods markets. It could give

rise to richer carrier behaviors if frequency is modeled as an explicit choice variable,

particularly in the two-stage game. However, the model would become less tractable
4For example, Dobson and Lederer (1993) look for a Nash equilibrium in which each carriers

optimize flight schedule and route prices against the choices of competitors. Alder (2001) studies a
game in which carriers choose networks in the 1st stage and compete on price, frequency and aircraft
size in the 2nd stage. Abdelghany and Abdelghany (2010) distinguish between the strategic, planning
and operation layers of airline decisions. While the strategic layer includes long-run decisions such
as company expansion and hub locations, the planning layer includes flight schedule development
and fare levels in each market.
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1

2

3

4

5

6

7

Notes: The nodes represent the cities. The solid lines represent the links of carrier 1. The dashed
lines represent the links of carrier 2.

Figure 1.1: An Example of Network.

because of the capacity constraints imposed by frequency choices. I offer more details

on this in the appendix.

1.2.1 Links and Routes

In an airline network, a link represents direct flights by a carrier to connect two

cities. Accordingly, a link is identified by a carrier and a pair of cities. I denote a link

generically by g . Links are considered un-directed as it is rare for a carrier to serve

only one direction between two cities (for example, flights from Philadelphia to Los

Angeles but not the reverse). Figure 1.1 provides a simple example of two carriers

serving seven cities, where the links of one carrier are drawn in solid lines, and the

links of the other carrier are drawn in dashed lines.

Not all city pairs are connected with direct flights. In many cases passengers have

to fly through multiple links to arrive at the destination. In the example of Figure

1.1, for a passenger to fly between city 2 and 4, she has to take the first carrier’s

one-stop route that makes a connection at city 1. More generally, a route j is a set of

links {g , g ′, ...} that carry passengers between two cities. These links are often called
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the segments of the route. A nonstop route consists of a single link, while a one-stop

route is made of two links that share a common end. Routes are un-directed, as with

links.

In general, the segments of a route can be operated by different carriers if there is

a code-share agreement. However, in the data, such routes carried only a bit more

than 2 percent of the passengers in the U.S. For simplicity, I do not consider these

routes in this essay. So routes are carrier-specific. It is also rare to see passengers

make detours. Accordingly, I do not consider routes that make more than one stop

or whose length is more than 2.5 times the point-to-point distance. In Figure 1.1,

such routes include the one flying between city 3 and 4 and the one between city 2

and 5 that makes a connection at city 1. Conceptually, it is not difficult to extend

the model here to include code-shared or multi-stop routes.

Given the demand for each route, the flow on a link is simply the sum of the passengers

across the routes that use the link as a segment (because in my analysis the time frame

is fixed, flow and density are used interchangeably). Formally, let n denote the total

number of routes of all carriers and D j denote the demand for route j . Given the

network structure, the flow on g is

Fg (D) = ∑n
j=1 D j ·1{g ∈ j }, (1.2.1)

where g ∈ j denotes that link g is a segment of j . Remember that both route and

links are carrier-specific, so 1{g ∈ j } excludes any route that does not belong to the

carrier operating g . In the example of Figure 1.1, the flow on the link of the second

carrier between city 1 and 2 sums the demand across two routes: i) the carrier’s

nonstop route between city 1 and 2, and ii) the carrier’s one-stop route between city

1 and 3.
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1.2.2 Demand

Fix a city-pair market m. The products in the market are the routes that serve the

passengers between the two cities. They are differentiated by travel length, price,

frequency, and so forth.5 In the fashion of discrete choice models (McFadden 1981),

the utility of taking route j for individual i is specified as

ui j =β′x j −αp j + f j +ξ j +εi j . (1.2.2)

The first term x j is a vector of observed characteristics of the route, such as the

travel distance and whether it is non-stop route; p j is the price; ξ j is a route-specific

fixed effect that captures econometrician-unobserved characteristics of the route; f j

measures the segment flow(s) on route j , and captures the consumer utility derived

from flight frequency. For a nonstop route consisting of a single link g , I specify that

f j = θ1 log
[
Fg (D)

]
, where j = {g }, (1.2.3)

where Fg , as defined in (1.2.1), is the flow on link g . The logarithm specification is

motivated by the diminishing rate of reduction in schedule delays as flight frequency

increases: the average interval between two flights changes very little when the fre-

quency is increased from 10 to 11 flights a day. Alternatively, one can think of a route

as the nest of its flights as in nested logit models. In this way, θ1 is equivalent to the

“log-sum” parameter.

As to a one-stop route, the densities on both segments matter. One possible specifi-

cation is a Cobb-Douglas function inside the log term:

f j = θ2 log
√

Fg (D) ·Fg ′(D), where j = {g , g ′}. (1.2.4)

5In some previous discrete-choice applications, markets have been defined as ordered city pairs
and products are the directed routes or round-trip routes. While conceptually it is not difficult to
apply such definitions in my model, the increased number of products will render the computation
infeasible.
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In this way, the smaller density matters more than the larger density. This is intuitive

because the lower-density segment is more likely the bottleneck of the route. Also

notice that in general θ2 6= θ1 . One probably expects that θ2 > θ1 because for one-stop

routes, flight frequency also affects the waiting time at the connection.

It is possible to use a more flexible functional form to calibrate the relative importance

of the larger vs. smaller density. For example, inside the log term, one can use the

CES production function:
(

1
2 Fσ

g + 1
2 Fσ

g ′
)1/σ

. As σ moves from −∞ to +∞, it morphs

from min{Fg ,Fg ′} to max{Fg ,Fg ′}. At σ = 1, it reduces to 1
2 Fg + 1

2 Fg ′ . At σ = 0, it

becomes Cobb-Douglas. As we will see later, the point estimate of σ turns out to be

close to zero, so (1.2.4) is a good approximation for the range of densities in the data.

In the model I let density enter the utility directly. A slightly different approach is to

estimate a relation between density and frequency. This way, density enters the utility

indirectly through frequency. However, this seems unnecessary because what matters

in the end is how density affects demand. Moreover, apart from flight frequency, f

could capture other factors related to density. For example, to a lesser degree, carriers

also increase aircraft size to meet higher density (Givoni and Rietveld, 2009); larger

aircrafts are usually more comfortable.

A distributional assumption on εi j is required to complete the demand model. As

in Berry, Carnall and Spiller (hereafter BCS) (2006), I let εi j follow the distribution

necessary to generate the nested logit probabilities where all the routes in the market

are nested against an “outside option” of not flying. Given the network structure,

denote the non-idiosyncratic part of ui j by v j (p j ,ξ j ,D) ≡β′x j −αp j + f j (D ;θ,σ)+ξ j .

The demand for route j is given by

Ψ j (p,ξ,D) = Mm · Sλ

1+Sλ
· ev j (p j ,ξ j ,D)/λ

S
, (1.2.5)

where Mm is the market size, λ is the logsum parameter, and S is a summation term
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across all the routes in market m:

S ≡ ∑
k∈m evk (pk ,ξk ,D)/λ,

Following BCS, market size is defined as the geometric mean of the population of the

two cities in the market.

Notice that the demand vector D enters as an input of the logit model: Ψ j (p,ξ,D).

This reflects network effects: the more people fly on a network, the more valuable

the network becomes to consumers. The usual way of modeling network effects is

using fixed points. Accordingly, I say that D is the demand predicted by the model if

D j =Ψ j (p,ξ,D) and D j > 0 for j = 1, ...,n. In other words, it is a fixed point Ψ(p,ξ, ·).6

The city-pair markets are no longer independent but tied together by the network

structure. To see this, it is useful to think about a price drop on a non-stop route

j . First off, the market share for j will increase, leading to a higher flow on the

associated link. This gives not only j further share increases but also the link-sharing

one-stop routes, which are in different markets, larger shares in those markets. In

general, the impact goes on and spreads over the entire network. This mechanism is

illustrated in Figure 1.2 with US Airways’ network. It starts with a price drop on

the link between Chicago and Atlanta. Each plot shows how impact transmits from

a link to another because they are the segments of a common one-stop route.7 It is

seen that almost the entire network becomes affected after three steps.
6I discuss the uniqueness of the fixed point in the appendix. Under certain condition on θ, an

unique fixed point is guaranteed. In practice, a fixed point is found by iterating Ψ. With the
estimated parameter values, the iteration always converges and I have not encountered cases where
different starting points lead to different limits. In the remaining discussion of the paper, it is
assumed that the fixed point is unique.

7Competition among routes is ignored for illustration purpose.
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Notes: The plots display the sequence of impact originiated from the density change on the link
between Chicago and Atlanta on US Airways’ network. The impacted links are shown with a
darker color. The axes are longitudes and latitudes. Competition effects are omitted.

Figure 1.2: The Spread of the Impact from a Single Link
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1.2.3 Supply

Given the nature of airline operations, costs should be incurred mostly at the link

level. Following BCS, I use the below specification for the marginal cost on route j :

mc j =
∑

g∈ j C (zg ,Fg ;γ)+ω j , (1.2.6)

where zg is a vector of the observed characteristics of g , and C (·) can be thought

as the marginal cost on link g . The last term ω j is a route-specific fixed effect that

captures unobserved determinants of marginal cost.

As to what enters C , the link length is probably the most important factor: a longer

flight means more fuel consumption and more payment to the pilots. Of course, there

are factors not related to flight distance, such as takeoff fuel consumption and airport

landing fees. These can be captured by an intercept term. Another possible factor

is the flow Fg . Economies of density (Caves et al., 1984) suggests that marginal

cost is decreasing in density, or ∂C /∂Fg < 0. Again following BCS, I include in C a

polynomial of Fg to estimate the degree of economies of density.

To complete the model, I assume a Nash-Bertrand equilibrium in price. The equilib-

rium can be characterized by a set of first-order conditions. Let D(p,ξ) be the fixed

point of Ψ(p,ξ, ·). For each route j that belongs to some carrier c, denoted as j ∈ c,

we have

D j (p,ξ)+ ∑
k∈c

(pk −mck )
∂Dk (p,ξ)

∂p j
= 0, where j ∈ c. (1.2.7)

Notice in particular that the summation is across all the routes of carrier c, not just

those in the same market with j . For example, in the network of US Airways, about

half of the density on the Chicago-Phoenix link comes from the direct route between

the two cities, with the other half made of connecting passengers on over a hundred

one-stop routes serving different markets. If US Airways invokes a price rise on that

direct route, the decreased density on the Chicago-Phoenix link is going to impact

those one-stop routes right away.
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1.3 Estimation

The estimation builds on the general framework of Berry (1994), with two important

differences. First, flow is an endogenous variable, so it needs to be instrumented aside

from price. Second, demand is modeled as a fixed point, which requires adjustment

in the way that we infer marginal costs from the Nash-Bertrand assumption. Below

I outline the estimation procedure. The demand and supply side are estimated se-

quentially. In the appendix, I provide some monte carlo results, which suggest that

the estimator is well behaved in finite samples.

1.3.1 Estimation Algorithm

In the data one observes the network structure, price p and demand D. Under the

nested logit model, Berry (1994) provides a closed form expression for the product

quality, v j , in terms of the logsum parameter λ and the observed demand. Using that

expression, one can re-write the utility specification (1.2.2) in the following way:

log

(
D j

Mm −∑
k∈m Dk

)
= (1−λ) log

(
D j∑

k∈m Dk

)
+β′x j −αp j + f j (D ;θ,σ)+ξ j . (1.3.1)

The demand side can be estimated by regressing this equation. The regression is

linear if σ= 0. On the right hand side, there are three terms that are endogenous in

the model: log(D j /
∑

k∈m Dk ), p j and f j . They need to be instrumented. I give the

details about the instruments in the next subsection.

Notice that with ξ chosen to satisfy (1.3.1), one can be assured that the observed

D is a fixed point of Ψ(p,ξ, ·). Next, to estimate the supply side, the first step is

to back out the marginal costs using the Bertrand-Nash assumption. The first-order

conditions (1.2.7) in matrix form is

D +∆(p −mc) = 0, (1.3.2)
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where matrix ∆ is defined in the following way:

∆ j k =


∂Dk (p,ξ)/∂p j if k, j ∈ c for some c

0 otherwise

To compute ∂Dk /∂p j , recall that the demand function D(p,ξ) is a fixed point of

Ψ(p,ξ, ·). Provided that the usual invertibility condition is satisfied, the implicit

function theorem says that D(p,ξ) is locally unique in p and

∂D(p,ξ)

∂p
=

(
I − ∂Ψ(p,ξ,D)

∂D

)−1 ∂Ψ(p,ξ,D)

∂p
. (1.3.3)

It is not difficult to compute ∂Ψ/∂D and ∂Ψ/∂p numerically once the demand side

parameters are estimated from (1.3.1). This method is fast for small networks. How-

ever, for a large and well-connected network such as the one in the data, the size of

(I −∂Ψ/∂D) is so large that the inversion becomes very difficult.

An alternative method is direct numerical differentiation. This boils down to com-

puting the demand D(p ′,ξ) at a perturbed price p ′, which can be found by iterating

Ψ(p ′,ξ, ·). A natural starting point of the iteration is the observed demand vector.8 I

compared the two methods on several small networks. They produced the identical

results up to numerical errors. The main advantage of direct differentiation is that it

does not suffer from the curse of inversion so is feasible for large networks.

Once ∆ is computed, the marginal costs can be backed out as

mc = p +∆−1D.

Notice that ∆ can be arranged into a block diagonal matrix where each block corre-

sponds to a carrier. The inversion is then carried out block by block. With the mc

computed, the supply side estimation amounts to a regression of the marginal cost
8I tried using other starting points, but have not encountered any case where the iteration con-

verges to a different fixed point. The convergence of the iteration is discussed in the appendix.
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Notes: The nodes represent the cities; lines represent the links of a carrier. This picture is the same
as Figure 1.1 except that it leaves out the second carrier.

Figure 1.3: Instruments and Identification.

equation (1.2.6). Here again I need to instrument Fg because it is an endogenous

variable.

Finally, it is worthwhile to note that if one does not model D as a fixed point, treating

f j as an unchanging quantity given by the data, then equation (1.3.3) would simply

be
∂D(p,ξ)

∂p
= ∂Ψ(p,ξ,D)

∂p
, (1.3.4)

which is how we normally differentiate the demand function in logit models. In other

words, the term (I −∂Ψ/∂D)−1 in (1.3.3) is where the notion of fixed point enters the

estimation.

1.3.2 Instruments and Identification

What can be used as instruments hinges on what are exogenous in the model. Since

the network structure has been treated as an exogenous primitive of the model, I

derive instruments from it. These include, for example, the number of routes in a

market as well as the number of routes that share a particular link. The conceptual

framework is the same as in BCS and Berry and Jia (2010), where the network



15

structure is treated as a long term choice, not subject to the unobservable shocks

ξ or ω. In studies of airline entry, researchers have considered models where the

shocks are unknown to carriers before entry (Aguirregabiria and Ho, 2011), as well

as models where the shocks could potentially affect entry decisions (Ciliberto and

Williams, 2014). In the later case, the network structure is no longer a valid source

of instruments, and one is required to exploit other primitives.

More specifically, for the demand side regression (1.3.1), the number of the routes in

the market is used as an instrument to estimate λ. Basically, λ is identified from the

changes in the total share of the routes in a market as the number of routes varies

across markets. One can think of the extreme case λ→ 0, where the total share of

the routes in a market remains fixed regardless of the number of routes.

As to price, BLP suggests exploiting measures of market-level competitiveness. The

more competitive a market is, the lower the prices are in a Bertrand-Nash equilibrium.

Accordingly, I instrument the price on a route with the number of carriers in the

market and the number of rivals’ routes.

As to density, I exploit the “centrality” of links in a network. Specifically, for link g ,

let F IV
g be the number of possible routes that include g as a segment. This instrument

is relevant because a heavily utilized link is likely to bear a large flow. Figure 1.3

reproduces the example in Figure 1.1, but leaves out the second carrier for the sake of

illustration. Let us compare two links: one between city 1 and 2, the other between 1

and 5. There are seven routes using the first link and only four using the second link

(here for both links we count the one-stop route that serves city 2 and 5 and makes

a connection at 1, though it makes quite a detour and is unlikely to be flown). Not

considering competition or variations in population, it is clear that one should expect

more passengers on the first link.

To better see how this instrument helps identify θ, let us continue with the example.

Consider the two non-stop routes corresponding to these two links, which are similar

in length. If θ1 = 0, one would expect similar demand on the two routes. However, if
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θ1 > 0, there is probably a higher demand for the route between 1 and 2 because the

density on the associated link is expected to be higher. The same argument applies

to one-stop routes. For example, we may compare the route that serves 4 and 5 with

a connection at 1, and the route that serves 1 and 6 with a connection at 2. If θ2 = 0,

one would expect similar demand on these two routes. However, if θ2 > 0, there is

probably a higher demand for the second route. Notice, most importantly, how we

have arrived at these conclusions by only looking at the network structure, without

any information about ξ or ω.

Finally, It is worthwhile to point out that the identification requires that some links

are flown by multiple routes, otherwise we would have a “reflection” problem as in

Manski (1993). To illustrate, consider a purely point-to-point network, in which

there are no connecting routes. Because D j and Fg coincide for each route j = {g },

the estimation essentially would regress the demand on itself. Fortunately, multi-

hub networks provide abundant asymmetries between demand and density. In this

regard, the demand side estimation in this chapter is conceptually similar to the

work by Bramoullé et al. (2009) on peer effects. They show how social network

structure can help resolve the reflection problem and be used to derive instruments

for estimation. Similar techniques have also been seen in the literature of spatial

econometrics (Anselin et al. 2004).

1.4 Data and Results

1.4.1 Data

The Airline Origin and Destination Survey (DB1B) is a 10% sample of airline tickets

from reporting carriers in the U.S. collected by the Bureau of Transportation Statis-

tics. I use the DB1B-coupon and the DB1B-market data for the forth quarter of 2012

and the first quarter of 2013. Some of the carriers were contracting only: they did

not sell tickets to passengers but only operated flights for the major carriers. The
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Table 1.1: Summary Statistics of the Networks of the Five Largest Carriers

# Links # Routes # Markets
served

Total flow
(million)

Total
passengers
(million)

Southwest 573 9,070 1,721 51.8 42.6
Delta 422 10,097 3,728 43.6 31.9
United 465 11,076 3,877 31.2 24.2
American 237 5,074 2,967 26.4 20.2
US Airways 258 5,233 2,803 27.8 19.4

Notes: The networks are restricted to the top 100 cities. Compiled from DB1B data for 2012Q4 and
2013Q1.

flights of these carriers are incorporated into the carriers for which they operate.9

For estimation, the network includes the 100 most-visited cities and the twelve largest

carriers. This includes a bit more than 87 percent of the passengers in the DB1B data.

I regard a link as existing in the network iff no less than 360 passengers were observed

in the DB1B data. This roughly corresponds to the number of passengers that would

be carried on a weekly flight by a medium-size jet. Price p j is the average fare

observed on route j . I eliminate tickets with unusually low or high fares as they may

represent coding errors. A route is included only if it there is at least one passenger

observed in the data.10 Intra-Hawaii routes are excluded. In the end, my sample

includes 44,121 routes and accounts for about 81 percent of the passengers in the

DB1B data.

The vector of route characteristics, x j , includes an intercept, the carrier dummies,

the market distance (i.e., the point-to-point distance between the two cities in the

9My estimation restricts attention to the U.S. domestic market. I acknowledge that a considerable
proportion of the operations of some carriers are international. However world-wide survey data on
air-travel itineraries is not available.

10There is no passenger observed on about 12 percent of the routes that can be constructed
from the network. Unfortunately, the BLP framework does not allow products with zero observed
market share. Gandhi et al. (2015) suggest a simple method to rectify this problem. However,
applying their method here is not straightforward, because price is unknown on a route with no
observed passengers. Following the practice in the airline literature, I simply exclude these routes
from estimation.
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Table 1.2: Summary Statistics

Mean SD Min Max

Route level (x j , p j )

Market distance (1,000 miles) 1.37 0.84 0.06 5.97
Tourism dummy 2.88 0.45 0 1
Hub dummy 0.17 0.38 0 1
One-stop dummy 0.94 0.23 0 1
Extra route length (1,000 miles) 0.35 0.36 0 3.44
Price ($100) 2.62 1.02 0.03 9.96

Link level (zg ,Fg )

Length (1,000 miles) 0.98 0.69 0.06 4.96
Density (100,000 passengers) 0.92 1.26 0.003 25.9

Notes: There are 44,121 routes and 2,419 links. Market distance is the point-to-point distance
(great-circle) between the two cities in the market. It coincides with the length of a non-stop route
in the market. Extra route length is the difference between route length and market distance.

market), the square of the market distance, a dummy indicating whether either city in

the market is a tourist destination, a dummy for one-stop route, the difference between

the route length and the market distance, and finally, in the case that the operator

is a legacy carrier, a dummy indicating whether either city in the market is a hub of

the carrier. Tourist destinations include Atlantic City, Charlotte Amalie, Las Vegas,

New Orleans, and places in Florida and Hawaii. The vector of link characteristics,

zg , includes the carrier dummies and the length of the link.

Table 1.1 displays some summary statistics for the networks of the five major carriers.

Southwest Airlines, being the largest carrier in terms of the number of links, serves

the fewest markets. This is because compared with the other carriers, it operates a

more point-to-point rather than multi-hub network. Table 1.2 provides the summary

statistics for some of the regression variables.
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1.4.2 Parameter Estimates

1.4.2.1 Demand Side

Table 1.3 displays the estimates for the demand side parameters. In the benchmark

case, the logsum parameter is estimated to be 0.56, which is not far from the esti-

mates in BCS (0.605) or Peters (2006) (0.595). Next, notice that air-travel demand is

inverted U-shaped in market distance. Short-haul flights compete with ground trans-

portation, which become worse substitutes as distance increases, so demand initially

grows with distance. As distance increases further, the gravity model kicks in and

demand starts to decrease.

The price coefficient is estimated to be 0.65. This is somewhat larger than that in

BCS (0.46), but their estimate was based on the data from the much earlier year

of 1985. The implied aggregate price elasticity, which is the percentage change in

total demand when all products’ prices increase by 1 percent, is 1.19 without taking

into account decreases in density and the subsequent effects on demand.11 One can

compare this to Gillen et. al. (2003) that conducted a survey of cross-sectional studies

on the the elasticity of air-travel demand. The estimates ranged from 0.181 to 2.01,

with a median of 1.33. So my estimate seems reasonable.

The effects of density are significant in both statistical and economic sense. At the

estimated level, the aggregate price elasticity amounts to 1.89, instead of 1.19, when

taking into account how decreases in density would lead to further decreases in de-

mand.12 Also notice that density has a larger impact on one-stop routes than non-stop

routes (θ2 = 0.49 vs θ1 = 0.33). This is intuitive because on a one-stop route, flight

frequency affects not only schedule delays at the arrival and departure but also the

waiting time at the connection.

It is possible to test for weak instruments. In the demand regression equation there are
11Formally, this considers how much

∑n
j=1Ψ j (κ ·p,ξ,D) changes when κ increases from 1 to 1.01.

12Formally, this considers how much
∑n

j=1 D j (κ · p,ξ) changes when κ increases from 1 to 1.01,
where D(κ ·p,ξ) is the fixed point of Ψ(κ ·p,ξ, ·).
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Table 1.3: Demand-Side Parameter Estimates

Benchmark No IV CES

Carrier dummies Yes Yes Yes
Intercept -2.83 (.09) -3.33 (.03) -2.82 (.10)
Market distance 0.28 (.02) 0.28 (.02) 0.28 (.03)
Market distance2 -0.031 (.006) -0.074 (.006) -0.032 (.007)
Tourism dummy 0.32 (.01) 0.37 (.01) 0.32 (.01)

Hub dummy 0.07 (.02) -0.17 (.02) 0.05 (.02)
One-stop dummy -1.98 (.03) -2.17 (.02) -1.97 (.03)
Extra route length -1.09 (.04) -1.29 (.02) -1.08 (.04)
Non-stop flow, θ1 0.33 (.02) 0.60 (.01) 0.34 (.02)
One-stop flow, θ2 0.49 (.01) 0.75 (.01) 0.50 (.01)
CES, σ 0 0 0.10 (.27)
Price, α 0.65 (.05) 0.19 (.01) 0.64 (.05)

Logsum, λ 0.56 (.01) 0.55 (.01) 0.57 (.01)

Cragg-Donald statistic 479.3 - -
Function value 10.3 - 9.46

Notes: The second column differs from the benchmark case by not instrumenting for price or flow.
The third column differs from the benchmark case by using the more flexible CES specification.
Standard errors are constructed by bootstrapping (see Appendix).
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three endogenous regressors: log within-nest share, price, and flow. When there are

multiple endogenous regressors, one uses the Cragg-Donald statistic, a generalization

of the first stage F -statistic (see Stock, Wright and Yogo, 2002). It is reported in

Table 1.3 for the benchmark case, and indicates clearly that the instruments are not

weak. The table also reports the objective function value. The J test rejects the

over-identifying restrictions. However, since the model is obviously stylized and the

sample is large, it should not be surprising that I could formally reject the model.

As a comparison with the benchmark case, the second column of Table 1.3 displays

the estimates without instrumenting for either price or flow. Notice first that the price

coefficient α is underestimated. This is consistent with a Bertrand-Nash equilibrium

in which p j and ξ j tend to be positively correlated. Second, notice that θ1 and θ2 are

overestimated. This is intuitive because the demand for j is increasing in ξ j , which

creates a positive correlation between ξ j the segment densities on j .

In the third column of Table 1.3, I explore the possibility that the segment densities

on a one-stop route may enter the utility in ways other than that specified in (1.2.4).

The more flexible CES functional form is used. The point estimate of the substitution

parameter σ is 0.10. For the range of densities in the data, this is very close to the

Cobb-Douglas specification used in the benchmark case. Given the size of the boot-

strapped standard error for σ, one probably should be concerned with the strength

of the instruments to identify σ. Unfortunately, to my knowledge, there is not yet an

established test for circumstances where a parameter enters regression non-linearly.

Finally, Table 1.5 displays, in the first column, the coefficient estimates of the car-

rier dummies in the benchmark case. On average, passengers find it more pleasant

to fly with the legacy carriers than with Southwest, which is not surprising given

Southwest’s status as a low-cost carrier.
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Table 1.4: Cost-Side Parameter Estimates

Benchmark No FP Density Density IV

Carrier dummies Yes Yes Yes Yes
Intercept 0.75 (.02) 0.27 (.05) 0.83 (.03) 0.69 (.12)
Link Length 0.45 (.01) 0.43 (.01) 0.45 (.01) 0.44 (.04)
Flow Density - - -0.10 (.02) -0.050 (.28)
Flow Density2 - - 0.014 (.005) 0.013 (.13)
Flow Density3 - - -0.0004 (.0003) 0.00059 (.011)

R2 0.300 0.264 0.305 -
Cragg-Donald stat . - - - 0.17

Function value - - - 0

Notes: The second column differs from the benchmark case by not imposing fixed point on
demand. The third and forth column differ from the benchmark by including a polynomial of flow
density. The flows are instrumented in the forth but not the third column. All columns are based
on the benchmark estimates of the demand parameters. Standard errors are constructed by
bootstrapping (see Appendix).

Table 1.5: Dummy Estimates for Major Carriers

Demand Side Cost Side

Southwest 0 0
Delta 0.20 (.02) 0.13 (.02)
United 0.32 (.03) 0.31 (.02)
American Airlines 0.14 (.02) 0.11 (.02)
US Airways 0.42 (.03) 0.24 (.02)

Notes: The coefficients for Southwest dummy of are set to zero. These estimates correspond to the
benchmark cases in Table 1.3 and 1.4. Standard errors are constructed by bootstrapping (see
Appendix).
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1.4.2.2 Supply Side

Table 1.4 presents the cost side parameter estimates. Recall that the demand and

supply are estimated sequentially. The numbers in Table 1.4 are all based on the

benchmark estimates on the demand side. The standard errors are bootstrapped

and take into account the errors from the demand estimation (see Appendix for

details). By the specification, these estimates measure the marginal cost at the link

level. According to the benchmark case, there is an estimated $75 fixed marginal cost

regardless of the length of the flight; for each additional mile, it is estimated that the

marginal cost increases by 4.5 cents.

The second column displays the estimates without imposing the fixed point demand.

As pointed in Section 1.3, this boils down to differentiating the demand function as in

(1.3.4) instead of (1.3.3). The fixed marginal cost is estimated to be a much smaller

$27. This is because the price elasticities are higher when we account for network

effects through the fixed point demand. With higher elasticities, the marginal costs

that rationalize the observed prices must be higher.

One can compare the estimated costs with accounting numbers. First off, it is ac-

knowledged that accounting practices generally are not geared toward reporting the

economic notion of marginal cost. Nevertheless they still can be and have been used

to complement econometric analysis (Nevo 2001, Einav and Levin 2010). Because the

estimation relies on the domestic data, here I focus on Southwest, whose operations

were almost exclusively domestic.13 According to the filing of Southwest for 2013Q1,

it flew 23.7 billion passenger miles and incurred $4 billion operation costs, with $2.1

billion spent on fuel, maintenance, aircraft rentals and landing fees, and the rest on

salary, depreciation and “other operation expenses.” This implies a CPM (costs per

passenger mile) of 8.9∼16.9 cents. The CPM based on the benchmark estimates in

Table 1.4 is 12.7 cents, which seems reasonable. The CPM based on the estimates in
13The quarterly filings are available at http://investors.southwest.com/financials/quarterly-

results/. Last access: Feb. 16, 2016.
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the second column is only 5.8 cents, which seems a bit too small.14

To explore the possibility of economies of density, in the third column I add a poly-

nomial of density to the regression. The first two coefficients are statistically signifi-

cant. At the point estimates, the shape of the polynomial is similar to that in BCS

at medium flight distance. The derivative of marginal cost with respect to density

is negative on 98 percent of the links in the data. However, comparing the R2 with

that in the benchmark case, it is seen that density provides very little additional

explanation to the variation in marginal cost.

Because density is endogenous, it should be instrumented and this is done in the

forth column. The estimates of the polynomial coefficients are higher than those in

the third column. This is intuitive because a higher ω j often forces a higher price,

leading to a negative correlation between ω j and the segment densities on j . At the

point estimates, the derivative of marginal cost with respect to density is negative on

86 percent of the links in the data. The maximum cost reduction is four and a half

cents, achieved around a density of 170 thousand passengers (in two quarters).

The Cragg-Donald statistic indicates that there is not enough strength of the instru-

ments to separately identify the coefficients of the polynomial.15 This is also reflected

in the size of the bootstrapped standard errors. One way to solve this problem is re-

moving the higher-order terms in the polynomial. However, as argued in BCS (2006),

such a specification is unlikely flexible enough to capture the complicated workings

of economies of density.16 So for the counterfactual experiments, I fall back on the

benchmark model and focus exclusively on the demand side effects of density. Of

course, the results must be interpreted accordingly.

The estimates of the carrier dummies for the benchmark case are displayed in the

second column in Table 1.5. It is seen that the legacy carriers generally incur more
14Berry and Jia (2010) estimate the CPM for all the carriers to be 6 cents.
15Each first stage F -statistic is above 10. This shows that individual F -statistics are not sufficient

when there are multiple endogenous regressors.
16BCS (2006) were able to estimate a polynomial of both density and distance of degree 3. But

frequencies were treated exogenous and used to instrument density.
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costs than Southwest. Again, this is expected given Southwest’s status as a low-cost

carrier.

Finally, it is worthwhile to mention that markups are negative on 31 percent of the

routes, all of which are one-stop and make up about 6 percent of the passengers in the

data. At first glance, this is a bit surprising because pricing below marginal cost on

a route means that the carrier is not breaking even on that route. However, this very

low price benefits the other routes in the network through increased link densities, so

the carrier can still find it desirable. Put differently, the carrier prefers serving some

passengers at loss rather than leaving planes empty and subsequently cutting back

frequencies. This is particularly true on the connecting routes, as each contributes

to the densities on more than one segment. Interestingly, the finding here matches

Delta’s claim that “connecting traffic is the least profitable for the airline,” made in

2005 when it reduced its capacity at the Cincinnati hub.17

1.5 Counterfactuals

In counterfactual simulations, previous discrete choice applications in the airline in-

dustry have treated the flight frequencies as fixed quantities given by data. While it

seems difficult to model them as explicit choice variables, the fixed-point model in

this chapter does provide a way to account for changes in flight frequencies in coun-

terfactuals. This offers an opportunity to re-examine or explore important questions

in the airline industry. Here I pursue two.

First, there have been considerable discussions to understand the persistent financial

losses of the industry (Borenstein 2011). Until 2012, the domestic airline industry had

reported negative net income in 23 of 31 years since deregulation. Carriers have shown

valiant efforts in creating a less hostile environment, such as maintaining “capacity

discipline” and seeking consolidations.18 This makes one wonder if there has been too
17“Delta to make local cuts in service, jobs.” Cincinnati Business Courier, September 7, 2005.
18See Mazur (2015) for an interesting alternative explanation of the “capacity discipline.”
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much competition in the industry. In the counterfactual, I ask what would happen if

the largest low-cost carrier, Southwest, exited the market. In particular, I compare

the predictions of the fixed-point model with those of a standard model.

Second, researchers have been interested in understanding the hub-and-spoke struc-

ture that emerged after the airline deregulation. Borenstein (1989) showed that dom-

inant airport presence provides hub premiums, which recently was further examined

by Ciliberto and Williams (2010). Brueckner and Spiller (1994) focus on economies of

density and provide a cost-based rationale for hubbing. The analysis in this chapter

also focus on the roles of density but suggests a demand side rationale for hubbing.

To see how network effects interplay with the network structure, one can examine the

consequences of a merger, or reversely, a separation of a carrier’s network. The results

have implications for studies on the formation of airline networks (e.g., Hendricks et

al. 1999, Gastner and Newman 2006).

The fixed-point model poses a few computational challenges. Because the markets

are tied together through common links, tens of thousands of prices must be solved

simultaneously rather than market by market.19 Moreover, the endogeneity of the

densities must be taken into account when calculating the optimal prices. Below I

discuss how an equilibrium can be found within a reasonable amount of time. Readers

that are not interested in computational details can go directly to Section 1.5.2.

1.5.1 Computing Price Equilibrium

Below I present an algorithm that computes a Bertrand-Nash equilibrium for a given

network structure, unobservables ξ and marginal costs mc. The algorithm relies on

the first-order conditions (Equation 1.3.2).

1. Choose a convergence criterion c > 0 and an initial value for the price vector p∗.

2. Iterate Ψ(p∗,ξ, ·) to reach the fixed-point demand D(p∗,ξ).
19Actually, such counterfactual exercise was thought infeasible and avoided in Berry and Jia (2011).
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3. Compute ∂D(p∗,ξ)/∂p and the corresponding matrix ∆. Let p∗∗ = mc−∆−1D(p∗,ξ).

4. If
∥∥p∗∗−p∗∥∥∞ < c, exit.

5. Updating p∗ by moving it towards p∗∗ and repeat step 2-5.

Step 3 is the most time-consuming for two reasons. First, it needs to differentiate

an implicitly defined demand function. As discussed in Section 1.3, ∂D/∂p can be

computed by either implicit function theorem or direct differentiation. Again, implicit

function theorem has a speed advantage for smaller networks but seems infeasible for

large networks.

The second reason is that the step needs to solve a large linear system ∆−1D(p∗,ξ):

the size of ∆ is the total number of routes across all the carriers and markets. Notice

that ∆ j k is generally non-zero even if j and k belong to different markets, because

they may share a link, or there is a third route that shares links with both j and k,

or so forth. Fortunately, ∆ j k = 0 at least when j and k belong to different carriers.

So ∆ can be organized into a block-diagonal matrix with each block associated with

one carrier, and the linear system can be solved block by block.

Nevertheless, a block of ∆ can still be of considerable size for a major carrier such as

Southwest or United. So it is important to reduce the numerical errors in ∆ before

solving the linear system. In this regard, I find it helpful to use the two-sided finite

difference formula when computing ∂D(p∗,ξ)/∂p j . I also find it helpful to use a very

small stop criterion whenever iterating Ψ for a fixed point.

As to exactly how p∗ should be updated in the last step, I find that simply replacing

p∗ with p∗∗ works well in the beginning, but dampening is often required when p∗

moves close to the solution. Specifically, I replace p∗ with (1−τ)p∗+τp∗∗, where τ

starts at 1 and gradually decreases as
∥∥p∗∗−p∗∥∥∞ becomes close to zero. After the

algorithm exits, I numerically double check whether the solution is at least locally

optimal for each carrier.20

20I ran the computation with Matlab on a 64-core cluster. Computing ∂D(p∗,ξ)/∂p was run in
parallel. For the counterfactuals, finding an equilibrium took roughly two hours.
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Table 1.6: What If Southwest Were Not Here

SW Delta United AA US

Benchmark model (%)

Total passengers - 11.3 22.8 17.3 18.3
Average price - 0.7 0.6 0.8 0.6

No fixed point (%)

Total passengers - 6.1 12.4 9.7 9.2
Average price - 1.0 0.8 1.0 0.7

Notes: All the numbers are in percentage. Average price is calculated across routes. The lower part
comes from the non-fixed-point model and the associated cost parameter estimates.

1.5.2 Results

1.5.2.1 What If Southwest Were Not Here?

Table 1.6 displays the percentage changes in the demand and average price when

Southwest’s network is removed. The upper part reports the predictions from the

benchmark model. The lower part reports the predictions from the non-fixed-point

model that treats f j as an unchanging quantity in the counterfactual experiment, with

the cost side parameters set at the associated estimates (Table 1.4, second column).

In both models, the overall changes in price are small. However, it should be pointed

out that if one only looks at the markets where Southwest has a significant share in

the data, then the increases in price are at a much larger magnitude.

The more sizable changes are found in the demand, and it is where the predictions of

the two models diverge. Qualitatively, the differences in prediction are intuitive: as

Southwest exits the market, demand increases for each remaining carrier; however,

only the benchmark model is able to capture the subsequent increases in flight fre-

quencies that help these carriers acquire even more passengers. Quantitatively, for

each remaining carrier, the increase in demand predicted by the benchmark model

more or less doubles that predicted by the non-fixed-point model. Put in a reverse
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Table 1.7: What If United’s Network Were Separated into Two

SW Delta United AA US

Benchmark model (%)

Total passengers 2.6 2.9 -36.1 4.3 3.6
Average price 0.6 0.8 -2.7 0.9 0.5

No fixed point (%)

Total passengers 0.6 0.8 -15.7 1.0 0.8
Average price 0.4 0.5 -1.6 0.6 0.3

Notes: All the numbers are in percentage. Average price is calculated across routes. The lower part
rows come from the non-fixed-point model and the associated cost parameter estimates.

perspective, the introduction of Southwest has taken a great deal of passengers away

from the legacy carriers.

As an implication, we probably should see a particularly strong association between

market concentration and profitability in the airline industry, thanks to network ef-

fects. This implication is in the same direction as the one that would result from

economies of density (Brueckner and Spiller 1994). It provides a new angle to un-

derstand a decade of consolidations in the industry. Most recently, US Airways CEO

Doug Parker said that a merger with American was “the last major piece needed

to fully rationalize the industry,” meaning that the merger would consolidate the

industry enough that airlines could start making profits.21

1.5.2.2 What If United’s Network Is Separated?

In the data, United Airlines has the largest multi-hub network (see Table 1.1). Table

1.7 displays the percentage changes in the total demand and average price if we take

United’s network and separate it into two. More specifically, two new companies are

created and each operates a randomly selected half of the links from United’s original
21“Which Is Worse: Airline Monopolies or Airline Competition?” Harvard Business Review, Au-

gust 15, 2013.
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network. This results in the loss of 5,333 one-stop routes whose segments are not

assigned to the same company, about half of the one-stop routes in United’s network.

The main interest here is to see the consequences of such a reduction in the scale

of the hub-and-spoke structure. Conducting the same counterfactual on Delta and

American Airlines turned out to produce very similar results.

The upper part of the table reports the predictions from the benchmark model, while

the lower part reports the predictions from the non-fixed-point model. The total

number of passengers of United after the separation adds together the passengers of

both new companies; the average price averages the prices across the routes of both

new companies. Again, both models predict small overall changes in price.

The non-fixed-point model predicts a 15.7 percent decrease in the total demand for

United, which actually represents very closely the pre-separation demand on that

5,333 lost one-stop routes. Reasonable as it sounds, yet that prediction is more

than doubled by the benchmark model, to 36.1 percent. This number is actually

quite staggering, noticing that we have not removed a single link! Nevertheless, the

difference in prediction is qualitatively intuitive: after the separation, the links lose

the inflow of passengers from those destroyed one-stop routes; this leads to reductions

in flight frequencies, which are captured only by the benchmark model.

The takeaway message is that network effects create synergy in a hub-and-spoke net-

work, and it scales up substantially with the size of the network. Reversing the

counterfactual exercise, one can conclude that a merger between the two split com-

panies would lead to large increases in both the demand and operation profits. So

this again speaks to the incentives for mergers. Of course, the caveat here is that in

general the outcome of a merger depends on how many new routes can be created

by the merger and how much the two pre-merger networks overlap. For example, a

merger will be of little consequence if it is between two carriers that serve disjoint

sets of cities, and even produce adverse consequences if it is between two completely

overlapped networks.
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1.5.2.3 Merger Simulation

Real mergers very often lie somewhere between the above-mentioned extreme cases,

which means combining overlapping links as well as creating new routes that are not

possible within either one of the two pre-merger networks. In fact, “give our customers

access to more destinations than ever before” is often quoted by carriers to defend

their DOJ merger cases. Accordingly, the set of products should be changed during

the merger. Unfortunately, standard merger simulations with discrete choice models

typically only change the ownership structure of the existent products.22

The model developed in this chapter uses the network structure as the sole primitive,

so in principle, it can be used to simulate network mergers while accounting for

changes in both the set of routes and flight frequencies. However, there remains one

practical difficulty: it is not straightforward to assign values of ξ and ω to the routes

on the merged network. To see this, simply consider any new route that is created

by the merger, or any route with a segment at which the two pre-merger networks

overlap. In my experiences, simulation results are sensitive to the specific assignment

rule. I leave the merger exercise for future research.

1.6 Concluding Remarks

Two noted economists at University of Chicago, Sam Peltzman and Lester Telser,

made a bet in 1979 on whether the 4-firm concentration ratio would be above 90

percent by 1985. Peltzman bet that it would not to be, and as he put it, “won the

bet, but lost the war.”23 Based on the belief that no (cost side) scale economies existed

at the level of major carriers, many thought that the deregulation would end airline

monopoly or oligopoly. However, it is safe to say that the market has been mostly

oligopolistic, probably even more so today after a decade of mergers and acquisitions.
22See Nevo (2000). Also see Peters (2006) on airlines.
23See, Borenstein (1992).
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Apart from the factors such as hub premium, economies of density and entry selection

(Roberts and Sweeting, 2013), this essay emphasizes that there are significant scale

economies on the demand side, which may have driven the industry away from ideal

competition.
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Chapter 2

Product Similarity Network in the

Motion Picture Industry

Abstract

I study product entry in the presence of firm learning from the market outcomes of

past products. Focusing on the U.S. motion picture industry, I construct a network

capturing the similarity amongst the movies released in the last decades. I develop

and estimate a model of how the network evolves. Risk-averse firms make go/no

go decisions on candidate products that arrive over time and can be either novel

or similar to various previous products. I demonstrate that learning is an important

factor in entry decisions and provide insights on the innovation vs. imitation tradeoff.

In particular, I find that one firm benefits substantially from the learning of the other

firms. I find that big-budget movies benefit more from imitation, but small-budget

movies favor novelty. This leads to interesting market dynamics that cannot be

produced by a model without learning.
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2.1 Introduction

In many industries, new products roll out at a fast pace, and firms need to constantly

anticipate the consumer demand for potential products and make go/no go decisions:

Is this prototype going to be make a well-received product? Should I introduce a

novel product or imitate some existing products? Examples include motion pictures,

book publishing, video games, TV shows, smart-phone apps, cell phone manufactur-

ing, apparel, and even scientific research. Although forecasting the success of a new

product bears lots of uncertainty, much can be learned from the market outcomes of

past similar products. In this sense, while firms decide what products to introduce,

these products in turn affect the product choices of the firms.

This chapter focuses on the U.S. motion picture industry to study firm learning from

previous products. The industry spends billions of dollars per year, but nevertheless

is characterized by a high level of uncertainty on the return of investment (ROI). It

is fairly easy to come up with examples like E.T. the Extra-Terrestrial that grossed

$360m domestically on an $11m budget, or The Golden Compass that lost $110m

from a $180m budget, pushing the studio into bankruptcy.24 The uncertainty makes

imitation a particularly useful strategy. “There continues to be no magic formula for a

commercial movie, but patterns emerge, emulating prior successes.”25 In fact, movie

imitation frequents the media as a subject of discussion as well as debate.26

To better understand how firms balance innovation and imitation, I develop a model

that focuses on studio’s green-light decisions. A movie’s market outcome is deter-

mined by consumer demand over its characteristics such as ideology, storyline, narra-

tive techniques, acting, graphics, music, etc, most of which are unobserved in the sense

that they are very difficult to quantify. In empirical entry models, it is often assumed

that the unobserved effects are independent across products. In this essay, correlation
24On motion picture uncertainty, also see De Vany and Walls (1996, 1999).
25Squire (2005), p.4.
26See “Hollywood Learns Originality Does Not Pay.” May 29, 2015, Financial Times. Also see

“Are Blockbusters Destroying the Movies?” New York Times, Jan. 6, 2015.
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is explicitly modeled. I capture the correlation structure with a network. In general,

the demand for two movies are correlated when they are similar in characteristics, in

which case links in the network represent similarity between products.

Given the correlation, a production company is then able to form belief on the demand

for a candidate movie by looking at the market outcomes of the released movies. A

movie typically takes more than one year to produce. So at any time, each firm holds

a portfolio of movies that are in production. I assume that firms can be risk averse

and seek to maximize the risk-adjusted profits of the portfolio. To model the supply

of candidate products, I apply ideas from the literature on evolving random networks

(Newman, 2003; Jackson, 2010) and specify a stochastic process where candidates

continuously arrive and “attach” to the network at the time. In this sense, each

candidate is a creative combination of existing movies. The stochastic nature of the

process means that the candidate can be similar to few or many existing movies,

offering opportunities of both innovation and imitation.

I bring the model to data. To construct the network, I look at what two movies tend

to be liked by the same consumers. In such cases, the knowledge of a high demand

for one movie entails a high expectation of the demand for the other. I make use of

the item-based collaborative filtering (Desrosiers and Karypis, 2011) that calculates

similarity between items based on people’s ratings or purchases. It is known as

“People Who Liked This Also Liked” on IMDb.com and “Customers Who Watched

This Also Watched” on Amazon.com. I construct a network of nearly 4,500 movies

released in the U.S. in the last decades. Through reduced-form analysis, I find that

previous similar movies are much more predictive of a movie’s market outcome than

the covariates commonly used in movie studies (e.g., budget, genre, star power). I

also find evidence that suggests firm learning and risk aversion.

The essay proceeds to estimate the model with the method of simulated moments

and conduct counter-factual experiments. Several insights are derived. First, I show

that learning is an important factor in the industry. For the movies in the data,
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learning reduces firm’s uncertainty by over 60 percent, on average. Learning allows a

firm to produce big-budget movies, which involve higher risks than their small-budget

counterparts. Learning also helps a firm maintain a high level of quality on its movies.

I find that a firm has some monopoly power in imitating its own movies, which is a

significant barrier against social learning, i.e., learning across firms. Nevertheless, I

find that learning has substantial spillover to other firms. For a major studio, the

indirect benefits from the learning by the other firms are comparable to the direct

benefits from its own learning.

Other insights pertain to the balance of innovation versus imitation. I find that

whether to imitate or innovate crucially depends on the investment size. Big-budget

movies heavily rely on imitation as a way to reduce risks. However, small-budget

movies favor novelty. This is because there is tight lower bound on how much they

can lose and a higher level of uncertainty increases the chance for them to make a big

hit. In a related counter-factual, I find that a lower level of risk aversion can actually

increase the overall level of imitation. One cause is that it allows the production of

bigger-budget movies where imitation is still necessary. These results provide some

unique insights to the rise of blockbusters and the debate surrounding it.26

In terms of general insights, this essay adds to the empirical literature on product

networks. Compared with the widespread attention on social networks, it is perhaps

surprising that there are only a handful papers on product networks.27 Goldenberg

et al. (2012) study the network of hyperlinked video clips on YouTube. Oestreicher-

Singer and Sundararajan (2012) examine how a product’s position in a recommen-

dation network affects its demand. Wei (2014) extends the estimation framework for

differentiated markets to airline networks. This essay also adds to the literature on

firm learning about demand. Hitsch (2006) and Shen and Liu (2014) model how a

firm learns from a product’s initial sales after its launch and exits optimally. Toivanen

and Waterson (2005), Shen and Xiao (2014) and Yang (2014) focus on how firms learn

27For theoretical studies on product networks, see Dellarocas et al. (2010) and Mayzlin and
Yoganarasimhan (2012).
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from the entry/exit choices of each other in the context of fast food chains. In this

essay I look at a different channel of learning, namely from the market outcomes of

past products. More broadly, the essay is related to the literature on learning models

(Ching et al., 2013). In terms of the application, the essay looks at the motion picture

industry, a popular setting for both marketing and economic research. A wide range

of topics have been covered (Eliashberg et al., 2006). However, there has not been a

study that models the entry decisions where studios green light movies. This essay

provides a first attempt from the perspective of learning.

The rest of the chapter is organized as follows. Section 2.2 describes the data, in

particular the construction of the network. Section 2.3 presents the reduced-form

analysis. Section 2.4 presents the model. Section 2.5 describes how I estimate the

model. Section 2.6 presents the estimates. Section 2.7 conducts counter-factual ex-

periments. The last section concludes and discusses future research.

2.2 Data

Data Sources I mainly use two categories of data. The first include the movie

characteristics that are commonly used in studies of motion pictures: title, release

date, language, region, genre, MPAA rating, production budget, writers, directors,

leading actors, and domestic box-office revenue. Domestic box-office revenue only

accounts for a part of a movie’s total revenues. However, it is believed to influence

the revenues in subsequent markets, and widely used in measuring the market perfor-

mance of movies (Eliashberg et al., 2006; Einav, 2007). Because I want to study firm’s

go/no go decisions, I also collect data on the production companies and production

start date of each movie.

Most of the movie characteristics are collected from the Internet Movie Database

(IMDb.com). Additional data on box-office revenues are collected from Boxoffice-

mojo.com, which provides better separation between the revenues from multiple re-
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leases if the movie has ever been re-released. In this essay I focus on the box office

at the first release. For a small number of movies whose budget sizes are missing

on IMDb, I am able to collect them from Wikipedia.com. To account for inflation,

I collect data on yearly price level (Consumer Price Index) from the U.S. Bureau of

Labor Statistics. To calculate market share from box-office revenues, I collect yearly

data on theater ticket price from The-numbers.com, and data on the U.S. population

from the Census Bureau.

Production start date is unavailable for roughly one third of the movies. I regress the

production period (time elapsed from start date to release date) on the budget size

and use the regression to impute the start date. It typically takes slightly more than

one year to produce a movie. The estimated relation exhibits an U shape, where the

production periods of medium-budget movies are the shortest.

The second category includes the data on the correlation pattern for the demand

across these movies. The idea is to find out which two movies tend to be liked

by the same consumers. In such case, a high demand for one movie entails a high

expectation of demand for the other. Specifically, I make use of the “People Who Liked

This Also Liked” feature on IMDb. Through this feature, each movie refers viewers

to some other movies. The references are based on an algorithm called item-based

collaborative filtering (Desrosiers and Karypis, 2011). In a nutshell, the algorithm

calculates a “similarity metric” that measures the correlation between the viewers

ratings of the two items. A reference happens when the two items are deemed similar

enough. I also make use of “Customers Who Watched This Also Watched” feature

on Amazon Instant Video. Slightly different, the similarity metric on Amazon is

calculated from user consumption instead of ratings (Linden et al., 2003).

I define the network by linking two movies whenever there is a reference from one

to the other. On IMDb, each movie refers up to 12 other movies; on Amazon, the

number is 20. For the analyses shown in the chapter, I combine the IMDb and Amazon
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references.28 As a robust check, I run all the analyses throughout the chapter with the

network constructed from the Amazon references only, but have not found qualitative

differences in the results. The data was collected with a web crawler.29 Web cookies

were disabled to prevent the references from being tailored for the crawling history.

I collected the data at two different time points, first in March 2014 and then in

October 2015. The results based on the two data sets are quantitatively close to each

other. In this chapter I only show the results based on the later data set.

In general, correlation arises when two movies are similar in terms of the character-

istics: ideology, story setting, narrative techniques, acting, visual effects, music, etc.

Researchers have explored this idea in using consumer purchase data to uncover prod-

uct positions in a latent characteristic space (Chintagunta, 1994; Elrod and Keane,

1995; Goettler and Shachar, 2001). It is by this understanding that I use the term

“similarity network.” It is possible that correlation arises because of other reasons,

for example, complementarity. However, a preliminary examination of the network

suggests that this is not the dominant reason, which I turn to below after describing

sample selection.

Sample Selection I focus on the movies released in the U.S. that started produc-

tion between 1995 and 2012 (included). The release dates of these movies extend to

2014. I exclude the “micro-budget” movies, which are defined as those with a budget

less than 1 million in 2014 dollars. The mechanism behind the production and distri-

bution of the “micro-budget” movies is likely quite different from that of the bigger

movies. Some movies have to be left out because either budget or domestic box-office

gross is unavailable. Such movies are typically the ones without significant theatrical

release in the U.S. In the end, my sample consists of 3,036 movies.

It is a good idea to include older movies as the “initial state” for the analyses. This is
28Some movies are unavailable at Amazon Instant Video. For these movies, only IMDb references

are used. However, for my sample, only a small proportion (less than 5%) is not covered.
29The web crawler is based on Scrapy, a open source framework for Python. For more information,

visit http://scrapy.org.
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particularly important for the movies that started closely after 1995 because otherwise

they would have no previous similar counterparts and be all mis-regarded as original.

Movies that came later in the sample period are less likely to be linked to these earlier

movies. I am able to include 1,354 movies from 1975 to 1994 as the initial state. The

small sample size is partly due to the fact that fewer movies per year were produced

at that time, and partly due to a significant drop in data coverage as one dates back

before the early 1980s. I have also tried using 1985-1994 as the initial period, but

have not found qualitative changes to the results.

The Network Recall that the links between movies are constructed from references

on IMDb and Amazon. Figure 2.1 provides a visualization of the references with

regard to budget size. A dot represents a reference from one movie to another, where

the box-office revenue of the first movie is given by the horizontal position of the dot,

and the box-office revenue of the second movie is given by the vertical position. The

dots are distributed about evenly on both sides of the 45◦ line. The plot verifies that

the references are based on a symmetric similarity measure, though “Customers Who

Watched This Also Watched” makes it sound like that bigger movies are more likely

to receive references.

In Table 2.1, I show that the network captures similarity between movies in terms of

the observed characteristics. The first two columns provide some descriptive statistics.

For example, among the pairs of linked movies, 54.9% belong a same genre, in contrast

to a 19.3% when it is among the pairs of any two movies. The last column presents

a logit model that predicts whether a pair of movies are linked. All the coefficients

are of expected signs and statistically significant. So the movies that are similar in

the observed characteristics tend to be linked. Conversely, movies that are dissimilar

tend not to be linked. The Pseudo-R2 is .28. Presumably, the unexplained part of the

network could be attributed to the unobserved characteristics, such as story setting,

narrative techniques, pace, visual effects, sound effects and so on.
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Table 2.1: Movie Pair Characteristics and Links

All Dyads Linked Dyads Logit Model

Intercept -5.51 (.035)
Same Production Company 3.60% 11.1% 0.624 (.048)
Same Rating 35.2% 62.4% 1.00 (.028)
Same Genre 19.3% 54.9% 1.36 (.028)
Same Leading Actor(s) 0.603% 29.5% 3.94 (.034)
Same Director(s) 0.099% 8.11% 3.12 (.09)
Same Writer(s) 0.081% 7.32% 2.99 (.09)
Diff. in Release Time (Year) 9.76 4.91 -0.146 (.003)
Diff. in Log Budget 1.22 0.724 -0.597 (.020)

Pseudo-R2 0.275
N 9.63e7 3.03e4 9.63e7

In the cases that there are multiple production companies for one movie, the first-listed one is used.
The same applies to genre. The last column is a logistic regression predicting linkages. Pseudo-R2

equals 1 minus the ratio between residual deviance and null deviance. The entire sample (1975-2012)
is included.
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A dot represents a reference from a movie to another, on either Amazon or IMDb. The horizontal
position of the dot gives the box-office revenue of the referring movie; the vertical position gives
the box-office revenue of the referred movie. Revenues are normalized by CPI to be in 2014 million
dollars. The axis scales are logarithmic. The entire sample (1975-2012) is included.

Figure 2.1: Budgets of the Referred Movies against Referring Movies
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It is noted that the network is constructed from ex post data which studios did not

possess when they green-lighted the movies. In respect to this, I do not assume

that studios could use the ex post data. Instead, my assumption is that the studios

understood the correlation structure represented by the network, and I use the ex

post data here to back out that information. In fact, the constructed network should

be transparent enough for an experienced studio executive or movie producer to

understand. For example, let us look at Saving Private Ryan: It links to We Were

Soldiers and Full Metal Jacket, both action-packed war movies. It also links to

Schindler’s List, a WWII movie by the same director. A bit more sophisticatedly, it

links to the The Patriot, a movie on American Revolution but by the same writer,

and The Shawshank Redemption.30 However, it does not link to, for example, The

English Patient or The Reader, which also use WWII as background but lean toward

a more romantic theme.

2.3 Reduced-form Analysis

In this section I present some model-free results. These results are not only interesting

in their own right, but also motivate how the structural model will be specified in

Section 2.4. At this point, I want to introduce some terminology that will prove useful

later. A movie is called a precursor of another movie if the two are linked and the first

precedes the second (either with respect to the start dates or the release dates, which

will be defined specifically under different contexts). A movie is called an imitator of

another movie if the two are linked and the first comes after the second.

First, I examine the extent to which the market performance of a movie can be

predicted by the market performance of its precursors, in addition to its observed

characteristics. Market performance is measured with the ROI, the ratio between

domestic box-office revenue and budget. Then I take a look at the studio behaviors
30Both Saving Private Ryan and The Shawshank Redemption belong to the top guy-cry movies

selected by Entertainment Weekly, 2005.
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and explore what movies are more likely to imitate or be imitated by others.

In Table 2.2, Column 1 regresses the log ROI on a time trend, genre, MPAA rating,

quality of the crew and log budget.31 The detailed definitions of the covariates are

given in the table notes. These covariates are common in the studies of the industry.

Notice that there are no significant effects of the “star power,” which is consistent

with the finding in Ravid (1999) that stars capture their expected economic rent.

Notice that the R2 of the regression is very low. This is not too surprising: after all,

movie success is notoriously difficult to predict. It is worthwhile to point out that

though the budget size hardly explains the ROI, it explains substantial variation in

the box-office revenue. The R2 rises to 0.54 if one uses the log box-office revenue as

the dependent variable, which is comparable to what was found in previous studies.32

In Column 2, I add a lag term which equals the average log ROI of the precursors. The

coefficient estimate of the lag term is positive and significant, and the R2 is greatly

improved when compared with Column 1. To certain degree, the network controls for

the effects of the unobserved characteristics. In Column 3, I keep the lag term but

drop genre, rating and crew as covariates. Compared with Column 2, the decrease in

R2 is only marginal. Also notice that the coefficient for the lag is slightly increased.

This is consistent with the observation that the network has incorporated, to certain

extent, the proximity between movies with respect to the observed characteristics

(Table 2.1). Partly for this reason, I will drop these covariates in some part of the

structural model.

The analysis above tells us that the precursors provide a prediction for the ROI, but

does not speak to the variance of that prediction. In Table 2.3 I regress the absolute

value of the residuals from the last column of Table 2.2 on the number of precursors
31Some readers may be concerned with the fact that budget appears on both sides of the regression.

An alternative regression where the dependent variable is replaced by log box-office revenue yields
the same coefficient estimates except for that of log budget, which is increased by exactly 1. The
same applies to Column 2 and 3.

32See, for example, Wallace et al. (1993) and Prag and Casavant (1994). Notice that these studies
use smaller samples and include the critical reviews as explanatory variables, which are unavailable
before a movie is made.
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Table 2.2: Spatial Regression of Log ROI

(1) (2) (3)

Time Constant -0.694** -0.544** -0.551**
Trend 0.0016 0.0085* 0.0111**
Seasonality 0.136** 0.067* 0.075*

Log Budget 0.0787** -0.0202 0.0116
Genre ... Yes Yes
Rating Restricted -0.231** -0.150**
Crew Actor -0.0639 0.0501

Director -0.0580 -0.0462
Writer 0.0921 -0.0390

Average Log ROI of Precursors 0.821** 0.848**

R2 0.056 0.257 0.247
N 2,943 2,943 2,943

** Significant at the 99% level. * Significant at the 90% level. ROI is defined as the ratio between
box-office and budget, both of which are normalized by CPI to be in 2014 million dollars. Dependent
variable is the log ROI of any movie that started between 1995-2012 and has at least one precursor.
A precursor here refers to any similar movie whose release date is earlier than that of the focal movie.
Movies in 1975-1994 are used as possible precursors. Trend is the difference in years between the
release date and the beginning of 1995. Seasonality uses a dummy for releases in Jun., Jul., Aug.
and Dec. Genres are re-categorized into eight “big genres” to reduce the number of parameters.
Actor is a dummy for movies with at least one leading actor that had previously taken a leading
role in any of the top 5% grossing movies. Director and Writer are defined similarly.

Table 2.3: Polynomial Fit of Residual Size on Number of Precursors

Absolute Residuals

Intercept 1.529 (.0723)
Number of Precursors -0.195 (.0333)
Number of Precursors^2 0.0147 (.0048)
Number of Precursors^3 -4.95e-4 (2.5e-4)
Number of Precursors^4 6.03e-6 (4.4e-6)

Average Effect -0.0770
N 2,943

Numbers in the parentheses are standard errors. The dependent variable is the absolute value of
the residuals from the last column of Table 2.2. The average effect is the average derivative of the
estimated polynomial across the movies in the data.



45

Table 2.4: Regression of the Number of Imitators / Precursors

Log # of
Precursors

Log # of
Imitators

Time Yearly Dummy Yes Yes
Genre ... Yes Yes
Rating Restricted 0.0893** 0.0639**
Crew Actor 0.174** 0.0233

Director 0.0618* 0.0556*
Writer -0.0073 -0.0459

Log Budget 0.266** 0.232**
Log ROI 0.264**

R2 0.439 0.525
N 4,390 4,390

** Significant at the 99% level. * Significant at the 90% level. See Table 2.2 for some variable
definitions. Here, an imitator of movie j is defined as a movie that is similar to j and started after
j ’s release. A precursor is a movie that is similar to j and released before j ’s start date. 1 is added
to the number of imitators or precursors before taking the log. The entire sample (1975-2012) is
included.

(Using the residuals from Column 2 leads to almost identical results). The estimated

average effect is negative, indicating that the prediction variance decreases with the

number of precursors. The estimated polynomial actually shows a diminishing decline

rate, which is seen in standard Bayesian updating. From the firm’s perspective, this

implies that the risks for producing a particular movie decrease with the imitativeness

of the movie.

So far the results have been normative. We see that a good deal can be learned from

the precursors, however, it is a different matter whether the firms have actually been

learning. To take a look into the studio behaviors, Table 2.4 regresses the log number

of precursors and imitators on various movie characteristics and log ROI. Here, a

precursor is released before the focal movie’s start date, and an imitator starts after

the focal movie’s release. Time dummies are added to control for the fact that the

network is truncated outside the sample period. We see that movies with higher ROI
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Supply of Candidate Movies
Candidates are generated by a stochastic process, and
sent to the studios.

Studio Decisions
A Studio is risk averse, manages a portfolio and learns
from previous movies.

Consumer Demand
The movie goes into production and realizes
its revenue in box office.

Discard

GoNo go

Figure 2.2: Model Overview

are more likely to be imitated, supporting the conventional wisdom that there is firm

learning in the movie industry.

A more subtle point in Table 2.4 is that bigger-budget movies tend to have more

precursors as well as imitators. In other words, the network is denser amongst these

movies. This is consistent with risk aversion: Budget size multiplies the risks that

studios have to face in the box office for a potential movie. To the extent that studios

are risk averse, they make the big-budget movies more imitative to keep the risks

acceptable. Over time, this makes the network denser among bigger-budget movies.

In the structural model, I will allow learning as well as risk aversion on the studio

side.

2.4 Model

In this section I present an empirical model of product entry with learning. An

overview of the model is given in Figure 2.2. First, candidate movies are created

continuously over time. Once a candidate lands on the desk of studio executives, they
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make a go/no go decision based on the market outcomes for previous similar movies.

After the movie is made, it goes to theaters where consumers decide how much box-

office revenue it will make. I start with the demand side, which is a simple discrete

choice model, then introduce the stochastic process that generates the candidate

movies, and finally model the studio’s investment decisions.

2.4.1 Consumer Demand

The main objective here is to have a simple model for box-office performance. To

start, let vector x j collect the observed characteristics for movie j . Given my data,

this can include production budget, genre, MPAA rating, quality of the crew (writers,

directors and actors), production company, production start date and release date.

A movie typically stays in theaters for six to eight weeks, with the first two weeks

collecting about 60 percent of the lifetime domestic box-office revenue. Let ξ j capture

the average consumer taste for this short period over the characteristics that are not

included in x j . Let εi j be an idiosyncratic utility term. Consumer i ’s utility from

movie j for this short period after j ’s release is

ui j =U (x j ;β)+ξ j +εi j .

I explicitly model the correlation across the ξ’s for different movies. The correlation

structure is captured with the network, which I treat with more details when present-

ing the supply side. Generally, we can think that the correlation arises when the two

movies are similar in characteristics. To the extent that ξ j measures the excellence

of the movie in the eye of consumers, I refer to it as the “latent quality.”

The reduced-form analysis has shown that once the precursors are accounted for,

characteristics such as genre, MPAA rating and quality of the crew add very little

prediction power. We will see very similar results for the estimates of the demand

model, presented later in Section 2.6. For this reason and for tractability, these
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characteristics are not included in x j for the benchmark model, in particular the

supply side. In addition, not all the elements of x j need to enter U (·). For example,

it is probably far-fetched to argue that the production company or production start

date would enter consumer utility.

To complete the demand model, suppose that individual i chooses between going to

a movie theater to watch j and an “outside option,” for which I specify the utility as

ui 0 = εi 0.

Then, assuming type-I extreme value distribution for the idiosyncratic errors εi j and

εi 0, we have the market share of j given by 1/(1+e−U (x j ,β)−ξ j ). The box-office revenue

equals the market share multiplied by the market size and average ticket price at

theaters. The market size is taken as the population of “moviegoers” who go to

cinema at least once a year, about two-third of the population.33 Let mt be the

multiplier at time t , and r j the release date of j . The box-office revenue for j is given

by34

π j = mr j /(1+e−U (x j ,β)−ξ j ). (2.4.1)

Note that there is a one-to-one relation between the box-office revenue π j and latent

quality ξ j . So after a movie is exhibited in theaters, the box-office performance reveals

the latent quality of the movie.
33See Theatrical Market Statistics, MPAA. I treat both the market size and ticket price as exoge-

nous time series. It is an known fact (as well as a puzzle) that theatrical ticket price hardly varies
across seasons and movies. See Orbach and Einav (2007) for more discussions.

34The model abstracts away from several factors that can affect demand, including the marketing
expenditure, number of screens and concurrent releases. These factors are determined after the
movie is made, and are endogenous outcomes of budget size, movie quality and competition at
theaters. See Hennig-Thurau et al. (2006) for the relative importance of marketing vs. movie
quality. They find that overall, quality is more important. See Elberse and Eliashberg (2003) for
exhibition dynamics, Ainslie et al. (2005) for market share competition, and Einav (2007, 2010) for
release competition and timing.
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2.4.2 Candidate Products

Instead of pre-fixing a product space where firms can choose from, I use a stochas-

tic arrival process to generate the candidates for the firms. The reasons for this are

twofold: From the substantive point of view, this captures the finite supply of po-

tential movies where not all conceivable movies are available at all times. From a

technical point of view, this reduces the dimension of the firm’s problem, permitting

a tractable model.

Treating time as continuous, I let candidate movies arrive at a Poisson rate η f for

firm f .35 Suppose that a candidate movie j arrives at time t for firm f . If it ever

gets produced, its arrival time is recorded as a j and its production period is (a j ,r j ].

The observed characteristics x j , latent quality ξ j , as well as the location of j in

the similarity network, are drawn from a state-dependent distribution. The state is

denoted as S t and is the collection of the observed characteristics, latent qualities

and network for all the existing movies at t (released or in-production).

I first draw the candidate’s location in the network, namely what existing movies are

similar to j . Then, the characteristics x j and ξ j are drawn conditional on the location.

In this sense, each candidate is either completely novel or a “creative combination”

of some existing products.36 In principle, one can also first draw characteristics and

then determine the location by its distances to the other products in the characteristic

space. But this does not seem empirically implementable because many characteristics

are unobserved in the data.

Before continuing to the specification of the arrival distribution, I want to point

out that the arrival process is a latent structure. I have experimented with many

variations of the process and my choice has been guided by both economic intuition
35The model allows a different arrival rate for each firm, which introduces quite a lot parameters.

For estimation, I use a single arrival rate and assign each arrival to a firm with the probability
proportional to its share of movies in the data. For each movie, the first listed production company
is counted as the firm for that movie.

36Combinatorial creativity has been proposed and studied in multiple areas, including psychology,
economics and science in general, see Mednick (1962), Weitzman (1998) and Uzzi (2013).
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Solid nodes represent existing movies. The arrival, represented by a hollow node, attaches to each
existing movie independently in the first stage. A realization is displayed on the left where it attaches
to node (a) and (b). Given this outcome, the arrival further attaches to each neighbor of (a) in the
second stage. A realization is displayed on the right where it attaches to (c).

Figure 2.3: An Illustration of the Two-Stage Process

and patterns in the data. The extent to which the model is capable of reproducing

the data is partially assessed in Section 2.6.2.

Network Location The set of existing movies at time t , {k : ak < t }, includes those

that are either released or still in production. The similarity amongst these movies is

described by the network at the time. The location of the candidate j in the network

is described by which existing movies are linked to j . Formally, I use y j to denote

the location for j . It is a vector of the length of the number of existing movies, where

yk, j = 1 indicates that a link is formed between j and the existing movie k, and yk, j = 0

otherwise. In the language of evolving network models, the candidate “attaches” to

the existing network. I let the attachment probability follow a logit model:

Pr
(
yk, j = 1|St

)= 1

1+e−F (xk ,t ;γ)
, ∀k. (2.4.2)

I specify F (xk , t ;γ) = γ0+γ1[k ∈ f ]−γ2(t−ak ). The first term is a constant. The second

term is an indicator dummy that gives potentially higher probability to attachment

towards the movies produced by firm f . It captures the possibility that a firm has

a favorable position to imitate its own movies. For example, it may have developed

exclusive relations with the directors in its past movies. The third term discounts
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movies by their arrival dates. So any movie gradually becomes obsolete and unlikely

to be imitated anymore. These two specifications are consistent with the properties

of the observed network that were previously shown in Table 2.1.

If the attachments to the existing movies are independent of each other, it is simple

to draw the location for j . Unfortunately, this should not be the case. If two existing

movies are similar to each other, it should be unlikely for j to link to only one of

them. In other words, it is more likely for us to see a complete triangle among

the candidate and the two movies rather than an incomplete one missing an edge.

The prevalence of triangles in networks is often called clustering. In social networks,

clustering refers to the property that “my friends are friends themselves.” There is

substantial clustering for the network in my data. The average clustering coefficient37

is 0.24. As a comparison, randomly assigning the same number of links to the same

number of nodes yields a clustering coefficient typically less than 0.01.

I introduce correlation in the attachments through a two-stage process. A similar

process was proposed in physics (Holme and Kim, 2002) as a simple but flexible way

to generate clustering for general networks. The same idea has been used to fit the

clustering in social networks (Jackson and Rogers, 2005). Specifically, in the first

stage, j forms link with each existing movie independently. In the second stage, for

each k linked in the first stage, j further forms links with each neighbor of k with

probability ω. An example of the two-stage process is illustrated in Figure 2.3. In

the Appendix, I show how to calculate the 1st-stage probabilities from (2.4.2).

Observed Characteristics Given the network location for j , now I specify a dis-

tribution Pr(x j |y j ,St ) from which the observed characteristics of j is drawn. Notice,

in particular, that the distribution depends on y j . This allows x j to be correlated

with the characteristics of its precursors. For example, a candidate that is similar to
37The clustering coefficient of a node equals the number of triangles that it belongs to divided by

the number of triangles that it would belong to if all of its neighbors were linked with each other.
See Watts and Strogatz (1998).



52

a group of big-budget movies should likely be a big-budget. Had genre been included

in x j on the supply side, the same logic applies to a candidate whose precursors are

all sci-fi or comedy movies, for example.

Specifically, the budget b j is drawn from a truncated normal distribution. The

variance-to-mean ratio, denoted by χ, is to be estimated as a parameter. If the

set of the precursors for j is nonempty, the mean of the truncated normal is set equal

to the average budget of the precursors. Otherwise the mean equals µ, which is an-

other parameter to be estimated.38 The release time is determined by r j = a j +Υ(b j ),

where Υ is a function that relates production time with budget size, and is non-

parametrically estimated “off-line” with the data on production start date. This is

a simplification and I abstract away from the factors that influence the release date

after the green-light decision.

Latent Quality Now I specify a distribution Pr
(
ξ j |x j , y j ,St

)
from which the latent

quality of j is drawn. Here one wants to consider two factors. First, ξ j should

be correlated with ξk if k is a precursor of j . Second, recall that the latent quality

measures the consumer tastes at the time of the movie’s release. So to the extent that

consumer tastes can be changing over time, the difference in the release time, |r j −rk |,
should be able to dilute the correlation between ξ j and ξk . It seems appropriate to

make the following specification:

Pr
(
ξ j |x j , y j ,St

)=N

(
λ

∑
yk, j=1ϕ

|rk−r j |ξk

1+λ∑
yk, j=1ϕ

|rk−r j | ,
σ2

1+λ∑
yk, j=1ϕ

|rk−r j |

)
, (2.4.3)

Note that (2.4.3) resembles the Bayesian updating formula under normality, where

the latent quality of a precursor, ξk , is treated as a signal for ξ j . The weight for

each signal is calibrated by λ, which can be thought of as a measure of correlation.
38In the data, budget distributes around the mean budget of precursors in a truncated normal

shape, and the dispersion hardly shrinks with the number of precursors. I use [1,350] as the trunca-
tion interval, as the biggest budget observed in the data is $343m. Results are not sensitive to the
choice of the interval upper bound.
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For the extreme case λ = 0, the ξ’s are independent. The weight is discounted by

the difference in release time. For the extreme case ϕ= 0, consumer tastes change so

rapidly that two similar movies that are released at different times, even if close, will

have completely uncorrelated market outcomes.

2.4.3 Go/No Go Decision

When it is the time to green-light a potential movie, studio sees the story and screen-

play, and in most cases has a reliable estimate of the budget and release date. The

producer often has secured some of the crew and is aware of who else she or he needs

to recruit. However, much uncertainty remains on how this particular movie will be

received in the box office.39 My corresponding assumption is that firms do not observe

the latent quality for either the candidate or any movie that is still in production.

However, I do assume that the firms know the demand correlation across movies,

namely the network, which they use to form belief on the unknown latent qualities.

To formally model the go/no go decisions, let us start with the information set for the

firms, denoted as Ft . The set includes the observed characteristics and the network

of the existing movies as well as the candidate, if there is one arriving at t . Ft also

includes the box-office revenue πk , or equivalently, the latent quality ξk of each movie

k that has been released. Notice the important difference between St and Ft that the

later does not include the latent qualities of the movies that are still in production.

Given the information set, one can work out the belief for the firms. For the simplest

case where one is looking at a single candidate j whose precursors have all been

released, the belief Pr(ξ j |Ft ) is simply given by (2.4.3). However, it is possible that

some precursor has not been released. In such case, one can learn indirectly from

the released neighbors of that precursor, whether they arrived before or after that
39Here is a description of the “green-light” process by a senior studio executive: "We bring together

all studio department heads. [The production costs] is our most reliable estimate, and that thus
forms the basis for our launch decision.... In the end; ... Someone in the meeting has to put his or
her reputation on the line and say ’yes’ - regardless of whether the numbers add up” Eliashberg et
al. (2006)
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precursor. In addition, if j and the precursor belong to the same firm, then the

correlation between the market outcomes for these two movies will amplify the risks

associated with producing j . So in general, it is important for us to look at the

joint belief: Pr({ξk : ak ≤ t ,rk ≥ t }|Ft ). A nice feature of my model is that there is a

closed-form expression for this joint density, which I derive in the Appendix.

Given the belief, now one can model the firm’s investment decisions. Given Ft ,

denote by P f ,t ≡ {k ∈ f : ak < t ,rk ≥ t } the set of f ’s in-production movies, which can

be thought of as f ’s portfolio. The firm’s problem is whether it is desirable to add j

into the portfolio. The present value of P f ,t is

Π(P f ,t ) = ∑
k∈P f ,t

δrk−tπk ,

where δ is a discounting factor and πk is given by equation (2.4.1). If j is accepted,

the present value of the new portfolio becomes

Π(P f ,t ∪ { j }) = δr j−tπ j +Π(P f ,t ).

At time t , these present values are uncertain to the firm because the π’s depend on

the ξ’s, which the firms does not know. Let b j be the production budget of j , and ζ j

an independent decision error that captures the factors unobserved to us but known

to the firm. Let V be a concave function that represents the valuation by a risk-averse

firm. Candidate j is accepted iff

E
[

V
(
Π(P f ,t ∪ { j })−b j −ζ j

)∣∣∣Ft

]
> E

[
V (Π(P f ,t ))

∣∣∣Ft

]
, (2.4.4)

where the expectation is taken over the ξ’s. I specify V to bear a constant coefficient

of absolute risk aversion (CARA), denoted as α. I specify ζ j = (ez j −1)b j where z j

is distributed N (0,ρ2). The firm discards the candidate if condition (2.4.4) does not

hold.



55

An important feature of this formulation of firm’s problem is that it takes into account

the revenue correlation across the movies in P f ,t . To the extent that the firm is risk

averse, it would like to “diversify” its portfolio and avoid investments in many similar

movies at once. However, the formulation treats the firm myopic, not taking into

account how a decision today will affect future arrivals and decisions. To solve for a

full model of forward-looking decisions with a network structure is beyond this essay.

I leave it for future research.

One can readily define a risk-free equivalence of the revenue π j , denoted by π j ,

through the equation

E
[

V (Π(P f ,t )+π j )
∣∣∣Ft

]
= E

[
V (Π(P f ,t ∪ { j }))

∣∣∣Ft

]
.

When P f ,t is empty, it reduces to the more familiar equation: E
(
V (π j )|Ft

) = V (π j ).

The definition allows us to state condition (2.4.4) alternatively as π j −b j −ζ j > 0. We

may also define π j /b j as the risk-adjusted ROI for movie j . From the perspective of

the econometrician, the probability that a candidate will be accepted is monotone in

the risk-adjusted ROI.

An effective assumption here is that a movie with π j /b j = 1 is accepted with .5 proba-

bility. This is a normalization. The journey of a movie often goes beyond production

and domestic box office, incurring additional expenditures on advertising and exhi-

bition, while earning additional revenues from home video sales and international

markets. So it is entirely possible that the studio is not at all indifferent between

accepting and rejecting such a movie. However, with the arrival process being latent,

the model is observationally equivalent if one halves the acceptance probability for ev-

ery candidate and doubles the arrival rate at the same time. Effectively, one can only

identify the relative acceptance probabilities for different movies. In the Appendix,

I use a simplified version of the model to further explain why the normalization is

innocuous and necessary.
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2.5 Model Estimation

2.5.1 Demand

Although the products in the market are consequences of firm selection, most appli-

cations estimate demand by assuming that the set of products is exogenous and focus

on other sources of endogeneity (e.g., price). Even in studies of market or product

entry, it is standard to retain exogeneity in the unobserved component ξ by arguing

that firms have no knowledge of it before entry (see, for example, Aguirregabiria and

Ho, 2011; Eizenberg, 2014). Because my model relaxes this assumption, it requires

an extension of the standard estimation technique.40

To be more specific, notice that the following regression equation can be directly

obtained from the box-office equation (2.4.1).

log
(
π j

)− log
(
mr j −π j

)
=U (x j ,β)+ξ j . (2.5.1)

There are two issues about this regression. First, the residuals ξ are correlated, and

the correlation structure is of interest to us. Second, due to endogenous entry, the

standard moment condition E(ξ j |x j ) = 0 does not hold here in general. For example,

ξ j can be positively correlated with the budget b j in x j , because a bigger budget

implies larger risks which typically need to be compensated by a higher belief on ξ j

for entry.

I estimate this equation by controlling for what firms can learn about ξ j at the time

of entry. In my model, the firm’s information at time a j is a subset of (x j , y j ,Sa j ),

which determines the arrival distribution of of ξ j through (2.4.3). Let υ j ≡ ξ j −
E(ξ j |x j , y j ,Sa j ;β,λ,ϕ), which is the difference between the realized latent quality and

the mean of its arrival distribution. I use υ instead of ξ to construct moment condi-

tions. Identification of parameter σ requires us to further match the dispersion of the
40An important difference here from the standard spatial econometrics is that the network is not

exogenous. For general treatment of spatial econometrics, see Bradlow (2005) and LeSage (2008).
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arrival distribution, so I define a second difference: ι j ≡ υ2
j −E(υ2

j |x j , y j ,Sa j ;β,λ,ϕ,σ).

The demand-side estimation is then based on the following mean-independence mo-

ments:

E
((
υ j , ι j

) |x j , y j ,Sa j

)
= 0.

This leaves us with many instruments to choose from the conditioning set to interact

with υ j and ι j .41 To identify β, I interact υ j with x j . To identify parameter λ and ϕ, I

interact υ j with the average latent quality of the precursors for j , and the precursors

that were released several years apart from r j . To identify σ, I interact ι j with a

constant term and the number of the precursors for j . To the extend that the ξ’s are

unobserved, they need to be computed through equation (2.5.1) as a function of the

unknown parameter β. This means that the estimation requires a numerical search

jointly over (β,λ,ϕ,σ). However, lots of computational time can be saved by using

the OLS estimates of (2.5.1) as the initial guess for β.

The sample moments average across the movies that started production in 1995 and

after. The movies in 1975-1994 are counted as possible precursors of these movies. Not

conditioning on this initial sample should not affect the asymptotics of the estimator

as the sample period extends, but introduces a source of finite-sample bias.

2.5.2 Supply

The estimation procedure for the supply side is relatively straightforward. I match

the properties that the model predicts for the produced movies with those observed

in the data. Specifically, index the movies in data by arrival date so that j is the first

movie that arrives after j −1. The full history up to time a j can be summarized as

(x j , y j ,ξ j ,Sa j ). Let H be a function this history. For notation, write H(x j , y j ,ξ j ,Sa j )

as H j . The specification of H depends on the moments that one wants to match

to identify the parameters. I give the specification of H below after discussing the
41For reasons why one should not use many moment conditions, see Andersen and Sørensen (1996)

and more recently Han and Phillips (2006).
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identification.

Collect the supply-side parameters in Θ. For any value of Θ, given the history at time

a j−1, the model makes a prediction of H j , where the error of prediction given by

h(x j , y j ,ξ j ,Sa j ;Θ) ≡ H j −E(H j |x j−1, y j−1,ξ j−1,Sa j−1 ;Θ).

The conditional expectation does not have closed forms, but can be evaluated through

simulations. This evaluation step is computationally intensive and required us to

make use of a computer cluster.42 The supply-side estimation relies on the following

moment conditions:

E
(
h(x j , y j ,ξ j ,Sa j ;Θ)

)
= 0.

The estimate for Θ is obtained following the standard procedure of the Generalized

Method of Moments. It searches for the parameter values that minimizes a norm of

the sample counterpart of the moment conditions: || 1
n−k+1

∑n
j=k h(·)|| where k is the

first movie produced in 1995. Again, movies in 1975-1994 are counted as possible

precursors but not included in sample moments.

In my model, the arrival process is latent, and the set of produced movies is a joint

outcome of the arrival process and the studio selections. Consequently, identifications

for some of the supply-side parameters are not straightforward. Here I provide some

intuition as to how these parameters are identified. In the Appendix, identification is

shown for a simplified version of the model; for the full model, I show through Monte

Carlo experiments that the parameter values can be recovered from simulated data.

For the arrival process, the second-stage attachment probability (ω) is identified by

the extent of clustering in the observed network. Although the clustering coefficient

can be affected by other parts of the model, ceteris paribus, it should always increase

with ω. The identification of the arrival rate (η) relies on the normalization that

42It is not necessary to use a very large number of simulations to evaluate one conditional expec-
tation, as the simulation errors will be averaged across the movies. I chose to use 100 simulations.
Nevertheless, one evaluation of the objective function takes around 10 mins on a quad-core desktop.
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a movie with π j = b j is accepted with .5 probability. As already pointed out, the

model is observationally equivalent if one halves the acceptance probability for each

candidate and doubles the arrival rate at the same time. In this regard, one should

not interpret the estimated η literally as the number of the proposals that are sent

to studios over a year.

For the selection model, the coefficient of risk aversion (α) can be identified by the

difference in the imitativeness between big-budget and small-budget movies. To the

extend that the firms are risk averse, they make bigger-budget more imitative to keep

the risks acceptable. This is also in line with my reduced-form findings. Alternatively,

risk aversion can be identified simply by the mean of the observed budget distribution,

given the model assumption that the budget of a candidate centers at the mean budget

of the precursors. This is because the acceptance probability for big-budget movies

tends to decrease with risk aversion. The other parameter is the standard deviation

of the decision error (ρ). It can be identified by the average risk-adjusted ROI of the

movies in the data. This is because the firms become more selective when ρ decreases.

The specification of H complies with my identification argument. Specifically, I in-

clude in H j : the time elapsed since last movie production (a j − a j−1), an indicator

whether j has any precursors, the log number of precursors, number of the triangles

created in the attachment of j divided by the number of precursors squared, pro-

portion of the precursors that were produced by the same firm as that of j , average

age of the precursors at time a j , log of budget b j , distance between b j and the em-

pirical mean of budget ($48m), distance between b j and the average budget of the

precursors, and finally the log of the risk-adjusted ROI of j .

2.6 Estimation Results

2.6.1 Parameter Values
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Parameters I II III

Time Constant -7.14 (.14) -7.50 (.18) -7.51 (.17)
Trend -0.0202 (.004) -0.0185 (.008) -0.0156 (.008)
Seasonality 0.151 (.05) 0.0941 (.04) 0.0962 (.04)

Budget Yes (Fig. 2.4) Yes (Fig. 2.4) Yes

Rating Restricted -0.197 (.05) -0.231 (.06)
Genre Drama 0.000 (.00) 0.000 (.00)

Comedy 0.418 (.07) 0.248 (.08)
Action/War 0.197 (.07) 0.254 (.08)
Family 0.386 (.09) 0.596 (.16)
Sci-Fi/Advent. 0.358 (.1) 0.358 (.09)
Horror 1.11 (.1) 0.914 (.2)
History/Bio. 0.106 (.1) 0.0367 (.1)
Others -0.424 (.4) -0.405 (.2)

Crew Power Actor -0.0266 (.05) 0.012 (.05)
Director -0.0679 (.06) -0.0667 (.05)
Writer 0.121 (.06) 0.0187 (.05)

Similarity (λ) 0.571 (.07) 0.624 (.07)
Yearly Disc. Factor (ϕ) 0.963 (.02) 0.954 (.02)
Std. Dev. (σ) 1.86 (.05) 1.91 (.05)

R2 (Share) 0.557 0.681 0.676
R2 (ROI) 0.0716 0.331 0.321

Column I displays the OLS estimates of equation (2.5.1). Column II and III display the GMM
estimates. See Table 2.2 for definitions of some of the variables. The utility for budget is estimated
as a piecewise linear function; see Figure 2.4 for the estimates (dashed curve for Column I and solid
curve for Column I). The numbers in parentheses are standard errors. R2(share) measures the fit
for the log market shares. R2(ROI) measures the fit for the log ROIs.
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Figure 2.4: Estimated Effects (β) for Budget Size
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Demand side Table 2.5 displays the estimates for the demand-side parameters.

Specifically, Column I displays the estimates from an OLS regression of the revenue

equation (2.5.1); Column II displays the GMM estimates with all the covariates;

Column III displays the GMM estimates excluding genre, MPAA rating and quality

of the crew as covariates.

First notice that the estimates do not differ too much across the three configurations,

so some common observations can be made. There is a small but statistically sig-

nificant downward trend, which may be attributed to the growth of the home video

market as an alternative to movie theaters. The demand tends to be higher in the

summer and at the end of a year, which is consistent with the seasonality pattern

found in Einav (2007). As expected, a “restricted” MPAA rating reduces demand.

Interestingly, horror movies are the best bet for studios to make profits.43 The effect

of star power is insignificant, which is consistent with my reduced-form analysis and

the finding in Ravid (1999) that stars capture their economic rent. Finally, the effects

of budget are estimated as a piecewise linear function and plotted in Figure 2.4. The

shapes of the function exhibit diminishing marginal utility.

The difference between the GMM and OLS estimates for the effects of budget (Figure

2.4) can be explained by studio selection. For example, for a big-budget movie to be

produced, a high belief on ξ is typically required to compensate the associated large

risks. This introduces a positive correlation between b j and ξ j , making the OLS

estimates biased towards larger effects of budget. The estimated effects of genre,

rating and quality of the crew tend to be smaller with the GMM (Table 2.5). This is

because these effects are taken into account, to certain extent, by the network.

As to the explanatory power, by using the network, Column II improves the R2 for

market share from the .56 in Column I to about .66. Notice that budget size is a

major explanator for market share and so contributes significantly to the R2. In terms

of explaining the ROI, we see that the model in Column I performs poorly, whereas
43For a stimulating discussion on this, see “Let’s Get Scared: Why Horror Movies Are Immune to

the Digital Onslaught.” September 16, 2013, Yahoo Movies.
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Column II provides a considerable improvement. This is in line with my reduced-

form results (Table 2.2). As we move from Column II to III, both the R2’s remain

almost identical, and λ picks up the effects of the dropped covariates. This is again

in line with my reduced-form analysis, indicating that the network incorporates the

similarity in these covariates. The result justifies us to drop these covariates on the

supply side, making the model and estimation much more tractable.

The estimate of σ implies an enormous level of uncertainty. To see the magnitude,

recall that σ is the standard deviation of the latent quality for a candidate without

any precursors; one standard deviation equals about the effect of raising the budget

of a $10m movie to $70m, or the budget of a $100m movie to over $300m. Under the

estimates of λ and ϕ, the model implies that for the movies in the data, learning on

average reduces the variance in ξ at the time of go/no go decision by about 60%.44

The estimate of ϕ indicates a fairly rapid change of consumer tastes over time. In

updating on the latent quality for a candidate, a 10-year old precursor counts only

slightly more than half as much as a concurrent precursor.

Supply side Table 2.6 displays the supply-side estimates. First shown are the

parameters for the attachment process. We see a sizable 2nd-stage attachment prob-

ability, which is consistent with the degree of clustering in the observed network. The

estimate for γ1 indicates that a production company has certain monopoly power in

imitating its own movies. A studio may become specialized in certain types of movies,

and often develops exclusive relation with the crew from its past productions.

The coefficient of absolute risk aversion, α, is estimated to be both statistically and

economically significant. This is demonstrated in Figure 2.5. On the left side, the

graph plots the risk-adjusted ROI as a mapping of the budget size and variance in the

ξ. We see that for big-budget movies, risk-adjusted ROI decreases with the variance

in ξ. This should be expected because a higher variance implies a higher level of
44More precisely, for each movie, I compare Var(ξ j |Fa j ) with σ2, which is the variance that the

firm would perceive had it ignored the correlation structure in ξ.
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Table 2.6: Supply-Side Parameter Estimates

Parameters Estimates

Attachment 2nd-Stage Probability (ω) 0.215 (.005)
Intercept (γ0) -4.836 (.02)
Own Movies (γ1) 1.673 (.06)
Time Difference in Years (γ2) -0.214 (.005)

Obs. Characteristics Budget Mean w/o Precursors (µ) 60.6 (8.5)
Variance-to-Mean Ratio (χ) 103.1 (6.9)

Coefficient of Risk Aversion (α) 0.0312 (.0051)
Standard Deviation of Decision Shock (ρ) 0.601 (.03)
Yearly Arrival Rate (η) 772 (45)

Budgets are expressed in 2014 million dollars. A single arrival rate is estimated where any arrival is
assigned to one firm according to its share of movies in the data. The firm discounting factor δ is
set at .975. Numbers in the parentheses are standard errors computed by parametric bootstrapping
(see Appendix).
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The plots show the risk-adjusted ROI, π j /b j , of a hypothetical movie j as a function of the budget
size and variance in the latent quality ξ j . The latent qualities of the precursors for j are set equal
to the average latent quality of the movies with budget close to b j in the data. Budget is again
expressed in 2014 million dollars. The plot on the left uses model estimates, while the plot on the
right takes α→ 0 so firms are risk-neutral. ROI only takes domestic box office and production budget
into account.

Figure 2.5: Risk-adjusted ROI as Function of Budget Size and Var(µ)
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risks. However, what may come at a surprise is that this relation is reversed for

small-budget movies. This is because there is a tight lower bound for how much

a small-budget movie can lose: the maximum that a movie with $5 million budget

can lose is $5 million. In this case, a larger variance expands the right tail of the

box-office revenue distribution but not as much for the left tail. In other words, for

a small-budget, novelty increases the chance of becoming a big hit. This mapping

for risk-adjusted ROI is a driving force behind some of the predictions later in the

counter-factual analysis.45

As a comparison, the graph on the right side in Figure 2.5 plots the risk-neutral

case where α→ 0. The graph depicts a very different mapping, indicating that risk

aversion does play a significant role. In particular, for almost all levels of budget size,

firms prefer novel candidates, taking advantage of the lower bound of the box-office

revenue distribution.

Recall that I allow for a decision shock on the firm side, capturing factors not ob-

served by us but known to the firms. The larger is the size of the shock, ρ, the less

predictive is the model about the firm decisions. In the extreme case where ρ→+∞,

all types of arrivals are accepted with equal probability. Under the estimate of ρ, the

acceptance probability ranges from about 0 to .55 for the range of the risk-adjusted

ROIs shown in the left graph of Figure 2.5. So my model captures a good deal of

the firm decisions. Finally, the estimate of the arrival rate implies that around three

quarters of the arrivals are rejected. Because the identification of the arrival rate re-

lies on a normalization, the estimate should not be interpreted literally as the number

of candidates that are sent to the studios each year.46

45Given this mapping, one may ask why not split the money for a novel big-budget into many
small-budget and novel movies? The immediate answer is that movie supply is not infinite. Once
there are many small-budget movies produced, it becomes difficult to come up with another original
small-budget. Goettler and Leslie (2005) asked a similar question and offered a few alternative
explanations.

46For readers interested in the transaction of movie scripts, see Luo (2014). However, rejected
scripts are not included in her data and no estimate of the rejection rate is provided.
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The model is simulated for once from 1995-2012 conditional on the data up until 1994. The column
on the left plots the simulated data, while the column on the right plots the real data. Each row
plots, respectively: (i) the log number of precursors against the log budget, (ii) the distribution of the
log number of precursors, (iii) the distribution of the log budget distribution, (iv) the distribution
of log ROI. A precursor for j is any k that is linked to j and satisfies ak < a j . 1 is added to the
number of precursors before taking its log.

Figure 2.6: Model Fit
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2.6.2 Model Fit

To make an assessment on model fit, I simulate the model from 1995 all the way to

2012, conditional on the data from 1975 to 1994. Figure 2.6 compares the simulated

data with the real data. Given the important trade-off between budget size and

uncertainty in the firm’s decision (see Figure 2.5), here let us focus on: (i) the scatter

plot of the number of precursors against the budget, (ii) the distribution of the number

of precursors, (iii) the budget distributions, and (iv) the distribution of ROI.

Considering the parsimony of the supply model, I find the fit satisfactory. Because

the production and release strategies can be different across movies with diverse sizes,

production companies and release years, it is difficult for the model to capture all the

patterns in the data. For example, the model seems to under-produce the very big-

budget movies. This could be caused by risk aversion heterogeneity across firms,

which my model fails to capture: blockbusters are often produced by major studios

that are financially more capable than independent production companies. The model

also seems to produce a smaller left tail for the log ROI. This could be caused by the

normality assumption on ξ. The fatter left tail in the data suggests that it may be

better to use a distribution that allows some degree of negative skewness. Enriching

the model for a better fit with the data is left for future research.

2.7 Counter-factual Experiments

This section uses several counter-factual experiments to provide further insights on

how learning affects product entry. First, I quantify the importance of learning in the

model by investigating what happens if firms stop learning. I also try to quantify the

spillover effects of learning. Second, I look at what happens if there is a change in

firm’s risk attitude. The results provides explanation to the rise of imitative block-

busters in the last decades.

For all the counter-factuals, the changes are introduced at the steady state of the
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model. For the model to have a steady state, the demand trend is removed and both

the market size and ticket price are set constant over time. The rest parameters

are set at their estimates. To reach the steady state, the model is simulated for

a long enough “burn-in” period. I check across the paths from several independent

simulations to make sure that they do converge to the same state.

2.7.1 Learning

What happens to a firm if it starts ignoring the demand correlation across products?

Can the whole industry do as well as before? How important is the learning by the

other firms vs. the learning by oneself? The first set of counterfactuals are designed

to answer these questions. I first examine the case where a single firm stops learning,

which is illustrated in the top row of Figure 2.7. The industry is at steady state at the

beginning of the plotted period. Starting from the tenth year, Firm 1 (corresponding

to a major studio) treats λ= 0. The plots are averaged over multiple paths that are

simulated independently.

There are several predictions. First, the firm invests in slightly fewer movies per year.

Second, the firm shifts towards smaller-budget movies. This is because the absence

of learning means that the firm faces a much larger uncertainty in each candidate’s

ξ, which makes it avoid big-budget movies. In addition, we see a sizable decrease in

the average latent quality. This is because without learning, the firm becomes less

effective in selecting better movies. The decreases in budget size and latent quality

together suggest a decline in the profitability for the studio as well as the consumer

welfare.

It is interesting to compare these predictions with those where the other firms but Firm

1 stop learning, which are displayed in the middle row of Figure 2.7. The subjects

of the plots are still the movies of Firm 1. Nevertheless, we still see decreases in

the production rate, budget size and latent quality. This is exactly because of social

learning. As the other firms stop learning, the movies they make become smaller and
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Each plot shows how one of the following statistics change over time: (i) the number of movies
produced by Firm 1 (corresponding to a major studio) in each year, (ii) the average latent quality of
these movies, (iii) the average budget size of these movies, and (iv) the average number of precursors
of these movies. The solid line is averaged over many independently simulated paths. The dashed
lines represent the ±2 standard deviations of the statistic across those paths. For each path the
simulation starts long before time 0 to reach steady state. For the top row, firm 1 stops learning
(treats λ as zero) after Year 10. For the middle row, all the firms except firm 1 stop learning. For
the bottom row, all firms stop learning.

Figure 2.7: What Happens If Firms Stop Learning
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of lower quality. This means that Firm 1 will receive smaller-budget and lower-quality

candidates. Although the decreases are much more gradual, the eventual sizes of the

decreases are comparable to those in the first counterfactual. This suggests that a

single firm benefits substantially from the learning by the other firms. This holds true

even though it is estimated that there are significant barriers against social learning,

in the sense that a studio has a favorable position in imitating its own movies.47

Finally, the bottom row of Figure 2.7 displays the case where all the firms stop

learning. As expected, we see much larger decreases in budget size and latent quality.

Notice that after the initial drop, there is a gradual increase in the number of movies

produced. This is caused by the larger decrease in the budget size, which, combined

with the mis-perceived novelty in the candidates, makes the firms see high profitability

(Figure 2.5) and accept more candidates.

2.7.2 Risk Aversion

Given the important role of risk aversion in the industry as well as the model, I

now turn to examine what happens if there is a change in the level of risk aversion.

Changes in the level of risk aversion could be caused by factors such as the risk

attitude of the studio managers (Lambert, 1986), the diversification of the parent

company, or more broadly the condition of the financial markets. Figure 2.8 displays

the scenario where the coefficient of risk aversion for all firms decreases by 20% and

stays at that level thereafter. Again, the plots are averaged across multiple paths

that are simulated independently.

As expected, there are increases in both the number and budget size of the movies

produced each year: as the firms become less risk averse, they accept more candidates.

In particular, they become more accepting towards bigger-budget candidates, as they

involve higher level of risks than their low-budget counterparts. The releases of these
47Though in this essay the focus is on firm learning about consumer demand, the findings echo

the literature of learning-by-doing spillovers. See, for example, Argote and Epple (1990), Irwin and
Kelnow (1994), Benkard (2000) and Thornton and Thompson (2001).
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The plot definitions follow Figure 2.7. The statistics plotted in the bottom row are: (i) the number
of small & novel movies made in each year, (ii) the number of small & imitative movies made in
each year, (iii) the number of big & novel movies made in each year, and (iv) the number of big &
imitative movies made in each year. A movie is classified as small if its budget < $15 million, and
as big if its budget is > $65 million. A movie is classified as novel if the number of precursors ≤ 2 ,
and as imitative if the number of precursors ≥ 9. The coefficient of risk aversion decreases by 20%
in Year 10 for all the firms and remains at that level thereafter.

Figure 2.8: What Happens If Firms Become Less Risk Averse
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Figure 2.9: Rise of Big-Budget Imitative Movies
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movies pave the way for further increase in the average budget, as they create the

role models that the production of big-budget movies acutely requires.

There is a noticeable increase in the average number of precursors, which may come

as a surprise: despite of firms being less risk-averse, movies become more imitative

on average. To understand this rise of imitativeness, I want to draw some attention

to several factors driving the degree of imitation. First, for any fixed size of budget,

lower risk aversion implies that firms are more accepting towards original movies. This

factor tends to increase the level of novelty and seems the most intuitive. However,

there are two other less obvious factors working in the opposite direction. One is that

with more movies being produced each year, the overall level of novelty of the arrivals

decreases. Put differently, a large pool of existing movies makes it difficult to come

up with something original.

The other factor comes from the fact that big-budget movies heavily rely on imitation

(Figure 2.5). Lower risk aversion allows firms to produce the bigger-budget movies,

but for these movies imitation is still required to keep the risks acceptable. It is

instructive to break the movies into four categories by budget size and imitativeness,

and see how the size of each category changes. This is plotted in the bottom row of

Figure 2.8. Most noticeably, there is a large increase in the number of big & imitative

movies. So it is really the infusion of a population of big-budget and imitative movies

that increases the overall imitativeness.

We can compare the simulation with data. Figure 2.9 plots the size of each category

since 1990 in the data. The data look more volatile. This is partly because in

the counter-factuals the plots are averaged over multiple paths. In addition, there

probably have been more events than just a single change in the level of risk aversion.

Nevertheless, we can see that the most salient feature is a big increase in the number

of big & imitative movies, while the changes in the other categories are less obvious.

This is very consistent with the model simulation.

There have been discussions and debates in media on the rise of imitative and big-



72

budget movies. Some commentator observes that the movie business model becomes

increasingly reliant on “blockbusters – especially sequels and franchises.”48 Spielberg

and Lucas, among others, expressed concerns over the declining originality in motion

pictures, and point the finger at risk-focused studios.49 However, my counter-factual

suggests that one probably should view the trend as an indicator that the studios

have become less risk averse.

As a matter of fact, in 1989 and early 1990s, a series of conglomerate purchases and

mergers that happened in the motion picture industry brought several studios new

financial capabilities. It has also become more popular to co-finance movies since the

1990s.50 Both can be seen as factors that lower the level of risk aversion. Lower risk

aversion makes the blockbusters possible, but does not necessarily imply a setback in

the production of novel movies. This is seen in the data (Figure 2.9). In addition, we

should remember that there are more and more movies made in each year, and this

makes the creation of original work more and more difficult.

2.8 Concluding Remarks

This essay studies product entry in the presence of firm learning from the demand for

previous products. I make novel use of the data from IMDb and Amazon to construct

a network amongst the products. The network allows us to examine the correlation

across the market outcomes for different products. Interpreting it as a similarity

network, I am able to measure the imitativeness of different products. I demonstrate

the use of evolving networks in modeling industry dynamics. The model, together

with its estimates, allows me to quantify the effects of learning, generate insights into
48“Are Blockbusters Destroying the Movies.” New York Times, Jan 6, 2015.
49See “George Lucas & Steven Spielberg: Studios Will Implode; VOD Is the Future,” Variety, June

12, 2013; “Steven Spielberg and George Lucas Predict Film Industry Implosion,” The Guardian, June
13, 2013.

50Co-financing is not explicitly modeled in this essay. Interested readers may look at Goettler and
Leslie (2005).
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the balance of innovation vs. imitation, and examine the role of risk aversion. Given

my focus on the U.S. motion picture industry, it is natural to ask how my study can

be extended and generalized.

In many aspects, TV shows and book publishing are similar to the motion picture

industry. Series borrow each other’s scenes and novels reinvent each other’s char-

acters. Moreover, there is probably substantial learning across these industries. It

would be interesting to see how the product successes in contiguous industries lead to

adaptations. In the smart-phone app market, millions of applications are being de-

veloped and distributed. Some examples of imitation are quite noticeable (e.g., Uber

vs. Lyft). The strong substitutability between similar apps means that competition

should be an important factor considered by app developers. It would be interesting

to see to what extent apps differentiate vs. imitate each other. Fashion design is well

known for being forbearing about imitation. While also present in other industries,

the influence of products on consumer tastes is perhaps particularly strong in fashion

design (Pesendorfer, 1995; Raustiala and Sprigman, 2006). Instead of only passively

learning about the consumer demand, firms can actively shape it.

The wide spectrum of budget size is also seen in scientific research. People debate

about the emergence of big science, the research that is expensive and usually involves

large teams. In line with the essay’s insight on the balance between innovation and

imitation, Alberts (2012) argue that while some projects have reached the stage for

large scale, new projects “whose exact nature is unpredictable” are perhaps better

carried out as small science. In science, there is an alternative yet natural way to

construct networks. Citation networks have been widely studied, but not much em-

phasis has been put on learning and formation dynamics, where important insights are

conceivable. For example, one peculiar feature of science is that we use the amount

of imitation, usually the citation count, to measure how successful a paper is. This

may help create a cluster of research that thrives on its own - a citation “bubble”

(Schmidhuber, 2011).
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Appendix A

Appendix to Chapter 1

A.1 Alternative Models

Let us first consider a two stage model, where carriers set frequencies in the 1st stage

and compete on prices in the 2nd stage. In such setting, frequency must be an explicit

choice variable. One can easily transform it into a simultaneous game where carriers

set frequencies and prices together. However, it should be noted that it is strategically

different from the two stage game, which could give rise to preemptive behaviors, for

example.

Fix the network structure. Let p j be the price on route j , and Fg be the flow capacity

on link g (which we can think of as flight frequency). Both route and link are carrier-

specific. Use j ∈ c to denote that route j belongs to carrier c and g ∈ j to denote that

link g is a segment of j . As in BLP, we may allow a route-specific demand component

ξ j . Let D j (p,ξ,F ) be the demand for route j . There are costs associated with setting

up capacity that are sunk in the second stage. Let ω j be a route-specific marginal

cost in addition to the capacity costs. Each carrier’s problem in the second stage is

then

max
{p j , j∈c}

:
∑

j∈c D j (p,ξ,F ) · (p j −ω j )



75

s.t.
∑

j D j (p,ξ,F ) ·1{g ∈ j } ≤ Fg , for each g ∈ c.

Let Πc (ξ,F ) be the second-stage profit at the equilibrium prices for carrier c. Next

consider the first stage. Let Cg be the marginal cost of capacity on link g , each

carrier’s problem is then

max
{Fg ,g∈c}

:Πc (ξ,F )− ∑
g∈c Cg ·Fg .

The main challenge of this formulation are the inequality constraints in the second

stage. To characterize an equilibrium in price, one needs to rely on Kuhn-Tucker

conditions instead of the simpler first order conditions. Further, for the first stage,

the profit function Πc (F ) is not differentiable at the places where the constraints are

exactly binding (or exactly non-binding). As a result, it does not seem straightforward

to extend the BLP framework to such a formulation.

In a simultaneous game, each carrier’s problem becomes the following. Still, it seems

that one needs to rely on Kuhn-Tucker conditions to characterize an equilibrium.

max
{p j , j∈c},{Fg ,g∈c}

:
∑

j∈c D j (p,ξ,F ) · (p j −ω j )− ∑
g∈c Cg Fg

s.t.
∑

j D j (p,ξ,F ) ·1{g ∈ j } ≤ Fg , for each g ∈ c.

Let us consider the assumption that the carriers always choose F so that the con-

straints are exactly binding. Intuitively, this should be the case when capacity costs

Cg ’s are not so small that carriers find empty flights desirable, nor so large that car-

riers have to reject some passengers with overly high prices. If we are willing to make

this assumption, then the carrier’s problem is reduced to:

max
{p j , j∈c}

:
∑

j∈c D j (p,ξ,F ) ·
(
p j −

∑
g∈ j Cg −ω j

)

where Fg = ∑
j D j (p,ξ,F ) ·1{g ∈ j }, for all g .
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Notice that this essentially imposes a fixed point requirement on D and is exactly the

model that I have considered in the essay.

A.2 Uniqueness of The Fixed Point

Here I consider the fixed points for mappingΨ(p,ξ, ·) over the positive demand vectors.

I first present a condition on the parameters which guarantees a unique fixed point

regardless of the network configuration.

Proposition 1. If max{θ1,θ2} < λ
2 , then Ψ(p,ξ, ·) has a unique fixed point. Moreover,

Iteration of Ψ(p,ξ, ·) always converges to the fixed point.

The parameter estimates are θ1 = 0.33, θ2 = 0.49 and λ= 0.56, so the condition is not

satisfied. However. it is a sufficient condition and the proof considers the worst case

scenarios that could break convergence to a unique fixed point. For example, if one

is willing to assume S ¿ 1 so that D j ' Mm ·Sλ−1ev j /λ is a good approximation for

(1.2.5), then max{θ1,θ2} < λ
2−λ is sufficient to obtain the results in the proposition.

Alternatively, if one considers networks where there is a single route in each market,

then max{θ1,θ2} < 1 is sufficient.

In my experiences, under the estimated parameter values, iteration of Ψ(p,ξ, ·) always
converges to the same point regardless of the starting point. For the starting point, I

have tried the observed demand vector, a vector of ones, and many random vectors.

When the values of θ1 and θ2 are much larger, for example, θ1,θ2 > λ, the iteration

typically diverges or converges to non-positive vectors.

Below I give the proof of the proposition.

Proof of Proposition 1. First let us define a “distance” measure between two positive

vectors of the same length n:

d(V ,V ∗) := max

{
V1

V ∗
1

, ...,
Vn

V ∗
n

,
V ∗

1

V1
, ...,

V ∗
n

Vn

}
.
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Note that d is always greater than or equal to 1, and d = 1 implies V =V
∗
.

Let D and D∗ be two positive demand vectors. With the specification in (1.2.1), it is

seen that

d
(
F (D),F (D∗)

)≤ d(D,D∗).

With the specifications given by (1.2.3) and (1.2.4), it is seen that

d
(
e f (D ;θ,σ),e f (D∗;θ,σ)

)
≤ d

(
F (D),F (D∗)

)max{θ1,θ2} ,

where the exponential e f refers to the vector collecting e f j , j = 1, ...,n. Using the

same notation for ev , we have

d
(
ev(p,ξ,D),ev(p,ξ,D∗)

)
= d

(
e f (D ;θ,σ),e f (D∗;θ,σ)

)
.

It is not immediate but neither difficult to see that the nested logit specification

implies

d
(
Ψ(p,ξ,D),Ψ(p,ξ,D∗)

)≤ d
(
ev(p,ξ,D),ev(p,ξ,D∗)

)2/λ
.

Putting this chain of inequalities together, it is seen that under the condition of the

proposition,

d
(
Ψ(p,ξ,D),Ψ(p,ξ,D∗)

)< d(D,D∗).

Because Ψ shrinks the distance between D and D∗, it cannot have two distinct fixed

points. ä

A.3 Monte Carlo Experiment

The main purpose of the Monte Carlo experiment is to check whether the estima-

tor becomes unworkable or ill-behaved with the network structure and fixed-point

demand. I use the benchmark estimates as the “true” parameter values for the exper-

iment, so the results can also be used to construct bootstrap standard errors.
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Figure A.1: Monte Carlo Results
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More specifically, the experiment is done in the following manner. A network structure

and a set of “true” parameter values are chosen before the experiment. To start the

experiment, a set of ξ j ’s and ω j ’s is drawn. Then an equilibrium in price is computed

(see Section 1.5.1). Treating the equilibrium demand and price as data, one can

recover the parameter values using the estimation procedure outlined in Section 1.3.

This samples one observation from the distribution of the estimator. Repeat the

experiment with another set of ξ j ’s and ω j ’s to sample another observation.

For a large network such as the one used in the estimation, computation an equi-

librium is very intensive. It would take me too much time to obtain a sample of

reasonable size for the estimator. For this reason, I conducted the experiment with a

smaller network. Specifically, I use a more stringent definition where a link is included

iff its flow is larger than 2.5 percent of the geometric mean of the population of the

end cities. The resulting “backbone” network still includes the 12 carriers, but only

602 links and nb = 7,353 routes. For a network of this size, it is possible to compute

∂D/∂p with implicit function theorem (see Section 1.3.1), which saves a lot of time.

Because nb is smaller than n, the number of routes in the data, I downsize the

standard deviations of ξ j and ω j by a factor of
√

nb/n. In generating the ξ j ’s and

ω j ’s, one possibility is to draw them independently. However, one can imagine that

there are correlations between the ξ j ’s within the same market, and between the

ω j ’s that share a common link. Such correlations are indeed present in the data.

Accordingly, I introduce these correlations in the generated shocks by using market-

specific and link-specific dummies.

Figure A.1 shows the kernel densities of the estimator for four parameters: θ1, θ2, and

two cost side coefficients in γ. The densities are all bell shaped and centered around

the “true” parameter values. The variance of the estimator for θ2 is smaller than

that for θ1 because there are more one-stop routes than non-stop routes. Also note

that variances of the estimator for γ partly come from the demand-side estimation.

Overall, the estimator seems well-behaved.
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Appendix B

Appendix to Chapter 2

B.1 A Toy Model

Consider a simple model of product entry with learning. There is one single firm and

potential products arrive at a Poisson rate η. There is no production time, so if the

arrival is accepted it gets released and generates revenue immediately. Now suppose

that at time t there arrives a potential product. Let us temporarily label this product

by j . It is randomly assigned to be similar to one of the n last released products:

j − 1, j − 2, ..., j −n. The products older than j −n become obsolete and are not

imitated anymore. Let y( j ) denote the product that j is similar to. The log return

of j , ξ j , is drawn from a normal distribution N (λξy( j ),σ2), where λ ∈ (0,1). At time

t , the firm does not observe ξ j but knows y( j ) and ξy( j ), so that its expectation on

j ’s log return is ξ j ≡ λξy( j ). Let z j be a product-specific cost shock known to the

firm but not to us. Assume that z j ∼N (0,ρ2). The firm accepts j iff ξ j − z j > 0, and

discards j otherwise.

The model has five parameters: η, n, λ, σ and ρ. The question is whether one can

identify all of them. The answer is yes. Technically, the identification works as follows.

Let A be the set of accepted products within a period of length T . First, parameter

n can be simply identified with max j∈A | j − y( j )|. Next, noticing that υ j ≡ ξ j −λξy( j )
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is zero-mean normal with variance σ2 and is i.i.d. across the accepted j , one can

identify λ and σ by simply regressing ξ j on ξy( j ) for j ∈ A. Next, because a smaller ρ

makes the firm more selective in accepting products, the average expected log return

of the accepted product, 1
#A

∑
j∈A ξ j , can be used to identify ρ. In the extreme case

ρ = +∞, there is no selection and the average should converges to 0. Finally, given

n, λ, σ and ρ, the production rate #A/T is strictly increasing in the arrival rate so it

can be used to identify η.

When there are additional revenues or costs that are proportional to the ones used

in calculating ξ, one can model them by adding an intercept parameter to the firm’s

decision. A product is accepted iff ξ j − z j −c > 0. The question here is whether c can

be identified. From econometrician’s perspective, the acceptance probability is

Pr( j is accepted) = Ψ

(
ξ j − c

ρ

)

' Ψ
(−c/ρ

)+ ψ
(−c/ρ

)
ρ

·ξ j ,

where Ψ (ψ) is the cdf (pdf) of the standard normal distribution. The second line is

a linear approximation of the probit model around ξ j = 0. Now consider another set

of parameters (η′,n′,λ′,σ′,ρ′,c ′) where n′ = n, λ′ =λ, σ′ =σ, c ′ = 0 and

ρ′ = Ψ(−c/ρ)

Ψ(0)
· ψ(0)

ψ(−c/ρ)
×ρ.

The acceptance probability becomes:

Pr( j is accepted)′ ' Ψ (0)+ ψ (0)

ρ′ ·ξ j

' Ψ(0)

Ψ(−c/ρ)
×Pr( j is accepted).

In other words, the acceptance probability is ϕ(0)/ϕ(−c/ρ) times larger than before
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for every arrival product. If the following arrival rate is chosen:

η′ = Ψ(−c/ρ)

Ψ(0)
×η,

then the two sets of parameters are almost observationally equivalent. Had a linear

probability model been specified in place of the probit model, parameter c would not

be identified.

B.2 Details on the Attachment

Fix a point of time t , the set of existing nodes and their network Y . The arriving

node is j . Let pk, j be the 1st-stage attachment probability between j and an existing

node k. The probability that there will be no link between j and k after the two-stage

attachment process is

1−Pr(yk, j = 1|Ft ) = (1−pk, j ) · ∏
`∼k

(1−p`, jω),

where `∼ k indicates that ` and k are linked in Y .

In principle, given the value of Pr(yk, j = 1|Ft ) for all k (as specified by (2.4.2)), one

could solve for the pk, j ’s. However, it poses a big computational burden to solve a

nonlinear system with thousands of equations every time an arrival needs to be sim-

ulated. One heuristic approach is to seek approximate solutions by postulating that

pk, j ' p`, j for k ∼ `. Given that the network features many layers of homophily (firm,

release time, budget, latent quality), it does not seem an unreasonable assumption.

In this case,

1−Pr(yk, j = 1|Ft ) ' (1−pk, j )(1−pk, jω)dk (Y ),

where dk (Y ) is the degree of k in Y , i.e., the number of links connecting k. Taking
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the log of both sides, we have

log
[
1−Pr(yk, j = 1|Ft )

]' log(1−pk, j )+dk (Y ) log(1−pk, jω).

Given that the attachment probabilities are generally small (less than 1%), one may

use the first-order Taylor approximation of log to obtain

−Pr(y j ,k = 1|Ft ) '−pk, j −dk (Y )pk, jω,

which implies

pk, j '
Pr(y j k = 1|Ft )

1+ωdk (Y )
. (B.2.1)

The denominator evens out the 2nd stage’s added attachment probability to nodes

with higher degrees. I use (B.2.1) to readily compute the 1st-stage probabilities.

A comparison can be made with the alternative specification where one uses the

right hand side of (2.4.2) directly as the 1st-stage probabilities. Such a specification

implies that nodes with higher degrees are more likely to be attached to, similar to

the concept of preferential attachment (Barabási and Albert, 1999). This leads to

two undesirable features in my context. First, the probability of an original arrival

(without precursors) is invariant to the density of the existing network. However, a

sparse network implies diverse products, which should leave less room for innovation.

Second, the model can become non-ergodic as a single product keeps being attached

to over time. By connecting to the new entries, the product reinforces its probability

of being attached to despite time discounting.

B.3 Details on Posterior Computation

For the exposition of this subsection I will fix a time point t . Use R to denote the

set of released movies: {k : rk < t }, and Q the set of the yet to be released movies:

{k : ak ≤ t ,rk ≥ t }. Use k ∼ j to indicate that k and j are linked in the network. In my
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model the entire path up until t consists of Ft and ξQ . It is not difficult to see that

the probability of the entire path up until t can be written as

Pr
(
Ft ,ξQ

)=Ψ(Ft ) · ∏k∈Q∪R Pr
(
ξk |yk ,S ak

)
.

The product term includes the arrival probabilities of the latent qualities. Ψ(Ft ) is

the part that includes the probabilities of the Poisson arrivals, attachments, budget

sizes and production decisions. Most importantly, all these do not involve the latent

qualities of the yet to be released movies, hence Ψ is a function of Ft only.

Given the specification in (2.4.3), the product term in the last equation is a joint

density of the latent qualities that depends on the similarity network, start dates and

release dates of the movies. Because these are included in Ft , we have

g
(
ξQ∪R ;Ft

)≡ ∏
k:ak≤t Pr

(
ξk |yk ,Sak

)
.

Then by the definition of conditional density, we have

Pr
(
ξQ |Ft

) = Pr
(
Ft ,ξQ

) ·[ˆ Pr
(
Ft ,ξQ

)
dξQ

]−1

= Ψ(Ft )g
(
ξQ∪R ;Ft

) ·[Ψ(Ft )

ˆ
g

(
ξQ∪R ;Ft

)
dξQ

]−1

= g
(
ξQ |ξR ;Ft

)
.

Given the specification in (2.4.3), one representation of the unconditional density g

is

ξk = ∑
`:a`≤t Wk`ξ`+υk .

where υk ∼N (0,Vkk ). W is a square matrix of the size #{k : rk < t }, and V is a diagonal
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matrix of the same size. Their nonzero entries are:

Wk` = λϕ|rk−r`|

1+λ∑
k∼`,ak<a`ϕ

|rk−r`| , if `∼ k and a` < ak ,

Vkk = σ2

1+λ∑
k∼`,ak<a`ϕ

|rk−r`| .

In matrix form we can write

ξQ =WQRξR +WQQξQ +υQ ,

or

ξQ = (I −WQQ )−1(WQRξR +υQ ).

This tells us the distribution of g
(
ξQ |ξR ;Ft

)
. So

Pr
(
ξQ |Ft

)=N
(
(I −WQQ )−1WQRξR , (I −WQQ )−1VQQ (I −W ′

QQ )−1
)

To calculate the posterior on any subset O ⊆Q, one can simply embark the calculation

of the posterior on the entire Q. However, many times this is unnecessary and adds

significant computational time in estimation or simulation because a large number of

posteriors need to be calculated. In fact, g belongs to the class of Gaussian Markov

Random Field (Rue and Held, 2005), where two sets of nodes are conditionally inde-

pendent given the values of a third set of nodes if the the third set separates the first

two sets, i.e., every path connecting the two sets uses nodes in the third set.

By this result, one can show that the above equation still holds if (i) Q is replaced

with the subset of Q whose nodes are not separated from O by R, and (ii) R is replaced

with the subset of R whose nodes are directly linked to some node in this subset of

Q. In the special case where O is the single arrival movie j and it is only linked to

already released movies, the equation reduces to (2.4.3), the arrival distribution of j .
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Table B.1: Monte Carlo Experiments for Supply Estimation

Parameters Bias (%) S.D. (%)

Attachment 2nd-stage Probability (ω) 1.0 1.2
Intercept (γ0) 0.7 0.4
Own Movies (γ1) 0.7 3.5
Time Difference (γ2) 0.5 2.0

Obs. Characteristics Budget Mean w/o Precursors (µ) 4.2 12.7
Budget Variance-to-Mean (χ) -2.1 3.2

Coeff. of Risk Aversion (α) 3.6 16.3
Shock Size (ρ) 0.7 4.8
Yearly Arrival Rate (η) -0.3 5.9

The model is simulated from 1995 to 2012 conditional on the data from 1975 to 1994. Parameters
are set equal to their point estimates. Estimation is performed in the same way as on the real data,
except that it treats demand parameter values as known. The experiment is repeated for 16 times.
The first column shows the average bias of the estimate for each parameter, as percentage of the
absolute value of the parameter. The second column shows the standard deviation of the estimates
for each parameter, as percentage of the absolute value of the parameter.

B.4 Monte Carlo

I use Monte Carlo experiment to assess the supply-side estimator. The exercise

amounts to simulating the model under the parameter point estimates to generate a

dataset, and then applying the supply-side estimator to the dataset to recover the

parameter values. This exercise is repeated a number of times to evaluate the distri-

bution of the estimator. The results are displayed in Table B.1. All the parameters

are recovered with an absolute bias smaller than 5%. The standard deviations of the

estimator are used as the parametric bootstrapping standard errors for the supply-side

estimates (see Table 2.6).
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