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1. Introduction

A geometrical understanding of the representation theory of the group of diffeomor-

phisms of the circle remains a desirable, and elusive, goal. Apart from its intrinsic interest

a solution to this problem could shed light on a 2 + 1-dimensional topological quantum

field theory standing in the same relation to Virasoro as compact Chern-Simons-Witten

theory does to Kac-Moody algebras [1] . Given the success of the method of orbits in

understanding the representations of noncompact groups (see e.g. [2]), it is very natural

to look to this method for help with Diff S1 as well. Considerable progress has been made

along these lines [3], but some problems stand out.

First, there are a variety of different types of orbit. Secondly, while every orbit has

naturally the structure of a Hamiltonian dynamical system, there is in general no obvious

choice of the additional structures needed to quantize these classical systems. Finally, once

a quantization is chosen we find ourselves faced with a strongly-coupled system unless the

central charge c ≫ 1. In the latter case Witten has shown that indeed the familiar

irreducible representations emerge.

Clearly it would be interesting to have an approach to this problem where all the

representations come from quantizing a single space, with some natural choice of quantum

data ( i.e., prequantization and polarization).

In the case of a compact, semisimple, finite-dimensional group G there is a well-

known theorem with a similar flavor (see [4]). Such a group has a natural complexification

Gc. Let N+ be a maximal unipotent subgroup of Gc. For example, if G = SU(n) then

Gc = SL(n,C) and N+ consists of upper triangular matrices equal to 1 on the diago-

nal. Let A = Gc/N+, a complex manifold of dimension 1
2 (dimG + rankG). Then the

space of holomorphic functions on A, subject to a certain square-integrability condition,

is a representation of G, and moreover it is the sum of every irreducible representation

with multiplicity one. We can thus refer to A as a model space, a space whose quantum

mechanics yields a “model” for the representations of G.

Let us pause to sketch why this theorem is true. The Cartan torus T ⊂ G commutes

with N+, and so acts on A from the right. It also commutes with left translations. Thus

the space Hλ of eigenstates of the generators of T with eigenvalues given by some weight

λ is a representation of G under left translation. But Hλ can also be regarded as the

sections of a bundle over (Gc/N+)/Tc
∼= G/T ; by the Borel-Weil-Bott theorem it is just

the irreducible representation of weight λ. Letting λ range over the weight lattice we get

each irreducible representation once.
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We should contrast this result with two similar ones. First, the Peter-Weyl theorem

tells us that the space of all L2 functions onG (not necessarily holomorphic) also furnishes a

representation of G. Now, however, each irreducible representation occurs with multiplicity

equal to its dimension, and so the result is not so useful even if it remains true in infinite

dimensions. Secondly, the generic orbit of G on its dual algebra g∨ is a complex manifold

of dimension dimcG/T = 1
2 (dimG−rank G), where T is a maximal torus of G. The Borel-

Weil-Bott theorem tells us that the sections of a bundle over this orbit give one irreducible

representation. Thus roughly speaking the difference between G/T and the model space A

is that we have added in a complexified maximal torus (complex dimension rank G), and

in so doing enriched the Hilbert space of states from one representation to all of them. It

would be nice to have a corresponding result for Diff S1.

The operation of taking all holomorphic functions on a space is reminiscent of geo-

metric quantization. In the case of a single orbit of G it is well known that the above

construction can be implemented by quantizing a certain classical dynamical system [2].

This approach seems bound to offer insights into infinite-dimensional systems, where a

regularization is needed.

Recently Alekseev and Shatashvili have proposed to implement the above program

for the group Diff ≡ Diff+S
1 of orientation preserving diffeomorphisms of the circle, in

the hopes that a theorem similar to the one above will hold [5].1 They have obtained some

encouraging results to the effect that the quantization of A may contain the irreducible

unitary representations of Diff, including the mysterious discrete series. Things did not

quite work out, however. It seems clear that to make further progress one needs to be

quite specific about the “model space” A and its global geometry. That is what we do

here.

Specifically Alekseev and Shatashvili define their model space as a Hamiltonian dy-

namical system by writing down local canonical (or “Darboux”) coordinates; they then

obtain characters by path integration. To get the Hilbert space itself, however, one needs a

precise global construction, and moreover a quantum structure on A. For individual orbits

this has seemed problematical [3], but we will see that the model space has a very natural

quantum structure.

1 Indeed, some results of Chern-Simons-Witten gauge theory (see e.g. [6][7]) can be taken to

support this for the case of loop groups. The recent work of H. Verlinde on the case of Vir is more

subtle [8][1]; we can only hint at the connection to the present work.
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In this paper we will construct a complex manifold A which is a suitable generalization

of the model space A of a compact Lie group. Since the group Diff has no complexifica-

tion, this is not quite straightforward. The appropriate method has already been used in

a different context, however, by Kirillov and Yur’ev [9]. We will find on A a free, holo-

morphic action of Diff and a natural family of invariant pseudo-Kahler structures which

implement the analog of the above prescription for compact groups. It seems rather re-

markable and gratifying that this can be done at all. One feature of our approach is that

all our constructions are complex-analytic, even for nonzero central charge. In principle

A can then be quantized to get representations of Diff, but we will not be able to go

this far. We will also explain the sense in which A decomposes into coadjoint orbits of

Diff. Surprisingly the space A, which has a very natural global definition, automatically

excludes the pathological “unipotent” orbits Diff/T (see [3]) while including the interest-

ing ones Diff/S1, Diff/SL(n)(2,R). That is, the latter orbits can be obtained from A by

Hamiltonian constraint reduction.

Recently we received another paper [10], where a very different proposal is made for

obtaining Virasoro representations from the diffeomorphism group.

2. Complex Structure

Our strategy will be as follows. While Diff admits no complexification, still we know

that Diff/S1 has a natural complex structure and invariant Kahler metric, indeed a two-

parameter family of these [11][9][12]. Roughly we know we must take the maximal torus

of Diff, namely the circle group of rigid rotations, complexify, and enlarge Diff/S1 by that.

Thus we take the space defined by Kirillov,

F = {f : f(0) = 0, f ′(0) = 1} (2.1)

and enlarge it to

A = {f : f(0) = 0} . (2.2)

In both cases f is a holomorphic function on the unit disk D = {|z| < 1}, smooth and

univalent up to the boundary. Kirillov showed that F can naturally be identified with

Diff/S1. In A we have added in the maximal torus (the angle arg f ′(0)), and complexified

it (the magnitude |f ′(0)|). Thus A is distinct from the space TD appearing in [1], which

was smaller than Diff/S1.

3



Our plan is to identify A naturally with Diff×R+.
2 The latter space has an obvious

free action of Diff; we will show that on A this action is holomorphic. In later sections

we will show that Diff×R+ also has a natural invariant symplectic structure induced from

the cotangent space T∨(Diff) (cf. [5]). We will see that on A this determines a Kahler

structure. We will for illustration set the central charge to zero, then generalize in section

seven. Finally the space Diff×R+ projects to the dual algebra Vect∨, whereupon the action

of Diff reduces to the usual coadjoint action.

To get started we must set up the identification A ≃ Diff×R+. Begin with f ∈ A. It

takes the unit circle {|z| = 1} to a smooth non-self-intersecting contour K surrounding the

origin. The exterior of K is thus topologically a disk in the Riemann sphere containing the

point ∞. (See Fig. 1.) By the Riemann mapping theorem, we know that there is another

function G(u), holomorphic and single-valued everywhere outside the unit circle (i.e. for

|u| < 1, where u = z−1), whose image is the exterior of K. Moreover there are many such

maps, namely G ◦M where M is any transformation in SL(2,R). We can fix this freedom

by imposing the additional conditions

G(0) = 0, G′(0) is real positive. (2.3)

We can rephrase these conditions in terms of

g(z) = 1/G(z−1) ;

then g has a simple pole at ∞ of real positive residue.

Fig. 1: Defining G from f .

2 However A is not to be regarded as the central extension D̂iff; see section seven.
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Having determined g we now let

(γf , sf ) = (f−1 ◦ g, g′(∞)2) . (2.4)

What this means is that since f, g both take the unit circle to the contour K, we must

have g(eiθ) = f(eiγ(θ)) for some diffeomorphism γ. The second entry just denotes the

square of the real residue mentioned above; prime means d
dz . Clearly sf ∈ R+. We note

that this construction is independent of the actual centered complex coordinate z chosen

on the disk D. Indeed if z̃ = F (z) with F (0) = 0, then the map represented by z 7→ f(z)

becomes z̃ 7→ F ◦ f ◦ F−1(z̃), and d
dz̃ (F ◦ f ◦ F−1)(0) = d

dz f(0).

Thus we map Λ : A →Diff×R+. Let us examine this map close to the base point,

f0(z) = az, where a is some real number. Thus let

fǫ(z) = az + ǫ
∑

n>0

ϕnz
n (2.5)

gǫ(z) = az + ǫ
∑

n<2

ψnz
n , ψ1 real (2.6)

sǫ = a2 + ǫ∆ (2.7)

γǫ(θ) = θ + ǫ
∞∑

−∞

vne
inθ , v−n = vn . (2.8)

We have incorporated the conditions on f, g into these expansions. Expanding gǫ(e
iθ) =

fǫ(e
iγǫ(θ)) we easily find

v0 =− 1
a Imϕ1, ∆ = (2a)Reϕ1 ,

vn =− i
aϕn+1 , n > 0 ,

(2.9)

and so our map is invertible at the base point. In fact we can invert it everywhere, as follows

(cf. [9]). Given (γ, s) ∈ Diff × R+ we construct a 2-sphere by gluing two standard disks

D± using γ. The resulting space, with standard complex structure on each hemisphere,

is isomorphic as a complex manifold to the usual sphere, by the uniformization theorem.

Thus there is an invertible holomorphic function F from it to the Riemann sphere, or

in other words holomorphic functions F± from the disk to the latter related by γ. F is

well defined up to the automorphisms SL(2,C) of the sphere. We use this freedom to set

F+(0) = 0, F−(∞) = ∞, F ′
−(∞) = 1. Finally we let f(z) =

√
sF+(z). This inverts the

map Λ.

We now have that the map Λ : A → Diff × R+ is a bijection. It gives Diff×R+ the

desired complex structure.
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3. Action of Diff

Recall [13] that a complex manifold M of dimension n is also a real manifold of

dimension 2n. We complexify the real tangent space to get TcM , a vector space of complex

dimension 2n, then split it into TcM ≃ T (1,0)M⊕T (0,1)M , two complex pieces of dimension

n. Every curve P (ǫ) in M has a tangent Ṗ (0) in the real tangent space of M ; thus

Ṗ (0) = V + V where V ∈ T (1,0)M and V is its complex conjugate.

Consider the action of U(1) on the complex plane: P → θ · P where zθ·P = eiθzP .

For fixed θ we see that zθ·P depends holomorphically on zP and we say the action is

holomorphic. We can also formulate an infinitesimal criterion as follows. Fixing now P ,

the tangent d
dθ |0(θ · P ) = i(zP

∂
∂z |P − z̄p

∂
∂z̄ |P ). As noted above this has to be real, and it

is. What we see is that its (1,0) bit is a holomorphic vector field on M . This is another

criterion for the action of Diff to be holomorphic, and far more convenient for our purposes.

Fix any generator v for Diff. Thus v ∈ Vect, the smooth vector fields on the circle,

and we write v = v(θ) d
dθ . Letting v act from the left on any γ0 ∈ Diff gives us an action

on Diff×R+:

γǫ(θ) = γ0(θ) + ǫv(γ0(θ)) (3.1)

sǫ ≡ s0 . (3.2)

This action is of course globally well defined. Choose a base point f0, not necessarily of

the special form (2.5). Following [9] we will trivialize the tangent spaces Tf0A by writing

a tangent to f0 as d
dǫfǫ where

fǫ(z) = f0(z) + ǫϕ(z) , (3.3)

where ϕ is holomorphic on the disk, ϕ(0) = 0, and similarly

gǫ(z) = g0(z) + ǫψ(z) , (3.4)

where ψ is holomorphic off the disk. We don’t permit any pole for ψ, even with real

residue, because we are imposing (3.2).

We now want to find ϕv;f0
corresponding to the fixed v and the chosen f0. If it

varies holomorphically as f0 varies then the (1,0) part of the tangent to (3.3) will be a

holomorphic vector field as desired. Again expanding gǫ(e
iθ) = fǫ(e

iγǫ(θ)) we find

ψ ◦ g−1
0 = ϕ ◦ f−1

0 + i[zf ′0(z)v(−i log z)] ◦ f−1
0 at points where |g−1

0 | = 1. (3.5)
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This together with the boundary conditions on ϕ,ψ determines ϕ as follows.

Following [9], suppose we have a function F on the circle. Given a parametrized

contourK in the plane we can regard F as a function onK and define its positive-frequency

part as 3

[F ]>K(z) =
z

2πi

∮

K

F (w)dw

w(w − z)
(3.6)

for z a point inside K. Similarly define [F ]<K(z) by the same formula with z outside K.

We then clearly have that on K, F (z) = [F ]>K(z)− [F ]<K(z) for any contour K surrounding

the origin, and [F ]>K is holomorphic inside K with [F ]>K(0) = 0. Moreover the boundary

condition on ψ clearly amounts to saying that [ψ ◦ g−1
0 ]>K = 0, since g−1

0 sends the exterior

of K holomorphically to the exterior of the disk, and ψ is in turn holomorphic there.

Similarly [ϕ ◦ f−1
0 ]<K = 0. We get

ϕv;f0
= i[(zf ′0(z)v(−i log z)) ◦ f−1

0 ]>K ◦ f0. (3.7)

Since v is fixed, everything in this formula depends holomorphically on f0 and we are done.

We now have a holomorphic action of Diff on our space A. In the next section we will

proceed to investigate its symplectic structure. Before doing so, however, it is appropriate

to ask how unique our construction is. The requirement that left actions of Diff on Diff×R+

be holomorphic is a strong condition on our identification Λ : A → Diff×R+, but suppose

we replace (2.4) by

(γf , sf ) = (f−1 ◦ g, ξ(g′(∞)2)) , (3.8)

where ξ is a real function. Then the induced action of Diff on A, which doesn’t change s

at all, is completely unaffected. We will say more about this freedom shortly.

We close this section with an aside. While the group Diff has no complexification, still

there is a complex semigroup, the “Neretin semigroup,” which is the best substitute [14]

[9] [15]. This complex semigroup can be shown to act holomorphically on A; the action of

Diff found in this section can be deduced from this action.

3 This differs slightly from [9].
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4. Symplectic Structure

We will begin by writing a symplectic form on A =Diff×R+ and showing that it

is indeed nondegenerate and left-invariant under Diff. This form is essentially the one

proposed by Alekseev and Shatashvili; it is induced by a map from Diff×R+ into the

cotangent space T∨Diff. Finally we show that this 2-form is of type (1,1) in the complex

structure of part two, and hence is the Kahler form of an invariant (pseudo-)Kahler metric

on A.

Trivialize T∨Diff ≃ Diff×Vect∨ by the map

(γ, b) 7→ L∗
γ−1(b) ∈ T∨

γ Diff , (4.1)

where Lγ−1 is left translation and b is a cotangent vector to Diff at the origin, i.e. a

quadratic differential b(θ)(dθ)2 on S1. We include Diff×R+ into T∨Diff by sending

(γ, s) 7→ (γ, isℓ∗0) = (γ, s
2π (dθ)

2) . (4.2)

It is traditional to use a complex basis for Vect in which −iℓ0 corresponds to the middle

element of the basis in (2.8). Hence iℓ∗0 is the middle element of the dual basis, and

iℓ∗0 ↔ (2π)−1(dθ)2.

We need a convenient description of two-forms on T∨Diff. Since these eat tangent

vectors we introduce the natural trivialization T (T∨Diff) ≃ Diff×(Vect∨⊕Vect⊕Vect∨) via

(γ, b; v, p) → ((Lγ)∗v, p)|(γ,b) ∈ T(γ,b)(T
∨Diff) . (4.3)

Note that the tangent to a vector space, like Vect∨, is naturally just that vector space.

The natural symplectic form on T∨Diff is now quite simple. Define a one-form α by

the formula

α(γ, b; v, p) ≡ α(((Lγ)∗v, p)|(γ,b)) = 〈(Lγ)∗v, L
∗
γ−1b〉 = 〈v, b〉 , (4.4)

the dual pairing of Vect with its dual. We will also let α denote the corresponding pulled-

back one-form on A = Diff × R+. Tangent vectors to A are given by (γ, s; v,∆), where

now ∆ is a real number. Using the embedding (4.2) we get

α(γ, s; v,∆) ≡ α
(
((Lγ)∗v,

∆
2π (dθ)

2)|(γ,(s/2π)(dθ)2)
)
= sv0 , (4.5)

where v0 is the middle expansion coefficient of v in (2.8).
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The symplectic form Ω is now just the exterior derivative of α. For this we need

the Lie bracket. With our trivialization of T (T∨Diff) a vector field amounts to a pair of

functions (X(γ, b), η(γ, b)) from Diff×Vect∨ to Vect×Vect∨. We will sometimes denote

this vector field by VX,η to denote its dependence on these two functions. Considering the

successive derivatives of a function f by two of these vector fields one gets

[VX,η, VY,ξ] = V(VX,ηY−VY,ξX+[X,Y ],VX,ηξ−VY,ξη)
. (4.6)

Here VX,ηY denotes the derivative of the Vect-valued function Y , while [X,Y ] is taken

pointwise and does not differentiate the functions X,Y with respect to γ, b. We thus have

dα = Ω, where at (γ, b)

Ω(VX,η, VY,ξ) = 〈η, Y 〉 − 〈ξ,X〉 − 〈b, [X,Y ]〉 , (4.7)

a function on T∨Diff given two vector fields. Again let Ω denote also the corresponding

pullback to A. We then have that at (γ, s) (recall we set b = s
2π (dθ)

2)

Ω((v,∆), (v′,∆′)) = ∆v′0 −∆′v0 + 2is
∞∑

−∞

nvnv
′
−n . (4.8)

Here we have used the same expansion coefficients as in (2.8).

While we know that Ω is invariant as a differential form on T∨Diff, still one may worry

that our choice of Diff×R+ →֒ T∨Diff will spoil the invariance of Ω on A. After all we

did choose a basis, to define ℓ∗0. We now check this invariance briefly. For any generator

v1 of Diff we get a vector field of the left action, which in our trivialization is seen to be

(Adγ−1v, 0) at the point (γ, s). Let us compute the Lie derivative of α along this vector:

(£(Ad
γ−1v,0)

α)(VX,∆) = VX,∆α(V(Ad
γ−1v,0)

) + Ω(V(Ad
γ−1v,0)

, VX,∆) . (4.9)

The derivative in the first term substitutes s → s + ǫ∆, γ → γ ◦ (1 + ǫX) and takes the

derivative of ǫ. Thus using (4.4), (4.7)

= ∆(Adγ−1v)0 − s([X,Adγ−1v])0 −∆(Adγ−1v)0 − s([Adγ−1v,X])0 (4.10)

and α is invariant, and hence Ω as well.4

4 Compare the discussion of [5], where a residual global right invariance remains after “gauge-

fixing.”
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It is clear from (4.8) that Ω is nondegenerate and hence an invariant symplectic form

on Diff×R+. In other words we have a Hamiltonian action of Diff on this space. In fact this

action is strictly Hamiltonian, i.e. there is a globally defined moment map µ : A → Vect∨.

One finds that, since Ω is exact, we have that

µ(γ, s) = sAd∗γ−1(ℓ
∗
0) (4.11)

generates the action (3.1)–(3.2). We also have a close relation to the usual Hamiltonian

action of Diff on its coadjoint orbits. Since clearly µ(γ1 · γ, s) = Ad∗
γ−1

1

µ(γ, s), we see that

one flow covers the other [16]. Furthermore, the map µ restricted to the inverse image of

a generic coadjoint orbit is holomorphic. This is a meaningful statement, since such orbits

are isomorphic to Diff/S1, which has an invariant complex structure [11][9].

We note that the single form (4.8) corresponds to a family of forms on Diff/S1 pa-

rameterized by s. Generalizing to arbitrary central charge gives the two-parameter family

of Bowick and Rajeev, as we will see in section seven.

The space Diff× R+ has an important property: it is multiplicity-free in the sense of

Guillemin and Sternberg [17]. In general a symplectic G-manifold is called multiplicity-free

when every G-invariant function on it commutes with every other one. In our case the

only Diff-invariant functions are clearly of the form F (s), so this condition is satisfied.

When this is so, the corresponding quantum state space will contain every representation

at most once, essentially by Schur’s lemma. This was shown in [17] for the case of real

polarizations.

Finally we wish to stress that all our constructions so far are very natural. They do

not depend on any choice of basis such as (2.5)–(2.8), as one sees from the main definitions

(2.2), (2.4), (3.1)–(3.2), (4.4). Thus when it transpires that the pathological orbits Diff/T

are absent from A, it will be clear that we have not simply taken them out by hand.

5. Pseudo-Kahler Structure

We have only to combine sections three and four. That is, an invariant closed nonde-

generate two-form will be Kahler if it is of type (1,1) in the complex structure we found

and the associated Hermitian structure is positive-definite. Since both the form Ω and the

complex structure are Diff-invariant, we have only to check this assertion at f(z) = az for

a real constant a. We then have coordinates for the tangent space to A given by (2.9).

10



What we must now do is pass to the complexified tangent space. Thus we allow

an, bn ∆ to be complex, or equivalently take ϕ̄n independent of ϕn in (2.9), or v−n

independent of vn in (4.8). We then extend Ω in (4.8) by linearity, obtaining ϕ1 = 1
2a∆−

iav0, ϕ̄1 = 1
2a∆+ iav0, ϕn+1 = −iavn, ϕ̄n+1 = iav−n, and

Ω = −i(ϕ1ϕ̄
′
1 − ϕ̄1ϕ

′
1) + 2i

∑

>0

n(ϕn+1ϕ̄
′
n+1 − ϕ̄n+1ϕ

′
n+1) . (5.1)

As claimed this has no (2,0) or (0,2) terms, i.e. none with ϕnϕ
′
m or ϕ̄nϕ̄

′
m. The corre-

sponding Hermitian form [13] is indefinite:

H = −ϕ1ϕ̄
′
1 + 2

∑

>0

nϕn+1ϕ̄n+1 . (5.2)

Hence we have a pseudo-Kahler structure.

We can now return to the question of how to fix the arbitrary real function ξ in (3.8).

It is easy to see that regardless of ξ, Ω will always be a closed form of type (1,1):

Ω = −iξ′(a2)(ϕ1ϕ̄
′
1 − ϕ̄1ϕ

′
1) + 2i

ξ(a2)

a2

∑

>0

n(ϕn+1ϕ̄
′
n+1 − ϕ̄n+1ϕ

′
n+1) .

As long as ξ takes R+ to R+, moreover, we will get a nondegenerate pseudo-Kahler form. In

fact this freedom is completely expected. Consider the space A = Gc/N+ analogous to our

A, where G is a compact Lie group (see section one). Clearly there is no natural choice of

how to embed N+ in Gc; any choice can be conjugated into an equivalent, different, choice

by an element of Gc. Alternately if we fix a choice of N+ we cannot expect to find any

natural Kahler structure, by the same argument. In our case as we mentioned the nearest

substitute for Gc is the Neretin semigroup. As a simple example of how it acts consider the

transformation Ξ : A → A, Ξ(f)(z) = kf(z) for a real constant k. One easily shows that

if we define Ωξ on A by the embedding (3.8), then an equally good choice is Ξ∗Ωξ = Ωξ′ ,

where ξ′(x) = k2ξ(x). More complicated Ξ induce more complicated transformations of ξ.

Thus the choice (2.4) is just one of many equivalent choices. It gives (5.1) a very simple

form.
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6. Quantum Mechanics

The quantization of an infinite-dimensional system like (5.1) is delicate and will no

doubt require methods from the corresponding quantum field theory (see e.g. [5][8][7][18]).

At the very least we will have to replace wavefunctions by cohomology classes [19]. Some

geometrical remarks are in order first, however.

Suppose we have a dynamical system A on which a group G acts by symmetries.

In general we cannot represent the Lie algebra g using Hamiltonian generating functions;

the best we can do is to represent a central extension ĝ in such a way that the central

generator is represented by a constant function [2]. It may seem surprising that a central

extension can show up in classical mechanics, but it is already well known [20] that in the

Virasoro geometrical action c enters as a classical parameter; see also section seven. In

any case we have seen that in the present situation the moment map (4.11) affords a true

representation of the algebra Vect in Poisson brackets.

Now suppose a G-invariant line bundle and connection (B,∇) have been given with

curvature of ∇ equal to Ω. Geometric quantization then tells us how to lift the action of

g (respectively ĝ) from A to B. Namely if µa is the moment of some generator and Xµa

its Hamiltonian vector field, then

µ̂a = −i∇Xµa
+ µa (6.1)

is the corresponding quantum operator on sections of B, and one shows that the µ̂a obey

the same algebra under commutation as do the µa under Poisson bracket, namely g (re-

spectively ĝ). Finally if a G-invariant polarization is given then (6.1) acts on polarized

sections of B.

In our case Diff acts on A, (B,∇) are defined in the usual way from the Kahler

potential K of Ω, and the polarization is defined by the Diff-invariant complex structure

on A. Thus B is a holomorphic line bundle and ∇ ≡ d− i∂K its Hermitian connection;

since Ω = i∂∂̄K this is a suitable choice. We finally get an action on wavesections defined

by (6.1).

The point we wish to make is that (6.1) does not at first resemble the prescription

we were trying to imitate. Recall from section one that in the compact case we wanted

holomorphic functions on A (not sections of some bundle) with an action of G by left

translations, i.e.

µ̂a = −iXµa
, (6.2)

12



where Xµa
is the ordinary directional derivative.

To recover this prescription from geometric quantization, we must therefore verify two

global properties. First, we must find that the bundle B is holomorphically trivial. This

amounts to finding a single global Kahler potential. Second, to reduce (6.1) to (6.2) we

need to show that K can be chosen such that everywhere

µa = −i〈∂K,Xµa
〉 = −iX(1,0)

µa
K . (6.3)

Furthermore (6.3) amounts to requiring that the connection −i∂K be itself G-invariant

[21]. A little manipulation reduces this condition to

X(1,0)
µa

µb +X(0,1)
µb

µa = 0 , (6.4)

where X
(1,0)
µa is the holomorphic part of Xµa

. The real part of (6.4) merely says {µa, µb} =

−{µb, µa}, but the imaginary part is new. We now briefly sketch why these two facts

(triviality of B and (6.4)) are true for the case of G =Diff, A = A.

First we notice that our manifold A has very little topology — it retracts to a circle

epitomized by the phase of the first Taylor coefficient of f . So to study the triviality of B

we can restrict attention to the submanifold A0 = {fu , u ∈ C×}, fu(z) = uz. Here our

formulas reduce to Ω = −idu∧dū. We can therefore takeK = −|u|2, which is clearly global

and invariant under the remnant symmetry U(1) ⊂ Diff acting on A0. One easily shows

that if we generalize to one of the other prescriptions (3.8), then K(u) = −
∫ |u|2 dx

x ξ(x) is

again global and invariant.

Next we want to verify the condition (6.4). It is enough to do so at the submanifold

A0. Hence we need the moments µn of the Diff generators ℓn to first order near A0. Letting

u = eiαa we find that at fu the Hamiltonian vector field of ℓn is

X
(1,0)
Ln

= aeinα
∂

∂ϕn+1

n ≥ 0

= 0 n < 0 ,

while the corresponding moments are

Ln = 2ianeinαϕ̄n+1 n > 0

= −2ianeinαϕ−n+1 n < 0

= a2 − uϕ̄1 − ūϕ1 n = 0 .

13



Before verifying (6.4), we note that it was derived for the action of G, i.e. for real generators

of Diff. Taking the linear combinations Ln + L−n, i(Ln − L−n), we easily verify it at A0.

Again one can show that this works for any choice of ξ.

Away from A0 we extend the (1,0)-form −i∂K to an invariant (1,0)-form κ by the

action of Diff, for which A0 is a slice. We can then integrate ∂K = iκ to find K because

A retracts onto A0.

We now know that our quantum mechanical system implements the analog of the the-

orem in section one for any choice of the real positive function ξ. We should however be

careful to choose ξ so that the quantum mechanical operators satisfy L̂†
n = L̂−n. Truncat-

ing to A0 we see that our choice ξ(x) = x meets this condition, since then the metric e−K

makes our truncated system the same as the harmonic oscillator in an inverted potential,

with L̂0 the Hamiltonian. This system can be quantized using 1-form wavefunctions.

7. Central extension

We now generalize the previous construction to find a family of invariant Kahler

metrics on the space A, parameterized by a real number t. That is, the space itself, its

complex structure, and holomorphic action of Diff will always be the ones found in sections

two and three. Our strategy is to invent a larger space Â with just one symplectic structure

Ω̂, then find a Hamiltonian constraint reducing Ω̂ to a family of symplectic manifolds all

isomorphic to A. In section eight we will then introduce further constraints to reduce A
to individual coadjoint orbits.

We construct Â by applying the previous recipe to D̂iff, the central extension of Diff

defined by the Lie algebra extension of V̂ect ∼= Vect⊕ R:

[(v1, ν1), (v2, ν2)] =

(
[v1, v2],

1

24π

∮
v′′′1 v2

)
.

Here and below prime means d
dθ . Following [20] we have omitted the conventional factor

of i to emphasize that D̂iff is a real manifold. In the usual way this extension defines a

multiplication law

(γ1, c1) · (γ2, c2) = (γ1 ◦ γ2, c1 + c2 + c(γ1, γ2))

(see [22]), but we will not need the explicit form of the cocycle c(γ1, γ2).

14



We will write (γ, c) ∈ D̂iff, (v, ν) ∈ V̂ect, (b, t) ∈ V̂ect
∨

. Thus a point in the cotangent

is specified now by (γ, c; b, t), and a vector by V(v,ν;η,λ)|(γ,c;b,t) ∈ T(γ,c;b,t)(T
∨D̂iff). Formulas

like (4.6),(4.7) now have somewhat tedious generalizations. Analogous to (4.2) we include

D̂iff× R+ × R into T∨D̂iff by

(γ, c; s, t) 7→ (γ, c; sℓ∗0, t) .

Then the natural symplectic form pulled back to D̂iff× R+ × R is

Ω̂(V(v1,ν1;∆1,λ1)
, V(v2,ν2;∆2,λ2)

) = ∆1(v2)0+λ1ν2−∆2(v1)0−λ2ν1−s[v1, v2]0−
t

24π

∮
v′′′1 v2

(7.1)

at (γ, c; s, t), where now ∆i are real numbers. As before this is closed.

We thus have a symplectic manifold Â = D̂iff×R+ ×R with an action of D̂iff by left

translations. As before this action preserves the symplectic structure, and as before Â is

multiplicity-free. Eventually we want an action of Diff, not D̂iff. For now, however, the

Hamiltonian vector field corresponding to (v, ν) ∈ V̂ect is

Û(v,ν)|(γ,c;s,t) = V(Ad
γ−1 (v,ν);0,0)

|(γ,c;s,t) . (7.2)

One checks that again the corresponding moment map is

µ̂(γ, c; s, t) = Ad∗γ−1(sℓ
∗
0, t) . (7.3)

Note that since Ad(γ−1,c)(v, ν) is independent of c we abbreviate to Adγ−1(v, ν), and sim-

ilarly Ad∗. Note also that µ̂ is therefore independent of c.

From (7.2) we see that the coordinate t is strictly first-class, i.e. it commutes with µ

under Poisson bracket since Û(v,ν)t ≡ 0. We may thus reduce Â by a constraint setting

t− t0 = 0 for any constant t0. Furthermore the flow generated by t is just ∂
∂c , from (7.1).

Hence for any t0 we get a constraint reduction to D̂iff× R+ × {t0}/ ∼, where ∼ identifies

different values of c. But this space is just our A ∼= Diff × R+. Moreover the left action

of D̂iff on Â is seen to descend to the usual left action of Diff on A. However, while the

functions (7.3) descend to A, they do not generate the Lie algebra of Vect — instead a

central term remains, as desired.

We therefore get on A a family of symplectic forms

Ωt0
(Vv1,∆1

, Vv2,∆2
) = ∆1(v2)0 −∆2(v1)0 − s[v1, v2]0 −

t0
24π

∮
v′′′1 v2 .

15



Henceforth we regard t0 as a parameter. We know that Ωt0
is invariant since the constraint

was first class. Using the same complex structure as in section two, invariant under the

same action of Diff as in section three, we now see that every Ωt0
is pseudo-Kahler by a

calculation similar to (5.1):

Ωt0
= −i(ϕ1ϕ̄

′
1 − ϕ̄1ϕ

′
1) + 2i

∑

>0

(
n+

t0
24a2

n3
)(
ϕn+1ϕ̄

′
n+1 − ϕ̄n+1ϕ

′
n+1

)
. (7.4)

This is the imaginary part of a Hermitian metric on A given by

Ht0
(ϕ, ϕ̄′) = −ϕ1ϕ̄

′
1 + 2

∑

>

(
n+

t0
24a2

n3
)
ϕn+1ϕ̄

′
n+1 .

We have arranged for H, and hence also the Kahler potential, to be positive as t0 → ∞.

Unlike the case of zero central charge, Ωt0
and Ht0

are singular whenever 24a2/t0 = −n2

for integer n. (Recall that b0 = a2/2π.) Hence we should really define At0
as a singular

symplectic variety. Note that this problem was already present at the classical level (see

(7.1)); it reflects our failure to find a slice in T (T∨D̂iff) suitable for “gauge-fixing” in the

language of [5].5 Far from being a pathology we expect the singularity of Ω to be the key to

its correct quantization. For, as we cross the singularities the signature of H changes. For

H of indefinite sign we know we should consider wavesections as Dolbeault cohomology

classes [19], or equivalently introduce fermions. As noted by Alekseev and Shatashvili,

such fermions are precisely what is needed to correct the signs in the character formula

in [5]. (In that paper this phenomenon was not visible, however, because the complex

structure was not available and hence Ω could not be converted into H.) We do not yet

know how to make this conjecture precise.

The constraint formalism guarantees that each Ωt0
will be closed. It does not follow,

however, that Ωt0
= dαt0

for some invariant one-form αt0
, even though Ω̂ = dα̂ for an

invariant α̂. In the language of section six this failure is responsible for the appearance

of a central extension in the Poisson brackets of generators; upon quantization it gives us

representations of D̂iff as desired. Moreover the D̂iff-invariance condition for the geometric

action is equivalent to the Virasoro Ward identity [24] , and the appropriate αt0
is just

the Virasoro geometric action with the base point s regarded as a dynamical variable as

assumed in [5].

5 The problem is indeed reminiscent of a similar singularity in Chern-Simons-Witten theory

[23]. There the solution was to excise the bad subvariety by restricting attention to stable vector

bundles on a fixed Riemann surface. This is not helpful in the present case, where the bad

subvariety is in the interior of A.
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8. Reduction to orbits

Consider again the case with no central extension. Since the action of Diff in (3.1)–

(3.2) does not affect s, we see that s is strictly first-class and may be set to any value s0.

Moreover the corresponding flow generated by the constraint s−s0 is the right action of the

rigid rotation group S1 ⊂ Diff. This follows because Ω(V(v,∆), V(ℓ0,0)) = ∆+ s[ℓ0, v]0 = ∆,

while the derivative V(v,∆)s = ∆; from (4.3) V(ℓ0,0) generates the right action of S1 on Diff.

Thus at t0 = 0 A admits a Hamiltonian constraint reduction to a set of copies of

Diff/S1; under the moment map (4.11) these map to the usual coadjoint orbits as desired.

In the case of section seven, generically we have the same situation. At the special

values of s, however, Ωt0
becomes singular and we must reduce further to get a good

dynamical system. We expect a new function ψ to become first-class at these special

values. Since we are already constraining s, this means that the Poisson brackets satisfy

{ψ, s} = 0, {ψ, µ} = 0 .

The form of the centralizer in [3] suggests that we try

ψ(γ, s) = 〈Adγ(ℓ0, 0), (ℓ∗n, t0)〉 .

Thus the derivative V(ℓ0,0)ψ = 0 and so {ψ, s} = 0. When s = − t0
24n

2 we also find the

derivative V(Ad
γ−1v,0)

ψ = 0 for all v, and so {ψ, µ} = 0 as desired. One can show that

ψ generates right motions of a generator of SL(2,R). (If such a generator exists then it

must commute with s, since [ℓ1, ℓ0]0 = 0, and also with µ, since right and left motions

commute.)

9. Conclusion

Even though the diffeomorphism group has no complexification, we have found a space

A which has all the attributes, save one, of the space Gc/N+ for a compact group. The

space A has a free action of Diff by holomorphic maps, and so the holomorphic functions on

it furnish a large, reducible representation of Diff. A also carries a family of holomorphic

line bundles with actions of D̂iff, giving representations for various values of the central

charge.

All this is nice, but we have seen much more. Since A is infinite-dimensional, the

precise class of functions to allow is a delicate question. If A has the structure of a
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quantum-mechanical system, however, then we can imagine bringing to bear methods of

2d quantum field theory for its quantization. Remarkably we have seen that this is so. The

holomorphic functions (or sections of a bundle), with the action of Diff (or an extension)

above, actually arise from the quantization of a dynamical system. We constructed the

classical and quantum data of this system. It turned out to be quite simple. For example

the prequantum line bundle is just trivial — certainly not the case for the Borel-Weil-

Bott theorem. Also we found that of the rather complicated catalog of Virasoro coadjoint

orbits, only the interesting ones Diff/S1 and Diff/SL(n)(2,R) are present. The only missing

attribute of the compact case is positivity of the Kahler metric onA; we have suggested that

this failure is not a pathology of our construction but instead a crucial feature for getting

the representation theory right. In fact by taking the wavefunctions to be cohomology

classes we expect to recover and interpret geometrically a form of the complex introduced

by Felder [25] .

Quantization of the space A remains a somewhat daunting prospect, however. Even

with some appropriate regularization replacing the condition of square-integrability, the

fact that for t < 0 the pseudo-Kahler form degenerates will cause trouble. Similar diffi-

culties appear in other approaches to quantizing SL(2,R) gauge theory [26]. We think,

however, that the present approach shows the issues in a particularly clear form.

We are grateful to R. Bott, A. Morozov, N. Reshetikhin, E. Verlinde, H. Verlinde, E.
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