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Enhancing T-Cell Responses to Vaccination of HIV-1 infected Subjects on
Antiretroviral Therapy

Abstract
With the advancement in anti-retroviral therapy (ART) regimens there has been a significant improvement in
the quality of life and survival of those individuals infected with HIV-1. Even with the benefits to CD4+ cell
counts, decrease in viremia and inflammatory biomarkers, HIV-1 infected individuals continue to exhibit
functional issues in their T-cell immune responses to recall antigens and vaccines. Additionally, researchers
believe that T-cell mediated responses will be important to elicit in a therapeutic vaccination setting. These T-
cell functionality issues can leave individuals infected with HIV-1 at risk from opportunistic infections and co-
morbidities. Furthermore, a therapeutic HIV-1 vaccine is needed that can elicit responses to help infected
subjects better control HIV infection so as to potentially reduce the need for long-term therapy. However,
basic research on HIV is still needed to solidify potential immune correlates against HIV and other pathogens
affecting HIV-1 infected subjects. Likewise, investigation of therapeutic targets that can aid in enhancing T-
cell immune responses in these individuals is of importance.

In this thesis, we examined whether a therapeutic HIV-1 DNA vaccine delivered with in vivo electroporation
to HIV-1 infected subjects on ART could elicit potent cellular immune responses previously suggested to be
important in the control of HIV. This vaccine strategy demonstrated an enhancement in cell-mediated IFN-γ
production and cytotoxic immune responses to HIV-1. However, until a vaccine or therapy for HIV-1 is
developed, these individuals also continue to be at risk for other opportunistic infections, such as influenza
infection. Supported by previous studies that focus on influenza vaccination, we found that a standard dose of
the H1N1 vaccine (15μg; Novartis) did not elicit sero-protection in all individuals. Importantly, the ability of
these individuals to respond to vaccination was associated with the frequency of naÃ¯ve CD4+ T-cells prior
to vaccination, thereby reinforcing the importance of CD4+ T-cell help and the need for better CD4+ T-cell
reconstitution. In addition, HIV-1 infected subjects, despite ART, have an altered cytokine/chemokine
environment. Thereby it is important to explore whether targeting the cytokine milieu can lead to
improvements in responses to vaccination in these individuals. We specifically found that the pro-
inflammatory chemokine IP-10 was elevated in the sera of those infected with HIV-1 while on ART.
Additionally, elevated levels of IP-10 were associated with decreased cellular immune responses, which could
be improved by neutralizing IP-10 prior to antigen stimulation. Therefore, the studies herein support the need
for better understanding of the basic science of HIV-1 infection to uncover and comprehend what potential
immune correlates are needed for therapeutic treatment of these individuals.
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ABSTRACT 
 

ENHANCING T-CELL RESPONSES TO VACCINATION OF HIV-1 INFECTED 

SUBJECTS ON ANTIRETROVIRAL THERAPY 

Lorenzo Ramirez 

Jean D. Boyer 

With the advancement in anti-retroviral therapy (ART) regimens there has been a 

significant improvement in the quality of life and survival of those individuals infected 

with HIV-1. Even with the benefits to CD4+ cell counts, decrease in viremia and 

inflammatory biomarkers, HIV-1 infected individuals continue to exhibit functional issues 

in their T-cell immune responses to recall antigens and vaccines. Additionally, 

researchers believe that T-cell mediated responses will be important to elicit in a 

therapeutic vaccination setting. These T-cell functionality issues can leave individuals 

infected with HIV-1 at risk from opportunistic infections and co-morbidities. Furthermore, 

a therapeutic HIV-1 vaccine is needed that can elicit responses to help infected subjects 

better control HIV infection so as to potentially reduce the need for long-term therapy. 

However, basic research on HIV is still needed to solidify potential immune correlates 

against HIV and other pathogens affecting HIV-1 infected subjects. Likewise, 

investigation of therapeutic targets that can aid in enhancing T-cell immune responses in 

these individuals is of importance. 

 In this thesis, we examined whether a therapeutic HIV-1 DNA vaccine delivered 

with in vivo electroporation to HIV-1 infected subjects on ART could elicit potent cellular 

immune responses previously suggested to be important in the control of HIV. This 

vaccine strategy demonstrated an enhancement in cell-mediated IFN-! production and 

cytotoxic immune responses to HIV-1. However, until a vaccine or therapy for HIV-1 is 
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developed, these individuals also continue to be at risk for other opportunistic infections, 

such as influenza infection. Supported by previous studies that focus on influenza 

vaccination, we found that a standard dose of the H1N1 vaccine (15µg; Novartis) did not 

elicit sero-protection in all individuals. Importantly, the ability of these individuals to 

respond to vaccination was associated with the frequency of naïve CD4+ T-cells prior to 

vaccination, thereby reinforcing the importance of CD4+ T-cell help and the need for 

better CD4+ T-cell reconstitution. In addition, HIV-1 infected subjects, despite ART, have 

an altered cytokine/chemokine environment. Thereby it is important to explore whether 

targeting the cytokine milieu can lead to improvements in responses to vaccination in 

these individuals. We specifically found that the pro-inflammatory chemokine IP-10 was 

elevated in the sera of those infected with HIV-1 while on ART. Additionally, elevated 

levels of IP-10 were associated with decreased cellular immune responses, which could 

be improved by neutralizing IP-10 prior to antigen stimulation. Therefore, the studies 

herein support the need for better understanding of the basic science of HIV-1 infection 

to uncover and comprehend what potential immune correlates are needed for 

therapeutic treatment of these individuals.!
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1.1 HIV-1 Infection 

Identified in the early 1980’s, despite the years of extensive research, HIV-1 

infection continues to contribute to significant morbidity and mortality around the world1,2. 

During the acute phase of infection there is increased viral replication, immune 

activation, depletion of CD4+ cells, dissemination of the virus into lymphoid tissues, and 

elevation of inflammatory biomarkers3, 4, 5. The acute phase is followed by a phase of 

chronic infection with continuous immune activation and viral replication, which further 

contributes to the loss of CD4+ T-cells and the eventual progression to AIDS, where 

opportunistic infections place these individuals at risk for complications and death6, 7, 8.  

Several studies examine the role of markers of inflammation and immune 

activation suggesting a predictive role for disease progression. Such studies show 

several prognostic markers during untreated HIV-1 infection that are predictive of rapid 

disease progression. These markers include immune activation9, 10, inflammatory 

cytokines/chemokines, in particular IP-10,4, 11, 12 viral loads, and CD4+ cell counts13. 

Furthermore, chronic HIV-1 infection leads to altered T-cell characteristics, such as an 

accumulation of terminally differentiated T-cells and dysfunction10, 14.  

 

1.2 HIV-1 Infection and Anti-Retroviral Therapy 

  Since the approval of zidovudine (AZT) in 198715, significant enhancements in 

anti-retroviral therapy (ART) have led to an improvement in the quality of life and survival 

of those living with HIV-1 infection16, 17. Even more, improvements to drug regimens have 

led to better adherence and reduction in side-effects that were seen with older regimens; 

these enhancements in turn have helped in reducing transmission18, 19, 20. 

In addition to better survival of these individuals, use of ART also helps lead to 

the rebound of CD4+ cell counts, which are shown to increase for up to seven years in 
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these individuals21, 22, 23. However, these increases in CD4+ cell counts are shown to be 

influenced by pre-ART CD4 counts22, suggesting that the timing of ART initiation can 

influence immune reconstitution. Nonetheless, ART treatment is also shown to lead to 

decreases in viremia to levels below detection within months of starting therapy24, 25. 

Finally, ART also leads to a decline in immune activation and inflammatory markers26, 27. 

Despite these advancements, it is demonstrated that although there is a 

decrease in viremia, a viral reservoir is still present24, 28, 29. This fact may be due to the 

inability of ART drugs to reach all tissues, classified as sanctuaries that could harbor 

viral reservoirs29, 30. Additionally, Hunt et al.31 demonstrate that despite ART, these 

individuals continue to have elevated activated CD4+ and CD8+ T-cells compared to 

healthy HIV-negative individuals. Also, even with ART, these individuals are shown to 

have an imbalanced cytokine and chemokine environment26, 27, 32, 33, 34. 

Observations of residual immune activation and inflammation have led to interest 

in early initiation of ART. A study of long-term ART initiated during early HIV-1 infection 

suggested that there is potential for better immune system preservation and a functional 

cure35. A functional cure is defined as the ability to control infection without the need for 

medication. For example, while not successful in the long-term, very early ART initiation 

in an infant showed the potential for a functional cure36. Therefore, the timing of ART 

initiation could aid in preserving the immune system, and may also help avoid damage 

that may persist in individuals who initiate ART later.  

 

1.3 HIV-1 Infection and Cellular Immune Responses 

Adaptive cell mediated immunity is directed by T-lymphocytes37. Upon infection 

or vaccination naïve CD4+ and CD8+ T-cells become activated and undergo 

differentiation after interacting with a specific antigen that is displayed in the context of 
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self-major histocompatibility (MHC) complex molecules38. CD4+ T-cells differentiate into 

T-helper subsets. Th1 and Th2 subsets dominate most immune reactions, whose 

functions depend on the cytokines they secrete37. Specifically, development of these 

helper subsets is dependent on the type of stimuli present at the initiation of immune 

responses. The presence of the cytokines IL-12 and IFN-! and transcription factors 

STAT-1, STAT-4, and T-bet is shown to induce Th1 subsets important for responses to 

pathogens that infect cells or activate macrophages37. On the other hand the cytokine IL-

4 and transcription factors GATA-3 and STAT-6 are the major inducers of Th2 subsets, 

important in responses against helminthes and allergens37.  CD4+ Th1 cells are also 

involved in activating cells such as macrophages, which aid in the production of 

additional immunological mediators and improves T-cell activation37. As well, CD4+ 

helper T-cells, particularly follicular helper T-cells are involved in promoting humoral 

immunity37. Specifically, upon activation, T-cells migrate to B-cell follicles where they 

help promote B-cell responses, such as clonal expansion, antibody production and 

isotype switching, through cytokines or CD154 dependent mechanisms39. Finally, there 

also exist subsets of CD4+ T-cells involved in regulation of immune responses, these 

cells are know as regulatory T-cells37. 

While naïve CD8+ T-cells with antigen stimulation undergo differentiation into 

cytotoxic T-lymphocytes (CTLs)37. CD8+ T-cells respond by producing cytokines and 

chemokines, such as IL-2, IFN-!, TNF-", and MIP-1"/#, as well as the release of 

cytotoxins, such as perforin and granzyme, from cytolytic granules40. CD8+ cytotoxic T-

lymphocytes can directly kill cells infected with intracellular pathogens37. CD8+ CTLs are 

known to mediate target cell killing, as discussed above through degranulation and the 

production and secretion of cytotoxins such as perforin and granzyme B, which help 

permeabilze cells and activate apoptotic pathways. In addition to cytotoxin-mediated 
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killing, CD8+ CTLs are also able to use contact-dependent mechanisms through their 

expression of Fas ligand, which binds the Fas receptor found on the surface of many cell 

types37.  During acute HIV-1 infection a strong CTL response is shown to contribute to 

the decline in viremia observed41.  

Individuals who are able to control HIV-1 infection in the absence of therapy, 

exhibit strong cellular immune responses that are shown to be important in control. 

Considering this, eliciting these responses in individuals receiving ART, may be 

necessary in targeting HIV-1. Similarly, exploring cellular mechanisms of viral control 

can help researchers understand why those with progressive disease fail to control HIV-

1 infection42. The suggestion that CD8+ T-cells play an important role in controlling HIV-

1 infection come from studies involving CD8+ T-cell depletion and SIV infected rhesus 

macaques, which demonstrate that the presence of a potent CD8+ response is 

associated with lower viral replication and slower disease progression43. In addition, the 

occurrence of viral escape mutations suggests that there is pressure from CD8+ T-

cells44, 45. Additionally, it is proposed that early ART leads to increases in CD4+ helper 

subsets important in maintaining CTLs42, 43, 45. So examining how to enhance the CD4+ 

helper response is of interest as well.  In particular it has been suggested that CD4+ T-

cells, specifically of central memory phenotype, that produce IL-2 are able to help 

maintain proliferative T-cell responses and effector CD8+ T-cell responses46. As well, 

CD4 help may be involved in regulating T-cell differentiation and memory formation, as 

studies during HIV-1 infection suggest changes in T-bet expression in the absence of 

CD4 help47. These findings and others have suggested better HIV control in the 

presence of higher numbers of HIV-specific CD27- CD8+ T-cells48. So if differentiation is 

affected, through abnormal expression of T-bet, this could impact T-cell mediated 

responses against HIV.  
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In regards to cellular correlates of protection, Betts et al.40, 49 suggest that poly-

functional T-cells, which include proliferative capacity, secretion of IL-2, IFN-!, TNF-", 

and MIP-1"/#, ability to degranulate and produce cytotoxins, may be important in the 

control of HIV-1 infection50. However, while IFN-! is a measure of an active anti-viral 

immune response, it does not directly inhibit HIV-1 replication or kill cells50, 51. Therefore, 

surrogate markers of killing, such as degranulation and production of perforin and 

granzyme B are theorized to be crucial. Specifically, non-progressors compared to 

progressors are shown to have better proliferative capacity of T-cells, which is 

associated with perforin expression45. Furthermore, use of more direct measures of 

killing, demonstrate that non-progressors are also better at eliminating autologous HIV-

infected CD4+ T-cells in vitro compared to progressors52. Though in regards to HIV-1 

infected subjects receiving ART, Migueles et al.53 indicate that despite ART, these 

individuals, compared to long-term non-progressors, have a lower proliferative and 

cytotoxic capacity53, 54. While this may be due in part to a decay in CD8+ CTLs with long-

term ART50, these findings suggest even more that enhancing these responses in HIV-1 

infected individuals on ART will be necessary to target HIV-1.  

 

1.4 Prophylactic vs. Therapeutic HIV-1 Vaccines 

Many viral vaccines are based on either live-attenuated of whole inactivated 

viruses55. However, for HIV those vaccine strategies have been deemed unsafe due to 

the risk of integration of HIV proviral DNA into the host genome55. Therefore additional 

vaccine modalities such as recombinant and DNA-based vaccines have been of interest. 

Regardless, there has yet to be an effective prophylactic or therapeutic vaccine for HIV. 

The goal of a prophylactic vaccine against HIV would hope for the prevention of HIV 

infection, if possible, or the reduction of viral set points and/or better control once 
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infected55, 56. As well, a prophylactic vaccine will need to be effective at all portal of HIV 

entry and must have broad and durable immunity. On the other hand a therapeutic 

vaccine for HIV would aim to treat those individuals who are already infected. Potential 

goals with a therapeutic vaccine are to help enhance the immune responses against 

HIV, reduce secondary transmission, as well as possibly helping in controlling infection, 

aiding in targeting the viral reservoir, and/or eliminate infection (sterilizing cure)57. In 

addition, in ART-treated individuals, it would be a goal for a therapeutic vaccine that 

could potentially help reduce or eliminate the need for prolonged anti-retroviral therapy 

(functional cure).  

The preventative HIV vaccine field has undergone different iterations of vaccines, 

focusing on the induction of neutralizing antibodies, CTL responses, or a combination of 

different immune responses55. With years of different HIV vaccine designs, three major 

trials have elucidated the need to further understand the basic immunology of HIV-1 

infection and possible immune correlates of protection. The STEP and Phambili trials 

aimed at investigating the efficacy of cell-mediated immunity as a prophylactic vaccine58. 

However, both studies were terminated early due to analysis suggesting that vaccination 

was associated with an increase in HIV acquisition55. The researchers concluded that 

the cell-mediated immunity induced by this vaccine did not prevent infection or reduce 

viral set-points. This was suggested to be due to pre-existing immunity to the adenoviral 

5 vector used as well as circumcision status55. A third study, known as the RV-144 trial 

was suggested to show moderate efficacy in individuals who had received the vaccine 

compared to placebo. After analysis of the study it was suggested that antibodies 

against the V1V2 loops55 may be playing a role. Nonetheless, the vaccine did not aid in 

better control of HIV replication or loss of CD4+ T-cell subsets56. The findings in these 

trials suggest that better understanding of the basic science of HIV infection as well as 
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additional investigation of possible correlates of protection are necessary. While studies 

of non-progressors have revealed some potential correlates for HIV-1 control that does 

not mean that those responses would be effective at preventing HIV-1 acquisition.  

In further regards to therapeutic vaccines against chronic infections, like HIV, it is 

important to understand what immune correlates are needed during continuous viral 

replication. This could mean that the antigens targeted prophylactically could differ from 

therapeutic targets57. Likewise, during non-chronic infections there is an important role of 

immune memory, which can help dramatically during a second round of infection57. 

However, it is known that HIV-1 infection can impact normal immune cell differentiation3, 

57. This effect on differentiation could affect the ability of memory cell formation, even 

after the antigen is significantly reduced, as is with ART. Therefore, a therapeutic 

vaccine may need to stimulate effector cells and possibly enhance not only their 

function, but expansion and survival. Even more, understanding the basic science of HIV 

infection, in particular in subjects on ART, could help elucidate potential 

adjuvant/therapeutic strategies to enhance immune responses. Lastly, since CD4+ T-

cells play a role in helping both arms of the immune system, including maintaining CD8+ 

CTLs, exploring how to improve immune reconstitution with ART regimens could help if 

then combined with a therapeutic vaccine that would enhance the anti-HIV response. 

 

1.5 HIV-1 Infection and Non-HIV Infections 

Prior to effective antiretroviral therapy HIV-infected individuals were at 

heightened risk for opportunistic infections due to their immune-compromised status59. 

Specifically, CD4 counts are shown to contribute to the severity and risk for different 

opportunistic infections, however, ART aids in reconstituting these cells22, 60. While 

issues associated with unknown HIV-status, and lack of drug accessibility continue to 
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contribute to morbidity and mortality from opportunistic infections in those infected with 

HIV, some individuals despite ART and CD4+ cell reconstitution are not able to attain 

necessary responses to non-HIV vaccination to protect them completely.  

The Centers for Disease Control and Prevention (CDC)61 establish 

recommended treatment and vaccination guidelines for individuals living with HIV59. The 

CDC details that opportunistic infections can still occur in individuals on ART, but 

maintain that ART should not be interrupted to administer treatment for the opportunistic 

infection. In regards to preventative vaccines, the CDC for 2014 recommends that HIV-

infected individuals with CD4 counts above 200 cells/µl consider receiving vaccines 

against influenza, whooping cough and tetanus (Tdap), pneumococcal disease, hepatitis 

B virus, human papilloma virus, measles, mumps and rubella (MMR if born after 1957, 

but not received the vaccine), chickenpox (if born after 1980 and not received the 

vaccine)61, 62. However, not all vaccines are safe to administer to individuals depending 

on the individual’s immune-compromised severity.  

Current studies suggest that standard influenza vaccines are only moderately 

effective in those infected with HIV and that even with ART, individuals may still be at 

risk of morbidities due to influenza infection63, 64, 65. In order to achieve sero-protection 

individuals infected with HIV often require higher or multiple doses of the influenza 

vaccine66, 67. Similarly, while the conjugate pneumococcal vaccine is shown to protect 

HIV-infected infants, pneumococcal infections remain elevated in those infected with HIV 

despite effective ART68, 69. It is thereby suggested that herd immunity may be most 

beneficial for protecting these individuals. Of particular concern to HIV-1 infected 

subjects is HCV co-infection due to shared routes of acquisition. Studies reveal mixed 

findings regarding the potential benefit of ART on HCV infection. Specifically, Klein et 

al.70 and Kottilil et al.71 show that ART contributes no significant benefit to HCV control. 
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However, effective treatment of HCV in those co-infected with HIV may differ. For 

example in those infected with HIV, treatment with peg-interferon and ribavirin was more 

effective than interferon and ribavirin72. These findings suggest that despite ART, benefit 

to other co-infections may not be present and so these individuals may still be at 

increased risk and may need to receive alternative treatment combinations.  

Finally, in a study by Lange et al.73, they demonstrated that even with the re-

establishment of normal CD4 cell counts, the pre-ART environment is more predictive of 

whether HIV-infected individuals would respond to vaccination against tetanus toxoid, 

diphtheria-toxoid, and keyhole limpet hemocyanin. These findings suggest that despite 

immune reconstitution individuals may still be at risk of disease if they are unable to 

respond adequately to vaccines. Furthermore in HIV-infected children, even with ART 

and increases in CD4 counts and B-cells, antibodies generated to MMR and varicella 

zoster vaccines decline over time, potentially leaving these children at risk despite 

vaccination and can potentially require additional immunizations to maintain protection74. 

Similar findings were found in children who received Tdap75. Even more, while the 

varicella zoster vaccine is safe in HIV-1 infected children, even after two immunizations 

only 60% of children who received the vaccine developed antibodies as compared to the 

HIV-uninfected counterparts76. 

 

1.6 HIV-1 Infection and Co-morbidities 

 Antiretroviral therapy has increased the survival and quality of life of those living 

with HIV-1 infection, but has turned HIV-1 infection into a chronic disease17. It is 

estimated that by 2015, 50% of HIV-infected individuals will be over 50 years of age77. In 

addition, as these individuals live longer, their risk of other co-morbidities, which include 

cardiovascular, renal, pulmonary, neurologic, gastrointestinal, and bone diseases, 

increase78. With the development of better ART regimens the contribution from toxicities 
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due to ART is being minimized79. Therefore the contribution to these co-morbidities from 

ART, HIV-1 infection, and aging needs to be explored. In fact, the elderly, who often 

receive medications other than ART, are at risk for side-effects due to drug-drug 

interactions77. Furthermore, compared to younger HIV-infected individuals, older 

individuals may have less immune reconstitution80 so a balance to deal with HIV-1 

infection and other co-morbidities needs to be investigated especially since these co-

morbities could possibly affect cellular immune responses.  

  

i. T-cell Function 

 With HIV-1 infection thymic involution is seen to occur. This thymic involution is 

also shown to occur with age, which in turn affects these individuals’ generation of naïve 

T-cells81. Without the generation of new cells, the accumulation of terminally 

differentiated cells increases, leaving those infected with HIV and the elderly at risk for 

other infections/co-morbidities, such as influenza virus infection82, 83. Even more, 

Rickabaugh et al.84 demonstrate that despite ART, the changes in naïve CD4+ T-cell 

subsets in those infected with HIV appear to be accelerated compared to age-matched 

healthy controls. Similarly, the damage that occurred during untreated HIV-1 infection 

can contribute to replicative senescence or exhaustion of T-cells due to their chronic 

stimulation14, 85. Therefore, considerations to the initiation of ART are important to 

evaluate, but as is discussed below, ART itself may contribute to issues seen in HIV-1 

infected individuals as they age.  

 

ii. Neurocognitive Disease 

Even with ART, HIV-1 infected individuals’ brain volumetric measures are 

decreased compared to healthy individuals86. Of particular concern in regards to 

individuals on ART, is whether ART drugs are able to enter tissues such as the brain 
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where possible viral sanctuaries may exist14, 87. The presence of neural viral sanctuaries 

could contribute to ongoing damage to the central nervous system. Aside from this, the 

changes seen in metabolic function in those treated with ART can contribute to 

complications in neurocognitive function85. In contrast, older HIV-infected individuals with 

already present neurocognitive impairment may have issues adhering to their ART 

medication, which can have trickledown effects to their immune function, responsiveness 

to vaccination, and response against opportunistic infections88.  

iii. Cardiovascular Disease 

Cardiovascular disease is a leading cause of death in the United States89.  

Several studies have found an increased risk for cardiovascular disease in those 

infected with HIV when compared to age-matched HIV-uninfected individuals89. It is 

proposed, since age impacts immune reconstitution, inability to reconstitute CD4 cell 

counts may contribute to cardiovascular issues90. Yet while ART may be beneficial in 

improving CD4 counts, certain ART drugs, such as protease inhibitors, contribute to 

alterations in lipids, which can exacerbate issues in fat and insulin metabolism and in 

turn promote cardiovascular disease91. However, the benefits associated with ART are 

suggested to outweigh these issues and therefore alternative therapeutic targets are 

being investigated.  

iv. Cancer 

Development of ART has led to a decrease in HIV-associated cancers like 

Kaposi’s sarcoma92. On the other hand, cancers not associated with HIV/AIDS, including 

cancers of the lungs, liver, skin, anus, and others, are on the rise, particularly in men93. 

Reasons behind this increased risk are theorized to be due to the HIV virus itself 

affecting normal cell-cycle regulation, stimulation of potential oncogenes, and 
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enhancement of angiogenesis93. By the same token, those infected with HIV are at risk 

for co-infection with cancer-causing viruses such as HPV, HCV, and EBV93, 94, 95. When 

treating these individuals in the ART era, understanding the risks of chemotherapy while 

on ART is of importance since cancer treatment could contribute to further complications 

and side-effects93. 

v. Other Co-morbidities 

As individuals age, there is an increase in frailty, reduced mobility, and activity. 

These changes are suggested to be accelerated in those infected with HIV and is seen 

to occur despite treatment with ART96. Additionally, toxicities from ART or non-HIV drugs 

are shown to stimulate inflammatory pathways associated with frailty97.  

1.7 HIV-1 Infection and the Cytokine/Chemokine Environment 

 With effective antiretroviral therapy, researchers demonstrate that viremia can fall 

below the limits of detection, and immune activation and inflammation is reduced. 

Regardless of these benefits, even with long-term ART, the levels of immune activation 

remain elevated compared to healthy uninfected individuals31, 98, 99. This chronic immune 

activation can then contribute to further dysregulation of cytokine and chemokine 

production and augment the risk of potential co-morbidities3, 100. Furthermore, a study by 

Almeida et al.101 demonstrated that despite receiving ART for a year, PMBCs from HIV-

infected individuals continue to exhibit abnormal cytokine production. These findings are 

supported by other studies showing that despite ART, abnormal cytokine, such as IL-6, 

and chemokine levels, such as CCL2 and CXCL10, fail to normalize and may contribute 

to disease progression33, 102, 103.  

Since cytokines and chemokines are important in the control of immune 

activation and inflammation, cell function, and mobility, investigating their altered 
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regulation may further reveal relevant therapeutic targets. Such investigation of targets 

like the CCR5 receptor and its ligands has led to the development of anti-HIV 

therapeutic agents104. Conversely, certain cytokines thought to be important in the 

maintenance of T-cells and which are normally anti-viral in function are shown to actually 

further contribute to viral replication. For example, IL-7, a cytokine important in 

thymocyte proliferation and survival, is shown to lead to an increase in HIV viral 

replication, and in those individuals on ART, IL-7 is demonstrated to reactivate latent 

proviral DNA105, 106.  

Understanding what contributes to the observed chronic activation is of interest in 

order to better target these issues and so as to improve immune function in these HIV-

infected individuals. Studies suggest several potential sources for the chronic activation 

including residual low-level replication, microbial translocation, co-infection with other 

pathogens such as HCV, depletion of immuno-regulatory cell subsets, as well as defects 

that are a byproduct of HIV-infection prior to ART initiation99, 107, 108. Further, 

understanding the effect that the dysregulated cytokine and chemokine environment 

plays in affecting immune function and reconstitution can have implications for correcting 

these issues. For instance, HIV-1 infected subjects with high levels of the pro-

inflammatory chemokine IP-10 are more likely to have immunological treatment failure 

following HAART109. As mentioned above investigation of CCR5 and its chemokine 

ligands has led to development of therapeutics that have aided in understanding how to 

better inhibit HIV replication110. Now with ART, HIV-1 replication is decreased 

significantly, however investigating other possible associations HIV-1 infection post-ART 

has with the chemokine system can reveal additional targets to improve immune function 

in these individuals. 
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i. IP-10/CXCL10  

 Interferon-!-inducible protein-10kDa (IP-10), also referred to as CXCL10 or 

small-inducible cytokine B10, is a 10kDa chemokine part of the CXC family of 

chemokines9. IP-10 is produced by a wide-range of cell types that include monocytes, 

innate immune cells such as neutrophils and eosinophils, lymphocytes, epithelia cells, 

endothelial cells, stromal cells, hepatocytes, astrocytes, and keratinocytes111, 112. The IP-

10 protein can be induced by a host of factors, which in addition to IFN-!, can be 

induced by Type-I interferons IFN-"/#, weakly by TNF-" (unless it synergizes with IFNs), 

IL-12, stimulation of toll-like receptors, RIG-I like receptors, and RNA helicases112, 113, 114, 

115, 116. Expression of the IP-10 protein requires binding of a STAT1-STAT2 heterodimer 

to the IP-10 promoter117. The promoter itself for IP-10/CXCL10 contains a functional 

IRSE and NF-$B1 element 118. 

Along with MIG/CXCL9 and I-TAC/CXCL11, IP-10 binds the CXCR3 receptor, a 

seven trans-membrane G-protein coupled receptor, with intermediate affinity compared 

to MIG and I-TAC9, 119. The CXCR3 receptor can be expressed on NK cells, NKT cells, 

plasmacytoid dendritic cells, certain B-cell subsets, macrophages, and activated T-

lymphocytes9, 120. Expression of CXCR3 on immune cells is then shown to allow entry of 

these cells into sites of inflammation and restricted sites, such as the brain121, 122. In 

humans, the CXCR3 receptor is coupled to a G"i protein and has 3 isoforms, CXCR3-A, 

CXCR3-B, and CXCR3-Alt. The CXCR-B isoform can also bind CXCL4 and acts 

inhibitory in nature compared to the CXCR3-A isoform123.  

For binding of IP-10, MIG, and I-TAC to the CXCR3 receptor, the sulfated N-

terminus of the receptor is necessary. For IP-10 the proximal16 amino acid residues of 

the N-terminus of the receptor are also required120. In regards to internalization of the 

CXCR3 receptor, this also requires the carboxyl terminal and beta-arrestin-1 domains124. 
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Along with IP-10’s binding to these regions for receptor internalization, binding also 

initiates signaling pathways involved in chemotaxis and calcium mobilization124, 125. 

Moreover, internalization of the receptor and calcium mobilization initiate signaling 

cascades involving Akt and kinases such as p38126. Additionally, IP-10 is shown to play 

a role in regulating apoptosis, angiostasis, cell growth, and proliferation9. Furthermore, 

the IP-10/CXCR3 signaling pathway is shown to exert signals that may disrupt the 

immunological synapse, thereby potentially affecting normal TCR signaling127.  

The IP-10 protein can exist both in its “long” agonist form and as a shorter 

competitive antagonist form128. In addition, the antagonist form can still bind the CXCR3 

receptor, but blocks signaling129. The antagonist form results from a two amino acid N-

terminal truncation due to processing by the amino-peptidase CD26 (dipeptidyl 

peptidase IV, DPPIV)130. CD26 is a 110kDa protein expressed on the surface of mature 

thymocytes, activated T and B-cells, NK cells, macrophages, endothelial, and various 

tissue epithelial cells131, 132. CD26’s expression on cells increases 5-10 fold following 

activation of cells and can also exist in an active soluble form. CD26 exerts its function 

through its extracellular domain, which can cleave dipeptides from the N-terminus of 

proteins, such as IL-8 and IP-10, and in turn leads to different isoform production or 

protein degradation130, 131.   

 

ii. IP-10 and HIV-1 Infection 

IP-10 is found to be elevated not only during untreated HIV-1 infection, but 

despite ART, remains elevated compared to healthy HIV-uninfected controls133, 134, 135. 

CXCL10 is also shown to stimulate HIV viral replication and blocking IP-10’s interaction 

with CXCR3 reduces this replication136. Furthermore, with this elevation, IP-10 is shown 

to be predictive of not only viral loads in HIV-1 infected individuals, but also predictive of 

rapid disease progression12, 134. On a similar note, HIV controllers with elevated IP-10 
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levels are shown to have higher immune activation and lower CD4+ cell counts137. 

Conversely, Lajoie et al.138 demonstrated that HIV-exposed sero-negative sex-workers 

have significantly lower levels of IP-10 in their mucosa compared to their HIV-negative 

and HIV-positive counterparts. These findings suggest a protective role of low IP-10 

levels. In addition to canonical induction of IP-10, HIV-1 infection can induce high levels 

of IP-10 through stimulation of TLR7/9 dependent pathways114. IP-10 has also been 

found to be elevated in the cerebrospinal fluid of HIV-1 infected subjects exhibiting viral 

replication in the CNS139. Furthermore, HIV-1 proteins are shown to take advantage of 

the pleiotropic effects of IP-10 and exacerbate disease. Specifically, HIV’s Tat helps 

induce IP-10 by antigen-presenting cells thereby recruiting more targets140, 141. While 

gp120 and Nef are shown to induce IP-10 in astrocytes contributing to toxicity and in turn 

neuronal cell death142, 143. Besides its effects during untreated HIV-1 infection, IP-10 is 

also associated with immunological treatment failure during HAART109.  

  

iii. IP-10 and HCV Infection 

 The CDC reports that 25% of individuals living with HIV are co-infected with 

hepatitis c virus and in those HIV-infected individuals who are injection drug users, 80% 

are co-infected with HCV144. Furthermore, co-infection with HIV is shown to accelerate 

HCV disease progression145. Thereby understanding HCV infection can help inform HIV-

1 infection. As mentioned above, IP-10 is elevated in HIV-1 infection and when 

examining subjects mono-infected with HCV, the levels of IP-10 are not only elevated, 

but also correlate with markers of liver damage and inflammation. Moreover, the levels 

of IP-10 during co-infection when compared to mono-infected individuals are shown to 

be even more elevated145. These findings suggest that exploring IP-10 in these patient 

populations can have potential benefits for both HIV and HCV infection.  
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 Increased levels of IP-10 in HCV infection are also associated with increased 

HCV viral loads, fibrosis of the liver, and are predictive of responsiveness to therapy146. 

The effect of IP-10 on responsiveness to HCV therapy has exhibited similar results in 

subjects co-infected with HIV147. Finding it contradictory that a chemokine involved in the 

recruitment of immune cells to sites of infection serves as a negative prognostic marker 

led to a more in depth investigation of IP-10 during HCV infection. Casrouge et al.130 

demonstrated that IP-10’s antagonist form through potential processing by CD26 is 

elevated in HCV infected individuals, suggesting that IP-10 antagonism may be present 

when IP-10 is elevated in these individuals. Another study by Soderholm et al.148 indicate 

that individuals with lower concentrations of soluble CD26 (sCD26) have better 

treatment outcomes compared to individuals with elevated sCD26. Additionally, lower 

sCD26 levels are associated with higher HCV-specific CD8+ T-cells in the blood148. 

These findings would suggest that lower sCD26 could be associated with less IP-10 

antagonism and better T-cell functionality.  

 

 iv. IP-10 and Other Diseases 

 Similarly in subjects with hepatitis B virus infection, Hou et al.149 have shown that 

IP-10 correlates not only with HBV viral loads, but also with increased levels of the 

exhaustion marker PD-1 on T-cells, suggesting a potential impact of elevated IP-10 

levels on functionality of T-cells.  Additionally, in individuals with HIV-1 infection, 

elevated levels of IP-10 can potentially affect the ability of these subjects to clear H1N1 

virus infections150.  

 Aside from viral infections, IP-10 is also elevated in a number of other diseases. 

Specifically, IP-10 is suggested to play a role in the immuno-pathogenesis of rheumatoid 

arthritis151. Likewise, a study by Yellin et al.152 further demonstrated the impact of IP-10 

in rheumatoid arthritis, showing that blocking of IP-10 led to clinical efficacy in patients 
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that were part of a phase-II clinical trial.  Again, IP-10 is elevated in both Type-1 and -2 

diabetes153, 154, 155, chronic spinal cord inflammation156, and airway diseases, such as 

asthma157. Findings on elevated levels of IP-10 have targeted it as a potential biomarker 

for not only HCV infection158, but also tuberculosis159.  

 Additionally, while IP-10 is beneficial in certain cancers, such as breast 

cancer152160, this may not always be the case. Rainczuk et al.161 found evidence of the 

antagonistic form of IP-10 in serous epithelial tumors, which correlated with less T-

lymphocyte infiltration and potentially negative prognosis for patients having higher 

levels of the IP-10 antagonistic form.  

 

1.8 Introduction to Aims of Thesis 

 Years of extensive research in the hopes of identifying and developing an 

effective vaccine against HIV that could lead to a functional cure and/or better targeting 

of the viral reservoir has yet to be accomplished. With amazing progress in the field of 

antiretroviral therapies, HIV-1 has gone from being a death sentence to a manageable 

chronic disease that allows individuals to live a better and longer life. Aside from 

potential side-effects of long-term ART use, the HIV-1 infected population continues to 

age and it has become apparent that damage caused by the HIV virus has left 

individuals with compromised immune systems, particularly the preferential depletion of 

CD4+ helper subsets. Therefore, this thesis investigates hypotheses aimed at 

understanding 1) whether a therapeutic DNA-based vaccine strategy can elicit potent 

cell-mediated immune responses suggested to be important in HIV-1 control; 2) the role 

that pre-vaccination cell-mediated factors may play in vaccine responses to non-HIV 

infections, specifically influenza; And 3) the impact that the imbalanced 

cytokine/chemokine milieu may have on T-cell responses in HIV-1 infected individuals 
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on stable therapy. These hypotheses can lend support for research involved in better 

understanding the timing of ART initiation and preservation of important cell-subsets and 

its effect on cell-mediated responses to vaccines. As well, the research contained herein 

can elucidate what responses may still need to be improved further as well as identify 

possible therapeutic targets to enhance cell-mediated immunity.  

 

i. Improving cell-mediated immune correlates of protection against HIV-1 

 Studies by Betts et al.40, 49 and Migueles et al.162 have expanded our 

understanding of potential cell-mediated immune correlates of protection against HIV-1 

infection.  These studies have examined how long-term non-progressors and controllers 

who in the absence of antiretroviral therapy are able to control HIV-1 infection and 

increase their time to disease progression.  

 Specifically, these studies demonstrate the significance of multi-functional T-cell 

responses, proliferative capacity, and ability of CD8+ CTLs to kill virally infected cells. 

Thereby in the development of a therapeutic vaccine against HIV-1, eliciting these 

responses will be a significant task. Therefore, the first study examined in this thesis 

explores the use of a DNA based vaccine, not only as a safe strategy to administer to 

HIV-1 infected individuals, but also a good method to elicit cell-mediated immune 

responses against HIV-1 antigens. An additional aim is to examine potential factors that 

may dampen vaccine responses against HIV-1.  

 

ii. Understanding non-responsiveness to vaccines against potential opportunistic 

infection. As has been discussed by various researchers, HIV-1 infected individuals 

despite effective antiretroviral therapy continue to show issues in T-cell regeneration and 

function3, 14. Additionally, findings as to the benefit of ART for the protection from 

opportunistic infections are varied. This means that HIV-1 infected individuals may still 
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be at risk for complications from opportunistic infections, one such being influenza 

infection. The need to vaccinate the population against influenza viruses yearly and the 

risk of the rise of new pandemic strains leaves immuno-compromised individuals in 

jeopardy. Therefore, in order to better understand why certain individuals respond 

properly to non-HIV vaccines while others do not, we sought to examine responses to 

H1N1 vaccination. We hypothesized that chronic immune activation that persists in 

individuals on ART may play a role in responses to H1N1 vaccination and in turn the 

ability to achieve sero-protection. 

 

iii. Exploring residual issues affecting immunogenicity in the presence of stable 

antiretroviral therapy.  With stable ART, it is demonstrated that viremia declines, 

inflammation and immune activation also decline, and there is immune reconstitution of 

certain cell subsets, specifically CD4+ cells10, 21, 25. Therefore, in the absence of high 

levels of HIV viral replication and immune activation the question arises as to why there 

remain problems in T-cell functionality. In addition to potential complications that may 

come about from possible low-level HIV viral replication, other co-pathogens, and 

microbial translocation, the mediators of some of these issues, the cytokines and 

chemokines, may be potential therapeutic targets that can aid in boosting 

immunogenicity and sero-protection against vaccines. Therefore, we hypothesize that 

exploring the altered cytokine/chemokine environment that is present in HIV-1 infected 

individuals can offer us ways in which to boost cell-mediated immune responses. 

 

iv. Investigating IP-10 as a potential therapeutic target in improving vaccine 

immunogenicity. IP-10/CXCL10 is up-regulated in several diseases and is a negative 

prognostic marker for many of them including HCV130 and HIV-1 infection12. Interestingly, 

IP-10 remains elevated in HIV-1 infected individuals on stable ART. So using research 
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from the HCV field regarding the role of IP-10 in responsiveness to therapy can help 

inform the field of HIV in better understanding IP-10’s role in chronic HIV infection. 

Furthermore, the ovarian cancer field has further expanded a potential role that IP-10’s 

antagonistic form may play in successfully treating patients161. Hence, in the third study 

of this thesis we hypothesize that elevated levels of IP-10 present in HIV-1 infected 

individuals on ART can impact T-cell function and in turn responsiveness to vaccination. 

Additionally, targeting of IP-10 and/or its receptor, CXCR3 could aid in improving cellular 

immune responses.    

 

v. Overarching aims of this thesis. The aims of this thesis contained herein focus on 

improving T-cell mediated immune responses shown to be important in the control of 

HIV-1 infection during acute infection and in long-term non-progressors. Additionally, this 

thesis aims to understand what factors play a role in non-responsiveness to vaccination 

and what factors present after the initiation of ART contribute to non-responsiveness. 

Finally, examining the impact from the dysregulated cytokine/chemokine milieu, 

specifically elevated IP-10 levels, on T-cell function, can aid our understanding in 

improving vaccine strategies both for therapeutic HIV-1 vaccination and non-HIV 

vaccination, specifically influenza. 
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CHAPTER 2: 

Therapeutic Immunization of Synthetic Consensus HIV env, gag, and 

pol DNA in HIV Infected Individuals Induces Potent Cellular Immune 

Responses and Synthesis of Granzyme B, Perforin. 

 

 

“Even if HIV prevention efforts were optimally implemented to achieve a new infection 

rate of near zero, recidivism could threaten this success.” 

 –Dr. Anthony Fauci (N. Engl. J. Med. 2014; NIAID) 
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2.1 Abstract 

In this phase-I clinical trial we examined the safety and immunogenicity of 

immunization of HIV-1 infected individuals on stable antiretroviral therapy with 

therapeutic vaccination. Twelve HIV-1 infected subjects on stable ART received four 

doses of the PENNVAX®-B vaccine (encoding synthetic consensus HIV env, gag, and 

pol) delivered with in vivo electroporation. The vaccine was safe and well tolerated. 

Investigating the immunogenicity elicited by the vaccine demonstrated the production of 

IFN-! by both CD4+ and CD8+ T-cells. Additionally, immunization with this vaccine also 

induced CD8+ T-cells to degranulate and produce perforin and granzyme B in response 

to stimulation with HIV antigens. This study demonstrates the capability of a therapeutic 

DNA vaccine against HIV-1 to induce potent responses suggested to be important in the 

control of HIV-1 infection.  

 

The study in this chapter was conducted in collaboration with others, including Drs. 
Morrow, Tebas, and Weiner. Our lab performed ELISpot and flow cytometric 
immunological assessments. 
 
Citation: Morrow, MP, Tebas, P, Yan, J, Ramirez, LA, Slager, A, Kraynyak, K, Diehl, M, 
Shah, D, Khan, A, Lee, J, Boyer, J, Kim, JJ, Sardesai, NY, Weiner, DB, Bagarazzi, ML.!
Synthetic Consensus HIV-1 DNA induces potent cellular immune responses and 
synthesis of granzyme B, perforin in HIV infected individuals. In Review.  
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2.2 Introduction 

 i. Development of a Therapeutic Vaccine Against HIV-1 

 With several years of arduous research, the question remains as to whether a 

cure against HIV is possible. Over twenty years of research has led to significant 

enhancements in antiretroviral drug regimens, which can succeed at inhibiting HIV-1 

replication. Similarly, providing condoms, male circumcision, pre-exposure prophylaxis 

drugs in addition to ART has reduced the risk of HIV transmission and acquisition163. 

However, these drugs and resources have and continue to have obstacles, including 

issues with adherence, accessibility, and side-effects/toxicities164.  Furthermore, while 

this has indeed improved the lifestyle and survival of people living with HIV17, the long-

term need to have these individuals on drugs for the rest of their lives is not only costly 

to those being treated, but also to the institutions that need to keep developing, 

improving, and delivering these drugs. Therefore, the need to generate a functional cure, 

or a therapeutic treatment that could reduce the need for long-term therapy is 

necessary164. Additionally, as Katlama et al.165 explain, the development of a therapeutic 

vaccine that could assist in boosting immune responses against HIV can help better 

target the viral reservoir. Specifically, if a therapeutic vaccine can boost cell mediated 

immune responses, combine that vaccine with an agent that elicits the virus from the 

latent reservoirs, together this strategy could help eliminate and target the virus164, 166.  

 However, the HIV vaccine field has gone back in forth in regards to T-cell based 

vaccines and those that attempt to elicit broadly neutralizing antibodies. Nonetheless, 

the field of HIV vaccines has seen both setbacks as with Merck’s STEP trial167 and slight 

successes as with the RV144 trial; it is still suggested that in order to better treat HIV 
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infection both arms of the immune system will likely play significant roles168.  

Nonetheless it is possible that responses necessary in a prophylactic setting may not be 

effective in a therapeutic setting. In regards to T-cell vaccines, Hansen et al.169 

demonstrated that a T-cell based vaccine against SIV, while not protective from HIV 

acquisition, could elicit SIV-specific CD8+ T-cell responses which are associated with 

the control of infection. In addition, research on therapeutic vaccines has shown that 

several vaccine modalities including viral vector-based (e.g. Modified vaccinia Ankara 

vector-based), dendritic cell-based (e.g. DCV2/MANON07-ORVACS), subunit-based 

(e.g. Vacc-4x), and DNA-based (e.g. DermaVir) vaccines can elicit immunogenic T-cell 

responses264.  Therefore, a therapeutic HIV vaccine that could help infected individuals 

control infection, possibly with reduced need for ART, or help target latently infected 

cells through the boosting of T-cell mediated responses is of investigation in this study. 

 Moreover, understanding of potential cell-mediated immune correlates of 

protection have come from examining those individuals who are able to maintain control 

of HIV in the absence of therapy and have limited their disease progression. Studies, by 

Migueles et al.52, 53, Hersperger54 and Betts et al.49 have demonstrated the role of not 

only a poly-functional T-cell response, but also the importance of CTL cytotoxic capacity 

and killing of infected cells in the control of HIV-1 infection. Recenlty, Ndhlovu et al.166170 

also demonstrated that HIV controllers maintain a broad HIV-specific CD8+ T-cell 

memory response against HIV gag, which may play a role in long-term viremic control. 

Additionally, while broadly neutralizing antibodies may be important to elicit as well, B 

cells also need assistance from functional T-cells in order to help initiate and maintain B 

cell responses.  

As mentioned above, a variety of vaccine modalities have been investigate for 

the use as therapeutic vaccines, these strategies include DNA based vaccines, dendritic 
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cell-based vaccines, and nonreplicative viral vectors, such as canarypox-based 

vaccines264. The study in this chapter implemented the use of a DNA vaccine combined 

electroporation for enhanced transfection of cells. Compared to other vaccine modalities, 

such as live vaccines or recombinant viral vectors, DNA vaccines, which use plasmid 

constructs, offer a safer strategy to target HIV-1171. With improved design and delivery of 

DNA vaccines, their immunogenicity has and continues to improve in generating both 

humoral and cell-mediated immune responses171. Furthermore, the DNA PENNVAX®-B 

vaccine delivered with electroporation was previously shown to be safe and elicit CD4+ 

and CD8+ T-cell responses in HIV sero-negative individuals (HVTN protocol 080 

NCT00991354). Thus, in this study we investigate and characterize T-cell responses, 

including IFN-! production and cytotoxic capacity, in response to vaccination with a 

therapeutic DNA vaccine against HIV env, pol, and gag antigens.  

 

2.3 Results 

 i. Study design 

 The study described in this chapter was an open label, phase I clinical trial 

conducted at one center in the United States (NCT01082692). The study protocol was 

approved by an Institutional Review Board and adhered to the guidelines of Good 

Clinical Practice and the Declaration of Helsinki. Written informed consent was obtained 

prior to study enrollment. For inclusion into the study, adult HIV-1 infected male and 

female subjects had to be between 18 and 55 years of age, currently receiving a highly 

active antiretroviral therapy (HAART), needed to have undetectable plasma viral loads 

(<75 copies/ml), CD4+ lymphocyte counts %400 cells/µl, and nadir CD4+ lymphocyte 

counts >200 cells/µl. Counts were documented twice on different occasions within 60 

days of enrollment into the study. Female subjects could not be pregnant or nursing, and 
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needed a negative serum pregnancy test within 30 days of entry into the study, and 

finally must have a negative urine pregnancy test on the day of the first therapeutic 

vaccine dose. Individuals were excluded if they had any past or present AIDS-defining 

illness, malignancy needing chemotherapy, autoimmune disease, or had received any 

other immunomodulatory therapy within 4 weeks of study entry. A timeline depicting 

screening for eligibility up to and including analysis can be seen in figure 2.1. 

The aims of this study were to examine the safety and immunogenicity of a 

therapeutic HIV-1 DNA vaccine delivered with electroporation in HIV-1 infected 

individuals on stable antiretroviral therapy. The PENNVAX®-B vaccine is a cocktail of 3 

expression plasmids that contain the genes that encode synthetic HIV-1 Clade B env, 

gag, and pol. Subjects (n=12) received four doses of the PENNVAX®-B vaccine 

delivered intramuscularly followed immediately by electroporation with the 

CELLECTRA® 2000 Adaptive Constant current device. Each dose contained 3mg of the 

expression plasmids in equal proportions. Doses were administered as shown in figure 

2.2. Blood was also collected at the time-points depicted in figure 2.2 as well as safety 

assessments on time-points where the vaccine was administered. Demographics and 

characteristics of the study population are depicted in Table 2.1. The average age of the 

subjects was 42.6 years and ranged between 31-55 years. Eleven of the twelve subjects 

were male, and 58% identified as black and 92% as non-Hispanic or Latino.  

All in all immunization with the PENNVAX®-B vaccine delivered with 

electroporation was well-tolerated and no severe, life-threatening, or adverse events 

occurred during the course of this study.  
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Figure 2.1. Schematic of eligibility, determination, enrollment, study conduct, 
and analysis.
!
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Figure 2.2. Study schedule and immunization time-line for participants of the 
study. The schematic depicts time-points of immunization, pain assessment 
(P.A.), and collection of blood for immunologic and virologic assays. 

!
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Table 2.1. Demographic and immunologic characteristics of study participants. 

Characteristic   Subjects (n=12) 
Age, y     
   Mean  42.6 
   Range  31-55 
Sex, n (%)     
   Male  11 (92) 
   Female  1 (8) 
Race, n (%)     
   White  5 (42) 
   Black or African American  7 (58) 
Ethnicity, n (%)     
   Hispanic or Latino  1 (8) 
   Non-Hispanic or Latino  11 (92) 
Body Mass Index, kg/m2     
   Mean  27.7 
   Range  21-40.4 
CD4+ T-cell count at screening, cells/µl     
   Mean  733 
   Range   461-993 
Nadir CD4+ T-cell count*, cells/µl     
   Mean  505 
   Range  203-877 
HIV-1 viral load at screening, copies/ml     
   Modes  20, 48 
   Range   20-63 
*n=11, data not available for one subject  
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ii. IFN-! Induction in PBMCs by Vaccination with PENNVAX®-B 

IFN-! is an important measure of innate and adaptive anti-viral responses261. 

Using a standard IFN-! ELISpot assay we measured cellular immune responses elicited 

by immunization with PENNVAX®-B. We specifically examined IFN-! production in 

response to the antigens included in the vaccine, that is env, gag, and pol, across the 

immunization time-line. Each of the individual 12 subjects’ IFN-! responses to env, gag, 

and pol at each time-point can be seen in figure 2.3. Time-points for each subject’s 

peak responses are as follows: Subject 03-001 (gag: wk 18; pol: wk 8; env: wk 8), 

subject 03-002 (gag: wk 48; pol: wk 18; env: wk 48), subject 03-005 (gag: wk 10; pol: wk 

10; env: wk 10), subject 03-006 (gag: wk 24; pol: wk 8; env: wk 24), subject 03-007 (gag: 

wk 24; pol: wk 48; env: wk 24), subject 03-008 (gag: wk 4; pol: wk 24; env: wk 4), subject 

03-010 (gag: wk 16; pol: wk 16; env: wk 18), subject 03-011 (gag: wk 48; pol: wk 48; 

env: wk 48), subject 03-013 (gag: wk 48; pol: wk 48; env: wk 48), subject 03-015 (gag: 

wk 48; pol: wk 48; env: wk 48), subject 03-016 (gag: wk 10; pol: wk 10; env: wk 18), 

subject 03-017 (gag: wk 16; pol: wk 16; env: wk 16). 

 When examining day 0, peak, and memory (week 48) vaccine responses, we 

found IFN-! responses peak at 692.6±436.4, 614±344.5, and 341.0±243.8 SFC/106 

PBMCs for gag, pol, and env respectively. Comparing day 0 responses to peak 

responses demonstrated a significant increase in response to vaccination (Day 0-gag: 

364.2±310.2 SFC/106 PBMCs, p=0.0010; Day 0-pol: 372.0±384.0 SFC/106 PBMCs, 

p=0.0068; Day 0-env: 175.1±155.1 SFC/106 PBMCs, p=0.0010; figure 2.4). When 

looking at the subjects individually, we also see that vaccination led to IFN-! responses 

great than 1000 SFC in some of the subjects (figure 2.3) Additionally, while there was 

an increase in IFN-! production during memory responses (Week 48), these responses 

were not significantly elevated compared to Day 0 (gag: 364.2±310.2 vs. 412.0±398.8 
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SFC/106 PBMCs; pol: 372.0±384.0 vs. 454.5±454.2 SFC/106 PBMCs; env: 175.1±155.1 

vs. 199.4±195.9 SFC/106 PBMCs; figure 2.4). In addition, two subjects did not have 

enough sample available to examine memory responses (Week 48). Furthermore, to 

determine if there was an increase in ELISpot responses to non-vaccine antigens, we 

examined subjects’ IFN-! ELISpot response to HIV Nef antigen, which was not part of 

the vaccine. However, vaccination did not lead to a significant increase in IFN-! 

response to Nef (p=0.6569; figure 2.5). 

We next sought to determine which individuals exhibited responses that would 

classify them as responders to vaccination. Since subjects’ responses prior to the first 

vaccine dose were examined multiple times, a pre-vaccine ELISpot response for each 

antigen (gag, pol, env) was determined for each subject. Using this pre-vaccine 

response we required subjects’ IFN-! ELISpot responses to be at least 2 standard 

deviations above the pre-vaccine response in order to be classified as a responder to 

the particular HIV antigen (gag, pol, or env). Following these criteria, all of the twelve 

subjects were shown to be responders to at least one of the vaccine antigens, with the 

majority of the subjects (11/12) being responders to pol. Nonetheless, 8/12 subjects 

were positive responders to gag and half showed a response to env (Table 2.2). Each 

individual’s response to each antigen is depicted in Table 2.3. Moreover, nine of the 

twelve subjects showed positive responses to more than 1 of the antigens, and 4 

subjects exhibited a response to all three. Additionally, eight of the twelve subjects 

demonstrated positive responses at more than one time-point during the immunization 

time-line.   
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Figure 2.3. IFN-! ELISpot responses to gag, pol, and env across the study time-line for 
each individual study participant. Note that subject 03-010 did not have sample available 
for week 24 and 48; and subject 03-008 did not have sample available for week 48. 
Graphs depict IFN-! SFC/106 PBMCs. Blue color indicated response to gag; red color 
represents response to pol; and green color represents response to env. 
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Figure 2.4. IFN-! ELISpot responses to individual gag, pol, and env HIV-1 antigens 
part of the PENNVAX-B® vaccine on day 0, the peak of response, and memory (8 
months after the final dose of PENNVAX-B®). Day 0 responses were significantly 
lower than peak responses (gag: p=0.001; pol: p=0.0068; env: p=0.001). Graph 
depicts IFN-! SFC/106 PBMCs. 
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Figure 2.5. IFN-! ELISpot responses to HIV-1’s Nef antigen (not part of PENNVAX-B®). 
This served as a control for natural variation in responses to HIV antigens. ELISpot 
responses to Nef did not differ significantly between baseline and peak response for the 
individuals in this study. Graph depicts IFN-! SFC/106 PBMCs. 
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Table 2.2. IFN-! ELISpot response to PENNVAX-B® HIV-1 antigens. Responders to 
gag, pol, and env by subject. 

Patient ID Gag Pol  Env 
03-001 - + - 
03-002 + + + 
03-005 - + - 
03-006 + - + 
03-007 + + - 
03-008 - + - 
03-010 - + + 
03-011 + + + 
03-013 + + - 
03-015 + + + 
03-016 + + - 
03-017 + + + 

 

 

 

Table 2.3. IFN-! ELISpot, PENNVAX-B® response summary. 

# of Responders to at least 1 antigen 12/12 
# of Responders to Gag 8/12 
# of Responders to Pol 11/12 
# of Responders to Env 6/12 
# of Responders to more than 1 antigen 9/12 
# of Responders to all 3 antigens 4/12 
# of responders at more than 1 time-point 8/12 
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iii. Cytotoxic capacity of CD8+ T-cells 

 We next wanted to determine if vaccination with PENNVAX®-B induced CD8+ T-

cell responses associated with CTL functions. Specifically, while IFN-! production is 

suggestive of an anti-viral response5, functions associated with the identifying and killing 

of infected target cells are suggested, by studies of HIV controllers, to be important for 

control of HIV-1 infection53. We therefore examined the ability of CD8+ T-cells to 

degranulate, through expression of CD107a, and produce perforin and granzyme B. 

However, one subject  (03-010) did not have enough sample to analyze this response. 

We used the gating strategy depicted in figure 2.6 to identify CD8+ T-cells that could 

degranulate and produce the cytotoxins perforin and granzyme B. Furthermore, the 

lower cut off of the assay is 0.05%. Hence, we examined the impact of vaccination with 

PENNVAX®-B compared to baseline CD8+/CD107a+/Perforin+/Granzyme B 

frequencies.  

 We found that 7 of the 11 subjects examined demonstrated CD8+ cytotoxic 

responses that were above the lower cut off of the assay. In addition, 6 of those 7 

subjects demonstrated responses that exceeded baseline frequencies and of which 

were as high as 0.49% (figure 2.7).  While on the other hand 4 of the 11 subjects 

examined showed weak CD8+ CTL responses or responses that did not exceed 

baseline frequencies, with one subject not showing a response at all. This demonstrated 

that PENNVAX®-B can potentially enhance CD8+ CTL responses associated with 

control of HIV-1 infection, however, not all subjects exhibited a boost in response. 
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Figure 2.6. Multi-parameter flow cytometry panel used for gating the CD8+ CD107a+ 
Perforin+ Granzyme B+ population. We gate the live population followed by our CD3+ 
population, then for our CD8+ T-cell subset. On this subset we gate for both our 
CD107a+ and Perforin+ Granzyme B+ populations. We then apply the Perforin+ 
Granzyme B+ gate to the CD107a+ population to maintain consistency in our gating.     
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Figure 2.7. Frequency of CD8+ T-cells expressing the marker of degranulation CD107a 
and cytoxins perforin and granzyme B split up by HIV antigen (gag, pol, env), and total 
HIV for each study participant pre-immunization and post-immunization. Time-points for 
Post immunization responses for each subject are as follows: 03-001 (gag: wk 18; pol wk 
24; env: no response), 03-002 (gag: wk 18; pol wk 18; env: wk 18), 03-005 (gag: wk 4; pol 
wk 10; env: no response), 03-006 (gag: wk 18; pol wk 10; env: wk 4), 03-007 (gag: wk 10; 
pol wk 10; env: wk 10), 03-008 (gag: wk 18; pol wk 10; env: wk 10), 03-011 (gag: wk 18; 
pol wk 18; env: wk 10), 03-013 (gag, pol, env: no response), 03-015 (gag: wk 8; pol wk 24; 
env: wk 24), 03-016 (gag: wk 8; pol wk 24; env: wk 48), 03-017 (gag: wk 16; pol wk 10; 
env: wk 24). 
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2.4 Discussion 

 In this study we examined the safety and immunogenicity of PENNVAX®-B 

delivered with electroporation in HIV-1 infected individuals who are on stable ART. This 

vaccine was shown to be safe and induced T-cell responses in HIV-uninfected 

individuals, thus we sought to examine if this vaccine could also aid in enhancing cellular 

immune responses in those infected with HIV. For those infected with HIV-1 and on 

stable ART, it would be the goal of a therapeutic vaccine or immuno-therapy, to enhance 

or modify the immune response to aid in controlling the virus with little or no need for 

ART, target the viral reservoir, or eliminate HIV-1 infection164, 165. Additionally, as 

research continues to explore how to better target the viral reservoir, researchers, like 

Archin et al.166 have demonstrated that when they administered the HDAC inhibitor drug, 

vorinostat, to latently infected HIV-positive individuals, the levels of HIV RNA in resting 

CD4+ T cells increase. However, this also suggests the need for HIV-1 infected 

individuals to have the capability of targeting these infected cells, either through ART or 

in combination with a therapeutic vaccine/immuno-therapy that boosts immune functions 

associated with the identification and killing of virally infected cells164, 166. Therefore, 

without understanding how to eliminate these cells, it could leave individuals in a worse 

situation than the one they are in while on ART, such as further depletion of cell subsets 

necessary for avoiding complications from opportunistic infections. Nevertheless, the 

potential for a cure exists, as has been shown by the Berlin patient172. 

 Nonetheless, while previous DNA vaccine strategies have suffered from poor 

immunogenicity and cell-mediated immune responses173, continued research has 

demonstrated that DNA vaccine potency has significantly improved174. Importantly, this 

study shows that a DNA vaccine strategy can be immunogenic and elicit potent cellular 



43 

responses important against HIV-1 infection. Furthermore, this study supports the use of 

electroporation in delivering DNA-based immuno-therapies.  

 The results presented in this study suggest it is possible to enhance cellular 

immune responses in HIV-1 infected individuals on ART and reveals additional potential 

therapeutic targets. Specifically, this study demonstrated that IFN-! production could be 

enhanced against more than one HIV-1 antigen and in all the individuals in the trial. 

However, the majority of responders responded to pol followed by gag, and env. 

Knowing this, enhancing responses to these antigens may be necessary in order to 

induce a broader cell-mediated response against HIV, which is suggested to be 

important170, 175. Moreover, the responses elicited were demonstrated to be specifically 

due to vaccination, since responses to antigens not present in the vaccine, Nef, were not 

boosted. In addition, the IFN-! responses induced by this vaccine were potent, over 

1000 SFCs, in several individuals. Likewise, this vaccine demonstrated that it is possible 

to use a therapeutic vaccine to elicit IFN-! responses that were indicative of a long-

lasting memory response. Thereby, suggesting that therapeutic vaccine could be used to 

help maintain long-term control of HIV-1 infection.  

  With chronic HIV-1 infection there is a gradual loss in CD8+ T-cells, partly due to 

the loss of CD4+ helper subsets176, 177. In spite of successful ART, these responses are 

not reconstituted leaving these individuals with the inability to respond properly to HIV-1 

infection45, 53. Boosting these CTL responses in HIV-1 infected individuals on ART with a 

therapeutic vaccine or immuno-therapy could lead to reduced need for ART and better 

cell-mediated control of HIV-1 infection. Here, we demonstrate that vaccination with 

PENNVAX®-B could elicit CD8+ CTL responses, specifically the ability to degranulate 

and produce perforin and granzyme B, against HIV-1 antigens. Therefore, this would 

suggest that a therapeutic vaccine against HIV-1 can potentially enhance CD8+ CTL 
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cytotoxic capacity, which could lead to better control of infection and delay disease 

progression. Even more, if combined with an anti-latency agent, the ability to kill virally 

infected cells could be boosted. Although several subjects demonstrated an 

enhancement in cytotoxic capacity, not all individuals showed such a response, and one 

individual none at all. On that account, in addition to improving vaccination strategies, 

the need to identify additional therapeutic targets that could further enhance CD8+ CTL 

responses is of interest.  

 As well, as was suggested by the RV144 Trial, eliciting a potent antibody 

response may need to be combined with a cell-mediated therapy to better target HIV-

1168. Additionally, further examining how to improve CD4+ T-cell helper responses will be 

beneficial to both humoral and CTL-mediated responses178. Nonetheless, this study 

demonstrates the need for an immuno-therapy against HIV and expands our 

understanding of eliciting potent cell-mediated immune responses in HIV-1 infected 

individuals on stable ART.  

!
Limitations of Study 

 This study demonstrates that a therapeutic vaccine against HIV-1 can be used to 

elicit T-cell mediated immune responses. However, while all the individuals in this study 

demonstrated a positive response via IFN-! as compared to baseline under the set 

definition of response, not all subjects’ exhibited strong responses. For example subjects 

03-016 and 03-017 had IFN-! responses below 500 SFC/106 PBMCs. While statistically 

they are shown to be positive responses, this study cannot address whether responses 

of that low magnitude would be “helpful” responses to HIV-1. In addition, it may be 

necessary to place stricter definitions on a responder in order to ensure a better analysis 

of the impact of vaccination. In addition, other subjects such as 03-006 show higher IFN-
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! responses, but that subject’s cytotoxic response is almost non-existent. Further 

analysis would be necessary to determine why cytotoxic capacity is not enhanced, such 

as the possible effect of T-cell exhaustion. As well, while this study does examine both 

the IFN-! and CD8+ cytotoxic responses, this study may underestimate the overall 

impact on T-cell mediated responses since additional possible functions, such as IL-2 

and TNF-", were not measured in this study. Even more, the analysis of IFN-! 

responses using ELISpot assays limit our findings as to what cells were producing that 

IFN-!. While the goal of this study was not efficacy, studies like this sometimes have 

explored the impact of vaccination through the use of structured treatment interruptions 

of ART to see if control of infection was improved. Studies like those are necessary as 

we continue to investigate what immune correlates are important in a therapeutic setting. 

Additionally, studies like this would benefit from research investigating the timing of 

immunization, specifically, how long after ART/what level of immune reconstitution might 

be necessary to elicit responses important in a therapeutic setting. Finally, this study 

limits our ability to determine if the responses generated by this vaccine are an 

enhancement or boosting of already present responses or eliciting de novo ones.   
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Chapter 3: 

Seroprotection of HIV-Infected Subjects After Influenza 

A(H1N1) Vaccination is Directly Associated with Baseline 

Frequency of Naïve T Cells. 

 

 

 

 

“At the onset of the 2009 influenza season, there was a lot of speculation about whether 
this pandemic would rival the extent of the 1918 pandemic. Fortunately, that was not the 

case, but the lessons learned can be applied to preparations for future pandemics.”        
–Phillip LaRussa (Semin. Respir. Care Med. 2011; Columbia University) 
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3.1 Abstract 

 Individuals infected with HIV-1 are at risk for developing complications from 

influenza infection. Regardless of antiretroviral therapy use, these individuals often have 

blunted vaccine responses. We sought to better understand what factors may impact 

sero-protection to influenza A(H1N1). HIV-1 infected subjects on stable ART received a 

15µg dose of the monovalent, unadjuvanted, inactivated, split virus H1N1 vaccine 

(Novartis). Prior to this study, subjects’ antibody titers were evaluated before receipt of 

the vaccine and at 3 weeks post-immunization. Subjects were then determined to have 

achieved sero-protection (Responders) if by week 3 they had HAI titers that were % 1:40 

and had a %four-fold increase in their antibody titers from baseline. When assessing the 

role of immune activation and cellular phenotypes on sero-protection, we found that 

while the levels of immune activation did not differ between Responders and Non-

responders, Responders had a higher frequency of naïve T-cell populations and lower 

frequency of terminally differentiated T-cell populations. We also assessed the cytokine 

and chemokine profiles of these individuals and compared the serum 

cytokine/chemokine levels to that of healthy HIV-negative controls and between 

Responders and Non-responders. Finally, we assessed the role that age plays in these 

factors associated with responsiveness and found that age was negatively associated 

with the frequency of naïve CD4+ T-cells. Therefore, this study suggests that 

preservation of naïve T-cell populations, through early ART initiation, could impact 

vaccine responses against influenza and other pathogens, especially as this population 

ages. 
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The study in this chapter was conducted in collaboration with others, including Drs. 
Tebas, and Frank. 
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Infected Subjects After Influenza A(H1N1) Vaccination is Directly Associated with 
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3.2 Introduction 

 In 2009 the novel pandemic H1N1 influenza spread world-wide leading to 

widespread infection and death179. In addition to the severity of this pandemic, seasonal 

influenza can lead to serious illness in young children, the elderly, those with chronic 

infections, and immune-compromised individuals, which include those infected with 

HIV180, 181, 182, 183, 184, 185. Furthermore, the influenza vaccine is safe in those infected with 

HIV186, 187, 188. With ART, the rates of influenza-associated complications are reduced, but 

the rates remain elevated as is seen in other high-risk populations189. 

 In spite of immune reconstitution that should be enough to prevent the 

development of opportunistic infections, HIV-1 infected individuals on ART are shown to 

have poor antibody and memory B-cell responses190. Additionally, poor responses are 

associated with CD4+ T-cell counts and HIV RNA levels191, 192, 193, 194. Even more, it is 

demonstrated that HIV-1 infected individuals often require higher or multiple doses of the 

influenza vaccine to achieve sero-protection195, as similarly seen in other high-risk 

groups196. An early study in HIV-1 infected individuals demonstrated that a 15µg dose of 

the inactivated influenza vaccine induced weaker antibody responses in HIV-infected 

individuals compared to healthy controls, suggesting the need for alternative strategies 

to improve influenza immunization197. Recent studies have demonstrated that 

administering higher doses (60µg)198, 199, multiple doses and/or adjuvanted doses182, 200, 

201, 202 can improve sero-protection, but not all individuals respond regardless.  

Examining the study preceding the one in this chapter, demonstrated that HIV-1 

individuals on ART do not all achieve sero-protection following H1N1 influenza 

vaccination203. Furthermore, despite ART, the durability of antibody responses following 

influenza vaccination is not as durable compared to HIV-uninfected controls204. 

Therefore the purpose of this study was to further understand what HIV-1 associated 
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dysregulation may affect the ability of these individuals to respond to influenza 

vaccination. While we do not examine the direct impact of HIV-associated dysregulation 

on B-cells, this study reinforces the impact on CD4+ T-cells can have impact on humoral 

responses and thus response to influenza vaccination.  

HIV-1 infection leads to an imbalanced cytokine/chemokine, environment, and 

induces changes in apoptosis, exhaustion, and senescence10, 205. The altered 

cytokine/chemokine environment was shown to impact the severity of pandemic H1N1 

influenza infection206. Thus, a dysregulated cytokine/chemokine milieu could also place 

HIV-1 infected individuals at risk, but understanding the role this environment plays can 

reveal possible targets to improve protection in these subjects. Also, regardless of ART, 

HIV-1 infected individuals maintain elevated levels of T-cell activation31. These levels of 

immune activation are associated with disease progression and are suggested to 

contribute to immune dysfunction14. Hence, it is possible that elevated levels of immune 

activation could contribute to blunted responses to vaccines. In addition, while the 

development and use of ART has improved the survival of individuals living with HIV-117, 

as this population ages their immune system ages as well, thereby contributing to 

defects of the immune system, a concept called “inflammaging.” This concept suggests 

that the immune systems of those infected with HIV-1 exhibit changes reminiscent of the 

elderly207. During physiological aging, there is progressive thymic involution, and in turn 

deceases in naïve T-cell numbers and reduced T-cell function207, 208. These changes are 

also seen in those infected with HIV and result in an accumulation of terminally 

differentiated immune cells, which can impact antigen responsiveness3.  Regardless, 

studies have demonstrated the importance of vaccinating the elderly against influenza to 

reduce complications and co-morbidities209, 210. And as the CDC211 suggests, giving the 
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influenza vaccine to those infected with HIV-1 is also necessary to protect these 

individuals212, 213.   

As a result, we hypothesize that in order to better improve protection in HIV-1 

infected individuals, it is necessary to understand what factors, such as immune 

activation, cytokine/chemokine dysregulation, cellular phenotypes, and aging, can 

contribute to lack of sero-protection and help identify prospective therapeutic targets to 

aid in designing better vaccination strategies against influenza and other pathogens.   

 

3.3 Results 

i. Study Design 

This research is a follow-up to the study previously presented by Tebas et al.203.  

The goal of that study was to examine the safety and immunogenicity of the 

recommended H1N1 vaccine (Novartis, Basel, Switzerland). HIV-1 infected subjects that 

were over the age of 18 and had an indication to receive the H1N1 vaccine were 

included in the study. Subjects were excluded if they had a known allergy to eggs or 

other components of the vaccines, had previous severe reactions to prior immunization 

to seasonal flu, or had known cases of H1N1 influenza during Spring 2009. Additionally, 

if subjects had received any licensed live vaccines 4 weeks prior to study entry, or 

inactivated vaccines prior to entry into the study. Participants were also excluded if they 

were currently receiving any other experimental treatments, systemic chemotherapy, 

steroids, immune-modulators, or had a history of Guillain-Barre syndrome.  

A total of 120 participants were included in the primary study by Tebas et al.203 

and provided informed consent. For this follow-up study, the goal was to examine pre-

vaccination baseline characteristics that can serve as predictors of their vaccine 

response. Forty-six subjects had enough frozen peripheral blood mononuclear cell 
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samples available for analysis in this study. These 46 subjects had baseline 

hemagglutination inhibition (HAI) titers of <1:40 and were on ART. Subjects’ median age 

was 48 years, with a range of 26-77 years of age; 69.6% were male, 30.4% were 

female; 63% identified as Black/African-American, 10.9% were Hispanic/Latino, 23.9% 

were white, and 2.1% identified as Asian/Pacific Islander. These subjects had an 

average CD4+ T-cell count of 542 ± 306.8 cells/µl, an average nadir CD4+ T-cell count 

of 193 ± 187.2 cells/µl, and HIV RNA loads were <400 copies/mL in 90% of the subjects, 

and below the limit of detection in 85% of the subjects (Table 3.1).  

Participants received a single 15µg intra-muscular dose of the monovalent 

unadjuvanted, inactivated, split virus H1N1 vaccine. As depicted in figure 3.1, each 

participant had blood collected and baseline studies performed prior to immunization. 

Following 21-28 days after vaccination, blood was collected and serological responses 

to the vaccine were evaluated by Tebas et al.203. They examined antibody titers of the 

120 subjects using an HAI assay at Bioqual, Inc., as described previously by Kendal et 

al.214. Subjects were classified as sero-protected and Responders to the vaccine if at 

week 3 post-immunization their HAI titers were %1:40 and increased at least 4-fold 

higher than baseline, otherwise subjects not meeting these requirements were 

considered Non-responders. For the purpose of this study 27 subjects fit into the 

classification of Responder and 19 into the Non-responder classification. 
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Table 3.1. Demographic and immunologic characteristics of study participants.  

 

Characteristic   
Subjects 
(n=46) 

Age, y     
Median  48 
   Range  26-77 
Sex, n (%)     
   Male  32 (69.6) 
   Female  14 (30.4) 
Race, (%)     
   White  23.9 
   Black or African American  63 
Ethnicity, (%)     
   Hispanic or Latino  10.9 
   Non-Hispanic or Latino  89.1 
CD4+ T-cell count at screening, cells/µl   
   Mean  544 
   Range   71-1396 
Nadir CD4+ T-cell count, cells/µl   
   Mean  193 
   Range  1-831 
HIV-1 viral load at screening,%     
<400 copies/ml  90% 
Below Limit of quantification   85% 
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Figure 3.1. Study and immunization timeline. Diagram depicts time-points of 
immunization, blood collection, and HAI assays. 
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ii. T-cell Activation 

We hypothesized that the baseline levels of immune activation would affect the 

ability of subjects to achieve Responder status, since immune activation is a negative 

predictor of HIV-1 disease progression and contributes to cell turnover 9, 10. In order to 

evaluate the levels of immune activation we used multi-parameter flow cytometry to 

examine the expression of the activation markers CD38 and HLA-DR on the surface of 

T-cells prior to vaccination. The diagram in figure 3.2 depicts the gating strategy used to 

examine expression of the activation markers.  

Using this strategy we compared the expression of CD38 and HLA-DR on CD4+ 

and CD8+ T-cells between Responders and Non-responders. We found that baseline 

expression levels of CD38+ HLA-DR+ CD4+ did not differ between Responders and 

Non-responders (1.56%±1.63% [n=27] vs. 1.95%±2.87% [n=19]; p=0.688; figure 3.3). 

Likewise, the expression levels of CD38+ HLA-DR+ CD8+ T-cells also did not differ 

between Responders and Non-responders (1.91%±1.79% [n=27] vs. 2.3%±3.63% 

[n=19]; p=0.8409; figure 3.3). This then suggests that baseline levels of activation do 

not play a significant role on the response to the H1N1 influenza vaccine.  
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Figure 3.2. Example layout of gating strategy. First, gating for the live CD3+ T-cell 
population, we then gate for our CD4+ and CD8+ subsets. The CD4+ and CD8+ T-
cell subsets are then gated for their expression of the activation markers CD38 and 
HLA-DR and for their memory phenotype populations (CD27, CD45RO). 
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Figure 3.3. Mean percentages of activated (CD38+ HLA-DR+) A) CD4+ T-cells 
(1.56%±1.63% [n=27] vs. 1.95%±2.87% [n=19]; p=0.7) and B) CD8+ T-cells 
(1.91%±1.79% [n=27] vs. 2.3%±3.63% [n=19]; p=0.8) among Responders and Non-
Responders. 

A B !
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iii. T-cell Differentiation Phenotypes 

 Research on HIV-1 infection has shown that chronically infected individuals 

exhibit an accumulation of terminally differentiated T-cells and have reduced 

regenerative potential10, 14. We wanted to examine whether the presence/lack of certain 

T-cell differentiation subsets could impact sero-protection to H1N1 in HIV-infected 

individuals. Using the gating strategy in figure 3.2 we examined the expression of CD27 

and CD45RO on the surface of CD4+ and CD8+ T-cells. We classified CD27+CD45RO- 

T-cells as naïve, CD27+CD45RO+ T-cells as central memory, CD27-CD45RO+ T-cells 

as effector memory, and CD27-CD45RO- T-cells as terminally differentiated effectors. 

 We found that Responders and Non-responders differed in their T-cell 

differentiation phenotype profiles. Specifically, Responders had a significantly higher 

baseline percentage of naïve (CD27+ CD45RO-) CD4+ (50.2%±23.1% [n=27] vs. 

33.5%±23.1% [n=19]; p=0.02; figure 3.4A) and CD8+ T-cells (41.5%±17.9% [n=27] vs. 

23.4%±17.4% [n=19]; p=0.001; figure 3.4C) as compared to the lower frequency 

observed in Non-responders. Additionally, we found that subjects classified as Non-

responders had an increased baseline percentage of terminally differentiated (CD27-

CD45RO-) CD4+ (3.2%±3.7% [n=27] vs. 11.3%±14.4% [n=19]; p=0.007; figure 3.4B) 

and CD8+ T-cells (26.1%±12.3% [n=27] vs. 40.2%±20.1% [n=19]; p=0.005; figure 3.4D) 

compared to a lower frequency observed in Responders. These findings suggest the 

possible importance of conserving the regenerative potential of T-cells in HIV-1 infected 

individuals.  

 When further examining potential predictors of response, which included viral 

load, baseline CD4+ T-cell counts, CD4+ T-cell nadirs, CD4+ and CD8+ naïve and 

terminally differentiated T-cells. We found that the CD4+ T-cell nadirs of the subjects 

were positively associated with the pre-immunization baseline CD4+ naïve (CD27+ 
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CD45RO-) T-cells (n=46; R2=0.141; p=0.01; figure 3.5). Thereby further illustrating the 

importance of preserving this T-cell subset. 
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Figure 3.4. PBMCs were stained for markers of differentiation (CD27, CD45RO) and 
analyzed via flow cytometry. Mean baseline frequencies of A) naïve (CD27+ CD45RO-) 
CD4+ T-cells (50.2%±23.1% [n=27] vs. 33.5%±23.1% [n=19]; p=0.02), B) terminally 
differentiated (CD27-CD45RO-) CD4+ T-cells (3.2%±3.7% [n=27] vs. 11.3%±14.4% [n=19]; 
p=0.007), C) naïve (CD27+CD45RO-) CD8+ T-cells (41.5%±17.9% [n=27] vs. 23.4%±17.4% 
[n=19]; p=0.001), and D) terminally differentiated (CD27-CD45RO-) CD8+ T-cells 
(26.1%±12.3% [n=27] vs. 40.2%±20.1% [n=19]; p=0.005) among Responders and Non-
Responders.  

A B 

D C 
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Figure 3.5. Multivariate regression analysis examining linear regression between the 
baseline frequency of naïve (CD27+ CD45RO-) CD4+ T-cells and the nadir CD4+ T-
cell count (n=46; R2=0.141; p=0.01). 
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iv. Cytokine and Chemokine Profiles 

 As discussed before, HIV-1 infected subjects exhibit an imbalanced cytokine and 

chemokine environment as compared to their healthy HIV-uninfected counterparts206205. 

We thus examined the cytokine and chemokine profiles of the subjects in this study and 

compared them to the profiles of healthy HIV-negative subjects using a Luminex assay.  

 When comparing the cytokine/chemokine profiles of these subjects to that of 

healthy controls we found that the HIV-1 infected subjects had significantly lower serum 

levels of Th1 type cytokines that included IFN-! (203.4±369.4 pg/ml [n=46] vs. 

434.2±410.2 pg/ml [n=10]; p=0.0159), IFN-"2 (167.1±562.4 pg/ml [n=46] vs. 

352.5±727.3 pg/ml [n=10]; p=0.0166), TNF-# (52.01±119.6 pg/ml [n=46] vs. 241.4±281.5 

pg/ml [n=10]; p=0.0218), IL-10 (7.56±10.52 pg/ml [n=46] vs. 76.22±117.3 pg/ml [n=10]; 

p=0.0019); Th2 type cytokines: IL-5 (28.9±108.3 pg/ml [n=46] vs. 52.0±118.9 pg/ml 

[n=10]; p=0.0142); and others such as VEGF (760.8±874.2 pg/ml [n=46] vs. 1576±1267 

pg/ml [n=10]; p=0.0197) and IL-1# (5.8±17.1 pg/ml [n=46] vs. 11.4±9.5 pg/ml [n=10]; 

p=0.0028). On the other hand, the HIV-1 infected subjects also demonstrated elevated 

serum levels of the chemokines MIP-1# (146.5±216.6 pg/ml [n=46] vs. 36.7±29.4 pg/ml 

[n=10]; p=0.036) and IP-10 (531.0±364.1 pg/ml [n=46] vs. 205.3±62.2 pg/ml [n=10]; 

p=0.0105), as well as elevated serum levels of IL-1" (1046±1451 pg/ml [n=46] vs. 

23.1±23.1 pg/ml [n=10]; p=0.0009; Table 3.2).  

 Furthermore, in order to examine if the dysregulated cytokine/chemokine 

environment plays a potential role in sero-protection after H1N1 vaccination, we 

compared the serum cytokine and chemokine levels between Responders and Non-

responders. We found that individuals who achieved sero-protection, otherwise known 

as Responders, had higher serum levels of IFN-"2 (272.6±741.4 pg/ml [n=27] vs. 
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30.03±57.0 pg/ml [n=19]; p=0.0493), IL-10 (10.7±11.9 pg/ml [n=27] vs. 2.3±3.9 pg/ml 

[n=19]; p=0.0009), and IL-6 (90.9±162.2 pg/ml [n=27] vs. 6.7±8.5 pg/ml [n=19]; 

p=0.0244) compared to lower serum levels observed in Non-responders (Table 3.3). 

These findings suggest that the pre-vaccination cytokine and chemokine environment 

could impact responsiveness to vaccination, and thus sero-protection.  

 Lastly, we examined whether pre-vaccination baseline serum 

cytokine/chemokine levels were related to factors that were associated with sero-

protection above. Among the cytokine and chemokines that were altered in the HIV-1 

infected participants in this study, we found a trending negative association with higher 

serum levels of IP-10 and the baseline percentage of naïve (CD27+ CD45RO-) CD8+ T-

cells. Suggesting a role for this chemokine, IP-10, on the preservation of important CD8+ 

T-cell subsets (figure 3.6).  
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Table 3.2. Cytokine and Chemokine profiles of HIV-1 infected individuals in this study 
and of healthy HIV-negative controls measured using a Luminex assay.  

  
Immunological 

Marker 
Healthy Control (conc. 

pg/ml)  
HIV+ on ART 
(conc. pg/ml) p-value 

Primarily Th1 IL-12p40 210.5±351.1 102±144.6 0.3112 

  IL-12p70 425.4±654.6 143±414.7 0.0878 

  IFN-! 434.2±410.2 203.4±369.4 0.0159 
  TNF-" 10.96±7.172 22.28±38.15 0.4101 
  TNF-# 241.4±281.5 52.01±119.6 0.0218 

  IL-10 76.22±117.3 7.563±10.52 0.0019 
Primarily Th2 IL-4 289.4±325.5 115.7±104.7 0.0771 
  IL-5 52±118.9 28.88±108.3 0.0142 

  IL-6 11.6±5.89 61.12±131.9 0.9731 
  IL-13 278.5±295.2 176.8±298.4 0.1243 

Growth Factors IL-2 65.32±123.9 18.15±44.36 0.1238 

  IL-3 14.17±27.21 25.73±61.87 0.6515 

  IL-7 34.57±79.28 27.47±67.37 0.5852 

  IL-15 44.25±94.63 7.310±5.342 0.1269 

  G-CSF 53.17±58.06 205.7±490.7 0.1112 

  GM-CSF 30.22±26.62 74.24±152.2 0.1069 

  VEGF 1576±1267 760.8±874.2 0.0197 

  EGF 153.4±76.65 232.6±229.0 0.6303 
Chemokines MIP-1" 38.15±24.18 253.5±705.6 0.2057 

  MIP-1# 36.73±29.35 146.5±216.6 0.036 

  IL-8 138.4±93.94 200±258.4 0.661 

  MCP-1 534.5±126.4 593.3±246.7 0.4689 

  Eotaxin 335.8±244.4 184.1±91.7 0.0642 

  IP-10 205.3±62.2 531.0±364.1 0.0105 

Other IL-17A 234.1±207.4 10.3.2±159.8 0.0303 
  IL-1Ra 104.2±85.84 367.3±1040 0.228 

  IL-1" 23.09±23.05 1046±1451 0.0009 

  IL-1# 11.41±9.47 5.79±17.05 0.0028 
 IFN-"2 352.5±727.3 167.1±562.4 0.0166 
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Table 3.3. Cytokine and Chemokine profiles of study participants classified as 
Responders compared to those individuals classified as Non-Responders measured 
using a Luminex assay. 

  
Immunological 

Marker 
Responder (conc. 

pg/ml) 
Non-Responder 

(conc. pg/ml)  p-value 

Primarily Th1 IL-12p40 119.2±159.8 39.06±27.71 0.4167 

  IL-12p70 202.3±526.1 61.92±154.3 0.6127 

  IFN-! 257.9±440.5 121.6±210.9 0.3913 

  TNF-" 29.8±48.67 11.59±3.572 0.6717 
  TNF-# 70.46±146 11.4±14.77 0.0697 

  IL-10 10.74±11.97 2.263±3.893 0.0009 

Primarily Th2 IL-4 112.3±90.98 128.1±171.9 0.8935 
  IL-5 48.09±139.2 1.579±2.534 0.0652 

  IL-6 90.86±162.2 6.684±8.526 0.0244 

  IL-13 220.2±350.5 82.7±100.3 0.5107 
Growth Factors IL-2 25±54.67 6.15±9.677 0.1326 

  IL-3 31.98±68.54 0.735±0.3323 0.1904 

  IL-7 29.44±70.23 24.68±14.88 0.6714 

  IL-15 8.133±5.531 4.843±4.437 0.3316 

  G-CSF 295.9±631.1 86.92±133.5 0.6102 

  GM-CSF 83.14±154.8 60.02±152.1 0.6334 

  VEGF 878.5±1054 593.4±506.5 0.828 

  EGF 278.6±260.8 167.1±158.7 0.0579 

Chemokines MIP-1" 206.9±688.0 329.2±749.8 0.5514 

  MIP-1# 191.4±262 82.75±104.2 0.0942 

  IL-8 202.4±260.3 196.5±262.7 0.8235 

  MCP-1 577.2±248.9 616.2±248.5 0.4892 
  Eotaxin 193.3±99.53 171.1±80.05 0.4267 

  IP-10 548.3±404.5 506.4±306.8 0.9112 

Other IL-17A 130.4±190.5 64.5±93.48 0.3842 

  IL-1Ra 443.4±1088 265.9±993.3 0.2363 

  IL-1" 925.6±1309 1529±2207 0.516 

  IL-1# 7.953±21.65 2.906±7.362 0.2626 

 IFN-"2 272.6±741.4 30.03±57 0.0493 
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Figure 3.6. Linear regression examining the association between baseline pre-
vaccination serum levels of IP-10 (pg/ml) and frequency of naïve (CD27+ CD45RO-) 
CD8+ T-cells (n=46; Spearman r= -0.2895; p=0.051). 



67 

 

v. Age 

 Knowing that age189, 215 can impact the severity of influenza infection and 

responsiveness to vaccination, we further examined a possible role of age in sero-

protection to H1N1 influenza. When examining the relationship between age and the 

predictors of response, age was negatively associated with the frequency of naïve 

(CD27+ CD45RO-) CD4+ T-cells (n=46; R2=-0.182; p=0.003; figure 3.7). Even more, we 

also found that there was a trend towards higher serum IP-10 levels and older age 

groups (Group 1 [Age 22-34]: n=6, 363.2±180.5 pg/ml; Group 2 [Age: 35-44]: n=12, 

420.5±388.0 pg/ml; Group 3 [Age: 45-54]: n=13, 481.4±195.7 pg/ml; Group 4 [Age: 55+]: 

n= 14, 590.0±293.7; p=0.089; figure 3.8). These findings suggest a potential 

confounding effect of age in the role of sero-protection in HIV-1 infected individuals 

against influenza vaccination.  
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Figure 3.7. Multivariate regression analysis examining the linear regression between 
age of the study participants and baseline frequency of naïve (CD27+ CD45RO-) 
CD4+ T-cells (n=46; R2= -0.182; p=0.003).  
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Figure 3.8. Serum IP-10 levels of study participants grouped into cohorts by age 
(Group 1 [Age 22-34]: n=6, 363.2±180.5 pg/ml; Group 2 [Age: 35-44]: n=12, 
420.5±388.0 pg/ml; Group 3 [Age: 45-54]: n=13, 481.4±195.7 pg/ml; Group 4 [Age: 
55+]: n= 14, 590.0±293.7; p=0.089). A one way ANOVA was used. 
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3.4 Discussion 

 The previous findings by Tebas et al.203, demonstrate a recurring concern in HIV-

1 infected individuals. Despite receipt of ART, it appears that not all individuals respond 

to the standard recommended dose of the H1N1 influenza vaccine. While the definition 

of Responder in this study is dependent on humoral responses, this study reinforces the 

importance of CD4+ T-cell help in responses to influenza. Along those lines, the findings 

show a relationship in the baseline frequency of naïve (direct association) and terminally 

differentiated (inversely associated) T-cells with sero-protection after immunization with 

the recommended dose of H1N1 vaccine. Importantly, the findings in this study 

demonstrate firstly the potential need to preserve the naïve T-cell populations in those 

infected with HIV-1 and raises the question about the timing for the initiation of 

antiretroviral therapy. We see here that the amount of immune reconstitution that occurs 

in those infected with HIV after ART initiation, can possibly still leave these individuals at 

risk for opportunistic infections if the immune reconstitution is not “sufficient” enough. As 

shown in this study, the pre-ART CD4+ T-cell nadir was associated with the frequency of 

naïve CD4+ T-cells post-ART, thereby suggesting the gravity of immune reconstitution in 

these individuals.  

On the other hand, we had hypothesized that the level of T-cell activation would 

be associated with sero-protection, since levels of T-cell immune activation are 

associated with negative outcomes in regards to HIV-1 disease progression9, 216. 

However, we saw no significant association with the levels of baseline T-cell immune 

activation and sero-protection. When examining predictors of vaccine response using a 

logistic regression model, we found that the independent predictors of response were 

the baseline frequency of naïve CD4+ T-cells (n=46; p=0.024; R2=0.111) and terminally 



71 

differentiated CD8+ T-cells  (n=46; p=0.0004; R2=0.251). While we saw no direct impact 

of T-cell activation on vaccine responses, it is still possible that levels of immune 

activation could be one potential factor contributing to the loss or accumulation of the T-

cell populations, CD4+ naïve T-cells and CD8+ terminally differentiated cells, important 

for vaccine responses. In fact, it has been suggested that immune activation can 

contribute to the loss of an individual’s naïve CD4+ T-cell population216, 217, 218. By the 

same token, loss of the CD4+ T-cell population could contribute to issues in the 

maintenance of the CD8+ T-cell population, which are important for control of HIV-1 

infection219. While CD8+ T-cell responses have been shown to play roles in influenza 

infection220, studies demonstrate the important roles for CD4+ T-helper cells in 

promoting B-cell responses and antibody production39. Early depletion studies 

demonstrated that alone CD4 or B-cells were not enough to clear certain influenza 

infections220. Thereby suggesting the need for not only humoral immunity, but also an 

important role for the help provided by CD4+ helper cells in the humoral response 

against influenza. As well, as is seen in studies of influenza in HIV-1 infected individuals 

influenza-specific humoral responses were shown to be associated with CD4 counts186. 

These findings along with the ones in this study reinforce the importance of conserving 

CD4+ T-cells in HIV-1 infected individuals in order to maintain humoral immunity, which 

is important in influenza infection. Furthermore, recent studies have demonstrated the 

important role that T-follicular helper cells play in influenza infection. These cells have 

been shown to be important in supporting IgG production and expansion of B-cells 

during the germinal center reaction221. In regards to HIV-1 infection, the presence of T-

follicular helper cells are shown to help elicit humoral responses similar to healthy 

individuals responding to H1N1 infection, while, non-responders did not exhibit changes 

in the expansion of tfh cells. So in addition for the need to understand how to preserve 
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CD4+ T-cells, including tfh cells, the study in this chapter reinforces the need to also 

maintain the naïve CD4+ T-cell population, which can play an important role in de novo 

responses to influenza. 

 In addition as we observed in the study in chapter 4, we found that the cytokine 

and chemokine environment of the individuals infected with HIV-1 is dysregulated 

compared to healthy controls. These findings support that despite ART, HIV-1 infected 

individuals’ cytokine levels do not return to normal14.  The subjects in this study exhibit a 

reduced serum level of cytokines important in the antiviral response such as IFN-!, 

which is important in cellular and humoral immune responses in the respiratory tract of 

those infected with influenza222. On the other hand, we also observed that the serum 

levels of the pro-inflammatory chemokine, IP-10 were high in these HIV-1 infected 

individuals. Previous studies have discussed that HIV-1 infected individuals have issues 

with H1N1 virus clearance related to elevated levels of IP-10150. In this study we found 

an association between higher serum levels of IP-10 and lower baseline frequency of 

naïve CD8+ T-cells. This association can be concerning, especially, since it has been 

demonstrated that the maintenance of a healthy T-cell population is important for T-cell 

mediated help that can aid in avoiding issues with influenza virus infection when 

antibodies do not provide sterilizing immunity223.  

 In regards to sero-protection, the cytokines IFN-"2, IL-10, and IL-6 were found to 

be elevated in the subjects classified as Responders. Elevated IL-6 levels are shown to 

be important in the protection against H1N1 infection by promoting survival of innate 

immune cells224. Furthermore, in mice infected with influenza, blockade of the IL-10 

receptor was associated with higher rate of death225, 226. Therefore, elevated levels of IL-

10 in Responders could serve as a mechanism to help control excessive inflammation 

and increased lung injury observed during severe influenza infection. Additionally, 
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research by Sandler et al.227 has suggested a role for IFN-"2 in regulating HIV acute 

infection, antiviral activity, and cell death early in infection as compared to late infection. 

Thus, low IFN-"2 levels in Non-responders could affect the ability of these individuals to 

control infection prior to ART initiation and in turn lead to more immune damage. 

Furthermore, IFN-"2 is shown to enhance B cell responses263, so higher levels in 

Responders would suggest a role in enhancing influenza vaccine responsiveness. This 

damage could then leave these individuals with the inability to properly achieve sero-

protection. Hence, examining potential cytokines and chemokines associated with sero-

protection and influenza viral clearance can elucidate relevant targets to aid in avoiding 

more severe infection in those infected with HIV-1.  

 However, the cytokine and chemokine environment in HIV-1 infected individuals 

may not be the only confounding factor that could impact sero-protection against 

influenza infection. HIV-1 infected individuals are shown to exhibit premature 

immunosenescence and persistent ongoing inflammation characteristic of older HIV-

negative individuals. This phenomenon occurs even with effective ART10. This 

premature aging of the immune system is associated with issues in CD4+ T-cell immune 

reconstitution and development of co-morbidities, such as cancer and cardiovascular 

disease10, 228. Elderly HIV-negative individuals have a reduced number of naïve T-cells229 

and as those infected with HIV-1 continue to survive longer, age will play a role in the 

ability of medical professionals to protect these individuals from opportunistic infections, 

i.e. influenza infection. And as has been shown, cell-mediated responses to influenza 

are important in helping humoral immunity to influenza infection223. As we observed in 

this study, age was negatively associated with the baseline frequency of naïve CD4+ T-

cells, therefore elder HIV-1 infected individuals may maintain issues in achieving sero-

protection after immunization. Even more, we saw a trending increase in the serum 
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levels of IP-10 with age, suggesting the possibility of increased issues with influenza 

viral clearance as HIV-1 infected individuals continue to live longer.  

 Finally, the CDC already offers immunization recommendations for elderly HIV-

negative individuals230. Therefore, for HIV-1 infected subjects, the administration of these 

vaccines at an earlier age may be necessary in order to avoid non-responsiveness due 

to deterioration of their immune systems. Proactively, it may also be necessary to initiate 

ART earlier, thereby leading to better preservation of naïve cell subsets and lead to 

improved immune reconstitution. Additionally, response to vaccination in those infected 

with HIV-1 can potentially be used as a surrogate marker of immune reconstitution and 

successful treatment with ART.   
 

!

Limitations of Study 

 This study elucidates potential correlates associated with better responsiveness 

to H1N1 vaccination. However, this study is limited in that it examines only the potential 

role that the T-cell mediated immunity may play in vaccine responsiveness. While T-cells 

are shown to also be important in the response against influenza, this study does not 

investigate possible correlates associated with the humoral arm of immunity that may be 

involved in better vaccine responses to influenza, especially in HIV-1 infected 

individuals. This study is also limited in that of the 120 subjects in the original study, only 

46 of those subjects had sufficient samples for additional assays, thereby potentially 

affecting or underestimating additional possible correlates of vaccine responsiveness. 

Furthermore, while age is a possible counfounding factor in regards to influenza 

vaccination, our study may be limited in estimating the impact of age on responsiveness 

since the individuals in this study were younger than most studies examining age.   
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CHAPTER 4: 

High IP-10 Levels Decrease T-cell Function in HIV-1 

Infected Individuals on ART. 

 

“Why a chemoattractant seemingly so potent as CXCL10 is elevated in patients who fail 
to clear HCV has been paradoxical.”  

–Edgar D. Charles (J. Clin. Invest. 2011; Rockefeller University) 
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4.1 Abstract 

 Even with effective antiretroviral therapy, it is observed that HIV-1 infected 

individuals have an imbalanced cytokine and chemokine environment. Changes in 

systemic cytokines and chemokines can alter immune responses of these individuals. 

One such chemokine, IP-10 is associated with the pathogenesis of several diseases in 

addition to HIV-1 infection. Specifically, we found elevated serum IP-10 levels in two 

cohorts of HIV-1 infected subjects on ART compared to healthy HIV-negative individuals. 

Using a series of in vitro studies we demonstrate that PBMCs exposed to elevated levels 

of IP-10 exhibit a significant decrease in the number of cells capable of secreting IFN-!, 

as well as other cytokines, when stimulated with recall antigens. Furthermore, we found 

that elevated levels of IP-10 led to decreased calcium signaling and phosphorylation of 

the MAP Kinase p38. However, we show that production of IFN-! and other cytokines, 

cytotoxic capacity, and proliferative capacity can be enhanced using a neutralizing 

antibody against IP-10. Additionally, our findings demonstrate a potential mechanism of 

action for elevated levels of IP-10. Specifically, elevated IP-10 levels may exert its effect 

through blocking of the CXCR3 receptor and demonstrates a role for the amino-

peptidase CD26 in processing IP-10 to it’s antagonistic for, thereby eliciting an impact on 

T-cell function. Our findings therefore suggest the need of IP-10 modulating agents for 

HIV-1 infected subjects on ART in order to enhance T-cell responses to vaccination and 

HIV-1.  

  

Citation: Ramirez, LA, Arango, TA, Thompson, E, Naji, M, Tebas, P, Boyer, JD. High IP-
10 Levels Decrease T-cell Function in HIV-1 Infected Individuals on ART. J. Leukocyte 
Biol. 2014 
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4.2 Introduction 

 With a lack of an effective vaccine or cure against HIV-1, research continues in 

the development of a vaccine or immune-therapy that can help boost immune responses 

in HIV-1 infected individuals. With HIV-1 infection, one of the many changes to the 

immune system of infected individuals is the obvious change in the production and 

secretion of cytokines and chemokines231, 232. However, these changes are not fully 

reversed with ART101, 231, 233. Findings in this study and others demonstrate specifically 

an increased level of the pro-inflammatory chemokine IP-10/CXCL10 in both untreated 

and ART treated HIV-1 infected individuals 133, 134. While IP-10 is a double-edged sword 

of sorts depending on the disease, there is evidence that this chemokine’s role in both 

untreated and treated HIV-1 infections is more injurious than helpful.  

 Aside from IP-10’s role in the pathogenesis of several other diseases, its role in 

HIV-1 infection is not any more positive. During untreated HIV-1 infection, IP-10’s 

interaction with HIV-1 proteins, such as Tat and Nef, show IP-10’s role in promoting HIV-

1 replication and neuronal cell death134,140, 143. Furthermore, IP-10 is associated with HIV-

1 disease progression in both progressors and HIV-1 immune controllers12, 137. These 

associations, make sense, IP-10 is involved in the chemotaxis of activated immune cells, 

this could lead to potential recruitment of more activated lymphocytes and in turn more 

HIV-1 targets. In relation to ART, IP-10 has also been associated with immunological 

treatment failure109. Too, it is suggested that having lower mucosal IP-10 may be 

protective against acquisition of HIV-1 infection138. Hence, the findings and results 

presented in the study in this chapter demonstrate the importance of recognizing IP-10’s 

impact on T-cell function in HIV-1 infected individuals, and in particular to this study, the 

effect of IP-10 specifically in ART treated individuals.  
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 IP-10/CXCL10 is a pro-inflammatory chemokine and a member of the CXCR3 

family of ligands, which include MIG/CXCL9 and I-TAC/CXCL119. IP-10’s main function 

is to recruit immune cells to sites of inflammation126. These signals have been shown to 

be dominant over TCR signals127. Thereby suggesting a potential role for IP-10 in the 

regulation of T-cell function. Additionally, recent studies of HCV infection demonstrate a 

conflicting role for IP-10. It would be expected that a chemokine involved in the 

recruitment of immune cells to the sites of infection would lead to better prognosis in 

treatment success for HCV, however, the opposite is shown130. Not only, is IP-10 

upregulated during chronic HCV infection, it also serves as a negative predictor of 

response to HCV therapy130. Therefore, we hypothesized that elevated levels of IP-10 

during treated HIV-1 infection could play a role in affecting normal T-cell function, 

specifically those functions, IFN-! production, cytotoxic and proliferative capacity, 

associated with better control of HIV-1 infection53. Finally, the study in this chapter 

explores a potential mechanism of action through which IP-10 can impact T-cell function 

in HIV-1 infected individuals on ART.  

 

4.3 Results 

 i. Study Design 

 Sera, PBMCs, and isolated CD4+ and CD8+ T-cells from healthy HIV-negative 

subjects, HIV-1 infected untreated subjects, and HIV-1 infected subjects on stable ART 

were obtained from the University of Pennsylvania’s Human Immunology Core and 

Center for AIDS research. Subjects ranged in age from 20-55 years of age with and 

average age of 31 years. HIV-1 infected subjects on ART were well controlled with viral 

loads less than 50 copies/mL, average current CD4+ T-cell counts over 400 cells/µl and 
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CD4+ nadirs over 200 cells/µl. HIV-1 infected untreated subjects had a median viral load 

of 16,511 copies/mL. 

Schematic of cell culture treatment is depicted in figure 4.1. PBMCs, and 

isolated CD4+ and CD8+ T-cells were cultured in media alone (RPMI 1640 with L-

glutamine + 10% FBS and 1% streptomycin/penicillin) or media with one of the rhIP-10 

doses (500, 10,000, or 100,000pg/ml) or Anti-IP-10 neutralizing antibody (1µg/ml) for 24 

hours. These cells were then stimulated with viral antigens or anti-CD3 and used in the 

ELISpot, flow cytometry, Luminex, and Ca2+ flux assays. To determine if IP-10 treatment 

impacted cell viability we determined post IP-10 treatment viability and compared it to 

cell viability in media alone. Average cell viability post treatment with IP-10 was 

95.1±3.3% and 89.2±3.2% for the healthy HIV-negative and HIV-infected on ART 

samples, respectively (figure 4.2).  
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Figure 4.1. Diagram describing the in vitro treatment of immune cell cultures with 
recombinant human IP-10 or anti-IP-10 neutralizing antibody prior to use in 
immunological assays. 
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Figure 4.2. Top panel: Example of CD3+ lymphocyte Live/Dead Violet mean 
fluorescence intensity in response to treatment with media alone or 500pg/ml of IP-
10. Middle Panel: Example of total PBMC Live/Dead Violet mean fluorescent 
intensity in response to treatment with media alone or 500pg/ml of IP-10. Red line 
represents treatment with media alone, while the blue line represents treatment with 
IP-10. Bottom Panel: Diagram listing cell viability pre- and post-treatment with media 
alone or 500pg/ml in HIV-negative subjects and HIV-1 infected subjects on ART. 
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ii. HIV-1 infected subjects have high serum IP-10 levels 

 Using a multi-plex Luminex assay we examined the cytokine and chemokine 

profiles of HIV-1 infected subjects on stable ART and compared it to the profiles of 

healthy HIV-negative individuals. We found that the HIV-1 infected individuals on ART 

exhibited significantly lower levels of IL-10, IL-5, IL-13, IL-15, IL-1RA, and IL-1# as 

compared to healthy HIV-negative controls. While we see that the HIV-1 infected 

individuals have lower serum levels of Th2 cytokines, specifically, IL-5 and IL-13, we 

also see that these individuals have significantly lower levels of cytokines important in 

immune regulation, anti-inflammation, and maintenance and growth of cells, that is IL-

10, IL-15, and IL-1 receptor antagonist. What stood out however, was that these 

individuals exhibited significantly higher serum levels of the pro-inflammatory chemokine 

IP-10 (Table 4.1) Furthermore, we found that untreated HIV-1 infected subjects had 

significantly higher levels of IP-10 compared to healthy uninfected controls. These 

results demonstrate that in general HIV-1 infected individuals have high serum IP-10 

levels and that despite effective antiretroviral therapy serum levels of IP-10 remain 

elevated (figure 4.3).  
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Table 4.1. Luminex Assay-Cytokine and Chemokine profiles of the study participants 
compared to the profiles of healthy HIV-negative controls. 
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Figure 4.3. IP-10 serum levels isolated from HIV-1 sero-positive, HIV-1 
sero-positive on ART, or sero-negative subjects were measured using a 
standard multi-plex Luminex assay. Graphs represent mean and standard 
deviations (*represents p<0.05; n=13, n=15 and n=10 respectively; 
p<0.0001; 796.8±472.4pg/ml vs. 342.2 pg/ml±88.17pg/ml vs. 222.4 
pg/ml±62.22 pg/ml). A Kruskal-Wallis test followed by Dunn’s multiple 
comparison test was used. 
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iii. Impact of high IP-10 levels on IFN-! Production 

 Firstly, we wanted to investigate what effect high levels of IP-10 have on 

lymphocytes. So we examined the impact of exposure to high IP-10 levels (500, 10,000, 

100,000 pg/mL) for 24 hours on PBMCs from healthy HIV-1 negative subjects followed 

by antigen stimulation with CEF (CMV, EBV, Flu) peptides or influenza proteins. Our 

findings show that exposure to high levels of IP-10 for 24 hours led to a significant 

decrease in IFN-! production after antigen stimulation for both CEF and influenza 

antigens. Specifically, we observed using a standard ELISpot assay the number of cells 

capable of secreting IFN-! after treatment with our observed physiological high IP-10 

levels (500pg/ml) decreased from an average of 335.6 ± 336.1 to 70.6 ± 71.9 SFC/106 

PBMCs for CEF (figure 4.4A; p=0.00057) and 977.1 ± 926.5 to 542.9 ± 690.2 SFC/106 

PBMCs for influenza proteins (figure 4.4B; p=0.0115).  

 Observing the effect of high levels of IP-10 on IFN-! production on PBMCs from 

healthy uninfected individuals then led us to examine the impact of high IP-10 levels on 

PBMCs from HIV-1 infected subjects on stable ART. We found that treatment with IP-10 

(500pg/ml) for 24 hours resulted in a significant decrease in the ability of PBMCs from 

HIV-1 infected subjects on ART to produce IFN-! in response to CEF peptides (figure 

4.4C; 3088 ± 232.8 vs. 2329 ± 173.6 SFC/106 PBMCs; p=0.0027), influenza proteins 

(figure 4.4D; 211.3 ± 34.2 vs. 0.417 ± 0.83 SFC/106 PBMCs; p=0.0011), and HIV-1 

consensus sequence subtype B gag peptides (figure 4.4E; 510.3 ± 110.1 vs. 145.4 ± 

7.6 SFC/106 PBMCs; p=0.0071).  
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Figure 4.4. PBMCs from HIV-1 sero-negative individuals and HIV-1 infected 
subjects on ART were exposed to IP-10 for 24 hours.  Subsequently, the cells 
were stimulated with viral antigens.  The number of cells capable of secreting 
IFN-! was decreased when stimulated with A) CEF peptides (n=6; p=0.00057) 
or B) Flu proteins (n=4; p=0.0115); * represents p<0.05. The number of cells 
capable of secreting IFN-! was decreased in HIV-1 infected subjects on ART 
when stimulated with C) CEF peptides (n=4; p=0.0027); D) flu proteins (n=4; 
p=0.0011) and E) gag peptides (n=4; p=0.0211). Graphs represent average 
IFN-! production and standard deviations. CEF: is a combination of CMV, 
EBV, Flu peptides. 
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iv. Impact of high IP-10 levels on T-cell function 

 We demonstrated that exposure to high levels of IP-10 could dampen the 

production of IFN-! by PBMCs. We next wanted to examine whether high levels of IP-10 

impacted the production of other cytokines and chemokines in HIV-1 infected subjects 

on ART using a Luminex assay. Specifically, we found after CD3 stimulation that the 

secretion of IL-10 (p=0.0177), GM-CSF (p=0.0012), TNF-" (p=0.0006), IFN-"2 

(p=0.002), IL-12p70 (p=0.0009), and IL-13 (p=0.007) decreased significantly with IP-10 

treatment (500pg/ml) for 24 hours (figure 4.5).  

Additionally, Bett’s et al.49 demonstrated that HIV-1 non-progressors maintain 

highly functional CD8+ T-cells compared to progressors. And while the Luminex assay 

allows us to examine multiple secreted targets, flow cytometry allows us to examine 

what specific cells are producing those secreted targets. We therefore examined the 

ability of T-cells from HIV-1 infected subjects on ART to produce IL-2, MIP-1#, and TNF-

" after treatment with high levels of IP-10 (500pg/mL) followed by CD3 stimulation. We 

found that treatment with IP-10 for 24 hours led to no significant impact on the 

expression of IL-2 by both CD4+ (figure 4.6A,B; p=0.813) and CD8+ T-cells (figure 

4.6C,D; p=0.578). Similarly we found no impact of IP-10 on the expression of MIP-1# in 

CD4+ (figure 4.6A,B; p=0.0625) and CD8+ T-cells (figure 4.6C,D; p=0.5). However, we 

did observe that treatment with IP-10 affected the expression of TNF-" in CD4+ (figure 

4.6A,B; p=0.0075) and CD8+ T-cells (figure 4.6C,D; p=0.0075). Of note, in regards to 

TNF-", we see no impact of IP-10 when PBMCs are stimulated with gag peptides via 

Luminex (p=0.124) or flow cytometry (CD4: p=0.182, CD8: p=0.182), suggesting that IP-

10 may have a stronger impact on certain immunological markers depending on the type 

of stimulation. 
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Even more, Migueles et al.45 demonstrated the potential importance of 

proliferative capacity in HIV-1 non-progressors. We examined the effect of treatment 

with IP-10 for 24 hours on the ability of T-cells from HIV-1 infected subjects on ART to 

proliferate in response to antigen stimulation for 5 days using a standard CFSE assay.  

We found that treatment with IP-10 (500pg/ml) led to a trending decrease in the 

proliferative capacity of T-cells in response to stimulation with CEF peptides (figure 

4.7A,B; p=0.0625), influenza proteins (figure 4.7A,B; p=0.0313), and gag peptide 

stimulation (figure 4.7A,B; p=0.0625).  
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Figure 4.5. Secretion of cytokines and growth factors as measured by a standard 
Luminex assay. Graphs show the secreted levels of IFN-!, IL-10, GM-CSF, TNF-", IFN-
"2, IL-12p70, and IL-13 in supernatants after treatment with media alone, IP-10 
(500pg/ml), or Anti-IP-10 (1µg/ml) in response to 24 hour stimulation of PBMCs from HIV-
1 infected subjects on ART with CD3/CD28/CD49d antibodies. Graphs depict mean and 
standard deviation. * represents p<0.05. A friedman test followed by Dunn’s multiple 
comparison test was used. 
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Figure 4.6 
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Figure 4.6. Expression of IL-2, MIP-1# and TNF-" after treatment with media alone, 
IP-10 (500pg/ml), or Anti-IP-10 (1µg/ml) in response to stimulation with 
CD3/CD28/CD49d antibodies in A, B) CD4+ T-cells and C, D) CD8+ T-cells from HIV-
1 infected subjects on ART as measured by multi-parameter flow cytometry. Graphs in 
B and D represent mean and standard deviation. A Friedman test followed by Dunn’s 
multiple comparison test was used. 
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Figure 4.7. A) Example of PBMCs from an HIV-1 infected subject on ART treated with media alone, 
500pg/ml of IP-10, or 1µg/ml of anti-IP-10 NAb for 24 hours. Following this, cells were incubated with 
CFSE (2.5µM) for 5 min at room temperature. Cells were washed and incubated with media alone, CEF 
peptides (0.03µg/ml), Flu proteins (Protein Sciences Corp.: A/Brisbane/59/07, 10ug/ml; 
A/Brisbane/10/07, 10ug/ml; B/Brisbane/60/08, 10ug/ml), gag peptides (2µg/ml) for 5 days at 37°C in 96-
well plates. The mean fluorescence intensity of CFSE was used to determine T-cell proliferative 
responses of each of the treatment conditions (media alone, 1µg/ml anti-IP10) within each of the antigen 
stimulation conditions. B) Comparison of the percentage of cells that are CFSE dim in the treatment 
conditions, * represents p<0.05. Graphs represent mean and standard deviation. 

B 
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v. High levels of IP-10 and Calcium Mobilization 

 Since the IP-10/CXCR3 signaling pathway is involved in calcium mobilization9, 

we examined the impact of high levels of IP-10 on the calcium response using a flow-

based calcium assay. We found that treatment with high levels of IP-10 (500, 

100,000pg/mL) for 24 hours led to a blunting of the calcium response in PBMCs from 

healthy HIV-uninfected controls after stimulation with a standard CD3 agonist (figure 

4.8A,B; p=0.0278). Additionally, we observed that the calcium response was dose 

dependent on the IP-10 dose, with no IP-10 treatment having the highest calcium 

response, followed by the 500pg/mL dose, and then by the 100,000pg/mL dose.  
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Figure 4.8. A) Example time-course Ca2+ responses elicited in healthy HIV-negative 
PBMCs treated with or without IP-10 (500pg/ml or 100,000pg/ml) for 24 hours 
followed with stimulation with a CD3 OKT3 agonist. Graph represents fluorescence 
emission of Fura-2, AM cell permeant over the course of 8 minutes. The first-top 
(Red) line represents no treatment with IP-10, the second (blue) line represents 
treatment with 0.5ng/ml of IP-10 for 24 hours, and the third (green) line represents 
treatment with 100ng/ml of IP-10 for 24 hours. B) Mean fluorescence intensity of Fura-
2, AM in response to treatment with or without IP-10 (500pg/ml or 100,000pg/ml) in 
total PBMCs (n=3; p=0.0278), CD4+ T-cells alone (n=3; 0.0051, or CD8+ T-cells 
alone (n=3; p=0.0278). Graphs represent means and standard deviations. 
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vi. High levels of IP-10 and p38 MAP Kinase phosphorylation 

 We next wanted to determine whether other signaling pathways were affected by 

treatment with high levels of IP-10 (500pg/mL) for 24 hours followed by stimulation with 

CEF peptides or influenza proteins. We found that treatment with IP-10 led to a 

significant decrease in the expression of phosphorylated p38 (Thr180/Tyr182) MAP 

Kinase, a member of the IP-10/CXCR3 signaling pathway, after CEF peptide (figure 

4.9A,B; p=0.021) and influenza protein stimulation (figure 4.9A,B; p=0.021). Secondly, 

we observed that IP-10 treatment followed by CEF peptide (figure 4.9A,B; p=0.021) or 

influenza protein (figure 4.9A,B; p=0.021) stimulation led to a significant increase in the 

expression of STAT-1 (Tyr707) phosphorylation. However, we saw no significant impact 

of IP-10 treatment on the phosphorylation of other phosphorylated proteins, specifically, 

ATF2, ERK, HSP27, JNK, MEK1, MSK1, c-Jun, and p53.  
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Figure 4.9. Phosphorylated protein fold change in expression due to 24 hour treatment with IP-10 
(500pg/ml) followed by CEF or flu protein stimulation respectively. A) CEF stimulated phospho-protein 
expression: STAT-1 (Tyr707; p=0.021), ATF2 (Thr71; p=0.500), ERK (Thr185/Tyr187; p=0.875), HSP27 
(Ser78; p=0.250), JNK (Thr183/Tyr185; p=0.625); MEK1 (Ser222; p=0.250), MSK1 (Ser212; p=0.500), c-
Jun (Ser73; p=0.375), p53 (Ser15; p=0.875), and p38 (Thr180/Tyr182; p=0.021). B) Flu protein 
stimulated phosphor-protein expression: STAT-1 (Tyr707; p=0.021), ATF2 (Thr71; p=0.250), ERK 
(Thr185/Tyr187; p=0.581), HSP27 (Ser78; p=0.625), JNK (Thr183/Tyr185; p=1.00); MEK1 (Ser222; 
p=0.500), MSK1 (Ser212; p=0.750), c-Jun (Ser73; p=0.875), p53 (Ser15; p=0.875), and p38 
(Thr180/Tyr182; p=0.021). Expression levels were determined using a multi-plex Luminex assay. Graphs 
represent means and standard deviations (n=4). 
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vii. Enhancing T-cell responses with an anti-IP-10 Neutralizing Antibody.  

 We next wanted to determine whether we could enhance T-cell responses in 

HIV-1 infected subjects on ART by blocking IP-10 using a neutralizing antibody against 

IP-10. We observed that after antigen stimulation, the secretion of IP-10 increases 

(figure 4.10; p=0.0043) in addition to the already present levels of IP-10, so examining 

the impact of blocking IP-10 was of interest. Therefore, we examined the effect of 

neutralizing IP-10 on the ability of lymphocytes to produce IFN-!, proliferate in response 

to antigen stimulation, and degranulate and produce cytotoxins.  

 When blocking IP-10 using the neutralizing antibody we observed a significant 

increase in the ability of PBMCs to produce IFN-! in response to gag peptide stimulation 

(figure 4.11; p=0.0248). We specifically saw an increase in the production of IFN-! from 

an average of 735.8±1114 to 1268±1607 SFC/106 PBMCs. In addition to IFN-!, when we 

examined by flow cytometry the impact of blocking IP-10 with the neutralizing antibody, 

we found a significant increase in the expression of TNF-" in CD4+ (figure 4.6A,B; 

p=0.0197) and CD8+ T-cells (figure 4.6C,D; p=0.0177) after CD3 stimulation compared 

to IP-10 treatment, while we saw no changes in the expression of IL-2 and MIP-1# by 

CD4+ (figure 4.6A,B; IL-2: p=0.954; MIP-1#: p=0.367) and CD8+ T-cells (figure 4.6C,D; 

IL-2: p=0.522; MIP-1#: p=0.338). Furthermore, when we examined by Luminex the 

impact of blocking IP-10 on the secretion of other immunological markers, we found that 

using the neutralizing IP-10 antibody led to increase in the secretion of IFN-! 

(p=0.0278), IL-10 (p=0.0286), GM-CSF (p=0.0043), TNF-" (p=0.0002), IFN-"2 

(p=0.005), IL-12p70 (p=0.001), and IL-13 (p=0.0023) after CD3 stimulation by PBMCs 

compared to treatment with IP-10 (figure 4.5).  

 Also, we examined the effect of blocking IP-10 on functions suggested to be 

associated with the control of HIV-1 infection, that is the ability for CD8+ T-cells to 
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degranulate and produce cytotoxins, as well as proliferative capacity. Blocking IP-10 led 

to an increased ability for CD8+ T-cells from HIV-1 infected subjects on ART to 

degranulate (express CD107a) and produce perforin and granzyme B in response to gag 

peptide stimulation (figure 4.12; p=0.0009).  

 Similarly, when we examined the impact of using a neutralizing antibody against 

IP-10, we found a significant increase in the ability of lymphocytes to proliferate in 

response to stimulation with CEF peptides (p=0.0078), Flu protein (p=0.0078), and gag 

peptide (p=0.0234) stimulation (figure 4.7A,B).  
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Figure 4.10. Secretion of IP-10 in supernatants after 24 hour stimulation of PBMCs 
from HIV-1 infected subjects on ART with CD3/CD28/CD49d antibodies. Graph 
represents mean and standard deviation (n=4; p=0.0043). 
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Figure 4.11. PBMCs isolated from HIV-1 infected individuals on ART were stimulated 
with HIV-1 gag peptides in the presence of anti-IP-10 neutralizing mAb (1µg/ml). 
Increases were observed in the number of antigen specific cells capable of producing 
IFN-! (n=8; p=0.0248). Graph represents mean. 
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Figure 4.12. PBMCs isolated from HIV-1 sera-positive individuals on ART were 
stimulated with HIV-1 gag in the presence of anti-IP-10 neutralizing mAb. Increases 
were observed in the percentage of cells capable of killing or CD8+ CD107a+ 
Perforin+ Granzyme B+ cells (n=3; p=0.0009). Graphs represent mean and standard 
deviations. A Friedman test followed by Dunn’s multiple comparison test was used. 
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viii. HIV-1 infected individuals and high CD26 levels/expression  

 In order to better understand why IP-10 may be affecting T-cell functionality we 

sought to determine whether processing by CD26 could play a role in IP-10’s observed 

effects. HIV-1 infected subjects on ART had significantly higher serum levels of soluble 

CD26 as compared to healthy HIV-uninfected subjects (figure 4.13; p=0.0084). 

Furthermore, when examining whether IP-10 treatment (500, 100,000pg/ml) had an 

impact on the cell surface expression of CD26, treatment with IP-10 led to an increase in 

the expression of CD26 on CD4+ and CD8+ T-cells from healthy HIV-uninfected 

subjects (figure 4.14; CD4: p=0.012; CD8: p=0.0495) and HIV-1 infected subjects on 

ART (figure 4.14; CD4: p=0.0081; CD8: p=0.0081).  
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Figure 4.13. Absorbance (nm) values via standard ELISA assay measuring serum 
soluble levels of the amino-peptidase CD26 (DPPIV) in HIV-1 infected subjects on 
ART (n=15) and healthy HIV-negative subjects (n=10). Graph represents mean and 
standard deviation. 

Figure 4.14. Surface expression of CD26 (DPPIV) on CD4+ and CD8+ T-cells from 
HIV-uninfected subjects (n=6) and HIV-1 infected subjects on ART (n=6) after 24 
hour treatment with recombinant human IP-10 (0, 500, or 100,000pg/ml). Graphs 
represent average change in mean fluorescence intensity and standard deviation. A 
friedman test was used. 

 



105 

 

ix. Mechanism of Action 

Finally, we wanted to determine whether IP-10 was directly exerting its effects on 

T-cells or indirectly, such as through antigen presenting cells. Using flow cytometry we 

found that IP-10 not only impacted the production of IFN-! by total PBMC CD4+ 

(p=0.0286) and CD8+ T-cells (p=0.0286), but also found that there was reduced IFN-! 

production when treating isolated CD4+ (p=0.0026) and CD8+ (0.0019) T-cells with IP-

10 (500pg/ml) followed by CD3 stimulation (figure 4.15). Similarly, when examining the 

calcium response of isolated T-cell subsets, treatment with IP-10 (500, 100,000pg/ml) 

led to a significant decrease in the calcium response in isolated CD4+ (p=0.0051) and 

CD8+ (p=0.0278) T-cells (figure 4.8B).  

Knowing IP-10 is involved in calcium mobilization through signaling of its 

receptor, CXCR3, we sought to investigate whether IP-10 was exerting its dampening 

effects by blocking CXCR3 signaling. When using an antagonist against CXCR3 there 

was a significant decrease in the production of IFN-! in response to CEF peptide 

(p=0.038) and influenza protein (p=0.0212) stimulation (figure 4.16). Even more, as 

hypothesized, using a CXCR3 antagonist led to a decrease in the calcium response 

(figure 4.16; p=0.0174).  

Thirdly, we examined whether IP-10 could affect the expression of MHC Class I 

and II molecules and thereby potentially disrupt normal TCR signaling. We found that 

treatment with IP-10 (500pg/ml) for 24 hours led to no significant change in the 

expression of HLA Class IA,B,C and HLA-DR on total CD3+ T-cells (HLA-Class I: 

p=0.875; HLA-DR: p=0.125), CD4+ (HLA-Class I: p=0.875; HLA-DR: p=0.875),  and 

CD8+ T-cells (HLA-Class I: p=1.0; HLA-DR: p=0.375), and CD3-CD68+CD33+ 

macrophage (HLA-Class I: p=0.625; HLA-DR: p=0.625) subsets (figure 4.17). Likewise, 
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it is shown that expression of inhibitory receptors, such as programmed death-1 (PD-1), 

is associated with blunted T-cell function in those infected with HIV-1234. However, we 

found no change in the expression of PD-1 on CD4+ (p=0.367) and CD8+ (p=0.553) T-

cells after treatment with IP-10. Additionally, we saw no effect of blocking IP-10 on the 

expression of PD-1 (figure 4.18). Thereby suggesting other mechanisms of action for 

IP-10. 

Therefore, we hypothesized that IP-10 may be processed by CD26 to its short 

form and in turn function as an antagonist. So we examined whether using a CD26 

inhibitor would lead to improvement in T-cell function in HIV-1 infected subjects on ART. 

Using a CD26 inhibitor led to an increase in IFN-! production in response to CEF 

peptide (p=0.0146), influenza protein (p=0.0387), and gag peptide (p=0.0392) 

stimulation (figure 4.19A). Furthermore, we saw an increase in the calcium response 

(figure 4.19B; p=0.0196). Finally, when we examined the levels of the IP-10 isorforms, 

HIV-1 infected subjects on ART had Total IP-10 levels at 1062±637.0 pg/ml, IP-10 Long 

levels at 1330±22.4pg/ml, IP-10 short form levels at 464.8±48.8 pg/ml (figure 4.20). 

When we examined the levels of IP-10 short form relative to Total IP-10 levels we saw 

that the levels were highest in untreated HIV-1 infected individuals (p=0.002), followed 

by HIV-1 infected subjects on ART (p=0.064), and then by HIV-negative individuals 

(figure 4.20). 
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Figure 4.15. PBMCs, CD4+ and CD8+ were obtained from HIV-1 sero-negative 
individuals. Cells were treated with 500pg/ml IP-10 or not (media alone). Cells were then 
stimulated with anti-CD3 and costimulatory CD28 and CD49d antibodies and assessed for 
IFN-! production. Data is presented for Gating strategy and IFN-! expression in Total 
PBMC-CD4+ T-cells (n=4, p=0.0286); Total PBMC-CD8+ T-cells (n=4; p=0.0286); isolated 
CD4+ T-cells (n=4; p=0.0026); and isolated CD8+ T-cells (n=4; p=0.0019) as measured 
by multi-parameter flow cytometry. Graphs represent means and standard deviations. 
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Figure 4.16. PBMCs from healthy HIV-negative subjects were treated with 500pg/ml 
of a CXCR3 antagonist for 24 hours. This treatment led to a decrease in IFN-! 
production in response to CEF (n=5; p=0.0380) and flu protein (n=5; p=0.0212) 
antigen stimulation and the calcium response (n=4; p=0.0174). Graphs represent 
mean and standard deviation. 
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HLA-Class I (A, B, C) 

HLA-DR 

Figure 4.17. HLA-Class I (HLA-A, -B,-C) mean fluorescence intensity in media alone and IP-10 
(500pg/ml) treated PBMCs. CD3+ T-cells (p=0.875); CD3+CD4+ T-cells (p=0.875); CD3+CD8+ 
T-cells (p=1.0); CD3-CD68+CD33+ Macrophages (0.625). HLA-DR mean fluorescence intensity 
in media alone and IP-10 (500pg/ml) treated PBMCs. CD3+ T-cells (p=0.125); CD3+CD4+ T-
cells (p=0.875); CD3+CD8+ T-cells (p=0.375); CD3-CD68+CD33+ Macrophages (0.625). 
Graphs represent mean and standard deviation. 
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Figure 4.18. PD-1 expression on CD4+ (p=0.367) and CD8+ (p=0.553) T-cells from 
HIV-1 infected subjects on ART after 24 hour treatment with media alone, IP-10 
(500pg/ml), or Anti-IP-10 (1µg/ml) followed by stimulation with CD3 and CD28/CD49d 
co-stimulatory antibodies. Graphs represent mean fluorescence intensity and 
standard deviation. A Friedman test followed by Dunn’s multiple comparison test was 
used. 
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Figure 4.19. PBMCs from HIV-1 infected subjects on ART were treated with 
500pg/ml of a CD26 inhibitor for 24 hours. This treatment led to a increase in A) IFN-
! production in response to CEF (n=4; p=0.0146) and flu protein (n=4; p=0.0387) and 
gag (n=4; p=0.0392) antigen stimulation and B) the calcium response. (left panel 
example of histogram illustrating Fura-2, AM mean fluorescence intensity of PBMCs 
treated with media alone (Red) and CD26 inhibitor [blue]). Right panel compiled 
calcium responses (n=4; p=0.0196). Graphs represent mean and standard deviation. 
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Figure 4.20. Left panel: Plasma levels of Total IP-10 (1062±637.0pg/ml), Long form 
of IP-10 (1330±22.4pg/ml), and short form of IP-10 (464.8±48.8pg/ml) in HIV-1 
infected subjects on stable ART. Right Panel: Plasma IP-10 short form (pg/ml) 
relative to total in healthy HIV-negative subjects, HIV-1 infected subjects on stable 
ART, and untreated HIV-1 infected. A one-way ANOVA followed by bonferroni’s 
multiple comparison test was used.  

!
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4.4 Discussion 

 i. IP-10 and T-cell Function 

As previously discussed we found that IP-10/CXCL10 was elevated in the sera of 

HIV-1 infected subjects on ART compared to healthy controls. Additionally, while the 

serum levels of IP-10 are highest in untreated HIV-1 infected subjects, even with ART, 

the levels remain elevated compared to healthy uninfected individuals. In this chapter we 

investigated the impact that these elevated serum levels of the pro-inflammatory 

chemokine, IP-10, have on HIV-1 infected subjects on stable antiretroviral therapy. The 

data presented here demonstrates that at elevated levels, IP-10 can blunt T-cell 

function. Firstly, we found that exposure to elevated IP-10 led to a decrease in the ability 

of PBMCs from both HIV-uninfected subjects and HIV-1 infected subjects on ART to 

produce IFN-! in response to stimulation with recall antigens. In other words, these 

findings suggest the potential impact elevated IP-10 may have on the ability of these 

individuals to respond to vaccines. Even more, IP-10’s role in other co-

morbidities/opportunistic infections, such as type 1 diabetes and hepatitis C virus 

infection130, 155, that also affect those infected with HIV-1, marks it as a potential 

therapeutic target.  

 In addition to the observed impact of IP-10 on IFN-! production, we found that IP-

10 can also affect the ability of lymphocytes to produce TNF-", IL-10, somewhat GM-

CSF, while we observed no significant effect on the production of other cytokines 

previously shown to be part of the polyfunctional antiviral response, specifically, IL-2 and 

MIP-1#. Importantly, we also observed that treatment with IP-10 led to a stunting of the 

proliferative capacity of lymphocytes from HIV-1 infected subjects on ART in response to 

stimulation with recall antigens. While definitive correlates of protection are yet to be 
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established for control of HIV-1 infection, several functions, which include production of 

IL-2, MIP-1#, IFN-!, TNF-", degranulation and production of cytotoxins, and proliferative 

capacity are suggested to correlate with better control of HIV-1 infection. Likewise, these 

functions are more prominent in HIV-1 infected non-progressors40, 45, 49, 53. Similarly, 

polyfunctional CD8+ T-cells responses are also seen during other infections, which 

include influenza, CMV, and EBV235, 236. Hence, if elevated levels of IP-10 lead to 

blunting of these functions, that in turn could impact the ability of ART-treated individuals 

to elicit protective responses against non-HIV infections.  

 Elevated serum levels of IP-10 are also associated with more rapid disease 

progression and HIV-1 viral replication12, 134. Conversely, reduced levels of IP-10 are 

suggested to be protective from acquisition of HIV-1 infection138. As shown in this 

chapter, if elevated levels of IP-10 lead to blunting of important T-cell functions, blocking 

IP-10 should lead to enhancement of T-cell function. Moreover, we show that not only do 

HIV-1 infected subjects on ART have elevated serum IP-10 levels, but upon antigen 

stimulation the levels of IP-10 increase significantly, potentially exacerbating the 

observed issues further. Indeed, when we block IP-10 using a neutralizing antibody we 

observe significant improvements in the production of IFN-!, IL-10, GM-CSF, TNF-", IL-

12p70, IFN-"2, and IL-13. Of these cytokines IFN-!, TNF-", IL-12p70, and IFN-"2 are 

involved in IP-10 signaling9, so at high levels, IP-10 may serve to regulate its inducers. 

Studies in mice, show that mice deficient in IP-10, but not MIG, have an increase in 

effector cells capable of producing IFN-!237. As well, Bromley et al.127 show that signals 

provided by IP-10 may dominate signals from the TCR. Thus, blocking IP-10 may 

improve T-cell functionality. Further, when examining functions shown to be important in 

viral control in HIV non-progressors, we see that blocking IP-10 leads to an 

enhancement in the ability of lymphocytes from HIV-1 infected subjects on ART to 
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proliferate in response to recall antigens. However, due to the antigens used in this 

study, specifically Flu proteins and CEF peptides, could suggest effects of IP-10 on other 

PBMC subsets, such as antigen-presenting cells since Flu protein has the potential to 

signal to dendritic cells directly through toll-like receptor stimulation for example. On the 

other hand CEF peptides could support a direct effect on T-cells due to their mechanism 

of presentation and signaling. Also, we demonstrate that using a neutralizing antibody 

against IP-10 can enhance the ability of CD8+ T-cells from HIV-1 infected subjects on 

ART to degranulate and produce perforin and granzyme B. These results suggest an 

enhancement in the ability of T-cells to potentially better control HIV-1 infection.  

 

 ii. Proposed model of action of elevated IP-10 levels 

 The results presented in this chapter also led us to propose a potential model for 

a mechanism of action for elevated serum levels of IP-10. First, we investigated whether 

IP-10 was acting by exerting its effects directly or indirectly on T-cells. We found that 

exposure to elevated levels of IP-10 could directly impact IFN-! in CD4+ and CD8+ T-

cells. Interestingly, we did not see an effect of IP-10 on the CCR5 ligand MIP-1#. 

Previous virological studies in mice suggest that since CXCR3 tends to be expressed on 

similar cells as CCR5, when one of the receptors is knocked out, infection is not as 

severe as knocking both out. These findings would suggest a potential redundant role of 

dual CXCR3/CCR5 expression on T-cells, and thus suggesting a potential reason for the 

lack of an effect of IP-10238. Second, one of IP-10’s functions is in the regulation of 

calcium mobilization9, 122. Accordingly, we examined the impact of elevated levels of IP-

10 on the calcium response and found that IP-10 blunted the calcium response. It is 

possible that constant signaling by IP-10 due to its elevation could lead to depletion of 

calcium reservoirs. Contrarily, previous researchers have demonstrated that IP-10 when 

in its antagonistic form can blunt the calcium response; we then sought to examine this 
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further. Doing this, we found again that IP-10 blunted the calcium response of CD4+ and 

CD8+ T-cells directly. Additionally, these findings point out that high levels of IP-10 affect 

the calcium responses after CD3 crosslinking. This could be due to the synergistic 

signaling between CXCR3 and CD3242. Third, we explored potential intracellular 

signaling proteins involved in IP-10/CXCR3 signaling. We specifically found a significant 

decrease in the phosphorylation of the p38 MAP kinase. Gratton et al.239 illustrate that in 

order to potentially avoid damage from multiple inflammatory signals, p38 can be down-

regulated in order to ensure cyto-protection. Thus, it is possible that at elevated levels 

IP-10 binding to CXCR3 helps to throttle back the T-cell response upon activation with 

antigen. Also, as is shown, STAT-1 phosphorylation on tyrosine-707 is increased, but 

down-regulation of the calcium and p38 signals could impact whether STAT-1 is 

phosphorylated on its serine-727 site, important for its function and can thereby possibly 

contribute to the observed dampening of T-cell function240, 241. However, further research 

is needed to understand the mechanisms of IP-10 on these pathways. Fourth, we 

explored whether at elevated levels, IP-10 was leading to cell death. We found that 

treatment of PBMCs from both HIV-uninfected and HIV-1 infected individuals on ART 

with IP-10 did not affect cell viability, suggesting that other potential mechanisms may 

explain IP-10’s role in T-cell function. It is possible that IP-10 could affect the expression 

of MHC complex molecules, which would affect normal TCR signaling. Furthermore, 

down-regulation of MHC Class molecules could leave cells vulnerable to NK cell 

targeting242. However, exposure to elevated levels of IP-10 did not affect the expression 

of HLA Class-I (A, B, and C) and HLA-DR on T-cells or macrophages. Similarly, 

expression of PD-1 on T-cells, is associated with blunted function in those infected with 

HIV-1234. Nevertheless, we found no change in the expression of PD-1 on CD4+ and 
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CD8+ T-cells after treatment with IP-10. And we saw no effect of blocking IP-10 on the 

expression of PD-1. These findings suggest alternative mechanisms for IP-10’s effects.   

 Research by others shows that high levels of IP-10 correlate with non-

responsiveness to HCV therapy and suggest a potential mechanism of action130. These 

researchers found that IP-10 is cleaved by the amino-peptidase CD26 (DPPIV) to a 

short antagonistic form. This antagonistic form can still bind CXCR3, but acts as a 

competitive antagonist128. Our findings suggest that similar to HCV infection, the 

elevated IP-10 observed in HIV-1 infected subjects on ART may be processed to its 

short form and in turn block normal signaling via CXCR3. In fact, we found that using an 

antagonist against CXCR3 led to similar results as the elevated levels of IP-10, that is, 

we observed a decrease in IFN-! production and a blunted calcium response. 

Additionally, blunted signaling via CXCR3 could reduce the synergistic effect between 

CXCR3 and CD3& signaling243. This could therefore lead to a reduction in T-cell 

functions such as IFN-! production and reduction in phosphorylation of p38. Moreover, 

we examined the serum soluble and surface expression levels of CD26. We 

demonstrate that HIV-1 infected subjects on ART have higher serum soluble CD26 

compared to healthy HIV-uninfected controls. Similarly, we observed that exposure to 

elevated levels of IP-10 led to an increase in the surface expression of CD26 on CD4+ 

and CD8+ T-cells. Even more, when we used an inhibitor of CD26, we found an 

improvement in the ability of HIV-1 infected subjects on ART to produce IFN-! and elicit 

a calcium flux response.  Finally, when we examined the short form of IP-10, we found 

that relative to total IP-10 levels, untreated HIV-infected subjects had the highest, 

followed by HIV-1 infected subjects on ART, and then by healthy HIV-negative subjects, 

suggesting a potential role for IP-10 short in HIV-1 infection.  
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 With these findings we propose a potential model for IP-10’s impact on T-cell 

function in HIV-1 infected individuals on ART. We propose that at elevated levels, IP-10 

is in an environment that has high levels of CD26. By the same token, upon cell 

activation, either through infection or vaccination, the surface expression of CD26 on 

cells can potentially increase as well as the production of IP-10. In this environment it is 

possible that IP-10 can come in contact with CD26 and be processed to its short form. 

As a way to potentially reduce unnecessary damage from multiple inflammatory signals, 

the short form of IP-10 provides antagonistic signals that help dampen pathways and 

functions that can possibly contribute to more immune activation and eventual T-cell 

turnover. Indeed, it is shown that excessive calcium release can lead to apoptosis244. 

Therefore the short form of IP-10 can stunt the calcium response to avoid apoptosis of 

T-cells. As well, its been shown that while the antagonistic form of IP-10 reduces calcium 

signaling and chemotaxis, IP-10’s angiostatic functions are maintained245. This would 

allow for IP-10 to limit further recruitment of activated cells and in turn control excessive 

inflammation to avoid further damage. However, in the context of trying to elicit 

protective T-cell responses with vaccines, IP-10 short’s “protective” role could lead to 

reduced responsiveness to vaccines. In regards to this, it may be necessary to target IP-

10 or its antagonistic form in order to enhance vaccine responses in HIV-1 infected 

subjects on antiretroviral therapy.  

!

Limitations of Study 

 While the findings presented in this study elucidate a potential role for IP-10 in 

affecting T-cell function in HIV-1 infected individuals further investigation is necessary to 

better understand IP-10’s mechanism of regulation. In this study we touch upon potential 

CXCR3 signaling pathways that could be affected by elevated levels of IP-10. However, 
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in addition to further investigating signaling pathways affected, such as NFAT and other 

STAT pathway members, the luminex assay in this study is limited in detecting 

phosphorylation of STAT-1 at both its tyrosine as well as serine site. Investigating how 

STAT-1 is affected could help unravel more intracellular mechanisms involved in IP-10 

regulation. Similarly, further studies are necessary to understand the effect seen on p38 

and its pathway members to see if downregularion is seen in other instances. 

Furthermore, CXCR3 is expressed primarily on activated and memory T-cells, thereby it 

may be necessary to investigate whther high levels of IP-10 can impact normal memory 

responses and differentiation. As well, this study would further benefit from examining 

CD26 activity during the presence of high levels of IP-10. In regards to the isoforms of 

IP-10, the 3-plex luminex assay is limited in its ability to account for all total IP-10 levels. 

This could be due to the need for better capture antibodies, as well as the fact that IP-10 

is processed by other aminopeptidases thereby underestimating the levels of total IP-

10130. Finally, this study is limited in the inaccessibility to obtain the antagonistic form of 

IP-10 to use in directly investigating its role in T-cell function. 
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5.1 Significance 

Developing an effective prophylactic or therapeutic vaccine against HIV-1 

remains an important task in which traditional vaccine approaches have failed. Even 

more vaccine trials, such as Merck’s STEP trial246, led to disappointing results for the T-

cell based vaccine field. Nonetheless, research involving HIV-1 non-progressors and 

non-pathogenic SIV studies continues to reveal insights into the pathogenesis of HIV-1 

infection and potential immune correlates of protection247. Additionally, successes in 

trials like the RV144 trial have shown the potential of eliciting humoral immunity with 

some efficacy248. However, the field of HIV-1 vaccines continues to be a swinging 

pendulum between T-cell based vaccines and antibody-based vaccines. Rather, these 

studies demonstrate how crucial it is to understand the role that both arms of the 

immune system play and it will probably be necessary to elicit both in order to develop 

and effective vaccine or therapy. 

In addition, while HIV-1 infection remains a major cause of morbidity and 

mortality worldwide, the tremendous progress in the development of antiviral regimens 

has helped turn HIV-1 infection from a death sentence to a manageable chronic disease. 

Yet even with these improvements the HIV-1 viral reservoir still poses a barrier to a cure 

for HIV-1 infection and the immune systems of these infected individuals continue to 

deteriorate with age as a result of the damage from HIV-1 infection itself10, 205. The 

studies presented in this thesis examine the ability of individuals on stable antiretroviral 

therapy to respond to a therapeutic vaccine against HIV-1 as well as investigate 

potential alternative therapeutic targets or factors that affect the ability of these 
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individuals to respond to vaccination, one such target being the pro-inflammatory 

chemokine IP-10. 

 

 

5.2 Therapeutic HIV-1 Vaccine 

 With traditional vaccine strategies against HIV-1, the results are troubled with 

safety (e.g. live vaccines) and efficacy issues. However, the field of DNA vaccines has 

overcome early setbacks of low immunogenicity. As well, DNA vaccines offer a safer 

strategy to target pathogens for which a vaccine remains elusive. The question also 

arises whether a vaccine that is effective in a prophylactic setting is effective in those 

already infected with the virus as a therapeutic vaccine and vice versa. Specifically, 

unless an HIV-negative individual is already affected with a chronic illness, their immune 

systems should be apt to respond properly to an effective prophylactic vaccine. On the 

other hand, even for those on ART, the damage that HIV-1 infection14 has caused in 

some if not all these individuals, can blunt their ability to respond to vaccination. Even 

more, while the RV144 trial showed us the possible need for broadly neutralizing 

antibodies, the success was not substantial249. Therefore, as Walker et al.168 suggest it is 

likely that a vaccine strategy that in parallel elicits both a strong T-cell response as well 

as broadly neutralizing antibodies may be the best bet for preventing or treating those 

individuals already infected.  

 In the study in chapter 2, we demonstrated that all individuals in the study 

responded to at least 1 vaccine antigen. In particular, we found that almost all of the 

subjects showed positive responses to pol antigen, and more than half demonstrated a 

positive response to gag. However, half of the individuals did not respond to one of the 

antigens, env, and only 4 of the subjects responded to all three. So in moving forward 
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with this vaccine, boosting the immunogenicity and breadth of the vaccine antigens 

could help to elicit antibody responses as well as stronger CD8+ CTL responses in more 

subjects. Alternatively, this vaccine trial used the same vaccine for the priming and 

boosting strategies. It is possible that combining this vaccine in a different prime-boost 

strategy, such as with a viral vector based strategy could enhance responses171. 

Additionally, while examining peripheral immune responses to vaccines against HIV-1 is 

a good indication of a systemic response, the virus is shown to predominantly affect the 

mucosa of individuals before it disseminates to other tissues5. Therefore researchers 

may be under- or over-estimating the impact of their vaccine regimens. It is thus 

necessary to develop minimally invasive methods of examining these mucosal 

responses as well in order to move the field forward. 

Nevertheless, the vaccine in this study demonstrates firstly, that a DNA-based 

vaccine can elicit potent cellular responses in HIV-1 infected individuals on stable ART 

against HIV-1 antigens. Secondly, this trial demonstrates that cellular responses elicited 

by this vaccine were responses shown to be potential correlates of control of HIV-1 

infection in elite controllers, specifically, CD8+ CTL responses. However, in order to 

examine the potential for control of HIV-1 infection, it is necessary to examine a more 

direct assay of killing that would investigate if the ability to identify and kill virally infected 

cells is enhanced. As well, not all subjects demonstrated potent CD8+ CTL responses, 

thus it is necessary to understand how to better elicit these responses if they are in fact 

important for the control of HIV-1 infection.  

 Further, we identified pre-vaccination baseline cytokine and chemokine profiles 

of these individuals. These results demonstrate potential cytokine or chemokine targets 

that could aid in improving similar vaccine strategies.  
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5.3 Sero-protection to Influenza in HIV-1 infected individuals 

The 2009 H1N1 pandemic demonstrated that being unprepared for such a 

severe risk could possibly leave many individuals unprotected and in danger. With an 

already present risk of influenza in the immune-compromised, including those infected 

with HIV180, 189, lack of preparation for such an outbreak may lead to a wasting of vaccine 

doses, leaving those infected with HIV unprotected still. Specifically, Tebas et al.203 

demonstrated that despite being well controlled on ART, 39% of vaccinated individuals 

do not achieve sero-protection against pandemic H1N1 infection. Likewise, due to lack 

of sero-protection, other studies discuss the need for administration of higher or multiple 

doses of influenza vaccines in order to improve rates of sero-protection in HIV-1 infected 

individuals66, 200. On the same note, a follow-up study comparing the administration of a 

higher than standard dose of the seasonal influenza vaccine, showed that immunizing 

HIV-1 infected subjects with a higher dose of the vaccine improved sero-protection 

rates198. Importantly, our study explored baseline factors that are associated with sero-

protection after vaccination with a standard 15µg dose of the H1N1 vaccine (Novartis).  

Since levels of T-cell immune activation are shown to be associated with HIV-1 

disease progression216 we expected that baseline levels of T-cell activation would be 

associated with responsiveness to H1N1 vaccination. However, this was not the case, 

and instead found a relationship between the baseline frequency of naïve T-cell subsets 

with responsiveness. It is possible that while the levels of immune activation are not 

directly associated with sero-protection, the damage caused by residual immune 

activation can contribute to the turnover and erosion of the naïve T-cell subsets, and 

thus responsiveness to vaccination. Even more, the association between 

responsiveness and naïve T-cell subsets may be indicative that the de novo flu response 

may be affected. Additionally, our analysis of baseline cytokine and chemokine profiles 
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exhibited differences in cytokines between Responders and Non-responders, specifically 

differences in IL-10 and IL-6. Changes in cytokine secretion between Responders and 

Non-responders can therein affect the type and immunogenicity of the response and 

ultimately sero-protection. Furthermore, overall cytokine and chemokine dysregulation 

present in HIV-1 infected individuals on ART can potentially affect responsiveness and 

T-cell function.  

Nonetheless the findings in our study bring up two potential concerns for those 

infected with HIV. Firstly, the population of well-controlled HIV-1 infected individuals is 

living longer and aside from the co-morbidities that are seen to arise in these individuals, 

age itself is further contributing to dysregulation of the immune system and depletion of 

naïve cell subsets. Regarding age as a potential confounding factor should inform 

researchers and clinicians as to investigating better vaccine design and/or dosing for 

those infected with HIV, especially in the event of a future unforeseen pandemic. 

Understanding how to better protect these individuals can ensure that limited vaccine 

doses are administered properly so as to ensure higher rates of sero-protection.  

Secondly, the damage caused by untreated HIV-1 infection can potentially contribute to 

immune reconstitution issues after the initiation or antiretroviral therapy. As ART 

regimens have seen significant improvement and enhanced adherence, issues remain 

with accessibility to therapy and potential side-effects, nonetheless, the obtained 

benefits are undeniably welcomed. Therefore, recent research has sought to determine 

the best timing for the initiation of therapy. If initiating ART at earlier stages of infection 

can lead to better preservation of cell subsets250 important in responses to vaccines, 

then in the case of our study, early ART initiation could better preserve the naïve T-cell 

subset and improve sero-protection rates. However, for those already being treated for 

ART it may be necessary to investigate alternate strategies to improve sero-protection 
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rates. Aside from possible benefits to immune reconstitution, studies examining early 

initiation of ART in those infected with HIV have also seen reduced rates of transmission 

in sero-discordant couples18.  

 

5.4 IP-10 as an immune-therapy target 

IP-10, is a chemokine that can be beneficial or detrimental depending on the 

disease, pathogen, and whether the disease is chronic or acute. Basic research on the 

CXCR3 family of ligands has elucidated the inter-related roles of IP-10, MIG, and I-TAC 

and demonstrates that their functions can be independent of each other, redundant, and 

in some cases antagonistic120. Yet, in regards to IP-10, recent research has opened a 

new door that demonstrates the complexity of this 10kDa chemokine. As the name 

chemokine implies, IP-10 plays an important role in the trafficking of a wide variety of cell 

types9. Knowing this role, it would be expected that a potent chemokine would be 

associated with better immune responses, as it would help immune cells traffic to the 

site of infection. Contrarily, as is the case, excessive recruitment of immune cells can 

lead to increases in inflammation, which if left uncontrolled can become pathogenic. For 

example elevated levels of IP-10 contribute to chronic inflammation observed in 

ulcerative colitis251, in the spinal cord148, and arthritis252.  

Sadly, a chemokine, like IP-10 that is beneficial for diseases like breast 

cancer160, has become an ominous sign of sorts in regards to HCV and HIV-1 infection. 

Recent research by Casrouge et al.130 and others253 has offered insight as to why IP-10 

is associated with inability to respond to HCV therapy and clear infection. These 

researchers demonstrated that IP-10 is processed and truncated (2 amino acid 

truncation) by CD26 to an antagonistic form. These findings have begun to elucidate on 

the paradoxical effects of IP-10. In our study we investigated the role of elevated levels 
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of IP-10 in HIV-1 infected individuals on ART, a novel population in which IP-10’s effects 

is not fully explored. We found that at elevated levels IP-10 could lead to blunting of T-

cell functions, specifically IFN-! production aside from others. Likewise, in HCV infection, 

Riva et al.254 show that in addition to having lower levels of IP-10’s antagonistic form, 

individuals who clear infection have a higher frequency of HCV-specific IFN-! producing 

T-cells. Our findings and those by Riva et al.254 suggest an alternate role for IP-10 in 

potentially regulating inflammation and immune activation. As seen in our study, at 

elevated levels, we see a blunting of the calcium response and down-regulation of p38 

phosphorylation. Reducing such signals, could serve as a possible safety mechanism to 

avoid excessive damage from inflammatory stimuli. However, when trying to elicit a 

response to therapy or a vaccine, blunting T-cell function may lead to the inability to 

achieve adequate immunogenicity. Apart from HCV infection, IP-10’s antagonistic form 

has been implicated in ovarian cancer161. Similarly, reduction of IP-10 has seen benefits 

during influenza infection, and in mouse models236, 255.  

It is therefore necessary to better understand IP-10 in order to develop better 

ways to target this chemokine. The development of anti-IP-10 antibodies to treat colitis 

has seen some success251. By the same token, the use of statins that help target IP-10, 

such as atorvastatin, or indirubin has shown benefits in Chron’s disease and highly 

pathogenic influenza infection, respectively255, 256. Yet, in regards to infections like HCV, 

where the antagonistic form plays a role, research is necessary to understand whether it 

is better to target IP-10 or the antagonist form. Furthermore, as we show in our study, 

HIV-1 infected individuals have elevated CD26 levels. So instead of targeting IP-10 

altogether, it could be beneficial to target CD26, the culprit that processes IP-10. 

However, CD26 is involved in the processing of other chemokines, such as RANTES 

and SDF-1245, so CD26 as a therapeutic target would have to be investigated further. 
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5.5 Future Directions 

In continuing research on the HIV-1 infected population on stable ART there are 

certain questions that can be further investigated. Current studies are investigating the 

potential benefits of initiating ART earlier. As so, it would be interesting to compare 

vaccine responses, to both HIV-1 and non-HIV vaccines, between early and 

late/standard ART initiators. Additionally, understanding the impact of early ART to 

immune reconstitution could provide researchers with a better understanding of potential 

immune correlates for controlling HIV-1. Furthermore, administration of higher doses of 

the influenza vaccine appear to improve sero-protection, but there remains a subset that 

do not achieve protection. Examining the differences in these populations could reveal 

additional factors impacting vaccine responses in HIV-1 infected individuals on ART. 

In regards to the development of a therapeutic HIV-1 vaccine, collaborations 

between research on reservoir eliciting/targeting agents, and the vaccine field could lead 

to a better approach at targeting and eliminating the viral reservoir.  Likewise, 

concerning vaccine development, efforts from the humoral and T-cell based fields should 

be combined so as to better understand the impact of a two-arm vaccine approach. 

Moreover, advances in vaccine technology, particularly DNA vaccines, can aid in 

improving the immunogenicity of vaccine antigens in order to elicit better HIV controlling 

responses.  

On the other hand, basic research that helps researchers understand the impact 

from the dysregulated cytokine and chemokine environment is important. Understanding 

the roles IP-10 can play in the immune response can aid in the creation of immune-
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therapies that help reduce negative effects from this chemokine. However, further 

research regarding IP-10 in the context of HIV-1 infection on ART is still needed. In 

addition to understanding the potential role that IP-10’s antagonistic form may play in 

this patient population, better understanding of IP-10’s receptor, CXCR3, is also 

necessary. CXCR3 itself has 3 isoforms that can have normal or inhibitory functions, so 

exploring their expression and distribution could elucidate on other CXCR3 based 

mechanisms of control120. By the same token, there exist populations of CXCR3 

expressing regulatory T-cells that can traffic in response to IP-10, so it is possible they 

may also play a role in regulating immune responses dependent on IP-10120, 257, 258. Yet, 

we found that high levels of IP-10 affected the secretion of IL-10, an immune-regulatory 

cytokine. It is possible that even if CXCR3+ T-regs are being recruited, their functionality 

too may be affected. Alternatively, IP-10 is shown to have alternate binding sites, such 

as glycosaminoglycans259, which are shown to potentially affect the proliferation of 

epithelial cells. So investigating whether this binding plays a role in T-cell function could 

elucidate on alternate forms of IP-10 regulation. Finally, early studies by Bromley et 

al.127, demonstrate a possible role for IP-10 and the development of the immunological 

synapse during antigen presentation. Understanding whether IP-10 or its antagonist 

form disrupts this interaction could lead to finer targeting of IP-10. In moving forward, our 

lab is looking to the development of an anti-IP-10 agent that could aid in enhancing T-

cell function in those infected with HIV-1 on ART, as well as understanding the role IP-10 

plays in other diseases by using in vivo mouse models.  

!
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6.1 Therapeutic HIV-1 DNA Vaccine Study 

 i. Study Participants 

This study was an open label, Phase I trial conducted at one center in the United 

States (clinicaltrials.gov registration NCT01082692). The study protocol was approved 

by an Institutional Review Board and adhered to the guidelines of Good Clinical Practice 

and the Declaration of Helsinki. Written informed consent was obtained prior to study 

enrollment. Adult HIV-1 infected male and female subjects eligible for participation were 

between 18-55 years of age, currently receiving a highly active antiretroviral therapy 

(HAART) regimen, undetectable plasma viral loads (<75 copies/mL), CD4+ lymphocyte 

counts >400 cells/µL, and nadir CD4+ lymphocyte counts >200 cells/µL. These values 

must have been documented on two separate occasions within 60 days of study 

enrollment. Female subjects of reproductive potential must not have been pregnant or 

nursing and have had a negative serum pregnancy test within 30 days of study entry as 

well as a negative urine pregnancy test on the day of the first immunotherapy dose. 

Major exclusionary criteria included any past or active AIDS-defining illness, malignancy 

requiring chemotherapy, autoimmune disease, or receipt of other immunomodulatory 

therapy within 4 weeks of study entry. 

 

ii. Study Design 

Subjects received a four doses of the PENNVAX®-B (gag, pol, env) 

immunotherapy delivered intramuscularly into the deltoid muscle followed immediately 

by electroporation (EP) with the CELLECTRA® 2000 Adaptive Constant Current device 
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(3 pulses of 52ms duration at 0.5A). Each 0.75 mL dose contained 3 mg of DNA 

encoding Clade B consensus sequence HIV-1 gag, pol, and env expression plasmids in 

equal proportions. Therapeutic immunization followed by EP occurred on Day 0 (1st 

dose), Week 4 (2nd  dose), Week 8 (3rd dose), and Week 16 (4th  dose). Blood collection 

for immunogenicity and virologic assessments was performed during screening, at Day 0 

(prior to dose), and weeks 4 (prior to dose), 8 (prior to dose), 10, 16 (prior to dose), 18, 

24, and 48 (discharge visit). 

 

 iii. Safety Assessment 

Local and systemic injection site reactions, including pain, tenderness, erythema, 

and edema, were assessed within 30 minutes post-dose on the day of each 

immunization as well as 2 weeks later. All local injection site reactions were graded 

according to severity (in accordance with the 2004 AIDS Table for Grading Adult 

Adverse experiences) where grade 1 = mild (minimal pain and/or tenderness, erythema 

or edema < 15cm x 15cm); grade 2 = moderate (notable pain and/or tenderness, 

erythema or edema % 15cm x 15cm); grade 3 = severe (extreme pain and/or tenderness, 

ulceration, superinfection or phlebitis); and grade 4 = potentially life-threatening 

(necrosis of the skin). Adverse events were monitored via telephone follow-ups 24 hours 

after the dose, as well as during in-person visits continuously over the course of the 

study.  

 

 iv. IFN-! ELISpot 

We used ninety-six-well nitrocellulose membrane plates specific for human IFN-

! (MABtech, Nacka, Sweden) to examine IFN-! production by PBMCs. PBMCs were 

either stimulated with media alone, consensus sequence HIV-1 gag, pol, or env 
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peptides. HIV-1 consensus sequence subtype B peptides (2ug/mL) were combined with 

2x105 cells (100ul) per well (triplicate). PBMCs from each time-point (Screening, day 0, 

week 4, 8, 16, 18, 24, and 48) were assessed. PMA/Ionomycin (0.02ug/mL and 2ug/ml 

respectively) was done in triplicate as positive controls. Plates were incubated for 18-24 

hours. Plates were then washed and detector monoclonal antibody was added for 2 

hours followed by washing. Plates then had streptavidin-ALP added for an hour followed 

by washing and finally substrate was added until reaction was stopped and plates were 

washed and dried overnight prior to analysis using ImmunoSpot plate reader. The 

average number of SFC counted in R10 wells was subtracted from the average in 

individual HIV peptide wells and then adjusted to 1 ' 106 PBMCs for each HIV peptide 

pool. Positive Responses were determined using a one-way ANOVA followed by 

Dunnett’s test, comparing each time-point to baseline. 

 

v. Flow Cytometry 

Intracellular cytokine staining was performed as previously described260. We 

measured the potential of cells to express functions shown to lyse HIV-1 infected cells 

by measuring CD8+ CD107a+ Perforin+ Granzyme B+ responses. Antibody fluors are 

as follows: BD Biosciences: CD14, CD16 (PacBlue), IFN-! (FITC), CD3 (APC-Cy7), CD4 

(PerCP-Cy5.5), CD8 (APC), CD45RO (AF700), CD107a (PE-Cy7), Abcam: Perforin (PE; 

clone B-D48), Invitrogen: CD19 (PacBlue), Granzyme B (PETexas-Red), Ebiosciences: 

CD27 (PE-Cy5). Staining for CD107a+ and stimulation (gag, pol, env, SEB) was done as 

previously described260. Cell surface staining was done at 4°C for 30-45min using anti-

CD14, anti-CD16, anti-CD19, anti-CD3, anti-CD4, anti-CD8, anti-CD27, and anti-

CD45RO. Intracellular staining was done following permeabilization at 4°C for 45min-1h 

using anti-perforin, anti-granzyme B, and anti-IFN-!. Subjects’ responses were 
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considered positive if their CD8+ CD107a+ Perforin+ Granzyme B+ responses were 

>0.05% after background subtraction. Gating was done as shown in figure 2.6.  

Prepared cells were acquired using the LSR II flow cytometer equipped with BD 

FACSDiva software (BD Biosciences). Acquired data was analyzed using the FlowJo 

software. 

 

vi. Luminex 

A Luminex cytokine/chemokine assay (Millipore) was used to examine serum 

from 15 HIV-1 infected subjects on ART and 10 healthy HIV-negative controls. The 

assay examined the following serum cytokine/chemokine levels: IL-12p40, IL-12p70, 

IFN-!, TNF-", IL-10, IL-4, IL-5, IL-6, IL-13, IL-2, IL-7, IL-15, G-CSF, GM-CSF, VEFG, 

TGF-", EGF, IP-10, MIP-1", MIP-1#, IL-8, MCP-1, Fractalkine, Eotaxin, IL-17A, IL-1ra, 

IL-1", IL-1#, sCD40L. Cytokine/chemokine profiles were compared between the HIV-1 

infected individuals on ART and the HIV-negative controls using an unpaired t-test. 

 

6.2 Sero-protection after H1N1 Influenza vaccination 

i. Vaccine 

Subjects received a single 15µg dose of the monovalent, unadjuvanted, 

inactivated, split virus H1N1 vaccine (Novartis, Basel, Switzerland). Each participant had 

baseline studies performed at the time of enrollment followed by the intramuscular 

administration of the 2009 H1N1 influenza vaccine (0.5 mL) to one of the deltoid 

muscles, followed by 2 phone calls and serological response evaluations completed 21-

28 days after vaccination. 

ii. Subjects 
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All subjects provided informed consent and the study was approved by the 

University of Pennsylvania institutional review board. HIV-1 infected individuals, older 

than 18 years of age that had an indication to receive the H1N1 vaccine were included in 

the study. Individuals with a known allergy to eggs or other components of the vaccine, a 

history of severe reactions to previous immunization with seasonal flu, known cases of 

H1N1 influenza during the spring of 2009 or previous recipients of the novel H1N1 

vaccine were excluded. Additionally, subjects were excluded if they had received other 

licensed live vaccine within 4 weeks of study entry or inactivated vaccines within 1 week 

of study entry. Other exclusionary criteria included subjects receiving: experimental 

treatments (other than phase III antiretroviral trials), systemic chemotherapy for the past 

36 months, steroids, immunomodulators, or history of Guillain-Barre syndrome. A total of 

120 subjects were included in the study that has been previously presented by Tebas et 

al.203. All patients provided informed consent. Forty-six of the 120 subjects had frozen 

PBMCs available to use for the purpose of this study.  These 46 subjects had baseline 

HAI titers <40, were all on anti-retroviral therapy, their ages ranged from 26-77 with a 

median age of 48, 69.6% were male, 63% were black, 10.9% Hispanic/Latino, 23.9% 

Caucasian, and 2.1% Asian/Pacific Islander. Furthermore, their average CD4+ 

lymphocyte count was 542 cells/µl ± 306.8 cells/µl, average CD4+ lymphocyte nadir of 

193 cells/µl ± 187.2 cells/µl, HIV VL were <400 copies/ml in 90% and 85% below limits 

of quantification. At week 3, 61% of the subjects met the guidelines for protection.  

iii. Hemagglutination inhibition assay 

Antibody titers of the 120 subjects were measured using a hemagglutination 

inhibition assay as previously described214. The hemaglutination assays were done by 

McKittrick et al.198 at Bioqual Inc. For the 46 subjects in this study, if their week 3 titer 
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was greater than 1:40 and had a four-fold increase in their HAI titer, they were classified 

as sero-protected and responders to vaccination, while those with titers less than 1:40 

and/or were less than four-fold increase were classified as non-responders. 

iv. Flow Cytometry 

Samples from 46 of the 120 subjects were available and were examined for their 

memory and activation phenotypes using multi-parameter flow cytometry. Antibody 

fluors are as follows: BD-Pharmigen: CD3 (FITC), CD4 (APC-Cy7), CD8 (AF700), CD27 

(APC), HLA-DR (PE-Cy5); Beckman Coulter: CD45RO (ECD); Ebiosciences: CD38 (PE-

Cy7); Beckton Dickinson: CD25 (PE); BD Horizon: CD127 (V450); Invitrogen: Viability 

Dye (Aqua). 46 subjects were analyzed and cellular (CD27, CD45RO) and activation 

(HLA-DR, CD38) phenotypes were compared using an unpaired t-test between 

responders and non-responders.  Cell surface staining was done at 4°C for 30-45min in 

the dark and gating was done using FlowJo Software as in figure 3.2 after sample 

acquisition on the LSR II running BD FACSDiva software (BD Biosciences). 

v. Predictors of response 

 A multi-variate logistic regression model was used to examine the predictors of 

response, which included viral load, pre-vaccination CD4+ lymphocyte count, CD4+ 

lymphocyte nadir, age, naïve and terminally differentiated CD4+ and CD8+ T-cells. A 

multi-variate logistic regression model was also used to examine the effect of age to 

frequency of CD4+ naïve T-cells and total activated CD4+ T-cells. 

vi. Luminex 

A Luminex cytokine/chemokine assay (Millipore) was used to examine serum 

from the 46 HIV-1 infected subjects on ART and 10 healthy HIV-negative controls. The 
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assay examined the following serum cytokine/chemokine levels: EGF, Eotaxin, G-CSF, 

GM-CSF, IFN"2, IFN-!, IL-1", IL-1#, IL-1RA, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, 

IL-12p40, IL-12p70, IL-13, IL-15, IL-17A, IP-10, MCP-1, MIP-1", MIP-1#, TNF-", TNF-#, 

and VEGF. Cytokine/chemokine profiles were compared between the HIV-1 infected 

individuals on ART and the HIV-negative controls using an unpaired t-test. 

Cytokine/chemokine profiles were also compared between subjects designated as 

Responders and Non-Responders using and unpaired t-test.  

 

6.3 Impact of IP-10 on T-cell function in HIV-1 infected subjects on ART 

i. Patient Samples 

Sera and PBMCs, isolated CD4+, and CD8+ T-cells from Healthy HIV-negative 

subjects, HIV infected untreated subjects, and HIV-1 infected subjects on ART were 

obtained from the University of Pennsylvania’s Human Immunology Core or the Center 

for AIDS Research. Healthy controls age ranged from 20-55 years of age, with an 

average of 31. HIV-1 infected subjects on ART were well controlled with VL<50 

copies/ml, current CD4 count over 400 cells/µl and CD4 nadir over 200 cells/µl.  HIV-1 

infected subjects median VL was 16511 copies/ml. 

ii. Cell Culture & IP-10 treatment 

Recombinant human IP-10/CXCL10 (Biolegend) treatment doses were 

determined based on the serum levels of IP-10 found in HIV-1 infected subjects on ART 

in our and other studies126134. PBMCs, or isolated CD4+ or CD8+ T-cells were cultured in 

media alone (RPMI 1640 with L-glutamine + 10% FBS and 1% streptomycin/penicillin) or 

media with one of the rhIP-10 doses (500, 10,000, or 100,000pg/ml) for 24 hours. 

Additionally, in the cases indicated below, PBMCs from HIV-negative of HIV-1 infected 
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subjects on ART were treated with 1µg/ml of the anti-IP-10 neutralizing antibody (R&D 

Systems), or 500pg/ml of a CXCR3 antagonist (EMD Millipore), or 500pg/ml of the CD26 

inhibitor (Santa Cruz Biotechnology) for 24 hours. These cells were then stimulated with 

viral antigens or anti-CD3 (Hit3a clone, BD Pharmigen) and used in the ELISpot, flow 

cytometry, Luminex, and Ca2+ flux assays (figure 4.1). Average cell viability post 

treatment with IP-10 was 95.1±3.3% and 89.2±3.2% for the healthy HIV-negative and 

HIV-infected on ART samples, respectively (figure 4.2).  

iii. IFN-! ELISpot 

A standard IFN-! ELISpot (MABtech, Nacka, Sweden) assay as previously 

described was used262. Briefly, PBMCs were treated with or without rhIP-10 for 24 hours 

prior to this assay and then plated in triplicate at 2x105 cells per well.  PBMCs from 

healthy HIV-negative subjects were also treated for 24 hours with a CXCR3 antagonist 

(500pg/ml; EMD Millipore). PBMCs from HIV-1 infected subjects on ART were also 

treated for 24 hours with a CD26 inhibitor (500pg/ml; Santa Cruz Biotechnology). Cells 

were then either stimulated with media alone, CD8+ specific CEF peptides (0.03µg/ml: 

CMV, EBV, Flu peptides) or influenza proteins (Protein Sciences Corp.: 

A/Brisbane/59/07, 10µg/ml; A/Brisbane/10/07, 10µg/ml; B/Brisbane/60/08, 10µg/ml). 

PBMCs from HIV-1 infected subjects on ART were also stimulated with HIV-1 consensus 

sequence subtype B gag peptides (2µg/ml), in the presence or absence of 500pg/ml IP-

10 or ±1µg/ml of the anti-IP-10 neutralizing monoclonal antibody (R & D Systems). 

PMA/Ionomycin (0.02µg/mL and 2µg/ml respectively) was done in triplicate as positive 

controls. BCIP/NBT was used to visualize spots. The spots were counted on an 

ImmunoSpot plate reader. For the healthy HIV-1 negative subjects, IFN-! production in 

the absence of IP-10 was compared to that of each dose treatment with IP-10 using a 
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Friedman Test followed by Dunn’s multiple comparison test. For the HIV-1 infected 

subjects on ART a Wilcoxon matched-pairs signed rank test was used to examine the 

effect of IP-10 or effect of blocking IP-10 on IFN-! production. To examine the effect of 

the CXCR3 antagonist or the CD26 inhibitor on IFN-! production a paired t-test was 

used. 

iv. Luminex 

a. A Luminex cytokine/chemokine assay (Millipore) was used to examine serum 

from 15 HIV-1 infected subjects on ART, 13 untreated HIV-1 infected subjects, and 10 

healthy HIV-negative controls. The assay examined the following serum 

cytokine/chemokine levels: IL-12p40, IL-12p70, IFN-!, TNF-", IL-10, IL-4, IL-5, IL-6, IL-

13, IL-2, IL-7, IL-15, G-CSF, GM-CSF, VEFG, TGF-", EGF, IP-10, MIP-1", MIP-1#, IL-8, 

MCP-1, Fractalkine, Eotaxin, IL-17A, IL-1ra, IL-1", IL-1#, sCD40L. Cytokine/chemokine 

profiles were compared between the HIV-1 infected individuals on ART and the HIV-

negative controls using an unpaired t-test. A Kruskal-Wallis test followed by Dunn’s 

multiple comparison test was used to compare the levels of IP-10 between untreated 

HIV-1 positive subjects, HIV-1 infected subjects on ART, and healthy HIV-negative 

controls. 

b. Supernatants from stimulated HIV-1 infected lymphocytes on ART with and 

without IP-10 (500pg/ml) treatment were isolated.  A Luminex assay (Millipore) panel 

was used to assess cytokine secretion and the impact of IP-10 on CD3 (Hit3a clone, BD 

Pharmigen, 5µg/ml) and CD28/CD49d (1µg/ml) stimulated lymphocytes. The assay 

examined secretion of: EGF, Eotaxin, G-CSF, GM-CSF, IFN"2, IFN-!, IL-1", IL-1#, IL-

1RA, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, IL-17A, 

MCP-1, MIP-1", MIP-1#, TNF-", TNF-#, and VEGF. Positive controls included in the 
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Luminex assay ensured that the assay was able to detect the cytokines/markers 

analyzed. Immunological molecule secretion in response to stimulation in media alone 

was compared to the PBMCs treated with 500pg/ml of IP-10 or treated with 1µg/ml of the 

anti-IP-10 NAb using a repeated-measures ANOVA followed by Bonferroni’s multiple 

comparison test.  

c. Cell lysates were isolated from HIV-negative PBMCs treated with or without 

IP-10 followed by stimulation with CEF peptides or influenza proteins. The assay 

(Millipore) examined the expression of the phosphorylation sites of the following 

phospho-proteins: ATF2 (Thr71), Erk (Thr185/Tyr187), HSP27 (Ser78), JNK 

(Thr183/Tyr185), MEK1 (Ser222), MSK1 (Ser212), STAT1 (Tyr707), c-Jun (Ser73), p38 

(Thr180/Tyr182), p53 (Ser15). To examine the fold change in the mean fluorescence 

intensity (MFI) of phosphorylated proteins, the media alone condition was divided from 

that of the IP-10 treated condition. Following this, a Wilcoxon matched-pairs signed rank 

test was used to investigate whether IP-10 treatment led to a significant change in 

expression of the phosphorylated proteins of interest. 

d. IP-10 3-Plex: Plasma samples from healthy HIV-negative subjects, HIV-1 

infected subjects on ART, and untreated HIV-1 infected subjects were sent to Myriad-

RBM. Plasma samples were then run on their IP-10 3-plex assay to asses the levels of 

Total, Long, and Short form of IP-10. IP-10 short form levels relative to Total IP-10 levels 

were then compared using a One-way ANOVA followed by Bonferroni’s multiple 

comparison test. 

v. Flow Cytometry 

 a. IFN-! expression:  A multi-parameter flow cytometry panel was used to 

examine the effect of IP-10 treatment (500pg/ml) had on IFN-! expression in total 
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PBMCs and isolated CD4+ and CD8+ T-cells. The antibodies are as follows: BD 

Biosciences: CD14, 16 (PacBlue), CD4 (PerCp-Cy5.5), IFN-! (FITC), CXCR3 (APC); 

Biolegend: CD3 (APC-Cy7), CD8 (APC); Invitrogen: CD19 (PacBlue), LIVE/DEAD Violet. 

To determine the background expression of IFN-!, a no stimulation control was used. 

Total PBMCs, CD4+ T-cells alone, and CD8+ T-cells alone were stimulated with anti-

CD3 (Hit3a clone) and co-stimulatory antibodies, CD28 and CD49d, as previously 

discussed by Betts et al.260. To examine the change in IFN-! expression, the media 

alone condition was compared to that of the IP-10 treated condition. Following this a 

paired t-test was used to examine whether IP-10 treatment led to a significant change in 

IFN-! expression. 

b. CD8+ Cytotoxic Panel:  A multi-parameter flow cytometry panel was created to 

examine the effect of blocking IP-10 using a neutralizing anti-IP-10 antibody (R & D 

Systems) on the ability of CD8+ T-cells to degranulate and produce perforin and 

granzyme B. PBMCs from HIV-1 infected subjects on ART received ±1µg/ml anti-IP-10 

mAb and ± consensus sequence subtype B gag peptides (2µg/ml) for 24 hours. These 

PBMCs were then used for the multi-parameter flow cytometry assay as described by 

Betts et al.260. The antibodies are as follows: BD Biosciences: CD14, 16 (PacBlue), 

CD107a (PE-Cy7); Biolegend: CD3 (BV510), CD8 (BV570); Invitrogen: CD19 (PacBlue), 

Viability Dye (Violet), Granzyme B (PE-Texas Red); Ebiosciences: CD4 (PE-Cy5.5); 

Abcam: Perforin (PE).  A Friedman Test was used to examine the effect of blocking IP-

10 on CD8+ triple positive degranulation and perforin/granzyme B production.   

c. Ca2+ Flux assay: 1) PBMCs or CD4+ or CD8+ T-cells alone from HIV-negative 

individuals were cultured as discussed above in the presence (500 or 100,000pg/ml) or 

absence of rhIP-10 (Biolegend) for 24 hours.  
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2) Or PBMCs from healthy HIV-negative subjects were treated for 24 hours with 

a CXCR3 antagonist (500pg/ml; EMD Millipore).  

3) Or PBMCs from HIV-1 infected subjects on ART were treated for 24 hours with 

a CD26 inhibitor (500pg/ml; Santa Cruz Biotechnology). 

Following this, these PBMCs, CD4+ or CD8+ T-cells were washed and placed in 

a calcium containing solution (140mM NaCl, 4.5 mM KCl, 2 mM CaCl2, 1mM MgCl2, 

10mM HEPES pH=7.4, 10mM D-glucose) and were loaded with Fura-2, AM (3uM, 

Invitrogen) for 30-45 minutes at room temperature. Fifteen minutes prior to analysis on 

the LSRB, mouse anti-human CD3 (50ng/ml, OKT3, eBioscience) was added to allow for 

stimulation via CD3 crosslinking using a purified goat anti-mouse IgG polyclonal 

antibody (Biolegend) against the anti-CD3 antibody. At the time of analysis on the LSRB, 

control groups containing cells only, cells in calcium free solution, and cells + fura-2, AM 

were run to establish background and baseline fluorescence of the fura-2, AM. Change 

in fluorescence intensity from media alone was examined using a Friedman Test to 

determine whether treatment with IP-10 led to a change in the calcium response in 

PBMCs, CD4+ and CD8+ T-cells alone. To examine the change in mean fluorescence 

intensity from media alone compared to effect of the CXCR3 antagonist or CD26 

inhibitor a paired t-test was used. 

d. T-cell proliferation: frozen PBMCs from HIV-1 infected subjects on ART were 

treated with media alone, or 1µg/ml of anti-IP-10 NAb for 24 hours. Following this, cells 

were incubated with CFSE (2.5µM) for 5 min at room temperature. Cells were washed 

and incubated with media alone, CEF peptides (0.03µg/ml), influenza proteins (Protein 

Sciences Corp.: A/Brisbane/59/07, 10µg/ml; A/Brisbane/10/07, 10µg/ml; 

B/Brisbane/60/08, 10µg/ml), gag peptides (2µg/ml), or Concanavalin A (ConA; positive 
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control) for 5 days at 37°C in 96-well plates. Cultures with medium alone were used to 

determine background proliferative responses. PBMCs were stained with the following 

mAbs: BD Biosciences: CD3 (APC-Cy7), CD4 (APC), and CD8 (PE-Cy7). Stained and 

fixed cells were acquired on the LSRII and analyzed using FlowJo software. The mean 

fluorescence intensity of CFSE was used to determine T-cell proliferative responses. A 

Wilcoxon matched-pairs signed rank test was used to examine the percentage of CFSE 

dim cells in media alone and 1µg/ml anti-IP10 within each of the antigen stimulation 

conditions. 

e. Multifunctional T-cell Panel: A multi-parameter flow cytometry panel was used 

to examine what effect IP-10 (500pg/ml) or anti-IP-10 (1µg/ml) treatment had on IL-2, 

MIP-1#, TNF-", and PD-1 expression in total PBMCs from HIV-1 infected subjects on 

ART. The antibodies are as follows: BD Biosciences: CD14, 16 (PacBlue), CD4 (PerCp-

Cy5.5), MIP-1# (FITC), CD3 (APC-Cy7), IL-2 (PE-Cy7); Biolegend: CD8 (BV650), PD-1 

(BV711), TNF-" (APC); Invitrogen: CD19 (PacBlue), LIVE/DEAD Violet. To determine 

background expression, a no stimulation control was used. Total PBMCs, were 

stimulated with anti-CD3 (Hit3a clone, BD Pharmigen, 5µg/ml) and co-stimulatory 

antibodies, CD28 and CD49d (1µg/ml), as previously discussed by Betts et al.258260. To 

examine the change in IL-2, MIP-1#, TNF-", and PD-1 expression, the media alone 

condition was compared to that of the IP-10 (500pg/ml) or anti-IP-10 (1µg/ml) treated 

conditions. A Friedman test followed by Dunn’s multiple comparison test was used to 

examine whether IP-10 or anti-IP-10 treatment led to a significant change in IL-2, MIP-

1#, TNF-", and PD-1 expression. 

f. MHC down-regulation: frozen PBMCs from healthy HIV-negative controls were 

treated with media alone or 500pg/ml of IP-10 for 24 hours. Following this PBMCs were 
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stained with the following mAbs: BD Biosciences: CD3 (APC-Cy7), CD4 (PerCp-Cy5.5); 

Biolegend: CD33 (BV711), CD8 (BV650), CD68 (APC), HLA-DR (PE); Sigma-Aldrich: 

HLA Class-I (FITC); Invitrogen: Viability Dye (Violet). Media alone was then compared to 

IP-10 treated PBMCs using a Wilcoxon matched-pairs signed rank test. 

g. CD26 Surface Expression: A multi-parameter flow cytometry panel was 

created to examine the effect of IP-10 treatment on CD26 (DPPIV) surface expression 

on T-cells. Frozen PBMCs from healthy HIV-negative controls were treated with media 

alone or IP-10 (500 or 100,000pg/ml) for 24 hours. Following this PBMCs were stained 

with the following antibodies: BD Biosciences: CD3 (APC-Cy7), CD8 (APC), CD4 

(PerCP-Cy5.5), CD26/DPPIV (FITC), CD14, 16 (PacBlue); Invitrogen: CD19 (Pacblue), 

Live/Dead Violet. Media alone was then compared to IP-10 treated (500 or 

100,000pg/ml) PBMCs using a Friedman Test.  

vi. ELISA 

We used a standard ELISA kit (Millipore) to quantify soluble CD26 levels from 

sera of 15 HIV-1 infected subjects on ART and 10 healthy HIV-negative individuals. 

Preparation of reagents and protocol was followed according to manual instructions. 

Color intensity (absorbance) was then measured at 450nm on an ELISA microwell 

reader. The absorbance values of the HIV-1 infected subjects on ART were compared to 

those of the HIV-negative subjects using an unpaired t-test.   
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