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Characterization and Targeting of Thromboxane Receptor Dimerization:
A Gateway to Novel Therapeutic Developments

Abstract
Thromboxane A2 (TXA2) contributes to cardiovascular disease (CVD) by activating platelets and vascular
smooth muscle cell constriction and proliferation. Despite their preclinical efficacy, pharmacological
antagonists of the TXA2 receptor (the TP), a G protein-coupled receptor (GPCR), have not been clinically
successful, raising interest in novel approaches to modifying TP function. We sought to examine molecular
mechanisms underlying auto-upregulation of the TP in response to agonist activation. We first determined a
lack of agonist-induced TP mRNA modulation, focusing our attention on post-translational TP regulation.
GPCR dimerization contributes to post-translational regulation of receptor expression and function, therefore
we characterized how TP forms dimers with itself (homodimerization) or other related receptors
(heterodimerization) and defined the relative affinities. To determine how disruption of TP dimerization
impacts its regulation and function, we targeted a GxxxGxxxL helical interaction motif, reportedly involved in
transmembrane protein-protein interactions between other membrane proteins and GPCRs, that is located in
the human TP's (α isoform) 5th transmembrane domain. We determined that disruption of this motif
suppressed TP agonist-induced Gq signaling and TPα homodimerization, but not its cell surface expression,
ligand affinity or Gq association. Heterodimerization of TPα with the functionally opposing receptor for
prostacyclin (the IP) shifts TPα to signal via the IP-Gs cascade contributing to prostacyclin's restraint of
TXA2 function. Interestingly, and in contrast to the TPα homodimer, disruption of the TPα-TM5
GxxxGxxxL motif did not modify either TPα-IP heterodimerization or its Gs-cAMP signaling. Our study
indicates that distinct regions of the TPα receptor direct its homo- and hetero- dimerization and normal
homodimerization appears necessary for efficient TPα-Gq activation. Targeting the TPα-TM5 GxxxGxxxL
domain may allow development of biased TPα- homodimer antagonists that avoid suppression of TPα-IP
heterodimer's predicted beneficial "IP-like" effects. Such novel therapeutics may prove superior in CVD
compared to non-selective suppression of all TP functions with TXA2 biosynthesis inhibitors or traditional
TP antagonists.
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ABSTRACT 

 

CHARACTERIZATION AND TARGETING OF THROMBOXANE RECEPTOR DIMERIZATION: A 

GATEWAY TO NOVEL THERAPEUTIC DEVELOPMENTS 

Alexander J. Frey 

Emer M. Smyth 

 

Thromboxane A2 (TXA2) contributes to cardiovascular disease (CVD) by 

activating platelets and vascular smooth muscle cell constriction and 

proliferation. Despite their preclinical efficacy, pharmacological antagonists of the 

TXA2 receptor (the TP), a G protein-coupled receptor (GPCR), have not been 

clinically successful, raising interest in novel approaches to modifying TP 

function. We sought to examine molecular mechanisms underlying auto-

upregulation of the TP in response to agonist activation. We first determined a 

lack of agonist-induced TP mRNA modulation, focusing our attention on post-

translational TP regulation. GPCR dimerization contributes to post-translational 

regulation of receptor expression and function, therefore we characterized how 

TP forms dimers with itself (homodimerization) or other related receptors 

(heterodimerization) and defined the relative affinities. To determine how 

disruption of TP dimerization impacts its regulation and function, we targeted a 

GxxxGxxxL helical interaction motif, reportedly involved in transmembrane 

protein-protein interactions between other membrane proteins and GPCRs, that 

is located in the human TP’s ( isoform) 5th transmembrane domain. We 
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determined that disruption of this motif suppressed TP agonist-induced Gq 

signaling and TP homodimerization, but not its cell surface expression, ligand 

affinity or Gq association. Heterodimerization of TP with the functionally 

opposing receptor for prostacyclin (the IP) shifts TP to signal via the IP-Gs 

cascade contributing to prostacyclin’s restraint of TXA2 function. Interestingly, 

and in contrast to the TP homodimer, disruption of the TP-TM5 GxxxGxxxL 

motif did not modify either TP-IP heterodimerization or its Gs-cAMP signaling. 

Our study indicates that distinct regions of the TP receptor direct its homo- and 

hetero- dimerization and normal homodimerization appears necessary for 

efficient TP-Gq activation. Targeting the TP-TM5 GxxxGxxxL domain may 

allow development of biased TP- homodimer antagonists that avoid 

suppression of TP-IP heterodimer’s predicted beneficial “IP-like” effects. Such 

novel therapeutics may prove superior in CVD compared to non-selective 

suppression of all TP functions with TXA2 biosynthesis inhibitors or traditional TP 

antagonists.  
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Chapter 1: INTRODUCTION 

 

Thromboxane A2 biosynthesis 

Thromboxane (TxA2) is generated by thromboxane synthase (TS) metabolism of 

prostaglandin H2, the immediate product of cyclooxygenase (COX) action on 

arachidonic acid (1–3). It has a half-life of about 30s prior to non-enzymatic 

degradation into the inactive thromboxane B2 metabolite (4). Platelet COX-1, the 

only COX isoform expressed in mature platelets, is the dominant source of TxA2 

synthesis under normal conditions (5).  Other cells, including macrophages and 

monocytes, contribute to TxA2 generation via both COX-1 and COX-2 with the 

latter isozyme being particularly relevant during inflammation (2, 6). COX and TS 

also act on 5,8,11,14,17-eicosapentaenoic acid (EPA) to form TxA3, a less potent 

relative of TxA2 believed to play a role in the cardioprotective effects of n-3 

polyunsaturated fatty acids consumption, most frequently found in fish oils. 

 

Physiological and pathophysiological actions of thromboxane A2 

Actions in the vasculature 

TxA2 acts as a local autocrine or paracrine mediator to mediate a range of 

physiological and pathophysiological responses that include platelet activation, 

vasoconstriction, and smooth muscle cell proliferation (3, 7–11). TxA2 acts in a 

paracrine manner activating adjacent platelets to generate more TxA2 and 

amplify the action of other, more potent, platelet agonists (12, 13). These 
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processes are of particular relevance to cardiovascular disease (CVD) in which 

TXA2 generation is markedly elevated and expression of its receptor, the TP, is 

increased (14–16).  In humans inhibition of platelet COX-1 with low-dose aspirin 

is widely used for prevention of heart attack and stroke (17–20), while in mouse 

models of atherogenesis and injury-induced vascular proliferation or remodeling, 

disease severity was blunted by antagonism or deletion of the TP (8, 21, 22).  

Interestingly, in hyperlipidemic mice TP antagonist was more effective in 

reducing atherogenesis that COX inhibition (23). This may reflect antagonism of 

COX-independent TP ligands, such as the isoprostanes, free-radical derived 

metabolites of arachidonic acid that can activate the TP in vivo (24). These and 

other studies have placed significant emphasis on the TP as a therapeutic target 

in CVD(8, 12, 23). Despite their potential, however, pharmacological antagonists 

of the TP have been clinically disappointing compared to low-dose aspirin, in 

large part because none replicate aspirin’s irreversible inhibitory effect on 

platelets (12, 25–27). 

Actions in the nervous system 

Within the central nervous system, TxA2 acts to promote proliferation and survival 

of oligodendricytes (28) as well as increased secretion of interleukin 6 (29) and 

peripheral adrenal catecholamine (30). It is also involved in astrogliosis in 

astrocytes and astrocytoma cells (31) as well as the dipsogenic response to 

angiotensin II (32). In the peripheral nervous system, TxA2 can elicit pulmonary 

and cardiovascular reflexes via stimulation of peripheral sensory neurons (33–
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35) and has been implicated in transduction of allergic itching responses in a 

murine model (36). 

Other actions 

In the kidney, TxA2 acts on mesangial cells to cause cell contraction and 

proliferation (37, 38), modulate cellular ion fluxes (39), and has been implicated 

in the progression of nephritis and nephrotic disease (40, 41). Within the immune 

system, TxA2 stimulates apoptosis and DNA fragmentation of CD4+/CD8+ cells 

(42) and modulates acquired immunity through various effects upon native T 

cells (43). Additionally, studies report a role for TxA2 in inflammation in the lung 

(44), heart (45), and liver (46), and in the pathophysiological development of 

asthma, rhinitis, and atopic dermatitis (47–49). During carcinogenesis, TxA2 may 

contribute to angiotensin II-induced neovascularization (50) and to metastasis 

(11). 

 

The thromboxane receptor 

Structure 

The TP is a class A cell-surface G protein-coupled receptor (GPCR) exhibiting 

the typical seven-transmembrane domain structure characteristic of this class of 

receptors (Figure 1). In humans, but not in other species, there are two splice 

variants, the TPα and TPβ, which differ structurally only in their C termini. As 

ligand binding domains for the receptor are considered to be located on 

extracellular loops or transmembrane sites near the extracellular domain, the two  
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Figure 1: Snake plot of the human TPα. GxxxG motifs in the N terminal, first intracellular 
second extracellular domains are indicated in orange. The TM5 GxxxGxxxL motif under 
investigation in the second section of this work our study is highlighted in red.  
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isoforms are thought to have identical ligand binding sites, an assumption that is 

supported experimentally (51).  

Transcription of the  and ß TP variants is modulated by different upstream 

promoters (52, 53) and the isoforms both maintain differences in some of their 

post-translational modifications, interacting proteins, and agonist-induced 

regulation (54–59). In transfected CHO cells, for example, stimulation of cells 

expressing TPα led to an increase in cAMP levels, while similar activation of 

TPβ-transfected cells cause a decrease in cAMP, suggesting a preference for 

coupling with Gs and Gi, respectively; however, both receptor isoforms responded 

similarly to agonist in terms of inositol phosphate generation (56). In another 

study, activation of either TPα or TPβ led to ERK1/2 phosphorylation. For TPα-

expressing cells, this action was inhibited by H89, an inhibitor of protein kinase A, 

whereas for TPβ-expressing cells it was abrogated through overexpression of 

p115-RGS, which has an inhibitory action towards G12/13 (55). These and other 

examples suggest that the unique C-termini of each isoform may provide 

differential preferences of G protein association. 

Despite these differences, studies have not established significant physiological 

or pathophysiological divergence between the two TP isoforms (12). As Smyth 

notes, however, the fact that only humans express both TP isoforms should be a 

principal consideration in the analysis of in vivo studies of the receptor in model 

organisms that lack TPβ (12). There is evidence for an anti-angiogenic role for 

TxA2 via TPβ in the vasculature (60–62); at the same time, other studies have 
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shown that TxA2 is a positive regulator of blood vessel growth, particularly in 

tumors, in murine models using SQ 29,548 to inhibit TP activation (11, 63).  

 

Signaling 

The TP is expressed in a wide variety of tissues and cells including platelets, 

smooth muscle cells, endothelial cells, lungs, kidneys, heart, thymus, and spleen 

(64–66). A number of tissues appear to express both splice variants (67, 68) 

although TPα is the only isoform expressed in platelets (69). This thesis work 

focused on the TP α isoform. Thus, unless otherwise noted, references made in 

this thesis to “TP” refer to TPα. Research from our group and others has defined 

the TP’s functional and regulatory pathways (51, 54, 69–72) (Figure 2). Signaling 

via the TP can be transduced through multiple G protein pathways, including Gq, 

G11, G12/13, G15, G16, Gi, Gs and Gh (51), though some of these associations have 

only been reported in isolated studies. 

The two signaling pathways that appear most relevant to the biological actions of 

TP are Gq and G12/13 (73), which stimulate the phospholipase-C pathway of 

inositol phosphate/intracellular calcium elevation and RhoA activation, 

respectively (74). TP-mediated signaling via Gq causes activation of 

phospholiase C (75) and, through phosphoinositide hydrolysis, generation of 

1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), thereby mobilizing 

intracellular Ca2+ and activating protein kinase C (PKC)(76–78). Signal 

transduction via G12/13 follows the activation of RhoGEF (79) and the associated  
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Figure 2: Summary of the reported major and minor signaling pathways of TP activation. 
TP primarily acts through activation of Gαq/11 and Gα12/13, with additional signaling having been 
reported through activation of Gαs, Gαi, and Gh. Downstream effectors vary based on tissue or 
cells of interest. Additionally, dissociation of the Gβγ subunit can lead to concurrent activation of 
other signaling pathways. 
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Rho signaling cascade, modulating such responses as regulation of the actin 

cytoskeleton, cytokinesis, cell motility, contraction, cell proliferation, apoptosis, 

thymic cellularity, Na+/H+ exchanger and myosin light chain kinase (51). 

These systems both appear to contribute to platelet function - G12/13-mediated 

stimulation of RhoA signaling induces myosin light chain phosphorylation leading 

to platelet shape change, with subsequent activation of Gq-PLCβ signaling 

causing aggregation (80). In mice, platelets lacking Gq or G13 are completely 

unresponsive to TxA2, showing that Gq and G13 are required for platelet activation 

(74). It is also interesting to note that low concentrations of the TP agonist 

U46619 are sufficient to cause platelet shape change, while high concentrations 

are necessary to induce aggregation (81). 

In addition to signaling through Gα subunits, studies have reported Gβγ-

mediated activation of phosphatidylinositol 3-kinase (PI3K), phospholipase C-β2 

and p44/42 mitogen-activated protein kinase (p44/42 MAPK)/extracellular signal-

regulated kinase 1/2 (ERK1/2), though the precise role in TP function and biology 

has not been clearly defined (73, 82). 

 

Regulation: Desensitization 

The TP undergoes both homologous (following its own activation) and 

heterologous (following activation of another receptor) desensitization (58, 83–

86) via phosphorylation of residues in the C-terminus. Here distinctions between 

the unique C-termini of the two TP isoforms have been reported. For the TP 
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isoform, Ser329 is a phosphorylation site for protein kinase A (PKA) activated by 

cAMP, allowing heterologous desensitization by Gs-coupled receptors like the 

prostacyclin receptor (86). Ser331 is a target for protein kinase G (PKG)/cGMP-

mediated desensitization, and Thr337 is a site for protein kinase C (PKC) 

phosphorylation (51). 

The TPß, on the other hand, undergoes phosphorylation at Thr299 and Ser145 by 

PKC (87), and at Ser357 (in tandem with Ser239) by G protein-coupled receptor 

kinase (predominantly GRK2; lesser effects seen with GRK3, GRK5, or GRK6) 

(88). GRK-mediated phosphorylation leads to recruitment of β-arrestin and 

subsequent decoupling of G proteins from the receptor followed by internalization 

(89). Arrestin-mediated internalization has been implicated in regulation of the 

TPß contributing to lower basal surface expression levels of the receptor (54), 

and its more ready internalization, compared to TP, following activation (88).  

Of noteworthy relevance to the discussion of TP is an autoupregulation system 

downstream of TP activation. Work by Wilson et al. uncovered a reactive oxygen 

species (ROS)-dependent mechanism through which stimulation of the TP leads 

to activation of NADPH oxidase, in turn leading to increased TP protein stability 

in early biogenesis and, ultimately, increased receptor expression at the cell 

surface (70). Though the mechanism underlying this pathway is as yet ill-defined, 

exogenous ROS can also increase in TP protein stability and expression, which 

may be particularly relevant in cardiovascular disease where ROS levels are 

elevated (12). 
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Regulation: Intracellular trafficking 

As previously noted, TPα has been seen to be generally expressed at higher 

levels at the cell surface compared to TPβ, at least in the transfected cell models 

found in the literature, likely because the latter binds to protosomal subunit α7 

and proteasome activator PA28γ through the unique TPβ the C-terminal domain, 

leading to TPβ degradation by PA28γ-dependent protease activity (90). TPβ 

endocytosis also occurs in a Rac-1-dependent manner through interaction with 

Nm23-H2 (91), a process that requires interaction with the actin cytoskeleton 

(92). TPβ that has been thus internalized may be recycled to the cell surface 

through an interaction with Rab11 and the its GTPase-positive recycling 

endosome (57, 93). Studies disagree on whether or not TPα is internalized 

suggesting that internalization of TPα may cell- or context- specific (88, 94). 

Successful trafficking to the TP to the cell surface appears to be strictly 

dependent on glycosylation of Asn4 and Asn16 at the N-terminus, a process 

common to both isoforms. Treatment of TPα and TPβ with tunicamycin (a 

specific inhibitor of N-linked glycosylation) significantly reduced the binding of SQ 

29,548, a TP antagonist, in both isolated cell membranes (95) and whole stably 

receptor-expressing cells (96). Further, targeted mutation of either of these sites 

resulted in a reduction by half of the Bmax for SQ 29,548 binding, while mutation 

of both lead to near-complete retention of the receptor within the endoplasmic 

reticulum and failure to couple with G proteins (71). 
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Interplay between thromboxane and prostacyclin and their receptors 

The actions of TxA2 are generally opposed by prostacyclin (PGI2), another short-

lived prostanoid that is generated from arachidonic acid predominantly through 

COX-2 and prostacyclin synthase in the vascular endothelium (97).  Acting 

though the prostacyclin receptor (IP), PGI2 inhibits platelet activation, reduces 

vascular proliferation, and causes vasodilation (98).  The IP is coupled to Gs, 

thus activation leads to increased intracellular cyclic AMP generation.  Mice 

lacking the IP display heightened thrombotic responses (99) and accelerated 

development of atherosclerosis (8).  A critical function of the IP is to restrain TP 

function – mice that lack the IP show increased platelet and proliferative 

responses to vascular injury in vivo with the opposite phenotype in TP deficient 

mice and normalization of both phenotypes in double receptor knock out animals 

(21). With their opposing roles, the interplay between TxA2 and PGI2 is an 

important component of cardiovascular function and disease and is particularly 

relevant in later parts of this work. 

 

G protein-Coupled Receptor Dimerization 

Substantial evidence has emerged in the field of GPCR research that these 

seven-transmembrane proteins do not function only as monomeric receptors in 

physiological systems, but rather as dimeric, and possibly oligomeric, units (100–

103).  Receptor dimerization appears necessary for normal physiological 

signaling of some receptors (104, 105) and dimeric forms of GCPRs have 



12 
 

become a novel target for therapeutic research, with the goal of modifying 

dimerization through the use of small molecules. Both homodimer and 

heterodimer formation has been noted for a variety of GPCRs. For the GABAB 

receptor, dimerization has been described as “obligatory”, with the pairing 

necessary for proper biogenesis and receptor function (106, 107). In comparison, 

dimer formation does not appear essential for other receptors, like the dopamine 

receptor, but does modulate the receptor’s signaling response to agonist (108, 

109). In addition, “‘non-obligatory’ GPCR heterodimer” formation has been noted 

for a number of GPCRs (100), including the TP (see below) with significant 

changes in downstream signaling of a given receptor when it forms a 

heterodimer as compared to its homodimer (110, 111).  

Dimerization may contribute early in GPRC biosynthesis (112) at certain quality-

control checkpoints (100).  Homodimerization can occur early in the biosyntetic 

pathway, most likely in the endoplasmic reticulum (112, 113), and is a 

prerequisite for receptor trafficking to the cell surface for a number of other 

GPCRs including the GABAB receptor (107), α1D- and α1B-adrenoceptors (114), 

and β2-adrenergic receptor (115).  Mutations that cause GCPR retention in the 

ER/Golgi can act in a dominant-negative manner to block cell surface expression 

of wild-type receptor (116, 117), as the mutants remain able to dimerize, yet 

cannot pass through quality control checkpoints to exit the ER and continue 

through biogenesis to be transported to the cell surface.  These studies further 

support the model that dimerization occurs early in the posttranslational biogenic 
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pathway, and have raised interest in developing ways to disrupt dimer formation 

as a novel approach to modifying receptor function. For example, a small 

molecule that prevents dimerization would also prevent cell surface expression, 

an alternative approach to antagonism to reduce receptor function.  If the target 

receptor were one involved in disease pathophysiology, such as the TP in CVD, 

then disease could be prevented or ameliorated.  

Across the GPCR superfamily, there is substantial evidence for receptor 

dimerization (118, 119) and a significant contribution therein to receptor 

trafficking, ligand recognition, signaling and regulation (100, 102, 115, 120).  As 

mentioned above, previous work in our lab reported that the TP forms dimeric 

receptor complexes (94, 121–123). In addition to homodimerization, TPα can 

heterodimerize with TPβ, leading to enhanced isoprostane responsiveness (122). 

Further, as part of the work outlined in this thesis, we observed equal propensity 

for TPα to heterodimerize with the receptor for PGI2, the IP (123). As mentioned 

above, the PGI2, a predominantly COX-2-derived mediator, acts via the IP to 

activate the Gs-adenylyl cyclase signaling pathway causing vasodilation and 

inhibition of platelet activation (98). In mice, the restraint placed by the PGI2-IP 

system on TxA2-TP function limits the proliferative and platelet response to 

vascular injury (21) demonstrating the in vivo relevance of this interplay. Further, 

the elevated cardiovascular hazard in patients treated with COX-2 inhibitors can 

be explained by selective suppression of COX-2-derived PGI2 without alteration 

of COX-1-derived TXA2 levels (124). We determined that heterodimerization of 
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the TP with the IP contributes to the PGI2-TXA2 interplay - dimerization with the 

IP dramatically shifts TP function from a lipid raft-excluded Gq-coupled receptor 

to a raft-associated Gs-coupled receptor that yields a robust Gs-cAMP response, 

concomitant with reduced Gq-inositol phosphate signaling, to TP agonists (121, 

123). In effect therefore, the IP can bias the response of TXA2-TP toward a PGI2-

IP “like” signal predicted as beneficial in CVD. Loss of this shift in TP function in 

individuals heterozygous for a signaling deficient IP mutant, IPR212C, may 

contribute to their accelerated CVD (125).  

 

Dimerization motifs as mediators of GPCR pairing 

The importance of transmembrane (TM) helical interactions to protein structure 

and function is evident across multiple diverse integral membrane protein 

families (126, 127). Consequently, there is significant interest targeting TM 

domains to modulate the function of membrane-spanning proteins, including 

GPCRs (107, 118, 120, 128–130). Various studies, include those resolving 

GPCR crystal structures (131), have shown that dimerization interfaces are 

predominantly found in the TM domains (132–134). 

Among all TM domains, a GxxxG motif, in which two glycines are separated by 

any three other residues, is strongly over-represented (135), highly conserved 

across species (136, 137) and can direct homologous or heterologous helical 

interactions (126, 127, 138). Neighboring residues, especially the large aliphatic 

residues isoleucine, valine and leucine, appear critical to GxxxG-mediated helix-
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helix interactions (136, 137). In a number of proteins (139–142), including at least 

two GPCRs (104, 115), placement of a leucine three residues after the second 

glycine, to create a GxxxGxxxL motif, directs protein-protein interaction and 

function. We identified a GxxxGxxxL motif within the 5th transmembrane of the 

TPα (Figure 3) and, as part of this thesis research, examined its relevance for TP 

function. 

 

Current Therapeutics Targeting TXS and TP 

Therapeutics that interfere with TP signaling generally act in one of three ways: 

inhibition of COX-1/2 conversion of arachidonic acid to PGH2, inhibition of TXS 

conversion of PGH2 to TxA2, or antagonism of the TP itself. Low-dose aspirin 

which inhibits platelet COX-1-derived TxA2 is used widely to protection against 

heart attack and stroke. Although true aspirin resistance is likely extremely rare 

(143), heterogeneity in the beneficial response and weak benefit in some 

pathophysiologies (e.g., diabetes, peripheral artery disease (144, 145), as well as 

possible gender differences (146)) underscore the need for greater mechanistic 

understanding to advance new therapeutic TXA2-TP approaches in CVD. 

Over the past decade, attempts to use therapeutics that targeted TxA2 synthase 

or the TP itself have generally met with limited to no clinical success. Most 

recently, the selective TP receptor antagonist terutroban showed comparable, 

but not superior, efficacy as low-dose aspirin in preventing recurrent ischemic 

stroke in clinical trials (147). Other thromboxane receptor agonists include  
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Figure 3: Location and positioning of the GxxxGxxxL motif within the TP. 
Homology modeling (SWISS-MODEL) of the human TPα based on a 2.8Å 
crystallographic bovine rhodopsin template. Relative positions of G205, G209 and L213 are 
highlighted. Each appeared to face the lipid bi-layer aligned on one side of TM5. 
(Credit: Scott Gleim/Hwa Lab, Yale University School of Medicine) 
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ifetroban (148), seratrodast (used for treatment of asthma) (149), and sulotroban 

(150). 

A number of other drugs act as tandem TP antagonists/TxA2 synthesis inhibitors.  

Dipyridamole has been shown to be effective in adjunctive therapy with aspirin 

for secondary prevention following stroke (151). Picotamide is a platelet 

aggregation inhibitor that has shown antiplatelet efficacy in some studies (152). 

Ridogrel has been tested for use in helping to treat Crohn’s disease and 

ulcerative colitis, but without promising results (153, 154). 

Furegrelate is a potent inhibitor of thromboxane synthase with little effect on 

other enzymes essential for arachidonate metabolism, and has been investigated 

for use in treatment of pulmonary arterial hypertension with promising early 

results in model animals (155). Ozagrel also acts to inhibit synthesis, and has 

been seen to reduce neurological impairment suffered with stroke, though 

without improving long-term morbidity or other endpoints (156). 

 

Project aims 

While previous work by Wilson established the presence of the ROS-dependent 

auto-upregulation paradigm, the underlying mechanisms of TP regulation within 

the cell remained ill-defined. As such, one aim of my thesis work sought to 

explore the mechanism(s) for the increase in cell surface TP expression in 

response to activation. One possibility was that stimulation of the receptor was 

leading to an increase in mRNA levels, thus increasing TP protein levels.  
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However, quantitative real-time PCR analysis did not strongly support this 

hypothesis. 

In light of emerging evidence for dimerization as a mode of GPCR regulation, I 

also sought to confirm TP homodimerization, which was apparent in co-

immunoprecipitation studies previously performed in the laboratory. Not only was 

I able to confirm TP homodimerization, I also characterized the relative efficiency 

of TP interaction with other prostanoid receptors, including the IP and the DP1 

receptor for prostaglandin D2. 

The findings from dimerization studies in this first aim, taken together with 

research in the literature describing the significance of the GxxxGxxxL helical 

interaction motif, a motif we identified within the TPs 5th TM, led to the 

development of the second aim. The second aim sought to determine if the 

GxxxGxxxL motif contributed to TP dimerization and, if so, whether or not 

targeting of this motif would be a novel therapeutic approach to suppress TP 

function. We determined that the TP TM5 GxxxGxxxL motif does contribute to TP 

dimer formation. Further, using mutant forms of the TP, we demonstrated that 

this motif was selectively involved in TP homodimer formation and signaling but 

not TP-IP heterodimerization or signaling by the TP-IP heterodimer. These 

studies provided the first proof-of-principle that the homo- and hetero-dimeric 

functions of the TP and TP-IP can be discriminated to suppress the CVD-

deleterious TP function and preserve the CVD-beneficial TP-IP function. 

Targeting of the TP GxxxGxxxL motif with a peptide, which was designed against 
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a similar transmembrane domain in the II integrin (128), provided an exciting 

initial indication of the potential for targeting this region to develop a biased 

therapeutic directed against the deleterious side of TP signaling. Full analysis of 

these results and their implications follow. 
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CHAPTER 2: Materials and Methods 

 

Constructs 

Hemagglutinin- (HA) tagged human IP and TPα cloned into the mammalian 

expression vector pcDNA3 (Invitrogen, CA) were previously created in the lab 

(123). QuikChange site-directed mutagenesis (Stragagene, CA) was used to 

replace G205 and G209 with leucines, a small-to-large replacement that disrupts 

helix-helix interaction (139, 141, 142). We replaced L213 with a tyrosine based on 

the studies of the GxxxGxxxL motif in the ß2-adrenergic receptor(115). The 

resulting mutant was termed TPL205,L209,Y213. Similar mutations were made at the 

partial GxxxG motif at the beginning of the first intracellular loop to create the 

TPL51,L55 mutant. See Table 1 for the list of primers designed for mutagenesis. 

HA-tagged IP, TPα, and TPL205,L209,Y213 were fused at their C-termini to either 

Renilla luciferase (rLuc) or yellow fluorescent protein (YFP), via restriction 

enzyme cutting and reassembly after purification of DNA segments (157). Briefly, 

the stop codon was removed by PCR and each stop-less construct cloned into 

pRLuc-N3(h) (Perkin-Elmer, MA) and pEYFP-N1 (Clontech, CA) plasmids in 

frame with the fusion protein start site. All sequences were verified by DNA 

sequencing. 

The TP first transmembrane domain (TM1) interacting peptide was created 

through PCR amplification of the TP sequences between residues R23 and T59, 

containing the entirety of TM1. This amplification product was inserted via 
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Table 1: Sequences of primers used in the generation of mutants employed in this work. 
Note that some primers must be used following the introduction of a prior mutation due to overlap 
in the sequences. 

Target 
Mutation 

Primer Sequence 

G205xxxG209xxxL213 → G205xxxG209xxxY213 

Sense 5'- CTG TCC TTC TAC CTG AAC ACG GTC -3' 

Antisense 5'- GAC AGG AAG ATG GAC TTG TGC CAG -3' 

G205xxxG209xxxY213 → G205xxxL209xxxY213 

Sense 5'- CC ATG CTG GGC GGC CTC TCG GTC TTG CTG TCC TTC -3' 

Antisense 5'- GAA GGA CAG CAA GAC CGA GAG GCC GCC CAG CAT GG -3' 

G205xxxL209xxxY213 → L205xxxL209xxxY213 

Sense 5'- GG CTG CTC TTC TCC ATG CTG GGC CTC CTC TCG GTC -3' 

Antisense 5'- GAC CGA GAG GAG GCC CAG CAT GGA GAA GAG CAG CC -3' 

G51xxxG55 → G51xxxL55 

Sense 5'- CGC GCG GCA GTT GGG TTC GCA CAC GCG CTC -3' 

Antisense 5'- GAG CGC GTG TGC GAA CCC AAC TGC CGC GCG -3' 

G51xxxL55 → L51xxxL55 

Sense 5'- CTG AGC GTG CTG GCG CTC GCG CGG CAT TG -3' 

Antisense 5'- CAA TGC CGC GCG AGC GCC AGC ACG CTC AG -3' 
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restriction enzyme digestion and religation, into the pNTAP vector obtained as 

part of the InterPlay N-terminal Mammalian TAP System (Stratagene, LaJolla, 

CA) to provide necessary the constitutive cytomegalovirus promoter and 

SV40/poly-adenosine tail for stability (Figure 4). 

 

Cell culture 

HEK 293 and Meg-01 cell lines were from the American Type Tissue Culture 

Collection (ATTC; Rockville, MD). HEK 293 cells were maintained following 

established and published protocol in the lab (48); HEK cells were grown in 

DMEM High Glucose medium (Invitrogen) containing 10% fetal bovine serum, 

1% penicillin-strepomycin, 2mM L-glutamine, and 25mM HEPES buffer. Cells 

were grown in 75 cm2 surface area flasks and passaged in a 1:4 ratio upon 

reaching 80-90% confluency by allowing cells to lift in 37°C Hank’s Balanced Salt 

Solution containing 0.02% EDTA prior to collection and redistribution into new 

plates. 

Meg-01 cells were grown in RPMI-1640 (Invitrogen) containing 10% fetal bovine 

serum and 1% penicillin-strepomycin. Cells were grown in 20 mL of medium in 

75 cm2 surface area flasks. Passaging was performed according to ATTC 

literature that accompanied the cells, every 2-3 days by scraping the bottom of 

the flask with a disposable cell scraper and addition of 5 mL of this cell 

suspension to 15 mL of fresh medium in each new flask. 

  



23 
 

  

 

 

Figure 4: Design of the TP TM1 interacting peptide. Sequence excerpted from the TP 
sequence for creation of the TP TM1 peptide (A). Excerpted fragment runs from residues R23 
through T59 to ensure inclusion of full TM1 domain. The fragment was inserted into a pNTAP 
vector (B) for introduction of cytomegalovirus promoter and poly-adenosine stabilization 
sequence. 
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Human aortic smooth muscle cells (HuAoSMCs, Biowhittaker Inc., Walkersville, 

MD) were cultured in smooth muscle cell basal medium supplemented with fetal 

bovine serum (5%), human recombinant epidermal growth factor (hEGF; 0.5 

ng/ml), insulin (5 g/ml), human recombinant fibroblast growth factor (hFGF; 2 

ng/ml) plus gentamicin (50 g/ml), and amphotericin-B (50 ng/ml) (all supplies via 

Lonza, Allendale, NJ). HuAoSMCs of passages 5–9 were used in experiments. 

 

Transient transfection of cell lines 

Transient transfections of HEK 293 cells were initially performed using FuGENE 

6 (Roche Applied Science, IN) following manufacturer’s instructions (123). After 

discontinuation of FuGENE 6 production, transfections were performed using X-

tremeGENE 9 (Roche Applied Science, IN), following manufacturer’s 

instructions. This replacement reagent was created by Roche as an improved 

form of FuGENE 6 with reduced cytotoxicity and the need for less reagent per 

transfection. The serum-free medium used in transfections was Opti-MEM 

medium (Invitrogen). DNA transfected ranged widely, based on the needs of the 

given experiments, but always following the proscribed DNA:transfection 

reagent:Opti-MEM medium ratio provided in the literature from the manufacturer. 

Exact amounts of DNA transfected varied, based on the assay to be performed 

and quantity of cells needed, and are noted in subsequent sections below. 

Transient transfections of Meg-01s were performed by nucleofection using an 

Amaxa NucleofectorTM II and NucleofectorTM Kit C (Lonza, NJ), per the 
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manufacturer’s instructions, introducing a total of 3 μg of DNA to the cells as 

instructed. The range of DNA quantities used in HEK 293 transfection was not 

possible given the constraints of the nucleofection system. Experimental design 

with transfected Meg-01 cells was adjusted based on this constraint, dictating 

how many duplicate measurements or treatment groups were possible in a given 

replicate. 

In all cases, DNA levels were equalized in all transfections using empty pcDNA3 

vector. Assays were performed 48 hours after transfection. 

 

Bioluminescence Resonance Energy Transfer (BRET) assay: original 

protocol. 

Dimerization of rLuc and YFP fused receptors was examined by measuring 

bioluminescence resonance energy transfer (BRET) from an energy donor (rLuc 

fused) receptor to an energy acceptor (YFP-fused) receptor following addition of 

substrate for rLuc (coelenterazine h; Molecular Probes, Life Technologies, NY) 

(Figure 5). Coelenterazine h was supplied solid, 250 µg, and stored at -20°C. A 

stock vial, in which the compound was resuspended to a 2.5 mM solution in 200-

proof ethanol, was maintained for further dilution into a working solution (50 μM) 

for the assay. 

In BRET saturation experiments, cells were transfected with a fixed amount of 

rLuc-receptor (0.25µg) together with increasing amounts of YFP receptor 

(0.125µg to 1.75µg). Experiments in which the two receptors were capable of 
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Figure 5: Illustrated summary of Bioluminescent Resonance Energy Transformation 
(BRET) methodology. The underlying mechanism of the BRET assay rests on the short 
distance between the two protomers (A and B, above) of a dimeric pair, which brings the 
donor, Renilla luciferase (rLuc), and receptor, yellow fluorescent protein (YFP), tags into 
close proximity. Coelenterazine activates the rLuc enzyme, producing light with a peak 
emission of 475 nm. When no dimerization occurs (left), the distance between rLuc and YFP 
is too great to initiate resonance energy transfer, producing a spectrum as shown. However, 
when the A and B interact closely, such as during dimer formation, then energy emitted by 
rLuc is transfered to YFP, which emits light at a peak of 525 nm, generating the combined 
spectrum pictured on the right. Measurement of emissions at 485nm and 550nm (as shown) 
allows for quantification of BRET, calculated as the ratio of the emission at 550 over the 
emission at 485 corrected for BRET signal background as calculated from untransfected 
cells.  
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 dimerization resulted in a characteristic saturation curve (Figure 6A) that allowed 

for calculation of the BRET50 - the level of acceptor receptor YFP-rLuc tagged 

receptor (expressed as fold over basal total YFP, excited with an external light 

source; see details below) at which half of the maximal BRET signal was 

detected. 

The BRET50 served as a quantitative measurement of affinity for dimerization, 

with a lower BRET50 indicating a higher affinity for dimerization. This allows for 

comparison of affinities between receptor pairings. Changes in the maximal 

BRET values may reflect absolute levels of dimer formed. However, the absolute 

BRET value also can be influenced by the distance and orientation of the donor 

and acceptor molecules, which are variable based on the molecular arrangement 

of a particular dimer, rather than simply the number of dimers formed. Similarly, 

binding of a ligand to either protomer can change the three-dimensional structure 

of a receptor, potentially changing the distance between the rLuc donor and YFP 

acceptor molecules and, thus, the absolute BRET values. This possibility is 

discussed further in the relevant section of the results. Thus, the BRET50 is 

particularly useful as a readout of dimerization affinity that is independent of 

changes in donor-acceptor distance. 

In BRET competition assays, increasing amounts of a competitor receptor 

(without a donor or acceptor moiety) were co-transfected together with a fixed 

ratio (1:7) of receptor-rLuc + receptor-YFP (and hence a fixed BRET value). A 

reduction in BRET signal as the competing receptor levels are increased 
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Figure 6: Indicative responses from BRET assays. Simulated responses from the BRET 
assays. (A) A robust, saturable response seen in the BRET saturation assay in response to 
increasing concentration of acceptor-tagged receptor indicates a dimerization between the 
two receptors of interest. (B) A muted, linear response is obtained from BRET occurring 
through random, proximity-based interactions for non-dimerizing species. (C) Loss of BRET 
response upon introduction of increasing amounts of non-reporter-tagged receptor is 
indicative of dimerization between the untagged competitor and at least one of the reporter-
tagged receptors while (D) no loss of BRET signal indicates that the untagged receptor lacks 
sufficient affinity for dimerization with either tagged receptor. 
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indicates that the competing receptor can interact with either (or both) protomer, 

allowing an initial characterization of dimerization affinity (Figure 6C). This assay 

is useful for initial screen of receptor pairings of interest, as it does not require 

the time-consuming work of stop codon removal generation of donor and 

acceptor fused proteins. 

Initially, BRET measurements were performed following protocols published by 

Bouvier, et al. (121). Forty eight hours after transient transfection, cells were 

harvested (phenol red-free Hank’s Balanced Salt Solution containing 0.02% 

EDTA), washed twice with phosphate-buffered saline and resuspended in DPBS 

containing 5.56 mM glucose (Invitrogen, 14287), then redistributed in two 96-well 

plates (first: black, clear-bottomed; second: white, opaque-bottomed; 100,000 

cells/well) and maintained at 37°C. Total YFP (Ex485nm, Em555nm) was first 

collected using a luminescence multi-plate reader (VICTOR3, Perkin Elmer) with 

the black, clear-bottomed plate and acceptor expression calculated as fold over 

basal. Following this, coelenterazine h (Invitrogen, stock resuspended to 2.50 

mM in ethanol for working solution) was diluted to 5μM in phosphate buffered 

saline containing Ca2+ and Mg2+.  A fresh solution was made each time, added to 

all cells in the white plate, and emission from the donor (485nm) and acceptor 

(555nm) were gathered sequentially from each well across the entire plate. Milli 

BRET units (mBU) were calculated as the ratio of Em555 over Em485 nm 

corrected for cells expressing the rLuc receptor alone, and arbitrarily multiplied 

by 1000. 
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BRET assay optimization 

After several months of using this standard approach, concerns surfaced as to 

the stability of the BRET signal over the time taken to process a single plate (i.e. 

from the time of substrate addition to the time of the last BRET reading, typically 

20 minutes). A simple experiment was designed to examine signal stability: a 

single population of HEK 293 cells were transiently transfected with a set ratio 

(1:7) of rLuc- and YFP-tagged TP and the established protocol used to 

establish whether YFP and BRET readings were consistent across both plates. 

Total YFP values were stable across the black plate; however, the BRET signal 

was strikingly unstable (Figure 7, Figure 8), with a significant loss of signal. This 

loss of signal across a homogenous plate raised concerns for interpretation of 

the BRET assay going forward. 

A variety of different experimental adjustments were made in attempts to 

minimize the loss of BRET signal observed with the original assay protocol: [1] 

the protocol was amended to take a reading of one sample set (6 replicates) from 

the black total YFP plate followed by one reading from the white BRET plate, 

alternating so as to more closely align the time of measurement of the two values 

for a given sample. [2] 2-hydroxypropyl-β-cyclodextrin, a ring-shaped compound 

that increases solubility and stability of compounds in water (158), was added to 

the coelenterazine solution in an attempt to stabilize the substrate over the time 
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Figure 7: Signal loss inherent in the original BRET methodology. Over the course of the 
nearly 20 minutes required for sequential measurement of emissions at 485nm and 550nm, a 
steep drop in the raw values, by approximately two thirds, was noted. This raised significant 
concerns of increased noise as the signal drops towards the limit of detection. 
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Figure 8: Decay in BRET and component emissions over time. HEK 293 cells 
were transfected with rLuc- TPWT (donor, 0.25µg) + YFP- TPWT (acceptor, 0.75µg). 
Two 96-well plates were prepared containing identical samples in each well (except 
for the control rLuc alone cells), and assayed following the original BRET protocol: 
coelenterazine was diluted to 50 μM in PBS containing Ca

2+
 immediately prior to 

distribution into all 96 wells, with the full plate (white opaque bottom) read at one 
sitting. Total.YFP emission was measured separately in the second plate (black, 
clear bottom). A representative experiment is shown. Emission at both 485nm and 
550nm decreased over a full order of magnitude (top), while BRET values decayed 
from 125 mBu to 50 mBu (bottom). 
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taken to perform the readings. Neither adjustment improved the signal stability 

across a homogenous set of plates. 

A search of data sheets and technical literature for coelenterazine h as a 

substrate for Renilla luciferase revealed (159) that coelenterazine undergoes a 

predictable deterioration upon introduction to aqueous solution with a 40-50% 

loss of functional capacity over the first 20 minutes. After this period has passed, 

however, the solution maintains a mostly linear functional response over the next 

four hours (Figure 9). Additionally, this decay appears to be caused in part by the 

presence of calcium cations in solution. Based on this information, the BRET 

assay was modified to include [3] a 20-minute waiting period at room 

temperature after addition of the coelenterazine into Ca2+-free phosphate 

buffered saline before addition to the wells. 

Because of the time taken from the first addition of colenterazine to the final 

reading of the 96th well (20 min), loss of signal due simply to substrate catabolism 

by rLuc was a further issue. One approach to addressing this issue was imaging 

of the whole plate at one time through use of an IVIS imaging system. Luciferase 

and YFP activity was captured for the plate as a whole, and binning (manually 

overlaying a 96-square grid onto the image produced by the IVIS so as to allow 

quantitation of activity by well) was employed to measure the YFP and BRET 

signals given off by samples. This proved significantly less sensitive that the 

Victor multiwell plate reader. However, a significant observation was made in the 

course of the imaging trials: the white, opaque plate used in the BRET assay 
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Figure 9: Decay of aqueous coelenterazine at 27 °C. Colenterazine ((10 
mg/mL; 2.4mM in 200mM NaCl, 50mM Tris, 0.08% (v/v) Triton® X-100, pH 
7.8). Measurements were made with EG&G Berthold LB 96V Microplate 
Luminometer and integrated over 10 seconds. The fast decay phase (~ 20 
min) coincides with the window of time emissions are collected using the 
original BRET protocol, thus colenterazine emission will be significantly 
lower for wells read last compared to first. (Credit: FluoProbes® technical 
sheet) 
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itself emitted significant amounts of background light emission during the 

measurement. Thus, despite the established protocols calling for the use of two 

separate plates for the BRET assay – the clear bottomed black plate for total 

YFP and the opaque white plate for BRET, it appeared that it was preferential to 

avoid the white plate (hence reducing background) and instead to [4] use a single 

clear-bottomed black plate to measure first the YFP signal and then, after 

addition of coelenterazine h (rested in Ca2+-free buffer for 20 mins), the BRET 

signal. This change to the method had the added benefit of taking paired YFP 

and BRET measurements from the exact same sample of cells, as opposed to 

two different distributions of the same cell mixed in two parallel plates, further 

improving precision (Figure 10). 

To avoid loss of signal due to enzymatic substrate catabolism, [5] coelenterazine 

was added to one sample (six replicate wells) and the BRET signal was 

measured before moving to the next sample. This approach greatly reduced the 

time that the substrate sat in the well with the enzyme before the BRET reading. 

Altogether, these 5 changes to the assay resulted in a marked improvement in 

signal stability across a plate (Figure 11) as well as the following improved 

protocol that is now standard in the laboratory: 

Coelenterazine h (Invitrogen, stock resuspended to 2.5 mM in 200-proof ethanol 

for working solution) was diluted to 5μM in Ca2+- and Mg2+-free phosphate 

buffered saline and allowed to rest at room temperature for 20 minutes.  Cells 

transiently transfected 48 hours prior were harvested (phenol red-free Hank’s 
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Figure 10: Decay in BRET and component emission measurements after initial 
modifications to BRET protocol. HEK 293 cells were transfected with rLuc- TPWT 
(donor, 0.25µg) + YFP- TPWT (acceptor, 0.75µg). Two 96-well plates were prepared 
containing identical samples in each well (except for the control rLuc alone cells) and 
assayed following a modified BRET protocol: coelenterazine was diluted to 50 μM in 
PBS without Ca

2+
 and allowed to sit for 20 minutes prior to use. Coelenterazine was 

distributed into each row separately, and emissions collected row by row immediately 
following coelenterazine addition (white opaque bottom). Total YFP emission was 
measured separately in a second plate (black, clear bottom). A representative 
experiment is shown. Although the drop in emission at 485nm and 550nm was less 
that with the original BRET protocol, there was a marked spread in values across each 
row (top); the decay in BRET values was also blunted (90 mBu to about 70 mBu; 
bottom) but similarly inconsistent across a single row. 
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Figure 11: Decay in BRET and component emission measurements after final 
modifications to BRET protocol. HEK 293 cells were transfected with rLuc-TPWT (donor, 
0.25µg) + YFP- TPWT (acceptor, 0.75µg) assayed following the a further modified BRET 
protocol: coelenterazine was diluted to 50 μM in PBS without Ca

2+
 and allowed to sit for 20 

minutes prior to use. Cells were distributed into a black, clear-bottomed 96-well plate. Total 
YFP emission was measured. Coelenterazine was then added to each of the 6 replicate 
wells and emissions collected immediately. This process was repeated for each sample 
until all samples were read. A representative experiment is shown. Some drop in emission 
at 485 and 550 nm was evident, however this was to a much lesser degree that the original 
or mid-optimization and there was good agreement for replicate values from each sample 
(top). Further, BRET values decayed slightly from 125 mBu to about 110 mBu over the first 
500 seconds but remained steady for the rest of the assay (bottom). 
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Balanced Salt Solution containing 0.02% EDTA), washed twice with phosphate-

buffered saline and resuspended in DPBS containing 5.56 mM glucose 

(Invitrogen, 14287), then redistributed into a black, clear-bottomed 96-well plate 

(100,000 cells/well) and maintained at 37°C. Total YFP (Ex485nm, Em555nm) 

was first collected using a luminescence multi-plate reader (VICTOR3, Perkin 

Elmer) and calculated as fold over basal (no YFP-fused receptor present). 

Following this reading, coelenterazine h was added a set of six replicate wells 

and donor (485nm) and acceptor (555nm) emissions gathered sequentially for 

each sample. Colenterazine addition and BRET readings in sets of 6 replicate 

wells were repeated until all data was collected. Milli BRET units (mBU) were 

calculated as the ratio of Em555 over Em485 nm corrected for cells expressing 

the rLuc receptor alone, and multiplied by 1000. 

 

Cell surface expression of the TP 

HEK 293 and Meg-01 cells were transfected with HA-tagged TPWT or HA-

TPL205,L209,Y213. Cells were harvested into ice-cold FACS buffer (DPBS containing 

1% BSA and 0.1% sodium azide). Cell suspensions were stained with anti-HA 

mouse IgG1 (Monoclonal 16B12) conjugated to Alexa Fluor® 488 (Invitrogen, 

CA) for 30 minutes prior to washing. Median fluorescence intensity (MFI) was 

collected using a BD FACSCalibur flow cytometer (Becton Dickinson, Franklin 

Lakes, NJ, maintained by UPenn flow cytometry core). Cells were first gated to 

include only live cells of the proper size in the measurement via forward and side 
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scatter measurements, then gated on the FL1 filter (488nm excitation, 530/30nm 

filter emission) to obtain MFI values, which were corrected by subtraction of 

collected MFI values of non-transfected, antibody-stained HEK 203 of Meg-01 

cells. 

 

Measurement of second messenger generation 

Measurement of intracellular inositol monophosphate (InosP) or cyclic AMP 

(cAMP) was performed using the IP-One Tb kit (Cisbio Bioassays, MA) or 

LANCE cAMP 384 kit (PerkinElmer, MA), respectively, according to the 

manufacturer’s instructions. Both kits are based around the same principle of 

fluorescence resonance energy transfer (FRET) between two fluorophores. In the 

IP-One InosP assay, cells are treated with a mixture of [a] monoclonal anti-InosP 

antibody (Ab) tagged with crypate (a fluorophore) and [b] InosP tagged with the 

dye “d2”, in addition to [c] LiCl, which inhibits inositol-phosphate phosphatase. 

The d2-InosP forms a complex with the crypate-Ab that allows for FRET from the 

crypate to the d2 upon excitation of the former. Unlabeled InosP, produced by 

the cell, competes for binding to the crypate-Ab. The more InosP is produced by 

the cell, the less FRET-capable complex is created, with the ratio of light emitted 

by the crypate to light emitted by the d2 dye as the quantitative readout of cellular 

InosP production after comparison to a standard curve of InosP concentrations. 

This same principle is employed by the LANCE cAMP assay, with europium-

tagged streptavidin replacing the crypate-Ab, and AlexaFluor-tagged cAMP 



40 
 

replacing the d2-tagged InosP. IBMX (3-isobutyl-1-methylxanthine) is employed 

to inhibit cAMP degradation through phosphodiesterase inhibition. Cells were 

stimulated with or without the TP agonist U46619 (Cayman Chemicals, MI) over 

a range of concentrations, as noted in the respective results section, for one 

hour. 

 

Radioligand binding and displacement 

HEK 293 cells, transfected with HA-tagged TPWT or TPL205,L209,Y213 in poly-L 

lysine-coated 12 well plates, were washed with radioligand binding buffer (HBSS 

with 2% BSA). For saturation binding 3H-SQ 29,548 (PerkinElmer, Waltham, MA 

or American Radiolabeled Chemicals, St. Louis, MO) was distributed to cells at 

concentrations ranging from 25 μM to 250 μM. After 60 minutes at 37°C, cells 

were washed with ice-cold binding buffer to remove unbound ligand, lysed with 1 

M NaOH for 30 minutes at 37°C and radioactivity measured by scintillation 

counting. 

For displacement analysis, 3H-SQ 29,548 was held constant at 0.25 nM and 

competing ligands were added 5 minutes prior to the radioligand. Competing 

ligands I-BOP and cold SQ 29,548 were applied as treatments ranging from 5 nm 

to 500 nm, while U46619 and the isoprostane E2III (iPE2III) concentrations ranged 

from 25 nm to 2500 nm, due to lower affinity for the TP. In either experiment, 

non-specific binding was accounted for by the addition of a 100-fold excess of 

cold SQ 29,548. After 60 minutes at 37°C, cells were washed with ice-cold 
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binding buffer to remove unbound ligand, lysed with 1 M NaOH for 30 minutes at 

37°C and radioactivity measured by scintillation counting. 

 

Immunoprecipitation and immunoblotting 

HA-tagged TPWT or TPL205,L209,Y213 were immunoprecipitated from transfected 

HEK 293 cells using Pierce HA Tag immunoprecipitation/Co-immunoprecipitation 

Kit (cat# 23610,Thermo Scientific, Waltham, MA), according the manufacturer’s 

instructions. This kit uses anti-HA antibody conjugated to agarose beads for 

immunoprecipitation of HA-tagged proteins. Eluted proteins were resolved via 

NuPAGE electrophoresis (Invitrogen, CA) under reducing conditions. HA-tagged 

TPWT or TPL205,L209,Y213 were visualized with anti-TP (Cayman Chemicals, MI; 

1:100) while immunoprecipitated Gqα was visualized with anti-Gq/11α (Millipore, 

CA; 1:1000). Antigen-antibody complexes were revealed using horseradish 

peroxidase conjugated anti-rabbit IgG (Jackson ImmunoResearch, PA; 1:10,000) 

and visualized by enhanced chemiluminesence (ECL Plus, GE 

Healthcare/Amersham, NJ). Quantification of proteins was by densitometry. 

 

Treatment of cells with the CHAMP peptide 

A computed helical anti-membrane protein (CHAMP) peptide (128, 142) was 

supplied by the lab of Dr. Joel Bennett (University of Pennsylvania School of 

Medicine) as 1 mM CHAMP in DMSO. As directed by members of the Bennet 

lab, the treatment concentration of 1 μM CHAMP was employed in BRET and 
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second messenger generation assays. To avoid vehicle effects, the total final 

concentration of DMSO in media did not exceed 0.1%. 

 

Quantitative-PCR 

RNA isolated from human aortic smooth muscle cells grown in culture was 

quantified (NanoDrop Spectrophotometer) and reverse transcribed into cDNA 

(MultiScribe Reverse Transcriptase, Applied Biosystems) according to 

manufacturer’s instructions. Quantitative real-time polymerase chain reaction (Q-

PCR) was carried out using inventoried primer/probe gene expression assays 

with TaqMan Universal PCR Master Mix (Applied Biosystems) for the human 

thromboxane receptor gene (TBXA2R, cat# 4331182). Q-PCR products were 

monitored using the ViiaTM 7 Real-Time PCR System (Applied Biosystems) and 

data was analyzed using the 2-ΔΔCt method of relative quantification (RQ) using 

18S for normalization (160). 

 

Receptor modeling 

Working with the Hwa Laboratory (Yale Medical School), the human hTP 

sequence was aligned with solved crystal structures, bovine rhodopsin (OPSD, 

UniProt identifier P02699) and the human ß2-adrenergic receptor (ADRB2, 

UniProt identifier P0755) in ClustalW [http://www.clustal.org]. Both the PAM250 

and BLOSUM evolution matrix modeling algorithms (161) indicated closer 

alignment of hTP to align more closely with OPSD (similarity score 30.16) than 
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with ADRB2 (33.48). Each bundle of seven transmembrane -helices was 

therefore based on a 2.8Å crystallographic bovine rhodopsin template (1HZX) 

(162) using the internet-based protein-modeling server, SWISS-MODEL 

[http://swissmodel.expasy.org] (GlaxoSmithKline, Geneva, Switzerland), and 

energy minimized using the Gromos96 force field in DeepView [http://spdbv.vital-

it.ch]. Extracellular and cytoplasmic loop regions were manually constructed, built 

according to JPred consensus, and energy-minimized using the NAMD molecular 

dynamics simulator (163). 

 

Fluorescence microscopy 

HEK 293 cells were grown to 80-90% confluency in 60 mm dishes, then lifted in 1 

mL 0.25% trypsin, then added to 8 mL HEK growth medium. Cells were 

transfected in 0.4 mL aliquots by 0.25 μg of either myc-TPWT or myc-

TPL205,L209,Y213, with each aliquot being dispensed into one well of an 8-well poly-

D-lysine-coated slide (Becton Dickinson, Franklin Lakes, NJ) and allowed to 

grown for 48 hours. Cells were then fixed with 4% paraformaldehyde for 10 

minutes at room temperature, followed by permeabilization with 0.2% Triton X-

100 in PBS. Staining was performed with 1:800 diulted anti-myc AlexFluor 555 

conjugate (Millipore, Billerica, Massachusetts) for one hour with gentle shaking. 

Cells were then mounted with Vectashield + DAPI (VectorLabs, Burlingame, CA) 

and cover slips were sealed with clear nail polish. Imaging was performed on a 

Zeiss Widefield Microscope at 40x magnification. 
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CHAPTER 3: Characterization of Thromboxane Receptor Regulation. 

 
TPα auto-upregulation is not driven by increases in mRNA levels 

The first possibility explored as a mechanistic explanation for auto-upregulation 

of the TP following agonist activation (70) was increased receptor biogenesis 

resulting from elevated levels of mRNA. If one downstream effect of TP activation 

was to increase TP mRNA levels this could contribute to the increase in TP 

protein and cell surface TP levels observed. To examine whether TP activation 

leads to increases in mRNA levels TP-transfected HEK 293 cells or human 

aortic smooth muscle cells (HuAoSMCs), which endogenously express TP, were 

treated with either 100 nM IBOP, 1 μM SQ 29,548 (a TP antagonist), or a 

combination of both for 2 hours. Cells were harvested and TP mRNA quantified 

by real-time PCR. IP mRNA was also measured as a negative control since IP is 

not stimulated by IBOP. Quantitative comparisons made to mRNA levels at pre-

treatment showed no significant change in mRNA levels for cells with any 

treatment (Figure 12). Thus, upregulation of TP transcription in response to 

short-term agonist treatment did not appear to contribute to auto-upregulation. 

Additional studies were performed to query whether a longer-term agonist 

treatment could lead to changes in mRNA levels that might explain that auto-

upregulation paradigm. In both transiently transfected HEK 293 cells as well as 

natively expressing HuAoSMCs, 6- or 12-hour treatment with 100 nM IBOP lead 

to no significant change in TPα mRNA levels (Figure 13A, B). Nor did we see any 

change in mRNA levels in HuAoSMCs treated with 1 μM IBOP over a time 
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(A) 

(B) 

Figure 12: Levels of TP and IP mRNA after a 2-hour IBOP treatment. TP mRNA 
levels were measured by real time PCR. Human aortic smooth muscle cells were 
treated 100 nM IBOP, 1 μM SQ 29,548 (a TP antagonist), or a combination of the 
two, for 2 hours prior to harvest and quantification of TP, IP, and 18S mRNA. 
mRNA expression for both TP and IP is reported as a ratio of receptor mRNA 
present at the given time to mRNA at time zero, corrected for 18S. No significant 
difference was evident for any treatment in either TP or IP mRNA levels. Data are 
mean ± standard error of n=3. 
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(A) 

(B) 

(C) 

Figure 13: Activation of the TP does not alter TP transcription. 
HEK 293 cells transiently transfected with TPα (A) or HuAoSMCs (B, 
C) were serum starved for 24 hours before IBOP treatment. Total 
RNA was extracted and reverse transcribed into cDNA, and TP 
expression was examined by real-time PCR. Values were normalized 
to either β-actin or 18S levels and are expressed as the fold change 
compared with control (no IBOP). Data are mean ± SEM (n = 3–5). 
ns, nonsignificant compared to control. 
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course of up to 24 hours (Figure 13C). Thus, agonist activation in both and the 

long and short terms did not cause any noticeable changes in mRNA levels that 

could explain the auto up-regulation seen for the TPα. 

 

A modified version of the BRET assay provides greatly increased 

sensitivity 

Preliminary co-immunoprecipitation studies carried out previously in the lab 

suggested that, similar to other GPCRs (100–103, 107, 114, 115), the TP formed 

homodimers within the cell. To address the question of dimerization in live cells 

(as compared to the cell homogenates used in co-immunoprecipitation assays), 

we used the bioluminescence resonance energy transfer (BRET) assay, which 

measures transfer of energy from a donor (rLuc-fused receptor) to acceptor 

(YFP-fused receptor) as their physical interaction (for details see Chapter 2, 

Methods, Pages 26-30 and Figure 6). As outlined in Chapter 2 (Pages 31-39), 

while establishing the BRET assay, we noticed a large decline in the raw values 

for the emission readings from the beginning to end of reading the BRET plates. 

We considered whether this decline in signal was a real reflection of changing 

dimerization events or indicative of potential problems with the design of the 

BRET assay itself. To examine this, one large, homogenous batch of cells were 

transfected with a set amount of TP-rLuc and TP-YFP. These cells were 

harvested, then resuspended in DPBS with glucose and sodium pyruvate, then 

plated in all 96 wells of the plate, as per the original BRET protocol. 
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Coelenterazine h (rLuc substrate) was added to all wells, and the plate was read 

as a whole (approximately 20 min from start to finish). Rather than the expected 

equivalent signals from all wells, the rLuc emission signal (read at 485 nm) 

decreased dramatically from 10,000 to less than 1,000 (arbitrary units), while the 

YFP emission signal decreased from approximately 5,000 to under 500 (arbitrary 

units). Of particular concern, the BRET signal itself decreased from 120 to 50. As 

described above (Chapter 2, Figure 11), the BRET assay was rigorously 

assessed and optimized to avoid these possible confounding issues with the 

original protocol. First, we discovered that coelenterazine decomposes 

significantly during the first 20 minutes after introduction to aqueous solution, 

particularly in solutions containing calcium. Thus the protocol was changed to 

used Ca2+- and Mg2+-free DPBS for coelenterazine dilution and to include a 20 

minutes rest period prior to use. Second, to minimize loss of substrate by rLuc 

metabolism during the significant “down-time” between coelenterazine addition 

and emission collection, samples were stimulated and read immediately as 

separate 6-well groups (a single sample with 6 replicate measurements). With 

these modifications, signal loss was significantly improved to 30,000 to 20,000 

for rLuc and 18,000 to 11,000 for YFP across a representative plate. Additionally, 

BRET signal only decayed from 130 to 110 across the plate and was steady after 

the first 500 seconds. 

 

Dimerization of the TP occurs with TP, IP, and DP1, but not CCR5 
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HEK 293 cells were transiently transfected with rLuc- (donor, 0.25µg) plus YFP- 

(acceptor, 0.125µg – 0.75µg) fused pairings of TP-TP. We confirmed that the 

TP does undergo homodimer formation within living cells with an affinity that 

suggests physiological occurrence of dimerization (Figure 14). Previous work in 

the lab also demonstrated co-immunoprecipitation of TP with the IP, thus we 

also examined this association by BRET. In HEK 293 cells transiently transfected 

with rLuc- (donor, 0.25µg) plus YFP- (acceptor, 0.125µg – 0.75µg) fused pairings 

of TP-IP BRET was saturable and occurred at a similar affinity to TP-TP 

indicating equal propensity for the TP homodimer and TP-IP heterodimer to 

form (Figure 15A). A concern in the field of GPCR dimerization is that over-

expression of any two GPCRs will lead to some level of interaction providing a 

“false positive” for dimerization. Thus, it is important to define a negative control 

(a non-interacting receptor). We examined two GPCRs as non-interacting 

receptor controls, the PGD2 receptor DP1 (121) and chemokine receptor CCR5. 

TP-DP1 or TP-CCR5 dimerization was assessed using the BRET assay. 

Interestingly, TP formed a heterodimer with DP1, but this was at a significantly 

lower affinity compared to TP-TP and TP-IP (Figure 15B). This suggests that, in 

a physiological setting, the TP could dimerize with the DP1, potentially modifying 

the function of either or both partners, but the TP-TP and TP-IP dimers are likely 

to out-compete the TP-DP1 dimer. It is possible that the TP-DP1 heterodimer is 

more relevant in situations where DP1 is present at a higher relative 

concentration compared to the TP and/or IP, or under conditions of agonist 
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rLuc-TPWT + 
YFP-TPWT 

Figure 14: Homodimerization of TPWT by BRET. Saturable BRET was observed for 
rLuc- (donor, 0.25µg) + YFP- (acceptor, 0.125µg – 0.75µg) fused pairings of TPWT-
TPWT in transiently transfected HEK 293 cells. Representative experiment is shown. 
Data are milli BRET units plotted against fold over basal total YFP emission (a 
measure of YFP-fused acceptor receptor expression). The BRET50 value for this 
experiment is indicated by the dotted gray line. 
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rLuc-IP + 
YFP-TPWT 

(A) 

rLuc-TPWT + 
YFP-DP1 

(B) 

rLuc-CCR5 + 
YFP-TPWT 

(C) (D) 

Figure 15: Heterodimerization of TPWT by BRET. Saturable BRET was observed for rLuc- 
(donor, 0.25µg) + YFP- (acceptor, 0.125µg – 0.75µg) fused pairings of (A) TPWT-IP and (B) 
TPWT-DP1 in transiently transfected HEK 293 cells. No saturable BRET was observed for 
(C) rLuc- TPWT (donor, 0.25µg) + YFP- CCR5 (acceptor, 0.125µg – 0.75µg) in transiently 
transfected HEK 293 cells. Representative experiments are shown. Data are milli BRET 
units plotted against fold over basal total YFP emission (a measure of YFP-fused acceptor 
receptor expression). Individual BRET50 values for each representative experiment are 
indicated by the dotted gray lines. (D) BRET50 values were calculated from 4-6 individual 
BRET saturation experiments. Data are mean BRET50 values ± SEM from n=4-6. 
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activation or other cell or context-specific settings. These are intriguing questions 

that remain to be experimentally examined. Importantly, there was no evidence 

for dimerization of the TP with CCR5, arguing against a non-specific interaction 

between any two GCPRs expressed in the same cell (Figure 15C). 

 

Dimerization does not contribute to auto-upregulation of the TP following 

agonist activation. 

Studies report that dimerization is essential for normal biogenesis of GCPRs 

(109, 114, 115, 164). Thus, having shown that TP homodimerization does occur, 

we considered whether agonist-induced modulation of TP homodimerization 

might contribute to augmented receptor stability and membrane expression, 

providing a post-translational mechanistic explanation for auto-upregulation of 

the agonist-stimulated TP. To examine this possibility, cells were treated with 

IBOP, a TxA2 mimetic, prior to analysis of TP homodimerization by BRET. 

However, there was no significant change in maximal BRET or BRET50 (Figure 

16A). We and others reported that auto-upregulation of TP is dependent on a 

reactive-oxygen species mechanism and replicated by treatment of cells with 

H2O2 (70, 165). Thus we examined whether H2O2 treatment modified TP 

homodimerization. Similar to IBOP treatment, however, there was no significant 

effect of H2O2 on TP homodimerization by BRET assay (Figure 16B). 

These experiments that were designed to address how agonist activation of a 

receptor modifies its dimerization raised interesting questions that have been 
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(A) 

(B) 

Figure 16: Impact of agonist treatment on TPα homodimerization. 
Saturable BRET was observed for rLuc- TPWT (donor, 0.25µg) + YFP- 
TPWT (acceptor, 0.125µg – 0.75µg), with or without (A) 100 nM IBOP 
(6hr) or (B) 1uM H2O2. No significant change was seen in either BRETmax 
or BRET50. Data are mean ± standard error of n=3. 
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considered by other GPCR labs but not formally addressed: does ligand 

treatment modify BRET independent of true changes in absolute dimer levels? 

Since resonance energy transfer is dependent on the close proximity of the 

donor and acceptor molecules, and the magnitude of this distance determines 

the efficacy of the energy transfer, then it stands to reason that shifts in the 

conformation of the partners in a dimeric arrangement could induce a change in 

the distance or orientation between the pair of signaling molecules. Such a 

conformational change is commonly accepted as necessary for propagation of 

agonist-induced signaling to downstream effector molecules. Thus, the treatment 

of a dimer with an agonist (or any other ligand that causes conformational 

changes) to either or both of the protomers could impact the BRET signal but not 

reflect a change in dimerization per se, leading to a false positive for ligand-

dependent dimerization. To study the possibility of this occurring in the TP 

dimerization assay, HEK 293 cells were transfected with rLuc- (donor, 0.50µg) + 

YFP- (acceptor, 1.00µg ) fused pairings of TPWT-TPWT, then treated with either 

agonist (100 nM IBOP), 1uM SQ 29,548 (antagonist), or both for 10 minutes prior 

to BRET analysis. Maximal BRET after treatment with combined SQ 29,548 and 

IBOP was significantly lower than that of untreated cells (*p<0.05) (Figure 17). 

While the change seen in this assay was small, it suggests that ligand and 

conformational changes binding can impact assay readout making the BRET 

assay less suitable to study agonist-induced modulation of TP dimerization. 

Thus, although our studies did not support the hypothesis that TP dimerization 
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Figure 17: Effect of ligand treatment on maximal BRET values in TPWT 
homodimerization. HEK 293 cells were transfected with rLuc- TPWT (donor, 0.50µg) + 
YFP- TPWT (acceptor, 1.00µg) then treated with either 100 nM IBOP, 1uM SQ 29,548, or 
both for 10 minutes prior to BRET analysis. Maximal BRET after treatment with 
combined SQ 29,548 and IBOP was significantly lower compared to untreated cells 
(*p<0.05). Data are mean ± standard error of n=3. 
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contributes to its auto-upregulation, this possibility still exists and could be 

examined through use of an assay that lacks these potential limitations of the 

BRET assay. 
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CHAPTER 4: Targeting the Specific GGL Motif of the TP as a Means of 

Receptor Regulation 

 

Identification and mutation of a GxxxGxxxL motif in the 5th transmembrane 

of the TP 

Analysis of the TP amino acid sequence revealed a GxxxGxxxL motif in TM5: 

G205LSVG209LSFL213 (see Figure 1). Additional GxxxG motifs were identified 

toward the N-terminus (G5SSLG9), within the 1st intracellular loop (G51ARQG55) 

and 2nd extracellular loop (G188AESG192). Given that a TM GxxxGxxxL motif has 

been implicated in the functioning of at least two GPCRs (104, 115), and that 

transmembrane domains have been noted for their involvement in dimerization 

(126, 127), we chose to focus further on the G205LSVG209LSFL213 domain. Three-

dimensional homology modeling of the TP revealed an outward-facing orientation 

of G205, G209 and L213 (see Figure 3) in TM5 indicating that this domain is 

appropriately positioned for protein-protein interaction within the membrane. To 

define the functional relevance of the TM5 GxxxGxxxL motif in the TP we 

employed site-directed mutagenesis to replace G205 and G209 with leucines and 

L213 with a tyrosine to generate TPL205,L209,Y213. As outlined previously (Chapter 2, 

Constructs, Pages 21-22), we replaced G205 and G209 with leucines, a small-to-

large replacement that disrupts helix-helix interaction (139, 141, 142), and 

replaced L213 with a tyrosine based on the studies of the GxxxGxxxL motif in the 

ß2-adrenergic receptor (115). Mutagenesis was carried out via polymerase chain 
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reaction and using primers designed with a modified sequence for the residues of 

interest (Table 1). The mutations were added sequentially, with verification of the 

target sequence prior to introduction of the next mutation. 

 

Disruption of the TM5 GGL motif suppressed TP function 

Having successfully introduced mutations into the G205xxxG209xxxL213 motif, we 

examined the impact on TP function. We first measured the ability of the wild 

type TPWT and TPL205, L209, Y213 to transduce a signal via the canonical 

phospholipase C/inositol phosphate pathway in response to the thromboxane 

mimetic U46619. In transiently transfected HEK 293 cells, the maximal signaling 

capacity of TPL205, L209, Y213 was significantly reduced by ≈25% compared to TPWT 

transfected cells, although there was no significant change in EC50 (Figure 18A). 

We also examined signaling of the mutant receptor in the Meg-01 cell line. Meg-

01 cells are megakaryoblasts derived from a chronic myelogenous leukemia line 

(166). When grown in culture, adherent Meg-01s can be nucleofected leading to 

the release of daughter cells into suspension that express the construct of 

interest. These daughter cells are platelet-like cells, thereby serving as a closer 

approximation to the TP’s native environment. Depressed signaling via the 

TPL205, L209, Y213 was also evident in Meg-01 cells (Figure 18B), with a ≈50% 

reduction in inositol phosphate generation and a significant rightward EC50 shift.  

Thus, disruption of the TM5 GxxxGxxxL motif markedly suppressed TP response 

to agonist. 
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Figure 18: Inositol Phosphate Signaling through WT and mutant TP. 
(A) Maximal inositol phosphate (InosP) generation was reduced by 25 ± 5% 
(p<0.0001) in TPL205,L209,Y213 (open circles) compared to TPWT (closed 
circles) transfected HEK 293 cells. There was no significant change in 
EC50. (B) Maximal InosP generation was reduced by 50 ± 7% (p<0.01) with 
a significant rightward shift in EC50 (p<0.05), in TPL205,L209,Y213 (open circles) 
compared to TPWT (closed circles) transfected Meg-01 cells. Data are % of 
maximum response (in TPWT) and are mean ± sem; n=4-6. 

(A) 

(B) 
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We next sought to define how mutation of the G205xxxG209xxxL213 motif reduced 

TP signaling. We considered the various stages along the biogenic and signaling 

pathways that could be impacted by the introduction of such a mutation. For 

example, disruption of this motif could lead to protein misfolding in the ER, 

possibly causing ER retention through failure at a dimerization-dependent 

checkpoint (115). Alternatively, the mutant receptor may be processed and 

expressed normally but disruption of helical interactions via the TM5 GxxxGxxxL 

motif could lead to loss of ligand binding, because of possible changes to the 

ligand-binding pocket or G protein interaction, thereby disrupting signal 

transduction in response to agonist. Finally, even if the receptor maintained 

normal ligand binding and normal communication with downstream effectors, 

disruption of the TM5 GxxxGxxxL helical interaction motif may interfere with 

normal dimerization with a consequent failure of proper interaction between the 

protomers and suppressed signaling. These possibilities were examined in turn. 

 

Disruption of the TM5 GGL motif did not reduce TP cell surface expression 

First, we examined whether the loss of TPL205, L209, Y213 signaling reflected simply 

reduced cell surface expression of the mutant receptor. By confocal microscopy 

of HEK 293 cells transiently transfected with HA-tagged TPWT or TPL205,L209,Y213, 

we observed qualitatively similar subcellular distribution of the mutant compared 

to WT (Figure 19), suggesting that loss of the TM5 GxxxGxxxL motif does not 

cause a change in retention of the receptor in the ER, or altered distribution in 
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Figure 19: Cellular localization of TPWT or TPL205, L209, Y213 mutant. 
HEK 293 cells were transiently transfected with either TPWT or TPL205, 

L209, Y213, tagged at the amino terminus with a c-myc epitope tag. 
Receptor localization was examined by immunofluorescence 
microscopy in cells stained with fluorophore-tagged antibody against 
the relevant epitope tag [AlexaFluor 555-anti-myc] and nuclei stain 
[4,6-diamidino-2-phenylindole (DAPI), blue stain], 40x magnification.  
Images are from a representative experiment that was repeated with 
similar results. 
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other areas of the cell. As is typical for transiently transfected GPCRs expressed 

under a constitutively active promoter, plasma membrane receptor expression 

was not clearly distinguished by immune fluorescence microscopy. To 

quantitatively establish disruption of the TM5 GxxxGxxxL motif altered membrane 

localization of receptor we examined cell surface expression of the TPWT or 

TPL205, L209, Y213, both tagged at their N terminus with the HA epitope tag, by flow 

cytometry. In both transfected HEK 293 or Meg-01 cells there was no significant 

difference in cell surface receptor levels, as measured by median surface HA 

fluorescence intensity, between TPWT and TPL205, L209, Y213 transfectants in either 

cell type (Figure 20). Thus, disruption of the TM5 GxxxGxxxL motif did not 

appear to substantially modify receptor processing to the surface, indicating that 

the signaling deficit we observed could not be explained by quantitative changes 

in the receptor population on the plasma membrane leading to reduced exposure 

to ligand. 

 

Ligand affinity and is not modified by mutation of the TM5 GxxxGxxxL 

motif 

Second, we addressed the possibility that loss of the TM5 GxxxGxxxL motif 

might cause a conformational shift changing the TP ligand-binding domain 

thereby reducing agonist affinity for TPL205, L209, Y213
 and suppressing signal. Intact 

HEK293 cells expressing either TPWT or TPL205, L209, Y213 were labeled with a 

single concentration of 3H-SQ 29,548 and displacement examined for two TP 
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(A) 

Figure 20: Surface Expression of Wild Type and Mutant TP. (A) HEK 293 cells or (B) Meg-01 
cells were transfected with N-terminal hemagglutinin (HA)-tagged TPWT or TPL205,L209,Y213 and 
surface HA quantified by flow cytometry as a measure of surface receptor expression.  Left panels 
show representative histograms, taken at one sitting using identical settings; right panels show the 
median fluorescent intensities (mean ± SEM, n=7). There was no significant difference in surface 
expression of TPWT vs TPL205,L209,Y213 in either cell model. 
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agonists, U46619 (Ki=90nM for TPWT vs. 52nM for TPL205, L209, Y213) and IBOP 

(Ki=1.8nM  for TPWT vs. 2.5nM for TPL205, L209, Y213), or by unlabelled SQ 29,548 

(Ki=4nM for both TPWT and TPL205, L209, Y213) as a reference. No significant 

difference in displacement was evident between the wild type and mutant 

receptors. We also examined an isoprostane, iPE2III (Ki=334nM for TPWT vs. 

403nM for TPL205, L209, Y213), a free radical-generated metabolite of arachidonic 

acid that can activate the TP in vivo (24), and again saw no difference in 

radioligand displacement (Figure 21). Further, in 3H-SQ 29,548 in saturation 

binding analysis (Figure 22), although saturation was not reached because of 

issues with 3H-SQ 29, 548 solubility, there was no apparent different between the 

TPWT and TPL205, L209, Y213. Thus, disruption of the TM5 GxxxGxxxL motif did not 

appear to alter the receptor’s ligand binding properties and reduced affinity of 

agonist could not explain suppressed signaling. 

 

Association of TP with Gq is not modified by mutation of the TM5 

GxxxGxxxL motif 

Third, we considered whether disruption of the TM5 GxxxGxxxL motif interferes 

with the association of the TP to its effector, Gq, leading to suppressed signaling. 

Previous studies of GPCRs, particularly with Gs coupled receptors, have noted 

that association of the G protein with the receptor in the inactive, non-ligand-

bound conformation provides a high affinity state for agonist (167, 168). Such in-

depth studies have not been reported for Gq- coupled receptors, like the TP, 
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(C) (D) 

Figure 21: Displacement of 
3
H-SQ 29,548 by Various Ligands. Displacement of 

3
H-SQ 29,458 

(TP antagonist) by SQ 29,548, the TP agonists U46619 or I-BOP or the isoprostane iPE2III in HEK 
293 cells transiently transfected with TPWT (closed circles) or TPL205,L209,Y213 (open circles). Data 
are expressed as % of total binding (no displacer) and are mean ± SEM (n=3-8). No significant 
change in Ki values for displacement between TPWT and TPL205,L209,Y213 was seen for any TP 
ligands used. 



66 
 

  

 

Figure 22: Binding of 
3
H-SQ 29,548 to whole cells. Binding of 

3
H-SQ 29,458 (TP 

antagonist) to whole HEK 293 cells transiently transfected with TPWT (black 
squares) or TPL205,L209,Y213 (grey circles). Data are expressed as fmol of bound 
antagonist and are mean ± SEM (n=5). No change seen in SQ 29,548 binding 
between TPWT and TPL205,L209,Y213 was seen up to maximum possible concentration 
(based upon solubility constraints). 
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however it is likely that a similar paradigm for the high affinity receptor state 

applies. In the radioligand displacement analyses discussed above, we included 

two TP agonists: U46619 and IBOP. The lack of difference in the Ki’s for both 

agonists argues against a reduction in the affinity state of TPL205,L209,Y213 for 

agonist, and thus against modified Gq as an explanation for suppressed signaling 

of the mutant. 

To confirm normal Gq association of the TPL205, L209, Y213, we performed co-

immunoprecipitations in HEK 293 cells transiently transfected with either HA-

tagged TPWT or HA-tagged TPL205,L209,Y213. Cells were lysed and passed over 

anti-HA tagged agarose beads, then probed with either anti-Gq antibody, or anti-

TP antibody to determine the relative levels of TP within the samples. We 

observed that comparable levels of Gq co-immunoprecipitated with either TPWT or 

TPL205,L209,Y213 (Figure 23). Taken together with the radioligand displacement 

assay, these analyses indicate that mutation of the TM5 GxxxGxxxL motif in TP 

allows normal formation of the high affinity receptor-Gq complex at the cell 

surface. 

 

Disruption of the TM5 GxxxGxxxL motif modifies TP homodimerization 

As outlined in Chapter 1, and in previous reports from the laboratory, the TP 

physically associates to form homodimers (70, 122, 123). The molecular 

determinants of TP homodimerization have not been defined, nor has the precise 

role contribution homodimerization to TP expression and function. However 
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Figure 23: Co-immunoprecipitation of Gq with HA-TPWT or HA-
TPL205,L209,Y213. Lysates from HEK 293 cells transfected with empty 
pcDNA3 (lane 1), HA-TPWT (lane 2) or HA-TPL205,L209,Y213 (lane 3) were 
subjected to immunoprecipitation with anti-HA. In lane 4 lysate is from E 
Coli expressing an unrelated HA-tagged control (HA-GST-PI3 kinase-
SH2 domain; supplied by the manufacturer). The upper blot was stained 
with anti-TP antibody. Molecular species corresponding to 
unglycosylated TP and differentially glycosylated TP are indicated. The 
lower blot was probed with an anti-Gq antibody. A representative 
experiment, which was repeated with similar results, is shown. 
Densitometric quantification of Gq relative to HA-TP showed no 
difference between TPWT and TPL205,L209,Y213 transfected cells. Data are 
representative of n=3. 
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across GPCR studies, one or more TMs have been frequently implicated in dimer 

formation and function (107, 128, 137). Given the outward facing orientation of 

TP-TM5 GxxxGxxxL motif, thus positioned for intermolecular protein interaction, 

we examined whether homodimerization was modified in the TPL205, L209, Y213 

mutant. BRET studies were performed, using the optimized protocol outlined in 

Chapter 2, with TPWT and TPL205, L209, Y213 were fused at their C termini to either 

rLUC (energy donor) or YFP (energy acceptor) and energy transfer quantified as 

a measure of dimerization. As outlined in Chapter 2 (see Figure 6) in BRET 

saturation experiments, the donor-tagged receptor is held steady and the 

acceptor-tagged receptor (whose expression is quantified independently as fold 

over basal total YFP emission) is gradually increased.  A saturable BRET curve 

indicates a specific interaction of the two protomers to form a dimer while the 

concentration of acceptor at which the BRET signal reaches 50%, the BRET50, 

reflects the affinity of individual promoters for each other (169). 

TPL205, L209, Y213 retained the capacity to dimerize, however the BRET50 for TPL205, 

L209, Y213 homodimerization was significantly right shifted (BRET50 = 1.83 ± 0.1, 

n=5) compared to the TPWT-TPWT (BRET50 = 1.4 ± 0.08, n=4), indicating reduced 

efficiency in formation of the homodimer when the TM5 GxxxGxxxL motif was 

disrupted (Figure 24A,B, Figure 25). To confirm impaired homodimerization of 

the mutant receptor, BRET was measured in HEK 293 cells expressing a fixed 

ratio of rLuc-TPWT + YFP-TPWT (1:7) and competition by unfused TPWT or TPL205, 

L209, Y213 examined. As expected, TPWT efficiently competed for the interaction of 
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rLuc-TPWT + 
YFP-TPWT 

rLuc-IP + 
YFP-TPWT 

rLuc-TPL205,L209,Y213 + 
YFP-TPL205,L209,Y213 

rLuc-IP + 

YFP- TPL205,L209,Y213 

(B) (A) 

(C) (D) 

Figure 24: Homo- and hetero- dimerization of TPWT and TPL205,L209,Y213 by BRET. Saturable BRET 
was observed for rLuc- (donor, 0.25µg) + YFP- (acceptor, 0.125µg – 0.75µg) fused pairings of (A) 
TPWT-TPWT, (B) TPL205,L209,Y213-TPL205,L209,Y213 (C) IPWT - TPWT or (D) IPWT - TPL205,L209,Y213 in transiently 
transfected HEK 293 cells. Experiments are representative of n=4-6. Data are milli BRET units plotted 
against fold over basal total YFP emission (a measure of YFP-fused acceptor receptor expression). 
Individual BRET50 values for are indicated by the dotted gray lines. 
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Figure 25: Quantification of homo- and hetero- dimerization of 
TPWT and TPL205,L209,Y213 by BRET. BRET50 values were calculated from 
4-6 individual BRET saturation experiments (as shown in Figure 24). 
Data are mean BRET50 values ± SEM from n=4-6. **p<0.005 relative to 
all other data sets. 
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rLuc-TPWT and YFP-TPWT reducing the BRET signal in a concentration 

dependent manner. TPL51, L54, in which the TP-ICL1 GxxxG motif, G51ARQG55, 

was mutated, was as efficient as the TPWT in competition for rLuc-TPWT-YFP-

TPWT interaction while, in contrast, TPL205, L209, Y213 did not alter the BRET signal 

confirming its relative deficiency for dimer formation (Figure 26). Together these 

data indicate the importance of TP-TM5 GxxxGxxxL for efficient TP 

homodimerization and suggest that normal homodimerization may be critical for 

efficient signal transduction. 

 

TM5 GGL domain disruption does not modify TP-IP heterodimerization or 

function 

The studies thus far indicate that the GxxxGxxxL motif in TM5 of the TP is 

important for efficient homodimerization and that its disruption suppresses 

receptor signaling. As previously described (Chapter 1, Figure 15A), the TP can 

interact with the IP, a Gs-cAMP coupled receptor, to form a heterodimer (121).  

When heterodimerized with the IP, the TP’s microdomain localization, signal 

transduction and regulation is markedly altered with reduced “normal” 

transduction of Gq-inositol phosphate signal in response to TP agonists and a 

concomitant switch to signal via the Gs-cAMP pathway in an IP-like manner 

(122). This signaling shift likely contributes to the restraint placed on the TP via 

the IP and to the increased risk of cardiovascular disease in individuals 

heterozygous for signaling deficient IP mutants (125). 
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Figure 26: Competition of TPL205,L209,Y213, TPL50,L54, and TPWT for 
binding with TPWT by BRET. Competition for BRET in rLUC-TPWT + 
YFP-TPWT (constant 1:7 ratio) transfected HEK 293 cells by co-
transfection with HA-TPWT, HA-TPL205,L209,Y213 or HA- TPL51,L54. Data 
are normalized to BRET in rLUC-TPWT + YFP-TPWT transfected cells 
without co-transfection of a competing receptor (set to 1) and are 
mean ± sem of n=3-4. ***p<0.0001; ns = non significant.  
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We next asked whether disruption of the TP TM5 GxxxGxxxL motif modifies 

TP-IP heterodimerization and what, if any, functional changes are seen within 

the paradigm of TP-IP-Gs signaling in response to TP activation. Interestingly, 

and in stark contrast to the homodimer studies, disruption the TM5 GxxxGxxxL 

motif did not modify heterodimerization of the TP with the IP – the BRET 

saturation curves and BRET50 for TPL205, L209, Y213-IP (1.24 ± 0.06, n=6) was 

indistinguishable from the TPWT-IP (BRET50 = 1.26 ± 0.06, n=6) (Figure 24C,D, 

Figure 25). Concordantly, U46619-induced cAMP generation, the signature 

“switch” in TP signaling from the Gq pathway to the Gs pathways, was not 

different between TP-IP and TPL206 L209,Y213-IP in transfected HEK 293 cells or 

MEG-01 cells (Figure 27). Thus, while the TM5 GxxxGxxxL motif appeared 

critical for efficient TP homodimerization and Gq-signaling, this motif did not 

contribute to TP-IP heterodimerization or function. These data support the 

concept that distinct molecular interactions drive the physical association of the 

TP-TP and TP-IP dimers and their downstream signaling. 

 

A TM GxxxGxxxL motif is found in numerous class A GPCRs 

Given that a TM GxxxGxxxL motif was functionally relevant in at least two other 

GPCRs, the ß2-adrenoreceptor and the -factor yeast receptor (104, 115), we 

searched the SwissProt database (http://prosite.expasy.org/scanprosite/) for 

human GxxxGxxxL-containing GPCRs. Sixty-nine receptors were identified of 

which, after removal of olfactory (24 hits), taste (2 hits) and orphan (9 hits) 

http://prosite.expasy.org/scanprosite/
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Figure 27: Cyclic AMP Signaling through TPWT or TPL205,L209,Y213 
heterodimerized with the IP. The TP agonist (U46619) simulated a robust 
cAMP response in (A) HEK 293 cells or (B) Meg-01 cells co-transfected with 
IP + TPWT (closed circles) or IP + TPL205,L209,Y213 (open circles), compared to 
cells transfected with IP alone (open triangles). No difference in cAMP 
signaling was observed between IP+TPWT versus IP + TPL205,L209,Y213 
transfected cells in either model. Data are % of maximum cAMP response 
(in IP + TPWT transfectants) and are mean ± SEM of n=3-4. 
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receptors, 22 GPCRs were identified that contain one or more TM GxxxGxxxL 

motifs (Table 2). Interestingly, all but one of these 22 was Class A GPCRs 

suggesting a particular prevalence of this motif among rhodopsin-like GPCRs. 

The significance of this finding for potential novel therapeutic development is 

discussed in the following section. 

 

A peptide targeted against a TM GxxxGxxxL motif modifies TP signaling 

As previous mentioned, the GxxxGxxxL motif is significant to the function of other 

membrane proteins. One set of elegant studies explored targeting this TM motif 

in the αIIbβ3 integrin complex using a Computed Helical Anti-Membrane Protein 

(CHAMP peptide; Figure 28) intended to mimic the interaction of the individual 

integrin protomers. Interestingly, this peptide, termed β-CHAMP by its creators, 

modifies integrin function in transfected cells, micelles, and in platelets (128, 

142). We obtained a quantity of this CHAMP and examined the impact on TP 

signaling. Treatment of HEK 293 cells transiently transfected with TP with 1 mM 

CHAMP peptide 30 minutes prior to U46619 stimulation led to a significant 

reduction in maximal signaling capacity (11.8 ± 3 % (p<0.001)) compared to 

control TP-transfected cells (Figure 29). The small magnitude of the CHAMP 

effect likely reflects that this peptide was computationally designed to interact 

with a helical domain of the αII integrin, accounting for surrounding amino acids 

in the domain, and thus was not optimized to interact with the TP TM5 

GxxxGxxxL domain. Despite this caveat, it was possible to pharmacologically 
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Table 2: Prevalence of the GxxxGxxxL motif in GPCR transmembrane domains. Prosite 
scan of the UniProt/SwissProt protein database (release 2013_01) for the motif G-x(3)-G-x(3)-
L. Filters were set for species = homo sapiens, description = receptor and size >300 and 
<550. 

Receptor 
GPCR 
family 

GxxxGxxxL 
Sequence Residues TM 

5-hydroxytryptamine receptor 1A A GIIMGTFIL 348 - 356 6 

5-hydroxytryptamine receptor 1E A GLILGAFIL 294 - 302 6 

5-hydroxytryptamine receptor 5A A GILIGVFVL 288 - 296 6 

12-(S)-hydroxy-5,8,10,14-
eicosatetraenoic acid receptor 

A GLECGLGLL 22 - 30 1 

1A adrenergic receptor A 
GVILGGLIL 30 - 38 1 

GIVVGCFVL 275 - 283 6 

1B adrenergic receptor  A 
GLVLGAFIL 49 - 57 1 

GIVVGMFIL 297 - 305 6 

ß1 adrenergic receptor A GIIMGVFTL 327 - 335 6 

ß2 adrenergic receptor A GIIMGTFTL 276 - 284 6 

ß3 adrenergic receptor A GLIMGTFTL 295 - 303 6 

Cannabinoid receptor 2 A GSLAGADFL 74 - 82 2 

Galanin receptor type 2 A GLIWGLSLL 147 - 155 4 

Glucagon receptor B GIGWGAPML 269 - 277 4 

Muscarinic acetylcholine receptor M1 A GITTGLLSL 29 - 37 1 

Muscarinic acetylcholine receptor M5 A GIMIGLAWL 148 - 156 4 

Neuromedin-U receptor 1 A GAVWGLAML 183 - 191 4 

Neuromedin-U receptor 2 A GIVWGFSVL 168 - 176 4 

Neuropeptide Y receptor type 2 A GLAWGISAL 170 - 178 4 

Opsin-5 A GFFFGCGSL 113 - 121 3 

Oxoeicosanoid receptor 1 A GLWVGILLL 215 - 223 4 

P2Y purinoceptor 4 A GLLFGVPCL 206 - 214 5 

Proteinase-activated receptor 4 A GHMYGSVLL 158 - 166 3 

Thromboxane A2 receptor A GLSVGLSFL 205 - 213 5 
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Figure 28: The β-CHAMP peptide. Sequence of the anti-αIIb CHAMP peptide, 
and computational model of anti-αIIb bound to the αIIb TM domain. The model 
predicts that anti-αIIb (red stick: backbone, white: space filling) recognizes the 
“hot spot” on the αIIb-TM binding surface (light blue) with spatial 
complementarity at the helix-crossing site of the peptide and integrin. Adapted 
from: Caputo, G. A., R. I. Litvinov, W. Li, J. S. Bennett, W. F. Degrado, and H. 
Yin. 2008. Computationally designed peptide inhibitors of protein-protein 
interactions in membranes. Biochemistry (Mosc.). 47: 8600–6. 
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Figure 29: Inositol Phosphate Signaling through TP in presence of 
the β-CHAMP. Maximal inositol phosphate (InosP) generation was 
reduced by 11.8 ± 3 % (p<0.001) in TPWT transfected HEK 293 cells 
treated with the CHAMP peptide (open circles) compared to untreated 
TPWT transfected cells (closed circles) . There was no significant 
change in EC50. Data are % of maximum response (in TPWT) and are 
mean ± SEM; n=6. 
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replicate the signaling deficiency associated with mutation of the TP TM5 

GxxxGxxxL, an encouraging result that opens the possibility that a TP TM5 

GxxxGxxxL-designed peptide might provide a new approach to antagonize the 

TP. 

 

Introduction of a peptide derived from the TP TM1 modifies receptor 

signaling 

GPCR dimerization studies report the importance of TM1 for receptor 

dimerization. For the TP, TM1 was reported as relevant for heterodimerization of 

the TP and TPß isoforms (170) although neither homodimer was examined. We 

developed an approach to examine how interference with TP TM1 can alter 

receptor function. An expression construct was designed to express the first 

transmembrane domain of the TP (TM1), comprising residues R23 through T59 

and adding necessary elements to provide for constitutive, stable expression 

within the cell by virtue of insertion into the pNTAP vector (see Chapter 2, 

Constructs, Pages 21-24; Figure 4).  HEK 293 cells were transiently transfected 

with TPWT either alone or with the TM1 peptide and U46619-induced inositol 

phosphate signaling examined. Surprisingly, in preliminary studies, there was a 

significant increase in maximal signaling capacity (62.6%, n=2) when TP-TM1 

was co-expressed compared to control (Figure 30), with no change in basal 

signaling. These early results provide evidence that introduction of a domain-

targeted peptide can reduce TP signaling capacity, as with the CHAMP peptide, 
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Figure 30: Inositol phosphate signaling through TP in presence of 
TM1 peptide. Maximal inositol phosphate (InosP) generation was 
increased in TPWT cotransfected with the TP TM1 peptide (open circles) 
compared to TPWT (closed circles) in transfected HEK 293 cells. 
Preliminary studies (n=2) are shown. 
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but also can positively impact signaling, underscoring the complexity of TP 

receptor function and the precise functional contribution of distinct receptor 

domains. Refined understanding of these processes may lead to development of 

targeted peptides or small molecular that modify receptor function in a precise 

and highly specific manner to give a desired effect. 
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CHAPTER 5: DISCUSSION 

 
A role for homodimerization in TP regulation 

Having established that there is no significant change in TP mRNA expression 

levels in response to short term receptor activation (Figure 12, Figure 13), we 

concluded that increased auto-upregulation of receptor surface expression was 

likely under post-translational control. We turned to the possibility of receptor 

homodimerization as a means of controlling receptor trafficking and expression. 

Reports vary as to the contribution of homodimerization to GPCR function, 

however there is substantial evidence that homodimerization is necessary for 

normal receptor surface expression (104, 109, 114, 118, 171, 172) and that a 

dimeric pair coupled to a single G protein forms the basic signaling unit (100, 

108, 173). Dimerization-deficient GPCRs fail to traffic normally to the cell surface, 

while ER retained GPCRs can force ER retention of their WT counterparts in a 

dominant negative manner (115). 

Given the published evidence for a regulatory role of homodimerization, together 

with previous work in the lab showing that the TP appears on western blots of 

cell lysates at double the expected molecular weight, and that TP and TPß co-

immunoprecipitate in transfected cells (122), we directly assessed whether the 

TP formed homodimers. There are significant caveats associated with the 

analysis of GCPR dimerization in broken cell preparations by 

immunoprecipitation and western blotting. For example, the use of detergents to 

disrupt cells can cause dimers to dissociate; however, a gentle disruption 
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process can allow aggregates to remain giving the appearance of dimeric 

species on western blot. A review of the many and varied methods used to detect 

receptor dimerization included such as western blotting, co-immunoprecipitation, 

cross-linking, FRET (a close relative of BRET but using a fluorescent donor 

instead of rLuc), yeast two-hybrid analysis, functional complementation, and 

crystallography (164). This comprehensive review also discussed the dangers of 

using highly disruptive methods of analysis, and those that did not employ the 

use of whole, live cells, and noted substantial caveats and limitations associated 

with many of the methods listed above. 

We chose, therefore, to establish a method to examine TP dimerization in living 

cells by bioluminescence resonance energy transfer (BRET), a minimally 

invasive method that would generate minimal false positives and negatives 

derived from artifact. As outlined in Chapter 2 (Figure 8, Figure 10, Figure 11), 

we rigorously assessed the standard BRET assay for issues of signal stability 

and quantitative accuracy, ultimately developing a tightly controlled, sensitive 

BRET experimental platform to assess receptor dimerization in living cells. In 

advancing the BRET assay we determined that substrate stability, both in 

solution before addition to the cells and during the lag time while reading an 

entire 96 well plate, is a critical parameter that should be carefully assessed and 

controlled. In our hands, resting the substrate for 20 minutes and applying fresh 

substrate to a small number of wells immediately before collecting light emission 

markedly improved the internal consistency of the assay and reduced noise 
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sufficiently to allow precise analysis of dimer formation that may have been lost 

in the previous iteration of the BRET assay. While this approach still relies on 

transfection of receptors (fused to a donor or acceptor moiety) in standard cell 

lines, continuing improvement in antibodies to native receptors and development 

of labeled ligands is opening avenues to similarly precise assessment of native 

dimers. 

Establishing that BRET occurs in donor/acceptor co-transfected cells is in itself 

insufficient evidence that physiologically relevant dimers are likely to form. BRET 

can occur non-specifically when donor and acceptor are co-expressed (so-called 

bystander BRET), or at such disproportionate levels of one promoter to the other 

that the physiological interaction is questionable. 

Construction of a BRET saturation curve establishes specificity (saturation) and 

affinity (the BRET50). In our work, BRET studies confirmed the formation of 

specific and saturable interaction of TP with itself (Figure 14) with a high affinity 

indicating that the dimer may from in a physiological setting. It is worth noting that 

although we refer to this interaction as homodimerization, the BRET assay we 

used does not distinguish between dimers and high order oligomers and it 

remains an open question whether the number of receptors that associate is two 

or more and what relevance this may have for receptor regulation and function. 

We reasoned that, if homodimerization contributed to auto-upregulation of the TP 

in response to agonist activation, then dimerization would be modified 

(presumably increased) by agonist. However, analysis of agonist effects on TP 
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homodimerization may have been confounded by a limitation of the BRET assay. 

To propagate signal, agonist binding relies upon changes in receptor 

conformation and such changes can shift the orientation of the donor and 

acceptor molecules within the dimer. Thus, a change in distance or orientation of 

the donor and acceptor can change the nature and magnitude of the resonance 

energy transfer reaction, confounding the output of the assay in an unpredictable 

manner. Indeed, although we did not observe changes in TP BRET in response 

to agonist treatment, significant changes were evident upon addition of 

antagonist treatment (Figure 17), suggesting that this BRET assay is not a 

reliable method to define agonist-dependent changes in dimerization. Being that 

homodimerization is linked to successful signaling, and that signaling is 

necessary for the auto-upregulation to occur, any successful assay would have 

to account for this tight intertwining of processes as well. Additionally, the 

increasing power of molecular modeling could be employed to gain some 

understanding of the ways in which ligand binding can alter the conformation of a 

target receptor, as has already been shown for the β(1)- and β(2)-adrenergic 

receptors (174). This, combined with knowledge of dimerization interfaces 

determined using molecular methods such as those we employed, could shed 

light on how ligand binding might influence receptor dimerization. 

Thus, while it remains possible that TP homodimerization contributes to its 

auto-upregulation in response to agonist, this has not yet been experimentally 

determined. Such a study could be carried out through the use of different 
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mutants of the TP in future studies, including those that are retained in the ER, 

which might serve as a dominant negative to anchor a wild-type TP, reducing 

surface expression. However, the confounding effects of disrupted dimerization 

on agonist-dependent signaling raise substantial challenges for understanding 

how dimerization impacts ligand-dependent events downstream of the primary 

signal. Alternative approaches include the use of donor- or acceptor- labeled 

ligands or antibodies to the native receptors in which energy transfer might not 

be impacted by conformational changes in either or both receptors 

 

Heterodimeric partners of the TP and modification of signal transduction 

Co-immunoprecipitation of TP with the IP was reported previously in the lab 

(123). We also sought to examine, therefore, by BRET, the relative propensity of 

the TP to heterodimerize with the IP, as well as other prostanoid receptors, a 

significant strength of the BRET assay compared to co-immunoprecipitation. We 

found that TP forms high affinity heterodimers with the IP (Figure 15), a 

receptor that is distinct in its sequence (33.6% amino acid homology, FASTA 

alignment), membrane microdomain localization, regulation and effector signaling 

(94, 121–123). This highly suggestive evidence for TP-IP heterodimerization 

complements our previous observation that TP agonists evoke a PGI2-IP like 

signal, cAMP generation, through the TP-IP heterodimer (Figure 27), coincident 

with suppressed canonical TP-inositol phosphate generation (5, 123). In addition, 

we also observed TP dimerization with the PGD2 receptor, the DP1, although the 
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lower affinity for TP-DP1 interaction suggests that this heterodimeric species may 

form less readily that the TP-IP, given proper physiological conditions (Figure 

15). However, it remains possible that TP-DP1 heterodimerization may form 

more readily in specific contexts including the relative expression levels of the 

different receptors (e.g. if IP is lower that DP1 or absent) or ligand activation of 

one of the receptors modifies heterodimerization processes (e.g. if DP1 

activation increased its affinity for the TP). Such intricacies of the relative 

formation of TP containing heterodimers require further in-depth analyses and 

approaches other than BRET.  

Our studies of TP-IP heterodimer signaling, which occurs in transfected and 

native cells (94, 121, 123), touch upon interesting concepts regarding 

asymmetrical signaling in dimeric pairs. With receptors like the dopamine D2 

receptor (108), GABAB receptor (175), and the metabotropic glutamate receptor 

(176), whose basic signaling unit consists of a pair of GPCRs coupled to one G 

protein, signaling can occur asymmetrically through binding of ligand to the first 

protomer and subsequent activation of the G protein by the second protomer. 

This signaling modality would explain the how the TP-IP heterodimer can bind TP 

agonists (presumably at the TP binding site) while eliciting a Gs-mediated 

signaling response through asymmetric activation of the IP. While our work with 

the GxxxGxxL TP mutant supports the paradigm of asymmetric TP-IP signaling 

(see below), whether the TP homodimer signals asymmetrically remains to be 

experimentally determined. 
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Exploration of the role of the GxxxGxxxL motif in TP dimerization and 

function 

Protein-protein interactions are ubiquitous to biological processes and are vital 

for signaling complex assembly. Compared to cytosolic protein regions, relatively 

little is known about the interaction of membrane embedded proteins within lipid 

bilayers, although there is substantial and increasing interest in therapeutic 

targeting of TM interactions (138). GPCRs are characterized by their 7 

transmembrane spanning helical regions, which are capable of intramolecular 

interactions that define tertiary and quaternary receptor structure and function 

(177, 178). The GxxxG interaction motif, first described in homodimerization of 

the single TM sialglycoprotein glycophorin A (GpA), has been identified as a high 

frequency TM motif across diverse protein families (135, 179). In GpA, as in 

other transmembrane proteins, residues that neighbor the GxxxG domain appear 

critical and are thought to provide a three-dimensional structure within the TM 

helix creating the protein-protein interface. In one particular subclass, termed 

“glycine zippers”, a small residue (glycine, alanine or serine) is located 3 

positions before or after the GxxxG motif (136). More generally, large residues 

(isoleucine, valine or leucine) are commonly found within 1 or 2 positions of the 

GxxxG pair (135), forming a groove (the glycines) and ridges (the large residues) 

arrangement. In the case of the TP TM5 GxxxGxxxL motif, we determined a 

similar arrangement with a groove created by S201G205G209 and a ridge created 
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leucines 203, 206, 210 and 213 (see Figure 31). The positioning of Leu213 three 

residues after the GxxxG pair serves to align the GGL triplet along the same -

helix face (see Figure 3) and was observed in multiple other Class A human 

GPCRs (Table 2), as well as  integrins (142). 

To define its contribution to TP function, we mutated the small-small-big 

arrangement of G205xxxG209xxxL213 motif to L205xxxL209xxxY213 , similar to other 

studies of this specific motif (115, 139, 141, 142), an approach designed to 

disrupt the grove and ridge alignment along the outer-side of TM5 (see Figure 3, 

Figure 31). As outlined in Chapter 4, signaling of the TPL205,L209,Y213 via the Gq-

inositol phosphate cascade was markedly reduced in both transfected HEK 293 

cells and Meg-01 platelet-like cells. Given the role of GxxxG motifs in helical 

packing (135), we considered that this loss of function might be due to improper 

processing of the correctly folded receptor at the cell surface. However, 

comparable cell surface expression of the wild type and TM5 GxxxGxxxL mutant 

receptor was evident by flow cytometry in both in vitro models (Figure 20) and no 

alteration in processing of the fully glycosylated receptor was evident by 

fluorescence microscopy (Figure 19) or immunoblotting (Figure 23). Further, 

displacement analysis using a range of TP ligands revealed no difference in the 

ligand binding properties of TPL205,L209,213 compared TPWT and both the mutant 

and WT receptor displayed high agonist affinity (Figure 21), consistent with 

normal G protein association and the comparable levels of Gq that accompanied 

the wild type or mutant receptor in co-immunoprecipitation experiments 
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Figure 31: Modeling of the “groove and ridge” structure of 
the GxxxGxxxL motif. Modeling of the TPα TM5 highlighting 
the leucines that neighbor G205 and G209 and L213. By analogy 
with glycophorin A, the small residues, S201, G205 and G209, 
align to create a groove (green), while the large residues L203, 
L206, L210 and L213 form an adjacent ridge (yellow). (Credit: 
Scott Gleim/Hwa Lab, Yale University School of Medicine) 
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 (Figure 23). Together these analyses clearly indicate no major role for the TM5 

GxxxGxxL motif in processing of the TP to form a high affinity receptor-Gq 

complex at the cell surface. 

Homodimerization of GPCRs appears universal across the superfamily (102, 

119, 165). Given the established contribution of GxxxG motifs to helix-helix 

interactions, the extensive evidence that TMs are critical for GPCR 

homodimerization and the outward facing orientation of the G205xxxG209xxxL213 

triplet in TP TM5 we considered whether this motif contributes to TP 

homodimer formation. We found that while saturable BRET was achieved, the 

BRET50 for TPL205,L209,Y213 homodimerization was significantly right-shifted 

compared to TPWT (Figure 24,Figure 25). Thus, while TPL205L209Y213 protomers 

can dimerize, they do so with a reduced affinity. Importantly, we confirmed 

independently that TPL205,L209,Y213 was unable to compete for TPWT-TPWT 

interaction, confirming the mutant’s dimerization deficiency (Figure 26). Thus, 

similar to the ß2-AR (115, 130) and yeast -factor (104, 180) receptors, a TM 

motif GxxxGxxxL is necessary for normal efficient TP homodimerization.   

In the case of ß2 adrenergic receptor, disruption of the TM6 GxxxGxxxL motif 

right shifted the BRET50 for homodimerization coincident with reduced cell 

surface receptor expression (115). Our data showing normal processing (Figure 

19), cell surface expression (Figure 20) and G protein association of 

TPL205,L209,Y213 (Figure 23) despite impaired dimerization suggests that for the 

TP the two processes, homodimerization and cell surface expression, are 
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independent. Alternatively, it may be that the level of TPL205,L209,Y213 

homodimerizes sufficiently to traffic to the cell surface but that the reduced 

protomer affinity significantly modifies the efficiency with which signal is 

transduced. Our data does not reveal how activation of Gq via TPL205L209Y213 is 

reduced but one possibility is the formation of a suboptimal conformation of the 

TPL205L209Y213 homodimer, impacting the receptor dimer’s ability to undergo the 

necessary conformational shift to fully activate Gq.  

Having determined that the G205xxxG209xxxL213 motif does in fact play a 

significant role in TP homodimer formation and function, we also were interested 

in evaluating the effects of mutation of this motif on the TP/IP heterodimer. 

Interestingly, mutation of the G205xxxG209xxxL213 motif did not impact either 

heterodimerization with the IP, or TP agonist-induced cAMP generation through 

the heterodimer. BRET assays showed no significant change in BRET50 for the 

TP-IP heterodimer upon substitution of TPL205,L209,213 for TPWT, and the mutant 

TPα allowed for activation along the TPα-IP-Gs pathway in response to TP 

agaonist with no changes in maximal signaling or EC50. Thus, it appears that the 

TP TM5 GxxxGxxxL motif contributes selectively to homodimerization and that 

distinct receptor regions direct formation of the TP-IP heterodimer. Further, the 

normal TP-agonist-cAMP signal propagated by the TPL205,L209,213-IP heterodimer 

supports the concept of asymmetric signaling (see below). 

 

Promise of the GGL as a target for future therapeutics 
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It has been over a decade since the GPCR dimerization was first reported (181–

183). Since that time, much has been learned about the molecular mechanisms 

of GPCR dimerization and the biological relevance for receptor function. The 

most well established model of GPCR dimerization holds that two receptors 

couple to one G protein (108, 173). In heterodimers, one promoter typically 

dominates the downstream signal transduced, and hence the biological outcome 

(108). For example, in heterodimers of the B2 receptor for the vasorelaxant 

bradykinin and the AT1 receptor for the vasoconstrictor angiotensin II, the latter 

dominates leading to enhanced AT1-Gq signaling and vasoconstriction (105, 

165). It remains unclear whether ligation of one or both protomers is optimal and 

to what extent G protein activation is symmetrical (the agonist activates the 

protomer that is directly associated with the G protein) or asymmetrical (the 

agonist indirectly activates the G protein through the non-G protein associated 

protomer) (103, 173).  In the case of the serotonin type 4 receptor homodimer, 

evidence supports asymmetrical G protein activation through one ligand binding 

to its protomer but activating signaling via the companion protomer (173). For the 

TP-IP, we established that the IP dominates the heterodimer’s signaling through 

the Gs-cAMP cascade but that agonists for either protomer could activate the 

complex (123). Our observations that the TM5 GxxxGxxxL mutant did not 

support normal Gq-inositol phosphate signaling in the homodimer but was fully 

capable of propagating a normal cAMP response to TP agonist in the IPTP 

heterodimer, provides further support for the 2-receptors-1-G-protein model and 
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for asymmetrical G protein activation through one protomer in a dimeric complex 

(in this case agonism of the TP led to activation of the IP-associated Gs in the 

TP-IP heterodimer). 

We reported that the shift in TP function to Gs signaling when dimerized with the 

IP likely contributes to the restraint placed by the PGI2-IP system and the TXA2-

TP system in vivo (102, 115, 124). It is, therefore, very promising to uncover a 

molecular region the selectively reduces TP homodimer function without altering 

activation and signaling of TP-IP heterodimer. Efforts to antagonize the TP have 

proved clinically disappointing (12, 147), perhaps because TP antagonists block 

activation of the TP in both its TP-TP homodimeric (Gq-coupled) and TP-IP 

heterodimeric (Gs-coupled) complexes (102). Our work opens novel avenues to 

biased interference with the TP-TP homodimer while sparing the function of the 

TP-IP heterodimer and its beneficial cardiovascular biological effects. Arguably, 

such an approach should be superior to inhibitors of thromboxane synthase, and 

even selective inhibition of platelet COX-1 with low dose aspirin, because the 

endogenous ligand acting at the TP-IP heterodimer would be spared. 

Recently, computationally designed peptides directed at the GxxxGxxxL motif 

that mediates interaction of the αIIbβ3 integrins were reported to modify integrin 

function in platelets (128, 142). We propose that such a peptide targeted at TP 

TM5 GxxxGxxxL domain may provide a novel approach to biased TP 

antagonism. Conceivably, such selective targeting of the TP homodimer would 

allow us to modify signaling in cell types with high TP-TP expression, such as 
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platelets, while largely preserving the function of cells that have a higher TP-IP 

dimer population, such as macrophages (125). 

It is also worth considering the promise of the GxxxGxxxL domain in light of our 

examination of the motif’s presence in other GPCRs (Table 2). In our analysis of 

114 GPRCs, a TM GxxxGxxxL motif was identified in 22 receptors including the 

TP. The conservation of this sequence within the transmembrane domains of 

other receptors underscores its likely importance as a specialized interaction 

motif, as does the lack of incidence of SNPs appearing within this motif in the TP,  

in contrast to the large number of coding SNPs reported elsewhere in the 

receptor (184). This motif may play a similar role in dimerization of other protein-

protein interaction for the 21 other receptors identified, a topic for future studies. 

It may be that this motif provides a “druggable” target for the development of a 

new class of precisely tailored therapeutics for specific receptor dimers. The 

prevalence of the motif suggests that it is common enough to be worth pursuing, 

while uncommon enough to limit off-target effects with rationale design of the 

targeted peptide or molecule. Indeed, exciting advances in computational design 

of peptides to precisely target the TM domains (128) open the possibility of 

design novel reagents that can selectively target the TP TM5 GxxxGxxxL 

domain, and by extension other TM domains in GPCRs of interest, while 

minimizing the effects of such interference in nearby receptors that also contain 

the functional domain. Such precise tools may allow assessment of native GPCR 

dimers in relevant normal cells, without the need for addition of an energy donor 
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or acceptor moiety and expression in a non-native cell line, and in animal models 

of normal and disease receptor function. Perhaps more importantly, precise 

targeting of a specific receptor domain, modifying one signaling arm, may allow 

development of a novel class of therapeutics designed to bias receptor function 

toward a desired beneficial outcome. 
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