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Abstract
The efforts described in this dissertation initially focus on the asymmetric coupling of phenols. We have
developed Schiff base vanadium catalyst for the oxidative coupling of phenols with high reactivity and
enantioselectivity. To the best of our knowledge, this example constitutes the first highly selective asymmetric
coupling of phenols. Several substrates were coupled with our vanadium catalyst with good enantioselectivity
(72-89% ee).

The first simple catalystic system that uses atom-economical oxygen as the terminal oxidant to accomplish
selective ortho−ortho, ortho−para, or para−para homo-couplings of phenols was developed. Chromium salen
catalysts have been discovered and verified as uniquely effective in the cross-coupling of different phenols with
high chemo- and regio-selectivity. A broad scope of phenol substrates was found for these reaction conditions
giving cross-coupling products with good yield (up to 88%). In order to understand the mechanism of cross-
coupling reaction, spectroscopic methods, additive experiments, SAR studies, and kinetic experiments were
performed and a mechanism was postulated.

Finally, we established an efficient route for the total synthesis of honokiol by utilizing a novel disconnection
that transits new structures. This five step (six chemical reactions) synthesis was initiated by oxidative cross-
coupling of inexpensive commercial phenols with high yield (91%). Following retro Friedel-Crafts alkylation,
a protection reaction proceeded smoothly with excellent yield (89% for three steps). The remaining steps of
radical bromination, Kumada coupling and demethylation were each optimized. The total yield over five steps
was 34% and gram-scale reactions were conducted for each step.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Chemistry

First Advisor
Marisa C. Kozlowski

Subject Categories
Chemistry

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1838

http://repository.upenn.edu/edissertations/1838?utm_source=repository.upenn.edu%2Fedissertations%2F1838&utm_medium=PDF&utm_campaign=PDFCoverPages


SELECTIVE OXIDATIVE HOMO- AND CROSS-COUPLING OF PHENOLS 

Young Eun Lee 

A DISSERTATION 

in 

Chemistry 

Presented to the Faculties of the University of Pennsylvania 

in 

Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

2016 

Supervisor of Dissertation  

________________________ 

Dr. Marisa C. Kozlowski 

Professor of Chemistry 

Graduate Group Chairperson 

________________________ 

Dr. Gary A. Molander 

Hirschmann-Makineni Professor of Chemistry 

Dissertation Committee  

Dr. Patrick J. Walsh, Professor of Chemistry 

Dr. Madeleine M. Joullié, Professor of Chemistry 

Dr. David M. Chenoweth, Assistant Professor of Chemistry 



 ii 

 

 

 

 

 

 

 

 

 

 

To my family, for all of their love and support 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii 

ACKNOWLEDGMENTS 

This dissertation is the culmination of my whole graduate research, and there are 

numerous people to whom I owe sincere thanks.  

I would like to thank my advisor, Marisa C. Kozlowski, for her guidance and 

suggestions. She is a great scientist and a mentor who I always yearn to be. I have always 

gained a certain degree of freedom to pursue my ideas and to help steer the projects into 

other directions. I am very grateful to have been a part of the Kozlowski group. Past and 

present, I could not ask for a better group of friends and coworkers to work with. I 

appreciate everyone’s suggestions and input they have provided towards my research. My 

committee members, Professors Patrick Walsh, Madeleine Joullié, and David Chenoweth 

have provided much insight and suggestions for my projects not only during my annual 

committee meetings but also all the time. 

I greatly acknowledge Pastor Ock Soo Park, my spiritual mentor. He guided me to 

become a true Christian. I am also thankful to my spiritual family in Good News 

Philadelphia Church. Finally, I would like to acknowledge all of my family, my parents, 

brother, my precious three children Mieun, Jinuk and Younguk, and especially my 

husband Heeoon Han, whose love and support helped me get through graduate school 

and complete my degree.  

“The Lord is my shepherd; I shall not want.”  (Psalm 23:1) 



 iv 

ABSTRACT 

SELECTIVE OXIDATIVE HOMO- AND CROSS-COUPLING OF PHENOLS 

Young Eun Lee 

Professor Marisa C. Kozlowski 

The efforts described in this dissertation initially focus on the asymmetric 

coupling of phenols. We have developed Schiff base vanadium catalyst for the oxidative 

coupling of phenols with high reactivity and enantioselectivity. To the best of our 

knowledge, this example constitutes the first highly selective asymmetric coupling of 

phenols. Several substrates were coupled with our vanadium catalyst with good 

enantioselectivity (72-89% ee). 

The first simple catalystic system that uses atom-economical oxygen as the 

terminal oxidant to accomplish selective ortho−ortho, ortho−para, or para−para homo-

couplings of phenols was developed. Chromium salen catalysts have been discovered and 

verified as uniquely effective in the cross-coupling of different phenols with high chemo- 

and regio-selectivity. A broad scope of phenol substrates was found for these reaction 

conditions giving cross-coupling products with good yield (up to 88%). In order to 

understand the mechanism of cross-coupling reaction, spectroscopic methods, additive 

experiments, SAR studies, and kinetic experiments were performed and a mechanism 

was postulated. 
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Finally, we established an efficient route for the total synthesis of honokiol by 

utilizing a novel disconnection that transits new structures. This five step (six chemical 

reactions) synthesis was initiated by oxidative cross-coupling of inexpensive commercial 

phenols with high yield (91%). Following retro Friedel-Crafts alkylation, a protection 

reaction proceeded smoothly with excellent yield (89% for three steps). The remaining 

steps of radical bromination, Kumada coupling and demethylation were each optimized. 

The total yield over five steps was 34% and gram-scale reactions were conducted for 

each step.  
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CHAPTER 1.  Asymmetric Oxidative Coupling of Phenols 

1.1. Background 

Bisphenolic compounds represent an important class of natural products, the 

inherent reactivity of which causes them to be both important synthetic intermediates and 

components in biologically active molecules.
1
 Many chiral bisphenolic natural products

are known that also contain a stereogenic axis,
2

 which is presumably generated

biosynthetically via enantioselective oxidative coupling. Therefore, any methods to 

generate bisphenols in high yield and high enantioselectivity would be very valuable to 

the synthetic community. 

Modern methods specific to the asymmetric synthesis of bisphenols include the 

dynamic kinetic resolution of biaryl lactones via the addition of chiral nucleophiles,
3
 the

(1) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemair, M. “Aryl-Aryl Bond Formation One Century 

after the Discovery of the Ullmann Reaction” Chem. Rev. 2002, 102, 1359-1470. 

(2) (a) Pal, T.; Pal, A. “Oxidative Phenol Coupling: A Key Step for the Biomimetic Synthesis of Many 

Important Natural Products” Curr. Sci. 1996, 71, 106–109. (b) Quideau, S.; Feldman, K. S., Eds. 

[Tetrahedron Vol. 57, Issue 2.] Tetrahedron 2001, 57, 265–424. (c) Keseru, G. M.; Nogradi, M. “Natural 

Products by Oxidative Phenolic Coupling Phytochemistry, Biosynthesis and Synthesis” In Studies in 

Natural Products Chemistry, Vol. 20: Structure and Chemistry (Part F) (Atta-ur-Rahman, Editor)  Elsevier 

Science 1998, p 263. (d) Bringmann, G.; Gulder, T.; Gulder, T. M; Breuning, M. “Atroposelective Total 

Synthesis of Axially Chiral Biaryl Natural Products” Chem. Rev. 2011, 111, 563–639. (e) Quideau, S.; 

Deffieux, D.; Douat-Casassus, C.; Pouységu, L. “Plant Polyphenols: Chemical Properties, Biological 

Activities, and Synthesis” Angew. Chem. Int. Ed. 2011, 50, 586–621. 

(3) (a) Bringmann, G.; Menche, D. "Stereoselective Total Synthesis of Axially Chiral Natural Products via 

Biaryl Lactones" Acc. Chem. Res. 2001, 34, 615–624.  (b) Bringmann, G.; Scharl, H.; Maksimenka, K.; 

1  



 2 

catalytic kinetic resolution of axially chiral biaryldiols
4

 direct metal-catalyzed

asymmetric oxidative cross-coupling
5

 diastereoselective Ullmann couplings
6

 or 

asymmetric atroposelective bromination.
7
 These methods, however, require either the

activation of a phenol monomer or derivatization of the phenol prior to the coupling step. 

A single-step oxidative coupling step of two phenolic monomers would be a more 

efficient method for the construction of chiral biphenols. More recently, the first 

phosphoric acid-catalyzed asymmetric direct arylative reactions of 2-naphthols with 

quinone derivatives have been developed, giving chiral biaryldiols with excellent 

enantioselectivities.
8

Radacki, K.; Braunschweig, H.; Wich, P.; Schmuck, C. "Atropodiastereoselective Cleavage of 

Configurationally Unstable Biaryl Lactones with Amino Acid Esters" Eur. J. Org. Chem. 2006, 4349–

4361. 

( 4 ) (a) Lu, S.; Poh, S. B.; Zhao, Y. “Kinetic Resolution of 1,1’-Biaryl-2,2’-Diols and Amino 

Alcoholsthrough NHC-Catalyzed Atroposelective Acylation” Angew. Chem., Int. Ed. 2014, 53, 11041–

11045. (b) Ma, G.; Deng, J.; Sibi, M.P. “Fluxionally Chiral DMAP Catalysts: Kinetic Resolution of 

AxiallyChiral Biaryl Compounds” Angew. Chem., Int. Ed. 2014, 53, 11818–11821. 

(5) (a) Yan, P.; Sugiyama, Y.; Takahashi, Y.; Kinemuchi, H.; Temma, T.; Habaue, S. “Lewis acid-assisted 

oxidative cross-coupling of 2-naphthol derivatives with copper catalysts” Tetrahedron 2008, 64, 4325–

4331. (b) Guo. F.; Konkol, L. C.; Thomson, R. J. “Enantioselective Synthesis of Biphenols from 1,4-

Diketones by Traceless Central-to-Axial Chirality Exchange” J. Am. Chem. Soc. 2011, 133, 18–20. 

(6) (a) Degnan, A. P.; Meyers, A. I. "Total Syntheses of (–)-Herbertenediol, (–)-Mastigophorene A, and (–

)-Mastigophorene B. Combined Utility of Chiral Bicyclic Lactams and Chiral Aryl Oxazolines" J. Am. 

Chem. Soc. 1999, 121, 2762–2769.  (b) Li, Y.; Wang, Q.; Dong, L.; Guo, X.; Wang, W.; Xie, J.; Chang, J. 

"Asymmetric Synthesis of (+)- and (-)-Wuweizisu C Stereoisomers and Their Chemosensitizing Effects on 

Multidrug-Resistant Cancer Cells" Synthesis 2009, 2009, 3383–3390. 

(7) Mori, K,; Ichikawa, Y.; Kobayashi, M.; Shibata, Y.; Yamanaka, M.; Akiyama, T. “Enantioselective 

Synthesis of Multisubstituted Biaryl Skeleton by Chiral Phosphoric Acid Catalyzed 

Desymmetrization/Kinetic Resolution Sequence” J. Am. Chem. Soc. 2013, 135, 3964–3970.   

(8) Chen, Y.–H.; Cheng, D.–J.; Zhang, J.; Wang, Y.; Liu, X.–Y.; Tan, B. “Atroposelective Synthesis of 

Axially Chiral Biaryldiols via Organocatalytic Arylation of 2-Naphthols” J. Am. Chem. Soc. 2015, 137, 

15062–15065.   
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Some examples of natural products are shown in Figure 1.1 including 

isoschizandrin,
9
 knipholone,

10
 chaetoglobin A,

11
 mastigophorene A,

12
 and gossypol.

13

Notably, no synthesis of these natural products utilizes an asymmetric oxidative coupling.  

Rather, approaches rely on dynamic kinetic resolutions and diastereoselective biaryl bond 

formation. Further no synthesis, asymmetric or otherwise, of chaetoglobin A has been 

reported. Bisphenols have also been used in asymmetric catalysis. Schrock and Hoveyda 

have used the di-tert-butyl biphenol in asymmetric ring-opening and ring-closing 

metathesis.
14

 The diphosphine ligands C3*-Tunephos
15

 and (S)-HexaPHEMP, which can

(9) Ikeya, Y.; Taguchi, H.; Mitsuhashi, H.; Takeda, S.; Kase, Y.; Aburada, M. “A Lignan from Schizandra 

Chinesis” Phytochemistry 1988, 27, 569-573. 

(10) Dagne, E.; Steglich, W. “Knipholone: a Unique Anthraquinone Derivative from Kniphofia Foliosa” 

Phytochemistry 1984, 23, 1729-1731. 

(11) Ge, H. M.; Zhang, W. Y.; Ding, G.; Saparpakorn, P.; Song, Y. C.; Hannongbua, S.; Tan, R. X. 

“Chaetoglobin A and B, Two Unusual Alkaloids from Endophytic Chaetomium Globosum Culture” Chem. 

Commun. 2008, 5978–5980. 

( 12 ) Fukuyama, Y.; Asakawa, Y. “Novel Neurotrophic Isocuparane-type Sesquiterpene Dimers, 

Mastigophorenes A, B, C, and D, Isolated from the Liverwort Mastigophora Diclados” J. Chem. Soc., 

Perkin Trans.1 1991, 2737–2741. 

(13) Adams, R.; Morris, R. C.; Butterbaugh, D. J.; Kirkpatrick, E. C. “Stucture of Gossypol” J. Am. Chem. 

Soc. 1938, 60, 2191–2193. 

( 14 ) (a) Alexander, J. B.; La, D. S.; Cefalo, D. R.; Hoveyda, A. H.; Schrock, R. R. "Catalytic 

Enantioselective Ring-Closing Metathesis by a Chiral Biphen-Mo Complex" J. Am. Chem. Soc. 1998, 120, 

4041-4042.  (b) Alexander, J. B.; Schrock, R. R.; Davis, W. M.; Hultzsch, K. C.; Hoveyda, A. H.; Houser, 

J. H. "Synthesis of Molybdenum Imido Alkylidene Complexes That Contain 3,3-Dialkyl-5,5,6,6-

tetramethyl-1,1-biphenyl-2,2-diolates (Alkyl = t-Bu, Adamantyl). Catalysts for Enantioselective Olefin 

Metathesis Reactions" Organometallics 2000, 19, 3700-3715. 

(15) Sun, X.; Li, W.; Hou, G.; Zhou, L.; Zhang, X. "Axial Chirality Control by 2,4-Pentanediol for the 

Alternative Synthesis of C3*-TunePhos Chiral Diphosphine Ligands and Their Applications in Highly 

Enantioselective Ruthenium-Catalyzed Hydrogenation of β-Keto Esters" Adv. Synth. Catal. 2009, 351, 

2553-2557. 



 4 

be generated from the corresponding biphenols,
16

 have been employed in the asymmetric

hydrogenation of olefins. 

Figure 1.1 Natural Products and Ligands Containing the Biphenol Moeity 

(16) Henschke, J. P.; Burk, M. J.; Malan, C. G.; Herzberg, D.; Peterson, J. A.; Wildsmith, A. J.; Cobley, 

C. J.; Casy, G. "Synthesis and Applications of HexaPHEMP, a Novel Biaryl Diphosphine Ligand" Adv. 

Synth. Catal. 2003, 345, 300-307. 
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1.2. Previous Developments of Vanadium Catalyst 

In the past years, the Kozlowski group reported a catalytic protocol for the 

asymmetric synthesis of BINOLs by using Cu(I)-1,5-diaza-cis-decalin complexes.
17

 Due

to the presence of other reaction pathways when this copper catalyst was employed with 

oxidizable phenols (e.g. quinone formation), we became interested in using the milder 

vanadium catalysts for this transformation, which have been reported to convert 2-

naphthol to BINOL with 90% ee.
18

 These vanadium-catalyzed couplings proceed under

mild reaction conditions, using dioxygen as the terminal oxidant, often with air being 

sufficient. Unfortunately, addition of electron-withdrawing groups to naphthols greatly 

slows reaction (trace coupling product after 10 d).  Since phenols are less reactive than 

such naphthols, this result was of great concern.  Furthermore, any substitution at C3 was 

found to be highly detrimental in naphthol coupling, which is problematic since our 

(17 ) (a) Li, X.; Yang, J.; Kozlowski, M. C. "Enantioselective Oxidative Biaryl Coupling Reactions 

Catalyzed by 1,5-Diazadecalin Metal Complexes" Org. Lett. 2001, 3, 1137-1140.  (b) Li, X.; Hewgley, J. 

B.; Mulrooney, C. A.; Yang, J.; Kozlowski, M. C. "Enantioselective Oxidative Biaryl Coupling Reactions 

Catalyzed by 1,5-Diazadecalin Metal Complexes: Efficient Formation of Chiral Functionalized BINOL 

Derivatives" J. Org. Chem. 2003, 68, 5500-5511. 

(18) (a) Chu, C.-Y.; Hwang, D.-R.; Wang, S.-K.; Uang, B.-J. "Chiral Oxovanadium Complex Catalyzed 

Enantioselective Oxidative Coupling of 2-Naphthols" Chem. Commun. 2001, 980-981.  (b) Luo, Z.; Liu, 

Q.; Gong, L.; Cui, X.; Mi, A.; Jiang, Y. "The Rational Design of Novel Chiral Oxovanadium(IV) 

Complexes for Highly Enantioselective Oxidative Coupling of 2-Naphthols" Chem. Commun. 2002, 914-

915. (c) Luo, Z. B.; Liu, Q. Z.; Gong, L. Z.; Cui, X.; Mi, A. Q.; Jiang, Y. Z. "Novel Achiral Biphenol-

Derived Diastereomeric Oxovanadium(IV) Complexes for Highly Enantioselective Oxidative Coupling of 

2-Naphthols" Angew. Chem., Int. Ed. 2002, 41, 4532-4535. (d) Somei, H.; Asano, Y.; Yoshida, T.; 

Takizawa, S.; Yamataka, H.; Sasai, H. "Dual Activation in a Homolytic Coupling Reaction Promoted by an 

Enantioselective Dinuclear Vanadium(IV) Catalyst." Tetrahedron Lett. 2004, 45, 1841-1844. (e) Guo, Q-

X.; Wu, Z-J.; Luo, Z-B.; Liu, Q-Z.; Ye, J-L.; Luo, S-W.; Cun, L-F.; Gong, L-Z. “Highly   enantioselective 

oxidative couplings of 2-naphthols catalyzed by chiral bimetallic oxovanadium complexes with either 

oxygen or air as oxidant” J. Am. Chem. Soc. 2007, 129, 13927-13938. (f) Takizawa, S.; Katayama, T.; 

Kameyama, C.; Onitsuka, K.; Suzuki, T.; Yanagida, T.; Kawai, T.; Sasai, H. “Chiral dinuclear 

vanadium(V) catalysts for oxidative coupling of 2-naphthols” Chem. Commun. 2008, 1810-1812. (g) 

Takizawa, S.; Grçger, H.; Sasai, H. “Vanadium in Asymmetric Synthesis: Emerging Concepts in Catalyst 

Design and Applications” Chem. Eur. J. 2015, 21, 8992 – 8997.  
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initial plans centered on phenols with one ortho-position blocked so as to force coupling 

through the unsubstituted ortho-position. However, we were encouraged by a report that 

VO(acac)2 catalyzed racemic phenol couplings in 62-66% yield after 48-120 h.
19

  And a

report with tetrahydronaphthol (12%, 26% ee)
20

 provided further evidence of the

potential of vanadium catalysts in phenol coupling. 

Initial results with the optimal reported catalyst V1 (Figure 1.2) in a test reaction 

were promising (37% ee). Screening of additives provided additional improvement (V1 + 

HOAc, 60% ee, 76% ortho-ortho).
21

 After reviewing the mechanisms proposed for

vanadium catalyzed naphthol couplings, we proposed that either ligand exchange or 

substrate oxidation were crucial to the outcome. To probe these possibilities, electron 

deficient ligands, which render the vanadium more Lewis acidic accelerating associative 

exchange processes and/or facilitate formation of the lower oxidation state 

vanadium(IV), as well as strained ligands, which facilitate ligand exchange, were 

generated.  Both types of catalysts improved the selectivity and the best results were seen 

with V2 (77% ee).  Since further modification of this scaffold was not fruitful, a different 

linkage (V3) was examined with poor results (0% ee).  Speculating that the dramatic drop 

(19) Hwang, D.-R.; Chen, C.-P.; Uang, B.-J. "Aerobic Catalytic Oxidative Coupling of 2-Naphthols and 

Phenols by VO(acac)2" Chem. Commun. 1999, 1207-1208. 

(20) Takizawa, S.; Katayama, T.; Somei, H.; Asano, Y.; Yoshida, T.; Kameyama, C.; Rajesh, D.; Onitsuka, 

K.; Suzuki, T.; Mikami, M.; Yamataka, H.; Jayaprakash, D.; Sasai, H. “Dual Activation in Oxidative 

Coupling of 2-Naphthols Catalyzed by Chiral Dinuclear Vanadium Complexes” Tetrahedron 2008, 64, 

3361-3371. 

(21) Jon Ghergurovich and Sangeeta Dey are gratefully acknowledged for developing the vanadium 

catalyst V1 and screening additives. 
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in selectivity with V3 arose from loss of a sterically “large” group adjacent to the ligand 

phenoxide, catalyst V4 was examined resulting in a great improvement (67% ee).
22

 

 

Figure 1.2 Developments of Dimeric Vanadium Catalysts 

 

1.3. Monomeric Vanadium Catalysts  

Early advances in the field included the development of monomeric Schiff base-

derived vanadyl catalysts by the groups of Chen
23

 and Uang.
24

 After we discovered 

                                            

(22) Scott Allen is gratefully acknowledged for developing the vanadium catalyst through V2 to V4 for 

asymmetric oxidative coupling of phenols. 

(23) Barhate, N. B.; Chen, C.-T. “Catalytic Asymmetric Oxidative Couplings of 2-Naphthols by Tridentate 

N-Ketopinidene-Based Vanadyl Dicarboxylates” Org. Lett. 2002, 4, 2529-2532. 
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monomer V5 gave similar results (63% ee) in reaction (1), the dimeric scaffold was 

abandoned even though it had shown superior results in naphthol coupling due to a 

second order dependence for 2-naphthol.
18c,20b

 The monomeric catalyst V5 was a very

tunable and, thus, attractive scaffold. The next focus was to generate a structure-reactivity 

relationship for modification at every position. 

Oxovanadium complex V5 was prepared by condensation of the unnatural amino 

acid (S)-tert-leucine with the corresponding salicylaldehyde and oxovanadium(V) 

triethoxide, VO(OEt)3 according to Gong’s or Sasai’s original protocol.
18c,18e,18h,20b 

Different amino acid esters and salicaldehydes were incorporated into the vanadium 

complex. Examination of the resultant catalysts in the phenol coupling revealed that 

either R
2
 = H (acid catalyst) or R

2
 = Me or Bn (ester catalyst) was superior and that R

1
 =

t-Bu (entry 1–3) was an absolute requirement (Table 1.1). 

( 24 ) Chu, C.-Y.; Uang, B.-J. “Catalytic Enatioselective Coupling of 2-Naphthols by New Chiral 

Oxovanadium Complexed Bearing a Self Accelerating Functional Group” Tetrahedron:Asymmetry, 2003, 

14, 53-55. 
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Table 1.1 Ligand Developments: Amino Ester Screening 

Analyzing prior data,
25

 we hypothesized that a large group at R
3
 would be

superior. This hypothesis was borne out with better results with bulky groups such as t-

Bu (entry 1), silyl groups (entry 6–8), and 1,1-dimethylbenzyl (entry 12) as shown in the 

Table 1.2. Other very sterically demanding R
3
 groups (i.e., 2,6-xylyl and adamantly etc.)

result in further improvements in turnover, but at the cost of lower enantioselectivies. 

Further screening of the R
4
 group revealed a dependence of the electron-withdrawing

power of this group. We concluded that electron-withdrawing group destabilizes the 

(25) Chen, C.-T.; Kao, J.-Q.; Salunke, S. B.; Lin, Y.-H. “Enantioselective Aerobic Oxidation of α-

Hydroxy-Ketones Catalyzed by Oxovanadium(V) Methoxides Bearing Chiral, N-Salicylidene-tert-

butylglycinates” Org. Lett., 2011, 13, 26-29. 
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vanadium (V) oxidation state rendering it more reactive in the rate-limiting redox event 

and thereby accelerating the reaction. In line with this reasoning, R
4
 = NO2 (entry 15–16)

provided both high reactivity and high enantioselectivity (Table 1.2). Therefore, the best 

catalyst classes included 3-tert-butyl-5-nitro-, and 3-triethylsilyl-5-nitro-N-salicylidene-

L-tert-butylglycine ligands. 

Table 1.2 Ligand Developments: Salicylaldehyde Screening 

In the catalyst preparation, the salicylaldehyde 1.6 was prepared by ortho-

formylation of commercial phenol 1.5, followed by an introduction of the 5-nitro 
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substituent. 25 The aldehyde 1.6 was subjected to L-tert-leucine to generate a Schiff base, 

and then immediately treated with oxovanadium (V) triethoxide to yield a highly reactive 

(100% conversion), and selective (83% ee) vanadium complex V6. Complex V6 obtained 

in this manner was dark-blue. The addition of acid to the coupling reaction increased both 

yield and enantioselction, most likely via protonation of the catalyst which would 

accelerated ligand exchange in analogy to transesterification. The improved reactivity of 

V6 allowed lower catalyst loading (20 mol%) and shorter reaction time (2 days), and 

none of the para-para regioisomer 1.3 was observed. 

Scheme 1.1 Preparation of catalyst and phenol coupling in the optimal condition 

Encouraged by these results, additional phenol substrates were examined with this 

catalyst and the results are shown in the Figure 1.3. The results of this study pinpointed 

the structural features key to enantioselectivity. For example, the substrate 1.1 and 1.7 

differed only in the position of one methyl group, but the latter resulted in no selectivity 

indicating that substitution at the ortho-position of the phenol was highly important. This 
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point was further reinforced by the results from 1.8 and 1.10. Electron-withdrawing 

groups were expected to slow the oxidation, which was supported by the sluggish 

reactivity of bromo-substituted analogs (1.12, 1.14 and 1.16). Among the substrate 

classes examined, better levels of asymmetric induction were observed in the coupling of 

2,3,5-trisubstrituted phenols, from 50% to 83% ee (1.1, 1.13 and 1.15). 

Figure 1.3 Substate Scope in Asymmetric Phenol Coupling 

1.4. More Improvements 

To improve the enantioselection in the coupling reaction, we further examined 

key factors such as temperature and additives. It was determined that enantioselectivity of 

the coupling product of 2,5-dimethyl resorcinol (1.13) improved up to 85% ee when the 

reaction temperature was lowered to –40 
o
C (Table 1.3), although reactivity suffered,
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Table 1.3 Temperature Effect on Asymmetric Coupling of Phenol 1.13 

Encouraged by these results, several additives were examined in place of acetic 

acid (Table 1.4). At this stage, a further exciting result was discovered. Namely, Lewis 

acids were found to improve enantio-selection relative to acetic acid although reactions 

were slightly slower (entries 2-5). Of the Lewis acids, LiCl, even though it was insoluble 

throughout the process of reaction, was superior resulting in 85% ee vs 52% without the 

additive (entry 1 and 2).  To pinpoint the attribute of LiCl causing this improvement, a 

series of chloride salts was screened (entries 6-8); none were superior to LiCl, although 

results were very good for MgCl2 (entry 7, 78% ee). Examination of various lithium salts 

(entries 9-14) revealed that lithium perchlorate was second best (entry 12, 73% ee). In a 

reported Diels-Alder reaction, LiCO4·Et2O enhanced both endo selectivity and reaction 

rate by retained solvent ordering
26

 and it may operate here in a similar way. Water is

formed during reaction from the reduction of dioxygen. To probe whether the 

(26) Grieco, P. A.; Nunes, J. J.; Gaul, M. D. “Dramatic Rate Accelerations of Diels-Alder Reactions in 5 M 

Lithium Perchlorate-Diethyl Ether: The Cantharidin Problem Reexamined” J. Am. Chem. Soc. 1990, 112, 

4595-4596. 
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improvements noted about arose from the desiccant properties of the additives, additional 

desiccants were screened (entries 15-16).  Based on the improvements seen, it appears 

that LiCl acts as a Lewis acid and desiccant. Further experiments are needed to determine 

if the LiCl enhances the selectivity by coordinating and activating the catalyst or the 

substrate. 

Table 1.4 Additives Screening. 

 

Unfortunately, LiCl did not provide equal levels of improvement for all 

substrates. Excitingly, LiCl did give high enanioselectivity with 2,5-dimethyl-3-

hydroxyphenol (1.13, 85% ee) and 2,5-dimethyl-3-methoxyphenol (1.15, 82% ee). 

Notably, the amount of LiCl did not change the enatioselectivity. The enantiopurity could 
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also be upgraded easily by trituration.  For example, substrate 1.25 was enhanced to 95% 

ee following triturations using hexane. 

Scheme 1.2 Optimized Oxidative Coupling of Phenols 1.13 and 1.15 

1.5. Stereochemistry 

To determine the stereochemistry of the asymmetric coupling, efforts focused on 

obtaining a crystal structure. On larger scale, the coupling of 2,3,5-trimethylphenol (1.1) 

gives higher selectivity (85% ee compared to 83%). Our group has noted that racemic 

biaryl products have much poorer solubility than enantiopure biaryls in hexane. 

Exploiting this difference, one trituration was found to increase the enantiomeric excess 

of the filtrate to 89% ee. By sequential trituration, highly enantioenriched material (95% 

ee) was obtained in 72% yield (Figure 1.4). Crystallization from hexane and ethyl acetate 
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(10:1) afforded white crystals, and an (S) absolute axial configuration was assigned to 

compound 1.2 generated from catalyst V6.
27 

 

 

Figure 1.4 Absolute Configuration of Coupling Product 1.2 

 

1.6. Substrate Syntheses and Oxidative Coupling 

The common feature of the substrates that give good enantioselecivity in the 

coupling reaction is a 2,3,5-trialkyl phenol. To access substrates with a bulkier group at 

the 2-position, allyation of the hydroxyl group of a 3,5-disubstituted phenols was 

undertaken followed by [3,3]-sigmatropic rearrangement. Kyle Niederer, an 

undergraduate student sponsored by LRSM REU program during summer 2014, and 

Houng Kang helped synthesizing a variety of 2,3,5-trisubstituted phenols via this 

approach. 

                                            

( 27 ) Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser M. J.; Garner, J.; Breuning, M. 

“Atroposelective Synthesis of Axially Chiral Biaryl Compounds” Angew. Chem. Int. Ed. 2005, 44, 5384–

5427. 
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The synthesis of each substrate is shown in Scheme 1.3. 3,5-Disubstituted 

phenols were first allylated using allyl bromide. Lewis acid-mediated Claisen 

rearrangement on these allyl ethers afforded the 2-allylated phenols. Subsequent 

hydrogenation generated additional alkyl analogs for testing. 

Scheme 1.3 Syntheses of 2,3,5-trisubstituted phenols 

 

Both the 2-allyl- and 2-propylphenols were used as coupling substrates. Among 

the eight substrates synthesized, only two substrates gave good enantioselectivity 

(Scheme 1.4). 2-Allyl-3,5-dimethylphenol (1.20) and 3,5-dimethyl-2-propylphenol (1.21) 

proceeded smoothly under the reaction conditions of V6/acetic acid to give the ortho-

ortho coupling product with good selectivities (77% ee and 72% ee, respectively). Even 

though the allyl group in the substrate 1.20 decelerated reaction rate compared to the 

substrate 1.21, the enantioselectivity remained high.  
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Scheme 1.4 Substrate Syntheses and Oxidative Coupling 

The 3-methoxy-5-methyl-phenol (1.9) produced two allylated substrates via the 

Claisen rearrangement, 2-allyl-3-methoxy-5-methylphenol (1.24), and 2-allyl-3-methyl-

5-methoxyphenol (1.26), each of which was also hydrogenated. Unfortunately, however, 

those substrates coupled to give poor enantioselectivity (Figure 1.5). 
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Figure 1.5 Oxidative Coupling of 2,3,5-trisubstituted phenols 

In a different strategy, the effect of bulkier group adjacent to the formed biaryl 

bond was probed. Specifically, phenyl and silyl groups were introduced at 5-position of 

bromophenol 1.14 by conventional coupling reactions. Phenyl substituted phenol coupled 

smoothly to give the product with moderate selectivity (50% ee), and additives provided 

no improvement. The silyl substituted phenol was not stable in the oxidative conditions; 

after 16 h, all the starting material was consumed, but no desired product was observed 

(Scheme 1.5).  

Scheme 1.5 Substrate with bulky group Syntheses and Oxidative Coupling  
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At this point, we became curious how catalyst V6 compares to dimeric vanadium 

catalysts V1 and V2 in 2-naphthol coupling, where the latter are known to give high 

selectivity in 2-naphthol coupling. In contrast, our new monomeric V6 catalysts showed 

poor performance in the 2-naphthol coupling reaction (Figure 1.6) indicating substantial 

different control factors are in play. In support of this hypothesis, 2-naphthol (1.30) gives 

the (R)-enantiomer, whereas the (S)-enantiomer is seen with the same catalyst in the 

phenol coupling. 

 

Figure 1.6 Oxidative Coupling Reaction of 2-Naphthol Derivatives with V6 

 

1.7. Alkynyl Phenol Coupling and Application to Chaetoglobin A 

Synthesis 

The chaetoglobins
10

 are a structurally unique class of azaphilone alkaloid dimers 

with reported anticancer activity. Notably, this class of compounds has not been 

synthesized to date. The major challenge inherent to these structures lies in the 

enantioselective formation of the axial chiral bond between the two units. Therefore, 



 21 

asymmetric oxidative phenol coupling would be a critical step for the enantioselective 

synthesis of chaetoglobin natural products. 

Alkynyl phenol 1.34, as a model substrate for chaetoglobin, was subjected to the 

oxidative phenol coupling reaction and it gave high enantioselectivity of 89% ee without 

any significant decomposition (67% conversion after 16 h, Scheme 1.6). Encouraged by 

this preliminary result, we decided to investigate the substrate scope with various 

alkynes. Substrates 1.34–1.37 were prepared via Sonogashira cross-coupling reaction 

between aryl bromide 1.14 and the corresponding alkyne. While the alkyl substituted 

alkynyl phenol (1.34, 1.35) coupled with good enantioselectivity (89% ee and 94:6 dr, 

respectively), phenylalkynyl phenol 1.36 and silylalkynyl phenol 1.37 did not give any 

desired products. 
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Scheme1.6 Oxidative Coupling of Alkynyl Phenols 

 

Recently, Houng Kang has finished the first total synthesis of chaetoglobin A 

utilizing asymmetric phenol coupling as a key step. He modified the catalyst V6 into 

opposite enantiomer with (R)-tert-leucine to obtain the stereochemistry corresponding to 

that of the natural product. 
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Scheme 1.7 First Total Synthesis of Chaetoglobin A 

1.8. Mechanism 

It has been reported that the oxidative coupling generally proceeds via three 

possible mechanisms: (1) the radical–radical coupling, (2) the radical–anion coupling, 

and (3) the heterolytic coupling of cationic species.
28

 Compelling evidence supporting a

radical–radical pathway has been reported for one vanadium-catalyzed oxidative 

coupling reactions of 2-naphthols.
19h

A proposed catalytic cycle for phenol coupling built on these precedents is shown 

in Figure 1.6. First, the phenol coordinates to a vanadium complex and becomes oxidized 

to phenoxide B via electron transfer. The produced radical can give two possible products 

(ortho–ortho and para-para), but our studies have shown that the ortho-ortho product is 

(28) (a) “Oxidative coupling of phenols and phenol ethers”: D. A.Whiting in Comprehensive Organic 

Synthesis, Vol. 3. (Eds.:B. M. Trost, I. Fleming, G. Pattenden), Pergamon, Oxford, 1991, pp. 659. (b) 

Waldvogel, S. R.; Mirk, D. Handbook of CH-Transformations, Vol. 1 (Ed.: G. Dyker), Wiley-

VCH,Weinheim, 2005, pp. 251. 
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favored in C. Dissociation and rearomatization provides the corresponding bisphenol. 

Finally, oxygen reoxidizes the vanadium catalyst. 

Figure 1.7 Proposed Mechanism of Asymmetric Oxidative Phenol Coupling 

This proposed mechanism was supported by radical inhibitor experiments. With 

20 mol% of V6, the oxidative coupling of 2,3,5-trimethyl phenol was completed within 2 

days at ambient temperature under oxygen. However, with equimolar TEMPO relative to 

catalyst, the same reaction proceeded with only 35% conversion under the same 

conditions (Scheme 1.8). Moreover, under inert atmosphere, 9% and 26% conversions 

were observed with 20 and 50 mol% of catalyst loading, respectively.  And it is 

consistent with the vanadium(V) species being the active oxidant  and each vanadium 
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abstracting one electron as would be the case with vanadium(V) to vanadium(IV) redox 

event. 

Scheme 1.8 Supporting Experiments of Oxidative Coupling Reaction 

 

 

1.9. Summary 

In summary, we have developed Schiff base catalyst V6 for the oxidative 

coupling of phenols with high reactivity and enantioselectivity. To the best of our 

knowledge, this example constitutes the first highly selective asymmetric coupling of 

phenols. It was found that the chiral centers on the amino acid portion and the 

substituents on salicylaldehyde portion of the catalyst were both crucial to stereocontrol.  

Importantly, an electron-withdrawing group on the ligand destabilized the higher 

oxidation state of vanadium rendering the catalyst more reactive. Several substrates 

(Figure 1.8) were coupled with V6 with good enantioselectivity (72-89% ee). 
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Figure 1.8 Substrate Scope in Asymmetric Phenol Coupling 

1.10. Experimental 

General Consideration 

All reactions were carried out under an atmosphere of dry nitrogen or argon, 

unless otherwise noted.  When necessary, solvents and reagents were dried prior to use.  

Methylene chloride, 1,2-dichloroethane, and acetonitrile were distilled from CaH2, THF 

was distilled from sodium/benzophenone ketyl, toluene was distilled from sodium, and 

DMF was distilled from MgSO4. Reactions were all monitored via analytical thin layer 

chromatography (TLC) using Silicycle glass backed TLC plates with 250 μm silica and 

F254 indicator. Visualization was accomplished with UV light and/or ceric ammonium 
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molybdate stain.  Column chromatography was performed with Silicycle SiliaFlash P60 

silica gel (40-63 µm particle size). 

NMR spectra were recorded on 300 MHz, 360 MHz, and 500 MHz spectrometers.  

Multiplicities for 
1
H NMR data are reported as follows: s = singlet, d = doublet, t =

triplet, br = broad, m = multiplet. 
1
H NMR spectra were referenced to the residual solvent

peaks:  CDCl3 (7.26 ppm), DMSO-d6 (2.50 ppm), acetone-d6 (2.05 ppm), THF-d8 (3.58 

ppm), CD3OD (3.31 ppm), or C6D6 (7.16 ppm). 
13

C NMR spectra were referenced to:

CDCl3 (77.16 ppm), DMSO-d6 (39.52 ppm), acetone-d6 (29.84 ppm), or THF-d8 (67.57 

ppm).  Infrared spectra were recorded on either a Jasco FT/IR-480 Plus spectrometer 29  

or an Applied Systems ReactIR 1000.  UV spectra were measured on a JASCO FT/IR-

480 Plus spectrometer. High-resolution mass spectra were measured on a Waters LC-

TOF mass spectrometer (model LCT-XE Premier) with ionization mode ESI+ or ESI–.30  

Enantiomeric excesses were determined using analytical HPLC on an Agilent 1100 

Series HPLC with UV detection at 254 nm. An analytical Chiralpak IA column (4.6 mm 

x 250 mm, 5 µm) from Daicel was used. Optical rotations were measured on a Jasco 

polarimeter with a sodium lamp.31  

(29) The Smith group is thanked for use of their UV and IR spectrometers. 

(30) Dr. Rakesh Kohli at the Mass Spectrometry Laboratory at the University of Pennsylvania is gratefully 

acknowledged for obtaining high resolution mass spectra. 

(31) The Smith group is thanked for use of their polarimeter. 
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3-(tert-Butyl)-2-hydroxy-5-nitrobenzaldehyde (1.6). Dry formaldehyde (0.7 g, 

23.3 mmol) was added in portions to a mixture of 4-tert-butylphenol (1.0 g, 6.66 mmol), 

triethylamine (2.6 mL, 18.8 mmol) and anhydrous MgCl2 (2.0 g, 20.6 mmol) in 50 mL of 

THF. The mixture was refluxed for 8 h, cooled to room temperature, acidified with 3N 

HCl (70 mL), and extracted with diethyl ether (30 mL x 3). The ether layer was washed 

with water (50 mL), and brine (50 mL), and dried using MgSO4. Removal of solvent and 

purification by column chromatography yielded 3-(tert-butyl)-2-hydroxy-benzaldehyde 

as yellow oil (710 mg, 61% yield). Spectral data matched those reported in the 

literature.32 

In a 100 mL round-bottomed flask was placed 3-(tert-butyl)-2-hydroxy-

benzaldehyde (710 mg, 4.0 mmol) in HOAc (12 mL). Nitric acid (4.0 mL, 96 mmol) was 

added dropwise at 0 °C and the mixture was stirred for 1 h at ambient temperature. The 

resulting mixture was poured into iced water (100 mL) with vigorous stirring. The orange 

precipitate formed was filtered through a sintered glass funnel, and then washed with 

water (10 mL). The product was recrystallized from ethanol to give 360 mg (65% yield) 

of 1.6 as a yellow solid: 
1
H NMR (500 MHz, CDCl3)  12.44 (s, 1H), 9.97 (s, 1H), 8.41

(s, 2H), 1.46 (s, 9H); 
13

C NMR (500 MHz, CDCl3) δ 196.2, 165.8, 140.7, 140.1, 128.7,

127.0, 119.3, 31.4, 35.4. Spectral data matched that reported in the literature.
25

(32) Gisch, N.; Balzarini, J.; Meier, C. “Enzymatically Activated cycloSal-d4T-monophosphates: The Third 

Generation of cycloSal-Pronucleotides” J. Med. Chem. 2007, 50, 1658-1667. 
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Representative Procedure for Vanadium Catalyst V6. 

All glass ware was flame dried. A mixture of L-tert-leucine (45 mg, 0.34 mmol) 

and 3-tert-butyl-5-nitro-2-hydroxybenzaldehyde (1.6) (76 mg, 0.34 mmol) in 

MeOH:CH2Cl2 (2 mL, 1:1) was heated at reflux and monitored by TLC. The reaction 

mixture was cooled to room temperature and VO(OEt)3 (69 mg, 0.34 mmol) was added. 

After 3 h under argon atmosphere, solvent was removed under reduced pressure to afford 

the catalyst (147 mg, 99%) as a deep blue solid. 

(S)-Vanadium Catalyst V6. Dark blue solid; HRMS (ESI) m/z = 433.1180 calcd 

for C18H26N2O7V [M+H]
+
, found 433.1179.
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General Procedure for Oxidative Coupling of Phenols. 

Racemic Coupling with VO(acac)2.
20

2,3,5-Trimethylphenol (30 mg, 0.22 mmol) and VO(acac)2 (29 mg, 0.11 mmol) 

were dissolved in toluene (1 mL) at room temperature. The resulting deep green solution 

was stirred for 3 days. The solution was concentrated and purified by column 

chromatography (5% ethyl acetate in hexane) to yield racemic 3,3',4,4',6,6'-

hexamethylbiphenyl-2,2'-diol (1.2) as a pale-yellow solid (19 mg, 63%). Spectral data 

matched that reported in the literature.33 

Asymmetric Coupling with Catalyst V6: Method A 

To a microwave vial was added 2,3,5-trimethylphenol (1.1) (180 mg, 1.31 mmol), 

20 mol% oxovanadium catalyst V6 (110 mg, 0.27 mmol), and acetic acid (0.47 mL, 8.26 

(33) Armstrong, D. R.; Cameron, C.; Nonhebel, D. C.; Perkins, P. G. “Oxidative Coupling of Phenols. Part 

10. The Role of Steric Effects in the Formation of C-O Coupled Products” J. Chem. Soc.-Perkin Trans. 2

1983, 581-585. 
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mmol). The vial sealed and toluene (2.6 mL) was added. Oxygen was added via active 

purge. The deep blue reaction solution was stirred for 2 d at 25 °C, then concentrated in 

vacuo. The crude product was purified by flash column chromatography to yield 1.2 as a 

pale yellow solid (160 mg, 89%) in 83% ee. Crystallization from hexane and ethyl acetate 

(10:1) afforded white crystals with 95% ee. The absolute axial configuration of 

compound 1.2 was determined as S. See Appendix B for crystallographic data. 

(S)-3,3',4,4',6,6'-Hexamethyl-[1,1'-biphenyl]-2,2'-diol (1.2). 
1
H NMR (500 

MHz, CDCl3)  6.74 (s, 2H), 4.74 (s, 2H), 2.29 (s, 6H), 2.17 (s, 6H), 1.92 (s, 6H); 
13

C

NMR (500 MHz, CDCl3) δ 15.9, 138.6, 135.2, 123.9, 120.4, 117.0, 20.1, 19.3, 11.9; IR 

(film) 3509, 3460, 2922, 2359, 1560, 1458, 1298, 1079 cm
-1

; HRMS (ESI) m/z =

270.1620  calcd for C18H22O2 [M]
+
, found 270.1623; [] D

23
 –32.23 (c 0.15, 95% ee,

CHCl3); Enantiomeric excess was determined with Chiral HPLC: Chiralpak IA column 

(1% i-PrOH/hexanes, 1 mL/min) tr(R) = 5.09 min, tr(S) = 6.11 min. 

Asymmetric Coupling with Catalyst V6: Method B 

To a microwave vial was added 2,5-dimethylbenzene-1,3-diol (1.13) (180 mg, 

1.30 mmol), 20 mol% oxovanadium catalyst V6 (110 mg, 0.27 mmol), and LiCl (22 mg, 

0.52 mmol). The vial sealed and toluene (2.6 mL) was added. Oxygen was added via 

active purge. The deep blue reaction solution was stirred for 12 h at 0 °C, and 
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concentrated in vacuo. The crude product was purified by flash column chromatography 

to yield 1.17 as a white solid (144 mg, 81%). 

(S)-3,3',6,6'-Tetramethyl-[1,1'-biphenyl]-2,2',4,4'-tetraol (1.17).
 1

H NMR (500

MHz, CDCl3)  6.41 (s, 2H), 4.85 (s, 2H), 4.71 (s, 2H), 2.15 (s, 6H), 1.91 (s, 6H); 
13

C

NMR (500 MHz, CDCl3) δ 155.2, 153.5, 137.0, 111.7, 109.4, 108.1, 19.5, 8.5; IR (film) 

3459, 2925, 1592, 1326, 1078 cm
-1

; HRMS (ESI) m/z = 273.1127 calcd for C16H17O4

[M–H]
-
, found 273.1139. [] D

23
  –52.39 (c 0.04, 86% ee, CH2Cl2); Enantiomeric excess

was determined with Chiral HPLC: Chiralpak IA column (20% i-PrOH/hexanes, 1 

mL/min) tr(S) = 4.95 min, tr(R) = 6.88 min. 

(S)-4,4'-Dimethoxy-3,3',6,6'-tetramethyl-[1,1'-biphenyl]-2,2'diol (1.18). 

Following the general procedure using method B at 0 °C for 18 h, the ortho-ortho 

product was obtained as a yellow solid in 80% yield: 
1
H NMR (500 MHz, CDCl3)  6.46

(s, 2H), 4.80 (s, 2H), 3.86 (s, 6H), 2.12 (s, 6H), 1.97 (s, 6H); 
13

C NMR (500 MHz,

CDCl3) δ 158.7, 152.9, 136.3, 111.9, 109.9, 104.7, 55.5, 19.7, 8.4; IR (film) 3513, 2921, 

1577, 1466, 1326, 1104, 819, 739 cm
-1

; HRMS (ESI) m/z = 325.1416  calcd for

C18H22O4Na [M+Na]
+
, found 325.1414. [] D

23
 –19.68 (c 0.05, 86% ee, CHCl3);

Enantiomeric excess was determined with Chiral HPLC: Chiralpak IA column (1% i-

PrOH/hexanes, 1 mL/min) tr(R) = 7.99 min, tr(S) = 15.11 min. 
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General Procedure for the Preparation of Allyl- and Propyl- Substrates: Various 

allyl- and propyl substrates were prepared from the corresponding phenol and allyl 

bromide with high yield in two (allyl) and three (propyl) steps according to the literature 

procedure. 

 

2-Allyl-3,5-dimethylphenol (1.20). Allyl bromide (0.2 mL, 2.2 mmol) was added 

to a solution of 3,5-dimethylphenol (244 mg, 2.0 mmol) and potassium carbonate (304 

mg, 2.2 mmol) in DMF (4.0 mL). The reaction mixture was stirred 16 hours at room 

temperature, diluted with ether (15 mL) and quenched with water (10 mL). The organic 

layer was separated and the aqueous layer was extracted with ether (10 mL x 3). The 

combined organic layers were dried over Na2SO4. The crude product was used with 

purification for the next step.  

To a solution of crude allyl aryl ether in dichloromethane (10 mL) was added 

boron trichloride (4.0 mL, 4 mmol) dropwise at –50 °C. After stirring for 2 h at –50 °C, 

the solution was quenched with water (10 mL), extracted with dichloromethane (15 mL x 

3), dried over MgSO4. The product was purified by flash chromatography (5% 

EtOAc/hexane) to give 2-allyl-3,5-dimethylphenol (292 mg, 0.18 mmol) as a white solid 

in 90% yield for 2 steps. 
1
H NMR (500 MHz, CDCl3)  6.61 (s, 1H), 6.50 (s, 1H), 5.99-

5.91 (m, 1H), 5.05 (d, J = 10.5 Hz, 1H), 5.02 (d, J = 17 Hz, 1H), 4.73 (s, 1H), 3.39 (d, J = 

4.5 Hz, 2H), 2.25 (s, 3H), 2.24 (s, 3H); 
13

C NMR (500 MHz, CDCl3) δ 153.9, 137.8, 
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136.9, 135.8, 123.7, 120.6, 115.3, 114.1, 30.3, 20.9, 19.5; IR (film) 3466, 2921, 1623, 

1584, 1458, 1308, 1207, 1138, 1110, 1039, 911, 837 cm
-1

; HRMS (ESI) m/z = 161.0966

calcd for C11H13O [M–H]
-
, found 161.0972.

3,5-Dimethyl-2-propylphenol (1.21). To a stirring solution of allylated phenol 

(400 mg, 2.4 mmol) in dry methanol (4.0 mL) was added Pd/C (10 wt%, 40 mg). The 

reaction flask was evacuated and backfilled with H2 ( 3 times). The reaction was stirred 

under H2 atmosphere for 16 hours. The reaction mixture was then filtered through 

Celite, concentrated by rotary evaporation. The product was purified by flash 

chromatography (5% EtOAc/hexane) to give the product (304 mg, 1.92 mmol) as a white 

solid in 79% yield: 
1
H NMR (500 MHz, CDCl3) δ 6.59 (s, 1H), 6.46 (s, 1H), 4.57 (s, 1H),

2.56 (t, J = 8.0 Hz, 2H), 2.26 (s, 3H), 2.23 (s, 3H), 1.54 (sextet, J = 8 Hz, 2H), 1.00 (t, J = 

7.5 Hz, 3H); 
13

C NMR (500 MHz, CDCl3) δ 153.4, 137.6, 136.0, 124.1, 123.6, 113.6,

28.1, 22.5, 20.8, 19.4, 14.4; IR (film) 3476, 2959, 1583, 1454, 1302, 1215, 1140, 1103, 

1022, 949 cm
-1

; HRMS (ESI) m/z = 163.1123 calcd for C11H15O [M–H]
-
, found 163.1117.
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(S)-3,3'-Diallyl-4,4',6,6'-tetramethyl-[1,1'-biphenyl]-2,2'diol (1.22). Following 

the general procedure using method A at room temperature for 3 days, the ortho-ortho 

product was obtained as a white solid in 56% yield:  
  1

H NMR (500 MHz, CDCl3)  6.76 

(s, 2H), 5.99-5.92 (m, 2H), 5.00-4.93 (m, 4H), 4.76 (s, 2H), 3.43 (d, J = 3.5 Hz, 4H), 2.30 

(s, 6H), 1.93 (s, 6H); 
13

C NMR (500 MHz, CDCl3) δ 151.8, 138.6, 136.0, 135.9, 124.2, 

121.9, 117.2, 114.4, 30.6, 19.4, 19.2; IR (film) 3524, 3077, 2922, 1637, 1564, 1457, 

1302, 1258, 1191, 1144, 1110, 1050, 995, 909, 851 cm
-1

; HRMS (ESI) m/z = 323.2011  

calcd for C22H27O2 [M+H]
+
, found 323.2020; [] D

23
     –21.88 (c 0.2, 77% ee, CHCl3); 

Enantiomeric excess was determined with Chiral HPLC: Chiralpak IA column (1% i-

PrOH/hexanes, 1 mL/min) tr(R) = 5.63 min, tr(S) = 7.19 min. 

 

(S)-4,4',6,6'-Tetramethyl-3,3'-dipropyl-[1,1'-biphenyl]-2,2'diol (1.23). 

Following the general procedure using method A at room temperature for 3 d, the ortho-

ortho product was obtained as a white solid in 80% yield: 
 1

H NMR (500 MHz, CDCl3)  

6.73 (s, 2H), 4.72 (s, 2H), 2.64-2.61 (m, 4H), 2.32 (s, 6H), 1.92 (s, 6H), 1.58-1.53 (m, 
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4H), 0.99-0.96 (m, 6H); 13C NMR (500 MHz, CDCl3) δ 151.8, 138.0, 135.2, 125.2, 

124.0, 117.1, 28.5, 22.4, 19.4, 19.2, 14.3; IR (film) 3524, 2959, 2871, 1616, 1563, 1453, 

1394, 1296, 1260, 1205, 1146, 1103, 1039, 954, 850 cm
-1

; HRMS (ESI) m/z = 327.2324  

calcd for C22H31O2 [M+H]
+
, found 327.2323; [] D

23
     –26.12 (c 0.2, 72% ee, CHCl3);  

Enantiomeric excess was determined with Chiral HPLC: Chiralpak IA column (1% i-

PrOH/hexanes, 1 mL/min) tr(R) = 4.79 min, tr(S) = 6.24 min. 

 

4-Methyl-[1,1'-biphenyl]-3,5-diol (1.27). Under a nitrogen atmosphere, a 

mixture of 5-bromo-2-methylbenzene-1,3-diol (203 mg, 1.0 mmol), potassium 

phenyltrifluoroborate (200 mg, 1.1 mmol), PdCl2(dppf) ·CH2Cl2 (4 mg, 0.5 mol %), and 

triethylamine (0.4 mL, 3.0 mmol) in EtOH (4.0 mL) was stirred at 80 °C for 12 hours. 

After completion of the reaction as indicated by TLC, the reaction mixture was cooled to 

room temperature. The solvent was removed under reduced pressure, and the residue was 

diluted with EtOAc (15 mL) and washed with water (15 mL). Evaporation of the solvent 

followed by purification on silica gel (20% ethyl acetate in hexane) afforded the 

corresponding product 1.27 (110 mg, 0.55 mmol) as a yellow solid with 55% yield: 
 1

H 

NMR (500 MHz, CDCl3)  7.52 (d, J = 8.0 Hz, 2H), 7.41 (t, J = 7.0 Hz, 2H), 7.33 (t, J = 

7.0 Hz, 1H), 6.65 (s, 2H), 4.84 (s, 2H), 2.18 (s, 3H); 
13

C NMR (125 MHz, CDCl3)  

154.9, 140.4, 140.1, 128.7, 127.4, 126.8, 109.4, 106.6, 7.8; IR (film) 3331, 2919, 1590, 

1572, 1410, 1076, 848, 762, 694 cm
-1

;  HRMS (ESI) m/z = 201.0916  calcd for C13H13O2 

[M+H]
+
, found 201.0914. 
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(S)-4',5''-Dimethyl-[1,1':2',1'':2'',1'''-quaterphenyl]-3',4'',5',6''-tetraol (1.28). 

Following the general procedure using method A or B at 0 °C for 18 h, the ortho-ortho 

product was obtained as a yellow solid in 65% yield: 
1
H NMR (500 MHz, CDCl3)  7.10

(t, J = 7.0 Hz, 2H), 7.02 (t, J = 8.0 Hz, 4H), 6.57 (d, J = 7.0 Hz, 4H), 6.31 (s, 2H), 5.32 (s, 

2H), 4.87 (s, 2H), 2.23 (s, 6H); 
13

C NMR (125 MHz, CDCl3)  155.0, 153.7, 141.9, 140.0,

128.5, 127.4, 126.5, 110.7, 109.6, 109.4, 8.5; IR (film) 3437, 2920, 1620, 1395, 1342, 

1077, 790, 760, 738, 700 cm
-1

; HRMS (ESI) m/z = 399.1596  calcd for C26H23O4

[M+H]
+
, found 399.1591; Enantiomeric excess was determined with Chiral HPLC:

Chiralpak IA column (25% i-PrOH/hexanes, 1 mL/min) tr(S) = 14.27 min, tr(R) = 16.97 

min. 

2-Methyl-5-(trimethylsilyl)benzene-1,3-diol (1.29). To a stirred solution of 5-

bromo-2-methylbenzene-1,3-diol (185 mg, 0.9 mmol) in anhydrous THF (5 mL) at −78 

°C was added dropwise t-BuLi (3.5 mL, 1.6 M solution in pentane). The resulting 

yellows solution was stirred at −78 °C for 1 hour, then TMSCl (0.58 mL, 4.5 mmol) was 

added dropwise at −78 °C and the resulting colorless suspension was stirred at −78 °C 

for 1 h and then allowed to warm to room temperature. 1N HCl (2 mL) solution was 
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added and after 2 h, extracted with diethyl ether (3 x 10 mL), and the combined organic 

extract was washed with water (15 mL) and brine (15 mL), dried over anhydrous MgSO4. 

The crude product was purified by column chromatography on silica gel with eluent 10 % 

of ethyl acetate in hexanes. 160 mg of a white solid in 90% yield was obtained:
 1

H NMR 

(500 MHz, CDCl3)  6.53 (s, 2H), 4.72 (s, 2H), 2.14 (s, 3H), 0.22 (s, 9H); 
13

C NMR (125 

MHz, CDCl3)  154.4, 139.2, 112.2, 111.1, 7.9, −1.2; IR (film) 3293, 2953, 1616, 1579, 

1452, 1396, 1284, 1250, 1069, 917, 830, 755 cm
-1

; HRMS (ESI) m/z = 195.0841 calcd 

for C10H15O2Si [M–H]
-
, found 195.0834. 

General Procedure for Sonogashira Cross-Coupling: All solvent and reagents 

were deoxygenated. Pd(PhCN)2Cl2 (6 mol%), CuI (4 mol%),  [tBu3PH]BF4 (12 mol%) 

were weighed and transferred into a flame-dried flask. The system was evacuated and 

refilled with argon. 1,4-Dioxane (0.5 M) and iPr2NH (1.5 equiv) were added to the flask 

under argon, then a solution of 5-bromo-2-methylbenzene-1,3-diol and alkyne (1.2 equiv) 

in a 0.5 mL of dioxane were added to the mixture. After stirring at room temperature for 

18 h, the reaction mixture was filtered through a silica pad which was washed with ethyl 

acetate. The combined eluents were concentrated and purified on silica gel. 

 

2-Methyl-5-(oct-1-yn-1-yl)benzene-1,3-diol (1.34). The product was purified via 

column chromatography with 15% ethyl acetate in hexane to give a desired product in 

80% yield as a pale yellow solid: 
1
H NMR (500 MHz, acetone-d6)  8.20 (s, 2H), 6.44 (s, 
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2H), 2.86 (s, 3H), 2.35 (t, J = 7.0 Hz, 2H), 1.55 (m, 2H), 1.44 (m, 2H), 1.30 (m, 4H), 0.89 

(t, J = 2.0 Hz, 3H); 
13

C NMR (125 MHz, acetone-d6) δ 157.0, 122.4, 112.3, 110.5, 89.0, 

81.7, 32.1, 28.6, 28.5, 22.5, 19.6, 14.3, 8.5; IR (film) 3435, 3053, 2931, 2857, 2232, 

1772, 1735, 1618, 1583, 1322, 1080, 737 cm
-1

; HRMS (ESI) m/z = 232.1463 calcd for 

C15H20O2 [M]
+
, found 232.1457. 

 

(S)-7-(3,5-Dihydroxy-4-methylphenyl)hept-6-yn-2-yl acetate (1.35). The 

product was purified via column chromatography with 15% ethyl acetate in hexane to 

give a desired product in 80% yield as a pale yellow solid: 
1
H NMR (500 MHz, CDCl3)  

6.45 (s, 2H), 5.99 (brs, 2H), 4.99 (sextet, J = 6.0 Hz, 1H), 2.38 (t, J = 7.0 Hz, 2H), 2.11 

(s, 3H), 2.06 (s, 3H), 1.73-1.66 (m, 2H), 1.64-1.57 (m, 2H), 1.24 (d, J = 6.5 Hz, 3H); 
13

C 

NMR (125 MHz, CDCl3) δ 172.2, 154.8, 121.6, 111.7, 111.0, 88.7, 81.0, 71.4, 35.0, 24.6, 

21.6, 20.0, 19.3, 8.2; IR (film) 3387, 2924, 1708, 1586, 1415, 1380, 1264, 1089, 843, 

739, 702 cm
-1

;  HRMS (ESI) m/z = 275.1283 calcd for C16H19O4 [M–H]
-
, found 275.1288. 

 

2-Methyl-5-(phenylethynyl)benzene-1,3-diol (1.36). The product was purified 

via column chromatography with 20% ethyl acetate in hexane to give a desired product in 

60% yield as a pale yellow solid: 
1
H NMR (500 MHz, acetone-d6)  8.38 (s, 2H), 7.50-
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7.49 (m, 2H), 7.40-7.38 (m, 3H), 6.60 (s, 2H), 2.10 (s, 3H); 
13

C NMR (125 MHz, 

acetone-d6) δ 157.2, 132.2, 129.4, 129.1, 124.3, 121.2, 113.5, 110.5, 90.6, 88.3, 8.7; IR 

(film) 3328, 2918, 1629, 1503, 1383, 1088, 846, 754 cm
-1

; HRMS (ESI) m/z = 225.0916

calcd for C15H13O2 [M+H]
+
, found 225.0918.

(S)-3,3'-Dimethyl-6,6'-di(oct-1-yn-1-yl)-[1,1'-biphenyl]-2,2',4,4'-tetraol (1.38). 

Following the general procedure using method B at 0 °C for 18 h, the ortho-ortho 

product was obtained as a yellow solid in 69% yield: 
1
H NMR (500 MHz, CDCl3)  6.57

(s, 2H), 5.01 (s, 2H), 4.84 (s, 2H), 2.16 (s, 6H), 2.16-2.15 (m, 4H), 1.34-1.20 (m, 10H),  

1.18-1.12 (m, 6H), 0.87 (t, J = 8 Hz, 6H); 
13

C NMR (125 MHz, CDCl3) δ 154.6, 153.5,

123.1, 115.3, 111.2, 110.9, 93.1, 78.3, 31.4, 28.4, 28.1, 22.5, 19.3, 14.1, 8.5; IR (film) 

3443, 3304, 3054, 2930, 2306, 1606, 1584, 1395, 1265, 1077, 739 cm
-1

; HRMS (ESI) m/z

= 463.2848  calcd for C30H39O4 [M+H]
+
, found 463.2841; [] D

23
  –50.96 (c 0.05, 89% ee,

CHCl3); Enantiomeric excess was determined with Chiral HPLC: Chiralpak IA column 

(20% i-PrOH/hexanes, 1 mL/min) tr(S) = 6.76 min, tr(R) = 15.98 min. 



 41 

 

(2S,2'S)-((R)-4,4',6,6'-Tetrahydroxy-5,5'-dimethyl-[1,1'-biphenyl]-2,2'-

diyl)bis(hept-6-yne-7,2-diyl) diacetate (1.39). Following the general procedure with 20 

mol% (–)-V6 using method B at 0 °C for 2 d, the ortho-ortho product was obtained as a 

yellow oil in 67% yield: 
1
H NMR (500 MHz, CDCl3)  6.60 (s, 2H), 6.27 (brs, 2H), 5.13 

(s, 2H), 4.79 (sextet, J = 6.0 Hz, 2H), 2.24-2.17 (m, 4H), 2.16 (s, 6H), 2.03 (s, 6H), 1.41-

1.37 (m, 6H), 1.28-1.24 (m, 2H), 1.18 (d, J = 6.5 Hz, 6H); 
13

C NMR (125 MHz, CDCl3) δ 

171.6, 155.1, 153.5, 122.8, 115.2, 111.8, 111.0, 91.8, 79.2, 71.3, 34.5, 24.3, 21.4, 19.9, 

19.1, 8.6; IR (film) 3409, 2936, 1707, 1585, 1515, 1415, 1377, 1269, 1165, 1134, 1085, 

737 cm
-1

;  HRMS (ESI) m/z = 573.2464  calcd for C32H38O8Na [M+Na]
+
, found 

573.2460. 

 

 

 

 



 42 

Chapter 2.  Selective Oxidative Homo- and Cross-Coupling of Phenols 

 

2.1. Background 

Bisphenolic compounds represent an important class of natural products the 

inherent reactivity of which makes them both important synthetic intermediates and 

components in biologically active molecules. Many natural products
34

 and materials
35

 can 

be constructed by oxidative phenol couplings including homo- and cross-coupling of 

phenols (Figure 2.1). The examples include those requiring regioselectivity in homo-

coupling (euphorbetin vs isoeuphorbetin) or in cross-coupling of two different monomers 

(honokiol, ZD6126, riccardin C, vingramine). Methods that install the bisphenol bonds 

can give access to these complex molecules and can provide efficient synthetic routes to 

new classes of achiral and chiral ligands as well. Therefore, any methods to generate 

these bisphenols in high yield and high selectivity would be very valuable to the synthetic 

community. Although many stoichiometric phenolic oxidations have been reported,
36

  the 

                                            

(34) (a) Weiss, U.; Merlini, L.; Nasini, G. "Naturally Occurring Perylenequinones" Prog. Chem. Org. Nat. 

Prod. 1987, 52, 1–71. (b) Bringmann, G.; Günther, C.; Ochse, M.; Schupp, O.; Tasler, S. "Biaryls in 

Nautre: A Multi-Facetted Class of Stereochemically, Biosynthetically, and Pharmacologically Intriguing 

Secondary Metaobolites" Prog. Chem. Org. Nat. Prod. 2001, 82, 1–249. 

( 35 ) Kobayashi, S.; Higashimura, H. “Oxidative polymerization of phenols revisited” Prog. Polym. 

Sci. 2003, 28, 1015–1048.   

(36) (a) Armstrong, D. R.; Cameron, C; Nonhebel, D. C.; Perkins, P. G. “Oxidative Coupling of Phenols. 

Part 6. A Study of the Role of Spin Density Factors on the Product Composition in the Oxidations of 3,5-

Dimethylphenol and Phenol” J. Chem. Soc. Perk. Trans. 2 1983, 563–568. (b) Noshino, H.; Itoh, N.; 

Nagashima, M.; Kurosawa, K. “Choice of Manganese(III) Complexes for the Synthesis of 4,4′-

Biphenyldiols and 4,4′-Diphenoquiones” Bull. Chem. Soc. Jpn. 1992, 65, 620–622. (c) Morimoto, K.; 

Sakamoto, K.; Ohnishi, Y.; Miyamoto, T.; Ito, M.; Dohi, T. Kita, Y. “Metal-Free Oxidative para Cross-

Coupling of Phenols” Chem. Eur. J. 2013, 19, 8726–8731. 
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coupling selectivities are typically low when multiple coupling sites are available (red 

arrows in Figure 2.1). Furthermore, the reactions are often stoichiometric and require the 

use of hazardous and expensive materials and the products are difficult to remove from 

the reaction mixtures.
37

Figure 2.9 Natural Products Derived from Oxidative Phenolic Coupling 

Figure 2.2 illustrates some of the difficulties underlying oxidative coupling of 

phenols. First, the oxidation potential is quite high, especially compared to substrates that 

are readily oxidized, such as 2-naphthol (Figure 2.2a).
38

 Second, significant radical

(37) (a) Jiang, Q.; Sheng, W.; Tian, M.; Tang, J.; Guo, C. “Cobalt(II)–Porphyrin-Catalyzed Aerobic 

Oxidation: Oxidative Coupling of Phenols” Eur. J. Org. Chem. 2013, 1861–1866. (b) Feng, J.; Yang, X.-

B.; Liang, S.; Zhang, J.; Yu, X.-Q. “An efficient oxidative coupling method for synthesis of novel 

diastereomeric biaryl diols derived from estrone” Tetrahedron Lett. 2013, 54, 355–357. 

(38) Bordwell, F. G.; Cheng, J. P. “Substituent Effects on the Stabilities of Phenoxyl Radicals and the 

Acidities of Phenoxyl Radical Cations” J. Am. Chem. Soc. 1991, 113, 1736–1743. 
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character is present at more than one position in a phenol radical (Figure 2.2b), leading 

to multiple products. Again, the situation is quite different for 2-naphthol, where the 

benzylic 1-radical is highly stabilized.
39

 Also, the direct oxygenation of the aromatic ring

to quinones and further adducts can become competitive. Methods to affect selective 

couplings are limited and Figure 2.2c outlines a typical example. Only the ortho-ortho 

isomer (o-o) can be produced high selectivity (85%), and the use of superstoichiometric 

di-tert-butyl peroxide at >120 °C is not ideal.  Thus, our goal is to identify catalysts that 

allow regioselective homo-couplings and cross-couplings.  

Figure 2.10 Oxidation Products of Phenols 

(39) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C.; “Total Synthesis of Chiral Biaryl Natural Products by 

Asymmetric Biaryl Coupling” Chem. Soc. Rev. 2009, 38, 3193–3207. 
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We selected metals with sufficiently high redox potentials (Cr, Cu, Fe, Mn, Ru, 

V) to oxidize phenols and that, in turn, can be reoxidized by O2.
40

 Further, ligands that 

solubilize the metal, allow tuning of the redox potential, and are oxidatively stable were 

selected. Both the salen and salan scaffolds were studied (Figure 2.3). Due to the large 

number of variables, parallel microscale screening was used.
41 

 

 

Figure 2.11 Catalysts for Exploration in Oxidative Chemistry 

Screens by Dr. Trung Cao revealed that all the salens/salans were effective with 

O2 for easily oxidized substrates such as 2-naphthol. Screening of phenol substrates that 

give rise to mixtures with conventional oxidants and optimization of the best leads 

identified catalysts for a remarkably broad range of couplings with control of ortho-

                                            

(40) (a) Hon, S.-W.; Li, C.-H.; Kuo,  J.-H.; Barhate, N. B.;  Liu, Y.-H.; Wang, Y.;  Chen, C.-T. "Catalytic 

Asymmetric Coupling of 2-Naphthols by Chiral Tridentate Oxovanadium(IV) Complexes" Org. Lett. 2001, 

3, 869–872. (b) Takizawa, S.; Rajesh, D.; Katayama, T.; Sasai, H. “One-Pot Preparation of Chiral 

Dinuclear Vanadium(V) Complex” Synlett, 2009, 10, 1667–1669.   

(41) (a) Dreher, S. D.; Dormer, P. G.; Sandrock, D. L.; Molander, G. A. “Efficient Cross-Coupling of 

Secondary Alkyltrifluoroborates with Aryl Chlorides – Reaction Discovery Using Parallel Microscale 

Experimentation” J. Am. Chem. Soc. 2008, 130, 9257–9259. (b) Schmink, J. R.; Bellomo, A.; Berritt, S. 

"Scientist-Led High-Throughput Experimentation (HTE) and Its Utility in Academia and Industry" 

Aldrichimica Acta 2013, 46, 71–80. 
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ortho, ortho-para selectivity (Figure 2.4).
42 

 Notably, a rapid increase in complexity was 

observed in the ortho-para manifold (Figure 2.4b) giving rise to the Pummerer ketone, 

found in biologically active natural products such as the galanthamines and usnic acids.
43 

  

 

Figure 2.12 Regioselective Phenol Coupling 

 

2.2. ortho-ortho Coupling by Ru-Salen Catalyst 

In screening phenol substrates for the oxidative coupling, we have come across a 

number of limitations.44  There were some substrates, for which the catalysts provided 

                                            

(42) Lee, Y. E.; Cao, T.; Torruellas, C.; Kozlowski, M. C. “Selective Oxidative Homo- and Cross-Coupling 

of Phenols with Aerobic Catalysts” J. Am. Chem. Soc. 2014, 136, 6782–6785. 

(43) (a) Pelish, H. E.; Westwood, N. J.; Feng, Y.; Kirchhausen, T.; Shair, M. D. “Use of Biomimetic 

Diversity-Oriented Synthesis to Discover Galanthamine-Like Molecules with Biological Properties beyond 

Those of the Natural Product” J. Am. Chem. Soc. 2001, 123, 6740–6741. (b) Cocchietto, M.; Skert, N.; 

Nimis, P. L.; Sava, G. “A review on usnic acid, an interesting natural compound” Naturwissenschaften 

2002, 89, 137–146. (c) Elo, H.; Matikainen, J.; Pelttari, E. “Potent activity of the lichen antibiotic (+)-usnic 

acid against clinical isolates of vancomycin-resistant enterococci and methicillin-resistant Staphylococcus 

aureus” Naturwissenschaften 2007, 94, 465–468. (d) Arkley, V.; Dean, F. M.; Robertson, A.; Sidisunthorn, 

P. “451. Usnic Acid. Part XII. Pummerer's Ketone” J. Chem. Soc. 1956, 2322–2328.  



 47 

poor control over regioselectivity. With electron-withdrawing groups, phenol substrates 

were resistant to oxidation even when temperature was elevated. On the other hand, 

electron-rich phenols were easily oxidized to quinones or gave multiple products. For 

example, when 3,5-dimethoxy-4-iso-propylphenol (2.1, Scheme 2.1) was screened with 

our oxidation catalyst library, the hydroxyl hexadienone 2.2 and quinone 2.3 were 

observed as major products, whereas phenoxy hexadienone 2.4, which could undergo 

further thermal rearrangement to generate the ortho-ortho coupling product, was found 

only as minor product. Furthermore, substrate 2.1 was found to oxidize spontaneously 

under air to give hydroxyl hexadienone 2.2 in 33% conversion after 30 days. 

Scheme 2.9 Products from Catalyst Screening of 3,5-Dimethoxy-4-iso-propylphenol 

In screening other electron-rich phenol substrates (Scheme 2.2), the Ru-Salen-Ph 

catalyst was found to readily give coupling products for 3,4,5-trimethylphenol (2.5) and 

2-tert-butyl-4,5-dimethylphenol (2.7). After 2 days reactions at 80 °C, this Ru catalyst 

gave 50% and 85% of the ortho-ortho coupling products, respectively. 

(44) Cao, T. “Part B: The Regioselective Oxidative Coupling of Phenols” Dissertation. 2013, University of 

Pennsylvania 
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Scheme 2.10 ortho-ortho Coupling Reaction 

2.3. Regioselective Coupling of 2,3,5-Trimethylphenol 

Interestingly, 2,3,5-trimethylphenol (2.9) gave all possible coupling products, 

ortho-ortho, ortho-para and para-para bisphenol, with the catalyst library in HTE (High 

Throughput Experimentation). These screening results are shown in Figure 2.5. 
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Figure 2.13 HTE Screening: Oxidative Coupling of 2,3,5-Trimethylphenol 

However, the ortho-ortho product could not be reproduced on bench scale (0.2 

mmol) with the V-Salen-Ph catalyst even though this lead gave the highest conversion in 

the HTE screen. Turning to the ortho-para coupling, a 12-membered expanded library 

focused on chromium catalysts [Cr-(Salen/Salan)-(H/Cy/Ph)-(tBu/NO2)] was screened to 

find the best conversion. With Cr-Salen-H, a mixture of ortho-para and para-para 

coupling products was obtained (Figure 2.6). Only Cr-Salen-Cy gave the ortho-para 

coupling product exclusively, and the other Cr(III) complexes were either not as selective 

or as reactive.  
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Figure 2.14 Screening of Cr-Salen/Salan Catalysts 

A survey of different reaction conditions (temperature, concentration, catalyst 

loading etc.) led to optimal conditions (50 °C, 0.05 M in CH2Cl2, 5 mol%, Scheme 2.3). 

This reaction mixture was quenched after 2 days when the conversion reached to 55%; 

there was no side product, but starting material remained. If the reaction was permitted to 

proceed longer than 2 days, there was significant decomposition.  
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Scheme 2.11 Optimized Conditions for Homo-Coupling of 2,3,5-Trimethylphenol 

2.4. Expansion of Chromium (III) Catalyst to Oxidative Phenol Coupling 

In the screening of several different substrates, the reactivity of Cr-Salen-Cy 

catalyst was unusual even though Cr salens have not been reported previously in 

oxidative phenolic coupling. For example, for 2-tert-butyl-5-methylphenol, both Cr 

salens and Ru salens gave the para-para product, whereas V-Salen-Cy gave the ortho-

ortho product (not verified on bench scale). 

The Cr-Salen-Cy gave para-para product for 2,5- and 2,6-disubstituted phenol. 

The para-para products were formed from the 2,5-disubstituted phenols at the less-

hindered para-site flanked by a single substituent (Scheme 2.4a). When there was 

competition between ortho- and para-sites, steric factors appeared to control the 

selectivity with the Cr-Salen-Cy. Yields were modest (38-44%) due to low reactivity, a 

challenge to be addressed. 

When both ortho-positions were blocked, the expected para-para product was 

obtained with Cr-Salen-Cy catalyst. For the more electron-rich phenol substrates, 
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overoxidation of the para-para bisphenol to the diphenoquinone dimer was seen. 

However, the diphenoquinone was reduced readily back to para-para bisphenol coupling 

product (Scheme 2.4b). Interestingly, even though 2,3,6-trimethylphenol has more 

electron density than 2,6-dimethylphenol, it showed less conversion for para-para 

coupling. This result again points to steric interactions dominating, in this case from the 

3-methyl group adjacent to the coupling site. 

Scheme 2.12 para-para Coupling with Cr-Salen-Cy 

Kobayashi and coworkers have broadly studied and published Fe-Salen catalysts 

as effective in oxidative coupling of 2,6-disubstituted phenols using hydrogen peroxide as 
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a terminal oxidant.
45

 For example, 2,6-diisopropyl- and 2,6-dimethoxyphenol yielded 

biphenyl dimer. The addition of small amount of pyridine with this catalyst suppressed 

the formation of the diphenoquinone byproduct. 

On the other hand, Cr-Salen-Cy gave the ortho-para product not only for 2,3,5-

trimethylphenol (2.9) but for 3,5-dimethylphenol (2.20) even though the conversion was 

very low (8%) (Scheme 2.5). The elements controlling selectivity for the ortho-para 

products with Cr-Salen-Cy are less clear with these substrates than for the para-para 

products. One possible model to explain this outcome is that one phenol partner is bound 

to the catalyst via the phenol, rendering the ortho-site more hindered such that reaction 

occurs at the para-site for this monomer. A second unbound substrate then approaches 

and reacts at the less hindered ortho-site. 

Scheme 2.13 ortho-para Coupling with Cr-Salen-Cy 

 

                                            

(45) Tonami, H.; Uyama, H.; Kobayashi, S.; Higashimura, H.; Oguchi, T. “Oxidative Polymerization of 

2,6-Disubstituted Phenols Catalyzed by Iron-Salen Complex” J. Macromol. Sci., Pure Appl. Chem. 1999, 

A36, 719-730. 
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2.5. Cross-Coupling Reaction of Phenols 

At this point, the question of cross-coupling between different phenols arose, and 

this was regarded as a very difficult venture since any catalyst must promote the cross-

coupling much faster than either of the corresponding homo-couplings.  

Many groups attempted oxidative cross-coupling reaction between different two 

naphthols or phenols. 46 After Katsuki and coworkers discovered that ruthenium salen 

complexes could be used for aerobic oxidative homo-coupling of 2-naphthol,
47

 they 

found bis--hydroxo dimeric iron salan complex to be an excellent catalyst for not only 

for homo-coupling of 2-naphthols but also for the cross-coupling of 2-naphthols.48 In 

2014, the Waldvogel group revealed the electrochemical methods for cross-coupling of 

phenols.
14a

 Employing electrolytes with a high capacity for hydrogen bonding, a direct 

electrolysis in an undivided cell provided mixed 2,2'-biphenols with high selectivity. 

And, more recently, Doron Pappo and coworkers developed an iron-catalyzed oxidative 

unsymmetrical biphenol coupling in 1,1,1,3,3,3-hexafluoro-2-propanol and postulated a 

                                            

(46) For an alternate cross-coupling after our publication in 2014: (a) Elsler, B.; Schollmeyer, D.; Dyballa, 

K. M.; Franke, R.; Waldvogel, S. R. “Metal- and Reagent-Free Highly Selective Anodic Cross-Coupling 

Reaction of Phenols” Angew. Chem., Int. Ed. 2014, 53, 5210-5213. (b) Libman, A.; Shalit, H.; Vainer, Y.; 

Narute, S.; Kozuch, S.; Pappo, D. “Synthetic and Predictive Approach to Unsymmetrical Biphenols by 

Iron-Catalyzed Chelated Radical−Anion Oxidative Coupling” J. Am. Chem. Soc. 2015, 137, 11453-11460. 

(c) More, N. Y.; Jeganmohan, M. “Oxidative Cross-Coupling of Two Different Phenols: An Efficient 

Route to Unsymmetrical Biphenols” Org. Lett. 2015, 17, 3042−3045. 

( 47 ) Iried, R.; Masutani, K.; Katsuki, T. “Asymmetric Aerobic Oxidative Coupling of 2-Naphthol 

Derivatives Catalyzed by Photo-Activated Chiral (NO)Ru(II)-Salen Complex” Synlett  2000,  1433-1436. 

(48) (a) Egami, H.; Matsumoto, K.; Oguma, T.; Kunisu, T.; Katsuki, T. “Enantioenriched Synthesis of C-1-

Symmetric Binols: Iron-Catalyzed Cross-Coupling of 2-Naphthols and Some Mechanistic Insight” J. Am. 

Chem. Soc. 2010, 132, 13633-13635. (b) Matsumoto, K.; Egami, H.; Oguma, T.; Katsuki, T. “What Factors 

Influence the Catalytic Activity of Iron-Salan Complexes for Aerobic Oxidative Coupling of 2-Naphthols?” 

Chem. Commun.  2012, 48, 5823-5825. 
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chelated radical−anion coupling mechanism.
14b

 They determined oxidation potential (Eox)

and the theoretical global nucleophilicity (N) parameters of various phenols to support 

their mechanism. 

The intriguing finding that the Cr-Salen-Cy catalyst permits coupling at two 

different sites of a monomer stimulated us to study its behavior with different monomers 

especially if were possible to selectively coordinate one monomer to the catalyst in line 

with our putative model (Scheme 2.5). Initial studies showed a significant amount of 

cross-coupling when two different phenol substrates were employed in a 1:1 ratio 

(Scheme 2.6). More excitingly, as we switched to different coupling partners, the homo-

coupling reactions were suppressed. 

Scheme 2.14 Initial Trials of Cross-Coupling Reaction 

Changing the coupling partner to 2,6-di-tert-butylphenol (2.15) gave more cross-

coupling product with higher selectivity. With 2,3,5-trimethylphenol (2.9), 2,6-di-tert-
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butylphenol gave 50% of the para-ortho coupling product after 1 day at 50 °C. In a 

similar fashion, several other phenol substrates gave cross-coupling product selectively 

with moderate yield (Scheme 2.7). The same reaction conditions for the homo-coupling 

(50 °C, 0.05 M, 5 mol%) were used for the cross-coupling reaction. There was no side 

product, but the both phenol substrates remained unreacted. Reaction times longer than 2 

days caused decomposition of both the starting phenols and the product. 

With 2,6-di-tert-butylphenol (2.15), coupling partners with open ortho- and para-

sites underwent reaction at the less sterically hindered position in a similar fashion in 

homo-coupling (Scheme 2.7). For example, 2,3,5-trisubstituted phenols and 3,5-

disubstituted phenols coupled in the ortho position and gave ortho-para product (2.24, 

2.25), whereas 2,5-disubstituted phenols coupled in para position to give the 

corresponding para-para bisphenols (2.26-2.29). 
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Scheme 2.15 Cross-Coupling Reaction with 2,6-Di-tert-butylphenol 

 

Additional screening of 2,6-disubstituted phenols revealed similar trends. 2,6-

Dimethylphenol (2.31 and 2.32), 2,6-diisopropylphenol (2.33), and even unsymmetrical 

2-methyl-6-tert-butylphenol (2.34–2.37) coupled in same way with various partners 

(Scheme 2.8). Notably, 2-methyl-6-tert-butylphenol gave high conversion, up to 77% at 

70 °C; the other substrates either decomposed or coupled twice to form trimers with 2,6-

di-tert-butylphenol at this temperature. 
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Scheme 2.16 Cross-Coupling Reaction with 2,6-Disubstituted Phenols 

 For less reactive substrates, coupling could be induced at higher temperature (70 

°C). However, the resultant dimeric product was more reactive in these cases than the 

original monomer leading to trimers (Scheme 2.9) with negligible amounts of dimer (less 

than 5%) in these cases. The second cross-coupling proceeded successively, and trimers 

were observed in fair yield (44–46%) along with unreacted starting materials after 2 days. 
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Scheme 2.17 Trimer Formation in Cross-Coupling 

There were some substrates where both dimer and trimer were observed 

indicating that the dimer product was not more reactive than the monomers. For example, 

para-alkylphenol gave a mixture of dimer and trimer with 2,6-disubsituted phenols. 

Symmetric resorcinol also gave a mixture (Table 2.1).  It was reasoned that if the 

reactivities of dimer and monomer were similar to each other, both products were 

observable. Since these formations of dimer and trimer were competitive, reactions were 

uncontrollable. Repeated trials to influence the outcome by adjusting the ratio between 

two products did not succeed. For example, slow addition of 2,6-di-tert-butylphenol 

during the reaction course did not suppress trimer formation, and excess addition of 2,6-

di-tert-butylphenol also did not expedite trimer formation; in both case, dimer and trimer 

were observed forming at similar rates. 
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Table 2.5 Dimer vs. Trimer 

2,6-Disubstituted phenols (A, Scheme 2.10) were combined with phenols with 

only one open ortho-coupling site (B, Scheme 2.10) to render the ortho-para coupling 

products stable and prevent trimer formation by limiting the outcome to three coupling 

products: two homo-coupling products and one cross-coupling product (Scheme 2.10). 

The yields were excellent (up to 88%) due to the stability of the coupled product. 

However, in our system, there were examples that was inconsistent with Pappo’s 

postulation.
14b

 For example, in product 2.46, 2,4-dimehtylphenol is both more

nucleophilic and more oxidizable than 2,6-di-tert-butylphenol. 

A range of naphthols was also effective in dimer formation with 2,6-disubstituted 

phenol providing products in good yield. Notably, even though there were two identical 
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coupling sites, 2,7-dihydroxynaphthalene did not form any trimer, but only dimer was 

observed with good yield (2.54, 82%). 

Scheme 2.18 Cross-Coupling Reaction 

On the other hand, there were many challenging substrates in the cross-coupling 

reaction (Scheme 2.11). Electronic effects of phenol B played an important role in the 

reactivity of the cross-coupling. For example, amines (2.55 and 2.57) or vinyl groups 

(2.58) were not compatible with the cross-coupling reaction condition; no starting 

materials remained after overnight reaction and only decomposition was observed. 1-

Naphthols (2.63 and 2.64) also failed to couple with 2,6-di-tert-butylphenol due to the 

oxygenation of substrates to naphthoquinones. 
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On the other hand, electron-withdrawing groups, such as formyl group (2.59), 

halide groups (2.60–2.62), or ester group (2.65), suppressed cross-coupling reaction with 

2,6-di-tert-butylphenol. Only the diphenoquinone of 2,6-di-tert-butylphenol was 

observed along with the starting phenol substrates. 

Unlike phenols with open sites in ortho position, phenols with open sites in the 

para position were not as prone to oxidative coupling reaction with the chromium 

catalyst. After three days reaction at 80 °C, only 10% conversion was observed between 

2,6-di-tert-butylphenol (2.15) and 2,6-dimethylphenol (2.17, Scheme 2.11). Again, when 

the cross-coupling did not happen for the substrates 2.66 and 2.67, the diphenoquinone of 

2,6-di-tert-butylphenol and both unreacted substrates were observed. 

Scheme 2.19 Challenging Substrates in Cross-Coupling 

The evidence from the present study that the scope of the cross-coupling reaction 

is different from that of the homo-coupling is noteworthy. For example, 2,6-disubstituted 



 63 

phenol which also couples itself to give homo-coupling product is essential in the cross-

coupling, whereas the coupling partner which cannot undergo a homo-coupling reaction 

under the present aerobic oxidation conditions, can undergo a cross-coupling reaction.  

 

2.6. Intramolecular Coupling of Phenols 

Tyrosine derivatives (Figure 2.6) are another challenging substrate class. Cross-

linked tyrosine residues are common in biologically active cyclic peptides, including the 

cycloisodityrosine-containing bouvardins, 49 RA-series compounds, 50 and the neurotensin 

antagonist RP-66453, 51  which contains a pulcherosine moiety. The functionalized 

tyrosine derivatives in these complex peptides are believed to be of critical importance to 

their three dimensional structure and biological activity.  Even though an oxygen-driven 

process has been implicated in the biosynthesis of these natural products, no successful 

oxidative couplings have been reported. Instead, synthetic routes to these materials have 

relied on Suzuki and related couplings52 which require additional functionalization. A 

                                            

(49) Boger, D. L.; Patane, M. A.; Zhou, J. C. “Total Synthesis of Bouvardin, O-Methylbouvardin, and O-

Methyl-N
9
-desmethylbouvardin” J. Am. Chem. Soc. 1994, 116, 8544-8556. 

(50) Bigot, A.; Dau, M. E. T. H.; Zhu, J. “Total Synthesis of an Antitumor Agent RA-VII via an Efficient 

Preparation of Cycloisodityrosine” J. Org. Chem. 1999, 64, 6283-6296. 

(51) (a) Bios-Choussy, M.; Cristau, P.; Zhu, J. “Total Synthesis of an Atropdiastereomer of RP-66453 and 

Determination of Its Absolute Configuration” Angew. Chem., Int. Ed. 2003, 42, 4238-4241. (b) Krenitsky, 

P. J.; Boger, D. L. “Synthesis of the (S,S,S)-diastereomer of the 15-membered biaryl ring system of RP 

66453” Tetrahedron Lett. 2003, 44, 4019-4022.  

(52) Decicco, C. P.; Song, Y.; Evans, D. A. “Intramolecular O-Arylation of Phenols with Phenylboronic 

Acids: Application to the Synthesis of Macrocyclic Metalloproteinase Inhibitors” Org. Lett.  2001, 3, 1029-

1032. 
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direct route to such materials would increase efficiency and permit facile synthesis of a 

broader array of analogs for study.   

 

Figure 2.15 Intramolecular Oxidative Coupling in Di- and Tripeptide 

Dityrosine (2.69) and trityrosine (2.71) obtained by peptide coupling between 

tyrosine methyl ester and N-protected tyrosine 53  failed to give any type of coupling 

product with our catalyst library. Under oxygen atmosphere, these substrates were too 

stable and no conversion was observed. In collaboration with Allison Metz, we pursued 

                                            

(53) Ray, S.; Das, A. K.; Banerjee, A. “Smart oligopeptide gels: in situ formation and stabilization of gold 

andsilver nanoparticles within supramolecular organogel networks” Chem.Commun.  2006, 26, 2816-2818. 
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further screening using several oxidants and catalysts, but only side products were 

observed. With tert-butyl hydroperoxide, V6 catalyst from Chapter 1 produced a tert-

butyl peroxy group adduct and a dimer of starting material via intermolecular coupling; 

there was no intramolecular coupling product found (Scheme 2.12). 

Scheme 2.20 Oxidative Coupling of Dityrosine 

 

To simplify this coupling, different phenols linked with simple alkyl tethers were 

synthesized. Staring from 3-hydroxybenzaldehyde (2.75) and m-anisaldehyde (2.79) 

respectively, multi-step syntheses led to the substrates for the coupling reaction (Scheme 

2.13). 54 After each benzaldehyde was linked through alkyl chains by the conventional 

coupling reactions, substrates were further designed to incorporate tert-butyl groups in 

order to increase electron density on the phenyl ring and thereby enhance reactivity.  

 

 

                                            

(54) Vonlanthen, D.; Rotzler, J.; Neuburger, M.; Mayor, M. “Synthesis of Rotationally Restricted and 

Modular Biphenyl Building Blocks” Eur. J. Org. Chem. 2010, 120–133. 
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Scheme 2.21 Syntheses of Bisphenols for Intramolecular Coupling 

Intramolecular coupling reactions of the synthesized bisphenols were attempted 

by the catalyst screening. Nevertheless, oxidative coupling was not feasible except with a 

few substrates which gave small amounts of ortho-para products. For example, with Co-

Salen-H catalyst, substrate 2.77 gave ortho-para product and the Cr-Salen-Cy catalyst 

yielded ortho-para coupling product for the substrate 2.78 (Scheme 2.14). Even though 

we were unable to obtain good conversion in any intramolecular couplings, the result 

from these substrates were intriguing in that coupling occurred at the more hindered 

ortho-position. 
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Scheme 2.22 Intramolecular Coupling of Bisphenol 

 

 

2.7. Mechanism Studies 

2.7.1. Radical Inhibitors 

In order for the cross-coupling reaction to occur, any catalyst must promote the 

cross-coupling much faster than either of the corresponding homo-couplings. It was 

discovered that Cr-Salen-Cy was broadly effective for the cross-coupling of phenols, not 

only for the homo-coupling, and many substrates were well tolerated. Even though Cr 

salens have been known for decades, 55  there have been no prior reports in phenol 

coupling. In order to develop this method further, especially with respect to less electron 

rich substrates, there is an urgent need to understand this mechanism.  

                                            

(55) McGarrigle, E. M.; Gilheany, D. G. “Chromium− and Manganese−salen Promoted Epoxidation of 

Alkenes” Chem. Rev. 2005, 105, 1563–1602. 
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Control experiments of the cross-coupling reaction between 2,6-di-tert-

butylphenol (2.15) and 3,4,5-trimethylphenol (2.5) revealed an excellent yield (88%) of 

product 2.45 within 3 hours. The results from Table 2.2 clearly show that not only the 

Cr-Salen-Cy catalyst, but oxygen and heat are necessary for the cross-coupling reaction 

to proceed. 

Table 2.6 Control Experiments in the Cross-Coupling 

 

In order to determine whether this cross-coupling reaction involved a radical 

mechanism, several radical scavengers (diphenylethylene, 2,2,6,6-tetramethyl- 

piperidinyloxy, butylated hydroxytoluene and galvinoxyl) were tested (Table 2.3). One 

half equivalent radical scavenger was added to each cross-coupling reaction. Only 

TEMPO (2,2,6,6-tetramethylpiperidinyloxyl) was found to inhibit the cross-coupling 

pathway, reducing the yield by about half compared to the control reaction. Instead, 

TEMPO promoted the formation of diphenoquinone up to 42%. Doubling the amount of 

TEMPO suppressed the reaction to approximately same extent as half equivalent did, but 
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did cause the formation of more diphenoquinone (up to 62%). The other radical 

scavengers had no effect. 

Table 2.7 Radical Scavengers in Cross-Coupling 

 

On the other hand, experiments with radical scavengers in the homo-coupling 

reactions did reveal perturbations with more than one radical inhibitor (highlighted with 

blue), which is strongly supportive of radical character in the homo-couplings (Table 2.4). 

It was noteworthy that TEMPO functioned as an oxidant for the homo-coupling reaction 

of the substrate 2.15. It gave more para-para coupling product by more than double. This 

was consistent with the result in cross-coupling reaction in Table 2.3 and revealed that 

catalyzed cross-coupling reaction was more rapid than the homo-coupling reaction. 
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Table 2.8 Radical Scavengers in Homo-Coupling Reactions 

2.7.2. UV-Vis Spectroscopy 

UV-Vis spectroscopy was used to monitor oxidation state change of the metal 

complexes (Figure 2.8). The Ru catalyst did not change upon treatment with TEMPO 

under the reaction conditions as judged by UV-Vis. For the Cr catalyst, a Cr(III) complex 

was found to be present at the onset (see crystal structure below) with a band at 430 nm 

and was ineffective in the coupling without O2. Spectroscopic studies revealed that O2 at 

high temperatures caused the disappearance of the 430 nm band and generation of a new 

species with a band at 480 nm, which is consistent with a Cr(IV). 56 This species did not 

form in the presence of TEMPO, which accounts for the reaction inhibition by TEMPO 

as shown in Table 2.3. 

(56) Brown, C.;Krzystek, J.; Achey, R; Lita, A.; Fu, R.; Meulenberg, R. W.; Polinski, M.; Peek, N.; Wang, 
Y.; van de Burgt, L. J.; Profeta, Jr. S.; Stiegman, A. E.; Scott, S. L. “Mechanism of Initiation in the Phillips 

Ethylene Polymerization Catalyst: Redox Processes Leading to the Active Site” ACS. Catal. 2015, 5, 5574–

5583. 
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Figure 2.16 UV-Vis Spectra of Ru-Salen-Ph vs. Cr-Salen-Cy 
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2.7.3. Reactivity of Cr(III) Complexes 

The Jacobsen group has reported the Cr-Salen-Cy complex as a highly effective 

catalyst for enantioselective epoxide ring opening reactions.
57

 They also discovered it 

induced hetero Diels-Alder reaction with high enantioselectivity.
58

 The chromium(III) 

salen complex was prepared from commercially available salicylaldehyde 2.88 (Scheme 

2.15). Schiff base formation with trans-1,2-diaminocyclohexane (2.89) followed by metal 

ion complexation and oxidation afforded the Cr(III) complex in good yield.  

Scheme 2.23 Representative Scheme for Cr-Salen-Cy Synthesis 

 

The same procedure with different salicylaldehydes and diamines produced 

various Cr(III) salen complexes.
10, 59

 Further reduction of imine moiety using LiAlH4 

gave the Cr(III) salan complexes. Counterion metatheses were accomplished with 

AgSbF6 and AgBF4 in tert-butyl methyl ether (TBME) to yield the corresponding 

hexafluoroantimonate and tetrafluoroborate complexes, respectively. With these Cr(III) 

                                            

(57) Martinez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E. N. “Highly Enantioselective Ring 

Opening of Epoxides Catalyzed by (salen)Cr(III) Complexes” J. Am. Chem. Soc. 1995, 117, 5897-589.   

(58) Schaus, S. E.; Brånalt, J. E.; Jacobsen, E. N. “Asymmetric Hetero-Diels–Alder Reactions Catalyzed by 

Chiral (salen)Chromium(III) Complexes” J. Org. Chem. 1998, 63, 403-405.   

(59) Cozzi, P. G. “Metal–Salen Schiff base complexes in catalysis: practical aspects” Chem. Soc. Rev. 2004, 

33, 410–421.   
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complexes synthesized, one of the challenging cross-coupling reactions was tested 

(Table 2.5). 

Table 2.9 Reactivity of Cr(III) Catalyst 

The salen series (entries 1-4) was superior to the salan series (entries 5-6) likely 

due to their greater donor properties. Within the salen series, the trans-

cyclohexanediamine backbone was superior (entry 1) than the other groups probably due 

to structural geometry and solubility. The salen ligand without any substituent on the 

phenyl ring (entry 7) was poorly soluble, which hampered reactivity. A tert-butyl group 

was needed ortho to the phenolic group, and even a similarly sized silyl group did not 

function similarly (entries 8 vs entry 1).  

Notably, an electron-donating group on the ligand of the chromium catalyst 

accelerated the cross-coupling reaction (entry 9), whereas an electron withdrawing group 
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suppressed it (entry 10).  This result indicates that the rate determining step is likely 

oxidation of the catalyst.  An electron withdrawing group on the salen destabilizes higher 

oxidation states of the chromium and makes oxidation to a reactive Cr(IV) or Cr(V) more 

difficult. Once generated, such a species would be a stronger oxidant and would be 

expect to cause a more rapid reaction if substrate oxidation was rate-determining, which 

is the opposite of what was observed.  The converse holds true for the salen with the 

electron donating methoxy group, which facilitates catalyst oxidation and did result in a 

more reactive catalyst.   

The use of more labile counterions in place of chloride was deleterious (entries 11, 

12 in Table 2.5) indicating that a more cationic complex is not more reactive. Cationic 

tetradentate Cr(Salen)SF6 and Cr(Salen)BF4 complexes catalyzed the cross-coupling 

reaction, but to a lesser extent than neutral complex Cr(Salen)Cl (entry 1).  

Some additives known as co-oxidant and sacrificial catalyst in oxidation reactions 

were tried in the cross-coupling reaction. However, triphenylphosphine oxide and N-

methylmorpholine N-oxide did not give any corresponding cross-coupling product 

(Scheme 2.16). 
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Scheme 2.16 Additive Test in the Cross-Coupling Reaction 

2.7.4. X-Ray Crystal Structure 

Chromium(III) salen complex is a brown solid insoluble in all non-coordinating 

solvents but slightly soluble in donor solvents such as THF, CH3CN, Et2O, etc. Under our 

cross-coupling conditions, the Cr-Salen-Cy catalyst was not soluble in toluene. However, 

as the reaction proceeded, the reaction mixture became homogeneous. An X-ray structure 

of this precatalyst was obtained by the crystals grown from CH3CN (Figure 2.9), which 

confirmed the starting state as Cr(III).
60

 The octahedral chromium(III) complex has a d
3

configuration and half-filled t2g orbital in the central metal ion, so that the Cr(III) ion is 

paramagnetic and redox innocent in the classical potential range.
61 

 The observed axial

coordination of the solvent to the catalyst suggested that phenolic substrates could 

(60) Hansen, K. B.; Leighton, J. L.; Jacobsen, E. N. “On the Mechanism of Asymmetric Nucleophilic Ring-

Opening of Epoxides Catalyzed by (Salen)Cr(III) Complexes” J. Am. Chem. Soc. 1996, 118, 10924-10925.  

( 61 ) Shimazaki, Y. “Recent Advances in X-Ray Structures of Metal-Phenoxyl Radical Complexes” 

Advances in Materials Physics and Chemistry 2013, 3, 60-71.  
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coordinate in this position, which would be consistent with substrate inhibition results 

(see below). However, we were unable to obtain a crystal structure of this complex bound 

to a phenol. The crystal structure of Cr(III)-phenoxyl radical complex having a three 

phenolate moieties connected with the triazacyclononane backbone has been reported.
62

However, no X-ray crystal structures of the other metal complexes having this ligand and 

its analogues have been reported yet. 

Figure 2.9 X-Ray Structure of Cr-Salen-Cy complex 

(Thermal ellipsoids represent 50% electron probability, and hydrogen atoms are 

omitted for clarity.) 

2.7.5. Kinetic Experiments 

In order to provide further evidence to delineate the mechanism, a study of the 

reaction kinetics was undertaken. 
1
H NMR spectroscopy was found to be the optimal

(62) Sokolowski, A.; Bothe, E.; Bill, E.; Weyhermüller, T.; Wieghardt, K. “Phenoxyl radical complexes of 

Chromium(III)” Chem. Commun., 1996, 1671-1672. 
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method to monitor the cross-coupling reaction of 2,6-di-tert-butylphenol with 3,4,5-

trimethylphenol (Scheme 2.17).  

Scheme 2.17 Design for Kinetic Experiments 

 

1,1'-Biphenyl (0.05 M) was used as an internal standard. The integration ratios of 

the peak at 6.83 ppm for 2,6-di-tert-butylphenol, 6.52 ppm for 3,4,5-trimethylphenol, 

7.36 ppm for 1,1'-biphenyl, and 6.74 ppm for product were used to establish the 

concentration of each of the components. Detailed procedures are described in the 

experimental section. A representative stacked 
2
H NMR time lapse spectrum and 

corresponding reaction profile using Cr-Salen-Cy catalyst (5 mol%) are shown in Figure 

2.10 and Figure 2.11, respectively. 
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Figure 2.17 
2
H NMR Time-lapse for the Cross-Coupling Reaction

Figure 2.18 Reaction Profile for the Cross-Coupling Reaction 

The analysis was performed by varying the substrate and catalyst concentrations 

independently in a series of cross-coupling reactions and measuring the initial rates of 

disappearance of the substrates and formation of the product. The initial reaction rates for 
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each experiment were obtained by analyzing the concentration vs time profile from the 

linear portion (<15% starting materials consumption). 

For the catalyst order measurement, a set of five reactions was carried out with 

the substrates 2.15 and 2.5 (0.1 M, each substrate) and Cr-Salen-Cy catalyst (0.002, 0.003, 

0.005, 0.007, 0.010 M; [cat]/[SM]o = 0.02, 0.03, 0.05, 0.07, 0.1, respectively) using a 5 

mL reaction volume. The reaction profiles are illustrated in Figure 2.12. The initial linear 

portion from the graph was used to obtain initial rates Ro (Table 2.6).  

 

Figure 2.19 Reaction Profiles at Various Catalyst Concentrations 
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Figure 2.20 Initial Rates at Various Catalyst Concentrations 

Table 2.6 Initial Rates at Each Catalyst Concentration 

Concentration (M) Initial Rate (M/s) 

0.002 3.41667E-06 

0.003 7.86111E-06 

0.005 1.26667E-05 

0.007 2.28889E-05 

0.010 2.75278E-05 

A log/log plot of Ro vs catalyst concentration revealed a slope of 1.29 consistent 

with a first order catalyst dependence (Figure 2.14). In recent kinetics studies by Poppo 

group
14b

 on cross-coupling reaction of phenols using FeCl3 as catalyst, the reactions were

also found to be first order in a multicoordinated iron catalyst. 
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Figure 2.21 Plot of log(Ro) vs. log[cat] 

This result was supported by additional kinetic experiments. In the same way, 

different coupling partner with 2,6-di-tert-butylphenol, 2-naphthol substrate also showed 

same order in Cr-catalyst. The log/log plot of Ro vs catalyst concentration resulted in first 

order from its slop (Figure 2.15) 
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Figure 2.15 Catalyst Order in Cross-Coupling Reaction with 2-Naphthol 

For the measurements of each substrate orders, two sets of four reactions were 

carried out with the same catalyst concentration (0.005 M). The concentrations of phenol 

A (2.15) and phenol B (2.5) were varied over a 10-fold range (0.1, 0.2, 0.5, 1.0 M) while 

the concentrations of the other phenol and catalyst were held constant at 0.1 M and 0.005 

M. 

While the concentration of phenol B was held constant and the concentration of 

phenol A was changed, the four reaction profiles overlapped (Figure 2.16) indicating that 

this coupling is not affected by the concentration of 2,6-disubstituted phenol (phenol A). 

From this result, we conclude that the reaction order for phenol A is zero, which a plot of 

phenol A concentration vs Ro (Figure 2.17) confirms. 
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Figure 2.16 Reaction Profiles at Various Concentrations of Phenol A 

 

Figure 2.17 Plot of log(Ro) vs. log[Phenol A] 

When reversed, the reaction profile for the phenol B was obtained and shown in 

Figure 2.18. Notably, these reaction profiles indicate that the reaction slows when higher 

concentrations of phenol B are employed.  The linear portion was used to obtain initial 

rate (Ro, Figure 2.19) and a log/log plot (Figure 2.20) revealed a slope of –0.979 
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consistent with negative first order dependence.  In addition, a plot of concentration vs Ro 

clearly indicates that the reaction slows at higher concentrations of phenol B consistent 

with phenol B inhibiting the rate determining step. 

Figure 2.18 Reaction Profiles at Different Phenol B Concentrations 

Figure 2.19 Initial Rates at Different Phenol B Concentrations 
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Table 2.7 Initial Rates at Each Catalyst Concentration 

Concentration (M) Initial Rate (M/s) 

0.10 1.21667E-05 

0.20 4.72222E-06 

0.50 2.19444E-06 

1.00 2.05556E-06 

 

 

Figure 2.20 Plot of log(Ro) vs. log[Phenol B] 

In order to understand oxidant dependence in the cross-coupling reaction, the 

reaction flask was put into a Parr bomb reactor and oxygen was added via active purge. 

The reactor was closed and oxygen pressure was maintained at 10 atm and left to stir at 

80 °C. The reaction profile was overlapped to the one under ambient pressure (Figure 

2.21). It tells that either this cross-coupling is independent to the oxidant or the cross-

coupling is already saturated in the ambient oxygen pressure. So we will try this coupling 

reaction in partial pressure of oxygen atmosphere to conclude the oxygen effect. 
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Figure 2.21 Oxygen Dependence in Cross-Coupling Reaction 

There are many independent researches published regarding of cross-coupling 

reaction of phenols and they try to manifest its mechanism.
36, 63

  For example, the Lumb

group explained that the selectivity of cross-coupling reaction was achieved by change to 

ligand, metal counterion and temperature. Kita et al. proposed a cationic phenoxenium 

intermediate reacted with another arene to form cross-coupling adduct. Finally, the Pappo 

group proposed a chelated radical-anion coupling mechanism. Among those, Pappo’s 

proposal is most consistent to our system to explain the mechanism. However, still there 

are limitations to meet every reaction condition with Cr-catalyzed cross-coupling reaction. 

(63) Esguerra, K. V. N.; Fall, Y.;Petitjean, L.; Lumb, J.−P. “Controlling the Catalytic Aerobic Oxidation of 

Phenols” J. Am. Chem. Soc. 2014, 136, 7662−7668.  



 87 

Future catalysts and conditions will thus be designed based on these results.  For 

example, even more electron deficient chromioum salen will give rise to more potent 

oxidizing catalysts but will also require stronger stoichiometric terminal oxidants or a 

cocatalyst to be able to utilized dioxygen directly.  Facial salen geometries will be probed 

to see if cis substrate coordination is advantageous.
64

 Further experiments will include

linked salens/pairs
65

 to probe molecularity, isolation of intermediates, and computation of

possible pathways. 

2.7.6. Proposed Mechanism 

Cr salens are well known to form Cr(V) oxo-speices, which equilibrate with 

Cr(III) to form  µ-oxo-Cr(IV) complexes (Scheme 2.18).
66

 Cr(V) oxo-species are

typically generated with peroxide, PhIO, etc. On the other hand, oxygen does not rapidly 

form Cr(V) oxo-species, but is known to generate a Cr(IV) superoxide.
67

 A Cr(IV)

superoxide would be expected cause hydrogen atom abstraction, which was not 

(64) Katsuki, T. “Unique asymmetric catalysis of cis-β metal complexes of salen and its related Schiff-base 

ligands” Chem. Soc. Rev. 2004, 33, 437–444.  

(65) (a) Konsler, R. G.; Karl, J.; Jacobsen, E. N. “Cooperative Asymmetric Catalysis Using Dimeric Salen 

Complexes” J. Am. Chem. Soc. 1998, 120, 10780–10781. (b) Mazet, C.; Jacobsen, E. N. “Dimeric 

(salen)Al Complexes Display Expanded Scope in the Conjugate Cyanation of α, β-Unsaturated Imides” 

Angew. Chem. Int. Ed. 2008, 47, 1762–1765.  

(66) Ruminski, R. R.; Healy, M. H.; Coleman, W. F. “Photoredox Processes in 254–nm Photochemistry of 

Chromium(III) Ammine” Inorg. Chem. 1989, 28, 1666–1669.  

(67) Cho, J.; Woo, J.; Han, J. E.; Kubo, M.; Ogura, T.; Nam, W. “Chromium(V)-oxo and Chromium(III)-

superoxo Complexes Bearing a Macrocyclic TMC Ligand in Hydrogen Atom Abstraction Reactions” 

Chem. Sci. 2011, 2, 2057.  
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consistent with the radical inhibition experiments with BHT and galvinoxyl (Table 2.3). 

Such a Cr(IV) superoxide might undergo exchange to form a µ-oxo-Cr(IV) or might 

slowly decompose to Cr(V) oxo which could recombine with remaining Cr(III) to form 

the same µ-oxo-Cr(IV). Similar coupling results were observed at lower temperatures 

with t-BuOOH, which is known to generate Cr(V) oxo-speices more readily than O2. 
68

 

Scheme 2.18 Formation of µ-Oxo-Cr(IV) Species 

 

Ligand exchange of the less hindered phenol component (Component B) with the 

µ-oxo-Cr(IV) followed by electron transfer would give rise to the Cr(III) species shown 

in Figure 2.20. We speculate that component A is too hindered to coordinate to the salen 

metal center, but could hydrogen bond to the salen via one of the oxygens. The para-site 

of component A is less hindered, and perhaps more nucleophilic,
14b

 relative to the open 

sites of component B and is best able to capture the keto radical. Chromium pophyrins 

could be utilized to interrogate this hydrogen bonding; they had very similar oxidation 

                                            

(68) Kotani, H.; Kaida, S.; Ishizuka, T.; Sakaguchi, M.; Ogura, T.; Shiota, Y.; Yoshizawa, K.; Kojima, T. 

“Formation and Characterization of a Reactive Chromium(V)–Oxo Complex: Mechanistic Insight into 

Hydrogen-Atom Transfer reactions” Chem. Sci. 2015, 6, 945–955.  
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potentials relative the salens
69

 but were poorer in hydrogen bonding. The mechanism in

Figure 2.22 was the most consistent with all of the observations to date, but alternative 

possibilities cannot be discounted at this stage.  Most importantly, experiments need to be 

devised to establish the order of oxidation. Since the only homo-coupling product 

observed arises from the more hindered component A, it seems likely that this 

component either oxidizes more quickly than component B or that the hydrogen bonded 

portion of A may be prone to dissociation subsequent to oxidation allowing trapping of 

additional molecules of component A. 

Figure 2.22 Preliminary Cross-Coupling Mechanism 

(69) (a) Garrison, J. M.; Ostovic, D.; Bruice, T. C. “Is a Linear Relationship Between the Free Energies of 

Activation and One-Electron Oxidation Potential Evidence for One-Electron Transfer Being Rate 

Determining? Intermediates in the Epoxidation of Alkenes by Cytochrome P-450 Models. 4. Epoxidation 

of a Series of Alkenes by Oxo(meso-tetrakis(2,6-dibromophenyl)porphinato)chromium(V)” J. Am. Chem. 

Soc. 1989, 111, 4960–4966. (b) Premsingh, S.; Venkataramanan, N. S.; Rajagopal, S.; Mirza, S. P.; 

Vairamani, M.; Rao, P. S.; Velavan, K. “Electron Transfer Reaction of Oxo(salen)chromium(V) Ion with 

Anilines” Inorg. Chem. 2004, 43, 5744–5753. (c) Venkataramanan, N. S.; Kuppuraj, G.; Rajagopal, S. 

“Metal–salen Complexes as Efficient Catalysts for the Oxygenation of Heteroatom Containing Organic 

Compounds—Synthetic and Mechanistic Aspects” Coord. Chem. Rev. 2005, 249, 1249–1268.  



 90 

From our prior experience with mechanisms of catalytic oxidations,
70

 the most

urgent experiments were determining the catalyst oxidation state, molecularity, and 

kinetic order. The Cr(V) oxo-complex is a stable species, which was easily synthesized in 

a stoichiometric manner, and can be combined with Cr(III) to yield the Cr(IV)-µ-oxo 

(Scheme 2.18).
27

 Both species were subjected to single turnover experiments in the

absence of O2 to determine whether they reproduce the catalytic profile. Anion exchange 

followed by oxidation led to Cr(V)-oxo complex (Scheme 2.19).
 71 

 A slight excess of

iodosylbenzene was added to Cr(III)-Salen complex 2.91 dissolved in CH3CN. The 

reaction mixture turned from orange to dark green. This slurry was stirred for 20 min and 

then filtered to remove the unreacted iodosylbenzene. Ether was slowly added to the dark 

filtrate in order to precipitate crystals of oxochromium(V) salts (2.92) as a black solid. 

Scheme 2.19 Preparation of Cr(V)-Oxo Complex 

(70) Hewgley, J. B.; Stahl, S. S.; Kozlowski, M. C. “Mechanistic Study of Asymmetric Oxidative Biaryl 

Coupling: Evidence for Self-Processing of the Copper Catalyst to Achieve Control of Oxidase vs. 

Oxygenase Activity” J. Am. Chem. Soc. 2008, 130, 12232–12233.   

(71) Sevvel, R.; Rajagopal, S.; Srinivasan, C.; Alhaji, N. I.; Chellamani, A. “Mechanism of Selective 

Oxidation of Organic Sulfides with Oxo(salen)chromium(V) Complexes” J. Org. Chem. 2000, 65, 3334-

3340. 
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The Cr(IV)-µ-oxo complex was obtained from disproportionating the Cr(III) and 

Cr(V)-oxo species. The The Cr(IV)-µ-oxo complex in the reaction solution was dark 

brown, consistent with the reaction color during the general cross-coupling reaction with 

Cr(III) complex. However, the Cr(IV)-µ-oxo did not provide the coupling product with 

stoichiometric yield (Table 2.8). In the reaction between 2,6-di-tert-butylphenol and 

3,4,5-trimethylphenol, stoichiometric amount of either the Cr(V) and Cr(IV) species did 

not give the corresponding coupling product with reasonable yield.  1.0 equiv of Cr(IV)-

µ-oxo complex gave only 12% yield of the coupling product in the absence of O2 (Entry 

6). Future work will focus on generation of the Cr(V)-oxo complex in pure form for this 

experiment by recrystallization. 

Table 2.8 Cross-Coupling using Cr-Complexes with Various Oxidation States 
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2.8. Selective Coupling of Alkenyl Phenols 

In spite of considerable study on the reaction of alkenyl phenols, the control 

elements are poorly understood and many outcomes are possible upon oxidation.
 72

 

Nonetheless, control over such processes would permit access to a large number of 

biologically active natural products. The prevailing view is that these transformations are 

largely free radical in nature and that the substrates dictate the product unless dirigent 

proteins are present to bias the outcome.
73

 As such, the mechanistic principles are similar 

to those at the inception of our phenol coupling studies, except that reactivity is 

delocalized to the distal β-position. Based on our results that salen/salan catalysts 

intimately interact with phenols to control coupling selectivity, we posited a similar 

outcome for alkenyl phenols.   

As a first step to develop a catalytic and enantioselective coupling of para-alkenyl 

phenols, we undertook an assessment of isoeugenol (2.93) with achiral salen/salan 

catalysts (Figure 2.23) and found that racemic licarin A could be produced in good yields 

                                            

(72) (a) Lindsley, C. W.; Chan, L. K.; Goess, B. C.; Joseph, R.; Shair, M. D. “Solid-Phase Biomimetic 

Synthesis of Carpanone-like Molecules” J. Am. Chem. Soc. 2000, 122, 422–423. (b) Daniels, R. N.; Fadeyi, 

O. O.; Lindsley, C. W. “A New Catalytic Cu(II)/Sparteine Oxidant System for  β,β-Phenolic Couplings of 

Styrenyl Phenols: Synthesis of Carpanone and Unnatural Analogs” Org. Lett. 2008, 10, 4097–4100. (c) 

Zhang, Y.; Sigman, M. S. “Palladium(II)-Catalyzed Enantioselective Aerobic Dialkoxylation of 2-Propenyl 

Phenols: A Pronounced Effect of Copper Additives on Enantioselectivity” J. Am. Chem. Soc. 2007, 129, 

3076–3077. 

( 73 ) (a) Pickel, B.; Constantin, M.-A.; Pfannstiel, J.;  Conrad, J.; Beifuss,  U.; Schaller, A. “An 

Enantiocomplementary Dirigent Protein for the Enantioselective Laccase-Catalyzed Oxidative Coupling of 

Phenols” Angew. Chem. Int. Ed. 2010, 49, 202 –204. (b) Davin, L. B.; Lewis, N. G. “Dirigent phenoxy 

radical coupling: advances and challenges” Current Opinion in Biotechnology 2005, 16, 398–406. (c) 

Davin, L. B.; Lewis, N. G. “Dirigent Proteins and Dirigent Sites Explain the Mystery of Specificity of 

Radical Precursor Coupling in Lignan and Lignin Biosynthesis” Plant Physiology 2000, 123, 453–461. 
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relative to stoichiometric
74

 or enzymatic
75

 oxidants. Specifically, an achiral Ru-salen-H 

catalyst generated racemic licarin A in 52% yield in presence of 3 Å molecular sieves as 

an additive. 

 

Figure 2.23 Bubble Chart of HTE Screening for Oxidative Coupling of Isoeugenol 

To achieve an enantioselective phenolic coupling, future work will focus on 

assessment of the most encouraging Ru leads which would then permit design more 

selective catalysts following the approach discussed in the previous chapter.  An alternate 

approach is to use the V catalyst in Chapter 1 as a lead. If successful, such catalysts 

                                            

(74) Liu, S.-Y.; Wang, G.-Q.; Liang, Z.-Y.; Wang, Q.-A. "Synthesis of Dihydrobenzofuran Neoligans 

Licarin A and Dihydrocarinatin as Well as Related Triazolylglycosides" Chemical Research in Chinese 

Universities 2013, 29, 1119–1124.   

(75) Chioccara, F.; Poli, S.; Rindone, B.; Pilati, T.; Brunow, G.; Pietikäinen, P.; Setälä, H. “Regio- and 

Diastereo-selective Synthesis of Dimeric Lignans Using Oxidative Coupling.” Acta Chem. Scand. 1993, 47, 

610–616. 
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would be useful in generate analogs of licarin A (Figure 2.23), a compound with 

promising activity against leishmaniosis,
76

 schistosomiasis and Chagas disease.
77

Notably, (–)-licarin A is 2-6 times more effective than the racemate and the (+)-

enantiomer is considerably less effective.
78

Figure 2.24 para-Alkenylphenol Coupling 

(76) Aveniente, M.; Pinto, E. F.; Santos, L. S.; Rossi-Bergmann, B.; Barata, L. E. S. “Structure–Activity 

Relationship of Antileishmanials Neolignan Analogues” Bioorg. Med. Chem. 2007, 15, 7337–7343. 

(77) Pereira, A. C.; Magalhães, L. G.; Gonçalves, U. O.; Luz, P. P.; Moraes, A. C. G.; Rodrigues, V.; da 

Matta Guedes, P. M.; da Silva Filho, A. A.; Cunha, W. R.; Bastos, J. K.; Nanayakkara, N. P. D.; e Silva, M. 

L. A. “Schistosomicidal and trypanocidal structure–activity relationships for (±)-licarin A and its (–)- and 

(+)-enantiomers” Phytochemistry 2011, 72, 1424–1430. 

(78) (a) Wang, E.-C.; Wein, Y.-S.; Kuo, Y.-H.; “A Concise and Efficient Synthesis of Salvinal From 

Isoeugenol Via a Phenoxenium Ion Intermediate” Tetrahedron Lett. 2006, 47, 9195–9197. (b) Chen, P.-Y.; 

Wu, Y.-H.; Hsu, M.-H.; Wang, T.-P.; Wang, E.-C. “Cerium Ammonium Nitrate-Mediated the Oxidative 

Dimerization of p-alkenylphenols: A New Synthesis of Substituted (±)-trans-dihydrobenzofurans” 

Tetrahedron 2013, 69, 653–657. 
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2.9. Summary 

In summary, the first simple catalytic system that uses atom-economical oxygen 

as the terminal oxidant to accomplish selective ortho−ortho, ortho−para, or para−para 

homo-couplings of phenols was developed. Chromium salen catalysts have been 

discovered and verified as uniquely effective in the cross-coupling of different phenols 

with high chemo- and regio-selectivity. A broad scope of phenol substrates could be 

employed in this reaction condition and gave cross-coupling products with good yield (up 

to 88%). In order to understand the mechanism of cross-coupling reaction, spectroscopic 

methods, additive experiments, SAR studies and kinetic experiments were performed and 

tentative mechanism was postulated.  

 

2.10. Experimental 

General Procedure for High Throughput Experimentation (HTE)   

The following procedure is a representative of the HTE screening. The solutions 

of catalysts (2 mol, 50 L) in DCE and the solutions of phenol (10 mol, 50 L) in 

DCE were dosed into the 24-well plate reactor vials. The reaction plate was then purged 

and continuously back-filled with oxygen using a desiccator fixed with a T-valve for 3-5 

min. The plate was sealed and stirred at 50 °C for 24 h. After cooling to ambient 

temperature, the vials were diluted with a solution of biphenyl (1 mol, 500 L) in 

MeCN and then sealed. The contents were shaken for 15 min. To a separate 96-well LC 
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plate with 1 mL vials were added 700 L of MeCN, and then 25 L of the diluted 

reaction mixtures. The mixture was then analyzed using Agilent Chemstation on an 

HPLC modified with a 96-well plate auto-sampler. Assay conditions: Supelco Ascentis 

Express C18 100 mm x 4.6 mm or ZORBAX Eclipse XDB-C8, 4.6 x 50 mm, 1.8 µm. 

MeCN with H2O + 0.1 % H3PO4.  1.8 mL/min; 10 % in MeCN to 95 % MeCN in 6 min, 

hold for 2 min. Post time 2 min. Column at 40 °C; 210 nm.  

HTE of 2,3,5-trimethylphenol (Figure 2.5) 

 

 

 

Table 2.9 Results from  HTE Screening (product vs internal standard) 

catalyst o-o/IS o-p/IS p-p/IS 
Co-Salen-Cy 

 

0.59 0.12 0.00 

Co-Salan-Cy 0.40 0.35 0.00 

Cr-Salen-Cy 0.12 1.16 0.18 

Cr-Salen-Ph 0.05 0.39 0.04 

Cr-Salen-Cy-

NO2 

0.00 0.20 0.00 

Cr-Salan-Ph 0.00 0.05 0.00 

Cu-Salen-Ph 0.00 0.00 0.00 

Cu-Salan-Cy 0.14 0.17 0.00 

Cu-Salan-Ph 0.00 0.00 0.00 

Mn-Salen-Cy 0.00 0.72 0.00 

Mn-Salan-

Cy-NO2 

0.21 0.74 0.67 

V-Salen-H 0.00 0.09 0.00 

V-Salen-Ph 0.12 0.14 0.05 

V-Salan-Ph 1.93 0.08 0.00 

Ru-Salen-Cy 0.05 0.15 0.00 

Ru-Salen-Ph 0.08 0.11 0.00 
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Ru-Salan-Cy 0.40 0.49 0.00 

Ru-Salan-Ph 0.13 0.13 0.00 

Ru-Salan-Cy-

NO2

0.07 0.28 0.00 

General Procedure for the Regioselective Oxidative Coupling of Phenols 

To a 5 mL microwave vial was added phenol (0.1 mmol) and catalyst (0.005 

mmol). The vial was sealed with a septum and solvent (1 mL) was added. Oxygen was 

added via active purge. The septum was replaced with a crimping cap and the vessel was 

sealed and stirred for the indicated time at the indicated temperature. After the reaction 

mixture was filtered through a plug of silica and concentrated in vacuo, the resultant 

mixture was chromatographed using ethyl acetate/hexane to afford the product. 

4,4',5,5',6,6'-Hexamethyl-[1,1'-biphenyl]-2,2'diol (2.6). Following the general 

procedure, using Ru-Salen-Ph catalyst in dichloroethane at 80 °C for 2 days, the ortho-

ortho product was obtained as a yellow solid in 50% yield: 
1
H NMR (500 MHz, CDCl3) 

 6.75 (s, 2H), 4.46 (s, 2H), 2.31 (s, 6H), 2.16 (s, 6H), 1.92 (s, 6H). Spectral data matched 

that reported in the literature.
16 
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3,3'-Di-tert-butyl-5,5',6,6'-tetramethyl-[1,1'-biphenyl]-2,2'diol (2.8). Following 

the general procedure, using Ru-Salen-H catalyst in dichloroethane at 80 °C for 3 d, the 

ortho-ortho product was obtained as a colorless resin in 85% yield:  
1
H NMR (500 MHz, 

CDCl3)  7.14 (s, 2H), 4.80 (s, 2H), 2.27 (s, 6H), 1.83 (s, 6H), 1.41 (s, 18H);
 13

C NMR

(125 MHz, CDCl3)  150.4, 134.1, 133.4, 128.8, 128.1, 121.0, 34.5, 29.6, 20.0, 15.9; IR 

(film) 3493, 2959, 1388, 1277, 1183, 1041, 892 cm
-1

; HRMS (ESI) m/z = 354.2559 calcd

for C24H34O2 [M]
+
, found 354.2559. Spectral data matched that reported in the

literature.79 

2',3,3',4,6,6'-Hexamethyl-[1,1'-biphenyl]-2,4'-diol (2.11). Following the general 

procedure, using Cr-Salen-Cy catalyst in dichloroethane at 50 °C for 2 d, the ortho-para 

product was obtained in 52% yield: 
1
H NMR (500 MHz, CDCl3)  6.68 (s, 1H), 6.65 (s, 

1H), 4.65 (s, 1H), 4.53 (s, 1H),  2.82 (s, 3H), 2.19 (s, 3H), 2.17 (s, 3H), 1.90 (s, 3H), 1.89 

(s, 3H),  1.83 (s, 3H); 
13

C NMR (125 MHz, CDCl3)  153.3, 150.5, 138.4, 136.5, 136.3,

(79) Malkowsky, I. M.; Rommel, C. E.; Fröhlich, R.; Griesbach, U.; Pütter, H.; Waldvogel, S. R. Chem. 

Eur. J. 2006, 12, 7482-7488. 
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133.5, 126.4, 123.7, 123.0, 120.6 119.3, 114.7, 19.9, 19.8, 19.2, 16.6, 11.9, 11.8; IR (film) 

3435, 2920, 1590, 1453, 1299, 1088, 910, 848 cm
-1

; HRMS (ESI) m/z = 271.1698 calcd 

for C18H23O2 [M+H]
+
, found 271.1700. Spectral data matched that reported in the 

literature.6 

 

5,5'-Di-tert-butyl-2,2'-dimethyl-[1,1'-biphenyl]-4,4'-diol (2.21). Following the 

general procedure, using Cr-Salen-Cy catalyst in dichloroethane at 50 °C for 2 d, the 

para-para product was obtained in 44% yield:  
1
H NMR (500 MHz, CDCl3)  7.00 (s, 

2H), 6.58 (s, 2H), 4.67 (s, 2H), 1.98 (s, 6H), 1.41 (s, 18H); 
13

C NMR (125 MHz, CDCl3) 

 152.7, 134.9, 133.8, 133.0, 128.9, 117.7, 34.3, 29.9, 19.3; IR (film) 3324, 2917, 1611, 

1383, 1093 cm
-1

; HRMS (ESI) m/z = 325.2168 calcd for C22H29O2 [M–H]
-
, found 

325.2170. 

 

5,5'-Diisopropyl-2,2'-dimethyl-[1,1'-biphenyl]-4,4'-diol. Following the general 

procedure, using Cr-Salen-Cy catalyst in dichloroethane at 50 °C for 2 d, the para-para 

product was obtained in 38% yield:  
1
H NMR (500 MHz, CDCl3)  6.93 (s, 2H), 6.66 (s, 



 100 

2H), 4.61 (s, 2H), 3.18 (sept, J = 6.9 Hz, 2H), 1.25 (d, J = 6.9 Hz, 6H), 1.24 (d, J = 6.9 

Hz, 6H); 
13

C NMR (125 MHz, CDCl3)  151.4, 134.7, 134.1, 131.2, 128.0, 116.4, 26.8, 

22.8, 22.7, 19.5; IR (film) 3328, 2920, 1616, 1405, 1335, 1097, 899, 735 cm
-1

; HRMS 

(ESI) m/z = 297.1855  calcd for C20H25O2 [M–H]
-
, found 297.1872. 

 

3,3',5,5'-Tetra-tert-butyl-[1,1'-biphenyl]-4,4'-diol. Following the general 

procedure, using Cr-Salen-Cy catalyst in dichloroethane at 85 °C for 2 d, a mixture of the 

para-para bisphenol and the para-para diphenoquinone was obtained, which was 

concentrated in vacuo and directly subjected to sodium dithonite (0.3 mmol) in EtOH 

(0.2 M) heated to reflux for 5 h.  The resultant precipitate was removed and the filtrate 

was concentrated in vacuo and chromatographed with EtOAc/hexanes to provide the 

para-para product in 77% yield:  
1
H NMR (500 MHz, CDCl3)  7.31 (s, 4H), 5.18 (s, 

2H),  1.50 (s, 36H); 
13

C NMR (125 MHz, CDCl3)  152.8, 136.0, 133.9, 124.1, 34.4, 30.4; 

IR (film) 3622, 3304, 2917, 1649, 1424, 1098 cm
-1

; HRMS (ESI) m/z = 410.3185 calcd 

for C28H42O2 [M]
+
, found 410.3166. 
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3,3',5,5'-Tetraisopropyl-[1,1'-biphenyl]-4,4'-diol. Following the general 

procedure, using Cr-Salen-Cy catalyst in dichloroethane at 85 °C for 1 d, a mixture of the 

para-para bisphenol and the para-para diphenoquinone was obtained, which was 

concentrated in vacuo and directly subjected to sodium dithonite (0.3 mmol) in EtOH 

(0.2 M) heated to reflux for 5 h.  The resultant precipitate was removed and the filtrate 

was concentrated in vacuo and chromatographed with EtOAc/hexanes to provide the 

para-para product  in 95% yield:  
1
H NMR (500 MHz, CDCl3)  7.20 (s, 4H), 4.78 (s, 

2H),  3.22 (septet, J = 6.5Hz, 4H), 1.34 (d, J = 6.5Hz, 24H); 
13

C NMR (125 MHz, CDCl3) 

 149.1, 134.7, 133.8, 122.4, 27.4, 22.8; IR (film) 3568, 2960, 1723, 1442, 1304, 1197, 

1147 cm
-1;

 HRMS (ESI) m/z = 353.2481 calcd for C24H33O2 [M–H]
-
, found 353.2481. 

 

3,3',5,5'-Tetramethyl-[1,1'-biphenyl]-4,4'-diol. Following the general procedure, 

using Cr-Salen-Cy catalyst in dichloroethane at 85 °C for 2 d, a mixture of the para-para 

bisphenol and the para-para diphenoquinone was obtained, which was concentrated in 

vacuo and directly subjected to sodium dithonite (0.3 mmol) in EtOH (0.2 M) heated to 

reflux for 5 h.  The resultant precipitate was removed and the filtrate was concentrated in 



 102 

vacuo and chromatographed with EtOAc/hexanes to provide the para-para product in 63% 

yield: 
1
H NMR (500 MHz, CDCl3)  7.15 (s, 4H), 4.56 (s, 2H), 2.30 (s, 12H); 

13
C NMR

(125 MHz, CDCl3)  151.2, 133.4, 127.0, 123.1, 16.0; IR (film) 3339, 2919, 1650, 1385, 

1094 cm
-1

; HRMS (ESI) m/z = 242.1307 calcd for C16H18O2  [M]
+
, found 242.1305.

General Procedure for the Oxidative Cross-coupling Reaction of Phenols using 

Cr-Salen-Cy catalyst 

To a 5 mL microwave vial was added phenol A (0.3 mmol), phenol B (0.25 mmol) 

and Cr-Salen-Cy catalyst (0.025 mmol). The vial was sealed with a septum and 1,2-

dichloroethane (2.5 mL) was added. Oxygen was added via active purge. The septum was 

replaced with a crimping cap and the vessel was sealed and stirred for 3–48 h at 50–80 °C. 

The reaction mixture was filtered through a plug of silica and the resultant material was 

concentrated in vacuo and chromatographed using 10% ethyl acetate/hexane to afford the 

ortho-para or para-para biphenol. 
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3',5'-Di-tert-butyl-3,4,6-trimethyl-[1,1'-biphenyl]-2,4'-diol (2.24). Following 

the general procedure (reaction for 2 d at 50 °C), the ortho-para product was obtained in 

55% yield (89% based on recovered starting material): 
1
H NMR (500 MHz, CDCl3)  

7.05 (s, 2H), 6.69 (s, 1H), 5.29 (s, 1H), 5.03 (s, 1H),  2.29 (s, 3H), 2.19 (s, 3H), 2.03 (s, 

3H), 1.45 (s, 18H); 
13

C NMR (125 MHz, CDCl3)  153.5, 151.0, 37.0, 136.6, 133.8, 

126.9, 126.2, 126.2, 122.9, 119.6, 34.5, 30.4, 20.1, 19.8, 11.7; IR (film) 3640, 3536, 2918, 

1654, 1436, 1084, 890 cm
-1

; HRMS (ESI) m/z = 339.2324 calcd for C23H31O2 [M–H]
-
, 

found 339.2319. 

 

3',5'-Di-tert-butyl-4,6-dimethyl-[1,1'-biphenyl]-2,4'-diol (2.25). Following the 

general procedure (reaction for 2 d at 50 °C),  the ortho-para product was obtained in 56% 

yield (91% based on recovered starting material): 
1
H NMR (500 MHz, CDCl3)  7.05 (s, 

2H), 6.69 (s, 2H), 5.29 (s, 1H), 4.92 (s, 1H),  2.32 (s, 3H), 2.06 (s, 3H), 1.45 (s, 18H); 
13

C 

NMR (125 MHz, CDCl3)  153.6, 153.1, 138.1, 137.3, 136.9, 126.9, 126.1, 125.6, 122.7, 
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112.9, 34.5, 30.4, 21.2, 20.4; IR (film) 3531, 2957, 1625, 1560, 1434, 1154 cm
-1

; HRMS 

(ESI) m/z = 325.2168 calcd for C22H29O2 [M–H]
-
, found 325.2167. 

 

3',5,5'-Tri-tert-butyl-2-methyl-[1,1'-biphenyl]-4,4'-diol (2.26). Following the 

general procedure (reaction for 2 d at 50 °C),  the para-para product was obtained in 57% 

yield (90% based on recovered starting material): 
1
H NMR (500 MHz, CDCl3)  7.16 (s, 

1H), 7.12 (s, 2H), 6.59 (s, 1H), 5.18 (s, 1H), 4.71 (s, 1H), 2.21 (s, 3H), 1.47 (s, 18H), 1.42 

(s, 9H); 
13

C NMR (125 MHz, CDCl3)  152.8, 152.4, 135.2, 135.0, 134.2, 133.3, 132.9, 

129.0, 126.1, 118.2, 34.4, 34.3, 30.4, 29.8, 20.0; IR (film) 3637, 3514, 2957, 1611, 1386, 

1323, 1230, 1154 cm
-1

; HRMS (ESI) m/z = 367.2637 calcd for C25H35O2 [M–H]
-
, found 

367.2639. 

 

3',5'-Di-tert-butyl-2,5-dimethyl-[1,1'-biphenyl]-2,4'-diol (2.27). Following the 

general procedure (reaction for 2 d at 50 °C), the para-para product was obtained in 44% 

yield (95% based on recovered starting material): 
1
H NMR (500 MHz, CDCl3)  7.08 (s, 

2H), 7.01 (s, 1H), 6.69 (s, 1H), 5.16 (s, 1H), 4.60 (s, 1H), 2.25 (s, 3H), 2.22 (s, 3H), 1.46 
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(s, 18H); 
13

C NMR (125 MHz, CDCl3)  152.4, 135.3, 134.3, 132.6, 132.5, 126.0, 120.7,

116.6, 34.4, 30.4, 20.3, 15.2; IR (film) 3640, 3419, 2957, 1618, 1506, 1437, 1393, 1311, 

1221, 1155, 1040, 883, 739 cm
-1

; HRMS (ESI) m/z = 325.2168 calcd for C22H29O2 [M–

H]
-
, found 325.2155.

3',5'-Di-tert-butyl-5-isopropyl-2-methyl-[1,1'-biphenyl]-2,4'-diol (2.28). 

Following the general procedure (reaction for 2 d at 50 °C), the para-para product was 

obtained in 44% yield (95% based on recovered starting material): 
1
H NMR (500 MHz,

CDCl3)  7.12 (s, 2H), 7.11 (s, 1H), 6.67 (s, 1H), 5.19 (s, 1H), 4.67 (s, 1H), 3.20 (septet, J 

= 7.0 Hz, 1H), 2.22 (s, 3H), 1.48 (s, 18H), 1.28 (d, J = 7.0 Hz, 6H); 
13

C NMR (125 MHz,

CDCl3)  152.4, 151.4, 135.6, 135.2, 133.9, 132.8, 131.5, 128.2, 126.1, 116.9, 34.4, 30.4, 

26.9, 22.7, 20.2; IR (film) 3642, 3529, 2959, 1614, 1509, 1437, 1321, 1221, 1156, 1121, 

1028, 885, 739 cm
-1

; HRMS (ESI) m/z = 353.2481 calcd for C24H33O2 [M–H]
-
, found

353.2466. 
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3,3',4,5',6-Pentamethyl-[1,1'-biphenyl]-2,4'-diol (2.31). Following the general 

procedure (reaction for 2 d at 50 °C), the ortho-para product was obtained in 51% yield 

(89% based on recovered starting material): 
1
H NMR (500 MHz, CDCl3)  6.88 (s, 2H), 

6.66 (s, 1H), 4.90 (s, 1H), 4.69 (s, 1H),  2.28 (s, 6H), 2.27 (s, 3H), 2.17 (s, 3H), 2.02 (s, 

3H); 
13

C NMR (125 MHz, CDCl3)  152.0, 150.9, 136.6, 133.6, 130.6, 127.2, 125.2, 

124.1, 122.9, 119.5, 20.0, 19.9, 15.9, 11.7; IR (film) 3533, 2921, 1568, 1455, 1300, 1192, 

1082 cm
-1

; HRMS (ESI) m/z = 255.1385 calcd for C17H19O2 [M–H]
-
, found 255.1392. 

 

5-(tert-Butyl)-2,3', 5'-trimethyl-[1,1'-biphenyl]-4,4'-diol (2.32). Following the 

general procedure (reaction for 2 d at 50 °C), the ortho-para product was obtained in 40% 

yield: 
1
H NMR (500 MHz, CDCl3)  7.08 (s, 1H), 6.92 (s, 2H), 6.56 (s, 1H), 4.73 (s, 1H), 

4.60 (s, 1H), 2.29 (s, 6H), 2.18 (s, 3H), 1.41 (s, 9H);
 13

C NMR (125 MHz, CDCl3)  

152.8, 150.8, 134.1, 134.0, 133.3, 129.6, 128.8, 122.5, 118.1, 34.2, 29.7, 19.8, 16.0; IR 

(film) 3453, 2958, 1635, 1485, 1415, 1386, 1188, 1034, 876, 737 cm
-1

; HRMS (ESI) m/z 

= 283.1698 calcd for C19H23O2 [M–H]
-
, found 283.1701. 
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5-(tert-Butyl)-3',5'-diisopropyl-2-methyl-[1,1'-biphenyl]-4,4'-diol (2.33). 

Following the general procedure (reaction for 2 d at 50 °C), the para-para product was 

obtained in 47% yield (90% based on recovered starting material): 
1
H NMR (500 MHz, 

CDCl3)  7.14 (s, 1H), 7.00 (s, 2H), 6.59 (s, 1H), 4.76 (s, 1H), 4.69 (s, 1H), 3.20 (septet, J 

= 7.0 Hz, 2H), 2.19 (s, 3H), 1.42 (s, 9H), 1.29 (d, J = 7.0 Hz, 12H);
  13

C NMR (125 MHz, 

CDCl3)  152.8, 148.6, 134.8, 134.2, 133.4, 133.1, 128.8, 124.7, 118.2, 34.2, 29.8, 27.2, 

22.8, 19.9; IR (film) 3409, 2919, 1611, 1466, 1385, 1096 cm
-1

; HRMS (ESI) m/z = 

339.2324 calcd for C23H31O2 [M–H]
-
, found 339.2326. 

 

3',5-Di-tert-butyl-2,5'-dimethyl-[1,1'-biphenyl]-4,4'-diol (2.34). Following the 

general procedure (reaction for 1 d at 70 °C), the para-para product was obtained in 77% 

yield: 
1
H NMR (500 MHz, CDCl3)  7.12 (s, 1H), 7.09 (d, J = 2.0 Hz, 1H), 6.95 (d, J = 

2.0 Hz, 1H), 6.58 (s, 1H), 4.75 (s, 1H), 4.69 (s, 1H), 2.93 (s, 3H), 2.20 (s, 3H), 1.44 (s, 

9H), 1.42 (s, 9H);
  13

C NMR (125 MHz, CDCl3)  152.8, 151.3, 135.0, 134.5, 134.1, 

133.6, 133.4, 129.4, 128.9, 126.5, 122.6, 118.2, 34.6, 34.2, 29.9, 29.8, 19.9, 16.1; IR 
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(film) 3513, 2956, 1610, 1387, 1327, 1263, 1192, 1034 cm
-1

; HRMS (ESI) m/z =

325.2168 calcd for C22H29O2 [M–H]
-
, found 325.2168.

3'-(tert-Butyl)-2-isopropyl-5,5'-dimethyl-[1,1'-biphenyl]-4,4'-diol (2.35). 

Following the general procedure (reaction for 1 d at 70 °C), the para-para product was 

obtained in 74% yield: 
1
H NMR (500 MHz, CDCl3)  7.04 (d, J = 2.0 Hz, 1H), 6.95 (s,

1H), 6.91 (d, J = 2.0 Hz, 1H), 6.78 (s, 1H), 4.76 (s, 1H), 4.70 (brs, 1H), 3.03 (ddd, J = 7.0 

Hz, 1H), 2.29 (s, 3H), 2.24 (s, 3H), 1.44 (s, 9H), 1.14 (d, 6H, J = 7.0 Hz); IR (film) 3387, 

2918, 1616, 1434, 1141 cm
-1

; HRMS (ESI) m/z = 311.2011 calcd for C21H27O2 [M–H]
-
,

found 311.2011. 

3,3'',5,5''-Tetra-tert-butyl-2',5'-dimethyl-[1,1':3',1''-terphenyl]-4,4',4''-triol 

(2.38). Following the general procedure (reaction for 1 d at 70 °C), the trimer was 

obtained in 46% yield: 
1
H NMR (500 MHz, CDCl3)  7.13 (s, 2H), 7.12 (s, 2H), 7.06 (s,

1H), 5.31 (s, 1H), 5.16 (s, 1H), 4.99 (s, 1H), 2.30 (s, 3H), 1.94 (s, 3H), 1.47 (s, 18H), 1.46 

(s, 18H);
  13

C NMR (125 MHz, CDCl3)  153.6, 152.4, 150.2, 137.1, 135.2, 135.0, 133.4,
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132.2, 131.4, 128.8, 126.9, 126.5, 126.3, 120.9, 34.5, 34.4, 30.5, 30.4, 18.7, 15.9; IR 

(film) 3530, 2959, 1639, 1436, 1233, 1154, 879, 740 cm
-1

; HRMS (ESI) m/z = 529.3682

calcd for C36H49O3 [M–H]
-
, found 529.3674.

3,3'',5,5''-Tetra-tert-butyl-5',6'-dimethyl-[1,1':3',1''-terphenyl]-4,4',4''-triol 

(2.39). Following the general procedure (reaction for 1 d at 70 °C), the trimer was 

obtained in 44% yield: 
1
H NMR (500 MHz, CDCl3)  7.27 (s, 2H), 7.13 (s, 2H), 7.04 (s,

1H), 5.42 (s, 1H), 5.31 (s, 1H), 5.17 (s, 1H), 2.31 (s, 3H), 2.24 (s, 3H), 1.46 (s, 36H);
 13

C

NMR (125 MHz, CDCl3)  149.5, 137.1, 135.4, 133.5, 128.7, 126.6, 126.1, 34.7, 34.6, 

30.6, 30.5, 17.9, 12.8; IR (film) 3443, 2960, 2101, 1635, 1428, 1232, 1154, 1119, 1077, 

739 cm
-1

; HRMS (ESI) m/z = 529.3682 calcd for C36H49O3 [M–H]
-
, found 529.3670.

3,3'',5,5''-Tetra-tert-butyl-5'-isopropyl-2'-methyl-[1,1':3',1''-terphenyl]-

4,4',4''-triol (2.40). Following the general procedure (reaction for 1 d at 70 °C), the 

trimer was obtained in 45% yield: 
1
H NMR (500 MHz, CDCl3)  7.16 (s, 2H), 7.15 (s,
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1H), 7.14 (s, 2H), 5.31 (s, 1H), 5.17 (s, 1H), 5.02 (s, 1H), 3.34 (sept, J = 7.0 Hz, 1H), 

1.93 (s, 3H), 1.48 (s, 18H), 1.46 (s, 18H), 1.30 (d, J = 7.0 Hz, 6H); 
13

C NMR (125 MHz, 

CDCl3)  153.6, 152.4, 149.3, 137.1, 135.2, 135.0, 133.8, 132.2, 131.3, 129.0, 127.0, 

126.6, 126.4, 34.6, 34.5, 30.5, 30.4, 27.3, 22.7, 18.7; IR (film) 3465, 2100, 1636, 1385, 

1234, 1156, 1096, 679 cm
-1

; HRMS (ESI) m/z = 557.3995 calcd for C38H53O3 [M–H]
-
, 

found 557.3976. 

 

3',5'-Di-tert-butyl-5-methyl-[1,1'-biphenyl]-2,4'-diol (2.41dimer). Following 

the general procedure (reaction for 18 hours at 80 °C), the dimer was separated from 

trimer and obtained in 42% yield: 
1
H NMR (500 MHz, CDCl3)  7.23 (s, 2H), 7.04 (d, J 

= 8.5 Hz, 2H), 6.89 (d, J = 7.5 Hz, 1H), 5.31 (s, 1H), 5.15 (s, 1H), 2.32 (s, 3H), 1.47 (s, 

18H); 
13

C NMR (125 MHz, CDCl3)  153.6, 150.4, 136.9, 130.7, 129.7, 129.0, 128.7, 

127.9, 125.7, 115.2, 34.5, 30.3, 20.5; IR (film) 3635, 3541, 2958, 1632, 1438, 1235, 1156, 

909, 734 cm
-1

; HRMS (ESI) m/z = 311.2011 calcd for C21H27O2 [M–H]
-
, found 311.2002. 
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3,3'',5,5''-Tetra-tert-butyl-5'-methyl-[1,1':3',1''-terphenyl]-2',4,4''-triol (2.41 

trimer). Following the general procedure (reaction for 18 hours at 80 °C), the trimer was 

separated from dimer and obtained in 53% yield: 
1
H NMR (500 MHz, CDCl3)  7.35 (s, 

4H), 7.05 (s, 2H), 5.38 (s, 1H), 5.28 (s, 2H), 2.36 (s, 3H), 1.48 (s, 36H); 
13

C NMR (125 

MHz, CDCl3)  153.4, 147.2, 136.1, 129.9, 129.1, 128.7, 127.2, 126.1, 34.5, 30.3, 20.6; 

IR (film) 3442, 2960, 2100, 1642, 1437, 1398, 1233, 1155, 1120, 739 cm
-1

; HRMS (ESI) 

m/z = 517.3682 calcd for C35H49O3 [M+H]
 +

, found 517.3682.  

 

3',5'-Di-tert-butyl-5-isopropyl-[1,1'-biphenyl]-2,4'-diol (2.42dimer). Following 

the general procedure (reaction for 18 hours at 80 °C), the dimer was separated from 

trimer and obtained in 35% yield: 
1
H NMR (500 MHz, CDCl3)  7.24 (s, 2H), 7.11 (dd, J 

= 8.2 Hz, 2.2 Hz, 1H), 7.08 (d, J = 2.2 Hz, 1H),  6.92 (d, J = 8.2 Hz, 1H), 5.32 (s, 1H), 

5.16 (s, 1H), 2.89 (quint, J = 6.9 Hz, 1H), 1.48 (s, 18H), 1.27 (d, J = 6.9 Hz, 6H); 
13

C 

NMR (125 MHz, CDCl3)  153.6, 150.6, 141.0, 136.9, 128.6, 128.2, 128.1, 126.4, 125.8, 



 112 

115.2, 34.5, 33.4, 30.3, 24.2; IR (film) 3637, 3546, 2958, 1497, 1437, 1234, 1156, 883, 

734 cm
-1

; HRMS (ESI) m/z = 363.2300 calcd for C23H32O2Na [M+Na]
 +

, found 363.2301.

3',5,5'-Tri-tert-butyl-[1,1'-biphenyl]-2,4'-diol (2.43dimer). Following the 

general procedure (reaction for 18 hours at 80 °C), the dimer was separated from trimer 

and obtained in 31% yield: 
1
H NMR (500 MHz, CDCl3)  7.27 (dd, J = 8.0 Hz, 2.0 Hz, 

1H), 7.25 (s, 2H), 7.23 (d, J = 2.0 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H), 5.33 (s, 1H), 5.16 (s, 

1H), 1.48 (s, 18H), 1.33 (s, 9H); 
13

C NMR (125 MHz, CDCl3)  153.6, 150.3, 143.2,

136.9, 128.3, 127.1, 125.9, 125.5, 114.8, 34.5, 34.2, 31.6, 30.3; IR (film) 3638, 3544, 

2958, 1437, 1393, 1156, 884, 821, 740 cm
-1

; HRMS (ESI) m/z = 353.2481 calcd for

C24H33O2 [M–H]
-
, found 353.2478.

3,3'',5,5',5''-Penta-tert-butyl-[1,1':3',1''-terphenyl]-2',4,4''-triol (2.43trimer). 

Following the general procedure (reaction for 18 hours at 80 °C), the trimer was 

separated from dimer and obtained in 14% yield: 
1
H NMR (500 MHz, CDCl3)  7.35 (s,

4H), 7.26 (s, 2H), 5.36 (s, 1H), 5.28 (s, 1H), 1.48 (s, 36H), 1.36 (s, 9H); 
13

C NMR (125
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MHz, CDCl3)  153.4, 147.2, 142.8, 136.1, 129.1, 128.7, 126.6, 126.2, 34.5, 31.6, 30.3, 

29.4; IR (film) 3530, 2959, 1654, 1438, 1395, 1362, 1232, 1155, 879, 739 cm
-1

; HRMS

(ESI) m/z = 559.4151 calcd for C38H55O3 [M+H]
+
, found 559.4152.

3',5'-Di-tert-butyl-3,6-dimethyl-[1,1'-biphenyl]-2,4,4'-triol (2.44dimer). 

Following the general procedure (reaction for 18 hours at 80 °C), the dimer was separated 

from trimer and obtained in 38% yield: 
1
H NMR (500 MHz, CDCl3)  7.03 (s, 2H), 6.34 

(s, 1H), 5.29 (s, 1H), 5.08 (s, 1H), 4.63 (s, 1H), 2.16 (s, 3H), 2.01 (s, 3H), 1.45 (s, 18H); 

13
C NMR (125 MHz, CDCl3)  153.5, 153.3, 152.0, 136.9, 134.8, 127.2, 126.0, 121.5, 

108.2, 107.1, 34.5, 30.4, 20.2, 8.2; IR (film) 3536, 3525, 2959, 1627, 1416, 1234, 1080, 

908, 734 cm
-1

; HRMS (ESI) m/z = 341.2117 calcd for C24H29O3 [M–H]
-
, found 341.2115.

3,3'',5,5''-Tetra-tert-butyl-2',5'-dimethyl-[1,1':3',1''-terphenyl]-4,4',4'',6'-

tetraol (2.44trimer). Following the general procedure (reaction for 18 hours at 80 °C), 

the trimer was separated from dimer and obtained in 29% yield: 
1
H NMR (500 MHz,

CDCl3)  7.10 (s, 4H), 5.28 (s, 2H), 5.06 (s, 2H), 2.22 (s, 3H), 1.76 (s, 3H), 1.45 (s, 38H); 
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13
C NMR (125 MHz, CDCl3)  153.4, 151.2, 136.9, 132.7, 127.4, 126.5, 121.0, 107.1, 

34.5, 30.4, 18.4, 8.7; IR (film) 3638, 3531, 2959, 1616, 1438, 1415, 1234, 1085, 909, 734 

cm
-1

; HRMS (ESI) m/z = 547.3787 calcd for C36H51O4 [M+H]
+
, found 547.3803. 

 

3',5'-Di-tert-butyl-4,5,6-trimethyl-[1,1'-biphenyl]-2,4'-diol (2.45). Following 

the general procedure (reaction for 3 h at 80 °C), the ortho-para product was obtained in 

85% yield: 
1
H NMR (500 MHz, CDCl3)  7.04 (s, 2H), 6.73 (s, 1H), 5.29 (s, 1H), 4.75 (s, 

1H),  2.31 (s, 3H), 2.17 (s, 3H), 2.02 (s, 3H), 1.45 (s, 18H); 
13

C NMR (125 MHz, CDCl3) 

 153.5, 150.7, 136.9, 136.6, 135.6, 127.1, 126.9, 126.5, 113.6, 34.5, 30.4, 20.8, 17.9, 

15.3; IR (film) 3538, 2959, 1576, 1431, 1301, 1142, 1040 cm
-1

; HRMS (ESI) m/z = 

363.2300 calcd for C23H32O2 Na [M+Na]
+
, found 363.2310. 

 

3',5'-Di-tert-butyl-3,5-dimethyl-[1,1'-biphenyl]-2,4'-diol (2.46). Following the 

general procedure (reaction for 15 h at 80 °C), the ortho-para product was obtained in 75% 

yield: 
1
H NMR (500 MHz, CDCl3)  7.22 (s, 2H), 6.93 (s, 1H), 6.87 (s, 1H), 5.30 (s, 1H), 

5.22 (s, 1H),  2.29 (s, 3H), 2.28 (s, 3H), 1.47 (s, 18H); 
13

C NMR (125 MHz, CDCl3)  
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154.6, 148.5, 136.9, 130.6, 129.0, 128.3, 128.2, 128.1, 125.8, 124.1, 34.5, 30.3, 20.5, 16.1; 

IR (film) 3623, 2444, 2917, 1436, 1314, 1118 cm
-1

; HRMS (ESI) m/z = 325.2168 calcd 

for C22H29O2 [M–H]
-
, found 325.2154. 

 

3',5'-Di-tert-butyl-5-chloro-4,6-dimethyl-[1,1'-biphenyl]-2,4'-diol (2.47). 

Following the general procedure (reaction for 1 d at 80 °C), the ortho-para product was 

obtained in 72% yield: 
1
H NMR (500 MHz, CDCl3)  7.00 (s, 2H), 6.78 (s, 1H), 5.34 (s, 

1H), 4.85 (s, 1H), 2.38 (s, 3H), 2.13 (s, 3H), 1.45 (s, 18H); 
13

C NMR (125 MHz, CDCl3) 

 153.8, 151.2, 137.1, 136.2, 135.3, 127.9, 126.8, 126.3, 125.5, 114.5, 34.5, 30.3, 20.9, 

18.7; IR (film) 3524, 2961, 1635, 1432, 1308, 1236, 1174, 1048, 889, 854, 741 cm
-1

; 

HRMS (ESI) m/z = 359.1778 calcd for C22H28O2Cl [M–H]
-
, found 359.1779. 

 

3',5'-Di-tert-butyl-5-ethyl-4,6-dimethoxy-[1,1'-biphenyl]-2,4'-diol (2.48). 

Following the general procedure (reaction for 1 d at 80 °C), the ortho-para product was 

obtained in 80% yield: 
1
H NMR (500 MHz, CDCl3)  7.17 (s, 2H), 6.39 (s, 1H), 5.30 (s, 

1H), 5.15 (s, 1H), 3.83 (s, 3H), 3.33 (s, 3H), 2.63 (q, J = 7.5 Hz, 2H), 1.45 (s, 18H), 1.15 
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(t, J = 7.5 Hz, 3H); 
13

C NMR (125 MHz, CDCl3)  158.2, 156.7, 153.5, 152.1, 136.8,

127.3, 123.3, 117.8, 114.9, 94.3, 61.0, 55.6, 34.4, 30.4, 17.0, 14.9; IR (film) 3436, 2960, 

1620, 1434, 1233, 1119, 738 cm
-1

; HRMS (ESI) m/z = 387.2535 calcd for C24H35O4

[M+H]
 +

, found 387.2530.

1-(3,5-Di-tert-butyl-4-hydroxyphenyl)naphthalen-2-ol (2.49). Following the 

general procedure (reaction for 1 d at 80 °C), the ortho-para product was obtained in 83% 

yield: 
1
H NMR (500 MHz, CDCl3)  7.81 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.5 Hz, 1H),

7.47 (d, J = 8.0 Hz, 1H), 7.37-7.32 (m, 3H), 7.19 (s, 2H), 5.39 (s, 1H), 5.32 (s, 1H),  1.48 

(s, 18H); 
13

C NMR (125 MHz, CDCl3)  154.0, 150.4, 137.2, 133.7, 129.0, 128.9, 128.0,

127.6, 126.3, 124.9, 124.4, 123.1, 121.9, 117.2, 34.6, 30.4; IR (film) 3629, 3525, 2959, 

1610, 1441, 1389, 1149, 889, 819, 742 cm
-1

; HRMS (ESI) m/z = 348.2089 calcd for

C24H28O2 [M]
+
, found 348.2098.

1-(4-Hydroxy-3,5-diisopropylphenyl)naphthalen-2-ol (2.50). Following the 

general procedure (reaction for 1 d at 80 °C), the ortho-para product was obtained in 74% 

yield: 
1
H NMR (500 MHz, CDCl3)  7.81 (d, J = 8.5 Hz, 1H), 7.80 (d, J = 9.5 Hz, 1H),
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7.46 (d, J = 8.0 Hz, 1H), 7.37-7.32 (m, 2H), 7.27 (d, J = 9.0 Hz, 1H),  7.10 (s, 2H), 5.30 

(s, 1H), 4.98 (s, 1H), 3.24 (septet, J = 7.0 Hz, 2H), 1.30 (dd, J = 4.0 Hz, 6.0 Hz, 12H); 

13
C NMR (125 MHz, CDCl3)  150.3, 150.1, 135.0, 133.6, 129.1, 128.9, 128.0, 126.3, 

126.2, 125.5, 124.8, 123.1, 121.6, 117.1, 27.3, 22.8, 22.7; HRMS (ESI) m/z = 320.1776 

calcd for C22H24O2 [M]
+
, found 320.1780. 

 

1-(4-Hydroxy-3,5-dimethylphenyl)naphthalen-2-ol (2.51). Following the 

general procedure (reaction for 1 d at 80 °C), the ortho-para product was obtained in 65% 

yield: 
1
H NMR (500 MHz, CDCl3)  7.80 (d, J = 7.5 Hz, 1H), 7.79 (d, J = 9.0 Hz, 1H), 

7.46 (d, J = 8.0 Hz, 1H), 7.34-7.31 (m, 2H), 7.25 (d, J = 9.0 Hz, 1H),  7.03 (s, 2H), 5.24 

(s, 1H), 4.79 (s, 1H),  2.33 (s, 6H); 
13

C NMR (125 MHz, CDCl3)  152.4, 150.3, 133.6, 

131.2, 129.1, 128.9, 128.0, 127.0, 126.3, 124.8, 124.3, 123.1, 121.9, 117.2, 16.0; HRMS 

(ESI) m/z = 264.1150 calcd for C18H16O2 [M]
+
, found 264.1148. 

 

1-(4-Hydroxy-3,5-dimethoxyphenyl)naphthalen-2-ol (2.52). Following the 

general procedure (reaction for 2 d at 80 °C), the ortho-para product was obtained in 72% 

yield: 
1
H NMR (500 MHz, CDCl3)  7.82 (d, J = 5.0 Hz, 1H), 7.80 (d, J = 6.5 Hz, 1H), 
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7.47 (d, J = 8.5 Hz, 1H), 7.39-7.34 (m, 2H), 7.27 (d, J = 9.0 Hz, 1H),  6.64 (s, 2H), 5.70 

(s, 1H), 5.30 (s, 1H), 3.90 (s, 6H); 
13

C NMR (125 MHz, CDCl3)  150.3, 148.0, 134.7, 

133.5, 129.4, 128.8, 128.0, 126.5, 124.6, 124.5, 123.3, 121.0, 117.2, 107.4, 56.4; IR (film) 

3466, 1620, 1518, 1465, 1393, 1335, 1212, 1114, 817, 735, 634 cm
-1

; HRMS (ESI) m/z = 

297.1127 calcd for C18H17O4 [M+H]
 +

, found 297.1132. 

 

6-Bromo-1-(3,5-di-tert-butyl-4-hydroxyphenyl)naphthalen-2-ol (2.53). 

Following the general procedure (reaction for 1 d at 80 °C), the ortho-para product was 

obtained in 88% yield: 
1
H NMR (500 MHz, CDCl3)  7.95 (d, J = 1.5 Hz, 1H), 7.69 (d, J 

= 9.0 Hz, 1H), 7.41 (dd, J = 9.0 Hz, 2.0 Hz, 1H), 7.34 (d, J = 9.0 Hz, 1H), 7.28 (d, J = 9.0 

Hz, 1H), 7.15 (s, 2H), 5.42 (s, 1H), 5.35 (s, 1H), 1.47 (s, 18H);
 13

C NMR (125 MHz, 

CDCl3)  154.1, 150.7, 137.3, 132.2, 130.0, 129.8, 129.5, 128.0, 127.5, 126.8, 123.8, 

122.1, 118.3, 116.9, 34.5, 30.3; IR (film) 3498, 2962, 2102, 1638, 1502, 1437, 1362, 

1236, 883, 738 cm
-1

; HRMS (ESI) m/z = 425.1116 calcd for C24H26O2Br [M–H]
-
, found 

425.1113. 
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1-(3,5-Di-tert-butyl-4-hydroxyphenyl)naphthalene-2,7-diol (2.54). Following 

the general procedure (reaction for 1 d at 80 °C), the ortho-para product was obtained in 

88% yield: 
1
H NMR (500 MHz, CDCl3)  7.71 (d, J = 2.5 Hz, 1H), 7.70 (d, J = 3.0 Hz, 

1H), 7.16 (s, 2H), 7.16 (s, 2H), 7.11 (d, J = 9.0 Hz, 1H), 6.93 (dd, J = 9.0 Hz, 2.0 Hz, 

1H), 6.74 (d, J = 2.0 Hz, 1H), 5.39 (s, 1H), 5.26 (s, 1H), 4.88 (s, 1H), 1.47 (s, 18H);
 13

C 

NMR (125 MHz, CDCl3)  154.0, 151.1, 137.3, 135.2, 130.0, 128.9, 127.5, 124.5, 124.3, 

120.7, 114.8, 114.6, 107.1, 34.5, 30.4; IR (film) 3498, 2959, 1625, 1516, 1434, 1172, 831, 

738 cm
-1

; HRMS (ESI) m/z = 363.1960 calcd for C24H27O3 [M–H]
-
, found 363.1946. 

 

Methyl N-(acetyl-L-tyrosyl)-N-methyl-L-tyrosinate (2.69). Ac-Tyr-OH (460 

mg, 2 mmol) was dissolved in DMF (2 mL, 1.0 M) in an ice-water bath. H-Tyr-OMe 

(280 mg, 1 mmol) was added to the reaction mixture, followed immediately by di-

chlorohexylcarbodiimide (206 mg, 1.0 equiv) and hydroxybenzotriazole (135 mg, 1.0 

equiv). The reaction mixture was allowed to come to room temperature and stirred for 24 

h. Dicyclohexylurea was filtered off. The organic layer was washed with 2 N HCl (5 

mL), brine (5 mL), 1 N Na2CO3 (5 mL), respectively. Then dried over anhydrous sodium 
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sulfate, and evaporated in vacuo to yield dipeptide (250 mg, 0.55 mmol) as a white solid. 

Spectral data matched that reported in the literature.
53

(E)-3,3'-(Ethene-1,2-diyl)diphenol (2.76). To a solution of zinc (dust, 2.1 g, 8.0 

equiv) in dry THF (15 mL) was added TiCl4 (1.3 mL, 3.0 equiv) dropwise at 0 °C under 

argon atmosphere. After addition was complete, reaction mixture was refluxed for 2 h 

and then cooled back to 0 °C. A solution of 3-hydroxybenzaldehyde (488 mg, 4.0 mmol) 

in dry THF (5 mL) was added to this ice cooled reaction mixture slowly portion wise 

over 20 minutes and then reaction mixture was allowed to reflux for 6 h. The reaction 

mixture was then concentrated using rotary evaporator and residue was dissolved in ethyl 

acetate (15 mL). To this solution saturated K2CO3 solution (15 mL) was added and 

allowed to stir for another 7 h. To remove the undissolved salts, the mixture was filtered 

and the residue was washed with ethyl acetate (7 mL). The ethyl acetate layer was 

collected and the aqueous layer was further extracted with ethyl acetate (5 mL). The 

combined ethyl acetate layers were washed sequentially with brine (10 mL) and water 

(10 mL), dried over anhydrous Na2SO4 and concentrated in vacuo. The crude product 

was purified by flash chromatography (hexane/EtOAc, 5:1) to give (E)-3,3'-(ethene-1,2-
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diyl)diphenol (376 mg, 1.77 mmol) as a light brown solid in 89% yield. Spectral data 

matched that reported in the literature.80 

 

5,5'-(Ethane-1,2-diyl)bis(2-(tert-butyl)phenol) (2.78). To a solution of 3,3'-

(ethane-1,2-diyl)diphenol (166 mg, 0.77 mmol) in CH2Cl2 (4 mL, 0.2 M) at 0 °C was 

added tert-butanol (62 mg, 2.4 equiv) and conc. H2SO4 (80 mg, 2.4 equiv). The reaction 

was allowed to warm to room temperature and stirred for 24 h. It was quenched with 

NaHCO3 (5 mL) and the organic layer was separated. The aqueous layer was extracted 

with CH2Cl2 (3 x 5 mL) and the combined organic fractions were dried over MgSO4, 

concentrated and purified by column chromatography (hexane/EtOAc, 8:1). The product 

was obtained in 50% yield as a white solid. 
1
H NMR (500 MHz, CDCl3)  7.19 (d, J = 

8.0 Hz, 2H), 6.74 (dd, J = 8.0 Hz, 1.5 Hz, 2H), 6.52 (d, J = 1.5 Hz, 2H), 4.71 (s, 2H), 

2.81 (s, 4H), 1.41 (s, 18H). 

 

 

                                            

(80) Baskin, R.; Gali, M.; Park, S. O.; Zhao, Z, J.; Keseru, G. M.; Bisht, K. S.; Sayeski, P. P. “Identification 

of novel SAR properties of the Jak2 small molecule inhibitor G6: Significance of the para-hydroxyl 

orientation” Bioorg. Med. Chem. Lett.  2012, 22, 1402-1407. 
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3-(tert-Butyl)-2-hydroxy-5-methoxybenzaldehyde. A mixture of 3-tert-butyl-4-

hydroxyanisole (736 mg, 4.0 mmol) and hexamethylenetetramine (1.13 g, 8.0 mmol) 

dissolved in glacial acetic acid (4 mL) was heated at 110 °C for 2h. After disappearance 

of 3-tert-butyl-4-hydroxyanisole was confirmed, aqueous H2SO4 solution (33 %, 4 mL) 

was added at 75 °C. The resulting mixture was heated at 110 °C for 3 h. The mixture was 

extracted with diethyl ether (10 mL), and the extract was washed with water (2 × 10 mL), 

saturated Na2CO3 solution (2 × 10 mL) and saturated NaCl solution (10 mL). The organic 

layer was dried over MgSO4, and then the solvent was removed by evaporation under 

reduced pressure. The crude mixture was purified by flash chromatography 

(hexane/EtOAc, 20:1) to give clear liquid of product (616 mg, 2.96 mmol) in 74% yield: 

1
H NMR (500 MHz, CDCl3) δ 11.50 (s, 1H), 9.84 (s, 1H), 7.17 (d, J = 3.0 Hz, 1H), 6.82 

(d, J = 3.0 Hz, 1H), 3.81 (s, 3H), 1.41 (s, 9H). Spectral data matched that reported in the 

literature.
81

 

 

 

 

                                            

(81) Kurahashi, T.; Fujii, H. “One-Electron Oxidation of Electronically Diverse Manganese(III) and 

Nickel(II) Salen Complexes: Transition from Localized to Delocalized Mixed-Valence Ligand Radicals” J. 

Am. Chem. Soc. 2011, 133, 8307–8316. 
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Representative Procedure for the Preparation of Salen Ligands 

The salicylaldehyde 2.86 (4.1 g, 1.75 mol) was added as a solid to a solution to 

the diamine 2.87 (1.0 g, 0.88 mol) in absolute ethanol (43 mL, 0.2 M). The mixture was 

heated to reflux for 1 h under an Ar atmosphere. And then, water (10 mL) was added 

dropwise to the cooled bright yellow solution. The resulting yellow crystalline solid was 

collected by filtration and washed with a small portion of 95% ethanol. The resultant 

material was recrystallized using a 1:1 mixture of methanol and ethyl acetate to yield the 

salen ligand 2.88 as a yellow solid (4.3 g, 90% yield). Spectral data matched that reported 

in the literature.82 

General Procedure for the Reduction of Salens to Salans 

To a solution of the salen in THF:MeOH (1:1), sodium borohydride (10 equiv) 

was slowly added. The mixture was stirred at room temperature for 2 h (with a change of 

the solution color from yellow to colorless, except in the cases of nitro derivatives). The 

mixture was quenched with water and extracted with dichloromethane. The combined 

organic layers were washed with brine, dried over Na2SO4, filtered and concentrated to 

yield the salan ligand as a solid. 

(82) Bergbreiter, D.; Hobbs, C.; Hongfa, C. “Polyolefin-Supported Recoverable/Reusable Cr(III)-Salen 

Catalysts” J. Org. Chem. 2011, 76, 523–533. 
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Representative Procedure for Preparation of Chromium Catalyst 

The salen ligand 2.88 (500 mg, 0.91 mmol) and CrCl2 (123 mg, 1.0 mmol, 1.1 

equiv) were dissolved in THF (18 mL, 0.05 M). The mixture was stirred under argon at 

ambient temperature for 3 h. Then the reaction mixture was exposed to air and stirred for 

an additional 3 h. The reaction mixture was poured into TBME (15 mL), washed with 

aqueous saturated NH4Cl (3 × 30 mL) and brine (3 × 30 mL), followed by drying with 

Na2SO4. After filtration, the mixture was concentrated in vacuo to yield the chromium 

catalyst (535 mg, 93% yield). The Cr-Salen-Cy catalyst was further recrystallized from 

CH3CN. 

Cr-Salen-Cy. Dark brown solid; HRMS (ESI) m/z = 596.3434 calcd for 

C38H64N2O4Cr [M–Cl]
+
, found 596.2793.

The Cr-Salen-Cy catalyst (100 mg, 0.16 mmol) was dissolved in TBME (1.7 mL, 

0.1 M) and treated with solid AgOTf (40 mg, 0.16 mmol). The reaction flask was 

wrapped with aluminum foil and stirred at rt for 5 h. The resulting mixture was filtered 
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through Celite. Solvent removal by rotary evaporation afforded 106 mg (0.14 mmol, 90% 

yield) of 2.84 as a brown solid which was used without further purification: The 

oxochromium(V) salt 2.85 was prepared from 2.84 in acetonitrile (2.84 mL, 0.05 M) with 

37 mg (0.17 mmol, 1.2 equiv) of iodosylbenzene. The suspension was stirred for 30 min, 

and the dark brown-black solution was filtered to remove unreacted iodosylbenzene. 

Anhydrous ether (7 mL) was slowly added to the dark filtrate in order to precipitate 

crystals, and the oxochromium(V) complex 2.85 (80 mg, 0.13 mmol)  was isolated as a 

flaky black solid by filtration. 

Kinetic Analysis of Cross-Coupling 

General Procedure. For accessing the order of species X, three to five reactions of 

varying [X] were set up in parallel. For each reaction, in an oven dried 25 mL round 

bottomed flask equipped with a stir bar and reflux condenser was added Cr-Salen-Cy 

catalyst, 2,6-di-tert-butylphenol, 3,4,5-trimethylphenol, and biphenyl (internal standard) 

in the amounts illustrated in the tables below. To this mixture was subsequently added 

chloroform-d (0.1 M). Oxygen was added via active purge and the reaction mixture was 

heated to reflux under oxygen atmosphere. For each of the parallel reactions, aliquots of 

50 µL were taken every 10~30 minutes over the course. The 50 µL aliquot was 

immediately diluted with additional 500 µL of chloroform-d and analyzed by 
1
H NMR. A 

graph of [product] vs. time was plotted for the different concentration of reaction 

component X. A linear trend representing the first 15% conversion was fitted to 

determine the initial rate of the reaction component X. Theses initial rate values vs. [X] in 

order to determine the order of the reaction in component X.  
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Order in Cr-Salen-Cy catalyst. In each oven dried 25 mL round bottomed flask 

equipped with a stir bar and reflux condenser was added 2,6-di-tert-butylphenol (103.2 

mg, 0.5 mmol, 1.0 equiv), 3,4,5-trimethylphenol (68.1 mg, 0.5 mmol, 1.0 equiv), and 

biphenyl (38.6 mg, 0.25 mmol, 0.5 equiv). To this mixture was subsequently added 

chloroform-d (5.0 mL, 0.1 M). Finally, 6.3 mg (0.01 mmol, 2 mol%), 9.5 mg (0.015 

mmol, 3 mol%), 15.8 mg (0.025 mmol, 5 mol%), 22.1 mg (0.035 mmol, 7 mol%), 31.6 

mg (0.05 mmol, 10 mol%) of Cr-Salen-Cy catalyst was added, respectively, in each of 

the flasks. The reaction flasks were left to stir at 80 °C and aliquots were taken and the 

data analyzed according to the general procedure described above. 

 

 

 

Table 2.10 Concentration of Components in the Cross-Coupling Reaction in Catalyst 

1. 2 mol% Cr-Salen-Cy 

time (min) [Product] (M) [phenol A] (M) [phenol B] (M) 

20 0.00400 0.09600 0.09700 

40 0.00900 0.09100 0.09100 

60 0.01200 0.08700 0.08600 

90 0.01900 0.08000 0.07900 

120 0.02300 0.07700 0.07600 

150 0.03000 0.06900 0.06600 
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240 0.04700 0.05300 0.05000 

2. 3 mol% Cr-Salen-Cy

time (min) [Product] (M) [phenol A] (M) [phenol B] (M) 

20 0.01100 0.08900 0.08800 

40 0.01900 0.08200 0.07800 

60 0.03400 0.06700 0.06300 

90 0.03700 0.06400 0.05800 

120 0.04900 0.05100 0.04700 

180 0.06100 0.03800 0.03400 

3. 5 mol% Cr-Salen-Cy

time (min) [Product] (M) [phenol A] (M) [phenol B] (M) 

10 0.01000 0.09000 0.08900 

20 0.01500 0.08500 0.08400 

30 0.02500 0.07500 0.07100 

40 0.03600 0.06400 0.06000 

60 0.05100 0.04900 0.04500 

90 0.05500 0.04500 0.04300 

120 0.06800 0.02600 0.01900 

240 0.07000 0.00000 0.00000 

4. 7 mol% Cr-Salen-Cy

time (min) [Product] (M) [phenol A] (M) [phenol B] (M) 
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10 0.01400 0.08600 0.08400 

20 0.02800 0.07100 0.06700 

30 0.04100 0.05700 0.05100 

40 0.05100 0.04800 0.04300 

60 0.06800 0.03200 0.02500 

90 0.08800 0.00600 0.00500 

120 0.07900 0.00000 0.00000 

5. 10 mol% Cr-Salen-Cy

time (min) [Product] (M) [phenol A] (M) [phenol B] (M) 

10 0.02900 0.07200 0.07000 

20 0.03200 0.06700 0.06200 

30 0.05000 0.04900 0.04300 

40 0.05800 0.04300 0.03200 

60 0.08800 0.01100 0.00600 

90 0.08800 0.00800 0.00300 

240 0.02600 0.00000 0.00000 

Table 2.11 Initial Rates for Order in Catalyst 

Concentration (M) Initial Rate (M/s) 

0.002 3.48333E-06 

0.003 8.98333E-06 

0.005 1.43833E-05 

0.007 2.30000E-05 

0.01 2.50000E-05 
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Order in Cr-Salen-Cy catalyst.with 2-Naphthol The reaction flasks were set up in the 

same way above and left to stir for 30 min at 80 °C and aliquots were taken and the data 

analyzed according to the general procedure described above. 

Table 2.12 Initial Rate in Cross-Coupling with 2-Naphthol 

[Cr-Salen-Cy] 

(M) 

Initial Rate 

(mol/Ls) 

Ln[Cr-Salen-

Cy] 

Ln(initial rate 

Product) 

0.002 0.000606061 -6.214608098 -7.408530567 

0.003 0.000424242 -5.80914299 -7.765205511 

0.005 0.000909091 -5.298317367 -7.003065459 

0.007 0.000909091 -4.96184513 -7.003065459 

0.01 0.001565657 -4.605170186 -6.459450012 

Order in 2,6-di-tert-butylphenol. In each oven dried 25 mL round bottomed flask 

equipped with a stir bar and reflux condenser was added Cr-Salen-Cy catalyst (9.5 mg, 

0.015 mmol, 0.05 equiv), 3,4,5-trimethylphenol (40.9 mg, 0.3 mmol, 1.0 equiv), and 

biphenyl (23.1 mg, 0.15 mmol, 0.5 equiv). To this mixture was subsequently added 

chloroform-d (3.0 mL, 0.1 M). Finally, 61.9 mg (0.3 mmol, 1 equiv), 123.8 mg (0.6 

mmol, 2 equiv), 310 mg (1.5 mmol, 5 equiv), 619 mg (3.0 mmol, 10 equiv) of 2,6-di-tert-

butylphenol was added, respectively, in each of the flasks. The reaction flasks were left to 
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stir at 80 °C and aliquots were taken and the data analyzed according to the general 

procedure described above. 

Table 2.13 Concentration of Components in the Cross-Coupling Reaction 

1. 1 equiv 2,6-di-tert-butylphenol 

time (min) Product (M) phenolA (M) phenolB (M) 

10 0.01000 0.09000 0.08900 

20 0.01500 0.08500 0.08400 

30 0.02500 0.07500 0.07100 

40 0.03600 0.06400 0.06000 

60 0.05100 0.04900 0.04500 

90 0.05500 0.04500 0.04300 

240 0.07000 0.00000 0.00000 

 

2. 2 equiv of 2,6-di-tert-butylphenol 

time (min) Product (M) Phenol A (M) Phenol B (M) 

20 0.01500 0.18000 0.08600 

40 0.02800 0.17000 0.07500 

60 0.04600 0.15600 0.05600 

90 0.06900 0.12700 0.03400 

120 0.08200 0.11400 0.01900 

150 0.09400 0.08500 0.00000 

180 0.07800 0.06600 0.00000 
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3. 5 equiv of 2,6-di-tert-butylphenol

time (min) Product (M) Phenol A (M) Phenol B (M) 

20 0.01700 0.46600 0.08300 

40 0.02700 0.45400 0.07300 

60 0.04400 0.44800 0.05600 

120 0.08600 0.39500 0.01200 

150 0.08800 0.39100 0.00900 

180 0.09300 0.31500 0.00000 

4. 10 equiv of 2,6-di-tert-butylphenol

time (min) Product (M) Phenol A (M) Phenol B (M) 

20 0.11000 0.99000 0.08400 

40 0.02200 1.00500 0.07200 

60 0.03700 0.97400 0.05000 

90 0.06700 0.91700 0.02500 

120 0.08000 0.88500 0.01200 

210 0.09300 0.83800 0.00000 

Order in 3,4,5-trimethylphenol. In each oven dried 25 mL round bottomed flask 

equipped with a stir bar and reflux condenser was added Cr-Salen-Cy catalyst (9.5 mg, 

0.015 mmol, 0.05 equiv), 2,6-di-tert-butylphenol (61.9 mg, 0.3 mmol, 1.0 equiv), and 

biphenyl (23.1 mg, 0.15 mmol, 0.5 equiv). To this mixture was subsequently added 

chloroform-d (3.0 mL, 0.1 M). Finally, 40.9 mg (0.3 mmol, 1 equiv), 81.7 mg (0.6 mmol, 

2 equiv), 204 mg (1.5 mmol, 5 equiv), 408 mg (3.0 mmol, 10 equiv) of 3,4,5-
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trimethylphenol was added, respectively, in each of the flasks. The reaction flasks were 

left to stir at 80 °C and aliquots were taken and the data analyzed according to the general 

procedure described above. 

Table 2.14 Concentration of Components in the Cross-Coupling Reaction 

1. 1 equiv 3,4,5-trimethylphenol

time (min) Product (M) PhenolA (M) PhenolB (M) 

10 0.01000 0.09000 0.08900 

20 0.01500 0.08500 0.08400 

30 0.02500 0.07500 0.07100 

40 0.03600 0.06400 0.06000 

60 0.05100 0.04900 0.04500 

90 0.05500 0.04500 0.04300 

240 0.07000 0.00000 0.00000 

2. 2 equiv 3,4,5-trimethylphenol

time (min) Product (M) phenol A (M) phenol B (M) 

20 0.00560 0.09300 0.17100 

40 0.01120 0.08700 0.16600 

60 0.01700 0.08300 0.16200 

90 0.02300 0.07600 0.15100 

120 0.04000 0.06000 0.13400 

240 0.05000 0.05100 0.12000 
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3. 5 equiv 3,4,5-trimethylphenol 

time (min) Product (M) phenol A (M) phenol B (M) 

20 0.00270 0.09500 0.44000 

40 0.00650 0.09400 0.43500 

90 0.01000 0.08800 0.44200 

120 0.01700 0.08400 0.42300 

360 0.02500 0.07500 0.43000 

900 0.06700 0.03300 0.00000 

 

4. 10 equiv 3,4,5-trimethylphenol 

time (min) Product (M) phenolA (M) phenolB (M) 

30 0.00300 0.09700 1.01000 

60 0.00700 0.09400 1.00900 

90 0.01000 0.08900 0.99300 

120 0.01500 0.08400 0.99000 

240 0.02200 0.07500 0.98700 

960 0.05000 0.04900 0.93000 

 

Table 2.15 Initial Rates for Order in 3,4,5-Trimethylphenol 

Concentration (M) Initial Rate (M/s) 

0.1 1.46700E-05 

0.2 4.75000E-06 

0.5 2.15000E-06 

1 1.48000E-06 
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Order in Oxygen Pressure. In oven dried 25 mL round bottomed flask equipped with 

a stir bar was added Cr-Salen-Cy catalyst (9.5 mg, 0.015 mmol, 0.05 equiv), 2,6-di-tert-

butylphenol (61.9 mg, 0.3 mmol, 1.0 equiv), 3,4,5-trimethylpenol (40.9 mg, 0.3 mmol, 

1.0 equiv) and biphenyl (23.1 mg, 0.15 mmol, 0.5 equiv). To this mixture was 

subsequently added chloroform-d (3.0 mL, 0.1 M). The reaction flask was put into a Parr 

bomb reactor and oxygen was added via active purge. The reactor was closed and oxygen 

pressure was maintained at 10 atm and left to stir at 80 °C and aliquots were taken and 

the data analyzed according to the general procedure described above. 

Table 2.16 Concentration of Components in the Cross-Coupling Reaction 

time (min) [Product] (M) [phenol A] (M) [phenol B] (M) 

15 0.01500 0.07500 0.07400 

25 0.02200 0.06500 0.06700 

55 0.04600 0.04100 0.04200 

100 0.07500 0.00000 0.00000 
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CHAPTER 3.  Honokiol Synthesis 

 

3.1. Background 

Honokiol (3.1) is an unsymmetrical biphenyl compound isolated from Magnolia 

plants such as Melilotus officinalis,
 83

 Magnolia obovate,
 84

 and Magnolia garretti.
 85

 In 

spite of its simple biphenyl structure having two hydroxyl and two allyl groups, honokiol 

exhibits various biological activities
86 

such as anxiolytic, antithrombotic, anti-depressant, 

antiemetic, antibacterial, antiviral, anticancer, and anti-inflammatory effects. 

Honokiol contains a biphenyl ring system with para-allyl phenol and ortho-allyl 

phenol coupling together at the ortho- and para-positions, respectively. A structure-

activity relationship (SAR) study revealed that 4'-hydroxy and 5-allyl groups of honokiol 

                                            

(83) Fujita, M.; Itokawa, H.; Sashida, Y. “Honokiol, a new phenolic compound isolated from the bark of 

Magnolia obovata Thunb” Chem. Pharm. Bull. 1972, 20, 212–213. 

(84) Fukuyama, Y.; Otoshi, Y.; Miyoshi, K.; Nakamura, K.; Kodama, M.; Nagasawa, M.; Hasegawa, T.; 

Okazaki, H.; Sugawara, M. “Neurotrophic sesquiterpene-neolignans from magnoliaobovata: structure and 

neurotrophic activity” Tetrahedron 1992, 48, 377–392. 

(85) Schuehly, W.; Voith, W.; Teppner, H.; Kunert, O. “Substituted Dineolignans from Magnolia garrettii” 

J. Nat. Prod. 2010, 73, 1381–1384. 

(86) (a) Kong, Z.; Tzeng, S.; Liu, Y. Bioorg. “Cytotoxic neolignans: an SAR study” Med. Chem. Lett. 

2005, 15, 163-166. (b) Amblard, F.; Govindarajan, B.; Lefkove, B.; Rapp, K. L.; Detorio, M.; Arbiser, J. 

L.; Schinazi, R. F. “Synthesis, cytotoxicity, and antiviral activities of new neolignans related to honokiol 

and magnolol” Bioorg. Med. Chem. Lett. 2007, 17, 4428-4431. (c) Fukuyama, Y.; Nakade, K.; Minoshima, 

Y.; Yokoyama, R.; Zhai, H.; Mitsumoto, Y. “Neurotrophic activity of honokiol on the cultures of fetal rat 

cortical neurons” Bioorg. Med. Chem. Lett. 2002, 12, 1163-1166. (d) Matsuda, H.; Kageura, T.; Oda, M.; 

Morikawa, T.; Sakamoto, Y.; Yoshikawa, M. “Effects of Constituents from the Bark of Magnolia obovata 

on Nitric Oxide Production in Lipopolysaccharide-Activated Macrophages” Chem. Pharm. Bull. 2001, 49, 

716-720. 
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were crucial for neurotrophic activity.
87

 Honokiol was obtained through natural sources,

but its isolation has been quite inefficient because of the presence of its other 

constitutional isomer, magnolol.
88

Figure 3.1 Honokiol (3.1) and Magnolol (3.2) 

3.2. Reported Synthetic Approaches to Honokiol 

Owing to its excellent biological activity and natural scarcity, various synthetic 

approaches have been reported for total synthesis of honokiol. Recently, there has been 

increased interest in devising a simple, scalable synthesis as evidenced by the three 

publications reported in 2014 alone. In 1986, Tobinaga and co-workers finished the first 

total synthesis of honokiol (3.1).89 In 2004, the Fukuyama group reported the second 

synthesis of honokiol with a Suzuki-Miyaura reaction to connect two aryl substrates as a 

(87) Esumi, T.; Makado, G.; Zhai, H.; Shimizu, Y.; Mitsumoto, Y.; Fukuyama, Y. “Efficient synthesis and 

structure–activity relationship of honokiol, a neurotrophic biphenyl-type neolignan” Bioorg. Med. Chem. 

Lett.  2004, 14, 2621-2625. 

(88) Liu, L.; Wu, X.; Fan, L.; Chen, X.; Hu, Z. “Separation and determination of honokiol and magnolol in 

herbal medicines by flow injection-capillary electrophoresis” Anal. Bioanal. Chem. 2006, 384, 1533-1539. 

(89) Takeya, T.; Okubo, T.; Tobinaga, S. “Synthesis of unsymmetrical biphenyl lignans, honokiol and 

related coumpounds, utilizing quinol-acetates as reactive intermediates” Chem. Pharm. Bull. 1986, 34, 

2066-2075. 



 137 

key step.5 Short syntheses have been followed by Liu,90 Denton,91 and Chen.92 In 2014, 

Reddy et al. disclosed a 6-step synthetic method starting from cyclohexane-1,4-dione 

monoethylene ketal that yields a 2:3 mixture of honokiol and isohonokiol. 93  This 

synthetic route involved the Grignard reaction, iodine mediated aromatization, and 

Claisen rearrangement as key steps. 

Scheme 3.24 Honokiol synthesis by Reddy et al. 

 

                                            

(90) Chen, C.-M.; Liu, Y.-C. “A Concise Synthesis of Honokiol” Tetrahedron Lett. 2009, 50, 1151-1152. 

(91) Denton, R. M.; Scragg, J. T.; Galofre, A. M.; Gui, X.; Lewis, W. “A Concise Synthesis of Honokiol” 

Tetrahedron 2010, 66, 8029-8035. 

(92) Tripathi, S.; Chan, M.-H.; Chen, C. “An Expedient Synthesis of Honokiol and Its Analogues as 

Potential Neuropreventive Agents” Bioorg. Med. Chem. Lett. 2012, 22, 216-221. 

(93) Reddy, B. V. S.; Rao, R. N.; Reddy, N. S. S.; Yadav, J. S.; Subramanyam, R. “A Short and Efficient 

Synthesis of Honokiol via Claisen Rearrangement” Tetrahedron Lett. 2014, 55, 1049-1051. 
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The Kumar group published a four-step synthesis of honokiol (3.1) with 68% 

overall yield. 94  The present method involved tetrakis(triphenylphosphine)palladium 

catalyzed Kumada coupling in two key steps. Palladium catalyzed reactions are not 

desirable on production scale because of the high cost of palladium reagents and the 

difficulty of removing palladium impurities from the final product. In addition, the high 

mass and cost associated with the iodinated anisole precursor is undesirable. 

Scheme 3.25 Honokiol Synthesis by Kumar et al. 

 

The Fukuyama group reported their second honokiol synthesis after 2004.95 This 

route utilized two separate Suzuki-Miyaura reactions. The first Suzuki-Miyaura reaction 

was employed to couple 2-bromophenol with 4-hydroxyphenylboronic acid, giving rise 

to 2,4'-dihydroxybiphenyl. The second coupling was used to introduce allyl groups at the 

5- and 3'-positions of honokiol. The total synthesis of honokiol was completed in 74% 

                                            

(94) Srinivas, J.; Singh, P. P.; Varma, Y. K.; Hyder, I.; Kumar, H. M. S. “Concise Total Synthesis of 

Honokiol via Kumada Cross Coupling” Tetrahedron Lett. 2014, 55, 4295-4297. 

(95) Harada, K.; Arioka, C.; Miyakita, A.; Kubo, M.; Fukuyama, Y. “Efficient Synthesis of Neurotrophic 

Honokiol Using Suzuki-Miyaura Reactions” Tetrahedron Lett. 2014, 55, 6001-6003. 
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yield over five steps from the starting material, 2-bromophenol (Scheme 3.3).  Here, the 

high costs of the boronic acids, coupled with their instability, limit large scale application. 

Scheme 3.26 Honokiol Synthesis by Fukuyama et al. 

  

 

3.3. First Route to Honokiol Synthesis 

The structure of honokiol (3.1) arises from union of an ortho-allylphenol (3.3) and 

a para-allylphenol (3.4). Formation of the biaryl bond selectively from the monomers is 

the crux in any synthesis of honokiol. To determine the limits of our cross-coupling 

method, these two phenolic monomers were subjected to the Cr-Salen-Cy catalyst. 

Unfortunately, no product formed; only decomposition of the substrates was observed.  

Scheme 3.27 Direct Cross-coupling of Honokiol Phenol Monomers 
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In Chapter 2, I described a method for coupling 2,6-disubstituted phenols with 4-

substituted phenols using a chromium(III) catalyst to give selectively the para-ortho-

coupled bisphenol. Based on this discovery, it was reasoned that an additional substituent 

was necessary at the ortho-posotion of 2-allyl phenol (3.3) to achieve a selective coupling 

with 4-allylphenol (3.4) using our method. The retrosynthetic analysis in Scheme 3.5 

described a simple and direct method for the synthesis of honokiol based on this premise. 

Specifically, honokiol (3.1) would be obtained in two steps, cross-coupling reaction and 

removal of X group (tertiary alkly, silyl group etc), from the corresponding monomers. 

Scheme 3.28 Retrosynthetic Analysis of Honokiol: First Route. 

O-Allyation of commercial 2-tert-butylphenol (3.7) followed by thermal Claisen 

rearrangement gave monomer 3.9 for the cross-coupling reaction in 81% yield for two 

steps. The other monomer 3.4 is a natural isolate,
96

 also known as chavicol, of which the

methyl ether derivative is commercially available. The routes to the two monomers are 

shown in Scheme 3.6. Excitingly, the first trial of the cross-coupling reaction between 

3.9 and 3.4 gave the desired product 3.11 in 31% yield even though byproducts such as 

diphenoquinone and trimer were seen. Unfortunately, several attempts at the deprotection 

(96) Lide, D. R. CRC Handbook of Chemistry and Physics (86
th 

Ed) 2005 
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of tert-butyl group to get to the target, honokiol, were unsuccessful. Under several acidic 

conditions, the retro-Friedel-Crafts reaction did not occur; rather compound 3.11 

decomposed or no reaction was seen (Scheme 3.7).  

Scheme 3.6 Syntheses of Monomers 

 

Scheme 3.29 Cross-Coupling of tert-Butyl Allyl Phenol and Deprotection 

 



 142 

Along with tert-butyl group, several other blocking groups for the ortho-position 

were tested. As expected, electron-withdrawing blocking groups, such as halides, have a 

detrimental effect on reaction (Table 3.1, entries 4-6).  

Table 3.1 Substituent Effects on the Oxidative Cross-Coupling Reaction 

 

In addition, a lack of reactivity was seen with trimethylsilyl (Table 3.1, entry 2).  

However, the phenol with a tert-butyldimethylsilyl group gave desired cross-coupling 

product 3.17 in 24% conversion (Table 3.1, entry 3). The remainder of the starting 

material was decomposed after 18 hours at 80 
o
C. Deprotection of the silyl group with 

HF·pyridine proceeded smoothly to give the final product (Scheme 3.9). These two steps 

were not optimized further because the costs of materials were not amenable to large 

scale production. Specifically, four steps were required to synthesize 2-allyl-6-tert-

butyldimethylsilyl phenol (3.16) from 2-bromophenol (3.12) (Sheme 3.8). Also, the other 

starting material 4-allyl anisole (3.10) was prohibitively expensive ($73.07/100 g, Acros). 
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Nonetheless, this synthesis is meaningful as it constitutes the first honokiol synthesis 

based on an oxidative phenol cross-coupling. 

Scheme 3.30 Synthesis of Substrate 3.15 

Scheme  3.31 First Honkiol Synthsis Utilizing Oxidative Cross-Coupling 

3.4. Second Route to Honokiol Synthesis 

Aryl-aryl bond formation represents a key step in the total synthesis of honokiol 

and the initial route showed that our strategy of oxidative cross-coupling of electron-rich 

phenol substrates is sound. Since cross-coupling reaction between phenols with allyl 

substituents suffered limitations due to substrate stability, we redesigned the starting 

phenols with the goal of installing the allyl groups after oxidative coupling. 
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One retrosynthetic analysis of honokiol utilizing this approach is depicted in 

Scheme 3.10. This plan was inspired by Reddy’s synthesis in 2014
11

 which involved

Claisen rearrangement of bis-O-allylbiphenyl 3.18. 

Scheme 3.32 Retrosynthetic Analysis of Honokiol: Second Route 

The synthesis of honokiol commenced with the preparation of 2,4'-biphenyl 

(3.19). There is a limited literature for the preparation of this compounds with most cases 

requiring Suzuki-Miyaura cross-coupling between a halophenol and phenol boronic 

acid. 97  While high-yielding, such a protocol requires additional steps to prepare the 

substrates. On the other hand, phenol can be subjected to oxidative coupling to obtain 

3.19 with conventional oxidant, such as (t-BuO)2 
98 ,VCl3,

99
  or gold nano-particle 

catalyst,100 however, none of those examples give the ortho-para coupling product with 

high regioselectivity.  For example, regioselective oxidative coupling method of simple 

(97) Schmidt, B.; Riemer, M. “Suzuki-Miyaura Coupling of Halophenols and Phenol Boronic Acids: 

Systematic Investigation of Positional Isomer Effects and Conclusions for the Synthesis of Phytoalexins 

from Pyrinae” J. Org. Chem. 2014, 79, 4104-4118. 

(98) Amstrong D. R.; Breckenridge, R. J.; Cameron C.; Nonhebel, D. C.; Pauson, P. L.; Perkins, P. G. “The 

Role of Stereoelectronic Factors in the Oxidation of Phenols” Tetrahedron Lett. 1983, 24, 1071-1074. 

(99) O'Brien, M. K.; Vanasse, B. e-EROS Encyclopedia of Reagents for Organic Synthesis, 2001. 

(100) Serna, P.; Corma, A. “A Residue-free Production of Biaryls Using Supported Gold Nanoparticles” J. 

Catal. 2014, 315, 41-47. 
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phenol with CuCl(OH)·TMEDA was reported,101 however, we failed to reproduce their 

result even after several trials.  Direct ortho-para coupling of phenol was also 

unsuccessful with our chromium catalyst. As such, phenols with blocking groups to 

enforce regioselection were examined. 

When 2,6-di-tert-butylphenol and 4-tert-butylphenol were subjected to the 

coupling reaction, a mixture of oxidative coupling products including diphenoquinone, 

dimer, and trimer were observed. Trials to suppress the byproducts by modifying the ratio 

of substrates, reaction time, temperature, and catalyst loading did not result in much 

improvement.  

Scheme 3.33 Cross-Coupling between 2,6-Di-tert-butylphenol and 4-tert-Butylphenol 

 

At this point, it was reasoned that modification of the second phenol substrate was 

needed to reduce the amount of trimer formation. Addition of a substituent at the ortho-

position would prevent trimer formation and, moreover, would permit a selective 

                                            

(101) Majumder, P. L.; Chakraborty, S.; Roychowdhury, M. “Catalytic aerobic oxidative coupling of some 

simple phenols and natural phenanthrols with CuCl(OH)·TMEDA” J. Indian Chem. Soc. 2000, 77, 389-

393. 
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rearrangement in the final step. For this role, bromide, which would be removed after 

Claisen-Cope rearrangement reaction, was considered. 2-Bromo-4-tert-butylphenol 

(3.27), obtained readily by aromatic substitution reaction on 3.23, was subjected to 

oxidative coupling reaction with 3.22. The electron-withdrawing property of bromide 

affected the reactivity of the cross-coupling under normal condition using O2. 

Specifically, only a trace amount of desired product was observed. With a stronger 

oxidant (tert-butylhydroxyperoxide) and higher reaction temperature (up to 140 
o
C), the 

coupling yield improved to 52%, at which point the reaction seemed to stop. Longer 

reaction times did not yield more product, and both starting phenols remained unreacted. 

Scheme 3.34 Cross-Coupling Reaction of 2-Bromo-4-tert-butylphenol with TBHP 

 

Retro Friedel-Crafts reaction for the removal of the tert-butyl group required 

further optimization with various acids because of the bromide substitution of the lower 

ring, which attenuated electron-density and, hence the ability of the aromatic ring to 

protonate. Four dealkylation products were observed (Scheme 3.13). Using the 

previously identified AlCl3, either incomplete dealkylation was observed (entry 1) or, 

when sealed, dealkylation accompanied by dehalogenation (entry 2). Reasoning that 
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chloride anion might induce reductive removal of the bromide substitutent, attention 

turned to protic acids. Screening of several protic acid sources identified methanesulfonic 

acid with heat as suitable for target molecule 3.31. After removal of three tert-butyl 

groups, allylation of both hydroxyl groups was performed quantitatively (Scheme 3.14). 

Scheme 3.35 Acid Screening in the Retro Friedel-Craft Reaction 

Scheme 3.36 Dealkylation and O-Allylation Reaction 

Our next goal was to effect a tandem rearrangement to obtain bromo-honokiol, 

3.34 (Scheme 3.15). Since the ortho-site in the lower ring is blocked from aromatization 

by a bromine atom, a second [3,3]-rearrangement would happen readily after Claisen 
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rearrangement and give the product 3.34.102 Subsequent debromination would give the 

final product 3.1. However, the Claisen-Cope rearrangement with several Lewis acids 

was unsuccessful and gave different undesirable products. For example, BCl3 deprived 

the lower ring of one allyl group. On the other hand, bulkier and milder aluminum Lewis 

acid, MAD [methylaluminium bis(2,6-di-tert-butyl-4-methylphenoxide)],103 gave a single 

product with only one allyl group in the upper ring rearranged; the other allyl group in the 

lower ring was left unaffected. 

Thermally, when the substrate 3.33 was heated to 180 
o
C in the solvent of N,N-

diethylaniline, a mixture of isohonokiol (3.35) and honokiol (3.1) was obtained in a 1.3:1 

ratio. Sigmatropic rearrangement of substrate 3.18 also gave same mixture but with 

different ratios (c.f. 1.5:1 ration obtained by Reddy et al.).
11

 Even though honokiol was

obtained in higher yields with substrate 3.33 than with 3.18 (see Scheme 3.1), the 

undesired isohonokiol was still a major product. 

(102) O’Brien, E. M.; Li, J.; Carroll, P. J.; Kozlowski, M. C. “Synthesis of the Cores of Hypocrellin and 

Shiraiachrome: Diastereoselective 1,8-Diketone Aldol Cyclization” J. Org. Chem. 2010, 75, 69-73. 

(103) Saito, S.; Yamamoto, H. “Designer Lewis Acid Catalysts-Bulky Aluminium Reagents for Selective 

Organic Synthesis” Chem. Comm. 1997, 1585-1592. 
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Scheme 3.37 Sigmatropic Rearrangement for Honokiol Synthesis 

Additional thermal reaction experiments for both honokiol and isohonokiol were 

performed. For both substrates, nothing occurred even after extended heating. These 

results reveal that the rearrangement reaction to 3.1 does not transit 3.35. 

Scheme 3.38 Thermal Reaction on Isohonokiol (3.35) and Honokiol (3.1) 
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3.5. Third Route to Honokiol Synthesis 

The above experiments indicate that any route to honokiol involving Claisen 

reaction of the lower ring is not tenable.  Since installation of the allyl functionality was 

always problematic, we decided to defer this step to later in the synthesis (Scheme 3.17). 

Furthermore, allyl installation by vinyl addition to a benzylic bromide by substitution 

reaction appears more feasible and involves a novel disconnection for this target. In order 

to obtain bisbromomethylbiphenyl 3.36, radical bromination would be performed on 

bistoluene derivative 3.37. 3,5'-Dimethyl-2,4'-bisphenol (3.37) would be an equivalent to 

the fully protected cross-coupling product 3.38 between 2-tert-butyl-6-methylphenol 

(3.39) and 2-tert-butyl-4-methylphenol (3.40). This route is also appealing because these 

two starting phenols are commercially available at reasonable costs ($147.60/500 g for 

3.39; TCI, $39.02/500 g for 3.40; Acros), which is beneficial for mass production.  

Scheme 3.39 Retrosynthetic Analysis of Honokiol: Third Route 

. 

Substrates 3.39 and 3.40 coupled readily with our previously identified conditions 

and the optimal conditions for their cross-coupling were obtained in short order (Scheme 
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3.18). During this process, a reduced catalyst loading was discovered to be viable at 

higher concentrations. With 2.5 mol% Cr-Salen-Cy in 0.2 M toluene, (entry 6, Scheme 

3.18) more cross-coupling product (92% conversion) was obtained since homo-coupling 

of phenol 3.38 to form diphenoquinone was suppressed to less than 5%. 

Scheme 3.40 Optimization of Cr (III) catalyzed Cross-Coupling Reaction 

 

At the same time, a screen of conventional oxidants was performed to determine 

if this particular substrate pair was predisposed to cross-coupling. Surprisingly, a 

stoichiometric manganese oxidant gave a reasonable yield (56% conversion) after 15 

hours (entry 8, Scheme 3.19).  
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Scheme 3.41 Oxidant Screening for Cross-Coupling Reaction 

It has been reported in 1992, that Mn(acac)3 oxidized 2,6-di-tert-butylphenol to 

corresponding 4,4'-biphenyldiol and Mn(OAc)3 oxidized the same substrate to give 

corresponding 4,4'-diphenoquinone.104 Thus, a further screening of manganese reagents 

was undertaken, which revealed that cross-coupling product was a major product 

(Scheme 3.18). Manganese(III) acetylacetonate showed better conversion than 

manganese (III) acetate for the cross-coupling reaction and also worked well with 

catalytic amounts (10 mol%) under oxygen atmosphere to give the product 3.38 with 

74% isolated yield after 15 hours (Scheme 3.20). However, conversion did not seem to 

increase even after longer times. 

(104) Nishino, H.; Itoh, N.; Nagashima, M.; Kurosawa, K. “Choice of Manganese(III) Complexes for the 

Synthesis of 4,4'-Biphenyldiols and 4,4'-Diphenoquinones” Bull. Chem. Soc. Jpn. 1992, 65, 620-622. 
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Scheme 3.20 Manganese Oxidant Screening for Cross-Coupling Reaction 

Because the Cr(III) catalyzed cross-coupling reaction proceeded in excellent yield 

with few byproducts, a purification process did not seem necessary. After completion of 

the reaction, the reaction mixture was filtered through a silica plug to remove the Cr(III)-

Salen complex, and then it was subjected to dealkylation reaction immediately. After two 

hours at ambient temperature, 3,5'-dimethyl-2,4'-bisphenol (3.30) was obtained with 82% 

yield over the two steps. Later, it was also found that even without filtration process, 

cross-coupling reaction and retro Fridel-Craft alkylation could be performed in single 

reaction vessel in excellent yield (85%). It was notable that water, a major byproduct of 

oxidation process, did not decrease the reacitivity of the Lewis acid in dealkylation step. 
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Scheme 3.42 One-pot Cross-Coupling and Retro Friedel-Craft Reaction 

 

After protection of the hydroxyl groups in substrate 3.36 as the methyl ethers, 

radical bromination reaction was performed. Exploration of with several conditions 

including different solvents, bromide radical sources (N-bromosuccinimide, Br2), reaction 

temperature etc. gave rise to a mixture of mono-bromide and over brominated products 

along with desired product in every case. The optimal conditions utilized NBS as a 

bromide source in presence of radical initiator azobisisobutyronitrile (AIBN) in carbon 

tetrachloride; even so, yields did not exceed 57%.  

Scheme 3.43 Protection and Radical Bromination Reaction 
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At this point, different protecting groups were tested to improve reaction yield in 

the radical bromination step. Tetrahydropyranyl acetal compound (3.43) gave rise to 

decomposition rather than the desired brominated. The acetate 3.44 gave the desired 

product with good yield (85%) in bromination step; however, the subsequent Kumada 

coupling did not work, giving rise to much decomposition instead.  

Scheme 3.44 Protecting Groups in Radical Bromination Reaction 

 

Given the success of bromination of the bisacetate derivative, several alternatives 

were considered at this stage. A deprotonative cross-coupling reaction105 of 3.41, which 

would reduce the sequence by one step, was attempted but failed.  A series of studies on 

the corresponding monomers revealed that the coupling to the ortho-methyl was highly 

effective but coupling to the para-methyl did not occur. Reductive cross-coupling 

                                            

(105) Sha, S.–C. “New Strategy in C-H Functionalizations with Bismetallic Catalysts” Dissertation,  2015, 

University of Pennsylvania, Philadelphia, PA. 
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reactions106 were tried, but did not give rise to the desired product. A model study with 

monomeric para-methyl anisole gave rise to decomposition pinpointing the para methyl 

as the problematic reaction partner.  

Scheme 3.45 Deprotonative and Reductive Cross-Coupling Reaction 

On the other hand, Kumada coupling with substrate 3.42 was successful. It was 

performed with the best yield when a 1.0 M solution of vinylmagnesium bromide was 

added slowly (3 mL/min) using a syringe pump in the presence of copper (I) iodide 

catalyst. With 3 mmol of starting substrate 3.42, 760 mg of the desired product 3.46 was 

obtained in 75% isolated yield. 

(106) (a) Reisman, S. E.; Cherney, A. H. “Nickel-Catalyzed Asymmetric Reductive Cross-Coupling 

Between Vinyl and Benzly Electrophile” J. Am. Chem. Soc. 2014, 136, 14365-14368. (b) Amatore, M.; 

Gosmini, C. “Direct Method for Carbon-Carbon Bond Formation: The Functional Group Tolerant Cobalt-

Catalyzed Alkylation of Aryl Halides” Chem. Eur. J. 2010, 16, 5848-5852. (c) Durandetti, M.; Nedelec, J.-

Y.; Perichon, J. “Nickel-Catalyzed Direct Electrochemical Cross-Coupling between Aryl Halides and 

Activated Aryl Halides” J. Org. Chem. 1996, 61, 1748-1755. (d) Wang, S.; Qian, Q.; Gong, H. “Nickel-

Catalyzed Reductive Cross-Coupling of Aryl Halides with Secondary Alkyl Bromides and Allylic Acetate” 

Org. Lett., 2012, 14, 3352-3355. (e) Yan, C.–S.; Peng, Y.; Xu, X.–B.; Wang, Y.–W. “Nickel-Mediated 

Inter- and Intramolecular Reductive Cross-Coupling of Unactivated Alkyl Bromides and Aryl Iodide at 

Room Temperature” Chem. Eur. J. 2012, 18, 6039-6048. 



 157 

Scheme 3.46 Optimized Kumada Coupling Reaction 

Finally, the demethyation step was optimized. First, we attempted to utilize the 

AlCl3/dimethyl sulfide conditions reported by Kumar et al. for compound 3.46 that gave 

honokiol (3.1) in 97% yield.
11

 However, we failed to reproduce their result even after

several trials. Based upon descriptions communicated to us by Kumar, the reaction 

requires yellow granular AlCl3 in order to succeed.  All current sources of AlCl3 that we 

have been able to obtain are white, free-flowing powders. Apparently, contamination 

with iron gives rise to yellow-colored AlCl3.  Unable to secure a source and uncertain 

about the exact type/amount of iron contaminant, we chose to explore alternate Lewis 

acids.  There was no reaction with BCl3 at ambient temperature and substrate 3.46 started 

to decompose at 70 
o
C. Even though BBr3 gave honokiol in moderate yield (68% isolated

yield), an inseparable impurity was seen due to the reaction at one of the allyl groups. 

Fortunately, we found that BBr3·DMS complex gave the final product in excellent yield. 

Apparently, DMS attenuates the reactivity of BBr3 and may also serve to quench any Br2 

formed. 



 158 

Scheme 3.47 Lewis Acids Screening in the Final Reaction 

The final conditions with 2.4 equiv of BBr3·DMS in a closed system gave 

honokiol with excellent yield (90%) (Scheme 3.27). Notably, reaction under an 

atmosphere of air or argon require more reagent (up to 6 equiv). There was some 

impurity from the side reaction caused by Br2 (typically less than 5%). The byproduct 

was identified by 
1
H NMR and mass spectrum as a bromocyclized adduct in the upper

ring (Scheme 3.28). However, it was not separable through silica column 

chromatography and needs to be removed through other purification process such as 

trituration. 
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Scheme 3.48 Final Deprotection 

Scheme 3.28 Side Reaction at the Final Step 

3.6. Conclusion 

In conclusion, we have developed three different routes for the total synthesis of 

honokiol starting from commercial phenols. These three routes each include a Cr(III)-

catalyzed oxidative cross-coupling of phenols as a key step. 

In the first route, a direct cross-coupling between allyl substituted phenols gave 

the desired coupling product. A further deprotection then led to honokiol. However, 

conversion was limited due to the stability of the allyl-substituted substrates under the 

oxidave coupling conditions. 
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In the second route, oxidative coupling gave rise to a simple bisphenol.  

Subsequent allylation gave rise to a substrate for a tandem Claisen-Cope rearrangement 

reaction.  While the rearrangement did precede, contamination of the final product with 

an isomeric rearrangement product, isohonokiol, could not be suppressed. 

Finally, we established an efficient route for the total synthesis of honokiol by 

utilizing a novel disconnection that transits new structures (3.37, 3.38, 3.46) not 

previously indexed in CAS or Reaxys. This five step (six chemical reactions) synthesis 

was initiated by oxidative cross-coupling of inexpensive commercial phenols with high 

yield (91%). Following retro Friedel-Crafts alkylation, a protection reaction proceeded 

smoothly with excellent yield (89% for three steps). The remaining steps of radical 

bromination, Kumada coupling and demethylation were each optimized. The total yield 

over five steps was 34% and gram-scale reactions were conducted for each step.  This 

process is the subject of a patent application.107 

 

3.7. Experimental 

 

4-Allylphenol (3.4). A solution of 4-allylanisole (770 mg, 5.0 mmol) in dry 

CH2Cl2 (25 mL) was cooled to 0 ºC.  Then, BBr3 (0.6 mL, 1.2 equiv) was added slowly.  

                                            

(107) Lee, Y. E.; Kozlowski, M. C. et al. “Improved Synthesis of Honokiol” Provisional Patent. 
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After stirring 3 h at room temperature, the reaction mixture was cooled to 0 °C and 

quenched with water (20 mL).  Extraction with CH2Cl2 (15 mL x 3) afforded an organic 

layer, which was washed with brine (30 mL), dried over Na2SO4, and concentrated.  The 

residue was chromatographed (30% EtOAc/hexanes) to afford 4-allylphenol (410 mg, 

61%) as colourless oil: 
1
H NMR (500 MHz, CDCl3)  7.05 (d, J = 11.5 Hz, 2H), 6.76 (d,

J = 11.5 Hz, 2H), 5.99-5.91 (m, 1H), 5.08-5.05 (m, 1H), 5.04 (t, J = 1.5 Hz, 1H), 4.61 (s, 

1H), 3.32 (d, J = 7.0 Hz, 2H); 
13

C NMR (125 MHz, CDCl3)  153.8, 137.8, 132.3, 129.7,

115.5, 115.2, 39.3; IR (film) 3341, 3078, 2978, 2901, 2833, 1889, 1639, 1612, 1512, 

1444, 1233, 1109, 994, 915, 824 cm
-1

; HRMS (ESI) m/z = 133.0653 calcd for C9H9O

[M–H]
-
, found 133.0657.

2-Allyl-6-tert-butylphenol (3.9). 2-tert-butylphenol (4.0 g, 26.6 mmol, Acros) 

was dissolved in DMF (15 mL) and kept stirring at room temperature. To this solution 

was added potassium carbonate (4.0 g, 1.1 equiv) followed by the dropwise addition of 

allyl bromide (2.5 mL, 1.1 equiv). The reaction mixture was then stirred for 15 hours at 

room temperature. Water (20 mL) was then added and the mixture was extracted with 

diethyl ether (20 mL x 3). The combined organic extracts were washed with water (30 

mL), dried over MgSO4. The crude product was purified by flash chromatography 

(hexane/EtOAc, 20:1) to give 1-allyloxy-2-tert-butylbenzene quantitatively. The crude 

product was used with purification for the next step. 
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1-Allyloxy-2-tert-butylbenzene (500 mg, 2.63 mmol) was heated to 220 °C in 

sealed tube. It was stirred for 2 h. Purification by flash chromatography (hexane/EtOAc, 

15:1) gave 3.7 (405 mg, 81%) as colourless oil: 
1
H NMR (500 MHz, CDCl3)  7.20 (dd, J 

= 8.0 Hz, 1.5 Hz, 1H), 6.98 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 6.83 (t, J = 7.5 Hz, 1H), 6.07-

5.99 (m, 1H), 5.26-5.24 (m, 1H), 5.22 (t, J = 2.0 Hz, 1H), 5.19 (s, 1H), 3.43 (d, J = 6.5 

Hz, 2H), 1.41 (s, 9H); 
13

C NMR (125 MHz, CDCl3)  153.5, 136.8, 136.3, 128.3, 125.7, 

124.9, 120.2, 117.2, 36.2, 34.6, 29.7; IR (film) 3542, 2957, 1635, 1589, 1434, 1205, 1088, 

1000, 922, 748 cm
-1

; HRMS (ESI) m/z = 189.1279 calcd for C13H17O [M–H]
-
, found 

189.1274. 

 

3',5-Diallyl-5'-(tert-butyl)-[1,1'-biphenyl]-2,4'-diol (3.11). Following the 

general cross-coupling procedure in Chapter 2, after a reaction for 15 h at 80 °C,  the 

ortho-para product was obtained in 31% yield: 
1
H NMR (500 MHz, CDCl3)  7.25 (d, J 

= 8.0 Hz, 1H), 7.06 (d, J = 2.0 Hz, 1H), 7.04 (d, J = 2.0 Hz, 1H), 7.03 (d, J = 2.0 Hz, 1H), 

6.91 (d, J = 8.0 Hz, 1H), 6.08-5.95 (m, 2H), 5.35 (s, 1H), 5.32-5.26 (m, 2H), 5.17 (s, 1H), 

5.09 (dd, J = 17.0 Hz, 2.0 Hz, 1H), 5.05 (dd, J = 9.5 Hz, 1.0 Hz, 1H), 3.47 (d, J = 6.0 Hz, 

2H), 3.36 (d, J = 6.5 Hz, 2H), 1.43 (s, 9H); 
13

C NMR (125 MHz, CDCl3)  153.4, 150.8, 

137.9, 137.8, 135.9, 132.1, 130.2, 128.8, 128.7, 128.6, 128.2, 126.5, 125.9, 117.7, 115.5, 

115.4, 39.4, 36.3, 34.9, 29.7; IR (film) 3436, 2957, 1638, 1471, 1362, 1202, 997, 918, 

739 cm
-1

;  HRMS (ESI) m/z = 321.1855 calcd for C22H25O2 [M–H]
-
, found 321.1855. 
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2-(tert-Butyldimethylsilyl)phenol (3.14). A solution of 2-bromophenol (520 mg, 

3.0 mmol, Acros) in CH2Cl2 (6 mL) was added to imidazole (408 mg, 6.0 mmol) and 

TBSCl (543 mg, 3.6 mmol) in CH2Cl2 (3 mL) was added at 0 °C and the mixture was 

stirred for 30 min at ambient temperature. The reaction was quenched by the addition of 

water (10 mL) and the aqueous layer extracted with CH2Cl2 (10 mL x 3). The organic 

layer was separated, washed (water, 2 x 10 mL), dried (Na2SO4) and concentrated in 

vacuo to afford the crude product. Column chromatography of the residue (5% ethyl 

acetate in hexane) afforded silylether 3.13 as a pale pink oil (960 mg, quant.). Spectral 

data matched that reported in the literature.108 

n-BuLi (1.8 mL, 4.0 mmol) was added dropwise to a stirred solution of the 

silylether 3.13 (0.96 g, 3.33 mmol) in THF (7 mL) at -78 °C under argon. The mixture 

was allowed to warm up to room temperature and stirred for 2 h. Water (1 mL) was 

added and after stirring for 5 min, ether (10 mL) was added. The organic layer was 

washed with water (3 x 10 mL), dried over MgSO4 and concentrated in vacuo to afford 

the crude product as a yellow solid. Purification by flash column chromatography 

(hexane/ethyl acetate, 15:1) afforded 2-(tert-butyldimethylsilyl)phenol (3.14) as a pale 

orange solid (0.61 g, 88 %). 

(108) Manley, D. W.; McBurney, R. T.; Miller, P.; Walton, J. C. “Titania-Promoted Carboxylic Acid 

Alkylations of Alkenes and Cascade Addition−Cyclizations” J. Org. Chem. 2014, 79, 1386−1398. 
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(2-(Allyloxy)phenyl)(tert-butyl)dimethylsilane (3.15). 2-(tert-

butyldimethylsilyl)phenol (608 mg, 2.92 mmol) was dissolved in DMF (6 mL). To this 

solution was added potassium carbonate (445 mg, 3.21 mmol) followed by the dropwise 

addition of allyl bromide (0.28 mL, 3.21 mmol). The reaction mixture was then stirred for 

16 hours at room temperature. Water (10 mL) was then added and the mixture was 

extracted with diethyl ether (3 x 10 mL). The combined organic extracts were washed 

with water (20 mL), dried over MgSO4. The crude product was purified by flash 

chromatography (hexane/EtOAc, 20:1) to give clear liquid of compound (480 mg, 1.93 

mmol) in 66% yield: :
 1

H NMR (500 MHz, CDCl3)  7.38 (dd, J = 7.0 Hz, 1.5 Hz, 1H),

7.33-7.29 (m, 1H), 6.94 (t, J = 7.0 Hz, 1H), 6.81 (d,  J = 8.0 Hz, 1H), 6.11-6.03 (m, 1H), 

5.37 (d,  J = 17.5 Hz, 1H),  5.26 (d,  J = 10.5 Hz, 1H), 4.51 (d,  J = 5.5 Hz, 2H), 0.88 (s, 

9H), 0.28 (s, 6H); 
13

C NMR (125 MHz, CDCl3)  163.3, 136.6, 133.6, 130.5, 125.7,

120.2, 117.5, 110.5, 68.8, 27.1, 17.6, -4.51; IR (film) 3475, 3064, 2928, 2856, 1681, 1586, 

1470, 1437, 1388, 1254, 1092, 835, 757, 661 cm
-1

; HRMS (ESI) m/z = 247.1518 calcd

for C15H23OSi [M–H]
-
, found 247.1513.

2-Allyl-6-(tert-butyldimethylsilyl)phenol (3.16). To a solution of allyl aryl ether 

(240 mg, 0.96 mmol) in dichloromethane (5 mL) was added boron trichloride (2.7 mL, 

2.7 mmol) dropwise at -50 °C. After stirring for 30 min at -50 °C, the solution was 
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quenched with water (8 mL), extracted with dichloromethane (8 mL x 3), dried over 

MgSO4. The crude product was purified by flash chromatography (hexane/EtOAc, 20:1) 

to give 2-Allyl-6-(tert-butyldimethylsilyl)phenol (3.16) (168 mg, 0.67 mmol) as a white 

solid in 70% yield:
 1

H NMR (500 MHz, CDCl3)  7.26 (dd, J = 7.5 Hz, 2.0 Hz, 1H), 7.12

(dd, J = 7.5 Hz, 2.0 Hz, 1H), 6.88 (t, J = 7.5 Hz, 1H), 6.06-5.98 (m, 1H), 5.21 (t, J = 1.5 

Hz, 1H), 5.19-5.17 (m, 1H), 5.13 (s, 1H), 3.40 (d, J = 6.0 Hz, 2H), 0.90 (s, 9H), 0.32 (s, 

6H); 
13

C NMR (125 MHz, CDCl3)  159.5, 136.2, 135.3, 131.7, 123.9, 123.4, 120.4,

116.9, 36.0, 26.9, 17.6, -4.6; IR (film) 3541, 2953, 2855, 1635, 1596, 1422, 1260, 1207, 

831, 770 cm
-1

; HRMS (ESI) m/z = 247.1518 calcd for C15H23OSi [M–H]
-
, found

247.1518. 

3',5-Diallyl-5'-(tert-butyldimethylsilyl)-[1,1'-biphenyl]-2,4'-diol (3.17). 

Following the general cross-coupling procedure in Chapter 2,  after a reaction for 15 h at 

80 °C,  the ortho-para product was obtained in 31% yield: 
1
H NMR (500 MHz, CDCl3) 

7.31 (s, 1H), 7.19 (s, 1H), 7.06 (d, J = 8.0 Hz, 1H), 7.02 (s, 1H), 6.91 (d, J = 8.0 Hz, 1H), 

6.08-5.94 (m, 2H), 5.29 (s, 1H), 5.26 (d, J = 8.0 Hz, 1H), 5.24 (d, J = 1.4 Hz, 1H), 5.11-

5.04 (m, 2H), 5.10 (s, 1H), 3.45 (d, J = 6.0 Hz, 2H), 3.36 (d, J = 6.5 Hz, 2H), 0.92 (s, 

9H), 0.33 (s, 6H); 
13

C NMR (125 MHz, CDCl3)  159.4, 150.8, 137.8, 135.8, 135.6,

132.4, 132.2, 130.2, 128.8, 128.7, 128.0, 124.9, 124.7, 117.5, 115.6, 115.5, 39.4, 36.0, 



 166 

26.9, 17.6, -4.6; IR (film) 3390, 2927, 2855, 1659, 1593, 1496, 1461, 1255, 917, 835, 740 

cm
-1

; HRMS (ESI) m/z = 379.2093 calcd for C24H31O2Si [M–H]
-
, found 379.2102. 

 

Honokiol (5,3'-diallyl-[1,1'-biphenyl]-2,4'-diol). A cold solution of 4% 

HF:pyridine (2 mL) was slowly added to a mixture of coupling product 3.17 (38 mg, 0.1 

mmol) in pyridine (1 mL) at 0–5°C while stirring. The reaction mixture was stirred at 

ambient temperature for 1–2 hours. The reaction progress was monitored using TLC. 

After completion of the reaction, the solution was cooled and the reaction mixture was 

neutralized with saturated sodium bicarbonate solution. The organic layer was thoroughly 

washed with saturated sodium bicarbonate solution and dried over anhydrous sodium 

sulfate. Solvent was removed under reduced pressure. The respective residues were 

loaded onto a silica gel column and the column was eluted with a 20% ethyl acetate in 

hexanes to afford the desired honokiol (18 mg, 0.066 mmol) in 66% yield. 

 

To a 5 mL microwave vial was added 2,6-di-tert-butylphenol (41 mg, 0.2 mmol), 

4-tert-butylphenol (30 mg, 0.2 mmol) and Cr-Salen-Cy catalyst (13 mg, 0.02 mmol). The 
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vial was sealed with a septum and 1,2-dichloroethane (2.0 mL) was added. Oxygen was 

added via active purge. The septum was replaced with a crimping cap and the vessel was 

sealed and stirred for 18 h at 80 °C. The reaction mixture was filtered through a plug of 

silica and the resultant material was concentrated in vacuo and chromatographed using 10% 

ethyl acetate/hexane to afford a mixture of products in 29% of diphenoquinone, 31% of 

dimer and 14% of trimer. 

 

3,3',5,5'-Tetra-tert-butyl-[1,1'-bi(cyclohexylidene)]-2,2',5,5'-tetraene-4,4'-

dione (3.24). 
1
H NMR (500 MHz, CDCl3)  7.71 (s, 4H), 1.36 (s, 36H); 

13
C NMR (125 

MHz, CDCl3)  186.5, 150.4, 136.1, 126.0, 36.0, 29.6; IR (film) 2957, 1604, 1455, 1385, 

1361, 1262, 1091, 1041, 898, 743 cm
-1

; HRMS (ESI) m/z = 409.3107 calcd for C28H41O2 

[M+H]
+
, found 409.3097. 

 

3',5,5'-Tri-tert-butyl-[1,1'-biphenyl]-2,4'-diol (3.25). 
1
H NMR (500 MHz, 

CDCl3)  7.27 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 7.25 (s, 2H), 7.23 (d, J = 2.0 Hz, 1H), 6.93 

(d, J = 8.0 Hz, 1H), 5.33 (s, 1H), 5.16 (s, 1H), 1.48 (s, 18H), 1.33 (s, 9H); 
13

C NMR (125 

MHz, CDCl3)  153.6, 150.3, 143.2, 136.9, 128.3, 127.1, 125.9, 125.5, 114.8, 34.5, 34.2, 
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31.6, 30.3; IR (film) 3638, 3544, 2958, 1437, 1393, 1156, 884, 821, 740 cm
-1

; HRMS 

(ESI) m/z = 353.2481 calcd for C24H33O2 [M–H]
-
, found 353.2478. 

 

3,3'',5,5',5''-Penta-tert-butyl-[1,1':3',1''-terphenyl]-2',4,4''-triol (3.26). 
1
H 

NMR (500 MHz, CDCl3)  7.35 (s, 4H), 7.26 (s, 2H), 5.36 (s, 1H), 5.28 (s, 2H), 1.48 (s, 

36H), 1.36 (s, 9H); 
13

C NMR (125 MHz, CDCl3)  153.4, 147.2, 142.8, 136.1, 129.1, 

128.7, 126.6, 126.2, 34.5, 31.6, 30.3, 29.4; IR (film) 3530, 2959, 1654, 1438, 1395, 1362, 

1232, 1155, 879, 739 cm
-1

; HRMS (ESI) m/z = 559.4151 calcd for C38H55O3 [M+H]
+
, 

found 559.4152. 

 

2-Bromo-4-(tert-butyl)phenol (3.27). A 250 mL round-bottom flask, equipped 

with a stir bar was charged with 4-tert-butyl-phenol (15 g, 100 mmol, 1.0 equiv) and 

CH2Cl2 (100 mL, 1.0 M). The resulting solution was cooled to 0 °C in an ice bath, and 

the temperature was allowed to equilibrate for 20 min. A homogenous solution of 

bromine (15.95 g, 5.15 mL, 100 mmol, 1.0 equiv) in CH2Cl2 (10 mL) was added 

dropwise via syringe over the course of 10 min to afford an orange heterogeneous 

mixture, which was stirred for 30 min. The resulting solution was allowed warm to 23 °C 

and stirred overnight. Distilled water (100 mL) was added to quench the reaction, and the 
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resulting biphasic mixture was diluted with EtOAc (200 mL). Phases were separated, and 

the organic layer was washed with 10% aq. Na2S2O3 (3 x 100 mL), dried over MgSO4 

and concentrated in vacuo to yield a yellow liquid that was purified by silica gel column 

chromatography (EtOAc : hexanes, 1 : 9). 2-Bromo-4-tert-butylphenol (21.3 g) was 

obtained as a clear liquid in 93% isolated yield: 
1
H NMR (500 MHz, CDCl3)  7.45 (d, J

= 2.5 Hz, 1H), 7.24 (dd, J = 8.5 Hz, 2.5 Hz, 1H), 6.95 (s, J = 8.5 Hz, 1H), 5.35 (s, 1H), 

1.29 (s, 9H); 
13

C NMR (125 MHz, CDCl3)  149.9, 145.1, 128.8, 126.2, 115.5, 109.9,

34.2, 31.4; IR (film) 3512, 2962, 1604, 1499, 1405, 1364, 1269, 1183, 1040, 821, 703 

cm
-1

; HRMS (ESI) m/z = 227.0072 calcd for C10H12OBr [M–H]
-
, found 227.0071.

3-Bromo-3',5,5'-tri-tert-butyl-[1,1'-biphenyl]-2,4'-diol (3.28). A typical 

procedure for the cross-coupling of phenols with Cr-Salen-Cy catalyst and TBHP as an 

oxidant was as follow. To a 100 mL flask equipped with a reflux condenser was added 

2,6-di-tert-butylphenol (206mg, 1.0 mmol), 2-bromo-4-tert-butylphenol (229 mg, 1.0 

mmol), Cr-Salen-Cy (6.3 mg, 1 mol%), TBHP (0.36 mL, 5.5 M in decane) and 

chlorobenzene (20 mL, 0.05 M). The reaction mixture was refluxed under air for 1 h. 

After cooling to room temperature, the reaction mixture was filtered through Celite, and 

the filtrate was concentrated under vacuum to afford an oily substance. The crude product 

was purified by flash chromatography (hexane/EtOAc, 30:1) to give clear liquid of 

compound (225 mg, 0.52 mmol) in 52% yield: 
1
H NMR (500 MHz, CDCl3)  7.44 (d, J =
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2.5 Hz, 1H), 7.30 (s, 2H), 7.22 (d, J = 2.0 Hz, 1H), 5.55 (s, 1H), 5.33 (s, 1H), 1.32 (s, 

9H), 1.28 (s, 19H); IR (film) 3636, 3512, 2960, 1653, 1481, 1363, 1235, 1155, 1076, 878, 

739 cm
-1

; HRMS (ESI) m/z = 455.1562 calcd for C24H33O2BrNa [M+Na]
+
, found 

455.1563. 

 

3-Bromo-[1,1'-biphenyl]-2,4'-diol (3.31). A mixture of the 3-bromo-3',5,5'-tri-

tert-butyl-[1,1'-biphenyl]-2,4'-diol (380 mg, 0.88 mmol) and methansulfonic acid (0.23 

mL, 3.5 mmol) in toluene (4.5 mL, 0.2 M) was heated at 110 °C for 15 h. The reaction 

mixture allowed to cool to room temperature, and poured into water (10 mL). The 

mixture was made slightly alkaline with sodium carbonate and extracted with 

dichloromethane (3 × 10 mL). The extract was dried with sodium sulfate and evaporated 

in vacuo to leave crude product that was purified by silica gel column chromatography 

(EtOAc : hexanes, 1 : 4). 3-Bromo-[1,1'-biphenyl]-2,4'-diol (196 mg, 0.65 mml) was 

obtained as pale yellow liquid in 74% isolated yield:  
1
H NMR (500 MHz, CDCl3)  7.44 

(dd, J = 8.0 Hz, 1.5 Hz, 1H), 7.42 (d, J = 8.5 Hz, 2H), 7.21 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 

6.91 (d, J = 8.5 Hz, 2H), 6.86 (t, J = 7.5 Hz, 1H), 5.66 (s, 1H), 4.92 (s, 1H). 
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2,4'-Bis(allyloxy)-3-bromo-1,1'-biphenyl (3.33). 3-Bromo-[1,1'-biphenyl]-2,4'-

diol (110 mg, 0.42 mmol) was dissolved in DMF (1 mL). To this solution was added 

potassium carbonate (138 mg, 1.00 mmol) followed by the dropwise addition of allyl 

bromide (86 L, 1.00 mmol). The reaction mixture was then stirred for 16 hours at room 

temperature. Water (5 mL) was then added and the mixture was extracted with diethyl 

ether (3 x 10 mL). The combined organic extracts were washed with water (10 mL), dried 

over MgSO4. The crude product was purified by flash chromatography (hexane/EtOAc, 

20:1) to give clear liquid of compound (140 mg, 0.41 mmol) in 98% yield:
 1

H NMR (500 

MHz, CDCl3)  7.52-7.49 (m, 1H), 7.50 (d, J = 8.5 Hz, 2H), 7.27 (d, J = 8.0 Hz, 1H), 

7.02 (t, J = 8.0 Hz, 1H), 6.97 (d, J = 8.5 Hz, 2H), 6.12-6.06 (m, 1H), 5.86-5.80 (m, 1H), 

5.45 (d, J = 17.0 Hz, 1H), 5.31 (d, J = 10.5 Hz, 1H), 5.15 (d, J = 17.0 Hz, 1H), 5.09 (d, J 

= 11.5 Hz, 1H), 4.59 (d, J = 4.0 Hz, 2H), 4.06 (d, J = 7.0 Hz, 2H). 

 

A solution of bis-O-allylbiphenyl ether 3.33 (75 mg, 0.22 mmol), in N,N-

diethylaniline (0.5 mL) was stirred at 190 °C for 12 h in a sealed tube. After completion, 

the solvent was evaporated under reduced pressure and the residue was diluted with water 
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(5 mL) and extracted with EtOAc (3 x 10 mL). The combined organic layers were 

washed with brine solution, dried over anhydrous Na2SO4, and concentrated under 

reduced pressure to give the crude residue, which was purified by silica gel column 

chromatography (EtOAc/hexanes, 1:8) to afford the honokiol  (22 mg, 0.083 mmol) in 38% 

yield and isohonokiol (30 mg, 0.11 mmol) in 50% yield. Spectral data from the two 

products are in agreement with those reported.
87

3,3'-Diallyl-[1,1'-biphenyl]-2,4'-diol (3.35, isohonokiol) 
1
H NMR (500 MHz, 

CDCl3)  7.24-7.22 (m, 2H), 7.12-7.08 (m, 2H), 6.93-6.90 (m, 2H), 6.10-6.00 (m, 2H), 

5.32 (s, 1H), 5.22 (dd, J = 13.5 Hz, 1.5 Hz, 1H), 5.19 (dd, J = 6.5 Hz, 1.5 Hz, 1H), 5.15 

(dd, J = 17.0 Hz, 1.5 Hz, 1H), 5.11 (dd, J = 10.0 Hz, 1.0 Hz, 1H), 5.06 (s, 1H), 3.46 (d, J 

= 6.5 Hz, 4H); 
13

C NMR (125 MHz, CDCl3)  153.9, 150.5, 136.7, 135.9, 131.3, 129.7,

129.4, 128.7, 128.3, 127.8, 126.3, 120.4, 117.0, 116.6, 115.8, 35.2, 34.8; IR (film) 3526, 

2975, 1638, 1607, 1506, 1455, 1223, 1113, 997, 915, 748 cm
-1

; HRMS (ESI) m/z =

265.1229 calcd for C18H17O2 [M–H]
-
, found 265.1230.
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5,3'-Dimethyl-[1,1'-biphenyl]-2,4'-diol (3.37). To a 100 mL flask equipped with 

a reflux condenser was added 2-tert-butyl-6-methylphenol (657 mg, 4.0 mmol), 2-tert-

butyl-4-methylphenol (788 mg, 4.8 mmol), Cr-Salen-Cy catalyst109 (63 mg, 0.1 mmol) 

and distilled toluene (20 mL, 0.2 M). The reaction mixture was purged with oxygen and 

heated to 90 °C under an oxygen atmosphere for 20 h. The mixture was cooled to 0 
o
C for

the next step. 

To the resultant solution was added aluminum chloride (1.1 g, 8.8 mmol, Sigma 

Aldrich) slowly  over 5 minutes at 0 °C, and the mixture was allowed to warm over 30 

minutes to ambient temperature. After being stirred at room temperature for 2 h, the 

reaction mixture was quenched by addition of 30 mL of 1 N HCl solution at 0 °C. The 

mixture was thoroughly extracted with CH2Cl2 (20 mL × 2). The combined organic layers 

were concentrated by rotary evaporation. The resultant residue was purified by 

chromatography (silica) using 10% ethyl acetate/hexane as the eluent to afford 5,3'-

dimethyl-[1,1'-biphenyl]-2,4'-diol (728 mg, 3.4 mmol, 85% yield) as a white crystalline 

solid: 
1
H NMR (500 MHz, CDCl3)  7.21 (d, J = 2.0 Hz, 1H), 7.16 (dd, J = 8.5, 2.0 Hz,

(109) Martinez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E. N. J. Am. Chem. Soc. 1995, 117, 

5897-5898.  
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1H), 7.03 (dd, J = 8.5 Hz, 2.0 Hz, 1H), 7.01 (d, J = 2.0 Hz, 1H), 6.87 (d, J = 8.0 Hz, 2H), 

5.07(s, 1H), 4.91 (s, 1H), 2.30 (s, 6H); 
13

C NMR (125 MHz, CDCl3)  153.6, 150.2, 

131.7, 130.6, 129.8, 129.5, 129.2, 127.8, 127.6, 124.8, 115.6, 115.4, 20.5, 15.8; IR (film) 

3402, 3026, 2922, 1611, 1496, 1456, 1384, 1118, 818 cm
-1

; HRMS (ESI) m/z = 213.0916 

calcd for C14H13O2 [M–H]
-
, found 213.0924. 

 

3,3'-Di-tert-butyl-5,5'-dimethyl-[1,1'-biphenyl]-2,4'-diol (3.38). A typical 

procedure for the cross-coupling of phenols with Mn(acac)3 was as follow. To a 100 mL 

flask equipped with a reflux condenser was added 2-tert-butyl-6-methylphenol (490 mg, 

3.0 mmol), 2-tert-butyl-4-methylphenol (590 mg, 3.6 mmol), Mn(acac)3 (100 mg, 0.3 

mmol) and distilled toluene (15 mL, 0.2 M). The reaction mixture was purged with 

oxygen and heated to 90 °C under an oxygen atmosphere for 20 h. The solvent was 

removed in vacuo, and the residue was purified by column chromatography using 5% 

ethyl acetate in hexane eluent to give 3,3'-Di-tert-butyl-5,5'-Dimethyl-[1,1'-biphenyl]-

2,4'-diol (725 mg, 2.2 mmol, 74% yield)  as a yellow solid :
 1
H NMR (500 MHz, CDCl3) 

 7.19 (d, J = 2.0 Hz, 1H), 7.07 (s, 2H), 6.88 (d, J = 2.0 Hz, 1H), 5.40 (s, 1H), 4.88 (s, 

1H), 2.30 (s, 6H), 1.44 (s, 9H), 1.44 (s, 9H) ; 
13

C NMR (125 MHz, CDCl3)  152.5, 

148.9, 136.8, 135.6, 129.4, 128.9, 128.6, 128.4, 128.3, 126.8, 126.4, 124.0, 34.8, 34.7, 

29.7, 29.7, 20.8, 16.0; IR (film) 3532, 2956, 1636, 1483, 1443, 1315, 1199, 1179, 864, 



 175 

779, 740 cm
-1

; HRMS (ESI) m/z = 349.2144 calcd for C22H30O2Br [M+Na]
+
, found 

349.2129. 

 

2,4'-Dimethoxy-5,3'-dimethylbiphenyl (3.41). To a stirred solution of 2,2'-

dihydroxybiphenyl (728 mg, 3.4 mmol) in acetone (17 mL, 0.2 M) was added anhydrous 

K2CO3 (1.4 g, 10.2 mmol, 3.0 equiv). After stirring at ambient temperature for 10 min, 

dimethylsulfate (0.81 mL, 8.5 mmol, 2.5 equiv) was added and the reaction mixture 

stirred for 5 hours at ambient temperature. The reaction was quenched with deionized 

water (50 mL) and the acetone was removed by rotary evaporation. EtOAc (20 mL) was 

added and the organic layer separated. The aqueous layer was extracted with EtOAc (2 × 

20 mL). The combined organic layers were washed with water and brine, dried (Na2SO4), 

and concentrated by rotary evaporation. The residue was purified by column 

chromatography (silica) using hexane/EtOAc (20:1) as the eluent to afford 2,4'-

dimethoxy-5,3'-dimethylbiphenyl (758 mg, 3.13 mmol, 92%) as white solid: 
1
H NMR 

(500 MHz, CDCl3)  7.37 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 7.29 (d, J = 2.0 Hz, 1H), 7.10 (d, 

J = 2.0 Hz, 1H), 7.07 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 6.87 (d, J = 1.5 Hz, 1H), 6.86 (d, J = 

1.5 Hz, 1H), 3.89 (s, 3H), 3.81 (s, 3H), 2.36 (s, 3H), 2.30 (s, 3H) ; 
13

C NMR (125 MHz, 

CDCl3)  157.0, 154.6, 132.0, 131.6, 130.8, 130.5, 130.1, 128.4, 128.0, 126.2, 111.4, 

109.7, 55.9, 55.5, 20.7, 16.5; IR (film) 3437, 2949, 2834, 1609, 1495, 1463, 1242, 1135, 
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1033, 810, 741 cm
-1

; HRMS (ESI) m/z = 243.1385 calcd for C16H19O2 [M+H]
+
, found 

243.1384. 

 

 

5,3'-Bis(bromomethyl)-2,4'-dimethoxybiphenyl (3.42). 2,4'-Dimethoxy-5,3'-

dimethylbiphenyl (758 mg, 3.13 mmol), azobis-isobutyronitrile (26 mg, 0.16 mmol) and 

N-bromosuccinimide (1.11 g, 6.26 mmol, recrystallized from water) were dissolved in 

carbon tetrachloride (15 mL, 0.2 M). The reaction mixture was heated to 85 °C and 

stirred for 2 h under an argon atmosphere. The solution was filtered through Celite and 

the solvent was removed by rotary evaporation. The residue was purified by column 

chromatography (silica) using 5% ethyl acetate/hexane as the eluent to afford 5,3'-

bis(bromomethyl)-2,4'-dimethoxybiphenyl (720 mg, 1.8 mmol, 57% yield) as a yellow 

solid: 
1
H NMR (500 MHz, CDCl3)  7.50 (d, J = 2.3 Hz, 1H), 7.47 (dd, J = 8.5 Hz, 2.3 

Hz, 1H), 7.34-7.32 (m, 2H), 6.94 (d, J = 8.5 Hz, 1H), 6.92 (d, J = 8.5 Hz, 1H), 4.62 (s, 

2H), 4.54 (s, 2H), 3.94 (s, 3H), 3.82 (s, 3H) ; 
13

C NMR (125 MHz, CDCl3)  156.7, 

156.5, 132.0, 131.5, 131.2, 130.2, 130.1, 130.0, 129.2, 125.6, 111.3, 110.6, 55.7, 33.9, 

29.1; IR (film) 3437, 2959, 1608, 1495, 1462, 1251, 1216, 1147, 1027, 818, 738 cm
-1

. 
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5,3'-Diallyl-2,4'-dimethoxybiphenyl (3.46). To a solution of CuI (286 mg, 1.5 

mmol,) and 5,3'-bis(bromomethyl)-2,4'-dimethoxybiphenyl (1.2 g, 3.0 mmol) in dry THF 

(15 mL) at –78 °C, a solution of vinylmagnesium bromide (12 mL, 1.0 M in THF) was 

slowly added with a rate of 3 mL/min using syringe pump under an argon atmosphere. 

The resulting mixture was allowed to warm to ambient and was stirred for 8 hours. The 

reaction was then quenched by addition of 15 mL of saturated NH4Cl solution.  The 

mixture was extracted with diethyl ether (15 mL × 2). The combined organic layers were 

dried with anhydrous Na2SO4 and filtered. After removal of the solvent by rotary 

evaporation, the residue was purified by column chromatography (silcia) using 5% ethyl 

acetate/hexane as the eluent to give 5,3'-diallyl-2,4'-dimethoxybiphenyl (665 mg, 2.25 

mmol, 75% yield) as a clear oil:
 1

H NMR (500 MHz, CDCl3)  7.39 (dd, J = 8.4 Hz, 2.2

Hz, 1H), 7.33 (d, J = 2.3 Hz, 1H), 7.14 (d, J = 2.2 Hz, 1H), 7.09 (dd, J = 8.4 Hz, 2.0 Hz, 

1H), 6.91 (d, J = 8.4 Hz, 2H), 6.01-5.96 (m, 2H), 5.03-5.11 (m, 4H), 3.86 (s, 3H), 3.78 (s, 

3H), 3.43 (d, J = 6.5 Hz, 2H), 3.37 (d, J = 6.5 Hz, 2H) ; 
13

C NMR (125 MHz, CDCl3) 

156.4, 154.9, 137.8, 137.0, 132.2, 131.0, 130.9, 130.7, 130.5, 128.3, 128.1, 127.9, 115.5, 

115.3, 111.3, 109.9, 55.7, 55.4, 39.4, 34.3; IR (film) 3435, 2938, 2836, 1638, 1606, 1493, 

1463, 1245, 1134, 1029, 914, 815 cm
-1

; HRMS (ESI) m/z = 295.1698 calcd for C20H23O2

[M+H]
+
, found 295.1705.
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Honokiol (5,3'-diallyl-[1,1'-biphenyl]-2,4'-diol). To a solution of 5,3'-diallyl-2,4'-

dimethoxybiphenyl (400 mg, 1.36 mmol) in distilled 1,2-dichloroethane (7 mL) was 

slowly added BBr3·DMS complex (1.0 g, 3.26 mmol). The reaction flask was sealed and 

heated to 65 °C for 15 h. The reaction was quenched with saturated NaHCO3 solution (15 

mL) and extracted with dichloromethane (15 mL  3). The combined organic layers were 

washed with brine (15 mL), dried over Na2SO4, and filtered. The solvent was 

concentrated by rotary evaporation and the residue was purified by column 

chromatography (silica) with 20% ethyl acetate/hexane as eluent to give honokiol (345 

mg, 1.29 mmol, 95% yield) as a white solid;
 1

H NMR (500 MHz, CDCl3)  7.23 (dd, J =

8.0 Hz, 2.0 Hz, 1H), 7.21 (d, J = 2.1 Hz, 1H), 7.05 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 7.02 (d, J 

= 2.1 Hz, 1H), 6.93 (d, J = 8.2 Hz, 1H), 6.90 (d, J = 8.2 Hz, 1H), 5.93–6.08 (m, 2H), 

5.17–5.24 (m, 3H), 5.03–5.11 (m, 3H) 3.46 (d, J = 6.5 Hz, 2H), 3.35 (d, J = 6.7 Hz, 2H) ; 

13
C NMR (125 MHz, CDCl3)  153.9, 150.7, 137.8, 136.0, 132.2, 131.1, 130.2, 129.6, 

128.8, 128.6, 127.7, 126.4, 116.9, 116.6, 115.6, 115.5, 39.4, 35.1; HRMS (ESI) m/z = 

265.1229  calcd for C18H17O2 [M–H]
-
, found 265.1223. The above spectral data are in

agreement with those reported for the natural product honokiol.
87



APPENDIX A:  SPECTROSCOPIC DATA 

A.1 Chapter 1 

Figure A1.1 
1
H NMR spectrum of compound 1.2 (500 MHz, CDCl3)

2  
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Figure A1.2 
13

C NMR spectrum of compound 1.2 (125 MHz, CDCl3)
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Figure A1.3 
1
H NMR spectrum of compound 1.17 (500 MHz, CDCl3)
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Figure A1.4 
13

C NMR spectrum of compound 1.17 (125 MHz, CDCl3)
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Figure A1.5 
1
H NMR spectrum of compound 1.18 (500 MHz, CDCl3)
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Figure A1.6 
13

C NMR spectrum of compound 1.18 (125 MHz, CDCl3)
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Figure A1.7 
1
H NMR spectrum of compound 1.20 (500 MHz, CDCl3)
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Figure A1.8 
13

C NMR spectrum of compound 1.20 (125 MHz, CDCl3)
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Figure A1.9 
1
H NMR spectrum of compound 1.21 (500 MHz, CDCl3)
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Figure A1.10 
13

C NMR spectrum of compound 1.21 (125 MHz, CDCl3)
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Figure A1.11 
1
H NMR spectrum of compound 1.22 (500 MHz, CDCl3)



 190 

Figure A1.12 
13

C NMR spectrum of compound 1.22 (125 MHz, CDCl3)



 191 

Figure A1.13 
1
H NMR spectrum of compound 1.23 (500 MHz, CDCl3
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Figure A1.14 
13

C NMR spectrum of compound 1.23 (125 MHz, CDCl3)
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Figure A1.15 
1
H NMR spectrum of compound 1.27 (500 MHz, CDCl3) 
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Figure A1.16 
13

C NMR spectrum of compound 1.27 (125 MHz, CDCl3) 

 



 195 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.17 
1
H NMR spectrum of compound 1.28 (500 MHz, CDCl3) 
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Figure A1.18 
13

C NMR spectrum of compound 1.28 (125 MHz, CDCl3) 
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Figure A1.19 
1
H NMR spectrum of compound 1.29 (500 MHz, CDCl3) 
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Figure A1.20 
13

C NMR spectrum of compound 1.29 (125 MHz, CDCl3) 
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Figure A1.21 
1
H NMR spectrum of compound 1.34 (500 MHz, Acetone-d6) 
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Figure A1.22 
13

C NMR spectrum of compound 1.34 (125 MHz, Acetone-d6) 
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Figure A1.23 
1
H NMR spectrum of compound 1.36 (500 MHz, Acetone-d6) 
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Figure A1.24 
13

C NMR spectrum of compound 1.36 (125 MHz, Acetone-d6) 
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Figure A1.25 
1
H NMR spectrum of compound 1.38 (500 MHz, CDCl3) 
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Figure A1.26 
13

C NMR spectrum of compound 1.38 (125 MHz, CDCl3) 
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Figure A1.27 
1
H NMR spectrum of compound 1.39 (500 MHz, CDCl3) 
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Figure A1.28 
13

C NMR spectrum of compound 1.39 (125 MHz, CDCl3) 
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Figure A2.1 
1
H NMR spectrum of compound 2.8 (500 MHz, CDCl3) 
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Figure A2.2 
13

C NMR spectrum of compound 2.8 (125 MHz, CDCl3) 
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Figure A2.3 IR Spectrum of compound 2.8 
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Figure A2.4 
1
H NMR spectrum of compound 2.11 (500 MHz, CDCl3) 
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Figure A2.5 
13

C NMR spectrum of compound 2.11 (125 MHz, CDCl3) 
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Figure A2.6 IR Spectrum of compound 2.11 
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Figure A2.7 
1
H NMR spectrum of compound 2.21 (500 MHz, CDCl3) 
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Figure A2.8 
13

C NMR spectrum of compound 2.21 (125 MHz, CDCl3) 
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Figure A2.9 IR Spectrum of compound 2.21 
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Figure A2.10 
1
H NMR spectrum of compound 2.14Pdt (500 MHz, CDCl3) 
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Figure A2.11 
13

C NMR spectrum of compound 2.14Pdt (125 MHz, CDCl3) 
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Figure A2.12 IR Spectrum of compound 2.14Pdt 
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Figure A2.13 
1
H NMR spectrum of compound 2.15Pdt (500 MHz, CDCl3) 
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Figure A2.14 
13

C NMR spectrum of compound 2.15Pdt (125 MHz, CDCl3) 
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Figure A2.15 IR Spectrum of compound 2.15Pdt 
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Figure A2.16 
1
H NMR spectrum of compound 2.16Pdt (500 MHz, CDCl3) 
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Figure A2.17 
13

C NMR spectrum of compound 2.16Pdt (125 MHz, CDCl3) 



 224 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2.18 IR Spectrum of compound 2.16Pdt 
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Figure A2.19 
1
H NMR spectrum of compound 2.17Pdt (500 MHz, CDCl3) 
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Figure A2.20 
13

C NMR spectrum of compound 2.17Pdt (125 MHz, CDCl3) 
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Figure A2.21 IR Spectrum of compound 2.17Pdt 
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Figure A2.22 
1
H NMR spectrum of compound 2.24 (500 MHz, CDCl3) 
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Figure A2.23 
13

C NMR spectrum of compound 2.24 (125 MHz, CDCl3) 
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Figure A2.24 IR Spectrum of compound 2.24 
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Figure A2.25 
1
H NMR spectrum of compound 2.25 (500 MHz, CDCl3) 
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Figure A2.26 
13

C NMR spectrum of compound 2.25 (125 MHz, CDCl3) 
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Figure A2.27 IR Spectrum of compound 2.25 
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Figure A2.28 
1
H NMR spectrum of compound 2.26 (500 MHz, CDCl3) 
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Figure A2.29 
13

C NMR spectrum of compound 2.26 (125 MHz, CDCl3) 
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Figure A2.30 IR Spectrum of compound 2.26 
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Figure A2.31 
1
H NMR spectrum of compound 2.27 (500 MHz, CDCl3) 
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Figure A2.32 
13

C NMR spectrum of compound 2.27 (125 MHz, CDCl3) 
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Figure A2.33 
1
H NMR spectrum of compound 2.28 (500 MHz, CDCl3)  
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Figure A2.34 
13

C NMR spectrum of compound 2.28 (125 MHz, CDCl3) 
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Figure A2.35 
1
H NMR spectrum of compound 2.31 (500 MHz, CDCl3) 
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Figure A2.36 
13

C NMR spectrum of compound 2.31 (125 MHz, CDCl3) 
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Figure A2.37 IR Spectrum of compound 2.31 
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Figure A2.38 
1
H NMR spectrum of compound 2.32 (500 MHz, CDCl3) 
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Figure A2.39 
13

C NMR spectrum of compound 2.32 (125 MHz, CDCl3) 
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Figure A2.40 
1
H NMR spectrum of compound 2.33 (500 MHz, CDCl3) 
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Figure A2.41 
13

C NMR spectrum of compound 2.33 (125 MHz, CDCl3) 
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Figure A2.42 IR Spectrum of compound 2.33 
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Figure A2.43 
1
H NMR spectrum of compound 2.34 (500 MHz, CDCl3) 
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Figure A2.44 
13

C NMR spectrum of compound 2.34 (125 MHz, CDCl3) 
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Figure A2.45 IR Spectrum of compound 2.34 
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Figure A2.46 
1
H NMR spectrum of compound 2.35 (500 MHz, CDCl3) 
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Figure A2.47 
13

C NMR spectrum of compound 2.35 (125 MHz, CDCl3) 
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Figure A2.48 IR Spectrum of compound 2.35 
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Figure A2.49 
1
H NMR spectrum of compound 2.39 (500 MHz, CDCl3) 
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Figure A2.50 
13

C NMR spectrum of compound 2.39 (125 MHz, CDCl3) 
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Figure A2.51 
1
H NMR spectrum of compound 2.41dimer (500 MHz, CDCl3)  
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Figure A2.52 
13

C NMR spectrum of compound 2.41dimer (125 MHz, CDCl3) 
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Figure A2.53 
1
H NMR spectrum of compound 2.41trimer (500 MHz, CDCl3) 
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Figure A2.54 
13

C NMR spectrum of compound 2.41trimer (125 MHz, CDCl3) 
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Figure A2.55 
1
H NMR spectrum of compound 2.42dimer (500 MHz, CDCl3) 
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Figure A2.56 
13

C NMR spectrum of compound 2.42dimer (125 MHz, CDCl3) 
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Figure A2.57 
1
H NMR spectrum of compound 2.43dimer (500 MHz, CDCl3) 
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Figure A2.57 
13

C NMR spectrum of compound 2.43dimer (125 MHz, CDCl3) 
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Figure A2.58 
1
H NMR spectrum of compound 2.43trimer (500 MHz, CDCl3) 
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Figure A2.59 
13

C NMR spectrum of compound 2.43trimer (125 MHz, CDCl3) 
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Figure A2.60 
1
H NMR spectrum of compound 2.44dimer (500 MHz, CDCl3) 
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Figure A2.61 
13

C NMR spectrum of compound 2.44dimer (125 MHz, CDCl3) 
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Figure A2.62 
1
H NMR spectrum of compound 2.44trimer (500 MHz, CDCl3) 
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Figure A2.63 
13

C NMR spectrum of compound 2.44trimer (125 MHz, CDCl3) 
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Figure A2.64 
1
H NMR spectrum of compound 2.45 (500 MHz, CDCl3) 
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Figure A2.65 
13

C NMR spectrum of compound 2.45 (125 MHz, CDCl3) 
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Figure A2.66 IR Spectrum of compound 2.45 
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Figure A2.67 
1
H NMR spectrum of compound 2.46 (500 MHz, CDCl3) 
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Figure A2.68 
13

C NMR spectrum of compound 2.46 (125 MHz, CDCl3) 
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Figure A2.69 IR Spectrum of compound 2.46 
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Figure A2.70 
1
H NMR spectrum of compound 2.47 (500 MHz, CDCl3) 
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Figure A2.71 
13

C NMR spectrum of compound 2.47 (125 MHz, CDCl3) 
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Figure A2.72 
13

C NMR spectrum of compound 2.48 (125 MHz, CDCl3) 
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Figure A2.73 
13

C NMR spectrum of compound 2.48 (125 MHz, CDCl3) 
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Figure A2.74 
1
H NMR spectrum of compound 2.49 (500 MHz, CDCl3) 
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Figure A2.75 
13

C NMR spectrum of compound 2.49 (125 MHz, CDCl3) 
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Figure A2.76 
1
H NMR spectrum of compound 2.50 (500 MHz, CDCl3) 
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Figure A2.77 
13

C NMR spectrum of compound 2.50 (125 MHz, CDCl3) 
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Figure A2.78 
1
H NMR spectrum of compound 2.51 (500 MHz, CDCl3) 
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Figure A2.79 
13

C NMR spectrum of compound 2.51 (125 MHz, CDCl3) 
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Figure A2.80 
1
H NMR spectrum of compound 2.52 (500 MHz, CDCl3) 
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Figure A2.81 
13

C NMR spectrum of compound 2.52 (125 MHz, CDCl3) 
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Figure A2.82 
1
H NMR spectrum of compound 2.53 (500 MHz, CDCl3) 
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Figure A2.83 
13

C NMR spectrum of compound 2.53 (125 MHz, CDCl3) 
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Figure A2.84 
1
H NMR spectrum of compound 2.54 (500 MHz, CDCl3) 
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Figure A2.85 
13

C NMR spectrum of compound 2.54 (125 MHz, CDCl3) 
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Figure A2.86 
1
H NMR spectrum of compound 3-(tert-butyl)-2-hydroxy-5-methoxyaldehyde (500 MHz, CDCl3) 
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A.3 Chapter 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3.1 
1
H NMR spectrum of compound 3.1 (500 MHz, CDCl3) 
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Figure A3.2 
13

C NMR spectrum of compound 3.1 (125 MHz, CDCl3) 
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Figure A3.3 
1
H NMR spectrum of compound 3.4 (500 MHz, CDCl3) 
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Figure A3.4 
13

C NMR spectrum of compound 3.4 (125 MHz, CDCl3) 
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Figure A3.5 
1
H NMR spectrum of compound 3.9 (500 MHz, CDCl3) 
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Figure A3.6 
13

C NMR spectrum of compound 3.9 (125 MHz, CDCl3) 
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Figure A3.7 
1
H NMR spectrum of compound 3.11 (500 MHz, CDCl3) 
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Figure A3.8 
13

C NMR spectrum of compound 3.11 (125 MHz, CDCl3) 
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Figure A3.9 
1
H NMR spectrum of compound 3.16 (500 MHz, CDCl3) 
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Figure A3.10 
13

C NMR spectrum of compound 3.16 (125 MHz, CDCl3) 
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Figure A3.11 
1
H NMR spectrum of compound 3.17 (500 MHz, CDCl3) 
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Figure A3.12 
13

C NMR spectrum of compound 3.17 (125 MHz, CDCl3) 
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Figure A3.13 
1
H NMR spectrum of compound 3.24 (500 MHz, CDCl3) 



 307 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3.14 
13

C NMR spectrum of compound 3.24 (125 MHz, CDCl3) 
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Figure A3.15 
1
H NMR spectrum of compound 3.27 (500 MHz, CDCl3) 
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Figure A3.16 
13

C NMR spectrum of compound 3.27 (125 MHz, CDCl3) 
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Figure A3.17 
1
H NMR spectrum of compound 3.31 (500 MHz, CDCl3) 
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Figure A3.18 
1
H NMR spectrum of compound 3.33 (500 MHz, CDCl3)  
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Figure A3.19 
13

C NMR spectrum of compound 3.33 (125 MHz, CDCl3) 
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Figure A3.20 
1
H NMR spectrum of compound 3.35 (500 MHz, CDCl3) 
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Figure A3.21 
13

C NMR spectrum of compound 3.35 (125 MHz, CDCl3) 
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Figure A3.22 
1
H NMR spectrum of compound 3.38 (500 MHz, CDCl3) 
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Figure A3.23 
13

C NMR spectrum of compound 3.38 (125 MHz, CDCl3) 
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Figure A3.24 
1
H NMR spectrum of compound 3.37 (500 MHz, CDCl3) 
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Figure A3.25 
13

C NMR spectrum of compound 3.37 (125 MHz, CDCl3) 
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Figure A3.26 
1
H NMR spectrum of compound 3.41 (500 MHz, CDCl3) 
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Figure A3.27 
13

C NMR spectrum of compound 3.41 (125 MHz, CDCl3) 
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Figure A3.28 
1
H NMR spectrum of compound 3.42 (500 MHz, CDCl3) 
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Figure A3.29 
13

C NMR spectrum of compound 3.42 (125 MHz, CDCl3) 
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Figure A3.30 
1
H NMR spectrum of compound 3.46 (500 MHz, CDCl3) 
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Figure A3.31 
13

C NMR spectrum of compound 3.46 (125 MHz, CDCl3) 



 

 

APPENDIX B:  X-RAY CRYSTALLOGRAPHIC DATA
110

 

 

B.1 X-Ray Structure Determination of Compound (S)-1.2 

 

 

Compound (S)-1.2, C64H79O7Cl2, crystallizes in the orthorhombic space group 

C2221(systematic absences hkl:  h+k=odd) with a=18.667(2)Å, b=29.316(3)Å, 

c=21.428(3)Å, V=11726(2)Å3, Z=8, and dcalc=1.168 g/cm3 . X-ray intensity data were 

collected on a Bruker APEXII CCD area detector employing graphite-monochromated 

Mo-K radiation (=0.71073 Å) at a temperature of 143(1)K. Preliminary indexing was 

performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. 

A total of 2870 frames were collected with a crystal to detector distance of 37.605 mm, 

rotation widths of 0.5° and exposures of 30 seconds:  

scan type     frames 

                                            

(110 ) Dr. Patrick J. Carroll is gratefully acknowledged for solving the crystal structures of several 

compounds.  

OH

OHMe

Me

Me

Me

Me

Me

3 1/2 + CH2Cl2
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 -13.00 344.60 342.59 -39.24 739 

 -5.50 321.57 133.99 70.63 71 

 -23.00 315.83 87.00 28.88 589 

 -20.50 342.55 321.55 -73.06 739 

 -15.50 258.48 10.68 19.46 732 

 Rotation frames were integrated using SAINT 111 , producing a listing of 

unaveraged F2 and (F2) values which were then passed to the SHELXTL112 program 

package for further processing and structure solution. A total of 154940 reflections were 

measured over the ranges 1.39  25.43°, -22  h  22, -35  k  35, -25  l  25 

yielding 10813 unique reflections (Rint = 0.0484). The intensity data were corrected for 

Lorentz and polarization effects and for absorption using SADABS113 (minimum and 

maximum transmission 0.7143, 0.7452). 

The structure was solved by direct methods (SHELXS-97114). The asymmetric 

unit consists of 3½ molecules of the title compound (one molecule lies on a 

crystallographic 2-fold axis at 1, y, ¾) plus a molecule of disordered dichloromethane.  

Refinement was by full-matrix least squares based on F2 using SHELXL-97.
114 All 

reflections were used during refinement. The weighting scheme used was w=1/[2(Fo
2 )+ 

(0.1094P)2 + 8.8856P] where P = (Fo
 2 + 2Fc

2)/3. Non-hydrogen atoms were refined 

anisotropically and hydrogen atoms were refined using a riding model.  Refinement 

                                            

(111) Bruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. 

(112) Bruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. 

(113) Sheldrick, G.M. (2007) SADABS. University of Gottingen, Germany. 

(114) Sheldrick, G.M. (2008) Acta Cryst. A64,112-122. 
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converged to R1=0.0568 and wR2=0.1637 for 9109 observed reflections for which F > 

4 (F) and R1=0.0698 and wR2=0.1751 and GOF =1.043 for all 10813 unique, non-zero 

reflections and 712 variables. 115 The maximum  in the final cycle of least squares was 

0.008 and the two most prominent peaks in the final difference Fourier were +0.756 and -

0.306 e/Å3. 

Table B.1 lists cell information, data collection parameters, and refinement data. 

Final positional and equivalent isotropic thermal parameters are given in Tables B.2 and 

B.3.  Anisotropic thermal parameters are in Table B.4.  Tables B.5 and B.6 list bond 

distances and bond angles.  Figures B.1 and B.2 are ORTEP116 representations of the four 

molecules in the asymmetric unit with 30% probability thermal ellipsoids displayed. 

 

                                            

(115) R1 = ||Fo| - |Fc|| /  |Fo|; wR2 = [w(Fo
2
 - Fc

2
)
2
/w(Fo

2
)
2
]
½
;  GOF = [w(Fo

2
 - Fc

2
)
2
/(n - 

p)]
½
  where n = the number of reflections and p = the number of parameters refined. 

(116) “ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations”. C.K. 

Johnson (1976) ORNL-5138. 
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Figure B.1. ORTEP drawing of molecules no. 1 & 2 of the asymmetric unit with 30% 

probability thermal ellipsoids. 

                                

Figure B.2. ORTEP drawing of molecules no. 3 & 4 of the asymmetric unit with 30% 

probability thermal ellipsoids 
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Table B.1.  Summary of Structure Determination of Compound (S)-1.2 

Empirical formula  C64H79O7Cl2 

Formula weight  1031.17 

Temperature  143(1) K 

Wavelength  0.71073 Å 

Crystal system  orthorhombic 

Space group  C2221  

Cell constants:   

a  18.667(2) Å 

b  29.316(3) Å 

c  21.428(3) Å 

Volume 11726(2) Å3 

Z 8 

Density (calculated) 1.168 Mg/m3 

Absorption coefficient 0.162 mm-1 

F(000) 4424 

Crystal size 0.42 x 0.18 x 0.10 mm3 

Theta range for data collection 1.39 to 25.43° 

Index ranges -22  h  22, -35  k  35, -25  l  25 

Reflections collected 154940 

Independent reflections 10813 [R(int) = 0.0484] 

Completeness to theta = 25.43° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7452 and 0.7143 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 10813 / 48 / 712 

Goodness-of-fit on F2 1.043 

Final R indices [I>2sigma(I)] R1 = 0.0568, wR2 = 0.1637 

R indices (all data) R1 = 0.0698, wR2 = 0.1751 

Absolute structure parameter 0.07(16) 

Largest diff. peak and hole 0.756 and -0.306 e.Å-3 

 

Table B.2. Refined Positional Parameters for (S)-1.2 

Atom x y z Ueq, Å
2
 

C1 0.81286(15) 0.55693(9) 0.83239(12) 0.0325(6) 

C2 0.88101(16) 0.57693(10) 0.83192(12) 0.0339(6) 

C3 0.93511(15) 0.55479(10) 0.86464(13) 0.0349(6) 

C4 0.92066(15) 0.51422(10) 0.89628(13) 0.0342(6) 

C5 0.85228(15) 0.49517(9) 0.89718(13) 0.0319(6) 

C6 0.79740(14) 0.51662(9) 0.86422(12) 0.0292(6) 

C7 0.72352(14) 0.49694(9) 0.86152(13) 0.0319(6) 

C8 0.70924(16) 0.46041(9) 0.82135(13) 0.0354(6) 
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C9 0.64235(16) 0.43874(11) 0.81936(15) 0.0417(7) 

C10 0.58871(17) 0.45499(12) 0.85824(16) 0.0469(8) 

C11 0.60143(18) 0.49208(13) 0.89649(16) 0.0479(8) 

C12 0.66856(17) 0.51367(10) 0.89984(14) 0.0392(7) 

C13 0.8931(2) 0.62005(11) 0.79540(15) 0.0465(8) 

C14 1.01077(18) 0.57337(12) 0.86567(16) 0.0496(8) 

C15 0.83947(18) 0.45248(10) 0.93386(14) 0.0407(7) 

C16 0.6307(2) 0.39961(12) 0.77557(18) 0.0542(9) 

C17 0.5154(2) 0.43246(16) 0.8588(2) 0.0709(11) 

C18 0.67977(19) 0.55377(13) 0.94198(17) 0.0550(9) 

O1 0.76077(12) 0.57884(8) 0.79833(11) 0.0455(5) 

O2 0.76057(12) 0.44321(8) 0.78284(11) 0.0458(5) 

C19 0.79726(14) 0.31105(9) 0.51919(13) 0.0309(6) 

C20 0.82408(15) 0.31364(10) 0.57979(14) 0.0348(6) 

C21 0.78958(18) 0.34289(11) 0.62145(15) 0.0438(7) 

C22 0.73051(19) 0.36778(11) 0.60156(17) 0.0483(8) 

C23 0.70360(17) 0.36488(10) 0.54160(18) 0.0456(8) 

C24 0.73684(15) 0.33550(10) 0.49930(14) 0.0345(6) 

C25 0.71014(16) 0.32899(9) 0.43441(15) 0.0377(7) 

C26 0.65028(18) 0.30138(11) 0.42495(18) 0.0480(8) 

C27 0.6202(2) 0.29480(13) 0.3661(2) 0.0614(10) 

C28 0.6525(2) 0.31672(14) 0.31501(19) 0.0663(11) 

C29 0.7122(2) 0.34433(12) 0.32409(17) 0.0549(9) 

C30 0.74131(17) 0.35106(10) 0.38304(15) 0.0406(7) 

C31 0.88803(17) 0.28575(12) 0.59801(15) 0.0456(7) 

C32 0.8155(2) 0.34762(14) 0.68782(15) 0.0603(10) 

C33 0.6410(2) 0.39333(14) 0.5234(2) 0.0678(11) 

C34 0.5557(3) 0.26443(18) 0.3584(3) 0.0967(19) 

C35 0.6252(3) 0.3094(2) 0.2488(3) 0.105(2) 

C36 0.80491(19) 0.38244(12) 0.39093(16) 0.0486(8) 

O3 0.83381(11) 0.28267(7) 0.47922(9) 0.0370(5) 

O4 0.61769(14) 0.27993(10) 0.47377(13) 0.0643(8) 

C37 0.53620(14) 0.20776(9) 0.56848(12) 0.0289(6) 

C38 0.60401(15) 0.18840(9) 0.56143(13) 0.0313(6) 

C39 0.66193(15) 0.20959(10) 0.59044(14) 0.0349(6) 

C40 0.65020(16) 0.24896(10) 0.62618(15) 0.0378(7) 

C41 0.58273(15) 0.26759(9) 0.63387(13) 0.0332(6) 

C42 0.52439(14) 0.24686(9) 0.60442(13) 0.0301(6) 

C43 0.45044(14) 0.26575(9) 0.61091(12) 0.0298(6) 

C44 0.42887(15) 0.30223(9) 0.57328(13) 0.0326(6) 

C45 0.36149(16) 0.32154(9) 0.57917(14) 0.0346(6) 

C46 0.31292(16) 0.30356(10) 0.62211(13) 0.0345(6) 

C47 0.33400(17) 0.26694(10) 0.65955(13) 0.0370(6) 

C48 0.40177(16) 0.24793(10) 0.65417(13) 0.0344(6) 

C49 0.61330(17) 0.14620(10) 0.52212(15) 0.0405(7) 

C50 0.73675(18) 0.19147(13) 0.58401(19) 0.0517(8) 

C51 0.57314(18) 0.30902(11) 0.67428(16) 0.0453(7) 

C52 0.3455(2) 0.36194(14) 0.5402(2) 0.0662(11) 

C53 0.23910(18) 0.32304(12) 0.62887(17) 0.0502(8) 

C54 0.42265(19) 0.21030(13) 0.69459(14) 0.0506(8) 

O5 0.48108(11) 0.18604(7) 0.53825(10) 0.0383(5) 

O6 0.47488(14) 0.32025(8) 0.52956(12) 0.0563(6) 

C55 0.92522(14) 0.45542(9) 0.70489(12) 0.0286(6) 
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C56 0.89243(15) 0.45694(9) 0.64656(13) 0.0319(6) 

C57 0.92004(16) 0.42939(10) 0.59948(12) 0.0328(6) 

C58 0.97859(16) 0.40168(10) 0.61212(13) 0.0356(6) 

C59 1.01080(15) 0.40000(9) 0.67031(13) 0.0331(6) 

C60 0.98407(13) 0.42768(9) 0.71796(12) 0.0278(5) 

C61 0.82827(17) 0.48690(11) 0.63629(16) 0.0446(7) 

C62 0.88834(19) 0.42920(12) 0.53475(13) 0.0436(7) 

C63 1.07334(18) 0.36896(11) 0.68185(15) 0.0438(7) 

O7 0.89552(11) 0.48242(7) 0.75092(9) 0.0360(4) 

C64 0.5819(12) 0.5635(8) 0.6805(5) 0.149(6) 

Cl1 0.5895(2) 0.5669(3) 0.7612(2) 0.170(2) 

Cl2 0.6471(3) 0.5247(2) 0.6580(4) 0.199(3) 

C64' 0.5964(13) 0.5555(6) 0.6545(4) 0.151(6) 

Cl1' 0.6042(3) 0.5302(2) 0.7273(3) 0.167(3) 

Cl2' 0.6301(4) 0.51870(19) 0.5990(3) 0.191(3) 

Ueq=
1
/3[U11(aa*)

2
+U22(bb*)

2
+U33(cc*)

2
+2U12aa*bb*cos +2U13aa*cc*cos +2U23bb*cc*cos] 
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Table B.3. Positional Parameters for Hydrogens in Compound (S)-1.2 

Atom x y z Uiso, Å
2
 

H4 0.9576 0.4995 0.9173 0.046 

H11 0.5642 0.5032 0.9210 0.064 

H13a 0.9232 0.6403 0.8189 0.070 

H13b 0.8479 0.6346 0.7875 0.070 

H13c 0.9158 0.6128 0.7564 0.070 

H14a 1.0399 0.5548 0.8925 0.074 

H14b 1.0102 0.6041 0.8810 0.074 

H14c 1.0301 0.5730 0.8242 0.074 

H15a 0.7956 0.4553 0.9569 0.061 

H15b 0.8785 0.4477 0.9623 0.061 

H15c 0.8361 0.4270 0.9059 0.061 

H16a 0.5888 0.3830 0.7880 0.081 

H16b 0.6716 0.3798 0.7767 0.081 

H16c 0.6243 0.4110 0.7340 0.081 

H17a 0.4860 0.4466 0.8900 0.106 

H17b 0.5207 0.4006 0.8682 0.106 

H17c 0.4934 0.4359 0.8186 0.106 

H18a 0.7284 0.5540 0.9565 0.082 

H18b 0.6479 0.5516 0.9770 0.082 

H18c 0.6702 0.5814 0.9194 0.082 

H1 0.7230 0.5647 0.8011 0.068 

H2 0.7937 0.4615 0.7801 0.069 

H22 0.7081 0.3872 0.6298 0.064 

H29 0.7332 0.3586 0.2899 0.073 

H31a 0.9288 0.3054 0.6030 0.068 

H31b 0.8978 0.2636 0.5661 0.068 

H31c 0.8785 0.2704 0.6367 0.068 

H32a 0.8087 0.3193 0.7095 0.090 

H32b 0.7889 0.3712 0.7084 0.090 

H32c 0.8655 0.3553 0.6878 0.090 

H33a 0.6536 0.4120 0.4882 0.102 

H33b 0.6274 0.4125 0.5577 0.102 

H33c 0.6016 0.3739 0.5123 0.102 

H34a 0.5570 0.2406 0.3892 0.145 

H34b 0.5560 0.2512 0.3175 0.145 

H34c 0.5128 0.2821 0.3638 0.145 

H35a 0.6546 0.3263 0.2201 0.157 

H35b 0.5766 0.3198 0.2458 0.157 

H35c 0.6273 0.2776 0.2386 0.157 

H36a 0.7932 0.4060 0.4203 0.073 

H36b 0.8167 0.3960 0.3514 0.073 

H36c 0.8451 0.3653 0.4060 0.073 

H3 0.8110 0.2798 0.4467 0.055 



 333 

H4a 0.6445 0.2800 0.5041 0.097 

H40 0.6891 0.2630 0.6453 0.050 

H47 0.3020 0.2551 0.6886 0.049 

H49a 0.6103 0.1542 0.4788 0.061 

H49b 0.5762 0.1247 0.5320 0.061 

H49c 0.6592 0.1328 0.5305 0.061 

H50a 0.7385 0.1607 0.5991 0.078 

H50b 0.7690 0.2101 0.6079 0.078 

H50c 0.7506 0.1921 0.5409 0.078 

H51a 0.6186 0.3179 0.6914 0.068 

H51b 0.5405 0.3021 0.7076 0.068 

H51c 0.5542 0.3336 0.6497 0.068 

H52a 0.3638 0.3888 0.5601 0.099 

H52b 0.2946 0.3648 0.5350 0.099 

H52c 0.3678 0.3584 0.5000 0.099 

H53a 0.2127 0.3182 0.5910 0.075 

H53b 0.2424 0.3552 0.6371 0.075 

H53c 0.2149 0.3082 0.6628 0.075 

H54a 0.3814 0.1921 0.7041 0.076 

H54b 0.4426 0.2222 0.7326 0.076 

H54c 0.4578 0.1918 0.6738 0.076 

H5 0.4437 0.2001 0.5442 0.057 

H6 0.5001 0.2999 0.5152 0.084 

H58 0.9969 0.3835 0.5803 0.047 

H61a 0.7855 0.4688 0.6383 0.067 

H61b 0.8316 0.5010 0.5960 0.067 

H61c 0.8267 0.5100 0.6680 0.067 

H62a 0.9102 0.4055 0.5105 0.065 

H62b 0.8969 0.4581 0.5152 0.065 

H62c 0.8377 0.4239 0.5374 0.065 

H63a 1.0842 0.3524 0.6444 0.066 

H63b 1.0616 0.3479 0.7146 0.066 

H63c 1.1142 0.3868 0.6939 0.066 

H7 0.9179 0.4790 0.7835 0.054 

H64a 0.5346 0.5529 0.6686 0.199 

H64b 0.5903 0.5930 0.6614 0.199 

H64c 0.5465 0.5621 0.6457 0.201 

H64d 0.6229 0.5839 0.6537 0.201 
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Table B.4.   Refined Thermal Parameters (U's) for Compound (S)-1.2 

  Atom U11 U22 U33 U23 U13 U12 

C1 0.0381(15) 0.0323(13) 0.0271(13) 0.0018(11) -0.0004(11) 0.0005(12) 

C2 0.0386(15) 0.0348(14) 0.0284(13) -0.0043(12) 0.0068(12) -0.0084(12) 

C3 0.0331(15) 0.0414(15) 0.0303(13) -0.0069(12) 0.0040(12) -0.0053(12) 

C4 0.0308(14) 0.0402(15) 0.0317(14) -0.0035(12) -0.0041(12) 0.0013(12) 

C5 0.0339(14) 0.0309(14) 0.0310(13) -0.0028(11) -0.0007(11) 0.0017(12) 

C6 0.0301(14) 0.0318(13) 0.0259(12) -0.0036(11) -0.0005(10) -0.0040(11) 

C7 0.0280(13) 0.0334(14) 0.0345(14) 0.0080(11) -0.0028(11) -0.0008(11) 

C8 0.0367(15) 0.0346(14) 0.0348(14) 0.0032(12) -0.0068(12) -0.0017(12) 

C9 0.0328(15) 0.0443(16) 0.0481(17) 0.0073(14) -0.0070(13) -0.0065(13) 

C10 0.0372(17) 0.0536(19) 0.0499(18) 0.0076(16) -0.0075(14) -0.0136(15) 

C11 0.0334(16) 0.063(2) 0.0469(18) 0.0082(16) 0.0069(14) 0.0036(15) 

C12 0.0372(16) 0.0416(16) 0.0388(16) 0.0052(13) 0.0006(13) -0.0029(13) 

C13 0.0525(19) 0.0454(17) 0.0415(17) 0.0036(14) 0.0107(15) -0.0112(15) 

C14 0.0384(17) 0.060(2) 0.0499(18) -0.0109(17) 0.0061(15) -0.0124(16) 

C15 0.0434(17) 0.0412(16) 0.0375(15) 0.0047(13) 0.0005(13) -0.0002(14) 

C16 0.049(2) 0.053(2) 0.061(2) -0.0064(16) -0.0151(17) -0.0137(16) 

C17 0.0386(19) 0.086(3) 0.088(3) 0.003(3) 0.000(2) -0.0198(19) 

C18 0.0444(19) 0.067(2) 0.053(2) -0.0111(17) 0.0072(16) 0.0002(17) 

O1 0.0401(12) 0.0466(12) 0.0498(12) 0.0160(10) -0.0059(10) -0.0019(10) 

O2 0.0411(12) 0.0461(12) 0.0501(12) -0.0106(10) 0.0032(10) -0.0080(10) 

C19 0.0227(12) 0.0317(13) 0.0383(14) -0.0009(11) 0.0040(11) -0.0028(11) 

C20 0.0316(14) 0.0392(15) 0.0336(14) 0.0006(12) 0.0015(11) -0.0094(12) 

C21 0.0450(17) 0.0472(17) 0.0391(16) -0.0059(14) 0.0074(14) -0.0146(15) 

C22 0.0457(19) 0.0432(17) 0.056(2) -0.0165(15) 0.0183(16) -0.0094(14) 

C23 0.0326(16) 0.0359(15) 0.068(2) -0.0034(15) 0.0103(15) -0.0029(13) 

C24 0.0287(14) 0.0336(14) 0.0414(15) 0.0014(12) 0.0013(12) -0.0079(11) 

C25 0.0313(14) 0.0301(13) 0.0518(18) 0.0069(13) -0.0106(13) 0.0000(12) 

C26 0.0404(18) 0.0393(16) 0.064(2) 0.0172(16) -0.0150(16) -0.0078(14) 

C27 0.057(2) 0.054(2) 0.073(2) 0.0208(19) -0.032(2) -0.0236(18) 

C28 0.069(3) 0.069(2) 0.060(2) 0.014(2) -0.036(2) -0.023(2) 

C29 0.064(2) 0.0525(19) 0.0483(19) 0.0114(16) -0.0153(17) -0.0108(17) 

C30 0.0377(16) 0.0359(15) 0.0483(17) 0.0017(13) -0.0085(14) -0.0033(13) 

C31 0.0390(17) 0.0570(19) 0.0410(16) 0.0054(15) -0.0057(14) -0.0084(15) 

C32 0.078(3) 0.070(2) 0.0339(17) -0.0109(16) 0.0057(17) -0.023(2) 

C33 0.044(2) 0.051(2) 0.108(3) -0.010(2) 0.001(2) 0.0091(17) 

C34 0.089(3) 0.086(3) 0.115(4) 0.032(3) -0.059(3) -0.053(3) 

C35 0.112(4) 0.121(4) 0.081(3) 0.022(3) -0.053(3) -0.046(4) 

C36 0.0482(19) 0.0515(18) 0.0461(18) 0.0019(15) 0.0034(15) -0.0170(15) 

O3 0.0328(10) 0.0447(11) 0.0334(10) -0.0055(9) -0.0009(8) 0.0035(9) 

O4 0.0489(14) 0.0705(16) 0.0736(17) 0.0333(15) -0.0247(13) -0.0281(13) 

C37 0.0275(13) 0.0321(13) 0.0272(13) 0.0013(11) -0.0007(11) -0.0021(11) 

C38 0.0300(14) 0.0327(14) 0.0311(13) -0.0008(11) 0.0028(11) -0.0005(11) 

C39 0.0292(14) 0.0367(15) 0.0389(15) -0.0003(12) 0.0042(12) 0.0006(12) 
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C40 0.0283(14) 0.0398(15) 0.0452(16) -0.0092(13) -0.0067(12) -0.0023(12) 

C41 0.0312(14) 0.0325(14) 0.0360(14) -0.0043(12) -0.0009(12) -0.0006(11) 

C42 0.0302(14) 0.0291(13) 0.0308(13) 0.0000(11) -0.0001(11) -0.0001(11) 

C43 0.0269(13) 0.0327(14) 0.0299(13) -0.0040(11) -0.0028(11) 0.0005(11) 

C44 0.0341(15) 0.0285(13) 0.0351(14) 0.0001(11) 0.0026(12) -0.0041(11) 

C45 0.0389(16) 0.0287(14) 0.0361(15) -0.0003(11) -0.0053(12) 0.0028(12) 

C46 0.0343(15) 0.0336(14) 0.0357(15) -0.0061(12) -0.0028(12) 0.0053(12) 

C47 0.0382(16) 0.0403(15) 0.0324(14) 0.0019(12) 0.0059(12) 0.0044(13) 

C48 0.0361(15) 0.0369(15) 0.0301(13) 0.0013(11) 0.0016(12) 0.0062(12) 

C49 0.0376(16) 0.0404(16) 0.0436(16) -0.0095(13) 0.0044(14) 0.0009(13) 

C50 0.0327(16) 0.055(2) 0.068(2) -0.0123(17) 0.0011(16) 0.0054(15) 

C51 0.0412(17) 0.0417(16) 0.0531(18) -0.0184(15) -0.0032(15) -0.0005(14) 

C52 0.067(3) 0.057(2) 0.074(3) 0.007(2) -0.013(2) 0.0057(19) 

C53 0.0369(17) 0.057(2) 0.057(2) -0.0049(16) -0.0025(15) 0.0150(15) 

C54 0.0462(18) 0.073(2) 0.0329(15) 0.0107(15) 0.0055(14) 0.0226(17) 

O5 0.0308(10) 0.0382(10) 0.0459(12) -0.0120(9) -0.0061(9) 0.0013(8) 

O6 0.0548(14) 0.0474(13) 0.0667(16) 0.0135(12) 0.0119(12) -0.0021(11) 

C55 0.0284(13) 0.0302(13) 0.0272(13) -0.0025(11) 0.0038(11) -0.0018(11) 

C56 0.0304(14) 0.0339(14) 0.0314(14) 0.0011(11) -0.0011(11) -0.0035(11) 

C57 0.0373(15) 0.0351(14) 0.0260(13) -0.0008(11) 0.0001(11) -0.0065(12) 

C58 0.0390(16) 0.0384(15) 0.0294(14) -0.0062(12) 0.0060(12) -0.0050(12) 

C59 0.0315(14) 0.0343(14) 0.0337(14) -0.0025(11) 0.0057(12) 0.0000(12) 

C60 0.0257(13) 0.0299(13) 0.0279(13) 0.0003(11) 0.0018(10) -0.0027(11) 

C61 0.0410(17) 0.0482(18) 0.0446(17) 0.0035(15) -0.0089(14) 0.0065(14) 

C62 0.0510(19) 0.0489(17) 0.0309(14) -0.0025(13) -0.0053(13) -0.0067(15) 

C63 0.0406(17) 0.0485(17) 0.0422(16) -0.0058(14) 0.0024(14) 0.0124(14) 

O7 0.0353(11) 0.0418(10) 0.0310(10) -0.0080(9) -0.0008(8) 0.0055(9) 

C64 0.123(14) 0.177(15) 0.147(9) 0.007(14) 0.029(12) -0.001(10) 

Cl1 0.086(2) 0.288(7) 0.135(3) 0.071(4) -0.031(2) -0.061(4) 

Cl2 0.097(3) 0.181(5) 0.320(9) -0.008(7) 0.026(5) 0.013(3) 

C64' 0.107(12) 0.187(15) 0.159(10) 0.069(10) 0.006(13) 0.050(11) 

Cl1' 0.142(4) 0.188(5) 0.172(5) 0.091(4) -0.079(4) -0.065(4) 

Cl2' 0.180(6) 0.118(3) 0.274(7) 0.062(4) 0.082(6) -0.004(3) 

The form of the anisotropic displacement parameter is: 

exp[-2

 (a*

2
U11h

2
+b*

2
U22k

2
+c*

2
U33l

2
+2b*c*U23kl+2a*c*U13hl+2a*b*U12hk)] 
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  Table B.5. Bond Distances in Compound (S)-1.2, Å 

C1-O1  1.375(3) C1-C6 1.395(4) C1-C2  1.401(4) 

C2-C3  1.390(4) C2-C13 1.504(4) C3-C4  1.395(4) 

C3-C14  1.514(4) C4-C5 1.394(4) C5-C6  1.394(4) 

C5-C15  1.497(4) C6-C7 1.496(4) C7-C8  1.400(4) 

C7-C12  1.403(4) C8-O2 1.361(4) C8-C9  1.402(4) 

C9-C10  1.387(5) C9-C16 1.498(5) C10-C11  1.382(5) 

C10-C17  1.519(5) C11-C12 1.406(5) C12-C18  1.497(5) 

C19-O3  1.375(3) C19-C20 1.394(4) C19-C24  1.403(4) 

C20-C21  1.395(4) C20-C31 1.499(5) C21-C22  1.389(5) 

C21-C32  1.509(5) C22-C23 1.382(5) C23-C24  1.396(4) 

C23-C33  1.488(5) C24-C25 1.489(4) C25-C26  1.394(4) 

C25-C30  1.403(4) C26-O4 1.364(4) C26-C27  1.394(5) 

C27-C28  1.405(6) C27-C34 1.508(5) C28-C29  1.392(5) 

C28-C35  1.523(6) C29-C30 1.389(5) C30-C36  1.511(4) 

C37-O5  1.373(3) C37-C38 1.395(4) C37-C42  1.398(4) 

C38-C39  1.393(4) C38-C49 1.507(4) C39-C40  1.403(4) 

C39-C50  1.501(4) C40-C41 1.383(4) C41-C42  1.398(4) 

C41-C51  1.502(4) C42-C43 1.494(4) C43-C44  1.398(4) 

C43-C48  1.399(4) C44-O6 1.376(4) C44-C45  1.385(4) 

C45-C46  1.395(4) C45-C52 1.480(5) C46-C47  1.397(4) 

C46-C53  1.499(4) C47-C48 1.387(4) C48-C54  1.456(4) 

C55-O7  1.381(3) C55-C56 1.393(4) C55-C60  1.395(4) 

C56-C57  1.391(4) C56-C61 1.501(4) C57-C58  1.389(4) 

C57-C62  1.508(4) C58-C59 1.385(4) C59-C60  1.396(4) 

C59-C63  1.501(4) C60-C60#1 1.496(5) C64-Cl2  1.736(9) 

C64-Cl1  1.737(9) C64'-Cl2' 1.724(10) C64'-Cl1'  1.733(9) 

Symmetry transformations used to generate equivalent atoms:  

#1 -x+2,y,-z+3/2      



 337 

Table B.6. Bond Angles in (S)-1.2, ° 

O1-C1-C6 120.6(2) O1-C1-C2 116.3(2) C6-C1-C2 123.1(3) 

C3-C2-C1 117.4(2) C3-C2-C13 123.1(3) C1-C2-C13 119.4(3) 

C2-C3-C4 120.2(3) C2-C3-C14 121.1(3) C4-C3-C14 118.7(3) 

C5-C4-C3 121.7(3) C4-C5-C6 119.0(3) C4-C5-C15 119.2(3) 

C6-C5-C15 121.7(3) C5-C6-C1 118.6(3) C5-C6-C7 121.5(2) 

C1-C6-C7 119.9(2) C8-C7-C12 119.2(3) C8-C7-C6 119.6(2) 

C12-C7-C6 121.1(3) O2-C8-C7 121.5(3) O2-C8-C9 116.2(3) 

C7-C8-C9 122.4(3) C10-C9-C8 118.0(3) C10-C9-C16 122.3(3) 

C8-C9-C16 119.7(3) C11-C10-C9 120.1(3) C11-C10-C17 119.5(3) 

C9-C10-C17 120.4(3) C10-C11-C12 122.5(3) C7-C12-C11 117.7(3) 

C7-C12-C18 121.7(3) C11-C12-C18 120.6(3) O3-C19-C20 115.8(2) 

O3-C19-C24 121.3(2) C20-C19-C24 123.0(3) C19-C20-C21 117.6(3) 

C19-C20-C31 119.9(3) C21-C20-C31 122.4(3) C22-C21-C20 119.5(3) 

C22-C21-C32 119.7(3) C20-C21-C32 120.7(3) C23-C22-C21 122.8(3) 

C22-C23-C24 118.7(3) C22-C23-C33 119.7(3) C24-C23-C33 121.6(3) 

C23-C24-C19 118.4(3) C23-C24-C25 122.4(3) C19-C24-C25 119.2(3) 

C26-C25-C30 119.1(3) C26-C25-C24 118.6(3) C30-C25-C24 122.3(3) 

O4-C26-C27 116.8(3) O4-C26-C25 120.9(3) C27-C26-C25 122.3(3) 

C26-C27-C28 118.0(3) C26-C27-C34 120.1(4) C28-C27-C34 121.9(4) 

C29-C28-C27 120.0(3) C29-C28-C35 118.7(4) C27-C28-C35 121.3(4) 

C30-C29-C28 121.5(3) C29-C30-C25 119.1(3) C29-C30-C36 119.7(3) 

C25-C30-C36 121.2(3) O5-C37-C38 116.1(2) O5-C37-C42 121.5(2) 

C38-C37-C42 122.4(2) C39-C38-C37 118.3(2) C39-C38-C49 121.7(3) 

C37-C38-C49 119.9(2) C38-C39-C40 119.3(3) C38-C39-C50 121.6(3) 

C40-C39-C50 119.1(3) C41-C40-C39 122.2(3) C40-C41-C42 119.0(2) 

C40-C41-C51 119.8(3) C42-C41-C51 121.3(3) C41-C42-C37 118.8(2) 

C41-C42-C43 121.1(2) C37-C42-C43 120.1(2) C44-C43-C48 118.7(3) 

C44-C43-C42 119.7(2) C48-C43-C42 121.5(2) O6-C44-C45 118.2(3) 

O6-C44-C43 120.4(3) C45-C44-C43 121.4(3) C44-C45-C46 119.7(3) 

C44-C45-C52 117.3(3) C46-C45-C52 123.0(3) C45-C46-C47 119.1(3) 

C45-C46-C53 121.2(3) C47-C46-C53 119.8(3) C48-C47-C46 121.2(3) 

C47-C48-C43 119.8(3) C47-C48-C54 120.0(3) C43-C48-C54 120.2(3) 

O7-C55-C56 116.5(2) O7-C55-C60 120.5(2) C56-C55-C60 123.0(2) 

C57-C56-C55 118.0(3) C57-C56-C61 121.9(3) C55-C56-C61 120.1(3) 

C58-C57-C56 119.3(2) C58-C57-C62 119.1(3) C56-C57-C62 121.6(3) 

C59-C58-C57 122.5(3) C58-C59-C60 118.9(3) C58-C59-C63 120.5(3) 

C60-C59-C63 120.7(3) C55-C60-C59 118.3(2) C55-C60-C60#1 119.8(2) 

C59-C60-C60#1 121.9(2) Cl2-C64-Cl1 104.9(7) Cl2'-C64'-Cl1' 108.9(7) 

Symmetry transformations used to generate equivalent atoms:  

#1 -x+2,y,-z+3/2      
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B.2 X-Ray Structure Determination of Compound 2.44 dimer 

 

Compound 2.44 dimer, C22H30O3, crystallizes in the monoclinic space group 

P21/c (systematic absences 0k0: k=odd and h0l: l=odd) with a=22.703(2)Å, 

b=5.6209(5)Å, c=31.063(3)Å, =103.463(2)°, V=3855.1(6)Å3, Z=8, and dcalc=1.180 

g/cm3 . X-ray intensity data were collected on a Bruker APEXII CCD area detector 

employing graphite-monochromated Mo-K radiation (=0.71073 Å) at a temperature of 

100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation 

frames with exposures of 10 seconds. A total of 1560 frames were collected with a crystal 

to detector distance of 44.9 mm, rotation widths of 0.5° and exposures of 10 seconds:  

scan type     frames 

 -25.50 321.01 15.44 32.61 730 

 -23.00 330.56 32.55 -99.10 91 

 -28.00 327.36 13.34 30.75 739 

 Rotation frames were integrated using SAINT,
111

 producing a listing of 

unaveraged F2 and  (F2) values which were then passed to the SHELXTL
112

 program 

package for further processing and structure solution. A total of 39587 reflections were 

measured over the ranges 1.84  25.37°, -27  h  27, -6  k  6, -37  l  37 

yielding 7060 unique reflections (Rint = 0.0308). The intensity data were corrected for 

Lorentz and polarization effects and for absorption using SADABS
113

 (minimum and 



 339 

maximum transmission 0.7099, 0.7452). 

The structure was solved by direct methods (SHELXS-97
114

). Refinement was by 

full-matrix least squares based on F2 using SHELXL-97. All reflections were used during 

refinement. The weighting scheme used was w=1/[2(Fo
2 )+ (0.0859P)2 + 1.9383P] 

where P = (Fo
 2 + 2Fc

2)/3. Non-hydrogen atoms were refined anisotropically and 

hydrogen atoms were refined using a riding model.  Refinement converged to R1=0.0444 

and wR2=0.1263 for 5462 observed reflections for which F > 4 (F) and R1=0.0640 and 

wR2=0.1528 and GOF =1.056 for all 7060 unique, non-zero reflections and 474 

variables.
115

 The maximum  in the final cycle of least squares was 0.020 and the two 

most prominent peaks in the final difference Fourier were +0.337 and -0.399 e/Å3. 

Table B.8 lists cell information, data collection parameters, and refinement data. 

Final positional and equivalent isotropic thermal parameters are given in Tables B.9 and 

B.10.  Anisotropic thermal parameters are in Table B.11.  Tables B.12 and B.13 list bond 

distances and bond angles.  Figures B.3 and B.4 are ORTEP
116

 representations of the 

molecule with 50% probability thermal ellipsoids displayed. 
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Figure B.3. ORTEP drawing of molecule no. 1 of the asymmetric unit with 50% 

probability thermal ellipsoids. 
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Figure B.4. ORTEP drawing of molecule no. 2 of the asymmetric unit with 50% 

probability thermal ellipsoids. 
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Table B.7.  Summary of Structure Determination of Compound 2.44 dimer 

Empirical formula  C22H30O3 

Formula weight  342.46 

Temperature  100(1) K 

Wavelength  0.71073 Å 

Crystal system  monoclinic 

Space group  P21/c      

Cell constants:   

a  22.703(2) Å 

b  5.6209(5) Å 

c  31.063(3) Å 

 103.463(2)° 

Volume 3855.1(6) Å3 
Z 8 

Density (calculated) 1.180 Mg/m3 

Absorption coefficient 0.077 mm-1 

F(000) 1488 

Crystal size 0.42 x 0.16 x 0.06 mm3 

Theta range for data collection 1.84 to 25.37° 

Index ranges -27  h  27, -6  k  6, -37  l  37 

Reflections collected 39587 

Independent reflections 7060 [R(int) = 0.0308] 

Completeness to theta = 25.37° 99.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7452 and 0.7099 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7060 / 0 / 474 

Goodness-of-fit on F2 1.056 

Final R indices [I>2sigma(I)] R1 = 0.0444, wR2 = 0.1263 

R indices (all data) R1 = 0.0640, wR2 = 0.1528 

Largest diff. peak and hole 0.337 and -0.399 e.Å-3 



 343 

Table B.8. Refined Positional Parameters for Compound 2.44 dimer 

Atom x y z Ueq, Å
2
 

C1 0.54649(8) 0.1057(3) 0.09101(6) 0.0142(4) 

C2 0.60330(8) 0.2196(3) 0.10266(6) 0.0149(4) 

C3 0.63238(8) 0.2215(3) 0.14753(6) 0.0161(4) 

C4 0.60702(8) 0.1212(3) 0.17980(6) 0.0154(4) 

C5 0.55030(8) 0.0165(3) 0.16702(6) 0.0161(4) 

C6 0.51834(8) 0.0046(3) 0.12279(6) 0.0152(4) 

C7 0.63337(8) 0.3379(3) 0.06834(6) 0.0164(4) 

C8 0.65043(9) 0.1501(3) 0.03725(6) 0.0219(4) 

C9 0.59157(8) 0.5291(3) 0.04127(6) 0.0178(4) 

C10 0.69175(9) 0.4685(4) 0.09049(6) 0.0233(4) 

C11 0.45552(8) -0.1152(3) 0.11024(6) 0.0171(4) 

C12 0.40678(8) 0.0645(3) 0.08850(6) 0.0204(4) 

C13 0.45598(9) -0.3277(3) 0.07920(7) 0.0226(4) 

C14 0.43610(9) -0.2126(4) 0.15105(7) 0.0249(4) 

C15 0.64148(8) 0.1259(3) 0.22723(6) 0.0173(4) 

C16 0.68753(8) -0.0410(3) 0.24164(6) 0.0190(4) 

C17 0.72419(8) -0.0421(4) 0.28431(6) 0.0210(4) 

C18 0.71175(8) 0.1298(4) 0.31319(6) 0.0236(4) 

C19 0.66597(9) 0.2952(4) 0.30041(6) 0.0238(4) 

C20 0.63078(8) 0.2970(3) 0.25719(6) 0.0193(4) 

C21 0.77565(9) -0.2171(4) 0.29724(7) 0.0279(5) 

C22 0.58267(9) 0.4817(4) 0.24276(7) 0.0264(5) 

O1 0.51606(6) 0.0922(2) 0.04721(4) 0.0222(3) 

O2 0.69923(6) -0.2129(3) 0.21342(4) 0.0249(3) 

O3 0.74713(7) 0.1286(3) 0.35607(4) 0.0349(4) 

C1' 0.95300(8) 0.7716(3) 0.65809(6) 0.0143(4) 

C2' 0.89497(8) 0.8761(3) 0.64483(6) 0.0147(4) 

C3' 0.86645(8) 0.8601(3) 0.60005(6) 0.0160(4) 

C4' 0.89331(8) 0.7500(3) 0.56918(6) 0.0162(4) 

C5' 0.95102(8) 0.6549(3) 0.58377(6) 0.0167(4) 

C6' 0.98236(8) 0.6628(3) 0.62798(6) 0.0149(4) 

C7' 0.86260(8) 0.9971(3) 0.67761(6) 0.0155(4) 

C8' 0.90181(9) 1.1927(3) 0.70487(6) 0.0219(4) 

C9' 0.84403(9) 0.8112(3) 0.70832(6) 0.0223(4) 

C10' 0.80419(8) 1.1223(4) 0.65330(6) 0.0222(4) 

C11' 1.04615(8) 0.5522(3) 0.64277(6) 0.0162(4) 

C12' 1.09275(8) 0.7473(3) 0.66166(7) 0.0226(4) 

C13' 1.04709(8) 0.3574(3) 0.67747(6) 0.0204(4) 

C14' 1.06668(9) 0.4360(4) 0.60415(6) 0.0245(4) 

C15' 0.85782(8) 0.7270(3) 0.52225(6) 0.0156(4) 

C16' 0.81407(8) 0.5478(3) 0.51248(6) 0.0184(4) 

C17' 0.77511(8) 0.5206(4) 0.47106(6) 0.0216(4) 

C18' 0.78280(8) 0.6777(4) 0.43834(6) 0.0229(4) 
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C19' 0.82696(8) 0.8527(4) 0.44652(6) 0.0224(4) 

C20' 0.86471(8) 0.8813(3) 0.48851(6) 0.0187(4) 

C21' 0.72637(9) 0.3340(4) 0.46264(7) 0.0282(5) 

C22' 0.91161(9) 1.0755(4) 0.49680(7) 0.0264(4) 

O1' 0.98382(6) 0.7716(2) 0.70210(4) 0.0181(3) 

O2' 0.80751(6) 0.3863(2) 0.54416(4) 0.0243(3) 

O3' 0.74451(7) 0.6513(3) 0.39686(4) 0.0357(4) 

Ueq=
1
/3[U11(aa*)

2
+U22(bb*)

2
+U33(cc*)

2
+2U12aa*bb*cos +2U13aa*cc*cos +2U23bb*cc*cos] 

 

Table B.9. Positional Parameters for Hydrogens in Compound 2.44 dimer 

Atom x y z Uiso, Å
2
 

H3 0.6703 0.2930 0.1561 0.021 

H5 0.5329 -0.0482 0.1887 0.021 

H8a 0.6720 0.2252 0.0178 0.033 

H8b 0.6143 0.0773 0.0201 0.033 

H8c 0.6756 0.0307 0.0545 0.033 

H9a 0.6108 0.5964 0.0196 0.027 

H9b 0.5842 0.6522 0.0608 0.027 

H9c 0.5538 0.4576 0.0266 0.027 

H10a 0.7205 0.3567 0.1067 0.035 

H10b 0.6829 0.5869 0.1104 0.035 

H10c 0.7084 0.5438 0.0682 0.035 

H12a 0.3683 -0.0143 0.0802 0.031 

H12b 0.4169 0.1304 0.0626 0.031 

H12c 0.4046 0.1898 0.1091 0.031 

H13a 0.4164 -0.3979 0.0715 0.034 

H13b 0.4847 -0.4438 0.0939 0.034 

H13c 0.4671 -0.2742 0.0528 0.034 

H14a 0.4349 -0.0850 0.1714 0.037 

H14b 0.4646 -0.3307 0.1653 0.037 

H14c 0.3966 -0.2831 0.1420 0.037 

H19 0.6586 0.4060 0.3208 0.032 

H21a 0.7602 -0.3675 0.3043 0.042 

H21b 0.8046 -0.1582 0.3226 0.042 

H21c 0.7949 -0.2372 0.2730 0.042 

H22a 0.5863 0.5494 0.2151 0.040 

H22b 0.5873 0.6045 0.2648 0.040 

H22c 0.5435 0.4095 0.2391 0.040 

H1 0.5395 0.1224 0.0314 0.033 

H2 0.6755 -0.1986 0.1892 0.037 

H3a 0.7463 0.2607 0.3671 0.052 

H3' 0.8280 0.9254 0.5904 0.021 

H5' 0.9694 0.5833 0.5633 0.022 

H8a' 0.8801 1.2644 0.7246 0.033 
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H8b' 0.9111 1.3116 0.6853 0.033 

H8c' 0.9387 1.1241 0.7218 0.033 

H9a' 0.8796 0.7360 0.7258 0.033 

H9b' 0.8185 0.6935 0.6908 0.033 

H9c' 0.8223 0.8882 0.7275 0.033 

H10a' 0.7862 1.2017 0.6744 0.033 

H10b' 0.7763 1.0067 0.6373 0.033 

H10c' 0.8135 1.2368 0.6329 0.033 

H12a' 1.0822 0.8199 0.6868 0.034 

H12b' 1.0927 0.8658 0.6394 0.034 

H12c' 1.1324 0.6778 0.6705 0.034 

H13a' 1.0188 0.2347 0.6651 0.031 

H13b' 1.0361 0.4247 0.7029 0.031 

H13c' 1.0870 0.2908 0.6861 0.031 

H14a' 1.1066 0.3718 0.6145 0.037 

H14b' 1.0671 0.5530 0.5817 0.037 

H14c' 1.0392 0.3105 0.5920 0.037 

H19' 0.8315 0.9526 0.4236 0.030 

H21a' 0.7431 0.1853 0.4559 0.042 

H21b' 0.6944 0.3815 0.4381 0.042 

H21c' 0.7105 0.3158 0.4885 0.042 

H22a' 0.9187 1.1261 0.5271 0.040 

H22b' 0.8974 1.2078 0.4777 0.040 

H22c' 0.9487 1.0165 0.4909 0.040 

H1' 0.9602 0.8031 0.7177 0.027 

H2' 0.8328 0.4130 0.5672 0.036 

H3a' 0.7450 0.7732 0.3824 0.054 

 

Table B.10.   Refined Thermal Parameters (U's) for Compound 2.44 dimer 

  Atom U11 U22 U33 U23 U13 U12 

C1 0.0163(9) 0.0127(8) 0.0122(8) 0.0006(7) 0.0005(7) 0.0037(7) 

C2 0.0172(9) 0.0126(8) 0.0149(9) 0.0006(7) 0.0041(7) 0.0020(7) 

C3 0.0131(8) 0.0175(9) 0.0168(9) 0.0012(7) 0.0017(7) 0.0003(7) 

C4 0.0149(9) 0.0165(9) 0.0144(9) 0.0017(7) 0.0023(7) 0.0033(7) 

C5 0.0167(9) 0.0169(9) 0.0150(9) 0.0038(7) 0.0046(7) 0.0033(7) 

C6 0.0145(9) 0.0126(8) 0.0180(9) 0.0013(7) 0.0027(7) 0.0027(7) 

C7 0.0183(9) 0.0165(9) 0.0143(9) 0.0033(7) 0.0037(7) 0.0006(7) 

C8 0.0255(10) 0.0198(10) 0.0231(10) 0.0034(8) 0.0113(8) 0.0026(8) 

C9 0.0212(9) 0.0147(9) 0.0180(9) 0.0033(7) 0.0054(7) -0.0002(7) 

C10 0.0202(10) 0.0278(10) 0.0214(10) 0.0061(8) 0.0042(8) -0.0055(8) 

C11 0.0153(9) 0.0157(9) 0.0192(9) 0.0024(7) 0.0014(7) 0.0002(7) 

C12 0.0166(9) 0.0188(9) 0.0240(10) 0.0009(8) 0.0011(7) 0.0003(8) 

C13 0.0207(10) 0.0154(9) 0.0300(11) -0.0002(8) 0.0025(8) -0.0029(8) 

C14 0.0188(10) 0.0283(11) 0.0269(11) 0.0071(9) 0.0040(8) -0.0049(8) 

C15 0.0139(9) 0.0230(10) 0.0142(9) 0.0038(7) 0.0015(7) -0.0014(7) 
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C16 0.0164(9) 0.0249(10) 0.0174(9) 0.0031(8) 0.0074(7) -0.0004(8) 

C17 0.0143(9) 0.0299(10) 0.0184(9) 0.0070(8) 0.0030(7) -0.0001(8) 

C18 0.0188(10) 0.0381(11) 0.0127(9) 0.0031(8) 0.0012(7) -0.0025(8) 

C19 0.0230(10) 0.0327(11) 0.0162(9) -0.0028(8) 0.0057(8) -0.0011(9) 

C20 0.0170(9) 0.0252(10) 0.0156(9) 0.0014(8) 0.0035(7) -0.0008(8) 

C21 0.0204(10) 0.0380(12) 0.0241(10) 0.0105(9) 0.0028(8) 0.0066(9) 

C22 0.0251(10) 0.0286(11) 0.0244(10) -0.0013(9) 0.0032(8) 0.0065(9) 

O1 0.0266(7) 0.0245(7) 0.0132(6) 0.0001(5) -0.0002(5) 0.0015(6) 

O2 0.0258(8) 0.0294(8) 0.0194(7) 0.0002(6) 0.0046(6) 0.0079(6) 

O3 0.0282(8) 0.0573(10) 0.0144(7) -0.0003(7) -0.0043(6) 0.0032(8) 

C1' 0.0152(9) 0.0138(8) 0.0125(8) 0.0003(7) 0.0005(7) -0.0012(7) 

C2' 0.0164(9) 0.0122(8) 0.0155(9) -0.0003(7) 0.0037(7) -0.0007(7) 

C3' 0.0135(8) 0.0177(9) 0.0156(9) 0.0007(7) 0.0008(7) 0.0019(7) 

C4' 0.0178(9) 0.0170(9) 0.0127(9) 0.0008(7) 0.0017(7) 0.0006(7) 

C5' 0.0193(9) 0.0172(9) 0.0140(9) -0.0021(7) 0.0049(7) 0.0017(7) 

C6' 0.0150(9) 0.0131(8) 0.0163(9) 0.0005(7) 0.0027(7) 0.0002(7) 

C7' 0.0161(9) 0.0164(9) 0.0136(8) -0.0014(7) 0.0029(7) 0.0013(7) 

C8' 0.0215(10) 0.0209(10) 0.0233(10) -0.0080(8) 0.0051(8) 0.0011(8) 

C9' 0.0270(10) 0.0209(10) 0.0216(10) 0.0002(8) 0.0113(8) 0.0029(8) 

C10' 0.0203(9) 0.0257(10) 0.0207(10) -0.0026(8) 0.0047(8) 0.0065(8) 

C11' 0.0150(9) 0.0182(9) 0.0145(9) 0.0014(7) 0.0017(7) 0.0036(7) 

C12' 0.0169(9) 0.0220(10) 0.0277(10) 0.0017(8) 0.0030(8) 0.0009(8) 

C13' 0.0174(9) 0.0195(9) 0.0233(10) 0.0052(8) 0.0026(7) 0.0054(8) 

C14' 0.0213(10) 0.0308(11) 0.0214(10) 0.0009(9) 0.0048(8) 0.0105(9) 

C15' 0.0142(9) 0.0213(9) 0.0110(9) -0.0022(7) 0.0023(7) 0.0050(7) 

C16' 0.0183(9) 0.0237(10) 0.0147(9) -0.0004(7) 0.0069(7) 0.0044(8) 

C17' 0.0155(9) 0.0300(11) 0.0193(10) -0.0063(8) 0.0039(7) 0.0014(8) 

C18' 0.0162(9) 0.0404(12) 0.0112(9) -0.0044(8) 0.0013(7) 0.0052(8) 

C19' 0.0193(9) 0.0344(11) 0.0139(9) 0.0049(8) 0.0048(7) 0.0045(8) 

C20' 0.0148(9) 0.0248(10) 0.0170(9) 0.0004(8) 0.0046(7) 0.0048(8) 

C21' 0.0226(10) 0.0361(12) 0.0252(11) -0.0108(9) 0.0043(8) -0.0042(9) 

C22' 0.0231(10) 0.0292(11) 0.0265(10) 0.0056(9) 0.0052(8) 0.0000(9) 

O1' 0.0177(6) 0.0253(7) 0.0100(6) -0.0020(5) 0.0006(5) 0.0043(6) 

O2' 0.0270(7) 0.0280(7) 0.0174(7) 0.0024(6) 0.0039(6) -0.0035(6) 

O3' 0.0273(8) 0.0607(11) 0.0148(7) 0.0009(7) -0.0042(6) -0.0039(8) 

The form of the anisotropic displacement parameter is: 

exp[-2

 (a*

2
U11h

2
+b*

2
U22k

2
+c*

2
U33l

2
+2b*c*U23kl+2a*c*U13hl+2a*b*U12hk)] 
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  Table B.11. Bond Distances in Compound 2.11 dimer, Å 

C1-O1 1.377(2) C1-C2 1.410(2) C1-C6 1.414(2) 

C2-C3  1.396(2) C2-C7 1.544(2) C3-C4 1.387(3) 

C4-C5  1.387(3) C4-C15 1.499(2) C5-C6 1.398(2) 

C6-C11  1.543(2) C7-C10 1.531(3) C7-C8 1.540(3) 

C7-C9  1.547(2) C11-C12 1.534(2) C11-C14 1.537(3) 

C11-C13  1.537(3) C15-C16 1.398(3) C15-C20 1.398(3) 

C16-O2  1.371(2) C16-C17 1.391(3) C17-C18 1.391(3) 

C17-C21  1.509(3) C18-C19 1.382(3) C18-O3 1.386(2) 

C19-C20  1.393(3) C20-C22 1.498(3) C1'-O1' 1.383(2) 

C1'-C6'  1.408(2) C1'-C2' 1.413(2) C2'-C3' 1.394(2) 

C2'-C7'  1.545(2) C3'-C4' 1.395(3) C4'-C5' 1.390(3) 

C4'-C15'  1.498(2) C5'-C6' 1.393(2) C6'-C11' 1.544(2) 

C7'-C10'  1.536(2) C7'-C9' 1.538(3) C7'-C8' 1.539(2) 

C11'-C14'  1.531(3) C11'-C13' 1.533(2) C11'-C12' 1.542(3) 

C15'-C16'  1.397(3) C15'-C20' 1.397(3) C16'-O2' 1.373(2) 

C16'-C17'  1.390(3) C17'-C18' 1.388(3) C17'-C21' 1.503(3) 

C18'-O3'  1.384(2) C18'-C19' 1.386(3) C19'-C20' 1.393(3) 

C20'-C22'  1.505(3)     

 

Table B.12. Bond Angles in Compound 2.44 dimer, ° 

O1-C1-C2 119.82(15) O1-C1-C6 117.60(15) C2-C1-C6 122.58(15) 

C3-C2-C1 116.83(16) C3-C2-C7 120.25(15) C1-C2-C7 122.92(15) 

C4-C3-C2 122.62(16) C5-C4-C3 118.64(16) C5-C4-C15 121.75(16) 

C3-C4-C15 119.61(15) C4-C5-C6 122.46(16) C5-C6-C1 116.82(16) 

C5-C6-C11 120.47(16) C1-C6-C11 122.71(15) C10-C7-C8 107.02(15) 

C10-C7-C2 111.82(14) C8-C7-C2 110.75(14) C10-C7-C9 105.56(14) 

C8-C7-C9 110.34(14) C2-C7-C9 111.15(14) C12-C11-C14 106.38(15) 

C12-C11-C13 110.19(15) C14-C11-C13 106.60(15) C12-C11-C6 110.70(14) 

C14-C11-C6 111.90(15) C13-C11-C6 110.90(15) C16-C15-C20 118.76(16) 

C16-C15-C4 118.89(16) C20-C15-C4 122.30(16) O2-C16-C17 116.36(16) 

O2-C16-C15 120.63(16) C17-C16-C15 123.00(17) C18-C17-C16 116.43(17) 

C18-C17-C21 122.84(17) C16-C17-C21 120.71(18) C19-C18-O3 120.53(18) 

C19-C18-C17 122.27(17) O3-C18-C17 117.20(17) C18-C19-C20 120.38(18) 

C19-C20-C15 119.13(17) C19-C20-C22 120.52(17) C15-C20-C22 120.34(16) 

O1'-C1'-C6' 116.58(15) O1'-C1'-C2' 120.72(15) C6'-C1'-C2' 122.69(16) 

C3'-C2'-C1' 116.69(16) C3'-C2'-C7' 120.28(15) C1'-C2'-C7' 123.01(15) 

C2'-C3'-C4' 122.58(16) C5'-C4'-C3' 118.45(16) C5'-C4'-C15' 122.45(16) 

C3'-C4'-C15' 119.01(15) C4'-C5'-C6' 122.38(16) C5'-C6'-C1' 117.17(16) 

C5'-C6'-C11' 120.58(15) C1'-C6'-C11' 122.24(15) C10'-C7'-C9' 106.63(15) 

C10'-C7'-C8' 105.40(15) C9'-C7'-C8' 110.56(15) C10'-C7'-C2' 111.50(14) 

C9'-C7'-C2' 110.54(14) C8'-C7'-C2' 111.97(15) C14'-C11'-C13' 106.83(15) 

C14'-C11'-C12' 107.12(15) C13'-C11'-C12' 110.14(15) C14'-C11'-C6' 111.98(14) 
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C13'-C11'-C6' 110.81(15) C12'-C11'-C6' 109.85(14) C16'-C15'-C20' 118.85(16) 

C16'-C15'-C4' 117.89(16) C20'-C15'-C4' 123.20(16) O2'-C16'-C17' 116.04(17) 

O2'-C16'-C15' 120.76(16) C17'-C16'-C15' 123.20(17) C18'-C17'-C16' 116.52(18) 

C18'-C17'-21' 121.98(17) C16'-C17'-C21' 121.48(18) O3'-C18'-C19' 121.16(18) 

O3'-C18'-C17' 117.06(18) C19'-C18'-C17' 121.77(17) C18'-C19'-C20' 120.99(18) 

C19'-C20'-C15' 118.60(17) C19'-C20'-C22' 120.04(17) C15'-C20'-C22' 121.36(16) 
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B.3 X-Ray Structure Determination of Compound 2.44 trimer 

 

Compound 8039, C36H50O4, crystallizes in the monoclinic space group P21/n 

(systematic absences 0k0: k=odd and h0l: h+l=odd) with a=13.9613(6)Å, 

b=16.2398(7)Å, c=13.9786(6)Å, =95.349(2)°, V=3155.5(2)Å3, Z=4, and dcalc=1.151 

g/cm3 . X-ray intensity data were collected on a Bruker APEXII CCD area detector 

employing graphite-monochromated Mo-K radiation (=0.71073 Å) at a temperature of 

100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation 

frames with exposures of 10 seconds. A total of 3106 frames were collected with a crystal 

to detector distance of 37.5 mm, rotation widths of 0.5° and exposures of 10 seconds:  

scan type     frames 

 -15.50 258.48 8.28 19.46 739 

 -18.00 246.32 310.97 36.30 201 

 -20.50 354.79 178.64 -31.86 160 

 -23.00 328.34 44.17 79.39 528 

 -23.00 334.21 38.95 73.66 739 

 19.50 59.55 348.71 026.26 739 

 Rotation frames were integrated using SAINT
111

, producing a listing of 

unaveraged F2 and  (F2) values which were then passed to the SHELXTL
112

 program 

package for further processing and structure solution. A total of 93926 reflections were 

measured over the ranges 1.93  27.54°, -18  h  18, -21  k  19, -18  l  18 
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yielding 7263 unique reflections (Rint = 0.0316). The intensity data were corrected for 

Lorentz and polarization effects and for absorption using SADABS
113

 (minimum and 

maximum transmission 0.7107, 0.7456). 

The structure was solved by direct methods (SHELXS-97
114

). Refinement was by 

full-matrix least squares based on F2 using SHELXL-97.
114

 All reflections were used 

during refinement. The weighting scheme used was w=1/[2(Fo
2 )+ (0.0536P)2 + 

1.5851P] where P = (Fo
 2 + 2Fc

2)/3. Non-hydrogen atoms were refined anisotropically 

and hydrogen atoms were refined using a riding model.  Refinement converged to 

R1=0.0417 and wR2=0.1056 for 6029 observed reflections for which F > 4(F) and 

R1=0.0525 and wR2=0.1125 and GOF =1.023 for all 7263 unique, non-zero reflections 

and 380 variables.
115

 The maximum  in the final cycle of least squares was 0.000 and 

the two most prominent peaks in the final difference Fourier were +0.371 and -0.310 

e/Å3. 

Table B.13 lists cell information, data collection parameters, and refinement data. 

Final positional and equivalent isotropic thermal parameters are given in Tables B.14 and 

B.15.  Anisotropic thermal parameters are in Table B.16.  Tables B.17 and B.18 list 

bond distances and bond angles. Figure B.5 is an ORTEP
116

 representation of the 

molecule with 50% probability thermal ellipsoids displayed. 
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Figure B.5. ORTEP drawing of the title compound with 50% probability thermal 

ellipsoids 
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Table B.13.  Summary of Structure Determination of Compound 2.44 trimer 

Empirical formula  C36H50O4 

Formula weight  546.76 

Temperature  100(1) K 

Wavelength  0.71073 Å 

Crystal system  monoclinic 

Space group  P21/n      

Cell constants:   

a  13.9613(6) Å 

b  16.2398(7) Å 

c  13.9786(6) Å 

 95.349(2)° 

Volume 3155.5(2) Å3 

Z 4 

Density (calculated) 1.151 Mg/m3 

Absorption coefficient 0.073 mm-1 

F(000) 1192 

Crystal size 0.42 x 0.15 x 0.10 mm3 

Theta range for data collection 1.93 to 27.54° 

Index ranges -18  h  18, -21  k  19, -18  l  18 

Reflections collected 93926 

Independent reflections 7263 [R(int) = 0.0316] 

Completeness to theta = 27.54° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7456 and 0.7107 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7263 / 0 / 380 

Goodness-of-fit on F2 1.023 

Final R indices [I>2sigma(I)] R1 = 0.0417, wR2 = 0.1056 

R indices (all data) R1 = 0.0525, wR2 = 0.1125 

Largest diff. peak and hole 0.371 and -0.310 e.Å-3 
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Table B.14. Refined Positional Parameters for Compound 2.44 trimer 

    Atom x y z Ueq, Å
2
 

C1 0.71333(9) 0.71338(7) 0.34968(9) 0.0163(2) 

C2 0.67249(8) 0.73317(7) 0.25661(9) 0.0146(2) 

C3 0.62591(9) 0.66981(7) 0.20304(9) 0.0153(2) 

C4 0.62066(9) 0.58955(7) 0.23784(9) 0.0150(2) 

C5 0.65802(9) 0.57454(7) 0.33220(9) 0.0160(2) 

C6 0.70246(9) 0.63503(7) 0.39089(9) 0.0156(2) 

C7 0.68226(9) 0.81984(7) 0.21333(9) 0.0170(2) 

C8 0.78835(9) 0.83676(8) 0.19969(10) 0.0209(3) 

C9 0.64485(10) 0.88729(8) 0.27741(11) 0.0258(3) 

C10 0.62511(10) 0.82684(8) 0.11415(10) 0.0248(3) 

C11 0.73935(9) 0.61553(8) 0.49588(9) 0.0187(3) 

C12 0.69426(11) 0.67560(9) 0.56477(10) 0.0272(3) 

C13 0.84990(10) 0.61867(9) 0.51002(10) 0.0276(3) 

C14 0.70978(10) 0.52835(8) 0.52456(9) 0.0218(3) 

C15 0.58476(8) 0.51975(7) 0.17451(8) 0.0142(2) 

C16 0.63220(8) 0.50376(7) 0.09197(8) 0.0144(2) 

C17 0.61055(8) 0.43631(7) 0.03258(8) 0.0148(2) 

C18 0.54115(8) 0.38218(7) 0.06072(8) 0.0130(2) 

C19 0.49174(8) 0.39485(7) 0.14160(8) 0.0140(2) 

C20 0.51299(8) 0.46488(7) 0.19833(8) 0.0144(2) 

C21 0.66280(10) 0.42021(8) -0.05498(9) 0.0210(3) 

C22 0.45826(10) 0.47889(8) 0.28535(9) 0.0205(3) 

C23 0.42489(9) 0.32789(7) 0.16790(8) 0.0149(2) 

C24 0.32603(9) 0.33032(7) 0.14485(8) 0.0155(2) 

C25 0.26594(8) 0.26482(7) 0.16528(8) 0.0145(2) 

C26 0.31019(9) 0.19477(7) 0.20937(9) 0.0158(2) 

C27 0.41018(9) 0.18928(7) 0.23325(9) 0.0161(2) 

C28 0.46504(9) 0.25698(7) 0.21181(9) 0.0166(2) 

C29 0.15633(9) 0.26931(8) 0.13845(9) 0.0168(2) 

C30 0.12689(10) 0.35265(9) 0.09338(11) 0.0264(3) 

C31 0.10056(10) 0.26079(9) 0.22807(10) 0.0259(3) 

C32 0.12378(10) 0.20261(9) 0.06386(11) 0.0284(3) 

C33 0.45826(9) 0.11159(7) 0.27908(10) 0.0197(3) 

C34 0.42030(11) 0.09379(9) 0.37685(11) 0.0298(3) 

C35 0.56784(9) 0.12147(8) 0.29751(11) 0.0245(3) 

C36 0.43883(11) 0.03766(8) 0.21096(12) 0.0296(3) 

O1 0.76452(7) 0.77388(6) 0.40030(7) 0.0252(2) 

O2 0.70572(6) 0.55301(6) 0.06655(7) 0.0203(2) 

O3 0.52500(7) 0.31255(5) 0.00498(6) 0.0204(2) 

O4 0.25746(6) 0.12657(5) 0.23092(7) 0.0234(2) 

Ueq=
1
/3[U11(aa*)

2
+U22(bb*)

2
+U33(cc*)

2
+2U12aa*bb*cos +2U13aa*cc*cos +2U23bb*cc*cos] 
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Table B.15. Positional Parameters for Hydrogens in Compound 2.44 trimer 

             Atom x y z Uiso, Å
2
 

H3 0.5973 0.6816 0.1418 0.020 

H5 0.6530 0.5217 0.3569 0.021 

H8a 0.7935 0.8875 0.1654 0.031 

H8b 0.8134 0.7926 0.1638 0.031 

H8c 0.8245 0.8408 0.2614 0.031 

H9a 0.6807 0.8860 0.3394 0.039 

H9b 0.5780 0.8779 0.2845 0.039 

H9c 0.6525 0.9401 0.2483 0.039 

H10a 0.6298 0.8821 0.0905 0.037 

H10b 0.5588 0.8136 0.1197 0.037 

H10c 0.6511 0.7892 0.0703 0.037 

H12a 0.7145 0.6608 0.6300 0.041 

H12b 0.6254 0.6725 0.5544 0.041 

H12c 0.7148 0.7307 0.5527 0.041 

H13a 0.8714 0.6018 0.5742 0.041 

H13b 0.8712 0.6739 0.4997 0.041 

H13c 0.8760 0.5823 0.4649 0.041 

H14a 0.7398 0.4885 0.4863 0.033 

H14b 0.6411 0.5229 0.5140 0.033 

H14c 0.7299 0.5193 0.5913 0.033 

H21a 0.6777 0.4716 -0.0840 0.031 

H21b 0.6227 0.3879 -0.1002 0.031 

H21c 0.7213 0.3908 -0.0366 0.031 

H22a 0.3909 0.4695 0.2683 0.031 

H22b 0.4679 0.5345 0.3074 0.031 

H22c 0.4812 0.4415 0.3355 0.031 

H24 0.2988 0.3770 0.1149 0.021 

H28 0.5312 0.2551 0.2273 0.022 

H30a 0.1457 0.3960 0.1379 0.040 

H30b 0.0584 0.3540 0.0783 0.040 

H30c 0.1581 0.3602 0.0356 0.040 

H31a 0.1162 0.3062 0.2707 0.039 

H31b 0.1181 0.2101 0.2604 0.039 

H31c 0.0327 0.2608 0.2089 0.039 

H32a 0.0557 0.2070 0.0474 0.043 

H32b 0.1386 0.1491 0.0905 0.043 

H32c 0.1568 0.2102 0.0073 0.043 

H34a 0.4542 0.0476 0.4065 0.045 

H34b 0.3528 0.0814 0.3675 0.045 

H34c 0.4302 0.1412 0.4175 0.045 

H35a 0.5946 0.1310 0.2377 0.037 

H35b 0.5951 0.0722 0.3267 0.037 

H35c 0.5823 0.1674 0.3397 0.037 
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H36a 0.4631 0.0494 0.1504 0.044 

H36b 0.3708 0.0278 0.2011 0.044 

H36c 0.4704 -0.0103 0.2389 0.044 

H1 0.8024 0.7528 0.4415 0.038 

H2 0.7164 0.5893 0.1069 0.030 

H3a 0.4848 0.2835 0.0278 0.031 

H4 0.2000 0.1358 0.2175 0.035 

 

Table B.16. Refined Thermal Parameters (U's) for Compound 2.44 trimer 

  Atom U11 U22 U33 U23 U13 U12 

C1 0.0177(6) 0.0132(5) 0.0179(6) -0.0032(4) 0.0003(5) -0.0026(4) 

C2 0.0135(5) 0.0113(5) 0.0190(6) 0.0006(4) 0.0014(4) -0.0005(4) 

C3 0.0154(6) 0.0148(5) 0.0153(5) 0.0011(4) -0.0001(4) -0.0005(4) 

C4 0.0155(6) 0.0136(5) 0.0160(6) -0.0015(4) 0.0019(4) -0.0027(4) 

C5 0.0200(6) 0.0117(5) 0.0164(6) 0.0005(4) 0.0025(5) -0.0020(4) 

C6 0.0179(6) 0.0144(5) 0.0146(5) -0.0008(4) 0.0012(4) -0.0005(4) 

C7 0.0157(6) 0.0111(5) 0.0234(6) 0.0025(4) -0.0021(5) -0.0015(4) 

C8 0.0180(6) 0.0171(6) 0.0273(7) 0.0042(5) -0.0003(5) -0.0032(5) 

C9 0.0241(7) 0.0135(6) 0.0396(8) -0.0007(5) 0.0022(6) 0.0021(5) 

C10 0.0250(7) 0.0168(6) 0.0303(7) 0.0084(5) -0.0088(6) -0.0055(5) 

C11 0.0242(6) 0.0171(6) 0.0143(6) 0.0003(4) -0.0005(5) -0.0035(5) 

C12 0.0412(8) 0.0231(7) 0.0175(6) -0.0040(5) 0.0034(6) -0.0030(6) 

C13 0.0263(7) 0.0311(7) 0.0243(7) 0.0068(6) -0.0037(5) -0.0065(6) 

C14 0.0290(7) 0.0197(6) 0.0162(6) 0.0033(5) 0.0001(5) -0.0039(5) 

C15 0.0160(6) 0.0119(5) 0.0143(5) -0.0001(4) -0.0006(4) -0.0008(4) 

C16 0.0139(5) 0.0140(5) 0.0150(5) 0.0029(4) -0.0003(4) -0.0010(4) 

C17 0.0155(6) 0.0147(5) 0.0143(5) 0.0008(4) 0.0009(4) 0.0030(4) 

C18 0.0142(5) 0.0113(5) 0.0126(5) 0.0002(4) -0.0034(4) 0.0017(4) 

C19 0.0134(5) 0.0118(5) 0.0164(6) 0.0016(4) -0.0009(4) -0.0002(4) 

C20 0.0150(6) 0.0131(5) 0.0152(5) 0.0011(4) 0.0013(4) 0.0005(4) 

C21 0.0245(7) 0.0196(6) 0.0199(6) 0.0016(5) 0.0074(5) 0.0021(5) 

C22 0.0234(6) 0.0188(6) 0.0204(6) -0.0036(5) 0.0082(5) -0.0049(5) 

C23 0.0171(6) 0.0124(5) 0.0151(5) -0.0017(4) 0.0011(4) -0.0023(4) 

C24 0.0174(6) 0.0136(5) 0.0154(6) 0.0008(4) 0.0008(4) 0.0005(4) 

C25 0.0134(5) 0.0155(5) 0.0145(5) -0.0014(4) 0.0010(4) -0.0002(4) 

C26 0.0157(6) 0.0131(5) 0.0187(6) 0.0000(4) 0.0027(4) -0.0024(4) 

C27 0.0170(6) 0.0132(5) 0.0179(6) 0.0002(4) 0.0005(5) -0.0001(4) 

C28 0.0136(6) 0.0158(5) 0.0201(6) -0.0006(5) -0.0004(4) -0.0014(4) 

C29 0.0131(6) 0.0189(6) 0.0183(6) 0.0008(5) 0.0001(4) -0.0002(4) 

C30 0.0166(6) 0.0271(7) 0.0345(8) 0.0100(6) -0.0022(5) 0.0020(5) 

C31 0.0185(6) 0.0338(7) 0.0264(7) 0.0047(6) 0.0069(5) 0.0037(5) 

C32 0.0211(7) 0.0327(7) 0.0303(7) -0.0077(6) -0.0037(6) -0.0040(6) 

C33 0.0158(6) 0.0136(5) 0.0292(7) 0.0029(5) -0.0007(5) 0.0002(4) 

C34 0.0258(7) 0.0275(7) 0.0358(8) 0.0140(6) 0.0016(6) 0.0018(6) 

C35 0.0183(6) 0.0178(6) 0.0363(8) 0.0052(5) -0.0032(5) 0.0010(5) 
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C36 0.0242(7) 0.0156(6) 0.0476(9) -0.0040(6) -0.0038(6) 0.0018(5) 

O1 0.0308(5) 0.0162(4) 0.0263(5) -0.0031(4) -0.0102(4) -0.0055(4) 

O2 0.0210(5) 0.0202(4) 0.0205(5) -0.0020(3) 0.0059(4) -0.0073(4) 

O3 0.0272(5) 0.0152(4) 0.0189(4) -0.0051(3) 0.0028(4) -0.0043(3) 

O4 0.0144(4) 0.0162(4) 0.0395(6) 0.0068(4) 0.0014(4) -0.0037(3) 

The form of the anisotropic displacement parameter is: 

exp[-2

 (a*

2
U11h

2
+b*

2
U22k

2
+c*

2
U33l

2
+2b*c*U23kl+2a*c*U13hl+2a*b*U12hk)] 

 

  Table B.17. Bond Distances in Compound 2.44 trimer, Å 

C1-O1  1.3721(14) C1-C2  1.4082(17) C1-C6  1.4107(16) 

C2-C3  1.3970(16) C2-C7  1.5430(16) C3-C4  1.3954(16) 

C4-C5  1.3940(17) C4-C15  1.4957(16) C5-C6  1.3885(16) 

C6-C11  1.5423(17) C7-C8  1.5357(17) C7-C9  1.5369(18) 

C7-C10  1.5380(18) C11-C13  1.5384(19) C11-C14  1.5384(17) 

C11-C12  1.5452(18) C15-C20  1.4039(16) C15-C16  1.4072(17) 

C16-O2  1.3739(14) C16-C17  1.3905(16) C17-C18  1.3919(16) 

C17-C21  1.5049(17) C18-O3  1.3799(14) C18-C19  1.3935(17) 

C19-C20  1.4024(16) C19-C23  1.5009(16) C20-C22  1.5127(16) 

C23-C24  1.3883(17) C23-C28  1.3974(17) C24-C25  1.4005(16) 

C25-C26  1.4089(16) C25-C29  1.5430(16) C26-O4  1.3787(14) 

C26-C27  1.4075(17) C27-C28  1.3885(16) C27-C33  1.5404(16) 

C29-C30  1.5327(18) C29-C31  1.5416(18) C29-C32  1.5422(18) 

C33-C35  1.5360(18) C33-C34  1.539(2) C33-C36  1.5407(18) 

 

Table B.18. Bond Angles in Compound 2.44 trimer, ° 

O1-C1-C2 117.36(10) O1-C1-C6 120.40(11) C2-C1-C6 122.23(11) 

C3-C2-C1 117.08(10) C3-C2-C7 121.03(11) C1-C2-C7 121.83(10) 

C4-C3-C2 122.55(11) C5-C4-C3 117.78(11) C5-C4-C15 120.17(10) 

C3-C4-C15 121.81(11) C6-C5-C4 122.85(11) C5-C6-C1 117.14(11) 

C5-C6-C11 120.54(10) C1-C6-C11 122.31(10) C8-C7-C9 109.21(10) 

C8-C7-C10 107.47(11) C9-C7-C10 107.26(11) C8-C7-C2 109.48(10) 

C9-C7-C2 111.99(10) C10-C7-C2 111.31(10) C13-C11-C14 106.70(11) 

C13-C11-C6 110.94(10) C14-C11-C6 111.28(10) C13-C11-C12 111.17(11) 

C14-C11-C12 106.48(11) C6-C11-C12 110.13(11) C20-C15-C16 118.57(10) 

C20-C15-C4 123.22(11) C16-C15-C4 117.89(10) O2-C16-C17 115.49(10) 

O2-C16-C15 121.65(10) C17-C16-C15 122.84(11) C16-C17-C18 116.55(11) 

C16-C17-C21 121.84(11) C18-C17-C21 121.54(11) O3-C18-C17 116.06(10) 

O3-C18-C19 120.79(10) C17-C18-C19 123.12(11) C18-C19-C20 118.94(11) 

C18-C19-C23 117.26(10) C20-C19-C23 123.55(11) C19-C20-C15 119.91(11) 

C19-C20-C22 118.72(10) C15-C20-C22 121.36(11) C24-C23-C28 118.35(11) 

C24-C23-C19 123.37(10) C28-C23-C19 118.13(11) C23-C24-C25 122.18(11) 

C24-C25-C26 117.12(11) C24-C25-C29 120.93(10) C26-C25-C29 121.94(10) 
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O4-C26-C27 115.81(10) O4-C26-C25 121.53(11) C27-C26-C25 122.66(11) 

C28-C27-C26 116.97(11) C28-C27-C33 120.70(11) C26-C27-C33 122.31(10) 

C27-C28-C23 122.71(11) C30-C29-C31 106.07(11) C30-C29-C32 106.94(11) 

C31-C29-C32 110.31(11) C30-C29-C25 111.31(10) C31-C29-C25 111.28(10) 

C32-C29-C25 110.74(10) C35-C33-C34 106.91(11) C35-C33-C27 111.89(10) 

C34-C33-C27 110.52(11) C35-C33-C36 107.47(11) C34-C33-C36 110.32(11) 

C27-C33-C36 109.66(11)     
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B.4 X-Ray Structure Determination of Compound 2.51 

             

Compound 8035, C18H16O2, crystallizes in the orthorhombic space group Pbca 

(systematic absences hk0:  h=odd, 0kl:  k=odd, and h0l:  l=odd) with a=11.3975(3)Å, 

b=8.0182(2)Å, c=28.4322(8)Å, V=2598.35(12)Å3, Z=8, and dcalc=1.351 g/cm3 . X-ray 

intensity data were collected on a Bruker APEXII CCD area detector employing graphite-

monochromated Mo-K radiation (=0.71073 Å) at a temperature of 100(1)K. 

Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with 

exposures of 10 seconds. A total of 2522 frames were collected with a crystal to detector 

distance of 46.8 mm, rotation widths of 0.5° and exposures of 5 seconds:  

scan type     frames 

 -18.00 326.91 14.40 32.61 727 

 -28.00 323.98 127.55 -99.10 113 

 17.00 7.21 5.42 -71.55 262 

 22.00 341.63 35.87 25.13 681 

 24.50 357.68 31.84 64.29 739 

 Rotation frames were integrated using SAINT
111

, producing a listing of 

unaveraged F2 and (F2) values which were then passed to the SHELXTL
112

 program 

package for further processing and structure solution. A total of 38341 reflections were 

measured over the ranges 1.43  25.42°, -13  h  13, -9  k  9, -34  l  34 

yielding 2390 unique reflections (Rint = 0.0329). The intensity data were corrected for 

Lorentz and polarization effects and for absorption using SADABS
113

 (minimum and 
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maximum transmission 0.6571, 0.7452). 

The structure was solved by direct methods (SHELXS-97
114

). Refinement was by 

full-matrix least squares based on F2 using SHELXL-97.
 114

 All reflections were used 

during refinement. The weighting scheme used was w=1/[2(Fo
2 )+ (0.0464P)2 + 

1.4305P] where P = (Fo
 2 + 2Fc

2)/3. Non-hydrogen atoms were refined anisotropically 

and hydrogen atoms were refined using a riding model.  Refinement converged to 

R1=0.0340 and wR2=0.0874 for 2115 observed reflections for which F > 4(F) and 

R1=0.0400 and wR2=0.0933 and GOF =1.050 for all 2390 unique, non-zero reflections 

and 186 variables.
115 The maximum  in the final cycle of least squares was 0.000 and 

the two most prominent peaks in the final difference Fourier were +0.197 and -0.207 

e/Å3. 

Table B.19 lists cell information, data collection parameters, and refinement data. 

Final positional and equivalent isotropic thermal parameters are given in Tables B.20 and 

B.21.  Anisotropic thermal parameters are in Table B.22.  Tables B.23 and B.24 list 

bond distances and bond angles. Figure B.6 is an ORTEP
116

 representation of the 

molecule with 50% probability thermal ellipsoids displayed. 
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Figure B.6. ORTEP drawing of the title compound with 50% probability thermal 

ellipsoids 



 361 

Table B.19.  Summary of Structure Determination of Compound 2.51 

Empirical formula  C18H16O2 

Formula weight  264.31 

Temperature  100(1) K 

Wavelength  0.71073 Å 

Crystal system  orthorhombic 

Space group  Pbca  

Cell constants:   

a  11.3975(3) Å 

b  8.0182(2) Å 

c  28.4322(8) Å 

Volume 2598.35(12) Å3 

Z 8 

Density (calculated) 1.351 Mg/m3 

Absorption coefficient 0.087 mm-1 

F(000) 1120 

Crystal size 0.42 x 0.28 x 0.04 mm3 

Theta range for data collection 1.43 to 25.42° 

Index ranges -13  h  13, -9  k  9, -34  l  34 

Reflections collected 38341 

Independent reflections 2390 [R(int) = 0.0329] 

Completeness to theta = 25.42° 99.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7452 and 0.6571 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2390 / 0 / 186 

Goodness-of-fit on F2 1.050 

Final R indices [I>2sigma(I)] R1 = 0.0340, wR2 = 0.0874 

R indices (all data) R1 = 0.0400, wR2 = 0.0933 

Largest diff. peak and hole 0.197 and -0.207 e.Å-3 
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Table B.20. Refined Positional Parameters for Compound 2.51 

Atom x y z Ueq, Å
2
 

C1 0.56206(11) 0.31207(16) 0.17142(4) 0.0145(3) 

C2 0.48677(12) 0.20921(16) 0.19844(4) 0.0169(3) 

C3 0.51792(12) 0.15542(17) 0.24259(4) 0.0198(3) 

C4 0.62668(12) 0.20076(17) 0.26214(4) 0.0203(3) 

C5 0.70231(12) 0.29854(17) 0.23704(4) 0.0183(3) 

C6 0.67278(11) 0.35601(16) 0.19131(4) 0.0153(3) 

C7 0.75195(12) 0.45478(16) 0.16514(4) 0.0169(3) 

C8 0.72254(11) 0.51109(16) 0.12147(4) 0.0164(3) 

C9 0.61345(11) 0.46739(16) 0.10154(4) 0.0146(3) 

C10 0.53322(11) 0.36876(16) 0.12489(4) 0.0140(3) 

C11 0.42298(11) 0.31571(16) 0.10081(4) 0.0144(3) 

C12 0.31094(11) 0.34590(16) 0.11850(4) 0.0151(3) 

C13 0.20999(11) 0.29254(16) 0.09539(4) 0.0148(3) 

C14 0.22391(11) 0.20691(16) 0.05278(4) 0.0142(3) 

C15 0.33406(11) 0.17806(15) 0.03328(4) 0.0148(3) 

C16 0.43192(11) 0.23211(16) 0.05787(4) 0.0148(3) 

C17 0.08952(11) 0.32431(17) 0.11499(4) 0.0182(3) 

C18 0.34590(11) 0.09156(17) -0.01346(4) 0.0174(3) 

O1 0.59374(8) 0.52945(11) 0.05685(3) 0.0161(2) 

O2 0.12306(8) 0.15473(11) 0.03020(3) 0.0168(2) 

Ueq=
1
/3[U11(aa*)

2
+U22(bb*)

2
+U33(cc*)

2
+2U12aa*bb*cos +2U13aa*cc*cos +2U23bb*cc*cos] 

 

Table B.21. Positional Parameters for Hydrogens in Compound 2.51 

Atom x y z Uiso, Å
2
 

H2 0.4147 0.1774 0.1860 0.022 

H3 0.4667 0.0885 0.2597 0.026 

H4 0.6471 0.1643 0.2921 0.027 

H5 0.7742 0.3279 0.2501 0.024 

H7 0.8248 0.4816 0.1778 0.022 

H8 0.7744 0.5783 0.1048 0.022 

H12 0.3033 0.4037 0.1467 0.020 

H16 0.5060 0.2120 0.0454 0.020 

H17a 0.0956 0.3941 0.1423 0.027 

H17b 0.0538 0.2202 0.1235 0.027 

H17c 0.0423 0.3789 0.0917 0.027 

H18a 0.4274 0.0827 -0.0216 0.026 

H18b 0.3056 0.1547 -0.0371 0.026 

H18c 0.3123 -0.0180 -0.0114 0.026 

H1 0.5237 0.5495 0.0536 0.024 

H2a 0.1407 0.1007 0.0068 0.025 
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Table B.22.  Refined Thermal Parameters (U's) for Compound 2.51 

Atom U11 U22 U33 U23 U13 U12 

C1 0.0184(6) 0.0144(6) 0.0106(6) -0.0030(5) 0.0009(5) 0.0032(5) 

C2 0.0192(6) 0.0186(7) 0.0128(6) -0.0020(5) -0.0002(5) 0.0012(5) 

C3 0.0242(7) 0.0216(7) 0.0137(6) 0.0017(5) 0.0043(5) 0.0026(6) 

C4 0.0292(7) 0.0229(7) 0.0087(6) 0.0005(5) -0.0014(5) 0.0057(6) 

C5 0.0214(7) 0.0213(7) 0.0121(6) -0.0030(5) -0.0034(5) 0.0040(5) 

C6 0.0199(6) 0.0149(6) 0.0112(6) -0.0038(5) -0.0005(5) 0.0037(5) 

C7 0.0173(6) 0.0190(7) 0.0144(6) -0.0042(5) -0.0024(5) 0.0004(5) 

C8 0.0184(7) 0.0172(6) 0.0135(6) -0.0017(5) 0.0023(5) -0.0008(5) 

C9 0.0200(6) 0.0155(6) 0.0082(6) -0.0015(5) 0.0003(5) 0.0036(5) 

C10 0.0164(6) 0.0150(6) 0.0107(6) -0.0027(5) 0.0002(5) 0.0027(5) 

C11 0.0193(7) 0.0140(6) 0.0099(6) 0.0028(5) -0.0013(5) -0.0003(5) 

C12 0.0218(7) 0.0155(6) 0.0080(5) 0.0000(5) -0.0001(5) -0.0001(5) 

C13 0.0193(6) 0.0145(6) 0.0107(6) 0.0029(5) 0.0003(5) 0.0000(5) 

C14 0.0176(6) 0.0152(6) 0.0100(5) 0.0033(5) -0.0028(5) -0.0018(5) 

C15 0.0208(6) 0.0136(6) 0.0100(6) 0.0026(5) -0.0002(5) -0.0007(5) 

C16 0.0171(6) 0.0156(6) 0.0116(6) 0.0017(5) 0.0014(5) 0.0000(5) 

C17 0.0194(7) 0.0229(7) 0.0122(6) -0.0013(5) -0.0003(5) 0.0005(5) 

C18 0.0205(6) 0.0205(7) 0.0113(6) -0.0015(5) 0.0000(5) -0.0013(5) 

O1 0.0168(4) 0.0217(5) 0.0099(4) 0.0025(4) -0.0001(3) 0.0010(4) 

O2 0.0177(5) 0.0233(5) 0.0094(4) -0.0022(4) -0.0010(3) -0.0023(4) 

The form of the anisotropic displacement parameter is: 

exp[-2

 (a*

2
U11h

2
+b*

2
U22k

2
+c*

2
U33l

2
+2b*c*U23kl+2a*c*U13hl+2a*b*U12hk)] 

 

  Table B.23. Bond Distances in Compound 2.51, Å 

C1-C2 1.4167(18) C1-C6 1.4270(18) C1-C10 1.4369(17) 

C2-C3 1.3741(18) C3-C4 1.406(2) C4-C5 1.3663(19) 

C5-C6 1.4200(17) C6-C7 1.4123(18) C7-C8 1.3633(17) 

C8-C9 1.4105(18) C9-C10 1.3792(18) C9-O1 1.3829(15) 

C10-C11 1.4928(17) C11-C12 1.3935(18) C11-C16 1.3967(17) 

C12-C13 1.3924(17) C13-C14 1.4014(17) C13-C17 1.5036(17) 

C14-O2 1.3815(15) C14-C15 1.3918(18) C15-C16 1.3858(17) 

C15-C18 1.5050(17)     
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Table B.24. Bond Angles in Compound 2.51, ° 

C2-C1-C6 117.68(11) C2-C1-C10 123.02(12) C6-C1-C10 119.28(11) 

C3-C2-C1 121.45(12) C2-C3-C4 120.51(12) C5-C4-C3 119.87(12) 

C4-C5-C6 120.99(12) C7-C6-C5 120.85(12) C7-C6-C1 119.65(11) 

C5-C6-C1 119.50(12) C8-C7-C6 120.56(12) C7-C8-C9 120.02(12) 

C10-C9-O1 122.75(11) C10-C9-C8 122.24(11) O1-C9-C8 115.01(11) 

C9-C10-C1 118.22(11) C9-C10-C11 120.04(11) C1-C10-C11 121.64(11) 

C12-C11-C16 117.75(11) C12-C11-C10 123.80(11) C16-C11-C10 118.44(11) 

C13-C12-C11 122.25(11) C12-C13-C14 117.70(11) C12-C13-C17 121.85(11) 

C14-C13-C17 120.45(11) O2-C14-C15 121.00(11) O2-C14-C13 117.12(11) 

C15-C14-C13 121.87(11) C16-C15-C14 118.22(11) C16-C15-C18 121.16(11) 

C14-C15-C18 120.62(11) C15-C16-C11 122.17(12)   
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B.5 X-Ray Structure Determination of Compound Cr-Salen-Cy 

 

Compound Cr-Salen-Cy, C80H116N8O4Cl2Cr2, crystallizes in the monoclinic space 

group P21/c (systematic absences 0k0: k=odd and h0l: l=odd) with a=19.9990(6)Å, 

b=15.4397(5)Å, c=27.2127(8)Å, =106.446(2)°, V=8058.9(4)Å3, Z=4, and dcalc=1.178 

g/cm3 . X-ray intensity data were collected on a Bruker APEXII CCD area detector 

employing graphite-monochromated Mo-K radiation (=0.71073 Å) at a temperature of 

100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation 

frames with exposures of 10 seconds. A total of 2767 frames were collected with a crystal 

to detector distance of 37.4 mm, rotation widths of 0.5° and exposures of 10 seconds:  

scan type     frames 

 -23.00 315.83 12.48 28.88 739 

 -15.50 340.80 341.11 -63.64 99 

 24.50 14.22 11.23 -20.60 107 

 27.00 276.67 5.00 57.63 227 

 19.50 59.55 348.71 -26.26 739 

 -23.00 334.21 38.95 73.66 739 

 17.00 321.08 318.36 83.36 117 

 Rotation frames were integrated using SAINT
111

, producing a listing of 

unaveraged F2 and  (F2) values which were then passed to the SHELXTL
112

 program 
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package for further processing and structure solution. A total of 213237 reflections were 

measured over the ranges 1.53  27.58°, -26  h  26, -20  k  20, -35  l  35 

yielding 18559 unique reflections (Rint = 0.0371). The intensity data were corrected for 

Lorentz and polarization effects and for absorption using SADABS
113

 (minimum and 

maximum transmission 0.6640, 0.7456). 

The structure was solved by direct methods (SHELXS-97
114

). Refinement was by 

full-matrix least squares based on F2 using SHELXL-97.
114

 All reflections were used 

during refinement. The weighting scheme used was w=1/[2(Fo
2 )+ (0.0535P)2 + 

7.9203P] where P = (Fo
 2 + 2Fc

2)/3. Non-hydrogen atoms were refined anisotropically 

and hydrogen atoms were refined using a riding model.  Refinement converged to 

R1=0.0406 and wR2=0.1042 for 14928 observed reflections for which F > 4 (F) and 

R1=0.0557 and wR2=0.1166 and GOF =1.019 for all 18559 unique, non-zero reflections 

and 926 variables.
115

 The maximum  in the final cycle of least squares was 0.002 and 

the two most prominent peaks in the final difference Fourier were +1.538 and -0.767 

e/Å3. 

Table B.25 lists cell information, data collection parameters, and refinement data. 

Final positional and equivalent isotropic thermal parameters are given in Tables B.26 and 

B.27.  Anisotropic thermal parameters are in Table B.28.  Tables B.29 and B.30 list 

bond distances and bond angles.  Figures B.7 and B.8 are ORTEP
116 

representations of 

the molecule with 50% probability thermal ellipsoids displayed. 
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Figure B.7. ORTEP drawing of molecule no. 1 of the asymmetric unit with 50% 

probability thermal ellipsoids 

 

 

Figure B.8. ORTEP drawing of molecule no. 2 of the asymmetric unit with 50% 

probability thermal ellipsoids 
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Table B.25.  Summary of Structure Determination of Compound Cr-Salen-Cy 

Empirical formula  C80H116N8O4Cl2Cr2 

Formula weight  1428.71 

Temperature  100(1) K 

Wavelength  0.71073 Å 

Crystal system  monoclinic 

Space group  P21/c      

Cell constants:   

a  19.9990(6) Å 

b  15.4397(5) Å 

c  27.2127(8) Å 

 106.446(2)° 

Volume 8058.9(4) Å3 

Z 4 

Density (calculated) 1.178 Mg/m3 

Absorption coefficient 0.387 mm-1 

F(000) 3064 

Crystal size 0.35 x 0.15 x 0.12 mm3 

Theta range for data collection 1.53 to 27.58° 

Index ranges -26  h  26, -20  k  20, -35  l  35 

Reflections collected 213237 

Independent reflections 18559 [R(int) = 0.0371] 

Completeness to theta = 27.58° 99.4 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7456 and 0.6640 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 18559 / 137 / 926 

Goodness-of-fit on F2 1.019 

Final R indices [I>2sigma(I)] R1 = 0.0406, wR2 = 0.1042 

R indices (all data) R1 = 0.0557, wR2 = 0.1166 

Largest diff. peak and hole 1.538 and -0.767 e.Å-3 
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Table B.26. Refined Positional Parameters for Compound Cr-Salen-Cy 

        Atom x y z Ueq, Å
2
 

Cr1 0.911864(14) 0.578376(19) 0.236883(10) 0.01432(7) 

Cl1 0.91164(2) 0.42964(3) 0.225102(17) 0.02016(9) 

O1 0.93019(6) 0.56848(9) 0.30945(5) 0.0193(3) 

O2 1.00726(6) 0.59243(8) 0.23657(4) 0.0172(2) 

N1 0.80851(7) 0.57821(10) 0.22736(5) 0.0165(3) 

N2 0.88133(7) 0.59570(10) 0.16045(5) 0.0168(3) 

N3 0.91049(8) 0.71233(11) 0.25062(6) 0.0209(3) 

C1 0.88904(9) 0.58747(12) 0.33794(7) 0.0177(3) 

C2 0.91891(9) 0.60228(12) 0.39160(7) 0.0193(4) 

C3 0.87420(10) 0.61568(13) 0.42152(7) 0.0229(4) 

C4 0.80099(10) 0.61465(13) 0.40270(7) 0.0221(4) 

C5 0.77300(10) 0.60423(12) 0.35088(7) 0.0204(4) 

C6 0.81558(9) 0.59266(12) 0.31778(7) 0.0183(3) 

C7 0.77914(9) 0.58393(11) 0.26379(7) 0.0176(3) 

C8 0.76822(9) 0.56721(13) 0.17292(7) 0.0194(4) 

C9 0.69144(9) 0.59165(14) 0.15867(7) 0.0245(4) 

C10 0.65849(10) 0.57473(16) 0.10120(8) 0.0316(5) 

C11 0.69652(10) 0.62290(17) 0.06830(8) 0.0352(5) 

C12 0.77404(10) 0.60117(15) 0.08355(7) 0.0264(4) 

C13 0.80669(9) 0.61761(13) 0.14056(7) 0.0208(4) 

C14 0.91994(9) 0.58024(12) 0.13105(6) 0.0175(3) 

C15 0.99428(9) 0.56551(12) 0.14758(6) 0.0168(3) 

C16 1.02611(9) 0.54405(12) 0.10943(7) 0.0195(4) 

C17 1.09740(9) 0.53671(12) 0.11945(7) 0.0190(4) 

C18 1.13730(9) 0.55735(12) 0.16957(7) 0.0179(3) 

C19 1.10924(9) 0.57881(11) 0.20927(6) 0.0155(3) 

C20 1.03535(9) 0.57853(11) 0.19919(6) 0.0145(3) 

C21 0.99846(10) 0.60136(14) 0.41453(7) 0.0235(4) 

C22 1.02782(10) 0.51204(14) 0.40721(7) 0.0273(4) 

C23 1.03225(11) 0.67025(16) 0.38874(8) 0.0319(5) 

C24 1.02037(12) 0.62118(17) 0.47218(8) 0.0350(5) 

C25 0.75647(11) 0.62467(14) 0.43999(8) 0.0283(4) 

C26 0.75996(15) 0.71897(17) 0.45830(10) 0.0443(6) 

C27 0.78439(12) 0.56473(17) 0.48639(8) 0.0362(5) 

C28 0.67991(11) 0.60089(17) 0.41437(8) 0.0339(5) 

C29 1.12937(10) 0.50621(14) 0.07739(7) 0.0238(4) 

C30 1.10856(13) 0.41142(15) 0.06426(9) 0.0378(5) 

C31 1.10157(11) 0.56136(15) 0.02887(7) 0.0274(4) 

C32 1.20877(11) 0.51269(19) 0.09406(8) 0.0375(6) 

C33 1.15535(9) 0.60136(13) 0.26325(7) 0.0190(4) 

C34 1.23305(10) 0.60668(15) 0.26555(8) 0.0276(4) 

C35 1.13513(10) 0.68993(13) 0.28003(7) 0.0240(4) 

C36 1.14716(10) 0.53185(14) 0.30161(7) 0.0259(4) 



 370 

C37 0.91865(10) 0.77649(13) 0.27178(8) 0.0236(4) 

C38 0.93133(13) 0.85793(14) 0.29974(10) 0.0381(5) 

Cr1' 0.404130(14) 0.629097(19) 0.747023(10) 0.01493(7) 

Cl1' 0.40295(2) 0.48115(3) 0.733106(18) 0.02259(10) 

O1' 0.42331(6) 0.61763(9) 0.81994(5) 0.0207(3) 

O2' 0.49913(7) 0.64286(9) 0.74604(5) 0.0203(3) 

N1' 0.30097(7) 0.62777(10) 0.73774(5) 0.0155(3) 

N2' 0.37249(8) 0.65065(10) 0.67111(5) 0.0171(3) 

N3' 0.40540(8) 0.76222(11) 0.76014(6) 0.0199(3) 

C1' 0.38214(9) 0.63771(12) 0.84820(6) 0.0176(3) 

C2' 0.41154(9) 0.65446(13) 0.90173(7) 0.0210(4) 

C3' 0.36650(10) 0.67200(14) 0.93092(7) 0.0234(4) 

C4' 0.29324(10) 0.67290(13) 0.91172(7) 0.0212(4) 

C5' 0.26592(9) 0.65811(12) 0.86039(7) 0.0186(4) 

C6' 0.30857(9) 0.64262(12) 0.82791(6) 0.0171(3) 

C7' 0.27191(9) 0.63286(11) 0.77416(6) 0.0158(3) 

C8' 0.26003(9) 0.62016(12) 0.68326(6) 0.0173(3) 

C9' 0.18316(9) 0.64393(13) 0.67066(6) 0.0193(4) 

C10' 0.14960(10) 0.63791(14) 0.61261(7) 0.0237(4) 

C11' 0.18733(10) 0.69624(14) 0.58413(7) 0.0257(4) 

C12' 0.26419(10) 0.67147(14) 0.59578(7) 0.0226(4) 

C13' 0.29844(9) 0.67611(12) 0.65335(6) 0.0178(3) 

C14' 0.41031(10) 0.63764(12) 0.64070(7) 0.0204(4) 

C15' 0.48442(10) 0.62154(12) 0.65646(7) 0.0216(4) 

C16' 0.51565(12) 0.60263(15) 0.61727(8) 0.0309(5) 

C17' 0.58665(12) 0.59573(16) 0.62704(9) 0.0365(5) 

C18' 0.62729(11) 0.61393(14) 0.67720(9) 0.0314(5) 

C19' 0.60034(10) 0.63286(12) 0.71766(8) 0.0231(4) 

C20' 0.52606(9) 0.63173(12) 0.70793(7) 0.0193(4) 

C21' 0.49088(10) 0.65322(15) 0.92575(7) 0.0265(4) 

C22' 0.52087(11) 0.56399(16) 0.91903(8) 0.0328(5) 

C23' 0.52528(11) 0.72288(16) 0.90051(9) 0.0344(5) 

C24' 0.51068(12) 0.6728(2) 0.98335(8) 0.0414(6) 

C25' 0.24811(10) 0.69493(14) 0.94704(7) 0.0238(4) 

C26' 0.25267(12) 0.79270(15) 0.95706(8) 0.0331(5) 

C27' 0.27370(11) 0.64561(15) 0.99806(7) 0.0296(5) 

C28' 0.17162(10) 0.66993(15) 0.92240(7) 0.0278(4) 

C29' 0.62237(12) 0.57191(17) 0.58627(8) 0.0503(7) 

C30' 0.6063(3) 0.47567(17) 0.57337(19) 0.0686(18) 

C31' 0.59296(18) 0.6270(3) 0.53784(12) 0.0323(10) 

C32' 0.70177(12) 0.5849(4) 0.60612(15) 0.0653(16) 

C30" 0.6614(2) 0.4904(2) 0.59639(16) 0.0515(12) 

C31" 0.5583(2) 0.5501(3) 0.52902(16) 0.0557(13) 

C32" 0.6581(2) 0.6479(2) 0.57231(19) 0.0572(13) 

C33' 0.64651(10) 0.65498(14) 0.77138(9) 0.0284(4) 

C34' 0.72449(11) 0.65826(17) 0.77406(11) 0.0428(6) 
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C35' 0.62725(11) 0.74496(15) 0.78699(10) 0.0386(6) 

C36' 0.63781(11) 0.58709(16) 0.81043(9) 0.0333(5) 

C37' 0.42004(10) 0.82991(13) 0.77506(8) 0.0243(4) 

C38' 0.44045(15) 0.91601(16) 0.79436(13) 0.0499(7) 

C39' 0.42858(15) 0.63935(16) 0.14399(9) 0.0420(6) 

C40' 0.50361(15) 0.64456(18) 0.15708(13) 0.0560(8) 

N4' 0.36915(15) 0.63571(17) 0.13473(12) 0.0655(7) 

C39 0.9206(5) 0.8054(5) 0.1341(3) 0.064(2) 

N4 0.8654(5) 0.8068(6) 0.1094(4) 0.132(5) 

C39* 0.9503(4) 0.7855(4) 0.1109(3) 0.0618(18) 

N4* 0.9169(5) 0.7729(4) 0.0708(3) 0.126(4) 

C40 0.99328(15) 0.8007(2) 0.16344(10) 0.0530(7) 

Ueq=
1
/3[U11(aa*)

2
+U22(bb*)

2
+U33(cc*)

2
+2U12 13 23  

 

Table B.27. Positional Parameters for Hydrogens in Compound Cr-Salen-Cy 

  Atom x y z Uiso, Å
2
 

H3 0.8938 0.6260 0.4563 0.030 

H5 0.7248 0.6048 0.3371 0.027 

H7 0.7307 0.5823 0.2547 0.023 

H8 0.7706 0.5057 0.1646 0.026 

H9a 0.6866 0.6524 0.1662 0.033 

H9b 0.6678 0.5575 0.1786 0.033 

H10a 0.6596 0.5131 0.0946 0.042 

H10b 0.6101 0.5929 0.0917 0.042 

H11a 0.6908 0.6848 0.0718 0.047 

H11b 0.6760 0.6077 0.0326 0.047 

H12a 0.7972 0.6365 0.0639 0.035 

H12b 0.7802 0.5408 0.0759 0.035 

H13 0.8017 0.6795 0.1468 0.028 

H14 0.8982 0.5783 0.0960 0.023 

H16 0.9981 0.5344 0.0762 0.026 

H18 1.1856 0.5566 0.1766 0.024 

H22a 1.0071 0.4688 0.4236 0.041 

H22b 1.0774 0.5120 0.4221 0.041 

H22c 1.0173 0.4994 0.3713 0.041 

H23a 1.0204 0.6592 0.3526 0.048 

H23b 1.0820 0.6682 0.4029 0.048 

H23c 1.0155 0.7265 0.3946 0.048 

H24a 1.0035 0.6774 0.4779 0.053 

H24b 1.0703 0.6201 0.4850 0.053 

H24c 1.0010 0.5784 0.4898 0.053 

H26a 0.8073 0.7334 0.4763 0.067 

H26b 0.7311 0.7259 0.4808 0.067 

H26c 0.7437 0.7566 0.4293 0.067 
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H27a 0.7869 0.5065 0.4747 0.054 

H27b 0.7537 0.5668 0.5078 0.054 

H27c 0.8301 0.5835 0.5056 0.054 

H28a 0.6607 0.6399 0.3865 0.051 

H28b 0.6539 0.6053 0.4390 0.051 

H28c 0.6773 0.5426 0.4016 0.051 

H30a 1.1283 0.3757 0.0937 0.057 

H30b 1.1257 0.3929 0.0364 0.057 

H30c 1.0587 0.4064 0.0545 0.057 

H31a 1.0518 0.5559 0.0168 0.041 

H31b 1.1219 0.5417 0.0028 0.041 

H31c 1.1137 0.6210 0.0367 0.041 

H32a 1.2224 0.5716 0.1029 0.056 

H32b 1.2266 0.4943 0.0665 0.056 

H32c 1.2273 0.4762 0.1233 0.056 

H34a 1.2487 0.5511 0.2574 0.041 

H34b 1.2597 0.6234 0.2994 0.041 

H34c 1.2392 0.6488 0.2413 0.041 

H35a 1.1405 0.7334 0.2562 0.036 

H35b 1.1648 0.7034 0.3136 0.036 

H35c 1.0875 0.6885 0.2808 0.036 

H36a 1.0989 0.5266 0.3003 0.039 

H36b 1.1736 0.5483 0.3356 0.039 

H36c 1.1639 0.4773 0.2929 0.039 

H38a 0.9428 0.8466 0.3359 0.057 

H38b 0.8902 0.8933 0.2897 0.057 

H38c 0.9694 0.8877 0.2922 0.057 

H3' 0.3859 0.6840 0.9655 0.031 

H5' 0.2178 0.6583 0.8465 0.025 

H7' 0.2235 0.6300 0.7652 0.021 

H8' 0.2629 0.5598 0.6729 0.023 

H9a' 0.1784 0.7024 0.6823 0.026 

H9b' 0.1597 0.6048 0.6882 0.026 

H10a' 0.1514 0.5785 0.6015 0.031 

H10b' 0.1010 0.6550 0.6046 0.031 

H11a' 0.1836 0.7560 0.5941 0.034 

H11b' 0.1653 0.6916 0.5476 0.034 

H12a' 0.2683 0.6132 0.5836 0.030 

H12b' 0.2876 0.7107 0.5782 0.030 

H13' 0.2954 0.7363 0.6638 0.024 

H14' 0.3881 0.6387 0.6057 0.027 

H16' 0.4874 0.5946 0.5840 0.041 

H18' 0.6755 0.6132 0.6837 0.042 

H22a' 0.5004 0.5209 0.9357 0.049 

H22b' 0.5705 0.5646 0.9340 0.049 

H22c' 0.5105 0.5507 0.8832 0.049 
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H23a' 0.5748 0.7225 0.9161 0.052 

H23b' 0.5069 0.7787 0.9051 0.052 

H23c' 0.5157 0.7108 0.8646 0.052 

H24a' 0.4917 0.6289 1.0005 0.062 

H24b' 0.4922 0.7283 0.9888 0.062 

H24c' 0.5605 0.6736 0.9969 0.062 

H26a' 0.3000 0.8082 0.9742 0.050 

H26b' 0.2234 0.8080 0.9782 0.050 

H26c' 0.2375 0.8231 0.9251 0.050 

H27a' 0.2743 0.5846 0.9914 0.044 

H27b' 0.2429 0.6569 1.0187 0.044 

H27c' 0.3199 0.6645 1.0159 0.044 

H28a' 0.1534 0.7030 0.8916 0.042 

H28b' 0.1450 0.6819 0.9459 0.042 

H28c' 0.1687 0.6093 0.9143 0.042 

H30a' 0.6273 0.4582 0.5473 0.103 

H30b' 0.5568 0.4675 0.5612 0.103 

H30c' 0.6248 0.4413 0.6036 0.103 

H31a' 0.6152 0.6108 0.5123 0.048 

H31b' 0.6017 0.6872 0.5461 0.048 

H31c' 0.5436 0.6175 0.5249 0.048 

H32a' 0.7229 0.5694 0.5797 0.098 

H32b' 0.7203 0.5489 0.6356 0.098 

H32c' 0.7117 0.6445 0.6154 0.098 

H30a" 0.6323 0.4458 0.6039 0.077 

H30b" 0.7019 0.4977 0.6251 0.077 

H30c" 0.6756 0.4743 0.5668 0.077 

H31a" 0.5290 0.6000 0.5190 0.084 

H31b" 0.5306 0.5018 0.5339 0.084 

H31c" 0.5801 0.5365 0.5028 0.084 

H32a" 0.6268 0.6964 0.5653 0.086 

H32b" 0.6726 0.6347 0.5424 0.086 

H32c" 0.6983 0.6619 0.6002 0.086 

H34a' 0.7392 0.6023 0.7658 0.064 

H34b' 0.7512 0.6742 0.8080 0.064 

H34c' 0.7316 0.7003 0.7500 0.064 

H35a' 0.6337 0.7872 0.7629 0.058 

H35b' 0.6566 0.7589 0.8206 0.058 

H35c' 0.5794 0.7451 0.7873 0.058 

H36a' 0.5894 0.5824 0.8090 0.050 

H36b' 0.6642 0.6044 0.8442 0.050 

H36c' 0.6544 0.5320 0.8024 0.050 

H38a' 0.4582 0.9141 0.8310 0.075 

H38b' 0.4007 0.9537 0.7849 0.075 

H38c' 0.4759 0.9374 0.7800 0.075 

H40a 0.5199 0.6878 0.1831 0.084 
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H40b 0.5174 0.6599 0.1272 0.084 

H40c 0.5234 0.5895 0.1697 0.084 

H40a 1.0010 0.7492 0.1841 0.079 

H40b 1.0051 0.8506 0.1852 0.079 

H40c 1.0219 0.7992 0.1405 0.079 

H40a* 1.0084 0.8600 0.1670 0.079 

H40b* 1.0332 0.7633 0.1709 0.079 

H40c* 0.9664 0.7889 0.1868 0.079 

 

Table B.28.   Refined Thermal Parameters (U's) for Compound Cr-Salen-Cy 

  Atom U11 U22 U33 U23 U13 U12 

Cr1 0.01079(13) 0.01855(15) 0.01355(13) 0.00100(10) 0.00332(10) -0.00033(10) 

Cl1 0.0164(2) 0.0186(2) 0.0248(2) 0.00217(16) 0.00481(16) 0.00038(16) 

O1 0.0144(6) 0.0290(7) 0.0150(6) 0.0016(5) 0.0051(5) 0.0007(5) 

O2 0.0131(6) 0.0243(7) 0.0145(5) -0.0012(5) 0.0046(5) -0.0016(5) 

N1 0.0140(7) 0.0184(7) 0.0166(7) 0.0025(6) 0.0036(5) 0.0004(6) 

N2 0.0133(7) 0.0202(8) 0.0159(7) 0.0026(6) 0.0025(5) -0.0008(6) 

N3 0.0168(7) 0.0223(8) 0.0248(8) 0.0003(6) 0.0080(6) 0.0005(6) 

C1 0.0182(8) 0.0177(9) 0.0188(8) 0.0000(7) 0.0078(7) -0.0016(7) 

C2 0.0198(9) 0.0206(9) 0.0177(8) -0.0007(7) 0.0058(7) -0.0038(7) 

C3 0.0256(10) 0.0260(10) 0.0185(8) -0.0040(7) 0.0085(7) -0.0039(8) 

C4 0.0250(9) 0.0217(9) 0.0235(9) -0.0021(7) 0.0130(8) -0.0001(7) 

C5 0.0181(9) 0.0201(9) 0.0254(9) -0.0001(7) 0.0102(7) 0.0017(7) 

C6 0.0176(8) 0.0198(9) 0.0185(8) -0.0004(7) 0.0071(7) -0.0003(7) 

C7 0.0123(8) 0.0176(9) 0.0228(8) 0.0018(7) 0.0050(7) 0.0007(6) 

C8 0.0136(8) 0.0263(10) 0.0171(8) 0.0037(7) 0.0024(6) 0.0007(7) 

C9 0.0131(8) 0.0355(11) 0.0238(9) 0.0078(8) 0.0032(7) 0.0014(8) 

C10 0.0143(9) 0.0523(14) 0.0254(10) 0.0114(9) 0.0008(7) -0.0004(9) 

C11 0.0170(9) 0.0579(15) 0.0272(10) 0.0161(10) 0.0004(8) 0.0023(9) 

C12 0.0163(9) 0.0432(12) 0.0178(8) 0.0091(8) 0.0015(7) 0.0006(8) 

C13 0.0136(8) 0.0287(10) 0.0193(8) 0.0055(7) 0.0031(7) 0.0013(7) 

C14 0.0161(8) 0.0216(9) 0.0137(7) 0.0024(6) 0.0025(6) -0.0016(7) 

C15 0.0152(8) 0.0194(9) 0.0159(8) 0.0016(6) 0.0048(6) -0.0009(7) 

C16 0.0186(9) 0.0253(10) 0.0143(8) 0.0012(7) 0.0042(7) -0.0007(7) 

C17 0.0184(8) 0.0228(9) 0.0177(8) 0.0027(7) 0.0080(7) 0.0014(7) 

C18 0.0133(8) 0.0208(9) 0.0201(8) 0.0030(7) 0.0057(7) 0.0009(7) 

C19 0.0142(8) 0.0158(8) 0.0157(7) 0.0013(6) 0.0030(6) -0.0013(6) 

C20 0.0147(8) 0.0129(8) 0.0162(8) 0.0010(6) 0.0050(6) -0.0015(6) 

C21 0.0200(9) 0.0331(11) 0.0168(8) -0.0014(7) 0.0039(7) -0.0059(8) 

C22 0.0217(9) 0.0387(12) 0.0198(9) 0.0036(8) 0.0033(7) 0.0024(8) 

C23 0.0248(10) 0.0401(13) 0.0292(10) 0.0003(9) 0.0048(8) -0.0120(9) 

C24 0.0291(11) 0.0531(15) 0.0204(9) -0.0074(9) 0.0030(8) -0.0089(10) 

C25 0.0301(11) 0.0332(11) 0.0278(10) -0.0031(8) 0.0183(8) 0.0013(9) 

C26 0.0558(16) 0.0421(14) 0.0467(14) -0.0143(11) 0.0333(12) -0.0017(12) 

C27 0.0357(12) 0.0529(15) 0.0258(10) 0.0013(10) 0.0181(9) -0.0017(11) 
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C28 0.0292(11) 0.0461(14) 0.0336(11) 0.0011(10) 0.0206(9) 0.0031(10) 

C29 0.0205(9) 0.0343(11) 0.0188(8) 0.0000(8) 0.0093(7) 0.0036(8) 

C30 0.0481(14) 0.0349(13) 0.0366(12) -0.0031(10) 0.0221(11) 0.0084(11) 

C31 0.0246(10) 0.0415(12) 0.0175(8) 0.0006(8) 0.0085(7) -0.0017(9) 

C32 0.0214(10) 0.0701(17) 0.0237(10) 0.0020(10) 0.0109(8) 0.0099(10) 

C33 0.0131(8) 0.0253(10) 0.0174(8) -0.0011(7) 0.0022(6) -0.0012(7) 

C34 0.0150(9) 0.0410(12) 0.0250(9) -0.0049(9) 0.0025(7) -0.0018(8) 

C35 0.0196(9) 0.0271(10) 0.0247(9) -0.0067(8) 0.0052(7) -0.0064(8) 

C36 0.0247(10) 0.0316(11) 0.0189(8) 0.0054(8) 0.0021(7) 0.0019(8) 

C37 0.0198(9) 0.0233(10) 0.0303(10) 0.0023(8) 0.0111(8) 0.0009(7) 

C38 0.0403(13) 0.0225(11) 0.0570(15) -0.0118(10) 0.0228(11) -0.0033(9) 

Cr1'     0.01143(13) 0.01978(15) 0.01420(13) 0.00070(10) 0.00465(10) 0.00076(10) 

Cl1' 0.0182(2) 0.0192(2) 0.0309(2) 0.00290(17) 0.00778(17) 0.00207(16) 

O1' 0.0141(6) 0.0322(8) 0.0164(6) 0.0030(5) 0.0054(5) 0.0030(5) 

O2' 0.0148(6) 0.0264(7) 0.0217(6) -0.0020(5) 0.0084(5) 0.0005(5) 

N1' 0.0143(7) 0.0180(7) 0.0136(6) 0.0018(5) 0.0032(5) 0.0014(6) 

N2' 0.0163(7) 0.0189(8) 0.0169(7) 0.0009(6) 0.0058(6) 0.0004(6) 

N3' 0.0158(7) 0.0237(9) 0.0211(7) -0.0002(6) 0.0067(6) 0.0001(6) 

C1' 0.0150(8) 0.0219(9) 0.0163(8) 0.0042(7) 0.0049(6) 0.0016(7) 

C2' 0.0159(8) 0.0288(10) 0.0170(8) 0.0038(7) 0.0028(7) 0.0015(7) 

C3' 0.0217(9) 0.0339(11) 0.0131(8) 0.0012(7) 0.0025(7) 0.0015(8) 

C4' 0.0201(9) 0.0273(10) 0.0171(8) 0.0040(7) 0.0071(7) 0.0042(7) 

C5' 0.0141(8) 0.0245(9) 0.0178(8) 0.0042(7) 0.0055(6) 0.0035(7) 

C6' 0.0155(8) 0.0217(9) 0.0147(8) 0.0035(6) 0.0051(6) 0.0018(7) 

C7' 0.0120(8) 0.0178(8) 0.0178(8) 0.0032(6) 0.0043(6) 0.0021(6) 

C8' 0.0156(8) 0.0227(9) 0.0127(7) -0.0004(6) 0.0026(6) 0.0000(7) 

C9' 0.0157(8) 0.0263(10) 0.0152(8) 0.0009(7) 0.0030(6) 0.0006(7) 

C10' 0.0175(9) 0.0345(11) 0.0163(8) -0.0001(7) 0.0003(7) -0.0010(8) 

C11' 0.0217(9) 0.0369(11) 0.0149(8) 0.0044(8) -0.0005(7) 0.0013(8) 

C12' 0.0213(9) 0.0323(11) 0.0137(8) 0.0029(7) 0.0041(7) -0.0014(8) 

C13' 0.0158(8) 0.0219(9) 0.0154(8) 0.0019(7) 0.0040(6) 0.0010(7) 

C14' 0.0245(9) 0.0212(9) 0.0171(8) 0.0010(7) 0.0087(7) 0.0002(7) 

C15' 0.0245(9) 0.0199(9) 0.0249(9) 0.0036(7) 0.0144(8) 0.0043(7) 

C16' 0.0385(12) 0.0338(12) 0.0276(10) 0.0075(9) 0.0210(9) 0.0127(9) 

C17' 0.0396(12) 0.0424(13) 0.0387(12) 0.0173(10) 0.0293(10) 0.0202(10) 

C18' 0.0254(10) 0.0309(11) 0.0465(12) 0.0155(9) 0.0244(9) 0.0115(9) 

C19' 0.0188(9) 0.0168(9) 0.0379(11) 0.0066(8) 0.0148(8) 0.0037(7) 

C20' 0.0196(9) 0.0150(8) 0.0272(9) 0.0031(7) 0.0130(7) 0.0018(7) 

C21' 0.0157(9) 0.0427(12) 0.0181(8) 0.0000(8) 0.0000(7) 0.0008(8) 

C22' 0.0203(10) 0.0444(13) 0.0302(10) 0.0073(9) 0.0015(8) 0.0069(9) 

C23' 0.0206(10) 0.0428(13) 0.0369(11) 0.0003(10) 0.0035(9) -0.0069(9) 

C24' 0.0221(10) 0.0738(18) 0.0223(10) -0.0052(11) -0.0037(8) 0.0049(11) 

C25' 0.0235(9) 0.0342(11) 0.0160(8) 0.0038(7) 0.0092(7) 0.0051(8) 

C26' 0.0410(12) 0.0355(12) 0.0285(10) 0.0005(9) 0.0192(9) 0.0034(10) 

C27' 0.0303(11) 0.0436(13) 0.0169(9) 0.0053(8) 0.0099(8) 0.0044(9) 

C28' 0.0237(10) 0.0412(12) 0.0223(9) 0.0049(8) 0.0126(8) 0.0073(9) 
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C29' 0.0482(14) 0.0734(18) 0.0421(13) 0.0145(12) 0.0335(11) 0.0273(13) 

C30' 0.087(3) 0.075(3) 0.051(3) 0.001(3) 0.032(3) 0.043(3) 

C31' 0.0183(18) 0.062(3) 0.0206(18) 0.0114(18) 0.0123(15) 0.0079(19) 

C32' 0.034(2) 0.136(4) 0.034(2) 0.015(3) 0.023(2) 0.033(3) 

C30" 0.071(3) 0.046(2) 0.051(2) -0.0068(19) 0.038(2) 0.013(2) 

C31" 0.061(3) 0.068(3) 0.046(2) -0.003(2) 0.027(2) 0.007(2) 

C32" 0.061(3) 0.062(3) 0.059(3) 0.004(2) 0.033(2) -0.002(2) 

C33' 0.0131(9) 0.0263(11) 0.0466(12) -0.0012(9) 0.0099(8) 0.0011(8) 

C34' 0.0172(10) 0.0415(14) 0.0712(17) 0.0008(12) 0.0147(11) 0.0005(9) 

C35' 0.0213(10) 0.0305(12) 0.0621(15) -0.0129(11) 0.0085(10) -0.0029(9) 

C36' 0.0200(10) 0.0417(13) 0.0365(11) 0.0053(10) 0.0050(9) 0.0053(9) 

C37' 0.0196(9) 0.0245(11) 0.0321(10) 0.0023(8) 0.0123(8) 0.0017(8) 

C38' 0.0506(16) 0.0242(12) 0.086(2) -0.0140(13) 0.0375(15) -0.0119(11) 

C39' 0.0533(16) 0.0316(13) 0.0356(12) -0.0059(10) 0.0035(11) 0.0098(11) 

C40' 0.0490(16) 0.0333(14) 0.077(2) 0.0005(13) 0.0029(15) 0.0065(12) 

N4' 0.0538(16) 0.0491(15) 0.088(2) -0.0126(14) 0.0117(14) 0.0101(12) 

C39 0.076(5) 0.042(4) 0.058(5) 0.029(3) -0.010(4) -0.028(4) 

N4 0.090(6) 0.083(6) 0.162(9) 0.088(6) -0.065(6) -0.050(5) 

C39* 0.061(4) 0.042(3) 0.059(4) 0.020(3) -0.019(3) -0.018(3) 

N4* 0.143(7) 0.071(4) 0.098(5) 0.037(4) -0.069(5) -0.043(4) 

C40 0.0568(17) 0.0549(17) 0.0429(14) 0.0096(12) 0.0071(13) -0.0222(14) 

The form of the anisotropic displacement parameter is: 

exp[-2

 (a*

2
U11h

2
+b*

2
U22k

2
+c*

2
U33l

2
+2b*c*U23kl+2a*c*U13hl+2a*b*U12hk)] 

 

  Table B.29. Bond Distances in Compound Cr-Salen-Cy, Å 

Cr1-O1  1.9097(12) Cr1-O2  1.9224(12) Cr1-N1  2.0091(15) 

Cr1-N2  2.0129(14) Cr1-N3  2.1033(17) Cr1-Cl1  2.3186(5) 

O1-C1  1.314(2) O2-C20  1.312(2) N1-C7  1.290(2) 

N1-C8  1.482(2) N2-C14  1.282(2) N2-C13  1.476(2) 

N3-C37  1.134(3) C1-C6  1.418(2) C1-C2  1.431(2) 

C2-C3  1.385(3) C2-C21  1.536(3) C3-C4  1.408(3) 

C4-C5  1.372(3) C4-C25  1.536(3) C5-C6  1.415(2) 

C6-C7  1.450(2) C8-C9  1.521(2) C8-C13  1.535(2) 

C9-C10  1.538(3) C10-C11  1.523(3) C11-C12  1.524(3) 

C12-C13  1.524(2) C14-C15  1.444(2) C15-C16  1.402(2) 

C15-C20  1.426(2) C16-C17  1.378(2) C17-C18  1.408(2) 

C17-C29  1.535(2) C18-C19  1.391(2) C19-C20  1.425(2) 

C19-C33  1.537(2) C21-C23  1.533(3) C21-C22  1.534(3) 

C21-C24  1.535(3) C25-C26  1.534(3) C25-C28  1.536(3) 

C25-C27  1.537(3) C29-C32  1.526(3) C29-C30  1.536(3) 

C29-C31  1.537(3) C33-C35  1.532(3) C33-C36  1.538(3) 

C33-C34  1.540(2) C37-C38  1.454(3) Cr1'-O2'  1.9195(13) 

Cr1'-O1'  1.9196(12) Cr1'-N1'  2.0063(15) Cr1'-N2'  2.0095(15) 

Cr1'-N3'  2.0850(17) Cr1'-Cl1'  2.3145(5) O1'-C1'  1.313(2) 
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O2'-C20'  1.308(2) N1'-C7'  1.285(2) N1'-C8'  1.482(2) 

N2'-C14'  1.285(2) N2'-C13'  1.475(2) N3'-C37'  1.129(3) 

C1'-C6'  1.420(2) C1'-C2'  1.432(2) C2'-C3'  1.386(3) 

C2'-C21'  1.536(3) C3'-C4'  1.409(3) C4'-C5'  1.367(2) 

C4'-C25'  1.531(2) C5'-C6'  1.412(2) C6'-C7'  1.446(2) 

C8'-C9'  1.522(2) C8'-C13'  1.534(2) C9'-C10'  1.534(2) 

C10'-C11'  1.521(3) C11'-C12'  1.527(3) C12'-C13'  1.523(2) 

C14'-C15'  1.443(3) C15'-C16'  1.411(3) C15'-C20'  1.421(3) 

C16'-C17'  1.373(3) C17'-C18'  1.405(3) C17'-C29'  1.525(3) 

C18'-C19'  1.387(3) C19'-C20'  1.433(2) C19'-C33'  1.531(3) 

C21'-C24'  1.534(3) C21'-C22'  1.534(3) C21'-C23'  1.539(3) 

C25'-C26'  1.532(3) C25'-C28'  1.535(3) C25'-C27'  1.539(3) 

C29'-C30"  1.465(4) C29'-C32"  1.479(4) C29'-C32'  1.5388 

C29'-C31'  1.5388 C29'-C30'  1.5396 C29'-C31"  1.747(4) 

C33'-C35'  1.534(3) C33'-C36'  1.537(3) C33'-C34'  1.541(3) 

C37'-C38'  1.445(3) C39'-N4'  1.144(4) C39'-C40'  1.443(4) 

C39-N4  1.117(10) C39-C40  1.449(9) C39*-N4*  1.122(8) 

C39*-C40  1.465(7)     

 

Table B.30. Bond Angles in Compound Cr-Salen-Cy, ° 

O1-Cr1-O2 96.51(5) O1-Cr1-N1 91.29(6) O2-Cr1-N1 170.26(6) 

O1-Cr1-N2 172.92(6) O2-Cr1-N2 89.52(5) N1-Cr1-N2 82.35(6) 

O1-Cr1-N3 84.44(6) O2-Cr1-N3 87.29(6) N1-Cr1-N3 87.68(6) 

N2-Cr1-N3 92.16(6) O1-Cr1-Cl1 93.21(4) O2-Cr1-Cl1 94.26(4) 

N1-Cr1-Cl1 91.10(5) N2-Cr1-Cl1 90.03(5) N3-Cr1-Cl1 177.33(5) 

C1-O1-Cr1 128.58(11) C20-O2-Cr1 128.95(11) C7-N1-C8 122.60(15) 

C7-N1-Cr1 125.19(12) C8-N1-Cr1 112.17(11) C14-N2-C13 122.64(15) 

C14-N2-Cr1 124.05(12) C13-N2-Cr1 112.89(11) C37-N3-Cr1 160.37(16) 

O1-C1-C6 122.55(16) O1-C1-C2 119.19(16) C6-C1-C2 118.25(16) 

C3-C2-C1 118.12(17) C3-C2-C21 121.99(16) C1-C2-C21 119.88(16) 

C2-C3-C4 124.25(17) C5-C4-C3 117.06(17) C5-C4-C25 123.17(18) 

C3-C4-C25 119.76(17) C4-C5-C6 121.69(17) C5-C6-C1 120.35(16) 

C5-C6-C7 115.87(16) C1-C6-C7 123.74(16) N1-C7-C6 125.27(16) 

N1-C8-C9 116.76(15) N1-C8-C13 107.24(14) C9-C8-C13 111.20(15) 

C8-C9-C10 109.16(16) C11-C10-C9 111.92(18) C10-C11-C12 111.79(17) 

C11-C12-C13 110.49(17) N2-C13-C12 115.62(15) N2-C13-C8 107.01(14) 

C12-C13-C8 111.06(15) N2-C14-C15 125.73(16) C16-C15-C20 120.44(16) 

C16-C15-C14 116.73(15) C20-C15-C14 122.65(16) C17-C16-C15 122.27(16) 

C16-C17-C18 116.34(16) C16-C17-C29 120.25(16) C18-C17-C29 123.40(16) 

C19-C18-C17 124.31(16) C18-C19-C20 118.31(15) C18-C19-C33 122.11(15) 

C20-C19-C33 119.58(15) O2-C20-C19 119.94(15) O2-C20-C15 122.21(15) 

C19-C20-C15 117.83(15) C23-C21-C22 109.26(17) C23-C21-C24 107.12(17) 

C22-C21-C24 107.63(17) C23-C21-C2 110.36(16) C22-C21-C2 110.25(16) 

C24-C21-C2 112.11(16) C26-C25-C4 109.19(17) C26-C25-C28 108.78(19) 
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C4-C25-C28 111.46(17) C26-C25-C27 109.39(19) C4-C25-C27 109.78(17) 

C28-C25-C27 108.21(18) C32-C29-C17 112.10(16) C32-C29-C30 108.80(19) 

C17-C29-C30 108.85(16) C32-C29-C31 108.19(17) C17-C29-C31 110.18(16) 

C30-C29-C31 108.66(17) C35-C33-C19 110.47(15) C35-C33-C36 109.43(15) 

C19-C33-C36 109.89(15) C35-C33-C34 106.79(16) C19-C33-C34 112.12(15) 

C36-C33-C34 108.04(16) N3-C37-C38 178.2(2) O2'-Cr1'-O1' 96.65(5) 

O2'-Cr1'-N1' 170.38(6) O1'-Cr1'-N1' 91.53(6) O2'-Cr1'-N2' 89.55(6) 

O1'-Cr1'-N2' 172.09(6) N1'-Cr1'-N2' 81.89(6) O2'-Cr1'-N3' 85.93(6) 

O1'-Cr1'-N3' 85.69(6) N1'-Cr1'-N3' 89.65(6) N2'-Cr1'-N3' 89.87(6) 

O2'-Cr1'-Cl1' 94.09(4) O1'-Cr1'-Cl1' 93.89(4) N1'-Cr1'-Cl1' 90.39(5) 

N2'-Cr1'-Cl1' 90.55(5) N3'-Cr1'-Cl1' 179.58(4) C1'-O1'-Cr1' 127.50(11) 

C20'-O2'-Cr1' 128.89(12) C7'-N1'-C8' 122.27(15) C7'-N1'-Cr1' 125.13(12) 

C8'-N1'-Cr1' 112.59(10) C14'-N2'-C13' 123.35(15) C14'-N2'-Cr1' 124.38(13) 

C13'-N2'-Cr1' 112.08(10) C37'-N3'-Cr1' 164.39(16) O1'-C1'-C6' 122.51(16) 

O1'-C1'-C2' 119.58(16) C6'-C1'-C2' 117.90(16) C3'-C2'-C1' 118.17(16) 

C3'-C2'-C21' 121.30(16) C1'-C2'-C21' 120.53(16) C2'-C3'-C4' 124.44(17) 

C5'-C4'-C3' 116.74(16) C5'-C4'-C25' 122.83(17) C3'-C4'-C25' 120.33(16) 

C4'-C5'-C6' 122.04(16) C5'-C6'-C1' 120.58(16) C5'-C6'-C7' 115.33(15) 

C1'-C6'-C7' 124.09(16) N1'-C7'-C6' 125.15(16) N1'-C8'-C9' 116.29(14) 

N1'-C8'-C13' 105.57(14) C9'-C8'-C13' 111.73(15) C8'-C9'-C10' 109.67(15) 

C11'-C10'-C9' 110.69(15) C10'-C11'-C12' 111.18(16) C13'-C12'-C11' 109.56(15) 

N2'-C13'-C12' 116.23(15) N2'-C13'-C8' 106.44(14) C12'-C13'-C8' 111.85(15) 

N2'-C14'-C15' 125.28(17) C16'-C15'-C20' 120.44(18) C16'-C15'-C14' 116.63(18) 

C20'-C15'-C14' 122.68(16) C17'-C16'-C15' 121.7(2) C16'-C17'-C18' 117.03(19) 

C16'-C17'-C29' 123.4(2) C18'-C17'-C29' 119.6(2) C19'-C18'-C17' 124.43(19) 

C18'-C19'-C20' 117.78(19) C18'-C19'-C33' 122.71(18) C20'-C19'-C33' 119.51(17) 

O2'-C20'-C15' 122.54(16) O2'-C20'-C19' 119.32(17) C15'-C20'-C19' 118.10(17) 

C24'-C21'-C22' 107.60(18) C24'-C21'-C2' 111.65(17) C22'-C21'-C2' 110.63(17) 

C24'-C21'-C23' 107.42(19) C22'-C21'-C23' 109.58(18) C2'-C21'-C23' 109.88(16) 

C4'-C25'-C26' 108.34(16) C4'-C25'-C28' 111.19(16) C26'-C25'-C28' 109.10(17) 

C4'-C25'-C27' 110.60(16) C26'-C25'-C27' 109.83(17) C28'-C25'-C27' 107.78(16) 

C30"-C29'-C32" 117.3(2) C30"-C29'-C17' 113.9(2) C32"-C29'-C17' 110.9(3) 

C30"-C29'-C32' 66.6(3) C32"-C29'-C32' 57.4(2) C17'-C29'-C32' 111.3(2) 

C30"-C29'-C31' 133.6(2) C32"-C29'-C31' 55.7(2) C17'-C29'-C31' 110.2(2) 

C32'-C29'-C31' 109.6 C30"-C29'-C30' 43.9(2) C32"-C29'-C30' 142.4(3) 

C17'-C29'-C30' 106.8(2) C32'-C29'-C30' 109.5 C31'-C29'-C30' 109.5 

C30"-C29'-C31" 102.7(2) C32"-C29'-C31" 102.1(2) C17'-C29'-C31" 108.6(2) 

C32'-C29'-C31" 139.6(2) C31'-C29'-C31" 48.4(2) C30'-C29'-C31" 63.7(2) 

C19'-C33'-C35' 109.62(17) C19'-C33'-C36' 110.63(17) C35'-C33'-C36' 109.87(19) 

C19'-C33'-C34' 112.40(19) C35'-C33'-C34' 106.69(18) C36'-C33'-C34' 107.51(18) 

N3'-C37'-C38' 178.7(2) N4'-C39'-C40' 178.4(3) N4-C39-C40 176.3(14) 

N4*-C39*-C40 179.0(8) C39-C40-C39* 41.4(4)   
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APPENDIX C:  CHIRAL HPLC CHROMATOGRAMS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1 HPLC chromatogram of compound racemic 1.2 
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Figure C.2 HPLC chromatogram of compound (S)-1.2 

 



 381 

 

 

Figure C.3 HPLC chromatogram of compound racemic 1.17 
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Figure C.4 HPLC chromatogram of compound 1.17 
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Figure C.5 HPLC chromatogram of compound racemic 1.18 
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Figure C.6 HPLC chromatogram of compound 1.18 
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Figure C.7 HPLC chromatogram of compound racemic 1.10 Pdt 
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Figure C.8 HPLC chromatogram of compound 1.10 Pdt 
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Figure C.9 HPLC chromatogram of compound racemic 1.22 
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Figure C.10 HPLC chromatogram of compound 1.22 
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Figure C.11 HPLC chromatogram of compound racemic 1.23 
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Figure C.12 HPLC chromatogram of compound 1.23 
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Figure C.13 HPLC chromatogram of compound racemic 1.28 
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Figure C.14 HPLC chromatogram of compound 1.28 
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Figure C.15 HPLC chromatogram of compound racemic 1.38 
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Figure C.16 HPLC chromatogram of compound 1.38 
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