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Abstract
CD8+ T cells are often referred to as cytotoxic T lymphocytes because of their ability to induce the apoptosis
of cells infected with an intracellular pathogen, thereby limiting the spread of an infection to previously
uninfected cells. CD8+ T cells produce many proteins - including perforin, various granzymes, and granulysin
- that are responsible for inducing target cell cytolysis. These cytolytic proteins are found pre-packaged into
secretory granules within many resting CD8+ T cells, but their de novo synthesis can also occur after
activation. In the setting of HIV infection, a rare group of HIV-positive patients, termed elite controllers (EC),
naturally control HIV viremia to virtually undetectable levels without the intervention of drug therapy. Some
evidence has implicated HIV-specific CD8+ T cells in achieving or maintaining this virologic control;
however, the mechanism(s) to explain these findings remains largely undefined. In this work, we report that
HIV-specific CD8+ T cells from EC demonstrated a superior ability to express perforin and granzyme B after
activation compared to patients with progressive disease. Therefore, HIV-specific CD8+ T cells from EC
possessed a greater cytotoxic potential by expressing higher levels of two principal cytolytic mediators, which
may at least partially explain the ability of EC to suppress the replication of HIV in vivo. One critical upstream
regulator of effector functionality and differentiation is the T-box transcription factor T-bet. We demonstrated
a clear link between levels of T-bet and the presence of perforin and granzyme B within human CD8+ T cells.
Notably, HIV-specific CD8+ T cells from EC expressed higher amounts of T-bet than progressors, suggesting
that therapeutic modulation of T-bet may restore the cytolytic potential that is deficient among patients with
uncontrolled viremia. Collectively, our results imply that the underlying defect(s) in effector function by HIV-
specific CD8+ T cells from progressors lie not in the cytolytic proteins themselves, but rather in the elements
controlling their expression, including T-bet.
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ABSTRACT 

 

INSIGHTS INTO THE CYTOTOXIC POTENTIAL OF HUMAN CD8+ T CELLS: 

IMPLICATIONS FOR VIROLOGIC CONTROL OF HIV 

Adam R. Hersperger 

Supervisor: Michael R. Betts 

 

 CD8+ T cells are often referred to as cytotoxic T lymphocytes because of their 

ability to induce the apoptosis of cells infected with an intracellular pathogen, thereby 

limiting the spread of an infection to previously uninfected cells. CD8+ T cells produce 

many proteins - including perforin, various granzymes, and granulysin - that are 

responsible for inducing target cell cytolysis. These cytolytic proteins are found pre-

packaged into secretory granules within many resting CD8+ T cells, but their de novo 

synthesis can also occur after activation. In the setting of HIV infection, a rare group of 

HIV-positive patients, termed elite controllers (EC), naturally control HIV viremia to 

virtually undetectable levels without the intervention of drug therapy. Some evidence has 

implicated HIV-specific CD8+ T cells in achieving or maintaining this virologic control; 

however, the mechanism(s) to explain these findings remains largely undefined. In this 

work, we report that HIV-specific CD8+ T cells from EC demonstrated a superior ability 

to express perforin and granzyme B after activation compared to patients with 

progressive disease. Therefore, HIV-specific CD8+ T cells from EC possessed a greater 

cytotoxic potential by expressing higher levels of two principal cytolytic mediators, 

which may at least partially explain the ability of EC to suppress the replication of HIV in 
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vivo. One critical upstream regulator of effector functionality and differentiation is the T-

box transcription factor T-bet. We demonstrated a clear link between levels of T-bet and 

the presence of perforin and granzyme B within human CD8+ T cells. Notably, HIV-

specific CD8+ T cells from EC expressed higher amounts of T-bet than progressors, 

suggesting that therapeutic modulation of T-bet may restore the cytolytic potential that is 

deficient among patients with uncontrolled viremia. Collectively, our results imply that 

the underlying defect(s) in effector function by HIV-specific CD8+ T cells from 

progressors lie not in the cytolytic proteins themselves, but rather in the elements 

controlling their expression, including T-bet. 
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CHAPTER 1 

INTRODUCTION 

 

Overview 

 Human Immunodeficiency Virus (HIV) currently infects millions of people 

worldwide causing high rates of morbidity and mortality. While highly active anti-

retroviral therapy (HAART) has proven successful at inhibiting viral replication and 

improving disease outcomes, it cannot eradicate the virus from an infected individual and 

is prohibitively expensive in many instances, especially in developing nations. Therefore, 

the ability to develop an effective HIV vaccine to either prevent infection or improve 

disease prognosis is of extreme importance. 

 There are a small subset of HIV-infected individuals, termed elite controllers, 

who naturally control viral replication to extremely low levels without drug therapy. 

There is intense interest in studying these patients to potentially understand the 

mechanism(s) underlying their ability to curb the replication of HIV. Furthermore, 

insights garnered from elite controllers can potentially be used to create vaccine or 

treatment interventions aimed at combating HIV. There is an increasing body of evidence 

suggesting that CD8+ T cells, which have the ability to directly eliminate infected cells 

within the host, play an important role within elite controllers by suppressing HIV 

replication. In this work, we conducted an in-depth examination of the cytolytic proteins 

that CD8+ T cells use to eliminate infected target cells and report on the implications for 

long-term control of HIV replication. 
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Biology and functionality of CD8+ T cells 

 CD8+ T cells are primarily responsible for recognizing host cells that are either 

abnormal in some fashion (e.g. tumor cell) or infected by an invading intracellular 

pathogen (e.g. virus, bacteria, etc). CD8+ T cells originate from pluripotent hematopoietic 

stem cells in the bone marrow before maturing in the thymus. Once T cells have 

completed their development in the thymus, they enter the bloodstream and survey the 

host for transformed or infected cells. Mature, recirculating T cells that have not yet come 

into contact with foreign antigen are referred to as naïve T cells, which are largely 

quiescent and exhibit little if any effector functionality. 

 Mature CD8+ T cells are highly specific for a limited number of peptide epitopes 

that are found on the surface of professional antigen presenting cells or cells infected by 

an intracellular pathogen. These peptides are typically 8-11 amino acids in length and are 

presented to CD8+ T cells on major histocompatibility class I (MHC-I) molecules. In the 

context of viral or bacterial infection, these epitopes result from proteasomal degradation 

of pathogen-derived proteins that are defective in some manner or do not otherwise 

escape the cellular quality control machinery (Eisenlohr et al., 2007; Yewdell and 

Haeryfar, 2005). Upon recognition of target cells bearing specific peptide:MHC-I 

complexes in combination with the necessary activation signals, naïve T cells commence 

upon a program of expansion and differentiation that allows for the acquisition of effector 

functionality (Kaech and Ahmed, 2001). During the 2 to 3 weeks following the peak of 

CD8+ T cell expansion, the majority (greater than 90%) of the activated effector cells die 

by apoptosis. The remaining antigen-specific CD8+ T cells eventually populate a pool of 

long-lived memory cells (Wherry and Ahmed, 2004). The primary goals of effector CD8+ 
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T cells are to limit the spread of a replicating pathogen to uninfected cells and to clear the 

invading pathogen from the host. Memory T cells are important for future encounters 

with the same pathogen as they allow for a rapid and robust recall response upon re-

infection (Wherry and Ahmed, 2004; Wherry et al., 2003). 

 Effector and memory CD8+ T cells possess the ability to produce and secrete 

various proteins that can be critical to the control of an invading pathogen. For example, 

CD8+ T cells can secrete effector cytokines (e.g. IFN-γ, TNFα, and IL-2) and chemokines 

(e.g. MIP1α, MIP1β, and RANTES) that elicit immunomodulatory effects during an 

active infection. The secretion of chemokines by T cells attract other immune cells, such 

as macrophages or other T cells, that bear the appropriate receptor(s) for each respective 

chemokine. The recruitment of many different cell types to the site of inflammation by 

chemokines allows for the containment and possible clearance of infected cells within the 

local microenvironment. The cytokine IFN-γ is routinely used as a marker for antigen-

specific T cell activity but is also a key anti-pathogen factor. Mice that lack the receptor 

for IFN-γ through genetic manipulation demonstrate deficiencies in natural resistance to 

several intracellular pathogens, including Listeria monocytogenes (Huang et al., 1993). 

IFN-γ signaling has been shown to increase the sensitivity of infected cells to apoptosis 

(Tsujimoto et al., 1986; Xu et al., 1998). Additionally, the actions of IFN-γ favor more 

efficient presentation of the antigens associated with intracellular pathogens by 

stimulating the immunoproteasome and the synthesis of MHC-I and other molecules that 

are associated with antigen processing (Schroder et al., 2004). The cytokine IL-2 is an 

important growth factor that is a critical regulator of the proliferation and differentiation 

of antigen-specific CD8+ T cells (Malek, 2008; Pipkin et al., 2010b). It has also been 
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shown to promote a robust secondary expansion of memory CD8+ T cells upon re-

exposure to a pathogen (Schoenberger and Janssen, 2006). Finally, TNFα is a major 

proinflammatory mediator that amplifies the Th1 response directed at intracellular 

pathogens by inducing the synthesis of many key cytokines (Bazzoni and Beutler, 1996; 

Kim and Solomon, 2010). TNFα can also directly influence pathogen clearance through 

its ability to induce apoptosis in infected cells that express the necessary cognate 

receptor, which contains an intracellular pro-apoptotic “death domain” (Pfeffer, 2003). 

 Besides the production and secretion of various chemokines and cytokines, many 

CD8+ T cells also possess the ability to directly kill infected target cells via apoptosis. 

They can lyse their cellular targets by either granule- or receptor-mediated mechanisms. 

The predominant killing pathway makes use of preformed granules containing various 

apoptosis-inducing proteins that are secreted via exocytosis following target cell 

recognition (Shiver and Henkart, 1991; Shiver et al., 1992). After cell-to-cell contact is 

established, these cytotoxic granules track along microtubules and are released into the 

space - referred to as the immunological synapse - between the T cell and its target 

(Stinchcombe et al., 2001; Stinchcombe and Griffiths, 2007). The secondary pathway 

involves the engagement of receptors on target cells that induce classical caspase-

dependent apoptosis, such as those specific for Fas ligand (Nagata and Golstein, 1995) or 

TNFα (as mentioned above). Importantly, the induction of apoptosis in target cells 

inhibits the spread of a pathogen to uninfected cells and is thus beneficial to the host. 
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Cytotoxic granule-resident proteins and their regulation 

 Cytotoxic granules are specialized secretory lysosomes that contain many 

proteins, including perforin, a group of serine proteases called granzymes, and 

granulysin, within a matrix of proteoglycans (Peters et al., 1991; Russell and Ley, 2002). 

Granulysin is a lipid-binding protein of the saposin-like protein family and may be 

important for the control of a wide variety of pathogenic bacteria, fungi, and parasites 

through its ability to disrupt membrane integrity (Clayberger and Krensky, 2003; Kolter 

et al., 2005; Krensky and Clayberger, 2009; Stenger et al., 1998). Granzymes A and B, 

which are the most abundant of the granzymes, induce an apoptotic cascade once inside a 

target cell (Gershenfeld and Weissman, 1986; Lobe et al., 1986; Pasternack and Eisen, 

1985); some granzymes, including granzyme A, may also possess inflammatory and 

other immunomodulatory properties (Froelich et al., 2009; Metkar et al., 2008; Pardo et 

al., 2009a; Pardo et al., 2009b). The pore-forming molecule perforin is perhaps the most 

crucial component of the granule because it is responsible for allowing the entry of 

granzymes into a target cell (Bolitho et al., 2007; Shiver et al., 1992); however, the 

precise mechanism of this process remains unclear (Pipkin and Lieberman, 2007). 

Nevertheless, abrogation of perforin activity through genetic mutation or deletion results 

in profoundly impaired cellular cytotoxicity and subsequent immunodeficiency (Kagi et 

al., 1994; Molleran Lee et al., 2004; Smyth et al., 1999; Stepp et al., 1999; van den Broek 

et al., 1996). 

 The study of the transcriptional control of these cytolytic proteins has been an 

area of great interest with many important recent developments (Glimcher et al., 2004; 

Pipkin et al., 2010a). The majority of published work thus far has focused on 
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understanding the regulation of perforin with some reports also examining the elements 

that influence granzyme B (grz B) expression. There is a paucity of published material 

concerning the genetic regulation of granzyme A (grz A) or granulysin. As one might 

imagine, the regulation of perforin and grz B involves a complex array of control 

elements and signaling pathways that carefully direct the expression of these cytolytic 

molecules in time-, context-, and tissue-specific manners. Without such strict control, the 

aberrant expression of these proteins could be detrimental to the host due to their potent 

ability to induce apoptosis. 

 The hypothesis that target cells could be eliminated via secreted cytotoxic 

granules became fully developed in the early 1980s (Henkart et al., 1984; Millard et al., 

1984; Podack and Konigsberg, 1984). The particular molecule(s) that mediated target 

lysis remained elusive until a series of papers were published that identified and 

biochemically characterized a protein, termed perforin or cytolysin, purified from the 

granules of both murine NK cells and CD8+ T cells that was responsible for target cell 

lysis (Liu et al., 1986; Masson and Tschopp, 1985; Podack et al., 1985; Young et al., 

1986b; Young et al., 1986d). Later analysis of human perforin yielded findings consistent 

with what was previously discovered concerning mouse perforin (Lichtenheld et al., 

1988). Interestingly, perforin was shown to share structural and functional similarities to 

complement component C9 most likely due to the ability of both proteins to polymerize 

and cause pore formation in membranes (Tschopp et al., 1986; Young et al., 1986a; 

Young et al., 1986c; Zalman et al., 1986). 

 Perforin is abundantly expressed in NK cells and gamma-delta T cells but also 

found in NKT cells, CD8+ T cells, and a small fraction of CD4+ T cells. CD8+ T cells are 
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even sometimes referred to as “cytotoxic T lymphocytes” because they can express high 

levels of perforin depending on their maturation and differentiation state (Chattopadhyay 

et al., 2009; Takata and Takiguchi, 2006). Naïve mouse or human CD8+ T cells, which 

have never encountered their cognate antigens, do not express any detectable perforin 

protein (Pipkin et al., 2010b; Takata and Takiguchi, 2006). However, upon recognition of 

their specific targets under the appropriate conditions, naïve CD8+ T cells commence 

upon a program of expansion and differentiation that allows for the acquisition of 

cytolytic gene expression (Kaech et al., 2002a; Kaech et al., 2002b; Oehen and Brduscha-

Riem, 1998; Peixoto et al., 2007; Wherry et al., 2003). Central memory cells typically do 

not demonstrate any perforin expression but increasing amounts of this cytolytic protein 

are observed in effector memory and effector CD8+ T cells (Chattopadhyay et al., 2009; 

Takata and Takiguchi, 2006). In fact, the presence of perforin in these latter subsets 

explains their enhanced ability compared to central memory CD8+ T cells to mediate 

target cell lysis (Hamann et al., 1997; Sallusto et al., 1999; Wolint et al., 2004). 

 Most of what is known about the regulation of perforin expression comes from 

the mouse model - although some work has been done in humans as well (Pipkin et al., 

2010a). A 5 kb region upstream of the murine perforin gene was shown to contain 

promoter elements sufficient to confer tissue-specific expression (Lichtenheld and 

Podack, 1992; Zhang and Lichtenheld, 1997). Additionally, using microcell-mediated 

chromosome transfer, Pipkin and colleagues identified the locus control region of human 

perforin, which conferred both cell lineage-specific and T cell receptor (TCR) inducible 

gene expression (Pipkin et al., 2007). Many factors, including epigenetic modifications 

and various cytokines, have been reported to influence perforin expression in distinct cell 
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types. Levels of DNA methylation (Lu et al., 2003) and histone acetylation (Araki et al., 

2008) can influence the chromatin structure and subsequent expression of perforin. For 

example, the perforin promoter in fibroblasts, which have no detectable levels of this 

protein, was found to be heavily methylated and in a state consistent with closed 

chromatin; conversely, the perforin promoter in NK cells, which display constitutive 

expression of perforin, was largely devoid of methylation (Lu et al., 2003).  The cytokine 

milieu in the local environment of various cell types can also influence cytolytic gene 

expression (Agnello et al., 2003; Morishima et al., 2005). Moreover, the cytokine IL-2 

has been particularly implicated in increasing perforin expression in some settings 

(DeBlaker-Hohe et al., 1995; Pipkin et al., 2010b; Zhang et al., 1999), but IL-2 

independent pathways of perforin induction have also been described (Lu et al., 1992). 

 Another layer of regulation of the perforin gene is through the action of 

transcription factors. Indeed, DNase I footprinting analysis of the perforin promoter 

identified several transcription factors and their binding sites, including AP1, SP1, 

NFAT, MEF, and various STAT proteins (Glimcher et al., 2004; Lacorazza et al., 2002; 

Zhang et al., 1999; Zhang and Lichtenheld, 1997). Additionally, recent data have 

implicated two members of the T-box transcription factor family, T-bet and 

Eomesodermin (Eomes). While many different classes of transcription factors have been 

shown to influence perforin expression, T-bet and Eomes seem to be the most critical and 

are also intimately involved in effector lineage commitment (Glimcher et al., 2004). 

 Members of the T-box family are found in a wide variety of tissues and are 

required for diverse cell fate decisions in vertebrate development (Naiche et al., 2005). 

The T-box family itself is defined by a highly conserved 200 amino acid DNA-binding 
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domain, which is termed the “T-box” (Papaioannou, 1997; Smith, 1997). In keeping with 

the role played by various T-box family members in directing cell lineage decisions, T-

bet (or T-box expressed in T cells), which was first cloned in 2000 (Zhang and Yang, 

2000), was found to be the master regulator in directing Th1 lineage commitment in 

CD4+ T cells (Szabo et al., 2000). Interestingly, T-bet is the only known T-box gene 

specifically expressed in the lymphoid system. During Th1 helper cell development, T-

bet expression itself appeared to be initiated and/or subsequently controlled by signaling 

through the TCR, IFN-γR/STAT1, and IL-12/STAT4 (Afkarian et al., 2002; Lighvani et 

al., 2001; Takemoto et al., 2006). 

 While initially characterized within CD4+ T cells, subsequent work has 

demonstrated that T-bet is also important for the effector programming of both murine 

and human CD8+ T cells (Chtanova et al., 2005; Intlekofer et al., 2007; Joshi et al., 2007; 

Sullivan et al., 2003; Takemoto et al., 2006). However, T-bet did not appear to be as 

important for the production of IFN-γ in CD8+ T cells (Szabo et al., 2002) as it was for 

IFN-γ expression in CD4+ T cells (Szabo et al., 2000). Subsequent work showed that 

another T-box transcription factor, Eomes, was also important for CD8+ T cell effector 

function and IFN-γ production (Pearce et al., 2003). Therefore, it appears that both T-bet 

and Eomes possibly have complementary and/or redundant roles in CD8+ T cell effector 

differentiation. Indeed, one group reported that CD8+ T cells deficient in both of these 

transcription factors failed to differentiate into functional cells capable of target cell lysis 

following viral infection, but instead differentiated into an IL-17-secreting lineage that 

offered no protection (Intlekofer et al., 2008). 
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 In terms of directing perforin expression and target cell cytolysis, both T-bet and 

Eomes have been shown to be important - with one demonstrating a more pronounced 

effect over the other depending on the experimental conditions or cell types involved 

(Cruz-Guilloty et al., 2009; Intlekofer et al., 2005; Pearce et al., 2003; Sullivan et al., 

2003; Taqueti et al., 2006). Both transcription factors have been reported to bind to the 

perforin promoter in both human and mouse NK cells and CD8+ T cells (Pipkin et al., 

2010b; Townsend et al., 2004). Moreover, the deletion of both T-bet and Eomes virtually 

ablates perforin expression and the cytotoxic capacity of CD8+ T cells (Intlekofer et al., 

2008; Intlekofer et al., 2005). It is known that many T-box family members can recruit 

histone-modifying enzymes, providing a potential mechanism to explain the ability of T-

bet and Eomes to critically regulate perforin expression and control lineage commitment 

(Lewis et al., 2007; Miller et al., 2008; Miller and Weinmann, 2009a, b). 

 In terms of clinical significance, many murine experimental disease models have 

further uncovered the ability of T-box transcription factors to influence effector CD8+ T 

cells. Because germline deletion of Eomes results in early embryonic lethality (Russ et 

al., 2000), the majority of published work in this area has used T-bet knock-out mice.  

Interestingly, T-bet has been shown to be essential for the development of many 

experimental autoimmune diseases, including type 1 diabetes and myocarditis in 

transgenic mice (Juedes et al., 2004; Taqueti et al., 2006); in both of these models, 

pathogenic CD8+ T cells are thought to be causally associated with the onset of disease, 

which is mitigated or prevented in the absence of T-bet. Additionally, T-bet plays a key 

role in NK cell-mediated control of melanoma metastatic disease by inhibiting the 

systemic dissemination of cancer cells in this model (Werneck et al., 2008). 



 11 

 Besides perforin, the other critical component of the cytotoxic granule is a group 

of serine proteases called granzymes (granule enzymes). Both work synergistically to 

induce apoptosis in a target cell after recognition by NK cells or cytotoxic CD8+ T cells 

(Lieberman, 2003). There are numerous granzymes: granzymes A and B are the most 

well studied in mice and humans whereas much less in known about granzymes C, D, E, 

F, G (mouse), H (human), K (both species), and M (human). Granzymes A and B were 

the first to be discovered, which occurred shortly after the initial description of perforin. 

They were isolated from cytotoxic granules and shown to possess enzymatic activity 

consistent with other known serine proteases (Gershenfeld and Weissman, 1986; Lobe et 

al., 1986; Pasternack and Eisen, 1985). The expression of granzymes A and B occurs in 

many immune cells, especially NK cells, a subset of CD8+ T cells, and a small fraction of 

CD4+ T cells. Among CD8+ T cells, Grz A is the most ubiquitously expressed granzyme, 

being found in effectors, effector memory, and even some central memory cells 

(Chattopadhyay et al., 2009; Takata and Takiguchi, 2006). Grz B often tracks closely 

with perforin and is expressed at the highest levels in differentiated effector CD8+ T cells 

(Chattopadhyay et al., 2009; Makedonas et al., 2010; Takata and Takiguchi, 2006). 

Interestingly, granzymes appear to be differentially regulated during lymphocyte 

development as a distinct repertoire is expressed by individual CD8+ T cells (Grossman 

et al., 2004; Kelso et al., 2002). 

 Like perforin, grz B is not found in naïve CD8+ T cells, but its expression is 

induced following stimulation and subsequent effector differentiation (Kaech et al., 

2002a; Kaech et al., 2002b; Oehen and Brduscha-Riem, 1998; Peixoto et al., 2007; 

Wherry et al., 2003). The regulatory elements of the grz B gene have been mapped to a 
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200 base pair region of the promoter, which contain binding sites for NFAT, AP1, and 

other transcription factors that have variable effects on its expression (Babichuk and 

Bleackley, 1997; Babichuk et al., 1996; Haddad et al., 1993; Hanson et al., 1993; Heusel 

et al., 1991; Wargnier et al., 1998; Wargnier et al., 1995). The expression of grz B has 

also been shown to be upregulated by IL-2, IL-12, and IL-15, which parallels with the 

activation of perforin by these cytokines (DeBlaker-Hohe et al., 1995; Manyak et al., 

1989; Ye et al., 1996). Finally, both T-bet and Eomes have been implicated in the 

regulation of grz B. For example, T-bet was reported to bind to the grz B promoter in 

both humans and mice, and T-bet knock-out NK cells were shown by the same group to 

have significantly decreased levels of grz B (Townsend et al., 2004). Additionally, 

overexpression of Eomes within Th2 cells resulted in the upregulation of grz B (Pearce et 

al., 2003). Therefore, similar to the importance of T-bet and Eomes in driving perforin 

expression, these transcription factors are also critical for optimal grz B levels and 

effector functionality in general (Cruz-Guilloty et al., 2009; Pearce et al., 2003; Pipkin et 

al., 2010b; Taqueti et al., 2006; Townsend et al., 2004). 

 Our understanding of the regulation of the cytolytic molecules, perforin and grz 

B, has advanced greatly in the past decade. While many elements are involved in 

controlling their expression, we now know that only a few factors, such as T-bet and 

Eomes, are critical and necessary for the expression of perforin and grz B in addition to 

proper effector CD8+ T cell development. Given the important role played by CD8+ T 

cells in fighting infection by viruses and other intracellular pathogens, it is tempting to 

think that therapeutic platforms aimed at modulating or promoting the expression of T-

bet or Eomes may be clinically beneficial in some settings. Additionally, we need to 
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understand in more detail what elements or factors control the expression of T-bet and 

Eomes themselves during effector differentiation (Minter et al., 2005; Taylor et al., 

2010). 

 

Biology and pathogenesis of Human Immunodeficiency Virus 

 Starting in the late 1970s, a growing number of previously healthy individuals 

began showing symptoms of immunologic dysfunction. This new syndrome, which was 

eventually called Acquired Immune Deficiency Syndrome (AIDS), was characterized by 

generalized lymphadenopathy, opportunistic infections (e.g. cytomegalovirus-associated 

retinitis and Toxoplasma gondii encephalitis), and a variety of cancers (e.g. non-

Hodgkin’s lymphoma). Interestingly, a common accompanying feature was marked 

depletion of CD4+ T cells from the peripheral blood in affected patients. In 1983, 

researchers recovered an infectious agent from the lymph nodes of a patient who 

presented with generalized lymphadenopathy of unknown origin. Subsequent study of the 

infectious agent revealed that it displayed many characteristics of retroviruses (Barre-

Sinoussi et al., 1983). However, unlike the commonly studied retroviruses known at that 

time, the virus cultured from AIDS patients was cytopathic in human peripheral blood 

mononuclear cells (PBMC) with specific killing of CD4+ T cells (Klatzmann et al., 

1984a). Subsequent morphologic and genetic study of this new retrovirus revealed 

characteristics typical of the Lentivirus genus; the virus was finally named human 

immunodeficiency virus, or HIV (Coffin et al., 1986). 

 It was originally thought that HIV, like previously studied retroviruses, would be 

relatively genetically homogenous. However, as proviral DNAs corresponding to various 
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HIV isolates became available and were compared, their extensive genetic heterogeneity 

between isolates became apparent (Benn et al., 1985). In fact, even HIV isolates 

recovered from a single infected person exhibited significant sequence diversity (Saag et 

al., 1988). The sequence diversity of HIV between and within individuals is largely the 

result of its error-prone reverse transcriptase enzyme and the ability of multiple strains to 

undergo recombination upon co-infection of a single cell. Unfortunately, this ability to 

undergo rapid genetic mutation has hindered attempts to combat HIV through vaccine or 

drug treatment efforts. Indeed, HIV is poised to escape the myriad selective pressures 

placed upon it by the human immune system or small molecule inhibitors. 

 The principal determinant of HIV tropism resides in the surface envelope (Env) 

glycoprotein. Consistent with the preferential loss of peripheral blood CD4+ T cells from 

HIV-infected patients, the CD4 molecule, found mainly on a subset of T cells and 

macrophages, was identified as the major cell-surface receptor for HIV (Bour et al., 1995; 

Klatzmann et al., 1984b). However, soon after the identification of CD4 as the receptor 

for HIV, it was recognized that this protein alone was not sufficient for virus entry into an 

uninfected cell. For example, mouse cells expressing just human CD4 were not able to be 

infected (Maddon et al., 1986; Weiner et al., 1991), whereas CD4+ mouse-human cell 

hybrids could be induced to fuse upon expression of HIV Env (Broder et al., 1993; 

Dragic et al., 1992). These results suggested that at least one secondary receptor, or 

coreceptor, was necessary for virus entry. Subsequent studies from multiple laboratories 

revealed that the chemokine receptors CCR5 and CXCR4 were the principal coreceptors 

that HIV used to enter cells after initial binding to CD4 (Alkhatib et al., 1996; Choe et al., 

1996; Cocchi et al., 1995; Deng et al., 1996; Feng et al., 1996). 
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 The disease course in the majority of HIV-infected patients can be divided into 

three main stages: (1) acute, (2) asymptomatic, and (3) AIDS manifestation (Rowland-

Jones, 2003). The acute phase, which occurs within the first several weeks after initial 

infection, is characterized by massive levels of viral replication in the mucosa and 

peripheral blood with a concomitant depletion of CD4+ T cells in both of these 

compartments (Brenchley et al., 2004; Daar et al., 1991). After the initial peak of viral 

replication, HIV viral load usually lowers during the asymptomatic phase to a “set point” 

of approximately 103 to 104 copies of HIV RNA per mL of plasma. During this period, 

which can last for up to 5-10 years on average, the levels of HIV replication remain 

relatively stable. Notably, it was shown that the degree of set point viral load is inversely 

correlated with the rate of disease progression; in other words, a high set point viral load 

is associated with faster progression to AIDS and vice versa (Mellors et al., 1995). While 

the asymptomatic phase may be clinically latent in the sense that infected patients appear 

relatively healthy, there is ongoing replication of HIV and continuous turnover of CD4+ T 

cells that are destroyed either directly or indirectly by the virus (Ho et al., 1995; Pantaleo 

et al., 1993; Piatak et al., 1993; Wei et al., 1995). Finally, after roughly 10 years of 

infection with HIV, untreated individuals will succumb to an opportunistic infection, 

which results from a failure of the immune system to further combat invading pathogens. 

Additionally, there is a large spike in HIV viral load observed during this final phase of 

the disease course. The continual loss of CD4+ T cells, which play many important roles 

in pathogen defense, throughout the disease course of HIV infection most likely underlies 

the ultimate failure of the immune system to control HIV replication and the vulnerability 

to opportunistic infections (Kalams and Walker, 1998). 
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Current insights into HIV elite controllers 

 While the vast majority of individuals are unable to control HIV replication, a rare 

subset of less than 1% of infected patients maintain extremely low viral loads (<50 copies 

of HIV RNA/mL of plasma) for extended periods of time without the intervention of anti-

retroviral drug therapy (Grabar et al., 2009; Hubert et al., 2000; Lambotte et al., 2005; 

Lefrere et al., 1999). The majority of these infected individuals display very low rates of 

CD4+ T cell decline in the peripheral blood (Sedaghat et al., 2009) and rarely progress to 

AIDS despite being HIV-positive for many years (Migueles and Connors, 2010; Sajadi et 

al., 2009). Primarily for these reasons, there is intense interest in studying these patients 

to understand the mechanism(s) underlying their ability to suppress HIV with the goal of 

using this information to aid in the development of vaccines and therapeutics to combat 

HIV. While these rare HIV-infected individuals are referred to by many different labels 

(e.g. elite controllers, elite long-term nonprogressors, or elite suppressors), they will be 

termed elite controllers (EC) for the remainder of this work. 

Role of virologic factors 

 Currently, no known epidemiological factors, including sex, race, ethnicity, or 

mode of HIV acquisition, predispose an individual to become an EC (Migueles and 

Connors, 2010). There are many remaining possibilities that could explain the ability of 

EC to suppress the replication of HIV, which fall into two broad categories: virologic or 

host factors. In terms of virologic factors, one major hypothesis is that EC are infected 

with defective strains of HIV. Indeed, there have been a number of studies and case 

reports which suggest that virus from EC is less fit than strains of HIV taken from 

progressors due to deletions or genetic mutations (Alexander et al., 2002; Alexander et 
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al., 2000; Calugi et al., 2006; Deacon et al., 1995; Hassaine et al., 2000; Huang et al., 

1998; Iversen et al., 1995; Kirchhoff et al., 1995; Mariani et al., 1996; Michael et al., 

1995; Salvi et al., 1998; Wang et al., 1996; Wang et al., 2003; Yamada and Iwamoto, 

2000; Zhang et al., 1997). It was recently reported that EC-derived HIV envelopes 

exhibited decreased entry efficiency into target cells compared to envelopes isolated from 

chronically-infected progressors (Lassen et al., 2009). Additionally, another group 

constructed chimeric viruses using patient-derived Gag and Pol sequences and found that 

viruses generated from EC displayed lower replicative capacities on average than viral 

constructs from progressors (Miura et al., 2009a). 

 The development of extremely sensitive assays able to measure viral loads at 

significantly lower limits of detection than standard assays has broadened the 

understanding of viral dynamics within EC. These novel techniques have revealed the 

presence of persistent low-level HIV viremia in EC (Hatano et al., 2009; O'Connell et al.; 

Pereyra et al., 2009). Consequently, there is evidence of ongoing viral evolution, even 

within CD8+ T cell epitopes (Miura et al., 2009c); however, EC have been shown to 

maintain suppression of HIV even under such circumstances (Bailey et al., 2006b; 

O'Connell et al., 2010). Moreover, recent reports from several independent groups 

suggest that few, if any, virologic defects or genetic abnormalities exist among HIV 

strains from many EC (Blankson et al., 2007; Lamine et al., 2007; Miura et al., 2008). 

While it can be difficult to observe autologous viral outgrowth during in vitro culture of 

activated CD4+ T cells purified from EC, proviral DNA levels are significantly lower in 

EC compared to progressors (Julg et al., 2010). Therefore, it may be difficult to recover 

virus from cultures of CD4+ T cells from EC due to the low frequencies of infected cells 
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in the peripheral blood of these individuals prior to in vitro culture. Nevertheless, virus 

that can ultimately be isolated from CD4+ T cells among EC have been shown to 

replicate as efficiently in culture as laboratory reference strains (Blankson et al., 2007). 

 There are several case studies and reports that provide further evidence suggesting 

that most EC maintain low HIV viral loads via mechanisms unrelated to the replicative 

fitness of the infecting virus. One study showed that virologic breakthrough occurred in 

an EC after a period of virologic control, suggesting that the patient was not infected with 

a defective virus (Bailey et al., 2007). There are at least two published case studies 

demonstrating maintenance of viral control in separate EC despite superinfection with a 

second, divergent strain of HIV that appeared to be otherwise fully pathogenic (Casado et 

al., 2007; Rachinger et al., 2008). Of interest, another group studied a transmission pair in 

which HIV was transmitted from a patient who developed AIDS to an individual who 

went on to become an EC (Bailey et al., 2008). This latter case is a clear example that 

some EC can effectively control a strain of virus that was fully pathogenic in another 

person. In a final study that should be highlighted, it was shown that primary isolates 

from EC are as effective as those derived from progressors at causing downmodulation of 

HLA-A2 and HLA-B57 from the surface of primary CD4+ T cells (Nou et al., 2009). This 

study indicates that viral isolates from EC most likely have the ability to evade HIV-

specific immune detection to a similar degree as progressors. In summary, while it is 

certainly feasible that infection with defective virus can lead to virologic control, there is 

ample reason to believe that many EC are infected with fully replication competent and 

pathogenic strains of HIV. Therefore, infection with HIV of attenuated fitness cannot be 

a general factor to explain undetectable viremia in EC. 
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Role of host genetic or anti-viral factors 

 If virologic factors do not seem to contribute to the control of HIV replication in 

many EC, this suggests that one or more host factors underlie their controller status. 

Numerous studies have shown normal in vitro replication of heterologous or autologous 

isolates of HIV in activated CD4+ T cells purified from EC (Blankson et al., 2007; 

Migueles et al., 2002; Migueles et al., 2008; Saez-Cirion et al., 2007). Similarly, another 

group found that CD4+ T cells isolated from EC and HIV-negative subjects supported 

equivalent levels of viral replication of both CCR5 and CXCR4 tropic strains (Julg et al., 

2010). Therefore, CD4+ T cells in EC are as equally infectable as those from progressors 

and do not appear to contain a universal host restriction factor that can explain virologic 

control. Nevertheless, some EC have been reported to possess polymorphisms in the 

chemokine receptor CCR5, in particular the delta 32 mutation, that render these patients 

resistant to efficient infection by HIV and are associated with delayed disease progression 

(Dean et al., 1996; Meyer et al., 1997; Stewart et al., 1997). However, these 

polymorphisms are only found in a fraction of all identified EC (Pereyra et al., 2008). 

 Other groups have focused on the host anti-viral family of APOBEC cytidine 

deaminases (Chiu and Greene, 2008). One report showed that there was no difference in 

the frequency of hypermutated proviral clones isolated from EC or HAART-suppressed 

progressors (Gandhi et al., 2008). In the same study, the Vif gene of HIV, which directly 

counteracts APOBEC proteins, appeared to be normal in EC, suggesting that APOBEC 

activity is equivalent between EC and progressors (Gandhi et al., 2008). In summary, no 

host genetic or anti-viral factors have been identified that explain the low levels of HIV 

replication in the majority of EC. In light of these findings, many researchers then 
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suspected that one or more components of the immune system were able to suppress the 

ability of HIV to replicate in EC. 

Role of innate immunity 

 Some groups turned their attention to the study of the innate immune system, 

which is the first line of defense against an invading pathogen. One important element of 

innate immunity is a group of molecules, called toll-like receptors (TLRs), that detect 

pathogen-associated molecular patterns and initiate inflammatory signals. To date, 

though, no published studies have linked any TLR polymorphism with the ability to 

control HIV. Natural killer (NK) cells are another important arm of the innate immune 

system that help combat viral infection. It has been reported that individuals who 

demonstrate delayed progression to AIDS are enriched for certain genotypes of NK cell 

receptors - in particular, the killer immunoglobulin receptors (KIRs) - suggesting that NK 

cells may play a role in influencing disease outcome in some infected persons (Alter and 

Altfeld, 2009; Martin et al., 2002; Martin et al., 2007). On the other hand, one study of a 

small cohort of African American EC showed that previously identified KIRs known to 

be associated with improved clinical outcome were not overrepresented in the cohort 

(O'Connell et al., 2009b). Clearly, more work needs to be done to elucidate any potential 

protective effects of certain KIR alleles expressed by NK cells and the ability to suppress 

the replication of HIV in EC. 

 A small number of studies have examined the phenotypic characteristics of 

circulating NK cells in EC. It has been shown that high HIV viral loads are associated 

with an increased presence of dysfunctional NK cells lacking surface expression of CD56 

but retaining CD16 positivity (Alter et al., 2005; Mavilio et al., 2005). Another study 
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compared levels of various NK cell subsets, including CD56dimCD16+ and CD56-CD16+ 

populations, among EC, progressors, and HAART-suppressed patients (Barker et al., 

2007). [Note: The CD56dimCD16+ subset has demonstrated the strongest ability to 

mediate target cell cytotoxicity (Alter et al., 2005; Mavilio et al., 2003).] Interestingly, 

there was no consistent NK cell phenotypic “signature” to distinguish EC from 

individuals who had viral load suppressed with HAART (Barker et al., 2007). These 

results suggest that the magnitude of viral replication may itself cause alterations, either 

directly or indirectly, in NK cell phenotypic patterns or functional abilities (Alter et al., 

2004). Moreover, two functional studies of NK cells showed limited ability to lyse HIV-

infected autologous targets in culture, implying that NK cell cytotoxic activity is not an 

explanation for viral control (Bonaparte and Barker, 2003; O'Connell et al., 2009b). 

Therefore, while NK cells may play a role in suppressing viral replication in some cases, 

there is no convincing evidence to link any particular component of innate immunity with 

EC status. 

Role of adaptive immunity 

 The other major arm of the host response to pathogen challenge is the adaptive 

immune system. Adaptive immunity typically develops several days or weeks after initial 

infection and is characterized by the presence of cell types, including B cells, CD4+ T 

cells, and CD8+ T cells, that are highly antigen-specific in nature. Various groups have 

examined each of these cell types in the context of HIV elite control. 

Role of B cells and humoral immunity 

 B cells produce antibodies combat invading pathogens by many mechanisms, 

including antibody-dependent cell-mediated cytotoxicity (ADCC) or by sterically 
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hindering the interaction of a pathogen with an uninfected cell in a process called 

neutralization. Many currently licensed vaccines that prevent viral or bacterial infection 

rely greatly on the ability of antibodies to neutralize invading pathogens. Unfortunately, it 

has proved extremely difficult to elicit effective HIV-specific neutralizing antibodies 

(Mascola and Montefiori, 2010). The envelope (Env) surface protein on HIV virions, 

which is the target of neutralizing antibodies, is highly variable and also covered by a 

dense coat of carbohydrate moieties. Therefore, the very nature of the Env glycoprotein 

and the has hindered efforts to elicit neutralizing antibodies via vaccination. 

 Recently, investigators have studied the role of neutralizing antibodies in EC. 

Interestingly, several groups have shown that EC either demonstrate similar or 

significantly lower titers of neutralizing antibodies against autologous virus, laboratory 

strains of HIV, or viral isolates from across multiple clades (Bailey et al., 2006a; Doria-

Rose et al., 2010; Doria-Rose et al., 2009; Li et al., 2007; Li et al., 2009; Pereyra et al., 

2008). Additionally, another group reported that levels of antibody against the CD4 

binding site of gp120, the Env transmembrane segment gp41, and Env epitopes near 

those previously identified for broadly neutralizing antibodies were not different between 

EC and progressors (Lambotte et al., 2009). In summary, the majority of EC fail to 

develop broadly neutralizing antibodies, suggesting that they do no play a major role in 

these individuals to control viral replication. In fact, development of these antibodies may 

actually be a consequence of viral replication; at least one study has shown a positive 

correlation between viral load and titers of neutralizing antibodies to a panel of 

heterologous viral strains (Deeks et al., 2006). 
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Role of CD4+ T cell responses 

 CD4+ T cells are a key player in adaptive immunity and are often referred to as 

helper T cells. They are known to promote effective B cell and CD8+ T cell responses in 

the setting of infection. However, CD4+ T cells are themselves the major target of HIV. 

In fact, the gradual loss of these cells due to direct infection or chronic immune activation 

during HIV infection is likely the primary explanation for the vulnerability of AIDS 

patients to opportunistic infections (Kalams and Walker, 1998). The examination of HIV-

specific CD4+ T cells has been an area of intense study. One group reported that there 

was no correlation between HIV viral load and total or Gag-specific CD4+ T cell 

responses. Therefore, many investigators searched for qualitative differences in HIV-

specific CD4+ T cells between controllers and progressors. 

 To date, there have been several studies that have indeed revealed some 

qualitative and functional differences in CD4+ T cells among HIV-infected individuals 

that differentially control viral replication. Compared to progressors, HIV-specific CD4+ 

T cells from EC or patients with nonprogressive infection have been shown to possess 

higher proliferative capabilities (Boaz et al., 2002; Dyer et al., 2008; Rosenberg et al., 

1997; Younes et al., 2003). Some evidence has suggested that the increased ability of 

HIV-specific CD4+ T cells from EC to proliferate is most likely a consequence of the low 

viral loads in these subjects (Iyasere et al., 2003; McNeil et al., 2001; Tilton et al., 2007). 

In terms of functional responses, various groups have reported that a significantly higher 

percentage of HIV-specific CD4+ T cells from EC are able to simultaneously produce IL-

2 and IFN-γ than patients with progressive disease (Emu et al., 2005; Pereyra et al., 2008; 

Younes et al., 2003). As with the proliferative capacity of HIV-specific CD4+ T cells 
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described above, at least one study has indicated the ability of HIV-specific CD4+ T cells 

to secrete IL-2 is linked to viremia. The authors found no difference in IL-2 production in 

response to HIV antigens in CD4+ T cells from EC compared to patients with 

undetectable viral load due to HAART (Tilton et al., 2007). Further experiments need to 

be carried out to replicate these findings in additional cohorts. However, available 

evidence indicates that the increased proliferative and functional capacities of HIV-

specific CD4+ T cells in EC is likely a consequence and not a cause of virologic control. 

Role of CD8+ T cell responses 

 Another important aspect of adaptive immunity, as discussed previously, is the 

ability of CD8+ T cells to eliminate host cells infected with an intracellular pathogen, 

such as HIV. In the early years of the AIDS epidemic, it became apparent that HIV-

specific CD8+ T cells were present in seropositive individuals but their potential role in 

combating disease progression was entirely unclear (Walker et al., 1987). Beginning in 

the mid-1990s, increasing amounts of evidence suggested that HIV-specific CD8+ T cells 

played an important role in the setting of HIV infection and disease progression. 

 CD8+ T cells were first shown to influence HIV replication in two studies 

published in 1994. These studies showed that reduction in peak viremia was temporally 

associated with the appearance of HIV-specific CD8+ T cells (Borrow et al., 1994; Koup 

et al., 1994). To confirm and extend these findings, experimental manipulation was 

carried out in rhesus macaques using the simian immunodeficiency virus (SIV) model. In 

these studies, anti-CD8 monoclonal antibodies were used to deplete CD8+ T cells in vivo. 

Animals that did not have circulating CD8+ T cells experienced significantly higher viral 

loads than control monkeys (Jin et al., 1999; Schmitz et al., 1999). Furthermore, in a 
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small cohort of rhesus macaques that naturally controlled SIVmac239 to low levels, the 

depletion of CD8+ T cells during the chronic phase of infection resulted in 100- to 

10,000-fold increases in viremia (Friedrich et al., 2007). Importantly, when CD8+ T cells 

eventually returned, virologic control was subsequently reestablished. 

 A single individual can possess up to six different class I alleles: two from each of 

the classical MHC class I loci, namely HLA-A, HLA-B, and HLA-C. HIV-positive 

individuals who are homozygous at any of the three HLA class I loci typically progress 

more rapidly to AIDS (Carrington et al., 1999). This implies that not only are CD8+ T 

cell responses important in the containment of HIV but also the breadth of recognized 

viral epitopes. However, in certain situations, a narrowly focused HIV-specific CD8+ T 

cell activity can be associated with effective control of viremia over a long period of time 

(Goulder et al., 1997). EC are also consistently enriched for certain HLA alleles, 

including HLA-B27 and B57, which further implicates CD8+ T cells in the control of 

HIV viremia (Emu et al., 2008; Kaslow et al., 1996; Kiepiela et al., 2004; Lambotte et al., 

2005; Migueles et al., 2000; Pereyra et al., 2008; Sajadi et al., 2009). Moreover, recent 

studies by several independent groups have reported that single nucleotide 

polymorphisms (SNPs) within the MHC locus are consistently associated with lower 

viral loads (Catano et al., 2008; Dalmasso et al., 2008; Fellay et al., 2007; Limou et al., 

2009; Shrestha et al., 2009). Due to the fact that HLA class I molecules present pathogen-

associated epitopes to CD8+ T cells, this evidence concerning the association between 

certain MHC molecules and viral control supports a role for CD8+ T cells in the setting of 

HIV infection. 
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 The other major piece of evidence concerning the significance of HIV-specific 

CD8+ T cells relates to the ability of the virus to escape from immune-mediated pressure. 

The first unambiguous examples of CD8+ T cell escape in natural infection with HIV 

were described in 1997 (Borrow et al., 1997; Goulder et al., 1997; Price et al., 1997). A 

large body of literature has since shown that mutations in the viral genome during 

infection are concentrated within CD8+ T cell epitopes (Evans et al., 1999; Goulder and 

Watkins, 2004). Notably, HIV-specific CD8+ T cells begin to place pressure on HIV 

immediately after their appearance during acute infection (Fischer et al., 2010; 

Goonetilleke et al., 2009). Many of these escape mutations confer negative fitness costs 

on HIV (Troyer et al., 2009) and have been shown to revert to wild-type when 

transmitted to HLA mismatched persons (Leslie et al., 2004). Therefore, HIV continually 

attempts to escape from CD8+ T cell-mediated pressure, even with large fitness costs in 

some instances, further suggesting a critical role for CD8+ T cells in combating HIV. 

 Many studies to date have shown that the magnitude of HIV-specific CD8+ T cell 

responses is largely the same in EC compared to patients with detectable levels of 

viremia (Addo et al., 2003; Betts et al., 2001; Emu et al., 2008; Gea-Banacloche et al., 

2000; Hersperger et al., 2010; Migueles et al., 2002). Therefore, it is clear that the total 

frequency of HIV-specific CD8+ T cells within EC and progressors cannot explain the 

disparity in viral control between these groups. In fact, a growing number of recent 

studies have discovered important qualitative features of HIV-specific CD8+ T cells that 

distinguish EC from progressors. 

 EC have been shown to contain a higher fraction of HIV-specific CD8+ T cells 

that can degranulate, produce multiple cytokines and chemokines in addition to 
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displaying markedly better proliferative potential upon HIV peptide stimulation than 

individuals with progressive disease (Almeida et al., 2007; Betts et al., 2006; Boaz et al., 

2002; Emu et al., 2008; Horton et al., 2006; Migueles et al., 2002; Pereyra et al., 2008; 

Zimmerli et al., 2005). While all of these studies examined cells taken from peripheral 

blood, HIV-specific CD8+ T cells isolated from mucosal tissues were also shown to be 

more polyfunctional in EC than progressors (Ferre et al., 2009). Additionally, a series of 

recently published studies have shown that HIV-specific CD8+ T cells from EC 

demonstrate enhanced cytotoxic functionality compared to progressors: CD8+ T cells 

from EC have a superior ability to suppress the replication of HIV in autologous CD4+ T 

cells during extended culture (O'Connell et al., 2009b; Saez-Cirion et al., 2007). CD8+ T 

cells from EC expanded in vitro following HIV-specific stimulation demonstrate 

enhanced upregulation of perforin and granzyme B after proliferation (Migueles et al., 

2002; Migueles et al., 2008), which translates into a greater capacity to induce target cell 

death on a per cell basis (Migueles et al., 2008). EC also express higher levels of perforin 

immediately after antigen recognition, resulting in a greater ex vivo cytotoxic potential 

(Hersperger et al., 2010). [The details of this study are the focus of Chapter 3.] 

Collectively, these findings suggest that CD8+ T cells can play a key role in the control of 

HIV replication, particularly within EC. 

 The superior functional and cytotoxic capabilities of HIV-specific CD8+ T cells 

among EC most likely affect viral fitness within these individuals through the 

suppression of viral replication and the desire of HIV to escape this pressure. This may 

explain why some groups have previously found defective or less fit virus from EC 

compared to progressors (Lassen et al., 2009; Miura et al., 2009a; Miura et al., 2009b). 
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Indeed, viral isolates from a small number of EC that were identified during primary 

infection showed lower replication capacities than isolates from persons who failed to 

control acute viremia (Miura et al., 2010). The authors showed that the reduced 

replication capacity of the isolates from EC was associated with transmitted or acquired 

CD8+ T cell escape mutations in many of the controllers. 

 While many studies suggest that HIV-specific CD8+ T cells play a critical role in 

suppressing HIV replication, it is also clear that they do not completely explain elite 

control in every situation. For example, some EC have very low frequencies of HIV-

specific CD8+ T cells or otherwise fail to display any functional ability previously 

identified as a correlate of control, such as cytotoxic potential or polyfunctionality (Emu 

et al., 2008; Hersperger et al., 2010; Saez-Cirion et al., 2009). More work needs to be 

carried out on acutely-infected individuals that are followed longitudinally. The earliest 

events during primary infection most likely play a pivotal role in determining later levels 

of viral replication. Nevertheless, it is apparent that HIV-specific CD8+ T cells can play a 

pivotal role in controlling HIV during the chronic phase of infection. 

 

Measuring immune responses using multiparametric flow cytometry 

 Flow cytometry is one of the most powerful and widely used technologies in the 

field of Immunology. This technology allows for the rapid analysis of numerous cells on 

a cell-by-cell basis and even permits viable cells to be separated (termed “cell sorting”) 

from a mixture of many cell types into a highly purified population. Flow cytometry was 

first developed in the late 1960s at Stanford University (Hulett et al., 1969). Initial 

instruments measured just three parameters (one fluorescence signal and two signals 
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based on a cell’s light scatter properties); however, technological advances eventually 

allowed for the simultaneous detection of six parameters by the 1980s and now 

approximately 19 fluorescent and physical parameters at present, depending on the 

configuration of the cytometer (De Rosa et al., 2001; Perfetto et al., 2004). 

 Currently, the technique of labeling and characterizing populations of cells by 

flow cytometry is limited to the visible spectrum of electromagnetic radiation. The 

technique involves labeling cells with both synthetically and naturally occurring 

molecules that emit light at a defined wavelength after excitement by the energy from a 

laser. Importantly, these fluorescent molecules can be covalently conjugated to 

monoclonal antibodies that specifically bind to and label molecules of interest (i.e. CD3, 

CD4, CD8, etc.). The ability of multiparametric (otherwise known as polychromatic) 

flow cytometry to measure up to 19 parameters relied upon advancements in the 

development of various fluorescent molecules. For example, “quantum dots”, which are 

inorganic crystals of cadmium selenide, have exceptionally narrow and symmetrical 

emission spectra, which means they can be multiplexed with minimal compensation 

concerns that arise from spectral overlap (Chattopadhyay et al., 2006; Roederer, 2002). 

 Until the advent of multiparametric flow cytometry, most researches were limited 

in their ability to assess immune cell function and phenotype in any particular 

experiment. For example, researchers could quantify antigen-specific T cells using 

limiting dilution assays or the secretion of IFN-γ by means of an ELISPOT, but they were 

largely unable to simultaneously measure numerous parameters in the same experiment. 

Polychromatic flow cytometry has made strides to overcome this obstacle and been able 

to reveal the complexity of the immune system in a level of detail not previously 
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achieved (De Rosa and Roederer, 2001). One of the most important contributions of this 

technology has been in the measurement of immune responses against various pathogens 

(Betts et al., 2006; Makedonas and Betts, 2006) and in the assessment of vaccination 

strategies (Roederer et al., 2004; Seder et al., 2008). 

 As stated previously, the cytokine IFN-γ has historically been used as the sole 

marker for antigen-specific T cell activity. However, with the development of 

multiparametric flow cytometry, many researchers began to postulate that more 

information might be garnered about an immune response by measuring more than just 

IFN-γ secretion. At the same time, it was necessary to block the release of newly 

produced cytokines after cellular activation so that each cytokine-producing cell could be 

identified by flow cytometry (Jung et al., 1993). In these intracellular cytokine staining 

(ICS) assays, two main chemical inhibitors, monensin (Mellman et al., 1986; Tartakoff, 

1983) and Brefeldin A (BFA) (Klausner et al., 1992) were employed to inhibit the 

secretion of a substantial fraction of newly produced proteins. The use of ICS assays in 

conjunction with polychromatic flow cytometry has uncovered a large degree of 

functional complexity that exists for a range of immune responses (Picker et al., 1995). 

 An illustration of the functional complexity revealed by polychromatic flow 

cytometry is shown in Figure 1. In this example, human peripheral blood mononuclear 

cells (PBMC) were stimulated in the context of a standard ICS assay with Staphylococcal 

enterotoxin B (SEB) for six hours in the presence of BFA. As shown in Figure 1A, 12% 

of CD8+ T cell in this subject produced the cytokine IFN-γ after activation by SEB. As a 

comparison, less than 0.5% of total CD8+ T cells were positive for IFN-γ in the no 

stimulation control under the same conditions (data not shown). The levels of three other 



 31 

functional markers, TNFα, IL-2 and MIP1α, were also measured within the same 

experiment using polychromatic flow cytometry. These molecules were induced to 

varying degrees by SEB (Fig. 1B). Interestingly, 15.5% of CD8+ T cells were induced to 

produce TNFα while only 5.2% upregulated IL-2. Therefore, the total magnitude of the 

SEB-induced CD8+ T cell response would have been underestimated had IFN-γ or IL-2 

been the only functional markers examined. These data also reveal that most T cell 

responses are quite complex. For instance, not all TNFα+ cells were also positive for 

IFN-γ and vice versa (Fig. 1C). Additionally, even though virtually all IFN-γ+ cells co-

expressed MIP1α, the appearance of IL-2 within IFN-γ+ cells was quite variable (Fig. 

1D). In summary, multiparametric flow cytometry allowed for the simultaneous detection 

of numerous functional parameters, which revealed that T cell responses can be quite 

heterogeneous and that many sub-populations of functional cells exist. 

 A number of flow cytometric-based assays have also been developed that can 

detect many other immune cell processes and functional capabilities besides the 

production of cytokines or chemokines. For example, researchers can now quantify in 

vitro target cell killing (Casazza et al., 2006; Lecoeur et al., 2001), directly label antigen-

specific CD8+ T cells by peptide:MHC-I tetramers (Altman et al., 1996), or directly 

assess degranulation by measuring surface expression of CD107a following activation 

(Betts et al., 2003). Together with this array of novel assays, polychromatic flow 

cytometry has proved beneficial in many clinically relevant settings, including oncology 

(Lee et al., 1999) and vaccine development (De Rosa et al., 2004; Precopio et al., 2007). 

The utility of multiparametric flow cytometry has also allowed researchers to identify 

correlates of immune protection in the setting of infection, assess therapeutic efficacy, 
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and facilitate clinical diagnoses. Therefore, this important technology has progressed a 

great deal since its initial development four decades ago and will undoubtedly continue to 

impact basic research and human health for decades to come. 

 

Conclusion and Project Aims 

 While EC are a rare subset of all infected individuals, they do provide hope that 

durable immune-mediated control of HIV viremia can be achieved through vaccination. 

Not only do these patients control HIV viral loads to extremely low levels but they also 

rarely progress to AIDS even after many years of infection. A growing body of evidence 

points to HIV-specific CD8+ T cells as the foremost means by which HIV replication is 

curtailed in EC. Before this project began, there was no ex vivo functional parameter with 

known cytolytic ability that could distinguish HIV-specific CD8+ T cells in EC from 

individuals with progressive disease. Therefore, the primary goal of the project was to 

perform a detailed characterization of granule-resident cytolytic protein expression within 

ex vivo HIV-specific CD8+ T cells between patient groups that differentially control viral 

replication off therapy. A secondary aim of this work was to study the expression of the 

transcription factor T-bet, which has been shown previously to influence effector 

differentiation and the expression of perforin and granzyme B, within HIV-specific CD8+ 

T cells between EC and progressors. The hope is that the results from this work will 

increase our understanding of the effector capacities of human anti-viral CD8+ T cells 

and perhaps also be beneficial in the monitoring of vaccine platforms to combat HIV or 

other pathogens. 
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Figure 1: T cell responses are heterogeneous and multi-faceted. PBMC from a 
healthy HIV-negative subject were stimulated for 6 hours with SEB in a standard ICS 
assay. BFA was added just prior to stimulation in order to inhibit secretion of newly 
synthesized proteins. (A) Events shown have been gated on all CD3+ T cells. As 
indicated, 12% of CD8+ T cells produced IFN-γ after stimulation. (B and C) Events 
shown have been gated on CD3+CD8+ T cells. Percentages represent the fraction of total 
CD8+ T cells within each quadrant. (D) All IFN-γ+ CD8+ T cells (blue events) as seen in 
(A) were overlaid onto a dot plot (black events) of all CD8+ T cells. 
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CHAPTER 2 

IDENTIFICATION AND ASSESSMENT OF DE NOVO PERFORIN 

PRODUCTION BY HUMAN CD8+ T CELLS USING POLYCHROMATIC 

FLOW CYTOMETRY 

 

Summary  

 Perforin and granzymes work synergistically to induce apoptosis in target cells 

recognized by CD8+ T cells. While perforin protein is readily detectable in resting CD8+ 

T cells, its upregulation in activated cells has been reported to require cellular division. 

However, perforin undergoes numerous conformational changes during its maturation, 

which may affect the ability of conventional antibodies to recognize newly synthesized 

perforin. Here, polychromatic flow cytometry and standard intracellular cytokine staining 

assays were used to detect perforin and cytokine production following stimulation of ex 

vivo human CD8+ T cells. Two different anti-perforin antibodies, clones B-D48 and δG9, 

were used to discriminate various forms of perforin after cellular activation. We provide 

evidence that antigen-specific CD8+ T cells can rapidly upregulate perforin protein within 

hours of stimulation, thus defining a novel cytotoxic capability of human CD8+ T cells. 

The δG9 clone most likely recognizes only the granule-associated conformation of 

perforin, while the B-D48 clone is able to detect perforin in multiple forms. Collectively, 

our results show that human CD8+ T cells are capable of rapid perforin production and 

define a novel flow cytometric procedure that can be used to more completely assess the 

cytotoxic potential of human CD8+ T cells. 
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Introduction 

Perforin is synthesized as a 70 kDa precursor with two glycosylation sites. It is 

equipped with a C-terminal C2 domain capable of binding phospholipid membranes in a 

calcium-dependent manner (Voskoboinik et al., 2005). The precursor is later cleaved at 

the carboxy terminus, which exposes the C2 domain, to yield the active 60 kDa form of 

perforin (Uellner et al., 1997). The low pH of the cytotoxic granule, along with a dearth 

of available calcium ions, favors stable interactions with resident proteoglycans, thereby 

neutralizing the action of perforin (Masson et al., 1990). In fact, the long-term stability of 

perforin in the granules seems to require an acidic environment (Kataoka et al., 1994; 

Kataoka et al., 1997). Overall, it is important to consider that the conformation of 

perforin is very different in the endoplasmic reticulum (ER) shortly after synthesis 

compared to when it resides in its mature form in the cytotoxic granule. 

 While most of our understanding of perforin is derived from experiments 

designed to study its release and aftereffects, very little is known about perforin 

upregulation and regeneration after activation. Granule-mediated killing occurs within 

minutes to hours of target cell recognition, but following activation the reconstitution or 

upregulation of intracellular perforin has only been detected after cellular proliferation 

(Meng et al., 2006; Migueles et al., 2002; Sandberg et al., 2001). Therefore, the 

measurement of perforin as a marker of the antiviral capacity of CD8+ T cells has largely 

been limited to staining for baseline levels in unstimulated cells (Zhang et al., 2003). 

Historically, human perforin has been detected by means of an antibody (clone δG9) that 

was made by using purified CD8+ T cell granules as an immunogen in mice (Hameed et 

al., 1992). By virtue of an antibody (clone B-D48) that was raised against recombinant 
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perforin, its de novo synthesis can, in fact, be detected by flow cytometry using six hour 

intracellular cytokine-staining (ICS) assays. Our results demonstrate for the first time that 

CD8+ T cells can rapidly upregulate perforin following target cell recognition without the 

need for cellular proliferation. 

 

Materials and Methods 

Human Subjects:  Donor peripheral blood mononuclear cells (PBMC) were obtained 

from the University of Pennsylvania’s Center for AIDS Research Human Immunology 

Core and from the lab of Dr. Guido Ferrari of Duke University, in compliance with the 

guidelines set by the internal review boards of both institutions. We identified two donors 

who exhibited strong responses to human cytomegalovirus (HCMV) antigens. ND172 

responded to the HLA-B7-restricted pp65 epitope TPRVTGGGAM (TM10; 4200 spot 

forming cells, SFC, per 106 PBMC). ND171 also responded to peptide TM10 (1500 

SFC/106 PBMC) in addition to the HLA-B18-restricted IE1 epitope SDEEEAIVAYTL 

(SL12; 3000 SFC/106 PBMC). PBMC from donors ND168, ND191, ND200, and BC75 

were also used in this study but were not epitope mapped. PBMC from all subjects were 

cryopreserved in fetal bovine serum (FBS; ICS Hyclone, Logan, Utah) containing 10% 

dimethyl sulfoxide (DMSO; Fisher Scientific, Pittsburgh, Pennsylvania) for later use. 

 

Antibodies:  The following antibodies were used in these studies: anti-CD4 PE Cy5.5, 

anti-CD19 Pacific Blue (Invitrogen, Carlsbad, California), anti-CD14 Pacific Blue, anti-

CD16 Pacific Blue, anti-CD107a FITC (BD Biosciences, San Jose, California), anti-

Granzyme B PE (eBioscience, San Diego, California), anti-TNFα PE Cy7, anti-IFN-γ 
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Alexa 700, anti-Granzyme B Texas Red PE (BD Pharmingen), anti-CD3 Qdot 585, and 

anti-CD8+ Qdot 655 (custom). Custom conjugations to Quantum (Q) dot nanocrystals 

were performed in our laboratory with reagents purchased from Invitrogen. Anti-human 

perforin antibodies were purchased from Diaclone (clone B-D48, Besancon, France) and 

BD Biosciences (clone δG9). It should be noted that for the remainder of this chapter we 

will refer to the perforin clone purchased from Diaclone as “D48” so as not to cause 

confusion with the δG9 clone purchased from BD Biosciences. 

 

Flow cytometric staining assays: Standard intracellular cytokine stimulation, CD107a 

assay, and staining procedures were performed as published previously (Betts et al., 

2003; Betts et al., 2006; Chattopadhyay et al., 2006). During some experiments, we 

stained cells with APC-labeled HLA-B7/TM10 tetramers in calcium-free PBS for 15 

minutes on ice and in the dark. Monensin (1 µg/mL final concentration) was used for 

inhibition of cytotoxic granule acidification where indicated. 

 

Flow cytometric analysis:  For each tube, between 500,000 and 1,000,000 total events 

were acquired on a modified flow cytometer (LSRII; BD Immunocytometry Systems, San 

Jose, California) equipped for the detection of 18 fluorescent parameters. Antibody 

capture beads (BD Biosciences) were used to prepare individual compensation tubes for 

each antibody. Data analysis was performed using FlowJo (version 8.5.2; TreeStar, 

Ashland, Oregon). Spice (version 4.1.6, Dr. Mario Roederer, NIH, Bethesda, Maryland) 

was used to examine the functional profiles of certain CD8+ T cell responses. Reported 

data have been corrected for background (no stim condition) when appropriate. 



 38 

Results 

Activated CD8+ T cells rapidly upregulate perforin and granzyme B mRNA and protein 

 It is well established that CD8+ T cells release perforin-containing granules 

toward the immunological synapse upon recognition of target cells (Stinchcombe et al., 

2001). Consequently, activated CD8+ T cells producing cytokine appear to be perforin-

negative after six hours of stimulation in a standard ICS assay (Fig. 2A), suggesting that 

CD8+ T cells cannot immediately upregulate perforin after their preformed stores are lost 

after stimulation. This finding has been further substantiated by studies showing 

upregulation of new perforin only after cell division (Meng et al., 2006; Migueles et al., 

2002; Sandberg et al., 2001). Interestingly, it has been previously reported that increased 

levels of perforin mRNA can be detected shortly after nonspecific activation of human 

CD8+ T cells (Lu et al., 1992). To determine whether this occurs in an antigen-specific 

manner, we stimulated PBMC from ND172 with the TM10 peptide and analyzed perforin 

and granzyme B transcript levels by real time RT-PCR. As shown in Figure 3, relative 

amounts of both perforin and granzyme B mRNA increased roughly five-fold after only 

two hours of stimulation with TM10. Consistent with the upregulation of granzyme B 

mRNA, we observed that granzyme B protein expression could be detected in responding 

cells following six hours of TM10 stimulation (Fig. 2B). 
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Figure 2: The D48 anti-perforin clone detects de novo perforin synthesis. (A-C) Left: 
Resting PBMC from ND172 were stained with anti-perforin or granzyme B antibodies. 
Events shown are gated upon CD3+ cells, and percentages represent the frequency of total 
CD3+ cells. Right: PBMC were stimulated with peptide TM10 for six hours in the 
presence of BFA and monensin. Events shown are gated upon CD3+CD8+ cells, and 
percentages represent the proportion of IFN-γ+ cells that stain either positive or negative 
for perforin or granzyme B. (D) Both anti-perforin monoclonal antibodies detect the same 
amount of perforin in resting CD8+ T cells. Resting PBMC from ND172 were co-stained 
using both antibodies. The δG9 clone was conjugated to PE and D48 to FITC. Events 
shown are gated upon CD3+CD8+ cells. 
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Figure 3: Perforin and granzyme B transcript levels are increased following 
antigen-specific stimulation of human CD8+ T cells. PBMC from ND172 were 
stimulated with TM10 peptide for 1, 2 or 3 hours. Total RNA was isolated at each time 
point using the RNAqueous-4PCR kit (Ambion, Austin, Texas) according to the 
manufacturer’s instructions. Reverse transcription of total RNA into cDNA was 
accomplished using the RETROscript kit (Ambion) with random decamers and MMLV-
RT enzyme. Primers to identify and amplify perforin and granzyme B transcripts were 
designed using Primer Express (Perkin-Elmer software) and received from Applied 
Biosystems [forward perforin primer: ACGGTGGAGTGCCGCTTCTA; reverse perforin 
primer: GCCCTCTTGAAGTCAGGGTG; forward granzyme B primer: 
GGCTCCTGTTCCTTGATATTGTG; reverse granzyme B primer: 
CGTGCTGACAGCTGCTCACT]. Transcripts were measured on a 7500 Fast Real-time 
PCR system (Applied Biosystems) through use of TaqMan probes [perforin probe: 
ATTTCCATGTGGTACACACTCCCC; granzyme B probe: 
CAAGGTGACATTTATGGAGCTTCCCCAA]. For each sample, mRNA abundance 
was normalized to GAPDH and expressed as relative fold change from the no peptide 
control using the 2-ΔΔCt method (Livak and Schmittgen, 2001). Each condition was run in 
triplicate, and the Dunnett’s t-test was used to compare them to the no peptide control. 
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 Therefore, we could detect de novo synthesis of granzyme B protein but not 

perforin, even though mRNA for both proteins was upregulated to a similar extent 

immediately following activation (Fig. 3). Although a block in the translation of perforin 

mRNA is a possibility, Isaaz and colleagues previously demonstrated that new perforin is 

secreted by CD8+ T cell clones after a short stimulation period (Isaaz et al., 1995). 

Furthermore, perforin undergoes several post-translational modifications, including 

glycosylation and cleavage, prior to and after sequestration within the cytotoxic granule 

(Russell and Ley, 2002; Uellner et al., 1997). Importantly, the antibody we were 

employing to detect perforin (clone δG9) was raised against granule-associated perforin 

(Hameed et al., 1992). 

 Therefore, we hypothesized that the inability to detect perforin upregulation by 

flow cytometry may be an artifact that arises because newly produced perforin - trapped 

in an ER/Golgi compartment by secretion inhibitors in ICS assays - fails to achieve the 

conformation characteristic of granule-associated perforin. We tested a novel perforin 

antibody [clone D48 (Diaclone; Besancon, France)] that was raised against a recombinant 

form of perforin. Using this antibody, we could readily detect perforin expression within 

activated, IFN-γ producing CD8+ T cells after six hours of peptide TM10 stimulation 

under identical assay conditions (Fig. 2C). Additionally, co-staining with both perforin 

clones resulted in a one-to-one relationship in resting CD8+ T cells (Fig. 2D), suggesting 

that both clones can equally recognize perforin in the resting state but not after CD8+ T 

cells have been activated. These results demonstrated that human CD8+ T cells can 

indeed upregulate new perforin protein upon T cell receptor (TCR) stimulation, which 

can be detected by flow cytometry. 
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Kinetics of perforin upregulation in activated CD8+ T cells 

 In order to define the temporal aspects of perforin upregulation, we stimulated 

PBMC from ND172 with peptide TM10 for various periods of time and subsequently 

stained for perforin using the D48 clone together with TNFα and IFN-γ (Fig. 4A). 

Concomitant to cytokine production, perforin upregulation was noted within some 

activated cells and peaked after eight hours. It can be seen that not all cytokine producing 

cells upregulate perforin to an equal extent, which is most likely attributed to the 

differential ability of sub-populations of responding cells to upregulate perforin. To 

demonstrate that we were measuring newly produced protein rather than residual, 

unreleased perforin within cytokine producing cells, we also stained the cells during 

stimulation with anti-CD107a antibodies to assess degranulation (Betts et al., 2003). 

After one hour of stimulation, the majority of degranulating cells were perforin-negative 

(Fig. 4A). These cells have presumably released their preformed perforin but have not yet 

begun new perforin production. Notably, perforin gradually appeared in the degranulating 

population of CD8+ T cells over time, peaking at approximately eight hours. The increase 

in the proportion of degranulating cells that also co-expressed perforin indicates that 

some of the responding CD8+ T cells were upregulating perforin. This concept is also 

depicted in Figure 4B, which shows degranulation and total perforin levels at various 

times after TM10 stimulation in bulk CD8+ T cells. Initially, as responding cells 

degranulated, the amount of perforin in the total CD8+ T cell population decreases. 

However, the level of perforin gradually returns to baseline over time while the frequency 

of degranulating cells remains relatively constant. Taken together, these data indicate that 

human CD8+ T cells are capable of rapidly upregulating perforin in activated cells. 
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Figure 4: Activated CD8+ T cells rapidly upregulate perforin simultaneous with 
cytokine production and degranulation. (A) Evolution of the antigen-specific perforin 
response over time. PBMC from ND172 were stimulated with peptide TM10 in the 
presence of BFA and monensin for various periods of time and stained for perforin (D48 
clone) in conjunction with TNFα (squares), IFN-γ (circles), and CD107a (diamonds). The 
proportions of TNFα+, IFN-γ+, or CD107a+ cells (CD3+CD8+) that also stained positive 
for perforin were plotted over time. (B) Following activation, total perforin levels recover 
after an initial decline. PBMC from ND172 were stimulated with peptide TM10 in the 
presence of BFA and monensin for various periods of time and stained for perforin (D48 
clone; squares) and CD107a (diamonds). The graph depicts the frequency of positivity 
for each molecule in the total CD8+ T cell population. 
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The D48 clone recognizes more conformations of perforin than δG9 

 To further characterize the differences between the antibody clones, we made use 

of an inhibitor that prevents granule acidification. It is known that perforin is inactive at 

the acidic pH of the cytotoxic granule (Pipkin and Lieberman, 2007). Presumably, the 

conformation of perforin can vary substantially depending upon the pH of its surrounding 

environment. Monensin, a carboxylic ionophore specific for monovalent cations, elevates 

vacuolar pH by intercalating into membranes and exchanging protons for potassium ions 

(Mellman et al., 1986; Tartakoff, 1983). Figure 5 shows the effect of monensin on the 

ability of the two clones to recognize perforin in the resting, TM10-specific population of 

CD8+ T cells in ND172 as identified by tetramer labeling. After just two hours of 

monensin treatment, there was a considerable reduction in the amount of detectable 

perforin using the δG9 clone. However, perforin was actually still present in these cells 

because staining by the D48 clone remained constant, suggesting that the δG9 clone 

recognizes a conformationally dependent epitope that is altered by a pH increase. 

Additionally, this phenomenon likely accounts for the disappearance of perforin in the 

non-responding population of CD8+ T cells in Figure 2A, as monensin was included 

there. Indeed, if BFA alone is used in an ICS assay using the δG9 clone, only limited 

numbers of IFN-γ producing cells are perforin-positive but the presence of perforin is 

maintained in the non-responding population of CD8+ T cells (data not shown). 
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Figure 5: The D48 clone recognizes more conformations of perforin than δG9. 
PBMC from ND172 were either left untreated (squares) or incubated with respective 
inhibitor (diamonds) for various lengths of time. Cells were subsequently stained for 
granzyme B (GrzB, dashed black) or perforin using either the D48 (solid gray) or δG9 
clone (solid black) at each time point. The graph depicts the frequency of positivity for 
each molecule in the TM10-specific population identified by tetramer staining. 
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Inter- and intra-subject variability in the ability of CD8+ T cells to upregulate perforin 

  We next assessed whether perforin upregulation is a common feature of all CD8+ 

T cell responses. Figure 6A demonstrates that the ability of CD8+ T cells to upregulate 

perforin following stimulation with PMA/Ionomycin is highly variable. PBMC from 

three different normal donors were stimulated for six hours and perforin upregulation was 

measured in conjunction with other functional parameters. A significant fraction of 

responding, IFN-γ-positive cells upregulated perforin in ND168, whereas smaller 

amounts of new perforin were measured in ND191 and ND200. There can also be 

variability in antigen-specific perforin upregulation within an individual donor. As shown 

in Figure 6B, donor ND171, who responds to two different HCMV epitopes, displayed a 

differential ability to upregulate perforin. The TM10 peptide induced 33% of the 

responding cells to upregulate perforin, whereas the SL12 peptide induced 53% of IFN-γ 

producing cells to express perforin. Additionally, we identified one subject that displayed 

a considerable ability to upregulate perforin after stimulation with a pool of HCMV, 

EBV, and Flu peptides (Fig. 6C, left). However, a closer inspection of this response 

revealed that more than 60% of the activated cells failed to degranulate (Fig. 6C, right), 

suggesting the seemingly large upregulation of perforin was actually a result of many of 

the activated cells not releasing their preformed perforin via degranulation. Nevertheless, 

some of the cells stained positive for CD107a while remaining perforin-positive after six 

hours, suggesting that this sub-population of cells did express new perforin after 

stimulation. This points to the importance of measuring degranulation concurrently with 

perforin in order to more accurately assess de novo perforin synthesis. 
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Figure 6: CD8+ T cells demonstrate variable capacity to upregulate perforin. (A) 
There is inter-subject variability in the ability of CD8+ T cells to upregulate perforin. 
PBMC from three separate healthy donors were stimulated with PMA/Ionomycin for six 
hours in the presence of BFA and monensin. Events shown are gated upon CD3+CD8+ 
cells. Percentages represent the frequency of total CD8+ T cells. (B) There is intra-subject 
variability in the ability of CD8+ T cells to upregulate perforin. PBMC from ND171 were 
stimulated with peptides TM10 (left) or SL12 (right) for six hours in the presence of 
BFA. Events shown are gated upon CD3+CD8+ cells. Percentages represent the 
proportion of IFN-γ+ cells that stain either positive or negative for perforin. (C) Some 
antigen-specific responses appear to upregulate large amounts of perforin. PBMC from 
normal donor BC75 were stimulated with a pool of HCMV, EBV, and Flu peptides for 
six hours in the presence of BFA and monensin. Left: Events shown are gated upon 
CD3+CD8+ cells. Percentages represent the proportion of IFN-γ+ cells that stain either 
positive or negative for perforin. Right: The entire response, based on the markers 
CD107a, IFN-γ, and perforin was broken down into the relative contribution of each 
functional combination. The triple-negative and perforin single-positive combinations 
were ignored. 
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Discussion 

 CD8+ T cells play a crucial role in the elimination of tumors or host cells infected 

by intracellular pathogens. Perforin is the key player in the arsenal that CD8+ T cells use 

to eliminate target cells; it is indispensable for the delivery of granzymes to their pro-

apoptotic substrates within targeted cells. The mechanism for this perforin-mediated 

killing has been solely attributed to the exocytosis of cytotoxic granules present within 

CD8+ T cells.  Based on previous results, however, it has been thought that CD8+ T cells 

replenish their store of perforin only after cellular proliferation (Meng et al., 2006; 

Migueles et al., 2002; Sandberg et al., 2001). Here we redefine this mechanism, 

demonstrating that antigen-specific CD8+ T cells can rapidly upregulate perforin after 

activation, which we have also shown potentiates the ability of CD8+ T cells to recognize 

and kill targets after the initial depletion of preformed granules (Makedonas et al., 2009). 

If not for the ability to rapidly upregulate cytolytic effector molecules, CD8+ T cells 

would presumably have a substantial period of time after initial recognition of targets 

before they could recover the ability to kill additional infected cells. 

 Although increased perforin gene expression has been observed previously 

following activation (Lu et al., 1992), there has been a consistent failure to detect de novo 

synthesis of perforin by flow cytometry in human CD8+ T cells. However, previous 

studies of perforin expression in humans have employed an antibody (δG9 clone) that 

was raised against intact, cytotoxic granules (Hameed et al., 1992), thereby unknowingly 

restricting the study of perforin to its granule-associated form. Using an anti-perforin 

antibody (D48 clone), which was developed using recombinant human perforin, we can 

now directly identify cells that have synthesized new perforin. We find that ex vivo CD8+ 
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T cells can initiate perforin production shortly after TCR stimulation. The kinetics of 

perforin upregulation parallel that of various cytokines (IFN-γ and TNFα) produced by 

responding CD8+ T cells. By measuring the surface expression of CD107a as a marker of 

degranulation (Betts et al., 2003), we find that the observed upregulation of perforin was 

not simply a result of residual, unreleased perforin within granules. Within the first hour 

of activation, CD8+ T cells degranulate and consequently appear perforin-negative. 

However, coincident with the upregulation of perforin mRNA, perforin protein begins to 

be detectable within CD107a-positive cells after two hours. 

 We made use of monensin to further characterize the two different anti-perforin 

clones. Given that this molecule is an ionophore that intercalates into membranes and 

mediates the passive exchange of monovalent cations, its effects on vacuolar pH are 

almost immediate. Indeed, directly after the addition of monensin, we observed a decline 

in the ability of the δG9 clone to detect perforin in resting CD8+ T cells. However, the 

perforin signal was not lost because of degradation as the D48 clone was able to detect 

equivalent levels of perforin in the presence or absence of monensin. This result is 

interesting because prior work has shown that the long-term stability of perforin most 

likely requires an acidic environment (Kataoka et al., 1994; Kataoka et al., 1997). Most 

of the proteolytic enzymes in the cytotoxic granules, which are secretory lysosomes, 

require an acidic environment to be fully active. The rise in granule pH caused by the 

action of monensin probably occurs quickly enough to protect perforin from proteolytic 

degradation. Additionally, it is known that perforin binds to the proteoglycan serglycin in 

cytotoxic granules (Masson et al., 1990; Metkar et al., 2002) and increases in pH disrupt 

this association (Masson et al., 1990; Persechini et al., 1989). It is these interactions with 



 50 

granule proteoglycans that might prevent perforin degradation by proteolytic enzymes 

found with cytotoxic granules under normal conditions. 

 Overall, these data suggest that the δG9 clone is limited to detecting a form of 

perforin either found only in the acidic milieu of cytotoxic granules or a conformation 

that is dependent on an interaction with serglycin. The D48 clone, on the other hand, is 

able to recognize both mature perforin as well as its newly synthesized form. Other 

groups have previously been unable to detect perforin upregulation because the δG9 

clone cannot recognize perforin trapped in an ER/Golgi compartment by secretion 

inhibitors in ICS assays. 

 The fact that we do not detect perforin upregulation in every antigen-specific 

CD8+ T cell response is noteworthy. For example, in donor ND171 we mapped two 

HCMV-specific epitopes that induced a measurable cytokine response. Compared to the 

TM10 peptide, SL12 was able to stimulate a higher degree of de novo perforin production 

in conjunction with cytokine synthesis and degranulation. The discrepancies observed in 

perforin upregulation between various responses indicates that some populations of CD8+ 

T cells are better equipped to lyse targets. It has already been established that CD8+ T 

cells can simultaneously polarize lytic granules toward multiple target cells (Wiedemann 

et al., 2006). The now appreciated ability of CD8+ T cells to upregulate perforin, which 

can traffic directly to immunological synapses (Makedonas et al., 2009), provides another 

mechanism for the elimination of multiple infected targets before the re-loading of 

cytotoxic granules can occur. In conclusion, the ability to detect multiple forms of 

perforin suggests that many aspects of its protein expression, trafficking, structure, and 

mechanism of action remain to be elucidated. 
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CHAPTER 3 

PERFORIN EXPRESSION DIRECTLY EX VIVO BY 

HIV-SPECIFIC CD8+ T CELLS IS A CORRELATE OF LONG-TERM 

VIROLOGIC CONTROL OF HIV 

 

Summary  

 Many immune correlates of CD8+ T cell-mediated control of HIV replication, 

including polyfunctionality, proliferative ability, and inhibitory receptor expression, have 

been discovered. However, no functional correlates using ex vivo cells have been 

identified with the known ability to cause the direct elimination of HIV-infected cells. 

We have recently discovered the ability of human CD8+ T cells to rapidly upregulate 

perforin - an essential molecule for cell-mediated cytotoxicity - following antigen-

specific stimulation. Here, we examined perforin expression capability in a large cross-

sectional cohort of chronically HIV-infected individuals with varying levels of viral load: 

elite controllers (n=35), viremic controllers (n=29), chronic progressors (n=27), and 

viremic nonprogressors (n=6). Using polychromatic flow cytometry and standard 

intracellular cytokine staining assays, we measured perforin upregulation, cytokine 

production, and degranulation following stimulation with overlapping peptide pools 

encompassing all proteins of HIV. We observed that HIV-specific CD8+ T cells from 

elite controllers consistently display an enhanced ability to express perforin directly ex 

vivo compared to all other groups. This ability is not restricted to protective HLA-B 

haplotypes, does not require proliferation or the addition of exogenous factors, is not 

restored by HAART, and primarily originates from effector CD8+ T cells with otherwise 
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limited functional capability. Notably, we found an inverse relationship between HIV-

specific perforin expression and viral load. Thus, the capability of HIV-specific CD8+ T 

cells to rapidly express perforin defines a novel correlate of control in HIV infection. 

 

Introduction 

 Approximately 35-40 million people are currently infected with HIV worldwide. 

Most of these individuals fail to control HIV replication, and ultimately progress to 

acquired immune deficiency syndrome (AIDS) if left untreated. However, a subset (< 

1%) of the HIV-infected population, termed elite controllers (EC), can spontaneously 

control viral replication to undetectable levels (Deeks and Walker, 2007; Lambotte et al., 

2005; Lefrere et al., 1999). Understanding the mechanisms of immunologic control of 

HIV replication in EC may identify candidate markers of immune control useful for 

assessing HIV vaccine strategies. 

 The host immune response, in particular HIV-specific CD8+ T cells, is at least 

partially responsible for the control of viral replication in many EC. For example, EC are 

enriched for certain HLA alleles, such as HLA-B13, B15, B51, B27, B57, and B58 (Emu 

et al., 2008; Frahm et al., 2006; Honeyborne et al., 2007; Migueles et al., 2000). EC 

contain a greater fraction of HIV-specific CD8+ T cells that can degranulate, produce 

multiple functional cytokines and chemokines and display markedly better proliferative 

potential upon HIV peptide stimulation than individuals with progressive disease 

(Almeida et al., 2007; Betts et al., 2006; Boaz et al., 2002; Emu et al., 2008; Horton et al., 

2006; Migueles et al., 2002; Zimmerli et al., 2005). Additionally, recent evidence has 

demonstrated that HIV-specific CD8+ T cells from EC have enhanced cytotoxic 
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capabilities compared to progressors:  Several groups have shown that HIV-specific 

CD8+ T cells from EC display a superior ability to suppress the replication of HIV during 

extended culture (Chen et al., 2009; O'Connell et al., 2009b; Saez-Cirion et al., 2007). 

Using CD8+ T cells expanded in vitro for six days, Migueles and colleagues observed a 

higher cytotoxic capacity on a per-cell basis of HIV-specific CD8+ T cells from EC 

(Migueles et al., 2008). Collectively, these findings suggest that CD8+ T cells may be 

critical to the control of HIV replication in vivo. 

 CD8+ T cells are thought to kill virally-infected cells predominantly through the 

release of lytic proteins - mainly perforin and granzymes - that are secreted via exocytosis 

of pre-formed granules following recognition of infected targets (Russell and Ley, 2002; 

Shiver and Henkart, 1991; Shiver et al., 1992). Granule-mediated killing by CD8+ T cells 

occurs within minutes to hours of target cell recognition; however, the reconstitution of 

intracellular perforin following degranulation has been reported to first require cellular 

proliferation (Meng et al., 2006; Migueles et al., 2002; Sandberg et al., 2001). We have 

recently identified another mechanism by which perforin-mediated CD8+ T cell killing 

can take place: the rapid upregulation and targeted release of newly produced perforin, 

which traffics to the immunological synapse via a route that largely bypasses cytotoxic 

granules (Makedonas et al., 2009). De novo synthesis of perforin by human CD8+ T cells 

can be detected by flow cytometry in conjunction with standard intracellular cytokine-

staining (ICS) (Hersperger et al., 2008), thus permitting simultaneous assessment of 

CD8+ T cell cytotoxic potential and cytokine production. 

 Here, we measured the ability of HIV-specific CD8+ T cells to express perforin in 

a cross-sectional cohort of chronically-infected individuals that differentially control viral 
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replication. Several previously published studies have examined perforin expression in 

HIV-specific CD8+ T cells in both progressive and nonprogressive infection (Andersson 

et al., 1999; Appay et al., 2000; Migueles et al., 2002; Zhang et al., 2003). However, due 

to the nature of the anti-perforin antibody employed (Makedonas et al., 2009), these 

studies have uniformly assessed only pre-formed, granule-associated perforin present 

within resting or long-term activated HIV-specific CD8+ T cells. In this work we 

demonstrate that HIV-specific CD8+ T cells from EC, compared to progressors, have a 

superior ability to express perforin immediately upon activation, without the need for 

prior proliferation or the addition of exogenous cytokines. Overall, this work identifies 

the rapid expression of perforin as a novel correlate of control of HIV replication and 

urges a closer examination of CD8+ T cell polyfunctionality in HIV infection. 

 

Materials and Methods 

Human subjects: We examined ex vivo HIV-specific CD8+ T cell responses from 35 elite 

controllers (EC), 29 viremic controllers (VC), 27 chronic progressors (CP), and 6 viremic 

nonprogressors (VNP). Most EC and VC were recruited from outpatient clinics at local 

Boston hospitals as well as from providers throughout the United States (Pereyra et al., 

2008). Several EC were also recruited from clinics associated with the University of 

Toronto. PBMC samples from CP were from clinics associated with the University of 

Pennsylvania Center for AIDS Research, the University of Toronto, Case Western 

Reserve University, and the University of Alabama at Birmingham. VNP samples were 

obtained from the University of Toronto and Case Western Reserve University. PBMC 

samples from 15 HAART-suppressed patients were obtained from Harvard University 
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and the University of Toronto. 

 EC were defined by consistent plasma HIV RNA levels below the limit of 

detection (e.g. < 75 copies/mL by bDNA or < 50 copies/mL by ultrasensitive PCR) in a 

minimum of three determinations of plasma HIV RNA spanning at least a 12-month 

period. VC consistently maintained viral load between 50 and 2,000 copies/mL, while the 

majority of viral load measurements of CP were above 10,000 copies/mL. CD4+ T cell 

counts were not considered for inclusion criteria in the EC, VC, or CP groups. VNP were 

identified as subjects with consistently high viremia (above 10,000 copies/mL on 

average) but with relatively stable CD4+ T cell counts after long-term infection. It is the 

relative preservation of CD4+ T cell numbers in spite of sustained high level HIV 

replication that was used to distinguish the VNP group clinically from CP. All subjects 

from the EC, VC, CP, and VNP groups were off antiretroviral therapy for at least 6 

months prior to the sampling date; yet most subjects were treatment-naive. Refer to 

Table 1 for more detailed information on the study cohort. 

 

Antibodies:  The following antibodies were used in this study: anti-CD4 PE Cy5.5, anti-

CD14 APC Alexa 750, anti-CD19 APC Alexa 750, anti-CD8 Texas Red-PE, anti-IFN-γ 

Alexa 700 (Invitrogen, Carlsbad, CA), anti-CD107a FITC, anti-IL-2 APC, anti-TNFα PE 

Cy7 (BD Pharmingen, San Diego, CA), anti-MIP1α PE (R&D Systems, Minneapolis, 

MN), anti-CD27 PE Cy5 (Beckman Coulter, Fullerton, CA), anti-CD57 Qdot 565, anti-

CD3 Qdot 585, and anti-CD45RO Qdot 605 or 705 (custom). Custom conjugations to 

Quantum (Q) dot nanocrystals were performed in our laboratory with reagents purchased 
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from Invitrogen. The anti-perforin antibody (B-D48 clone) was purchased from Diaclone 

(Besancon, France) and conjugated to Pacific Blue (Invitrogen) in our laboratory. 

 

PBMC stimulation assays: Cryopreserved PBMC were thawed and subsequently rested 

overnight at 37°C, 5% CO2 in complete medium (RPMI supplemented with 10% FBS 

and 1% L-glutamine). The following morning, the cells were washed with complete 

medium and resuspended at a concentration of 2x106 cells/mL if sufficient cell numbers 

were available. Costimulatory antibodies (anti-CD28 and anti-CD48d; each at 1 µg/ml 

final concentration; BD Biosciences; San Jose, California), monensin (1 µg/ml final 

concentration; BD Biosciences; San Jose, California) and Brefeldin A (1 µg/ml final 

concentration; Sigma-Aldrich; St. Louis, Missouri) were also added to each condition. 

Anti-CD107a was added at the start of all stimulation periods, as described previously 

(Betts et al., 2003). PBMC were incubated at 37°C, 5% CO2 for six hours with 

overlapping 15-mer peptide pools encompassing HIV-1 (clade B) Gag, Pol, Env, Nef, 

and the viral accessory proteins (TRVVV) [as 5 separate conditions]. PBMC from many 

of the subjects were also stimulated with a CEF peptide pool, which contains peptides 

derived from CMV, EBV, and Influenza virus. Each individual peptide in the pools was 

at a final concentration of 2 µg/mL for all stimulations. 

At the end of six hours, cells were stained with Aqua amine-reactive dye 

(Invitrogen; Carlsbad, California) for 15 minutes in the dark at room temperature in order 

to later identify viable cells. A cocktail of antibodies was then added to the cells to stain 

for surface markers for an additional 20 minutes. Following staining for cell surface 

molecules, cells were permeabilized using the Cytofix/Cytoperm kit (BD Biosciences; 
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San Jose, California) according to the manufacturer's instructions. A cocktail of 

antibodies against intracellular markers was then added to the cells and allowed to 

incubate for one hour in the dark at room temperature. Finally, cells were fixed in 1x PBS 

containing 1% paraformaldehyde (Sigma-Aldrich; St. Louis, Missouri) before being 

stored in the dark at 4°C until the time of collection on the flow cytometer. 

 

Flow cytometric analysis: For each stimulation condition, at least 500,000 total events 

were acquired using a modified LSRII (BD Immunocytometry Systems, San Jose, 

California). Data analysis was performed using FlowJo (version 8.8.4; TreeStar, Ashland, 

Oregon) and Spice (version 4.2.3, Dr. Mario Roederer, NIH, Bethesda, Maryland). 

Reported data have been corrected for background, and only responses with a total 

frequency above 0.25% of memory CD8+ T cells (after background subtraction) were 

considered for analysis. Boolean gating analysis was carried out once positive gates were 

established for each functional parameter. This analysis resulted in 64 possible 

combinations of the 6 measured functions. Importantly, two combinations were ignored 

in all analyses: (1) events negative for all measured functional parameters and (2) 

perforin single-positive cells. By analyzing the data in such a manner, we only examined 

perforin expression resulting from HIV-specific stimulation. For this reason, perforin 

expression was only considered within activated, HIV-specific CD8+ T cells expressing 

at least one other functional parameter. Naïve cells (CD27+CD45RO-) were excluded 

during all analyses, except where indicated. 
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Statistical analysis: All graphing and statistical analysis was performed using R (version 

2.8.1), JMP (version 7), or GraphPad Prism software (version 5.0a). Functionality was 

compared between study groups using nonparametric tests (Mann-Whitney test for two 

groups; Kruskal-Wallis test followed by a Dunns test for multiple comparisons when 

comparing three or more groups). Correlations between viral load and perforin expression 

were based on Spearman correlation coefficients. Comparisons between groups of 

specific functional permutations were based on a Lachenbruch’s Two-part Wilcoxon test. 

This analysis simultaneously tests for a difference in the proportion of subjects who have 

an above zero response and a difference in the magnitude of the response (Lachenbruch, 

2001; Nason, 2006). Only those functional combinations for which the average response 

was greater than zero were considered to be relevant for consideration. Functional 

permutations were considered significantly different if the p value was below 0.01. In all 

figures, * denotes a p value < 0.05, ** denotes a p value < 0.01, and  *** denotes a p 

value < 0.001. Unless otherwise noted, error bars represent the standard deviation. 
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Table 1: Clinical parameters of the HIV-infected study cohort to examine perforin 
               expression. 
 
 

 Elite 
Controller 

Viremic 
Controller 

Chronic 
Progressor 

Viremic 
Nonprogressor 

HAART- 
treated 

Number of subjects 35 29 27 6 15 

Plasma HIV RNA, 
median (IQR), 
copies/mL 

undetectable 396 
(82-874) 

24,121 
(18,000-41,579) 

35,000 
(29,672-101,500) undetectable 

CD4+ T cell count, 
median (IQR), 
cells/mm3 

811 
(702-1,068) 

576 
(449-785) 

508 
(401-599) 

557 
(439-625) 

440 
(301-610) 

Decline in CD4+       
T cell count per year, 
median (IQR), 
cells/mm3 

Not 
determined 

Not 
determined 

170 
(103-319) 

36 
(26-47) 

Not 
determined 

Infection duration, 
median (IQR), 
years 

17 
(13-21) 

12 
(8-19) 

7 
(4-13) 

20 
(16-22) 

16 
(12-20) 

Duration of HAART 
treatment prior to 
PBMC sample, 
median (IQR), 
years 

N/A N/A N/A N/A 2 
(1-6) 
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Results 

HIV-specific CD8+ T cell response between EC and CP did not vary greatly in total 

magnitude, degranulation, or cytokine production 

 We assessed the magnitude and functional characteristics of HIV-specific CD8+ T 

cells by stimulating PBMC from 35 elite controllers (EC), 29 viremic controllers (VC), 

and 27 chronic progressors (CP) (Table 1) with overlapping peptide pools encompassing 

all HIV-1 (clade B) proteins. We developed a flow cytometric staining panel that 

simultaneously measured memory phenotype (CD27, CD45RO, and CD57), 

degranulation [surface expression of CD107a (Betts et al., 2003)], cytokine expression 

(IFN-γ, TNFα, and IL-2), and chemokine production (MIP1α). As a sixth functional 

parameter, we included an anti-perforin antibody (clone B-D48) to measure perforin 

upregulation as described in Chapter 2 (Hersperger et al., 2008; Makedonas et al., 2009). 

 As shown in Figure 7A, the total HIV-specific CD8+ T cell response magnitude 

to Pol, Env, Nef, or TRVVV stimulation did not differ substantively across the groups, 

but EC displayed a somewhat higher Gag-specific response. The lack of large differences 

in response magnitude is in agreement with previous studies that measured the total 

magnitude of CD8+ T cell responses in EC and CP using flow cytometry (Betts et al., 

2006; Emu et al., 2008; Migueles et al., 2002). We next determined the relative 

contribution of CD107a, IFN-γ, TNFα, IL-2, and MIP1α to the HIV-specific CD8+ T cell 

response (Fig. 7B). In general, no clear trends emerged in overall functionality between 

the groups. For example, compared to EC, CP demonstrated a slightly enhanced ability to 

degranulate, lower levels of TNFα, but no statistically significant difference in the 

proportion of the average HIV-specific CD8+ T cell response comprised of either IFN-γ  
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Figure 7: Average HIV-specific CD8+ T cell response magnitude, degranulation 
capability, and cytokine production do not vary widely between the cohort groups. 
(A) The CD8+ T cell response magnitude to all HIV peptide pools was calculated for EC, 
VC, and CP and plotted as percent of CD8+ T cells (excluding naïve cells). The total 
magnitude was calculated by summing across all functional combinations. (B) The 
proportion of the average HIV-specific CD8+ T cell response comprised of each single 
functional parameter (except perforin) is shown for EC, VC, and CP. (A and B) 
Statistical analysis was carried out using one-way ANOVA tests (nonparametric; 
Kruskal-Wallis) followed by a Dunns test for multiple comparisons. * denotes a p value < 
0.05 and ** denotes a p value < 0.01. All bars represent the mean and error bars indicate 
the standard deviation. 
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or MIP1α. The largest difference in functionality was IL-2 expression, which was higher 

among EC and VC compared to CP. Previous studies have also shown enhanced 

production of IL-2 after HIV-specific stimulation in subjects with low or undetectable 

viremia (Betts et al., 2006; Emu et al., 2008; Zimmerli et al., 2005). Similar overall 

observations were found for the individual HIV antigens as well (data not shown). 

HIV-specific CD8+ T cells in EC demonstrated a greater ability to express perforin than 

VC and CP 

 We next assessed perforin expression by HIV-specific CD8+ T cells in each 

cohort group. We consistently observed higher co-expression of perforin within 

responding cells from EC compared to VC or CP for all HIV antigens (Fig. 8A shows 

representative Nef-specific responses producing IFN-γ; other HIV antigens are not shown 

but yielded similar results). In fact, perforin expression comprised a significantly greater 

proportion of the average HIV-specific CD8+ T cell response in EC than in CP (Fig. 8B). 

The relative contribution of perforin to the CD8+ T cell response was significantly higher 

(∼3 fold) in EC compared to CP for all of the individual HIV antigens (Fig. 8C). In 

addition to the proportion of the HIV-specific CD8+ T cell response comprised of 

perforin, EC also displayed a greater magnitude of perforin expression upon stimulation 

by all HIV antigen pools compared to both VC and CP (data not shown). However, we 

found no correlation among EC between the total magnitude of an HIV-specific response 

and the corresponding amount of perforin expression (data not shown). 
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Figure 8: EC demonstrate an enhanced ability to express perforin directly ex vivo. 
(A) Representative flow cytometric plots of perforin versus IFN-γ are shown from one 
representative EC, VC, and CP. Percentages represent the proportion of functional cells 
that stain either positive or negative for perforin. Values in parentheses are the magnitude 
of each population and denote percent of CD8+ T cells (excluding naïve cells). (B) The 
proportion of the average HIV-specific CD8+ T cell response comprised of perforin is 
shown for EC, VC, and CP. (C) The relative contribution of perforin to the Gag-, Pol-, 
Env-, Nef-, and TRVVV-specific CD8+ T cell responses is shown for EC, VC, and CP. 
(B and C) Statistical analysis was carried out using one-way ANOVA tests 
(nonparametric; Kruskal-Wallis) followed by a Dunns test for multiple comparisons. * 
denotes a p value < 0.05, ** denotes a p value < 0.01, and *** denotes a p value < 0.001. 
All bars represent the mean and error bars indicate the standard deviation. 
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 There was some variability among EC subjects in the contribution of perforin to 

the HIV-specific CD8+ T cell response. Within some EC there was low perforin 

expression induced by one HIV antigen (e.g. Gag) but higher perforin production to 

another peptide pool (e.g. Pol). Some EC demonstrated high HIV-specific perforin in 

response to every antigen. Although several EC did express low levels of HIV-specific 

perforin, only 20% of all EC in the cohort failed to achieve 30% perforin of the CD8+ T 

cell response to at least one of the antigen pools (data not shown). In contrast, only 15% 

of CP demonstrated even one HIV antigen-specific CD8+ T cell response comprised of 

30% perforin (data not shown). Thus, our data suggests that EC are not simply a 

homogenous group of HIV-infected individuals and do demonstrate some variability, in 

agreement with previous findings (Emu et al., 2008; Saez-Cirion et al., 2009). 

 Next, we examined the functional profile of the average Nef-specific CD8+ T cell 

response among the EC, VC, and CP groups (Fig. 9A and 9B; the other HIV antigens are 

not shown but yielded similar results). Only the functional combinations that were 

significantly different between at least two of the groups are shown in Figure 9A. We 

rarely observed simultaneous expression of all six functions because perforin and IL-2 

are generally not co-expressed by the same cell (Cellerai et al., 2010; Makedonas et al., 

2010). The average Nef-specific functional profile in EC and VC was composed of more 

CD8+ T cells than in CP that simultaneously expressed five functions (Fig. 9B). 

Additionally, the percentage of the Nef-specific response that was perforin-positive 

(black arcs in Fig. 9B) was significantly higher among EC (44%) compared to VC (27%; 

p<0.05) or CP (14%; p<0.001). Similar findings were observed for Gag-, Pol-, Env-, and 

TRVVV-specific responses (data not shown). 
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Figure 9: The majority of perforin expression comes from cells with otherwise 
limited functional capability. (A) The functionality of the average Nef-specific CD8+ T 
cell response is shown; only the functional permutations that varied significantly between 
at least two of the groups are shown. ** denotes a p value < 0.01 based on a 
Lachenbruch’s Two-part Wilcoxon test as described in the Methods. All bars represent 
the mean and error bars indicate the standard deviation. (B) The average Nef-specific 
CD8+ T cell functional profile is shown for EC, VC, and CP. Responses are grouped 
according to the number of positive functions. The relative amount of perforin positivity 
within each functional group (i.e. each pie slice) is depicted as black arcs. The relative 
contribution of perforin (mean value) to the entire response is represented by the 
percentage in the center of each pie. 
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 Interestingly, the majority of perforin was produced by cells expressing only a 

single other function: CD107a or MIP1α (Fig. 9B). The CD8+ T cells that co-expressed 

CD107a and perforin likely upregulated perforin de novo since a cell that was CD107a+ 

presumably lost all (or nearly all) of its preformed perforin through the process of 

degranulation. Notably, the proportion of the HIV-specific response in EC that was both 

CD107a+ and perforin+ was significantly higher than CP for all HIV antigens (data now 

shown). The second major population of perforin+ cells co-expressed only MIP1α. The 

relevance of this population is unclear. However, we have previously shown that 

activated CD8+ T cells can transport newly synthesized perforin directly to the 

immunological synapse without trafficking first through cytolytic granules (Makedonas 

et al., 2009). Thus, despite the absence of apparent degranulation, MIP1α+ perforin+ cells 

may potentially be involved in ongoing cytolytic activity. 

Perforin expression is not restricted to the presence of protective HLA-B alleles 

 One consistent host factor associated with durable control of HIV is the presence 

of certain HLA class I alleles, particularly HLA-B27 and B57 (Goulder et al., 1997; 

Kiepiela et al., 2004; Kiepiela et al., 2007; Lambotte et al., 2005; Migueles et al., 2000). 

Other HLA-B alleles have also been associated with delayed disease progression or lower 

viral loads, including HLA-B13, B15, B51, and B58 (Frahm et al., 2006; Honeyborne et 

al., 2007). Among EC in our cohort, 54% of the subjects expressed HLA-B27 or B57, 

while 32% of VC carried these alleles. Additionally, 43% of EC in the study cohort 

expressed either HLA-B13, B15, B51, or B58, while 32% of VC carried these alleles. 

Overall, we found no association between protective HLA-B status and perforin 

expression to any individual HIV peptide pool in either EC or VC, or when perforin 
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expression to all HIV peptide pools was averaged within each subject (data not shown). 

Thus, there was no apparent relationship between protective HLA-B alleles and the 

capacity of HIV-specific CD8+ T cells to express perforin after stimulation. 

Distinct expansion of HIV-specific effector CD8+ T cells in EC 

 Much work has been done to characterize the memory phenotype of HIV-specific 

CD8+ T cells and to compare them to the memory phenotype of CD8+ T cells specific for 

other persistent viruses, such as CMV or EBV (Appay et al., 2002; Champagne et al., 

2001). In this study, we included reagents in the polychromatic flow cytometric staining 

panel to detect surface expression of CD27, CD45RO, and CD57. Some studies have 

used CD45RA to determine the memory phenotype of human CD8+ T cells (Appay et al., 

2002; Hamann et al., 1997). However, CD45RO and CD45RA are isoforms of the same 

molecule and share a reciprocal relationship to memory status; memory cells, which 

contain enhanced frequencies of antigen-reactive cells, typically appear as CD45RO+ 

(Merkenschlager and Beverley, 1989). Effector CD8+ T cells are almost universally 

CD27- and can be either positive or negative for CD45RO expression. CD27- effector 

cells usually display more cytotoxic potential and contain a higher proportion of perforin 

and granzyme containing cells than CD27+ subsets (Hamann et al., 1997; Takata and 

Takiguchi, 2006). CD57 is a marker of terminal differentiation; CD57+ CD8+ T cells 

usually lack a strong proliferative potential but maintain a strong cytolytic capacity due to 

high expression of both perforin and granzymes (Brenchley et al., 2003; Chattopadhyay 

et al., 2009). CD27-CD45RO-CD8+ T cells are considered differentiated effector cells and 

often display high surface expression of CD57. 
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 Next, we examined the memory phenotype, based on surface expression of CD27, 

CD45RO, and CD57, of HIV-specific CD8+ T cells in each group. The majority of HIV-

specific CD8+ T cells that expressed perforin in EC, VC, and CP were CD27-CD45RO-

CD57+/- (Fig. 10A and 10B and data not shown), frequently considered an effector-type 

profile, which is in agreement with previous reports that examined the presence of 

perforin in various human CD8+ T cell memory subsets (Chattopadhyay et al., 2009; 

Takata and Takiguchi, 2006). This phenotype was common to virtually all perforin+ HIV-

specific CD8+ T cells regardless of their specificity for Gag, Pol, Nef, Env or TRVVV 

(Fig. 10A and data not shown). HIV-specific CD8+ T cells among many CP subjects 

were skewed toward a CD27+CD45RO+/- memory phenotype (Fig. 10C), as previously 

shown (Appay et al., 2002; Betts et al., 2006; Precopio et al., 2007). However, a higher 

proportion of HIV-specific CD8+ T cells in EC than in CP displayed a memory 

phenotype consistent with differentiated effector cells (Fig. 10C). Overall, the presence 

of CD27-CD45RO- HIV-specific CD8+ T cells was less common among CP than EC, in 

agreement with a previous study (Saez-Cirion et al., 2007). The absence of effector-like 

HIV-specific CD8+ T cells in CP is not, however, reflective of the total CD8+ T cell pool 

in these individuals. Indeed, a substantial fraction of CD8+ T cells in CP that responded 

to CEF (pool of CMV, EBV, and Flu peptides) stimulation were CD27-CD45RO- (Fig. 

10D). However, responding Gag-specific CD8+ T cells within the same subjects were 

primarily CD27+CD45RO+ (Fig. 10D). 
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Figure 10: Distinct expansion of HIV-specific effector CD8+ T cells in EC. (A) Gag-, 
Pol-, and Nef-specific perforin+ functional subsets (red events) were overlaid onto a 
density plot (black shading) of the memory phenotype of the total CD8+ T cell population 
in three representative EC subjects. (B) The memory phenotype of Gag-, Pol-, and Nef-
specific perforin+ functional subsets was determined for all EC. Bars represent the mean 
and error bars indicate the standard deviation. (C) Gag-, Pol-, and Nef-specific CD8+ T 
cells, as defined by the production of IFN-γ or TNFα (green events), were overlaid onto a 
density plot (black shading) of the memory phenotype of the total CD8+ T cell population 
in three separate EC and CP subjects. (D) Gag- and CEF-specific CD8+ T cells, as 
defined by the production of IFN-γ or TNFα (green events), were overlaid onto a density 
plot (black shading) of the memory phenotype of the total CD8+ T cell population in two 
separate CP subjects. (A, C, D) Percentages represent the fraction of overlaid cells that 
fall within each quadrant. 
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Inverse relationship between HIV-specific perforin expression and viral load 

 Having observed higher perforin expression in HIV-specific CD8+ T cells in EC, 

we next examined the relationship between perforin expression and viral load. We found 

a significant inverse correlation between the average HIV-specific perforin expression 

within each subject and HIV viral load (Fig. 11A). This inverse relationship was found 

for every individual HIV antigen specificity and when only considering subjects with 

detectable viremia (data not shown). We also found a statistically significant positive 

correlation between CD4+ T cell counts in the blood and HIV-specific perforin 

expression by CD8+ T cells across all subjects (data not shown), a finding most likely 

driven by the high CD4+ T cell counts among the EC subjects (Table 1). Furthermore, 

when we examined the other functional parameters in a similar manner, we only found a 

statistically significant inverse relationship between IL-2 expression and viral load (data 

not shown), which is an expected result based upon previous studies. 

 To better understand the relationship between viral load and perforin expression, 

we next compared HIV-specific CD8+ T cell responses among EC to viremic 

nonprogressors (VNP), who maintain stable CD4+ T cell counts in the face of 

consistently high viral loads (Table 1) without progressing to AIDS. The infection 

duration in both groups was similar (17 vs. 20 years in the absence of therapy; Table 1). 

Therefore, by comparing EC and VNP, we can control for the rate of CD4+ T cell 

decline, progression status, and duration of infection. As shown in Figure 11B, perforin 

expression by HIV-specific CD8+ T cells in VNP is significantly lower than EC and 

actually closely resembles the perforin levels observed in CP. 
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Figure 11: Inverse relationship between viral load and HIV-specific perforin 
expression, which is not rescued by HAART. (A) The average proportion of HIV-
specific perforin expression within each subject was plotted against the HIV viral load 
from each respective subject. The most proximal viral load measurement to the time point 
of the PBMC sample was used in the analysis. Spearman correlation tests were performed 
to determine statistical significance. (B) The relative contribution of perforin to the Gag-, 
Pol-, and Nef-specific CD8+ T cell responses is shown for all EC, CP, VNP, and 
HAART-suppressed subjects. Each symbol represents an individual study subject. One-
way ANOVA tests (nonparametric; Kruskal-Wallis test) were performed followed by a 
Dunns test for multiple comparisons. * denotes a p value < 0.05, ** denotes a p value < 
0.01, and  *** denotes a p value < 0.001. The error bars represent the mean and standard 
deviation. 
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HIV-specific perforin expression is not recovered by HAART 

 In order to determine whether the low perforin expression associated with 

progression was reversible, we examined HIV-specific perforin expression by CD8+ T 

cells in HAART-treated individuals with undetectable HIV viremia (Table 1). Compared 

to EC, the total CD8+ T cell response magnitude was lower in HAART-treated subjects to 

Gag, Pol, and Nef stimulation; however, only the difference in the total Gag-specific 

magnitude reached statistical significance (data not shown). Despite some differences in 

total magnitude, there were no substantive differences in the relative contribution of 

degranulation, IFN-γ, TNFα, or MIP1α production to the HIV-specific CD8+ T cell 

response between EC and HAART-suppressed subjects (data not shown). However, HIV-

specific perforin expression in treated subjects was considerably lower than the levels 

observed in EC, and was similar to perforin expression in CP (Fig. 11B). Thus, the ability 

to express and rapidly upregulate perforin by HIV-specific CD8+ T cells in chronic HIV 

infection was not recovered following HAART. 

 

Discussion 

While many cell surface markers, activation profiles, and functional parameters of 

both ex vivo HIV-specific CD8+ and CD4+ T cells have been shown to correlate with 

control of viremia (Betts et al., 2006; Day et al., 2006; Day et al., 2007; Deeks et al., 

2004; Hunt et al., 2008; Younes et al., 2003), few, if any, can potentially mediate direct 

control of HIV replication through the lysis of infected cells. Here we have shown that 

perforin expression by ex vivo HIV-specific CD8+ T cells is significantly higher in EC 

compared to patients with uncontrolled viral replication. HIV-specific CD8+ T cells that 



 73 

express perforin bear predominantly an effector phenotype, indicating that effector 

populations, in addition to central memory populations (Betts and Harari, 2008; Pantaleo 

and Harari, 2006), may be critically important to the control of HIV infection. We also 

find an inverse correlation between perforin expression by HIV-specific CD8+ T cells and 

viral load. Together, these results represent an unique assessment of HIV-specific 

immunity and provide a novel platform for measuring potential vaccine efficacy in 

clinical trials. 

There is little question regarding the crucial importance of perforin in the control 

of infectious pathogens. Indeed, mutation or dysregulation of perforin in humans results 

in compromised cellular immunity and enhanced susceptibility to viral infections 

(Molleran Lee et al., 2004). Previous reports on ex vivo HIV-specific CD8+ T cells have 

uniformly found low or absent perforin expression in both CP and EC and no detectable 

differences in perforin levels between the groups (Appay et al., 2002; Appay et al., 2000; 

Lieberman et al., 2001; Migueles et al., 2002; Zhang et al., 2003). However, these studies 

have in retrospect only defined the level of granule-associated perforin within resting 

HIV-specific CD8+ T cells due to unforeseen limitations in the anti-perforin antibody 

employed in these studies (Hersperger et al., 2008; Makedonas et al., 2009). Due to 

chronic activation and continual presence of viral antigen - albeit extremely low levels in 

EC (Hatano et al., 2009; Pereyra et al., 2009) - HIV-specific CD8+ T cells are unlikely to 

reach a true resting state; therefore, it is unlikely these cells accumulate cytolytic granules 

containing perforin in vivo. However, our results indicate that this does not preclude their 

ability to upregulate new perforin upon antigen-specific stimulation, a killing mechanism 
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that we have recently shown potentiates the cytotoxic ability of human CD8+ T cells 

(Makedonas et al., 2009). 

We have shown previously that both the commonly used anti-perforin antibody 

(δG9 clone) and the anti-perforin antibody used in this study (B-D48 clone) stain resting 

CD8+ T cells equivalently (Hersperger et al., 2008). Thus, previous research that found 

no difference in the levels of perforin within resting HIV-specific CD8+ T cells between 

EC and CP (Appay et al., 2002; Appay et al., 2000; Lieberman et al., 2001; Migueles et 

al., 2002; Zhang et al., 2003) were not necessarily incorrect. Here, we have shown using 

a perforin antibody that can detect both granule-associated and granule-independent 

forms of perforin that HIV-specific CD8+ T cells from EC express this protein to a higher 

degree than patients with uncontrolled viremia. It is important to note, though, that the B-

D48 clone cannot specifically distinguish pre-formed from newly upregulated perforin 

using flow cytometric-based assays. Nevertheless, to identify the potential contribution of 

perforin produced de novo, we examined the proportion of the HIV-specific CD8+ T cell 

response that both degranulated (CD107a+) yet remained perforin+ after six hours of 

stimulation. These CD8+ T cells that co-expressed CD107a and perforin likely 

upregulated new perforin; they have presumably lost most or all of their pre-formed 

perforin through the process of degranulation. By analyzing this specific population, we 

found that the proportion of the HIV-specific CD8+ T cell response in EC that co-

expressed CD107a+ and perforin+ was significantly higher than CP to all HIV antigens. 

However, we have also shown that newly synthesized perforin largely bypasses cytotoxic 

granules (Makedonas et al., 2009); therefore, we are almost certainly underestimating the 

levels of perforin upregulation by focusing only on cells that have degranulated. 
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 The capacity of unstimulated CD8+ T cells from EC to begin to eliminate HIV-

infected autologous CD4+ T cell targets within several hours of co-incubation has been 

previously reported (Saez-Cirion et al., 2007). The results from that study suggested that 

HIV-specific CD8+ T cells were responsible for the elimination of infected CD4+ T cells 

through a mechanism dependent on cell-to-cell contact and MHC-I restriction. Our 

findings on perforin upregulation by HIV-specific CD8+ T cells shortly after stimulation 

are consistent with the results of Saez-Cirion and colleagues (Saez-Cirion et al., 2007) 

and may even be a mechanism to explain their findings. Moreover, another previously 

published report indicated that HIV-specific CD8+ T cells kill targets through the use of 

cytotoxic granules and not by the Fas/FasL pathway (Shankar et al., 1999). Therefore, 

available evidence indicates that the perforin/granzyme pathway of cytotoxicity is likely 

the primary means by which HIV-specific CD8+ T cells kill infected cells in vivo. 

 Our findings here suggest that HIV-specific CD8+ T cells in EC have a superior 

cytotoxic potential by expressing higher levels of perforin. This supposition is supported 

by recent work from Migueles and colleagues (Migueles et al., 2008). These authors 

showed that HIV-specific CD8+ T cells from EC accumulated more granule-associated 

perforin as a result of their superior ability to proliferate in vitro compared to CD8+ T 

cells from progressors. They also found that higher amounts of perforin (and granzyme 

B) in HIV-specific cells translated into an enhanced ability to lyse infected targets. Thus, 

together with the previous work of Migueles et al., our results show that EC have an 

enhanced ability to upregulate perforin either directly ex vivo or after in vitro 

proliferation. Given what is known about the importance of perforin in orchestrating 

cytotoxicity, we can conclude that HIV-specific CD8+ T cells from EC certainly have the 
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potential to elicit elimination of infected targets to a greater degree than progressors, 

which may directly impact viral load. Furthermore, we know that newly synthesized 

perforin traffics directly to the immunological synapse - the site of action of cytotoxicity 

(Makedonas et al., 2009). 

 Besides differences in cytotoxic capabilities, HIV-specific CD8+ T cells from EC 

have also been shown to be more polyfunctional in nature; they can simultaneously 

degranulate and produce multiple functional molecules, such as IL-2, IFN-γ, and TNFα, 

to a greater extent than CD8+ T cells from progressors (Betts et al., 2006; Ferre et al., 

2009). Our results here confirm and extend these findings. Polyfunctional HIV-specific 

CD8+ T cells were also found in this study to comprise a greater fraction of the response 

in EC than in CP. Interestingly, we rarely observed HIV-specific CD8+ T cells capable of 

producing all six functions simultaneously. This results from a dichotomous relationship 

between perforin and IL-2 production from the same cell (Cellerai et al., 2010; 

Makedonas et al., 2010). The implications of this dichotomy are profound for our 

understanding of effective HIV-specific CD8+ T cell responses: IL-2 producing CD8+ T 

cells will presumably not have immediate cytolytic activity; conversely, perforin 

producing CD8+ T cells may be inherently reliant upon production of IL-2 from cells in 

their surrounding environment for maintenance or modulation. Both cell types are most 

likely crucial to maintaining protective immunity. The IL-2 producing cells may be part 

of a population of CD8+ T cells that can maintain itself through autocrine production of 

IL-2. This ability may be important in the setting of diminished CD4+ T cell help in HIV 

infection (Zimmerli et al., 2005). Alternatively, these cells may represent a self-renewing 

memory population of CD8+ T cells responsible for long-term maintenance of effector 



 77 

cells. IL-2 producing cells likely do not display any direct anti-viral capability directly 

after activation but may be able to differentiate into perforin producing effector cells. The 

increased IL-2 production observed by both HIV-specific CD8+ T cells and CD4+ T cells 

(Younes et al., 2003) in EC may also directly increase cytotoxic potential, as has recently 

been reported (Kalia et al., 2010; Pipkin et al., 2010b). 

 Interestingly, we found that a substantial fraction of the total perforin production 

by HIV-specific CD8+ T cells among EC comes not from polyfunctional populations but 

instead from cells that elicit only a single other measured functional parameter: 

specifically MIP1α or CD107a. In previous studies, where perforin upregulation was not 

measured, the potential importance and cytotoxic capabilities of these populations was 

not appreciated. On this note, the degree of functionality of a CD8+ T cell response is 

only reflective of what functional parameters are actually being measured. For example, 

we find that most CD8+ T cells that upregulate perforin also produce granzyme B upon 

stimulation (Makedonas et al., 2010). Therefore, many of the CD8+ T cells found in this 

study to co-express perforin with MIP1α and/or CD107a, may actually be highly 

“polyfunctional” if we had also examined the expression of other parameters critical for 

cytotoxicity, such as granzyme B. 

Our data show that perforin expressing cells bear effector-like phenotypic 

markers. Thus, while a central memory phenotype is often considered a protective 

phenotype in HIV infected individuals, our results suggest that effector cells are also of 

significance. It should be noted, however, that simply achieving effector status does not 

guarantee the expression of perforin. Indeed, some HIV-specific CD8+ T cells in both EC 

and CP were CD27-CD45RO- yet did not express perforin. Our results suggest that 
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effector status is necessary but not sufficient for perforin upregulation. The importance of 

effector cells in the control of HIV infection is further supported by recent observations 

by Picker and colleagues who found that a rhesus-CMV-based SIV vaccine vector could 

stimulate protective effector SIV-specific CD8+ T cells (Hansen et al., 2009). 

 Finally, our results suggest that perforin expression by HIV-specific CD8+ T cells 

is not readily recovered by inhibition of viral replication or reduction in chronic immune 

activation by HAART - a finding which is consistent with a previous report showing that 

HAART treatment does not restore other functional parameters, such as proliferative 

capacity, polyfunctionality, or cytotoxic activity (Migueles et al., 2009). We also found 

that perforin production does not appear to be directly influenced by beneficial HLA-B 

haplotypes or the relative maintenance of CD4+ T cell levels over time. Whether perforin 

expression is lost early, late, or progressively during infection remains unclear. Further 

studies are necessary to identify the mechanism(s) underlying the relative absence of 

perforin upregulation in progressive HIV infection, and, if possible, to discover a means 

by which this critical function can be regained or elicited through therapeutic 

intervention. 
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CHAPTER 4 

T-BET EXPRESSION IS STRONGLY LINKED TO THE CYTOTOXIC 

POTENTIAL OF ANTI-VIRAL CD8+ T CELLS AND IS ASSOCIATED WITH 

LONG-TERM VIROLOGIC CONTROL OF HIV 

 

Summary 

 Recent data suggest that CD8+ T cell effector activity is an important component 

to the control of HIV replication in elite controllers (EC). One critical element of CD8+ T 

cell effector function and differentiation is the T-box transcription factor T-bet. Here, we 

assessed T-bet expression, together with the effector proteins perforin, granzyme A, 

granzyme B, and granulysin, in HIV-specific CD8+ T cells from EC (n=20), chronically-

infected progressors (n=18), and HAART-suppressed individuals (n=19). When 

compared to the other cohort groups, HIV-specific CD8+ T cells among EC demonstrated 

a superior ability to express perforin and granzyme B but with no detectable difference in 

the levels of granzyme A or granulysin. Notably, we observed higher levels of T-bet in 

HIV-specific CD8+ T cells from EC, with an ensuing positive correlation between T-bet 

and levels of both perforin and granzyme B. Moreover, HIV-specific CD8+ T cells in EC 

upregulated T-bet to a greater extent than progressors after in vitro expansion with 

concomitant upregulation of perforin and granzyme B. Collectively, these results suggest 

that T-bet may be playing an important role in driving effector function and its 

modulation may lead to enhanced effector activity against HIV. 
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Introduction 

 HIV infection is typically associated with high viral loads and steadily declining 

CD4+ T cell counts until eventual immune system collapse with the onset of AIDS. 

However, a rare subset of HIV-infected individuals, termed “elite controllers” (EC), can 

spontaneously control viral load to extremely low levels without the intervention of anti-

retroviral therapy. Understanding the mechanism(s) by which EC are able to control HIV 

replication is an area of intense interest that may provide necessary insights for the 

development of vaccines and therapeutics to combat HIV (Deeks and Walker, 2007; 

O'Connell et al., 2009a). 

 Recent data has shown that HIV-specific CD8+ T cells from EC have enhanced 

cytotoxic function compared to progressors. CD8+ T cells from EC displayed a superior 

ability to suppress the replication of HIV in autologous CD4+ T cells during extended 

culture (O'Connell et al., 2009b; Saez-Cirion et al., 2007). CD8+ T cells from EC that 

were expanded in vitro for 6 days following HIV-specific stimulation demonstrated 

enhanced proliferation and upregulation of perforin and granzyme B (Migueles et al., 

2002; Migueles et al., 2008). The upregulation of these cytotoxic granule-resident 

proteins during culture translated into a greater capacity to induce target cell death on a 

per cell basis (Migueles et al., 2008). In addition, EC express higher levels of perforin 

immediately after antigen recognition, resulting in a greater ex vivo cytotoxic potential 

(Hersperger et al., 2010). Collectively, these findings suggest that CD8+ T cells play a 

critical role in the control of HIV replication, particularly within EC. 

 CD8+ T cells directly inhibit viral replication and subsequent dissemination within 

a host via the elimination of infected cells. The two major means of target cell cytolysis 
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are via cytotoxic granule exocytosis and the Fas/FasL pathway (Chavez-Galan et al., 

2009). Cytotoxic granules are secretory lysosomes (Peters et al., 1991) that contain 

multiple proteins - including perforin, granzymes, and granulysin - that work in concert 

to induce apoptosis in infected cells. The cytotoxic granule pathway is likely the principal 

mechanism by which HIV-specific CD8+ T cells eliminate HIV-infected cells (Migueles 

et al., 2008; Shankar et al., 1999). Perforin is a pore-forming protein essential for the 

entry of various pro-apoptotic proteases known as granzymes, including granzyme A and 

B, into infected target cells (Bolitho et al., 2007; Chowdhury and Lieberman, 2008; Pardo 

et al., 2009a). Granulysin, a member of the saposin-like protein family, may be important 

to the control of a wide variety of pathogenic bacteria, fungi, and parasites and has also 

been implicated in tumor surveillance (Clayberger and Krensky, 2003; Krensky and 

Clayberger, 2009; Stenger et al., 1998). 

 The transcriptional regulation of cytolytic effector cells has recently been an area 

of immense interest (Glimcher et al., 2004). One transcription factor, T-bet, has been 

shown to play a pivotal role in the development, differentiation, and function of effector 

cells. A member of the T-box family of transcription factors (Papaioannou, 1997; Smith, 

1997; Zhang and Yang, 2000), T-bet was originally discovered as the major determinant 

of Th1 lineage commitment in CD4+ T cells (Szabo et al., 2000). Subsequent work has 

demonstrated that it is also important for the effector differentiation of CD8+ T cells 

(Intlekofer et al., 2007; Joshi et al., 2007; Sullivan et al., 2003). T-bet is essential for the 

development of many experimental autoimmune diseases, including type 1 diabetes and 

myocarditis in transgenic mice (Juedes et al., 2004; Taqueti et al., 2006); in both models, 

pathogenic CD8+ T cells are thought to be causally associated with the onset of disease, 
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which is mitigated or prevented in the absence of T-bet. Additionally, T-bet can bind to 

the promoter regions of perforin and granzyme B in both human and mouse cells 

(Townsend et al., 2004) and influences the levels of expression of these cytolytic 

molecules (Intlekofer et al., 2005; Pearce et al., 2003). Although the biology of T-bet has 

been well studied in experimental murine models, the significance of this transcription 

factor in the context of human infection is less well defined. 

 Here, we examined the expression of T-bet in both resting and activated CD8+ T 

cells from HIV-infected and uninfected individuals. We hypothesized that T-bet may play 

a causative role in the increased cytotoxic potential that has been described for HIV-

specific CD8+ T cells from EC (Hersperger et al., 2010; Migueles et al., 2002; Migueles 

et al., 2008). We report that HIV-specific CD8+ T cells from EC demonstrated higher T-

bet expression after both short-term stimulation and in vitro proliferation than those from 

individuals who were not controlling HIV replication (“progressors”) or who were 

controlling virus only through the use of highly active anti-retroviral therapy (“HAART-

suppressed”). We also observed that T-bet expression correlated strongly with perforin 

and granzyme B. Our results suggest that T-bet may be influencing the effector function 

and cytotoxic potential of HIV-specific CD8+ T cells and could be an attractive target for 

modulation to improve HIV-specific immunity. 

 

Materials and Methods 

Human subjects: We examined HIV-specific CD8+ T cell responses in a cross-sectional 

cohort of 20 elite controllers (EC), 18 chronically-infected progressors (CP), and 19 

individuals on HAART. The majority of peripheral blood mononuclear cell (PBMC) 



 83 

specimens were obtained from patients enrolled in the SCOPE study at the University of 

California, San Francisco (UCSF) (Emu et al., 2008). PBMC samples from a small 

number of EC and CP were also obtained through clinics associated with the University 

of Toronto and Harvard University. EC were defined as therapy-naïve individuals who 

displayed an initial positive HIV antibody test >2 years prior to study entry and had a 

minimum of three documented viral loads of <75 copies/mL over a period of 12 months. 

CP were defined as untreated individuals with plasma HIV RNA levels consistently 

above 10,000 copies/mL. HAART-suppressed individuals maintained undetectable 

plasma viral loads (<75 copies/mL) for at least a two year span prior to inclusion. All 

subjects had proximal CD4+ T cell counts above 350 cells/mm3 and lacked evidence of an 

AIDS-defining illness (refer to Table 2 for relevant clinical information). Additionally, 

PBMC from HIV-negative healthy donors were obtained from the University of 

Pennsylvania Center for AIDS Research Human Immunology Core. 

 

Antibody reagents:  The following antibodies were used in this study: anti-CD8 Qdot 

605, anti-CD3 Qdot 655, anti-Granzyme B PE-Cy5.5 (Invitrogen, Carlsbad, CA), anti-

TNFα PE-Cy7, anti-IFN-γ APC, anti-CD4 APC-Cy7, anti-CD14 APC-Cy7, anti-CD19 

APC-Cy7, (BD Pharmingen, San Jose, CA), anti-Granulysin PE, anti-CD107a PE-Cy5, 

anti-CD27 PE-Cy5, anti-T-bet PE (clone 4B10) (eBioscience, San Diego, CA), anti-T-bet 

FITC (clone 4B10; Santa Cruz Biotechnology, Santa Cruz, CA), anti-CD45RO ECD 

(Beckman Coulter, Miami, FL), anti-Granzyme A Alexa-700 (BioLegend, San Diego, 

CA), anti-Perforin PE (clone B-D48; Diaclone, Besancon, France), anti-CD57 Qdot 565, 
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and anti-Perforin Pacific Blue (custom). The anti-Perforin monoclonal antibody (clone B-

D48) purchased from Diaclone was conjugated to Pacific Blue in our laboratory. 

 

PBMC stimulation and proliferation assays: PBMC stimulations and intracellular 

cytokine staining (ICS) assays were carried out as described in the previous chapter. 

Briefly, PBMC were resuspended at a concentration of 2x106 cells/mL in a total volume 

of 1 mL for each condition. Costimulatory antibodies (anti-CD28 and anti-CD48d, 1 

µg/ml each; BD Biosciences), monensin (1 µg/ml; BD Biosciences) and Brefeldin A 

(BFA, 1 µg/ml; Sigma-Aldrich; St. Louis, MO) were also added. Anti-CD107a PE-Cy5 

was included at the start of all stimulations to measure levels of degranulation (Betts et 

al., 2003). PBMC were incubated at 37°C, 5% CO2 for six hours with peptide pools 

encompassing HIV-1 Gag (PTE), Nef (clade B consensus) [NIH AIDS Research and 

Reference Reagent Program], or human cytomegalovirus (CMV) pp65 and IE1 proteins 

[New England Peptide, Gardner, MA]. Each individual peptide in the pools was at a final 

concentration of 2 µg/mL. At the conclusion of the six hour stimulation period, cells were 

labeled with Aqua amine-reactive dye (Invitrogen) prior to staining for surface and 

intracellular markers, as previously described in detail (Makedonas et al., 2009). 

In some experiments that assessed proliferation, PBMC were labeled with CFSE 

(Invitrogen) prior to stimulation according to the manufacturer’s instructions. Cells were 

stimulated either with individual peptides (determined from prior epitope mapping), the 

aforementioned HIV Gag or Nef pools, or with a pool of approximately 100 previously 

identified optimal HIV (clade B) CD8+ T cell epitopes ranging in length from 9 to 11 

amino acids covering all regions of the viral proteome. Individual peptides were at a final 



 85 

concentration of 2 µg/mL in each condition. At various time points after initial peptide 

stimulation, antigen-specific cells were identified using peptide:MHC-I tetramer 

(conjugated to APC) or after peptide re-stimulation for six hours in the presence of BFA.  

 

Flow cytometric analysis: For each stimulation condition, at least 500,000 total events 

were acquired using a modified LSRII (BD Immunocytometry Systems, San Jose, CA). 

Data analysis was performed using FlowJo (version 8.8.4; TreeStar, Ashland, OR) and 

Spice (version 4.2.3, Dr. Mario Roederer, NIH, Bethesda, MD). Reported data have been 

corrected for background based on the negative (no peptide) control, and only responses 

with a total frequency above 0.10% of total CD8+ T cells (after background subtraction) 

were considered as positive responses. The contribution of perforin, grz A, grz B, or 

granulysin to all HIV- or CMV-specific CD8+ T cell responses was calculated 

individually in combination with IFN-γ+, TNFα+, or CD107+ cells. Therefore, in each 

instance, a total of 16 possible functional combinations were possible. Similar to the 

analysis carried out in Chapter 3, two combinations were ignored: (1) events negative for 

all parameters (i.e. IFN-γ-TNFα-CD107a-cytolytic protein-) and (2) cytolytic molecule 

single-positive cells (i.e. perforin single-positive cells, grz A single-positive cells, etc). 

 

Statistical analysis: All statistical analysis was performed using GraphPad Prism software 

(version 5.0a). Functionality was compared between study groups using nonparametric 

tests (Mann-Whitney when comparing only two groups; Kruskal-Wallis followed by a 

Dunns test for multiple comparisons when comparing three or more groups). Correlations 

were assessed using the Spearman test. 
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Table 2: Clinical parameters of the HIV-infected study cohort to examine T-bet  
               expression. 
 
 
 

 Elite 
Controllers 

Chronic 
Progressors 

HAART-
suppressed 

Number of subjects 20 18 19 

Plasma HIV RNA, 
median (IQR), 
copies/mL 

undetectable 28,908 
(15,904-49,686) undetectable 

CD4+ T cell count, 
median (IQR), 
cells/mm3 

772 
(664-1,133) 

622 
(461-734) 

675 
(493-868) 

Infection duration, 
median (IQR), 
years 

17 
(11-20) 

6 
(3-16) 

14 
(10-20) 

Duration of HAART 
treatment prior to 
specimen sample, 
median (IQR), 
years 

N/A N/A 5 
(4-7) 
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Results 

Expression pattern of cytotoxic granule-resident proteins in bulk CD8+ T cells 

 We recently reported that HIV-specific CD8+ T cells from elite controllers (EC) 

demonstrated an enhanced ability to express perforin directly ex vivo when compared to 

chronically-infected progressors (CP) (Hersperger et al., 2010). Here, we sought to gain a 

more complete understanding of CD8+ T cell cytotoxic potential among HIV-positive 

subjects that demonstrate differential control of virus replication. We studied CD8+ T cell 

responses using a flow cytometric staining panel that was designed to simultaneously 

measure the expression of the granule-associated proteins granzyme A (grz A), granzyme 

B (grz B), granulysin, and perforin (representative staining of each shown in Fig. 12A). 

Importantly, we used an anti-perforin antibody that can detect both pre-formed and newly 

upregulated perforin after activation (Hersperger et al., 2008; Hersperger et al., 2010; 

Makedonas et al., 2009). 

 Initially, we characterized the co-expression of these four molecules in resting 

bulk CD8+ T cells among HIV-negative donors (n=4; Fig. 12B). In general, grz A was 

the most ubiquitously expressed molecule; it was present in virtually every combination 

of cytolytic molecules, in agreement with previous findings (Harari et al., 2009; Takata 

and Takiguchi, 2006). Approximately 25% of the total CD8+ T cell compartment co-

expressed all four molecules while on average 50% of all CD8+ T cells expressed either 

none of the cytolytic proteins or grz A alone. The majority of granulysin was co-

expressed with grz A, grz B, and perforin; however, a sizeable fraction of granulysin was 

observed with either grz A or grz B but not perforin. Upon examination of the HIV-

positive cohort, the overall expression patterns of grz A, grz B, granulysin, and perforin  
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Figure 12: Expression profile of cytotoxic granule-resident proteins among human 
CD8+ T cells. (A) Representative staining of grz A, grz B, perforin, and granulysin in 
human lymphocytes. Events shown have been gated on CD3+ T cells. (B) The average 
expression profile of grz A, grz B, perforin, and granulysin in the total CD8+ T cell 
compartment is shown from four HIV-negative subjects. Permutations that comprised 
less than 0.5% of CD8+ T cells were omitted. (C) The proportion of the total CD8+ T cell 
pool that expressed grz A, grz B, granulysin, or perforin as single parameters was 
determined among EC, CP, and HAART-suppressed patients. For each cytolytic 
molecule, statistical analysis was carried out using one-way ANOVA tests 
(nonparametric; Kruskal-Wallis) followed by a Dunns test for multiple comparisons. 
(B and C) All bars represent the mean and error bars indicate the standard deviation. 
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in the total CD8+ T cell compartment was found to be similar (data not shown). 

Additionally, we found no statistically significant differences between EC, CP, or 

HAART-suppressed patients in the proportion of the total CD8+ T cell pool that 

expressed grz A, grz B, granulysin, or perforin as single parameters (Fig. 12C). 

HIV-specific CD8+ T cells in EC demonstrated a greater ability to express perforin and 

grz B compared to CP and HAART-suppressed subjects 

 We next identified HIV- and CMV-specific CD8+ T cell responses among 

subjects in the HIV-infected cohort by measuring the production of IFN-γ, TNFα, and 

degranulation following stimulation with overlapping peptide pools. The total CD8+ T 

cell response magnitude to HIV- or CMV-specific stimulation was similar between the 

groups (data not shown), consistent with previous studies (Emu et al., 2008; Gea-

Banacloche et al., 2000; Hersperger et al., 2010; Migueles et al., 2002). However, the 

Gag-specific response magnitude was significantly higher in EC than HAART-

suppressed individuals. As expected (Sylwester et al., 2005), the total CMV-specific 

response was greater than the HIV-specific response across all groups. 

 We next determined the contribution of grz A, grz B, granulysin, and perforin to 

the HIV-specific CD8+ T cell response in each subject. We consistently observed higher 

expression of perforin and grz B within responding cells from EC compared to CP or 

HAART-suppressed individuals (Fig. 13A shows example Nef-specific responses 

producing IFN-γ in a EC and CP subject; HAART-suppressed example not shown). 

However, co-expression of grz A and granulysin within responding cells appeared similar 

across the cohort (Fig. 13A). Upon examination of the entire HIV-infected cohort in a 

quantitative manner, perforin and grz B were found to comprise a significantly greater  
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Figure 13: HIV-specific CD8+ T cells from EC express higher amounts of perforin 
and granzyme B than progressors after short-term stimulation. (A) Representative 
flow cytometric plots showing perforin, grz B, grz A, and granulysin versus IFN-γ from 
one EC (top row) and CP (bottom row). Percentages represent the proportion of IFN-γ 
expressing cells that were either positive or negative for each cytolytic protein. (B and C) 
The relative contribution of perforin, grz B, grz A, and granulysin to (B) Gag- and (C) 
Nef-specific CD8+ T cell responses is shown for EC, CP, and HAART subjects. For each 
cytolytic molecule, statistical analysis was carried out using one-way ANOVA tests 
(nonparametric; Kruskal-Wallis) followed by a Dunns test for multiple comparisons. * 
denotes a p value < 0.05 and ** denotes a p value < 0.01. All bars represent the mean and 
error bars indicate the standard deviation. 
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proportion of the average Gag- (Fig. 13B) and Nef-specific (Fig. 13C) responses in EC 

compared to both CP and HAART-suppressed subjects; whereas the proportion of the 

HIV-specific CD8+ T cell response comprised of grz A or granulysin did not differ 

between the groups (Fig. 13B and 13C). We also examined the levels of grz A, grz B, 

granulysin, and perforin in CMV-specific responses in each group. We found no 

difference between EC and progressors in the proportion of CMV-specific responses 

comprised of any measured cytolytic molecule (data not shown). 

 In summary, HIV-specific CD8+ T cells from EC produced higher levels of 

perforin and grz B directly ex vivo compared to either CP or HAART subjects, but we 

found no difference in the levels of grz A or granulysin between any cohort group after 

either HIV- or CMV-specific stimulation. Due to the lack of difference in the levels of 

grz A or granulysin between the cohort groups, we largely focused on perforin and grz B 

for the remainder of the this study. 

T-bet expression was highly associated with effector CD8+ T cell phenotype and cytotoxic 

potential 

 Given that the T-box transcription factor T-bet has been shown to influence 

effector CD8+ T cell differentiation in mice (Intlekofer et al., 2007; Joshi et al., 2007; 

Sullivan et al., 2003) and previous work from our laboratory has associated T-bet with 

effector CD8+ T cells in humans (Makedonas et al., 2010), we hypothesized that T-bet 

may be influencing the effector differentiation and cytotoxic potential of HIV-specific 

CD8+ T cells within EC. Initially, we characterized in detail the memory phenotype and 

cytotoxic potential of human CD8+ T cells that express T-bet. We determined the 

expression patterns of T-bet among bulk CD8+ T cells from a group of HIV-negative 
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donors (n=8). As shown in Figure 14A, we consistently observed three populations of T-

bet in total CD8+ T cells:  (1) T-betnegative, (2) T-betdull, and (3) T-betbright. The T-betneg 

cells were almost exclusively CD27+CD45RO-, the majority of T-betdull cells were 

CD45RO+ with variable expression of CD27, and the T-betbright cells were primarily 

CD27-CD45RO- (Fig. 14B). Therefore, the majority of T-betbright cells displayed the 

typical phenotypic characteristics of differentiated effector cells (Hamann et al., 1997). 

 CD57 is a memory marker that is commonly associated with an effector 

phenotype (Brenchley et al., 2003; Chattopadhyay et al., 2009). CD8+ T cells that lacked 

or expressed intermediate levels of T-bet were virtually all CD57- (Fig. 14C). The 

majority of T-betbright cells also expressed CD57; however, a sizeable fraction were 

CD27-CD45RO+/-CD57- (Fig. 14C). Thus, CD57 was associated with the highest levels 

of T-bet expression, but T-betbright cells were not exclusively CD57+. 

 Collectively, these data suggest that most T-betbright CD8+ T cells are 

differentiated effector cells. Cells of this memory phenotype have been shown previously 

to express high levels of perforin and grz B (Chattopadhyay et al., 2009; Takata and 

Takiguchi, 2006). Consequently, T-betbright CD8+ T cells expressed perforin and grz B 

most abundantly compared to both the T-betneg or T-betdull CD8+ T cell populations 

(representative example shown in Fig. 14D). These associations between T-bet and 

cytolytic protein expression were maintained in the HIV-infected cohort as well 

(representative example shown in Fig. 14E). Furthermore, we found a highly significant 

positive correlation between T-betbright levels and the expression of both perforin and grz 

B in the total CD8+ T cell pool among the entire HIV-positive cohort (data not shown). 
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Figure 14: Effector CD8+ T cells contain the highest levels of T-bet, which is 
associated with perforin and granzyme B expression. (A) A representative flow 
cytometric plot of the T-bet staining profile within CD3+CD8+ T cells. (B) Representative 
plots of the memory distribution of the three T-bet populations, which were overlaid onto 
density plots (black shading) of total CD8+ T cells. Percentages represent the fraction of 
overlaid cells that fell within each quadrant. (C) The memory distributions of the three T-
bet populations were established in a quantitative manner for HIV-negative subjects 
(n=8). All bars represent the mean and error bars indicate the standard deviation. (D and 
E) Representative plots showing T-bet against both perforin and grz B among total CD8+ 
T cells from a (D) HIV-negative and (E) HIV-positive subject. Percentages represent the 
fraction of perforin or grz B that was either negative, dull, or bright for T-bet expression. 
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HIV-specific CD8+ T cells from EC expressed higher levels of T-bet than CP or HAART-

suppressed subjects 

 We next examined T-bet expression within the HIV-positive cohorts. A 

significantly higher fraction of Gag- and Nef-specific CD8+ T cell responses were T-

betbright in EC than in CP and/or HAART-suppressed individuals (Fig. 15A). However, 

there was no difference between the groups in T-bet expression among bulk CD8+ T cells 

(data not shown). We observed that a larger percentage of responding HIV-specific CD8+ 

T cells among EC fell within the T-betbright gate than progressors (example Nef responses 

shown in Fig. 15B) or HAART-suppressed subjects (data not shown). Consistent with the 

observations from total resting CD8+ T cells (Fig. 14), perforin+ HIV-specific CD8+ T 

cells from both EC and CP demonstrated higher levels of T-bet than perforin- cells 

(representative examples shown in Fig. 15C). Additionally, we found a positive 

correlation between the levels of Nef-specific perforin (Fig. 15D) and grz B (Fig. 15E) 

and the fraction of the Nef response that was T-betbright; however, we found no correlation 

between levels of Nef-specific grz A or granulysin and the fraction of the response that 

was T-betbright (data not shown). Finally, despite the difference in T-bet expression among 

HIV-specific responses between the cohort groups, no such difference in the levels of T-

bet was observed for CMV-specific CD8+ T cell responses between EC, CP, or HAART 

subjects (Fig. 15F), which suggests that progressors do not suffer from a global immune 

defect. 
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Figure 15: HIV-specific CD8+ T cells from EC express higher amounts of T-bet than 
progressors after short-term stimulation. (A) The fraction of Gag- or Nef-specific 
CD8+ T cells that fell within the T-betbright gate was determined for EC, CP, and HAART 
subjects. (B) Representative flow cytometric plots from an individual EC and CP 
showing the fraction of the Nef-specific response, as determined by the production of 
IFN-γ, that fell within the three T-bet gates. Events shown have been gated on CD8+ T 
cells. (C) Relative levels of T-bet expression are shown for perforin+IFN-γ+ (gray) and 
perforin-IFN-γ+ (red) CD8+ T cells from a Nef-specific response in the same EC (top) and 
CP (bottom) as shown in (B). (D and E) The proportion of Nef-specific (D) perforin and 
(E) grz B expression was plotted against the fraction of the response that was T-betbright 
within each EC and CP subject. HAART-suppressed individuals were not included. 
Spearman correlation tests (nonparametric; two-tailed) were performed to determine 
statistical significance. (F) The fraction of CMV-specific CD8+ T cells that fell within the 
T-betbright gate was determined for EC, CP, and HAART subjects. (A and F) Statistical 
analysis was carried out using one-way ANOVA tests (nonparametric; Kruskal-Wallis) 
followed by a Dunns test for multiple comparisons.* denotes a p value < 0.05 and ** 
denotes a p value < 0.01. All bars represent the mean and error bars indicate the standard 
deviation. 
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T-bet is rapidly upregulated along with perforin and grz B during virus-specific recall 

responses 

 Next, we determined how the expression of T-bet was modulated over the course 

of an antigen-specific recall response. We began by examining two HIV-negative donors 

in whom we had previously identified high magnitude peptide-specific CD8+ T cell 

responses. ND172 had a CD8+ T cell response directed against the HLA-B7-restricted 

epitope TPRVTGGGAM from the HCMV pp65 tegument protein. Approximately 10% 

of all CD8+ T cells were TPR-specific by tetramer staining directly ex vivo in this donor 

(data not shown). The second subject, ND232, had a CD8+ T cell response to the HLA-

B8-restricted epitope RAKFKQLL derived from the EBV BZLF1 protein. Approximately 

5% of total CD8+ T cells were RAK-specific by tetramer staining at baseline (data not 

shown). Prior to in vitro stimulation, a much higher fraction of the TPR-specific cells 

compared to the RAK-specific cells were positive for perforin and grz B (Fig. 16A). 

Additionally, 84% of TPR-specific cells were T-betbright at baseline, whereas only 25% of 

RAK-specific cells achieved a similar level of T-bet expression (Fig. 16A). Of the T-

betdull RAK-specific cells, only 9% were perforin+grz B+, whereas 72% of T-betbright 

RAK-specific cells were positive for both cytolytic proteins (Fig. 16B). 

 We subsequently performed in vitro proliferation assays using CFSE-labeled 

PBMC and examined levels of T-bet, perforin, and grz B within antigen-specific cells. 

After 24 hours, there was complete loss of the ability to identify TPR- or RAK-specific 

CD8+ T cells using tetramer (data not shown). Thus, in order to identify antigen-specific 

cells, we performed overnight IFN-γ ICS assays using TPR or RAK peptides. There were 

no substantial changes in overall T-bet, perforin, or grz B levels at this time point  
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Figure 16: Baseline staining for T-bet, perforin, and granzyme B in antigen-specific 
CD8+  T cells prior to stimulation. (A) The degree of grz B, perforin, and T-betbright 
positivity was determined at baseline for TPR- and RAK-specific CD8+ T cells (labeled 
by peptide:MHC-I tetramer) from two HIV-negative donors, ND172 and ND232, 
respectively. Percentages represent the fraction of tetramer+ cells that fell within each 
gate. (B) Perforin and granzyme B expression are limited to RAK-specific cells that 
express the highest amounts of T-bet. RAK-specific CD8+ T cells were identified at 
baseline in ND232 by tetramer staining as in (A). RAK-specific cells that were T-betdull 
(red) or T-betbright (yellow) were overlaid onto a density plot (black shading) of total 
CD8+ T cells showing perforin vs. grz B expression. Percentages represent the fraction of 
overlaid cells that fell within each quadrant. 
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compared to the expression profiles at baseline (data not shown). This result was 

confirmed in five additional HIV-negative subjects by comparing T-bet expression levels 

at six and 24 hours after SEB stimulation in responding CD8+ T cells (data not shown). 

 After two days, there was still no detectable tetramer staining (data not shown); 

consequently, we carried out peptide re-stimulation ICS assays to identify RAK- and 

TPR-specific cells. As shown in Figure 17A, we observed a dramatic change in the 

expression of T-bet, perforin, and grz B within RAK-specific cells. By 48 hours after 

initial activation, all detectable RAK-specific cells were now positive for T-bet, perforin, 

and grz B; a similar phenomenon was also observed for TPR-specific cells (data not 

shown). Interestingly, the median fluorescence intensity (MFI) of T-bet within RAK-

specific cells at day two was higher than the MFI of the T-betbright population at baseline 

in ND232 (compare Fig. 17A to 16A). In fact, an apparent fourth population of T-bet-

expressing cells (T-bet+++) appeared by 48 hours (Fig. 17A); this phenomenon was not 

observed in the negative (DMSO/no peptide) control (data not shown). The ability to 

stain RAK-specific cells with tetramer returned by day three (Fig. 17B). Consistent with 

the 48 hour time point, all RAK tetramer+ cells were grz B+, perforin+, and T-bet+++; 

peptide re-stimulation at day three revealed similar results (Fig. 17C). Notably, the 

appearance of a T-bet+++ population also occurred in ND172 after TPR peptide 

stimulation (data not shown). 

 We next examined the relationship between cell division and the modulation of T-

bet, perforin, and grz B. At day five, we noticed that even the small number of RAK-

specific cells that did not divide had upregulated T-bet, perforin, and grz B to a similar 

level as cells that had diluted CFSE (Fig. 18A), which is consistent with data from  
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Figure 17: Dramatic concurrent increase in T-bet, perforin, and granzyme B 
expression occurs shortly after antigen-specific stimulation. (A-C) PBMC from 
ND232 were incubated for either (A) two or (B and C) three days in the presence of 
RAK peptide. The levels of grz B, perforin, and T-bet are shown within RAK-specific 
cells, which were identified either by (A and C) peptide re-stimulation for six hours 
followed by staining for IFN-γ or by (B) tetramer staining. All events shown have been 
gated on CD8+ T cells. 
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Figure 18: The kinetics of T-bet, perforin, and granzyme B upregulation are tightly 
linked during an antigen-specific recall response. (A) CFSE-labeled PBMC from 
ND232 were incubated for 5 days in the presence of RAK peptide and the expression of 
grz B, perforin, and T-bet was subsequently determined within RAK-specific cells. All 
flow cytometric plots show only RAK-specific cells, as determined by tetramer staining. 
Percentages represent the fraction of tetramer+ cells that fell within each quadrant. (B) 
CFSE-labeled PBMC from ND172 were incubated for 5 days in the presence of TPR 
peptide. The median fluorescence intensity (MFI) of grz B, perforin, and T-bet within 
TPR-specific cells was plotted against each generation number, which was established 
partly based on the dilution of CFSE dye by the FlowJo analysis software. 
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mouse models showing T-bet upregulation after TCR stimulation in the absence of 

proliferation (Lighvani et al., 2001). We gated on each successive generation (zero 

through six) of tetramer+ cells at day five and plotted the MFI of T-bet, perforin, and grz 

B against the respective division number. The kinetics of T-bet, perforin, and grz B 

upregulation were tightly linked for both TPR-specific cells in ND172 (Fig. 18B) and 

RAK-specific cells in ND232 (data not shown). 

HIV-specific CD8+ T cells from EC display higher T-bet expression after proliferation 

 We next studied the levels of T-bet, perforin, grz B, and grz A after proliferation 

of HIV-specific CD8+ T cells. We compared the expression of these proteins in a subset 

of EC and CP following five days of in vitro stimulation with various HIV peptide pools. 

As expected (Horton et al., 2006; Migueles et al., 2002), HIV-specific CD8+ T cells from 

EC demonstrated a greater proliferative ability than CP (representative examples shown 

in Fig. 19A). A median of 1.01% of CD8+ T cells diluted CFSE after HIV-specific 

stimulation in EC whereas only a median of 0.41% of CD8+ T cells did so in CP (p=0.03; 

data not shown). A significantly higher fraction of IFN-γ+CFSElow cells from EC 

expressed perforin and grz B compared to CP at day five (Fig. 19B). However, there was 

no difference in the upregulation of grz A between the two groups (Fig. 19B), in 

agreement with a prior report (Migueles et al., 2008). Notably, there was significantly 

higher levels of T-bet within IFN-γ+CFSElow cells from EC compared to CP (Fig. 19C 

and 19D). Additionally, we found a positive correlation between the levels of T-bet 

within IFN-γ+CFSElow cells and the corresponding amount of perforin and grz B 

expression for each respective subject (data not shown). 
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Figure 19: HIV-specific CD8+ T cells from EC express higher amounts of T-bet than 
progressors after proliferation. (A) CFSE-labeled PMBC from a subset of EC and CP 
were stimulated for 5 days in the presence of a pool of Nef, Gag, or optimal 9-11mer HIV 
peptides. Representative flow cytometric plots show HIV-specific CD8+ T-cells, as 
determined by the production of IFN-γ following re-stimulation, that have proliferated. 
Percentages represent the fraction of total CD8+ T-cells within each gate. (B) The 
proportion of IFN-γ+CFSElow HIV-specific CD8+ T-cells positive for perforin, grz B, and 
grz A was determined on day five for each EC and CP subject. (C and D) T-bet 
expression was also determined on day five following HIV-specific stimulation with 
levels reported as the (C) percentage or (D) MFI among IFN-γ+CFSElow HIV-specific 
CD8+ T-cells. (D) The reported values indicate the difference between the T-betneg 
population and the T-bet MFI of the IFN-γ+CFSElow cells for each subject. (B-D) Mann-
Whitney tests (nonparametric; two-tailed) were performed to compare EC to CP for each 
functional parameter. ** denotes a p value < 0.01. Error bars indicate the mean and 
standard deviation. 
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Discussion 

 Several lines of evidence have suggested that the presence and maintenance of 

effector function by HIV-specific CD8+ T cells is critical for control of viral replication. 

In this study, we comprehensively examined cytolytic protein expression by HIV-specific 

CD8+ T cells. We found that HIV-specific CD8+ T cells from EC demonstrated higher 

perforin and grz B expression than HIV-infected progressors or HAART-suppressed 

individuals; however, we found no difference in the levels of grz A or granulysin 

between the groups. We observed that T-bet, a critical transcriptional regulator of effector 

CD8+ T cell differentiation and function (Intlekofer et al., 2007; Joshi et al., 2007; 

Sullivan et al., 2003), was expressed to a higher degree in HIV-specific CD8+ T cells 

from EC compared to progressors or HAART suppressed subjects. Moreover, the link 

between T-bet, perforin, and grz B was observed in both short-term ICS assays and 

during proliferation of antigen-specific CD8+ T cells. 

 As mentioned above, we observed higher expression of perforin and grz B from 

HIV-specific CD8+ T cells in EC compared to progressors using ex vivo ICS assays. It is 

known that there is a tendency for perforin-expressing CD8+ T cells to co-express grz B 

both at rest (Takata and Takiguchi, 2006) and after activation (Makedonas et al., 2010). 

In agreement with this, we found a positive correlation between the expression of 

perforin and grz B within activated CD8+ T cells (data not shown). These data suggest 

that HIV-specific CD8+ T cells in EC have a superior cytotoxic potential, which can be 

attributed to their higher expression of perforin and grz B. Indeed, recent work from 

Migueles and colleagues (Migueles et al., 2008) demonstrated that higher amounts of 

perforin and grz B within in vitro expanded HIV-specific CD8+ T cells translated into an 
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enhanced ability to lyse infected targets. Therefore, our findings suggest that HIV-

specific CD8+ T cells in EC have a higher capacity to eliminate HIV-infected targets than 

progressors due to their higher expression of cytolytic molecules. Yet the fact that there 

was no difference in the production of perforin or grz B by CMV-specific CD8+ T cells 

between EC and CP implies an HIV-specific phenomenon rather than a global deficiency 

in effector function within progressors. Additionally, our results indicate that low HIV 

viral load by itself (through the use of HAART) is unlikely to be an explanation for the 

higher levels of perforin and grz B seen in EC, a finding that is consistent with previous 

reports (Hersperger et al., 2010; Migueles et al., 2009). 

 HIV-specific CD8+ T cells from CP contain more grz A on average than perforin 

or grz B. While HIV-specific CD8+ T cells from EC certainly do express grz A, they 

generally contain higher amounts of perforin and grz B relative to progressors. Notably, 

prior research has implicated grz B as the major effector granzyme that induces target cell 

death, whereas grz A has been shown to be less cytotoxic or not at all (Pardo et al., 

2009a). Accordingly, Harari and colleagues reported a positive correlation between target 

cell lysis and the levels of perforin and/or grz B in virus-specific CD8+ T cells (Harari et 

al., 2009). However, no relationship was found between levels of grz A and target cell 

destruction in the same report. Therefore, HIV-specific CD8+ T cells from EC in general 

contain higher amounts of the cytotoxic molecules previously shown to be crucial to 

target cell cytolysis, which most likely explains the increased cytotoxic capabilities of 

HIV-specific CD8+ T cells from EC (Chen et al., 2009; Migueles et al., 2008; O'Connell 

et al., 2009b; Saez-Cirion et al., 2007). 
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 We recently reported that there is an enrichment of HIV-specific effector CD8+ T 

cells in EC that express perforin (Hersperger et al., 2010). The memory phenotype of 

these perforin-expressing cells was primarily CD27-CD45RO-CD57+/-. The fact that T-

betbright cells displayed a strikingly similar memory phenotype - combined with the 

positive correlation with perforin - led us to hypothesize that there may be higher levels 

of T-bet within HIV-specific CD8+ T cells from EC compared to CP. While originally 

discovered as the major determinant of Th1 lineage commitment in CD4+ T cells (Szabo 

et al., 2000), T-bet has subsequently been shown to be important for the differentiation 

and function of effector CD8+ T cells (Intlekofer et al., 2007; Joshi et al., 2007; Sullivan 

et al., 2003). In this study, we identified three distinct populations of T-bet within human 

CD8+ T cells: a bright, dull, and negative population. Interestingly, we found that the T-

betbright population expressed the highest levels of perforin and granzyme B. Therefore, 

high T-bet expression is indicative of elevated cytotoxic potential within human antigen-

specific CD8+ T cells. The association we found between T-bet, perforin, and grz B in 

resting or short-term activated CD8+ T cells was accentuated following in vitro 

proliferation. For example, EBV-specific CD8+ T cells from one of our HIV-negative 

donors demonstrated a dramatic capacity to simultaneously upregulate T-bet, perforin, 

and grz B within two days of in vitro activation despite initially expressing low levels of 

these proteins. Additionally, we observed that dividing HIV-specific CD8+ T cells from 

EC displayed a greater ability than CP to upregulate T-bet, perforin, and grz B after in 

vitro stimulation, an extension of the prior work performed by Migueles, Connors, and 

colleagues (Migueles et al., 2002; Migueles et al., 2008). Collectively, these data suggest 

that the underlying defect(s) in effector function by HIV-specific CD8+ T cells from 
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progressors lie not in the cytolytic proteins themselves, but rather in the elements 

controlling their expression, including T-bet. 

 In summary, T-bet appears to be an excellent marker for the presence of effector 

function and cytotoxic capacity in the monitoring of HIV vaccine and therapeutic efforts. 

Our work reinforces the importance of studying the regulatory elements that influence 

effector function and the expression of cytolytic molecules, which is fortunately an area 

of increasing attention (Araki et al., 2008; Cruz-Guilloty et al., 2009; Glimcher et al., 

2004; Intlekofer et al., 2005; Lu et al., 2003; Pearce et al., 2003; Pipkin et al., 2010a; 

Taylor et al., 2010). Additionally, modulation of T-bet may lead to enhanced effector 

activity against HIV with the goal of improved clinical outcomes and a delay in disease 

progression among infected individuals.  
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CHAPTER 5 

EPILOGUE 

 

Implications and considerations 

 At the beginning of this work in Chapter 2, we described the rapid upregulation of 

perforin following activation as a novel functional capability of human antigen-specific 

CD8+ T cells. We characterized the flow cytometric detection of de novo perforin 

synthesis by using an anti-perforin monoclonal antibody, generated against a recombinant 

form of the protein, that is able to bind to a conformationally-independent epitope and, 

therefore, amenable to intracellular cytokine staining (ICS) formats. The ability to detect 

multiple forms of perforin suggests that many aspects of its protein expression, 

trafficking, structure, and mechanism of action remain to be elucidated. Indeed, we have 

recently published that newly produced perforin can traffic directly to the immunological 

synapse without first being loaded into cytotoxic granules (Makedonas et al., 2009). 

 Since we are primarily interested in studying the immune response in humans to 

viral pathogens, we next made use of this ability to measure perforin upregulation in a 

large cohort of HIV-infected patients that differentially controlled viral replication. This 

was a unique collection of infected individuals whereby some controlled HIV naturally to 

undetectable levels (elite controllers; EC), maintained viral replication within a low but 

detectable range (viremic controllers; VC), demonstrated high viral loads with declining 

CD4+ T cell levels (chronic progressors; CP), displayed high levels of viremia but were 

nonprogressors in clinical terms (viremic nonprogressors; VNP), or controlled HIV to 

undetectable levels only because of drug therapy (HAART-suppressed). Due to the 
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central role played by perforin in cell-mediated cytotoxicity and target cell destruction, 

we hypothesized that HIV-specific CD8+ T cells among EC may have an enhanced 

capacity to upregulate this protein compared to the other cohort groups that are unable to 

control HIV. As reported in Chapter 3, this is indeed what we observed. 

 While the majority HIV-infected individuals progress to AIDS with the first 

decade of infection, EC rarely develop opportunistic infections and also typically display 

sustained control over viral replication for many years. However, the mechanism(s) to 

explain their ability to naturally control HIV has remained largely unknown. Recent 

evidence has shown that HIV-specific CD8+ T cells from EC exhibit enhanced 

functionality compared to individuals with progressive disease and, therefore, may play 

an important role in the favorable clinical outcomes witnessed among EC. We showed in 

this work that the ability to control HIV replication in EC is associated with the ex vivo 

upregulation of perforin, a critical molecule that enables CD8+ T cells to directly kill 

infected cells. Thus, we identified a functional capability of CD8+ T cells, readily 

measured by standard flow cytometric assays, that potentially has a direct impact on HIV 

replication in vivo. Collectively, our findings point to the importance of measuring the 

effector capability of immune responses and may even provide an important qualifier for 

future HIV vaccine research. 

 The study of mouse immunology has greatly advanced our understanding of the 

generation and maintenance of CD8+ T cell cytolytic functionality. Through the ability to 

knock-out certain genes and manipulate various aspects of the mouse immune system, 

some of the critical factors that influence effector differentiation and cytolytic capacity 

have been elucidated (Glimcher et al., 2004). Two T-box transcription factors, T-bet and 
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Eomesodermin (Eomes), have been shown in the murine system to be particularly critical 

for the expression of perforin, granzyme B, and other features of effector CD8+ T cells. 

As reported in Chapter 4, we examined the expression of T-bet within human CD8+ T 

cells in both a global and virus-specific manner. 

 Similar to the previous study, we assembled a cohort of HIV controllers (EC), 

non-controllers (CP), and HAART-suppressed subjects. We studied the expression of T-

bet within CD8+ T cells together with a collection of granule-resident proteins: perforin, 

granzyme A, granzyme B, and granulysin. We found that when compared to the other 

cohort groups, HIV-specific CD8+ T cells from EC demonstrated a superior ability to 

express perforin [thereby corroborating the results of our previous study] and granzyme B 

but with no detectable difference in the levels of granzyme A or granulysin. We also 

observed higher levels of T-bet in HIV-specific CD8+ T cells from EC, with an ensuing 

positive correlation between T-bet and levels of both perforin and granzyme B. 

Moreover, HIV-specific CD8+ T cells in EC upregulated T-bet to a greater extent than 

progressors after in vitro proliferation with concomitant upregulation of perforin and 

granzyme B. Therefore, these results suggest that T-bet may be playing an important role 

in driving effector function in human CD8+ T cells and its modulation may lead to 

enhanced effector activity against HIV. 

 Although the biology of T-bet has been well studied in experimental murine 

models, the significance of this transcription factor in the context of human infection is 

much less well defined. Here, we have demonstrated an association between T-bet 

expression within HIV-specific CD8+ T cells and the ability to control HIV replication.  
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Notably, a recently published study from van Lier and colleagues that examined CMV-

specific CD8+ T cells corroborates our findings from the setting of HIV infection. These 

authors performed a comprehensive longitudinal analysis of CMV-specific CD8+ T cell 

populations from transplant patients (seropositive donor organ into a seronegative 

recipient) after defined primary infection with CMV (Hertoghs et al., 2010). At all stages 

CMV infection, it was found that CMV-specific CD8+ T cells expressed T-bet in parallel 

with the continuous expression of perforin and granzyme B. Therefore, it appears that T-

bet is tightly linked to the effector function of human CD8+ T cells in the setting of 

multiple viral infections. These data reinforce the importance of studying the regulatory 

elements that influence effector function and the expression of cytolytic molecules. 

 Despite high rates of seroprevalence in humans, CMV infection is largely benign 

except in immunocompromised individuals (Britt, 2008). CMV-specific CD8+ T cell 

responses are among the highest magnitude immune responses witnessed in humans 

(Sylwester et al., 2005) and are thought to play a major role in keeping the replication of 

CMV in check. CD8+ T cells specific for CMV antigens have been well studied and are 

considered as prototypical effectors in many studies. They maintain high levels of 

perforin and granzymes (Chattopadhyay et al., 2009; Harari et al., 2009) and display 

phenotypic characteristics of differentiated effector CD8+ T cells [i.e. downmodulation of 

CD27 and CD28 and surface expression of CD57 and CD45RA] (Appay et al., 2002; 

Kern et al., 1999). Due to the effector status of CMV-specific CD8+ T cells, they 

generally lack lymphoid homing capability and instead traffic to peripheral tissues and 

other extralymphoid sites (Pipeling et al., 2008; Pitcher et al., 2002). 
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 The effector-like nature of CMV-specific CD8+ T cells, coupled with their ability 

to seed peripheral sites, has led some researchers to propose using replication-competent 

CMV vectors as a vaccination strategy to induce anti-HIV T cell responses (Hansen et al., 

2009). Broadly speaking, the major goal of a T cell-based vaccine is to elicit HIV-

specific CD8+ T cells that can limit acute-phase HIV replication, thereby decreasing 

subsequent chronic-phase viremia. Importantly, a lower set point viral load is associated 

with improved clinical outcomes, longer duration of AIDS-free survival, and a reduced 

possibility of transmission to an uninfected person. Studies of vaccinated monkeys 

challenged with SIV have supported the concept that vaccine-induced T cells can restrict 

primary infection or partially control chronic viral replication (Horton et al., 2002; Letvin 

et al., 2006; Liu et al., 2009; Wilson et al., 2006). Unfortunately, a recent attempt to 

induce HIV-specific T cells in humans using replication-incompetent Adenovirus vectors 

failed to achieve similar results; indeed, the vaccine did not show any protection or 

efficacy (Buchbinder et al., 2008). 

 The vast majority of current T cell vaccine platforms use nonpersistent vectors 

that only produce antigens for a limited time. Consequently, once the vaccine-associated 

antigens disappear, the elicited T cells circulate primarily within lymphoid tissues and 

achieve many characteristics of central memory cells (Robinson and Amara, 2005). 

While central memory T cells generally demonstrate a high proliferative ability upon 

antigen re-exposure (Wherry et al., 2003), they do not possess immediate effector 

function and require differentiation before trafficking to peripheral tissues (Sallusto et al., 

2004). Additionally, central memory CD8+ T cells express extremely low levels of 

perforin and granzyme B and do not demonstrate immediate cytotoxic capacity (Takata 
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and Takiguchi, 2006; Wolint et al., 2004). In contrast, vaccine strategies that provide a 

persistent level of antigen, such as live-attenuated viral vectors, maintain differentiated 

effector and effector memory T cells in extralymphoid sites (Gauduin et al., 2006; 

Robinson and Amara, 2005). Since attenuated strains of HIV carry many risks, some 

groups have turned to persistent vectors like CMV to produce effector T cells that persist 

long-term in peripheral sites (Pipeling et al., 2008; Pitcher et al., 2002). 

 Given that HIV is predominantly transmitted via mucosal routes, the presence of 

preexisting HIV-specific effector CD8+ T cells at the portal of entry could be profound in 

terms of limiting the initial burst of viremia during primary infection and subsequent 

peripheral dissemination. It has already been established that effector memory T cells are 

the principal T cell population in mucosal sites (Grossman and Picker, 2008; Picker et al., 

2006), and recent work has shown that in the majority of new HIV infections a single 

founder virus is transmitted to previously uninfected hosts (Keele et al., 2008). Therefore, 

an effector HIV-specific T cell response at the outset of mucosal infection may improve 

vaccine efficacy when the virus is possibly most susceptible to immune-mediated control. 

As a proof-of-concept for this idea, Picker and colleagues exploited rhesus CMV to 

induce durable SIV-specific CD8+ and CD4+ effector memory T cells in rhesus macaques 

(Hansen et al., 2009). Compared to control monkeys, vaccinated macaques showed 

increased resistance to acquisition upon repeated low-dose intrarectal challenge with 

SIVmac239, including four animals who completely controlled initial infection without 

systemic dissemination.  

 Collectively, the results reported in this thesis - together with a growing amount 

of data from other groups (Hansen et al., 2009; Hertoghs et al., 2010; Migueles et al., 
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2008; Vine et al., 2004)  - indicate that effector function by anti-viral CD8+ T cells is 

crucial for the containment of viral replication in the context of several human pathogens. 

We found that T-bet is associated with increased expression of perforin and granzyme B 

within antigen-specific CD8+ T cells. Notably, higher levels of all three of these proteins 

are found within HIV-specific CD8+ T cells from patients who demonstrate durable long-

term control over HIV compared to patients with progressive disease and detectable viral 

loads. The importance of effector cells in the control of HIV infection has been 

experimentally supported by recent observations from Picker and colleagues who found 

that a rhesus CMV-based SIV vaccine vector could stimulate protective effector SIV-

specific T cells (Hansen et al., 2009). To date, this study by Hansen and colleagues 

provides some of the best evidence that effector T cells can actually prevent systemic 

dissemination following acute SIV infection, and our results support the notion that 

effector T cells can be vital to the containments of viral replication during the chronic-

phase of infection. 

 

Summary and future directions 

 Throughout this thesis, we attempted to stress the fact that we observed a strong 

correlation between high levels of T-bet and the presence of perforin and granzyme B 

within both resting and activated human CD8+ T cells. For example, we showed in 

Figure 15C that antigen-specific CD8+ T cells expressing perforin consistently contain 

more T-bet than perforin-negative responding cells. The same antigen-specific CD8+ T 

cell responses can also be analyzed in a reciprocal fashion, as presented in Figure 20 

below. We examined expression of perforin and granzyme B within T-betbright versus  
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T-betdull/neg responding Nef-specific CD8+ T cells among EC subjects (Fig. 20A; similar 

trends were also observed for Nef-specific responses in progressors but that data is not 

shown). Notably, we consistently observed a higher degree of perforin and granzyme B 

production from T-betbright Nef-specific CD8+ T cells (Fig. 20B). Upon quantification of 

all Nef responses among EC, a significantly higher fraction of T-betbright CD8+ T cells 

were positive for both perforin and granzyme B compared to T-betdull Nef-specific CD8+ 

T cells (Fig. 20C). We also found similar results when examining Gag-specific responses 

in the HIV-infected cohorts (data not shown). 

 Further studies need to be done that manipulate T-bet expression (knockdown or 

overexpression) within human CD8+ T-cells to formally show a causative role for T-bet 

in promoting the expression of perforin and/or granzyme B. However, our data does 

show a very tight association between T-bet and the presence of these cytolytic molecules 

(Fig. 20). Therefore, at the very least, T-bet could be used as a marker for cytotoxic 

potential and effector status in the monitoring of human immune responses. While we 

focused solely on T-bet expression within this study, future studies should address the 

potential contribution of other regulatory factors to the expression of cytolytic molecules 

in the context of HIV infection or other human pathogens. For example, several groups 

have reported that Eomesodermin, a T-box family member with T-bet, can be important 

to effector differentiation in the murine system, as we previously mentioned. Given the 

reduced T-bet expression among HIV-specific CD8+ T cells from CP, it is possible that 

therapeutic manipulation of T-bet expression in progressors may lead to improved in vivo 

control over HIV replication and improved clinical outcomes. 
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Figure 20: Higher levels of T-bet within Nef-specific CD8+ T cells are associated 
with greater perforin and granzyme B production. (A) Representative flow cytometric 
plot from an EC subject showing a Nef-specific response, as determined by the 
production of IFN-γ. The T-betbright and T-betdull/neg responding cells have been 
highlighted by blue and orange boxes, respectively. Events shown have been gated on 
CD8+ T cells. (B) The relative levels of perforin and granzyme B are shown for the T-
betbright and T-betdull/neg cells as shown in (A). (C) The fraction of T-betbright and T-
betdull/neg Nef-specific CD8+ T cells positive for perforin or granzyme B expression was 
determined among all EC subjects. Mann-Whitney statistical tests (nonparametric; two-
tailed) were performed to determine statistical significance. *** denotes a p value < 
0.001. Error bars indicate the mean and standard deviation. 
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 Future work needs to uncover why EC demonstrate a greater propensity for T-bet 

expression - and concomitant upregulation of perforin and granzyme B - among HIV-

specific CD8+ T cell responses compared to progressors. We consistently observe three 

populations of T-bet within human CD8+ T cell populations, but only the highest levels 

of T-bet expression are associated with the presence of perforin or granzyme B. 

Therefore, it may be the relative concentration of T-bet in relation to other transcription 

factors that determines effector function and/or differentiation. Also, perhaps there is a 

threshold level of T-bet necessary to turn on the production of various effector proteins, 

including perforin and granzyme B. 

 This work raises many questions with regard to the reason behind the higher T-bet 

expression within HIV-specific CD8+ T cells from EC compared to CP. The perforin and 

granzyme B loci with EC may be in a more “open” configuration of chromatin, which 

allows for a higher number of T-box binding sites in the upstream regulatory regions of 

these cytolytic genes to be available for T-bet binding. Additionally, the increased levels 

of antigen load and immune activation found in progressive HIV infection may 

negatively impact the ability for T-bet production within HIV-specific CD8+ T cells from 

CP. In summary, this thesis confirms and extends the findings of previous groups 

showing that HIV-specific CD8+ T cells are important to the containment of HIV 

replication within EC, but further research is needed to understand the mechanism(s) 

behind the increased expression of T-bet, perforin, and granzyme B exhibited by EC. 

Because there is currently no effective vaccine against HIV, these issues become all the 

more important to the treatment and possible prevention of HIV worldwide. 
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