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Predictable Sequences and Competing with Strategies

Abstract
First, we study online learning with an extended notion of regret, which is defined with respect to a set of
strategies. We develop tools for analyzing the minimax rates and deriving efficient learning algorithms in this
scenario. While the standard methods for minimizing the usual notion of regret fail, through our analysis we
demonstrate the existence of regret-minimization methods that compete with such sets of strategies as:
autoregressive algorithms, strategies based on statistical models, regularized least squares, and follow-the-
regularized-leader strategies. In several cases, we also derive efficient learning algorithms.

Then we study how online linear optimization competes with strategies while benefiting from the predictable
sequence. We analyze the minimax value of the online linear optimization problem and develop algorithms
that take advantage of the predictable sequence and that guarantee performance compared to fixed actions.
Later, we extend the story to a model selection problem on multiple predictable sequences. At the end, we re-
analyze the problem from the perspective of dynamic regret.

Last, we study the relationship between Approximate Entropy and Shannon Entropy, and propose the
adaptive Shannon Entropy approximation methods (e.g., Lempel-Ziv sliding window method) as an
alternative approach to quantify the regularity of data. The new approach has the advantage of adaptively
choosing the order of regularity.
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ABSTRACT

PREDICTABLE SEQUENCES AND COMPETING WITH STRATEGIES

Wei Han

Alexander Rakhlin

Abraham J. Wyner

First, we study online learning with an extended notion of regret, which is defined

with respect to a set of strategies. We develop tools for analyzing the minimax

rates and deriving efficient learning algorithms in this scenario. While the stan-

dard methods for minimizing the usual notion of regret fail, through our analysis

we demonstrate the existence of regret-minimization methods that compete with

such sets of strategies as: autoregressive algorithms, strategies based on statistical

models, regularized least squares, and follow-the-regularized-leader strategies. In

several cases, we also derive efficient learning algorithms.

Then we study how online linear optimization competes with strategies while

benefiting from the predictable sequence. We analyze the minimax value of the

online linear optimization problem and develop algorithms that take advantage of

the predictable sequence and that guarantee performance compared to fixed actions.

Later, we extend the story to a model selection problem on multiple predictable

sequences. At the end, we re-analyze the problem from the perspective of dynamic

regret.

Last, we study the relationship between Approximate Entropy and Shannon
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Entropy, and propose the adaptive Shannon Entropy approximation methods (e.g.,

Lempel-Ziv sliding window method) as an alternative approach to quantify the

regularity of data. The new approach has the advantage of adaptively choosing the

order of regularity.
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Chapter 1

Introduction

Online learning is a subfield of machine learning. There are two key points to dis-
tinguish online learning from traditional machine learning algorithms and classical
statistical methods. First, traditional machine learning algorithms and classical sta-
tistical methods usually have strong assumptions about the data generating mecha-
nism. For example, data come in the independent and identically distributed (i.i.d.)
fashion, or data are generated from fixed distributions. However, these assumptions
are not true in many environments. Online learning aims to avoid these strong as-
sumptions, and to make sure that the algorithm works well, regardless of the data
generating mechanism. Second, online learning focuses on the environment where
new data constantly arrive over time, and real-time decisions are made at every
step. Therefore, online learning algorithms emphasize computational efficiency.

Let us illustrate these ideas by a stock trading example. There are many stocks
in the stock market. In each period, we only have enough resources to purchase a
subset of these stocks. To keep the illustration simple, let us assume that we only
have limited money and can only buy one single stock every day. The potential
profit to be made from each stock varies on each day. At the end of each day, we
observe profits of all the stocks in the stock market. The process of buying stocks
and observing profit is repeated day after day. Before buying stocks, we have
collected the profit information from previous days. We are interested in designing
a trading strategy that maximizes our profit from buying stocks.

How would classic statistical methods deal with this problem? A statistician
might assume that there is a model for the profit to be gained from each stock, and
previous observations are realizations from these distributions. Then, the statisti-
cian estimates the expectation of the profit of buying each stock on each day, and
chooses the stock with the highest average of profit according to the history. If the
data are indeed generated according to the assumed model, this algorithm will work
well in the long run. But what if the assumption is inaccurate and the data do not
follow this underlying structure? This strategy can perform badly in some scenar-
ios. For example, suppose the profit of buying Stock A is alternatively 2 or 0, and
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the profit of buying Stock B is consistently 1. According to the previous model, we
will randomly choose Stock A or Stock B on the odd days, and consistently choose
Stock A on the even days. However, it is wiser to choose Stock B on all even days.

In the stock scenario, it is unreasonable to assume that the profits come from
fixed distribution, and that the data generating process is highly non-stationary.
Many factors influence the stock market. Also, other traders are constantly adjust-
ing their trading strategies. This also affects stocks’ profit.

Therefore, what if we know little about the data generating process? What
if it is unreasonable to make too many assumptions about the data generating
process? Online learning aims to solve such a problem. The key philosophy of
online learning is to remain agnostic about how data are generated. Algorithms
in online learning guarantee the performance even in the worst situation, and the
performance measure does not depend on specific data structures.

Since we make no assumption about how the data are generated, then there can
always be one situation that we make very little profit regardless of the algorithm.
If we just keep our eyes on the profit, there is no hope to make any progress. So, it
is critical to define the performance measure for online learning algorithms.

There is an algorithm that make is as much profit as that made from constantly
choosing the best stock over time. In the long run, the difference between the
average profit of this algorithm and the average profit of the best stock, which is
defined as regret, goes to zero. Furthermore, the regret vanishes at the rate of√

logN/T , where N is the size of the stock market. Or, if we collect the opinions
from N stock market experts, there exists an algorithm that earns almost the same
profit as the best expert among these N experts. It is interesting to notice that the
rate of convergence depends on the size of the stock set or the size of the expert set.

Regret is the key performance measure in online learning. Why should we
only compete against fixed stocks / fixed experts? It only guarantees that the
performance is as good as the best single stock / expert. If there is one stock /
expert that performs well over this period of time, we are happy. But, what if none
of these fixed stocks / expers performs well enough? If there is a strategy that
can choose different stocks at different time based on revealed information, can we
design an algorithm that performs as well as the best strategy?

Our research extends significantly the definition of regret, which is the most
widely accepted performance measure in online leaning algorithms. Instead of com-
peting with fixed actions, we are competing with strategies, which is defined as a
set of functions that map from history to actions. As strategy is history-based,
the regret competing with strategies provides a higher standard for performance
measure of online learning algorithms.

The difficulty of competing with strategies is dealing with the exponentially
growing size of the strategy set. Supposing that there are only finite stocks /
experts, the number of strategies can increase exponentially as the duration of the
period increases. If the number of stocks / experts is small, the regret competing
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with fixed actions / finite experts quickly converges to zero. However, if history-
based strategies are considered, the size of the expert set N increases exponentially.
For example, if we use history in the previous k steps, then there are 3k strategies.
The longer the history is, the larger the strategy set is. It is interesting to note
that many strategies are similar to each other, although the number of potential
strategies is quite large. It is beneficial to group strategies according to the similarity
of strategies. If we can group strategies according to their similarities, then the
regret reduces even more quickly.

In Chapter 3, we define several complexity measures of strategies that dramat-
ically reduce the number of “effective strategies”. Also, while earlier algorithms
are only able to produce as much profit as fixed actions / finite experts, we de-
rive novel algorithms that make as much profit as the best history-based strategy.
Furthermore, we provide theoretical support for our algorithms.

Beyond our contribution to regret, we consider how to integrate outside infor-
mation with the learning process. For example, there are seasonal factors that affect
the stock market, and abnormal behaviors that occur around earnings announce-
ments. In Chapter 4, the problem is formulated and efficient algorithms are derived
to incorporate outside information.

Chapter 5 is about entropy estimation. Approximate Entropy, as an approxi-
mation of Kolmogrov-Sinai Entropy, is the widely accepted method to quantify the
regularity in data, especially medical data. However, it quantifies the regularity
only up to a predetermined order, while real data demand a much higher order. We
demonstrate the connection between Approximate Entropy and Shannon Entropy.
Based on that connection, we propose the adaptive Shannon Entropy approximation
methods (e.g., Lempel-Ziv sliding window method) as an alternative approach to
quantify the regularity of data. The new approach has the advantage of adaptively
choosing the order of regularity to analyze based on the data. Later, we compare
the results of the Lempel-Ziv sliding window method with Approximation Entropy
on the electroencephalography (EEG) data to measure the depth of anesthesia. The
Lempel-Ziv sliding window method yields more accurate results, especially for low
entropy data.

3



Chapter 2

Online Learning

This chapter briefly describes the framework of online learning and related results
in online learning. It follows closely to Alexander Rakhlin and Karthik Sridharan’s
lecture notes of STAT928: Statistical Learning Theory and Sequential Prediction
[16].

2.1 Framework of Online Learning

Suppose both the set of the learner’s choices F and the set of the adversary’s choices
Z are closed compact sets. The loss function ` ∶ F ×Z → R measures the quality of
the learner’s choice. The learning framework is shown in the following table

Algorithm 1 Learning Framework

for t = 1 to T do
We (The learner) pick(s) ft ∈ F
The adversary picks zt ∈ Z
We suffer loss `(ft, zt)

end for

Z can be also a set of experts. We, as the learner, choose to follow one expert’s
choice at each step, according to experts’ historical performance. We can switch
between experts, but can not mix experts’ choice at one single step. After the whole
learning process, we may regret and say “I should follow the best expert if I know
the sequence in advance”.

The difference between our cumulative loss and the cumulative loss of the best
expert is used to evaluate the algorithm. The difference is defined as Regret and
is formalized as

RegT (F) =
T

∑
t=1

`(ft, zt) − inf
f∈F

T

∑
t=1

`(f, zt).
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For the given pair (F ,Z), the problem is called online learnable if there exists
an algorithm that achieves sub-linear regret. One main problem in online learning
is to analyze the learnability. Another problem is the construction of low-regret
algorithms.

2.2 The Minimax Analysis

The minimax value of the online learning problem is defined as

VT (F) = inf
p1∈∆(F)

sup
z1∈Z

E
f1∼p1

. . . inf
pT ∈∆(F)

sup
zT ∈Z

E
fT ∼pT

(
T

∑
t=1

`(ft, zt) − inf
f∈F

T

∑
t=1

`(f, zt)) ,

where ∆(F) includes all distributions over the set F . It is a powerful way to
compress the process of online learning in one single formula.

The upper bound of VT (F) guarantees the existence of learning algorithms that
perform as well as the best one in the comparator set F . The lower bound indicates
that the adversary can cause that much damage regardless of learning algorithms.
Also, the minimax regret gives us the access to analyze the learnability of more
general online learning problem and to design learning algorithms.

Let us prepare several notations for further analysis. First, Rademacher random
variables ε represents a fair coin flip, and it equals to 1 or −1 with probability 0.5. Se-
quences of Rademacher random variables are embedded in Sequential Rademacher
Complexity [18] to capture the sequential nature of the online learning problem.
Before we jump into the definition of Sequential Rademacher complexity, we first
introduce the tree structure. A (complete binary) Z-valued tree z of depth T is
a collection of functions z1, . . . ,zT such that zi ∶ {±1}i−1 → Z and z1 is a constant
function. A sequence of i.i.d. Rademacher random variables (ε1, . . . , εT ) defines a
path in on the tree z:

z1,z2(ε1),z3(ε1, ε2), . . . ,zT (ε1, . . . , εT−1).

Definition 2.2.1. The Sequential Rademacher Complexity of a function class F is
defined as

Rseq
T (F) = sup

z
Eε [sup

f∈F

T

∑
t=1

εt`(f,zt(ε1, . . . , εt−1))] ,

where the outer supremum is taken over all Z-valued trees of depth T .

Furthermore, the value of the game VT (F) is upper bounded by twice Sequential
Rademacher Complexity Rseq

T (F).

Theorem 2.2.2. [18] The minimax value of the online learning problem is bounded
by

VT (F) ≤ 2Rseq
T (F)

5



2.3 Algorithms in Online Learning

There are many interesting algorithms in online learning setting. I show two algo-
rithms in this subsection, one is the Exponential Weights Algorithm and another is
the Mirror Decent Algorithm.

2.3.1 Exponential Weights Algorithm

The Exponential Weights Algorithm focuses on the finite experts setting. For
t = 1, . . . , T , the learner observes N difference choices f 1

t , . . . , f
N
t ∈ F , chooses a

distribution pt in a N −1 simplex, picks one choice f itt from these N choices accord-
ing to the distribution pt, observe zt and suffers loss `(f itt , zt). The loss function
` ∶ F × Z → R is convex in its first argument and takes value in [0,1]. The goal is
to minimize the regret defined as

T

∑
t=1

E
it∼qt

`(f itt , zt) − inf
i∈{1,...,N}

T

∑
t=1

`(f it , zt).

The Exponential Weights Algorithm randomly chooses one expert according
to the historical performance. The probability of choosing one expert reduces if
its historical performance is worse than other experts, otherwise, the probability
increases. The Exponential Weights Algorithm achieves the optimal convergence
rate of regret O(

√
T lnN), where N is the size of the expert set.

Algorithm 2 Exponential Weights Algorithm

Initialize: q1 = ( 1
N , . . . ,

1
N ), η =

√
8 lnN
T

for t = 1 to T do
Sample it ∼ qt, and predict f it ∈ F
Observe zt and update

qt+1(i) ∝ qt(i)e−η`(f
i,zt) for all i ∈ {1, . . . ,N}

end for

2.3.2 Mirror Descent Algorithm

Suppose both the set the learner’s choices F and the outcome set Z are convex. At
t = 1, . . . , T , the learner chooses ft ∈ F , observes zt ∈ Z and suffers loss ⟨ft, zt⟩. The
goal is to minimize the regret defined as

T

∑
t=1

⟨ft, zt⟩ − inf
f∈F

T

∑
t=1

⟨f, zt⟩.

6



Let us prepare several definitions for the algorithm. First, a function R is σ-
strongly convex over F with respect to ∥ ⋅ ∥ if

R(a) ≥ R(b) + ⟨∇R(b), a − b⟩ + σ
2
∥a − b∥2

for all a, b ∈ F . ∇R(b) can be replaced by any subgradient in ∂R(b) if R is non-
differentiable. Then, the Bregman divergence D(a, b) with respect to the σ-strongly
convex function R is defined as

DR(a, b) = R(a) −R(b) − ⟨∆R(b), a − b⟩

and the convex conjugate of function R is defined as

R⋆(u) = sup
a

⟨u, a⟩ −R(a).

Algorithm 3 Mirror Descent Algorithm

Input: R is σ-strongly convex with respect to ∥ ⋅ ∥, learning rate η > 0
for t = 1 to T do

ft+1 = arg min
f∈F

⟨f, zt⟩ + η−1DR(f, ft)

or, equivalently,

f̃t+1 = ∇R⋆(∇R(ft) − ηzt) and ft+1 = arg min
f∈F
DR(f, f̃t+1)

end for

Mirror Descent, as a general version of Gradient Descent, focuses on online
convex optimization and is computational efficient. Figure 2.1 illustrates three
steps of the Mirror Descent Algorithm. First, the input ft in the primal space D is
mapped to the dual space by ∇R. Then, the gradient descent step −ηzt is done in
the dual space D⋆. At the end, the gradient descent update ∇R(ft)−ηzt is mapped
back to the primal space D⋆ by ∇R⋆.

2.4 The Algorithm Framework

Several learning algorithms developed in the later chapters are based on a principled
way of deriving online learning algorithms from the minimax analysis. The local
sequential Rademacher complexities and relaxation help us to obtain faster rates in
online learning. Details about the algorithm framework are introduced in [15].

7



ft
∇R(ft)

∇R⋆(∇R(ft) − ηzt) ∇R(ft) − ηzt

∇R

∇R⋆

−ηzt

Primal Space D Dual Space D⋆

Figure 2.1: Mirror Descent

8



Chapter 3

Competing with Strategies

In this chapter, we study the problem of online learning with a notion of regret de-
fined with respect to a set of strategies. We develop tools for analyzing the minimax
rates and for deriving regret-minimization algorithms in this scenario. While the
standard methods for minimizing the usual notion of regret fail, through our anal-
ysis we demonstrate existence of regret-minimization methods that compete with
such sets of strategies as: autoregressive algorithms, strategies based on statistical
models, regularized least squares, and follow the regularized leader strategies. In
several cases we also derive efficient learning algorithms.

3.1 Introduction

The common criterion for evaluating an online learning algorithm is regret, that is
the difference between the cumulative loss of the algorithm and the cumulative loss
of the best fixed decision, chosen in hindsight. While much work has been done
on understanding no-regret algorithms, such a definition of regret against a fixed
decision often draws criticism: even if regret is small, the cumulative loss of a best
fixed action can be large, thus rendering the result uninteresting. To address this
problem, various generalizations of the regret notion have been proposed, including
regret with respect to the cost of a “slowly changing” compound decision. While
being a step in the right direction, such definitions are still “static” in the sense
that the decision of each compound comparator per step does not depend on the
sequence of realized outcomes.

Arguably, a more interesting (and more difficult to deal with) notion is that of
performing as well as a set of strategies (or, algorithms). A strategy π is a sequence
of functions πt, for each time period t, mapping the observed outcomes to the next
action. Of course, if the collection of such strategies is finite, we may disregard their
dependence on the actual sequence and treat each strategy as a black box expert.
This is precisely the reason the Multiplicative Weights and other expert algorithms
gained such popularity. However, this “black box” approach is not always desirable
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since some measure of the “effective number” of experts must play a role in the
complexity of the problem: experts that predict similarly should not count as two
independent ones. But what is a notion of closeness of two strategies? Imagine that
we would like to develop an algorithm that incurs loss comparable to that of the
best of an infinite family of strategies. To obtain such a statement, one may try to
discretize the space of strategies and invoke the black-box experts method. As we
show in this chapter, such an approach will not always work. Instead, we present
a theoretical framework for the analysis of “competing against strategies” and for
algorithmic development, based on the ideas in [18, 15].

The strategies considered in this chapter are termed “simulatable experts” in [3].
The authors also distinguish static and non-static experts. In particular, for static
experts and absolute loss, [2] were able to show that problem complexity is governed
by the geometry of the class of static experts as captured by its i.i.d. Rademacher
averages. For nonstatic experts, however, the authors note that “unfortunately we
do not have a characterization of the minimax regret by an empirical process”, due
to the fact that the sequential nature of the online problems is at odds with the
i.i.d.-based notions of classical empirical process theory. In recent years, however, a
martingale generalization of empirical process theory has emerged, and these tools
were shown to characterize learnability of online supervised learning, online convex
optimization, and other scenarios [18, 1]. Yet, the machinery developed so far is not
directly applicable to the case of general simulatable experts which can be viewed as
mappings from an ever-growing set of histories to the space of actions. The goal of
this chapter is precisely this: to extend the non-constructive as well as constructive
techniques of [18, 15] to simulatable experts. We analyze a number of examples
with the developed techniques, but we must admit that our work only scratches
the surface. We can imagine further research developing methods that compete
with interesting gradient descent methods (parametrized by step size choices), with
Bayesian procedures (parametrized by choices of priors), and so on. We also note
the connection to online algorithms, where one typically aims to prove a bound on
the competitive ratio. Our results can be seen in that light as implying a competitive
ratio of one.

We close the introduction with a high-level outlook, which builds on the ideas
of [13]. Imagine we are faced with a sequence of data from a probabilistic source,
such as a k-Markov model with unknown transition probabilities. A well developed
statistical theory tells us how to estimate the parameter under the assumption that
the model is correct. We may view an estimator as a strategy for predicting the next
outcome. Suppose we have a set of possible models, with a good prediction strategy
for each model. Now, let us lift the assumption that the sequence is generated by
one of these models, and set the goal as that of performing as well as the best
prediction strategy. In this case, if the observed sequence is indeed given by one of
the models, our loss will be small because one of the strategies will perform well. If
not, we still have a valid statement that does not rely on the fact that the model is
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“well specified”. To illustrate the point, we will exhibit an example where we can
compete with the set of all Bayesian strategies (parametrized by priors). We then
obtain a statement that we perform as well as the best of them without assuming
that the model is correct.

This chapter is organized as follows. In Section 3.2, we extend the minimax
analysis of online learning problems to the case of competing with a set of strategies.
In Section 3.3, we show that it is possible to compete with a set of autoregressive
strategies, and that the usual online linear optimization algorithms do not attain the
optimal bounds. We then derive an optimal and computationally efficient algorithm
for one of the proposed regimes. In Section 3.4 we describe the general idea of
competing with statistical models that use sufficient statistics, and demonstrate
an example of competing with a set of strategies parametrized by priors. For this
example, we derive an optimal and efficient randomized algorithm. In Section 3.5,
we turn to the question of competing with regularized least squares algorithms
indexed by the choice of a shift and a regularization parameter. In Section 3.6, we
consider online linear optimization and show that it is possible to compete with
Follow the Regularized Leader methods parametrized by a shift and by a step size
schedule.

3.2 Minimax Regret and Sequential Rademacher

Complexity

We consider the problem of online learning, or sequential prediction, that consists
of T rounds. At each time t = {1, . . . , T} ≜ [T ], the learner makes a prediction ft ∈ F
and observes an outcome zt ∈ Z, where F and Z are abstract sets of decisions and
outcomes. Let us fix a loss function ` ∶ F × Z ↦ R that measures the quality of
prediction. A strategy π = (πt)Tt=1 is a sequence of functions πt ∶ Z t−1 ↦ F mapping
history of outcomes to a decision. Let Π denote a set of strategies. The regret with
respect to Π is the difference between the cumulative loss of the player and the
cumulative loss of the best strategy

RegT =
T

∑
t=1

`(ft, zt) − inf
π∈Π

T

∑
t=1

`(πt(z1∶t−1), zt).

where we use the notation z1∶k ≜ {z1, . . . , zk}. We now define the value of the game
against a set Π of strategies as

VT (Π) ≜ inf
q1∈Q

sup
z1∈Z

E
f1∼q1

. . . inf
qT ∈Q

sup
zT ∈Z

E
fT ∼qT

[RegT ]

whereQ and P are the sets of probability distributions on F and Z, correspondingly.
It was shown in [18] that one can derive non-constructive upper bounds on the value
through a process of sequential symmetrization, and in [15] it was shown that these
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non-constructive bounds can be used as relaxations to derive an algorithm. This is
the path we take in this chapter.

Let us describe an important variant of the above problem – that of supervised
learning. Here, before making a real-valued prediction ŷt on round t, the learner
observes side information xt ∈ X . Simultaneously, the actual outcome yt ∈ Y is
chosen by Nature. A strategy can therefore depend on the history x1∶t−1, yt−1 and
the current xt, and we write such strategies as πt(x1∶t, y1∶t−1), with πt ∶ X t×Y t−1 ↦ Y.
Fix some loss function `(ŷ, y). The value VST (Π) is then defined as

sup
x1

inf
q1∈∆(Y)

sup
y1∈Y

E
ŷ1∼q1

. . . sup
xT

inf
qT ∈∆(Y)

sup
yT ∈Y

E
ŷT ∼qT

[
T

∑
t=1

`(ŷt, yt) − inf
π∈Π

T

∑
t=1

`(πt(x1∶t, y1∶t−1), yt)]

To proceed, we need to define a notion of a tree. A Z-valued tree z is a sequence
of mappings {z1, . . . ,zT} with zt ∶ {±1}t−1 ↦ Z. Throughout this chapter, εt ∈ {±1}
are i.i.d. Rademacher variables, and a realization of ε = (ε1, . . . , εT ) defines a path
on the tree, given by z1∶t(ε) ≜ (z1(ε), . . . ,zt(ε)) for any t ∈ [T ]. We write zt(ε) for
zt(ε1∶t−1). By convention, a sum ∑ba = 0 for a > b and for simplicity assume that no
loss is suffered on the first round.

Definition 3.2.1. Sequential Rademacher complexity of the set Π of strategies is
defined as

R(`,Π) ≜ sup
w,z

Eε sup
π∈Π

[
T

∑
t=1

εt`(πt(w1(ε), . . . ,wt−1(ε)),zt(ε))] (3.2.1)

where the supremum is over two Z-valued trees z and w of depth T .

The w tree can be thought of as providing “history” while z providing “out-
comes”. We shall use these names throughout this chapter. The reader might notice
that in the above definition, the outcomes and history are decoupled. We now state
the main result:

Theorem 3.2.2. The value of prediction problem with a set Π of strategies is upper
bounded as

VT (Π) ≤ 2R(`,Π)

While the statement is visually similar to those in [18, 19], it does not follow
from these works. Indeed, the proof needs to deal with the additional complications
stemming from the dependence of strategies on the history. Further, we provide the
proof for a more general case when sequences z1, . . . , zT are not arbitrary but need
to satisfy constraints.

Proof. Let us prove a more general version of Theorem 3.2.2. The extra twist
is that we allow constraints on the sequences z1, . . . , zT played by the adversary.

12



Specifically, the adversary at round t can only play xt that satisfy constraint
Ct(z1, . . . , zt) = 1 where (C1, . . . ,CT ) is a predetermined sequence of constraints
with Ct ∶ Z t ↦ {0,1}. When each Ct is the function that is always 1 then we are in
the setting of the theorem statement where we play an unconstrained/worst case
adversary. However the proof here allows us to even analyze constrained adversaries
which come in handy in many cases. Following [19], a restriction P1∶T on the ad-
versary is a sequence P1, . . . ,PT of mappings Pt ∶ Z t−1 ↦ 2P such that Pt(z1∶t−1) is a
convex subset of P for any z1∶t−1 ∈ Z t−1. In the present proof we will only consider
constrained adversaries, where Pt = ∆(Ct(z1∶t−1)) is the set of all distributions on
the constrained subset

Ct(z1∶t−1) ≜ {z ∈ Z ∶ Ct(z1, . . . , zt−1, z) = 1}.

defined at time t via a binary constraint Ct ∶ Z t ↦ {0,1}. Notice that the set
Ct(z1∶t−1) is the subset of Z from which the adversary is allowed to pick instance zt
from given the history so far. It was shown in [19] that such constraints can model
sequences with certain properties, such as slowly changing sequences, low-variance
sequences, and so on. Let C be the set of Z-valued trees z such that for every
ε ∈ {±1}T and t ∈ [T ],

Ct(z1(ε), . . . ,zt(ε)) = 1,

that is, the set of trees such that the constraint is satisfied along any path. The
statement we now prove is that the value of the prediction problem with respect to
a set Π of strategies and against constrained adversaries (denoted by VT (Π,C1∶T ))
is upper bounded by twice the sequential complexity

sup
w∈C,z

Eε sup
π∈Π

T

∑
t=1

εt`(πt(w1(ε), . . . ,wt−1(ε))),zt(ε)) (3.2.2)

where it is crucial that the w tree ranges over trees that respect the constraints
along all paths, while z is allowed to be an arbitrary Z-valued tree. This fact
that w respects the constraints is the only difference with the original statement of
Theorem 3.2.2.

For ease of notation we use ⟪ ⟫Tt=1 to denote repeated application of operators

such has sup or inf. For instance, ⟪supat∈A infbt∈B Ert∼P⟫
T

t=1
[F (a1, b1, r1, ..., aT , bT , rT )]

denotes supa1∈A infb1∈B Er1∼P . . . supaT ∈A infbT ∈B ErT ∼P [F (a1, b1, r1, ..., aT , bT , rT )].
The value of a prediction problem with respect to a set of strategies and against
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constrained adversaries can be written as :

VT (Π,C1∶T ) = ⟪ inf
qt∈Q

sup
pt∈Pt(z1∶t−1)

E
ft∼qt,zt∼pt

⟫
T

t=1

[
T

∑
t=1

`(ft, zt) − inf
π∈Π

`(πt(z1∶t−1), zt)]

= ⟪ sup
pt∈Pt(z1∶t−1)

E
zt∼pt

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

inf
ft∈F

Ez′t`(ft, z
′
t) − `(πt(z1∶t−1), zt)]

≤ ⟪ sup
pt∈Pt(z1∶t−1)

E
zt∼pt

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

Ez′t`(πt(z1∶t−1), z′t) − `(πt(z1∶t−1), zt)]

≤ ⟪ sup
pt∈Pt(z1∶t−1)

E
zt,z′t∼pt

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

`(πt(z1∶t−1), z′t) − `(πt(z1∶t−1), zt)]

Let us now define the “selector function” χ ∶ Z × Z × {±1} ↦ Z by

χ(z, z′, ε) = { z′ if ε = −1
z if ε = 1

In other words, χt selects between zt and z′t depending on the sign of ε. We will use
the shorthand χt(εt) ≜ χ(zt, z′t, εt) and χ1∶t(ε1∶t) ≜ (χ(z1, z′1, ε1), . . . , χ(zt, z′t, εt)). We
can then re-write the last statement as

⟪ sup
pt∈Pt(χ1∶t−1(ε1∶t−1))

E
zt,z′t∼pt

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εt (`(πt(χ1∶t−1(ε1∶t−1)), z′t)

−`(πt(χ1∶t−1(ε1∶t−1)), zt)) ] (3.2.3)

After zt, z′t and εt are revealed, χt(εt) is fixed and can only be either zt or z′t. We
can remove the dependency of χt(ε) on ε, and replace χt(ε) by yt, which is either
zt or z′t. Therefore, the last statement is upper bounded

sup
p1∈P1

E
z1,z′1∼p1

E
ε1

sup
y1∈{z1,z′1}

sup
p2∈P2(y1)

E
z2,z′2∼p2

E
ε2

sup
y2∈{z2,z′2}

⋯ sup
yT−1∈{zT−1,z

′
T−1}

sup
pT ∈PT (y1∶T−1)

E
zT ,z

′
T ∼pT

E
εT

sup
π∈Π

[
T

∑
t=1

εt (`(πt(y1∶t−1), z′t) − `(πt(y1∶t−1), zt))]

= sup
z1,z′1∈C1

E
ε1

sup
y1∈{z1,z′1}

sup
z2,z′2∈C2(y1)

E
ε2

sup
y2∈{z2,z′2}

⋯ sup
yT−1∈{zT−1,z

′
T−1}

sup
zT ,z

′
T ∈CT (y1∶T−1)

E
εT

sup
π∈Π

[
T

∑
t=1

εt (`(πt(y1∶t−1), z′t) − `(πt(y1∶t−1), zt))]

Furthermore, as {zt, z′t} ∈ Ct(y1∶t−1) and yt ∈ {zt, z′t}, we can conclude that yt ∈
Ct(y1∶t−1). If we drop the constraint on zt and z′t, and loosen the constraint on yt to
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be yt ∈ Ct(y1∶t−1), the last statement is upper bounded by

sup
z1,z′1∈Z

E
ε1

sup
y1∈C1

sup
z2,z′2∈Z

E
ε2

sup
y2∈C2(y1)

⋯ sup
yT−1∈CT−1(y1∶T−2)

sup
zT ,z

′
T ∈Z

E
εT

sup
π∈Π

[
T

∑
t=1

εt (`(πt(y1∶t−1), z′t) − `(πt(y1∶t−1), zt))]

= 2 sup
z1∈Z

E
ε1

sup
y1∈C1

sup
z2∈Z

E
ε2

sup
y2∈C2(y1)

⋯ sup
yT−1∈CT−1(y1∶T−2)

sup
zT ∈Z

E
εT

sup
π∈Π

[
T

∑
t=1

εt`(πt(y1∶t−1), zt)]

(3.2.4)

since the two terms obtaining by splitting the supremum are the same. Next, we
replace yt by wt+1 and add supremum over w1 at the beginning. Since w1 does not
appear in the loss function, the last statement can be rewritten as

2 sup
w1∈Z

sup
z1∈Z

E
ε1

sup
w2∈C1

sup
z2∈Z

E
ε2

⋯ sup
wT ∈CT (w1∶T−1)

sup
zT ∈Z

E
εT

sup
π∈Π

[
T

∑
t=1

εt`(πt(w2∶t), zt)]

Now, we exchange the order of suprema and expectation and also maintain the
constrains,

2 sup
w∈C′

sup
z

E
ε

sup
π∈Π

[
T

∑
t=1

εt`(πt(w2∶t(ε)),zt(ε))] = (∗)

In this step, we passed to the tree notation. Importantly, tree w does not range
over all trees, but can only be a join of two trees in set C, i.e.

C′ = {w ∶ ∀ε1,w(ε1) ∈ C}

Define w∗ = w(−1) and w∗∗ = w(+1), we can expend the expectation in (∗) with
respect to ε1 of the above expression by

sup
w∗∈C

sup
z

E
ε2∶T

sup
π∈Π

[−`(π1(⋅),z1(⋅)) +
T

∑
t=2

εt`(πt(w∗
1∶t−1(ε)),zt(ε))]

+ sup
w∗∗∈C

sup
z

E
ε2∶T

sup
π∈Π

[`(π1(⋅),z1(⋅)) +
T

∑
t=2

εt`(πt(w∗∗
1∶t−1(ε)),zt(ε))] .

With the assumption that we do not suffer lose at the first round, which means
`(π1(⋅),z1(⋅)) = 0, we can see that both terms achieve the suprema with the same
w∗ = w∗∗. Therefore, the above expression can be rewrite as

sup
w∈C

sup
z

E
ε2∶T

sup
π∈Π

[
T

∑
t=1

εt`(πt(w1∶t−1(ε)),zt(ε))]

which is precisely (3.2.2). This concludes the proof of Theorem 3.2.2.
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As we show below, the sequential Rademacher complexity on the right-hand side
allows us to analyze general non-static experts, thus addressing the question raised
in [2]. As the first step, we can “erase” a Lipschitz loss function, leading to the
sequential Rademacher complexity of Π without the loss and without the z tree:

R(Π) ≜ sup
w

R(Π,w) ≜ sup
w

Eε sup
π∈Π

[
T

∑
t=1

εtπt(w1∶t−1(ε))]

For example, suppose Z = {0,1}, the loss function is the indicator loss, and strategies
have potentially dependence on the full history. Then one can verify that

sup
w,z

Eε sup
π∈Πk

[
T

∑
t=1

εt1{πt(w1∶t−1(ε)) ≠ zt(ε)}]

= sup
w,z

Eε sup
π∈Πk

[
T

∑
t=1

εt(πt(w1∶t−1(ε))(1 − 2zt(ε)) + zt(ε))] =R(Π) (3.2.5)

The same result holds when F = [0,1] and ` is the absolute loss. The process of
“erasing the loss” (or, contraction) extends quite nicely to problems of supervised
learning. Let us state the second main result:

Theorem 3.2.3. Suppose the loss function ` ∶ Y ×Y ↦ R is convex and L-Lipschitz
in the first argument, and let Y = [−1,1]. Then

VST (Π) ≤ 2L sup
x,y

E
ε

sup
π∈Π

[
T

∑
t=1

εtπt(x1∶t(ε),y1∶t−1(ε))]

where (x1∶t(ε),y1∶t−1(ε)) naturally takes place of w1∶t−1(ε) in Theorem 3.2.2. Fur-
ther, if Y = [−1,1] and `(ŷ, y) = ∣ŷ − y∣,

VST (Π) ≥ sup
x

E
ε

sup
π∈Π

[
T

∑
t=1

εtπt(x1∶t(ε), ε1∶t−1)] .

Proof. By convexity of the loss,

⟪sup
xt∈X

inf
qt∈∆(Y)

sup
yt∈Y

E
ŷt∼qt

⟫
T

t=1

[
T

∑
t=1

`(ŷt, yt) − inf
π∈Π

T

∑
t=1

`(πt(x1∶t, y1∶t−1), yt)]

≤ ⟪sup
xt∈X

inf
qt∈∆(Y)

sup
yt∈Y

E
ŷt∼qt

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

`′(ŷt, yt)(ŷt − πt(x1∶t, y1∶t−1))]

≤ ⟪sup
xt∈X

inf
qt∈∆(Y)

sup
yt∈Y

E
ŷt∼qt

sup
st∈[−L,L]

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

st(ŷt − πt(x1∶t, y1∶t−1))]

where in the last step we passed to an upper bound by allowing for the worst-case
choice st of the derivative. We will often omit the range of the variables in our
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notation, and it is understood that st’s range over [−L,L], while yt, ŷt over Y and
xt’s over X . Now, by Jensen’s inequality, we pass to an upper bound by exchanging
Eŷt and supyt∈Y :

⟪sup
xt

inf
qt∈∆(Y)

E
ŷt∼qt

sup
yt

sup
st

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

st(ŷt − πt(x1∶t, y1∶t−1))]

= ⟪sup
xt

inf
ŷt∈Y

sup
yt,st

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

st(ŷt − πt(x1∶t, y1∶t−1))]

Consider the last step, assuming all the other variables fixed:

sup
xT

inf
ŷT

sup
yT ,sT

sup
π∈Π

[
T

∑
t=1

st(ŷt − πt(x1∶t, y1∶t−1))]

= sup
xT

inf
ŷT

sup
pT ∈∆(Y×[−L,L])

E
(yT ,sT )∼pT

sup
π∈Π

[
T

∑
t=1

st(ŷt − πt(x1∶t, y1∶t−1))]

where the distribution pT ranges over all distributions on Y ×[−L,L]. Now observe
that the function inside the infimum is convex in ŷT , and the function inside suppT
is linear in the distribution pT . Hence, we can appeal to the minimax theorem,
obtaining equality of the last expression to

sup
xT

sup
pT ∈∆(Y×[−L,L])

inf
ŷT

E
(yT ,sT )∼pT

[
T

∑
t=1

stŷt − inf
π∈Π

T

∑
t=1

stπt(x1∶t, y1∶t−1))]

=
T−1

∑
t=1

stŷt + sup
xT

sup
pT

inf
ŷT

E
(yT ,sT )∼pT

[sT ŷT − inf
π∈Π

T

∑
t=1

stπt(x1∶t, y1∶t−1))]

=
T−1

∑
t=1

stŷt + sup
xT

sup
pT

[inf
ŷT

( E
(yT ,sT )∼pT

sT) ŷT − E
(yT ,sT )∼pT

inf
π∈Π

T

∑
t=1

stπt(x1∶t, y1∶t−1))]

=
T−1

∑
t=1

stŷt + sup
xT

sup
pT

E
(yT ,sT )∼pT

[inf
ŷT

( E
(yT ,sT )∼pT

sT) ŷT − inf
π∈Π

T

∑
t=1

stπt(x1∶t, y1∶t−1))]

We can now upper bound the choice of ŷT by that given by πT , yielding an upper
bound

T−1

∑
t=1

stŷt + sup
xT ,pT

E
(yT ,sT )∼pT

sup
π∈Π

[inf
ŷT

( E
(yT ,sT )∼pT

sT) ŷT −
T

∑
t=1

stπt(x1∶t, y1∶t−1))]

=
T−1

∑
t=1

stŷt + sup
xT ,pT

E
(yT ,sT )
∼pT

sup
π∈Π

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

E
(y′T ,s

′
T )

∼pT

s′T − sT
⎞
⎟
⎠
πT (x1∶T , y1∶T−1) −

T−1

∑
t=1

stπt(x1∶t, y1∶t−1))
⎤⎥⎥⎥⎥⎥⎦

It is not difficult to verify that this process can be repeated for T − 1 and so on.
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The resulting upper bound is therefore

VST (Π) ≤ ⟪sup
xt,pt

E
(yt,st)∼pt

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

( E
(y′t,s

′
t)∼pt

s′t − st)πt(x1∶t, y1∶t−1)]

≤ ⟪sup
xt,pt

E
(yt,st)∼pt
(y′
t
,s′
t
)∼pt

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

(s′t − st)πt(x1∶t, y1∶t−1)]

= ⟪sup
xt,pt

E
(yt,st)∼pt
(y′
t
,s′
t
)∼pt

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εt (s′t − st)πt(x1∶t, y1∶t−1)]

≤ ⟪sup
xt

sup
(yt,st)
(y′
t
,s′
t
)

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εt (s′t − st)πt(x1∶t, y1∶t−1)]

≤ ⟪sup
xt,yt

sup
s′t,st

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εt (s′t − st)πt(x1∶t, y1∶t−1)]

≤ 2⟪sup
xt,yt

sup
st∈[−L,L]

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εtstπt(x1∶t, y1∶t−1)]

Since the expression is convex in each st, we can replace the range of st by {−L,L},
or, equivalently,

VST (Π) ≤ 2L⟪sup
xt,yt

sup
st∈{−1,1}

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εtstπt(x1∶t, y1∶t−1)] (3.2.6)

Now consider any arbitrary function ψ ∶ {±1} ↦ R, we have that

sup
s∈{±1}

Eε [ψ(s ⋅ ε)] = sup
s∈{±1}

1

2
(ψ(+s) + ψ(−s)) = 1

2
(ψ(+1) + ψ(−1)) = Eε [ψ(ε)]

Since in Equation (3.2.6), for each t, st and εt appear together as εt ⋅ st using the
above equation repeatedly, we conclude that

VST (Π) ≤ 2L⟪sup
xt,yt

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εtπt(x1∶t, y1∶t−1)]

= 2L sup
x,y

E
ε

sup
π∈Π

[
T

∑
t=1

εtπt(x1∶t(ε),y1∶t−1(ε))]

The lower bound is obtained by the same argument as in [18].

Let us present a few simple examples as a warm-up.
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Example 3.2.4 (History-independent strategies). Let πf ∈ Π be constant history-
independent strategies πf1 = . . . = πfT = f ∈ F . Then (3.2.1) recovers the definition of
sequential Rademacher complexity in [18].

Example 3.2.5 (Static experts). For static experts, each strategy π is a predeter-
mined sequence of outcomes, and we may therefore associate each π with a vector
in ZT . A direct consequence of Theorem 3.2.3 for any convex L-Lipschitz loss is
that

V(Π) ≤ 2LEε sup
π∈Π

[
T

∑
t=1

εtπt]

which is simply the classical i.i.d. Rademacher averages. For the case of F = [0,1],
Z = {0,1}, and the absolute loss, this is the result of [2].

Example 3.2.6 (Finite-order Markov strategies). Let Πk be a set of strategies that
only depend on the k most recent outcomes to determine the next move. Theo-
rem 3.2.2 implies that the value of the game is upper bounded as

V(Πk) ≤ 2 supw,zEε supπ∈Πk [∑Tt=1 εt`(πt(wt−k(ε), . . . ,wt−1(ε)),zt(ε))]

Now, suppose that Z is a finite set, of cardinality s. Then there are effectively ss
k

strategies π. The bound on the sequential Rademacher complexity then scales as√
2sk log(s)T , recovering the result of [7] (see [3, Cor. 8.2]).

In addition to providing an understanding of minimax regret against a set of
strategies, sequential Rademacher complexity can serve as a starting point for al-
gorithmic development. As shown in [15], any admissible relaxation can be used to
define a succinct algorithm with a regret guarantee. For the setting of this chapter,
this means the following. Let Rel ∶ Z t ↦ R, for each t, be a collection of functions
satisfying two conditions:

∀t, inf
qt∈Q

sup
zt∈Z

{ E
ft∼qt

`(ft, zt) +Rel(z1∶t)} ≤ Rel(z1∶t−1),

and − inf
π∈Π

T

∑
t=1

`(πt(z1∶t−1), zt) ≤ Rel(z1∶T ) .

Then we say that the relaxation is admissible. It is then easy to show that regret
of any algorithm that ensures above inequalities is bounded by Rel({}).
Theorem 3.2.7. The conditional sequential Rademacher complexity with respect to
Π

R(`,Π∣z1, . . . , zt)

≜ sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −
t

∑
s=1

`(πs(z1∶s−1), zs)]

is admissible.
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Proof. Denote Lt(π) = ∑ts=1 `(πs(z1∶s−1), zs). The first step of the proof is an appli-
cation of the minimax theorem (we assume the necessary conditions hold):

inf
qt∈∆(F)

sup
zt∈Z

{ E
ft∼qt

[`(ft, zt)]

+ sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt(π)]}

= sup
pt∈∆(Z)

inf
ft∈F

{ E
zt∼pt

[`(ft, zt)]

+ E
zt∼pt

sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt(π)]}

For any pt ∈ ∆(Z), the infimum over ft of the above expression is equal to

E
zt∼pt

sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+ inf
ft∈F

E
zt∼pt

[`(ft, zt)] − `(πt(z1∶t−1), zt)]

≤ E
zt∼pt

sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+ E
zt∼pt

[`(πt(z1∶t−1), zt)] − `(πt(z1∶t−1), zt)]

≤ E
zt,z′t∼pt

sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+`(πt(z1∶t−1), z′t) − `(πt(z1∶t−1), zt)]

We now argue that the independent zt and z′t have the same distribution pt, and
thus we can introduce a random sign εt. The above expression then equals to

E
zt,z′t∼pt

E
εt

sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε))

−Lt−1(π) + εt(`(πt(z1∶t−1), χt(−εt))) − `(πt(z1∶t−1), χt(εt)))]

≤ E
zt,z′t∼pt

sup
z′′,z′′′

E
εt

sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε))

−Lt−1(π) + εt(`(πt(z1∶t−1), z′′t ) − `(πt(z1∶t−1), z′′′t ))]
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Splitting the resulting expression into two parts, we arrive at the upper bound of

2 E
zt,z′t∼pt

sup
z′′

E
εt

sup
z,w

E
εt+1∶T

sup
π∈Π

[
T

∑
s=t+1

εs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε))

−1

2
Lt−1(π) + εt`(πt(z1∶t−1), z′′t )]

≤ sup
z,z′,z′′

E
εt

sup
z,w

E
εt+1∶T

sup
π∈Π

[
T

∑
s=t+1

2εs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε))

−Lt−1(π) + εt`(πt(z1∶t−1), z′′t )]
≤RT (Π∣z1, . . . , zt−1).

The first inequality is true as we upper bounded the expectation by the supremum.
The last inequality is easy to verify, as we are effectively filling in a root zt and z′t
for the two subtrees, for εt = +1 and εt = −1, respectively, and jointing the two trees
with a ∅ root.

One can see that the proof of admissibility corresponds to one step minimax
swap and symmetrization in the proof of [18]. In contrast, in the latter chapter, all
T minimax swaps are performed at once, followed by T symmetrization steps.

Conditional sequential Rademacher complexity can therefore be used as a start-
ing point for possibly deriving computationally attractive algorithms, as shown
throughout this chapter.

We may now define covering numbers for the set Π of strategies over the his-
tory trees. The development is a straightforward modification of the notions we
developed in [18], where we replace “any tree x” with a tree of histories w1∶t−1.

Definition 3.2.8. A set V of R-valued trees is an α-cover (with respect to `p) of
a set of strategies Π on an Z∗-valued history tree w if

∀π ∈ Π, ∀ε ∈ {±1}T , ∃v ∈ V s.t. ( 1
T ∑

T
t=1 ∣πt(w1∶t−1(ε)) − vt(ε)∣p)

1/p ≤ α .

(3.2.7)

An α-covering number Np(Π,w, α) is the size of the smallest α-cover.

For supervised learning, (x1∶t(ε),y1∶t−1(ε)) takes place of w1∶t−1(ε). Now, for any
history tree w, sequential Rademacher averages of a class of [−1,1]-valued strategies
Π satisfy

R(Π,w) ≤ inf
α≥0

{αT +
√

2 logN1(Π,w, α)T}

and the Dudley entropy integral type bound also holds:

R(Π,w) ≤ inf
α≥0

{4αT + 12
√
T ∫

1

α

√
log N2(Π,w, δ) dδ} (3.2.8)
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In particular, this bound should be compared with Theorem 7 in [2], which employs
a covering number in terms of a pointwise metric between strategies that requires
closeness for all histories and all time steps. Second, the results of [2] for real-valued
prediction require strategies to be bounded away from 0 and 1 by δ > 0 and this
restriction spoils the rates.

In the rest of this chapter, we show how the results of this section (a) yield proofs
of existence of regret-minimization strategies with certain rates and (b) guide in the
development of algorithms. For some of these examples, standard methods (such
as Exponential Weights) come close to providing an optimal rate, while for others
– fail miserably.

3.3 Competing with Autoregressive Strategies

In this section, we consider strategies that depend linearly on the past outcomes.
To this end, we fix a set Θ ⊂ Rk, for some k > 0, and parametrize the set of strategies
as

ΠΘ = {πθ ∶ πθt (z1, . . . , zt−1) = ∑k−1
i=0 θi+1zt−k+i, θ = (θ1, . . . , θk) ∈ Θ}

For consistency of notation, we assume that the sequence of outcomes is padded
with zeros for t ≤ 0. First, as an example where known methods can recover the
correct rate, we consider the case of a constant look-back of size k. We then extend
the study to cases where neither the regret behavior nor the algorithm is known in
the literature, to the best of our knowledge.

3.3.1 Finite Look-Back

Suppose Z = F ⊂ Rd are `2 unit balls, the loss is `(f, z) = ⟨f, z⟩, and Θ ⊂ Rk is also a
unit `2 ball. Denoting by W(t−k∶t−1) = [wt−k(ε), . . . ,wt−1(ε)] a matrix with columns
in Z,

R(`,ΠΘ) = sup
w,z

Eε sup
θ∈Θ

[
T

∑
t=1

εt ⟨πθ(wt−k∶t−1(ε)),zt(ε)⟩] (3.3.1)

= sup
w,z

Eε sup
θ∈Θ

[
T

∑
t=1

εtzt(ε)TW(t−k∶t−1) ⋅ θ]

= sup
w,z

Eε ∥
T

∑
t=1

εtzt(ε)TW(t−k∶t−1)∥ ≤
√
kT (3.3.2)

In fact, this bound against all strategies parametrized by Θ is achieved by the gradi-
ent descent (GD) method with the simple update θt+1 = ProjΘ(θt−η [zt−k, . . . , zt−1]T zt)
where ProjΘ is the Euclidean projection onto the set Θ. This can be seen by writing
the loss as

⟨[zt−k, . . . , zt−1] ⋅ θt, zt⟩ = ⟨θt, [zt−k, . . . , zt−1]T zt⟩.
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The regret of GD, ∑Tt=1⟨θt, [zt−k, . . . , zt−1]T zt⟩ − infθ∈Θ∑Tt=1⟨θ, [zt−k, . . . , zt−1]T zt⟩, is
precisely regret against strategies in Θ, and analysis of GD yields the rate in (3.3.1).

3.3.2 Full Dependence on History

The situation becomes less obvious when k = T and strategies depend on the full
history. The regret bound in (3.3.1) is vacuous, and the question is whether a better
bound can be proved, under some additional assumptions on Θ. Can such a bound
be achieved by GD?

For simplicity, consider the case of F = Z = [−1,1], and assume that Θ =
Bp(1) ⊂ RT is a unit `p ball, for some p ≥ 1. Since k = T , it is easier to re-index the
coordinates so that

πθt (z1∶t−1) = ∑t−1
i=1 θizi.

The sequential Rademacher complexity of the strategy class is

R(`,ΠΘ) = sup
w,z

E sup
θ∈Θ

[
T

∑
t=1

εtπ
θ(w1∶t−1(ε)) ⋅ zt(ε)]

= sup
w,z

E sup
θ∈Θ

[
T

∑
t=1

(
t−1

∑
i=1

θiwi(ε)) εtzt(ε)] .

Rearranging the terms, the last expression is equal to

sup
w,z

E sup
θ∈Θ

[
T−1

∑
t=1

θtwt(ε) ⋅ (
T

∑
i=t+1

εizi(ε))] ≤ sup
w,z

E [∥w1∶T−1(ε)∥q ⋅ max
1≤t≤T

∣
T

∑
i=t+1

εizi(ε)∣]

where q is the Hölder conjugate of p. Observe that

sup
z

E sup
1≤t≤T

∣
T

∑
i=t

εizi(ε)∣ ≤ sup
z

E [∣
T

∑
i=1

εizi(ε)∣ + sup
1≤t≤T

∣
t−1

∑
i=1

εizi(ε)∣]

≤ 2 sup
z

E sup
1≤t≤T

∣
t

∑
i=1

εizi(ε)∣

Since {εtzt(ε) ∶ t = 1, . . . , T} is a bounded martingale difference sequence, the last
term is of the order of O(

√
T ). Now, suppose there is some β > 0 such that

∥w1∶T−1(ε)∥q ≤ T β for all ε. This assumption can be implemented if we consider
constrained adversaries, where such `q-bound is required to hold for any prefix
w1∶t(ε) of history (In Appendix, we prove Theorem 3.2.2 for the case of constrained
sequences). Then R(`,ΠΘ) ≤ C ⋅ T β+1/2 for some constant C. We now compare the
rate of convergence of sequential Rademacher and the rate of the mirror descent
algorithm for different settings of q in Table 3.1. If ∥θ∥p ≤ 1 and ∥w∥q ≤ T β for
q ≥ 2, the convergence rate of mirror descent with Legendre function F (θ) = 1

2∥θ∥2
p

is
√
q − 1T β+1/2 (see [21]).
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Θ w1∶T sequential Radem. rate Mirror descent rate

B1(1) ∥w1∶T−1∥∞ ≤ 1
√
T

√
T logT

q ≥ 2 Bp(1) ∥w1∶T−1∥q ≤ T β T β+1/2
√
q − 1T β+1/2

B2(1) ∥w1∶T−1∥2 ≤ T β T β+1/2 T β+1/2

1 ≤ q ≤ 2 Bp(1) ∥w1∶T−1∥q ≤ T β T β+1/2 T β+1/q

B∞(1) ∥w1∶T−1∥1 ≤ T β T β+1/2 T

Table 3.1: Comparison of the rates of convergence (up to constant factors)

We observe that mirror descent, which is known to be optimal for online linear
optimization, and which gives the correct rate for the case of bounded look-back
strategies, in several regimes fails to yield the correct rate for more general linearly
parametrized strategies. Even in the most basic regime where Θ is a unit `1 ball
and the sequence of data is not constrained (other than Z = [−1,1]), there is a gap
of

√
logT between the Rademacher bound and the guarantee of mirror descent. Is

there an algorithm that removes this factor?

3.3.3 Algorithms for Θ = B1(1)
For the example considered in the previous section, with F = Z = [−1,1] and
Θ = B1(1), the conditional sequential Rademacher complexity of Theorem 3.2.7
becomes

RT (Π∣z1, . . . , zt) = sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εsπs(z1∶t,w1∶s−t−1(ε)) ⋅ zs(ε) −
t

∑
s=1

πs(z1∶s−1) ⋅ zs]

≤ sup
w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εsπs(z1∶t,w1∶s−t−1(ε)) −
t

∑
s=1

zsπs(z1∶s−1)]

where the z tree is “erased”, as at the end of the proof of Theorem 3.2.3. Define
as(ε) = 2εs for s > t and −zs otherwise; bi(ε) = wi(ε) for i > t and zi otherwise. We
can then simply write

sup
w

E
εt+1∶T

sup
θ∈Θ

[
T

∑
s=1

as(ε)
s−1

∑
i=1

θibi(ε)]

= sup
w

E
εt+1∶T

sup
θ∈Θ

[
T−1

∑
s=1

θsbs(ε)
T

∑
i=s+1

ai(ε)]

≤ E
εt+1∶T

max
1≤s≤T

∣
T

∑
i=s

ai(ε)∣

which we may use as a relaxation:

Lemma 3.3.1. Define ats(ε) = 2εs for s > t, and −zs otherwise. Then,

Rel(z1∶t) = Eεt+1∶T max1≤s≤T ∣∑Ti=s ati(ε)∣
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is an admissible relaxation.

Proof. The first step of the proof is an application of the minimax theorem (we
assume the necessary conditions hold):

inf
qt∈∆(F)

sup
zt∈Z

{ E
ft∼qt

ft ⋅ zt + E
εt+1∶T

max
1≤s≤T

∣
T

∑
i=s

ati(ε)∣}

= sup
pt∈∆(Z)

inf
ft∈F

{ft ⋅ E
zt∼pt

zt + E
zt∼pt

E
εt+1∶T

max
1≤s≤T

∣
T

∑
i=s

ati(ε)∣}

For any pt ∈ ∆(Z), the infimum over ft of the above expression is equal to

− ∣ E
zt∼pt

zt∣ + E
zt∼pt

E
εt+1∶T

max{max
s>t

∣
T

∑
i=s

ati(ε)∣ ,max
s≤t

∣
T

∑
i=s

ati(ε)∣}

≤ E
zt∼pt

E
εt+1∶T

max{max
s>t

∣
T

∑
i=s

ati(ε)∣ ,max
s≤t

∣
T

∑
i=s

ati(ε) + E
z′t∼pt

z′t∣}

≤ E
zt,z′t∼pt

E
εt+1∶T

max{max
s>t

∣
T

∑
i=s

ati(ε)∣ ,max
s≤t

∣ ∑
i≥s,i≠t

ati(ε) + (z′t − zt)∣}

We now argue that the independent zt and z′t have the same distribution pt, and
thus we can introduce a random sign εt. The above expression then equals to

E
zt,z′t∼pt

E
εt∶T

max{max
s>t

∣
T

∑
i=s

ati(ε)∣ ,max
s≤t

∣ ∑
i≥s,i≠t

ati(ε) + εt(z′t − zt)∣}

≤ E
zt∼pt

E
εt∶T

max{max
s>t

∣
T

∑
i=s

ati(ε)∣ ,max
s≤t

∣ ∑
i≥s,i≠t

ati(ε) + 2εtzt∣}

Now, the supremum over pt is achieved at a delta distribution, yielding an upper
bound

sup
zt∈[−1,1]

E
εt∶T

max{max
s>t

∣
T

∑
i=s

ati(ε)∣ ,max
s≤t

∣ ∑
i≥s,i≠t

ati(ε) + 2εtzt∣}

≤ E
εt∶T

max{max
s>t

∣
T

∑
i=s

ati(ε)∣ ,max
s≤t

∣ ∑
i≥s,i≠t

ati(ε) + 2εt∣}

= E
εt∶T

max
1≤s≤T

∣
T

∑
i=s

at−1
i (ε)∣

With this relaxation, the following method attains O(
√
T ) regret: prediction at

step t is

qt = argmin
q∈[−1,1]

sup
zt∈{±1}

{ E
ft∼q

ft ⋅ zt +Eεt+1∶T max
1≤s≤T

∣
T

∑
i=s

ati(ε)∣}

25



where the sup over zt ∈ [−1,1] is achieved at {±1} due to convexity. Following [15],
we can also derive randomized algorithms, which can be viewed as “randomized
playout” generalizations of the Follow the Perturbed Leader algorithm.

Lemma 3.3.2. Consider the randomized strategy where at round t we first draw
εt+1, . . . , εT uniformly at random and then further draw our move ft according to the
distribution

qt(ε) = argmin
q∈[−1,1]

supzt∈{−1,1} {Eft∼q ft ⋅ zt +max1≤s≤T ∣∑Ti=s ati(ε)∣}

= 1
2
( max{maxs=1,...,t ∣−∑t−1

i=s zi + 1 + 2∑Ti=t+1 εi∣ , maxs=t+1,...,T ∣2∑Ti=s εi∣}
−max{maxs=1,...,t ∣−∑t−1

i=s zi − 1 + 2∑Ti=t+1 εi∣ , maxs=t+1,...,T ∣2∑Ti=s εi∣})

The expected regret of this randomized strategy is upper bounded by sequential Rademacher
complexity: E [RegT ] ≤ 2RT (Π), which was shown to be O(

√
T ) (see Table 3.1).

Proof. Let qt be the randomized strategy where we draw εt+1, . . . , εT uniformly at
random and pick

qt(ε) = argmin
q∈[−1,1]

sup
zt∈{−1,1}

{ E
ft∼q

ft ⋅ zt + max
1≤s≤T

∣
T

∑
i=s

ati(ε)∣} (3.3.3)

Then,

sup
zt∈{−1,1}

{ E
ft∼qt

ft ⋅ zt +Eεt+1∶T max
1≤s≤T

∣
T

∑
i=s

ati(ε)∣}

= sup
zt∈{−1,1}

{Eεt+1∶T E
ft∼qt(ε)

ft ⋅ zt +Eεt+1∶T max
1≤s≤T

∣
T

∑
i=s

ati(ε)∣}

≤ Eεt+1∶T [sup
zt

{ E
ft∼qt(ε)

ft ⋅ zt + max
1≤s≤T

∣
T

∑
i=s

ati(ε)∣}]

= Eεt+1∶T [ inf
qt∈∆(F)

sup
zt

{ E
ft∼qt

ft ⋅ zt + max
1≤s≤T

∣
T

∑
i=s

ati(ε)∣}]

where the last step is due to the way we pick our predictor ft(ε) given random
draw of ε’s in Equation (3.3.3). We now apply the minimax theorem, yielding the
following upper bound on the term above:

Eεt+1∶T [ sup
pt∈∆(Z)

inf
ft

{ E
zt∼pt

ft ⋅ zt + E
zt∼pt

max
1≤s≤T

∣
T

∑
i=s

ati(ε)∣}]
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This expression can be re-written as

Eεt+1∶T [ sup
pt∈∆(Z)

E
zt∼pt

inf
ft

{ E
z′t∼pt

ft ⋅ z′t + max
1≤s≤T

∣
T

∑
i=s

ati(ε)∣}]

≤ Eεt+1∶T [ sup
pt∈∆(Z)

E
zt∼pt

{− ∣ E
z′t∼pt

z′t∣ + max
1≤s≤T

∣
T

∑
i=s

ati(ε)∣}]

≤ Eεt+1∶T [ sup
pt∈∆(Z)

E
zt∼pt

max{max
s≤t

∣
T

∑
i=s

ati(ε) + E
z′t∼pt

z′t∣ ,max
s>t

∣
T

∑
i=s

ati(ε)∣}]

≤ Eεt+1∶T [ sup
pt∈∆(Z)

E
zt,z′t∼pt

max{max
s≤t

∣
T

∑
i≥s,i≠t

ati(ε) + (z′t − zt)∣ ,max
s>t

∣
T

∑
i=s

ati(ε)∣}]

We now argue that the independent zt and z′t have the same distribution pt, and
thus we can introduce a random sign εt. The above expression then equals to

Eεt+1∶T [ sup
pt∈∆(Z)

E
zt,z′t∼pt

E
εt

max{max
s≤t

∣
T

∑
i≥s,i≠t

ati(ε) + εt(z′t − zt)∣ ,max
s>t

∣
T

∑
i=s

ati(ε)∣}]

≤ E
εt+1∶T

sup
zt∈{−1,1}

E
εt

max
1≤s≤T

∣
T

∑
i=s

at−1
i (ε)∣ = E

εt∶T

max
1≤s≤T

∣
T

∑
i=s

at−1
i (ε)∣

The time consuming parts of the above randomized method are to draw T − t
random bits at round t and to calculate the partial sums. However, we may replace
Rademacher random variables by GaussianN(0,1) random variables and use known
results on the distributions of extrema of a Brownian motion. To this end, define a
Gaussian analogue of conditional sequential Rademacher complexity

GT (Π∣z1, . . . , zt)

= sup
z,w

E
σt+1∶T

sup
π∈Π

[
√

2π
T

∑
s=t+1

σs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −
t

∑
s=1

`(πs(z1∶s−1), zs)]

where σt ∼ N(0,1), and ε = (sign(σ1), . . . , sign(σT )). For our example the O(
√
T )

bound can be shown for GT (Π) by calculating the expectation of the maximum
of Brownian motion. Proofs similar to Theorem 3.2.2 and Theorem 3.2.7 show
that the conditional Gaussian complexity GT (Π∣z1, . . . , zt) is an upper bound on
RT (Π∣z1, . . . , zt) and is admissible.

Theorem 3.3.3. The conditional sequential Rademacher complexity with respect to
Π

GT (`,Π∣z1, . . . , zt)

≜ sup
z,w

E
σt+1∶T

sup
π∈Π

[
√

2π
T

∑
s=t+1

σs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −
t

∑
s=1

`(πs(z1∶s−1), zs)]

is admissible.
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Proof. Denote Lt(π) = ∑ts=1 `(πs(z1∶s−1), zs). Let c = Eσ ∣σ∣ =
√

2/π. The first step
of the proof is an application of the minimax theorem (we assume the necessary
conditions hold):

inf
qt∈∆(F)

sup
zt∈Z

{ E
ft∼qt

[`(ft, zt)]

+ sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt(π)]}

= sup
pt∈∆(Z)

inf
ft∈F

{ E
zt∼pt

[`(ft, zt)]

+ E
zt∼pt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt(π)]}

For any pt ∈ ∆(Z), the infimum over ft of the above expression is equal to

E
zt∼pt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+ inf
ft∈F

E
zt∼pt

[`(ft, zt)] − `(πt(z1∶t−1), zt)]

≤ E
zt∼pt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+ E
zt∼pt

[`(πt(z1∶t−1), zt)] − `(πt(z1∶t−1), zt)]

≤ E
zt,z′t∼pt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+`(πt(z1∶t−1), z′t) − `(πt(z1∶t−1), zt)]

We now argue that the independent zt and z′t have the same distribution pt, and thus
we can introduce a gaussian random variable σt and a random sign εt = sign(σt).
The above expression then equals to

E
zt,z′t∼pt

E
σt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+εt(`(πt(z1∶t−1), χt(−εt))) − `(πt(z1∶t−1), χt(εt)))]

≤ E
zt,z′t∼pt

E
σt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+εtE
σt
∣σt
c
∣ (`(πt(z1∶t−1), χt(−εt))) − `(πt(z1∶t−1), χt(εt)))]
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Put the expectation outside and use the fact εt∣σt∣ = σt, we get

E
zt,z′t∼pt

E
σt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+σt
c
(`(πt(z1∶t−1), χt(−εt))) − `(πt(z1∶t−1), χt(εt)))]

≤ E
zt,z′t∼pt

sup
z′′,z′′′

E
σt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

εs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε))

−Lt−1(π) +
σt
c
(`(πt(z1∶t−1), z′′t ) − `(πt(z1∶t−1), z′′′t ))]

Splitting the resulting expression into two parts, we arrive at the upper bound of

2 E
zt,z′t∼pt

sup
z′′

E
σt

sup
z,w

E
σt+1∶T

sup
π∈Π

[1

c

T

∑
s=t+1

σs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε))

−1

2
Lt−1(π) +

σt
c
`(πt(z1∶t−1), z′′t )]

≤ sup
z,z′,z′′

E
σt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+2σt
c
`(πt(z1∶t−1), z′′t )]

≤ GT (`,Π∣z1, . . . , zt−1).

Furthermore, the proof of Lemma 3.3.2 holds for Gaussian random variables, and
gives the randomized algorithm as in Lemma 3.3.2 with εt replaced by σt. It is not
difficult to see that we can keep track of the maximum and minimum of {−∑t−1

i=s zi}
between rounds in O(1) time. We can then draw three random variables from the
joint distribution of the maximum, the minimum and the endpoint of a Brownian
Motion and calculate the prediction in O(1) time per round of the game (the joint
distribution can be found in [11]). In conclusion, we have derived an algorithm that
for the case of Θ = B1(1), with time complexity of O(1) per round and the optimal
regret bound of O(

√
T ). We leave it as an open question to develop efficient and

optimal algorithms for the other settings in Table 3.1.

3.4 Competing with Statistical Models

In this section we consider competing with a set of strategies that arise from
statistical models. For example, for the case of Bayesian models, strategies are
parametrized by the choice of a prior. Regret bounds with respect to a set of such
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methods can be thought of as a robustness statement: we are aiming to perform
as well as the strategy with the best choice of a prior. We start this section with a
general setup that needs further investigation.

3.4.1 Compression and Sufficient Statistics

Assume that strategies in Π have a particular form: they all work with a “sufficient
statistic”, or, more loosely, compression of the past data. Suppose “sufficient statis-
tics” can take values in some set Γ. Fix a set Π̄ of mappings π̄ ∶ Γ↦ F . We assume
that all the strategies in Π are of the form πt(z1, . . . , zt−1) = π̄(γ(z1, . . . , zt−1)) for
some π̄ ∈ Π̄ and γ ∶ Z∗ ↦ Γ. Such a bottleneck Γ can arise due to a finite memory
or finite precision, but can also arise if the strategies in Π are actually solutions to
a statistical problem. If we assume a certain stochastic source for the data, we may
estimate the parameters of the model, and there is often a natural set of sufficient
statistics associated with it. If we collect all such solutions to stochastic models in a
set Π, we may compete with all these strategies as long as Γ is not too large and the
dependence of estimators on these sufficient statistics is smooth. With the notation
introduced in this paper, we need to study the sequential Rademacher complexity
for strategies Π, which can be upper bounded by the complexity of Π̄ on Γ-valued
trees:

R(Π) ≤ sup
g,z

Eε sup
π̄∈Π̄

[
T

∑
t=1

εt`(π̄(gt(ε)),zt(ε)]

This complexity corresponds to our intuition that with sufficient statistics the de-
pendence on the ever-growing history can be replaced with the dependence on a
summary of the data. Next, we consider one particular case of this general idea,
and refer to [8] for more details on these types of bounds.

3.4.2 Bernoulli Model with a Beta Prior

Suppose the data zt ∈ {0,1} is generated according to Bernoulli distribution with pa-
rameter p, and the prior on p ∈ [0,1] is p ∼ Beta(α,β). Given the data {z1, . . . , zt−1},
the maximum a posteriori (MAP) estimator of p is p̂ = (∑t−1

i=1 zi+α−1)/(t−1+α+β−2).
We now consider the problem of competing with Π = {πα,β ∶ α > 1, β ∈ (1,Cβ]} for
some Cβ, where each πα,β predicts the corresponding MAP value for the next round:

πα,βt (z1, . . . , zt−1) = (∑t−1
i=1 zi + α − 1)/(t − 1 + α + β − 2) .

Let us consider the absolute loss, which is equivalent to probability of a mistake of
the randomized prediction1 with bias πα,βt . Thus, the loss of a strategy πα,β on round

1Alternatively, we can consider strategies that predict according to 1{p̂ ≥ 1/2}, which better
matches the choice of an absolute loss. However, in this situation, an experts algorithm on an
appropriate discretization attains the bound.
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t is ∣πα,βt (z1∶t−1) − zt∣ . Using Theorem 3.2.2 and the argument in (3.2.5) to erase the
outcome tree, we conclude that there exists a regret minimization algorithm against
the set Π which attains regret of at most

2 supwEε supα,β [∑Tt=1 εt
∑
t−1
i=1 wi(ε)+α−1

t−1+α+β−2 ] .

To analyze the rate exhibited by this upper bound, construct a new tree with

g1(ε) = 1 and gt(ε) = ∑
t−1
i=1 wi(ε)+α−1

t+α−2 ∈ [0,1] for t ≥ 2. With this notation, we can
simply re-write the last expression as twice

supgEε supα,β [∑Tt=1 εtgt(ε) t+α−2
t+α+β−3]

The supremum ranges over all [0,1]-valued trees g, but we can pass to the supremum
over all [−1,1]-valued trees (thus making the value larger). We then observe that
the supremum is achieved at a {±1}-valued tree g, which can then be erased as in
the end of the proof of Theorem 3.2.3 (roughly speaking, it amounts to renaming
εt into εtgt(ε1∶t−1)). We obtain an upper bound

R(Π) ≤ Eε sup
α,β

T

∑
t=1

εt(t + α − 2)
t + α + β − 3

≤ Eε ∣
T

∑
t=1

εt∣ +Eε sup
α,β

∣
T

∑
t=1

εt(β − 1)
t + α + β − 3

∣ = (
√
Cβ + 1)

√
T

(3.4.1)

where we used Cauchy-Schwartz inequality for the second term. We note that an
experts algorithm would require a discretization that depends on T and will yield a
regret bound of order O(

√
T logT ). It is therefore interesting to find an algorithm

that avoids the discretization and obtains this regret. To this end, we take the
derived upper bound on the sequential Rademacher complexity and prove that it is
an admissible relaxation.

Lemma 3.4.1. The relaxation

Rel(z1∶t) = Eεt+1∶T sup
α,β

[2
T

∑
s=t+1

εs ⋅
s + α − 2

s + α + β − 3
−

t

∑
s=1

∣ ∑s−1
i=1 zi

s + α + β − 3
− zs∣]

is admissible.

Proof. Denote

Lt(α,β) =
t

∑
s=1

RRRRRRRRRRRR

∑
s−1
i=1 zi
s+α−2

1 + β−1
s+α−2

− zs
RRRRRRRRRRRR
.

The first step of the proof is an application of the minimax theorem:

inf
qt∈∆(F)

sup
zt∈Z

{ E
ft∼qt

∣ft − zt∣ + E
εt+1∶T

sup
α,β

[2
T

∑
s=t+1

εs ⋅
1

1 + β−1
s+α−2

−Lt(α,β)]}

= sup
pt∈∆(Z)

inf
ft∈F

{ E
zt∼pt

∣ft − zt∣ + E
zt∼pt

E
εt+1∶T

sup
α,β

[2
T

∑
s=t+1

εs ⋅
1

1 + β−1
s+α−2

−Lt(α,β)]}
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For any pt ∈ ∆(Z), the infimum over ft of the above expression is equal to

E
zt∼pt

Eεt+1∶T sup
α,β

⎡⎢⎢⎢⎢⎣
2

T

∑
s=t+1

εs

1 + β−1
s+α−2

−Lt−1(α,β) + inf
ft∈F

E
zt∼pt

∣ft − zt∣ −
RRRRRRRRRRRR

∑
t−1
i=1 zi
t+α−2

1 + β−1
t+α−2

− zt
RRRRRRRRRRRR

⎤⎥⎥⎥⎥⎦

≤ E
zt∼pt

Eεt+1∶T sup
α,β

⎡⎢⎢⎢⎢⎣
2

T

∑
s=t+1

εs

1 + β−1
s+α−2

−Lt−1(α,β) + E
z′t∼pt

RRRRRRRRRRRR

∑
t−1
i=1 zi
t+α−2

1 + β−1
t+α−2

− z′t
RRRRRRRRRRRR
−
RRRRRRRRRRRR

∑
t−1
i=1 zi
t+α−2

1 + β−1
t+α−2

− zt
RRRRRRRRRRRR

⎤⎥⎥⎥⎥⎦

≤ E
zt,z′t∼pt

Eεt+1∶T sup
α,β

⎡⎢⎢⎢⎢⎣
2

T

∑
s=t+1

εs

1 + β−1
s+α−2

−Lt−1(α,β) +
RRRRRRRRRRRR

∑
t−1
i=1 zi
t+α−2

1 + β−1
t+α−2

− z′t
RRRRRRRRRRRR
−
RRRRRRRRRRRR

∑
t−1
i=1 zi
t+α−2

1 + β−1
t+α−2

− zt
RRRRRRRRRRRR

⎤⎥⎥⎥⎥⎦
We now argue that the independent zt and z′t have the same distribution pt, and
thus we can introduce a random sign εt. The above expression then equals to

E
zt,z′t∼pt

Eεt∶T sup
α,β

⎡⎢⎢⎢⎢⎣
2

T

∑
s=t+1

εs

1 + β−1
s+α−2

−Lt−1(α,β) + εt
⎛
⎝

RRRRRRRRRRRR

∑
t−1
i=1 zi
t+α−2

1 + β−1
t+α−2

− z′t
RRRRRRRRRRRR
−
RRRRRRRRRRRR

∑
t−1
i=1 zi
t+α−2

1 + β−1
t+α−2

− zt
RRRRRRRRRRRR

⎞
⎠

⎤⎥⎥⎥⎥⎦

≤ sup
zt,z′t
∈Z

Eεt∶T sup
α,β

⎡⎢⎢⎢⎢⎣
2

T

∑
s=t+1

εs

1 + β−1
s+α−2

−Lt−1(α,β) + εt
⎛
⎝

RRRRRRRRRRRR

∑
t−1
i=1 zi
t+α−2

1 + β−1
t+α−2

− z′t
RRRRRRRRRRRR
−
RRRRRRRRRRRR

∑
t−1
i=1 zi
t+α−2

1 + β−1
t+α−2

− zt
RRRRRRRRRRRR

⎞
⎠

⎤⎥⎥⎥⎥⎦

where we upper bounded the expectation by the supremum. Splitting the resulting
expression into two parts, we arrive at the upper bound of

2 sup
zt∈Z

Eεt∶T sup
α,β

⎡⎢⎢⎢⎢⎣

T

∑
s=t+1

εs

1 + β−1
s+α−2

− 1

2
Lt−1(α,β) + εt

RRRRRRRRRRRR

∑
t−1
i=1 zi
t+α−2

1 + β−1
t+α−2

− zt
RRRRRRRRRRRR

⎤⎥⎥⎥⎥⎦

= 2 sup
zt∈Z

Eεt∶T sup
α,β

⎡⎢⎢⎢⎢⎣

T

∑
s=t+1

εs

1 + β−1
s+α−2

− 1

2
Lt−1(α,β) + εt ⋅

∑
t−1
i=1 zi
t+α−2

1 + β−1
t+α−2

(1 − 2zt) − εtzt
⎤⎥⎥⎥⎥⎦

= 2Eεt∶T sup
α,β

⎡⎢⎢⎢⎢⎣

T

∑
s=t+1

εs

1 + β−1
s+α−2

− 1

2
Lt−1(α,β) + εt ⋅

∑
t−1
i=1 zi
t+α−2

1 + β−1
t+α−2

⎤⎥⎥⎥⎥⎦

where the last step is due to the fact that for any zt ∈ {0,1}, εt(1−2zt) has the same
distribution as εt. We then proceed to upper bound

2 sup
p

Ea∼pEεt∶T sup
α,β

[
T

∑
s=t+1

εs

1 + β−1
s+α−2

− 1

2
Lt−1(α,β) + εt ⋅

a

1 + β−1
t+α−2

]

≤ 2 sup
a∈{±1}

Eεt∶T sup
α,β

[
T

∑
s=t+1

εs

1 + β−1
s+α−2

− 1

2
Lt−1(α,β) + εt ⋅

a

1 + β−1
t+α−2

]

≤ 2Eεt∶T sup
α,β

[
T

∑
s=t

εs

1 + β−1
s+α−2

− 1

2
Lt−1(α,β)]
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The initial condition is trivially satisfied as

Rel(z1∶T ) = − inf
α,β

T

∑
s=1

RRRRRRRRRRRR

∑
s−1
i=1 zi
s+α−2

1 + β−1
s+α−2

− zs
RRRRRRRRRRRR

Given that this relaxation is admissible, we have a guarantee that the following
algorithm attains the rate (

√
Cβ + 1)

√
T given in (3.4.1):

qt =arg min
q∈[0,1]

max
zt∈{0,1}

{Ef∼q ∣f − zt∣

+Eεt+1∶T sup
α,β

[2
T

∑
s=t+1

εs ⋅
s + α − 2

s + α + β − 3
−

t

∑
s=1

∣ ∑s−1
i=1 zi

s + α + β − 3
− zs∣]}

In fact, qt can be written as

qt =
1

2
{Eεt+1∶T sup

α,β
[2

T

∑
s=t+1

εs ⋅
s + α − 2

s + α + β − 3
−
t−1

∑
s=1

(1 − 2zs) ⋅
∑s−1
i=1 zi

s + α + β − 3
+ ∑t−1

i=1 zi
t + α + β − 3

]

−Eεt+1∶T sup
α,β

[2
T

∑
s=t+1

εs ⋅
s + α − 2

s + α + β − 3
−
t−1

∑
s=1

(1 − 2zs) ⋅
∑s−1
i=1 zi

s + α + β − 3
− ∑t−1

i=1 zi
t + α + β − 3

]}

For a given realization of random signs, the supremum is an optimization of a sum
of linear fractional functions of two variables. Such an optimization can be carried
out in time O(T logT ) (see [4]). To deal with the expectation over random signs,
one may either average over many realizations or use the random playout idea and
only draw one sequence. Such an algorithm is admissible for the above relaxation,
obtains the O(

√
T ) bound, and runs in O(T logT ) time per step. We leave it as an

open problem whether a more efficient algorithm with O(
√
T ) regret exists.

3.5 Competing with Regularized Least Squares

Consider the supervised learning problem with Y = [−1,1] and some set X . Consider
the Regularized Least Squares (RLS) strategies, parametrized by a regularization
parameter λ and a shift w0. That is, given data (x1, y1), . . . , (xt, yt), the strategy
solves

arg minw∑ti=1(yi − ⟨xi,w⟩)2 + λ∥w −w0∥2 .

For a given pair λ and w0, the solution is

wλ,w0

t+1 = w0 + (XTX + λI)−1XTY,

where X ∈ Rt×d and Y ∈ Rt×1 are the usual matrix representations of the data
x1∶t, y1∶t. We would like to compete against a set of such RLS strategies which make
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prediction ⟨wλ,w0

t−1 , xt⟩, given side information xt. Since the outcomes are in [−1,1],
without loss of generality we clip the predictions of strategies to this interval, thus
making our regret minimization goal only harder. To this end, let c(a) = a if
a ∈ [−1,1] and c(a) = sign(a) for ∣a∣ > 1. Thus, given side-information xt ∈ X , the
prediction of strategies in Π = {πλ,w0 ∶ λ ≥ λmin > 0, ∥w0∥2 ≤ 1} is simply the clipped
product

πλ,w0

t (x1∶t, y1∶t−1) = c (⟨wλ,w0

t−1 , xt⟩) .

Let us take the squared loss function `(ŷ, y) = (ŷ − y)2
.

Lemma 3.5.1. For the set Π of strategies defined above, the minimax regret of
competing against Regularized Least Squares strategies is

VT (Π) ≤ c
√
T log(Tλ−1

min)

for an absolute constant c.

Proof. Given an X -valued tree x and a Y-valued tree y, let us write Xt(ε) for the
matrix consisting of (x1(ε), . . . ,xt−1(ε)) and Yt for the vector (y1(ε), . . . ,yt−1(ε)).
By Theorem 3.2.3, the minimax regret is bounded by

4 sup
x,y

Eε sup
πλ,w0∈Π

[
T

∑
t=1

εtπ
λ,w0

t (x1∶t(ε),y1∶t−1(ε))]

= 4 sup
x,y

Eε sup
λ,w0

[
T

∑
t=1

εtc (⟨(Xt(ε)TXt(ε) + λI)−1Xt(ε)TYt(ε),xt(ε)⟩ + ⟨w0,xt(ε)⟩)]

Since the output of the clipped strategies in Π is between −1 and 1, the Dudley
integral gives an upper bound

R(Π, (x,y)) ≤ inf
α≥0

{4αT + 12
√
T ∫

1

α

√
log N2(Π, (x,y), δ) dδ}

Define the set of strategies before clipping:

Π′ = {π′ ∶ π′t(x1∶t, y1∶t−1) = ⟨w0 + (XTX + λI)−1XTY,xt⟩ , ∥w0∥ ≤ 1, λ > λmin}

If V is a δ-cover of Π′ on (x,y), then V is also an δ-cover of Π as ∣c(x)−c(x′)∣ ≤ ∣x−y∣.
Therefore, for any (x,y),

N2(Π, (x,y), δ) ≤ N2(Π′, (x,y), δ)

and

R(Π, (x,y)) ≤ inf
α≥0

{4αT + 12
√
T ∫

1

α

√
log N2(Π′, (x,y), δ) dδ} .
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If W is a δ/2-cover of the set of strategies Πw0 = {⟨w0,xt(ε)⟩ ∶ ∥w0∥ ≤ 1} on a tree
x, and Λ is a δ/2-cover of the set of strategies

Πλ = {π ∶ πt(x1∶t, y1∶t−1) = ⟨(XTX + λI)−1XTY,xt⟩ ∶ λ > λmin}

then W ×Λ is an δ-cover of Π′. Therefore,

N2(Π′, (x,y), δ) ≤ N2(Πw0 , (x,y), δ/2) ×N2(Πλ, (x,y), δ/2).

Hence,

R(Π, (x,y))

≤ inf
α≥0

{4αT + 12
√
T ∫

1

α

√
log N2(Πw0 , (x,y), δ/2) + log N2(Πλ, (x,y), δ/2) dδ}

≤ inf
α≥0

{4αT + 12
√
T ∫

1

α

√
log N2(Πw0 , (x,y), δ/2) dδ}

+ 12
√
T ∫

1

0

√
log N2(Πλ, (x,y), δ/2) dδ

The first term is the Dudley integral of the set of static strategies Πw0 given by
w0 ∈ B2(1), and it is exactly the complexity studied in [18] where it is shown to be

O(
√
T log(T )). We now provide a bound on the covering number for the second

term. It is easy to verify that the following identity holds

(XTX + λ2Id)−1 − (XTX + λ1Id)−1 = (λ1 − λ2)(XTX + λ1Id)−1(XTX + λ2Id)−1

by right- and left-multiplying both sides by (XTX + λ2Id) and (XTX + λ1Id), re-
spectively. Let λ1, λ2 > 0. Then, assuming that ∥xt∥2 ≤ 1 and yt ∈ [−1,1] for all
t,

∥(XtX + λ2Id)−1XTY − (XTX + λ1Id)−1XTY ∥
2

= ∣λ2 − λ1∣ ∥(XTX + λ1Id)−1(XTX + λ2Id)−1XTY ∥
2

≤ ∣λ2 − λ1∣
1

λ1λ2

∥XTY ∥2 ≤ ∣λ−1
1 − λ−1

2 ∣ t

Hence, for ∣λ−1
1 − λ−1

2 ∣ ≤ δ/T , we have ∥(XTX + λ2Id)−1XTY − (XTX + λ1Id)−1XTY ∥2 ≤
δ, and thus the discretization of λ−1 on (0, λ−1

min] gives an `∞-cover, and the size of
the cover at scale δ is λ−1

minTδ
−1. The Dudley entropy integral yields the bound of,

R(Π, (x,y)) ≤ 12
√
T ∫

1

0

√
log(2Tλ−1

minδ
−1)dδ ≤ 12

√
T (1 +

√
log(2Tλ−1

min)) .

This concludes the proof.

35



Observe that λ−1
min enters only logarithmically, which allows us to set, for instance,

λmin = 1/T . Finally, we mention that the set of strategies includes λ = ∞. This
setting corresponds to a static strategy πλ,w0

t (x1∶t, y1∶t−1) = ⟨w0, xt⟩ and regret against
such a static family parametrized by w0 ∈ B2(1) is exactly the objective of online
linear regression [22]. Lemma 3.5.1 thus shows that it is possible to have vanishing
regret with respect to a much larger set of strategies. It is an interesting open
question of whether one can develop an efficient algorithm with the above regret
guarantee.

3.6 Competing with Follow the Regularized Leader

Strategies

Consider the problem of online linear optimization with the loss function `(ft, xt) =
⟨ft, zt⟩ for ft ∈ F , zt ∈ Z. For simplicity, assume that F = Z = B2(1). An algorithm
commonly used for online linear and online convex optimization problems is the
Follow the Regularized Leader (FTRL) algorithm. We now consider competing
with a family of FTRL algorithms πw0,λ indexed by w0 ∈ {w ∶ ∥w∥ ≤ 1} and λ ∈ Λ
where Λ is a family of functions λ ∶ R+ × [T ] ↦ R+ specifying a schedule for the
choice of regularization parameters. Specifically we consider strategies πw0,λ such
that πw0,λ

t (z1, . . . , zt−1) = wt where

wt = w0 + argmin
w∶∥w∥≤1

{∑t−1
i=1 ⟨w, zi⟩ + 1

2λ (∥∑t−1
i=1 zi∥ , t) ∥w∥2} (3.6.1)

This can be written in closed form as

wt = w0 − (
t−1

∑
i=1

zi)/max{λ(∥
t−1

∑
i=1

zi∥ , t) ,∥
t−1

∑
i=1

zi∥} .

Lemma 3.6.1. For a given class Λ of functions indicating choices of the regular-
ization parameters, define a class Γ of functions on [0,1] × [1/T,1] specified by

Γ = {γ ∶ ∀b ∈ [1/T,1], a ∈ [0,1], γ(a, b) = min{ a/(b − 1)
λ(a/(b − 1),1/b) ,1} , λ ∈ Λ}

Then the value of the online learning game competing against FTRL strategies given
by Equation 3.6.1 is bounded as

VT (ΠΛ) ≤ 4
√
T + 2 RT (Γ)

where RT (Γ) is the sequential Rademacher complexity [18] of Γ.
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Proof. Using Theorem 3.2.2,

VT (ΠΛ) ≤ 2R(`,ΠΛ)

= 2 sup
z,z′

Eε sup
w0∶∥w0∥≤1,λ∈Λ

⎡
⎢
⎢
⎢
⎣

T

∑

t=1

εt ⟨w0 −
∑
t−1
i=1 zi(ε)

max{λ (∥∑
t−1
i=1 zi(ε)∥ , t) , ∥∑

t−1
i=1 zi(ε)∥}

,z′t(ε)⟩
⎤
⎥
⎥
⎥
⎦

which we can upper bound by splitting the supremum into two:

2 sup
z′

Eε sup
w0∶∥w0∥≤1

[

T

∑

t=1

εt ⟨w0,z
′
t(ε)⟩]

+ 2 sup
z,z′

Eε sup
λ∈Λ

⎡
⎢
⎢
⎢
⎣

T

∑

t=1

εt ⟨
∑
t−1
i=1 zi(ε)

max{λ (∥∑
t−1
i=1 zi(ε)∥ , t) , ∥∑

t−1
i=1 zi(ε)∥}

,z′t(ε)⟩
⎤
⎥
⎥
⎥
⎦

The first term is simply

2 sup
z′

Eε ∥
T

∑
t=1

εtz
′
t(ε)∥ ≤ 2

√
T .

The second term can be written as

2 sup
z,z′

Eε sup
λ∈Λ

⎡⎢⎢⎢⎢⎣

T

∑
t=1

εt ⟨
∑t−1
i=1 zi(ε)

∥∑t−1
i=1 zi(ε)∥

,z′t(ε)⟩
∥∑t−1

i=1 zi(ε)∥
max{λ (∥∑t−1

i=1 zi(ε)∥ , t) , ∥∑t−1
i=1 zi(ε)∥}

⎤⎥⎥⎥⎥⎦

≤ 2 sup
z

sup
s

Eε sup
λ∈Λ

⎡⎢⎢⎢⎢⎣

T

∑
t=1

εtst(ε)
∥∑t−1

i=1 zi(ε)∥
max{λ (∥∑t−1

i=1 zi(ε)∥ , t) , ∥∑t−1
i=1 zi(ε)∥}

⎤⎥⎥⎥⎥⎦

and the tree s can be erased (see end of the proof of Theorem 3.2.3), yielding an
upper bound

2 sup
z

Eε sup
λ∈Λ

⎡⎢⎢⎢⎢⎣

T

∑
t=1

εt ∥∑t−1
i=1 zi(ε)∥

max{λ (∥∑t−1
i=1 zi(ε)∥ , t) , ∥∑t−1

i=1 zi(ε)∥}

⎤⎥⎥⎥⎥⎦

≤ 2 sup
a

Eε sup
λ∈Λ

[
T

∑
t=1

εtat(ε)
max{λ (at(ε), t) ,at(ε)}

]

≤ 2 sup
a

Eε sup
λ∈Λ

⎡⎢⎢⎢⎢⎢⎣

T

∑
t=1

εt

max{λ(at(ε),t)at(ε)
,1}

⎤⎥⎥⎥⎥⎥⎦

= 2 sup
a

Eε sup
λ∈Λ

[
T

∑
t=1

εt min{ at(ε)
λ (at(ε), t)

,1}]

= 2 sup
b

Eε sup
γ∈Γ

[
T

∑
t=1

εtγ (bt(ε),1/t)]

≤ 2 RT (Γ)
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where in the above a is a R+-valued tree such that at ∶ {±1}t−1 ↦ [0, t − 1], b is a
[1/T,1]-value tree and

Γ = {γ ∶ ∀b ∈ [1/T,1], a ∈ [0,1], γ(a, b) = min{ a/(b − 1)
λ(a/(b − 1),1/b) ,1} , λ ∈ Λ} .

Notice that if ∣Λ∣ < ∞ then the second term is bounded as RT (Γ) ≤
√
T log ∣Λ∣.

However, we may compete with an infinite set of step-size rules. Indeed, each
γ ∈ Γ is a function [0,1]2 ↦ [0,1]. Hence, even if one considers Γ to be the set
of all 1-Lipschitz functions (Lipschitz w.r.t., say, `∞ norm), it holds that RT (Γ) ≤
2
√
T logT . We conclude that it is possible to compete with set of FTRL strategies

that pick any w0 in unit ball as starting point and further use for regularization
parameter schedule any λ ∶ R2 ↦ R that is such that a/(b−1)

λ(a/(b−1),1/b) is a 1-Lipchitz

function for every a, b ∈ [1/T,1].
Beyond the finite and Lipschitz cases shown above, it would be interesting to an-

alyze richer families of step size schedules, and possibly derive efficient algorithms.
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Chapter 4

Predictable Sequences and
Competing with Strategies

In this chapter, we study how online linear optimization competes with strategies,
while benefiting from the predictable sequence. We analyze the minimax value of
the online learning optimization problem and develop an algorithm that minimizes
the regret. Then, we extend the online optimization problem to one with mul-
tiple predictable sequences. We derive efficient regret-minimizing algorithms for
two cases: (a) finite number of predictable processes, and (b) infinite predictable
processes with only one optimal strategy. Last, we re-analyze the online linear
optimization problem using dynamic regret.

4.1 Introduction

Let us first restate the notations for the online learning problem that consists of T
rounds. At each time t ∈ {1, . . . , T} ≜ [T ], the learner predicts ft ∈ F and observes
an outcome zt ∈ Z, where F and Z are sets of decisions and outcomes. The learner
suffers a loss of `(ft, zt) at the t-th round, where ` ∶ F ×Z → R measures the quality
of prediction. A strategy π = (πt)Tt=1 is a sequence of functions πt ∶ Z t−1 → F , and Π
is a set of strategies. The regret competing with the strategy set Π is defined as

RegT (Π) =
T

∑
t=1

`(ft, zt) − inf
π∈Π

T

∑
t=1

`(πt(z1∶t−1), zt),

where z1∶t = (z1, . . . , zt) and the minimax value of this prediction problem is defined
as

VT (Π) ≜ inf
p1∈∆(F)

sup
z1∈Z

E
f1∼p1

. . . inf
pT ∈∆(F)

sup
zT ∈Z

E
fT ∼pT

RegT (Π),

where ∆(F) is the set of all probability distributions on F .
During the learning process, the learner may receive outside information. For

example, it is reasonable to expect high revenue during Thanksgiving season, or
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to expect stock market fluctuations on an earning announcement day. The out-
side information can also be history-based. We embed the outside information as
the predictable sequence, and the true outcome is separated from the predictable
sequence by adversarial noise. It can also be roughly described as in [17]:

outcome = predictable sequence + adversarial noise.

A predictable sequence M = (Mt)Tt=1 is a sequence of functions Mt ∶ Z t−1 → Z. If the
outcome is guaranteed to be the same as the predictable process, then the optimal
strategy πM = (πMt )Tt=1 is a sequence of functions πMt ∶ Z t−1 → Z, which satisfies

πMt (z1∶t−1) = arg min
f∈F

`(f,Mt(z1∶t−1)).

[17] presents methods for online optimization problem that take advantage of
the predictable process. However, the regret analysis in [17] is competing with fixed
actions. The learner benefits from the predictable process, and it puts fixed actions
at a disadvantage. In this chapter, we restudy the predictable process discussed in
[17], but use the regret competing with strategies.

We define

ΠM
F = {ΠM

α,f = (αf + (1 − α)πMt )Tt=1, α ∈ [0,1], f ∈ F}

as the strategy set. The strategy set ΠM
F

contains all fixed actions {ΠM
1,f}f∈F =

{(f)Tt=1}f∈F and also the optimal strategy ΠM
0,f = (πMt )Tt=1. Fixed actions {(f)Tt=1}f∈F

are included to prevent from getting hurt by unreliable/unstable predictable se-
quence. It is usually more difficult to compete with ΠM

F
, than to compete with the

union of fixed actions {(f)Tt=1}f∈F and the optimal strategy (πMt )Tt=1.
If the loss function ` ∶ F × Z → R is linear as `(f, z) = ⟨f, z⟩, competing with

ΠM
F

is equivalent to competing with the union of fixed actions {(f)Tt=1}f∈F and the
optimal strategy (πMt )Tt=1. The equivalence of the infima of the cumulative losses
leads to the equivalence of the regrets over two different strategy sets. We compare
the infima of the cumulative losses over two different strategy sets in the following
equations:

inf
f∈F ,α∈[0,1]

T

∑
t=1

⟨αf + (1 − α)πMt (z1∶t−1), zt⟩

= inf
α∈[0,1]

inf
f∈F

[α
T

∑
t=1

⟨f, zt⟩ + (1 − α)
T

∑
t=1

⟨πMt (z1∶t−1), zt⟩]

= inf
α∈[0,1]

[α inf
f∈F

T

∑
t=1

⟨f, zt⟩ + (1 − α)
T

∑
t=1

⟨πMt (z1∶t−1), zt⟩]

= min{
T

∑
t=1

⟨πMt (z1∶t−1), zt⟩, inf
f∈F

T

∑
t=1

⟨f, zt⟩} .
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The first equality holds because of the linearity of the loss function ` with re-
spect to the first argument. The second equality holds because f only appears
in the term ∑Tt=1⟨f, zt⟩. And, the last equality holds because α inff∈F ∑Tt=1⟨f, zt⟩ +
(1 − α)∑Tt=1⟨πMt (z1∶t−1), zt⟩ is linear with respect to α, and the infimum of a linear
function over a convex set [0,1] is always at the boundary {0,1}.

The regret competing with the strategy set ΠM
F is defined as

RegT (ΠM
F ) =

T

∑
t=1

`(ft, zt) − inf
f∈F ,α∈[0,1]

T

∑
t=1

`(αf + (1 − α)πMt (z1∶t−1), zt),

and the minimax value of the online linear optimization problem competing with
the strategy set ΠM

F is

VT (ΠM
F ) = inf

p1∈∆(F)

sup
z1∈Z1

E
f1∼p1

. . . inf
pT ∈∆(F)

sup
zT ∈ZT (z1∶T−1)

E
fT ∼pT

[
T

∑
t=1

`(ft, zt) − inf
f∈F ,α∈[0,1]

T

∑
t=1

`(αf + (1 − α)πMt (z1∶t−1), zt)]

This chapter is organized as follows. In Section 4.2, we analyze the minimax
value of online optimization that takes advantage of the predictable process M
and competes with the strategy set ΠM

F
. Then, we apply the minimax analysis on

the online linear optimization problem. In Section 4.3, we show one online linear
optimization algorithm that achieves the minimax value. The algorithm benefits
from the given predictable sequence Mt, and also avoids being hurt if the outcome
deviates from the predictable sequence. In Section 4.4, we consider the environment
with multiple predictable processes. Specifically, we derive algorithms on two cases,
(a) finite number of predictable processes and (b) infinite number of predictable
sequences and only one optimal strategy. In Section 4.5, we view the whole problem
from the viewpoint of dynamic regret [9].

4.2 Minimax Regret

In this chapter, we focus on linear loss `(f, z) = ⟨f, z⟩, where F is a unit ball with
respect to ∥ ⋅∥ and Z is a unit ball with respect to the dual norm ∥ ⋅∥⋆. If the learner
receives the information that the coming outcome zt is guaranteed to be Mt(z1∶t−1),
the optimal strategy is to predict

πMt (z1∶t−1) = inf
ft∈F

⟨ft,Mt(z1∶t−1)⟩.

If ∥ ⋅ ∥ is a Euclidean norm, the optimal strategy is to predict

πMt (z1∶t−1) = −
Mt(z1∶t−1)

∥Mt(z1∶t−1)∥
.
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If the learner receives the information that the coming outcome zt is close to
Mt(z1∶t−1), it is still wise to adjust the prediction according to the predictable se-
quence Mt(z1∶t−1).

Since the learner has the extra information Mt, it is a significant advantage
compared to fixed actions. Therefore, instead of competing with fixed actions, we
use regret competing with strategies. The regret competing with the strategy set
ΠM
F

is defined as

Reg`T (ΠM
F ) =

T

∑
t=1

⟨ft, zt⟩ − inf
f∈F ,α∈[0,1]

T

∑
t=1

⟨αf + (1 − α)πMt (z1∶t−1), zt⟩,

where the comparator term is the smaller one between the cumulative loss of the
best fixed action inff∈F ∑Tt=1⟨f, zt⟩ and the cumulative loss of the optimal strat-

egy ∑Tt=1⟨πMt (z1∶t−1), zt⟩. Further, we define the minimax value of the online linear
optimization problem competing with the strategy set ΠM

F as

V`T (ΠM
F ) = inf

p1∈∆(F)

sup
z1∈Z1

E
f1∼p1

. . . inf
pT ∈∆(F)

sup
zT ∈ZT (z1∶T−1)

E
fT ∼pT

[
T

∑
t=1

⟨ft, zt⟩ − inf
f∈F ,α∈[0,1]

T

∑
t=1

⟨αf + (1 − α)πMt (z1∶t−1), zt⟩]

Theorem 4.2.1. Suppose F is a unit ball with respect to the norm ∥ ⋅ ∥, Z is
unit balls with respect to the dual norm ∥ ⋅ ∥⋆ and the loss function `(f, z) is linear
`(f, z) = ⟨f, z⟩. If the outcome zt ∈ Z is always σt-close to the predictable sequence
Mt, i.e.

∥zt −Mt(z1∶t−1)∥⋆ ≤ σt,
for t = 1, . . . , T , then the outcome set at time t can be defined as Zt(z1∶t−1) = {z ∈ Z ∶
∥z −Mt(z1∶t−1)∥⋆ ≤ σt}. Therefore, the minimax value of the online linear optimiza-
tion problem with respect to the strategy set ΠM

F
is upper bounded by

V`T (ΠM
F ) ≤ c0

¿
ÁÁÀ T

∑
t=1

σ2
t

where the constant c0 depends on the smoothness of the norm ∥ ⋅ ∥. If the norm ∥ ⋅ ∥
is Lp-norm (p > 2) in Euclidean space, the constant c0 is 2 + 1√

p−1
.

Before we prove Theorem 4.2.1, let us first prove a more general version of
Theorem 4.2.1 with general loss functions.

Lemma 4.2.2. Suppose the prediction set F is a unit ball with respect to the norm
∥ ⋅ ∥, the outcome set Z is a unit ball with respect to the dual norm ∥ ⋅ ∥⋆ and the
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loss function is ` ∶ F × Z → R. If the outcome zt ∈ Z is σt-close to the predictable
sequence Mt, i.e.

∥zt −Mt(z1∶t−1)∥⋆ ≤ σt,
for t = 1, . . . , T , then the outcome set at time t is defined as Zt(z1∶t−1) = {z ∈ Z ∶
∥z −Mt(z1∶t−1)∥⋆ ≤ σt}. Therefore, the minimax value of the prediction problem
competing with the strategy set Π and constrained adversaries is upper bounded by

VT (Π)

≜ inf
p1∈∆(F)

sup
z1∈Z1

E
f1∼p1

. . . inf
pT ∈∆(F)

sup
zT ∈ZT (z1∶T−1)

E
fT ∼pT

[
T

∑
t=1

`(ft, zt) − inf
π∈Π

T

∑
t=1

`(πt(z1∶t−1), zt)]

≤ 2 sup
w∈C

sup
z

E
ε

sup
π∈Π

[
T

∑
t=1

εt (`(πt(w1∶t−1(ε)),zt(ε)) − `(πt(w1∶t−1(ε)),Mt(w1∶t−1(ε))))]

where w and z are Z-valued trees. C is the set of Z-valued trees z such that all
paths are σt-close to the predictable sequence M , i.e., for every ε ∈ {±1}T and t ∈ [T ],
∥zt(ε) −Mt(z1∶t−1(ε))∥⋆ ≤ σt.

Proof. According to (3.2.3) in Theorem 3.2.2, the minimax value of the online linear
optimization problem with respect to the strategy set Π and constrained adversaries
is upper bounded by

VT (Π) ≤ sup
p1∈P1(⋅)

E
z1,z′1∼p1

E
ε1

⋯ sup
pT ∈PT (χ1∶T−1(ε1∶T−1))

E
zT ,z

′
T ∼pT

E
εT

sup
π∈Π

[
T

∑
t=1

εt (`(πt(χ1∶t−1(ε1∶t−1)), z′t) − `(πt(χ1∶t−1(ε1∶t−1)), zt))] ,

where Pt(χ1∶t−1(ε1∶t−1)) is a simplex on the set Zt(χ1∶t−1(ε1∶t−1)). The “selector func-
tion” χ ∶ Z × Z × {±1} → Z is defined as χ(zt, z′t,+1) = zt and χ(zt, z′t,−1) = z′t.
The selector function selects between zt and z′t depending on the third argument.
When the context is clear, we use χt(ε) to represent χ(zt, z′t, ε) for simplicity. Next,
we add and subtract corresponding loss terms with Mt to the last statement. The
minimax value of the prediction problem is upper bounded by

VT (Π) ≤ sup
p1∈P1

E
z1,z′1∼p1

E
ε1

sup
p2∈P2(χ1(ε1))

E
z2,z′2∼p2

E
ε2

⋯ sup
pT ∈PT (χ1∶T−1(ε1∶T−1))

E
zT ,z

′
T ∼pT

E
εT

sup
π∈Π

[
T

∑
t=1

εt (`(πt(χ1∶t−1(ε1∶t−1)), z′t) − `(πt(χ1∶t−1(ε1∶t−1)),Mt(χ1∶t−1(ε1∶t−1))))

+
T

∑
t=1

εt (`(πt(χ1∶t−1(ε1∶t−1)),Mt(χ1∶t−1(ε1∶t−1))) − `(πt(χ1∶t−1(ε1∶t−1)), zt))]
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After zt, z′t and εt are revealed, χt(εt) is fixed and can only be either zt or z′t. We
remove the dependency of χt(εt) on εt, and replace χt(εt) by yt, which is either zt
or z′t. Therefore, the minimax value of the prediction problem is upper bounded by

VT (Π) ≤ sup
p1∈P1

E
z1,z′1∼p1

E
ε1

sup
y1∈{z1,z′1}

sup
p2∈P2(y1)

E
z2,z′2∼p2

E
ε2

⋯ sup
yT−1∈{zT−1,z

′
T−1}

sup
pT ∈PT (y1∶T−1)

E
zT ,z

′
T ∼pT

E
εT

sup
π∈Π

[
T

∑
t=1

εt (`(πt(y1∶t−1), z′t) − `(πt(y1∶t−1),Mt(y1∶t−1)))

+
T

∑
t=1

εt (`(πt(y1∶t−1)),Mt(y1∶t−1)) − `(πt(y1∶t−1), zt))]

≤ sup
z1,z′1∈Z1

E
ε1

sup
y1∈{z1,z′1}

sup
z2,z′2∈Z2(y1)

E
ε2

sup
y2∈{z2,z′2}

⋯ sup
yT−1∈{zT−1,z

′
T−1}

sup
zT ,z

′
T ∈ZT (y1∶T−1)

E
εT

sup
π∈Π

[
T

∑
t=1

εt (`(πt(y1∶t−1), z′t) − `(πt(y1∶t−1),Mt(y1∶t−1)))

+
T

∑
t=1

εt (`(πt(y1∶t−1)),Mt(y1∶t−1)) − `(πt(y1∶t−1), zt))]

Furthermore, as zt, z′t ∈ Zt(y1∶t−1) and yt ∈ {zt, z′t}, then yt ∈ Zt(y1∶t−1) is true. If we
drop the constraints on zt and z′t, and loosen the constraint on yt to be yt ∈ Zt(y1∶t−1),
the minimax value is upper bounded by

VT (Π) ≤ sup
z1,z′1∈Z

E
ε1

sup
y1∈Z1

sup
z2,z′2∈Z

E
ε2

sup
y2∈Z2(y1)

⋯ sup
yT−1∈ZT−1(y1∶T−2)

sup
zT ,z

′
T ∈Z

E
εT

sup
π∈Π

[
T

∑
t=1

εt (`(πt(y1∶t−1), z′t) − `(πt(y1∶t−1),Mt(y1∶t−1)))

+
T

∑
t=1

εt (`(πt(y1∶t−1)),Mt(y1∶t−1)) − `(πt(y1∶t−1), zt))]

≤ 2 sup
z1∈Z

E
ε1

sup
y1∈Z1

sup
z2∈Z

E
ε2

sup
y2∈Z2(y1)

⋯ sup
yT−1∈ZT−1(y1∶T−2)

sup
zT ∈Z

E
εT

sup
π∈Π

[
T

∑
t=1

εt (`(πt(y1∶t−1), zt) − `(πt(y1∶t−1),Mt(y1∶t−1)))] (4.2.1)

since the two terms obtaining by splitting the supremum are the same. If we define
a new strategy π′ and a new loss function L as

L(π′t(y1∶t−1), zt) ≜ `(πt(y1∶t−1), zt) − `(πt(y1∶t−1),Mt(y1∶t−1)),

then (4.2.1) matches the format of (3.2.4). Therefore, steps of Theorem 3.2.2 af-
ter (3.2.4) go through and the minimax value of the prediction problem is upper
bounded by
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VT (Π)

≤ 2 sup
w∈C

sup
z

E
ε

sup
π∈Π

[
T

∑
t=1

εt (`(πt(w1∶t−1(ε)),zt(ε)) − `(πt(w1∶t−1(ε)),Mt(w1∶t−1(ε))))] ,

where w and z are Z-valued trees. C is a set of Z-valued trees and all paths are
σt-close to the predictable sequence.

Now, let us prove three propositions to prepare for the proof of Theorem 4.2.1.

Proposition 4.2.3 (a simplified version of Example 13 in Section 12.1 of [16]). If
x is a R-valued tree, then

(E
ε
∣
T

∑
t=1

εtxt(ε)∣)
2

≤ E
ε

T

∑
t=1

∣xs(ε)∣2

Proof. If x is a R-valued tree, then

(E
ε
∣
T

∑
t=1

εtxt(ε)∣)
2

≤ E
ε
∣
T

∑
t=1

εtxt(ε)∣
2

= E
ε

T

∑
s,t=1

εsεtxs(ε)xt(ε) = E
ε

T

∑
t=1

∣xs(ε)∣2

where the first inequality holds because of Jensen’s inequality f(EX) ≤ E(fX),
which holds for R-valued random variable X and convex function f(⋅), and the
second equality holds by expanding the squared term, and the third equality holds
as the Eε εsεtxs(ε)xt(ε) = 0 when s ≠ t.

Let us fill in some background on convex duality. A differentiable function
Ψ ∶ F → R is σ-strongly convex with respect to ∥ ⋅ ∥, that is

∀f1, f2 ∈ F ,Ψ(f1) −Ψ(f2) ≥ ⟨f1 − f2,∇Ψ(f2)⟩ +
σ

2
∥f1 − f2∥2.

Define Ψ⋆ ∶ Z → R as the Fenchel conjugate of Ψ, that is

Ψ⋆(z) ≜ sup
f∈F

⟨f, z⟩ −Ψ(f).

Then, the definition of the Fenchel conjugate shows the Fenchel-Young inequality,
i.e.,

∀f ∈ F ,∀z ∈ Z, ⟨f, z⟩ ≤ Ψ(f) +Ψ⋆(z),
and Lemma 15 in Appendix A.4 of [20] shows that

∀z1, z2 ∈ Z,Ψ⋆(z1) −Ψ⋆(z2) ≤ ⟨∇Ψ⋆(z2), z1 − z2⟩ +
1

2σ
∥z1 − z2∥2

⋆. (4.2.2)
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Proposition 4.2.4 (a modification of Lemma 2 in [10]). Let Zi ∈ Z be mean zero
independent random vectors, then

E [Ψ⋆ (
T

∑
t=1

Zt)] ≤
∑Tt=1 E ∥Zt∥2

⋆

2σ
.

Proof. 4.2.2 shows

Ψ⋆ (
t+1

∑
s=1

Zs) −Ψ⋆ (
t

∑
s=1

Zs) ≤ ⟨∇Ψ⋆ (
t

∑
s=1

Zs) , Zt+1⟩ +
1

2σ
∥Zt+1∥2

⋆.

Taking expectation with respect to Z1, . . . , Zt, Zt+1 and noting EZt+1 = 0, then

EΨ⋆ (
t+1

∑
s=1

Zs) −EΨ⋆ (
t

∑
s=1

Zs) ≤ ⟨E∇Ψ⋆ (
t

∑
s=1

Zs) ,EZt+1⟩ +
E ∥Zt+1∥2

⋆

2σ
= E ∥Zt+1∥2

⋆

2σ
.

Summing the last statement from t = 0 to t = T − 1, we have

EΨ⋆ (
T

∑
t=1

Zt) ≤ ∑
T
t=1 E ∥Zt∥2

⋆

2σ
.

Proposition 4.2.5 (a modification of Proposition 12 in [19]). If F is a unit ball
with respect to ∥ ⋅ ∥, then

E
ε

sup
f∈F

⟨f,
T

∑
t=1

εtxt(ε)⟩ ≤ c

¿
ÁÁÀ T

∑
t=1

E
ε
∥xt(ε)∥2

⋆,

where the constant c depends on the smoothness of the norm ∥ ⋅ ∥. If the norm ∥ ⋅ ∥
is Lp-norm (p > 2) in Euclidean space, the constant c is 1

2
√
p−1

.

Proof. By linearity and Fenchel-Young inequality,

E
ε

sup
f∈F

⟨f,
T

∑
t=1

εtxt(ε)⟩ =
1

λ
E
ε

sup
f∈F

⟨f, λ
T

∑
t=1

εtxt(ε)⟩ ≤
1

λ
E
ε
[sup
f∈F

Ψ(f) +Ψ⋆ (λ
T

∑
t=1

εtxt(ε))]

Using Proposition 4.2.4, we have

E
ε

sup
f∈F

⟨f,
T

∑
t=1

εtxt(ε)⟩ ≤
1

λ
sup
f∈F

Ψ(f) + 1

λ
E
ε
[Ψ⋆ (λ

T

∑
t=1

εtxt(ε))]

≤ 1

λ
sup
f∈F

Ψ(f) + 1

λ

∑Tt=1 Eε ∥λεtxt(ε)∥2
⋆

2σ

= 1

λ
sup
f∈F

Ψ(f) + λ∑
T
t=1 Eε ∥εtxt(ε)∥2

⋆

2σ

= 1

λ
sup
f∈F

Ψ(f) + λ∑
T
t=1 Eε ∥xt(ε)∥2

⋆

2σ
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If λ =
√

2σ supf∈F Ψ(f)

∑
T
t=1 Eε ∥xt(ε)∥2⋆

, then

E
ε

sup
f∈F

⟨f,
T

∑
t=1

εtxt(ε)⟩ ≤
√

supf∈F Ψ(f)
2σ

⋅

¿
ÁÁÀ T

∑
t=1

E
ε
∥xt(ε)∥2

⋆.

If the norm ∥⋅∥ is Lp-norm (p > 2) in Euclidean space, then the function Ψ(⋅) = 1
2∥⋅∥2

p

is (p − 1)-strongly convex. Therefore,

supf∈F Ψ(f)
2σ

= 1/2
2(p − 1) = 1

4(p − 1)

and

E
ε

sup
f∈F

⟨f,
T

∑
t=1

εtxt(ε)⟩ ≤
1

2
√
p − 1

⋅

¿
ÁÁÀ T

∑
t=1

E
ε
∥xt(ε)∥2

⋆.

Now, let us apply Lemma 4.2.2 and the last three propositions to prove Theorem
4.2.1.

Proof. of Theorem 4.2.1. Suppose the loss function is linear `(f, z) = ⟨f, z⟩ and the
strategy set is ΠM

F
. Using Lemma 4.2.2, we conclude that

V`T (ΠM
F ) ≤ 2 sup

w∈C
sup
z

E
ε

sup
π∈ΠMF

[
T

∑
t=1

εt⟨πt(w1∶t−1(ε)),zt(ε) −Mt(w1∶t−1(ε))⟩] .

Then,

V`T (ΠM
F ) ≤ 2 sup

w∈C
sup
z

E
ε

sup
f∈F
α∈[0,1]

[
T

∑
t=1

εt⟨αf + (1 − α)πMt (w1∶t−1(ε)),zt(ε) −Mt(w1∶t−1(ε))⟩]

according to the definition of the strategy set ΠM
F

. By the linearity of the loss
function, we have
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V`T (ΠM
F ) ≤2 sup

w∈C
sup
z

E
ε

sup
α∈[0,1]

sup
f∈F

[α
T

∑
t=1

εt⟨f,zt(ε) −Mt(w1∶t−1(ε))⟩

+(1 − α)
T

∑
t=1

εt⟨πMt (w1∶t−1(ε)),zt(ε) −Mt(w1∶t−1(ε))⟩]

=2 sup
w∈C

sup
z

E
ε

sup
α∈[0,1]

[α sup
f∈F

T

∑
t=1

εt⟨f,zt(ε) −Mt(w1∶t−1(ε))⟩

+(1 − α)
T

∑
t=1

εtπ
M
t (w1∶t−1(ε)),zt(ε) −Mt(w1∶t−1(ε))⟩]

=2 sup
w∈C

sup
z

E
ε

max{sup
f∈F

T

∑
t=1

εt⟨f,zt(ε) −Mt(w1∶t−1(ε))⟩,

T

∑
t=1

εt⟨πMt (w1∶t−1(ε)),zt(ε) −Mt(w1∶t−1(ε))⟩}

The last equality holds because of the definition of dual norm. Then, the minimax
value of the prediction problem is upper bounded by

V`T (ΠM
F ) ≤ 2 sup

w∈C
sup
z

E
ε

sup
f∈F

T

∑
t=1

εt⟨f,zt(ε) −Mt(w1∶t−1(ε))⟩

+ 2 sup
w∈C

sup
z

E
ε
∣
T

∑
t=1

εt⟨πMt (w1∶t−1(ε)),zt(ε) −Mt(w1∶t−1(ε))⟩∣ .

According to Proposition 4.2.3, we have

sup
w∈C

sup
z

E
ε
∣
T

∑
t=1

εt⟨πMt (w1∶t−1(ε)),zt(ε) −Mt(w1∶t−1(ε))⟩∣

≤ sup
w∈C

sup
z

(E
ε

T

∑
t=1

∣εt⟨πMt (w1∶t−1(ε)),zt(ε) −Mt(w1∶t−1(ε))⟩∣
2)

1/2

≤

¿
ÁÁÀ T

∑
t=1

σ2
t

According to Proposition 4.2.5, we have

sup
w∈C

sup
z

E
ε

sup
f∈F

T

∑
t=1

εt⟨f,zt(ε) −Mt(w1∶t−1(ε))⟩

≤ sup
w∈C

sup
z
c

¿
ÁÁÀ T

∑
t=1

E
ε
∥zt(ε) −Mt(w1∶t−1(ε))∥2

⋆ ≤ c

¿
ÁÁÀ T

∑
t=1

σ2
t
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where the constant c depends on the smoothness of the norm ∥ ⋅ ∥. Therefore,

V`T (ΠM
F ) ≤ 2(1 + c)

¿
ÁÁÀ T

∑
t=1

σ2
t .

If the norm ∥ ⋅ ∥ is Lp-norm (p > 2) in Euclidean space, then the constant c is 1
2
√
p−1

and

V`T (ΠM
F ) ≤ (2 + 1√

p − 1
)

¿
ÁÁÀ T

∑
t=1

σ2
t .

4.3 Algorithm

Theorem 4.2.1 indicates the existence of better online optimization methods if the
predictable sequence is available. In this section, we present an algorithm that
obtains an upper bound that matches the minimax value in Theorem 4.2.1. Our
algorithm mainly combines the Exponential Weights Algorithm and the Optimistic
Mirror Descent Algorithm. The Optimistic Mirror Descent Algorithm is introduced
in [17], and we show the Optimistic Mirror Descent Algorithm and several related
results in Subsection 4.3.1.

4.3.1 Optimistic Mirror Descent Algorithm

Algorithm 4 Optimistic Mirror Descent Algorithm

Input: R is a 1- strongly convex function with respect to ∥ ⋅ ∥, learning rate η > 0
Initialize: f1 = g1 = arg min

g∈F
R(g)

for t = 1 to T do
predict ft and update

• gt+1 = arg min
g∈F

η⟨g, zt⟩ +DR(g, gt)

• ft+1 = arg min
f∈F

η⟨f,Mt+1⟩ +DR(f, gt+1)

end for

Lemma 4.3.1 (the same as Lemma 2 in [17]). Let F be a convex set in a Banach
space B and X be a convex set in the dual space B⋆. Let R ∶ B → R be a 1-strongly
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convex function on F with respect to ∥⋅∥. For any strategy of Nature, the Optimistic
Mirror Descent Algorithm yields, for any f⋆ ∈ F ,

T

∑
t=1

⟨ft, zt⟩ −
T

∑
t=1

⟨f⋆, zt⟩ ≤ η−1R2
max +

η

2

T

∑
t=1

∥zt −Mt∥2
⋆

where R2
max = maxf∈F R(f) −minf∈F R(f).

Suppose F ∈ Rd is the probability simplex and Z is `∞ ball. If

R(w) =
d

∑
t=1

w(i) logw(i) − 1

for w ∈ F , then the Optimistic Mirror Descent Algorithm (Algorithm 4) is simplify
to the Optimistic Exponential Weights Algorithm (Algorithm 5).

Algorithm 5 Optimistic Exponential Weights Algorithm

Input: learning rate η > 0
Initialize: w1 = v1 = (1

d , . . . ,
1
d)

for t = 1 to T do
predict wt and update

• vt+1(i) ∝ exp{−η∑ts=1 zs(i)}

• wt+1(i) ∝ exp{−η∑ts=1 zs(i) − ηMt+1(i)}

end for

Lemma 3 in [17] shows that the Optimistic Mirror Descent achieves a regret
bound in terms of local norms

∥v∥w =
√
vT∇2R(w)v, for v ∈ F

and
∥z∥⋆w =

√
zT∇2R(w)−1z, for z ∈ Z,

where the Hessian ∇2R(w) is diag(w(1)−1, . . . ,w(d)−1).

Lemma 4.3.2 (the same as Lemma 3 in [17]). The Optimistic Mirror Descent on
the probability simplex enjoys, for any w⋆ ∈ F ,

T

∑
t=1

⟨wt −w⋆, zt⟩ ≤ 2η
T

∑
t=1

(∥zt −Mt∥⋆wt)2 + log d

η

as long as η∥zt −Mt∥∞ ≤ 1/4 at each step.
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Algorithm 6 Main Algorithm

Input: R is a 1- strongly convex function with respect to ∥ ⋅ ∥, learning rate η1 > 0
and η2 ∈ (0, 1

4]
Initialize: f1 = g1 = arg min

f∈F
R(f) and α1 = 1

2

for t = 1 to T do
predict ht = αtft + (1 − αt)πMt
observe zt, suffer loss ⟨ht, zt⟩, update

• gt+1 = arg min
g∈F

η1⟨g, zt⟩ +DR(g, gt)

• ft+1 = arg min
f∈F

η1⟨f,Mt+1⟩ +DR(f, gt+1)

• αt+1 =
exp (−η2∑

t
s=1⟨fs,zs⟩−η2⟨ft+1,Mt+1⟩)

exp (−η2∑
t
s=1⟨fs,zs⟩−η2⟨ft+1,Mt+1⟩)+exp (−η2∑

t
s=1⟨π

M
s ,zs⟩−η2⟨πMt+1,Mt+1⟩)

end for

4.3.2 Main Algorithm

Algorithm 6 combines the Exponential Weights Algorithm and the Optimistic Mir-
ror Descent Algorithm [17]. The update step in the Optimistic Mirror Descent is
exactly the ft update in Algorithm 6. According to Lemma 4.3.1, the cumulative
loss of the Optimistic Mirror Descent Algorithm is upper bounded by the cumula-
tive loss of the best fixed action plus a measure of closeness between the outcome
and the predictable sequence. It guarantees the low regret competing with fixed
actions {f ∈ F}.

As we are competing with both fixed actions {f ∈ F} and the optimal strategy
πM , the Optimistic Exponential Weights Algorithm balances between fixed actions
and the optimal strategy. The optimal strategy πM and the Optimistic Mirror
Descent Algorithm (ft)Tt=1 are viewed as two experts. The parameter α, the update
of the Optimistic Exponential Weights Algorithm, tunes the weights on two experts
based on the historical performance and also the estimated further performance
according to the predictable sequence Mt.

At step t, we assign weight αt to ft, and weight 1−αt to πMt . Then the weighted
loss of ⟨ft, zt⟩ and ⟨πMt , zt⟩ is

αt⟨ft, zt⟩ + (1 − αt)⟨πMt , zt⟩.

This process can also be viewed as an online linear optimization problem, the pro-
tocol is equivalent to (a) predict a vector (αt,1 − αt) in a simplex, (b) receive the
predictable vector (⟨ft,Mt⟩, ⟨πMt ,Mt⟩), (c) observe the loss

⟨(αt,1 − αt), (⟨ft, zt⟩, ⟨πMt , zt⟩)⟩.
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This loss equals to the weighted loss of ⟨ft, zt⟩ and ⟨πMt , zt⟩. This change of viewpoint
helps us use the result in Lemma 5.

Algorithm 6 mainly follows the setting of the Optimistic Mirror Descent Algo-
rithm in Algorithm 5. R is a 1-strongly convex function with respect to a norm ∥ ⋅∥,
and DR(⋅, ⋅) denotes the Bregman divergence with respect to R. ∥ ⋅ ∥⋆ is dual to ∥ ⋅ ∥.
Also, for all algorithms presented in this section, M1 is assumed to be 0 without
loss of generality. With the assumption that we receive the predictable sequence
{Mt}t from outside, we do not write the dependence of {Mt}t on the past explicitly.

Theorem 4.3.3. Let F be a unit ball with respect to ∥ ⋅ ∥, Z be a unit ball with
respect to the dual norm ∥ ⋅ ∥⋆ and R ∶ F → R be a 1-strongly convex function on
F with respect to ∥ ⋅ ∥. For any sequence z1, . . . , zT ∈ Z, α⋆ ∈ [0,1] and f⋆ ∈ F ,
Algorithm 6 yields

T

∑
t=1

⟨ht, zt⟩ −
T

∑
t=1

⟨α⋆f⋆ + (1 − α⋆)πMt , zt⟩ ≤ (2η2 +
η1

2
)
T

∑
t=1

∥zt −Mt∥2
⋆ +

1

η1

R2
max +

1

η2

,

where R2
max = maxf∈F R(f) −minf∈F R(f), η1 > 0 and η2 ∈ (0,1/4].

Proof. If the Optimistic Mirror Descent Algorithm (ft)Tt=1 and the optimal strategy
ΠM are viewed as two experts, ⟨ft, zt⟩ and ⟨πMt , zt⟩ are the corresponding losses at
step t. Then, there are three equivalent ways to represent the regret,

T

∑
t=1

⟨ht, zt⟩ −
T

∑
t=1

⟨α⋆f⋆ + (1 − α⋆)πMt , zt⟩

=
T

∑
t=1

αt⟨ft, zt⟩ + (1 − αt)⟨πMt , zt⟩ −
T

∑
t=1

α⋆⟨ft, zt⟩ + (1 − α⋆)⟨πMt , zt⟩

=
T

∑
t=1

⟨(αt,1 − αt), (⟨ft, zt⟩, ⟨πMt , zt⟩)⟩ −
T

∑
t=1

⟨(α⋆,1 − α⋆), (⟨ft, zt⟩, ⟨πMt , zt⟩)⟩

The first equality holds by replacing ht by αtft+(1−αt)πMt , and the second equality
holds by reorganizing the inner product. The last formula matches the format in
Lemma 4.3.2.
At time t, we predict wt = (αt,1 − αt), and suffer loss

⟨(αt,1 − αt), (⟨ft, zt⟩, ⟨πMt , zt⟩)⟩.

According to Lemma 4.3.2 (the dimension of the simplex d = 1), the Optimistic
Exponential Weights Algorithm with learning rate η2 enjoys, for any α⋆ ∈ [0,1],
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T

∑
t=1

⟨(αt,1 − αt), (⟨ft, zt⟩, ⟨πMt , zt⟩)⟩ −
T

∑
t=1

⟨(α⋆,1 − α⋆), (⟨ft, zt⟩, ⟨πMt , zt⟩)⟩

≤ 2η2

T

∑
t=1

[∥(⟨ft, zt⟩, ⟨πMt , zt⟩) − (⟨ft,Mt⟩, ⟨πMt ,Mt⟩)⟩∥⋆(αt,1−αt)]
2
+ 1

η2

= 2η2

T

∑
t=1

[∥(⟨ft, zt −Mt⟩, ⟨πMt , zt −Mt⟩)⟩∥⋆(αt,1−αt)]
2
+ 1

η2

∶= A(η2).

as long as η2∥(⟨ft, zt −Mt⟩, ⟨πMt , zt −Mt⟩)∥∞ ≤ 1/4 at each step. This constraint is
always true as long as η2 ≤ 1/4. As ht = αtft + (1 − αt)πMt , the inequation above is
equivalent to

T

∑
t=1

⟨ht, zt⟩ =
T

∑
t=1

⟨αtft + (1 − αt)πMt , zt⟩ ≤ α⋆
T

∑
t=1

⟨ft, zt⟩ + (1 − α⋆)
T

∑
t=1

⟨πMt , zt⟩ +A(η2).

(4.3.1)

On the other hand, ft is the update of the Optimistic Mirror Descent Algorithm
with learning rate η1. According to Lemma 4.3.2, for any f⋆ ∈ F

T

∑
t=1

⟨ft, zt⟩ −
T

∑
t=1

⟨f⋆, zt⟩ ≤ η−1
1 R2

max +
η1

2

T

∑
t=1

(∥zt −Mt∥⋆)2 ∶= B(η1). (4.3.2)

If inequalities (4.3.1) and (4.3.1) are combined, for any f⋆ ∈ F and α⋆ ∈ [0,1],

T

∑
t=1

⟨ht, zt⟩ ≤ α⋆ [
T

∑
t=1

⟨f⋆, zt⟩ +B(η1)] + (1 − α⋆)
T

∑
t=1

⟨πMt , zt⟩ +A(η2)

=
T

∑
t=1

⟨α⋆f⋆ + (1 − α⋆)πMt , zt⟩ +A(η2) + α⋆B(η1)

≤
T

∑
t=1

⟨α⋆f⋆ + (1 − α⋆)πMt , zt⟩ +A(η2) +B(η1)

Then,

T

∑
t=1

⟨ht, zt⟩ −
T

∑
t=1

⟨α⋆f⋆ + (1 − α⋆)πMt , zt⟩ ≤ A(η2) +B(η1)

= A(η2) + η−1
1 R2

max +
η1

2

T

∑
t=1

(∥zt −Mt∥⋆)2
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As local norm ∥z∥⋆w is defined as
√
zT∇2R(w)−1z and the Hessian ∇2R(w) is

diag(w(1)−1, . . . ,w(d)−1), then

A(η2) = 2η2

T

∑
t=1

[∥(⟨ft, zt −Mt⟩, ⟨πMt , zt −Mt⟩)⟩∥⋆(αt,1−αt)]
2
+ 1

η2

= 2η2

T

∑
t=1

[αt (⟨ft, zt −Mt⟩)2 + (1 − αt) (⟨πMt , zt −Mt⟩)
2] + 1

η2

≤ 2η2

T

∑
t=1

[αt∥ft∥2∥zt −Mt∥2
⋆ + (1 − αt)∥πMt ∥2∥zt −Mt∥2

⋆] +
1

η2

≤ 2η2

T

∑
t=1

∥zt −Mt∥2
⋆ +

1

η2

.

Therefore,

T

∑
t=1

⟨ht, zt⟩ −
T

∑
t=1

⟨α⋆f⋆ + (1 − α⋆)πMt , zt⟩

≤ 2η2

T

∑
t=1

∥zt −Mt∥2
⋆ +

1

η2

+ η1

2

T

∑
t=1

∥zt −Mt∥2
⋆ +

1

η1

R2
max

If we know∑Tt=1 ∥zt−Mt∥2
⋆ ahead of time, the regret boundO(

√
∑Tt=1 ∥zt −Mt∥2

⋆) is

achieved by choosing η1 = (∑Tt=1 ∥zt −Mt∥2
⋆/2Rmax)

−1/2
and η2 = (2∑Tt=1 ∥zt −Mt∥2

⋆)
−1/2

.
Moreover, the standard doubling trick helps us to obtain the convergence rate even

∑Tt=1 ∥zt −Mt∥2
⋆ is unknown in advance.

Lemma 4.3.4. Divide the learning problem into phases, with a constant learning
rate λi = λ02−i throughout the i-th phase, for some λ0 > 0. Define for i ≥ 1

si+1 = min{τ ∶ 5λi
2

τ

∑
t=si

∥zt −Mt∥2
⋆ >

1

λi
(1 +R2

max)}

to be the start of the phase i + 1, and s1 = 1. Let N be the last phase and let
SN+1 = T + 1. Then, Algorithm 6 with time-varying learning parameters η1 and η2

yields
T

∑
t=1

⟨ht, zt⟩ −
T

∑
t=1

⟨α⋆f⋆ + (1 − α⋆)πMt , zt⟩ ≤ CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
⋆,

where the constant CM is problem dependent.
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Proof. Let η = η1 = η2, then Theorem 4.3.3 shows that Algorithm 6 yields

T

∑
t=1

⟨ht, zt⟩ −
T

∑
t=1

⟨α⋆f⋆ + (1 − α⋆)πMt , zt⟩ ≤
5η

2

T

∑
t=1

∥zt −Mt∥2
⋆ +

1

η
(1 +R2

max).

Without loss of generality, assume N > 1. Then,

T

∑
t=1

⟨ht, zt⟩ −
T

∑
t=1

⟨α⋆f⋆ + (1 − α⋆)πMt , zt⟩

≤
N

∑
k=1

[
sk+1−1

∑
t=sk

⟨ht, zt⟩ −
sk+1−1

∑
t=sk

⟨α⋆f⋆ + (1 − α⋆)πMt , zt⟩]

≤
N

∑
k=1

[5λk
2

sk+1−1

∑
t=sk

∥zt −Mt∥2
⋆ +

1

λk
(1 +R2

max)]

≤ 2
N

∑
k=1

1

λk
(1 +R2

max),

where the last inequality holds because of the definition of sk. Also observe that

5λN−1

2

sN

∑
t=sN−1

∥zt −Mt∥2
⋆ >

1

λN−1

(1 +R2
max),

which implies

λ−1
0 2N = λ−1

N = 2λ−1
N−1 ≤

¿
ÁÁÀ10∑sNt=sN−1

∥zt −Mt∥2
⋆

1 +R2
max

≤

¿
ÁÁÀ10∑Tt=1 ∥zt −Mt∥2

⋆

1 +R2
max

Hence, the regret is upper bounded by

2(1 +R2
max)

N

∑
k=1

λ−1
k = 2(1 +R2

max)λ−1
0 2N

N

∑
k=1

2k−N ≤ 4

¿
ÁÁÀ10(1 +R2

max)
T

∑
t=1

∥zt −Mt∥2
⋆.

For general version of the Doubling Trick, details are shown in Appendix B of
[17].

4.4 Learning the Predictable Processes

Algorithm 6 yields regret of O(
√
∑Tt=1 ∥zt −Mt∥2

⋆) if we have access to the predictable
sequence (Mt)t≥1. It shows that we can benefit from the predictable sequence.
Sometimes, there are multiple predictable sequencesM= {(Mt)t≥1}, instead of one
single predictable sequence. We know that the outcome is close to one sequence in
the setM= {(Mt)t≥1}, but have no idea which one it is. This idea is formalized as:
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∃M⋆ ∈ M, such that ∥zt −M⋆
t (z1∶t−1)∥⋆ ≤ σt, ∀t ∈ [T ].

It is interesting to consider the problem of choosing the best predictable sequence
from the predictable sequence setM= {(Mt)t≥1}. In the online learning language, it
can be expressed as competing with all of the optimal strategies πM for all M ∈ M,
and also all of the fixed actions {f ∈ F}. To formalize the idea, we want to compete
with

min{inf
f∈F

T

∑
t=1

⟨f, zt⟩, inf
M∈M

T

∑
t=1

⟨πMt , zt⟩} ,

which is equivalent to

inf
f∈F
M∈M
α∈[0,1]

T

∑
t=1

⟨αf + (1 − α)πMt , zt⟩,

and the new format makes it easier to apply the result in Lemma 4.3.4.
In this section, we explore the model selection problem in two cases. The first

case is when the size of the predictable processes is finite, and we handle this case by
adding one more layer of the Exponential Weights Algorithm on top of Algorithm
6. In each step, we first apply Algorithm 6 to each predictable sequence M ∈ M,
and then aggregate the output by the Exponential Weights Algorithm.

The second case is when there is only one optimal strategy, even though there
are infinite predictable sequences. One example is the online linear optimization.
If these infinite predictable sequences have the same direction, the optimal strat-
egy is the same even through the magnitude of these predictable sequences may
vary widely. We solve this case by combining the Exponential Weights Algorithm,
Optimistic Mirror Descent and Gradient Descent algorithm.

4.4.1 Finite Predictable Processes

Let F be a unit ball with respect to ∥ ⋅ ∥, and Z be a unit ball with respect to the
dual norm ∥ ⋅ ∥⋆. Suppose M is a set of predictable processes, and the outcome
z1, . . . , zt ∈ Z is close to one of the learning process {(Mt)t≥1}, i.e., there exists
M ∈ M such that ∥zt −Mt(z1∶t−1)∥⋆ ≤ σt for all t ∈ {1, . . . , T}.

Algorithm 7 chooses the optimal predictable sequence adaptively with three lay-
ers. On the bottom layer, the Optimistic Mirror Descent Algorithm updates fMt for
every predictable sequence M . It guarantees the low-regret performance competing
with fixed actions. On the second layer, the Exponential Weights Algorithm up-
dates hMt for every M . This step balances the fixed actions and the optimal strategy
with respect to M . According to Algorithm 6 in Section 3, these two layers produce

updates that have regret bound O(
√
∑Tt=1 ∥zt −Mt∥2

⋆) when competing with optimal
strategies πM and fixed actions.
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Algorithm 7 Finite Predictable Processes

Input: R 1-strongly convex with respect to ∥ ⋅ ∥, learning rate η > 0
Initialize: for every M ∈ M, q1(M) = 1

∣M∣
, learning rate ηM1 > 0 and ηM2 > 0,

fM1 = gM1 = arg min
f∈F

R(f) and αM1 = 1
2

for t = 1 to T do
predict gt = ∑M∈M qt(M)hMt
Observe zt and for every M ∈ M

• hMt = αMt fMt + (1 − αMt )πMt
• gMt+1 = arg min

g∈F
η1⟨g, zt⟩ +DR(g, gt)

• fMt+1 = arg min
f∈F

η1⟨f,Mt+1⟩ +DR(f, gt+1)

• αMt+1 =
exp (−ηM2 ∑

t
s=1⟨f

M
s ,zs⟩−ηM2 ⟨fMt+1,Mt+1⟩)

exp (−ηM2 ∑
t
s=1⟨f

M
s ,zs⟩−ηM2 ⟨fMt+1,Mt+1⟩)+exp (−ηM2 ∑

t
s=1⟨π

M
s ,zs⟩−ηM2 ⟨πMt+1,Mt+1⟩)

qt+1(M) ∝ qt(M)e−(⟨hMt ,zt⟩+∥zt∥⋆)/2
end for

The top layer gt is the update of the Exponential Weights Algorithm that adap-
tively chooses the optimal predictable sequence. The multiple factor for weights
update in this step is

exp{−(⟨hMt , zt⟩ + ∥zt∥⋆)/2},
instead of the exponential of the loss directly. It is because the particular regret
bound for the Exponential Weights Algorithm ([3], Theorem 2.4, Corollary 2.4) is
needed for the top layer, and it requires the loss per step to be a number between
0 and 1. The update gt adaptively adjusts the weights on the middle layer updates
{hMt }M∈M, and the optimal predictable sequence is adaptively selected.

Theorem 4.4.1. Let F be a unit ball with respect to ∥ ⋅ ∥, and Z be a unit ball
with respect to the dual norm ∥ ⋅ ∥⋆. Suppose M is a set of predictable processes, the
cumulative loss of Algorithm 7 satisfies

T

∑
t=1

⟨gt, zt⟩ ≤ L̃T +
¿
ÁÁÀ(L̃T +

T

∑
t=1

∥zt∥⋆) ln ∣M∣ + ln ∣M∣,

where
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L̃T ≜ min
M∈M

T

∑
t=1

⟨hMt , zt⟩

≤ min
M∈M

⎧⎪⎪⎪⎨⎪⎪⎪⎩
inf

f∈F ,α∈[0,1]

T

∑
t=1

⟨αf + (1 − α)πMt , zt⟩ +CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
⋆

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

To interpret the result, we need to understand L̃T and L̃T +∑Tt=1 ∥zt∥⋆. First, the
range of L̃T is [−∑Tt=1 ∥zt∥⋆,∑Tt=1 ∥zt∥⋆], so the range of L̃T+∑Tt=1 ∥zt∥⋆ is [0,2∑Tt=1 ∥zt∥⋆].
If L̃T +∑Tt=1 ∥zt∥⋆ goes sub-linearly, we can benefit from the predictable sequence.

Also, according to the definition of L̃T , L̃T is upper bounded by

L̃T ≤ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
M∈M

⎧⎪⎪⎪⎨⎪⎪⎪⎩

T

∑
t=1

⟨πMt , zt⟩ +CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
⋆

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

inf
f∈F

T

∑
t=1

⟨f, zt⟩ + min
M∈M

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
⋆

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

The first term captures the performances of predictable sequences and corre-
sponding strategies {πM}M∈M, and the second term captures the performance of
fixed actions {f ∈ F}. The result shows the regret continuously depends on the
distance between the optimal predictable sequence and the outcome, i.e.,

min
M∈M

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CM

¿
ÁÁÀ T

∑
t=1

∥zt −MT ∥2
⋆

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

We provide three corollaries to better understand Theorem 7, especially the
L̃T +∑Tt=1 ∥zt∥⋆ term and L⋆ term. The first corollary interprets the L̃T +∑Tt=1 ∥zt∥2

term when both F and Z are unit balls with respect to ∥ ⋅ ∥2. The other two
corollaries focus on two extreme cases. In the optimal case, the algorithm picks
the optimal predictable sequence automatically without extra price, and it recovers
the Halving algorithm. At the same time, the algorithm guarantees that we still
perform as well as the best fixed action in term of T in any situation.

Proof. of Theorem 4.4.1. According to Lemma 4.3.4, the cumulative loss of hMt
satisfies

T

∑
t=1

⟨hMt , zt⟩ ≤ inf
f∈F ,α∈[0,1]

T

∑
t=1

⟨αf + (1 − α)πMt , zt⟩ +CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
⋆.
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Then, {hMt }M∈M are treated as ∣M∣ experts, and corresponding losses are (⟨hMt , zt⟩+
∥zt∥⋆)/2. The Exponential Weights Algorithm (Theorem 2.4, [3]) with parameter η
yields

T

∑
t=1

⟨gt, zt⟩ + ∥zt∥⋆
2

≤
ηminM∈M∑Tt=1

⟨hMt ,zt⟩+∥zt∥⋆
2 + ln ∣M∣

1 − e−η =
η
L̃T+∑

T
t=1 ∥zt∥⋆
2 + ln ∣M∣
1 − e−η .

The last equality holds as L̃T is defined as minM∈M∑Tt=1⟨hMt , zt⟩. According to Corol-

lary 2.4 of [3], we set the parameter η to be ln(1 +
√

4 ln ∣M∣/(L̃T +∑Tt=1 ∥zt∥⋆)).

Then, we have

T

∑
t=1

⟨gt, zt⟩ + ∥zt∥⋆
2

− L̃T +∑
T
t=1 ∥zt∥⋆
2

≤
√

2
L̃T +∑Tt=1 ∥zt∥⋆

2
ln ∣M∣ + ln ∣M∣.

By canceling the common term ∑Tt=1 ∥zt∥⋆/2 and moving L̃T to the right-hand side,
the last statement is equivalent to

T

∑
t=1

⟨gt, zt⟩ ≤ L̃T +
¿
ÁÁÀ(L̃T +

T

∑
t=1

∥zt∥⋆) ln ∣M∣ + ln ∣M∣.

Corollary 4.4.2. If both F and Z are unit balls with respect to ∥ ⋅ ∥2, we have

L̃T +
T

∑
t=1

∥zt∥2 ≤ min
M∈M

⎛
⎜
⎝

2
T

∑
t=1

∥zt −Mt∥2 +CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
2

⎞
⎟
⎠
.

If there exists one M ∈ M such that ∥zt −Mt∥2 ≤ σt, then

L̃T +
T

∑
t=1

∥zt∥2 ≤ 2
T

∑
t=1

σt +C

¿
ÁÁÀ T

∑
t=1

σ2
t .

Proof. According to the definition of L̃T , we have

L̃T ≤ min
M∈M

⎧⎪⎪⎪⎨⎪⎪⎪⎩
inf

f∈F ,α∈[0,1]

T

∑
t=1

⟨αf + (1 − α)πMt , zt⟩ +CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
⋆

⎫⎪⎪⎪⎬⎪⎪⎪⎭

≤ min
M∈M

⎧⎪⎪⎪⎨⎪⎪⎪⎩

T

∑
t=1

⟨πMt , zt⟩ +CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
⋆

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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the last inequality holds by setting α to be 0. Now, let us focus on the ∑Tt=1⟨πMt , zt⟩
term. If both F and Z are unit balls with respect to ∥ ⋅ ∥2, we have

⟨πMt , zt⟩ + ∥zt∥2 = −⟨
Mt

∥Mt∥2

, zt⟩ + ∥zt∥2 = ∥zt∥2 (1 − ⟨ Mt

∥Mt∥2

,
zt

∥zt∥2

⟩) .

Define the inner product between the normalized zt and Mt as α, we have

⟨πMt , zt⟩ + ∥zt∥2 ≤ 2∥zt −Mt∥2

as

• if ⟨Mt, zt⟩ ≥ 0, i.e., α ∈ [0,1]

∥zt∥2
2(1 − α2) − ∥zt −Mt∥2

2

= ∥zt∥2
2(1 − α2) − (∥zt∥2

2 − 2∥zt∥2∥Mt∥2α + ∥Mt∥2
2)

= −(∥zt∥2
2α

2 − 2∥zt∥2∥Mt∥2α + ∥Mt∥2
2)

= −(∥zt∥2α − ∥Mt∥2)2 ≤ 0

So,

⟨πMt , zt⟩ + ∥zt∥2 = ∥zt∥2(1 − α) ≤ ∥zt∥2

√
1 − α2 ≤ ∥zt −Mt∥2

• if ⟨Mt, zt⟩ < 0, i.e., α ∈ [−1,0)

⟨πMt , zt⟩ + ∥zt∥2 = (1 − α)∥zt∥2 ≤ 2∥zt∥2

and
∥zt∥2

2 ≤ ∥zt∥2
2 − 2α∥zt∥2∥Mt∥2 + ∥Mt∥2

2 = ∥zt −Mt∥2
2

So,
T

∑
t=1

⟨πMt , zt⟩ +
T

∑
t=1

∥zt∥2 ≤ 2
T

∑
t=1

∥zt −Mt∥2

and

L̃T +
T

∑
t=1

∥zt∥2 ≤ min
M∈M

⎛
⎜
⎝

2
T

∑
t=1

∥zt −Mt∥2 +CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
2

⎞
⎟
⎠
.

Corollary 4.4.3. Suppose F and Z are in Euclidean space, then

T

∑
t=1

⟨gt, zt⟩ ≤ min{inf
f∈F

T

∑
t=1

⟨f, zt⟩, inf
M∈M

T

∑
t=1

⟨πMt , zt⟩} + ln ∣M∣.

if there exists one M⋆ ∈ M such that zt =M⋆
t ∀t.
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It recovers the result of the Halving algorithm. We make at most ln ∣M∣ mistakes,
and suffer at most loss 1 for each mistake.

Proof. If there exists one M⋆ ∈ M such that zt =M⋆
t ∀t, then the optimal strategy

with respect to M⋆ is

πM
⋆

t = arg min
f∈F

⟨f,Mt⟩ = −
zt

∥zt∥
and

⟨πM⋆

t ,Mt⟩ = −∥zt∥⋆.
If we pick α = 0 and M =M⋆,

L̃T ≤ min
M∈M

⎧⎪⎪⎪⎨⎪⎪⎪⎩
inf

f∈F ,α∈[0,1]

T

∑
t=1

⟨αf + (1 − α)πMt , zt⟩ +CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
⋆

⎫⎪⎪⎪⎬⎪⎪⎪⎭

≤
T

∑
t=1

⟨πM⋆

t , zt⟩ +CM⋆

¿
ÁÁÀ T

∑
t=1

∥zt −M⋆
t ∥2

⋆ =
T

∑
t=1

⟨πM⋆

t , zt⟩ = −
T

∑
t=1

∥zt∥⋆.

Apply L̃T ≤ ∑Tt=1⟨πM
⋆

t , zt⟩ and L̃T +∑Tt=1 ∥zt∥⋆ = 0 to Theorem 4.4.1, we have

T

∑
t=1

⟨gt, zt⟩ ≤
T

∑
t=1

⟨πM⋆

t , zt⟩ + ln ∣M∣ = inf
M∈M

T

∑
t=1

⟨πMt , zt⟩ + ln ∣M∣.

It shows that the optimal predictable sequence is automatically picked, and the
extra cumulative loss compared to follow the best predictable sequence is at most
ln ∣M∣. At the same time, as

T

∑
t=1

⟨gt, zt⟩ ≤ −
T

∑
t=1

∥zt∥⋆ + ln ∣M∣ ≤ −∥
T

∑
t=1

zt∥
⋆

+ ln ∣M∣ = inf
f∈F

T

∑
t=1

⟨f, zt⟩ + ln ∣M∣,

this algorithm also guarantees that the cumulative loss is upper bounded by the
cumulative loss of the best fixed action plus logarithm of the size of the predictable
sequence set.

Corollary 4.4.4. If F and Z are unit balls with respect to `2-norm ∥ ⋅ ∥2, then the
cumulative loss of Algorithm 6 competing with fixed actions {f ∈ F} satisfies

T

∑
t=1

⟨gt, zt⟩ − inf
f∈F

T

∑
t=1

⟨f, zt⟩

≤ min
M∈M

CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
2

+

¿
ÁÁÁÁÀmin

M∈M

⎛
⎜
⎝

2
T

∑
t=1

∥zt −Mt∥2 +CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
2

⎞
⎟
⎠

ln ∣M∣ + ln ∣M∣

61



Proof. If F and Z are unit balls with respect to `2-norm ∥ ⋅ ∥2, we have

L̃T +
T

∑
t=1

∥zt∥2 ≤ min
M∈M

⎛
⎜
⎝

2
T

∑
t=1

∥zt −Mt∥2 +CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
2

⎞
⎟
⎠
.

If we only consider the regret competing with fixed action {f ∈ F} and pick α = 1,
we have

L̃T ≤ min
M∈M

⎧⎪⎪⎪⎨⎪⎪⎪⎩
inf

f∈F ,α∈[0,1]

T

∑
t=1

⟨αf + (1 − α)πMt , zt⟩ +CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
⋆

⎫⎪⎪⎪⎬⎪⎪⎪⎭

≤ inf
f∈F

T

∑
t=1

⟨f, zt⟩ + min
M∈M

CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
2.

Applying previous two inequalities to Theorem 4.4.1, we have

T

∑
t=1

⟨gt, zt⟩ − inf
f∈F

T

∑
t=1

⟨f, zt⟩

≤ min
M∈M

CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
2

+

¿
ÁÁÁÁÀmin

M∈M

⎛
⎜
⎝

2
T

∑
t=1

∥zt −Mt∥2 +CM

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
2

⎞
⎟
⎠

ln ∣M∣ + ln ∣M∣

If we put no constraint on the outcome, the regret competing with fixed actions
is c

√
T ln ∣M∣+ ln ∣M∣. Compared to the O(

√
T ) regret, we perform much better in

the optimal case, and in the worst case, we do not suffer more in term of T .

4.4.2 Infinite Predictable Sequences, Only One Optimal Strat-
egy

Let us consider another special case, where there are infinite predictable sequences
with only one optimal strategy. Suppose F is a unit ball with respect to ∥ ⋅ ∥, and
Z is a unit ball with respect to the dual norm ∥ ⋅ ∥⋆ and the loss function is linear
`(f, z) = ⟨f, z⟩.

If we know the direction of the next move, but are not sure about the magnitude.
There are potentially infinite predictable sequences based on different magnitudes.

62



However, there is only one optimal strategy as the loss function is linear. The
optimal strategy is to choose the opposite direction with maximum magnitude.
Mathematically, the sets of predictable sequence is {λM}λ∈(0,1], where M is one
predictable sequence based on history and ∥M∥⋆ = 1 and the optimal strategy is to
predict πMt = −Mt/∥Mt∥ at time t.

In this section, we show an algorithm such that we benefit from these infinite
predictable sequences and it also guarantees our performance even if the outcome
is away from predictable sequences.

Algorithm 8 Infinite Predictable Sequences, Only One Optimal Strategy

Input: learning rate η0 > 0, η1 > 0 and η2 > 0, R self-concordant barrier
Initialize λ1 = 0, f1 = arg min

f∈F
R(f) and α1 = 1

2

for t = 1 to T do
predict ht = αtft + (1 − αt)πMt , observe zt, suffer loss ⟨ht, zt⟩, update

• λt+1 = Π[0,1](λt − η0
∂
∂λ

∣
λ=λt

∥zt − λMt∥2
⋆)

• M̃t+1 = λt+1Mt+1

• gt+1 = arg min
g∈F

η1⟨g, zt⟩ +DR(g, gt)

• ft+1 = arg min
f∈F

η1⟨f, M̃t+1⟩ +DR(f, gt+1)

• αt+1 =
exp (−η2∑

t
s=1⟨fs,zs⟩−η2⟨ft+1,M̃t+1⟩)

exp (−η2∑
t
s=1⟨fs,zs⟩−η2⟨ft+1,M̃t+1⟩)+exp (−η2∑

t
s=1⟨π

M
s ,zs⟩−η2⟨πMt+1,M̃t+1⟩)

end for

It is also a three-layer algorithm. We first update the magnitude λt by gradient
descent to get the optimal predictable precess M̃t = λtMt. Then, we update ft by
the Optimistic Mirror Descent Algorithm with M̃t. Finally, we use the Exponential
Weights Algorithm to balance between the optimal strategy πM and fixed actions
{f ∈ F}.

Theorem 4.4.5. For any α⋆ ∈ (0,1] and f⋆ ∈ F , Algorithm 8 satisfies

T

∑
t=1

⟨ht, zt⟩ −
T

∑
t=1

⟨α⋆f⋆ + (1 − α⋆)πMt , zt⟩ ≤ C1

¿
ÁÁÀ inf

λ∈(0,1]

T

∑
t=1

∥zt − λMt∥2
⋆ +C2

√
T

Proof. πMt is the optimal strategy no matter how λ is chosen. According to Lemma
4.3.4, we have

T

∑
t=1

⟨ht, zt⟩ −
T

∑
t=1

⟨α⋆f⋆ + (1 − α⋆)πMt , zt⟩ ≤ C1

¿
ÁÁÀ T

∑
t=1

∥zt − M̃t∥2
⋆.
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As λt is the update of gradient descent with the goal of minimizing the regret

T

∑
t=1

∥zt − λtMt∥2
⋆ − inf

λ∈(0,1]

T

∑
t=1

∥zt − λMt∥2
⋆,

then
T

∑
t=1

∥zt − M̃t∥2
⋆ ≤ inf

λ∈(0,1]

T

∑
t=1

∥zt − λMt∥2
⋆ +C2

√
T

due to the optimality of gradient descent and the convexity of the function ∥zt −
λMt∥2

⋆ with respect to λ.

Furthermore, we can build history dependent structure on the magnitude, in-
stead of fixed magnitude λ ∈ (0,1]. Then, we apply techniques from “Competing
with Strategies”, and get more interesting results.

Also, we improve the result by taking the advantage of the convexity of the
special loss function `(λ, (M,z)) = ∥z − λM∥2

⋆.

If ∥ ⋅ ∥⋆ is `2 norm

Theorem 4.4.6. If λ⋆t = (∑ts=1⟨Ms, zs⟩)/t and λ̂t = λ⋆t−1, then

T

∑
t=1

∥zt − λtMt∥2
2 − inf

λ∈(0,1]

T

∑
t=1

∥zt − λMt∥2
2 ≤

T

∑
t=1

8

t
≤ 8(1 + lnT )

Proof. This proof is similar to the proof of Theorem 3.1 in the Section 3.2 of [3].
Define loss function as `(λ, (Mt, zt)), it is easy to verify that

λ̂t = arg min
λ∈(0,1]

t−1

∑
s=1

`(λ, (Ms, zs))

and

λ⋆t = arg min
λ∈(0,1]

t−1

∑
s=1

`(λ, (Ms, zs)).

Then, for any (M,z) ∈ Z × Z

`(λ̂t, (M,z)) − `(λ⋆t , (M,z)) = ∥z − λ̂tM∥2 − ∥z − λ⋆tM∥2 ≤ 4∣λ̂t − λ⋆t ∣ = 4∣λ̂t − λ̂t−1∣

= 4 ∣∑
t−1
s=1⟨Ms, zs⟩
t − 1

− ∑
t
s=1⟨Ms, zs⟩

t
∣ = 4 ∣1

t
⋅ ∑

t−1
s=1⟨Ms, zs⟩
t − 1

− ⟨Mt, zt⟩
t

∣ ≤ 8

t

Both inequalities hold because the set Z is bounded. Therefore,

T

∑
t=1

∥zt − λtMt∥2 − inf
λ∈(0,1]

T

∑
t=1

∥zt − λMt∥2 ≤
T

∑
t=1

8

t
≤ 8(1 + lnT )
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This theorem leads to the much lower regret of Algorithm 8 as

T

∑
t=1

⟨ht, zt⟩ −
T

∑
t=1

⟨α⋆ + (1 − α⋆)πMt , zt⟩ ≤ c
¿
ÁÁÀ inf

λ∈(0,1]

T

∑
t=1

∥zt − λMt∥2
2 + 8(1 + lnT ).

If ∥ ⋅ ∥⋆ is `p-norm in RN space, where p ∈ (1,2)

Define `(λ, (M,x)) = ∥x − λM∥2
p, it is easy to verify that

∂

∂λ
`(λ, (M,x)) = 2∥λM − x∥2−p

p

N

∑
i=1

M(i)(λM(i) − z(i))
∣λM(i) − z(i)∣p−2

∈ [−2,2]

and

∂2

∂λ2
`(λ, (M,x))

= 2(2 − p)
∥λM − x∥p

[
N

∑
i=1

M(i)(λM(i) − z(i))
∣λM(i) − z(i)∣2−p

]
2

+ 2(p − 1)∥λM − x∥2−p
p

N

∑
i=1

M2
(i)

∣λM(i) − z(i)∣2−p
≥ 0

Theorem 4.4.7. If ∂2

∂λ2 `(λ, (M,x)) is bounded from below by a constant C > 0, then
the regret of the-best-expert algorithm, i.e. λt = arg min

λ∈(0,1]
∑t−1
s=1 ∥zs − λMs∥2

p, satisfies

T

∑
t=1

∥zt − λtMt∥2
p − inf

λ∈(0,1]

T

∑
t=1

∥zt − λMt∥2
p ≤

16

C
(1 + lnT )

Proof. It is a special case of Theorem 3.1 in [3]. To prove, let us check these
assumptions one by one.

1. `(⋅, (M,x)) is convex in λ and bounded (the original assumption is “` takes
values in [0,1]”, while boundedness condition is enough for the proof.).

2. `(⋅, (M,x)) is Lipschitz in its first argument, with constant B = 2.

3. `(⋅, (M,x)) is twice differentiable and ∂2

∂λ2 `(λ, (M,x)) is bounded from below
by a constant C > 0.

4. define λ⋆t as the solution of ∇Ψt(λ) = 0, where Ψt(λ) = 1
t ∑

t
s=1 `(λ, (Ms, zs)).

After all these assumptions are checked, we have

T

∑
t=1

∥zt − λtMt∥2
p − inf

λ∈(0,1]

T

∑
t=1

∥zt − λMt∥2
p ≤

16

C
(1 + lnT )

if we choose λt = arg min
λ∈(0,1]

∑t−1
s=1 ∥zs − λMs∥2

p.

This theorem also leads to the much lower regret of Algorithm 8 as

T

∑
t=1

⟨ht, zt⟩ −
T

∑
t=1

⟨α⋆ + (1 − α⋆)πMt , zt⟩ ≤ c
¿
ÁÁÀ inf

λ∈(0,1]

T

∑
t=1

∥zt − λMt∥2
p +

16

c
(1 + lnT ).
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4.5 Dynamic Regret

If the optimal strategy evolutes close to a dynamic process Φt ∶ F → F , [9] presents
Dynamic Mirror Descent which combines online optimization with the dynamic pro-
cess. The cumulative loss of Dynamic Mirror Descent comparing to the cumulative
loss of any (θ1, θ2, . . . , θT ) ∈ FT is upper bounded by

O(
√
T [1 +

T

∑
t=1

∥θt+1 −Φt+1(θt)∥]) ,

where ∑Tt=1 ∥θt+1 − Φt+1(θt)∥ measures how the competitor (θ1, θ2, . . . , θT ) is away
from the dynamic process (Φ1(⋅),Φ2(θ1),⋯,ΦT (θT−1)).

We improve the results by adding the predictable sequence. For a given loss
function, the predictable sequence and the optimal strategy appear as pairs. We
view the dynamic process (Φ1(⋅),Φ2(θ1),⋯,ΦT (θT−1)) as the optimal strategy, and
define the paired predictable sequence as (M1(⋅),M2(z1), . . . ,MT (z1∶T−1)). Our goal
is to benefit from both the optimal strategy and the predictable sequence, and to
produce low regret online learning algorithm.

At time t, we predict ft ∈ F , observe outcome zt ∈ Z and suffer loss ⟨ft, zt⟩.
Algorithm 9 incorporates a dynamical model, denoted by Φt ∶ F → F , and the
paired predictable sequence (M1(⋅),M2(z1), . . . ,MT (z1∶T−1)). For regret, we define
the comparator sequence in term of (θ1, . . . , θT ) ∈ FT , and Algorithm 9 admits a
regret bound of the form

O
⎛
⎜
⎝

¿
ÁÁÀ T

∑
t=1

∥zt −Mt∥2
⋆ [1 +

T

∑
t=1

∥θt+1 −Φt+1(θt)∥]
⎞
⎟
⎠
.

4.5.1 Dynamic Model with Predictable Sequence

Algorithm 9 combines the Optimistic Mirror Descent [17] and the Dynamic Mir-
ror Descent [9]. The update of Dynamic Mirror Descent gt reduces the regret by
embedding the dynamic model / the optimal strategy. At the same time, the up-
date of Optimistic Mirror Descent ft takes advantage of the predictable sequence.
Algorithm 9 and Algorithm 6 yield similar results, but from different viewpoints.
Algorithm 9 starts from the optimal strategy Φt(⋅), and finds the paired predictable
sequence Mt(⋅). However, Algorithm 6 is in the opposite direction. It starts from
the predictable sequence Mt(⋅), and finds the optimal strategy πt(⋅).

Theorem 4.5.1. Let F be a convex set in a Banach space B and X be convex
sets in the dual space B⋆. Let R ∶ B → R be a σ-strongly convex function on
F with respect to ∥ ⋅ ∥. Let Φt ∶ F → F be a dynamical model such that ∆Φt ≜
maxf,f DR(Φt(f),Φt(f ′))−DR(f, f ′) ≤ 0 for t = 1,2, . . . . For any strategy of Nature
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Algorithm 9 Dynamic Model with Predictable Sequence

for t = 1 to T do
predict ft, observe zt, suffer loss ⟨ft, zt⟩, update

• gt+1 = arg min
g∈F

η⟨g, zt⟩ + DR(g,Φt(gt))

• ft+1 = arg min
f∈F

η⟨f,Mt+1⟩ + DR(f,Φt+1(gt+1))

end for

and any (θ1, . . . , θT ) ∈ FT , Algorithm 9 yields

T

∑
t=1

⟨ft, zt⟩ ≤
T

∑
t=1

⟨θt, zt⟩ +
η

2σ

T

∑
t=1

∥zt −Mt∥2
⋆ +

1

η
[Dmax + 4M

T

∑
t=1

∥θt+1 −Φt+1(θt)∥]

where Dmax = maxf,f ′∈F DR(f, f ′) and M = 1
2 maxf∈F ∥∇R(f)∥.

Proof. For any θt ∈ F ,

⟨ft, zt⟩ − ⟨θt, zt⟩ = ⟨ft − gt+1, zt −Mt⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

At

+⟨ft − gt+1,Mt⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bt

+⟨gt+1 − θt, zt⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ct

First, according to Hölder’s inequality,

At ≤ ∥ft − gt+1∥∥zt −Mt∥⋆ ≤
σ

2η
∥ft − gt+1∥2 + η

2σ
∥zt −Mt∥2

⋆.

Proposition 18 in [5] shows that

⟨f − f1, z⟩ ≤ DR(f1, f0) − DR(f1, f) − DR(f, f0).

if z ∈ Z, f = arg min
f∈F

(⟨f, z⟩ + DR(f, f0)) and f1 ∈ F . We apply this proposition to

term Bt and Ct. Due to the optimality of ft = arg min
f∈F

η⟨f,Mt⟩ + DR(f,Φt(gt)), we

have

Bt ≤
1

η
[DR(gt+1,Φt(gt)) − DR(gt+1, ft) − DR(ft,Φt(gt))] .

Due to the optimality of gt+1 = arg min
g∈F

η⟨g, zt⟩ + DR(g,Φt(gt)), we have

Ct ≤
1

η
[DR(θt,Φt(gt)) − DR(θt, gt+1) − DR(gt+1,Φt(gt))] .

Use the previous three inequalities about At, Bt and Ct, we conclude
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⟨ft, zt⟩ − ⟨θt, zt⟩
≤ σ

2η
∥ft − gt+1∥2 + η

2σ
∥zt −Mt∥2

⋆

+ 1

η
[DR(θt,Φt(gt)) − DR(gt+1, ft) − DR(ft,Φt(gt)) − DR(θt, gt+1)]

≤ σ

2η
∥ft − gt+1∥2 + η

2σ
∥zt −Mt∥2

⋆ +
1

η
[DR(θt,Φt(gt)) − DR(gt+1, ft) − DR(θt, gt+1)] ,

where the first inequality holds by canceling the DR(gt+1,Φt(gt)) term, and the
second inequality holds by removing the negative term −DR(ft,Φ(gt)). By the
strong convexity of R, DR(gt+1, ft) ≥ σ

2 ∥gt+1−ft∥2. Then, the term σ
2η∥ft−gt+1∥2 and

the term − 1
ηDR(gt+1, ft) are canceled. Thus,

⟨ft, zt⟩ − ⟨ft, θt⟩ ≤
η

2σ
∥zt −Mt∥2

⋆ +
1

η
[DR(θt,Φt(gt)) − DR(θt, gt+1)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Et

.

Et can be decomposed into sum of three parts

Et =DR(θt,Φt(gt)) − DR(θt+1,Φt+1(gt+1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Et,0

+DR(θt+1,Φt+1(gt+1)) − DR(Φt+1(θt),Φt+1(gt+1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Et,1

+DR(Φt+1(θt),Φt+1(gt+1)) − DR(θt, gt+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Et,2

,

where
Et,2 ≤ ∆Φt+1 ≤ 0.

As

DR(a, b) − DR(c, b)
= R(a) −R(b) − ⟨∇R(b), a − b⟩ −R(c) +R(b) + ⟨∇R(b), c − b⟩
= R(a) −R(c) − ⟨∇R(b), a − c⟩ ≤ ⟨∇R(a) − ∇R(b), a − c⟩,

we have

Et,1 ≤ ⟨∇R(θt+1) − ∇R(Φt+1(gt+1)), θt+1 −Φt+1(θt)⟩ ≤ 4M∥θt+1 −Φt+1(θt)∥.

Therefore,
Et ≤Dt −Dt+1 + 4M∥θt+1 −Φt+1(θt)∥,
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where Dt = DR(θt,Φt(gt)) and

⟨ft, zt⟩ − ⟨θt, zt⟩ ≤
η

2σ
∥zt −Mt∥2

⋆ +
1

η
[Dt −Dt+1 + 4M∥θt+1 −Φt+1(θt)∥] .

Summing over t = 1, . . . , T , we have

T

∑
t=1

⟨ft, zt⟩ −
T

∑
t=1

⟨θt, zt⟩ ≤
η

2σ

T

∑
t=1

∥zt −Mt∥2
⋆ +

1

η
[Dmax + 4M

T

∑
t=1

∥θt+1 −Φt+1(θt)∥] .

4.5.2 Kalman Filter

St St+1

zt zt+1

Φt+1(⋅)

Ht Ht+1

Figure 4.1: Kalman Filter Scheme

To demonstrate the Dynamic Mirror Descent with predictable sequence method,
we consider the dynamic system with assumptions that (a) the underlying states
S1, S2, . . . evolves as St = Φt(St−1) + wt, where Φt(S) = FtSt−1 + Btut and process
noise wt ∼ N(0,Qt), and (b) the observation zt depends on the current state St as
zt =HtSt + vt, where noise vt ∼ N(0,Rt).

If the model is accurate, the Kalman filter [23], which predicts

Ŝt∣t−1 = Φt(Ŝt−1∣t−1), Pt∣t−1 = FtPt−1∣t−1F
T
t +Qt

and updates

Kt = Pt∣t−1H
T
t (HtPt∣t−1H

T
t +Rt)−1, Ŝt∣t = Ŝt∣t−1+Kt(zt−HtŜt∣t−1), Pt∣t = (I−KtHt)Pt∣t−1,

acts as an efficient and statistically optimal estimator of underlying states.
If these assumptions of underlying states and observations do not hold, we com-

bine the Kalman filter with our framework. We choose the linear loss function
⟨ft, zt⟩ on our prediction of the underlying states ft and the true observation zt. As
the optimal estimation of the coming observation zt+1 is Ht+1Ŝt+1∣t after observing
z1, . . . , zt, it leads to the update equations

gt+1 = arg min
g∈F

η⟨g, zt⟩ + DR(g,Φt(gt))
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and
ft+1 = arg min

f∈F
η⟨f,Ht+1Ŝt+1∣t⟩ + DR(f,Φt+1(gt+1)).

According to Theorem 4.5.1, Algorithm 9 yields

T

∑
t=1

⟨ft, zt⟩ ≤
T

∑
t=1

⟨θt, zt⟩ +
η

2σ

T

∑
t=1

∥zt −HtŜt∣t−1∥2
⋆ +

1

η
[Dmax + 4M

T

∑
t=1

∥θt+1 −Φt+1(θt)∥]

where Dmax = maxf,f ′∈F DR(f, f ′) and M = 1
2 maxf∈F ∥∇R(f)∥. If the model is

accurate, the expected value of the square of the magnitude of the vector,

E [∥zt −HtŜt∣t−1∥2] ,

is the trace of the covariance matrix HtPt∣t−1H
T
t +Rt, i.e. the sum of the trace of

matrix HtPt∣t−1H
T
t and the trace of matrix Rt.
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Chapter 5

Shannon Entropy Over
Approximate Entropy: an
adaptive regularity measure

Approximate Entropy, as an approximation of Kolmogrov-Sinai Entropy, is the
widely accepted method to quantify the regularity in data, especially medical data.
However, it quantifies the regularity only up to predetermined order, while real
data demand a much higher order. In this chapter, we demonstrate the connection
between Approximate Entropy and Shannon Entropy. Based on that, we propose
the adaptive Shannon Entropy approximation methods (e.g., Lempel-Ziv sliding
window method) as an alternative approach to quantify the regularity of data.
The new approach has the advantage of adaptively choosing the order of regularity
to analyze based on the data. Later, we compare the results of Lempel-Ziv sliding
window method with Approximation Entropy on the electroencephalography (EEG)
data to measure the depth of anesthesia. The Lempel-Ziv sliding window method
yields more accurate results, especially for low entropy data.

5.1 Introduction

Processed electroencephalographic (EEG) data is commonly used to quantify the
depth of anesthetic hypnosis both clinically and in a laboratory setting, collapsing
the complex patterns of the raw EEG signal into one (or a few) useful score(s).
These scores help to achieve clinical goals of adequate hypnosis as well as to eval-
uate the results of experimental intervention on depth of anesthesia. Especially,
Approximate Entropy [14] is a widely accepted method to quantify the regularity
in EEG data.

Approximate Entropy arises as an approximation of Kolmogrov-Sinai Entropy,
and [14] shows that the limit of Approximate Entropy is Kolmogrov-Sinai Entropy
on the condition that (a) we have enough data, (b) the order of the regularity m
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goes to infinity and (c) threshold r goes to zero. However, we never have the chance
to have enough data and only compute one combination of parameters m and r on
real data. It is an interesting problem to choose the order of the regularity m.

Instead of deriving the adaptive entropy estimation algorithm directly, we make
connection between Approximate Entropy and Shannon Entropy. Then, we borrow
the adaptive Shannon Entropy estimator and show the advantage comparing to
Approximate Entropy.

5.2 Approximate Entropy

We start by defining Approximate Entropy.

Definition 5.2.1. Given a time series u1, u2, . . . , uN , fix the order of the regularity
m ∈ N+ and threshold r > 0, and form a sequence of vectors xi ∈ Rm, defined by

xi = (ui, ui+1, . . . , ui+m−1).

For each i, 1 ≤ i ≤ N −m + 1 define

Cm
i (r) = #{j ∶ d(xi, xj) ≤ r}

N −m + 1
.

We define d(xi, xj), the distance between two vectors xi and xj as

d(xi, xj) = max
k=1,2,...,m

∣ui+k−1 − uj+k−1∣.

Define

Φm(r) = ∑
N−m+1
i=1 logCm

i (r)
N −m + 1

,

then the Approximate Entropy is

ApEn(m,r,N) = Φm(r) −Φm+1(r).

Heuristically, ApEn quantifies the (logarithmic) likelihood that runs of patterns
that are close remain close on next incremental comparisons.

Example 5.2.2. Suppose the time series is a repeat of sequence (1,2,3), i.e. u =
(1,2,3,1,2,3,1,2,3, . . . ), we first form a sequence of vectors

x1 = (1,2,3), x2 = (2,3,1), x3 = (3,1,2), . . . when m = 3

and
x1 = (1,2), x2 = (2,3), x3 = (3,1), . . . when m = 2.

Then, for threshold r = 0, define the percentage of the each vector happens in the
sequence of vectors as

C3
1 =

1

3
,C3

2 =
1

3
,C3

3 =
1

3
, . . .
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and

C2
1 =

1

3
,C2

2 =
1

3
,C2

3 =
1

3
, . . . .

Furthermore, define the Φ function, which has a

Φ2(0) = log
1

3
,Φ3(0) = log

1

3
Finally, we get

ApEn(2,0,N) = 0

5.3 Shannon Entropy and Entropy Rate

Here, we present several useful definitions related to entropy [6].

Definition 5.3.1. The Shannon Entropy of a random variable X with a probability
mass function p(x) is defined by

H(X) = −∑
x

p(x) log2 p(x)

we use logarithms to base 2 and without specific note, log in this article is to base
2.

The entropy ofX can be interpreted as the expected value of the random variable
log 1

p(X)
, where X is drawn according to probability mass function p(x). Thus,

H(X) = E log
1

p(X)
Definition 5.3.2. The entropy rate of a stochastic process {Xi, i = 1,2, . . .} is
defined by

H(X) = lim
n→∞

1

n
H(X1,X2, . . . ,Xn)

where the limit exists.

If we have a sequence of n random variables, entropy rate measures how the
entropy of the sequence grows with n. For example,

Example 5.3.3. X1,X2, . . . are i.i.d. random variables, then

H(X) = lim
n→∞

H(X1,X2, . . . ,Xn)
n

= lim
n→∞

nH(X1)
n

=H(X1)

which is what one will expect for the entropy rate per symbol.

Example 5.3.4. The entropy rate of a mth order Markov Chain is H(Xm+1∣Xm
1 ).

we can also define a related quantity for entropy rate

H ′(X) = lim
n→∞

H(Xn∣Xn−1, . . . ,X1)

when the limit exists. This is the conditional entropy of the last random vari-
able given the past. The previous one is the per symbol entropy of the n random
variables.
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5.4 Approximate Entropy is equvilent to Condi-

tional Entropy

In this section, we make the connection between Approximate Entropy and Shannon
Entropy. First, we consider the case when the date are discrete.

5.4.1 For Discrete Data

Let us assume that the data are discrete, ui ∈ X = {1,2, . . . , ∣X ∣}. There are maxi-
mum ∣X ∣m different possible sequences with the length m, and we compact them in
a set Xm. If we define the frequency function p̂(Xm

1 ) on the set of Xm
1 , then

Cm
i (r) = p̂(Xm

1 = xi).

Therefore,

Φm(r) =
N−m+1

∑
i=1

logCm
i (r)

N −m + 1

=
N−m+1

∑
i=1

log p̂(Xm
1 = xi)

N −m + 1

= ÊXm
1

log p̂(Xm
1 ) = −Ĥ(Xm

1 )

Finally, we get

ApEn(m,r,N) = Φm(r) −Φm+1(r) = Ĥ(Xm+1
1 ) − Ĥ(Xm

1 ) = Ĥ(Xm+1∣Xm
1 )

It is the conditional entropy of one variable given the previous m variables. It
tells us how well we can predict one variable given m preceding variables. Let us
present two examples to illustrate it.

Example 5.4.1. Consider the case that elements in the sequence are independent
and identical distributed. Then,

lim
N→+∞

ApEn(m,r,N) = lim
N→+∞

Ĥ(Xm+1∣Xm
1 ) =H(X1)

i.e. the limit of ApEn as N goes to infinity is the Shannon Entropy of the sequence.
At the same time, it can also be interpreted as the entropy rate of the sequence.

Example 5.4.2. Consider the case that the sequence is a mth order Markov chain.
The limit of Approximate Entropy is indeed the entropy rate of the sequence. It is
also true for lower order Markov Chain.
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5.4.2 For Continuous Data

Theorem 5.4.3. For an i.i.d. process with the density function f(x), for any m,

ApEn(m,r) = −∫ f(y) log (∫
y+r

z=y−r
f(z)dz)dy

Proof. Given a time-series u(1), u(2), . . . , u(N), fix m (positive integer) and r (pos-
itive real), and form a sequence of vectors x(i) in Rm, define by x(i) = [u(i), u(i +
1), . . . , u(i +m − 1)]. For each i, 1 ≤ i ≤ N −m + 1,

Cm
i (r) =Pr(x(j) ∶ d[x(i), x(j)] ≤ r)

=Pr(u(j) ∶ ∣u(i), u(j)∣ ≤ r) ⋅Pr(u(j) ∶ ∣u(i + 1), u(j + 1)∣ ≤ r)
⋯Pr(u(j) ∶ ∣u(i +m − 1), u(j +m − 1)∣ ≤ r)

=∫
u(i)+r

u(i)−r
f(z)dz ⋅ ∫

u(i+1)+r

u(i+1)−r
f(z)dz⋯∫

u(i+m−1)+r

u(i+m−1)−r
f(z)dz

Then, get the limit of Φm(r)

lim
n→∞

Φm(r) = lim
n→∞

(N −m + 1)−1
N−m+1

∑
i=1

logCm
i (r)

= lim
n→∞

(N −m + 1)−1
N−m+1

∑
i=1

m

∑
k=1

log∫
u(i+k−1)+r

u(i+k−1)−r
f(z)dz

=
m

∑
k=1

Eu⋆ log∫
u⋆+r

u⋆−r
f(z)dz

=m∫ f(y) log (∫
y+r

y−r
f(z)dz)dy

Finally, the Approximation Entropy is

ApEn(m,r,N) = Φm(r) −Φm+1(r) = −∫ f(y) log (∫
y+r

y−r
f(z)dz)dy.

By the mean value theorem,

ApEn(m,r) = −∫ f(y) log (2rf(y⋆))dy

for y − r < y⋆ < y + r for all y. Therefore,

ApEn(m,r) + log(2r) ≈ −∫ f(y) log f(y)dy.

For a general case, we can find that sequences with length m follows a probability
density function pm and sequences with length m + 1 follows a probability density
function pm+1.
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Theorem 5.4.4.

ApEn(m,r,N) = Φm(r) −Φm+1(r) ≈H(Xm+1∣Xm
1 ) − log(2r)

Proof. We assume the joint distribution of length m sequence is pm, first,

Cm
i (r) = ∫

u(i)+r

u(i)−r
∫

u(i+1)+r

u(i+1)−r
⋯∫

u(i+m−1)+r

u(i+m−1)−r
pm(yi, yi+1, . . . , yi+m−1)dyi+m−1 . . . dyi+1dyi

= (2r)mpm(y⋆i , y⋆i+1, . . . , y
⋆
i+m−1)

≈ (2r)mpm(yi, yi+1, . . . , yi+m−1)

Then,

Φm(r) = Ei logCm
i (r)

= ∫ ∫ ⋯∫ pm(y1, y2,⋯, ym) log [(2r)mpm(yi, yi+1, . . . , yi+m−1)]dy1dy2 . . . dym

= ∫ ∫ ⋯∫ pm(y1, y2,⋯, ym) [m log 2r + log pm(yi, yi+1, . . . , yi+m−1)]dy1dy2 . . . dym

=m log 2r −H(Xm
1 )

Finally, we get that Approximation Entropy is

ApEn(m,r,N) = Φm(r) −Φm+1(r)
≈ [m log 2r −H(Xm

1 )] − [(m + 1) log(2r) −H(Xm+1
1 )]

=H(Xm+1
1 ) −H(Xm

1 ) − log 2r

=H(Xm+1∣Xm
1 ) − log 2r

For Markov Chain with less than or equal to mth order, Approximate Entropy
is the entropy rate minus a constant and acts perfect as a measure for regularity.
However, Approximate Entropy can not capture the regularity of higher order. We
will show it by the following examples and set parameter m = 2. Figure 5.1a shows
the second order Markov model where Xn+1 =Xn⊕Xn−1⊕e and the noise e = 1 w.p.
p and e = 0 w.p. 1−p. We can get the entropy rate H(Xn+1∣Xn,Xn−1) =H(e) =H(p)
and the Approximate Entropy captures the regularity precisely. However, Figure
5.1b shows the third order Markov model where Xn+1 = Xn ⊕ Xn−1 ⊕ Xn−2 ⊕ e
and the noise e = 1 w.p. p and e = 0 w.p. 1 − p. We can get the entropy rate
H(Xn+1∣X1∶n) =H(p) and the Approximate Entropy can not capture the regularity.

So far, we demonstrate the connection between Approximate Entropy and Shan-
non Entropy. Approximate Entropy quantifies the regularity only up to the pre-
fixed order, while real data may carry much more. Shannon Entropy approximation
methods (e.g., Lempel-Ziv sliding window method [12]) is an alternative approach
to quantify the regularity of data.
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(a) Second Order Markov Model (b) Third Order Markov Model

Figure 5.1: Approximate Entropy of Markov Model

5.5 Adaptive Entropy Estimation

We take Lempel-Ziv sliding window method as an example. Define Li as the length
of the shortest substring Xi∶i+k−1 starting at position i that does not appear as a
contiguous substring of the previous string. Use the follow term to quantify the
regularity

( 1

n

n

∑
i=2

Li
log i

)
−1

It adaptively chooses the order of regularity to analyze based on the data, and we
show the comparison in Figure 5.2.

Figure 5.2: Approximate Entropy v.s. Lempel Ziv
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