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Abstract
African great apes are infected with at least six species of P. falciparum-like parasites, including the ancestor of
P. falciparum. Comparative studies of these parasites and P. falciparum (collectively termed the Laverania
subgenus) will provide insight into the evolutionary origins of P. falciparum and identify genetic features that
influence host tropism. Here we show that ape Laverania parasites do not serve as a recurrent source of human
malaria and use novel enrichment techniques to derive near full-length genomes of close and distant relatives
of P. falciparum. Using a combination of single template amplification and deep sequencing, we observe no
evidence of ape Laverania infections in forest dwelling humans in Cameroon. This result supports previous
findings that ape Laverania parasites are host specific and have successfully colonized humans only once. To
understand the determinants of host specificity and identify genetic characteristics unique to P. falciparum, we
develop a novel method for selective enrichment of Plasmodium DNA from sub-microscopically infected
whole blood samples. We use this technique to enrich for Laverania genomic DNA from chimpanzee blood
samples and assemble near full length genomes for both close (P. reichenowi) and distant (P. gaboni) relatives
of P. falciparum. Comparative analyses of these genomes to P. falciparum identify features that are conserved
across the Laverania subgenus, including the expansion of the FIKK kinases and the presence of var-like
multigene families in all Laverania species. Our analyses also identify genetic features that are unique to P.
falciparum, such as a very low within-species diversity and a complex evolutionary history of the essential
invasion genes RH5 and CyRPA. This dissertation lays the groundwork for future comparative analyses of the
Laverania subgenus including population genomic analyses of ape parasites and comparisons of P. falciparum
to its ancestor, P. praefalciparum.
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ABSTRACT 
 

COMPARATIVE GENOMICS OF APE PLASMODIUM PARASITES REVEALS KEY 

EVOLUTIONARY EVENTS LEADING TO HUMAN MALARIA 

 

African great apes are infected with at least six species of P. falciparum-like parasites, 

including the direct ancestor of P. falciparum. Comparative studies of these parasites 

and P. falciparum (collectively termed the Laverania subgenus) will provide insight into 

the evolutionary origins of P. falciparum and identify genetic features that influence host 

tropism. Here we show that ape Laverania parasites do not sperve as a recurrent source 

of human malaria and use novel enrichment techniques to derive near full-length 

genomes of close and distant relatives of P. falciparum. Using a combination of single 

template amplification and deep sequencing, we observe no evidence of ape Laverania 

infections in forest dwelling humans in Cameroon. This result supports previous findings 

that ape Laverania parasites are host specific and have successfully colonized humans 

only once. To understand the determinants of host specificity and identify genetic 

characteristics unique to P. falciparum, we develop a novel method for selective 

enrichment of Plasmodium DNA from sub-microscopically infected whole blood samples. 

We use this technique to enrich for Laverania genomic DNA from chimpanzee blood 

samples and assemble near full length genomes for both close (P. reichenowi) and 

distant (P. gaboni) relatives of P. falciparum. Comparative analyses of these genomes to 

P. falciparum identify features that are conserved across the Laverania subgenus, 

including the expansion of the FIKK kinases and the presence of var-like multigene 

families in all Laverania species. Our analyses also identify genetic features that are 

unique to P. falciparum, such as a very low within-species diversity and a complex 
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evolutionary history of the essential invasion genes RH5 and CyRPA. This dissertation 

lays the groundwork for future comparative analyses of the Laverania subgenus 

including population genomic analyses of ape parasites and comparisons of P. 

falciparum to its ancestor, P. praefalciparum. 
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CHAPTER 1 – Malaria Parasites of the Great Apes 

	

1.1 The Epidemiology and Biology of Malaria 

Malaria, caused by parasites of the genus Plasmodium, is responsible for hundreds of 

millions of cases and over 550,000 deaths each year (1). An estimated 3.3 billion people 

across the globe are at risk of infection (1). The disease has a disproportion burden on 

young children who account for over 78% of total malaria related deaths (1). While the 

majority of malaria related deaths are caused by P. falciparum (2), the predominant 

malaria species in sub-Saharan Africa, studies suggest that P. vivax, the predominant 

species outside of Africa, can also cause severe disease (3). Recently, a third parasite 

has emerged as a public health threat. P. knowlesi, a zoonotic parasite of macaque 

origin, is now known to cause of hundreds of severe malaria cases each year (4, 5). 

The lifecycle of Plasmodium parasites is complex, involving both a vertebrate 

and mosquito host. The parasites, injected into the host by a mosquito vector, initially 

infect hepatocytes before being released into the blood stream. There they infect 

erythrocytes to initiate a cyclic blood stage infection. During this stage, some parasites 

differentiate into male and female gametocytes, which are taken up by a mosquito 

vector. They undergo sexual reproduction in the vector’s midgut and develop into an 

ookinete, which migrates through the midgut wall and becomes an oocyst. Finally, the 

oocyst develops into numerous sporozoites. These travel to the mosquito salivary glands 

to be inoculated into a new vertebrate host. 

While malaria infections in humans have been recognized and treated for 

thousands of years, efforts to decrease the burden of disease have only been partially 

successful. P. falciparum has shown the capacity to become resistant to all known 

antimalarial compounds, including the current first line treatment, artemisinin (6, 7). 
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Recent vaccine trials have shown some promise, however the current best candidate 

yielded only a 55% decrease in clinical malaria during the first year post vaccination (8). 

Thus, novel drug and vaccine development is essential to future malaria control efforts. 

The identification of drug and vaccine targets in malaria has been slowed by a 

number of factors. The Plasmodium proteome is highly divergent from all other 

eukaryotes sequenced to date. Of the 5,777 genes in the 22.6 megabase pair P. 

falciparum genome, 60% do not share sufficient homology to genes in other organisms 

to allow for functional assignment (9). Moreover, genetic manipulation of Plasmodium 

species is difficult and time consuming. Successful transfection of P. falciparum typically 

requires months, and knockdown studies are hindered by the absence of the RNAi 

pathway (10). Studies of P. vivax are nearly impossible, as the parasite cannot be 

cultured in vitro (11). While recent developments in Plasmodium genetics have improved 

the ability to study these parasites, more than 35% of genes of the P. falciparum 

genome remain annotated as unknown function (PlasmoDB). 

 

1.2 Plasmodium Species in African Great Apes 

Plasmodium species in our closest ape relatives were first identified in the early 1900s. 

In 1920, Edward Reichenow described both P. vivax-like and P. falciparum-like parasites 

in chimpanzees and gorillas (12). While it was initially unclear whether these parasites 

represented novel species or were the same as those in humans, they were eventually 

categorized as separate species with chimpanzee and gorilla P. vivax-like parasites 

denoted P. schwetzi and chimpanzee P. falciparum-like parasites denoted P. reichenowi 

(the P. falciparum-like parasites from gorillas were rarely studied outside of the original 

description by Reichenow). Epidemiologic studies showed that these parasites were 
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widespread in Africa, identifying them in apes from Liberia and Sierra Leone in the 

northwest to the lower Republic of Congo in the south and Lake Edward in the east (13). 

 Little data exists on the clinical course of P. schwetzi and P. reichenowi infections 

in great apes. Apes naturally infected with P. schwetzi tended to have low parasitemia, 

and while the parasite burden increased in splenectomized chimpanzees, there was still 

no evidence for clinical symptoms in the few studies that were performed (13). Even less 

data exists for P. reichenowi, although splenectomized chimpanzees with high 

parasitemia infections (360,000-500,000 parasites/cu. mm blood) did have periodic 

fevers of up to 103 °F (14, 15). While these results may indicate that P. reichenowi and 

P. schwetzi are less likely to cause serious clinical disease in their natural hosts, it is 

also possible that the infected chimpanzees had some level of naturally acquired 

immunity, similar to that observed in older humans in malaria endemic areas (16), and 

therefore suffered fewer symptoms than would an infant or naïve host. 

 Given the close evolutionary relationship between chimpanzees and humans, 

and the resemblance of P. reichenowi and P. schwetzi to P. falciparum and P. vivax, 

attempts to infect humans with great ape Plasmodium species were made on multiple 

occasions. P. schwetzi was successfully transferred to humans, both by mosquitoes and 

inoculation with infected chimpanzee blood, and produced symptomatic infections (13). 

Importantly, while P. schwetzi successfully infected multiple volunteers of European 

descent, it did not yield infections in the one African American tested. In humans, P. 

vivax requires the Duffy antigen receptor for chemokines (DARC) to invade red blood 

cells (17). A vast majority of people of West African descent carry a mutation in the 

DARC promoter (the Duffy negative phenotype) which abrogates DARC expression on 

red blood cells, rendering them resistant to P. vivax invasion (18). It is possible that P. 

schwetzi, like P. vivax, requires DARC for red blood cell invasion and was therefore 
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unable to infect this African American volunteer who likely lacked the receptor on his/her 

red blood cells. 

Unlike P. schwetzi, P. reichenowi appears very host specific. Multiple attempts to 

infect humans with the parasite, either by intravenous or subcutaneous injection, failed 

(13). Interestingly, at least some strains of P. falciparum can produce transient 

parasitemia in intact (non-splenectomized) chimpanzees and persistent parasitemia after 

splenectomy (13). Together, these data suggest that, while P. falciparum-like parasites 

are more host specific than those related to P. vivax, this specificity may not be complete 

and is dependent on either the host, the specific parasite strain used, or a combination 

of the two. 

 

1.3 The Origin of Human Malaria 

While numerous studies of great ape Plasmodium species were carried out between the 

1920s and 1970s, the parasites were all but forgotten for the next 40 years. Only a 

single isolate of P. reichenowi has been maintained, through cryopreservation and 

passage in captive splenectomized chimpanzees at the CDC. Phylogenetic analyses 

that included sequences from this isolate confirmed its close relationship to P. falciparum 

and showed that the two formed a clade that is distinct from all other known Plasmodium 

species (19). Given these data, researchers hypothesized that P. falciparum and P. 

reichenowi represented sister lineages that had diverged and co-evolved with their 

respective hosts. 

Historically, two separate hypotheses were proposed for the origin of P. vivax. 

The first, supported by morphological similarities between P. vivax and multiple Asian 

monkey parasites, proposed that human P. vivax was initially transmitted to humans 

from Asian monkeys after early humans had migrated out of Africa (20). The second 
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suggested that P. vivax had originated in Africa, where long-term selective pressures by 

the parasite had led to the emergence of fixation of the Duffy negative phenotype in 

West African populations (21, 22). Later molecular characterizations and phylogenetic 

analyses of human P. vivax indicated that the parasite falls within the radiation of Asian 

monkey Plasmodium species (23). This suggests that P. vivax emerged during or after 

the divergence of the Asian monkey parasites. As Asian monkey Plasmodium species 

are thought to have radiated along with their hosts in Asia (24), these phylogenetic 

analyses supported the hypothesis that P. vivax had originated in Asia. 

In 2009, Prugnolle and colleagues showed Plasmodium DNA could be detected 

in the fecal samples of wild living chimpanzees and gorillas (25). This discovery brought 

renewed life to the studies of great ape Plasmodium. As fecal detection is non-invasive, 

it could be applied to wild living great ape populations where blood sampling would be 

both impractical and unethical. Studies found that P. falciparum-like parasites were 

widespread among all four chimpanzee subspecies and western gorillas (25-31). These 

parasites were common in wild apes, with prevalence rates, estimated from feces, 

surpassing 50% at some field sites (26). Parasite mitochondrial sequences also 

appeared to cluster into multiple distinct lineages, suggesting that more than one 

species of P. falciparum-like parasite might be present in wild ape populations (25-31).  

The identification of widespread Plasmodium infections in both chimpanzees and 

gorillas brought renewed interest to the question of the origins of human malaria. 

Analyzing over 1,100 mitochondrial, nuclear, and apicoplast sequences from wild living 

apes, our lab identified at least 9 distinct Plasmodium lineages, six of which were closely 

related to P. falciparum (26). Of these six lineages, three were found only in 

chimpanzees and the other three only in gorillas. Phylogenetic analyses of these species 

and P. falciparum showed that all extant strains of P. falciparum formed a single 
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monophyletic lineage that emerged from within the radiation of a single gorilla parasite 

species (26). These results indicated that P. falciparum emerged from gorillas, and that 

all extant P. falciparum strains may have originated from a single cross-species 

transmission event (26). 

As the six species topology of these P. falciparum-like parasites was observed at 

all analyzed loci, including those from apicoplast, mitochondrial and nuclear genes, they 

have tentatively been classified as distinct species (32). The gorilla parasites, in order of 

increasing evolutionary distance to P. falciparum, are termed P. praefalciparum, P. 

blacklocki, and P. adleri, while the chimpanzee parasites are termed P. reichenowi, P. 

billcollinsi, and P. gaboni. In recognition of their dissimilarity to other Plasmodium 

species (30, 32), we refer to these six ape species and P. falciparum as the Laverania 

subgenus, a term originally suggested by Bray (33). 

While phylogenetic analyses showed that the predominant global lineages of P. 

falciparum were derived from a single cross-species transmission event from gorillas, we 

could not rule out the possibility of local transmission between apes and humans. This is 

the case for HIV-1, which also originated in African great apes. While 99% of HIV-1 

infections are derived from a single lineage (group M), the virus has been transmitted 

from apes to humans at least three more times, giving rise to groups N, O, and P (34). 

Given the close phylogenetic relationship and likely morphological similarity between 

ape Laverania parasites and P. falciparum, zoonotic infections would be unlikely to be 

detected in humans. In chapter 2 of this dissertation, we develop new methods to screen 

for ape Laverania parasites in humans, providing the first evidence that ape Laverania 

parasites are not a significant source of human malaria infections. 
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1.4 Elucidating the Steps to the Emergence of P. falciparum 

The zoonotic origin of P. falciparum and lack of additional cross-species transmissions of 

ape Laverania parasites suggests that P. falciparum is uniquely suited to infect humans. 

While targeted sequencing is useful for understanding the evolutionary history of an 

organism, the identification of genetic features that are unique to P. falciparum requires 

genome level analyses. The identification of six distinct P. falciparum-like species in 

great apes, none of which are recurrently transmitted to humans, provides a unique 

opportunity for comparative genomics. However, these studies have been hindered by a 

lack of samples suitable for whole genome sequencing. 

Next generation sequencing technologies have increased the pace of whole 

genome sequencing by providing a rapid, high throughput, and relatively cheap method 

for shotgun sequencing. In spite of this, cost effective next generation sequencing of 

larger genomes still requires samples that are enriched in the DNA of the organism of 

interest (35, 36). A sample consisting of only 1% Plasmodium DNA requires 100 fold 

more sequencing to achieve the same depth of genome coverage as a sample 

containing 100% Plasmodium DNA. This increase in sequencing requirements increases 

both the upfront cost and downstream analysis time. 

Previous genomic studies of Plasmodium have used a variety of methods to 

enrich for Plasmodium DNA prior to high throughput sequencing. These include short 

term or long term in vitro culture, purification of infected erythrocytes from fresh blood, 

selective digestion of non-Plasmodium DNA, and Plasmodium DNA capture (35-38). 

While we were able to obtain Laverania positive chimpanzee blood samples from a 

sanctuary in Cameroon, we found the majority of these methods to be impractical given 

the source, storage conditions, and parasitemia of the available samples. In chapter 3 

we develop a novel method for the enrichment of Plasmodium DNA, termed selective 
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whole genome amplification (SWGA) (39), from samples containing as little as 

0.00081% Plasmodium DNA. Applying this method to three chimpanzee blood samples, 

we generate near full-length genomes of chimpanzee parasites that represent both close 

(P. reichenowi) and distant (P. gaboni) relatives of P. falciparum. Using these genomes 

we identify genetic characteristics that are shared across the Laverania subgenus, but 

also features that are unique to the ancestry of P. falciparum. These findings are 

discussed in chapters 3 and 4. 

Selective whole genome amplification is an effective method for enrichment of 

target DNA from contaminating background DNA. The method itself is simple, requiring 

only a set of short primers and the phi29 DNA polymerase. SWGA relies on differences 

in short DNA motif frequency between the target and background genomes, and thus 

should be easily adapted to many situations (39). Prior to this dissertation, however, the 

identification of SWGA primer sets was time consuming and required a large amount of 

user input (39). In chapter 5 we present a program, swga, that automates the process of 

designing primer sets for selective whole genome amplification. The program also 

calculates a number of statistics for each primer set, allowing sets to be compared in 

silico. swga is built on a modular architecture. Additional modules can be easily added to 

the program as we improve our understanding of what defines a good SWGA primer set. 

By increasing the speed and ease of SWGA primer design, swga will make selective 

whole genome amplification accessible to a larger number of genetics and genomics 

researchers. 
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2.1 Abstract 

Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium spp., including 

six of the subgenus Laverania, one of which is the progenitor of P. falciparum. Despite 

the magnitude of this natural reservoir, it is unknown whether apes represent a recurrent 

source of human infections. Here, we used Plasmodium species-specific PCR, single 

genome amplification (SGA) and 454 sequencing to screen humans from remote areas 

of Cameroon for ape Laverania infections. Among 1,403 blood samples, we found 1,000 

to be positive for Plasmodium mitochondrial (mt)DNA, all of which contained human 

parasites as determined by sequencing and/or restriction enzyme digestion. To exclude 

low abundance infections, we subjected 514 samples to 454 sequencing, targeting a 

region of the mtDNA genome that distinguishes ape from human Laverania species. 

Developing algorithms capable of differentiating rare Plasmodium variants from 454 

sequencing error, we identified mono- and mixed-species infections with P. falciparum, 

P. malariae and/or P. ovale. However, none of the human samples contained ape 

Laverania parasites, including the gorilla precursor of P. falciparum. To characterize 

further the diversity of P. falciparum in Cameroon, we used SGA to amplify 3.4 kb 

mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new 

variants, all of which clustered with extant P. falciparum strains, providing further 

evidence that P. falciparum emerged following a single gorilla-to-human transmission. 

Thus, unlike P. knowlesi infected macaques in Southeast Asia, African apes harboring 

Laverania parasites do not serve as a recurrent source of human malaria, a finding of 

import to ongoing control and eradication measures. 
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2.2 Introduction 

Malaria is one of the most devastating infectious diseases of humans worldwide, with 

hundreds of millions of cases of clinical illness and over 650,000 deaths occurring 

annually (40). Given this enormous health burden, efforts to control and potentially 

eradicate this disease have become an urgent public health priority (41, 42). Effective 

control and elimination measures require a clear understanding of the parasites, vectors 

as well as human and environmental factors that sustain malaria transmission. This 

includes a systematic evaluation of potential zoonotic reservoirs and the risk that they 

may pose for humans. Recently, close genetic relatives of the human malaria parasites 

P. falciparum, P. ovale, P. malariae and P. vivax have been identified in wild-living apes 

in sub-Saharan Africa (25-27, 29, 30). These parasites have been tentatively classified 

on the basis of their sequence relationships into a number of different species, six of 

which were closely related to human P. falciparum and placed into a separate 

Plasmodium subgenus, termed Laverania (26, 30-32). Of these six Laverania species, 

P. reichenowi, P. gaboni, and P. billcollinsi were identified only in chimpanzees, while P. 

adleri, P. blacklocki, and P. praefalciparum were only found in gorillas. Moreover, P. 

praefalciparum was shown to be the immediate precursor of human P. falciparum (26). 

Although the Anopheles vectors that transmit these ape parasites have not yet been 

identified, the fact that a large fraction of wild-living apes is endemically infected has 

raised concerns that they might represent a source of recurring human infection (25, 32, 

43, 44).  

In this study, we tested humans who live in remote rural areas of southern Cameroon for 

evidence of zoonotic Plasmodium infections. We specifically screened for Laverania 

infections, since these are the most abundant and widespread in resident ape 

populations, and since one of them, P. praefalciparum, has crossed the species barrier 
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from gorillas to humans already once (26). Moreover, Laverania parasites have been 

studied extensively at the molecular level, with numerous mitochondrial, apicoplast and 

nuclear sequences available for analyses. To detect zoonotic infections, we developed a 

new ape Plasmodium species-specific diagnostic PCR, used 454 ultra deep sequencing 

to determine whether humans harbored ape parasites at low abundance, and employed 

single genome amplification to characterize the genetic diversity of human P. falciparum 

in southern Cameroon. Our study is the first to systematically search for Plasmodium 

zoonoses in west central Africa, thus providing new insight into the host range of human 

and great ape parasites.  

 

2.3 Results 

Molecular Characterization of Human Plasmodium Infections in Rural Cameroon  

Cameroon is an area of high malaria endemicity, with nearly 100% of clinical cases 

believed to be caused by P. falciparum (40). However, few of these infections have been 

molecularly characterized and the extent of parasite diversity, both at the intra- and inter-

species level, is largely unknown. Studying the epidemiology and natural history of 

human immunodeficiency virus type 1 (HIV-1) infections in sub-Saharan Africa, we 

previously collected large numbers of buffy coat samples from humans native to rural 

Cameroon (45). These samples, which represent thin layers of leukocytes and platelets 

on the surface of sedimented erythrocytes, frequently contain Plasmodium DNA, since 

parasite infected red blood cells tend to accumulate immediately below the leukocyte 

layer (46). All samples were obtained from individuals living in close proximity to the 

habitat of Laverania infected apes (Fig. 2-1), thus providing a unique opportunity to 

search for zoonotic Plasmodium infections.  

To characterize the Plasmodium species that commonly infect humans in rural 
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Cameroon, we first selected 318 buffy coat specimens from inhabitants of seven remote 

villages (SI Appendix, Table S1). These study sites were selected because of the high 

Laverania prevalence rates in chimpanzee and gorilla populations in adjacent forest 

regions (Fig. 2-1A). All sampled individuals lived in close proximity to ape habitats (Fig. 

2-1B), and included forest dwellers, hunters, members of local pygmy tribes and 

individuals who lived at logging concessions. Given their lifestyles, we reasoned that at 

least some of the study subjects were exposed to ape Plasmodium infected Anopheles 

mosquitoes. To examine whether such exposures had resulted in parasite transmission, 

we screened buffy coat DNA for ape parasites by conventional PCR. Using primers 

previously shown to amplify ape Laverania parasites with high sensitivity and specificity 

(26), we targeted a 939 bp region (cytb gene) of the Plasmodium mitochondrial (mt) 

DNA genome (Fig. 2-2). This analysis identified 194 of the 318 blood samples to be PCR 

positive (61%), all of which contained human parasites as determined by direct 

sequencing: 181 samples contained P. falciparum, 12 samples contained P. ovale, and 

one sample contained P. malariae as the predominant Plasmodium species (SI 

Appendix, Table S1). From this experiment, we concluded that zoonotic Laverania 

infections, if they indeed occurred, were rare and unlikely to represent single species 

infections.  
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Figure 2-1. Screening of humans in rural Cameroon for zoonotic Plasmodium 

infections. 

 (A) Location of human study sites (red stars). Eight rural villages were selected for 

molecular epidemiological studies because of their proximity to wild-living chimpanzee 

(yellow circles) and gorilla (yellow hexagons) populations known to harbor Plasmodium 

infections at high prevalence rates. Previously estimated infection rates (26) are shown 

for the most proximal field sites (denoted by a two-letter code). Country borders, major 

rivers and the capital city of Yaoundé (red triangle) are also shown. A red star with 

asterisk highlights the location of five closely spaced villages (Mboumo, Eboumetoum, 
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Aviation, Nkonzu, and Kompia). (B) View of one rural village, depicting the close 

proximity of human residences and sleeping quarters to the surrounding forest 

(photograph credit, Bernadette Abela). 

 

 

Figure 2-2. Schematic representation of the Plasmodium mitochondrial genome. 

DNA fragments amplified for diagnostic purposes (cytb, BsrI, P. vivax), 454 deep 

sequencing (454), and single genome amplification (mtDNA-3.3 kb; mtDNA-3.4kb) are 

shown in relation to cytochrome b (cytb), cytochrome c oxidase subunit I (coxI) and 

cytochrome c oxidase subunit III (coxIII) coding regions, respectively. The positions of 

four single nucleotide variants (SNV1-SNV4), which distinguish human P. falciparum 

from ape Laverania parasites, are shown in red.  
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A Diagnostic PCR Capable of Differentiating Human and Ape Laverania Species 

Aligning several hundred ape and human Plasmodium mitochondrial genomes, we had 

previously noted four single nucleotide variants (SNVs) that distinguished all known P. 

falciparum strains from the six ape Laverania species (26). One of these (SNV4) 

comprised a BsrI restriction enzyme site (ACTGGN) that was present in 134 of 135 ape 

Laverania sequences, but was absent from all of 859 human Plasmodium sequences in 

the database (Fig. 2-2). To determine whether PCR amplification followed by BsrI 

cleavage could be used to screen human blood samples for ape Laverania infections, 

we designed primers for a ~700 bp DNA fragment that spanned the diagnostic SNV4 

site (Figs. 2-2 and 2-3). Testing these primers on fecal samples from Plasmodium 

infected apes, we obtained PCR products that were all cleaved by BsrI and yielded the 

expected fragments for the respective ape Plasmodium species (Fig. 2-3A and B). In 

contrast, amplicons from human P. falciparum, P. malariae and P. vivax reference 

strains were not cleaved by BsrI, and although P. ovale amplicons were cleaved once, 

the resulting fragments were readily distinguishable from those of the ape parasites (not 

shown). BsrI cleavage products were also visible in mixtures of human and ape parasite 

DNAs, including in preparations that contained P. falciparum at a 10-fold excess (not 

shown). These data indicated that PCR amplification, followed by BsrI cleavage, 

represented a viable screening approach for zoonotic Laverania infections, even when 

ape and human parasites were present in mixed-species infections. 

Using this Plasmodium species–specific PCR assay, we screened 1,165 buffy 

coat samples from villagers native to southeastern Cameroon (Fig. 2-1). For control, we 

also analyzed 85 samples from HIV-1 infected individuals in the capital city Yaoundé. 

Testing a total of 1,250 samples, we amplified BsrI-specific fragments from 872 of them 

(SI Appendix, Table S1), three of which were cleaved by BsrI (Fig. 2-3C). Two of these 
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samples (KI051 and EC1592) yielded PCR cleavage products consistent with P. ovale 

infection, which was confirmed by sequence analysis. The third sample (EC1041), from 

a child in Mboumo, yielded ape-specific PCR cleavage products of 395 bp and 316 bp, 

respectively (Fig. 2-3C). However, sequence analysis failed to confirm ape Laverania 

infection, identifying instead a P. falciparum variant that exhibited a single point mutation 

at the SNV4 site. This was confirmed after sequencing the entire mitochondrial genome 

of this variant, which contained the SNV4 point mutation, but lacked additional ape 

Plasmodium specific signatures. Thus, the Bsr1 diagnostic PCR had uncovered a rare P. 

falciparum variant whose mitochondrial sequence was identical to that of other P. 

falciparum strains, except for a single (ape-like) back mutation at the SNV4 site.  
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Figure 2-3. A Plasmodium species-specific PCR capable of differentiating human 

and ape Laverania parasites. 

 (A) Predicted BsrI cleavage products for different Plasmodium species infecting humans 

and apes. A red vertical line highlights a BsrI site unique to ape Laverania parasites. A 

second BsrI site found only in P. adleri, P. blacklocki and P. ovale is highlighted in blue. 

(B) Diagnostic PCR of ape Laverania infections. All Laverania positive ape fecal 

samples were PCR positive (upper panel) and yielded appropriately sized fragments 

upon BsrI cleavage (lower panel). (C) Diagnostic PCR of human Plasmodium infections. 

All Plasmodium positive human samples yielded appropriately sized amplicons (upper 

panel), with BsrI cleavage products observed for only three (see text for details).  
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Molecular Characterization of Human Plasmodium Infections by 454 Deep 

Sequencing 

The combined results of the cytb and BsrI PCR screening studies indicated that the vast 

majority of humans in remote rural Cameroon harbored P. falciparum, which is known to 

reach very high blood titers. We thus reasoned that ape Laverania parasites -- if they 

were transmitted to humans -- would likely replicate less efficiently and represent only a 

minor fraction of the total parasite burden within an infected individual. To increase the 

likelihood of detecting such variants, we developed an ultra-deep sequencing approach, 

which is known to generate tens of thousands of sequences of the same genetic locus 

and can thus detect low abundance variants with great sensitivity (47-49). Specifically, 

we used the 454 GS FLX Titanium chemistry to sequence a 405 bp fragment of the 

Plasmodium mtDNA genome that included three of the four diagnostic SNVs (Fig. 2-2) 

and could thus be used to differentiate even the closest human and ape parasites (SI 

Appendix, Fig. S1). 

To explore the utility of the 454 sequencing approach, we initially sequenced the 

combined DNA of 77 Plasmodium positive human buffy coat samples, which yielded 

465,391 high quality reads (for details see SI Appendix, Supplemental Analysis). Each 

read was classified by determining its minimum edit distance to a large set of 

Plasmodium reference sequences (see Supplemental Analysis in SI Appendix and Table 

S2). This approach identified 458,676 reads (98.56%) to represent P. falciparum, 76 

reads (0.02%) to represent P. ovale, and 6,266 reads (1.35%) to represent P. malariae 

(SI Appendix, Fig. S2 A-C), which was confirmed by phylogenetic analyses of select 

reads (SI Appendix, Fig. S3). A single read was classified as P. praefalciparum; 

however, closer inspection of its sequence revealed multiple indels that caused 

inactivating frameshift mutations as well as a substitution that was not found in any other 
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P. praefalciparum strain. Moreover, this read differed from the closest P. praefalciparum 

reference by 5 mutations (SI Appendix, Fig. S2D), but from the closest P. falciparum 

reference by 6 mutations, and contained only 2 of the 3 ape specific SNVs. We thus 

concluded that this read was erroneously classified as P. praefalciparum due to PCR 

and/or 454 process errors, and that there was no evidence of ape Laverania infection in 

any of the 77 Plasmodium infected individuals.  

 

Identification of Plasmodium Multi-Species Infections by 454 Deep Sequencing 

To extend the search for zoonotic Laverania infections, we selected an additional 438 

samples for 454 sequencing, but improved the methodology. First, we inserted a 12-mer 

barcode into the sequencing primer to permit the computational sorting of individual 

samples (50). Second, we reversed the sequencing direction to increase the number of 

reads that covered at least two diagnostic SNVs (SI Appendix, Fig. S1). Third, we 

amplified samples using the lowest possible number of cycles to reduce PCR introduced 

errors (SI Appendix, Table S3). Finally, we included cloned fragments (3.4 kb) of the P. 

falciparum, P. malariae, and P. ovale mitochondrial genome (Fig. 2-2) as controls, which 

allowed us to perform a formal error calculation for each pyrosequencing run (for details 

see SI Appendix, Supplemental Analysis). The resulting pyrosequencing reads were 

sorted by sample and analyzed. 

The identification of rare ape Plasmodium parasites necessitated a method that 

could differentiate true sequence changes from 454 sequencing error. We thus used a 

maximum likelihood based approach to determine which and how many different 

Plasmodium species were present in each barcoded human sample (for details see SI 

Appendix, Supplemental Analysis). For each sample, we generated pairwise alignments 

of all reads with all Plasmodium reference sequences and then applied a model for 454 
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sequencing error (SI Appendix, Table S4) to calculate the probability that a read was 

derived from a particular reference. Using this approach, we determined the Plasmodium 

species composition in all barcoded human samples. Of 437 samples, 349 contained 

only P. falciparum, one contained only P. malariae, and 4 contained only P. ovale 

sequences (Table 2-1). A further 61 samples contained both P. falciparum and P. 

malariae, 13 samples contained both P. falciparum and P. ovale, and 9 samples 

contained all three species (Table 2-1). Importantly, none of the human blood samples 

contained any of the six ape Laverania species, including P. praefalciparum. Moreover, 

none of the samples contained P. vivax sequences. 

To be certain that our inability to find ape Plasmodium zoonoses was not due to 

technical limitations, we used the identical 454 methodology to amplify and deep 

sequence Plasmodium parasites from fecal samples of infected apes. Analysis of 37,644 

filtered reads from two western lowland gorillas (Gorilla gorilla gorilla), three central 

chimpanzees (Pan troglodytes troglodytes) and one eastern chimpanzee (Pan 

troglodytes schweinfurthii) confirmed the presence of all 6 ape Laverania species as well 

as P. vivax-like parasites (SI Appendix, Fig. S4). We also characterized the proportion of 

humans who harbored multiple P. falciparum variants (SI Appendix, Supplemental 

Analysis). Multiple variant infections were detected in 10% of all subjects, with a 

maximum of four variants per person (SI Appendix, Table S5, Fig. S5). Importantly, 

minor variants could be identified at levels as low as 0.006% of the total parasite burden, 

thus providing direct evidence that our deep sequencing approach was capable of 

identifying very low abundance Plasmodium variants.  
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Table 2-1 Species composition of human Plasmodium infections in Cameroon as 
determined by 454 sequencing  
 

Identified Specie (s) Number of Samples 
P. falciparum 349 

P. falciparum and P. malariae 61 
P. falciparum and P. ovale 13 

P. falciparum, P. malariae and P. ovale 9 
P. ovale 4 

P. malariae 1 
Total 437 

a A breakdown of these Plasmodium species for each individual sample is shown in Figure S5 
 
 

Genetic Diversity of P. falciparum in Rural Cameroon 

Although there are over a hundred near-full-length P. falciparum mitochondrial DNA 

sequences in the database, little to nothing is known about the extent of genetic diversity 

of this parasite in central Africa. In particular, there are no molecularly characterized 

human strains from areas where wild-living apes are endemically infected with Laverania 

parasites. To characterize the P. falciparum variants prevalent in rural Cameroon, we 

selected Plasmodium-positive samples from seven different locations (SI Appendix, 

Table S1) and subjected them to single-genome amplification (SGA) targeting the region 

of the mitochondrial genome (3.4 kb) known to exhibit the greatest diversity between ape 

and human Laverania lineages (Fig. 2-2). We selected SGA rather than conventional 

PCR, since this method eliminates Taq polymerase-induced recombination as well as 

nucleotide misincorporations in finished sequences, and thus ensures an accurate 

representation of parasite variants as they exist in vivo (26, 51). Sequencing between 1 

and 8 SGA amplicons per sample, we generated a total of 684 half-genome mtDNA 

sequences. Phylogenetic analyses revealed that these represented 69 unique P. 

falciparum haplotypes, 62 of which had not previously been reported. Despite this 
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diversity, all variants grouped with previously identified P. falciparum sequences, forming 

a single well-supported clade within the radiation of P. praefalciparum from gorilla (Fig. 

2-4). This was the case even after inclusion of a P. falciparum variant (EC1041, also see 

Fig. 2-3) that contained one of the three ape-specific SNVs at the BsrI cleavage site (Fig. 

2-4). These results failed to uncover additional cross-species transmissions, including 

human-to-ape transfers, and thus confirmed that extant P. falciparum emerged in 

humans following a single introduction of a gorilla parasite. 
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Figure 2-4. Phylogeny of P. falciparum strains from rural Cameroon. 

Newly derived P. falciparum sequences from humans living in Cameroon (black) are 

shown in relation to P. falciparum sequences from GenBank (white) and the Sanger 

Institute (grey), as well as to P. praefalciparum and P. reichenowi sequences from 

gorillas (green) and chimpanzees (red), respectively. The tree includes 684 new SGA-

derived 3.4 kb mitochondrial sequences from 229 human samples, including one that 

contained a back mutation at the ape specific SNV4 site (highlighted by arrow; also see 

Fig. 2-3). Numbers at tips indicate the number of times that a sequence was found in 

Cameroon (black), the Sanger dataset (grey) or GenBank (white) (for sequences present 

in multiple datasets, numbers are listed in sequence). The tree was inferred using 

maximum-likelihood methods (52). Asterisks indicate posterior probabilities above 0.9. 

The scale bar represents ten nucleotide (nt) substitutions. 

 

Absence of P. vivax in Humans Native to Southern Cameroon 

Although the great majority of individuals in Cameroon are Duffy negative (18), it has 

been proposed that P. vivax persists in west central human populations at a very low 

frequency (53). Since deep sequencing failed to identify evidence of P. vivax infection in 

515 individuals, we considered the possibility that the 454 primers were less efficient in 

amplifying P. vivax compared to the other Plasmodium species, and thus designed new 

P. vivax specific primers in the mtDNA cox1 gene (Fig. 2-2). Using these to screen 558 

Plasmodium positive human samples, we identified 47 that yielded a visible amplification 

product (SI Appendix, Table S6). However, none of these represented P. vivax or P. 

vivax-like infections as determined by sequence analysis of the corresponding amplicon. 

Instead, 37 of the PCR positive samples contained P. malariae, while the remaining 10 

contained P. ovale. Moreover, sequence analysis of the Duffy promoter region from 90 
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human samples confirmed a Duffy negative phenotype in all of them (SI Appendix, Table 

S6). Thus, using both conventional PCR and 454 deep sequencing approaches, we 

found no evidence of P. vivax infections in individuals living in rural Cameroon.  

 

2.4 Discussion 

Chimpanzees and gorillas harbor at least ten different Plasmodium species, including six 

of the subgenus Laverania that are closely related to P. falciparum (25-27, 29, 30). The 

discovery of this previously unrecognized reservoir has prompted concerns that wild-

living apes might constitute a source of recurrent human infection (25, 32, 44). In this 

study, we set out to examine this possibility for several reasons. First, the ape reservoir 

is substantial, both in terms of geographic distribution and complexity of Plasmodium 

species. Second, both western gorillas (G. gorilla) and common chimpanzees (P. 

troglodytes) are infected throughout their habitat, indicating widespread endemicity 

throughout west central and central Africa. Third, Plasmodium zoonoses can have 

significant public health impact. A case in point is P. knowlesi, a macaque parasite that 

has shown to cause hundreds of cases of human malaria every year (4, 5). Finally, 

Plasmodium zoonoses have been misdiagnosed in the past: P. knowlesi was initially 

mistaken for P. malariae, ultimately requiring the development of molecular tools to 

facilitate its detection (5). Given that malaria infections in central Africa are rarely 

genetically (or even morphologically) characterized, we considered the possibility that 

ape Plasmodium zoonoses might have also been overlooked. To test this, we developed 

diagnostic PCR assays and next generation sequencing approaches that permitted the 

detection of rare Plasmodium variants, even when they occurred in the context of mixed-

species infection with P. falciparum. Using these approaches to test 1,400 blood 

samples from individuals native to rural Cameroon, we failed to detect previously 
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unknown human Plasmodium infections (SI Appendix, Table S1). There was no 

evidence for zoonotic infection with any of the six ape-specific Laverania species or non-

Laverania parasites identified only in wild apes (26). Instead, we detected P. falciparum, 

P. ovale and P. malariae in a large fraction of individuals, both as mono- and mixed 

species infections (Table 2-1; SI Appendix, Fig. S5). From these data, we conclude that 

ape Laverania zoonoses can be ruled out as an ongoing threat to public health in west 

central Africa. 

 Although we failed to find ape Laverania infections in humans, our data cannot 

exclude the possibility of very rare transmission events. Such events would require the 

screening of a much larger number of individuals from multiple forest environments. In 

this context, it is important to note that the Anopheles species that transmit Laverania 

parasites among wild apes have yet to be identified. It is conceivable that the ecology, 

distribution and feeding preferences of these vectors play a much greater role in 

determining the likelihood of zoonotic transmission than the mere geographic proximity 

of human habitations to infected ape populations. Nonetheless, it seems unlikely that the 

absence of ape Laverania infection in rural communities is solely due to a lack of human 

exposure. This is because even among endemically infected chimpanzees and gorillas, 

there is no evidence that Laverania parasites cross between the two ape species (26). 

This remarkable host specificity suggests a restriction at the parasite-host interface, 

which is supported by comparisons of P. falciparum and P. reichenowi gene sequences. 

It is known that the genes involved in erythrocyte invasion are evolving rapidly between 

Laverania parasites (54). Moreover, erythrocyte invasion of P. falciparum is absolutely 

dependent on the interaction of its PfRh5 ligand with the human Ok blood group antigen 

basigin (55). Human, chimpanzee and gorilla homologues of basigin are highly 

divergent, suggesting that ape Laverania species have to overcome significant adaptive 
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hurdles before they can spread efficiently in a different host.  

Given these restrictions, the question arises how the gorilla precursor of P. 

falciparum managed to colonize humans. One possibility is that P. praefalciparum 

underwent a very specific mutation in a host-compatibility factor that changed its host 

preference from gorilla to human. Since P. falciparum emerged only once (Fig. 2-4), this 

mutation must have been difficult to generate and/or must have arisen under 

exceedingly favorable transmission conditions. Another possibility is that the immediate 

precursor of P. falciparum was the product of a rare recombination event. Regardless of 

the circumstances, it seems clear that the generation of an ape Laverania strain that is 

capable of spreading in humans is an extremely rare event, which may explain why we 

failed to detect such variants.  

In addition to Laverania species, wild-living chimpanzees and gorillas also harbor 

P. vivax, P. malariae, and P. ovale-like infections. Since very few of these ape parasites 

have been molecularly characterized, it remains unknown whether they represent 

members of the same or different Plasmodium species as their human counterparts. 

Transmission studies conducted nearly a hundred years ago demonstrated that non-

Laverania species cross between apes and humans more readily than Laverania 

species (56-60). Two species, P. schwetzi and P. rodhaini have been experimentally 

transmitted to humans in the past (57, 58, 61). As neither species has been molecularly 

characterized, it is unknown whether they represent the P. vivax, P. malariae and/or P. 

ovale-like infections that have more recently been identified in wild apes. It will thus be 

important to characterize more of these ape parasites to understand their evolutionary 

history and characterize their zoonotic potential. 

 The genetic diversity of P. falciparum in central Africa is largely unknown since 

only very few strains from this geographic region have been molecularly characterized. It 
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has thus been argued that this lack of sequence information has confounded previous 

evolutionary analyses and lead to erroneous conclusions concerning the origin of P. 

falciparum (62). In particular, it has been proposed that P. praefalciparum is more likely 

the result of a human-to-gorilla transmissions of P. falciparum than the other way around 

(62). To examine this possibility, we amplified mitochondrial half genome sequences 

from 229 P. falciparum positive samples collected in remote rural areas of Cameroon. 

We found that P. falciparum strains from rural Cameroon were indeed genetically more 

diverse than previously appreciated. Analyzing 684 single template-derived sequences, 

we identified 69 unique P. falciparum variants, 62 of which had not previously been 

reported. However, none of these variants changed previous conclusions concerning the 

evolutionary history of P. falciparum. Phylogenetic analysis revealed that all newly 

characterized variants grouped with previously reported P. falciparum strains, forming a 

well-supported clade within the P. praefalciparum radiation (Fig. 2-4). An additional 354 

sequences of cosmopolitan P. falciparum strains from the Sanger Institute supported this 

conclusion (35), indicating that all human P. falciparum sequences coalesced to a single 

common ancestor. Thus, the addition of over 1,000 new P. falciparum sequences, 

including over 600 from individuals living near wild ape populations, confirmed that P. 

falciparum is of gorilla origin and emerged in humans following a single cross-species 

transmission event (26). 

 P. vivax is extremely rare in humans in west and central Africa due to the near 

fixation of the Duffy-negative phenotype which confers resistance to this parasite (18). 

However, a recent study reported P. vivax specific antibodies in 13% of humans living in 

Pointe-Noire, a city in the Republic of Congo, suggesting that P. vivax is maintained in a 

small fraction of Duffy positive individuals (63). To examine this possibility for rural 

Cameroon, we screened nearly 700 human blood samples for P. vivax mitochondrial 
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sequences. Using both PCR and 454 sequencing approaches, we failed to identify P. 

vivax infection in inhabitants from 7 different rural villages. Finally, all human samples 

tested were Duffy negative, suggesting that the fraction of Duffy positive individuals in 

rural areas of west central Africa is exceedingly low. These data differ from results of 

others who have reported the presence of P. vivax in Equatorial Guinea and Angola. In 

these studies, the P. vivax infected individuals were either Duffy positive (64) or 

diagnosed solely based on P. vivax specific PCR products without sequence verification 

(65). Given the frequency of off-target amplification even with P. vivax specific primers, 

any P. vivax diagnosis in central Africa should be confirmed by sequence analysis. Until 

this is done, the presence of P. vivax in rural west central Africa remains questionable. 

 

2.5 Methods  

Sample Collections 

Human buffy coat samples (n=1,403) were selected from anonymized sample collections 

previously obtained for molecular epidemiological studies of HIV-1 in Cameroon(45). 

Fecal samples from wild-living apes known to contain Laverania and non-Laverania 

parasites served as positive controls (26). 

 

Plasmodium Species Specific PCR 

Human buffy coat samples were first screened for Plasmodium cytb sequences by 

conventional PCR as described (26). Positive samples were further characterized using 

a Plasmodium species specific PCR and BsrI digest approach (See SI Appendix, 

Supplemental Methods for more details). 
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Pyrosequencing 

A 405 bp fragment of the mitochondrial genome that spanned three SNVs unique to ape 

Laverania parasites (Fig. 2-2) was amplified and sequenced on a Genome Sequencer 

FLX Titanium Series (Roche) (See SI Appendix, Supplemental Methods for more 

details). 

 

Single Genome Amplification and Sequencing 

To derive Plasmodium mitochondrial sequences without PCR induced substitutions 

and/or recombination, a 3.4 kb fragment of the Plasmodium mitochondrial genome was 

amplified and sequenced directly from a subset of cytb PCR positive samples (n = 229) 

as previously described (26). 

 

Phylogenetic Analyses 

SGA derived 3.4 kb mitochondrial sequences were aligned with human and simian 

reference sequences. Trees were inferred using Maximum-Likelihood and Bayesian 

methods (See SI Appendix, Supplemental Methods for more details). 

 

P. vivax specific PCR 

Human samples were screened for P. vivax infections by nested PCR as described (66). 

Nested primers were specifically designed to avoid off-target amplification of P. 

falciparum or other Laverania species, and were shown to amplify ape P. vivax-like 

parasites as well as human P. vivax with high sensitivity and specificity (66) (see SI 

Appendix for primer sequences and amplification conditions).  
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Duffy Phenotype 

Buffy coat DNA was extracted and used to amplify the Duffy promoter region by nested 

PCR. The Duffy phenotype was determined by direct sequencing (See SI Appendix, 

Supplemental Methods for more details). 

 

GenBank Accession Numbers 

All newly derived SGA sequences are available under GenBank accession numbers 

KC175306-KC175322 and KC203521-KC203587. The 454 pyrosequencing read data 

have been deposited in the National Center for Biotechnology Information Sequence 

Read Archive (SRA) under accession number SRP019191. 
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3.1 Abstract 

African apes harbor six Plasmodium species of the subgenus Laverania, one of which 

gave rise to human P. falciparum (26). Here, we used a novel phi29 polymerase-based 

selective amplification strategy (39) to sequence the genomes of three chimpanzee 

parasites, including one that is closely (P. reichenowi) and two that are distantly (P. 

gaboni) related to P. falciparum. Analysis of these sequences demonstrated a near-

identical core genome (>4,600 orthologs), but also a 10-fold higher within-species 

diversity among the chimpanzee parasites, revealing a very recent origin of P. 

falciparum in humans. Surprisingly, genome-wide analyses uncovered a striking 

expansion and diversification of a multi-gene family (67) involved in erythrocyte 

remodeling, and showed that a region on chromosome 4, which encodes the essential 

invasion genes RH5 and CyRPA, was horizontally transferred into a recent P. falciparum 

ancestor. These results provide a new paradigm for characterizing cryptic pathogen 

species (68) and reveal evolutionary events that likely predisposed the precursor of P. 

falciparum to successfully colonize humans. 
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3.2 Introduction 

Plasmodium falciparum, the cause of malignant malaria in humans, evolved following a 

single cross-species transmission event involving a parasite that naturally infects 

western gorillas (Gorilla gorilla)( 26). To elucidate key events that led to its emergence, 

we characterized the evolutionary history of related ape Laverania parasites. All 

Plasmodium reference genomes generated to date are derived from purified parasites 

grown to high titers in red blood cells (RBCs) in vitro or susceptible host species in vivo 

(9, 69-73). Since blood samples from endangered chimpanzees and gorillas are not 

readily available, efforts to culture ape Laverania parasites, which are highly species 

specific (26), have remained unsuccessful. To date, only a single genome of the 

chimpanzee parasite P. reichenowi has been sequenced, following extensive in vivo 

passage and amplification in experimentally infected, splenectomized chimpanzees (69, 

74). Since this method of parasite enrichment is neither ethical nor practical, we 

developed a strategy to selectively amplify and sequence near full-length Plasmodium 

genomes from subpatently-infected ape blood.  

 

3.3 Results 

Traditional whole genome amplification methods utilize the highly-processive phi29 

polymerase and random primers to generate DNA fragments of up to 70kb in length, but 

amplify all templates within a sample with near-uniformity (75-78). Since microbial and 

host genomes differ in the frequency of common sequence motifs (79), we reasoned that 

it should be possible to design primers that would amplify pathogens selectively, even if 

they represented only a small fraction of the sample DNA. Testing this concept on 

Wolbachia infected fruit flies, we found that selective whole genome amplification 

(SWGA) generated sufficient quantities of bacterial genomes for next generation 
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sequencing (39). To extend this method to more complex eukaryotic pathogens, we 

tested whether SWGA could amplify the multi-chromosomal genomes of Plasmodium 

parasites from unprocessed human and ape blood samples. Searching for short (8-12 

bp) sequences that are overrepresented in P. falciparum and P. reichenowi, but 

underrepresented in the genomes of their primate hosts (Online Methods), we identified 

2,418 motifs that occur frequently in the parasite DNA (i.e., spaced on average less than 

50,000 bp apart), but only rarely (i.e., spaced on average more than 500,000 bp apart) in 

human and chimpanzee DNA (Figs. 3-1A and B). We selected two sets of SWGA 

primers (Supplementary Fig. 3-1) based on their distribution across the parasite 

genomes and their DNA binding properties, and tested them on human DNA containing 

known quantities (0.001% to 5%) of P. falciparum DNA (Online Methods). These 

experiments showed that SWGA amplified P. falciparum genomes with remarkable 

breadth and selectivity over a wide range of concentrations, especially when results from 

independent amplifications were combined (Fig. 3-1C). Of ~2.5 million MiSeq reads 

derived from human DNA containing as little as 0.001% P. falciparum DNA (19 genome 

equivalents), ~1.7 million (70%) mapped to the P. falciparum genome, indicating a 

70,000-fold enrichment of the parasite compared to the host DNA (Table 3-1). Read 

coverage was even across all 14 chromosomes, except for the sub-telomeres where low 

complexity sequence precludes accurate mapping (Supplementary Fig. 2). Stochastic 

amplification was seen only at the lowest (0.001%) parasite dilution (Supplementary Fig. 

2). Thus, SWGA generated high-quality Plasmodium core genomes from samples 

containing large quantities of contaminating host DNA. 
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Table 3-1 Selective whole-genome amplification of P. falciparum from mixtures of 

human and parasite DNA.  
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Figure 3-1. Selective whole genome amplification (SWGA) of Plasmodium 

parasites. 

 (A,B) Selection of SWGA primer sets. (A) The average distance (kb) between the 

10,000 most frequent parasite motifs (color coded by length) is plotted for both the P. 

falciparum (Pf3D7) and human (GRCh37) genomes. The red box highlights motifs that 

are spaced (on average) less than 50,000 bp apart in the P. falciparum, but more than 

500,000 bp apart in the human genome. (B) Average distances between the sequence 

motifs shown in a, but plotted for the P. reichenowi (PrCDC) and chimpanzee 
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(Pan_troglodytes-2.1.4) genomes. Red dots indicate all motifs that fall within the red box 

in a, with circles and stars denoting those selected for SWGA primer sets 6A and 8A, 

respectively (Supplementary Fig. 1). (C) Validation of the SWGA primer sets identified in 

A and B. Human genomic DNA containing known quantities of P. falciparum (5% to 

0.001%) were subjected to consecutive rounds of SWGA, using primer set 6A in the first 

and primer set 8A in the second round, respectively. The number of total base pairs (in 

millions) sequenced is shown in relation to the percent coverage of the P. falciparum 

(Pf3D7) genome for five parasite concentrations. DNA mixtures were subjected to two 

independent amplifications, with individual and combined results shown in blue and red, 

respectively (the expected genome coverage without SWGA is shown in green). 

 

 We next used SWGA to amplify the genomes of three chimpanzee parasites, 

representing both close (P. reichenowi) and very distant (P. gaboni) relatives of P. 

falciparum (26). Whole blood samples were obtained from sanctuary chimpanzees (Pan 

troglodytes) during their annual health examination and tested for Plasmodium infection 

using conventional PCR. Parasite DNA positive blood samples were further 

characterized by limiting dilution (single template) PCR amplification of eight 

mitochondrial, apicoplast, and nuclear loci to determine their Plasmodium species 

composition (26, 80). This analysis identified one sample (SY57) to contain almost 

exclusively (>99%) P. reichenowi and two others (SY75 and SY37) to contain only P. 

gaboni DNA (Supplementary Table 1). In each case, the parasites comprised only a 

miniscule fraction of the total blood DNA (0.0054%, 0.14% and 0.00081% for SY57, 

SY75 and SY37, respectively). To reduce the contaminating host DNA, we digested all 

samples with methylation dependent restriction enzymes (MspJI and FspEI) known to 

cleave ape, but not Plasmodium, genomic DNA (38), and then used the digestion 
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products for SWGA and Illumina sequencing (Online Methods). This approach yielded 

27, 31 and 39 million MiSeq reads for samples SY57, SY75 and SY37, respectively, of 

which 89%, 73% and 61% mapped to Plasmodium sequences (Supplementary Table 1). 

Sequence coverage was even across all 14 chromosomes, with no evidence for 

selective sequence loss, including near the ends of some chromosomes (Supplementary 

Fig. 3). Reads from sample SY57 were mapped to the P. reichenowi PrCDC reference 

and shown to cover 96% of its genome (at a coverage depth of 5-fold or higher read). 

Since there is no published P. gaboni genome, reads from samples SY75 and SY37 

were mapped to the P. falciparum Pf3D7 reference and shown to cover 79% and 69% of 

its genome (at ≥5x), respectively (Supplementary Table 1). This lower coverage was not 

due to a reduction in selective amplification, but the difficulty of mapping reads to a 

highly divergent reference sequence. 

Using reference guided iterative assembly (Online Methods) (81), we generated 

draft genomes for PrSY57 and PgSY75, which contained 18.5 Mb and 18.9 Mb of 

chromosomal, as well as 1.4 and 0.8 Mb of sequence that could not be placed within the 

core genome, respectively (Table 3-2). Due to the very small quantities of parasite DNA, 

sequence coverage for PgSY37 was lower, yielding 15 Mb of chromosomal and 8 Mb of 

unplaced sequences. Syntenic annotation transfer and ab initio gene prediction identified 

4,920, 4,962 and 4,179 full-length and partial protein coding genes in PrSY57, PgSY75 

and PgSY37, respectively, which included 98.3%, 98.7% and 85.7% of the core genes in 

the respective reference sequences (Table 3-2). In genomic regions that were syntenic 

among all three species, there were only 5 P. gaboni genes that were missing in P. 

falciparum and/or P. reichenowi, and only 5 P. reichenowi and/or P. falciparum genes 

that were absent from P. gaboni (Supplementary Table 2, Supplementary Fig. 4). Of 76 

pseudogenes identified in the three Laverania species, only 7, 14 and 9 were specific for 
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P. falciparum, P. reichenowi and P. gaboni, respectively (Supplementary Table 3). Thus, 

the core genome of ape and human Laverania parasites is highly conserved even 

among the most divergent species within the subgenus.  

  



42	
	

Table 3-2 Genome features of P. gaboni and P. reichenowi  
 P. reichenowi P. gaboni P. gaboni 

Genome ID PrSY57 PgSY75 PgSY37 
Chromosomal assembly (bp)a  18,853,635 18,465,530 15,330,638 
Chromosomal contigs 1,012 331 n/ag 

Unplaced assembly (bp)b 784,231 1,442,089 8,902,276 
Unplaced contigs 741 809 14,793 
Chromosomes 14 14 14 
GC content (%) 18.6 18.3 17.1 
Core protein-coding genesc 

4670 (98.3%) 4689 (98.7%) 4071 (85.7%) 
 Full-lengthd 

4359 (91.8%) 4382 (92.2%) 3295 (69.4%) 
 Partiale 

311 (6.5%) 307 (6.5%) 776 (16.3%) 
Subtelomeric protein-coding 
genesc 235 (23.8%) 222 (33.2%) 108 (16.2%) 
 Full-lengthd 

182 (18.5%) 189 (28.3%) 72 (10.8%) 
 Partiale 

53 (5.4%) 33 (4.9%) 36 (5.4%) 
Other protein-coding genesf 15 51 0 
 Full-lengthd 

14 44 n/a 
 Partiale 

1 7 n/a 
tRNA genes 42 (93.3%) 43 (95.6%) 32 (71.1%) 
rRNA genes 8 (47.1%) 11 (43.3%) 2 (7.7%) 
 Full-lengthd 4 (23.5%)  10 (38.5%) 2 (7.7%) 
 Partiale 4 (23.5%)  1 (3.8%) 0 
ncRNA genes 71 (75.5%) 67 (65.7%) 49 (48.0%) 
 Full-lengthd 66 (70.2%) 61 (59.8%) 40 (39.2%) 
 Partiale 5 (5.3%) 6 (5.9%) 9 (8.8%) 
Apicoplast genes 45 (76.3%) 58 (85.3%) n/a 
 Full-lengthd 27 (90.0%) 30 (100%) n/a 
 Partiale 2 (6.7%) 0 n/a 
 tRNA genes  16 (59.3%) 26 (76.5%) n/a 
 rRNA genes 0 2 (50%) n/a 
aLength of all contigs that could be placed in chromosomes, excluding gaps; bp, base pairs. 
bLength of all contigs that could not be placed in chromosomes (‘bin’), excluding gaps; bp, base pairs. 
cGene counts excluding splice variants, but including pseudogenes and partial genes; parentheses indicate the 
percentage of genes covered in the Plasmodium references Pf3D7 (PgSY75 and PgSY37) and PrCDC1 (PrSY57). 
dNumber includes all genes that comprise ≥90% of the lengths of their Pf3D7 or PrCDC orthologs/homologs as well as 
all genes that comprise ≥80% of the lengths of their Pf3D7 or PrCDC orthologs/homologs and contain no assembly 
gaps. 
eAll annotated coding sequences for which homologs could be identified by BLAST search, but did not contain a 
sufficiently long sequence to be considered full-length. 
fGenes for which an ortholog could not be unambiguously identified in the reference genome. 
gn/a, not available; the PgSY37 genome was generated by iteratively replacing the PgSY75 genome with PgSY37 
reads and replacing the regions that lacked 5-fold coverage with Ns; reads not mapped to PgSY75 chromosomes were 
assembled de novo to generate 'unplaced contigs'. 
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 Availability of new P. reichenowi and P. gaboni genomes allowed us to examine 

the within-species diversity among chimpanzee parasites. For comparison, the intra-

species diversity of P. falciparum was calculated using published SNP data from 12 

geographically diverse field isolates (see the ‘Methods’ section for details). Comparing 

more than 3,000 genes, we found that the two P. gaboni genomes (PgSY75 and 

PgSY37) differed at 0.4% of all coding sites, and 1.1% of fourfold degenerate (silent) 

sites. Similarly, the two P. reichenowi genomes (PrSY57 and PrCDC) differed at 0.3% of 

all coding sites, and 0.9% of fourfold degenerate sites (Table 3-3). Note that, for every 

gene, the divergence between the two P. gaboni sequences, or between the two P. 

reichenowi sequences, was lower than between these two species, consistent with the 

premise that P. gaboni and P. reichenowi are genetically isolated.  

In contrast, 12 field isolates of P. falciparum selected from countries around the 

world differed on average at only 0.04% of all coding sites, and 0.08% of fourfold 

degenerate sites (Table 3-3). To ensure that the higher diversity among the ape 

parasites was not an artefact of the SWGA method, we amplified several nuclear loci 

that exhibited particularly high sequence diversity (three from P. gaboni and four from P. 

reichenowi) using limiting dilution PCR (Supplementary Table 4). The resulting 

sequences were identical to the SWGA-derived genomes except for two indels in 

difficult-to-assemble regions, which had been excluded from the diversity calculations, 

thus further validating the accuracy of the SWGA method (Supplementary Fig. 5). The 

distributions of diversity levels across genes were very similar in P. reichenowi and P. 

gaboni (Fig. 3-2). This was also the case when the within-species diversity for P. 

reichenowi or P. gaboni was compared with the maximum pairwise divergence obtained 

for each gene among the 12 P. falciparum field isolates (Supplementary Fig. 6). In all 

comparisons, the difference between ape and human parasites reflected significantly 
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higher diversity levels in genes distributed across the entire core genome (Sign test, 

Pr>Pf and Pg>Pf: p < 2.2e-16). Thus, for both chimpanzee parasite species, including 

two P. gaboni strains from the same location, the genetic diversity is about ten times 

higher than that seen among P. falciparum strains from different geographic regions 

across the globe. This reduced diversity in P. falciparum is consistent with a severe 

population bottleneck, which most likely occurred at the cross-species transmission from 

gorilla to human. 

 
Table 3-3 Genome features of P. gaboni and P. reichenowi.  
Speciesa Nb πc π4d Genes πc π4d Genes 

P. falciparum 12 0.00049 0.00081 4,818 0.00043 0.00079 3,111 
P. reichenowi 2 0.00364 0.00899 4,439 0.00324 0.00876 3,111 
P. gaboni 2 0.00407 0.01069 3,331 0.00381 0.01049 3,111 
aValues represent weighted mean values across genes. Values at the right are for 3,111 genes available for 
all three species. 
bN, number of strains. 
cπ, pairwise nucleotide diversity across all non-masked sites;  
dπ4, pairwise nucleotide diversity across non-masked 4-fold degenerate sites.  
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Figure 3-2. Sequence diversity within three Laverania species and P. vivax. 

The average pairwise nucleotide sequence diversity is shown for 3,111 syntenic core 

genes at four-fold degenerate sites for 12 geographically diverse strains of P. falciparum 

(black), two strains of P. reichenowi (red), and two strains of P. gaboni (blue), 

respectively. The average pairwise diversity for 2,753 genes from five strains of P. vivax 

is included as a comparator. For P. falciparum strains other than 3D7, diversity 

information was obtained from SNP data (only datasets representing single parasite 

strains were used for analysis; see Online Methods for more detail). For P. vivax, 

diversity information was obtained from previously published SNP data (Neafsey et al., 

2012) 

 

 It has long been suspected that P. falciparum has unusually low genetic diversity 

(82), although the underlying causes have been the subject of much debate (83). 

Genome-wide analysis of human and chimpanzee parasites now show that this low 
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diversity is not a general characteristic of Laverania parasites, and therefore not a 

consequence of their life cycle (84, 85) nor an artifact of their very A+T-rich genomes. 

The expected neutral nucleotide diversity is dependent on the effective population size, 

which for a parasite is generally dependent on the population size of its host. While the 

effective population size of chimpanzees is higher (2-3x) than that of humans, numbers 

of chimpanzees seem unlikely to have been ten times larger than those of humans in the 

past (86). A simple explanation for the low diversity in P. falciparum is a very recent 

population bottleneck, reflecting the cross-species transmission of its gorilla precursor 

(26).  

 To gain insight into the host specificity of Laverania parasites, we examined 

members of multigene families known to function at the host-parasite interface. Many of 

these, including members of the var, rif and stevor families, could not be completely 

assembled because of their extreme variability and subtelomeric location, although var-

like genes have been shown to be present in all ape Laverania species (80). One family 

of putative protein kinases, termed FIKK (after a conserved Phe-Ile-Lys-Lys motif in their 

amino acid sequence), was of particular interest because it expanded from a single gene 

present in all Plasmodium parasites to 20 genes in both P. falciparum and P. reichenowi 

(67, 69). Remarkably, the new P. gaboni genome contained 21 FIKK genes, 20 of which 

represented clear syntenic orthologs of corresponding P. falciparum and P. reichenowi 

genes as demonstrated by phylogenetic analysis (Fig. 3-3A) and chromosomal location 

(Supplementary Table 5). The remaining P. gaboni gene on chromosome 9, termed 

FIKK9.15, did not have an ortholog in P. falciparum and P. reichenowi 

(Supplementary Fig. 7A), but was identified in the closest relative of P. gaboni, the gorilla 

parasite P. adleri (Supplementary Fig. 7B). These data indicate that the FIKK gene 

family underwent an unprecedented burst of gene duplications and rapid diversification 



47	
	

very early in Laverania evolution, followed by a period of greatly reduced divergence 

rates and near stasis of FIKK gene copy numbers after the radiation of extant Laverania 

species (Fig. 3-3A). Although their exact function remains to be determined, the P. 

falciparum FIKK genes are expressed at different time points during the erythrocytic 

cycle (87) (Fig. 3-3B), with all but the ancestral FIKK8 believed to be exported into the 

host erythrocyte to contribute to the remodeling of its cytoskeleton and surface 

membrane structures (67, 88-90). The slow rate of evolution of FIKK8 (Fig. 3-3A) 

suggests that it retained its original, cytosolic function consistent with similar expression 

profiles of its ortholog in P. vivax (87, 91). However, all other family members appear to 

have acquired novel, non-redundant and seemingly essential functions, since only very 

few have become pseudogenes in one or more Laverania species. For example, 

FIKK7.2 and FIKK14 are pseudogenes in P. falciparum (Fig. 3-3A), but lack the 

respective inactivating mutations in P. praefalciparum and P. adleri (Supplementary Fig. 

8). Similarly, FIKK9.5 is a pseudogene in P. gaboni and P. reichenowi, but is intact in P. 

falciparum (Fig. 3-3A) and possibly other Laverania species. Interestingly, other 

exported multigene families that have undergone lineage specific expansion in P. 

falciparum and P. reichenowi (92), including DNAJ and PHISTb genes, also have 

syntenic orthologs in P. gaboni (Supplementary Table 7). Thus, it seems likely that the 

rapid multiplication of the FIKK gene family, perhaps in concert with other members of 

the Plasmodium exportome (proteins exported from the parasite) (92), is at least partly 

responsible for the unique biology of Laverania parasites, including their ability to 

mediate red blood cell cytoadhesion, tissue sequestration and/or host immune escape 

(93, 94). 
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Figure 3-3. Expansion and diversification of the FIKK multigene family in the 

Laverania subgenus. 

 (A) Phylogeny of FIKK genes from P. falciparum (green), P. reichenowi (red), P. gaboni 

(blue), and non-Laverania species (black). FIKK genes are labeled according to their P. 

falciparum orthologs, with the new P. gaboni gene designated FIKK9.15. Open symbols 

indicate pseudogenes in all members of the species (FIKK7.2 is intact in some strains of 

P. falciparum). The tree was inferred using maximum-likelihood methods(52) using an 

alignment of first and second codon positions. Internal branches with bootstrap support 

of less than 70% are collapsed. The scale bar represents 0.05 substitutions per site. (B) 

Expression profiles of P. falciparum FIKK genes. Previously published microarray data 

(87) from 21 clonal P. falciparum strains were used to calculate the expression levels of 

19 FIKK genes at different time points during the intra-erythrocytic lifecycle (data for the 

remaining FIKK gene were not available). Colors represent mRNA expression levels 

relative to a reference pool, with red, black and green indicating higher, equal, and lower 

expression levels than the reference pool, respectively. Genes were arranged to 

illustrate the sequential nature of FIKK gene expression. 
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 To investigate whether any genes exhibit unusual patterns of divergence among 

P. falciparum, P. reichenowi and P. gaboni, we calculated inter-species distances for 

4,500 syntenic orthologs (Supplementary Data). As expected from mitochondrial DNA, 

the pairwise distance between P. falciparum and P. reichenowi was about four-fold lower 

than the distance of either species to P. gaboni. However, there were four genes for 

which these relationships were reversed, that is the P. falciparum/P. reichenowi distance 

was about four-fold higher than the P. falciparum/P. gaboni distance (Supplementary 

Data). Remarkably, these four genes are all located on the same 8 kb segment of 

chromosome 4 (Fig. 3-4A) and include two essential invasion genes encoding the 

reticulocyte binding-like homologous protein 5 (RH5) and the cysteine-rich protective 

antigen (CyRPA) (55, 95). To investigate this further, we amplified regions from both 

within and outside the 8 kb segment from additional ape Laverania species 

(Supplementary Table 8, Supplementary Fig. 9). Whereas a phylogeny derived from the 

EBA165 gene (outside the 8 kb segment) was consistent with previous topologies (26), 

we found an unexpectedly close relationship of the P. falciparum/P. praefalciparum 

clade with the gorilla parasite P. adleri in trees based on the RH5 and CyRPA genes 

(Fig. 3-4B; Supplementary Fig. 9). Mating between members of different Laverania 

species is unlikely to generate viable progeny, and so the discordant evolutionary history 

of this 8 kb region is most likely the result of horizontal gene transfer (HGT) from an 

ancestor of P. adleri to an ancestor of P. praefalciparum. Cultured erythrocyte-stage 

parasites of P. falciparum take up DNA spontaneously from their host cell cytoplasm (96) 

and infected red blood cells have been shown to communicate via exosome-like vesicles 

that are capable of delivering genes (97). Thus, this HGT most likely occurred during the 

blood stage infection of a gorilla harboring multiple Laverania species (26).  
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Figure 3-4. Horizontal gene transfer between two Laverania species includes two 

essential invasion genes. 

 (A) Identification of an 8 kb transferred segment on chromosome 4. Interspecies 

distances (color coded) are shown for syntenic orthologs of P. falciparum, P. reichenowi 

and P. gaboni. Four genes, including the essential invasion genes CyRPA and RH5, 

exhibit an unusually high P. falciparum/P. reichenowi (yellow) and an unusually low 
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P. falciparum/P. gaboni (aqua) distance, respectively. Genes are ordered by 

chromosomal location. Since RH4 is absent from P. gaboni (see Supplementary Fig. 4), 

only the P. falciparum/P. reichenowi distance is shown. (B,C) Phylogenetic relationships 

of Laverania RH5 and EBA165 gene sequences, revealing an unexpectedly close 

relationship between the P. praefalciparum/P. falciparum and P. adleri lineages in RH5. 

Laverania parasites are colored coded according to their host species (chimpanzee, red; 

gorilla, green; human, black). Trees were inferred by maximum likelihood methods (52). 

Numbers at internal nodes represent bootstrap support values (98) (only numbers >80% 

are shown). The scale bars represent 0.02 substitutions per site (additional phylogenies 

are shown Supplementary Fig. 9). 

 

 Recent studies have shown that RH5, CyRPA and the RH5-interacting protein 

(RIPR) form a multiprotein complex that is attached to the merozoite surface via the 

CyRPA glycosylphosphatidylinositol (GPI) anchor (95). This adhesion complex ensures 

the proper positioning of RH5, which lacks a transmembrane domain, thus facilitating its 

binding to the erythrocyte receptor basigin, an obligate step in the erythrocyte invasion 

process (99). Given the essential nature of these interactions, the acquisition of 

“matching” RH5 and CyRPA coding regions on both ends of a mosaic fragment seems 

unlikely to represent a chance event (Fig. 3-4A). Indeed, the initially transferred fragment 

may have been longer, but would have been reduced in size by successive 

recombination events eroding its edges until any further shortening was deleterious 

because it failed to conserve compatible RH5 and CyRPA proteins. Breakpoint analysis 

of the fragment boundaries provides support for this hypothesis (Supplementary Fig. 10). 
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3.4 Discussion 

Although the origin of P. falciparum is now well established, nothing is known about the 

evolutionary and mechanistic processes that led to its emergence. Studying Plasmodium 

infections of great apes is challenging because of their endangered status, which 

precludes interventions that could cause or risk harm. Here, we describe a new 

approach that generates high quality Plasmodium genome sequences from samples that 

contain large amounts of contaminating host DNA. This provides an opportunity to 

characterize additional Laverania species, in particular the gorilla precursor of P. 

falciparum, by selectively amplifying parasite genomes from small quantities of 

unprocessed blood or even infected mosquito DNA (100, 101). While the adaptive 

pathways required for the colonization of humans remain to be elucidated, it is tempting 

to speculate that the horizontal gene transfer of RH5, which represents a major P. 

falciparum host specificity determinant (102), conferred a fitness advantage that may 

have predisposed P. praefalciparum to infect humans. However, even if this was the 

case, HGT alone was clearly not sufficient since all characterized strains of P. 

praefalciparum carry this locus, yet there is evidence for only a single cross-species 

transmission event (26, 32, 103). Moreover, the HGT likely occurred long before the 

emergence of P. falciparum (Fig. 3-4B). Previous attempts to date the last common 

ancestor of P. falciparum have yielded estimates of up to several hundred thousand 

years ago (29, 104), but all of these made assumptions concerning the Plasmodium 

molecular clock that can not be substantiated. In contrast, other data, including the 

timescale of the spread of P. falciparum resistance mutations in African populations 

(105), the evolutionary history of its main mosquito vector Anopheles gambiae (106), 

and the low probability of maintaining endemic P. falciparum infections in human hunter-

gatherer populations (107, 108) support a much more recent emergence or expansion of 
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P. falciparum, within the last 10,000 years. Our findings of a 10-fold lower within-species 

diversity in P. falciparum compared to P. gaboni and P. reichenowi is consistent with the 

latter estimate. Thus, the event(s) that promoted the emergence of P. falciparum in 

humans may have been associated with the transition from a hunter-gatherer to a more 

settled lifestyle, possibly involving a change in mosquito host preference, such as the 

ability to efficiently infect the main human vector A. gambiae (109). 

 

3.5 Methods 

Ape samples.  

Blood samples (5-10 ml) were collected from sanctuary chimpanzees (Pan troglodytes) 

living in outside enclosures in close proximity to wild apes at the Sanaga Yong 

Chimpanzee Rescue Center (SY) in Cameroon (n=26) and the Tchimpounga 

Chimpanzee Rehabilitation Center (TC) (n=1) in the Republic of the Congo. Members of 

both the central (P. t. troglodytes) and the Nigeria-Cameroonian (P. t. ellioti) subspecies 

were sampled. Blood was obtained for veterinary purposes only or represented leftover 

specimens from yearly health examinations. None of the chimpanzee exhibited 

symptoms of malaria at the time of sampling. Most blood samples were preserved in 

RNAlater (1:1 vol/vol) without further processing, except for 8 samples, which were 

subjected to density gradient centrifugation in the field to enrich for red blood cells (RBC) 

(Supplementary Table 6). Briefly, blood was diluted in PBS (1:1 vol/vol), layered over 

Lymphoprep (Axis-Shield), and then centrifuged at 800xg for 20 minutes. After removal 

of the mononuclear cell layer, the purified erythrocytes were preserved in RNAlater (1:1 

vol/vol). All samples were transported at ambient temperature and subsequently stored 

at -80 °C. Small quantities of blood were also obtained from two western gorillas (Gorilla 

gorilla) of unknown geographic origin (SA), who were killed by hunters and confiscated 
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by the anti-poaching program of the Cameroonian Ministry of Environment and Forestry. 

Blood was collected from around the inflicted wounds and frozen directly without 

preservation. Ape fecal samples (n=55) were selected from an existing bank of 

chimpanzee and western gorilla specimens previously shown to contain Laverania 

parasite DNA(26, 80, 110). These specimens were collected from non-habituated apes 

living in remote forest areas, with a two-letter-code indicating their field site of origin as 

previously reported (26, 110). DNA was extracted from whole blood and RBCs using the 

QIAmp Blood DNA Mini Kit, the Puregene Core Blood Kit (Qiagen), or the NucliSENS 

miniMag extraction kit (Biomérieux). All samples were shipped in compliance with 

Convention on International Trade in Endangered Species of Wild Fauna and Flora 

regulations and country specific import and export permits.  

 

Laverania species identification.  

The Laverania species composition of ape blood and fecal samples was determined by 

limiting dilution PCR (also termed single genome amplification) and phylogenetic 

analysis as previously described (26, 110, 111). Briefly, DNA was endpoint diluted such 

that fewer than 30% of PCR reactions yielded an amplification product (according to a 

Poisson distribution, a well yielding a PCR product at this dilution will contain only a 

single DNA template more than 83% of the time) (111). Amplification products were gel 

purified, and sequenced directly without interim cloning. Sequences containing double 

peaks, indicative of the presence of multiple templates or early PCR errors, were 

discarded. In addition to yielding an accurate representation of the Plasmodium species 

present in the sample, this approach generates sequences devoid of Taq polymerase 

induced misincorporations and recombination. Samples were analyzed at mitochondrial, 

nuclear, and apicoplast loci (Supplementary Tables 1 and 8), including portions of 
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cytochrome B (cytB), the erythrocyte binding antigens 165 and 175 (EBA165, EBA175), 

the gametocyte surface proteins P47 and P48/45 (P47, P48/45), the lactate 

dehydrogenase (ldh), the reticulocyte-binding protein homolog 5 (RH5), the cysteine-rich 

protective antigen (CyRPA), members of Phe-Ile-Lys-Lys (FIKK) containing protein 

kinase multigene family (FIKK7.2, FIKK14 and FIKK9.15), and the caseinolytic protein C 

(clpC) gene. Primers and PCR conditions have been described (26, 80), except for those 

used for the amplification of CyRPA and FIKK genes. CyRPA gene fragments (461-

792bp) were amplified using CyRPA_F1 (5’-TTTYATTTTTTCAAATTGTCTTAGTT-3’) 

and CyRPA_R1 (5’-ATGTCTCGCCYTTGTCGTG-3’) in the first round, and CyRPA_F2 

(5’-GTCRTCATGTTTTYATAAGGACTG-3’) and CyRPA_R2 (5’-

CCATACATAAAATGTCATCCTTCTT-3’) in the second round of PCR, or CyRPA5F1 (5’-

AAGGACTGARTTRTCGTTYRTAAAG-3’) and CyRPA5R1 (5’-

AACKTYCCTCCATARCAACCT-3’) in the first round, and CyRPA5iF2 (5’-

TARTGTTCCTTGTRTTSGKGATAT-3’) and CyRPA5iR2 (5’- 

ATCMCCYACATAAAAATGAAATGAC-3’) in the second round of PCR. The FIKK7.2 

fragment (637bp) was amplified using FIKK7.2_F993 (5’-

AAGATTCCTATTARTGCATGGRTAAA-3’) and FIKK7.2_R1782 (5’-

ATGATGGATCAGAACGCTTCC-3’) in the first round, and FIKK7.2_F1061 (5’-

AAATGCTGAAAATTATGTTATGGAAG-3’) and FIKK7.2_R1724 (5’- 

GATYCCCAACATATATTTATCAACTG-3’) in the second round of PCR. The FIKK14 

fragment (537bp) was amplified using FIKK14_F1280 (5’-

TGAAATGTAGAAGTAGATTAGCAA-3’) and FIKK14_R1965 (5’-

GTGTTAAACCTGCTTCATGTAATCTT-3’) in the first round, and FIKK14_F1321 (5’-

ACTGTATATAATTGGACRTTAGGTAA- 3’) and FIKK14_R1884 (5’-

CTAAATCATCATCATCATCATCCATA-3’) in the second round. Finally, the FIKK9.15 
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fragment (730-733bp) was amplified using PgSY75FIKK_F1 (5’-

CGGATAGAGATGACGTTTCACA-3’) and PgSY75FIKK_R1 (5’-

AAGGCACATGCCTCCATAATA-3’) in the first round, and PgSY75FIKK_F2 (5’-

ACAGGAGATAATGGAGGAAATGTAG-3’) and PgSY75FIKK_R2 (5’-

CCTACCACGTTTACTAAGTCCAATA-3’) in the second round of PCR. For each sample, 

multiple single template-derived amplicons were sequenced and their species origin 

identified by phylogenetic analysis (see GenBank accession numbers in Supplementary 

Table 8). This analysis permitted the identification of samples that represented single (or 

near single) Laverania species infections for selective whole genome amplification 

(Supplementary Table 1). 

 

Laverania specific real time PCR.  

To determine the amount of Laverania DNA within a blood or fecal sample, DNA was 

subjected to quantitative (q)PCR using a 7900HT Fast Real-Time PCR System and the 

Power SYBR Green qPCR kit (Life Technologies). Laverania specific forward (5’-

ACATGCCACATGGAAAAGCTT-3’) and reverse (5’-CTGGGGCCTTGGTAAATCCA-3’) 

primers were used to amplify a 144 bp fragment of the nuclear ldh gene. PCR cycling 

conditions included 2 minutes at 50 °C, 10 minutes at 95 °C, and 40 cycles of 15 

seconds at 95 °C and 1 minute at 60 °C. To estimate the number of genome copies per 

well, human genomic DNA containing known quantities of purified P. 

falciparum 3D7 DNA was used to generate a standard curve, which was included on all 

qPCR plates (Supplementary Table 1).  

 

Design of SWGA primers. 

In contrast to traditional phi29 whole genome amplification methods that use random 
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primers to amplify all DNA templates within a sample, selective whole genome 

amplification requires primers that bind frequently and evenly across the pathogen 

genome, but only rarely to the contaminating host DNA. To identify such primers, we 

used a sliding window to determine the frequency of all short sequence motifs (8-12 bp 

in length) in both a P. falciparum (3D7) and human (GRCh37) reference sequence and 

then calculated the average distance between their locations within these genomes 

(Supplementary Fig. 1). This approach identified 2,418 motifs that were spaced apart (on 

average) less than 50 kb in the P. falciparum, but more than 500 kb in the human 

genome (Fig. 4-1A). To select the best possible primers, motifs with a melting 

temperature (Tm) below 18 °C and above 30 °C were discarded because they were 

unlikely to properly anneal to the template DNA. Motifs that contained 4 or more 

contiguous self-complementary bases were also eliminated to avoid the formation of 

homodimers. Finally, motifs predicted to bind greater than 3 times to human 

mitochondrial DNA were eliminated, since this circular genome would be 

disproportionally targeted by phi29 for “rolling-circle” amplification (75). These criteria 

identified 149 potential SWGA primers. 

 In a previous study, we found that motifs that exhibited the highest target-to-

nontarget binding ratios were able to mediate selective amplification of bacterial 

genomes from infected host DNA (39). However, it was unclear whether this criterion 

alone would be sufficient for more complex (multichromosomal) eukaryotic genomes. To 

design primers capable of amplifying all regions of the Plasmodium genome, we 

developed a metric that scored both selectivity and evenness of coverage. To score a 

set of primers, we divided the P. falciparum and human genomes into 10-kb non-

overlapping segments and calculated the proportion of segments that contained at least 

one primer-binding site (Supplementary Fig. 1). Since our goal was to identify primer 



58	
	

binding sites in as many P. falciparum segments as possible, while minimizing segments 

containing the same binding site in the human genome, we defined our “set score” as 

the difference between the former and the latter (Equation 1). The complete P. 

falciparum and human genomes, including telomeric sequence, were used for the 

calculation. 

!"! =
Proportion of 10-kb sites in P. falciparum genome

containing at least 1 primer binding site  

!"! =
Proportion of 10-kb sites in the human genome

containing at least 1 primer binding site  

Set Score = !"! − !"! 

Equation 1: Scoring metric for SWGA primer sets 

Starting with a set of 149 primers, there are a total of 1.2 x 1015 possible combinations of 

10 or fewer primers. Since identifying the single best set would be computationally 

impossible, we used a heuristic approach to search for optimal primer combinations. 

Reasoning that heterodimer formation would reduce amplification efficiency, we divided 

the 149 primers into eight mutually exclusive groups, where no two primers contained 4 

or more contiguous complementary bases. For each group, we first scored primers 

individually (using Equation 1), and selected the highest scoring primer. We then paired 

this primer with all other primers and identified the highest scoring pair. This process 

was repeated by iteratively adding primers until the set score no longer improved 

(Supplementary Fig. 1). Applying this approach to all primer groups generated eight high 

scoring sets. The two best sets (6A and 8A) were then tested using human genomic 

DNA containing known quantities of P. falciparum DNA (a primer design pipeline that is 

applicable to the genomes of other organisms is available upon request).  

 



59	
	

SWGA protocol and validation of primer sets. 

SWGA was performed as described (39), essentially following previously published 

phi29 amplification protocols, but using primers designed to selectively amplify 

Laverania genomes (Fig. 4-1). Amplification conditions included a one-hour ramp down 

step (35 °C to 30 °C), followed by a 16 hour amplification step at 30 °C. Phi29 was then 

denatured for 10 min at 65 °C, and the SWGA product was stored at 4 °C. To validate 

the SWGA primers, genomic DNA extracted from cultured P. falciparum (3D7) parasites 

and human CD4+ T cells were mixed to generate human DNA preparations containing 

5%, 1%, 0.1%, 0.01%, and 0.001% P. falciparum DNA. SWGA was performed in a 

volume of 50µl using 50 ng of DNA, 3.5 mM of each SWGA primer (set 6A), 1x phi29 

buffer (New England Biolabs), 1 mM dNTPs, and 30 units of phi29 polymerase (New 

England Biolabs). 4 ul of the resulting SWGA product was then subjected to a second 

round of SWGA using the same amplification conditions, except for using a different set 

of primers (set 8A). Each of the human/Pf mixtures was amplified separately and purified 

using Agencourt AmpureXP beads (Beckman Coulter). 20 ng of the resulting SWGA 

products were used to generate short-insert libraries (Nextera Library Prep Kit) and 

sequenced on an Illumina MiSeq, yielding 150 bp paired reads. Enrichment was 

quantified by mapping paired reads first to the human and then to the P. falciparum 3D7 

genome using SMALT 0.7.6 (https://www.sanger.ac.uk/resources/software/smalt/) and 

then calculating the percentage of reads that mapped to P. falciparum 3D7. This 

analysis showed that the SWGA method amplified P. falciparum with extraordinary 

selectivity, resulting in an up to 70,000-fold enrichment of parasite over host DNA (Table 

3-1) while maintaining an even coverage of all chromosomes, except for sub-telomeric 

regions where extremely high AT-content precluded accurate mapping (Supplementary 
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Fig. 2). 

 To determine the efficiency of SWGA, we performed a rarefaction analysis, 

examining both the selectivity and evenness of amplification for different ratios of 

host/parasite DNA. For each human/Pf DNA mixture, subsets of reads were randomly 

selected and mapped to the P. falciparum (3D7) and human reference genomes 

(GRCh37) simultaneously. The percent of the P. falciparum genome with ≥1x coverage 

was then calculated and compared to the expected coverage of the same unamplified 

human/Pf mixture (Fig. 4-1C). This analysis showed that the SWGA approach was able 

to dramatically decrease the sequencing effort required to obtain broad coverage of the 

P. falciparum core genome, with little to no coverage loss when applied to samples 

containing <0.01% P. falciparum (Fig. 4-1C).  

 

Selective amplification of P. reichenowi and P. gaboni genomes. 

To amplify near-full-length Laverania parasite genomes from unprocessed ape blood, we 

selected one chimpanzee sample (SY57) that contained mostly (>99%) P. reichenowi 

and two others (SY75 and SY37) that contained exclusively P. gaboni DNA for SWGA 

analysis (Supplementary Table 1). Since these samples contained very little Laverania 

DNA (0.00081%-0.14%), we first digested them with methylation dependent restriction 

enzymes (MspJI and FspEI) to selectively cleave the contaminating host DNA (38). 

Briefly, 200ng - 1µg of total DNA were digested with FspEI (5U) and MspJI (5U) for 7 

hours at 37 °C, after which the enzymes were heat inactivated. The digestion products 

were purified and subjected to two successive rounds of SWGA using the same 

conditions as described above. For each chimpanzee sample, SWGA was performed 

using multiple DNA replicates (Supplementary Table 1), with half being first amplified 
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with primer set 8A followed by primer set 6A, and the other half being first amplified with 

primer set 6A followed by primer set 8A. Amplification products were purified, pooled, 

and used to generate short-insert libraries (650 bp) using the Illumina TruSeq PCR-Free 

Library Preparation Kit (Supplementary Table 1). To facilitate subsequent genome 

assembly, we also generated long insert libraries (3 kb, 5 kb, 8 kb and 9 kb) for the P. 

gaboni sample SY75 (Illumina Nextera Mate Pair Sample Preparation Kit). All libraries 

were sequenced using the Illumina MiSeq and paired reads were first mapped to the 

chimpanzee reference genome (Pan_troglodytes-2.1.4) using SMALT. The remaining 

reads were then mapped to the Plasmodium genome, with Pf3D7 serving as the 

reference for SY75 and SY37, and PrCDC serving as the reference for SY57. Although 

SY75 (73%) and SY37 (61%) yielded fewer parasite-specific reads than SY57 (89%), 

this was not due to a reduced amplification selectivity, but reflected the difficulty of 

mapping P. gaboni reads to the much more divergent P. falciparum genome 

(Supplementary Table 1). 

 

Assembly of P. gaboni and P. reichenowi draft genomes. 

Draft genomes were generated for the P. reichenowi strain PrSY57 and the P. gaboni 

strain PgSY75 using reference guided de novo assembly with post-assembly genome 

improvements (69, 81). First, working drafts of the PrSY57 and PgSY75 genomes were 

generated by iteratively mapping (non-chimpanzee) reads to the PrCDC and Pf3D7 

references, respectively, using Geneious 6 (Biomatters Limited, 

http://www.geneious.com). This mapping process, which was repeated 10 times, 

resulted in a sequence that represented the read mapping consensus at all positions 

with ≥5 fold coverage. At positions with lower coverage, the sequence of the reference 

(Pf3D7 or PrCDC) was used instead. All reads were then re-mapped to this consensus 
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using two iterations. The resulting draft reference represented the mapping consensus at 

all positions with ≥5 fold coverage, with positions with <5 fold coverage denoted by “N”s. 

 Prior to de novo assembly, error correction was performed on short-insert 

libraries from each sample using String Graph Assembler (SGA 0.10.12) (112) as 

previously described (69). For the P. gaboni sample PgSY75, reads were also 

normalized using KHMER (113), which uses k-mer frequencies to estimate and 

normalize genome coverage in a reference-free manner, thus facilitating subsequent de 

novo assembly. This process yielded 11 million reads. 

 After mapping reads to the working draft reference using SMALT, a reference 

guided de novo assembly was generated using the Columbus extension to Velvet 1.1.06 

(114). Assemblies were produced using a variety of k-mer lengths and coverage 

settings. Comparing these assemblies to the Pf3D7 and PrCDC references, we identified 

several tandem duplications, which upon visual inspection were judged to likely 

represent assembly errors. We thus changed the assembly parameters to minimize the 

number of these duplications. Specifically, we varied k-mer length, coverage cutoff, and 

minimum paired coverage, and analyzed the resulting assembly quality by comparing 

the length of contigs, maximum node length, total assembly length, and the number of 

tandem duplications compared to the reference genome. 

 For the P. gaboni sample PgSY75, contigs produced by Velvet Columbus were 

further scaffolded using long insert libraries with SSPACE 2.0 (115). Scaffolding was 

performed iteratively, first using the 3 kb library, then the 5 kb library, and finally the 8 kb 

and 9 kb libraries. Scaffolding was performed using default parameters, except for (i) a 

minimum number of mate pairs (-k) of 10 for the 3 kb library and 5 for the 5 kb, 8 kb and 

9 kb libraries, respectively, (ii) a maximum ratio between the two best pairs (-a) of 0.6, 

(iii) a minimum required overlap (-n) of 60 bp, and (iv) a minimum contig size (-z) of 500. 
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Scaffolding was not performed for the P. reichenowi PrSY57 because long insert 

libraries were not generated for this sample. 

 To improve the quality of the draft references, contigs and scaffolds produced by 

Velvet Columbus and SSPACE were subjected to two iterations of post-assembly 

improvement using PAGIT v1 (81). Contigs were aligned against the respective 

reference genomes using ABACAS 1.3.1 and joined into a single ordered sequence 

separated by gaps (“N”s). The resulting ordering was compared to the reference 

genome using blastn to identify erroneously placed contigs. ABACAS parameters for 

minimum percent identity (-i) and minimum contig coverage (-v) were varied to maximize 

the total number of correctly placed contigs (e.g., -i 90 was used to minimize P. gaboni 

contamination in the P. reichenowi SY57 assembly). Contigs were then manually 

rearranged in the Artemis Comparison Tool (ACT) (116) to correct any remaining 

placement errors. Gaps between contigs were closed using gapfiller 1.10 (117) and 

IMAGE 2.4.1 (118). Since the closing of gaps also produced tandem duplications, 

parameters for gapfiller and IMAGE were varied to minimize the number of duplications 

and maximize the number of gaps closed. 

Mapping paired reads to the improved draft genome identified several instances 

where Velvet or gap-closure produced erroneously assembled sequence. Since read 

coverage is often reduced on both sides of an assembly error, we calculated the mean 

read coverage for a 1,750 bp window surrounding these positions (the central 750 bp 

which were slightly larger than the library insert size were excluded from these 

calculation). We then broke the draft genome into contigs at positions where the 

coverage was either below five paired reads or 10% of the mean coverage of the 1,750 

bp window, and repeated the process of contig ordering and gap closure using the 

broken contigs, varying the same parameters as before. 
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The ordered, gap-closed, draft genome produced by PAGIT was corrected using 

iCORN 2 (119), which corrects SNP and indel errors based on the read consensus. We 

ran iCORN iteratively until no additional corrections of the genome were required. The 

final output was designated version 0.1 of both the PgSY75 and PrSY57 draft 

chromosomal assemblies, with all additional edits made after manual inspection during 

gene annotation and subsequent analyses. 

 

Generation of PgSY75 and PrSY57 unplaced read bins. 

All contigs that could not be placed into chromosomal scaffolds of an assembly during 

the PAGIT process were put into an unplaced-read-bin (version 0.1). These “bins” were 

then expanded using de novo assemblies of (non-chimpanzee) reads that failed to map 

to both the chromosomal assembly and the v0.1 bin. This was done by mapping all 

reads from PgSY75 and PrSY57 to their respective draft assembly and bin using 

SMALT, and then performing de novo assembly of the remaining unplaced read pairs 

using SPAdes 3.1.1 (120). SPAdes was run using the default multicellular mode 

parameters, except for the k-mer length (-k) that was set to 21, 33, 55, and 77. For 

PgSY75, the resulting contigs were corrected using iCORN (119), using only unmapped 

read pairs from the previous step and added to the unplaced bin. For PrSY57, the 

combined unplaced bin contigs were screened for contaminating P. gaboni sequences 

by performing blastn searches to a combined database of PrCDC, Pf3D7 and PgSY75 

chromosomes. Contigs were only retained if their best match was to a P. reichenowi 

contig, exhibited ≥90% identity, and had e-value ≤10-15. Duplicated contigs, which had 

been assembled erroneously due to the presence of inter-strain polymorphisms or 

sequencing error, were initially merged by running dipSPAdes (121) on the combined 

unplaced contig bins for each draft assembly, using haplocontig mode. Each unplaced 
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contig in the reduced bin was then compared to the chromosomal assembly and other 

unplaced bin contigs using blastn, and those that were >85% identical to chromosomal 

or bin contigs were aligned to their match, visually inspected, and either removed or 

used to improve the existing assembly. The resulting de-duplicated bin was combined 

with the v0.1 draft chromosomal assembly and designated the v0.1 draft genome. 

 

Annotation of the PgSY75 and PrSY57 draft genomes. 

Annotations were transferred to the PgSY75 and PrSY57 draft genomes from P. 

falciparum (Pf3D7) and P. reichenowi (PrCDC) reference genomes, respectively. 

Annotation transfer was performed using RATT (122) and corrected manually in ACT 

(116) using a blastn alignment to the corresponding reference. Genes in the draft 

genomes that were not present in Pf3D7 or PrCDC, or had been missed by RATT, were 

identified by de novo annotation in Augustus (123) using the Plasmodium falciparum 

species configuration. De novo annotations that overlapped transferred annotations 

were removed. The remaining de novo annotations were compared with their reference 

strains using blastn and tblastx to identify putative orthologs and homologs, and 

corrected by visual inspection. Annotations for which no homolog could be identified in 

the reference were compared individually with all available Plasmodium genomes, and 

deleted if no putative homolog could be found. 

 

Generation and annotation of the PgSY37 draft genome. 

Because the small amounts of P. gaboni DNA present in sample SY37 resulted in 

greater unevenness of whole genome amplification and sequence coverage, the 

PgSY37 draft genome was assembled by iteratively mapping the SWGA generated 

sequencing reads to the PgSY75 genome, using the same methods and parameters 
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described above. Unplaced reads were assembled using SPAdes (120) and placed into 

the PgSY37 unplaced read bin. The PgSY37 genome was annotated by strain level 

annotation transfer from the PgSY75 genome using RATT (122), and corrected by visual 

inspection. 

 

Limitations of SWGA to generate Plasmodium genome sequences. 

SWGA generated high quality Plasmodium genomes when samples were well 

preserved, comprised Laverania mono (or near mono) infections, and contained 

>0.0005% of parasite DNA. Although even a relatively low parasite load (e.g., 0.0054% 

in SY57) yielded broad coverage, coverage depth varied due to the process by which 

SWGA enriches for target DNA. Very low levels of parasite DNA (e.g., 0.00081% in 

SY37) led to stochastic peaks of amplification scattered across the genome. Moreover, 

partial sample degradation impeded SWGA. For example, two gorilla blood samples 

(SA3066 and SA3157), which were frozen without preservation, failed to yield genome 

sequences following SWGA and MiSeq sequencing, despite the presence of seemingly 

sufficient (albeit low level) quantities of parasite DNA (0.00073% and 0.00024%, 

respectively). Thus, SWGA requires not only a minimum amount of parasite DNA, but 

also high molecular weight Plasmodium genomes for efficient amplification. 

Nonetheless, the SWGA products of the two gorilla blood samples yielded nuclear gene 

fragments (CyRPA, FIKK) when subjected to conventional single template PCR, 

indicating selective amplification even of partially degraded parasite DNA.  

 

Genes used in genome-wide analyses. 

Syntenic orthologs in P. falciparum 3D7 and P. reichenowi CDC were identified by 

chromosomal alignment. After exclusion of (i) var, rif, and stevor gene families, (ii) genes 
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that were pseudogenes in at least one of these Laverania species (Supplementary Table 

2), (iii) genes that had previously been suggested to be dimorphic in P. falciparum (124, 

125) (msp1, msp2, msp3, msp6 and EBA175), and (vi) genes for which orthologs could 

not be identified in P. gaboni (Supplementary Data 1), the remaining sets of orthologs 

were used for genome-wide analyses. Subtelomeric regions, which were excluded from 

P. falciparum polymorphism data, were defined as regions at the ends of chromosomes 

that consisted primarily of genes previously annotated as subtelomeric or members of 

subtelomeric gene families, including var, rif, stevor, PHIST, mc-2tm, hyp gene families 

1-17, resa, lysophospholipase, DNAJ and acyl-coA synthetase. Subtelomeric genes are 

identified in Supplementary Data. 

 

Inter-species divergence. 

The lengths of coding sequences from the annotated genomes were compared with their 

homologs or orthologs in the respective reference sequence (PrCDC for PrSY57, Pf3D7 

for PgSY75 and PgSY37). Genes were only included in genome-wide analyses if they (i) 

were ≥90% of the length of the reference homolog/ortholog or (ii) were ≥80% of the 

length of the reference ortholog/homolog, but also lacked assembly gaps. Each coding 

region was translated and queried for amino acid repeats using tblastx. Repeated 

sequences were masked if they comprised at least 20 amino acids with at least 95% 

identity between repeat units. Low-complexity amino acid sequences were identified in 

translations using segmasker (NCBI BLAST+ package) using default settings, and 

masked in the corresponding nucleotide sequences. Masked nucleotide sequences were 

aligned using TranslatorX (126) and MUSCLE (127). After alignment, any position that 

was masked, or contained an assembly or alignment gap, was masked in all sequences. 

Pairwise inter-species genetic distances were calculated in R using the ape package 
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(128) with the TN93 model of DNA evolution. Genes with unusually high inter-species 

distances were manually inspected and corrected if necessary. If the best alignment 

required insertion of a gap not divisible by three, the gene was excluded from intra-

species diversity analyses (since these required sequence translations). Inter-species 

distances were calculated using all available orthologs for Pf3D7, PrCDC, PrSY57, 

PgSY75 and PgSY37. 

 

Intra-species diversity. 

For P. falciparum, intra-species diversity was calculated using previously published 

parasite sequence datasets (Table 3-3) of geographically diverse field isolates collected 

in Bangladesh, Cambodia, DRC, Gambia, Ghana, Guinea, Laos, Myanmar, Nigeria, 

Thailand, Kenya, and Vietnam (Pf3k 1.0 pilot data release, 

http://www.malariagen.net/data/pf3k-1). For each country, three samples were chosen at 

random, reads were mapped to the 3D7 reference, and SNP variant calls were 

generated for all P. falciparum strains simultaneously using the GATK 3.1-1 

UnifiedGenotyper after indel realignment (129-131). To differentiate true variants from 

sequencing or alignment artifacts, 354 variant calls were randomly selected and true 

variants identified by visual inspection of the alignments. The GATK values (QUAL, QD, 

ReadPosRankSum, Genotype Quality, FS, BaseQRankSum, MQRankSum) were then 

compared for each true and artifactual variant, and appropriate cutoffs were selected to 

minimize false variant calls. Using only SNPs from the core genome, the number of P. 

falciparum strains present in each sample was estimated using estMOI (132), with one 

likely mono-infection selected for each country (ERS174561, Bangladesh; ERS050887, 

Cambodia; ERS347597, DRC; ERS010044, Gambia; ERS157479, Ghana; ERS042044, 

Guinea; ERS174601, Laos, ERS143480, Myanmar; ERS199640, Nigeria; ERS224908, 
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Thailand; ERS143467, Vietnam). No Kenyan strain was selected since all available 

samples were likely to represent multi-strain infections. After exclusion of subtelomeric 

genes, alleles from polymorphic sites were extracted from variant call format (vcf) files 

using custom Perl scripts. Sites at which three or more samples had missing data (i.e. 

no genotype called) or where the majority genotype was represented by <80% of 

mapped reads, were excluded from the analysis; otherwise samples with missing data 

were assumed to have the reference allele. Intra-species diversity (π) was determined 

by calculating the mean number of differences per site for all pairwise combinations of 

11 P. falciparum strains plus the 3D7 reference. Sites masked in 3D7 (see above) were 

excluded from intra-species diversity calculations. 

For P. gaboni and P. reichenowi, intra-species diversity was calculated from the 

alignments used for inter-species genetic distance calculations, using the ape R 

package to count the proportion of non-masked sites that differed between the two 

strains available for each species (PrCDC and PrSY57 for P. reichenowi, PgSY75 and 

PgSY37 for P. gaboni). 

 

Phylogenetic Analyses. 

Nucleotide sequences used for phylogenetic analyses were aligned using CLUSTAL W 

(133), followed by manual correction when necessary. Regions that could not be 

unambiguously aligned were removed from further analyses. Maximum likelihood 

phylogenetic analyses were conducted using PhyML (134), with iterative model fitting 

(52) based on a class of evolutionary models selected using Modeltest (135). For the 

analyses of the FIKK orthologs, pseudogene nucleotide sequences were translated, with 

indels corrected and in-frame stops coded as “X”, and the deduced amino acid 

sequences were aligned using MUSCLE (127). Based on this alignment, the conserved 
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FIKK protein regions were identified. The corresponding nucleotide sequences were 

then codon aligned, guided by the amino acid alignment. To eliminate possible 

mutational saturation at third codon position sites, these were removed prior to 

phylogenetic analyses using PhyML. 
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4.1 Abstract 

Antigens encoded by the var gene family are major virulence factors of the human 

malaria parasite Plasmodium falciparum, exhibiting enormous intra- and inter-strain 

diversity. Here we use network analysis to show that var architecture and mosaicism are 

conserved at multiple levels across the Laverania subgenus, based on var-like 

sequences from eight single-species and three multi-species Plasmodium infections of 

wild-living or sanctuary African apes. Using select whole-genome amplification, we also 

find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of 

the ape Laverania species most distantly related to P. falciparum, as well as a new class 

of Duffy Binding-Like (DBL) domains. These findings indicate that the modular genetic 

architecture and sequence diversity underlying var-mediated host-parasite interactions 

evolved prior to the radiation of the Laverania subgenus, long before the emergence of 

P. falciparum.  
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4.2 Introduction 

Wild-living apes in Africa are naturally infected by at least six Plasmodium species that 

form a separate subgenus, termed Laverania (12, 25, 27-32, 110, 136). Three of these 

species, P. reichenowi, P. gaboni, and P. billcollinsi, have been found only in 

chimpanzees, while the other three, P. adleri, P. blacklocki, and P. praefalciparum, have 

been found only in gorillas (Fig. 4-1A). Zoonotic transfer has occurred at least once, 

when a gorilla parasite (P. praefalciparum) gave rise to human P. falciparum, which 

causes the vast majority of malaria-associated morbidity and mortality in humans (32, 

110).  

A key component of P. falciparum virulence is the parasite’s ability to cause 

infected erythrocytes to adhere to the vascular endothelium. This allows the parasite to 

escape elimination in the spleen but can also lead to vascular obstruction and 

inflammation, key components of severe pathological complications such as cerebral 

malaria (137, 138). Cytoadherence is mediated by members of the P. falciparum 

Erythrocyte Membrane Protein 1 (PfEMP1) family, which contain between 3 and 8 

different Duffy Binding Like (DBLα-ζ) and Cysteine-rich Interdomain Region (CIDRα-δ) 

domains and are expressed on the surface of infected erythrocytes, where they bind to 

endothelial receptors. Each P. falciparum genome encodes approximately 60 different 

PfEMP1 proteins, which are expressed from var genes, one at a time, by means of 

epigenetic regulation (139, 140). Given their central role in P. falciparum pathogenesis, 

but absence from all other human Plasmodium species, the origins of var genes are of 

particular interest. 

Three factors have limited our ability to investigate the evolutionary history of var 

genes. First, obtaining blood samples from Laverania-infected wild-living apes is not 

ethical. As a result, all ape derived var sequences analyzed to date come from a single 
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P. reichenowi parasite, called PrCDC, from a wild-born chimpanzee, who was found to 

be Plasmodium infected in captivity (69). Second, P. falciparum var genes are highly 

diverse (Fig 4-1B). Not only is there rapid recombination between genes within and 

across chromosomes, which shuffles gene content within genome repertoires during 

infection (141, 142), but sexual reproduction in the mosquito vector also generates 

diversity via reassortment of chromosomes and conversion events (143). Thus, 

conventional phylogenetic approaches fail to resolve evolutionary relationships between 

var genes, requiring new and recombination-tolerant analysis techniques (144-149). 

Finally, the mosaicism and diversity generated by rapid recombination (141, 142), 

combined with the fact that most var genes are subtelomeric, render the assembly of 

full-length var genes from shotgun sequenced parasite genomes extremely difficult (35, 

150). 

  



75	
	

 

Figure 4-1. Characterization of Laverania var gene sequences. 

(A) Phylogeny of Plasmodium species. The tree was constructed from mitochondrial 

sequences (2.4 kb spanning cox1 and cytB). The scale bar indicates 0.01 substitutions 

per site. Colors indicate species infecting humans (red), chimpanzees (purple) and 

gorillas (aqua). Asterisks indicate successful PCR amplification of var sequences; a 

cross indicates identification of var-like genes in near full-length P. gaboni genomes. (B) 

Three-level schematic of modular var diversity, structure, and architecture. Colored ovals 

represent classes of DBL or CIDR domains. White boxes represent the N terminal 

segment (NTS), transmembrane (TM), and acidic terminal segment (ATS) domains; a 

wedge between TM and ATS domains indicates the intron that separates the two var 
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exons. Alternating conserved-variable architecture is illustrated using blocksharing (see 

Methods) between one representative DBLa domain (DD2var11) and other DBLa 

domains (144). A black bar indicates the location of the PCR amplified DBLa tag region, 

which spans three conserved homology blocks (HB3, HB5, and HB2) (144), 72 to 147 

base pairs in length. 

 

Here we overcome these impediments by generating 369 new var sequence 

fragments from five ape Laverania species, derived by PCR amplification from fecal and 

blood samples of naturally infected wild-living and sanctuary apes, respectively. We use 

network approaches and other recombination-tolerant methods to analyze these new 

sequences, together with 353 previously reported var gene sequences from one P. 

reichenowi and seven P. falciparum isolates (69, 144). In addition, we identify and 

analyze partially assembled var-like sequences from otherwise near-full-length genomes 

of two P. gaboni parasites (SYpte37, SYptt75), one of the Laverania species most 

distantly related to P. falciparum (39, 151). Analysis of these sequences reveals that 

several PfEMP1 domains, as well as the genetic structure and multi-domain architecture 

that are characteristic of P. falciparum var genes, are present across the Laverania 

subgenus. Thus, many var multi-gene family features predate the most recent common 

ancestor of extant Laverania species. 

 

4.3 Results 

Laverania species identification and sequence generation 

To study var gene architecture in ape Laverania species, we first determined the 

Plasmodium species composition of eleven blood and fecal samples from sanctuary and 

wild-living apes using a limiting dilution PCR approach called single genome sequencing 
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(SGS) (111). To ensure amplification of single parasite templates, blood and fecal DNA 

was diluted such that fewer than 30% of all PCR reactions yielded an amplification 

product. Amplicons were sequenced directly without cloning into a plasmid vector and 

sequences containing ambiguous bases indicative of template mixtures were discarded. 

This approach eliminates Taq polymerase-induced recombination (template switching) 

and nucleotide misincorporations in finished sequences, and also ensures a proportional 

representation of plasmodial variants as they exist in vivo (see Methods for a more 

detailed description of SGS). Targeting eight different mitochondrial, apicoplast and 

nuclear loci and sequencing up to 174 different SGS amplicons per sample 

(Supplementary Table 1), we identified eight samples with single-species infections of P. 

reichenowi (C1), P. gaboni (C2), P. billcollinsi (C3), or P. praefalciparum (G1). Three 

additional fecal samples represented mixed-species infections of several gorilla or 

chimpanzee parasites, including one of unknown, non-Laverania species origin 

(Supplementary Table 1).  

Given their enormous diversity, var homologs were amplified targeting a 

conserved region of the DBLa domain, termed the var gene “tag”, using conventional 

PCR and previously reported primers (152, 153) (see Methods and Supplementary 

Table 2). Amplicons were cloned, and multiple clones per sample were sequenced and 

grouped into unique haplotypes by phylogenetic analysis. The var gene tag is commonly 

analyzed because it is sufficiently conserved in two locations to allow reliable 

amplification, and is located within the DBLα domain, which, unlike other DBL domains, 

is present in almost all var genes (145-147, 152-154). The DBLα tag consists of three 

conserved homology blocks (144) (HBs) interspersed with highly variable regions 

(HVRs) of diverse length and sequence content (Fig. 4-1B), an architecture that 

facilitates mosaicism (146). Standard sequence analysis techniques can not adequately 
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analyze these mosaic sequences (144-149) and we therefore used a network analysis 

method to characterize the evolutionary relationships between Laverania var fragments. 

Figure 4-2 illustrates this type of analysis, where each node represents a var DBL 

sequence tag and a link between two nodes represents a shared identical sequence 

mosaic element. Due to frequent recombination and the possibility that immune selection 

differs between adjacent HVRs, networks were constructed independently for each of 

the two HVRs, which in P. falciparum were shown to exhibit different community 

structures (146). For each sample, only unique var tag haplotypes were included into the 

analysis (see Methods for a detailed description of network construction and statistical 

community detection).  

 

Shared var mosaic structure in P. reichenowi and P. falciparum  

We first examined the 37 new DBLα var tags from a P. reichenowi monoinfection 

detected by routine blood analysis in an asymptomatic sanctuary chimpanzee (SYptt15), 

who was housed in close proximity to the habitat of wild apes. It is well established that 

human P. falciparum and chimpanzee P. reichenowi are closely related sister taxa (69), 

and previous analyses of PrCDC var gene sequences indicated sequence homology 

with field and lab strains of P. falciparum (69, 145, 147, 148, 155). While early studies 

investigated shared polymorphisms in preliminary assemblies of a small subset of these 

genes (145), more recent studies analyzed the complete set of PrCDC DBLα domains, 

finding conserved gene regions between PrCDC and P. falciparum isolates 3D7 and 

HB3 (148) as well as the presence of P. falciparum homology blocks in PrCDC DBLα 

sequences (155). In contrast, we focused specifically on the most polymorphic HVR 

regions of P. falciparum and P. reichenowi DBLα homologs. Using a network community 

detection algorithm, a Bayesian k-mer analysis, and a pair-wise distance approach, we 
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found that var mosaics within the P. falciparum-P. reichenowi network do not cluster by 

parasite species (Fig. 4-2, Supplementary Fig. 1A,B), and that var genes from both 

species exhibit the same modular HVR architecture, i.e., a pattern of alternating regions 

of conservation and variability (Supplementary Fig. 1C). We have previously 

hypothesized that this genetic structure may allow for neighboring HVRs to respond 

independently to different selection pressures (146). Thus, our results confirm and 

extend previous findings that DBLα organization and capacity for diversification in 

response to immune selection were already present in the most recent common 

ancestor of P. falciparum and P. reichenowi. 
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Figure 4-2. Networks of DBLα sequences from P. reichenowi and P. falciparum.  

Each node represents a DBLα HVR sequence and each link represents a shared amino 

acid substring of significant length (146). Laverania species and strain origin is indicated 

by node color and shape. Left and right networks correspond to left and right HVRs, 

respectively. P. falciparum and P. reichenowi sequences do not cluster by species or 

sample in either HVR. Link lengths and node placements are determined by a force-

directed layout in order to better reveal structure, if it exists (see Methods). Additional 

analyses of these networks are shown in Supplementary Figure 1. 

 

var DBLα tag structures predate the Laverania radiation 

Having analyzed var tags from P. falciparum and P. reichenowi, we next examined 

parasite sequences from across the ape Laverania subgenus. Numerous identical 

mosaic elements in otherwise divergent sequences and a shared overall HVR 

architecture extended to the most divergent species (Fig. 4-3 and Supplementary Fig. 2). 

We were able to reconstruct highly connected networks for each HVR, indicating the 

presence of shared mosaic elements among the vast majority of tags from single-

species parasite infections. Every Laverania var tag contained three conserved 
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sequence motifs separating two HVRs: in 86% of sequences, the three conserved motifs 

corresponded to three of the five most common P. falciparum var motifs (in order: HB3, 

HB5, HB2) (144), while in the remaining 14%, HB5 was intact in the middle of the tag 

and more divergent forms of HB3 and HB2 were encoded by the 5’ and 3’ end of the tag, 

respectively (Supplementary Fig. 3).  
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Figure 4-3. Networks of DBL sequences from Laverania single-species infections 

in the context of known DBLα and non-DBLα sequences. 

Each node represents a DBL HVR sequence from a single-species infection and each 

link represents a shared amino acid substring of significant length. Note that for each 

sample, only unique var DBL haplotypes were included in the network analysis. Nodes 

with zero links indicate sequences that share no significant amino acid substrings with 

other sequences. Networks were built separately for each HVR, where mosaic diversity 

is highest (see Methods). Colors correspond to Laverania species as indicated; 

annotated yellow nodes correspond to (A) dblsmsp1 and (B) dblmsp2 from Pf3D7, PfIT, 

and PrCDC; (C) both DBL domains from ebl1, eba140, eba165, eba175, eba181 of 

Pf3D7 and PfIT; (D) P. vivax Duffy Binding Proteins; see Supplementary Table 3 for a 

comprehensive list of non-DBLa sequences.		
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We confirmed that these tags were not derived from non-var DBL-containing 

genes by including tags from P. falciparum Erythrocyte Binding Antigen (eba) genes, P. 

falciparum and P. reichenowi DBL Merozoite Surface Protein 1 (msp3.4) and DBLMSP2 

(msp3.8), and P. vivax Duffy Binding Proteins in our analysis (Supplementary Table 3). 

We also included P. falciparum DBLε tags to compare tags to var-derived, yet non-

DBLα, sequences. As shown in Fig. 4-3, tags from single-species ape Laverania 

infections remained separated from both the non-var DBL tags and the P. falciparum 

DBLε tags, with a majority connected to one or both of the large connected components 

formed by the P. falciparum and known P. reichenowi tags. This majority included every 

new P. reichenowi and P. praefalciparum tag, and all but one P. billcollinsi tag. On the 

other hand, only 10 P. gaboni tags were connected to one or both large components, 

with the other 26 connected only to other P. gaboni tags in separate, small components. 

These smaller P. gaboni components did not share mosaic elements with DBLε and 

non-var DBL sequences, suggesting that they represented divergent, yet var-like, 

domains. 

 

Laverania parasites contain ape-specific var-like DBL domains 

We next investigated the relationships between sequences from all ape Laverania 

samples by conducting a network analysis that excluded P. falciparum, but included 

sequences from both mixed-species and single-species infections (Fig. 4-4). Sequences 

from P. billcollinsi and P. praefalciparum remained integrated within the large connected 

component that also included P. reichenowi, indicating conservation of mosaic elements 

within HVRs across these species. This finding is consistent with mtDNA (Fig. 4-1A), 

apicoplast, and nuclear phylogenies (110, 156), which place P. billcollinsi and P. 

praefalciparum closer to P. reichenowi. In contrast, sequences from four single-species 
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infections of P. gaboni, which represent a much more distant Laverania species, 

exhibited much less shared sequence content in HVR networks. However, P. gaboni 

sequences appeared to fall into two subgroups based on tag length: (i) longer P. gaboni 

sequences (94-135 amino acids), which share mosaic elements with P. reichenowi and 

P. billcollinsi in 8 of 15 sequences in the Left HVR and 2 of 15 sequences in the Right 

HVR, and which we therefore term DBLα-like (red, unboxed in Fig. 4-4); and (ii) shorter 

P. gaboni sequences (72-85 amino acids), which remain disconnected from the P. 

reichenowi-P.billcollinsi component in 21 of 21 cases and which we therefore termed 

DBLx-like (red, boxed in Fig. 4-4). Thus, within the HVRs, longer P. gaboni DBLα-like 

sequences are partially overlapping with P. reichenowi and P. billcollinsi, while the 

shorter sequences appear to be distinct. 

Although the DBLx tags fell outside the large connected component of the P. 

reichenowi-P. billcollinsi network group (Fig. 4-4, boxes), they were all amplified using 

standard P. falciparum DBLα primers, and they all exhibited the classical DBL 

architecture with fully intact HB5 motifs in the tag center. However, they were unrelated 

to other known DBL domain classes (Supplementary Fig. 4). All four single-species P. 

gaboni samples, as well as one P. gaboni-containing mixed-species sample, contained 

DBLx sequences. Based on polymorphisms in the HB3-like region, DBLx sequences 

formed two subgroups, which we refer to as DBLx1 and DBLx2 (Supplementary Fig. 3, 

Methods). DBLx sequences were not limited to chimpanzee parasites, as the mixed-

species infection gorilla sample GTggg118, which contained both P. praefalciparum and 

P. adleri, also featured DBLx2 tags. The GTggg118 DBLx2 tags shared mosaic 

elements with both DBLx1 and DBLx2 tags from P. gaboni, while the GTggg118 DBLα-

like tags were well-connected to the P. billcollinsi-P. reichenowi component (Fig. 4-4). 

We thus hypothesize that the GTggg118 DBLx2 tags derive from P. adleri, a closely 
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related sister taxon to P. gaboni (Fig. 4-1A), while the DBLα-like tags may be derived 

from either P. adleri or P. praefalciparum. Thus, it is likely that DBLx sequences 

represent new var-like DBL subdomains that are restricted to the C2/G2 branch of the 

Laverania subgenus (Fig. 4-1A).  

 

 
Figure 4-4. Networks of DBL sequences from single- and multi-species Laverania 

infections. 

Each node represents a DBL HVR sequence and each link represents a shared amino 

acid substring of significant length. Note that for each sample only unique var DBL 

haplotypes were included in the network analysis. Nodes with zero links indicate 

sequences that share no significant amino acid substrings with other sequences. 

Networks were built separately for each HVR, where mosaic diversity is highest (see 

Methods). Circular nodes represent chimpanzee parasites and square nodes represent 

gorilla parasites. Node color corresponds to species and node size corresponds to tag 

length as indicated. DBLx sequences are enclosed in boxes. 
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var multi-domain structures predate the Laverania radiation 

To confirm the presence of var-like genes in P. gaboni, we also examined near full-

length parasite genomes and unplaced contigs, which were derived by select whole 

genome amplification (SWGA) (39) from two chimpanzee blood samples (SYpte37 and 

SYptt75). Three lines of evidence indicated that var-like genes, consisting of multiple 

DBL domains, were indeed present in this parasite species. First, we identified 55 var-

like DBL domains in 40 different contigs, 14 and 2 of which were further classified using 

the VarDom server (144) as being related to P. falciparum DBLε and DBLζ domains, 

respectively (Table 1, Methods). None of the remaining DBL domains could be similarly 

subclassified, but four contigs featured exact nucleotide matches for DBLα-like tag 

sequences, providing a cross-validation between methods. Three contigs featured 3, 4, 

and 5 adjacent and non-identical DBL domains, a configuration unique to vars. An 

additional six contigs featured two adjacent DBL domains, but in these cases an eba 

gene origin could not formally be excluded (157).  

 

Table 4-1 Var gene-like structures in P. gaboni whole-genome contigs 

Sample 
Total var-
like DBLs 
identified 

number of DBLs (number of contigs) DBL classificationb 
var-like 

ATS 1-
DBL 

2-
DBL 

3-
DBL 

4-
DBL 

5-
DBL DBLε DBLζ unclassified 

SYpte37 15 8 (8) 4 (2) 3 (1) - - 2 - 13 0 

SYptt75 40 23 
(23a) 8 (4) - 4 (1) 5 (1) 12 2 26 16c 

           aincludes the three-exon single-DBL containing contig shown in 
Fig. 4-6.        
bDBLa-δ domains according to the classification by Rask et al.,(144) were not 
identified. In addition, we found no evidence of DBLa-CIDR domain pairs.  
cIncludes three contigs with var-like DBL-TM^ATS multi domain 
(two-exon) structure        
	

	

	



87	
	

The finding of only nine contigs with var-like multi-DBL configurations in our P. 

gaboni genomic data is likely related to difficulties in assembling these sequences from 

short read data. De novo assembly is hindered by identical and near-identical motifs 

present in different DBL domains, which makes an accurate determination of the number 

and order of these domains in a given var gene difficult (158). In contrast, acidic terminal 

segment (ATS) domains, which are also a unique feature of var genes, lack these repeat 

structures, although they share some sequence motifs due to frequent recombination 

(159). We thus reasoned that ATS regions would more likely assemble into full length or 

near full-length domains and looked for these var signatures in the P. gaboni genomic 

sequences. Indeed, ATS domains were readily identified in 16 contigs derived from the 

P. gaboni SYptt75 genome. In P. falciparum, the ATS domain encodes the intracellular 

portion of the PfEMP1 protein, which is expressed from a separate exon (Fig. 4-1B). 

ATS domains are unique to var genes, except for a single copy non-var gene with an 

“ATS-like” domain on chromosome 1 (PF3D7_0113800) (144). Using the VarDom server 

to characterize the P. gaboni ATS domains, we identified seven of ten known major 

homology blocks (Fig. 4-5). These were very similar to P. falciparum var ATS homology 

blocks, but very different from the non-var “ATS-like” domains of PF3D7_0113800 and 

its P. reichenowi, and P. gaboni orthologs (Fig. 4-5, Supplementary Fig. 5), thus 

providing compelling evidence for the presence of bona fide var ATS domains in P. 

gaboni. 

Finally, three of the ATS-containing contigs exhibited a longer two-exon var gene 

structure, with a DBL and trans-membrane (TM) domain in exon 1 and an ATS domain 

in exon 2. One of these contigs contained an additional open reading frame (ORF) 

downstream of the var-like exon 2, which was 88% identical in its nucleotide sequence 

to genes and intergenic flanking sequences in P. falciparum (PF3D7_0323800) and P. 
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reichenowi (PRCDC_0323100) on the same chromosome, respectively (the latter two 

shared 94% nucleotide sequence identity). Although the function of these orthologs is 

unknown, they are single-copy genes immediately adjacent to a var exon 2 pseudogene 

on chromosome 3 of both P. falciparum and P. reichenowi (Fig. 4-6). This synteny 

implies the existence of ancestral ORFs on chromosome 3, including a var gene that 

retained both exons in P. gaboni, but represents a single-exon pseudogene in P. 

falciparum and P. reichenowi. Thus, the presence of a two-exon var structure and 

synteny on chromosome 3 for three Laverania species, which span the root of the 

subgenus phylogeny, indicate that var genes evolved their extant two-exon and multi-

domain structure prior to the radiation of this subgenus. 
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Figure 4-5. Conservation of var ATS domain homology block structure in P. 

gaboni. 

The homology block (HB) structure of var ATS domains identified in 16 contigs of a near 

complete P. gaboni genome (PgSY75) are shown in relation to representative P. 

falciparum and P. reichenowi var ATS domains (Pf3D7 and PrCDC1, top) as well as a 

non-var “ATS-like” domain of the P. falciparum PF3D7_0113800 gene and its P. 

reichenowi and P. gaboni orthologues (bottom). HBs (arrows) were predicted by VarDom 

1.0 and annotated in an alignment of all 20 sequences. Colors correspond to VarDom 

reported E-values, representing an estimate of the likelihood of observing such a match 

by random chance. Black lines indicate the relative length of each sequence. 

 

HB41 HB43 HB42 HB39 HB44 HB46 HB47 HB51HB40HB38

100-10-1

E-value

10-1-10-5
10-5-10-20
10-20-10-50

P. 
ga

bo
ni

 v
ar

-li
ke

 A
TS

Pf3D7 ATS

PgSY75 ATS 1
PgSY75 ATS 2
PgSY75 ATS 3
PgSY75 ATS 4
PgSY75 ATS 5
PgSY75 ATS 6
PgSY75 ATS 7
PgSY75 ATS 8
PgSY75 ATS 9

PgSY75 ATS 10
PgSY75 ATS 11
PgSY75 ATS 12
PgSY75 ATS 13
PgSY75 ATS 14
PgSY75 ATS 15
PgSY75 ATS 16

PgSY75 NonVar ATS
Pf3D7 NonVar ATS

PrCDC1 NonVar ATS

PrCDC1 ATS



90	
	

 

Figure 4-6. Shared synteny of var-like genes in P. falciparum, P. reichenowi and P. 

gaboni.  

An open reading frame (ORF) located downstream of a predicted var-like gene in P. 

gaboni showed 88% sequence identity (dark grey bars) with a single copy gene present 

in both P. falciparum 3D7 (PF3D7_0323800) and P. reichenowi CDC1 

(PRCDC_0323100). The P. gaboni var-like gene is syntenic with a var exon 2 

pseudogene in both P. falciparum and P. reichenowi, suggesting that a var gene was 

present at this location in the ancestor of all three Laverania species. 

 

Laverania var repertoire structure 

It has previously been shown that P. falciparum var genes can be divided on the basis of 

DBLα domains into two main groups, classified by the number of cysteine residues in the 

tag region (152) which map to distinct community structures in network analyses (146). 

These two main groups can be further subdivided into a total of six Cys/PoLV (CP) 

groups based on the presence or absence of key amino acid residues (152, 160). These 

cysteine-based classifications were found to be associated with different upstream 

promoter regions and clinical outcomes, and var repertoires in individual P. falciparum 

parasites appear to be stably structured with respect to these categories (154). We 

observed the same cysteine-based organization, both with respect to cysteine counts 
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and CP groups, in DBLα tags from P. billcollinsi, but not from P. gaboni, although in the 

latter case we identified far fewer DBLα-like motifs (Supplementary Fig. 6). Thus, 

cysteine-based organization of var gene repertoires extends to P. billcollinsi, but may not 

extend to P. gaboni (and by inference P adleri).  

 

4.4 Discussion 

Until recently, the only known close relative of P. falciparum was P. reichenowi, a 

Laverania parasite infecting chimpanzees. Over the past 5-6 years, five additional 

species within the Laverania subgenus have been described, each infecting either 

chimpanzees or gorillas. This Laverania species diversity provides an unprecedented 

opportunity to study the origins of genomic features that previously seemed unique to 

P. falciparum, such as the var gene family encoding erythrocyte membrane proteins. 

Here we show that various aspects of the multi-scale modularity of these loci can be 

recognized in diverse Laverania species, with the implication that a var or var-like gene 

family already existed in their last common ancestor. First, at the var gene repertoire 

level, we find genes with a characteristic two-exon structure, encoding multiple adjacent 

domains potentially capable of binding diverse endothelial markers. Like the constituent 

domains of the P. falciparum-encoded PfEMP1 proteins, the other Laverania DBL 

sequences can be subclassified into distinct groups, which may reflect differences in 

endothelial binding or other specificities. Second, at the domain architecture level, 

alternating conserved and hypervariable regions enable combinatorial diversity while 

presumably maintaining protein structure and binding functions. Finally, at the 

microscale level, some protein motifs within hypervariable regions are shared among 

even the most divergent Laverania species, despite the evidence of high frequency 

recombination within species. Thus, many key elements of the var multi-gene family 
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appear to have originated many (perhaps tens of) millions of years ago. 

In P. falciparum, the var-encoded PfEMP1 proteins play a key role in 

pathogenesis by mediating the binding of infected red blood cells to specific host 

receptors in a wide range of tissues. Particular disease syndromes have been 

associated with individual DBL domains, two of which were present in P. gaboni. The 

first, DBLε, is found in the var2csa genes of P. falciparum (144) and P. reichenowi, 

which exist as only one or two var variants per genome and have been identified in 

every complete var repertoire analyzed to date. In P. falciparum, var2csa genes are 

responsible for placental binding, and the DBLε domain has thus been implicated in 

pregnancy-associated malaria (161). Similarly, we identified DBLζ in P.gaboni. Although 

there currently are no host receptors or disease syndromes that have been associated 

with this individual domain in P. falciparum, triplet combinations of DBLε and DBLζ 

domains have been linked to IgM-positive rosetting phenotypes (162). The presence of 

recognizable DBLε and DBLζ domains in the most divergent Laverania species suggests 

that DBL domain differentiation into subtypes represents an ancient host adaptation, and 

that DBLε and DBLζ may represent functionally constrained domains across the 

Laverania subgenus.  

Beyond single var domains, the var repertoires of P. falciparum parasites can be 

divided into groups that have been associated with different clinical phenotypes, such as 

severe malarial anemia and cerebral malaria, using a cysteine-based classification of 

DBLα tags (160, 163, 164). These groups are represented in similar proportions across 

P. falciparum and P. reichenowi parasites, and our data suggest that this repertoire 

structure may also extend to P. billcollinsi (Supplementary Fig. 6); an insufficient number 

of DBLα-like tags precludes an extension of this classification to P. gaboni at the present 

time. Given their association with clinical disease in humans, the extent to which these 
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sequence features are also indicative of pathology in apes warrants further study.  

Although we identified var-like features in species spanning the Laverania 

subgenus, we also found that certain signatures identified in P. falciparum and P. 

reichenowi var genes are absent from the more divergent parasite species. For example, 

we found no evidence of CIDR domains in either of the P. gaboni genomes, despite 

identifying numerous DBL domains (Table 1). Moreover, DBLα-like P. gaboni sequences 

were not sufficiently similar to P. falciparum DBLα domains to be confidently classified 

as such. Since the vast majority of P. falciparum var genes encode a DBLα-CIDR 

domain pair, the apparent absence of CIDR domains from P. gaboni is puzzling, 

especially in light of the role that CIDR domains are believed to play in host receptor 

binding (165). It will be important to determine whether P. gaboni var-like genes contain 

other domains with CIDR-like function or whether P. gaboni differs in its biology from 

other Laverania parasites. Second, the network analysis of PCR tags revealed new DBL 

domains that we termed DBLx because they are unlike the other six known var DBL 

domain classes shared by P. falciparum (166) and P. reichenowi (69) (Fig. 4-4, 

Supplementary Figs. 3 and 4). These DBLx tags, which were amplified using P. 

falciparum DBLα primers, are shorter than all other tags, and can be further subdivided 

into DBLx1 and DBLx2 subgroups based on differences in the highly conserved HB3-like 

region (Supplementary Fig. 3). Divergence from the P. falciparum “LARSFADIG” motif 

within this HB3-like region have also been reported for another partially characterized P. 

gaboni genome (69), but adjacent sequences were not analyzed, thus leaving their 

relationship with DBLx domains unknown. Finally, we identified multiple copies of P. 

gaboni ATS domains, which exhibit a var-like homology block structure that is very 

similar, but not identical, to P. falciparum and P. reichenowi ATS domains (Fig. 4-5, 

Table 1, Supplementary Fig. 5). Taken together, these data indicate that, while var-like 
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genes in P. gaboni (and possibly also P. adleri) share important structural similarities 

with those of P. falciparum and P. reichenowi, they also exhibit important differences, 

which may reflect differences in function and biology.  

The presence of var-like genes throughout the Laverania subgenus suggests an 

ancient adaptation for antigenic variation, and potentially cytoadherence. However, while 

links exist between var expression and clinical disease in humans, the disease causing 

potential of var-like gene products in Laverania parasites infecting wild apes remains 

unknown. Nonetheless, there may be important parallels since recent field studies of 

habituated chimpanzees in the Tai Forest, Côte d’Ivoire revealed higher fecal parasite 

burdens in both young (167) and pregnant (168) individuals, similar to what has been 

described in humans. Given the role of the var-encoded PfEMP1 proteins to mediate 

endothelial binding in the presence of a vigorous host immune response, it is likely that 

var genes play a similar role in other Laverania species. However, the extent of var gene 

diversity, especially among the more divergent Laverania species that lack certain P. 

falciparum-specific DBL and CIDR domains, suggest potentially different biological 

solutions. Additional field studies of habituated ape populations will be necessary to 

establish the biological consequences of ape Laverania infections and the pathogenic 

potential of their var-like gene products. 

 

4.5 Methods 

Sample collection 

Ape fecal samples were collected from wild-living central (Pan troglodytes troglodytes; 

DGptt540) and eastern (P. t. schweinfurthii; KApts1680) chimpanzees and western 

lowland gorillas (Gorilla gorilla gorilla; GTggg140, GTggg118) for previous molecular 

epidemiological studies of Laverania parasites (26). Samples were collected in RNAlater 
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(1:1 vol/vol), transported at ambient temperatures, and stored at -80°C. We also 

analyzed left-over blood samples from chimpanzees cared for at the Sanaga-Yong 

Rescue Centre (SYptt5, SYptt15, SYptt20, SYpte37, SYptt75, SYptt79, SYptt82), which 

were obtained in the context of routine health examinations or for specific veterinary 

purposes. Samples were shipped in compliance with Convention on International Trade 

in Endangered Species of Wild Fauna and Flora regulations and country-specific import 

and export permits. DNA was extracted from fecal and blood samples using the QIAamp 

Stool DNA Mini Kit and QIAamp Blood DNA Mini Kit (Qiagen, Valencia, CA) respectively, 

described in detail in (110). 

 

Plasmodium species identification 

The Plasmodium species composition in ape fecal and blood samples was determined 

by single genome sequencing (SGS) and phylogenetic analysis (26, 110). Briefly, fecal 

and blood DNA was endpoint diluted in 96-well plates, and the dilution that yielded fewer 

than 30% wells with positive PCR reactions was used to generate between 2 and 174 

different SGS sequences per sample (according to a Poisson distribution, the DNA 

dilution that yields PCR products in no more than 30% of wells contains one amplifiable 

template per positive PCR more than 83% of the time). Amplification products were gel 

purified, and sequenced directly without interim cloning. Sequences that contained 

double peaks as an indicator of more than one amplified template were discarded. 

Different genomic loci were amplified, including portions of mitochondrial (cytochrome 

B), nuclear (erythrocyte binding antigens eba165 and eba175, 6-cysteine protein p47 

and p48/45, lactate dehydrogenase, reticulocyte-binding protein homolog 5), and 

apicoplast (caseinolytic protease C) genes. All relevant primers are provided in 

Supplementary Table 4. For each genomic region, up to 73 single template-derived 
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amplicons were sequenced and their species origin was identified by phylogenetic 

analysis (Supplementary Table 1). This analysis identified seven blood samples and one 

fecal sample to represent single-species infections of P. reichenowi (SYptt15, 46 SGS 

sequences), P. gaboni (SYptt5, 86 SGS sequences; SYpte37, 59 SGS sequences; 

SYptt75, 122 SGS sequences; SYptt82, 59 SGS sequences), P. billcollinsi (SYptt20, 

174 SGS sequences; SYptt79, 16 SGS sequences), and P. praefalciparum (GTggg140; 

2 SGS sequences), although many of these specimens contained multiple variants 

(haplotypes) of the respective species. Three other fecal samples (GTggg118, 

KApts1680, and DGptt540) contained more than one ape Laverania species, and one 

included an additional non-Laverania species of unknown origin (Supplementary Table 

1).  

 

PCR amplification of var genes  

DBL domains were amplified, cloned and sequenced (see (145, 152, 153)) using 

conventional (rather than limiting dilution) PCR. Different primers sets, listed below, were 

used to amplify 2.5µl of fecal or blood derived DNA in a 25µl reaction volume, containing 

0.5µl dNTPs (10mM of each dNTP), 10pmol of each primer, 2.5µl PCR buffer, 0.1µl BSA 

solution (50mg/ml), and 0.25µl expand long template enzyme mix (Expand Long 

Template PCR System, Roche). Most samples were subjected to single round 

amplification with previously published primers, including DBLα-5’ (5’-

GCACGAAGTTTTGCAGATATWGG-3’) and DBLα-3’ (5’-

AARTCTTCKGCCCATTCCTCGAACCA-3’)(153), or DBLαAF’ (5’ GCACGMAGTTTYGC 

-3’) and DBLαBR (5’-GCCCATTCSTCGAACCA-3’)(152). Only 3 samples were amplified 

with additional primers, including C1DBLαAF’ (5’-GCACGVAGTTTTGC-3’) and 
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C1DBLαBR (5’-GCCCATTCSTSGAACCA-3’), and C2DBLAF (5’-

AARTAHAGTTTTGCTGATTTARG-3’) and C2DBLAR (5’-

TTCGGACCATTCGKCWAWCCA-3’), respectively, or by nested PCR. The C2DBLAF 

and C2DBLAR primers were designed to specifically amplify P. gaboni DBL tags using 

an alignment of select whole-genome amplification (SWGA) derived contigs of SYpte37. 

Cycling conditions included an initial denaturing step of 2 minutes at 94°C, followed by 

35-60 cycles of denaturation (94°C, 10 sec), annealing (50-55°C, 30 sec), and 

elongation (68°C, 1min), followed by a final elongation step of 10 minutes at 68°C. Both 

single round and nested PCR derived amplicons were gel purified and subcloned into 

pGEM-T Easy (Promega) or PCR4 TOPO (Life Technologies) plasmid vectors. Positive 

clones were sequenced, and analyzed using SEQUENCHER (Gene Codes Corporation, 

Ann Arbor, MI) or Lasergene (DNASTAR) software. 

 

Criteria of var gene sequence selection  

Amplified var DBL sequences were inspected for primer sequences (which were 

removed from final sequences) and the presence of a single intact open reading frame 

(ORF); sequences lacking an intact ORF or identifiable 5’ and 3’ primer sequences were 

discarded. To remove Taq polymerase errors in cloned DBLα var tag sequences, a 

neighbor-joining tree was constructed for each sample and sequences differing by less 

than 3 nucleotides were condensed into a single consensus sequence. Thus, for each 

sample only unique DBLα var tag haplotypes were analyzed. 

 

Network analysis 

A short region of var gene sequence within the DBLα domain, which we refer to as a 
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“tag,” comprises three conserved homology blocks (HB3, HB5, and HB2) separated by 

two highly variable regions (HVRs) (144). We identified HVRs using a sequence entropy 

approach, modifying a previously published procedure (146) to accommodate ape 

Laverania sequences. In order to extract highly variable sequence content for further 

study, we identified and removed the three conserved homology blocks from the 3’ end, 

middle, and 5’ end of each tag sequence. This was done by first aligning all sequences 

first to HB3 without inserting any gaps mid-sequence (step 1), i.e., we required that all 

sequences align at and only at HB3. Next, we calculated the Shannon entropy of the 

aligned sequences at each position (step 2) and scanned from HB3 toward the center of 

the tag to find the first position p at which entropy was greater than 2 bits (step 3) such 

that each subsequent position also had entropy greater than 2 bits. Finally we retained 

all sequences from p toward the center of the tag (step 4). Steps 1-4 were repeated for 

HB2, thus removing low entropy homology blocks from the ends of each sequence. 

Second, we removed conserved central sequence content, splitting the tag into two 

HVRs. We repeated steps 1 and 2 with HB5. We then scanned from HB5 toward each 

end of the tag, finding the first position p in each direction with entropy greater than 2 

bits such that each subsequent position had entropy greater than 2 bits, and retained 

everything from p toward the end of the tag. All steps are shown graphically in 

Supplementary Fig. 7. The high entropy HVR between HB3 and HB5 is referred to as 

the Left HVR and the high entropy HVR between HB5 and HB2 is referred to as the 

Right HVR. 

 Two types of networks were created. First, networks of var sequences were 

generated by assigning each HVR sequence to a node and placing a link between two 

nodes when their corresponding sequences shared a block of length L or greater at the 

amino acid level. L=7 for Left HVR and L=6 for Right HVR, based on null model 
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calculations (146). Figures were produced using force-directed layouts in webweb 

software v3.1 (http://danlarremore.com/webweb). Second, bipartite networks of both var 

genes and their shared blocks were created by assigning each HVR sequence and each 

shared block of length L or greater to a node, and placing a link between a sequence 

node and a shared block node if the block is present in the sequence. These bipartite 

networks are related to the other type of network via one-mode projection. Community 

detection was performed using the biSBM method applied to bipartite networks of 

sequences and their shared amino acid substrings (169). 

 

k-mer stackup analysis 

Within an amino acid sequence, we refer to any contiguous substring of length k amino 

acids as a k-mer. All k-mers were extracted from all sequences, noting the starting 

position (normalized to the total length of the sequence). For Supplementary Fig. 2A, all 

k-mers from P. falciparum and P. reichenowi were sorted by their frequency of 

appearance, and stacked histograms of their starting positions were created with 50 

bins. For Supplementary Fig. 2B, all k-mers from each of P. falciparum, P. reichenowi, P. 

gaboni, and P. billcollinsi were sorted by their presence across species, and stacked 

histograms of their starting positions (relative to the species indicated at the top of each 

plot) were created with 50 bins. 

 

Bayesian k-mer analysis 

A window of length k was scanned across each amino acid sequence from P. falciparum 

and P. reichenowi monoinfections, extracting all length k substrings. Some substrings 

appeared in sequences from both species, while others were species-specific. This 

analysis, derived and developed in detail in Supplementary Text 1, estimates the overlap 
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in populations of tag sequences using Bayesian statistics to correctly extrapolate the 

parameters of the conjugate prior distribution that characterizes the overlap from limited 

sample data (170).  

 For this analysis, we examine 296 DBLα tag sequences from P. falciparum and 

94 from P. reichenowi. Each sequence is a string of amino acids, so from a sequences 

of length N, we can extract N−k+1 substrings (i.e. k-mers, or words) of length k. In what 

follows, we use k=7 for all examples. (Other values of k may be used, and results do not 

depend sensitively on moderate k; we tested k�[5, 15].) The 390 total sequences 

comprise 45731 words for k = 7, but some words appear in multiple sequences; the total 

number of unique words is 22431. This indicates that, on average, each word appears 

approximately 2 times across all 390 sequences. In fact the distribution is highly 

heterogeneous: 70% of words appear only once, 16% appear only twice, and 6% appear 

only three times, meaning that 92% of words appear in only 1 to 3 of the total 390 

sequences. This heterogeneity, depicted in Supplementary Figure 8, makes it difficult to 

decide whether these two sets of sequences are drawn from distinct populations.  

 Some words are shared by both P. falciparum and P. reichenowi (8%), some are 

unique to P. falciparum (65%) and the rest unique to P. reichenowi (27%). If only 8% of 

(length 7) words are shared by both species, one might conclude that the populations of 

words are well separated. However, owing to the massive diversity of words in both 

species, and our small sample of sequence tags, this interpretation is incorrect. Instead 

of calculating the overlap between species for our data set, we wish to use this data to 

estimate the overlap for the global populations of P. falciparum and P. reichenowi. 

 Before the mathematical formulation, we advance the following helpful analogy, 

by imagining each word as a biased coin. Suppose we have a large bag of coins and 
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each coin has a biased probability of landing on heads. Further, imagine that the biases 

are not all the same, but are instead drawn from some distribution. We wish to estimate 

the distribution, so we take the coins, one by one, and flip them, writing down which coin 

was flipped and whether it lands on heads or tails each time. However, for 70% of the 

coins, we only get one flip. For 16% of the coins, we only get two flips, and for 6% of the 

coins we only get three flips, etc. When estimating the distribution of p, we must take into 

account the number of flips observed for each coin.  

 Given our small sample from the distribution, we wish to approximate the global 

distribution of values of pi. This will tell us how much the populations overlap. Our data 

consist of fi and ri, the numbers of observations of word i in P. falciparum and P. 

reichenowi respectively. We model the assignment of each occurrence of word i to P. 

reichenowi as an independent Bernoulli trial, with parameter pi. Let the set of pi be Beta 

distributed with parameters α and β, where we use the Beta distribution because it is the 

conjugate prior of the Bernoulli distribution. Then, the likelihood of observing data {xi}, 

given the parameters, is 

! !! !,! = Pr word is from !. !"#$ℎ!"#$% !! Pr  (!!|!,!)
!!!!!

!!!
!!!

 

!!

!

!!!
 

which may be integrated using beta functions B to get  

! !! !,! =  ! (!! + !, !! + !)
! (!,!)

!

!!!
 

Taking a log yields  

log ! ( {!!}|!,!) = log ! (!! + !, !! + !)
! (!,!)

!

!!!
 

This log-likelihood function is related to a solution to an analogous problem from the 
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domain of probabilistic competition dynamics (170) in which two teams were competing 

for points over the course of many competitions. We maximize it in MATLAB using the 

fminsearch function, using the observed fi and ri values. 

 

Pairwise distance analysis 

Protein sequences were aligned pair-wise using MUSCLE v3.8.1 (127) and Hamming 

distances (number of sites at which the two aligned sequences differ) were calculated 

neglecting gaps at both ends of the alignment to adjust for variable sequence lengths. 

Hamming distances were alternatively calculated by counting a contiguous block of gaps 

as a single difference, with no qualitative difference in results.  

 

Blocksharing  

We quantified sequence conservation from one particular sequence to an ensemble of 

others by scanning a window of length k across the particular sequence and computing 

the fraction of sequences in the ensemble containing each k-mer or block. This produces 

a measure of conservation between 0 and 1 in the frame of reference of the particular 

sequence; Figure 4-1B shows this blocksharing for the DBLα domain of DD2var11 

compared to the background of data (144); k=7. 

 

CP group analysis 

Var tag sequences can be classified according to the number of cysteine residues as 

well as sequence content at defined “positions of limited variability (PoLV)”(152). In the 

var sequence literature, these are referred to as Cys-PoLV groups, or simply CP groups. 

We identified CP groups with a MATLAB script according to the following definitions: 

Group 1: MFK* at PoLV, 2 cysteine residues; Group 2: *REY at PoLV2, 2 cysteine 
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residues; Group 3: 2 cysteine residues, not group 1 or 2; Group 4: 4 cysteine residues, 

not group 5; Group 5: *REY at PoLV2, 4 cysteine residues; Group 6: 1, 3, 5, or 6 

cysteine residues. Histograms of cysteine counts and CP groups are shown in 

Supplementary Fig. 6. 

 

P. gaboni select whole genome amplification (SWGA)  

DNA was extracted from two chimpanzee blood samples (SYpte37, SYptt75) identified 

as P. gaboni single-species infections by single genome sequencing (Supplementary 

Table 1) and subjected to select whole Plasmodium genome amplification as described 

(39, 151). Briefly, total DNA (100 ng – 1 ug) was digested using the methylation 

dependent restriction enzymes MspJI and FspEI in multiple replicates. The digestion 

products were amplified using phi29 polymerase and one of two primer sets consisting 

of 10 primers (8-12 nt in length each) designed to bind frequently and broadly to the P. 

falciparum genome but only rarely to the chimpanzee genome (151). 50 ng of first round 

product was re-amplified in a second reaction using the second primer set. Replicates 

were pooled and a short insert library was constructed using the TruSeq DNA PCR-Free 

Sample Preparation Kit (Illumina) and sequenced using a MiSeq Reagent Kit V2 (500-

cycles) (Illumina) to generate 250 bp paired end reads. Reads were mapped to the P. 

falciparum 3D7 reference genome using Geneious (Biomatters Limited, Auckland, New 

Zealand), and subjected to guided assembly using Velvet Columbus (114). For SYptt75, 

contigs produced by Velvet were aligned to the reference and the resulting core P. 

gaboni draft genome was iteratively corrected manually and using PAGIT v1.0 (81). All 

reads from SYptt75 and SYpte37 were mapped to this draft reference and reads that 

could not be mapped were assembled separately using Spades v3.1.1 (120). 
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Putative var gene identification var domain analysis 

Due to the hypervariability of var sequences, P. gaboni reads did not map to var gene 

containing regions of the P. falciparum 3D7 reference genome, nor were var genes 

readily identified in the SYptt75 core P. gaboni genome. A search for contigs containing 

var-like sequence was therefore performed on unplaced SYptt75 and SYpte37 contigs 

(produced by either Velvet or Spades in a reference-independent manner). Specifically, 

tblastn and tblastx searches were performed using all P. gaboni unplaced contigs 

against a database of available full-length P. falciparum 3D7 and P. reichenowi CDC1 

var genes. Genes and ORFs were identified in the top hits manually and by Augustus 

v2.5.5 gene prediction (123), and pblast searches using the resulting amino acid 

sequences were again performed against the translated P. falciparum and P. reichenowi 

var gene database. Hits were then submitted to the VarDom 1.0 server 

(http://www.cbs.dtu.dk/services/VarDom/) (144) for domain identification and 

classification.  

The P. gaboni ortholog of PF3D7_0113800 was identified in the draft SY75 

sequence by blast homology to PF3D7_0113800. Gene annotation was performed using 

RATT (122) with manual correction. 

 

Neighbor-joining tree construction 

Protein sequence tags were aligned using MUSCLE v3.8.1 (127) and the phylogeny 

were created using the neighbor joining (NJ) distance method, with Poisson distances, 

as implemented in Seaview 4.4.0 (171). 

 

DBLx identification and classification 

DBLx domains were identified as those tags that (i) were less than 90 residues in length, 
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and (ii) began with residues NI, DF, or DM. Those that began with residues NI were 

further classified as DBLx1 and those that began with DF or DM as DBLx2. 100% of 

DBLx sequences also featured a lysine residue (K) in the fourth position of the tag 

instead of the DBLα arginine (R). Sequence logos are shown in Supplementary Fig. 3. 
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5.1 Introduction 

Population genomic analyses offer unprecedented capabilities to infer precise 

evolutionary, ecological, epidemiological, and molecular processes and address major 

outstanding questions in multiple microbiological fields (172, 173). These analyses of 

many microbes are currently hindered by the practicalities of obtaining sufficient 

numbers of genomes for analysis. Laboratory culture is the classical method to isolate a 

target microbe from the other organisms and to obtain the appropriate samples for high-

throughput sequencing, but many microbes cannot be cultured. Population genomics of 

most microbial species will require a practical method to collect sufficient amounts of 

target genomic DNA while limiting the amount of contaminating DNA (36). 

Recently we developed selective whole genome amplification (SWGA), a culture-

free technology that preferentially amplifies a specified target genome from total 

genomic extracts derived from an environmental sample (39). SWGA removes the need 

for ultra-deep sequencing or mechanical separation of target genomes from the 

background sample. This is accomplished by choosing primers that anneal to DNA 

sequence motifs that are common in the target genome but rare in the genomes of other 

species present in the environmental sample. A previous difficulty in implementing 

SWGA for many systems is a lack of automated, efficient, and reliable method to design 

effective primer sets. The original method uses a series of Perl scripts to identify primers 

that are common in the target genome and rare in the background sequences but 

considerable user input is required to design sets of primers to be used for selective 

amplification (39). Further, there is no way to quantitatively evaluate multiple primer sets 

prior to empirical testing which is expensive in both time and money.  

Here we present swga, a program that addresses previous issues with SWGA 

primer design by computationally evaluating large numbers of primer sets on their 
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potential to selectively amplify the genome of a target species. The swga program 

identifies primers that should selectively amplify the target genome and rapidly evaluates 

primer sets based on user-defined metrics. Many aspects of the program’s behavior, 

including evaluation criteria, can be modified to suit the needs of specific projects. The 

source code, download links, and documentation are hosted at 

https://www.github.com/eclarke/swga. The program is licensed under the GNU Public 

License (GPL) and is free to use and modify. 

 

5.2 Methods 

swga program overview 

The swga program is designed to evaluate sets of primers on their potential to 

selectively amplify the genome of a target species even when it is very rare in the 

starting sample. The program can be divided into four steps (Figure 5-1): 1) counting 

binding sites for all primers in the target and background genomes to identify primers; 2) 

filtering primers based on parameters such as melting temperature and selectivity 3) 

ranking sets of primers on multiple metrics that can be user-defined; 4) outputs and 

visualization. Each part of the program can be run individually to optimize intermediate 

results or as an integrated unit. 

Step 1: Primer identification. The first part of the swga program, swga count, -

uses DSK(174) to identify all primers in the size range specified by parameters min_size 

and max_size that exist in the target and background sequences. All primers that are 

present in the target genome more times than specified by parameter min_fg_bind, and 

fewer times in the background sequences than specified by parameter max_bg_bind 

are saved in a local SQLite (175) database along with the number of times they appear 

in the target and background genome sequence files. 
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Figure 5-1. An overview of the swga workflow. 
 

Step 2: Primer filters. The module swga filter ranks and filters primers by their 

selectivity to the target genome and melting temperatures. This selectivity is calculated 

by the ratio of binding sites in the foreground genome to binding sites in the background 

genome. The most selective primers, by default no more than 200 (parameter 

max_primers), that satisfy the calculated melting temperature parameters (min_tm and 

max_tm) are saved along with the locations of their binding sites in the target sequence. 

Step 3: Primer set evaluation. Evaluation of all potential sets of primers is 

computationally intensive. The total number of possible primer combinations (n choose k 

combinations) is 2.4*1016 using the default parameters. However, not all of the possible 

combinations are compatible for SWGA. Primers are incompatible if they can form 



110	
	

heterodimers (i.e. they contain more consecutive complementary bases than specified 

by parameter max_dimer_bp) or if one is a subsequence of the other. swga plots the 

results of pairwise comparisons that establish mutual inter-compatibility as a 

compatibility graph, where each primer is a vertex and compatibility is denoted edges 

connecting primers. The problem of finding sets of entirely-compatible primers is thus 

reduced to finding collections of vertices that have edges to every other vertex in the 

collection (known as a clique in graph theory). We extend this by encoding the average 

distance between primer binding sites on the background genome as a “weight” on each 

vertex. This allows the program to prioritize cliques with higher total weights, 

representing sets of primers that rarely bind the background genome. 

The module swga find_sets uses a modified version of the program cliquer 

(http://users.aalto.fi/~pat/cliquer.html) to evaluate cliques in the compatibility graph. The 

branch-and-bound algorithm in cliquer limits the search space to cliques within desired 

primer set size (min_size and max_size, weight (min_bg_bind_dist, and maximum 

distance between target binding sites (max_fg_bind_dist. For primer sets that satisfy 

these criteria, evaluative metrics including the average and maximum distance between 

primer binding sites in the target genome and the evenness of the primer binding sites in 

the target genome are calculated. Evenness is calculated on the Gini index (176), where 

indices near 0 represent evenly spaced binding sites, and indices near 1 represent 

uneven or “clumped” binding sites. These metrics are used in the default scoring 

algorithm (fg_dist_mean * fg_dist_gini / bg_ratio), which identifies primer sets that 

maximize selectivity and minimize the Gini index. Scoring algorithms can be altered by 

the user via the score_expression parameter.  

Step 4: Outputs and visualization. Because the total number of sets of size k in 

the graph can be as high as (n^k)*k^2, and the wet-side procedure only needs one valid 
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set, the program by default stops after it has found 500 valid sets (max_sets). The 

saved primer sets can be evaluated by target selectivity of the primer set, the evenness 

of primer binding sites in the target (Gini index) (176), the average and maximum 

distance between binding sites in the target genome, and the average distance between 

binding sites in the background. Metrics can be added and removed by users to 

incorporate new criteria or alter the weight of the current criteria to the overall score. The 

user can query the sets that score highest by any of the calculated metrics and export 

the sets in a variety of common formats. Individual primers and primer sets can be 

exported in tab-delimited format for use in downstream applications, and genomic 

binding locations of the primers in a set can be exported in the common UCSC Genome 

Browser Bed and BedGraph track format (177). 

 

Empirical primer set evaluation 

To evaluate the efficacy of the swga program to identify primer sets successfully enrich a 

target genome from a complex genomic sample, we designed four primer sets to target 

Wolbachia pipientis from infected Drosophila melanogaster. As the ideal parameters for 

SWGA primer and primer set design have yet to be established, we designed sets with 

“standard” (15-45 C) or “high” (35-55 C) melting temperature (Tm) ranges and chose the 

set that either maximized the score or the set that minimized the Gini index within each 

Tm range. The remaining parameters included: a set size of 2-12 primers, a max 

consecutive bases for heterodimer and homodimer formation of 4, a minimum average 

distance between binding sites in the background genome of 30,000, and a maximum 

distance between any two binding sites in the target of 130,000. Instead of stopping at 

500 sets (the default behavior), we let the program score ~1,000,000 sets in each Tm 

range before the maximum scoring and minimum Gini index sets were chosen. These 
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parameters were generally more permissive than the defaults in order to explore a 

broader range of possible sets. 

Each primer set was tested on pooled genomic DNA extracted from 10 flies, 

which contained 4.7% Wolbachia DNA per ng. The pooled genomic DNA extract 

provided sufficient starting material to test each primer set in addition to the previously 

published SWGA primer set (39) in triplicate, while eliminating inter-fly variability in 

Wolbachia infection levels. The pooled genomic extract was digested with NarI at 37 C 

for 30 minutes to eliminate mitochondrial amplification as previously described prior to 

being aliquoted (40 ng per reaction) for SWGA. SWGA replicates were performed using 

the conditions previously described (39).  

Amplified samples were purified using AmpureXP beads (Beckman Coulter), 

prepared for Illumina sequencing using a modified Nextera Library Preparation Kit 

protocol (178), and sequenced on an Illumina Miseq (150bp paired end). Adapter and 

primer sequences were removed from the resulting reads using Cutadapt (179). 

Trimmed reads were first mapped to the Drosophila genome using smalt 

(http://sourceforge.net/projects/smalt/) and the unmapped read pairs were then mapped 

to the Wolbachia genome. Breadth of coverage of the target genome (measured as 

percentage of the genome with at least 10x coverage) and sequencing rarefaction 

analyses were performed using R (180). 

 

5.3 Results 

Swga can rapidly identify target-biased primers, compatible primer sets, and evaluate 

primer sets on their likelihood to selectively amplify the specified target genome. The 

swga program was run four times using different parameter settings to characterize the 
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effects of primer melting temperature and the selectivity score on selective amplification 

and sequencing evenness. 

Primer sets that satisfied the conditions of compatibility, minimum average 

distance between background binding sites, and maximum distance between any 

binding sites in the target were identified and evaluated from both the default and relax 

melting temperature runs. The primer sets were then ranked according to the total 

default score (see Methods) or according to the Gini index (176). We chose four primer 

sets to test selective amplification of Wolbachia from fruit flies: one set using 

min_tm=15C and max_tm=45C (Tm-) that had the best total score (henceforth referred 

to as Tm/Score); one set using min_tm=15C and max_tm=45C that had the most even 

distribution of primers (Tm/Gini); one set using min_tm=35C and max_tm=55C (Tm+) 

that had the best total score (Tm+/Score); and one set using min_tm=35C and 

max_tm=55C that had the most even distribution of primers (Tm+/Gini) (Table 5-1). 

 

Table 5-1 Characteristics of primer sets chosen for selective whole genome 

amplification of Wolbachia from infected Drosophila 

Characteristics Score Set 
Size bg_ratio fg_max

_dist 
fg_dist
_mean 

fg_dist
_std 

fg_dist
_gini 

Top Score; 
Standard Tm 0.03560 9 97839 31147 5327 7004 0.654 
Top Gini; 
Standard Tm 0.05640 7 65271 34697 6853 6996 0.537 
Top Gini; High Tm 0.00405 2 1732423 112818 13070 15515 0.537 
Top Score; High 
Tm 0.00033 2 24253916 128209 12074 18011 0.660 
Leichty et al. 0.01161 2 325172 112839 5305 10052 0.712 
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The efficacies of these four primer sets, as well as the previously published 

primer set (39), in selectively amplifying Wolbachia genomes from infected fruit flies 

were empirically evaluated using DNA extracted from a pool of 10 D. melanogaster. The 

proportion of sequencing reads that were derived from Wolbachia DNA was at least 

three times greater in all amplified samples than the sequencing reads from the 

unamplified genomic extract (Figure 5-2). The previously published primer set (39) was 

the least effective with 12.1%-27.7% of the sequencing reads mapping to the Wolbachia 

genome while 59.9%-81.4% mapped to Drosophila. The primer sets with higher melting 

temperatures (min_tm=35C and max_tm=55C) were considerably more effective at 

amplifying Wolbachia DNA than all other primer sets, with as much as 77.8% of the 

reads mapping to Wolbachia.  
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Figure 5-2. Percent of Wolbachia, Drosophila, and unmapped reads after SWGA 

with swga derived or previously published primer sets. 

The percent of reads that mapped to Wolbachia (black), Drosophila (blue), or neither 

genome (gold), is shown for each primer set. Three replicates SWGA reactions (40 ng 

total DNA per reaction) were performed for each primer set and the results are 

presented separately for each. Additional triplicate SWGA reactions were performed 

using the Tm/Gini set and 20 ng total DNA per reaction. 
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The degree of enrichment of Wolbachia DNA after amplification did not 

necessarily correlate with a decrease sequencing effort needed to achieve broad 

coverage of the Wolbachia genome (Figure 5-3). For the Tm/Gini primer set, sequencing 

effort required to achieve at least 10x coverage of 90% of the genome was reduced 10 

fold relative to the unamplified control. On the other hand, rarefaction analysis indicated 

that the higher melting temperature primer sets would never achieve 10x coverage of 

even 10% of the Wolbachia genome (Figure 5-3). The lack of correlation was primarily 

due to uneven amplification of across Wolbachia genome (Figure 5-4). Coverage 

analysis of the higher melting temperature primer sets identified substantial enrichment 

of a few short regions of the Wolbachia genome with little enrichment of the remaining 

sequence (Figure 5-4). By contrast, amplification with the Tm/Gini primer set yielded 

more even coverage across the genome, which was typically 10-100x better than that 

obtained from the unamplified control (Figure 5-4). 
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Figure 5-3. Relationship between sequencing effort and percent coverage of the 

Wolbachia genome (at 10x read depth) after SWGA. 

The total number of base pairs (in millions) sequenced is shown relative to the percent of 

the Wolbachia genome covered at 10x read depth for the four swga derived primer sets 

and the set previously published by Leichty et al. SWGA reactions were performed in 

triplicate for each primer set using 40 ng of total DNA. An additional three reactions were 

performed for the Tm/Gini set using 20 ng of total DNA. 
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Figure 5-4. Normalized sequencing coverage across the Wolbachia genome after 

SWGA. 

Normalized coverage (1,000,000,000 * Fold Coverage / Total bp Sequenced) of the 

Wolbachia genome is shown for each primer set. Three replicate SWGA amplifications 

are shown in red, blue, and green. The black line in each plot window represents 

coverage for an unamplified sample. 
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The evenness of sequence coverage was weakly associated with primer density 

among primer sets. For example, the primer sets chosen with standard melting 

temperatures had more than twice as many total binding sites in the W. pipientis 

genome than primer sets with high melting temperatures and the average sequencing 

coverage was several orders of magnitude greater (Table 5-1). Within each primer set, 

however, variation in primer density across the genome was not correlated with local 

sequence coverage (Figure 5-5). For example, both primer sets chosen with high 

melting temperatures had many 20,000 bp regions in which there were no primer binding 

sites but these regions did not have lower sequence coverage than the regions that had 

substantially higher densities of primer binding sites (>70, Figure 5-5). 
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Figure 5-5. Relationship between primer binding site density and mean 

sequencing coverage after SWGA. 

Mean normalized coverage within a 20,000 bp sliding window is shown relative to the 

number of binding sites within the same 20,000 bp window after SWGA. SWGA 

reactions were performed in triplicate using either swga primer sets or the primer set 

from Leichty et al. Coverage was calculated separately for each reaction and then 

combined to generate the plot. 
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5.4 Discussion 

Microbial genomics is difficult when the genome of interest cannot be separated 

from contaminating DNA. In these situations, the majority of sequencing reads may be 

derived from contaminating DNA, increasing the sequencing effort required to get 

substantial coverage of the genome of interest. SWGA overcomes this by selectively 

enriching for a target genome from a complex DNA mixture (39), however this method 

requires the computationally difficult identification and validation of selective primer sets. 

Swga can identify and quantitatively evaluate millions of primers and primer sets to 

facilitate SWGA primer design. Swga quickly and efficiently identified sets for the 

amplification of Wolbachia from infected Drosophila. Moreover, at least one of the 

chosen sets performed significantly better than previously published (39), hand picked, 

primers.  

The swga program identifies primers that are common in the target species and 

rare in the background and rapidly evaluates primer sets on their potential to amplify the 

target genome. Computational evaluation of thousands of primer sets provides a major 

advance over the previous implementation of SWGA in which the user hand-assembled 

a small number of primer sets (39). In the current version of swga, primer sets are 

evaluated on multiple criteria that are logically associated with phi29 amplification. The 

swga program can also be altered by the end user to add new evaluative criteria as 

correlations between amplification and primer set characteristics become available. 

All of the primer sets chosen by the swga program and by human users (39) 

selectively amplified W. pipientis DNA from infected fruit flies, such that the proportion of 

sequencing reads that mapped to Wolbachia was at least 3 times greater than reads 

from the unamplified sample. The criteria used to choose the Tm/Score primer set were 

chosen to maximize the number of binding sites in the target genome and minimize the 
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number of binding sites in the background, while the evenness of primers across the 

target genome was not emphasized, which were based on the same principles used by 

Leichty and Brisson (2014). As may be expected, sequencing coverage after 

amplification with either of these primer sets was uneven (Figure 5-4). However, the 

decrease in sequencing effort required to yield broad coverage of the Wolbachia 

genome was substantially lower after amplification with the primers chosen by the swga 

program (Figure 5-1). 

The swga program efficiently chooses primer sets to selectively amplify target 

microbial genomes without prior culture or molecular separation. However, it is unlikely 

that the currently implemented criteria are ideal for identifying the best primer sets to 

evenly amplify a target genome. The criteria used to choose primer sets could be 

improved by a better understanding of the biochemistry of the phi29 enzyme and by a 

careful evaluation of primer set characteristics against amplification and coverage 

evenness across many different primer sets. Sequence coverage and primer 

characteristics from both successful and unsuccessful SWGA amplifications could allow 

an empirical investigation of primer set characteristics that result in strong and even 

amplification. These criteria could be then incorporated into the swga program during 

future updates. 
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CHAPTER 6 – Summary and Future Directions 

 

6.1 Summary 

African great apes are infected with a plethora of Plasmodium species including the 

closest relatives and direct ancestors of P. falciparum (26, 110). Studying these 

parasites can provide insights into the evolutionary history of this important pathogen 

and the genetic changes required to colonize humans. Chapter two of this dissertation 

shows that ape Laverania parasites do not recurrently infect humans, suggesting that 

there exists one or more blocks to cross-species transmission among these parasites. 

Chapters three and four describe the first comparative genomic analyses of both close 

and distant ape relatives of P. falciparum. These analyses identify features that are 

shared across the Laverania subgenus as well as some that are unique to the ancestry 

of P. falciparum. Chapter five provides a computational framework for efficient SWGA 

primer design that makes this genome enrichment strategy more accessible and easier 

to implement for any set of target and non-target genomes. Together, this dissertation 

offers the first genome wide insights into the Laverania subgenus and provides a 

foundation for future work. Here I propose future studies that may further elucidate the 

basis of Laverania host-specificity and the evolutionary steps that gave rise to P. 

falciparum. 
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6.2 Future Directions 

Identifying barriers to cross species transmission 

Chapter two of this dissertation describes the first large-scale screen for ape Laverania 

infections in humans in West Central Africa. While this study focused on populations 

within Cameroon, an additional study found no evidence of Laverania infections in 

forest-dwelling humans from Gabon (181). These data support the hypothesis that 

human infections with ape Laverania parasites are incredibly rare (26). Importantly, 

these studies focused solely on blood samples. It is possible that humans are exposed 

to ape Laverania parasites, but that these parasites cannot establish a blood stage 

infection and are therefore missed in blood based screens. Additional screening studies 

may allow us to determine if humans are exposed to ape Laverania parasites and if 

these parasites can establish pre-erythrocytic stage infections. Future studies should 

include of mosquito based screens, to determine whether ape Laverania infected 

mosquitoes feed on humans, and non-invasive pre-erythrocytic stage screens, to identify 

liver stage infections that fail to progress to the blood. 

 Mosquitoes are essential to the transmission of all Plasmodium parasites and 

may therefore play an important role in facilitating or preventing cross species 

transmission (182, 183). While the major vectors of human malaria in West Africa are 

well characterized (184-186), little is known about the mosquitoes that transmit malaria 

between wild African apes. Mosquito studies can answer two important questions. First, 

blood meal screenings of mosquitoes caught near great apes populations will help 

pinpoint mosquito species that regularly feed on these species. Second, screens for 

Plasmodium infections in these mosquito populations will identify which species act as 

competent vectors for ape Laverania parasites. Once potential ape Laverania vectors 

have been identified, mosquito catches in human settlements, especially those that are 



125	
	

located within the home range of wild ape populations, will allow us to determine if 

certain mosquito species may act as vectors for cross species between apes and 

humans. 

 While the proposed mosquito studies will be useful in determining whether 

mosquitoes serve as a block to Laverania cross species transmission, it is important to 

recognize the technical challenges associated with mosquito collection. Traps typically 

rely on CO2 or light to attract mosquitoes (187). CO2 traps, while more effective (187), 

require a source of CO2, which may be difficult to come by in more remote settings. The 

latter traps attract a wide variety of insects, and their contents must be sorted to remove 

unwanted species (DE Loy, unpublished). As it is likely that the proportion of both 

Laverania infected mosquitoes and ape blood fed mosquitoes is very small, these 

studies may require large numbers of mosquitoes to identify species that regularly feed 

on apes and those that serve as vectors for ape malaria. Some of these obstacles may 

be overcome by performing studies at chimpanzee sanctuaries. Sanctuaries provide a 

more controlled environment with fixed and accessible nesting sites that should allow the 

placement of more permanent traps. However, these sanctuaries may not be completely 

representative of natural ape habitats, and field studies will be necessary to ensure that 

these sanctuary based studies do not introduce unforeseen bias. 

 If humans are exposed to ape Laverania infected mosquitoes, it is possible that 

these parasites establish a liver stage infection but are unable to progress to the blood 

stage. Recent studies of the rodent parasite P. yoelli have shown that parasite DNA from 

pre-erythrocytic stage infections can be detected in fecal samples (188). If this holds true 

for the Laverania parasites, fecal PCR could be used as a non-invasive screening tool 

for liver stage infections in humans. If ape Laverania parasite DNA can be identified in 
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human populations, it would indicate that humans are exposed to ape Laverania and 

potentially develop liver stage infections.  

 Screening for antibodies to ape Laverania antigens could provide another means 

of detecting liver or aborted blood stage infections. Protein microarrays are now 

commonly used in studies of P. falciparum to compare the antibody profiles of exposed 

and naïve individuals (189). A similar approach could be used to screen for Laverania 

exposure, using protein sequences from the P. gaboni and P. reichenowi genomes. If 

such a study were to be undertaken, it would be important to differentiate true Laverania 

exposure from cross-reactivity to the antigens of endemic human Plasmodium species. 

This could be achieved by comparing the antibody profiles of individuals living near 

infected ape habitats with those from other human malaria endemic regions. The fecal 

DNA and antibody-based studies described here would complement mosquito studies. 

They would provide evidence for human exposure to ape Laverania, indicating that at 

least some ape Laverania vectors feed on both humans and apes. 

 While the studies I have proposed here may identify specific stages at which 

cross species transmission is prevented, it is reasonable to expect that the lack of 

zoonotic Laverania infections is multifactorial. This appears to be the case for P. 

falciparum infections of chimpanzees. While these infections have never been detected 

in wild living apes, our lab and others have identified multiple instances of reverse 

zoonosis in sanctuary chimpanzees (unpublished observation). This is not unexpected. 

Sanctuary chimpanzees are likely exposed to P. falciparum much more frequently than 

wild populations. Even in sanctuaries, however P. falciparum infections represent a very 

small proportion of the total malaria burden. These data would therefore suggest that, 

while a lack of exposure to infected mosquitoes limits cross species transmission, 

species-specific interactions at later stages of parasite development are also important. 
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Population genetics of ape Laverania parasites 

While this dissertation provides the first genomic level analysis of close and distant 

chimpanzee relatives of P. falciparum, additional ape Laverania population genomic 

studies will provide further insight into the evolutionary history of P. falciparum. Current 

ape Laverania genomic studies have focused solely on chimpanzee parasites (69). 

These studies cannot differentiate between evolutionary events that occurred during the 

emergence of P. falciparum and those that were present in P. praefalciparum. The 

identification of adaptive changes that allowed P. falciparum to colonize humans 

requires a direct comparison of P. falciparum to its gorilla ancestor. Blood samples from 

gorillas are extremely difficult to obtain due to the endangered status of these apes and 

the low numbers of gorillas in sanctuaries in West Africa. Thus, obtaining complete 

genomes of P. praefalciparum and other gorilla parasites will require the development of 

new selective enrichment strategies from non-invasively collected samples. One 

unexplored source of Laverania infected gorilla blood are sanguinivorus insects. While 

many such insects would not be susceptible to Laverania infection, those caught soon 

after feeding may still contain intact Laverania parasites in the blood meal. Experiments 

to determine if these blood meals can serve as sources of full length Laverania genomes 

are ongoing (100). 

 Genome-wide comparisons of P. falciparum, P. reichenowi and P. gaboni 

identified the first evidence of horizontal gene transfer between two Plasmodium 

species. Strikingly, the horizontally transferred segment contains two essential invasion 

genes, RH5 and CyRPA, which define the 3’ and 5’ ends of the segment. The 

maintenance and complete fixation of P. adleri derived alleles of both of these genes in 

P. praefalciparum suggests that this horizontally transferred segment was selected for. It 

is also possible, however, that this region was fixed in P. praefalciparum due to random 
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drift. These two phenomenon may be differentiated through genomewide comparisons of 

multiple P. praefalciparum isolates. Fixation due to recent selection should produce 

signatures of a recent selective sweep, a reduction in nucleotide diversity in the genes 

surrounding the region under selection. Fixation due to random drift, on the other hand, 

would not be expected to yield this phenomenon. Evidence of selection for the 

transferred alleles would support our hypothesis that the P. adleri derived RH5 and 

CyRPA provided a fitness advantage for P. praefalciparum, and that this HGT event may 

have predisposed P. praefalciparum to infect humans. 

The identification of a horizontal gene transfer event between two distinct 

Plasmodium species suggests a potential novel mechanism for genetic innovation in 

these parasites. This gene transfer event may have occurred by one of two 

mechanisms: sexual recombination followed by successive backcrossing, or asexual 

DNA transfer between two parasites. DNA transfer between Plasmodium infected 

erythrocytes is known to occur in cultures of P. falciparum. Recent work by Regev-

Rudzki et al has shown that exosome-like vesicles can transport genomic or plasmid 

DNA between infected erythrocytes and that transferred DNA can be expressed by the 

recipient parasite (97). It is therefore possible DNA could be exchanged between distinct 

Plasmodium species during co-infection. It seems less likely that this region was 

exchanged via sexual recombination and subsequent backcrossing. Horizontal gene 

transfer by this mechanism would require an F1 generation parasite that was viable 

despite having inherited genes from two divergent, non-recombining, species. Moreover, 

it would require that all the offspring of subsequent backcrosses remained viable. 

Nevertheless, neither mechanism can be ruled out, as we cannot estimate the 

probability or frequency of HGT from a single ancestral event. Future population 

genomic studies of Plasmodium species may elucidate this by searching for inter-
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species horizontal gene transfer events, especially in populations where mixed infections 

are common. 

In their comparison of P. falciparum to P. reichenowi CDC1, Otto et al emphasize 

the results of screens for adaptive selection such as the McDonald-Kreitman (MK) test 

(69). The MK test compares the ratio of non-synonymous to synonymous fixed 

differences (between species, Dn/Ds) to the ratio of non-synonymous to synonymous 

polymorphisms (within species, Pn/Ps) (190). An excess in non-synonymous fixed 

differences between species (Dn/Ds > Pn/Ps) is suggestive of adaptive evolution, while 

equal ratios of Dn/Ds and Pn/Ps are suggestive of neutral evolution (190). Surprisingly, 

when we applied genome-wide MK tests to the a set of global P. falciparum isolates and 

P. reichenowi SY57, few genes were found to be significant after controlling for multiple 

hypothesis testing, and no genes showed significant evidence of adaptive selection. 

Instead, we observed an excess of non-synonymous polymorphism within the global 

population of P. falciparum. It has previously been proposed that this excess in non-

synonymous polymorphism is derived from the extreme A-T richness of the P. 

falciparum genome (191), although this has been disputed (192). Another possibility is 

that the excess in nonsynonmyous polymorphism is the result of a recent P. falciparum 

population bottleneck (190, 193). Sequencing additional P. gaboni or P. reichenowi 

genomes will help elucidate the cause of the observed excess of non-synonymous 

polymorphism in P. falciparum. If the excess of non-synonymous polymorphism were 

due to high A-T content, we would expect to observe a similar excess in Pn in all 

Laverania species. If, on the other hand, this excess were related to the recent 

population bottleneck in P. falciparum we would not expect to see an excess in non-

synonymous polymorphism in other Laverania species. Identifying the cause of this 
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excess may enable us to control for it in future analyses, increasing the power of 

evolutionary tests to detect adaptive selective in P. falciparum. 

The comparisons of P. falciparum var genes with var-like genes from other 

Laverania species demonstrate the ancient origins of this gene family. Our current 

analyses are, however, limited in their reliance on P. falciparum var sequences to query 

the Laverania genomes and to guide the design of var-specific primers. It is therefore 

possible that additional var-like genes or var-gene domains, such as CIDR domains, 

were missed because they are divergent from those found in P. falciparum. Additional 

whole genome sequencing and assembly may help to elucidate by yielding more 

complete var-like gene sequences. 

 

In vitro studies 

Comparative analyses of P. falciparum and ape Laverania parasites have identified 

specific genes that may be important for adaptation to humans. While var gene analyses 

across the Laverania subgenus indicate that the precursors of the var family existed in 

the Laverania ancestor, key differences exist between P. falciparum var genes and var-

like genes in the more distantly related Laverania parasite, P. gaboni. One important 

distinction is the lack of CIDR domains in P. gaboni. These domains have been shown to 

be important for binding to host receptors (194, 195), and their absence in P. gaboni 

may indicate that the binding and sequestration properties of Laverania parasites have 

continued to evolve since the radiation of the subgenus. While the current P. gaboni 

assembly lacks full length var genes, this can be remedied by additional sequencing 

using long read high throughput technologies (196, 197). Binding studies, using P. 

falciparum parasites that express full length ape Laverania var genes, will help 

determine if var gene function is conserved across the subgenus and, if so, whether the 
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var genes of divergent ape Laverania bind the similar targets as their P. falciparum 

orthologues. 

As the extant P. falciparum RH5 allele was derived via horizontal gene transfer, 

binding studies to determine the species specificity of the RH5-basigin interaction are of 

particular interest. While previous studies have shown that the interaction between RH5 

and basigin limits the host tropism of P. falciparum (102), it is unclear if this is the case 

for other Laverania parasites. Unfortunately, the fixation of the P. adleri derived RH5 

allele in P. praefalciparum precludes a direct comparison of the binding properties of 

pre- and post-HGT RH5. Comparisons can, however, be made to other RH5 alleles. 

While in vitro binding assays can identify differences in the binding interactions of 

various RH5-basigin combinations (102), a more direct method of determining the effect 

of this interaction on invasion would be erythrocyte invasion assays using transgenic 

parasites expressing Laverania RH5. A lack of invasion by some or all Laverania RH5 

transgenic strains would be strongly support the role of the RH5-basigin interaction in 

determining Laverania host specificity. 

In summary, this dissertation provides a foundation for future studies of the ape 

Laverania subgenus. While these parasites are endemic and present at high levels in 

wild African apes (26), they are not a source of recurrent human infections. Comparative 

genomics of close and distant relatives of P. falciparum has identified features that are 

shared across the subgenus, as well as those that are unique to the ancestry of P. 

falciparum. Additional studies are required to further our understanding of the barriers to 

cross species transmission and to perform direct comparisons of P. falciparum to its 

closest ancestor, P. praefalciparum. These studies will not only expand our 

understanding of the evolutionary origins of P. falciparum, but may also identify 
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previously unknown host-parasite interactions that can serve as a basis for future 

therapeutic interventions. 
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