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Abstract
Alternative splicing is a critical component of human gene control that generates functional diversity from a
limited genome. Defects in alternative splicing are associated with disease in humans. Alternative splicing is
regulated developmentally and physiologically by the combinatorial actions of cis- and trans-acting factors,
including RNA binding proteins that regulate splicing through sequence-specific interactions with pre-
mRNAs. In T cells, the splicing regulator hnRNP L is an essential factor that regulates alternative splicing of
physiologically important mRNAs, however the broader physical and functional impact of hnRNP L remains
unknown. In this dissertation, I present analysis of hnRNP L-RNA interactions with CLIP-seq, which
identifies transcriptome-wide binding sites and uncovers novel functional targets. I then use functional
genomics studies to define pre-mRNA processing alterations induced by hnRNP L depletion, chief among
which is cassette-type alternative splicing. Finally, I use integrative genomic analysis to identify a direct role for
hnRNP L in repression of exon inclusion and an indirect role for enhancing exon inclusion that supports a
novel regulatory interplay between hnRNP L and chromatin. In two appendices, I present CLIP-seq studies of
two additional RNA binding proteins: the splicing factor CELF2 and the RNA helicase DDX17. In
conclusion, I provide comparisons of these three CLIP-seq studies, providing high-level insights into the
capabilities and limitations of CLIP-seq. In sum, this dissertation expands our knowledge of hnRNP L splicing
control in the context of broader studies of RNA binding proteins in multiple cell types and conditions.
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ABSTRACT 
 

TERRAE INCOGNITAE: INTEGRATIVE GENOMIC ANALYSIS OF hnRNP L SPLICING 
REGULATION 

Brian Sebastian Cole 

Kristen W. Lynch, Ph.D. 

  

 Alternative splicing is a critical component of human gene control that generates 

functional diversity from a limited genome.  Defects in alternative splicing are associated 

with disease in humans.  Alternative splicing is regulated developmentally and 

physiologically by the combinatorial actions of cis- and trans-acting factors, including 

RNA binding proteins that regulate splicing through sequence-specific interactions with 

pre-mRNAs.  In T cells, the splicing regulator hnRNP L is an essential factor that 

regulates alternative splicing of physiologically important mRNAs, however the broader 

physical and functional impact of hnRNP L remains unknown.  In this dissertation, I 

present analysis of hnRNP L-RNA interactions with CLIP-seq, which identifies 

transcriptome-wide binding sites and uncovers novel functional targets.  I then use 

functional genomics studies to define pre-mRNA processing alterations induced by 

hnRNP L depletion, chief among which is cassette-type alternative splicing.  Finally, I 

use integrative genomic analysis to identify a direct role for hnRNP L in repression of 

exon inclusion and an indirect role for enhancing exon inclusion that supports a novel 

regulatory interplay between hnRNP L and chromatin.  In two appendices, I present 

CLIP-seq studies of two additional RNA binding proteins: the splicing factor CELF2 and 

the RNA helicase DDX17.  In conclusion, I provide comparisons of these three CLIP-seq 

studies, providing high-level insights into the capabilities and limitations of CLIP-seq.  In 
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sum, this dissertation expands our knowledge of hnRNP L splicing control in the context 

of broader studies of RNA binding proteins in multiple cell types and conditions. 
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INTRODUCTION 

 

Alternative pre-mRNA splicing is a nearly ubiquitous mechanism by which 

eukaryotic cells generate multiple protein-coding mRNAs from a single genetic locus1.  

As many as 95% of human genes that give rise to multiexon mRNAs generate more 

than one processed product by alternative pre-mRNA splicing2,3,3.  Importantly, 

alternative splicing allows an abundance of distinct proteins to be encoded by a limited 

genome.  Recent technological advances in high-throughput sequencing have made 

possible genome-wide studies of alternative splicing and the factors that regulate 

splicing.  These high-throughput studies have necessitated commensurate software 

development efforts to process the large volumes of data generated.  In this thesis, I 

present the design, analysis, and interpretation of several high-throughput sequencing 

studies that together aim to uncover the scope of alternative splicing in human 

lymphocytes, as well as key proteins that regulate alternative splicing. 

 

The spliceosome catalyzes splicing through serial assembly and rearrangements 
 

Pre-mRNA splicing is orchestrated by the stepwise assembly and two-step 

transesterification enzymatic catalysis of the macromolecular ribonucleoprotein (RNP) 

complex known as the spliceosome4.  The spliceosome contains no preformed active 

site and instead relies upon a vectorial, multistep assembly and catalysis mechanism5.  

The core of the spliceosome is composed of five distinct subunits called the U1, U2, U5, 

and U4/U6 snRNPs (small nuclear ribonucleoprotein particles) that contain RNA and 

protein components.  In addition to the snRNPs, the spliceosome contains more than 



 

2 
 

100 accessory proteins, together forming a heterogeneous and complex macromolecular 

machine4.  

During pre-mRNA splicing, the snRNPs assemble at their cognate splice sites on 

pre-mRNA in a stepwise manner, beginning with the recognition of the 5’ splice site 

(5’ss) by the U1 snRNP, whose RNA component, the U1 snRNA, engages the 5’ss 

through RNA-RNA interactions.  Recognition of the 3’ss at the other end of the intron is 

performed first through protein-RNA interactions: SF1 binds to the intronic branchpoint 

sequence (BPS) and the U2AF binds to the polypyrimidine tract and 3’ss6.  The result of 

the recognition of the 5’ and 3’ splice sites is the E complex.  Subsequent replacement of 

the proteins engaged at the 3’ss by the U2 snRNP forms the A complex. 

After the A complex has formed, the trimer of the U4/5/6 “tri-snRNP” is recruited, 

forming the pre-catalytic B complex.  Through a series of structured rearrangements, the 

U1 snRNP is displaced from the 5’ss, with U6 replacing it.  These rearrangements 

generate a catalytically competent spliceosome, or C complex.  The U4 snRNP is then 

released and the first transesterification reaction is catalyzed, in which a lariat structure 

is formed between the 5’ end of the intron is cleaved and a lariat formation is created 

through attachment of the 5’ end of the intron to the branchpoint adenosine.  The second 

transesterification reaction cleaves the 3’ end of the intron and ligates the exons 

spanning the intron together, resulting in release of the lariat and the splice pre-mRNA7. 

 

Regulation of splicing is achieved by RNA binding proteins 
 

Importantly, the spliceosomal assembly pathway is characterized by several 

resolvable complexes that require multiple RNA-RNA, RNA-protein, and protein-protein 
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interactions to allow progression to later complexes8,9,9.  This mechanism provides many 

opportunities for regulation, enabling alternative splicing to exert fine-grained control 

over the structure of processed mRNAs.  Regulation of alternative splicing is achieved 

by the interaction of trans-acting RNA binding proteins (RBPs) with cis-regulatory RNA 

sequences5.  These interactions can serve to both positively and negatively regulate 

assembly and progression of the spliceosome at multiple steps of the spliceosomal 

assembly pathway. 

Several well-studied examples of regulated alternative splicing highlight the 

importance of the location of protein-RNA interaction.  One of the first systems used to 

understand splicing regulation was sex determination in Drosophila melanogaster.  The 

RNA binding protein Sex lethal (Sxl) is expressed in females and represses splicing of 

male-specific mRNA isoforms.  Biochemical studies of the Sxl target mRNA Transformer 

(Tra) indicated that Sxl binds to a sequence in the 3’ss of Tra exon 2, resulting in 

competition with the U2AF protein10,11,11,12,12.  Additionally, Sxl can block binding of the 

U1 snRNP to the 5’ss of an exon in another target transcript, Msl213.  In both cases, Sxl 

binding prevents formation of the E complex, demonstrating a simple mechanism of 

competitive binding that results in splicing repression. 

Another splicing regulatory protein involved in the Drosophila sex determination 

pathway is the Sxl target Transformer (Tra).  Tra cooperates with a binding partner, 

Tra2, bind to a splicing enhancer sequence in the fourth exon of the doublesex (Dsx) 

pre-mRNA.  When Tra and Tra2 bind to this enhancer, U2AF is recruited to the relatively 

weak 3’ss of the Dsx exon14.  These two cases highlight the regulatory roles that RNA 

binding proteins can play in enhancing or repressing splicing, and additionally 

underscore the importance of the location of binding in determining splicing regulation.  
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Importantly, while these early studies implicated splicing regulation at the early steps of 

spliceosome assembly, subsequent research has identified instances of splicing 

regulation by RNA binding proteins at later steps (see below).  While alternative splicing 

in humans is often complex and multifactorial, the insights gleaned from studies of the 

Drosophila sex determination pathway and the factors that regulate it provide a basis for 

investigating alternative splicing in humans.     

Two major, conserved families of RNA-binding proteins (RBPs) with splicing 

regulatory functions are the SR and hnRNP protein families.  SR proteins contain one or 

more RNA recognition motifs (RRMs) and a serine/arginine rich RS domain15,16,16.  Both 

the RS and RRM domains may be involved in protein-RNA and protein-protein 

interactions. SR proteins were initially identified as splicing enhancers capable of 

activating splicing reactions in vitro17,18,18,19,19,20,20.  The hnRNP proteins were originally 

identified by their association with pre-mRNA21,22,22, and splicing regulatory roles for 

hnRNP proteins were later identified23.  The development of high-throughput sequencing 

has enabled transcriptome-wide functional studies of SR and hnRNP proteins, and 

recent work has demonstrated that members of these protein families control virtually all 

aspects of RNA processing. 

Several previously studied examples of alternative splicing events regulated by 

the interaction of SR and hnRNP proteins with cis-regulatory pre-mRNA motifs 

demonstrate overarching paradigms for the mechanisms by which these RNA-binding 

proteins are believed to exert control over pre-mRNA splicing.  The human hnRNP A1 

protein is a well-studied splicing factor with generally repressive activity24.  hnRNP A1 

can repress cassette exon inclusion by binding to exonic or intronic splicing silencer 

sequences, termed ESS and ISS respectively, and directly block formation of the 
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spliceosome through steric hindrance25,26,26.  In addition this bind-and-block mechanism, 

hnRNP A1 can bind to a high-affinity site and propagate interactions to neighboring pre-

mRNA sites in a spreading mechanism.  Importantly, this spreading allows hnRNP A1 to 

interfere with binding of splicing activators to nearby exonic splicing enhancer (ESE) 

sequences, as was observed in HIV tat exon 327.  This latter case highlights one 

instance in which multiple trans-acting RNA binding proteins interact with each other in 

an exonic context to regulate splicing, highlighting the integrative and combinatorial 

modes of regulation that characterize alternative splicing in humans.  Another dimension 

of complexity in the regulation of alternative splicing is underscored by the fact that 

hnRNP A1 can also act as a splicing activator28,29,29,30,30, an observation common to 

many other splicing factors, which have been observed to exert both positive and 

negative regulation of splicing. 

Another well-studied splicing regulator in humans is SRSF1 (formerly denoted 

SF2 or ASF), an archetypical member of the SR protein family.  In many described 

cases, SRSF1 positively regulates cassette exon splicing by binding to exonic splicing 

enhancer (ESE) sequences31.  When SRSF1 is bound to the pre-mRNA, direct 

interactions with the U1 snRNP help to recruit U1 and initiate assembly of the 

spliceosomal E complex32.  While this simple model of splicing enhancement is a mirror 

of the bind-and-block mechanism of splicing repression by hnRNP A1, genome-wide 

analysis of SRSF1-regulated splicing events has uncovered more complex scenarios33.  

In some instances, loss of SRSF1 results in compensatory splicing enhancement by 

other SR proteins, such as SRSF2.  In other cases, there is negative coordination, in 

which loss of SRSF1 results in loss of binding by other SR proteins, leading to exon 

skipping.  The mechanisms underlying the coordinate versus compensatory regulation 
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remain unclear, but SRSF1 emphasizes another key concept in regulated alternative 

splicing: regulation of splicing likely involves a complex interplay of RNA binding proteins 

with complex interactions, motivating a systems-level understanding of splicing 

regulation. 

 

hnRNP L is an essential regulator of alternative splicing in T cells 
 

Human T lymphocytes are a critical cell line of the adaptive immune system that 

utilize alternative splicing to regulate the proteome during development and physiological 

activity34.  One example of dynamic alternative splicing in T cells is the CD45 

transmembrane protein tyrosine phosphatase, encoded by the gene PTPRC.  The CD45 

protein contains a heavily glycosylated extracellular domain that maintains the 

phosphatase activity by inhibiting homodimerization which would result in loss of 

activity35,36,36.  This extracellular domain is encoded by three tandem alternative exons in 

the CD45 pre-mRNA which are increasingly skipped in response to T cell activation37.  

This splicing switch results in a shift toward CD45 isoforms that do not contain the 

glycosylated extracellular domain and therefore can homodimerize, resulting in loss of 

phosphatase activity in activated T cells. 

Studies of sequences responsible for this activation-responsive splicing switch in 

CD45 exon 4 identified an exonic splicing silencer motif, ESS138.  The ESS1 motif 

establishes a reduced basal level of inclusion.  Importantly, this basal repression poises 

the exon for further activation-induced repression enabled by the activation-dependent 

repressive activity of other factors such as PSF39 and hnRNP LL40.  
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Subsequent in vivo studies of hnRNP L have identified a physiological role for 

hnRNP L in T cell development and function.  A lymphoid-specific hnRNP L gene 

ablation model system in Mus musculus displays defects in thymic development of T 

cells, with a specific block of the double negative to double positive stage observed 

among thymic pre-T cells41 and defects in migration of hnRNP L -/- T cells in the 

periphery.  The T cells of this mouse model display a noticeable shift towards higher 

molecular weight CD45 isoforms, indicating decreased repression of the exons that 

encode the activation-responsive extracellular domain.  However, additional 

physiological defects in chemokine-induced migration among hnRNP L -/- T cells were 

observed, indicating that hnRNP L ablation results in additional physiological defects not 

attributable to CD45 misregulation alone. 

hnRNP L is an abundant nuclear splicing factor with four conserved RRM 

domains, a glycine-rich N-terminal domain, and a proline-rich linker domain42.  

Biochemical evidence reveals that sequences within the latter two domains are required 

for exon repression, but maximal repressive activity requires at least one RRM 

sequence.  The hnRNP L protein is ubiquitously expressed and is required for viability, 

and while the paralog protein hnRNP L-like exhibits cell type-specific expression40,43,43, 

hnRNP L expression remains constant between unstimulated and stimulated T cells.  

Accordingly, hnRNP L repression of CD45 exon 4 splicing is observed in both T cell 

conditions. 

A second exon in the CD45 pre-mRNA, exon 5, is also repressed by hnRNP L 

through exonic interactions, but the mechanism of repression is distinct for these two 

exons44.  In the case of CD45 exon 5, hnRNP L binds to an exonic splicing silencer to 

block the activity of a neighboring splicing enhancer45 that is bound by SF2/ASF to 
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enhance exon inclusion.  When this splicing enhancer is removed, hnRNP L regulation 

becomes enhancing, demonstrating that location of hnRNP L-RNA interaction alone is 

not sufficient to predict regulatory outcome.  In addition, when the 3’ and 5’ splice sites of 

an hnRNP L-bound exon are weakened by mutagenesis, repression by hnRNP L is 

abolished and then reversed at extremely weak splice site strengths.  In contrast, 

hnRNP L interaction with CD45 exon 4 recruits another splicing factor, hnRNP A1, to the 

exon, resulting in an extended interaction between the U1 snRNA and the 5’ splice site 

of the exon, resulting in exon repression by blocking the transition of spliceosomal E 

complex to higher order complexes46.  Taken together, these results support a model for 

context-dependent regulation of splicing by hnRNP L wherein splice site strengths and 

co-associated proteins form a combinatorial code that leads to positive or negative 

regulation of splicing by hnRNP L. 

In addition to CD45, hnRNP L is directly involved in regulation of several other 

mRNAs.  In a mechanism common to many splicing regulatory proteins across diverse 

species of life47, hnRNP L protein binds to an evolutionarily conserved, CA-rich region in 

its own pre-mRNA upstream of an exon that contains a premature termination codon, a 

type of exon called a poison exon, as its inclusion leads to unproductive mRNAs that are 

degraded by the nonsense-mediated decay (NMD) pathway.  This binding event is part 

of an autoregulatory mechanism wherein increased hnRNP L protein levels result in 

increased binding to the conserved, CA-rich region, which in turn results in increased 

inclusion of the poison exon, causing a shift toward unproductive mRNA isoforms that 

result in decreased protein expression48.  This example also highlights a positive 

regulatory role for hnRNP L on alternative splicing, indicative of a potential direct splicing 

enhancer function for hnRNP L. 
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Another well-studied protein that is subject to alternative splicing is CD44.  CD44 

is a cell adhesion protein49 encoded by a pre-mRNA that contains a variable exon whose 

inclusion is directly regulated by hnRNP L50.  In this case, hnRNP L binds to CA repeats 

upstream of the variable exon to repress exon inclusion, providing evidence that hnRNP 

L can act as a splicing repressor from an upstream intronic binding site.  Interestingly, 

the CD44 variable exon whose inclusion is repressed by hnRNP L, exon V10, has been 

implicated in leukocyte migration51 as well as tumor progression52, providing an 

additional instance of hnRNP L-mediated alternative splicing that is critical to T cell 

function and cancer biology. 

In addition to the regulation of alternative splicing, hnRNP L-3’UTR interactions 

have been implicated in the hypoxia-induced stabilization of the VEGFA mRNA53.  In this 

case, hypoxia induces cytoplasmic localization of hnRNP L protein, allowing it to interact 

with a CA-rich hypoxia-stability region in the 3’UTR of the VEFGA mRNA54.  This 

interaction blocks miRNA-mRNA interactions that would otherwise result in translational 

repression, thereby increasing VEGFA translation.  Importantly, this mechanism 

highlights an extranuclear function for hnRNP L that is induced by abnormal cellular 

conditions which underscores the importance of nuclear localization for hnRNP L. 

While several cases of hnRNP L-regulated alternative splicing have been 

identified, including CD45 and HNRNPL, the impact of hnRNP L on the T cell 

transcriptome has not been determined, and the physical and functional targets of 

hnRNP L are unknown.  Recent experimental advances with high-throughput 

sequencing technology have enabled genome-wide characterization of RNA targets of 

RNA binding proteins, and functional studies utilizing RBP knockdown followed by 
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transcriptome sequencing and bioinformatic analysis have enabled detailed 

characterization of the direct and indirect functional targets of splicing factors. 

 

Technologies for transcriptome-wide investigation of RNA binding proteins 
 

 

The CLIP protocol (Crosslinking and immunoprecipitation) was developed to 

capture associations between proteins and the RNAs with which they are in direct 

contact55,56,56.  This procedure utilizes UV irradiation to induce covalent crosslinks 

between proteins and RNA across short distances, and subsequent immunoprecipitation 

of an RBP of interest under stringent conditions followed by proteinase digestion purifies 

RNA targets of the protein under study.  In a landmark study, Jernej Ule and Robert 

Darnell used CLIP to identify physical targets of the Nova splicing factor57.  This study 

identified Nova-dependent splicing targets among physical targets of Nova, 

demonstrating that CLIP can be used to identify physical as well as functional targets of 

critical splicing regulators.  Importantly, CLIP can utilize biological tissues as well as cells 

in culture, allowing physical targets to be identified in vivo, as was demonstrated for 

Nova in brain tissue. 

The advent of affordable high-throughput sequencing technology allowed deep 

characterization of UV-crosslinked RNA-protein complexes, an experimental approach 

known as CLIP-seq or HITS-CLIP (Crosslinking and immunoprecipitation followed by 

high-throughput sequencing).  This method was applied to Nova-RNA complexes 

isolated from brain tissue58, greatly expanding the scope of discovered interaction sites.  

By digesting the RNA liberated from Nova-RNA complexes to short oligonucleotide 
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fragments, the high-throughput sequencing reads generated from these fragments can 

be aligned to the reference genome of the organism under study, allowing identification 

of specific regions of protein-RNA interaction within physical target RNAs.  This 

approach allowed identification of novel Nova-RNA interactions in 3’UTR regions, 

revealing a novel role for Nova in alternative polyadenylation. 

The CLIP-seq method has been successfully applied to many RNA binding 

proteins, including splicing factors59,60,60,61,61,62,62,63,63,64,64,65,65, the miRNA effector protein 

Argonaute66,67,67,68,68, the RNA editing factor ADAR69, oncogenic fusion proteins involving 

RNA-binding domains70, RNA helicases71, and others.  Through these studies, CLIP-seq 

has emerged as a powerful tool for identifying sites of RBP-RNA interactions, a critical 

step in understanding the role a particular RBP plays in regulating the transcriptome in 

vivo.  Recent efforts to centralize the findings of these experiments have led to the 

creation of a curated database containing CLIP-seq studies and their data72. 

 

Functional studies of splicing factors with next-generation sequencing reveal 
splicing regulatory activity 

 

Technological advances have enabled wide-scale characterization of alternative 

splicing in eukaryotic transcriptomes.  Early high-throughput studies of alternative 

splicing utilized microarray technology.  Evidence of the applicability of microarrays to 

the discovery of alternatively spliced exons came from early genome and exome tiling 

array studies aimed at elucidating the structure of the human transcriptome73.  This 

technology developed into exon-junction arrays74,75,75 that provided probes focused on 

splicing junctions, enabling large-scale profiling of alternative splicing within and 
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between cell types76,77,77,78,78.  These pioneering studies provided evidence of the 

massive complexity of transcriptome processing and brought an appreciation of 

alternative splicing as a means of increasing proteomic complexity and diversity from a 

limited genome. 

Comparative microarray studies were soon applied to the identification of 

functional targets of splicing factors.  A study of brain tissue from Nova2-/- murine brain 

tissue identified hundreds of Nova-dependent splicing targets55, paving the way for 

studies of other splicing factors in a plethora of different tissues and cell types79.  One 

important overarching theme that arose from these studies was a coupling of pre-mRNA 

processing events, including splicing, to Pol II elongation, providing evidence for a co-

transcriptional model of pre-mRNA processing80,81,81. 

While microarray technology facilitated wide-scale characterization of RNAs, the 

reliance upon pre-designed probes prevented de novo characterization of splice 

variants.  Transcriptome characterization by high-throughput sequencing has recently 

enabled transcriptome-wide detection of novel splice variants in addition to those probed 

by splicing-sensitive microarrays82,83,83.  High-throughput sequencing of cDNAs derived 

from cellular RNAs, or RNA-seq, spurned the development of new bioinformatics tools to 

meet the challenges of sequencing reads that align to the genome in multiple segments 

due to their origin in spliced mRNA molecules, such as the Tophat aligner that is aimed 

specifically at RNA-seq reads84.  Alignment tools such as Tophat have enabled the 

development of downstream statistical algorithms for quantification of alternative splice 

junction utilization between two sample groups85,86,86, allowing studies of alternative 

splicing controlled by differentiation, signaling, and specific splicing factors. 
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In this dissertation, I describe the application of CLIP-seq to identify the 

transcriptome-wide binding profile of hnRNP L in primary and cultured human CD4+ T 

lymphocytes.  Analysis of hnRNP L CLIP-seq sites identifies novel cases of hnRNP L-

mediated alternative splicing.  I further describe depletion of hnRNP L followed by 

complementary high-throughput sequencing approaches, which allows transcriptome-

wide characterization of hnRNP L-dependent alternative splicing events.  Finally, I 

analyze hnRNP L occupancy in the context of hnRNP L-responsive alternative splicing 

events, providing mechanistic insights into direct and indirect regulation of alternative 

splicing by hnRNP L. 
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MATERIALS AND METHODS 

 

CLIP-seq read processing and alignment 

 

 Raw CLIP-seq reads are single, continuous oligonucleotide sequences in FASTQ 

formatted-files, which include sequencing basecall quality scores for each nucleotide 

encoded in PHRED quality scores.  The first step in the processing raw CLIP-seq reads 

is to remove 3’ sequencing adaptors and any sequence that might remain to the 3’ of the 

end of the adaptor, which might result from an extremely short CLIP-seq fragment and a 

long sequencing read length.  I utilized the cutadapt version 0.9.4, invoking the cutadapt 

program with default options and providing the RL3 linker sequence (5’-

GTGTCAGTCACTTCCAGCGG-3’).   

 Next, homopolymeric stretches of 6 or more nucleotides of the same basecall 

were removed from the 3’ end of the reads.  The FASTQ quality string was also trimmed 

to match the length of the trimmed sequence read.  The resulting trimmed reads were 

discarded if they were fewer than 8 nucleotides in length, and the remaining reads were 

utilized for alignment.  Homopolymeric runs were removed with the program 

trim_homopolymeric_ends of the clipseq_analysis distribution, a collection of Perl 

programs and libraries I wrote to process the CLIP-seq datasets described in this 

dissertation. 

 To obtain alignments for trimmed CLIP-seq reads, bowtie version 0.12.7 was 

used to map reads against the hg19 build of the human genome, allowing for a 
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maximum of 2 mismtaches and disallowing more than 1 alignment position per read.  

Because the CLIP-seq library preparation involves 39 cycles of PCR, multiple reads that 

align to the same genomic coordinates are not guaranteed to represent separate RNA 

fragments that were crosslinked to the protein under study.  For this reason, any set of 

two or more aligned reads that share the same 5’ coordinate was reduced to only 1 

representative, and all other alignments from that 5’ coordinate were discarded.  To 

collapse these potential PCR duplicates, I used the program collapse_duplicates in the 

clipseq_analysis distribution.  For hnRNP L and DDX17 CLIP-seq experiments, one 

barcode was applied to each sequencing library, therefore libraries from replicates within 

sample groups were combined after collapsing PCR duplicates.  For CELF2 CLIP-seq, 

however, a new strategy was employed to aid discrimination of PCR duplicates: before 

the PCR reactions, the post-doctoral researcher performing the CLIP-seq library 

preparation, Dr. Ganesh Shankarling, split each replicate into three aliquots and applied 

a different barcode to each of aliquot.  Subsequent processing, alignment, and removal 

of potential PCR duplicates from each barcoded library separately allowed me to pool 

the three barcoded aliquots from each individual replicate such that there can now be a 

maximum of three alignments with a 5’ end at any given genomic coordinate.  This 

approach thus allowed me to discriminate bona fide multi-copy RNA-protein complexes 

from PCR duplicates. 

 After PCR duplicates were removed and replicates were combined, the aligned 

reads were ready to be searched for peaks: regions of CLIP-seq coverage that exceed 

that which is expected by random chance.  Initially, I had attempted to call peaks on 

each replicate separately and then combine them, however discovery power suffered 

under this approach: overlap between replicates was less than 50%, and the hnRNP L 
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binding site within CD45 exon 4, a site of known hnRNP L-RNA interaction, was lost 

(see results sections below).  In accordance with methods employed by prior CLIP-seq 

analyses, I combined replicates within sample groups before peak discovery rather than 

calling peaks on individual replicates and attempting to define shared sites based on 

overlap between individual replicates (figure M1).  In order to preserve replicate support, 

I arrived upon a strategy in which peaks were called on the pooled replicates from each 

sample group, and then individual peaks were discarded if they did have coverage in the 

aligned reads of at least 2 replicates from that sample group.  The resulting strategy 

provides a balance between the greater discovery power provided by pooled replicates 

within sample groups and the requirement that all CLIP-seq peaks had replicate support 

among constituent high-throughput sequencing libraries. 
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 Figure M1. CLIP-seq processing pipeline flowchart. One sample group (“s1”) of a 
representative CLIP-seq experiment with three replicates (“r1-3”) is displayed.  File formats at 
each step of the pipeline denote the type of data contained within: fastq = raw reads, sam = 
aligned reads, bed = CLIP-seq peaks.  

 

CLIP-seq binding site definition: peak calling 

 

 CLIP-seq aligned reads form broad coverage traces across the genome, with 

most areas experiencing low or no coverage, and some areas exhibiting tall peaks of 

coverage.  In order to isolate these signal peaks and remove the background coverage, I 

developed an implementation of an empirical peak calling algorithm that utilizes iterative 

within-transcript permutation of aligned reads to define an empirical false discovery rate 

(FDR) associated with each coverage height observed within the transcript, thus 

allowing a minimum peak height for each transcript to be separately computed.  I based 

this implementation on a method initially developed in the Yeo and Ule groups, but no 

source code was available.  For this reason, the algorithm had to be reimplemented to 

be of use in my CLIP-seq analyses. 

 This algorithm first iterates over each transcript in a provided set of transcripts, 

for instance the refSeq transcriptome annotation.  Within each transcript, the CLIP-seq 

reads that align to that transcript are isolated and grouped into “islands” of nonzero 

coverage bounded by zero coverage.  The maximum coverage of each island is 

computed through an associative array, and the number of islands at each height in the 

transcript are tabulated.  This table is transformed into a table of empirical p-values 

defined as the sum of all islands with maximum coverage as or more extreme than the 

given maximum coverage.  Next, iterative permutations of the coordinates of the aligned 

reads within that transcript are generated.  At each iteration, each read is assigned a 
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random start coordinate within the transcript such that the read is still contained within 

the transcript and does not hang off of the end of the transcript.  This is achieved by 

generating a pseudorandom number between zero and the last valid start position within 

the transcript, which is defined as the length of the transcript minus the length of the 

current aligned read.  After all reads aligned to the transcript are thus permuted, islands 

of overlapping aligned reads bounded by regions of zero coverage are identified and a 

table of empirical p-values of the number of islands at or greater than each maximum 

coverage value is generated.  This process is repeated iteratively, and after the last 

iteration, a new table of the average and standard deviation of the empirical p-value at 

each maximum coverage value is computed from all of the iterations of permutations.  

This table is then converted to an FDR table, where the FDR value for each maximum 

coverage is defined as the mean p-value for that height plus one standard deviation, 

then this quantity is divided by the observed cumulative distribution value for that height. 

 From this FDR table, a minimum peak height for that specific transcript is 

generated.  Given a provided FDR cutoff of 0.001, which is also parameterized and 

therefore can be customized by the end-user, the minimum peak height is defined as the 

height in the FDR table that has an FDR value of at most 0.001.  The islands of 

overlapping coverage in the aligned CLIP-seq reads are then called as a peak if their 

maximum coverage is at least the minimum peak height for that transcript.  Continuing 

this iteration across all transcripts in the provided transcriptome annotation allows 

comprehensive, transcriptome-wide discovery of CLIP-seq peaks. 

This implementation is available as both a standalone program called 

discover_peaks and a library of refactored subroutines in the clipseq_analysis 
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distribution.  Importantly, several computational optimizations are utilized in this 

algorithm.   

First, to provide a balance between memory consumption and execution speed, 

the algorithm first discovers the chromosomes contained within the aligned CLIP-seq 

reads files to be searched for peaks and iterates separately over each strand of each 

chromosome encountered, building a data structure of aligned reads and transcripts on 

that strand of that chromosome.  This strand-specific algorithm prevents the entirety of 

the transcriptome and the entirety of the aligned CLIP-seq reads from needing to be 

contained within memory at any given point in time, greatly decreasing the required 

memory and allowing execution on a commodity personal computer instead of a 

dedicated compute cluster node with increased memory. 

Second, any transcript that does not have at least one CLIP-seq alignment is 

immediately discarded and never subjected to randomization.  Additionally, any 

transcript that has CLIP-seq alignments that do not overlap each other is also discarded 

because a maximum coverage of 1 will always be generated by iterative permutation.   

Third, an associative array of CLIP-seq coverage is constructed during the 

parsing of CLIP-seq reads that align to the current strand of the current chromosome as 

the alignments are parsed.  This data structure allows rapid extraction of maximum 

coverage from each observed island of overlapping CLIP-seq reads.  Additionally, while 

associative array lookup is significantly slower than array lookup given identical numbers 

of elements, the sparsity of CLIP-seq coverage across a given strand of a given 

chromosome of the human genome is such that an array of CLIP-seq coverage would 

contain a vast majority of zero values across its indices: a sparse array.  In contrast, an 
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associative array does not instantiate key-value pairs at all for nucleotides that had no 

CLIP-seq coverage, and the resulting data structure consumes much less memory than 

an analogous array implementation. 

Finally, significant refactoring of subroutines and variables between this and 

other programs in the clipseq_analysis distribution was achieved by migrating code into 

modules (Table M1).  In addition to the benefits of code reuse, this allows unit and 

integration testing to cover multiple specific programs by testing modular subroutines in 

addition to high-level subroutines defined in specific programs that import those 

modules.  Documentation for low-level subroutines is confined to modules, while 

documentation in programs focuses on higher-level logic and algorithm descriptions.  

This modularization of refactored subroutines also aids future enhancements to the code 

via a version-controlled repository. 

Program name Program type Description 
Clipseq.pm Perl module Library of subroutines for I/O, 

permutations, and data structures for 
genomic coverage, empirical p-
values, and FDR  

Z_score.pm Perl module Library of subroutines for sequence 
extraction, kmer counting, and data 
structures for motif enrichment 
analysis 

discover_peaks Perl program Implementation of the empirical 
randomization peak discovery 
algorithm of Yeo and Ule 

compute_z_scores Perl program Motif enrichment algorithm focused 
on kmers within CLIP-seq peaks 

binding_mapper Perl program Prints plottable datafiles containing 
total, average, or normalized 
complexity of CLIP-seq binding within 
and around provided intervals (e.g. 
exons) 

centric_binding_mapper Perl program Similar to binding_mapper, but 
computes binding relative to center of 
provided intervals, useful for miRNA 
hairpins e.g. 

compute_randomized_overlap Perl program Computes Z-scores for overlap 
between two provided sets of CLIP-
seq peaks using within-transcript 
randomization 

 Table M1. The clipseq_analysis distribution. Programs and modules (libraries) 
developed for computational analysis of CLIP-seq datasets.  Documentation, unit and integration 
testing, and version control are provided in the distribution. 
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To establish version control and provide source code for future users, I initialized 

a git repository of this and other CLIP-seq programs, described above and below, and 

hosted this repository as a public repository on GitHub, the world’s largest webserver for 

git repositories.  This repository allows users to download the most recent version of the 

distribution, which contains specific programs tailored to individual tasks like CLIP-seq 

peak calling as well as modules of refactored subroutines, embedded documentation, 

unit and integration tests, and an automated installation mechanism specific to Perl 

distributions.  The programs contained within this distribution have no dependencies 

outside of the Perl core, although bedtools, the genome arithmetic distribution, can be 

utilized to increase execution speed.  Additionally, adapter removal and alignment 

functionalities are not provided by the clipseq_analysis distribution as well-established 

tools such as cutadapt and bowtie are already widely distributed.  The clipseq_analysis 

distribution is available at https://github.com/bryketos/clipseq_analysis for download and 

collaborative development. 

 

CLIP-seq motif enrichment analysis 

 

 To identify enriched motifs within CLIP-seq peaks, I implemented another 

empirical algorithm, compute_z_scores, that relies upon iterative within-transcript 

permutation and has found use in analysis of CLIP-seq motifs in prior studies.  In this 

motif enrichment strategy, CLIP-seq peaks are first converted to FASTA files containing 

genomic sequences.  Sequences are extracted from these FASTA files and a table of 

each kmer is constructed, relating the frequency of each kmer within the dataset to the 
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total number of kmers in the entire sequence space within that dataset, in this case the 

number of sliding substrings of length k within all CLIP-seq peaks.  Next, iterative 

permutation is performed exactly as for CLIP-seq aligned reads in the case of the CLIP-

seq peak caller, except CLIP-seq peaks are permuted within transcripts, and an 

additional requirement is enforced that a permuted CLIP-seq peak cannot overlap a 

previously permuted CLIP-seq peak within that transcript at that iteration.  This 

requirement is necessary to preserve the legitimacy of the permuted peaks, because the 

original CLIP-seq peaks cannot, by definition, overlap one another. 

 Within each iteration, at the end of permutation of CLIP-seq peaks within each 

transcript, coordinates for the permuted CLIP-seq peaks are written to a BED file.  At the 

end of iterations, BED files are converted to FASTA.  A sequence table of kmer 

frequencies for each permuted set of binding sites is then extracted, and this table is 

converted to a mean and standard deviation for each kmer across all sets of permuted 

CLIP-seq peaks.  Finally, for each kmer encountered within the original CLIP-seq peaks, 

the frequency of the kmer is utilized to report the z-score: the number of standard 

deviations above or below the mean frequency among permuted CLIP-seq peaks.  A 

high z-score indicates strong enrichment and a negative z-score indicates depletion. 

 This implementation is also provided within the clipseq_analysis distribution as 

compute_z_scores, and several subroutines are shared between the CLIP-seq peak 

caller and the CLIP-seq motif enrichment programs. 
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CLIP-seq peak overlap comparison 

 

 To compare the fraction of CLIP-seq peaks that are shared between two sets of 

peaks, I applied the refactored permutation subroutines developed for motif enrichment 

analysis to a new program: compute_randomized_overlap.  Two sets of CLIP-seq peaks 

are first compared by computing the fraction of peaks in the first set that overlap peaks 

in the second set.  This is most rapidly achieved using bedtools intersect, however an 

alternative pure Perl implementation is also provided that uses a hierarchical genomic 

coverage data structure.  This fraction, expressed as the union divided by the 

intersection, is then compared to a similar fraction achieved by comparing the first set of 

peaks to a permuted copy of the second set of peaks.  Several optimizations are 

additionally implemented to speed computation.  First, if a transcript contains peaks only 

in the first set of peaks, permutation is entirely unnecessary as it is impossible to achieve 

any outcome that creates an overlap.  Instead of permuting the second set of peaks, the 

total unshared peaks are simply incremented by the number of peaks in the second set 

of peaks and randomization is skipped.  Second, memory footprint is minimized by 

discarding any transcript that does not have peaks in either set of CLIP-seq peaks, 

therefore runtime is also reduced.  Third, a strand-specific algorithm is implemented that 

only operates on a given strand of a given chromosome at a time, thereby reducing 

memory footprint at the expense of runtime, however this strategy will facilitate 

parallelization in the future, as no state is shared between computations on separate 

strands.  Fourth, the hierarchical data structure of genomic coverage utilizes associative 

arrays instead of conventional arrays to account for the sparseness of coverage, an 

analogy to sparse matrix algorithms which do not instantiate matrix entries at all for zero-
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valued or undefined elements.  Together, these optimizations increase runtime and 

minimize resource consumption, allowing efficient operation on a single processor.  This 

allows a compute cluster user to conduct several comparisons concurrently. 

 

Gene ontology analysis 

 

 To analyze enriched gene ontology (GO) terms in sets of genes of interest, the 

Database for Annotation, Visualization, and Integrated Discovery (DAVID) version 6.7 

was utilized.  Where applicable, expressed transcripts within the given cell type were 

provided as a background, and Biological Process (GO_BP_FAT), Molecular Function 

(GO_MF_FAT), and KEGG pathways were searched.  P-values are reported with the 

multiple hypothesis testing correction of Benjamini and Hochberg. 

 

Splicing analysis from RASL-seq data 

 

 The Fu lab at UCSC provides pre-processing of raw RASL-seq data that 

generates a spreadsheet of junction pairs with numbers of reads mapping to each 

member of a junction pair.  This necessary first step eliminates the need for downstream 

analysts to understand the specific probe pool and barcoding strategy utilized by RASL-

seq and allows researchers to provide simple analyses of junction counts to generate 

predictions. 
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To obtain significant alternative splicing predictions from RASL-seq data, junction 

pairs were first discarded if the average number of reads across replicates was less than 

10.  The remaining junction pairs were analyzed by a dependent, two-sample T-test in 

Microsoft Excel, generating p-values for intergroup comparisons, e.g. hnRNP L 

knockdown versus mock depletion sample groups in unstimulated JSL1 T cells.  

Significant predictions were then filtered based on two criteria: first, the p-value for the T 

test must be less than 0.05, demonstrating significant difference of inclusion levels 

between the two sample groups, and second that the inclusion level difference must be 

at least 10%.  Inclusion levels are calculated for each alternative splicing event as the 

total inclusion reads divided by the sum of the inclusion and exclusion reads, generating 

a Percent Spliced In (PSI) value, a portable metric that allows direct comparison 

between experiments.  Inclusion level changes between sample groups are thus 

reported as deltaPSI, or the PSI value of the second sample group (e.g. hnRNP L 

depletion in unstimulated cells) minus the PSI value of the first sample group (e.g. mock 

depletion in unstimulated cells).  Positive deltaPSI values thus indicate an increase in 

inclusion upon hnRNP L depletion, which indicates potential repression of splicing by 

hnRNP L, and negative deltaPSI values indicate the potential for enhancement by 

hnRNP L. 

 

Splicing analysis from mRNA-seq data 

 

 To analyze alternative splicing using mRNA-seq data, I utilized the Multivariate 

Analysis of Transcript Splicing (MATS) software.  MATS is a Python pipeline that utilizes 
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algorithms implemented in the Scipy and Numpy packages to perform Bayesian 

inference and estimate the significance of inclusion level changes observed in RNA-seq 

aligned reads.  MATS internally utilizes Tophat to perform alignment, therefore raw 

sequence reads in FASTQ format can be provided as input.  MATS has many 

parameters that must be fine-tuned to the specific RNA-seq dataset under analysis, and 

the developers of the MATS software recommended that I explore a range of different 

parameter values when I observed that the default parameter settings generated no 

statistically significant alternative splicing predictions. 

 To find the set of optimal parameter values for this RNA-seq experiment, the 

unstimulated and stimulated sample groups that were not subjected to hnRNP L 

depletion were utilized, and performance metrics were extracted from confusion matrices 

utilizing a set of 169 existing RT-PCR results performed in at least triplicates in 

unstimulated and stimulated cells (see Results).  The optimal parameter set was defined 

as the set that maximized Positive Predictive Value (PPV), a measure of the fraction of 

significant alternative splicing predictions that are validated by RT-PCR.  This set of 

parameters also resulted in the highest overall accuracy (ACC).  The parameters thus 

discovered were –c 0.001, -analysis P, and the ReadsOnTargetAndJunctionCounts 

scoring method output files.  This set of optimized parameters was then utilized to 

discover hnRNP L-responsive alternative splicing by comparing the hnRNP L-depleted 

to mock-depleted sample groups in unstimulated and stimulated conditions (separately).  

A third sequencing replicate was performed but the sequencing and/or library quality 

was too low to be used. 

 The output from MATS was then filtered for the significance and magnitude. The 

p-value for the significance of differential exon inclusion between the two sample groups 
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under comparison must be below 0.05 and the magnitude of the differential inclusion 

(deltaPSI) must be greater than 10% in either direction. 

 

Stringent union of RASL-seq and RNA-seq alternative splicing predictions 

 

 After mRNA-seq libraries were prepared, sequenced, and analyzed, the Fu lab at 

UCSD subsequently performed a series of RASL-seq analyses of splicing in JSL1 and 

CD4+ T cells.  Multiple sample groups were analyzed by RASL-seq, including hnRNP L 

depletion samples that were generated by lentiviral transduction.  Data from RASL-seq 

were subsequently merged with data from RNA-seq to increase discovery power. 

To incorporate the significant alternative splicing predictions from both RASL-seq 

and MATS analyses, a variety of methods were explored.  First, the union and 

intersection were calculated.  For the union, any exon that had a prediction of significant 

alternative splicing in either the RASL-seq or MATS analysis were retained.  This was 

found to be too liberal as some of the predictions were in opposite directions in the two 

experiments and thus should be avoided.  At the other extreme, the intersection was 

found to be too conservative because the total number of junctions queried by RASL-seq 

is more than an order of magnitude lower than the total number of junctions queried by 

RNA-seq.  To find a compromise between these two extremes, I developed a method 

called the “stringent union” in which the union of RASL-seq and MATS analyses is first 

compiled, then any prediction from one experiment that had a deltaPSI value of less 

than 5% in the same direction in the other experiment was discarded from further 

analysis.  This stringent union approach provides a balance between liberal and 
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conservative analyses: as for the optimization of MATS parameters, the gold standard 

RT-PCR results from stimulation-responsive alternative splicing were utilized as a guide, 

and indeed a high false positive rate was found to result from the union of RASL-seq and 

MATS, and a high false negative rate was found to result from the intersection.  I 

therefore conclude that the stringent union successfully incorporates splicing data from 

both experiments where an exon is queried by both, and allows the much greater 

breadth-of-coverage from RNA-seq to expand the scope of predicted alternative splicing 

events. 

 

Differential gene expression analysis 

 

 To analyze gene expression changes from RNA-seq alignments, counts of 

aligned reads per transcript in the refSeq transcriptome annotation were generated.  A 

linear model was used to test the significance of differential gene expression between 

two sample groups (limma).  First, read counts were normalized by library size and 

variance of the observed mean (voom).  Transcripts with fewer than 1 read per million in 

at least half of sequencing libraries were discarded.  Empirical Bayes fitting was used to 

fit the model and extract p-values.  Significant gene expression changes were defined as 

genes with at least 1.5 log2 change in either direction with an accompanying p-value 

less than 0.05. 
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Integrating CLIP-seq with splicing predictions 

 

 An informative step in integrating CLIP-seq and splicing predictions is to 

generate graphs of the CLIP-seq binding signal within and around regulated exons.  

Regions of overrepresented or underrepresented binding can subsequently identified.  In 

this analysis, it is important to control for peaks that are of variable height by 

investigating the fraction of regulated exons that have a CLIP-seq peak at each 

nucleotide. 

To achieve this, I first extracted coordinates for 350nt intervals containing 50nt of 

exonic sequence and 300nt of exon-proximal intronic sequence were generated for the 

C1 exon 5’ss (the exon upstream of the alternative exon), both splice sites of the 

alternative exon, and the 3’ss of the C2 exon.  Next, for each nucleotide in each of these 

intervals, the fraction of cassettes containing a CLIP-seq peak at that position was 

computed.  Output files relating the fraction of intervals with at least one CLIP-seq peak 

at each position were then generated.  Plots of the fraction-bound at each position were 

then generated.  

 Combined with the CLIP-seq peak caller described above, this analysis provides 

a means of describing RNA binding protein occupancy patterns within and around 

regulated exons.  Source code is available in the clipseq_analysis distribution. 
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Modular splice site scoring 

 

 The maxEntScan algorithm was developed to provide a quantitative splice site 

score separately for 5’ and 3’ splice sites based on the maximum entropy of splice site-

snRNA interaction.  I refactored the MaxEntScan source code available on the 

developer’s website into a self-testing, self-documenting, and self-installing Perl module 

available on the Comprehensive Perl Archive Network (CPAN). 

 

Binomial motif enrichment analysis of exonic and periexonic intervals 

 

 In order to investigate potentially enriched sequence features within and around 

exons of interest, for example exons that are enhanced by hnRNP L, I developed an 

analysis that compares the fraction of intervals of interest containing each kmer to the 

fraction of intervals containing that kmer of the same type (e.g. 300nt upstream of an 

exon) from all internal refSeq exons.  First, the intervals upstream of the exon, within the 

exon, and downstream of the exon are extracted for the exons of interest.  For the 

upstream interval, I did not extract sequences that include the 3’ss as defined by the 

maxEntScan algorithm, namely the 20nt of intronic sequence to the immediate 5’ of the 

exon of interest.  For the exonic region, the first and last 3nt of the exon were not 

extracted for the same reason.  For the downstream intronic interval, the first 6nt of the 

intron were not extracted.  This was performed so as not to conflate splice site signals 

with cis-regulatory motifs that are targets of potential coregulators of splicing as my 

primary interest was on sequences that are not part of the core splice sites themselves. 
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 For each of these intervals, I extracted sequences around all refSeq internal 

exons, namely exons that are not first or last in all transcripts in the refSeq transcriptome 

annotation that have at least 3 total exons.  Then, the fraction of intervals from each 

dataset containing each kmer were extracted.  This analysis allows comparison by the 

binomial test because each interval can either contain or not contain a given kmer.  As a 

computational optimization, I used an associative array instead of a one-zero matrix to 

represent kmer occurrences within each interval of interest.  This considerably improves 

execution speed as the intervals are typically short, 50-280 nucleotides, and the number 

of unique kmers contained within each interval is a small subset of the number of 

possible strings of length k.  Additionally, some kmers are not encountered at all in sets 

of exons that contain only a few hundred intervals, and this sparsity is reflected in the 

uninstantiated nature of the associative array data structure, whose uninstantiated 

values are undefined and thus may be used in Boolean expressions, in which instance 

they return a False value. 

 An output file was then generated for each interval: upstream, exonic, and 

downstream, containing each kmer encountered in the input regions on a separate row.  

Columns included the fraction of input intervals that containing that kmer, the fraction of 

corresponding refSeq intervals that contained that kmer, and the total numbers of each.  

This was then utilized as input into the R statistical package, from which the exact 

binomial test was called and p-values and confidence intervals were extracted.  

Importantly, the binomial test in R was automated from a Perl program by invoking R as 

a subprocess via a named pipe.  Instructions and input data were passed to R without 

the need to separately generate an R script or an R input datafile, thus removing the 

filesystem from the interprocess communication (IPC) entirely.  In this way, the invoking 
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program can dynamically handle errors and parse output from R by utilizing the standard 

error (STDERR) and standard input/output (STDIN/STDOUT) output streams.  This 

provides an automated alternative to invoking R manually and utilizes the speed and 

extended numerical precision of the R statistical package for performing statistical tests 

such as the binomial test. 

 To control for multiple hypothesis testing, p-values from individual binomial tests 

were adjusted by the Bonferroni correction, where a new alpha level was computed as 

0.05/4**k, which for hexamers (kmers of length 6nt) is approximately equal to 1.22e-5.  

All kmers with p-values below this corrected alpha level were then aligned together with 

ClustalW2 and the multiple sequence alignments were used to generate sequence logos 

with WebLogo version 2.8.2.   

 

Software 

 

 Software development was performed in Emacs v23.1.1 and later.  Programs, 

scripts, one-liners, and interactive computation utilized Perl v5.10.1 and later, Python 

v2.7.2 and later, R v3.0.1 and later, and platform-dependent versions of the GNU 

compiler collection, the Bourne-again shell, the GNU core utilities, and the standard 

library headers.  In addition to software packages mentioned in the above methods 

sections and core/standard libraries, software distributions from the Comprehensive Perl 

Archive Network, the Python Package Index, the Enthought Python Distribution (numpy 

and scipy), the Comprehensive R Archive Network, the Synaptics Package Manager, 
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and the Bioconductor Project were utilized.  All software use was performed in 

accordance with provided licenses. 

 Computation was performed on the Penn Genome Frontiers Institute’s compute 

cluster and the Penn Medicine Academic Computing Services’ High Performance 

Compute Cluster (HPC) in addition to commodity computing using multiple distributions 

of the GNU/Linux system as well as mintty version 1.2.0.1 and associated Cygwin 

distributions. 

 

Cell culture, cell stimulation, and hnRNP L depletion 

 

JSL1 cells were cultured in RPMI medium with 15% heat-inactivated fetal bovine 

serum (FBS).  Stimulation of JSL1 cells was achieved by supplementing culture medium 

with the phorbol ester PMA (Sigma-Aldrich) at a final concentration of 20 ng/mL.   

CD4+ cells were purified from human peripheral blood mononuclear cells to a 

purity of at least 90% by the Human Immunology core at the University of Pennsylvania 

(IRB #811028).  These cells were cultured in RPMI medium supplemented with 10% 

FBS.  Stimulation of CD4+ cells was achieved by the addition of antibodies to human 

CD3 and CD28 (Clontech). 

Protein depletion by antisense morpholino oligonucleotide (AMO) was achieved 

by electrotransfection of 20 million cells that are first pelleted and washed twice with 

serum-free RPMI medium.  Cells were then resuspended in 400uL for electoporation.  

Control samples (mock transfection) were electroporated with no AMO and knockdown 

samples were electroporated with 10uL of 1nmol/uL AMO.  Electroporated cells were 
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allowed to recover in RPMI medium supplemented with fetal bovine serum for 24 hours 

before stimulation. 

 

RNA extraction, RT-PCR splicing assay, and qRT-PCR gene expression assay 

 

RNA was isolated with the RNA-bee (Tel-Test) reagent and protocol.  

Semiquantitative radiolabeled RT-PCR assay was carried out as described previously37.  

Briefly, reverse transcription of isolated RNA was achieved by annealing reverse primer 

to total RNA at 90 degrees, with the reaction subsequently cooled to 43 degrees before 

addition of MMLV reverse transcriptase and RT-PCR master mix containing dNTPs.  

Reverse transcription was incubated for 30 minutes at 43 degrees, then heated to 95 

degrees for 5 minutes.   

PCR was carried out with 2.5ng each of 32-P end-labeled forward primer and 

unlabeled forward primer and 5ng unlabeled reverse primer.  A mixture of PCR cycle 

numbers was utilized to determine the linear range of detection for the given analyte.  

Primer sequences for all RT-PCR primers I designed are listed in Table M2. 

Gene expression changes were assayed using qRT-PCR.  Total RNA isolated as 

described above were reverse transcribed with a cDNA reverse transcription kit (Applied 

Biosystems) which uses random primers.  In biological and technical triplicates, 5uL of 

cDNA were loaded with 20uL of SYBR green PCR master mix (Applied Biosystems) into 

optical plates (Applied Biosystems) and primers that span exon-exon junctions to 

minimize the possibility of genomic DNA amplification.  For each primer pair, a standard 

curve of 4 serial dilutions, each of 1:5 dilution ratio, was analyzed on the same plate to 
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enable quantitation.  Additionally, a no-template control and a no-RT control were 

analyzed in every plate.  After 40 cycles of amplification on the SDS7000 qRT-PCR 

thermal cycler (ABI), standard curves were inspected for linearity and PCR products 

were analyzed by 1.5% agarose gel electrophoresis to confirm expected amplicon size 

and no nonspecific amplification.  Quantitation was by ABI Prism software and 

normalized to ACTB quantitations achieved by qRT-PCR from the same RT-PCR 

reactions, and gene expression changes were computed as the average of the log2 

(knockdown / mock-depleted) for hnRNP L depletion and as log2 (stimulated / 

unstimulated) for stimulation-responsive differential gene expression analyses.  qRT-

PCR primer sequences are included in Table M2. 

Gene Forward primer 
sequence 

Reverse primer 
sequence 

Amplicon 
sizes 

Exon 
number 

Primer 
type 

CDK5RAP2 CCA AAA GTT AAT 
TCT GGC TGA AGC 
AGT GAT GG 

GCA AGC TGG CAA 
GGT CAT CAG GTG 
GGC 

127/250 E22-E24 RT-PCR 

DMD CCC AGG CAG AGG 
CCA AAG TGA ATG 
GC 

CTC CAT CGC TCT 
GCC CAA ATC ATC 
TGC C 

246/278 E76-E79 RT-PCR 

H2AFY GTC CAC CAA GAC 
GTC CAG GTC TGC 
C 

GCT TCT TCT GGG 
ATG GAG ACT TGG 
CC 

352/459 E2-E4 RT-PCR 

KRBOX4 GTT GCG AAG CCA 
GAT GTG ATC TTC 
AGG 

GTT CTG GAT TCT 
TGA CCG CTT TCA 
TCC 

224/268 E5-E7 RT-PCR 

SIRT2 GGA CAG AGC GGT 
CGG TGA CAG CC 

CGC TCT GCA TGT 
ACC GGG CCA CC 

165/219 E1-E4 RT-PCR 

TPD52L2 GTC ACT CTG CGC 
CAG GTC CTG GC 

CAT GTC TCC AAG 
CTT CCT GCT GAT 
GGC 

234/294 E3-E5 RT-PCR 

ZNF232 GGG TGA GGG CTG 
TAA GTG GCG CG 

CTG GTC TCA TAC 
TCA CAA GAC TGT 
TCC 

238/384 E2/E3 RT-PCR 

MTRR 

TGT TAC ATG CCT 
TGA AGT GAT GAG 
GAG G 

GCC GGG CTC CAA 
GCT CTT GAA GTC 
G 387/233 E2-E4 

RT-PCR 

DOCK7 

GGA GGA TCA GTG 
CAT TAT GCC ACA 
ATG GC 

TTG ACG TCT CTG 
TGT GCG AAG ACA 
TAC G 295/205 E22-E24 

RT-PCR 
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MARS 

CGA AAT GAG ACT 
GTT CGT GAG TGA 
TGG C 

GAT CTT GCA GTA 
ATG GGT ATA GGG 
CTC C 515/210 E1-E5 

RT-PCR 

PPP2R5E 

TCC GTC AGA AAA 
GCC AGA CAG AAG 
AGG 

CCC TTG AGG CAT 
CGT GGC CAC ACT 
T 292/195 E2-E4 

RT-PCR 

ITGA6 

GAC TGT AGC TCA 
GTA TTC GGG AGT 
ACC 

AAA TCA GTC CTC 
AGG GAT TGA GCA 
GGC 475/345 E24-E26 

RT-PCR 

FYN 

AGA GAG CTG CAG 
GTC TCT GCT GCC 
G 

CTC GGT GAC GAT 
GTA GAT GGG CTC 
C 310/168 

E9A/E9B
-E10 

RT-PCR 

FYN-E9-B 

GTT TCG CTG AAG 
TGT GGC TTG GTA 
CC N/A 310/168 

E9A/E9B
-E10 

RT-PCR 

PABPC1 

GGA ACC AAG AGA 
CCG AGG CCT TCC 
C 

CCG GCT GCT GGA 
AGT TCA CAT ACG C 394/118 E1-E2 

RT-PCR 

RBMX 

GGT CAT TCC AGT 
TCA CGT GAT GAC 
TAT CC 

TCC ACC ATA TCC 
GTC ACG TGA GCT 
GC 228/154 

E5-
E7A/E7B 

RT-PCR 

RBMX-E7B-R N/A 

CTT TAT CTA CTG 
TGA ATC AAT CAG 
CAC TCC 228/154 

E5-
E7A/E7B 

RT-PCR 

MIF 
TAC ATC GCG GTG 
CAC GTG GTC CCG 

CTG TCC GGG CTG 
ATG CGC AGG CG 173 E2 

RT-PCR 

HSP90AB1-E6-F 

GAC CAA GCC TAT 
TTG GAC CAG AAA 
CCC 

GCC AAC ATG CAA 
AGG CTT CTC ACA 
CC 131 E6/I6 

RT-PCR 

HEXB 

GTG AAG TCT TCA 
CTA CCA TCC AGC 
CC 

TAC TGA ACA CTT 
GAC ATG TGG CTA 
ATG C 172  

RT-PCR 

APPL2 

TCA CTT GAG GCC 
AGG AGT TCA AGA 
CC 

CTC ACT ACA ACC 
TCC GCC TCC TGG 
G 169  

RT-PCR 

RC3H1 

CCC ACA AAA CTC 
CAT GAA GAA TTA 
AGC C 

CCA TAA ATG TGG 
ATT ATG ACT CTT 
GGG AT 140  

RT-PCR 

NCK2 

GGA AGA ACA GCC 
TGA AGA AGG GCT 
CC 

GTT TGT TCT TCC 
CTG ACG CTT TAA 
GGG 822/100 E3-5 

RT-PCR 

IKZF2 

GGT GAA CGC CCC 
TTC CAC TGT AAC 
C 

GAC AGC AGG TCT 
CTC AAA AGG CAC 
C 365/227 E5-7 

RT-PCR 

PAK1 
GCC GAG AGG AGC 
TGA GCG AGC GC 

GAT ATT TGA TGT 
CTG AAG CAA GCG 
GGC 385/174 E1-4 

RT-PCR 

ACTB 
GCAAAGACCTGTAC
GCCAAC 

AGTACTTGCGCTCA
GGAGGA 144 E5-6 

qPCR 

EGR1 
GCAGCAACAGCAG
CAGCAGC 

CGTTGTTCAGAGAG
ATGTCAGG 111 E1-2 

qPCR 
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CD7 
GATCTCCTTCCTCC
TCGGGC 

CCTCGTACACCACA
CATGCC 116 E3-4 

qPCR 

TNFAIP3 
AACTGGTGTCGAGA
AGTCCGG 

AGAGACTCCAGTTG
CCAGCG 189 E2-3 

qPCR 

B2M 
GGCCTTAGCTGTGC
TCGCG 

CAATGTCGGATGGA
TGAAACCC 149 E1-2 

qPCR 

TAF1D 
GCAGAGGATCTGG
CTTCCC 

GCTTCAATGATTCTT
TCAGGTGG 155 E3-4 

qPCR 

TRIB2 
CGTGCATCTGCACA
GCGG 

CATAGGCTTTGGTC
TCACCC 150 E1-2 

qPCR 

CTSW 
CCGCTAGAGCTGAA
AGAGGC 

AGGTCACTGAATGG
AGTCACC 200 E2-3 

qPCR 

CD1C 
AGCTCTTCTTCTCC
CAGGTGG 

GTCCAGCCATCCTG
AGCCC 137 E1-2 

qPCR 

VGF 
TGTCTCCGGCAGCC
TCTTGG 

AGGCTGCGCCTCAG
GGCG 119 E1-2 

qPCR 

TRIB1 
CGAGCGCGAGCAT
GTGTCC 

TGGCAGCTGGATGT
AAGGCC 115 E1-2 

qPCR 

SCG2 
GAAGCTCGCCCGG
AGAACG 

TGAAATGAAGCTGC
TTCAGCC 171 E1-2 

qPCR 

GPR84 
CTTCCATTATAGAA
AGAATTGAAGG 

GTCACAGCCACCAC
CACCC 144 E1-2 

qPCR 

IER3 
GCACCGAAAGCGC
AGCCGC 

CTTCAGCCATCAGG
ATCTGGC 137 E1-2 

qPCR 

LIME1 
GGTGGCCGAGTAT
GCCCGC 

CCCTGGAGTACAGG
ACGTCC 119 E5-6 

qPCR 

IL32 
GCTCCTTGAACTTT
TGGCCG 

CGTCCTGATTCTGC
ATTTTGC 129 E2-4 

qPCR 

EGR2 
AGATGAACGGAGT
GGCCGG 

GAAGGTCTGGTTTC
TAGGTGC 122 E1-2 

qPCR 

IGLL1 
CTCGGTCACTCTGT
TCCCG 

GGGTACCATCTGCC
TTCCAGG 121 E3  

qPCR 

TMEM173 
CTAGCTCCCTGCAG
CTGG 

CAGGCCCGCACAGT
CCTCC 113 E3-4 

qPCR 

LYL1 
GCTGCAAGAACAGT
GCTGGG 

GGGCAGGCGCTGG
GCTGG 151 E1-2 

qPCR 

GZMA 
CTCTCAGTTGTCGT
TTCTCTCC 

AGTGAGCTGCAGTC
AACACCC 175 E1-2 

qPCR 
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CLEC11A 
GAGAGGGAGGCCC
TGATGC 

CCTGGTCCTCCTCC
ATCTCC 144 E1-2 

qPCR 

C1orf233 
GATGCGCGCCCCG
CCGC 

GGGCCCTCGGGCA
GCACC 137 E1 

qPCR 

TIMP1 
CTTCTGGCATCCTG
TTGTTGC 

GTGTCCCCACGAAC
TTGGCC 146 E2-3 

qPCR 

 Table M2. RT- and qRT-PCR primer sequences. 

 

mRNA-seq Library Preparation 

 

 Illumina TRU-seq v2 paired-end high-throughput polyA mRNA sequencing 

libraries were prepared according to the manufacturer’s protocol.  Briefly, 1ug of total 

RNA extract as described above was diluted to 50uL with ultrapure water and mixed with 

50uL of RNA purification beads (poly-dT beads provided with kit), mixed, and incubated 

for 5 minutes at 65 degrees.  Beads were magnetically held as supernatant was 

aspirated, then beads were washed with 200uL of bead washing buffer.  After removing 

the bead washing buffer, mRNA was eluted from the beads with 50uL of elution buffer in 

a 2 minute 80 degree incubation followed by bead extraction with provided bead-binding 

buffer.   

Purified mRNAs from the above polyA purification were mixed with 19.5uL of 

elute-prime-fragment buffer for fragmentation at 94 degrees for 4 minutes to generate an 

expected median fragment size of 160nt as per the manufacturer’s protocol.   

Fragmented mRNAs were then subjected to first-strand synthesis using the 

supplied first strand master mix with an incubation at 25 degrees for 10 minutes, 42 

degrees for 50 minutes, and then 70 degrees for 15 minutes.  Second strand synthesis 

was achieved by incubation at 16 degrees for 1 hour in the presence of second strand 
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master mix. Products were then purified with Ampure beads at room temperature for 15 

minutes before magnetic stationing of beads, discarding of supernatant, washing with 

200uL of fresh 80% EtOH two times, and subsequent resuspension of cDNA products 

with 52.5uL of resuspension buffer per sample. 

cDNA ends were repaired with the 40uL of end repair mix at 30 degrees for 10 

minutes before Ampure bead purification as described above.  Repaired cDNAs were 

then eluted from the beads with 17.5uL of resuspension buffer.  Adenylation was 

performed with 12.5uL of A-tailing mix at 37 degrees for 30 minutes before proceeding 

immediately to adapter ligation.   

Adapters were individually added to each sample according to a unique 

barcoding strategy in which each sample received its own barcode.  This strategy 

allowed flexible multiplexing wherein each sample could be pooled with any other 

sample in the set of prepared libraries within the same lane of the flow cell.  To ligate 

adapters onto fragmented cDNAs, separate samples of 2.5uL of adapters and 2.5uL of 

ligation mix were added to each cDNA sample before incubation at 30 degrees for 10 

minutes.  Ligated products were then purified with Ampure beads as above, this time 

repeating the purification twice.  20uL of purified products were aspirated and subjected 

to PCR fragment enrichment with 5uL of the provided PCR primer cocktail and 25uL of 

the provided PCR master mix for 13 cycles of amplification with the manufacturer’s 

provided PCR cycling program.   

PCR products were then purified by a single round of Ampure bead purification 

before 1uL of the resulting libraries were used for Bioanalyzer analysis to verify 

concentration of the libraries and the distribution of fragment sizes.  The resulting 
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libraries were submitted to the Next Generation Sequencing core at the University of 

Pennsylvania for normalization, pooling, and high-throughput sequencing on the Illumina 

HiSeq 2000 apparatus. 
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CHAPTER 1 - MAPPING TRANSCRIPTOME-WIDE hnRNP L-RNA INTERACTIONS 
BY COMPUTATIONAL ANALYSIS OF CLIP-seq DATA 
 

  

Introduction 
  

 RNA-based gene regulation encompasses many universal processes that are 

essential to shaping the composition and function of the proteome in eukaryotic cells1. In 

particular, mechanisms such as alternative splicing, alternative 3′-end processing, and 

microRNA (miRNA)-directed processes control not only the level of expression of a 

transcript but also the distinct protein isoforms encoded by a given gene. Therefore, 

such regulatory mechanisms allow for both the expansion and the control of genetic 

information. 

Virtually all processes of RNA-based gene regulation are controlled by the 

activity of a family of RNA binding proteins known as hnRNPs (heterogeneous nuclear 

ribonucleoproteins)87,88,88,89,89,90,90. Most members of the hnRNP family are ubiquitously 

expressed and bind to RNA substrates through RRM (RNA recognition motif) or KH 

(hnRNP K homology) domains89. Depending on the location of binding and associated 

proteins, hnRNPs have been shown to either enhance or repress the inclusion of 

particular exons, promote or inhibit splicing efficiency, alter the use of competing 3′ 

cleavage and polyadenylation sites, control mRNA stability, and regulate miRNA access 

to target genes87,88,88,89,89,90,90. All hnRNPs that have been well studied appear to be 

capable of carrying out all of these activities; therefore, the location of binding appears to 
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be a primary determinant of whether and how a specific hnRNP controls the expression 

of a particular gene87,88,88,89,89,91,91. 

Given the intricacy of T cell development and function, it is not surprising that 

RNA-based gene regulation is increasingly recognized as a critical determinant of the 

growth and activity of T cells92,93,93. In particular, one hnRNP for which there is much 

evidence of a functional role in T cell biology is hnRNP L94,95,95,96,96,97,97. hnRNP L is a 65-

kDa hnRNP family member that contains 4 RRM domains spaced throughout the length 

of the protein. These RRMs bind preferentially to CA repeat sequences98, although at 

least one biologically relevant target sequence of hnRNP L does not conform to a strict 

CA repeat motif94. 

hnRNP L was first implicated in T cell biology through its role in regulating the 

splicing of the CD45 gene, which encodes a transmembrane phosphatase essential for 

T cell activation94,95,95,96,96,97,97,99,99. The CD45 gene contains three cassette exons (exons 

4 to 6) that are independently regulated at the level of alternative splicing to control 

phosphatase activity. We and others have shown previously that hnRNP L is a key 

determinant of CD45 splicing and expression94,95,95,97,97,100,100. Each of the three CD45 

variable exons contains an exonic splicing silencer (ESS) that is constitutively bound by 

hnRNP L96,101,101. The binding of hnRNP L to these ESSs directly induces skipping of 

these exons both in vivo and in vitro44,44,94,95,95,96,96. 

Recent investigation of the in vivo consequences of hnRNP L ablation in mouse 

thymocytes revealed a broad impact on thymic cellularity, T cell development, and the 

egress of mature T cells to the periphery97. The effect of hnRNP L on CD45 splicing may 

account for some of the T cell development phenotypes observed; however, 
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dysregulation of CD45 splicing is not sufficient to explain all of the functional 

defects102,103,103. Therefore, the phenotypes of hnRNP L-deficient mice suggest that 

hnRNP L mediates a broad range of yet unidentified RNA-regulatory events critical to T 

cell development and function. 

Here we have used in vivo cross-linking and immunoprecipitation (CLIP)55,104,104 

to comprehensively identify the spectrum of hnRNP L targets within the transcriptome of 

human peripheral CD4+ T cells. In agreement with the idea that the primary role of 

hnRNP L in T cells is the regulation of alternative splicing, we observe extensive hnRNP 

L RNA interactions in the introns of protein-coding genes. While a subset of hnRNP L 

binding profiles may differ in different cell states, we find significant overlap between the 

hnRNP L binding profiles in the two primary functional states of CD4+ cells (resting and 

activated), as well as between those in primary CD4+ cells and JSL1 Jurkat cells, a 

common T cell model cell line. Such an overlap suggests a broadly conserved role for 

hnRNP L in T cell physiology. Importantly, we use the conserved binding sites for 

hnRNP L to identify several hnRNP L-regulated alternative splicing events in genes 

known to impact T cell development and function, and we demonstrate that 5′ splice site 

(5′ss) strength is a strong predictor of hnRNP L-regulated exons. Together, our data 

greatly expand the understanding of the cellular activity of hnRNP L, provide a 

transcriptome-wide profile of hnRNP L RNA interactions in human T cells, and identify 

hnRNP L-dependent splicing regulation of cellular pathways as critical for T cell 

development and immune function.  

 

Results 
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 hnRNP L has been well documented to control the splicing of the CD45 gene in 

both mouse and human T cells94,95,95,96,96,97,97. However, the dramatic developmental 

defect observed in hnRNP L-deficient thymocytes, together with the high abundance of 

this protein in T cells, suggests that hnRNP L controls the expression of a large set of 

functionally important genes. Therefore, to begin to understand the physiological impact 

of hnRNP L on T cell function, I worked with a postdoctoral fellow in the lab, Dr. Ganesh 

Shankarling, to map the in vivo association of hnRNP L with mRNAs and pre-mRNAs in 

primary human T cells using crosslinking and immunoprecipitation followed by high-

throughput sequencing55,104,104.  Additionally, CLIP was performed in parallel in JSL1 

cells, a monoclonal Jurkat T cell line that is a model for primary T cells94,95,95,97,97,105,105. 

 All previous studies of in T cells have shown hnRNP L to function similarly in 

resting and activated cell states, with no data suggesting a widespread change in the 

binding specificity of this protein in response to T cell stimulation54,54,95. Nevertheless, 

since our goal is to understand the role of hnRNP L in promoting T cell function, Ganesh 

Shankarling, performed CLIP in parallel in resting (unstimulated) cells and cells activated 

through the T cell receptor, since these two cell conditions represent critical states of T 

cell physiology. Briefly, purified CD4+ T cells were obtained from three healthy donors. 

For each donor, half the cells were stimulated in culture with antibodies against CD3 and 

CD28 (T cell receptor and coreceptor), while the other half were maintained in medium 

alone. Direct protein-RNA interactions were fixed in living cells by treatment with UV 

light, which induces covalent cross-links between proteins and the RNAs to which they 

are directly bound55. Cells were then lysed; RNA was fragmented to a size range of 30 to 

110nt; and hnRNP L RNA complexes were stringently purified using a well-described 

antibody to endogenous human hnRNP L (figure 1.1). The efficiency of the 
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immunoprecipitation and the consistency of hnRNP L expression in resting and 

stimulated CD4+ T cells are shown in Fig. 2a. Following isolation of the hnRNP L RNA 

complexes from cells, RNAs were released from the protein, tagged with RNA linkers, 

and subjected to high-throughput sequencing. 

 

Figure 1.1. Autoradiograms of hnRNP L-RNA complexes isolated for sequencing. 
Representative autoradiogram from the CLIP procedure conducted from JSL1 cells (left 
panel) and CD4+ cells (right panel). Cells were subjected to UV crosslinking, digested with 
varying amounts of RNase T1, and subjected to immunoprecipitation using anti-hnRNP L or 
control (FLAG) antibodies. The immunoprecipitated RNA-protein complexes were resolved 
on 10% bis-tris NuPAGE gels. The brackets denote hnRNP L RNA-protein complexes 
containing RNAs of ~30-110 nucleotides. The line denotes the point of migration of the 
uncrosslinked hnRNP L protein. RNA-protein complexes were excised from the gel for 
further processing. (Figure courtesy of Ganesh Shankarling.) 
 

hnRNP L RNA interaction profiles in T cells 

Dr. Shankarling obtained a total of ∼200 million reads from the 3 pools of 

unstimulated CD4+ cells and ∼100 million reads from the stimulated samples (Fig. 2b), 

which I proceeded to analyze with computational genomics approaches. In each case, 

more than 80% of reads mapped unambiguously to the genome, corresponding to a final 

total of 13 to 15 million unique alignments (Figure 1.2b, Table 1.1). Of these unique 
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aligned reads (i.e., “CLIP tags”), ∼23% mapped within protein-coding transcripts (Figure 

1.2b, refSeq alignments), 6% to established noncoding RNAs, 19% to antisense RNAs, 

and the remaining 51% to mitochondrial RNAs or RNAs deriving from intergenic regions 

of the genome (Table 1.2). Notably, the numbers of unique alignments, as well as the 

genomic distributions of reads, are virtually identical for the resting and stimulated 

samples despite the 2-fold differential in raw reads. Thus, the sequencing depth of the 

stimulated samples is essentially a saturating sampling of hnRNP L binding and that the 

increased sequencing depth from the resting samples provides little extra discovery. Of 

further note, the majority of intergenic alignments were typically represented isolated 

reads (singletons: not overlapping any other aligned read), suggesting that these are 

due to spurious binding events and/or background noise in the sequencing (Table 1.2).  
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 Figure 1.2. Transcriptome-wide hnRNP L-RNA interactions in primary human CD4+ 
T cells revealed by CLIP-seq. (a) Western blot of hnRNP L expression in resting and anti-CD3- 
and anti-CD28-stimulated human CD4+ T cells. Shown are both total expression (Total) and the 
efficiency of immunoprecipitation (IP) versus the protein remaining uncollected (Sup). Note that 
“Total” and “Sup” levels are 5% of IP levels. (b) Flow chart of analysis of CLIP-seq reads obtained 
from CD4+ cells from three independent donors. Each sample was analyzed before and after 
stimulation by anti-CD3 and anti-CD28. Data from resting CD4+ cells are shown in blue, while 
data from stimulated CD4+ cells are shown in red. Numbers of reads passing key filters in the 
analysis are shown, including the final number of binding sites defined within refSeq transcripts in 
resting and stimulated human CD4+ cells (see Materials and Methods and Table S1 in the 
supplemental material for details). (c) Distribution of hnRNP L binding sites that map to each 
indicated feature of RefSeq mRNAs compared to the distribution of each feature in the total 
refSeq transcriptome. (d and e) Z-scores for the enrichment of hexamers within binding sites in 
resting (d) and stimulated (e) cells were calculated by comparing observed hexamer frequencies 
within CLIP-defined hnRNP L binding sites to randomized binding profiles within bound 
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transcripts. (Insets) The top 20 hexamers were aligned to generate sequence logos. (Panel a. 
courtesy of Ganesh Shankarling.) 

 

 Table 1.1. Alignment and processing statistics for hnRNP L CLIP-seq. Total data 
points are listed for each major step of the CILP-seq alignment and processing pipeline, as 
described in Materials and Methods.  “Aligned reads” refer to the total initial alignment of CLIP 
reads from all three samples of a particular cell type/condition to the human genome index hg19. 
“Unambiguous” and “duplicate-removed” are as described in Materials and Methods. Those 
alignments that fell within portions of the genome overlapping a refSeq mRNA were then 
identified. These “refSeq mRNA alignments” were then used to define binding sites (“preliminary 
peaks”) as described in Materials and Methods. Final reported refSeq binding sites (“replicable 
sites”) were generated by merging preliminary peaks that fell within a 50nt window of each other, 
and removing sites that were not supported by reads from at least 2 biologic replicates. (See 
table 5 for numbers of sites at different replicate stringencies.) 

 

 Table 1.2. CLIP-seq alignments by genomic feature and percent singletons. Total 
CLIP-seq alignments, with duplicates removed, were assigned to one of four types of genomic 
feature, in decreasing order of precedence: refSeq mRNAs, refSeq ncRNA or UCSC lincRNA, 
antisense to refSeq mRNA, or intergenic (all remaining alignments). For each resulting pool of 
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unique alignments, the percentage of alignments that did not overlap any other alignment was 
calculated (singletons). 

 

Because our primary interest is to understand the role of hnRNP L in shaping 

protein expression in T cells, I focused on those reads within protein-coding transcripts 

(Figure 1.2b, refSeq alignments). In order to identify a reliable binding profile of hnRNP L 

within transcripts, I defined binding sites empirically, using an iterative permutation 

algorithm similar to published methods that accounts for transcript length and 

sequencing depth-of-coverage by comparing observed CLIP-seq alignment distributions 

to those expected by random chance106 (see Materials and Methods). To identify sites of 

reproducible hnRNP L RNA interaction, I required that a binding site be represented in at 

least two of three biological replicates. By this criterion I identified, in total, 49,619 sites 

of hnRNP L binding in resting CD4+ cells and 47,137 in anti-CD3- and anti-CD28-

stimulated cells (Figure 1.2b). Importantly, the overlap between biological samples was 

high: ∼85% of total peaks met the requirement of being present in at least two of the 

replicates. Moreover, on average, each site was supported by 8 to 12 reads, although a 

subset of sites were supported by many more (Table 1.3).  

 

 Table 1.3. Read statistics for binding sites defined from hnRNP L CLIP-seq. 
Minimum, maximum, mean, median, and mode number of reads comprising the binding sites 
defined in table S1 for each experimental condition. 
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As expected from general predictions of hnRNP function in pre-mRNA splicing, 

the majority of the binding sites I identified occur within proximal (within 300nt of an 

exon) and distal intronic regions (Figure 1.2c). Furthermore, hnRNP L binding sites are 

depleted within coding exons but are enriched in 3′ UTR exons (Figure 1.2c), in 

agreement with previously identified roles for hnRNP L in the regulation of 3′-end 

processing and the modulation of miRNA regulation54,54,90. Finally, hexamer enrichment 

analysis revealed a strong preference for CA repeat elements, as evidenced both in the 

2 most enriched hexamers and by multiple sequence alignment of the top 20 enriched 

hexamers (Figure 1.2d and e). Such a bias toward CA repeats is anticipated from 

previous biochemical studies of the binding specificity of hnRNP L98. In sum, the 

concurrence of the locations and sequence bias of the CLIP-identified hnRNP L binding 

sites with those from previous studies, together with the presence of sites of known 

hnRNP L RNA regulatory interactions within CLIP-derived binding profiles (see below), 

provides confidence that I have reliably identified major binding sites of hnRNP L across 

the transcriptome of CD4+ T cells.  

In order to correlate our findings in primary CD4+ cells to Jurkat cells and to 

determine the utility of Jurkat cells for future mechanistic studies of hnRNP L function, 

Ganesh prepared CLIP-seq libraries in parallel with the CD4+ libraries described above 

using JSL1 Jurkat cells (Figure 1.1). As with the CD4+ cells, Ganesh used triplicate 

biological samples of JSL1 cells grown in medium alone (resting) or stimulated with the 

phorbol ester PMA, which mimics T cell signaling in these cells37. In these experiments, 

Ganesh collected a total of 51 million and 68 million reads from the resting and 

stimulated cells, respectively, from which I defined 41,440 binding sites in resting cells 

and 32,156 binding sites in stimulated cells by using the criteria described for CD4+ cells 
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(Figure 1.3a). Notably, the distribution of transcript features bound by hnRNP L in JSL1 

cells is similar to that in CD4+ cells (Figure 1.33b). Additionally, the sequence motifs 

enriched within hnRNP L binding profiles are consistent both with previous 

experiments98 and with the results for CD4+ primary T cells (Figure 1.3c and d). 

Interestingly, using expression data for resting and stimulated JSL1 cells from previous 

studies107, I found that there is no general correlation between the density of CLIP tags 

aligning to a gene and its overall expression level (Figure 1.4). This lack of correlation of 

CLIP detection and gene expression confirms that the abundance of CLIP tags is a true 

reflection of the binding preference of hnRNP L.  
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 Figure 1.3. Transcriptome-wide hnRNP L-RNA interaction profiles obtained in JSL1 
T cells. (a) Six biological replicates of JSL1 T cells, representing triplicate samples of resting and 
PMA-stimulated cells, were subjected to CLIP-seq analysis. Data were processed by a pipeline 
identical to that used to analyze hnRNP L binding sites in CD4+ cells. (b) Nucleotides of each 
type of transcript feature were enumerated within hnRNP L binding sites for both resting and 
stimulated conditions. Proximal introns are defined as intronic regions within 300nt of an exon. (c 
and d) Z-scores for the enrichment of hexamers within binding sites in resting (c) and stimulated 
(d) cells were calculated by comparing observed hexamer frequencies within CLIP-defined 
hnRNP L binding sites to randomized binding profiles within bound transcripts. (Insets) The top 
20 hexamers were aligned to generate sequence logos. 
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 Figure 1.4. Gene expression levels do not globally correlate with CLIP tag density. 
CLIP tag density for resting (a) or stimulated (b) JSL1 cells was computed as RPKM by 
enumerating total uniquely aligned CLIP tags for each gene, then dividing by the gene length in 
kilobases, then dividing by the total number of uniquely aligned CLIP tags in the dataset. This 
normalized binding signal was compared to gene expression RPKM values obtained previously 
by RNA-seq (Martinez et al., 2012) and adjusted R2 values were obtained by simple linear 
regression. 

 

CLIP-seq identifies consistent binding profiles in JSL1 and CD4+ T cells 

Given the similarity between the sequence features and genomic annotations of 

the hnRNP L binding profiles obtained in CD4+ and JSL1 T cells, I asked how consistent 

the binding of hnRNP L was between cell types and growth conditions. By calculating 

the percentage of total overlapping nucleotides for the two cell types, or for the two 

conditions, I found significantly greater overlap between the hnRNP L CLIP samples 

from the four cell populations than between binding profiles subjected to permutation 

(Figure 1.5a). For each cell type, I also investigated the number of peaks in resting cells 

that fell within 50nt of a peak in the corresponding stimulated cells (Figure 1.5b and c). 

For both CD4+ and JSL1 cells, at least one-third of the peaks are shared between the 

resting and stimulated conditions by this logic. I defined a further ∼50% of binding sites 
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as “biased,” based on the observation of reads in both cell states, although these reads 

reach significance thresholds under only one of the two conditions. Indeed, at most 

∼20% of hnRNP L binding sites in any cell appear to be truly condition specific, in that 

reads are identified in only one of the growth states investigated. While this minority 

population of condition-specific binding events may be of interest (see below), our data 

clearly demonstrate that the bulk of hnRNP L binding is conserved between primary and 

cultured T cells as well as between resting and stimulated states. Specifically, I identified 

a set of 4,585 common hnRNP L binding regions that are present in all four cell types 

analyzed. These common regions occupy 2,460 genes in the T cell transcriptome. 

Importantly, among these common hnRNP L binding sites, I observed the two best 

characterized hnRNP L functional sites of interaction, namely, the ESS1 regulatory 

element in CD45 exon 494  (Figure 1.5d) and an autoregulatory intronic site in 

HNRNPL108  (Figure 1.5e). 
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 Figure 1.5. CLIP-seq identifies common hnRNP L-RNA interactions among primary 
and cultured T cells. (a) The percentages of overlapping nucleotides for different binding profiles 
were computed transcriptome-wide. The P value was ∼0 for all pairwise overlaps of the data 
compared to the overlap of 100 permutations of resting and stimulated CD4+ binding profiles 
randomized within bound transcripts (control). (b and c) Total binding sites in resting and 
stimulated binding profiles for CD4+ (b) and JSL1 (c) cells were classified as shared, biased, or 
condition specific as described in Materials and Methods and in Results. (d and e) UCSC 
Genome Browser view of CD45 exon 4 (d) or intron 6 from HNRNPL (e), showing binding profiles 
from four experimental conditions. Bars above the gene schematics indicate previously identified 
binding sites for hnRNP L (ESS1 in CD45 and CA region in HNRNPL). 

 

hnRNP L binds transcripts from the Wnt and TCR signaling pathways 

Given the presence of known targets of hnRNP L regulatory function the 

common binding regions, I focused on this set of 4,585 binding events to identify new 

functional targets of hnRNP L and to begin to understand how this protein influences T 
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cell development and function. First, I analyzed the KEGG pathways enriched the 

common target genes. Genes involved in Wnt signaling (P = 1.67e−4) and T cell 

receptor (TCR) signaling (P = 0.0011) are in the most overrepresented pathways among 

hnRNP L-bound transcripts (Table 1.4). Importantly, Wnt signaling is critical for thymic 

development109, while TCR signaling is essential for both the development and the 

function of T cells110. I also analyzed biological process GO terms with DAVID, which 

revealed a strong enrichment of terms related to transcription and RNA-based gene 

regulation among common hnRNP L-bound transcripts (Table 1.4). Together, these 

analyses suggest that hnRNP L may broadly affect T cell function both directly, by 

regulating key signaling pathways, and indirectly, by altering the expression of other 

DNA- and RNA-binding proteins that control gene expression. 

 

 Table 1.4. Transcripts with common hnRNP L binding sites were extracted from 
hnRNP L binding profiles of both cell types, from both cellular conditions. DAVID was used 
to analyze cellular pathways (KEGG) and biological processes (GOTERM_BP_FAT) 
overrepresented among common hnRNP L targets, at an FDR cutoff of 0.1. All significantly 
enriched targets are reported. P values were adjusted for multiple hypothesis testing by the 
Bonferroni correction. 
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Novel targets of hnRNP L-dependent splicing regulation 

There are numerous mechanisms by which the binding of hnRNP L to a 

transcript may influence its expression, including regulation of transcription, stability, and 

efficiency of processing. Because hnRNP L is best characterized as a splicing regulatory 

protein, I focused on determining new targets of hnRNP L splicing regulation. I first 

identified several instances in which common hnRNP L binding regions (as defined 

above) were located in introns flanking known alternative exons, then I and others 

assayed the inclusion of these exons in JSL1 cells depleted of hnRNP L (Figure 1.6a) by 

semiquantitative radioactive RT-PCR. In agreement with the prediction from Table 1 that 

hnRNP L regulates genes involved in TCR signaling, T cell development, and RNA 

synthesis and processing, I found that hnRNP L depletion significantly alters the 

inclusion of known variable exons in the genes encoding the RNA-binding protein PUM2 

(Figure 1.6b) and the transcription factors NFAT, BCL11A, and TCF3, which are 

involved in T cell developmental and activation pathways111,112,112,113,113 (Figure 1.6c to 

e). I also observed hnRNP L-dependent alternative splicing of the mitogen-activated 

protein (MAP) kinase TAK1 and the GTPase ACAP1, which regulate NF-κB signaling 

upon immune signaling114,115,115, and of CCAR1, a coactivator required for Wnt-

dependent gene activation116 (Figure 1.6f to h). For all these genes, inclusion of the 

variable exon either regulates overall protein expression (NFAT5 and CCAR1) or alters 

the domain structure of the protein (PUM2, BCL11A, TCF3, TAK1, and ACAP1) (see 

Discussion). Therefore, hnRNP L-regulated splicing of these genes is likely to impact T 

cell development and signaling, in agreement with the prediction from Table 1 and the 

phenotype of hnRNP L thymic deletion mice97. 
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 Figure 1.6.  HnRNP L regulates exon inclusion of transcripts important to T cell 
development and signaling. (a) Lysates from wild-type cells and from cells stably transfected 
with a lentivirus carrying shRNA targeted to hnRNP L (L-KD) were immunoblotted using 
antibodies against hnRNP L or tubulin to assess loading. (b to h) Representative RT-PCR 
analyses of the indicated genes. Gray and black boxes represent the variable and constitutive 
exons, respectively, while the black line represents introns. Blue boxes represent the hnRNP L 
binding sites (see Fig. S3 in the supplemental material for an expanded browser view of CLIP 
data). The percentages of inclusion (% Inc) of the variable exons are averages for at least three 
independent experiments; standard deviations (SD) are shown. (e) a1 and a2 represent mutually 
exclusive exons. (h) The dashed box denotes the poison exon, while % alt represents the 
percentage of inclusion of the poison exon relative to the three isoforms. 

 

 The case of CCAR1 is particularly interesting, since Dr. Shankarling and I 

discovered that the binding of hnRNP L is in fact not in an intron but rather in an 

unannotated poison exon (i.e., an exon containing a stop codon). The fact that hnRNP L 
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strongly represses this CCAR1 poison exon, together with our previous data on hnRNP 

L-mediated repression of CD45 exon 494, suggests that although binding of hnRNP L to 

exons is rare (Figure 1.2c and 1.3b), these events represent robust repressive activity of 

hnRNP L. Consistently, I identified ∼60 genes that contain common hnRNP L binding 

sites within or overlapping an exon. For five of these hnRNP L-bound exons tested, the 

variable exon is markedly upregulated upon hnRNP L depletion (Figure 1.7). Importantly, 

these hnRNP L-regulated exons include those in genes encoding splicing factors 

(ZRANB2), cell surface receptors (SPG11, IL2RG), intracellular signaling proteins 

(ARAP1), and a transcription coactivator (SS18), all of which have potential roles in T 

cell biology. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.7. Binding of hnRNP L within 
exons represses exon inclusion. (a to e) 
Representative RT-PCR analyses of the 
indicated genes, as described in the legend to 
Fig. 6. The percentages of inclusion of the 
variable exons are averages from at least 
three independent experiments; standard 
deviations (SD) are shown. The asterisk in 
panel d indicates a nonspecific PCR product. 
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5′ splice site (5′ss) strength is a determinant of hnRNP L function 

In addition to their functional implications, the newly identified targets of hnRNP 

L-mediated splicing regulation presented in Fig. 6 and 7 demonstrate the breadth of the 

mechanism of hnRNP L function. While exonic binding appears to correlate with hnRNP 

L-dependent repression (Figure 1.7), I observed no clear correlation between intron 

binding and hnRNP L-dependent splicing regulation. For instance, reduction of hnRNP L 

levels increases the inclusion of the variable exon of PUM2, whereas it decreases the 

inclusion of the variable exon in BCL11A, despite binding on either side of the exon in 

both instances. Conversely, hnRNP L appears to enhance variable exon inclusion 

whether it is bound to the upstream (NFAT5) or the downstream (TAK1) intron. 

Moreover, ∼50% of exons containing or flanked by common hnRNP L binding sites that I 

and others in the lab tested for splicing displayed no change in inclusion in response to 

hnRNP L depletion. This lack of defined correlation between binding location and 

function is consistent both with our previous studies demonstrating that factors in 

addition to the location of hnRNP L binding determine its functional impact on splicing44 

and with other studies that have revealed that CLIP-defined binding sites for hnRNPs 

are not strong predictors of splicing regulation117,118,118.  

To determine if I could increase our ability to utilize the CLIP-defined hnRNP L 

binding sites to identify novel targets of hnRNP L-mediated splicing regulation, I grouped 

the 27 exons tested by a variety of parameters, such as intron length, position of the 

CLIP site, and splice site strength. Strikingly, I find that hnRNP L-dependent splicing 

regulation correlates best with the strength of the 5′ splice site of the alternative exon. 

Specifically, no alternative exons with 5′ss scores of 10 or greater (maxEntScan119) were 
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regulated by hnRNP L, even when multiple common binding sites were detected close to 

the variable exon. In contrast, all of the hnRNP L-regulated exons had 5′ss scores less 

than 9.5, and 70% of the alternative exons with scores less than 9.5 exhibited hnRNP L-

dependent regulation. Notably, no other single feature encompassed all of the 14 

validated hnRNP L regulatory events with a positive predictive value of 70% or more.  

To further validate the relevance of 5′ splice site strength, I and others in the lab 

tested an additional 14 exons in functionally important genes for hnRNP L-dependent 

splicing regulation. These exons were chosen with a range of 5′ss scores, including two 

in the window between 9.5 and 10 that was not represented in our initial exon set. In 

agreement with our predictions, I find that neither exon with a 5′ss score above 9.9 

exhibits changes in splicing upon depletion of hnRNP L, while 8 of the 12 exons with 5′ss 

scores less than 9.9 are regulated by hnRNP L (Figure 1.8). Therefore, I conclude that 

5′ss strength is an important criterion in determining regulation by hnRNP L and can be 

applied to CLIP-identified physical targets to increase the discovery power of functional 

targets of hnRNP L-regulated splicing. Importantly, using these criteria, I and others in 

the lab have identified a total of 20 previously unrecognized targets of hnRNP L-

mediated splicing regulation, all of which are genes implicated in critical signaling and 

gene expression pathways in T cells, thus providing further insight into the functional role 

of hnRNP L in T cell biology.  
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 Fig 1.8. Validation of hnRNP L targets based on 5′ splice site strength. (a to h) 
Representative RT-PCR analysis of the indicated genes, as described in the legend to Fig. 6. 5′ss 
scores, as calculated by MaxEntScan, are shown for the alternative exons. The percentages of 
inclusion of the variable exons are averages from at least three independent experiments, and 
standard deviations (SD) are shown.  

 

Condition specificity of hnRNP L binding 

My analysis of the transcriptome-wide binding of hnRNP L has thus far been 

focused on the binding sites that are present in all four T cell populations tested, since 

these reveal much about the ubiquitous role of hnRNP L in T cell biology. However, as 

mentioned above, I did identify a subset of hnRNP L RNA interactions in both cell types 
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that are condition specific, occurring either entirely in resting samples or entirely in 

stimulated samples, with no reads observed under the opposite condition (Figure 1.5b 

and c). To further investigate the nature of these condition-specific events, I analyzed 

changes in gene expression for these resting-state-specific and stimulated-state-specific 

binding sites, using gene expression data that our lab had obtained previously for JSL1 

cells. I found that the majority of condition-specific sites are in genes whose expression 

does not differ significantly between resting and stimulated samples, demonstrating that 

the difference in association with hnRNP L is not a secondary consequence of 

differential gene expression (Figure 9a and b). I also found that these condition-specific 

binding sites maintain the general bias toward CA repeats that is seen in the common 

sites (Figure 1.9c and d), although this bias is less dramatic, particularly within the 

stimulation-specific peaks. While the possibility of direct condition-specific regulation of 

hnRNP L binding is not inconsistent with previous studies in T cells, there are no data to 

directly support such a model. Moreover, I found that the discovery of condition-specific 

peaks is diminished with increasing requirement for biological replication of a binding site 

(Table 1.5). Therefore, it remains possible that only a minor subset of the condition-

specific peaks I have defined here truly represent signal-regulated changes in the 

binding of hnRNP L, while the majority reflect false positives due to limited local 

sequencing depth and biological noise. 
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 Fig 1.9. Condition-specific binding sites in JSL1 cells are not due to changes in 
transcript expression. (a and b) The difference in the gene expression level (expressed as the 
number of RNA-Seq reads per kilobase of transcript per million reads [RPKM]) between resting 
and stimulated JSL1 cells was calculated as log2(RPKM for stimulated cells/RPKM for resting 
cells) from preexisting data (24) and was plotted for all transcripts bearing resting-state-specific 
(a) or stimulated-state-specific (b) binding sites in JSL1 cells. (c) Hexamer enrichment for all 
resting-state-specific sites that are not in genes with a ≤−0.5 change in gene expression (as 
indicated by the gray bar in panel a). (Inset) Sequence logo generated by multiple alignment of 
the top 20 hexamers. (d) Hexamer enrichment for all stimulated-state-specific sites that are not in 
genes with a ≥0.5 change in gene expression (as indicated in panel b). (Inset) Sequence logo 
generated by multiple alignment of the top 20 hexamers. 
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 Table 1.5. Condition-specific binding sites at various replicate stringencies. Total 
binding sites and condition specific sites when requiring support from 1, 2, or 3 biologic replicates. 
Support from two biologic replicates is the threshold used for all the data in this document. 

 

Discussion 
 

 hnRNP L has been shown to be necessary for thymic maturation97, suggesting 

that this protein plays a widespread role in shaping the proteomes of developing and 

mature T cells. Here we utilize CLIP-seq to identify hnRNP L binding targets within 

human CD4+ T cells and within a cell line commonly used for mechanistic studies of T 

cell biology. Importantly, the data I present here provide the first transcriptome-wide 

analysis of the RNA targets of hnRNP L in primary human lymphoid cells and offer novel 

insight into functional targets of hnRNP L in T cells. 

 Because the primary goal of this study was to identify novel targets of hnRNP L 

activity relevant to T cell function, I focused on the most conserved of the hnRNP L 

binding events in protein-coding genes. Using these sites, I have identified 20 new 
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targets of hnRNP L splicing regulation. These targets include genes required for T cell 

signaling, such as the genes for PTK2B120, FYN121, NFAT5112, and TAK1114, genes 

required for T cell development (the genes for TCF3122, Bcl11A111,123,123, and NFAT5112), 

and the WNT signaling pathway mediator CCAR1116. Additional hnRNP L targets include 

other receptor and signaling proteins (SPG11, IL2RG, ACAP1, ARAP1, WNK1, 

PPIP5K2, and ITGA6), transcription factors (GPBP1, SS18), and RNA binding proteins 

(PUM2, ZRANB2, HNRNPC, and LUC7L), all of which may broadly influence signaling 

and gene expression patterns in T cells. These validated targets are consistent with the 

enrichment of common hnRNP L binding regions in genes involved in TCR and Wnt 

signaling pathways and proteins involved in transcription and RNA processing. 

 Of particular interest is the hnRNP L-dependent regulation of TCF3, PTK2B, and 

FYN, since these proteins are known to be essential for the proper development and 

function of T cells. In the case of FYN, we show that hnRNP L is responsible for 

promoting the preferential inclusion of the second mutually exclusive exon relative to the 

first (Figure 1.6g). Inclusion of the second exon gives rise to the FynT isoform, which is 

preferentially expressed in hematopoietic cells and displays altered catalytic activity 

relative to FynB (including the first alternative exon)121. Mice that specifically lack the 

FynT isoform have a marked defect in T cell signaling during thymic development124. 

Similarly, hnRNP L promotes the expression of the hematopoiesis-specific smaller 

PTK2B isoform, which exhibits a substrate profile distinct from that of the larger 

isoform120. Like FYN, PTK2B is required for appropriate T cell activation by promoting 

signaling through the interleukin 2 (IL-2) and LFA-1 receptors125,126,126. Lastly, the TCF3 

gene encodes the E12 and E47 E-box transcription factors through alternative inclusion 

of the mutually exclusive exons127. These data demonstrate that hnRNP L modulates the 
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relative expression of these factors, favoring the E12 isoform. Interestingly, ectopic 

overexpression of E47, as would be predicted to occur upon depletion of hnRNP L, has 

been shown to cause inappropriate activation of the immunoglobulin locus in pre-T cells, 

which would inhibit normal T cell development128. Therefore, while the exact 

contributions of FYN, PTK2B, and TCF3 misregulation to the phenotype of hnRNP L-

deficient mice remain to be tested, changes in the splicing of any of these proteins upon 

depletion of hnRNP L in thymocytes could be sufficient to explain the developmental 

defects observed in vivo41. 

 Finally, in addition to the identification of new targets of hnRNP L-dependent 

splicing regulation, I also find enrichment of 3′ UTRs among the hnRNP L binding sites, 

suggesting that hnRNP L may play a more widespread role in the regulation of 3′-end 

processing or miRNA binding than was suggested by the few instances reported 

previously54,54,90. I also observe binding of hnRNP L outside of protein-coding genes. 

While the majority of these interactions are isolated events, such binding may indicate 

additional activities of hnRNP L in the maturation of noncoding RNAs or the control of 

antisense transcription. In sum, the spectrum of binding events we identify here by CLIP-

seq is fully consistent with known and predicted activities of hnRNP L, has identified 

several new targets of hnRNP L splicing regulation among genes critical for T cell 

development and function, and underscores the scope of the functional interactions of 

this abundant protein with a diverse repertoire of RNAs in T cells. 

 Because T cell activation by antigens is an essential component in T cell 

physiology, we analyzed both the binding and splicing activities of hnRNP L in both 

resting and activated T cell states. Proper protein expression in these two cell states is 

critical for maintaining appropriate functioning of the immune system. Aberrant protein 
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expression in resting cells can lead to hyperproliferation and autoimmunity, while 

incorrect protein expression in activated T cells hinders the body's ability to respond to 

foreign antigens. Previously, our lab has identified ∼180 exons for which inclusion is 

significantly regulated upon T cell stimulation107. While there is no evidence that the 

activity of hnRNP L is altered in response to T cell activation or directly drives these 

activation-induced changes in splicing, this protein has been shown to critically influence 

the expression of at least three of these exons (CD45 exons 4 to 6) in both resting and 

activated T cells. Furthermore, loss of hnRNP L-dependent repression of these exons 

contributes to autoimmune defects129,130,130. 

Importantly, I find common sites for hnRNP L binding around CD45 (PTPRC) 

exons 4 to 6 under all four cell conditions tested here (Figure 1.3d). I also observe 

common hnRNP L binding sites in 25 other signal-regulated genes, including 4 for which 

we have validated the function of hnRNP L in regulating exon inclusion in at least one 

cell state (the genes for TAK1, PTK2B, LUC7L, and FYN [Figure 1.4 and 1.6]). 

Interestingly, in three of these cases (TAK1, LUC7L, and FYN), depletion of hnRNP L is 

observed to influence splicing only under one cell condition, despite the fact that robust 

binding is observed under both conditions. Such condition-specific function was also 

observed for hnRNP L-dependent regulation of Bcl11A and SS18 despite the presence 

of common binding sites. Importantly, condition-specific effects of hnRNP L depletion are 

an expected result due to the combinatorial regulation of splicing. In other words, most 

splicing events are determined by the interplay of multiple regulatory proteins. Therefore, 

the requirement for any one protein is influenced by the presence or absence of other 

proteins. For instance, the stimulation-specific requirement for hnRNP L in repressing 

the LUC7L exon likely reflects the presence of a more efficient repressor protein that 
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specifically associates with LUC7L in resting cells and compensates for the loss of 

hnRNP L under resting conditions. Alternatively, condition-specific effects of hnRNP L 

might reflect regulation of the intrinsic activity of hnRNP L upon T cell activation, 

although such regulation has not been described and would have to be gene specific. 

Finally, in addition to the correlation of common binding sites with condition-

specific function in some cases, I also detect a subset of binding sites that are apparent 

only in resting or stimulated T cells and cannot be explained solely by differences in the 

availability of transcripts. Notably, there are ∼40 genes with condition-specific binding 

events among the previously defined signal-responsive splicing targets. While further 

study will be required to determine the biological relevance of these and other apparently 

condition specific binding sites, I note that a subset of hexamers enriched among the 

JSL1 stimulation-specific binding sites are distinct from the typical CA repeat element 

and are not enriched in the resting-state-specific or total binding site sets. Interestingly, 

these stimulation-specific hexamers contain motifs, such as TCT repeats and poly(C) 

elements, similar to those of known binding sites of other hnRNPs, such as PTB (hnRNP 

I) and hnRNP K and hnRNP E2, respectively89. Therefore, it is possible that hnRNP I, K, 

or E2 directs at least a subset of hnRNP L binding events in stimulated cells. I also note 

the possibility that stimulation of T cells results in a posttranslational modification(s) of 

hnRNP L that alters its binding affinity and/or specificity. While such regulation of hnRNP 

L binding has not been reported in T cells, at least two reports have suggested that 

phosphorylation of hnRNP L in other cell types can alter its ability to recognize specific 

RNA target sequences131,132,132. I emphasize, however, that less than 10% of the total 

binding events detected for hnRNP L appear to be condition specific, and this number 

decreases further with increased stringency of peak calling. Therefore, whatever 



 

70 
 

mechanism(s) is at play to direct condition-specific binding of hnRNP L, the majority of 

hnRNP L interactions remain unaffected, underscoring the consistency of hnRNP L 

association with the transcriptome in both resting and activated T cells. 

An inherent limitation of CLIP-seq analysis is that the method identifies physical 

interactions but provides no information regarding function. Therefore, a challenge in 

moving forward from such studies is how to identify which physical interactions are 

meaningful for any given function of interest. In some cases, “RNA maps” have been 

constructed to correlate binding location with splicing function; however, the construction 

of these maps requires knowledge of a large number of functional targets, so they are 

not suitable for de novo discovery. Furthermore, our lab and others have shown 

previously that hnRNP L can function as an enhancer or a repressor from similar 

locations within an exon44,44,90, suggesting that location is not a primary determinant of 

hnRNP L splicing activity. Indeed, simply scoring for proximity of a conserved hnRNP L 

binding site to a known alternative exon provided only ∼50% confidence of hnRNP L-

dependent splicing. 

As an alternative approach to better prediction of binding sites that correspond to 

splicing regulation, I scored a range of features of the first 28 test exons I investigated 

for hnRNP L-dependent splicing regulation and found that the strength of the 5′ss of the 

alternative exon was the strongest predictor of hnRNP L activity. Using this criterion, we 

then identified another eight targets of hnRNP L-regulated splicing, with a positive 

predictive value of ∼70%. Interestingly, 3 of the 4 alternative exons that were not 

regulated by hnRNP L despite a low 5′ss score were flanked by introns that were each 

>10 kb long, whereas all of the hnRNP L-regulated exons were flanked by at least one 
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intron of <9 kb. Therefore, intron length may provide additional predictive power in 

identifying targets of hnRNP L splicing regulation. 

In addition to the predictive power of 5′ss strength, the fact that this feature 

correlated best with hnRNP L-regulated splicing has important mechanistic implications. 

Previously, our lab has shown that 5′ss strength influences the ability of hnRNP L to 

regulate a model exon and that at least one mechanism by which hnRNP L acts is 

remodeling of the interaction of the U1 snRNA with the 5′ss region44,46,46. Interestingly, I 

have identified 26 hnRNP L-bound exons within our CLIP data that have the sequence 

hallmarks of the U1 remodeling mechanism, including the exon in PUM2 that we have 

validated as strongly repressed by hnRNP L (Figure 1.4b). Therefore, these CLIP data 

provide further evidence of the importance of 5′ss identity in the mechanism by which 

hnRNP L regulates T cell biology, and they set the stage for further investigation of the 

determinants of hnRNP L binding and function. 
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CHAPTER 2 -DISCOVERY OF hnRNP L-REGULATED ALTERNATIVE SPLICING 
WITH RASL-seq and mRNA-seq 
 

  

Introduction 
  

 We previously reported an analysis of transcriptome-wide hnRNP L-RNA 

interactions in cultured and primary human T cells133.  These data provide detailed 

insights into the landscape of hnRNP L physical target pre-mRNAs, but the overlap 

between physical and functional targets is not complete: many pre-mRNAs with hnRNP 

L CLIP-seq peaks within and around alternative exons demonstrated no splicing 

changes upon hnRNP L depletion by RT-PCR validation experiments.  Similarly, as 

hnRNP L cross-regulates other splicing factors134 including the hnRNP L-regulated 

alternative splicing events in PUM2, ZRANB2, HNRNPC, and LUC7L which were 

discovered through our CLIP-seq analysis, the potential for indirect effects on splicing 

following hnRNP L depletion create a situation in which binding does not necessarily 

implicate splicing regulatory function nor vice versa.  These dual, reciprocal caveats 

have motivated the development of integrative genomics approaches that combine 

CLIP-seq and mRNA-seq experiments to separate potentially direct splicing regulatory 

targets from potentially indirect targets33,33,62,62,118,118,135.  

 The integrative genomics approach relies on genome-wide identification of 

splicing regulatory targets of the splicing factor under study.  Early splicing regulatory 

studies utilized microarray technology, an early breakthrough in transcriptomics79.  One 

of the major limitations of microarray studies is the inability to discover alternative 
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splicing events that do not have oligonucleotide probes specifically designed to them.  

Our discovery of an unannotated poison exon in the CCAR1 pre-mRNA whose inclusion 

is regulated by hnRNP L133 underscores the importance of de novo discovery capability 

in the analysis of hnRNP L splicing regulatory function.  Technological advances in next-

generation sequencing have made RNA sequencing affordable in recent years, and this 

technology has found application in comparative analysis of RBP-depleted and mock-

depleted transcriptomes, spurring a wave of software development efforts aimed at 

applying statistical analysis to splicing changes observed between RNA-seq 

datasets85,86,86.  These experiments typically involve depletion or overexpression of the 

protein under study followed by RNA extraction, RNA-seq library preparation, 

sequencing, alignment, and analysis of aligned reads.  Statistical analysis of quantitative 

changes in splice junction utilization between two sample groups can identify alternative 

splicing events that are significantly responsive to protein depletion or overexpression, 

providing evidence that those splicing events could be under direct or indirect control by 

that protein. 

 I previously described the discovery of novel hnRNP L-dependent splicing 

regulation in pre-mRNAs encoding proteins with important roles in T cell biology133.  The 

discovery of these events by CLIP-seq analysis coupled with the generally low overlap 

between binding and function observed in integrative genomics studies62 suggests that 

there could exist a plethora of hnRNP L-responsive alternative splicing events which 

CLIP-seq will not reveal.  Additionally, indirect regulation of splicing events, while 

incapable of revealing mechanistic insights into regulated alternative splicing by hnRNP 

L-RNA interactions, can unveil the role hnRNP L plays in an interconnected network of 

splicing regulators. 
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 While recent software advances have made statistical comparisons of splicing 

between RNA-seq libraries possible, analyses still must be tailored to fit the specifics of 

the experiment.  RNA-seq specific splicing analysis software such as MATS, the 

Multivariate Analysis of Transcript Splicing86, provide many parameters which must be 

fine-tuned, including null hypothesis cutoffs, replicate composition, variance estimation, 

and scoring metrics.  While little objective evidence exists to guide the optimization of 

these parameters, utilization of a Gold Standards RT-PCR dataset allows analysts to 

converge upon the set of parameters to software such as MATS that generates 

predictions in maximal agreement with previously generated RT-PCR results.  To this 

end, our lab has previously generated a large dataset of RT-PCR validations for PMA-

responsive splicing in JSL1 T cells107.  I leverage the power of this PMA-responsive 

dataset to optimize an analysis of hnRNP L from RNA-seq datasets and apply these 

parameters to generate splicing predictions of high positive predictive value. 

 While RNA-seq provides high breadth-of-coverage across transcriptomes, 

spliced junctions represent a minority of the sequence space in aligned RNA-seq reads.  

For this reason, RNA-mediated oligonucleotide Annealing, Selection, and Ligation 

followed by next-generation sequencing (RASL-seq) was developed by Fu lab at UCSD 

to provide high sequencing depth at splicing junctions known to be alternatively utilized 

in various conditions such as development136.  Our lab has employed RASL-seq to study 

regulated splicing events that respond to other treatments such as CELF2 depletion, 

demonstrating the utility of this approach in uncovering alternative splicing events 

responsive to depletion of RNA binding proteins in our JSL1 T cells.  In this chapter, I 

combine the breadth of RNA-seq with the depth of RASL-seq to provide an additional 

dimension to the discovery of hnRNP L-regulated alternative splicing events, a process 
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that overcomes the shortcomings of both experiments by combining their 

complementary advantages as discovery tools. 

 This complementary next-generation sequencing design uncovers a wide scope 

of hnRNP L-responsive alternative exon utilization in T cells with high rate of RT-PCR 

validation.  Target transcripts are enriched for splicing factors, transcription factors, and 

epigenetic factors, but hnRNP L depletion does not induce global or subglobal 

differential gene expression.  Finally, these data, coupled with the CLIP-seq analysis I 

previously reported133 provide the foundation for integrative genomic analysis. 

 

Results 
  

 To identify the impact of hnRNP L transcriptome-wide in pre-mRNA processing in 

these cells, our lab employed a complementary genomics approach to provide high 

depth- and breadth-of-coverage across the JSL1 transcriptome of hnRNP L-depleted or 

mock-depleted cells.  I first performed hnRNP L depletion using an antisense morpholino 

oligonucleotide (AMO, see Materials and Methods), reducing hnRNP L protein levels by 

~50% (figure 2.1b, Western blot).  To generate high breadth-of-coverage sequencing 

data, I utilized paired-end mRNA sequencing to query splicing junctions from AMO-

transfected or mock-transfected RNA extracts.  The resulting aligned sequence read 

pairs provide transcriptome-wide coverage, facilitating discovery of previously unknown 

hnRNP L-responsive pre-mRNA splicing events.   

A technician in our lab, Michael Mallory, subsequently developed JSL1 T cell 

sublines stably transduced with a lentivirus containing a doxycycline-inducible shRNA 

directed against the HNRNP L transcript.  Using this distinct knockdown approach, he 
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depleted hnRNP L in both unstimulated (resting) and PMA-stimulated cells, providing 

independent physiological conditions for the identification of hnRNP L-responsive pre-

mRNA processing events (figure 2.1a).  The lentiviral knockdown approach also 

depleted hnRNP L protein levels by ~50% (figure 2.1b), which, taken together with the 

AMO knockdown strategy, provided a robust experimental design with independent 

mechanisms of action. 
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 Figure 2.1. Complementary high-throughput sequencing approaches identify 
hnRNP L-dependent alternative splicing events in JSL1 T cells.  a.) Experimental design in 
which unstimulated and stimulated JSL1 T cells were independently depleted of hnRNP L by prior 
to RNA and protein extraction.  b) Western blot of hnRNP L depletion by AMO or lentiviral 
shRNA. c.) Regression analysis comparing cassette exon inclusion changes for significant 
predictions from RASL-seq and mRNA-seq. d.) Scatterplot of inclusion level changes between 
unstimulated and stimulated conditions by both sequencing methods. e.) RT-PCR validation of 
splicing predictions. (Panel b courtesy of Michael Mallory.) 
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 To increase sequencing depth at known alternative splice junctions, we 

collaborated with the laboratory of Dr. Xiang-Dong Fu at UCSC, who prepared RASL-

seq libraries from induced or uninduced lentiviral shRNA-transduced JSL1 cells.  Taken 

together, the resulting datasets generated high breadth-of-coverage from the mRNA-seq 

aligned reads, querying over 70,000 splice junctions, and high depth-of-coverage across 

the splice junctions queried by RASL-seq (table 2.1). 

Experiment Total reads Junction pairs 
queried 

Reads per 
junction pair 
(median) 

Reads per 
junction pair 
(m.a.d.) 

RASL-seq 67,264,257 3,287 59 87 
RNA-seq 403,942,906 70,546 13 19 
 Table 2.1. Sequencing depth by RASL-seq and mRNA-seq. Total reads generated for 
each experiment, the total count of unique junction pairs queried by analysis of aligned reads, 
and median with accompanying median absolute deviation (m.a.d.) are provided for each 
experiment.  RNA-seq reads per junction pair were generated by the Tophat aligner (see 
Materials and Methods) and reported in the MATS output. 

 

 To analyze splicing changes from RNA-seq data, I utilized the unstimulated and 

stimulated conditions that were not subject to hnRNP L depletion to optimize the positive 

predictive value as measured by existing RT-PCR data.  Specifically, the lab has 

previously generated 169 “gold standard” RT-PCR results for cassette exon inclusion 

levels in unstimulated and stimulated conditions.  These gold standard RT-PCR results 

are performed in at least triplicate replications, and include exons that exhibit statistically 

significant (p < 0.05, T-test) and large magnitude (inclusion level change of at least 10% 

in either positive or negative direction) inclusion changes, as well as a cohort of negative 

results for exons that do not exhibit stimulation-responsive inclusion level changes.  In 

total, there were 27 exons with stimulation-inducible exon skipping (deltaPSI <= -10), 25 

exons with stimulation-inducible inclusion (deltaPSI >= 10), and 117 remaining RT-PCR 

results that were considered as negative (figure 2.2).  Importantly, this gold standard RT-
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PCR validation dataset contains a much broader set of RT-PCR results than I and others 

in the lab have generated for hnRNP L-responsive alternative splicing, therefore I used 

this dataset to optimize the computational parameters for splicing analysis from mRNA-

seq data. 

 

 

 

 I utilized the MATS algorithm86, a multivariate Bayesian splicing analysis 

program, to quantify exon inclusion changes between sample groups and their 

associated statistical significances.  While MATS has been demonstrated to provide 

accurate alternative splicing predictions in other datasets, the values of parameters 

available for the algorithm need to be fine-tuned to a given sequencing dataset to 

 
 
 
 
 
 Figure 2.2. 
Stimulation-responsive 
RT-PCR results for 169 
exons used as gold 
standards for optimization 
of RNA-seq detection of 
alternative splicing.  
Histogram displaying count 
of exons at each inclusion 
level change (deltaPSI) 
observed by RT-PCR.  Red 
indicates the bins (width 
equal to 1 deltaPSI) with 
deltaPSI <= -10, indicating 
decreased inclusion upon 
stimulation.  Green indicates 
the bins with deltaPSI >= 
10, indicative of increased 
inclusion upon stimulation. 
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account for variations in sequencing depth, variance between samples within sample 

groups and between sample groups, and experimental design.  By utilizing an 

exhaustive sampling of combinations of different parameters that MATS uses to identify 

splicing targets, I generated a total of 88 different MATS analyses for stimulation-

induced alternative splicing.  I then utilized the 169 gold standard RT-PCR results to 

evaluate each of these different MATS analyses.  I first extracted the positive and 

negative predictions from each analysis and scored these as True Positive (TP), False 

Positive (FP), True Negative (TP), or False Negative (FN).  I then used these values to 

construct confusion matrices and extract confusion matrix-derived signal detection 

metrics, including positive predictive value (PPV, True Positive divided by the sum of 

True Positive and False Positive), negative predictive value (NPV, True Negative divided 

by the sum of True Negative and False Negative), and overall accuracy (ACC, the sum 

of True Positive and True Negative divided by the sum of all predictions).  By comparing 

the 88 different MATS analyses, I identified the set of parameters (see Materials and 

Methods) that led to the highest PPV and ACC, achieving a positive predictive value of 

93% and an overall accuracy of 80% (figure 2.3).  This set of MATS parameters was 

then used to identify hnRNP L-responsive splicing in response to hnRNP L knockdown.

 

 Figure 2.3. Confusion matrix for the MATS invocation that led to the highest PPV 
and ACC. These data indicate that if this MATS analysis had been used to generate positive 
predictions that were then tested by RT-PCR, a validation rate of 93% would be achieved. 
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 Applying the optimized MATS parameters to the analysis of hnRNP L-depleted 

and mock-depleted sample groups in both unstimulated and stimulated growth 

conditions allows discovery of transcriptome-wide alternative splicing mediated by 

hnRNP L.  While the degree to which these optimized parameters allows generalization 

across different RNA-seq analyses, the fact that the parameters were optimized for 

detection of alternative splicing within the RNA-seq samples I generated and yielded the 

highest degree of Positive Predictive Value as established by RT-PCR validation within 

our lab, this set of parameters is evidence that these parameters are indeed optimal for 

the detection of hnRNP L-responsive alternative splicing.  I applied inclusion level and 

significance filters to subset alternative exons that exhibit an inclusion level change of at 

least 10% in either positive or negative directions upon hnRNP L depletion, with an 

accompanying p-value less than 0.05.  This analysis identifies 814 and 630 hnRNP L-

responsive cassette exons in unstimulated and stimulated cells, respectively.  

Additionally, I extracted a subset of cassette exons that do not respond to hnRNP L 

depletion by applying maximal inclusion level change constraints of 3% and excluding 

any exons with a p-value less than 0.05.  This analysis identifies a set of 33,489 and 

26,792 cassette exons in unstimulated and stimulated conditions, respectively.  These 

results demonstrate that hnRNP L regulates inclusion of a specific subset of exons, with 

a much greater population of exons exhibiting no significant changes in inclusion. 

 In order to complement the high breadth-of-coverage provided by mRNA-seq 

data, we analyzed RASL-seq data generated by our collaborators at UCSD in the Fu lab 

(table 2.1).  RASL-seq utilizes a custom-designed pool of splice-junction directed 

oligonucleotide probes that anneal across utilized junctions in RNA samples.  
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Subsequent capture of annealed oligonucleotides followed by high-throughput 

sequencing allows accurate quantification of relative junction utilization across matched 

probe pairs.  Utilizing this technology, the Fu lab quantified over 5,500 junction pairs 

using a probe pool they have previously designed to known alternative splicing junctions.  

The Fu lab provided initial processing of the sequence reads, extracting junction pair 

read counts.  We then further analyzed these data by excluding junction pairs that had 

fewer than 10 reads on average across replicates, resulting in 3,286 junction pairs to 

analyze.  I applied identical deltaPSI and p-value constraints to these junction pairs, 

generating a total of 111 and 77 cassette exons with significant hnRNP L-responsive 

inclusion level changes in unstimulated and stimulated JSL1 cells, respectively. 

I then developed a bioinformatics pipeline to integrate splicing data from RASL-

seq and the PPV-optimized MATS RNA-seq analysis to identify cassette exons that 

exhibit hnRNP L depletion-responsive inclusion changes of at least 10 deltaPSI, where 

positive deltaPSI is evidence of increased exon inclusion in hnRNP L-depleted versus 

mock-depleted transcriptomes.  Importantly, deltaPSI estimates obtained from both 

sequencing studies are included for exons queried by both experiments.  Statistically 

significant alternative splicing predictions from both experiments were well correlated in 

both unstimulated (p=7.45e-16) and stimulated (p=7.41e-13) conditions (figure 2.1c), 

despite the technical differences between RASL-seq and mRNA-seq.  I observed an 

even higher degree of correlation between the two cellular conditions within each 

experiment (figure 2.1d), providing evidence that hnRNP L-regulation of alternative 

cassette exon splicing is largely shared between conditions.   

RT-PCR validation of 47 novel predictions of hnRNP L-responsive alternative 

splicing generated an overall 72.34% validation rate, with experimentally determined 
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inclusion level changes well correlated with predictions (R2 = 0.56 and 0.83 for 

unstimulated and stimulated cells, respectively, figure 2.1e).  Taken together, these 

results demonstrate the high confidence of our splicing predictions and their utility in 

identifying novel instances of hnRNP L-mediated alternative splicing. 

 

hnRNP L regulates exon inclusion in transcription factors, epigenetic regulators, 

and splicing factors 

 To determine the impact of hnRNP L-regulated alternative splicing in JSL1 cells, I 

used GO analysis to identify functional categories enriched within the set of genes that 

contains repressed exons and the set of genes within enhanced exons (table 2.2).  I 

observed an enrichment for RNA binding proteins among genes containing hnRNP L-

enhanced cassette exons, and genes harboring repressed exons were strongly enriched 

for transcription factors and chromatin modifiers.   

Regulation Category Term Count P value Fold 
Enrichment 

Enhanced MF RNA binding 15 0.0161 1.98 

Repressed BP Transcription 54 8.17E-4 1.54 

 BP Chromatin 
modification 

15 0.00175 2.61 

 BP Regulation of 
transcription 

59 0.00378 1.40 

 MF Transcription 
regulator 
activity 

37 0.0116 1.49 

 BP Chromosome 
organization 

18 0.0132 1.90 
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 Table 2.2.  GO terms enriched in mRNAs harboring hnRNP L-enhanced or –
repressed exons compared to mRNAs expressed in JSL1 cells. 

 

 Upon observing that hnRNP L represses exon splicing in transcripts encoding 

DNA-binding proteins, I next tested the hypothesis that hnRNP L depletion results in 

differential gene expression.  Using mRNA-seq aligned reads, I employed a normalized 

linear model implemented in the limma package for the R statistical language to identify 

transcripts that exhibit at least a 1.5 log2 expression difference between hnRNP L-

depleted and mock-depleted conditions with an accompanying p-value below 0.05 

(figure 2.4b, hnRNP L depletion in unstimulated cells; figure 2.4c, hnRNP L depletion in 

stimulated cells).  As a positive control, I used the same analysis to identify gene 

expression changes between unstimulated and stimulated cells.  In agreement with prior 

studies, I found a strong signature of upregulation of genes involved in T cell activation 

(figure 2.5), with 4.56% of expressed genes exhibiting significant expression changes of 

at least 1.5 log2 (figure 2.4a).  I then performed subsequent validation of differential 

gene expression estimates from RNA-seq by qRT-PCR, which demonstrated excellent 

agreement between fold changes estimated by RNA-seq and fold changes observed by 

qRT-PCR (R2 = 0.7, figure 2.4d), confirming the validity of this gene expression change 

analysis and the ability of qRT-PCR to confirm these changes. 
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 Figure 2.4. Gene expression analysis of hnRNP L-responsive differential gene 
expression. a.) Volcano plot of differential mRNA expression following PMA stimulation of JSL1 
revealed by mRNA-seq analysis. b.) Volcano plot of hnRNP L depletion-induced differential 
mRNA expression in unstimulated JSL1 cells. c.) Volcano plot of hnRNP L depletion-induced 
mRNA gene expression in PMA-stimulated cells. d.) qPCR validation of PMA-induced differential 
transcript levels with linear regression. e.) qPCR validation of hnRNP L depletion-induced 
differential transcript levels normalized to actin. 

 



 

86 
 

 

 Figure 2.5. GO terms enriched in PMA-induced genes. Genes with expression 
changes of at least 1.5 log2 that had a p-value less than 0.05 were analyzed for enrichment of 
functional categories using DAVID software. 

 

 In contrast to stimulation-induced gene expression changes, applying the same 

analysis to hnRNP L depletion-induced differential gene expression reveals significant 

expression changes only a small subset of genes in unstimulated and stimulated 

conditions (0.63% and 0.76% of expressed genes, figure 2.4b and 2.4c, respectively), 

and these genes exhibit fold changes of greatly reduced ranges (compare to figure 
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2.4a). Subsequent qRT-PCR analysis demonstrated little correlation between fold 

change estimated from RNA-seq data and fold change observed by qRT-PCR (R2 = 

0.13, figure 2.4e), which elicited gene expression change values close to zero.  From 

this analysis I concluded that while the differential gene expression analysis using 

mRNA-seq data is capable of sensitively and specifically identifying gene expression 

changes as demonstrated by the stimulation-responsive genes, hnRNP L depletion does 

not result in gene expression changes of high magnitude, and qRT-PCR validation 

demonstrates that gene expression changes are not discernible from zero.   

 

Discussion 
 

 I report here an analysis of hnRNP L-responsive alternative splicing in JSL1 cells 

that combines the high breadth-of-coverage of mRNA-seq with the high depth-of-

coverage of RASL-seq.  Importantly, mRNA-seq analysis was optimized for confusion 

matrix-derived signal detection metrics utilizing a set of gold standard RT-PCR data that 

were generated in our laboratory from the same cell line.  I find that RASL-seq and RNA-

seq predictions are well correlated with each other in unstimulated and stimulated cells, 

and each experiment is very highly correlated between cell states.  These results 

demonstrate that hnRNP L splicing regulation is highly consistent between unstimulated 

and stimulated T cells, in agreement with my previous finding that the majority of hnRNP 

L localization is not altered upon stimulation as measured by CLIP-seq. 

 I identify hnRNP L-responsive alternative splicing events in transcripts encoding 

RNA binding proteins, a result that is consistent with prior transcriptomics studies of 

splicing factors, which often report significant cross-regulation of splicing factors62.  Our 
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results extend existing observations of hnRNP L-responsive splicing in the pre-mRNAs 

encoding other splicing factors134 and add hnRNP L to the growing list of splicing factors 

that exist not in isolation, but within a network of interconnected splicing events that work 

together to control the splicing of the transcriptome. 

  In addition to RNA binding proteins, DNA binding proteins are enriched among 

hnRNP L functional targets, including transcription factors, chromatin modifiers, and 

other epigenetic regulators.  This observation led me to test the hypothesis that hnRNP 

L might be involved in control of gene expression.  This hypothesis is supported by prior 

studies linking hnRNP L to the mediator complex137, to miRNA regulation54 and to 

alternative splicing in poison exons, as we discovered for CCAR1133.  Interestingly, while 

a computational analysis of PMA-induced differential gene expression identifies a broad 

pattern of upregulated genes enriched for activation-related functional categories, the 

same analysis applied to hnRNP L depletion-induced differential gene expression 

identifies comparatively few genes with statistically significant gene expression changes 

greater than 1.5 log2.  Subsequent qRT-PCR validation of PMA-induced expression 

changes provides high correlation between expression changes obtained from RNA-seq 

and from qRT-PCR analyses, confirming the accuracy of the RNA-seq and qRT-PCR 

analyses.  However, qRT-PCR validation of hnRNP L-responsive gene expression 

targets revealed little correlation between RNA-seq and qRT-PCR expression changes, 

indicating the possibility that the few genes with hnRNP L-responsive gene expression 

changes in the RNA-seq analysis were due to sequencing noise and/or chance variation 

instead of bona fide hnRNP L regulation of gene expression.   

 Another possible explanation for the lack of widespread gene expression 

changes in my experiments is timecourse.  PMA stimulation results in engagement of 
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membrane-proximal cell signaling pathways that in turn result in post-translational 

modification changes, such as decreased phosphorylation of ERK1 and ERK2138, which 

results in differential gene expression by activity changes induced by post-translation 

modifications.  In contrast, hnRNP L-responsive alternative splicing in transcription 

factors and epigenetic regulators could take considerably more time to result in gene 

expression changes, as the shift in isoforms induced by hnRNP L knockdown requires 

nuclear export and translation into protein before these isoform shifts even manifest at 

the level of the proteome.  For this reason, I cannot rule out the potential for hnRNP L 

regulation of gene expression in T cells, however for experimental reasons, hnRNP L 

depletion cannot be carried out over a longer time course with the current technology. 

 Complementary next-generation sequencing approaches here reveal a broad set 

of hnRNP L functional targets in T cells, however the mechanism(s) by which hnRNP L 

regulates alternative splicing is only known for a handful of cases.  Importantly, our lab 

has previously described that hnRNP L can regulate alternative splicing in both 

directions: enhancement and repression, and that a balance of multiple factors, including 

co-associated proteins, splice site strengths, and location of binding may work together 

to determine hnRNP L splicing regulatory activity.  Knowledge of the functional targets of 

hnRNP L in T cells sets the stage for integrative genomic analysis, opening new 

avenues for computational dissection of the combinatorial control of pre-mRNA splicing 

by hnRNP L. 
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CHAPTER 3 - INTEGRATIVE GENOMIC ANALYSIS OF hnRNP L SPLICING 
REGULATORY FUNCTION 
 

  

Introduction 
  

 I have previously reported transcriptome-wide analyses of hnRNP L physical and 

functional targets.  CLIP-seq analysis revealed the landscape of hnRNP L-RNA 

interactions, and RNA-seq and RASL-seq analysis has identified hundreds of exons 

whose inclusion level exhibits significant changes upon hnRNP L depletion.  Integrative 

genomic analysis aims to combine binding and function data to provide insights into the 

positional dependence of RNA binding protein occupancy on splicing regulation. 

 Integrative genomics techniques have been previously applied to several other 

splicing factors, including members of the hnRNP and SR protein families62.  This 

analysis often features graphics known as RNA maps which relate the fraction of 

regulated cassette exons containing a CLIP-seq peak to each nucleotide within and 

around enhanced, repressed, and unresponsive exons.  RNA maps are a useful 

exploratory tool that provide insight into the positions of RNA binding protein interaction 

from which direct regulation of splicing is likely to be achieved.  Even before the 

development of the CLIP-seq experiment, RNA mapping was used to relate the position 

of RNA binding protein motifs to enhanced and repressed cassettes.  This approach was 

used to demonstrate a strategy used by the hnRNP protein PTB to repress splicing from 

upstream or exonic positions and to activate splicing from downstream positions135.  

These analyses demonstrate the importance of determining the positional dependence 

of protein-RNA interactions on splicing regulation.  
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 Several important limitations to the integrative genomics approach exist.  First, 

the overlap between binding and function is generally low.  As a consequence of this, 

the majority of exons with hnRNP L CLIP-seq peaks either within or adjacent to the exon 

are unresponsive to hnRNP L depletion.  Conversely, the fraction of hnRNP-responsive 

exons containing CLIP-seq peaks within 300nt of the exons is typically 5-10%.  This 

relatively low degree of overlap between binding and function is mysterious, but is likely 

to arise from a combination of factors including indirect regulation of splicing, false 

negative CLIP-seq sites due to low transcript expression or low mappability, false 

positive functional targets due to chance variation, or other factors. 

 Even with the caveat that the overlap between binding and function is typically 

low in integrative genomic studies, mechanistic insights can be empirically derived 

through these analyses.  Several important examples exist in the literature.  First, 

integrative genomic analysis revealed that hnRNP A1 has statistically enriched binding 

within repressed exons, consistent with prior in vitro and in vivo studies of hnRNP A1 

splicing regulation, which highlight a direct repressive role62.  In contrast, another hnRNP 

protein, hnRNP A2/B1, does not display enrichment for exonic interactions, but instead 

binds on both sides of the exon.  Two other hnRNP proteins, hnRNP F and hnRNP U, do 

not display any enrichment for binding within or around repressed exons, but instead 

have enrichment upstream of enhanced exons.  These binding patterns are summarized 

in table 3.1. 
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Protein: Repressor binding 
pattern: 

Enhancer Binding 
pattern: 

hnRNP A1 Exonic none 

hnRNP A2/B1 Flanking Far upstream? 

hnRNP F None 75nt upstream 

hnRNP H1 Upstream of C2? Upstream, within, and 
downstream 

hnRNP M Downstream? Upstream, within, and 
downstream 

hnRNP U None Upstream and downstream 

 

 Table 3.1. Mechanistic hypothesis for splicing regulation by hnRNP proteins 
derived from prior integrative genomics studies. RNA maps from studies that overlaid CLIP-
seq binding data with transcriptome-wide functional data provide empirical insights into the 
locations within and around regulated exons that display increased binding relative to 
unresponsive exons. 

 

 Importantly, mechanistic hypotheses can be derived from these studies.  First, 

hnRNP A1 is thought to act as a splicing repressor through exonic interactions, as is the 

case for CD45 exon 446.  In contrast, hnRNP H1 may enhance splicing through exonic 

interactions.  hnRNP A2/B1 displays enriched binding upstream of and downstream of 

repressed exons but not within the exons, consistent with a loop-out model in which 

hemophilic protein interactions bring the upstream and downstream RNA regions into 

close proximity, occluding the exon and its splice sites in a loop.  hnRNP M displays 

markedly increased binding upstream of, within, and downstream of repressed exons 

(table 1), indicative of a mechanism in which the protein first binds to a high-affinity site, 

then through hemophilic protein-protein interactions spreads across neighboring RNA 

regions to occlude splice sites.  While these hypotheses are purely empirical, they 

provide valuable insight that may guide detailed biochemical studies. 
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 While other hnRNP proteins have been studied with integrative genomic 

analysis, important features such as splice site strengths are rarely included.  Prior 

studies by our lab have implicated splice site strengths as important determinants of 

hnRNP L splicing regulation.  In this chapter, I extract additional combinatorial features 

such as splice site strengths and exon/intron lengths to provide insights into the 

mechanisms by which hnRNP L positively and negatively regulates alternative splicing in 

a combinatorial manner. 

 We have previously described dozens of validated cases of hnRNP L-regulated 

alternative cassette exon splicing, however the mechanisms by which hnRNP L directly 

or indirectly regulates these functional targets remain unknown.  Additionally, prior 

studies have demonstrated that location of interactions, splice site strengths, and co-

associated proteins establish combinatorial control of splicing by hnRNP L.  In this 

chapter, I use integrative genomic analysis to combine binding and functional data to 

generate mechanistic hypotheses about how hnRNP L positively and negatively 

regulates exon inclusion. 

 Importantly, I find that hnRNP L is enriched for binding within, upstream of, and 

downstream of repressed exons.  In contrast, hnRNP L-enhanced exons do not display 

enrichment of hnRNP L interactions, suggesting indirect regulation.  Importantly, hnRNP 

L-enhanced exons are flanked by short, GC-rich introns and are characterized by 

decreased nucleosome occupancy.  These results indicate a possible epigenetic 

mechanism by which hnRNP L enhances splicing. 
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Results 
 

 Like other splicing regulatory proteins, hnRNP L can both enhance and repress 

alternative exon splicing, but the mechanisms by which these opposing regulatory 

functions may be effected by hnRNP L remain unclear.  To investigate the features that 

distinguish enhanced from repressed exons in our splicing predictions, I first compiled an 

RNA map of hnRNP L-enhanced and –repressed exons, comparing to a stringently-

defined set of unresponsive exons that meet the requirement of an inclusion level 

change (deltaPSI) of less than 3% in either direction as well as a p-value greater than or 

equal to 0.05.  To provide an additional level of stringency, the unresponsive exons were 

required to meet these cutoffs in both unstimulated (resting) and stimulated cells, and 

additionally these exons must have been queried by both RASL-seq and RNA-seq, 

meeting the stringent criteria in both experiment.  This represents the highest level of 

stringency I can apply to define hnRNP L-unresponsive exons, and these requirements 

resulted in a set of 250 unresponsive exons. 

Prior analyses have suggested that splice site strength plays a role in hnRNP L-

regulated alternative splicing44,133,133.  To compare splice site strengths among 

responsive and unresponsive cassettes, I extracted splice site scores using the 

MaxEntScan algorithm for each of the four splice sites in cassettes (Figure 3.1).  I 

observed that both repressed and enhanced exons have weaker 3’ splice sites (3’ss) 

than those found in unresponsive cassettes (repressed p=0.0293, enhanced p=6.51e-6, 

t-test), and that enhanced exons have even weaker 3’ss than repressed exons 

(p=0.013).  This analysis demonstrates a critical role for 3’ss in determination of both the 
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responsiveness and the directionality of response to hnRNP L depletion, confirming prior 

studies. 

 

 Figure 3.1. Splice site strengths in hnRNP L-responsive and –unresponsive 
cassettes.  Splice site sequences for the four splice sites in hnRNP L-responsive or –
unresponsive cassettes were scored with the maxEntScan method.  Plots are arranged from left 
to right in 5’ to 3’ order: a) the 3’ splice site of the C1 exon, b) the 5’ splice site of the alternative 
exon, c) the 5’ splice site of the alternative exon, and d) the 3’ splice site of the C2 exon. 

 

Given our prior observation that hnRNP L can repress and enhance splicing of 

exons that have CLIP-seq binding sites upstream and/or downstream of the exon, I next 

investigated the possibility of positional dependence of hnRNP L occupancy on splicing 

outcomes by overlaying hnRNP L CLIP-seq data within and around splice sites within 

cassettes, a computational technique known as RNA mapping (figure 3.2).  By 

computing the fraction of repressed exons occupied by hnRNP L CLIP-seq binding sites 

at single-nucleotide resolution and comparing to unresponsive cassettes, I observed a 

marked increase in hnRNP L occupancy 100nt upstream and 40nt downstream of 

alternative exons’ 3’ss.  I also observed increased hnRNP L occupancy downstream of 

the exons’ 5’ss, demonstrating that hnRNP L repression is associated with protein-RNA 

interactions in exonic and exon-proximal intervals.  A similar comparison of enhanced 

exons to unresponsive exons demonstrates that a lower total fraction of enhanced 

cassettes contain hnRNP L CLIP-seq binding sites at any given position, and the overall 
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pattern is similar to unresponsive exons.  This analysis provides evidence that hnRNP L 

directly represses alternative exon inclusion through exonic and exon-proximal protein-

RNA interactions, and that enhancement is not associated with an enrichment of hnRNP 

L occupancy within these RNA regions. 

 

Figure 3.2. Positional dependence of hnRNP L splicing regulation: the hnRNP L 
RNA map. The fraction of hnRNP L-responsive and –unresponsive cassettes containing hnRNP 
L CLIP-seq peaks is plotted at nucleotide resolution separately for (a) hnRNP L-repressed 
cassettes and for (b) hnRNP L-enhanced cassettes.  Unresponsive cassettes (gray) are plotted 
as a negative control. 

 

As exon and intron length have both been implicated in exon inclusion and 

alternative splicing139, I compared intron and exon lengths in hnRNP L-responsive and –

unresponsive cassettes (Figure 3.3).  Surprisingly, I observed that the introns upstream 

(I1) or downstream (I2) of enhanced exons are significantly shorter than those flanking 

repressed exons (I1 p=0.00077, I2 p=0.03924, t-test).  Additionally, both types of 

regulated cassettes have longer alternative exons than unresponsive exons (repressed 
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p=0.0157, enhanced p=0.04451).  These data indicate alternative exon length as a 

potential feature involved in hnRNP L regulation of alternative exon inclusion and 

implicate intron length as a feature that differentiates repressed from enhanced 

cassettes. 

 

 Figure 3.3. Exon and intron lengths in hnRNP L-responsive and –unresponsive 
cassettes. Lengths of exons and introns (intron lengths expressed as log10) for the 5 exons and 
introns are plotted from left to right in 5’ to 3’ order: a) C1 exon length, b) I1 intron length, c) 
alternative exon length, d) I2 intron length, and e) C2 exon length.  Statistical hypotheses were 
tested using non-log-transformed lengths. 

 

 Having observed a spatial hnRNP L binding signal within and around repressed 

but not enhanced exons, I applied a statistical analysis to the upstream, exonic, and 

downstream intervals around hnRNP L-responsive and –unresponsive exons (figure 

3.4).  I observed a statistically significant increase in the fraction of L-repressed exons 

containing at least one CLIP-seq site within the exon or within the exon-proximal 

upstream or downstream 300nt regions when compared to unresponsive or enhanced 

cassettes (p < 0.001 for all comparisons between repressed and any other sample 

group).  In contrast, enhanced cassettes are not enriched for hnRNP L occupancy in any 



 

98 
 

of these regions, even when the interval is widened to the entire flanking introns.  These 

data provide further evidence for a direct repressive role for hnRNP L from exonic or 

proximal intronic positions on either side of the regulated exon. 

 

 Figure 3.4. Repression of splicing by hnRNP L is associated with exonic and 
periexonic interactions.  The fraction of upstream 300nt intervals, exonic intervals, and 
downstream 300nt intervals containing at least one hnRNP L CLIP-seq peak is plotted for three 
sample groups: hnRNP L-repressed exons, hnRNP L-enhanced exons, and unresponsive exons. 

 

 Upon observing that hnRNP L occupancy is not enriched within enhanced 

cassettes, I next hypothesized that another splicing factor with hnRNP L-dependent 

expression and/or activity might mediate indirect enhancement of splicing.  To examine 

this possibility, I developed an exon-directed de novo motif enrichment strategy to elicit 

sequence features enriched within and around exons after partitioning for hnRNP L 

occupancy (see Materials and Methods).  Importantly, this motif enrichment analysis is 

specifically designed to identify motifs enriched in indirect splicing targets.  First, I 

extracted potential indirect splicing targets of hnRNP L by partitioning cassettes into 

bound or unbound based on the presence or absence of any hnRNP L CLIP-seq binding 

site within the cassette.  I then compared hexanucleotide sequences enriched in 
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intervals upstream of, downstream of, or within the enhanced or repressed exons 

against background sequences extracted from the same regions (upstream, exonic, or 

downstream) from all refSeq internal exons (see Materials and Methods).  Subsequent 

statistical analysis allows elicitation of potential cis-regulatory motifs that could provide 

insight into the regulation of hnRNP L-responsive exons that do not have hnRNP L 

CLIP-seq sites within exonic or periexonic regions of the pre-mRNA. 

 I found no sequences to be significantly enriched upstream of, within, or 

downstream of hnRNP L-repressed exons that are not bound by hnRNP L (figure 3.5a).  

In contrast, a GC-rich sequence feature was found to be enriched upstream of and 

within enhanced and unbound exons (most significant hexamer is CCGCGG, logo of all 

significant hexamers is displayed).  A further comparison of the fraction of all hnRNP L-

repressed, -enhanced, and –unresponsive cassettes that have the GC-rich motif within 

or upstream of the alternative exon demonstrates that this sequence feature is 

significantly depleted in repressed cassettes.   
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 Figure 3.5. A GC-rich motif is enriched upstream of and within indirectly hnRNP L-
enhanced exons.  To investigate possible mechanisms of indirect enhancement of splicing by 
hnRNP L, the cassette exons enhanced by L with no CLIP-seq peaks in the entire cassette were 
first extracted (a).  Sequences from upstream (-300 to -20nt), exonic (+3 to -3nt), and 
downstream (+6 to +300nt) were extracted, avoiding the splice site sequences themselves.  
Binomial comparison of the fraction of sequences containing at least one occurrence of each 
kmer of length 6nt was performed, using cognate intervals from all refSeq internal exons as a 
background.  All significant hexamers were then aligned and a motif logo is presented, with the 
lowest p-value from the hexamers in the mutliple sequence alignment displayed.  (b) The fraction 
of hnRNP L-repressed, -enhanced, and –unresponsive exons containing any of the significant 
hexamers displayed in the motif logos in (a) within the upstream and exonic intervals are plotted. 
Unlike in (a), the entire sets of exons are investigated, demonstrating global enrichment/depletion 
of the GC-rich motifs.  (c) The hnRNP L-repressed, -enhanced, and –unresponsive exons were 
partitioned into by occurrence of any of the significant hexamers displayed in (a) within the 
upstream and exonic intervals, and flanking intron lengths were plotted on a log10 scale.   

 

 These results demonstrate that a GC-rich sequence feature is significantly 

enriched in hnRNP L-enhanced exons and significantly depleted in hnRNP L-repressed 

exons when compared to unresponsive exons (figure 3.5b).  Another feature that 

strongly differentiates hnRNP L-enhanced exons in the shortness of the flanking introns.  
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I next investigated the possibility that these two features co-occurred within the hnRNP 

L-enhanced exons.  I first partitioned the hnRNP L-enhanced exons by the occurrence of 

any of the significantly enriched hexamers.  The set of enhanced exons that contain the 

GC-rich motif either upstream or within the exon indeed have shorter upstream and 

downstream introns than the total enhanced exons or the enhanced exons that do not 

have the motif (figure 3.5c upstream intron, figure 3.5d downstream intron).  This finding 

suggests an association between short introns and the GC-rich motif, as has been 

previously described on a transcriptome-wide level139,140,140.  In support of a global 

association between this set of GC-rich motifs and short flanking introns, identical 

partitioning of hnRNP L-repressed and –unresponsive cassettes also results in the 

subset of both classes of cassettes that contain the motif displaying shorter flanking 

introns.  In sum, a GC-rich motif is enriched within and upstream of hnRNP L-enhanced 

exons, and this GC-rich motif is associated with short flanking introns across all sets of 

exons investigated, suggesting the motif and the shortness of introns are globally 

associated in a manner that is not specific to hnRNP L-enhanced exons.   

These results, combined with prior global observations of two distinct classes of 

exons based on intron length and GC content139,140,140, suggest the possibility that there 

is a fundamental mechanistic difference between the manner in which hnRNP L-

enhanced exons are recognized by the splicing machinery, and it is this difference that 

might explain the manner in which hnRNP L may enhance splicing of exons that are not 

subject to direct physical interaction. 

An alternative hypothesis for indirect enhancement of splicing by hnRNP L is via 

another splicing factor that engages the GC-rich motif enriched within and upstream of 

enhanced exons.  Recent technological advancements have enabled the in vitro 
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characterization of RNA binding protein recognition specificities141,142,142.  I conducted a 

literature search for potential RNA binding proteins that might engage the GC-rich motif 

identified upstream of and within hnRNP L-enhanced alternative exons, identifying 4 

candidate proteins: SRSF2 (SC35), RBM4, Y14, and FUS.  A technician in our lab, 

Michael Mallory, then used protein extracts from hnRNP L-depleted or mock-depleted 

JSL1 cells to test for hnRNP L-responsive changes in protein level or migration.  

Importantly, no consistent changes were observed in any of the 4 proteins tested, 

suggesting that hnRNP L depletion does not induce changes in the concentration of any 

of these RNA binding proteins. 

Prior transcriptome-wide studies have identified nucleosome occupancy as a 

demarcating factor for exons that are flanked by long, GC-poor introns.  This type of 

exon is common in the human transcriptome.  However, exons flanked by short, GC-rich 

introns do not display a marked increase in nucleosome occupancy when compared to 

the flanking introns.  To investigate the possibility that hnRNP L-enhanced exons and –

repressed exons have different patterns of exonic nucleosome occupancy, I extracted 

the average %GC at single-nucleotide resolution for the same intervals examined in the 

hnRNP L RNA map (figure 3.6).  Consistent with the de novo motif enrichment results, 

the hnRNP L-enhanced exons display increased GC content upstream of, within, and 

downstream of the alternative exons.  However, compared to hnRNP L-repressed exons 

and to hnRNP L-unresponsive exons, hnRNP L-enhanced exons display a reduction in 

the GC-content differential between the exonic and perixonic regions for the 5’ splice site 

(figure 3.6a) and the 3’ splice site (figure 3.6b).   
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 Figure 3.6. GC architecture for hnRNP L-responsive and –unresponsive exons. 
Average fraction of nucleotides that are G or C at each nucleotide for a 300nt window containing 
50nt of exonic sequence and 300nt of flanking intronic sequence were separately computed for 
hnRNP L-enhanced, hnRNP L-unresponsive, and hnRNP L-repressed exons.  The splice donor 
and acceptor nucleotides are demarcated by zero and 1 values for the GT..AG dinucleotide 
sequences that are core features of the respective splice sites. 

 

I subsequently quantified the mean %GC for equal-sized 50nt intervals on either 

side of the two splice sites for enhanced, repressed, and unresponsive exons and 

computed the difference between exonic %GC and intronic %GC (figure 3.7).  

Importantly, I defined the downstream GC differential as mean %GC of the last 50 

nucleotides of the exon (up to but not including the final 3nt of the exon that are part of 

the 5’ splice site) minus the mean %GC of the first 50 nucleotides of the downstream 

intron (excluding the initial 6nt of the intron that are part of the 5’ splice site). The 

downstream GC differential for hnRNP L-enhanced exons is much lower than that for 

repressed or unresponsive exons (1.3% versus 6.8% and 5.6%, respectively).  This 

suggests that hnRNP L-enhanced exons might display reduced nucleosome occupancy, 
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as has been observed globally for exons flanked by short introns.  It is worth noting that 

the upstream GC differential was not as notably deficient for hnRNP L-enhanced exons, 

although this can potentially be explained by sequence constraints imposed by 

polypyrimidine tracts located upstream 

of the exons. 

 

Figure 3.7. Upstream and 
downstream GC content 
differentials across splice sites in 
hnRNP L-responsive and –
unresponsive cassettes. Mean 
%GC for 50nt intervals on both sides 
of both splice sites for hnRNP L-
unresponsive exons (gray), repressed 
exons (red), and enhanced exons 
(green) were computed as exonic 
minus intronic mean %GC.  

 

Nucleosome occupancy is a demarcating feature of human exons flanked by 

long introns.  Compared to flanking intronic regions, the exonic DNA of human genes 

displays an increase in nucleosome occupancy as evidenced by nucleosome-sensitive 

DNA sequencing methodologies such as bisulfite sequencing.  This increased 

nucleosome occupancy is thought to enhance spliceosomal assembly at exons that are 

buried in long introns by slowing transcription.  This increase in nucleosome occupancy 

is associated with a pronounced GC-content cliff at the two splice sites of the exons: the 

GC content of the exon is higher than its neighboring introns. 

To investigate the hypothesis that hnRNP L-enhanced exons display reduced 

nucleosome occupancy relative to their flanking intronic regions, I extracted nucleosome 

occupancy scores for hnRNP L-enhanced, hnRNP L-repressed, and hnRNPL-
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unresponsive exons from ENCODE MNase-seq data (K562 cells).  In agreement with 

previous studies of nucleosome occupancy, hnRNP L-unresponsive exons display 

elevated nucleosome occupancy within the exon relative to the surrounding periexonic 

intervals (figure 3.8).  Similarly, hnRNP L-repressed exons are demarcated by increased 

nucleosome occupancy, even when partitioned for absence of hnRNP L CLIP-seq peaks 

(unbound).  In contrast, I observed a reduction in the degree of nucleosome occupancy 

in hnRNP L-enhanced exons, especially visible at the 5’ splice site, around which the GC 

content differential was strikingly low for enhanced exons (figure 3.8b). 

 

 Figure 3.8. Nucleosome occupancy map of hnRNP L splicing regulation. Average 
nucleosome occupancy signals at each nucleotide for hnRNP L-repressed, hnRNP L-enhanced, 
and hnRNP L-unresponsive exons are plotted.  Additional series for enhanced exons that have 
no hnRNP L CLIP-seq peaks in the entire cassette and for repressed exons that do have at least 
one hnRNP L CLIP-seq peak in the entire cassette are plotted.  Nucleosome occupancy data 
were extracted from ENCODE K562 cells. 
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Discussion 
 

 In this chapter, I used integrative genomic analysis to explore the features that 

characterize hnRNP L repressed and enhanced exons.  Importantly, I identify 

enrichment of hnRNP L-RNA interactions within, upstream of, and downstream of 

repressed exons.  This analysis suggests that hnRNP L represses splicing through both 

splice sites, potentially by blocking access to splice sites by the splicing machinery, 

preventing the early steps of spliceosome assembly.   

 In contrast to other splicing factors that have been studied by integrative 

genomics techniques, hnRNP L does not demonstrate enrichment for interactions within 

or around enhanced exons.  This demonstrates that the majority of splicing 

enhancement by hnRNP L is likely indirect.  A motif enrichment approach identified a 

GC-rich motif within and upstream of L-enhanced exons.  While this finding initially 

raised the possibility of secondary effects via another splicing factor that is itself 

responsive to hnRNP L depletion, subsequent analysis demonstrated that this 

hypothesis in unsupported.  The technician in our lab, Michael Mallory, used western 

blotting to investigate protein level of RBM4, RBM8a, SC35, and FUS in response to 

hnRNP L knockdown.  These candidate proteins were identified based on affinity studies 

such as RNAcompete and RNA Bind-N-Seq141,142,142.  Importantly, none of these proteins 

demonstrated hnRNP L-responsive changes in protein level. 

 Transcriptome-wide analysis by Gil Ast and colleagues has identified an 

association between short flanking introns and a leveled GC-architecture139.  This class 

of exons was found to be depleted in nucleosome occupancy when compared to exons 

with long flanking introns and a well-defined GC content differential between exon and 
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introns.  All of these features are associated with hnRNP L-enhanced exons.  This 

finding raised the possibility that hnRNP L-enhanced exons are more susceptible to 

alterations in chromatin because they are already poorly defined by nucleosome 

occupancy.  Nucleosome occupancy and the epigenetic modifications of histone proteins 

play an important role in splicing outcomes, and the dynamic interrelationship between 

RNA and chromatin is a subject of increasing appreciation. 

 Recent work in the Reinberg group physically and functionally links hnRNP L to 

histone methylation.  The human Set2 complex, also known as the KMT3a complex, is 

responsible for trimethylation of lysine 36 on the histone H3 protein (H3K36me3).  This 

epigenetic mark is associated with actively transcribed regions and is known to recruit 

the histone deacetylase Rpd3 in yeast143.  Subsequent deacetylation of open reading 

frames protects against internal transcription initiation144.  In humans, hnRNP L 

copurifies with the C-terminal half of the KMT3a complex and is required for its 

H3K36me3 activity in vivo145.   Importantly, this requirement is likely physical as hnRNP 

L knockdown does not deplete the KMT3a complex.   

 The H3K36me3 modification is enriched at exon-intron boundaries in humans, 

suggesting that this modification marks exons within gene bodies146.  The finding that 

hnRNP L depletion globally reduces the H3K36me3 modification suggests a functional 

link between transcription of nascent pre-mRNA and the H3K36me3 mark that 

demarcates exons by hnRNP L.  I hypothesize that hnRNP L knockdown in JSL1 T cells 

reduces the H3K36me3 mark in a global manner and that hnRNP L-enhanced exons are 

particularly sensitive to reduction in H3K36me3 because they are poorly demarcated by 

nucleosomes in the first place and have short flanking introns.  Transcription through 
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these exons rapidly exposes competing downstream splice sites, which are preferentially 

utilized by the spliceosome upon hnRNP L knockdown. 

 In sum, integrative genomic analysis provides support for a model in which 

hnRNP L directly represses exon inclusion through interactions within or near exons.  In 

contrast, hnRNP L enhanced splicing indirectly through a potential epigenetic 

mechanism.  These results significantly expand our knowledge of splicing control by 

hnRNP L and raise interesting hypotheses about the interplay between RNA and 

chromatin. 
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APPENDIX 1: INVESTIGATING DDX17-RNA INTERACTIONS IN RIFT VALLEY 
FEVER VIRUS INFECTION 

 

Introduction 
 

 In previous chapters I related how Ganesh Shankarling and I cooperated to 

perform and analyze hnRNP L CLIP-seq. Specifially, my contribution was in the analysis 

of the hnRNP L CLIP-seq data, including developing software pipelines for peak calling 

and the use of parallel execution on grid-based compute clusters.  While my focus was 

on hnRNP L, it is important to note that the pipeline I developed is generalizable to other 

CLIP-seq experiments.  The first test and demonstration of the ability to generalize my 

pipeline for the analysis of other proteins came from a collaboration with the group of 

Sara Cherry to study the RNA binding of a DEAD-box RNA helicase, DDX17, that was 

found in a knockdown screen to restrict the replication of an RNA virus, Rift Valley Fever 

Virus (RVFV). 

 The CLIP library for DDX17 was prepared by Ryan Moy and Ganesh Shankarling 

from human cells that had been infected with RFVF.  Once sequencing of the library was 

complete I carried out alignment of the reads to a metagenome index containing the 

chromosomes of the human genome and the RNA segments of the viral genome, and 

completed the subsequent bioinformatic analysis.  To my knowledge, this is the first 

demonstration of metagenomic CLIP-seq.  The success of this analysis provides strong 

evidence that CLIP-seq is a useful tool to investigate host-pathogen interactions, 

expanding the utility of CLIP-seq as an experimental protocol.   
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 In this appendix, I provide a report of computational analysis of CLIP-seq data 

that I carried out.  This appendix, combined with the second appendix to this thesis, 

provide a valuable set of comparisons: three proteins that were subjected to CLIP-seq 

library preparation by the same individual, Ganesh Shankarling, and were analyzed by 

the same individual, myself, with minor variations in the analysis as required by the 

details of each experiment.  In the concluding chapter of my thesis, I provide a 

comparison between the results of the computational analysis of these three CLIP-seq 

experiments with the aim of identifying key similarities and differences.   

 

Results 
 

 Because DEAD-box helicases function as RNA-binding proteins, the Cherry lab 

hypothesized that DDX17 may directly bind RVFV RNAs to inhibit viral replication. To 

determine the specific RNAs bound to endogenous DDX17, Ryan Moy, graduate student 

with Sara Cherry, performed CLIP-seq. Briefly, uninfected or RVFV-infected U2OS cells 

were UV-irradiated, and endogenous DDX17-bound RNAs were digested to ∼100 nt 

fragments, immunoprecipitated from cell lysates with anti-DDX17 or anti-FLAG as a 

control, and radiolabeled for visualization. DDX17 was efficiently depleted from the 

lysates with anti-DDX17 but not anti-FLAG antibodies (Figure A1.1a). Autoradiography 

of RNA-protein complexes revealed extensive signal for anti-DDX17 but not anti-FLAG 

immunoprecipitations, suggesting enrichment for DDX17-bound RNAs (Figure A1.1b). 

cDNA libraries were then generated from purified RNAs and submitted for Illumina deep-

sequencing. 
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 Figure A1.1. CLIP-Seq Analysis of DDX17-Bound RNAs from Uninfected and RVFV-
Infected U2OS Cells.  (a) Immunoblot of DDX17 from uninfected or RVFV-infected U2OS cells 
with immunoprecipitation (IP) using anti-DDX17 or anti-FLAG (control). Input, IP, and unbound 
fractions are shown, with high efficiency of DDX17 IP.  (b) Autoradiograph of immunopurified and 
32P-labeled DDX17-RNA complexes transferred to nitrocellulose membrane. 
Immunoprecipitation with anti-FLAG as a control shows high specificity of the DDX17-RNA signal. 
(c) Flowchart of CLIP-seq alignment and processing pipeline, resulting in alignment clusters. (d) 
Alignment clusters overlapping annotated regions of the genome (refSeq) were further searched 
for significant peaks, and the overlap between infected and uninfected DDX17 significant CLIP-
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seq peaks (FDR < 0.001) in protein-coding genes from refSeq at increasing peak height is 
plotted. R2 = 0.88. (e) Percentage of total nucleotides under significant CLIP-seq peaks within 
refSeq protein-coding genes broken down into transcript feature types extracted from refSeq. (f) 
Composite motif logo of the multiple sequence alignment of the 20 most enriched hexamers 
under significant CLIP-seq peaks within protein-coding genes as identified by Z score, comparing 
hexamer frequencies to 100 permutations of binding-site locations within bound transcripts for 
uninfected (top) or infected (bottom) cells. 

 

 From three pooled DDX17-CLIP experiments, ∼80 million raw reads and ∼90 

million raw reads were obtained from uninfected and infected cells, respectively (Figure 

A1.1c). To process these DDX17 CLIP-seq reads, I first generated a composite genome 

index incorporating the hg19 human genome and three genomic segments of RVFV (L, 

M, S), with over 55% of reads aligning unambiguously to the composite genome (unique 

alignments). Collapsed alignments were obtained by removing PCR duplicates and 

retaining only one alignment for each 5′ coordinate. Genomic intervals with at least two 

overlapping alignments were clustered together generating the alignment clusters. This 

yielded 733,542 clusters for uninfected cells and 426,135 clusters from RVFV-infected 

cells. Alignment clusters within human pre-mRNA loci were further searched for 

significant peaks (false discovery rate [FDR] < 0.001) using an empirical algorithm147. 

This analytical approach which separates significant DDX17 binding sites in human pre-

mRNAs (peaks) from potential interaction sites that are not within pre-mRNAs (alignment 

clusters) is required to identify DDX17-RNA interactions that occur outside of annotated 

transcripts, for instance to intergenic miRNA loci without annotated pri-miRNA transcripts 

or intracellular RVFV RNAs. 

DDX17 pre-mRNA peaks showed strong overlap between uninfected and 

infected cells (Figure A1.1d), indicating that the overall profile of DDX17-bound cellular 

RNAs is similar during infection. Next, we determined the transcript features of DDX17 

pre-mRNA peaks (Figure A1.1e). Interestingly, DDX17 peaks were enriched in coding 
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exons, 5′ UTRs, and 3′ UTRs, suggesting that DDX17 preferentially binds mature 

mRNA. Hexamer enrichment analysis of CLIP-seq peaks within protein-coding genes 

showed a bias for CT- and CA-repeat elements (Figure A1.1f). Together, these data 

indicate both location and sequence preference for DDX17 binding to mRNAs. 

 To understand the functional targets of DDX17, I used DAVID to identify KEGG 

GO terms enriched among protein-coding genes associated with DDX17 CLIP-seq 

peaks. I observed enrichment for cell adhesion as well as several cellular signaling 

pathways (Figure A1.2a). Intriguingly, one of the most overrepresented KEGG pathways 

was mitogen-activated protein kinase (MAPK) signaling (Figure A1.2b). Previous data 

suggest that MAPK-activated protein kinase 2 (MK2) physically interacts with DDX5 to 

control its localization, and that DDX5/DDX17 regulate splicing of p38 MAPK148,149,149. 

Thus, DDX17-bound RNAs identified in our experiments overlap with known targets in 

MAPK signaling, suggesting that the CLIP-seq peaks reflect the biological activity of 

DDX17. 
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 Figure A1.2. KEGG and GO Term and Pathway Analysis of DDX17-Bound RNAs. (a) 
Plot of p values for enriched KEGG GO terms using DAVID of protein-coding genes bound by 
significant DDX17 CLIP-seq peaks in either infected or uninfected cells. (b) KEGG pathway 
diagram of the MAPK signaling pathway genes intersecting significant DDX17 CLIP-seq peaks. 

 

 In addition to roles in transcriptional regulation and alternative splicing, DDX17 

has been linked to miRNA biogenesis. DDX5 and DDX17 are components of the 
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Microprocessor complex, which processes the pri-miRNA transcript into the 60–70 nt 

stem-loop intermediate known as the pre-miRNA150,151,151,152,152,153,153. Loss of DDX17 

results in decreased expression of a subset but not all miRNAs152. Therefore, as further 

validation of our CLIP-seq data, I also analyzed the intersection of DDX17 CLIP signal 

with annotated miRNA stem loops. 

I observed 160 pri-miRNA loci that were associated with DDX17 CLIP clusters. 

There was strong correlation in normalized CLIP signal within pri-miRNAs from 

uninfected and RVFV-infected samples (Figure A1.3a), suggesting that similar pri-

miRNAs are bound by DDX17 in uninfected and infected cells. In contrast, I found no 

correlation between CLIP-seq signal and level of miRNA expression reported in a 

previous study of small RNAs in U2OS cells, indicating that DDX17 clusters represent 

bias for certain miRNAs independent of expression level (Figure A1.3b). Among DDX17-

bound miRNAs, miR-663a, miR-99b, and miR-6087 were some of the most highly 

represented miRNAs (Figure A1.3c). Analysis of DDX17 CLIP signal in relation to the 

predicted pri-miRNA stem loop showed that DDX17 clusters were preferentially localized 

immediately 5′ and 3′ to the center of the loop (Figure A1.3d). These data suggest that 

DDX17 interactions are strongest with the stem region of the miRNA hairpin rather than 

the loop. Analysis of overrepresented hexamers in DDX17-associated miRNAs did not 

show any enrichment of the CA- or CT-repeat elements found with the DDX17 mRNA 

peaks. Furthermore, de novo analysis of the bound pri-miRNAs identified no significantly 

enriched motifs compared to total pri-miRNA background. Thus, the interaction of 

DDX17 with pri-miRNAs is likely determined by RNA secondary structure. 



 

116 
 

 

Figure A1.3. DDX17 Directly Binds miRNA Stem Loops in Human U2OS Cells. (a) 
Normalized CLIP-seq signal (TPKM, tags per kilobase of pre-miRNA per million CLIP-seq reads) 
in pre-miRNA hairpin loci with CLIP signal extracted from miRBase. Linear regression of infected 
TPKM on uninfected TPKM is plotted, R2 = 0.79. (b) Scatterplot of miRNAs that are bound; 
normalized pre-miRNA expression (RPKM) from small RNA-seq and the mean of normalized 
CLIP-seq signal (TPKM) between infected and uninfected U2OS cells are plotted, R2 = 0.001. (c) 
Alignment clusters overlapping miRBase pre-miRNA hairpin loci on the UCSC genome browser 
with uninfected cells colored black and infected cells colored red. (d) RNA map of DDX17 CLIP 
signal in pre-miRNA hairpins. Fraction of 160 hairpins bound is plotted at single-nucleotide 
resolution relative to the center of the stem loop. 

 

To determine whether DDX17 regulation of miRNA biogenesis is directly involved 

in antiviral defense, Ryan Moy then silenced the Microprocessor component Drosha in 

U2OS cells. Loss of Drosha had no impact on RVFV replication, suggesting that the 
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antiviral mechanism of DDX17 is independent of Drosha and the canonical miRNA 

pathway. Using luciferase reporter assays as previously described154, Ryan also found 

that Rm62 is not required for siRNA- or miRNA-mediated silencing in Drosophila cells. 

These data indicate that DDX17 does not act through RNAi to restrict RVFV infection. 

Next, I tested whether DDX17 directly interacts with viral RNA by analyzing the 

overlap of DDX17 CLIP clusters with the RVFV genome. I observed multiple DDX17 

clusters, with the highest signal on the M and S segments (Figure A1.4a). These data 

suggest that DDX17 binds RVFV RNA in infected U2OS cells. In addition, DDX17 viral 

clustersdid not overlap with CA- and CT-repeat motifs, suggesting that DDX17-viral 

interactions are not dependent on these elements. 

Because viral RNAs are often highly structured and DDX17 was enriched at the 

stem region of pri-miRNA hairpins, we hypothesized that DDX17 may recognize 

structured elements in RVFV RNAs. Indeed, we observed a prominent CLIP cluster 

within the intergenic region (IGR) on the S segment (between N and NSs). The IGR on 

other ambisense bunyaviruses has been shown to form a highly complementary 

sequence that folds into a hairpin to control transcription termination155. This IGR in the 

RVFV antigenome similarly forms a hairpin that generates the majority of virus-derived 

siRNAs in infected Drosophila and mosquito cells156. We defined a 75 nt RNA that 

overlaps the largest S segment DDX17 CLIP cluster within the IGR on the genome 

strand, which is predicted to form a hairpin structure that resembles miRNA stem loops 

(Figure A1.4b). Ryan Moy synthesized this RNA in vitro using T7 RNA polymerase to 

test whether it is bound by DDX17. Biotinylated DDX17 peak RVFV RNA efficiently 

precipitated DDX17 from U2OS cell lysates in a dose-dependent manner, demonstrating 

that DDX17 physically interacts with RVFV RNA and validating our CLIP-seq results 
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(Figure A1.4c). In contrast, a nonspecific control from RVFV RNA not bound in our CLIP-

seq data set did not precipitate DDX17 (Figure A1.4d). 

 

 Figure A1.4. DDX17 Binds RVFV RNA to Restrict Viral Infection. (a) DDX17 CLIP-seq 
clusters aligned to the RVFV tripartite genome, plotted 3′ to 5′ (genome orientation) along the x 
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axis. Binding sites that map to the genome are below and to the antigenome are above the line. 
CLIP-seq signal intensity (black) is measured in total overlapping reads at each nucleotide 
position. (b) Predicted secondary structure of a 75 nt RNA from DDX17 CLIP peak on the RVFV 
S segment between N and NSs as determined by RNA fold (asterisk in A). (c) The 75 nt DDX17 
CLIP peak RNA from (B) was synthesized by T7 in vitro transcription and biotinylated. 
Biotinylated RVFV RNA was incubated with U2OS cell protein lysates and immunoprecipitated, 
and DDX17-RVFV RNA complexes were analyzed by immunoblot. (d) RNA-protein interaction 
assays were performed as in (C) using the biotinylated RVFV stem loop and nonspecific control 
RNA from RVFV not bound in the DDX17 CLIP-seq data set. (e) Representative immunoblot of 
U2OS cells transfected with the indicated siRNAs and infected with SINV WT or SINV encoding 
the RVFV hairpin (SINV-hp) 8 hpi. (f) Representative immunoblot of Drosophila cells treated with 
control (β-gal) or Rm62 dsRNA and infected with SINV WT or SINV-hp 24 hpi (moi = 0.3). (g) 
Representative IF images of DDX17 and RVFV N from uninfected or infected U2OS cells 12 hpi 
(helicase, green; RVFV N,red; nuclei, blue). (h) Representative IF images of DDX5 and RVFV N 
from uninfected or infected U2OS cells 12 hpi (helicase, green; RVFV N, red; nuclei, blue). (All 
panels except for A and B courtesy of Ryan Moy.) 

 

 To determine whether DDX17 binding on viral RNA can directly restrict viral 

infection, the lab of Dr. Ben tenOever cloned the RVFV DDX17 hairpin into the 3′ UTR of 

SINV under the control of a subgenomic promoter (SINV-hp). This same strategy has 

been previously shown to tolerate the insertion of noncoding hairpin RNAs (Shapiro et 

al., 2010). We found that control cells supported substantially less infection of SINV-hp 

compared to wild-type (WT) SINV (Figure A1.4e). Furthermore, whereas depletion of 

DDX17 led to modest increases in SINV capsid production of WT virus, loss of DDX17 

led to large increases in capsid production from SINV-hp virus (Figure A1.4e). In 

addition, we tested whether this RVFV hairpin also impacted SINV replication in 

Drosophila cells. WT SINV was unaffected by the loss of Rm62 (Figure A1.4f). 

Moreover, as we found in human cells, control RNAi-treated cells supported less 

infection of SINV-hp than WT SINV, and depletion of Rm62 led to a large increase in 

SINV capsid production from SINV-hp virus (Figure A1.4f). A second DDX17 peak at the 

5′ end of the S genomic segment was also predicted to form a hairpin, and cloning this 

hairpin into SINV (SINV-5′hp) also sensitized the virus to DDX17 restriction in Drosophila 

and human cells. Together, these data demonstrate that the presence of a DDX17-
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binding site on viral RNA is restrictive and that this repression can be alleviated by loss 

of DDX17 across hosts. 

 

The Cherry lab next assessed the localization of DDX17 and DDX5 during 

infection by immunofluorescence, as RVFV and SINV RNA replication occur exclusively 

in the cytoplasm. RNAi was used to validate the specificity of these antibodies for 

immunofluorescence. As previously reported157, DDX17 was found in the nucleus in 

uninfected cells (Figure A1.4g).  At 12 hpi, however, we observed some DDX17 staining 

in cytosolic puncta that colocalized with RVFV nucleocapsid protein N, which coats viral 

RNA and facilitates replication (Figure A1.4g). In contrast, DDX5 remained in the 

nucleus in the presence and absence of infection (Figure A1.4h), suggesting a distinct 

localization pattern for DDX17. Collectively, these data suggest that DDX17 may gain 

access to cytosolic RVFV replication complexes during infection and bind viral RNA to 

antagonize viral replication. 

 

Discussion 
 

 This study represents one of the first applications of CLIP-seq to study RNA 

helicase-RNA interactions.  In this study, DDX17 was found to restrict replication of an 

RNA virus through direct interactions.  Importantly, we demonstrate that CLIP-seq can 

be used to study interactions between a host RNA binding protein and the RNAs of an 

intracellular pathogen.   
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 Much of the computational analysis presented in this appendix utilized core 

components that I had previously developed to analyze hnRNP L CLIP-seq data.  One 

important difference is the alignment of reads.  In this experiment, reads were aligned 

against a composite metagenome index (see Materials and Methods) containing the 

chromosomes of the human genome plus the three RNA segments of the Rift Valley 

Fever Virus genome.  This alignment strategy was developed to most closely 

recapitulate the available RNA substrates for DDX17 interactions within the cell.  

Notably, this alignment strategy was critical to allow discovery of the DDX17-RVFV 

interaction site that, when cloned into a virus that is not restricted by DDX17, confers 

restrictivity.  The biological relevance of this interaction site therefore underscores the 

importance of the metagenomic index technique for host-pathogen studies using CLIP-

seq. 

 As expected based on prior studies of DDX17-miRNA interactions, a subset of 

expressed miRNAs were targets of DDX17 interactions in the U2OS cells under study.  

Interestingly, DDX17 appears to engage the double-stranded regions of the miRNAs 

preferentially over the loop region (figure A1.3d), a finding consistent with DDX17’s RNA 

helicase activity in the human miRNA biogenesis pathway.  This finding suggests that 

the data from this study could be useful to the scientific community beyond the context of 

virology and intracellular immunology.  Indeed, recent studies have highlighted DEAD 

box RNA helicases, including DDX17, in tumorigenesis and tumor migration. 

 In analyzing the human pre-mRNA features that are occupied by DDX17 CLIP-

seq peaks, I observed an increase in 3’UTR occupancy upon infection with RVFV (figure 

A1.1e).  This finding is particularly interesting because the functional significance of 

DDX17-3’UTR interactions is unknown.  Two hypotheses might explain this 
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phenomenon.  First, infection with RVFV could alter DDX17-mRNA interactions such 

that an increase in DDX17-3’UTR interactions results.  Alternatively, infection with RVFV 

could alter the expression of genes and/or the length of 3’UTRs such that a broader 

expanse of DDX17-3’UTR interaction sites is made available.  While this study utilized 

mRNA-seq data from U2OS cells, only uninfected cell data was available, and 

investigating the potential for RVFV-dependent alterations in the host cell transcriptome 

is not currently possible.  However, this finding presents an exciting opportunity for 

further study.  

 In conclusion, this study represents a fruitful collaboration between the Lynch 

and Cherry labs that allowed both labs to broaden their scientific horizons.  In the 

Conclusion chapter of this thesis, I synthesize the CLIP-seq analyses of hnRNP L, 

DDX17, and CELF2. 
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APPENDIX 2: CLIP-SEQ ANALYSIS OF CELF2-RNA INTERACTIONS IN T CELLS 

 

Introduction 
 

 We have previously demonstrated the use of CLIP-seq to analyze protein-RNA 

interactions for hnRNP L and DDX17.  While hnRNP L expression and activity were 

found to be consistent between unstimulated and stimulated T cells, our lab has 

previously described a broad pattern of stimulation-induced alternative splicing in T cells 

using transcriptome sequencing107, suggesting that other splicing factors may respond to 

T cell stimulation with altered activity, thus controlling the stimulation-responsive splicing 

phenotype.  In support of this, I previously performed motif enrichment analysis of 

stimulation-responsive exons and found multiple sequence features to be enriched107, 

suggestive of a network of splicing factors that control activation-induced alternative 

splicing.  However, the contribution of individual splicing factors to T cell stimulation-

induced alternative splicing is largely unknown. 

 One example of activation-induced alternative splicing that our lab has studied 

using biochemical techniques is LEF1 exon 6158.  LEF1 is a transcription factor that 

drives expression of the T cell receptor (TCR) alpha subunit159.  Upon T cell stimulation, 

LEF1 exon 6 inclusion is increased.  Importantly, this exon encodes a portion of the 

context-regulatory domain (CRD) of LEF1 that is required for optimal gene-expression 

enhancer activity160.  Our lab has previously demonstrated that the stimulation-induced 

alternative splicing of LEF1 exon 6 is driven by the splicing factor CELF2158.  CELF2 

binds to UG-rich, evolutionarily conserved sequences on both sides of LEF1 exon 6.  
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CELF2 expression increases upon stimulation, resulting in higher levels of CELF2 

binding in these periexonic sequences.  Importantly, CELF2 is an enhancer of LEF1 

exon 6 inclusion because knockdown of CELF2 reduced exon inclusion. 

 These studies of LEF1 exon 6 suggest that CELF2 is one splicing factor that links 

T cell stimulation to alternative splicing.  However, the transcriptome-wide occupancy of 

CELF2 is unknown.  While the study of CELF2 is the chief focus of other students in the 

lab, this project provided the basis for another productive collaboration in which I was 

able to utilize software tools developed for hnRNP L analysis on a new protein, and one 

with expression and activity that are altered by T cell stimulation. 

Importantly, the post-doc in our lab that performed the CLIP-seq library 

preparations for hnRNP L and DDX17 also prepared CLIP-seq libraries for CELF2 in 

unstimulated and stimulated JSL1 cells.  The resulting CLIP-seq reads were processed 

by the same computational pipeline that was developed for hnRNP L and DDX17, 

providing an ideal opportunity to compare the results of these three CLIP-seq 

experiments and derive insights into common features of the CLIP-seq findings and also 

unique, distinguishing characteristics of each study. 

 

Results 
 

 To identify transcriptome-wide CELF2-RNA interactions in T cells, Ganesh 

Shankarling prepared CLIP-seq libraries from unstimulated and stimulated JSL1 cells.  

Importantly, these conditions are identical to those utilized in the CLIP-seq analysis of 

hnRNP L.  The library preparation was identical to that utilized in the CLIP-seq analysis 

of hnRNP L and DDX17 except for one modification.  One key step in the computational 
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analysis of CLIP-seq reads is to remove PCR duplicates.  When more than one CLIP-

seq read aligns to the same genomic locus, it is not possible to discern whether multiple 

oligonucleotide fragments were present in the immunoprecipitated RNA or whether a 

single fragment gave rise to multiple reads by PCR duplication.  For this reason, 

duplicates are entirely removed and only one alignment is allowed at each position in the 

genome.  This removal of PCR duplicates results in considerable reduction of the size of 

the aligned reads relative to the size of the raw reads. 

 To compensate for this, Ganesh employed a barcoding strategy which allows 

discrimination of PCR duplicates from multiple distinct RNA fragments.  Before the PCR 

reactions are performed, each CLIP sample is split into three aliquots and unique 

hexanucleotide barcodes are ligated to each (figure A2.1).  After sequencing of the 

resulting libraries, each of the three barcoded aliquots from the same CLIP sample are 

aligned separately to the genome and PCR duplicates are removed.  Then, the three 

aliquots from each sample are combined, allowing a maximum of three reads to align to 

the same genomic position within each CLIP sample.  This strategy aims to increase the 

sensitivity of the CLIP-seq peak caller. 
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 Figure A2.1. Triplicate barcoding strategy for CELF2 CLIP-seq. Unstimulated and 
stimulated sample groups of JSL1 cells were subjected to UV crosslinking (top) in triplicate. After 
immunoprecipitation of CELF2-RNA complexes and isolation of fragmented RNAs, each replicate 
was split into three identical aliquots before PCR amplification (only one sample is diagrammed).  
Each aliquot was ligated to a different oligonucleotide barcode. Reads from each uniquely-
barcoded aliquot were separately aligned to the genome and PCR duplicates removed, 
generating “collapsed alignments” (middle). Finally, each aliquot’s unique alignments were 
combined to recreate the individual replicates, a process which allows a maximum of three reads 
to align to the same genomic position (bottom).  

 

 In total, 277 million raw reads were generated, from which 122 million were 

mapped to the human genome (figure A2.2a).  Removal of PCR duplicates left 7.8 

million alignments remaining, suggesting a high degree of duplication in the aligned 

reads.  Importantly, although only a small fraction of the human genome is contained 

within the refSeq annotation, almost all CELF2 CLIP-seq reads aligned to portions of the 

human genome contained within the refSeq annotations.  Subsequent combining of the 

aligned reads (as demonstrated in Figure A2.1) allowed me to identify 49,962 significant 

CELF2 peaks in unstimulated JSL1 cells and 52,249 peaks in stimulated cells.  These 
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peaks were subjected to further analysis using software tools developed for hnRNP L 

CLIP-seq. 

 

 Figure A2.2. Summary of CELF2 CLIP-seq analysis. a) Total counts of raw reads, 
unique alignments (reads that aligned to one and only one position in the hg19 build of the human 
genome), collapsed alignments (unique alignments that have had PCR duplicates removed), and 
collapsed alignments within refSeq transcriptome annotation are displayed.  Total numbers of 
CLIP-seq peaks identified by an identical algorithm to that used in the analysis of hnRNP L CLIP-
seq experiments are also displayed (see Materials and Methods).  b) Barplot of the fraction of 
nucleotides covered by CELF2 CLIP-seq peaks in unstimulated and stimulated JSL1 T cells 
occupying each of five categories of annotation. 

  

 First, I examined the fraction of the total genomic footprint covered by CELF2 

CLIP-seq peaks is annotated as 5’UTR, 3’UTR, exon, proximal intron (within 300nt of an 

exon), or distal intron.  For this analysis, I used the refSeq transcriptome annotation, as 

was performed for hnRNP L CLIP-seq analysis.  Importantly, the CLIP-seq peak caller 

only searches refSeq transcripts for peaks, so every nucleotide covered by CELF2 CLIP-

seq peaks may be uniquely classified under these five categories.  By comparing the 

fraction of nucleotides under CELF2 CLIP-seq peaks within each of these five categories 

to the fraction of the total refSeq transcriptome annotation that is composed of each 
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category, a relative enrichment for 3’UTR interactions is evident (figure A2.2b).  This 

enrichment of CELF2 for 3’UTR interactions is potential evidence of a broader role for 

CELF2 in 3’ end processing or splicing within 3’ UTRs.  Interestingly, CELF1, a related 

RNA binding protein from the same Elav-like factor family (CELF family), binds to GU-

rich elements in the 3’UTRs of human mRNAs to trigger mRNA decay161.  A recent 

CLIP-seq analysis of CELF1 in mouse cardiac tissue similarly identified enrichment of 

CELF1 CLIP-seq peaks within 3’UTRs162.  Taken together, these results suggest that 

CELF2, similar to CELF1, is enriched for 3’UTR interactions, and suggests a possible 

interplay between CELF2 and mRNA stability.  This is particularly interesting given that 

CELF2 is strictly nuclear in localization, while CELF1 resides in both cytoplasmic and 

nuclear protein fractions in JSL1 cells. 

 To identify enriched motifs within CELF2 CLIP-seq peaks, I used the Z-score 

motif enrichment algorithm directed at kmers of length 6 (hexamers).  Histograms of Z 

scores for hexamer enrichment display a long right tail, indicating a subpopulation of 

hexamers are enriched relative to permuted background (figure A2.3).  I used multiple 

sequence alignment to generate a motif logo of the top 20 most enriched hexamers 

(inset).  The resulting motifs display a marked bias toward UGU trinucleotides in both 

unstimulated (figure A2.3a) and stimulated (figure A2.3b) CLIP-seq peaks.  This motif 

preference is in agreement with the motif preference of CELF1 as identified by 

SELEX163, providing further evidence of the similarity between CELF1 and CELF2 at the 

level of motif preference.  Interestingly, the motif preference of CELF2 is not drastically 

altered by cell stimulation, despite the fact that the splicing regulatory activity of CELF2 

changes upon stimulation, as is the case with LEF1 exon 6158. 
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 Figure A2.3. CELF2 CLIP-seq motif enrichment analysis. Unstimulated (a) and 
stimulated (b) CELF2 CLIP-seq peaks were permuted 100 times within the refSeq transcripts to 
which they align and hexamer frequencies within the actual CLIP-seq peaks were compared to 
the mean and standard deviation for that hexamer across the 100 iterations of independent 
permutations.  The Z-score is reported as the number of standard deviations away from the mean 
permuted frequency, with positive values denoting enrichment and negative values depletion. 
Inset: a composite motif logo generated from multiple sequence alignment of the top 20 
hexamers by Z score. 

 

 Finally, other individuals in our lab have performed functional studies of CELF2 

splicing regulation using RASL-seq.  While these results are not detailed here, one 

interesting hypothesis that arose from the results of CELF2 functional studies is the 

possibility of a regulatory interplay between CELF2 and RBFOX, another splicing 

regulator.  One hypothesis that these results raised is that CEFL2 and RBFOX 

coregulate splicing by colocalization.  To explore this hypothesis further, I examined the 

extent and the significance of overlap between CELF2 and RBFOX CLIP-seq sites.  For 

this analysis, I used RBFOX CLIP-seq samples from mouse brain tissue.  To control for 

differences in the software used to process RBFOX CLIP-seq data, I reprocessed the 
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data from this study with the same pipeline used to process hnRNP L and CELF2 CLIP-

seq experiments. 

 To compare the overlap between CELF2 and RBFOX, I first computed the 

overlap between CELF2 CLIP-seq peaks in unstimulated and stimulated JSL1 cells 

(table A2.1).  More than 62% of CELF2 CLIP-seq peaks in unstimulated JSL1 cells have 

some degree of overlap with CELF2 CLIP-seq peaks in stimulated cells.  To assess the 

significance of this overlap, I permuted the unstimulated CELF2 CLIP-seq peaks within 

the transcripts that contain them. This permutation process estimates the degree of 

overlap between two sets of CLIP-seq peaks due to random chance, given the size and 

number of CLIP-seq peaks within each transcript that was a physical target of the protein 

under study. When unstimulated CELF2 JSL1 peaks are permuted in this manner, the 

fraction of peaks that overlap stimulated CELF2 peaks falls below 5%.  As a negative 

control, I examined the overlap between CELF2 and hnRNP L and hnRNP A1 CLIP-seq 

peaks, for which I have no evidence of a functional relationship.  The degree of overlap 

between CELF2 and hnRNP L is less than 4%, and the overlap between CELF2 and 

hnRNP A1 is not more than 1%, indicating that only a small fraction of CELF2-RNA 

interaction sites are also physical targets of these two hnRNP proteins. 

 Finally, I compared the overlap between CELF2, hnRNP A1, hnRNP L, and 

RBFOX.  Despite the fact that RBFOX CLIP-seq was performed in a different tissue and 

in a different organism, there is a greater than 3x higher overlap between CELF2 and 

RBFOX CLIP-seq peaks than expected by randomization.  Notably, this is not true for 

the overlap between hnRNP L and RBFOX or for the overlap between hnRNP A1 and 

RBFOX.  While the total degree of overlap between CELF2 and RBFOX is low, at least 

some of this might be attributable to the imperfect conversion between the mouse 
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genome coordinates to human genome coordinates (liftOver). Additionally, the fact that 

the species and the tissue are both different begs a large measure of caution when 

interpreting these results. 

 
Unstimulated CELF2 

JSL1 
Stimulated CELF2 

JSL1 hnRNP A1 Mouse Brain RBFOX 

 
Percent 
overlap: 

Percent 
randomized 
overlap: 

Percent 
overlap: 

Percent 
randomized 
overlap: 

Percent 
overlap: 

Percent 
randomized 
overlap: 

Percent 
overlap: 

Percent 
randomized 
overlap: 

hnRNP L 3.24 2.20 2.86 2.02 0.17 0.12 0.77 0.62 
Unstimulated 
CELF2 JSL1   62.41 4.75 1.00 0.32 3.65 1.11 
Stimulated 
CELF2 JSL1     0.42 0.22 3.09 0.96 

hnRNP A1       2.33 1.25 
 

 Table A2.1. CELF2 CLIP-seq overlap matrix. The fraction of CELF2 CLIP-seq peaks in 
unstimulated and stimulated JSL1 cells was compared to a panel of other CLIP-seq studies. Each 
CLIP-seq study was reprocessed by the identical pipeline as used to generate CELF2 peaks.  
One of the two sets of CLIP-seq peaks was then permuted within the transcripts in which they 
occur and the fraction of these permuted peaks that overlap the other set of CLIP-seq peaks (e.g. 
CELF2 versus hnRNP A1) was computed. 

 

Discussion 
 

 CELF2 is a splicing regulator that has differential regulatory function in 

unstimulated and stimulated JSL1 cells.  Because of this, CELF2 might play a broad role 

in reshaping the transcriptome upon stimulation.  The mechanisms by which signal-

inducible alternative splicing events are regulated remain unknown. 

 Here, I present an analysis of CELF2-RNA interactions using CLIP-seq.  While 

the functional impact of CELF2 on the T cell transcriptome is the subject of study for 

other individuals in the lab, Ganesh Shankarling prepared CELF2 CLIP-seq libraries in 
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unstimulated and stimulated cells using a similar approach to that employed for hnRNP 

L CLIP-seq library preparation.  This provides an important level of experimental control 

when comparing hnRNP L and CELF2 CLIP-seq datasets.  However, one modification 

was added to the library preparation protocol: multiplexed barcoding within individual 

samples (figure A2.1).  To provide the ability to detect multicopy CLIP fragments within 

the background of PCR duplication, Ganesh split each CLIP sample into three aliquots 

and ligated a unique barcode onto each aliquot.  This allowed me to retain up to three 

copies of alignments that map to the same genomic position because the finding of 

these three copies cannot be attributable to PCR duplication. 

 Motif enrichment analysis of CELF2 identifies UGU trinucleotide repeats. 

Notably, the most enriched motifs in unstimulated CELF2 CLIP-seq peaks are visibly 

similar to those in stimulated CELF2 CLIP-seq peaks, suggesting that cell stimulation 

does not alter the sequence specificity of this RNA binding protein.  One possible 

interpretation of this result is that the difference in CELF2’s splicing regulatory function 

that results as a consequence of cell stimulation is not attributable to a difference in RNA 

recognition; instead, in both cell states, CELF2 engages UG-rich and UGU-containing 

sequences. 

 Another hypothesis for how CELF2 can have differential function in unstimulated 

and stimulated cells is an alteration in the RNA sites occupied by CELF2 that is 

attributable to differences in CELF2 protein expression.  For instance, CELF2 mRNA 

and protein levels are higher in stimulated cells than in unstimulated cells, and this could 

result in an increase in the number of sites bound by CELF2 in stimulated cells.  

However, an analysis of the degree of overlap between CLIP-seq peaks in unstimulated 

and stimulated cells found that a majority of the CLIP-seq peaks overlap between the 
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two conditions.  Notably, this overlap is more than 13 times higher than that expected by 

randomization.  This, combined with the finding of similar total numbers of CELF2 CLIP-

seq peaks between the two conditions, suggests that the majority of CELF2-RNA 

interaction sites are physical targets in both unstimulated and stimulated cells. 

 These results motivate other hypotheses that might explain the differences in 

CELF2 splicing regulatory function between unstimulated and stimulated cells.  One 

possibility is that CELF2 is differentially modified at the protein level between 

unstimulated and stimulated cells and that these modifications can account for the 

functional differences.  While CELF2 largely engages the same RNA sites in both cell 

conditions, the consequences of that engagement may be altered by post-translational 

modifications.  For example, CELF2 might recruit snRNP proteins or splicing 

coactivators in unstimulated cells, but inhibit snRNP/coactivator recruitment in stimulated 

cells due to post-translational modifications.  Other students in the lab have utilized 

mass spectrometry to investigate this interesting hypothesis. 

 Finally, I have demonstrated the use of a permutation algorithm to estimate the 

significance of the degree of overlap between two CLIP-seq samples.  Indeed, the 

overlap between CELF2 and RBFOX CLIP-seq sites is three times higher than that 

expected based on randomization.  This analysis raises the hypothesis that CELF2 and 

RBFOX could establish functional interplay by interacting with the same or neighboring 

RNA sites.  This hypothesis is particularly interesting because a recent analysis of 

CELF1 splicing regulation in muscle tissue identified a functional interplay between 

CELF1 and MBNL1, another splicing regulatory protein.  In this case, CELF1 and 

MBNL1 are mutually antagonistic and interact with neighboring or overlapping RNA 
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sites.  This style of coregulation could be at play in JSL1 cells in the case of the 

functional interplay between CELF2 and RBFOX.   

 In sum, CLIP-seq analysis of CELF2 raises several functional hypotheses about 

the stimulation-responsive alterations in splicing regulation.  These results provide a 

foundation for further biochemical studies.
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CONCLUSION 

 

The advent of high-throughput genetic sequencing technology has ushered in the 

post-genomic era.  One of the first major discoveries that accompanied informatic 

studies of the first draft of the human genome was a puzzling paucity of gene count 

relative to protein count.  Early transcriptome annotations identified ~25,000 

recognizable genes within the human genome, and while subsequent efforts have 

expanded our appreciation of the coding potential of the human genome, including 

species such as lincRNAs and upstream antisense transcripts, the human proteome 

appears to be contain many more proteins than the number of genes in the human 

genome could directly account for. 

One of the mechanisms by which humans generate rich proteomic complexity 

from the human genome is by alternative pre-mRNA processing such as alternative 

splicing.  High-throughput sequencing studies of expressed transcripts in a diversity of 

human cell types has expanded our appreciation of the degree and extent to which 

human pre-mRNAs are alternatively processed to generate multiple isoforms with 

distinct coding potential.  Alternative pre-mRNA processing is also subject to control by 

development and intercellular signaling, adding a dynamic dimension to the coding 

potential of the human genome. 

Alternative pre-mRNA processing is regulated by the combinatorial activities of 

cis- and trans-acting features which work in concert to dictate the processing of a pre-

mRNA.  While biochemical studies have provided mechanistic insights into alternative 

splicing events at the single-gene level, the extent to which these insights apply to the 
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rest of the transcriptome is unclear.  In this thesis, I demonstrate the use of integrative 

genomics to study alternative splicing on the transcriptome-wide scale.  In particular, I 

utilize CLIP-seq and bioinformatics analysis to identify hnRNP L-RNA interactions in 

human T lymphocytes.  I then use RNA sequencing to identify alternative splicing events 

that respond to hnRNP L depletion.  Finally, I use integrative genomic analysis to 

examine the pattern of features associated with hnRNP L-responsive splicing. 

 

CLIP-seq identifies hnRNP L-RNA interactions in JSL1 and CD4+ human T 
lymphocytes 
 

Our lab has previously used biochemical methods and molecular biology to study 

hnRNP L-responsive alternative splicing events in T cells.  Importantly, our lab has 

identified instances in which hnRNP L interacts directly with exonic RNA to repress exon 

inclusion.  Splice site strength and co-associated proteins impact this regulation, 

suggesting a combinatorial code or splicing control by hnRNP L.  However, the extent to 

which the conclusions of these studies generalize to the rest of the T cell transcriptome 

is unclear.  To assess the transcriptomic impact of hnRNP L, we first utilized CLIP-seq to 

identify hnRNP L-RNA interaction sites.  The identification of hnRNP L-RNA interaction 

sites is a crucial component of the transcriptome-wide analysis of hnRNP L splicing 

regulatory function. 

Ganesh Shankarling prepared hnRNP L CLIP-seq libraries in unstimulated and 

stimulated cells of two types.  First, he utilized JSL1 cells, a monoclonal, Jurkat-derived, 

immortalized T lymphocyte cell line.  These cells have been utilized by our lab and 

others to study alternative splicing in cultured cells.  Additionally, he prepared hnRNP L 

CLIP-seq libraries using primary human CD4+ T cells purified from peripheral blood 
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mononuclear cells.  The addition of these primary human CD4+ samples allows us to 

compare findings from JSL1 cells and assess the extent to which experimental results 

from immortalized cells may generalize to primary cells.  Second, unstimulated and 

stimulated conditions from both types of cells were utilized.  While there is no prior 

evidence from our lab or others that the activity of hnRNP L responds to cell stimulation, 

the inclusion of these two physiologic conditions provides another layer of biological 

replication because the transcriptome is altered at the expression and processing level 

by stimulation107.  The inclusion of two cell conditions in addition to two cell types 

therefore expands the experimental conditions of this study, adding breadth to our 

experimental and analytical results and conclusions. 

Using bioinformatic analysis of hnRNP L CLIP-seq reads, I identified over 

100,000 unique interaction sites (peaks).  Importantly, I found a high degree of overlap 

between hnRNP L peaks identified from unstimulated and stimulated cells, suggesting 

that the majority of hnRNP L interactions are not altered by cell stimulation.  This finding 

is consistent with prior biochemical studies of hnRNP L-regulated alternative splicing 

events in which the splicing control by hnRNP L is not altered by cell stimulation, and 

also consistent with the fact that hnRNP L protein levels and nucleocytoplasmic 

localization are not altered by stimulation.  I also identified a high degree of overlap 

between hnRNP L-RNA interaction sites identified in JSL1 cells and those identified in 

primary human CD4+ cells, which supports the JSL1 cell line as a model for studying 

hnRNP L splicing control. 

Consistent with in vitro studies of the consensus sequence for hnRNP L-RNA 

interactions, I identified a CA-rich motif as most enriched within hnRNP L CLIP-seq 

peaks.  Notably, the two most strongly enriched hexamers within hnRNP L CLIP-seq 
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peaks were CACACA and ACACAC, the two pure CA or AC dinucleotide repeat 

hexamer sequences.  This motif preference is consistent between T cell types and 

stimulation states. 

Importantly, the CLIP-seq peaks were used to identify novel instances of hnRNP 

L-regulated alternative splicing.  I first identified exons with hnRNP L peaks within the 

exon or within the upstream or downstream introns.  Ganesh and I, along with others in 

the lab, then used hnRNP L-depleted or mock-depleted RNA extracts to quantify splicing 

changes by RT-PCR.  This approach identified 27 cases of hnRNP L-regulated splicing 

events.  These studies of hnRNP L-RNA interaction sites form the foundation for 

functional genomics studies of hnRNP L splicing control. 

 

High-throughput sequencing approaches identify hnRNP L-responsive alternative 
splicing events in JSL1 T cells 
 

 Having identified hnRNP L-RNA interaction sites using CLIP-seq, I next studied 

the splicing regulatory role of hnRNP L in JSL1 T cells using genomics approaches.  

Using separate knockdown techniques, I depleted hnRNP L to approximately 50% of 

normal levels.  These dual knockdown methods provide an important control for off-

target effects and also provide a degree of experimental redundancy.  I then utilized 

complementary high-throughput sequencing techniques to identify hnRNP L-responsive 

splicing events.  I combined the high depth-of-coverage of RASL-seq with the high 

breadth-of-coverage of RNA-seq, resulting in high correlation between the splicing 

predictions generated by both experiments.  This approach increased the positive 

predictive value of splicing predictions when compared to either experiment alone.
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 I identified hundreds of exons with inclusion level changes that respond 

significantly to hnRNP L depletion.  Through gene ontology analysis, I found that these 

targets are enriched for RNA and DNA-binding functional categories, as well as 

chromatin modifiers and other epigenetic factors.  This finding suggests an interplay 

between hnRNP L and chromatin.  An additional analysis of other types of alternative 

splicing, such as intron retention and alternative 5’ or 3’ splice site utilization, produced a 

much smaller volume of predictions, suggesting that the primary splicing regulatory 

activity of hnRNP L is cassette-type alternative exons. 

 A gene expression change analysis that successfully captured stimulation-

responsive upregulation of immune response genes identified very few hnRNP L-

responsive differential gene expression events.  One possible explanation for the 

inability of the RNA-seq data to detect hnRNP L-responsive gene expression changes 

that validate by qRT-PCR is the timecourse of the study.  The RNA-seq experiment 

utilized transient transfection of antisense morpholino oligonucleotides to deplete hnRNP 

L.  For this reason, RNA extracts can be generated between 24 and 60 hours, before 

which cells have not yet recovered from electroporation, but after which the extent of 

knockdown begins to subside as hnRNP L protein expression returns to normal levels.  It 

is possible that gene expression changes induced by hnRNP L depletion take longer to 

manifest because hnRNP L regulates splicing of transcripts that encode transcription 

factors and epigenetic regulators.  In order for the function of these proteins to be altered 

as a consequence of hnRNP L depletion, the isoform shift induced by hnRNP L 

depletion requires translation into protein in order to generate a shift in the proteome.  In 

contrast, cell stimulation results in intracellular signaling that results in rapid post-

translational modifications on transcription factors.  This process could result in gene 
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expression changes that are observable by RNA-seq during the timecourse utilized by 

this study.  These differences in the mechanisms by which signaling and splicing result 

in changes in gene expression could explain the lack of hnRNP L-responsive gene 

expression events in comparison to stimulation-responsive gene expression changes. 

 Another hypothesis for the lack of hnRNP L-responsive gene expression events 

even though hnRNP L regulates splicing in transcription factors and epigenetic 

regulators is that the consequence of this hnRNP L splicing control is not gene 

expression change.  Recent studies have highlighted the interplay between DNA binding 

proteins such as CTCF and splicing.  Additionally, the role that chromatin state plays in 

determining splicing outcomes has become appreciated.  Taken together, these studies 

suggest that DNA and RNA existing in a regulatory interplay.  These transcriptome-wide 

functional studies of the control of RNA by hnRNP L form the foundation for integrative 

genomics analysis. 

 

Integrative genomics analysis identifies direct repressive and indirect enhancing 
roles for hnRNP L in exon splicing 
 

 The above analyses have generated transcriptome-wide datasets of hnRNP L 

binding and function.  One key question in the study of hnRNP L splicing control is how 

the position of binding relates to splicing regulatory outcome.  Integrative genomics 

analyses often involve computational analysis of RNA binding protein occupancy within 

and around regulated alternative splicing events.  The resulting visualizations, 

sometimes referred to as RNA maps, can reveal insights into the positions of binding 

associated with repression and enhancement of splicing.  However, this approach 
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suffers from several major caveats.  First, RNA maps are empirical analyses and any 

visible trends are associative, not causal.  Second, evidence suggests a combinatorial 

code of splicing control, but features like splice site strengths, sequence composition, 

exon/intron lengths, exon/intron ordinality, coassociated proteins, and secondary 

structure are often not included in RNA maps.  Finally, the overlap between binding 

function is incomplete: CLIP-seq identified over 100,000 hnRNP L peaks in pre-mRNAs, 

but not all of these peaks have hnRNP L-responsive alternative splicing events nearby.  

Similarly, not all hnRNP L-responsive alternative splicing events are expected to have 

CLIP-seq peaks nearby, based on integrative genomics studies of other hnRNP 

proteins. 

 Prior integrative genomics analyses of other splicing regulators, including those 

of hnRNP proteins, have also identified a relatively low overlap between binding and 

function.  At least two possible explanations for this exist.  First, the highly 

interconnected biology of splicing regulatory proteins could lead to high levels of indirect 

effects.  Splicing regulatory proteins regulate splicing and thereby protein expression of 

other splicing factors, which in turn regulate other splicing factors.  Depletion of one 

splicing regulator, such as hnRNP L, induces systems-level alterations in the cell that 

extend beyond other splicing regulators, for instance to DNA binding proteins and 

epigenetic factors in the case of hnRNP L.  These network effects potentiate the 

indirection of splicing changes as a readout of the direct consequences of depletion of 

the splicing regulator under study.  Second, the methodology of high throughput 

sequencing could provide partial discovery of splicing changes and/or RBP binding sites 

due to sequence bias in library preparation, mapping errors or unequal mappability of 

the genome, and low expression of mRNAs that results in low confidence of splicing 
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changes.  Taken together, these caveats urge strong caution in interpreting the results of 

integrative genomic analyses. 

 Despite these caveats, valuable information about hnRNP L splicing control can 

be gained by combining CLIP-seq and RNA-seq results.  First, hnRNP L-repressed 

exons are strongly demarcated by hnRNP L peaks within the exon or in the upstream or 

downstream periexonic regions.  This observation supports a model in which hnRNP L 

directly represses exon inclusion through exonic and exonic proximal interactions, 

potentially by blocking access of the spliceosomal subunits to the 5’ and 3’ splice sites, 

or potentially also by stabilizing snRNP/RNA interactions such that snRNP exchange is 

not possible.  This latter mechanism was first described in CD45 exon 4, which has an 

exonic binding site for hnRNP L that was first identified biochemically and is successfully 

captured in CLIP-seq.  While genomics approaches do not discriminate between these 

two possibilities, the strong association between exonic and periexonic hnRNP L 

occupancy and repression of splicing indicates a direct mechanism by which hnRNP L 

blocks exon inclusion. 

 In contrast, hnRNP L-enhanced exons are not significantly associated with 

hnRNP L interactions when compared to a set of exons with inclusion levels that are not 

altered by hnRNP L knockdown.  This finding suggests indirect enhancement of splicing.  

While hnRNP L-enhanced exons are not associated with CLIP-seq peaks, they are 

flanked by short, GC-rich introns.  These two features co-occur globally within the 

human transcriptome, and are thought to represent a distinct class of exons which are 

not strongly demarcated by nucleosome occupancy.  In support of this, hnRNP L-

enhanced exons are less occupied by nucleosomes than hnRNP L-repressed exons.  

These results support a model in which hnRNP L-enhanced exons are generally more 
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sensitive to alterations in chromatin than the majority of human exons, which have well-

positioned nucleosomes. 

 This model raises the question of how hnRNP L is linked to chromatin.  Several 

lines of evidence support a functional connection between hnRNP L and chromatin.  

First, chromatin modifiers are enriched among hnRNP L splicing targets, including 

enzymes with histone deacetylase and demethylase activity (HDAC10 and KDM6A, 

respectively), proteins that recruit histone modifiers (HMG20A, e.g.), enzymes that 

modify DNA (DNMT3B), and histone acetyltransferase complex subunits (EP400, 

MORF4L2).  While the alterations in the activity of these factors induced by hnRNP L 

depletion is difficult to infer, the enrichment of epigenetic functional categories among 

hnRNP L splicing targets is a surprising find.  

 As described in previous chapters, hnRNP L is physically associated with the 

KMT3a (also known as SETD2) complex in humans and is essential to its H3K36me3 

activity in vivo.  This epigenetic mark is enriched at exon-intron boundaries and is an 

important component of the “chromatin code” of pre-mRNA splicing.  The observation 

that hnRNP L-enhanced exons have reduced nucleosome occupancy raises the 

hypothesis that they are particularly sensitive to global reductions in H3K36me3 levels 

upon hnRNP L depletion.  

 To test this hypothesis, I propose a comparative chromatin immunoprecipitation 

experiment to quantify H3K36me3 and total H3 levels in hnRNP L-depleted and mock-

depleted JSL1 cells.  I hypothesize that hnRNP L-enhanced exons have lower basal 

levels of H3K36me3 due to reduced nucleosome occupancy, which can be quantified by 

H3 ChIP-qPCR.  Additionally, I propose knockdown of KMT3a and RT-PCR 
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quantification of exon inclusion for exons that were indirectly enhanced by hnRNP L.  I 

hypothesize that KMT3a knockdown will reduce inclusion of these exons. 

 Because hnRNP L regulates splicing of other chromatin modifiers, including 

histone deacetylases, it is possible that the effect of hnRNP L on chromatin occurs 

independently of H3K36me3 or via a combination of multiple mechanisms.  Further 

exploration of chromatin modifications from ENCODE data may reveal deeper insights 

into the chromatin state underlying hnRNP L-enhanced exons.   

 In sum, these findings highlight a direct repressive role for hnRNP L in pre-mRNA 

splicing.  In addition, an indirect role for hnRNP L in splicing enhancement highlights a 

potential interplay between hnRNP L and chromatin.  Future experiments are necessary 

to test this hypothesis. 

 

Comparison of CLIP-seq analyses 
 

 In this dissertation, I provide computational analysis of three distinct CLIP-seq 

studies with the same software pipeline.  Minor modifications to the pipeline were made 

to reflect the experimental differences in each study, for example the incorporation of 

uniquely barcoded aliquots in the CELF2 CLIP-seq experiment and the metagenome 

index of Rift Valley Fever Virus-infected human cells in the DDX17 CLIP-seq study.  

Combined with the hnRNP L CLIP-seq analysis, these three experiments provide 

valuable comparisons and contrasts.  Importantly, by comparing CLIP-seq studies 

performed and analyzed by the same group using the same tools, a bigger picture of the 

possible biases of CLIP-seq experiments emerges. 
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 First, CELF2 and hnRNP L CLIP-seq libraries were prepared from the same cells 

in the same conditions: unstimulated and stimulated JSL1 cells.  This identical setting 

coupled with the fact that both of these proteins are splicing factors makes a comparison 

particularly interesting.  One major difference between the two CLIP-seq experiments 

was the library preparation.  In contrast to hnRNP L CLIP-seq, CELF2 CLIP samples 

were split into three aliquots before PCR amplification, and unique barcodes were 

ligated onto each aliquot.  This allowed the computational discrimination of PCR 

duplicates from true multicopy inserts.  Despite this difference, the input to the CLIP-seq 

peak caller was the same format, the only difference in the data being that in the case of 

CELF2, up to three copies of a read aligned to the same genomic position were 

possible.  The peak caller therefore was identical in both experiments. 

 One of the first analyses of CLIP-seq peaks is motif enrichment.  For both CELF2 

and hnRNP L CLIP-seq peaks, an identical permutation algorithm was used to identify 

enriched hexamers within CLIP-seq peaks as compared to permuted backgrounds.  

Although standard CLIP-seq library preparation was utilized (in contrast to photoreactive 

nucleoside crosslinking, or PAR-CLIP), there exists a possibility of crosslinking bias.  If 

this type of sequence bias were inherent to CLIP-seq in general, it would complicate the 

interpretation of motif enrichment results.  

 If CLIP-seq were inherently biased towards specific nucleotides, one might 

expect to see enrichment for that nucleotide within CLIP-seq motifs.  However, all four 

simple nucleotide repeat hexamers (TTTTTT, AAAAAA, CCCCC, and GGGGGG) are 

depleted within CELF2 CLIP-seq peaks in both unstimulated and stimulated conditions 

(table C1).  These simple nucleotide repeat hexamers are also depleted in unstimulated 

and stimulated CELF2 hnRNP L peaks, except for CCCCCC which is enriched.  
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Because this hexamer is not enriched in CELF2 CLIP-seq peaks, it is likely that this 

motif is enriched in hnRNP L CLIP-seq peaks due to sequence specificity of hnRNP L-

RNA interactions and not general sequence bias in UV crosslinking.  Notably, this motif 

is similar to the most enriched hexamers within hnRNP L CLIP-seq peaks, CACACA and 

ACACAC.  While these results demonstrate that homopolymeric hexamers are not 

enriched generally across these two CLIP-seq experiments from the same cell line, the 

possibility of systematic enrichment for shorter homopolymeric repeats still exists and 

would require different motif enrichment strategies than those developed for this 

dissertation to examine comprehensively. 

Hexamer Unstimulated 
hnRNP L Z-
score 

Stimulated 
hnRNP L Z-
score 

Unstimulated 
CELF2 Z-score 

Stimulated 
CELF2 Z-score 

TTTTTT -17.53 -14.32 -8.14 -6.86 

AAAAAA -3.82 -2.24 -6.53 -7.56 

CCCCCC 5.39 8.86 -1.83 -1.70 

GGGGGG -3.97 -2.86 -1.93 -1.95 

 Table C1. Homopolymeric hexamer enrichment analysis within hnRNP L and 
CELF2 CLIP-seq peaks.  Z-scores for each kmer of length 6nt (hexamers) were computed by 
iterative randomization of CLIP-seq peaks within the transcripts that contain them, as described in 
Materials and Methods and discussed in above chapters and appendices.  To investigate the 
possibility of systematic sequence bias in CLIP, Z-scores for each of the four possible 
homopolymeric hexamers are displayed. 

 

Another important permutation-based method was used in my analysis of CLIP-

seq peaks to estimate the significance of overlap between two sets of peaks.  In this 

analysis, one set of CLIP-seq peaks is held constant while the other is iteratively 

permuted within the transcripts that contain the peaks, disallowing cross-transcript 

randomization.  If iterative permutation generates overlaps equal to or greater than the 
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extent of overlap between the actual CLIP-seq peaks, there is insufficient evidence to 

reject the null hypothesis that these two sets of CLIP-seq peaks are not spatially 

associated with one another.  This analysis was first used to compare the extent of 

overlap between hnRNP L peaks in unstimulated and stimulated cells.  I went on to use 

this same analysis on CELF2 CLIP-seq peaks in unstimulated and stimulated cells to 

investigate the possibility that cell stimulation alters CELF2-RNA interaction sites.  This 

hypothesis was particularly interesting due to the fact that CELF2 splicing regulatory 

function is altered by cell stimulation.  Finally, I used this analysis on DDX17 CLIP-seq 

peaks from uninfected and infected U2OS cells to investigate the hypothesis that 

infection alters DDX17-RNA interactions in the host cell transcriptome. 

 In all of these comparisons, the overlap between the two sets of CLIP-seq peaks 

under comparison was greater than the overlap generated by permutation (table C2).  

This analysis demonstrates that the global extent of overlap between CLIP-seq peaks is 

greater than that expected by permutation, a process which simulates the null 

hypothesis of uniform randomness in the positioning of CLIP-seq peaks.  However, this 

analysis does not generate transcript-level information, instead only the extent of global 

overlap is considered.  For this reason, it is still possible that protein-RNA interactions 

within certain transcripts are different between the two sets of peaks under comparison.  

Additionally, the number of reads aligning to a CLIP-seq peak is not considered, so 

quantitative variations in the signal intensity of a CLIP-seq peak are discarded.  It is 

therefore also possible that global alterations in the heights of CLIP-seq peaks exist in a 

consistent manner that is lost in this analysis because only the footprint of a peak is 

utilized.  Future developments in comparison of CLIP-seq datasets might provide 
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valuable insight into the differences in protein-RNA interactions induced by cell signaling 

or infection with pathogens. 

CLIP-seq peaks 
compared: 

Fraction of 
overlapping peaks: 

Fraction of permuted 
overlap: 

Binomial p-value: 

Unstimulated and 
stimulated hnRNP 
L 

0.347 0.0128 < 2.2e-16 

Unstimulated and 
stimulated CELF2 

0.621 0.0448 < 2.2e-16 

Uninfected and 
infected DDX17 

0.0826 0.00342 < 2.2e-16 

 Table C2. Randomized overlap analysis between CLIP-seq binding profiles.  A 
permutation analysis of the significance of overlap between CLIP-seq binding profiles for hnRNP 
L in unstimulated and stimulated JSL1 cells, for CELF2 in the same two conditions, and for 
DDX17 in uninfected and RVFV-infected U2OS cells is provided.  P-values were obtained using a 
two-sided exact binomial test. 

 

 In all comparisons, the significance of the degree of overlap is statistically 

significant by a binomial test.  These results indicate that cell stimulation does not 

globally alter either CELF2 or hnRNP L CLIP-seq sites.  In addition, infection with Rift 

Valley Fever Virus does not appear to globally alter DDX17-RNA interaction sites.  

However, it is still possible that a subset of RNAs is subject to condition-specific or 

infection-specific interactions.  Such subtle changes in CLIP-seq peaks will require more 

fine-grained analyses to detect. 

 In addition to the above information, CLIP-seq provides data on the transcript 

features (e.g. 3’UTR, coding exon, 5’UTR, etc.) enriched within CLIP-seq peaks.  These 

data provide valuable insights into possible transcriptome-wide roles of an RBP in 

previously unappreciated processes.  I compared the transcript features of hnRNP L, 

CELF2, and DDX17 CLIP-seq experiments (table C3).  A further hnRNP L CLIP-seq 

experiment in CD4+ cells is omitted from this table, but the findings were similar to 

hnRNP L CLIP-seq in JSL1 cells (see above chapters). 
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Transcript 
feature 

Unstim. 
hnRNP L 

Stim. 
hnRNP L 

Unstim. 
CELF2 

Stim. 
CELF2 

Uninf. 
DDX17 

Inf. 
DDX17 

Total 
refSeq 

Distal 
intron 

86.98 88.21 69.66 72.73 58.54 71.48 87.32 

Proximal 
intron 

6.14 5.83 9.29 8.64 11.0 14.66 7.64 

3’UTR 
exon 

5.76 4.95 17.0 15.35 16.97 6.81 2.17 

Coding 
exon 

0.98 0.87 3.39 2.74 9.9 4.58 2.46 

5’UTR 
exon 

0.13 0.14 0.67 0.53 3.59 2.48 0.41 

 Table C3. Transcript features within CLIP-seq peaks from hnRNP L, CELF2, and 
DDX17. CLIP-seq experiments from hnRNP L and CELF2 (JSL1 cells) and from DDX17 (U2OS) 
cells were analyzed by the same bioinformatics pipeline.  The fraction of nucleotides overlapping 
each of 5 types of transcript feature were calculated.  Proximal intron is defined as intronic 
sequence within 250nt of an annotated exon. 

 

 Several interesting findings arise when these experiments are examined 

together.  First, CELF2 CLIP-seq peaks are 7-fold enriched for 3’UTR interactions when 

compared to the size of the 3’UTR footprint within the refSeq transcriptome.  As 

mentioned in the above appendix, 3’UTR interactions are a property of mRNA regulation 

by CELF1, and this finding suggests that CELF2 may also regulate mRNA through 

3’UTR interactions.  Interestingly, all three proteins are enriched for 3’UTR interactions, 

suggesting that at least some of CELF2’s 3’UTR bias might be explained by a 

systematic bias toward 3’UTR localization in all CLIP-seq experiments.  Second, 

stimulation of JSL1 cells induces a slight yet noticeable shift toward distal intron 

interactions for hnRNP L and CELF2, with commensurate loss in other types of 

transcript features.  Because this shift exists for both proteins, it is possible that the gene 

expression changes induced by cell stimulation result in a transcriptome that has a 

larger distal intronic footprint.  Third, infection of U2OS cells with Rift Valley Fever Virus 

results in a similar redistribution of DDX17 CLIP-seq peaks to distal intronic regions.  

While striking, this result is difficult to interpret as DDX17-mRNA interactions are poorly 
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understood because much of the focus on DDX17-RNA interactions has been centered 

around the role this RNA helicase plays in the biogenesis of miRNAs.   

In conclusion, I have presented computational analysis of three independent 

CLIP-seq experiments in two cell types.  By comparing motif enrichment analyses from 

all three CLIP-seq experiments, I find little evidence for a homopolymeric sequence bias 

in peaks defined these studies.  This result lends credence to motif enrichment results 

as reflective of the sequence specificity of the protein under study.  For this reason, 

CLIP-seq is a useful tool not only to study protein-RNA localization in the transcriptome, 

but also to study sequence specificity of RNA binding proteins.  Several high-throughput 

methods to study sequence specificity of RNA binding proteins have been developed, 

including RNAcompete and RNA Bind-n-seq.  One caveat of in vitro studies of sequence 

specificity for RNA binding proteins is that the protein has been removed from its cellular 

context.  Numerous biological factors could influence RBP-RNA interactions in vivo, 

including posttranslational modification status, co-associated proteins, substrate 

abundance, subcellular localization, and others.  I propose that CLIP-seq provides 

valuable insight into the sequence specificity of an RNA binding protein in its natural 

cellular context. 

 Additionally, I describe a permutation algorithm for the analysis of the 

significance of overlap between two sets of CLIP-seq peaks.  While this analysis is an 

important component of the study of an RNA binding protein in multiple cell states, as 

presented here, several important caveats exist.  As CLIP-seq analyses are increasingly 

utilized to study RNA binding protein localizations across multiple cell types at various 

developmental stages, software development efforts will be needed to identify 

biologically relevant dynamics in the midst of a larger context of overlapping binding 
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sites.  Computational challenges such as these motivate the development of new tools 

that are generalizable and useful in a variety of contexts. 

 Finally, I demonstrate a comparative analysis of the types of transcript features 

engaged by hnRNP L, CELF2, and DDX17 in different cell states.  This analysis 

demonstrates the value of comparisons between CLIP-seq experiments and highlights a 

potential role for CLIP-seq in studying the dynamics of protein-RNA interactions in 

response to viral infection or cell signaling. 
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