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ABSTRACT 

FEATURES AND FUNCTIONS: DECOMPOSING THE NEURAL AND COGNITIVE 

BASES OF SEMANTIC COMPOSITION 

Christine Boylan 

Sharon L. Thompson-Schill 

John C. Trueswell 

In this dissertation, I present a suite of studies investigating the neural and cognitive 

bases of semantic composition.  First, I motivate why a theory of semantic combinatorics 

is a fundamental desideratum of the cognitive neuroscience of language.  I then introduce 

a possible typology of semantic composition: one which involves contrasting feature-

based composition with function-based composition. Having outlined several different 

ways we might operationalize such a distinction, I proceed to detail two studies using 

univariate and multivariate fMRI measures, each examining different dichotomies along 

which the feature-vs.-function distinction might cleave.  I demonstrate evidence that 

activity in the angular gyrus indexes certain kinds of function-/relation-based semantic 

operations and may be involved in processing event semantics. These results provide the 

first targeted comparison of feature- and function-based semantic composition, 

particularly in the brain, and delineate what proves to be a productive typology of 

semantic combinatorial operations.  The final study investigates a different question 

regarding semantic composition: namely, how automatic is the interpretation of plural 

events, and what information does the processor use when committing to either a 
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distributive plural event (comprising separate events) or a collective plural event 

(consisting of a single joint event). 
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I. INTRODUCTION 

Why concern ourselves with compositionality? 

Language owes its infinite expressive capacity to our ability to take simple 

building blocks, such as words or concepts, and combine them into complex 

representations. How such conceptual combination might be realized in the brain, and 

whether formal accounts of syntactic and semantic composition are useful in 

characterizing the neural system underpinning conceptual combination, are still highly 

debated questions, and the emergence of compositional meaning from units such as 

morphemes, words, or concepts, is largely a mystery.  However, understanding the 

engine of compositionality in the brain is a fundamental desideratum of any cognitive 

neuroscientific model of “concepts.” 

This dissertation examines how the compositional system accomplishes 

conceptual and grammatical semantic combinatorics along a number of possible 

dimensions. We investigate several ways in which a natural dichotomy may exist 

between feature-/property-based composition, which concerns attributive modification 

operations on concepts, and relation-based composition, which concerns grammatical and 

thematic relations between concepts.  Chapters 2 and 3 examine two different ways of 

characterizing this dichotomy that engage two regions of the brain we describe as 

combinatorial hubs: the angular gyrus (AG) and the anterior temporal lobe (ATL).  

Chapter 3 details the possibility that event semantics are particularly privileged in the 

putative “relation-based” semantic space supported by (left) AG. Chapter 4 investigates a 

different question regarding semantic composition: namely, how automatic is the 
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interpretation of plural events, and what information does the processor use when 

committing to either a distributive plural event (comprising separate events) or a 

collective plural event (consisting of a single joint event). 

Attributive vs. relational combination 

For one intuitive explanation of the distinction between what we call feature-

based and function-based compositional operations, we first look to the literature on 

conceptual combination.  Here, the distinction is often cast in terms of “properties” 

instead of “features,” and “(thematic) relations” instead of “functions,” as in Wisniewski 

and Love’s (1998) discussion of two different interpretations of a noun-noun combination 

like robin hawk: 

One kind of interpretation involved a thematic relation between the referents of 

the modifier and head concepts. For example, a robin hawk could mean ‘‘a hawk 

that preys on robins.’’ In property interpretations, people asserted that one or 

more properties of the modifier concept apply in some way to the head concept, 

as in ‘‘hawk with a red breast,’’ for robin hawk.  Sometimes these interpretations 

refer to an entity which shares many properties of both constituents (e.g., a robin 

hawk could refer to a bird that is a cross between a robin and a hawk). 

(Wisniewski & Love, 1998, p.178) 

A thematic interpretation of robin hawk entails that each entity play a different functional 

role (or thematic role): the modifier refers to a robin as the object, or “patient,” of the 

action “to prey on,” while the head noun hawk refers the agent of “to prey on.”  When 

robin hawk is interpreted as a property combination, however, the modifier robin refers 

to a property of the robin – e.g. its red breast – rather than the robin itself.  The property-
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combining interpretation involves no specification of functional roles or argument 

structure as does the relational interpretation. 

 This fundamental distinction between property- or feature-based combination on 

the one hand and functional, thematic relation-based composition on the other is 

ubiquitous across linguistic and psychological theory, albeit under various different 

guises. While chapter 2 uses functional magnetic resonance imaging (fMRI) to test how 

property-based, or “attributive,” and relational nominal compounds like robin hawk 

differentially engage ATL and AG, chapter 3 tests two more ways of operationalizing the 

“feature-function” distinction, while still examining ATL and AG as neural substrates. 

Adjuncts vs. arguments, and whether verb semantics is privileged in the angular 

gyrus 

 Chapter 3 uses fMRI multi-voxel pattern analysis to test two different hypotheses 

about the role of AG in compositional semantics.  Our verb-centric hypothesis states that 

if AG is preferentially sensitive to event-denoting verbs and their thematic relations, then 

phrases that share a given verb (like eats meat and eats quickly) will evoke similar 

patterns of activation in AG.  Phrase pairs that do not share verb semantics will not 

engage similar patterns of activation in AG.  We find evidence that the verb is indeed 

privileged in AG semantic space. 

 Another hypothesis asks whether AG may be sensitive to relational information 

independent of the verb. The dichotomy between “feature” and “function” has a good 

deal of traction in more formal theories of semantics, particularly in the distinction 

between what linguists call “adjuncts” and “arguments,” respectively. The difference 
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between arguments and adjuncts, however, is more subtle than that between verbs and 

non-verbs, and so we unpack the terms a bit below. 

 Intuitively speaking, the verb is the central predicate of a sentence, and predicates, 

such as eat, must be able to take arguments (like meat) in order to participate in well-

formed sentences ( Heim & Kratzer, 1998; Pylkkänen, Brennan, & Bemis, 2011). While 

the case of verbs and their direct objects is perhaps the most canonical example of so-

called “argument saturation”, there are other types of function-argument relations: for 

instance, the composition of prepositional phrases (e.g. with meat, where the preposition 

with takes the argument meat).  

 Many well-formed linguistic expressions can be derived merely by iterative 

application of arg-type composition; however, there are other sorts of linguistic 

expressions it cannot derive.  Take, for instance, the following sentence: 

(2) John ate a sandwich quickly in the kitchen. 

 The semantics of the verb “ate” can be represented as the function ate(x,y), where 

x will be the object argument (here “a sandwich”) and y the subject (here, “John”).  

Leaving aside the subject argument, we can see that applying argument-type composition 

will get us “ate a sandwich,” since it is relatively intuitive that “a sandwich” is an 

argument of “ate.”  However, it is not so clear that we can derive the meaning of “ate a 

sandwich quickly in the kitchen” in terms of argument-type composition alone. In order 

for argument-type composition to accomplish this, all three underlined constituents in (2) 

above must be arguments of “ate.”  However, the case in (3) below shows us that “a 

sandwich” does not behave like the other constituents do. 

(3) John ate a sandwich quickly in the kitchen, and  
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(a) Bill did (so), too. 

(b) *Bill did (so) a salad. 

(c) Bill did (so) slowly. 

(d) Bill did (so) in the backyard. 

It would seem that there is something about the status of the constituent “a sandwich” 

that cannot be left out or replaced (see 3b), while the other constituents “quickly” and “in 

the kitchen” can (3c, 3d). This is because the only argument of “ate” in 2-3 is “a 

sandwich,” whereas the other underlined constituents are modifier, or “adjunct,” phrases 

that modify the predicate “ate.”  How do we derive the compositional meaning of these 

modifying phrases?  

 Adjunct-type composition allows us to combine such modifiers with their “heads,” 

where “ate” is the head in 2-3, and “in the kitchen” and “at midnight” are the modifiers. 

These optional elements serve to further specify features or properties of the head they 

modify (while “ate” is an event-denoting element, “quickly” and “in the kitchen” are 

when- and where-type properties of that event).  

 In Chapter 3, we discuss evidence that specifically event-denoting verb argument 

structure may selectively engage the AG, while it remains to be seen whether AG and/or 

ATL differentiate arguments and adjuncts more generally. 

 

Collective vs. distributive interpretations of plural sets 

 In Chapter 4, we turn to a different set of questions regarding events and semantic 

composition, this time examining the degree to which the decision to interpret plural 

events as either distributive (occurring separately) or collective (occurring jointly) might 
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be automatic and immediate, and also whether this decision is biased to be collective or 

distributive at certain points along the timecourse of interpretation.  Examining sentences 

like “John and Bill carried a box,” where this sentence could entail John and Bill each 

carrying a separate box (a distributive plural) or John and Bill together carrying the same 

box (a collective plural), we ask whether the collective or distributive quality of the 

predicate is something the processor can leave underdetermined, or whether the grammar 

requires a commitment to one interpretation or the other early on in the sentence.   

Using eye-tracking and the visual world paradigm, we tested a hypothesis (Frazier 

et al.'s (1999) Minimal Semantic Commitment hypothesis) that distinguishes between 

two types of mental representations the processor might entertain upon encountering a 

underdetermined semantic constituent (like a plural event that could be collective or 

distributive): if the representation is ambiguous, the processor will commit to one of its 

interpretations and later revise it if necessary, but if the representation is vague, the 

processor refrains from committing to an interpretation, leaving some features 

underdetermined until further information is made available. The crucial difference 

between these two proposed representation types is that an ambiguous representation 

necessitates a decision about an interpretation, while a vague representation tolerates 

unspecified features. This is somewhat similar to the notion that adjuncts have an 

“optional” status in the grammar, while arguments are elements of the grammar that are 

necessary in order for a parse to be successful, as described in the section above.   

 The following two sentences illustrate a case when a linguistic item can be said to 

tolerate “underspecification,” or vagueness: 

(4) a. John ate. 
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 b. John ate quickly.   

The difference in meaning between (4a,b) resides in the adverb “quickly.” In sentence 

(4a), the manner in which John ate is left unspecified, and yet a reader will find sentence 

(4a) perfectly interpretable without knowing the manner in which John ate.  On the other 

hand, if the sentence lacked information specifying other propositional content, 

including, for instance, the number (singular) or tense (past) of the verb, this sentence 

would be grammatically uninterpretable (forcing a case of ambiguity when the processor 

would have to commit to a number or tense even if uncertain). Thus, while some 

information about the verb must be determined in order to parse the sentence, other 

features ostensibly need not be, as in the case of the adverbial adjunct “quickly” (1b). 

Adjunct information, such as the manner in which John ate, is therefore characterized as 

vague, rather than ambiguous. 

 Given the prediction that an ambiguous item will prompt the processor to 

converge on one particular interpretation even in the absence of disambiguating 

information, chapter 4 seeks to test whether, and when, sentences underdetermined for 

collective/distributive plurality will nonetheless immediately converge on one 

interpretation. We recorded participants’ eye movements as they interrogated two scenes, 

one collective and one distributive, while listening to corresponding sentences either with 

or without the early disambiguating adverbs “together” (explicitly indexing a collective 

event) and “each” (indexing a distributive event).  Experiment 1 queries the timecourse of 

interpreting sentences beginning with conjoined noun phrases (conjoined NPs), such as 

“John and Bill (each/together) are carrying a box,” while Experiment 2 uses the same 

scenes but with sentences starting with simple plural NPs (“The boys (each/together) are 



 

 

8 

carrying a box”).  We find evidence that the collectivity/distributivity of NPs like “John 

and Bill” and “The boys” is a matter of ambiguity (a grammatically forced, necessary 

choice). However, whereas early fixations are biased towards collective scenes in 

conjoined NP John and Bill sentences, they are biased towards distributive scenes in The 

boys sentences. We discuss possible reasons for this difference in the final section of 

chapter 4. 

 

Aims of the dissertation 

 In this dissertation, I seek to demonstrate the following: 

i. Semantic compositionality can be characterized along a “feature-vs.-function” 

dichotomy in several possible dimensions (chapters 2 and 3) 

ii. The AG supports various aspects of function-/relation-based composition, among 

them verb-specific argument structure around events (chapter 3) and more general 

thematic relation-based composition (chapter 2). 

iii. Semantic decisions on the collective or distributive representation of plural events 

occur early on in sentence processing – at the verb phrase – even in the absence of 

disambiguating evidence. However, the bias of this decision is largely determined 

by the affordances of the subject noun phrase, and not just the verb phrase 

(chapter 4). 

While we find some evidence for the distinction between feature-based composition and 

functional relation-based composition within left ATL itself (see Chapter 2), we find 

stronger evidence for at least a single dissociation of relation-based composition in AG.  

In chapter 5, we review the several ways we have operationalized such “relation-based” 
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composition, and we consolidate evidence that AG subserves certain of these relation-

based operations. We close by reviewing evidence that AG may also be involved in the 

representation of plural sets, and we speculate that further study of AG may not only shed 

light on relation-based composition, but also on the distinction between distributive and 

collective plural sets. 
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II. RELATIONAL VS. ATTRIBUTIVE INTERPRETATION OF NOMINAL 

COMPOUNDS DIFFERENTIALLY ENGAGES ANGULAR GYRUS AND 

ANTERIOR TEMPORAL LOBE 

Introduction 

Language’s infinite generative capacity allows us to produce utterances ranging from 

the prosaic, as in “Close the door,” to the ridiculous, as in “Hold the newsreader's nose 

squarely, waiter, or friendly milk will countermand my trousers” (Stephen Fry, A Bit of 

Fry and Laurie).  Less ridiculous, but no less novel, sentences are uttered every day, and 

the ability of a reader or listener to understand such novel sentences, the propositional 

meanings of which cannot be retrieved from memory, requires a compositional algorithm 

that takes word meanings and combines them in such a way as to produce a more 

complex meaning.  The neural substrate of this compositional algorithm remains elusive. 

Earlier work sometimes considered this engine of composition a more or less 

undifferentiated mechanism working to combine elements at all levels of language, 

whether that be syntax, semantics, or phonology (Hagoort, 2005; inter alia). While it is 

entirely plausible that the brain co-opted a basic, domain-general combinatory 

mechanism for language, and implements it across multiple brain regions, such a 

monolithic theory of linguistic composition has its limitations.   

For instance, many approaches to the study of composition benefit from a clear 

distinction between syntactic and semantic composition. Numerous psycho- and 

neurolinguistic studies investigating the syntax-semantics interface have included so-

called Jabberwocky phrases, in which nonsense words replace content words while 
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function words remain in place, as semantically vacuous (or at least impoverished) 

syntactic controls for linguistic phrases (e.g. “the mouse that eats our cheese” vs. “the 

couse that rits our treeve” (example  from Pallier, Devauchelle, & Dehaene, 2011).  

These studies demonstrate that subjects parse Jabberwocky phrases into hierarchical 

constituents similar to their natural language counterparts, even without knowing what 

the phrase means. Studies of complement coercion also suggest that syntactic and 

semantic argument structures are not isomorphic: evidence from behavioral, eye-tracking, 

and electrophysiological measures demonstrate a processing cost where semantic 

material unexpressed in the syntax must be inserted in order to coerce a coherent 

argument structure; e.g. “The man began the book” is interpreted as “The man began 

[reading/writing] the book” via implicit insertion of some event information (Baggio, 

Choma, van Lambalgen, & Hagoort, 2010; Kuperberg, Choi, Cohn, Paczynski, & 

Jackendoff, 2009; Kuperberg, Sitnikova, & Lakshmanan, 2008; McElree, Pylkkänen, 

Pickering, & Traxler, 2006; Pylkkänen & McElree, 2006, 2007; Traxler, McElree, 

Williams, & Pickering, 2005). 

In this study, we proceed one step further, and suggest that within the domain of 

semantic composition, there is evidence for a distinction between two basic combinatorial 

operations, even when syntax is held constant.  Specifically, we investigate the case of 

noun-noun compounds, in which the syntax is always a modifier noun followed by a head 

noun (e.g. mountain lake, where the syntax dictates this is a lake (in the mountains), not a 

mountain (in a lake)).  Noun-noun compounds are a particularly tractable case of minimal 

composition (Bemis & Pylkkänen, 2011), isolating the instance of combination rather 
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than investigating compositionality in the context of multi-word phrases or sentence 

stimuli, where multiple types of combinatorial operations occur simultaneously or in 

quick succession.  Noun-noun compounds are particularly interesting because the first 

noun – the modifier noun – can be either predicating/“attributive” (as in zebra clam, 

where zebra denotes the attribute “striped”) or non-predicating/“relational” (as in 

mountain lake, where “mountain” is not an attribute but an object bearing a spatial 

relation with “lake”).  Predicating combinations can be paraphrased as “a [noun] that is 

[adjective],” such as red ball (“a ball that is red”). Non-predicating combinations cannot 

be paraphrased this way: e.g. tennis ball is not “a ball that is tennis,” but rather is “a ball 

for playing tennis” (Downing, 1977; Gagné & Shoben, 1997; Levi, 1978). Attributive 

noun-noun compounds are predicating in that they can be paraphrased as “a [head noun] 

that is [modifier noun]-like”, as in zebra clam – “a clam that is zebra-like” (“a clam that 

is striped”). Relational noun-noun compounds are more complex in that they are non-

predicating, and derive their meaning from some extrinsic predicating relation (e.g. “a 

ball for playing tennis”) (Levi, 1978; Murphy, 1990). 

We find evidence that relational and attributive interpretations of noun compounds 

differentially engage two regions of the brain otherwise broadly implicated in semantic 

composition: the angular gyrus (AG) and the anterior temporal lobe (ATL).  Below, we 

discuss how the distinction between attributive and relational combination may shed light 

on the functional differences between these two putative neural “hubs” of semantic 

composition. 
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A tale of two hubs: the angular gyrus and anterior temporal lobe 

 Mounting evidence suggests ATL and AG are involved in semantic processing, 

generally, and in semantic composition, specifically; however, only recently has there 

been effort to characterize their division of labor.  Both have been characterized as 

"semantic hubs,” owing to functional and anatomical patterns that are consistent with 

multimodal convergence (Binder & Desai, 2011; Lambon Ralph, 2014; Patterson et al., 

2007; Seghier, 2012). The ATL is uniquely situated at the end of a caudal-to-rostral 

stream of information processing feeding from primary sensory and motor areas and 

association cortex (Binder et al., 2009; Binder & Desai, 2011; Binney, Parker, & Lambon 

Ralph, 2012; Felleman & Van Essen, 1991).  Moving anteriorly along the temporal lobe, 

one finds a caudal-to-rostral hierarchy emerge as neuronal responses are more tuned to 

complex stimuli and more invariant to low-level sensory variation; such a hierarchy has 

been established along both visual (Felleman & Van Essen, 1991) and auditory 

(Rauschecker & Scott, 2009) streams.  This “graded convergence” may provide a 

mechanism both for attributive feature combination and, in the limit, for maximally 

invariant amodal, abstract conceptual representations.  The culmination of this graded 

convergence up the temporal lobe (Rauschecker & Scott, 2009; Stringer & Rolls, 2002) is 

a basal rostral region of ATL shown to have very limited extra-temporal connectivity and 

high intra-temporal connectivity (Binney et al., 2012).  Such neuroanatomical 

sequestration is a necessary condition for a region to be able to represent abstract, 

modality-invariant semantics.  Thus, ATL is a prime candidate for attributive semantic 

composition.  
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In one of the first studies investigating the neural correlates of minimal two-word 

composition, Baron and colleagues (2010) found evidence from fMRI pattern analyses 

that the left ATL subserved the combination of concepts such that the superimposition of 

individual patterns of the simplex concepts YOUNG and MAN (as represented by 

various face stimuli) reliably predicted the activation pattern for the complex concept 

YOUNG MAN.  Consistent with this finding, a magnetoencephalography (MEG) study 

of visually presented two-word phrases comparing nouns in minimal compositional 

contexts (red boat) with nouns in non-compositional contexts (in which a non-word letter 

string was concatenated with a real word, e.g. xkq boat) found increased composition-

related activity in left ATL (Bemis & Pylkkänen, 2011). There is a growing body of 

functional and tractographic studies to suggest that the representational unit of property-

based composition in left ATL may be multimodal sensorimotor features, particularly 

visual concrete properties of object-concepts in more ventromedial regions of ATL, and 

possibly more abstract auditory-visual properties in more dorsolateral regions of ATL 

(Coutanche & Thompson-Schill, 2014; Hoffman, Binney, & Lambon Ralph, 2015), 

corroborating the notion of the left ATL as hub of the so-called ventral “what” pathway.   

 In addition to the ATL, researchers have also ascribed the label “semantic hub” to 

the AG, as it lies at the junction between temporal, parietal, and occipital lobes and thus 

receives a confluence of auditory, somatosensory, spatial, and visual inputs. Conceptual 

combination studies of the sort described above (Bemis & Pylkkänen, 2012) have 

demonstrated involvement of both left AG and left ATL, and several studies implicate 

bilateral AG in the contrast between well-formed sentences on the one hand and word 

lists, pseudowords, or scrambled sentences on the other (Bavelier et al., 1997; Bottini et 
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al., 1994; Humphries, Binder, Medler, & Liebenthal, 2007; Humphries, Binder, Medler, 

Liebenthal, & others, 2006). Left AG also shows greater activity for semantic violations 

vs. congruent well-formed sentences (Friederici, Rüschemeyer, Hahne, & Fiebach, 2003; 

Kang, Constable, Gore, & Avrutin, 1999; Kuperberg et al., 2000; Luke, Liu, Wai, Wan, 

& Tan, 2002; Ni et al., 2000) and for connected discourse vs. unrelated sentences 

(Fletcher et al., 1995; Homae, Yahata, & Sakai, 2003; Xu, Kemeny, Park, Frattali, & 

Braun, 2005).  This broad profile of effects has led some to suggest that the AG may play 

a potentially domain-general role in semantic information integration structured around 

events.  

Not all studies investigating conceptual combination find activation in both left ATL and 

bilateral AG. Of those stimuli that elicit differential activity in AG but not in left ATL, 

one finds that the type of composition may more often be based on thematic relations 

rather than attributive combination. Graves et al. (2010) compared familiar meaningful 

noun-noun compounds, such as lake house, with reversed phrases, such as house lake, the 

meanings of which were not obvious; they found that right AG, along with other right-

lateralized temporoparietal areas, showed greater activation for processing the more 

obviously combinatorial phrases. Interestingly, the authors noted that most of their noun-

noun stimuli were interpreted as denoting thematic relations between head and modifier 

nouns (see below for further explanation); that is, most compounds consisted of nouns 

participating in some spatial relation (as in “a house on a lake”) or event-based relation 

rather than picking out an attribute of the modifier noun. It is likely that these stimuli 

were probing semantic thematic relations in particular rather than combinatorial 

semantics in general. 
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Relational vs. attributive interpretation of nominal compounds 

In order to further distinguish between property-based associations and relation-based 

associations between concepts, consider the following nominal compound: robin hawk. 

Wisniewski (1996) found that people’s interpretations of a novel compound of this sort 

could be characterized in one of two ways. Some individuals applied a property of the 

concept “robin,” such as a red breast, to the head noun “hawk,” to arrive at an 

interpretation like “a red-breasted hawk.” Others found a thematic relation between the 

two birds, noting that a hawk might hunt a robin, and interpreted “robin hawk” as “a 

hawk that preys on robins.”  In the first type of interpretation, “robin” indicated some 

attribute or feature commensurate with the head noun “hawk,” while in the second type 

of interpretation, the modifier noun “robin” was not broken down into features, but rather 

participated in a thematic relation with the head noun “hawk.”   

It is worth noting here that the terminology “predicating and non-predicating” is 

perhaps more precise than the terms “relational” and “attributive,” which bear the 

misfortune of being both very common and denoting very different qualities depending 

on the theoretical framework. (For instance, there are certain non-deverbal “relational” 

nouns, like sister, boss, edge, height, etc., that seem to take implicit semantic arguments 

(Partee & Borschev, 2003), but we do not consider such relational nouns here.)  

However, “predicating and non-predicating” are terms that perhaps imply an overly 

syntactic typology for a phenomenon we argue arises from conceptual-semantic 

affordances; that is, robin hawk is interpretable as “a hawk that hunts robins” only 

because of the association between hawk and hunting (robin chicken would be unlikely to 
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invite such a predator-prey relation). Therefore, we will refer to these nominal compound 

types as “relational” and “attributive.” 

Earlier literature assumed that the thematic relation was the primary means of 

interpreting nominal compounds: the consensus was that only after failing to find a 

plausible thematic relation binding the modifier and head nouns did people derive a 

property-based interpretation (Downing, 1977; Gagné & Shoben, 1997; Shoben & 

Gagné, 1997; Wisniewski & Gentner, 1991). Later proposals recognized attributive 

interpretations as somewhat distinct, but still considered property-based combinations too 

infrequent to be considered a different process; while Wisniewski & Love (1998) 

reported that attributive interpretations accounted for 29% of their nominal compounds, 

other samples reported attributives occurring as little as 1% of the time in corpora 

(Downing, 1977; Gagné, 2000; Warren, 1978). Parsimony dictated that attributive 

interpretations were simply another kind of relation, namely a resemblance relation 

(where zebra clam is merely a clam that resembles a zebra), and a single-process model 

prevailed (Costello & Keane, 2000; Gagné, 2000).  One prominent formulation of single-

process conceptual combination is the Competition Among Relations in Nominals 

(CARIN) theory (Gagné & Shoben, 1997).  Under this account, the modifier noun (zebra 

in zebra clam, or mountain in mountain lake) is not incorporated into the head noun’s 

representation, but rather a relation (e.g. noun RESEMBLE modifier, or noun LOCATED 

modifier, respectively) is inserted that links the two concepts.  Moreover, under CARIN, 

some relations will be considered prior to others, depending on the lexical items being 

combined (e.g. LOCATED is a more apt relation than ABOUT when construing the 
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compound mountain lake). This model stipulates that the RESEMBLE relation (that is, 

the attributive interpretation) is largely dispreferred. 

However, further study found evidence for a categorical distinction between a 

relation-linking process like that described under CARIN, and another process, by which 

a property or attribute of the modifier is “transferred” to the head noun (attributive 

combination). Several studies found that the interpretation of ambiguous nominal 

compounds (such as robin hawk) could be manipulated based on priming the ambiguous 

item with relational or attributive compounds. Wisniewski & Love (1998) found that 

ambiguous targets were more likely to be interpreted attributively when following an 

attributive-biased compound, but more likely to be interpreted as relational when 

preceded by a relational prime.  While this suggested that attributive and relational 

processes were actually distinct, dual processes, Gagné (2000) failed to replicate this 

effect using the same stimuli and procedure.  Estes (2003) followed this work with 

another priming study, testing whether relational interpretations occurred serially prior to 

attributive interpretations, or whether these processes occurred in parallel. He found that 

both comprehension and reaction times were facilitated when target combinations 

matched prime combinations in attribution or relation. Moreover, Estes (2003) tested the 

CARIN model’s serial relation prediction that there should be an interaction between 

prime type and target type: if relation precedes attribution, then an attributive prime 

should interfere with interpretation of a relational target while a relational target should 

not hinder comprehension of an attributive target. That is, under the serial CARIN 

account, an attributive prime would involve additional (attributive) processing not 
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otherwise induced during a relational prime, and this extra processing would interfere 

with comprehension of a relational target. Estes (2003) did not find such an interaction, 

and interpreted these findings as inconsistent with a serial model like CARIN.  However, 

this null result is hardly damning to a serial, single-process account, and evidence 

arbitrating between single and dual process models of relational and attributive 

compound interpretation remains equivocal.  

Relational and attributive semantics in the brain 

 The distinction between property- and relation-based semantic processes is not 

unique to work on conceptual combination, but also appears in the neuropsychological 

semantic memory literature. Here, one abiding question has been: Do relational and 

attributive conceptual combinations arise from neuroanatomically separable components 

of the semantics, or are they subsumed by the same combinatorial operation?  If the 

latter, are these operations hierarchically disposed in some way: that is, do attempts at 

relational interpretation precede attributive interpretation, or vice-versa?   

In the semantic memory literature, the distinction between so-called taxonomic 

and thematic associations serve as a parallel to what we have described as attributive and 

relational associations, respectively.  Contrary to the conceptual combination literature, 

where models like CARIN suggest relational associations may precede attributive 

associations, some connectionist accounts appear to suggest that taxonomic (attributive) 

semantic knowledge may be logically prior to thematic (relation) knowledge.  By some 

accounts, taxonomically defined concepts are the constituents of thematic relations: for 

instance, the thematic relation between dog and bone is supervenient on knowledge of 
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these concepts’ properties (Lewis, Poeppel, & Murphy, 2015).  Also, under many 

connectionist frameworks, thematic relations are reified into features, such that the 

concept dog might be linked not only to nodes for “furry,” “warm-blooded,” and “loyal,” 

but also nodes for explicitly relation-based facts, such as “bears live young,” “is led on a 

leash,” and “chews/buries bones” (Rogers & McClelland, 2004).  This approach contrasts 

with a model whereby thematic relations constitute a qualitatively different level of 

representation from taxonomic features or properties, where the unit of representation is 

the event rather than the feature. 

Consistent with an account whereby property-based associations take precedence 

over relation-based associations (contrary to CARIN), a recent MEG priming study found 

that activity in left ATL was only sensitive to property-based taxonomic associations, 

while both taxonomic and thematic associations predicted activity in the left 

temporoparietal junction (TPJ), inclusive of AG (Lewis et al., 2015).  Note that this study 

supports a theory of logical precedence for taxonomic associations over thematic 

associations; it does not, however, provide evidence for a temporal precedence of one 

type of association over the other (as CARIN does for relational/thematic operations over 

attributive/taxonomic operations).  

Another study, however, found evidence of a double dissociation between 

taxonomic and thematic semantic errors in left ATL and left AG, respectively (Schwartz 

et al., 2011). Speakers’ semantic errors can be divided into either taxonomic category 

errors (that is, uttering an incorrect word, but one which has commensurate features, such 

as when “apple” is named as “pear”) or thematic relation errors (that is, uttering “dog” 
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when “bone” was intended, reflecting the thematic relation between “dog” and “bone”).  

Schwartz et al. (2011) examined the taxonomic and thematic errors produced by 86 post-

stroke aphasics in a picture-naming task and conducted voxel-based lesion-symptom 

mapping (VLSM) on each error type separately (with shared variance between error types 

regressed out). Taxonomic errors were mapped to left ATL lesions, while thematic errors 

were localized to left AG. This double dissociation between ATL and AG supports the 

view that the ATL and AG support distinct semantic computations, corresponding to 

property-based and relation-based operations, respectively.   

The current study examines the neural dissociation between property- and 

relation-based conceptual combination in order to discern (1) whether these processes are 

indeed functionally distinct and (2) whether they might allow us to better characterize the 

roles of AG and ATL in semantic combination. While the double dissociation of the sort 

reported in Schwartz et al. (2011), would be indicative of entirely dissociable systems, it 

is also possible that a common underlying semantic process derives both sorts of 

combination such that the distinction is moot.  Midway between these two hypotheses is 

the possibility that these two types of combination are both functionally and neurally 

distinct, but recruit overlapping brain networks.  

We find evidence for (1) a single dissociation in bilateral AG showing more task-

responsive activity for relational compounds than attributive compounds, and (2) a timing 

difference in ATL, specifically an earlier ATL response to attributive compounds than 

relational compounds.. This serial temporal order is directly contrary to that put forth in 
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the CARIN model, but compatible with a different serial model: one whereby 

attributive/taxonomic operations are logically prior to thematic operations.    

Material and methods 

Participants 

 Eighteen subjects (eleven female) participated in this study.  Subjects ranged in 

age from 18 to 42 years, and all were right-handed native speakers of English with 

normal or corrected-to-normal vision and no reported history of neurologic problems.  

Subjects gave written informed consent and were provided monetary compensation 

($20/hour) for their time.  The human subjects review board at the University of 

Pennsylvania approved all experimental procedures.  

Stimuli 

Stimuli Design 

 We drew our nominal compound stimuli from two studies investigating the 

effects of attributive- and relational-biased compounds (Estes, 2003; E. J. Wisniewski & 

Love, 1998).  Of the stimuli used in these studies, we chose the 64 most attributive-biased 

and 64 most relational biased items according to a norming study we conducted via 

Amazon Mechanical Turk (Buhrmester, Kwang, & Gosling, 2011). Subjects (n=17) were 

asked to write their interpretations of each noun compound and indicate their familiarity 

with the noun compound on a 1-7 Likert scale, and three independent coders designated 

these interpretations as either attributive or relational.  Coder agreement was over 95%, 

and where coders’ designations diverged, the primary author’s designation was used 

(Boylan). Criteria for definitions of relational and attributive compounds were taken from 
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Estes, 2003, and Wisniewski & Love, 1998.  Relational and attributive items were 

matched on unigram frequency (t(254) = 1.09, p = 0.28), compound length (t(126) = 

0.85, p = 0.40), and compound familiarity (t(126) = 1.67, p = 0.10) (Brysbaert & New, 

2009) . 

Norming for relational-attributive bias 

 In order to measure the variability in the interpretations of our noun-noun 

compound stimuli, and thus the degree of bias toward attributive and relational 

combination, we combined responses from the Mechanical Turk stimulus norming survey 

with responses taken from a survey of our fMRI subjects after they left the scanner.  Both 

surveys asked subjects to describe what they thought each noun compound meant, with 

the added instruction to the fMRI participants that they write down the interpretations 

they had entertained while viewing the stimuli inside the scanner. Responses from a total 

of 35 subjects per item (17 from Mechanical Turk norming, 18 from fMRI subjects) were 

coded as either attributive or relational.  

Figure 1 shows the distribution of attributive and relational bias by item, order-

ranked from unanimously attributive interpretations to unanimously relational 

interpretations.  The average “relational bias” for an item categorically labeled as 

relational in the Estes and Wisniewski & Love studies was 89.6% (SD = 0.14); likewise, 

the average “attributive bias” for an attributive item was 94.5%, (SD = 0.10). Despite 

having identified 128 items from the Mechanical Turk survey as relatively biased towards 

either relational or attributive meanings, additional responses from fMRI subjects 

demonstrated that some items were much more ambiguous than others.  For instance, 
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while the item “cow parsnip” was originally designated as relational-biased (example 

interpretation: “a parsnip fed to a cow”), as was “pine mushroom” (e.g. “mushroom that 

grows on pine trees”), additional responses indicated these items were equally likely to 

have attributive readings, where interpretations such as “a parsnip shaped like a cow,” 

and “mushroom that looks like a pine cone” were offered for “cow parsnip” and “pine 

mushroom,” respectively.   

 

Figure 1. Plot of relational-attributive combinatorial bias (normed on 35 participants, 

inclusive of 18 fMRI subjects). Figure 1 shows the distribution of attributive and 

relational combinatorial bias by item, order-ranked from unanimously attributive 

(relational bias = 0) interpretations to unanimously relational (relational bias = 1) 

interpretations. Blue indicates those items marked as relational in Estes (2003) and 
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Wisniewski & Love (1998) studies and red indicates those marked as attributive in those 

studies. 

Experimental Task and Design 

The subject’s task on each trial was to read two simultaneously centrally presented words 

constituting a nominal compound and indicate by button press (1) when they had decided 

on a coherent meaning for the compound and (2) whether a subsequent “probe” matched 

the meaning they had in mind.  The nominal compound was presented for 2 seconds, and 

was immediately followed by a fixation cross, on screen for 6 or 8 seconds, during which 

time the subject need only passively view the screen.  This fixation period was followed 

by a probe phrase, which either matched the modal interpretation for a given item (as 

determined in the Mechanical Turk survey; e.g. “a prickly carpet” for “cactus carpet”) or 

was a dispreferred interpretation (e.g. “a carpet on which a cactus stands” for “cactus 

carpet”), where one out of eight trials had a dispreferred probe. This was followed by a 6-

8-second fixation-cross ITI. The entire experiment consisted of 8 runs of 16 trials each. 

After leaving the scanner, subjects were given a questionnaire which asked them to write 

down what they had thought each nominal compound meant when they had viewed them 

in the scanner. 

Image acquisition  

 FMRI data were collected at the Hospital of the University of Pennsylvania on a 

3T Siemens Trio System using a 32-channel multiple-array head coil.  Four types of 

image sequences were collected for each participant: (1) a standard low-resolution 
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anatomic localizer; (2) a high-resolution, T1-weighted sequence for localization of fMRI 

activity in standard stereotactic space; (3) T2*-weighted images from 9 experimental 

runs; (4) a B0 field map sequence for subsequent geometric unwarping of T2*-weighted 

images.   

After acquiring T1-weighted anatomical images (TR=1630 ms, TE=3.11 ms, TI = 

1100 ms, voxel size = 0.9 mm x 0.9 mm x 1.0 mm, flip angle 15°), we collected T2*-

weighted images using a gradient-echo echoplanar pulse sequence (TR=2000 ms, TE=30 

ms, voxel size=2 mm x 2 mm x 2 mm, flip angle = 60°, BW = 1578 Hx/Px, 60 slices, 

with a multi-band acceleration factor of 3).  

Analysis 

Image analysis and ROIs 

FMRI data were pre-processed offline using the AFNI (Cox & Jesmanowicz, 

1999) software package.  The first four volumes of each functional run were removed so 

as to allow the signal to reach steady-state magnetization. Functional images were slice-

time corrected, and a motion correction algorithm employed in AFNI registered all 

volumes to a mean functional volume. Images were then unwarped via B0 field maps 

(using FSL software; http://www.fmrib.ox.ac.uk/fsl) to reduce non-linear magnetic field 

distortions.  We applied a high-pass filter of 0.01 Hz on each run to remove low 

frequency trends. Functional data were registered to the individual subject’s anatomical 

MRI. Transient spikes in the signal were removed using AFNI’s 3dDespike.   
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Our a priori ROIs were left and right anterior temporal lobes and left and right 

angular gyri, which we delimited using AFNI’s CA_ML_18_MNIA atlas. Our anterior 

temporal ROIs spanned labels “left/right temporal pole” and “left/right medial temporal 

pole”, while our angular gyrus ROIs circumscribed only the atlas’s “left/right angular 

gyrus” ROI (see Figure 2). 

Using AFNI’s TENT function, we modeled the hemodynamic response function 

(HRF) as a finite impulse response (FIR) basis set fit to each condition, with bin-width 

equal to the 2-second TR, and 9 knots (TRs) modeled for a given trial. We used the full 

individually fitted 9-knot FIR HRFs to assess differences in the shapes and timecourses 

of the BOLD responses to attributive and relational compounds (see below); however, for 

our initial voxel selection and our analysis of relational-attributive combinatorial bias, we 

collapsed the FIR output: While the FIR model outputs 9 TENT functions and thus 9 beta 

estimates per condition per voxel, we selected the beta estimate of the largest magnitude 

(positive or negative) within a given TENT series such that our design matrix had one 

beta estimate per condition per voxel. 

To identify task-activated voxels for inclusion in further analysis, we first 

conducted a GLM with FIR regressors for task and fixation ITI. The task TENT series 

was time-locked to the onset of the nominal compound, and the ITI TENT began at the 

onset of the fixation ITI (10-12 seconds after the onset of the nominal compound).  To 

investigate effects of relational-attributive combinatorial bias in each ROI, we used a 

model with covariates for task and jittered probe event, where task TENTs were again 

time-locked to the nominal compound presentation and probe TENTS synced to the onset 
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of the probe question (8-10 seconds post compound onset), along with a continuous 

covariate for the relational-attributive bias (see Figure 1) of the noun compound in each 

trial. Head movement and global signal were included as covariates of no interest in both 

models. 

In addition to investigating effects of relational-attributive bias, we also utilized 

subjects’ post-scanning surveys to label each item/trial as relational or attributive based 

on individual subjects’ responses. We then extracted the peristimulus BOLD signal 

timecourse starting at the onset of each trial, where TR0 was the onset of presentation of 

the noun compound, to TR8 post-stimulus onset (total of 9 TRs).  TR0 was subtracted 

from each condition so that the starting point of the BOLD time series was aligned across 

conditions (Staresina, Fell, Do Lam, Axmacher, & Henson, 2012). This is analogous to 

the procedure of “baseline-correcting” in EEG analysis. Thus, only TRs 1–8 (2–16 

seconds post stimulus onset) entered statistical timecourse analysis.  We averaged FIR 

parameter estimates across voxels in each ROI in the participant’s native space, and the 

resulting values entered into subsequent BOLD timecourse analyses. 

Results 

Task-responsive voxels in anatomical ROIs 

In a group-level contrast targeting bilateral AG and bilateral ATL, we found several 

clusters of voxels with a reliable (p<0.01, uncorrected) activation difference between task 

and ITI fixation baseline, where the task condition collapsed attributive and relational 

trials together. Two distinct clusters of activity were revealed in left AG, where one 
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cluster was positively activated for task relative to baseline (cluster centroid: [-45 -54 38] 

Talairach coordinates) and another more posterior, inferior cluster that was more active 

during baseline relative to task (cluster centroid: [-39 -67 35] Talairach coordinates). This 

motivated us to treat positively and negatively activated task-responsive voxels as distinct 

functional subregions within the anatomical left AG ROI.  Other clusters in right AG and 

left ATL were largely positively task-responsive, and so did not prompt any functional 

division between above- and below-fixation task activation (see Figure 2).  No significant 

task-responsive clusters survived even a liberal threshold in right ATL, and so this 

anatomical region was not analyzed further. 

 

Figure 2: Task-responsive voxel activity (task vs. ITI fixation baseline) in left ATL (red), 

left AG (yellow), and right AG (blue) at Talairach coordinates [-45 -57 38]. 

Combinatorial bias predicts activity in left and right AG 

For each subject, we identified the 50 most positive task-responsive voxels in each of our 

three ROIs: right AG, left AG, and left ATL.  We also identified the 50 most negative 

task-responsive voxels in left AG, for a total of four functional ROIs.  The location and 

distribution of these top 50 task-responsive voxels varied greatly across subjects for each 
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ROI, precluding clear anatomical delineation of positive vs. negative task-responsive 

regions within left AG for a given subject, even though group-level clusters suggest an 

anatomical divide along PGa/PGp (Noonan, Jefferies, Visser, & Lambon Ralph, 2013; 

see Discussion).  Within each of four 50-voxel ROIs in each subject, we examined the 

subject-wise effect of relational-attributive bias (referred to henceforth as simply 

“combinatorial bias,” see Fig. 1) on BOLD signal amplitude. 

 Within the 50 most task-responsive voxels in right AG, we found a significant 

main effect of combinatorial bias (t(17) = 2.44, p=0.01), and this effect obtained for a 

wide range of ROI sizes within right AG (see Fig. 3a).  No such effect was observed in 

task-responsive voxels in left ATL (t(17) = 0.84, p=0.20; see Fig. 3b) or in positive task-

responsive voxels in left AG (t(17) = 0.38, p=0.35; see Fig 3c).  Activity in those 50 

voxels that responded most negatively to task (relative to baseline) in left AG was 

marginally predicted by combinatorial bias (t(17) = 1.23, p=0.11). A significant main 

effect of combinatorial bias emerges when the size of the negatively task-responsive left 

AG ROI is increased to 90 voxels (t(17) = 2.73, p=0.005), and this effect is also reliable 

for ROI sizes larger than 90 voxels (p<0.01, see Fig. 3d). 

In order to compare combinatorial bias effects across ROIs, we conducted an 

ANOVA between ROI (right AG, left AG positive, left AG negative, and left ATL) and 

the degree to which combinatorial bias predicted BOLD signal amplitude. Combinatorial 

bias coefficients differed significantly across ROIs (F(3, 34) = 3.79, p=0.02).  Post hoc t-

tests between pairs of ROIs revealed that combinatorial bias coefficients in right AG 

were significantly different from coefficients in the negative task-responsive left AG ROI 
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(t(34) = 2.54, p=0.02), while coefficient differences between other ROI pairs were not 

significant.  When disregarding the direction of task-responsiveness, there are no 

significant differences in the magnitude of these effects.  

 

Figure 3. Beta coefficients from subject-wise parametric analysis of voxel activity by 

combinatorial bias (see Fig. 1) across a range of voxels within (a) right AG, (b) left ATL, 

(c) left AG, positively task-responsive voxels only, and (d) left AG, negatively task-

responsive voxels only.  Voxels chosen by most positive (or, in (d), negative) t statistics 

for the task-vs.-baseline contrast (see Fig. 2) in each anatomical ROI. Error ribbon 

indicates +/-1 SEM.  

BOLD timecourse of attributive interpretation differs by ROI 



 

 

32 

In light of the evidence that combinatorial bias predicts the magnitude of the 

response in both left and right AG, we further investigated whether relational and 

attributive combination effects might also show distinct temporal BOLD profiles across 

ROIs.  Using the same task-responisve voxel selection criteria as above, we compared the 

timecourse of BOLD activity for relational and attributive combinations in the 50 most 

task-responsive voxels in right AG, left AG (negatively task-responsive voxels only), and 

left ATL.  In this analysis, we treated relational and attributive combination categorically, 

coding each trial condition based on individual subjects’ responses in a post-scan survey. 

Activity for relational combination significantly differed from attributive 

combination between 6 and 12 seconds post stimuls onset in both right AG and left AG 

(p<0.05; see Figure 4).  Interestingly, activity associated with attributive combination was 

greater than relational activity in left ATL at a markedly early 4 seconds post-stimulus 

onset (p<0.05).  

Examining the latencies of each subject’s effect peak (using a nonparametric 

Wilcoxon signed rank test), we found that the response to attributive trials peaked 

significantly earlier than the relational effect in left ATL (p = 0.01).  This is not due to 

differences in subjects’ attributive and relational response times, as we observed no 

significant difference in RT between conditions (t(17) = 0.51, p = 0.61; Mattributive = 2.65 s 

(SD = 0.28); Mrelational = 2.70 s (SD = 0.26)).  Time-to-peak analysis also revealed that 

both conditions peak earlier in left ATL than in right AG (p<0.01).  While inferring 

temporal properties of neural activity from BOLD timecourses has its limitations, this 
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provides intriguing evidence that left ATL may also encode a distinction between 

attributive and relational combination in addition to bilateral AG. 

 

 

Figure 4. Peristimulus FIR curves of attributive (red) vs. relational (blue) activation in 

each ROI.  FIR curves shown are from the 50 most positively task-responsive voxels for 

the task-vs.-fixation contrast in each anatomical ROI, except for left AG, where only the 

50 most negatively task-responsive voxels are shown. Attributive and relational 

interpretations were coded  based on a given subject’s interpretations taken from post-test 
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surveys. Error bars indicate +/-1 SEM.  Asterisks indicate significant effect of condition 

at given time point (p<0.05).  

Upper panel: Right AG; Middle panel: Left AG; Lower panel: Left ATL. 

Discussion 

 This study sought to determine whether, and how, relational and attributive 

interpretations of nominal compounds differentially engaged putative “semantic hubs,” 

the left ATL and bilateral AG.  We found evidence that both relational and attributive 

processes engaged ATL and AG, but that each brain region responded very differently to 

the relational-attributive dichotomy.  Both right and left AG showed differential 

responses to relational and attributive compounds, with relational compounds diverging 

more from the baseline period than attributive compounds. However, while right AG 

responded more to both compound types than to baseline, the direction of this activation 

was reversed in left AG, such that left AG responded more at baseline than to compound 

interpretation. This profile of activation in left AG was consistent with its role in the so-

called default network. Left ATL did not show a combinatorial bias effect per se, but the 

time course of individual subjects’ BOLD response curves indicated that attributive 

interpretations induced an earlier peak response than relational interpretations. Thus, 

while the magnitude of response in left and right AG was greater to relational 

combination than attributive combination, the timing, but not the magnitude, of left ATL 

response varied across the two combination types .  

 These combined findings support an account whereby relational and attributive 

operations are not dissociable by a coarse neuroanatomical divide, but rather are encoded 
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differently in different regions. The multiple, potentially redundant, instantiations of a 

combinatorial relational-attributive code across the brain provide compelling evidence 

that the relational-attributive distinction is a productive one. While these data suggest that 

bilateral AG is more engaged in computing relational combination, comparison with the 

left ATL profile does not constitute a true double dissociation between relational and 

attributive processes.  While we do not find evidence to support a full dual-route, parallel 

process model of relational and attributive processing, we find that these combinatorial 

operations may be instantiated in overlapping networks across ATL and AG. The time 

course of attributive and relational BOLD response in the left ATL is also consistent with 

a serial, potentially single-process model. Interestingly, the serial process implicated here 

is the opposite of the CARIN model (see Introduction): while the latter predicts that 

attributive “relations” are the interpretations of last resort – i.e. attributive associations 

are only analyzed after other relations are considered – we instead find evidence that 

attributive processing precedes relational processing. This finding is more consistent with 

accounts holding that attributive feature extraction is necessarily prior to computing 

functional relations between concepts. 

Angular gyrus and thematic relations 

AG sensitivity to thematic relations as verbs 

 Bilateral AG, and more prominently left AG, have been implicated in a wide 

range of linguistic and non-linguistic semantic processes (see Seghier, 2012, for review), 

but our study pursues an emerging hypothesis that AG specifically subserves the 

semantics of thematic relations. There is increasing evidence that AG may be selectively 
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activated by thematic role information carried on verbs in particular.  For instance, in one 

group of studies, experimenters looking at 1-, 2-, and 3-argument verbs (that is, 

intransitive, transitive, and ditransitive verbs, respectively) found that activation in 

bilateral angular and supramarginal gyrus (BA 39 and 40) correlated parametrically with 

the number of thematic roles that can attach to a given verb, even when the verb was 

presented in isolation (Meltzer-Asscher, Schuchard, den Ouden, & Thompson, 2013; 

Thompson et al., 2007; Thompson, Bonakdarpour, & Fix, 2010). Boylan, Trueswell, & 

Thompson-Schill (2015) also found that multi-voxel patterns in left AG tracked 

information relating to the presence of a shared verb in pairs of two-word phrases, 

demonstrating that AG represents information specific to verbs, perhaps event structure 

or thematic relations mediated by verbs. 

 While left AG has been implicated in the detection of syntactic errors (Embick, 

Marantz, Miyashita, O’Neil, & Sakai, 2000), it is also involved in the detection of 

semantic incongruities (Friederici et al., 2003; Newman, Pancheva, Ozawa, Neville, & 

Ullman, 2001; Ni et al., 2000) as well as the processing of connected discourse as 

opposed to unrelated sentences (Fletcher et al., 1995; Homae et al., 2003; Xu et al., 

2005). This suggests that the sensitivity of AG to thematic roles and verb structure is not 

limited to the syntactic composition alone, but also to the semantic content (Pallier et al., 

2011).  It may be that left AG acts as an interface between semantic memory and 

syntactic structure, mapping semantic-thematic relations onto structural constraints 

surrounding verbs and their arguments.  Indeed, electrophysiological and neuroimaging 

studies support an overlap between (morpho-)syntactic and semantic-thematic verb 
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violations. Kuperberg et al. (2008) compared three different types of verb violations: (1) 

semantic–thematically violated verbs (e.g. “at breakfast the eggs would eat”) (2) 

morphosyntactically violated verbs (e.g. “at breakfast the boys would eats”) and (3) real-

world violations (e.g. “at breakfast the boys would plant”).  They found that, unlike real-

world violations, both semantic-thematic and morpho-syntactic violations elicited activity 

in a frontal/inferior parietal/basal ganglia network, in accord with previous 

electrophysiological findings that semantic-thematic and syntactic violations evoked 

P600 event-related potentials highly similar in latency and scalp distribution (Hoeks, 

Stowe, & Doedens, 2004; Kuperberg, 2007). The authors concluded that this 

frontal/AG/basal ganglia activity reflected attempts to integrate structural constraints of 

the verb with semantic properties of the Agent NP argument (Buccino et al., 2001; Chao 

& Martin, 2000; Damasio et al., 2001; Fogassi et al., 2005). 

Lateralized effects of thematic relations in AG  

 If thematic role knowledge, particularly on the verb, is privileged content of the 

semantic space of AG, then how do we account for the AG activation profile of stimuli 

like nominal compounds, which do not contain any verb? Likewise, taxonomic and 

thematic errors that localize to lesions in ATL and AG comprise errors on nouns, not 

verbs.  We argue that the verb functions as a “spell-out” of a thematic relation, and 

stimuli like relational nominal compounds require positing implicit verbs and events (as 

in “a hawk that hunts robins” for robin hawk). It is also interesting to note that word pairs 

in a thematic error, such as “dog” and “bone,” can be described as related via such an 

implicit verb/event; in the “dog-bone” case, “chews” or “buries,” etc.  That is, thematic 
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knowledge is precisely knowledge of verbs and their arguments.  We speculate that the 

verb may be the minimal linguistic expression of the fundamental thematic and event-

based concepts that AG subserves. 

 It may also be that the degree to which a thematic relation is grammaticalized – 

for instance, whether it is spelled out in an explicit verb – accounts for the subtly 

different profiles of activity between right and left AG, and even within left AG itself.  

Graves and colleagues' (2010) study of nominal compounds vs. their non-attested 

reversals found BOLD activity in right AG, but not left, increased for attested nominal 

compounds like lake house (as compared with house lake).  The authors offer a 

connectionist account of how noun-noun compounds might engage right AG but not left 

AG.  They suggest that left and right AG can be modeled as attractor networks, where 

such a network settles into an attractor basin when it optimizes the error space in the 

mapping between inputs and outputs.  Whereas left AG is suggested to have relatively 

narrow attractor basins, reflecting highly specific and constrained mappings between 

words and meanings, right AG may contain wider, shallower basins, representing more 

extensive overlap in meanings.  This would accommodate “looser” meanings, effectively 

“filling in” the extrinsic relation necessary for the interpretation of compounds like dog 

bone that lack the explicit (morpho)syntactic information (i.e. “a bone that a dog chews 

on”) that would spell out the relation between the two nouns in the phrase.  This version 

of Beeman and colleagues' (1994) “coarse semantic coding hypothesis” would account 

for why verb-based minimal composition, where the thematic relation is grammaticalized 

and explicit, would be derived in the narrow attractor basins of left AG, while the more 
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fluid meanings afforded by nominal compounds are derived in the wider semantic net of 

right AG. 

Functional heterogeneity of left AG: semantic representation and semantic control 

 The effect of combinatorial bias we found in right AG accords with the Graves et 

al. (2010) nominal compound effect in that region, and the distinction between relational 

and attributive interpretations adds another dimension to the characterization of right AG 

as a combinatorial hub. However, our nominal compound effect in negatively task-

activated voxels in left AG is rather more novel. 

 It has been noted that left AG is functionally heterogeneous, and recent work has 

begun to map this heterogeneity to subregions within left AG and surrounding areas. In a 

meta-analysis of studies comparing semantic tasks with high-vs.-low demands on 

executive control, Noonan et al., 2013, found a functional divergence between dorsal AG 

(bilateral, including dorsal/anterior AG and boundaries with superior marginal gyrus 

(SMG) and inferior parietal sulcus (IPS)) and left mid AG (somewhat closer to PGp than 

PGa), with respect to executive and representational roles in semantic processing.  Dorsal 

AG showed reliably greater activation in high >low semantic conditions, and was 

characterized as allocating attention to semantic representations in a task-dependent and 

goal-driven manner. This characterization is not in itself inconsistent with a model of AG 

as a site of conceptual combination, as such compositional operations require selective 

attention to certain properties of events in order to construct higher-order derived 

concepts. However, dorsal AG’s role in semantic control was contrasted with mid AG, 

the activity of which was modulated by the semantic representational content of stimuli 
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even when matched on task demands.  Crucially, mid AG was associated with the 

“default mode network” (Raichle et al., 2001), showing more positive activation in the 

absence of a task.  Seghier et al. (2010), found that left mid AG was a region within the 

default network that responded more negatively to perceptual decisions than semantic 

decisions, though both stimuli elicited a negative divergence from baseline (as did both 

types of nominal compound stimuli relative to baseline in our study), and other studies 

found this region showed more negative activity to abstract items than to concrete items 

(similar to our finding that relational compounds elicited more negative activity relative 

to attributive items in left mid AG) (Binder, Westbury, McKiernan, Possing, & Medler, 

2005; Noonan et al., 2013; Wang, Conder, Blitzer, & Shinkareva, 2010).   

 Noonan et al. (2013) note that centers of activation in the putatively functionally 

distinct regions of dorsal AG and mid AG lie at Talairach coordinates [-41-55 45] and [-

39 -65 30], respectively. These align well with the two clusters of activation we observed 

for the task-vs.-baseline contrast in left AG: a more dorsal cluster of positive activation at 

[-45 -54 38] and a more posterior, inferior cluster of more negative activation at [-39 -67 

35]. We find that the latter cluster aligns both anatomically and functionally with the left 

mid AG region of the default network. Unlike the more dorsal cluster, the left mid AG 

cluster showed a combinatorial bias effect, suggesting that, like the concrete > abstract 

item effect reported in this region, there is also an attributive > relational effect in mid 

AG (where abstract items and relational items, respectively, induce more negative 

activation).   
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A stimulus-specific negative BOLD response? 

While we characterize the left mid AG and right AG effects as similarly indexing 

a greater magnitude of activation for relational interpretations, this is based on the 

absolute value of activation relative to baseline.  It is entirely possible that the left mid 

AG effect should rather be characterized as an “attributive > relational” effect when 

considered as a local vascular and/or neural suppression.  Proposed hemodynamic 

mechanisms for negative BOLD responses include local “blood stealing” or “blood 

sharing,” whereby blood is diverted to (local or remote) active regions and away from the 

site of the negative BOLD response. This vascular effect could occur without necessarily 

reflecting a change in neural activity in the negative BOLD region (Bressler, Spotswood, 

& Whitney, 2007; Shmuel et al., 2002; Smith, Williams, & Singh, 2004).  However, these 

purely vascular explanations are not sufficient to predict the negative BOLD response 

profiles found in several visual studies. For instance, Smith et al. (2004) found that a 

visual stimulus exciting primary cortex in one hemisphere caused a sustained negative 

BOLD response in the opposite hemisphere visual cortex. “Blood stealing” is not likely 

to explain this interhemispheric effect, as the blood supplies of the two hemispheres are 

largely independent of one another. Shmuel et al. (2006), while showing that negative 

BOLD activity is correlated with decreased neuronal activity measured via simultaneous 

electrical recordings, also demonstrated that the local decrease in neuronal activity 

predicted the spatiotemporal properties of the negative BOLD pattern better than 

surrounding positive BOLD activity did.  This suggests that local neural suppression 

drives the negative BOLD response.  
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Moreover, recent studies suggest that such neural suppression may be more 

stimulus-specific than most attentional accounts predict. It is well known that attention 

directed to a given location corresponds with an increase in neural activity at that region 

(even in the absence of visual/auditory stimulation) and a decrease in neural activity at 

unattended regions. This predicts that attentional neural suppression will occur over 

relatively broad swathes of (unattended) sensory space, however (Bressler et al., 2007).  

Recent studies show that negative BOLD responses to stimuli are spatially (retino- and 

tonotopically) constrained and highly tuned to certain properties of the stimulus (Bressler 

et al., 2007; Linke, Vicente-Grabovetsky, & Cusack, 2011). Thus, it could be that neural 

suppression itself carries stimulus-specific information. On the other hand, for a 

reduction in signal to carry such stimulus-specific information, it may be that the firing 

trace of center-surround responses in a sub-voxel population of neurons is dominated by 

the surround suppression, even though the most narrowly tuned neurons are being excited 

(Bressler et al., 2007; Linke et al., 2011; Müller & Kleinschmidt, 2004).  

While the mechanism for stimulus-tuned negative BOLD activity requires further 

study, negative BOLD responses across the brain are as potentially equally informative as 

positive BOLD responses.  In the current study, the mechanism by which information 

relevant to relational compounds might be more “suppressed” in left AG is unclear: the 

pattern of suppression may itself be part of the representation of the relation between the 

two nouns, or it could be that more inhibition of unrelated information is required to 

resolve the meaning of a relational compound compared with an attributive compound.  

Further study is required to disentangle these options. 
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Anterior temporal lobe and semantic composition 

 While bilateral AG appears to index the relational-attributive distinction by way 

of different overall activation for the duration of the task, left ATL may derive both 

relational and attributive combinations, but with a temporal offset in activation peak for 

the relational combination as compared with the attributive.  This presents an intriguing 

alternative to a strict dual-process hypothesis for attributive and relational combination.  

Rather, this temporal delay in computing relational combinations in left ATL is 

consistent with a theory whereby property-based, taxonomic concepts are logically prior 

to relation-based, thematic concepts.  It is also consistent with a model where 

“properties” are predicates, and thematic relations can be reified into features of object 

concepts such that “walks on a leash” is as much a property of dog as simple adjectives 

like “furry” or “loyal.” Since language is flexible in this regard, able to express the verb-

/event-based relational concept “bears live young” in the adjective “viviparous,” and to 

convert between verbs (relations between nouns) and participles (properties of nouns), 

etc., it is perhaps unsurprising that there be a means of converting relational and 

attributive concepts along a single dimension.  While relational and attributive 

combinations may be qualitatively distinguished in AG, it might be that these differences 

are collapsed in left ATL.   

 Indeed, an emerging view of left ATL is that its primary function is binding 

distributed multimodal features (where these features might be attributive or relational) 

such that an object-concept can be specified at various levels of categorization.  For 

instance, patients with semantic dementia (SD) tend to show greater impairment of 
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specific names of objects than of more general names (Hodges, Graham, & Patterson, 

1995; Rogers et al., 2004).  These patients are slower to categorize objects at the basic 

level than at a more general level; e.g., they find it easier to categorize a swallow as an 

animal than as a bird (Hodges et al., 1995; Timothy T. Rogers et al., 2006). Conversely, 

healthy controls tend to prefer the basic, ‘bird’ level of classification (Murphy & 

Brownell, 1985; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). Furthermore, 

features that are specific to a given concept are more damaged in SD cases than general 

features shared by several concepts (Papagno & Capitani, 2001; Patterson et al., 2007; 

Rogers et al., 2004, 2006), a fact which may underlie the attested categorization 

difficulties in SD.  

This pattern has also been found in healthy subjects, in which the left ATL has 

shown increased activity for categorization of specific objects (e.g. ‘sparrow’) compared 

with categorization at the basic (e.g. ‘bird’) level or domain general (e.g. ‘animal’) level 

(Grabowski et al., 2001; Rogers et al., 2006; Tyler et al., 2004).  In a study directly 

comparing how conceptual combination and object-concept specificity engage left ATL, 

Westerlund & Pylkkänen (2014) concluded that combination and specificity effects in 

left ATL likely arise from a single feature-binding operation. 

 Note that relational nominal compounds are exactly like attributive nominal 

compounds in that the first (modifier) noun is indicating what kind of thing the second 

(head) noun is. That is, regardless of whether one interprets robin hawk attributively or 

relationally, it is still a hawk object-concept of the robin type. Thus attributive and 

relational modification might be of a piece when the operation is to determine the level of 
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specificity robin hawk has relative to hawk. The crucial difference is that relational 

combination requires the integration of some extrinsic relation, while attributive 

combination rather selects which feature of the head noun is to be emphasized or 

substituted with the salient attribute of the modifier noun. In the attributive case, the 

modifier noun selects from among features already denoted in the set {robin, hawk} to 

yield “a hawk that is robin-like”, whereas a relational compound requires retrieval of 

some “feature” outside the set {robin, hawk}: namely, the “prey” or “hunt” relation (“a 

hawk that hunts robins”. This integration of an extrinsic relation/feature may account for 

the delay in left ATL BOLD response for relational combination relative to attributive 

combination. 

Limitations, future directions, and conclusions 

In this study, we find evidence that both left and right AG treat relational combination 

as distinct from attributive combination. Given that activity in left AG has been found to 

track certain properties of verb argument structure (Boylan et al., 2015) we propose that 

left AG might subserve more explicit thematic relations, particularly when expressed as 

verbs. This profile of left AG contrasts with that of right AG, which has previously been 

shown to track the combinatorial strength of nominal compounds (Graves et al., 2010) 

which lack a verb or explicit thematic relation, but which nonetheless might 

accommodate integration of implicit thematic relations.  The function of left and right AG 

in composing explicit and implicit thematic relations aligns with a version of the “coarse 

semantic coding hypothesis” whereby left AG subserves narrower attractors such that 

connectivity between (thematic) associations might constitute a tighter, denser semantic 
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networks, while right AG supports more flexible (thematic) associations between 

concepts in wider, shallower attractor basins. While this model of attractor dynamics is 

an intriguing one, it remains to be directly tested in right and left AG. These results invite 

further study to pinpoint how right and left AG differ with regard to semantic 

combination.  

We also found evidence that relational and attributive combination are temporally 

differentiated in left ATL. Inferring temporal signatures of neural activity from BOLD 

response curves has its caveats, however, given the potential nonlinearities between 

neural structures and the vasculature (Henson, Shallice, Josephs, & Dolan, 2002). Thus 

the left ATL timecourse would benefit from further study using methods, such as EEG or 

MEG, with higher temporal resolution than fMRI.   

Also, while we find evidence that AG is involved in computing argument structure in 

the context of an event, there is also evidence that ATL indexes the thematic roles of 

nouns (e.g. agents and patients).  Frankland & Greene (2015) were not only able to 

decode agenthood vs patienthood in ATL, but found that the patterns for these conceptual 

variables localized to neuroanatomically separable regions of ATL (the upper bank of the 

superior temporal sulcus and the lateral superior temporal gyrus, respectively). The 

degree to which relational compound interpretation deputes thematic roles to the 

constituent nouns, such as agent (hawk), theme/patient (hunted robin), instrument, 

location, etc., may also be read out in ATL or AG.  While the division of labor between 

AG and ATL in semantic composition has yet to be made clear, our data offer a 

compelling reason why future study of the neural bases of combinatorial language would 

benefit from a distinction between attributive and relational operations. 
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III. COMPOSITIONALITY AND THE ANGULAR GYRUS: A MULTI-VOXEL 

SIMILARITY ANALYSIS OF THE SEMANTIC COMPOSITION OF NOUNS AND 

VERBS 

Introduction 

Language owes its infinite expressive capacity to our ability to take simple 

building blocks, such as words or concepts, and combine them into complex 

representations.  In linguistics, such “semantic composition” refers expressly to the 

combination of words into complex linguistic expressions, the meanings of which are a 

function of both the constituent building blocks (words) and the “rules” used to combine 

them (the grammar).  Whether, and how, such grammatical operations might be realized 

in the brain are still highly debated questions, and the emergence of compositional 

meaning from units such as morphemes, words, or concepts, is largely a mystery.  

However, understanding the engine of compositionality in the brain is a fundamental 

desideratum to any cognitive neuroscientific model of semantics. 

Roles of left anterior temporal lobe and left angular gyrus in semantic composition 

The psycholinguistically motivated neuroanatomical models of semantic 

processing that have emerged in the past few years involve several brain areas which 

roughly cluster into four main regions: left inferior frontal, left anterior temporal, left 

posterior temporal, and left temporo-parietal (Ben Shalom & Poeppel, 2007; Binder & 

Desai, 2011; Binder, Desai, Graves, & Conant, 2009; Lau, Phillips, & Poeppel, 2008; 

Pallier, Devauchelle, & Dehaene, 2011; Patterson, Nestor, & Rogers, 2007; Price, 2010).  

Of these regions, there are two – left anterior temporal lobe (ATL) and left angular gyrus 
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(AG) – that are prime candidates to support composition, because both show greater 

activation for well-formed sentences than for non-compositional lists of words (Pallier et 

al., 2011, inter alia). In addition, both have been characterized as “semantic hubs”, owing 

to functional and anatomical patterns that are consistent with multimodal convergence 

(Binder & Desai, 2011; Lambon Ralph, 2014; Patterson et al., 2007; Seghier, 2012). 

While the mechanism by which different modalities converge on a single given 

conceptual representation is still unclear, it is likely that the mechanism that can encode 

the binding of modality-specific features into a given concept also accomplishes the 

binding of words into higher-level linguistic constructs (Westerlund & Pylkkänen, 2014).  

We begin with a brief review of findings relating to composition involving ATL in order 

to motivate contrasting ideas we will consider in the current study regarding composition 

in AG. 

 The ATL is uniquely situated at the end of a caudal-to-rostral stream of 

information processing feeding from primary sensory and motor areas and association 

cortex (Binder et al., 2009; J. R. Binder & Desai, 2011; Binney, Parker, & Lambon 

Ralph, 2012; Felleman & Van Essen, 1991). It is thus located at a prime “convergence 

zone” for inputs from many different modalities.  Moving anteriorly along the temporal 

lobe, one finds a caudal-to-rostral hierarchy emerge as neuronal responses are more tuned 

to complex stimuli and more invariant to low-level sensory variation; such a hierarchy 

has been established along both visual (Felleman & Van Essen, 1991) and auditory 

(Rauschecker & Scott, 2009) streams.  This “graded convergence” may provide a 

mechanism both for “feature combination” and, in the limit, for maximally invariant 
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amodal, and thus abstract, conceptual representations.  The culmination of this graded 

convergence up the temporal lobe (Rauschecker & Scott, 2009; Stringer & Rolls, 2002) is 

a basal rostral region of ATL shown to have very limited extra-temporal connectivity and 

high intra-temporal connectivity (Binney et al., 2012).  Such neuroanatomical 

sequestration is arguably a sine qua non for a region able to represent abstract, modality-

invariant semantics.  Thus, ATL is a prime candidate for semantic composition.  

In one of the first studies investigating the neural correlates of minimal two-word 

composition, Baron and colleagues (Baron et al., 2010) found evidence from fMRI 

pattern analyses that the left ATL subserved the combination of concepts such that the 

superimposition of individual patterns of the simplex concepts young and man (as 

represented by various face stimuli) reliably predicted the activation pattern for the 

complex concept young man.  Consistent with this finding, a magnetoencephalography 

(MEG) study of visually presented two-word phrases comparing nouns in minimal 

compositional contexts (red boat) with nouns in non-compositional contexts (in which a 

non-word letter string was concatenated with a real word, e.g. xkq boat) found increased 

composition-related activity in left ATL (Bemis & Pylkkänen, 2011). Thus, there is a 

growing body of functional and tractographic studies to suggest that the left ATL 

substrate of composition may be multimodal sensorimotor features, and particularly 

visual features of object-concepts (Coutanche & Thompson-Schill, 2014), corroborating 

the notion of the left ATL as hub of the so-called ventral “what” pathway. 

 While the left ATL has recently received much attention as a potential semantic 

hub, it is not the only region to invite this label. Researchers have also ascribed the role 

of a semantic hub to the AG, as it lies at the junction between temporal, parietal, and 
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occipital lobes and thus receives a confluence of auditory, somatosensory, spatial, and 

visual inputs. Left AG has been implicated along with left ATL in conceptual 

combination studies of the sort described above (Bemis & Pylkkänen, 2012), and several 

studies demonstrate bilateral AG sensitivity to manipulations whereby well-formed 

sentences are contrasted with word lists, pseudowords, or scrambled sentences (Bavelier 

et al., 1997; Bottini et al., 1994; Humphries et al., 2007, 2006).  Left AG also shows 

greater activity for connected discourse vs. unrelated sentences (Fletcher et al., 1995; 

Homae, Yahata, & Sakai, 2003; Xu, Kemeny, Park, Frattali, & Braun, 2005).  This broad 

profile of effects has led some to suggest that the AG may play a potentially domain-

general role in semantic information integration structured around events (Binder & 

Desai, 2011; Binder et al., 2009; Lau et al., 2008; but cf. Noonan, Jefferies, Visser, & 

Lambon Ralph, 2013, and Discussion below for evidence that certain sites within AG are 

involved in semantic control processes, not representations).  

Not all studies investigating conceptual combination find activation in both left 

ATL and bilateral AG. Upon closer inspection of those stimuli that elicit differential 

activity in AG but not in left ATL, one finds that the type of composition involved is 

invariably based on thematic relations rather than feature combination per se.  For 

instance, Graves et al. (2010) compared familiar meaningful noun-noun pairs, such as 

lake house, with reversed phrases, such as house lake, the meanings of which were not 

obvious; they found that AG, along with other temporoparietal areas (mostly right-

lateralized), showed greater activation for processing the more obviously combinatorial 

phrases. In characterizing the compositional operation employed in interpreting their 

particular noun-noun stimuli, the authors noted that most of their noun-noun stimuli were 
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interpreted as denoting thematic relations between head and modifier nouns; that is, most 

compounds consisted of nouns participating in some spatial relation (as in “a house on a 

lake”) or event-based relation rather than sharing some common feature (as in, for 

instance, a nominal compound like cactus carpet, which is more likely to be interpreted 

as “a carpet that is prickly like a cactus” than as some sort of relational compound, like 

“a carpet with a cactus placed on it”) (Estes, 2003b; E. J. Wisniewski & Love, 1998).  

This raises the question as to whether these stimuli were probing combinatorial semantics 

in general, or semantic thematic relations in particular.  

In another group of studies, experimenters looking at 1-, 2-, and 3-argument verbs 

(that is, intransitive, transitive, and ditransitive verbs, respectively) found that activation 

in bilateral angular and supramarginal gyrus (BA 39 and 40) correlated parametrically 

with the number of thematic roles that can attach to a given verb, even when the verb was 

presented in isolation (Meltzer-Asscher et al., 2013; Thompson et al., 2007, 2010).  

Whereas Graves et al. (2010) indicates AG involvement in processing spatial and event-

based relations, broadly construed, the work on verb adicity suggests a more selective 

sensitivity to verbs’ thematic relations and/or event complexity carried on the verb.  

While AG has been found to be sensitive to both linguistic event structure and non-verbal 

events depicted in scenes and mini-movies (Sitnikova, Holcomb, Kiyonaga, & 

Kuperberg, 2008a; Sitnikova, Holcomb, & Kuperberg, 2008b), it could be that the verb is 

the minimal linguistic expression of fundamental thematic relation-based or event-based 

concepts that AG subserves. This would predict that verb semantics would be particularly 

privileged in AG semantic space. 
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A feature vs. function dichotomy?  

 Given that both ATL and AG are implicated in semantic composition, we might 

start with the hypothesis that any kind of semantic similarity between two concepts might 

influence the similarity of neural (in our case, voxel) patterns evoked by the concepts in 

these two regions. For instance, regions that encode the meaning of a two-word phrase 

(such as “eats meat”) ought to elicit a similar neural response to other two-word phrases 

that share either of these two words as compared to a phrase that shares none of the 

words. In this study, we go one step further and explore possible restrictions on this 

prediction. We suggest that whereas the left ATL may be involved in structuring 

semantic knowledge around commensurate features of (object-) concepts, the AG builds 

semantic knowledge based on functional/thematic relations between concepts. Of course, 

this distinction could be operationalized in a number of different ways.  In this study, we 

test two possible dimensions along which the left ATL and AG might cleave “feature-

based” and “function-based” composition: one dimension respects whether two concepts 

share an event (and since verbs can denote events, we operationalize this as two phrases 

that share a verb), while another dimension concerns whether two concepts share an 

argument, which we will explain in greater detail below. 

Angular gyrus and event-denoting verbs 

 It is widely agreed that verbs and nouns constitute meaningfully distinct linguistic 

forms, but it is less clear whether their processing engages different brain areas.  In a 

meta-analysis using hierarchical clustering to identify regions associated with nouns and 

verbs, Crepaldi et al. (2013) identified several clusters associated with noun or verb 
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processing across all tasks, the left AG among them; however, the left AG was associated 

with nouns, not verbs (though this might be due to the authors’ inclusion of activation 

peaks from studies examining nouns not directly contrasted with verbs).  The authors 

conclude from the distribution of their clusters that the neural circuits of noun and verb 

processing are highly contiguous across a wide network of frontal, parietal, and temporal 

regions, and that there is little evidence suggesting that verb processing relies primarily 

on embodied motor representations. 

 These conclusions contrast with a prominent theory stating that, while not divided 

by the grammatical class of the noun or verb per se, neural areas are divided by the 

semantic primitives of objects and actions (Bird, Howard, & Franklin, 2000; Vigliocco, 

Vinson, Druks, Barber, & Cappa, 2011).  Under this account, only prototypical nouns 

(object nouns) and prototypical verbs (action verbs) dissociate neural areas: specifically, 

action/verb processing recruits more of the fronto-parietal network while object/noun 

processing recruits more temporal regions (Cappa, Sandrini, Rossini, Sosta, & Miniussi, 

2002; Cappa & Perani, 2003; Damasio & Tranel, 1993; Shapiro, Moo, & Caramazza, 

2006).  However, several studies fail to support such specific roles for frontoparietal 

areas and temporal regions in action/verb and object/noun processing, respectively 

(Crepaldi, Berlingeri, Paulesu, & Luzzatti, 2011; Liljeström et al., 2008; Tranel, Martin, 

Damasio, Grabowski, & Hichwa, 2005; Tyler, Russell, Fadili, & Moss, 2001). Also, a 

study by Bedny and colleagues (2008) found that while a certain region of left AG 

responded more to verbs than nouns, activity in this region did not distinguish between 

high motion and low motions words, whether nouns and verbs were included together or 
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queried separately.  This dissociation between grammatical class and action content, 

along with evidence for a dissociation between grammatical class and imageability 

(Bedny & Thompson-Schill, 2006), motivates treating the distinction between most 

nouns and verbs as a dimension of meaning separate from just action content, particularly 

when characterizing left AG. 

 Instead, we propose investigating the combinatory properties of events as a means 

to probe the semantics of AG. Our verb-centric hypothesis states that if AG represents 

events, then phrases that refer to similar events should evoke similar patterns of neural 

activity in AG.  Even more specifically, phrases that share a given event-denoting verb 

(such as eats) should evoke similar patterns of activity in AG; events involving eating 

should have more similar neural patterns than they do to other kinds of events. Crucially, 

however, phrase pairs that differ along this dimension, in that one phrase has a verb and 

the other phrase does not (e.g. eats meat and tasty meat), will not evoke similar patterns 

of activation in AG, even though these latter two-word phrases also share a content word 

(meat).  

 Note that events are necessarily compositional constructs, as they represent not 

only information about event participants (thematic relations), but also temporal 

information vis-a-vis tense, aspect, etc. As we have mentioned, AG is more active in 

conditions which involve tracking narrative and discourse structure as compared with 

disconnected sentences (Fletcher et al., 1995; Homae, Yahata, & Sakai, 2003; Xu, 

Kemeny, Park, Frattali, & Braun, 2005).  The connective tissue of such narrative and 

discourse structure is temporal order and temporally mediated causal relations.  This 
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suggests that temporal information, particularly that carried on a verb, is critical to 

engaging AG.   

 While there are “event” words that are not verbs, such as deverbal nouns and 

event-denoting nouns like party or hurricane, these lexical items do not often have 

temporal information.  Inflected verbs necessarily carry information on tense and aspect, 

while nouns generally do not (rare exceptions being nouns that arguably denote a tense, 

like ex-wife, former champion, husband-to-be, president-elect).  There is good reason to 

expect that event-denoting verbs dissociate from event-denoting nouns in both semantic 

and neural space: a study crossing grammatical class (nouns vs. verbs) with event 

denotation (events vs. objects) found that while left posterior middle temporal gyrus 

responded to both event nouns and verbs over objects, a region at the left temporoparietal 

junction (inclusive of AG) responded more to verbs than to any nouns, including event-

denoting nouns (Bedny, Dravida, & Saxe, 2013).  

 Therefore, because we focus on events as spatiotemporal denotations, the natural 

way to examine this is to analyze verb similarity patterns.  In this study, we do not 

directly test which component of event composition – thematic relations (theta roles) or 

temporal event information – might drive verb sensitivity in AG, but previous evidence 

implicates both. 

Angular gyrus and function-argument composition 

 Under an alternative hypothesis, AG is sensitive to relational information 

independent of the verb. The dichotomy between “feature” and “function” has a good 

deal of traction in more formal theories of semantics, particularly in the distinction 
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between adjuncts and arguments, respectively. The verb is the central predicate of a 

sentence, and predicates, such as eat, take arguments (like meat) (Heim & Kratzer, 1998; 

Pylkkänen, Brennan, & Bemis, 2011). While the case of verbs and their direct objects is 

perhaps the most canonical example of what we will call “argument-type composition,” 

there are other types of function-argument relations: for instance, the composition of 

prepositional phrases (e.g. with meat, where the preposition with takes the argument 

meat). We are particularly interested in the status of function-argument relations because, 

up until now, studies on two-word minimal composition have focused almost exclusively 

on another type of composition: adjunct-type composition (e.g. red boat, old man). 

However, two recent magnetoencephalography (MEG) studies suggest ATL may 

subserve both adjunct-type and argument-type composition.  Linzen, Marantz, & 

Pylkkanen (2013) found that left ATL is sensitive to verb-argument structure, specifically 

the subcategorization frames of verbs. Westerlund, Kastner, Kaabi, & Pylkkänen (2015) 

examined several different instances of both argument- and adjunct-type composition: 

namely verb-argument (eats meat), preposition-argument (in Italy) and determiner-

argument (Tarzan’s vine) composition for function-argument composition and adjective-

noun (black sweater), adverb-verb (never jogged) and adverb-adjective (very soft) 

composition for adjunct-type composition.  The authors found that function-argument 

composition (inclusive of verb phrases, prepositional phrases, and possessives) drove 

increased activation in left ATL. In our study, we extend this paradigm to examine 

whether AG responds specifically to argument-type composition.  
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 Rather than rely only on univariate measures of activation for adjunct- vs. 

argument-based composition across a given brain region, we treat composition as it 

applies to the multivariate patterns of particular base words (in this case, nouns and 

verbs). We constructed sets of two-word phrases such that particular pairs in each set 

would allow us to test our hypotheses. Consider the phrases eats meat, eats quickly, with 

meat, and tasty meat.  Using the logic of Baron et al. (2010), who found that additive 

superimposition of the voxel patterns underlying simplex concepts like young and man 

could predict the complex pattern of young man, we ask whether the complex concepts 

eats meat and with meat might be acting on the base word meat in the same way, as (1) 

both phrases are instances of function-argument composition and (2) meat is an argument 

in both (while it is not an argument in, say, tasty meat).  On the other hand, if AG 

represents information carried on the verb (that is, the event, ex hypothesi), then the 

neural pattern evoked by the complex concept eats meat is expected to be more similar to 

that of eats quickly than to any other phrase. 

Multi-voxel pattern similarity as a window to various dimensions of compositionality 

Until recently, the prevailing approach in the neuroscientific study of concepts 

was to employ univariate tests of fMRI data, using a brain region’s average metabolic 

response to discriminate stimulus conditions based on locations of peak activation, 

potentially at the expense of voxel-level signal variation distributed across a given region.  

However, increasing use of multivariate methods to harness this voxel-level neural 

variability has revolutionized the study of object concepts.  Current multi-voxel pattern 

analysis (MVPA) methods are predicated on the idea that information is instantiated in a 
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spatially distributed pattern of neural activity.  While some MVPA methods use various 

classification techniques over voxel patterns to discriminate between stimulus conditions 

(Boylan, Trueswell, & Thompson-Schill, 2014; Coutanche & Thompson-Schill, 2014; 

Polyn, Natu, Cohen, & Norman, 2005; inter alia), other methods analyze voxel patterns 

with respect to the strength of similarities between stimuli within given dimensions (e.g. 

shape, color, animacy, etc.) (Clarke & Tyler, 2014; Connolly et al., 2012; Fair et al., 

2009; Fairhall & Caramazza, 2013; Haxby, 2001; Kriegeskorte, 2008; Weber, 

Thompson-Schill, Osherson, Haxby, & Parsons, 2009). With the latter approach, neural 

pattern variation can extend across a more continuous space than is sought in 

nominal/dichotomous classification techniques. Such MVPA techniques can be 

remarkably powerful tools, and have been used to query neural patterns using only a few 

TRs per stimulus event, and with each stimulus event modeled as a single unique 

regressor in a GLM (the beta values of which enter a correlation matrix or other 

similarity analysis) (Musz & Thompson-Schill, 2014).  

 The current study employs MVPA pattern similarity measures to query the 

relatively high-level semantic similarity space of two-word compositional phrases. We 

compare fMRI multi-voxel patterns associated with pairs of two-word compositional 

phrases - e.g. eats meat compared with eats quickly, tasty meat, or with meat – in which 

we hold constant a single word (here, either meat or eats), but manipulate (1) whether the 

word shared is a noun or a verb and (2) whether the two compositional phrases share a 

composition type (both argument-type or adjunct-type composition) or differ in their 

composition type. As we explain in greater detail below, our strategy is to observe the 
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extent to which neural patterns evoked by two-word phrases are altered by relative 

isolated manipulations in their content, allowing us a means of inferring the principles 

that govern neural coding in different cortical regions.  This is analogous to how a vision 

scientist can observe the tuning properties of a neuron by varying a stimulus dimension 

such as wavelength. Here, the dimensions we manipulate are (1) shared verb (thus shared 

event) and (2) shared composition type, which allows us to examine (1) how information 

carried on the verb may be critical to certain regions involved in semantic composition 

but not to others, and (2) whether the putative grammatical rules that distinguish various 

two-word phrases are differentially instantiated in regions of the brain implicated in basic 

semantic composition.  We also investigate a corollary to the first hypothesis: if verbs are 

somehow privileged in certain brain regions (namely AG), then we might expect to see 

that the neural similarity between voxel patterns associated with phrases sharing a given 

verb might be predicted by subjects’ ratings on how similar the meanings of these verb-

sharing phrases are to one another.  We also test whether nouns might likewise drive 

pattern similarity of noun-sharing phrases in left ATL.  

Material and Methods 

 

Participants 

 Twenty-one subjects participated in this study.  Two participants’ data were 

excluded due to excessive motion, and one subject was found to have an anatomical 

anomaly.  Data from the remaining eighteen subjects are reported here.  Subjects ranged 

in age from 18 to 28 years, and all were right-handed native speakers of English with 
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normal or corrected-to-normal vision and no reported history of neurologic problems.  

Subjects gave written informed consent and were provided monetary compensation for 

their time.  The human subjects review board at the University of Pennsylvania approved 

all experimental procedures.  

Stimuli 

Stimuli Design 

 Crossing type of composition (argument-type vs. adjunct-type) with 

presence/absence of verb, we chose compositional word phrases that conformed to four 

different types:  

1) +verb_arg: a word phrase that composed via argument-type composition and 

included a verb, e.g. eats meat 

2) -verb_arg: a phrase that composed via argument-type composition, the head of 

which was a preposition instead of a verb; e.g. with meat 

3) +verb_adj: a phrase that composed via adjunct-type composition and included a 

verb, e.g. eats quickly (note that adjective-noun phrases are not the only type of 

adjunct-type composition) 

4) -verb_adj: a phrase that composed via adjunct-type composition and did not 

include a verb; e.g. tasty meat 

where +verb_arg,  –verb_arg, and –verb_adj always had the same noun, and +verb_arg 

and +verb_adj always had the same verb.  These four types of compositional phrases are 

further illustrated in Table 1. 
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Stimuli consisted of 36 sets of four compositional phrases and two non-

compositional items.  We implemented the “minimal composition paradigm,” where 

composition is isolated to two-word phrases and contrasted with one-word non-

compositional items consisting of an unpronounceable letter string and a real word 

(Bemis & Pylkkänen, 2011a; Westerlund et al., 2015). Each non-compositional item was 

presented in one of two possible word orders, for a total possible four one-word items. 

The format for the non-compositional one-word items ([noun/verb] + [non-

pronounceable letter string]) was counter-balanced for the real word being in phrase-

initial or phrase-final position. 
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Table 1: Stimuli Design 

 Argument (argument-type) 

composition 

Adjunct (adjunct-type) 

composition 

+verb eats meat eats quickly 

verb control eats fghjl / fghjl eats eats fghjl / fghjl eats 

-verb with meat tasty meat 

-verb (noun) 

control 

meat fghjl / fghjl meat meat fghjl / fghjl meat 

Table 1: An example set of two-word compositional and one-word non-compositional 

items sharing a given noun or verb. 

Our hypothesis concerns verbs that denote events, so we selected verbs that were 

eventive rather than stative. Of our 36 verbs, we have one traditionally stative verb – love 

– but this verb is sometimes used in the continuous aspect (I am loving, I was loving), so 

it is not as strongly stative as have or own.  The other 35 verbs are strongly eventive (e.g. 

I am eating, I am kicking, I am buying, etc.)  

A given verb in each compositional set had to be able to compose with a direct 

object, as in “eats meat,” but, conversely, could not be so strongly transitive as to require 

a direct object.  Therefore, all verbs were chosen to be optionally transitive. This optional 

transitivity allowed for compositional phrases of the +verb_adj type, as in eats quickly, 

where there is no direct object.  Moreover, all verbs had present tense inflection in order 
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to ensure they were interpreted in the active voice. A verb in a +verb_arg phrase like 

chews gum, when presented in the past tense – chewed gum – might be read as a passive 

participle – as in “gum that is chewed.” In such a case, an adjectival participle would 

compose via adjunct-type rather than argument-type composition. 

Similar constraints were placed on the noun stimuli. A given noun had to be able 

to compose in a variety of contexts (with an adjective, a preposition, and a verb) without 

requiring extra plural suffixes or determiners (throw stones, throw the stone), the addition 

of which might involve another type of compositional operation.  Therefore, only mass 

(non-count) nouns were included.  Also, since one of our hypotheses concerns the status 

of events as denoted by verbs, we avoided event-denoting nouns, though marginally 

event-denoting nouns in our stimuli included the nouns traffic, crime, opera, praise, and 

pardon. 

Note that, due to the constraints of our particular two-word phrase sets (see Table 

1), we could not compare two adjunct-type phrases.  The nature of our similarity analysis 

required that a given two-word phrase be compared only to another two-word phrase that 

shared either a noun or a verb.  This is because we are investigating the changes in the 

voxel pattern of a given base word – e.g. eats or meat – when composed with a function 

head, an argument, or an adjunct.  While it is possible that the operations of argument 

composition and adjunct composition each have their own stable and distinctive patterns 

in the brain regardless of what words are composed, it is more likely that the instantiation 

of the operation is highly dependent on the words composed, and thus highly distributed 

spatially in the brain.  Under this view, a voxel pattern for function-argument 
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composition of eats meat cannot be expected to be the same voxel pattern instantiating 

the composition of plays guitar. For this reason, we need to make all similarity 

comparisons relative to an “anchor” word – either a shared noun or a shared verb in this 

case. Our two types of adjunct-type compositions did not share a word: an event-denoting 

adjunct-type phrase like eats quickly cannot be directly compared with the non-event-

denoting adjunct-type phrase like tasty meat, even though these two phrases are in the 

same set and can each be compared with an event-denoting argument-type phrase like 

eats meat. Therefore, we had no means of assessing adjunct-type similarity profiles.  

However, because a number of previous studies have shown that adjective-noun 

compositional phrases like tasty meat activate left ATL, we were less interested in 

replicating such a result than querying other types of compositionality, specifically 

argument-type pattern similarity (eats meat compared with with meat) and verb-based 

pattern similarity (eats meat compared with eats quickly).  This allowed us to test two 

different hypotheses about the role of AG specifically: On the one hand, if AG subserves 

argument-type composition in general (that is, application of arguments to any type of 

function head; in this case, either a verb or a preposition), then we predict argument-type 

pairs will elicit highly similar patterns of activation in AG. On the other hand, if AG is 

preferentially sensitive to event-denoting verbs, then specifically verb-sharing phrases 

will elicit similar patterns in AG. 

Similarly, if left ATL is specialized for feature-based composition, either noun-

sharing or verb-sharing phrases might elicit shared activation patterns.  Moreover, if left 

ATL is sensitive to composition-type, we predict conserved patterns of activation for 
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phrases that share either adjunct- or argument-type composition (where only argument-

type shared composition is tested here.) 

Stimuli norming 

 All words and word phrases were matched for length except for adverbs (in 

+verb_adj, e.g. “eats quickly”) compared with nouns (in +verb_arg, e.g. “eats meat”), 

where adverbs were significantly longer than nouns (Madv=7.6, s.d. = 1.96; Mnoun= 6.2, 

s.d = 1.97).  Only adverbs and nouns were matched on frequency. We also collected 

imageability ratings on a 1-7 Likert scale (1 being lowest) on one- and two-word items.  

There was no significant difference between our noun-based stimuli and our verb-based 

stimuli (not including eats meat stimuli that included both a verb and a noun): Mnoun_items 

= 4.74, s.d. = 0.83;  Mverb_items = 4.39, s.d. = 0.58. 

As noted above, all verbs appeared in the present tense in this study. When 

presented in a non-compositional one-word stimulus (e.g. bvref picks), some of these 

present tense verbs might be ambiguous between a verb and noun interpretation. 

However, in all such cases of possible ambiguity, the dominant form of the base word 

was a verb (assessed using Google Books Ngram Corpus, American English; Lin et al., 

2012). 

We also normed our two-word phrase pairs’ dissimilarity using a survey posted 

on Amazon Mechanical Turk (Buhrmester et al., 2011).  Instructions were as follows:  

“In this survey, you will be asked to indicate how alike two 

instances of a word in two different contexts are. You will do this using 
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a slider bar. 0 means “exactly the same” and 7 means “substantially 

changed.  For example, a minimal change might be something like 

“stare at the cash register” and “ask about the cash register.” A 

moderate change would be the difference between “buys rice” and 

“grows rice.” In “buys rice”, the rice is likely packaged in a container, 

while in “grows rice” the rice is in a field on a plant.” 

In this way, we were able to extract pairwise dissimilarity scores for phrases that shared a 

given noun or a given verb, and also average these scores to yield a measure of how 

much, on average, a given noun or verb changed depending on the word it was composed 

with.  That is, pairwise dissimilarity scores for the phrase pairs (meat, eats meat), (meat, 

tasty meat), (meat, with meat), (eats meat, with meat), (tasty meat, with meat), and (tasty 

meat, eats meat) were averaged together to yield a mean dissimilarity score for “meat”; 

likewise, the pairwise dissimilarity scores for (eats, eats meat), (eats quickly, eats meat), 

and (eats, eats quickly) were averaged together to yield a mean dissimilarity score for 

“eats.”  We could then compare the pairwise dissimilarity norms with “neural similarity” 

scores (see below for discussion), where “neural similarity” was the measure of how 

much a multi-voxel evoked pattern for a given noun/verb changed depending on the word 

it was composed with (where less change in the patterns indicates greater similarity).  We 

could also analyze the mean dissimilarity norms to look for coarse similarity differences 

between noun-containing phrases and verb-containing phrases. 

 After filtering responses for English as a first language, completeness, time to 

response, fluency, and neurological disorders, between 16 and 40 subjects per each of 9 
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lists (one list for each phrase pair in a given set) remained.  Responses from 16 randomly 

chosen subjects per list were then analyzed and used to calculate the pairwise and mean 

similarity norm scores.  Interestingly, phrase pairs sharing a noun were rated as 

significantly (p<0.05) more similar on average (M=3.16, s.d.=0.25; where mean 

similarity norm on a 0-7 Likert scale, 0 most similar) than phrase pairs sharing a verb 

(M=3.44, s.d.=0.46). 

Experimental Task and Design 

 The subject’s task on each trial was to read two simultaneously centrally 

presented words constituting either a compositional or one-word item.  This phrase was 

presented for 3 seconds.  The critical phrase was immediately followed by either a 9-

second fixation cross, during which the subject need only passively view the screen, or a 

two-word phrase probe presented for 3 seconds and followed by a 6-second fixation-cross 

ISI.  This probe was presented in capital letters and terminated with a question mark so as 

to distinguish it from the preceding critical phrase.  If the initial critical phrase was 

compositional (e.g. asks nicely), then the probe was also compositional (e.g. INQUIRES 

POLITELY?); otherwise, the probe consisted of a noun/verb and a non-word letter string 

in the same order as the non-compositional one-word item it followed (e.g. asks xblrdc 

followed by INQUIRES PCXFDL?; or xblrdc asks followed by PCXFDL INQUIRES?).  

The subject was instructed to indicate by button press (yes/no) whether the probe phrase 

(or, in the case of a non-compositional trial, the probe word) was synonymous with the 

preceding phrase or word.  If a trial had no probe, no response was required from the 

participant.  10% of trials had a probe phrase or word, and 30% of these catch trials had 
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probes that were not synonymous.  Probes from catch trials were excluded from analysis. 

The entire experiment consisted of 9 runs of 24 trials each. 

Image acquisition and pre-processing 

 FMRI data were collected at the Hospital of the University of Pennsylvania on a 

3T Siemens Trio System using a 32-channel multiple-array head coil.  Four types of 

image sequences were collected for each participant: (1) a standard low-resolution 

anatomic localizer; (2) a high-resolution, T1-weighted sequence for localization of fMRI 

activity in standard stereotactic space; (3) T2*-weighted images from 9 experimental 

runs; (4) a B0 field map sequence for subsequent geometric unwarping of T2*-weighted 

images.   

After acquiring T1-weighted anatomical images (TR=1630 ms, TE=3.11 ms, TI = 

1100 ms, voxel size = 0.9 mm x 0.9 mm x 1.0 mm, flip angle 15°), we collected T2*-

weighted images using a gradient-echo echoplanar pulse sequence (TR=3000 ms, TE=25 

ms, voxel size=2 mm x 2 mm x 2 mm, flip angle = 90°, 41 axial slices).  Slices were 

collected at 20° counter-clockwise to the anterior commissure to posterior commissure 

(AC-PC) plane. This slice orientation was chosen so as to maximize the volume of 

anterior temporal as well as temporo-parietal cortex within the acquisition, since the 

former region is particularly prone to signal loss from proximity to sinuses (known as 

“susceptibility artifact”, Patterson et al., 2007). 

FMRI data were pre-processed offline using the AFNI (Cox & Jesmanowicz, 

1999) software package.  The first four volumes of each functional run were removed so 
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as to allow the signal to reach steady-state magnetization. Functional images were slice-

time corrected, and a motion correction algorithm employed in AFNI registered all 

volumes to a mean functional volume. Images were then unwarped via B0 field maps 

(using FSL software; http://www.fmrib.ox.ac.uk/fsl) to reduce non-linear magnetic field 

distortions.  We applied a high-pass filter of 0.01 Hz on each run to remove low 

frequency trends.  Images were transformed to Talairach standardized space (Talairach & 

Tournoux, 1988) and voxels were resampled in the process to 3.5 mm x 3.5 mm x 3.5 

mm.  

Analysis 

ROIs and image analysis 

Using AFNI (Cox, 1996), functional data were registered to the individual 

subject’s anatomical MRI. Transient spikes in the signal were removed using AFNI’s 

3dDespike.  Our a priori ROIs were left anterior temporal pole and left angular gyrus, 

which we delimited using AFNI’s CA_ML_18_MNIA atlas. Our anterior temporal ROI 

spanned labels “left temporal pole” and “left medial temporal pole”, while our angular 

gyrus ROI circumscribed only the atlas’s “left angular gyrus” ROI (see Fig. 5). 

For those voxels within a given ROI, multiple regression was used to generate 

parameter estimates (β) representing each voxel’s activity in each stimulus item condition 

within subject.  Voxels’ βs were calculated by convolving all variables with a gamma-

variate hemodynamic response function and entering them into a general linear model 

(GLM) (AFNI; Cox & Jesmanowicz, 1999).  Motion estimates were included as 



 

 

70 

regressors of no interest. After implementing our voxel selection criteria (see below), the 

per-voxel β values were entered into the similarity analysis. 

Voxel selection and similarity analysis 

In order to query the similarity space of the various composition conditions in 

each of our ROIs, we first had to identify which voxels to include in subsequent 

similarity analyses. For each subject, we selected those voxels which varied the most 

with respect to the contrast between compositional phrases (e.g. eats meat) and one-word 

items (fghjl eats), using a GLM at each voxel within bilateral ATL and bilateral AG.  

Because even a liberal t-threshold on the compositionality contrast revealed no 

differential activity in right ATL, we did not further analyze this region. The 100 voxels 

with the highest unsigned (positive and negative; see Discussion for motivation for 

including both) t-values from the compositionality localizer for each subject for each 

remaining ROI made up the pattern template for the similarity analysis.  Having chosen 

which 100 voxels would constitute our per-subject, per-ROI vectors, we then modeled 

each stimulus event as a unique regressor in a GLM, and entered the stimulus item GLM 

βs for those previously chosen 100 best voxels into vectors of 100 values per condition 

per ROI per subject (see Fig. 6). We then conducted a correlation analysis over these 

pattern vectors using Pearson’s r.  Our initial regions of interest (ROIs) included bilateral 

ATL and bilateral AG. Because right AG demonstrated no significant pattern similarity 

results in any voxel group, only results for left-lateralized ATL and AG are reported 

below.   

 While we report results for the 100-voxel set below, we also used three other 
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voxel sets (50, 200, and 500) to confirm that our results were not idiosyncratic to an 

arbitrary feature selection criterion. These were entered into the similarity analysis as 

described for the 100 best voxels, and we report results for these voxel sets in Appendix 

Tables 1-6.   

 

Figure 5. ROI boundaries of left ATL and left AG. 
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Figure 6. Diagram of similarity analysis.  A vector of the N (50, 100, 200, and 500) best 

voxels’ β values for a given condition (e.g. +verb_arg, or eats meat) was correlated 

against another vector of β values from the same voxel array for a different condition in 

the same composition set (e.g. +verb_adj, or eats quickly). 

Neural similarity scores for individual nouns and verbs 

In order to have a neural measure to relate to the Amazon Mechanical Turk 

similarity norms we had calculated for each noun and verb (see Section 2.2.2), we 

calculated the correlations from the 100 voxels previously chosen for analysis between 

evoked patterns of every noun-containing phrase and every verb-containing phrase. That 

is, we calculated multi-voxel pattern correlations for the phrase pairs (meat, eats meat), 

(meat, tasty meat), (meat, with meat), (eats meat, with meat), (tasty meat, with meat), 

(tasty meat, eats meat), (eats, eats meat), (eats quickly, eats meat), and (eats, eats 

quickly).  We then correlated these noun- and verb-specific neural similarity scores with 

the respective pairwise similarity norm scores from the Amazon Mechanical Turk survey. 

We predicted that the neural similarity score, which was higher the more consistent a 

given noun or verb pattern was when being composed with other words, would be 

negatively correlated with the dissimilarity norm score, which was higher for nouns or 
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verbs the meanings of which differed more depending on what words the nouns/verbs 

were composed with. 

Results 

Categorical similarity analyses of shared verb and shared composition type  

 We evaluated the similarity of the multi-voxel patterns evoked by each item 

across the set of voxels that differentially responded to compositional and non-

compositional conditions in a given ROI. That is, we chose the 100 voxels per person 

with the highest unsigned (positive and negative) t values from the composition-vs-non-

composition contrast in each ROI, estimated the beta value for a given item at each voxel, 

calculated the correlation across the 100 voxels between pairs of items that shared a 

common concept, and averaged those correlations across the 36 items.  Specifically, we 

contrasted two hypotheses of the role of left AG in two-word composition: (1) that the 

left AG is specialized for combinations involving argument-type composition, and/or (2) 

that the left AG is specialized for event/verb semantics.   

We compared correlations between pairs like (a) eats meat and with meat, where 

both a noun is shared and putative composition type (argument saturation) is shared with 

pairs like (b) “eats meat” and “tasty meat,” where only a noun is shared, and pairs like (c) 

“eats meat” and “eats quickly,” where the verb is shared.  We found a main effect of 

Condition ((a)shared noun and composition; (b) shared noun only; (c) shared verb only) 

in left AG (F(2,48) = 6.23, p =0.004).  As shown in Figure 7, the shared verb correlations 

(r = 0.17) are significantly greater than correlations between noun-sharing phrases (r = -

0.03; Welch’s t(25.1) =  8.03, p<0.001) or noun+composition-sharing phrases (r = 0.04; 
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t(24.6) = 5.29, p<0.001).  The only correlation significantly different from chance in left 

AG is that between verb-sharing phrases. This pattern was robust across several other 

voxel selection criteria (see Tables 1 and 2 in Appendix). These findings favor the 

hypothesis that the left AG is specialized for verb semantics. 

  

Figure 7. Pairwise correlations between relevant pairs of word phrases in 100 best voxels 

in left AG.  Error bars are 95% confidence intervals. 

The same set of comparisons between pairs of two-word phrases in left ATL 

yields a different pattern from that seen in left AG (see Tables 3 and 4 in Appendix for 
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left ATL comparisons).  The noun-sharing phrases and the noun+composition-sharing 

phrases were significantly greater than both chance (Appendix Table 3) and the verb-

sharing condition (Appendix Table 4), though this was not robust across other voxel 

selection criteria.  Prima facie, this might suggest that left ATL is tuned to information 

carried on the noun and to shared composition type, consistent with Westerlund et al., 

2015. However, the overall pattern of ranked correlations was not robust across voxel 

sizes in left ATL as it was in the case of left AG: that is, the eats meat ~ with meat was 

not consistently the highest correlation across voxel groups in left ATL, and there was 

much greater variability in the ordering and magnitude of correlations in left ATL.  More 

importantly, because the current stimuli were not well suited to exploring the full 

similarity profile of compositionality in left ATL, particularly because we did not have a 

pair of phrases that shared both adjunct-type composition and either a noun or a verb (see 

intro), we cannot tell from these data alone whether left ATL is sensitive to composition 

type, shared noun, or some other dimension of conceptual similarity. 

In order to compare the overall similarity structure in left AG with that in left 

ATL, we performed a 3x2 ANOVA over the Fisher’s z-transformed subject means of 

Pearson’s correlation values in the 100-voxel group, with factors Condition (shared noun 

and composition; shared noun only; shared verb only) and ROI (left ATL; left AG).  We 

found a significant interaction between Condition and ROI (F(2,96) = 5.02, p=0.008).   

Continuous similarity analyses between subjects’ pairwise similarity rankings and neural 

similarity scores for pairs of two-word phrases 
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 Implicit so far in our treatment of the categorical dimensions “+/- shared verb” 

and “+/- shared composition” is the assumption that the only change between pairs of 

word phrases in a given set is the words constituting those phrases.  However, it might be 

that the meanings of our two-word phrases differ based on factors related to a 

syncategorematic “context” of the word phrases. On the one hand, meanings could vary 

idiosyncratically; for instance, the meaning of “meat” in eats meat vs. with meat might 

not differ much between these two contexts, but “rice” in grows rice vs. on rice might 

differ much more from one context to the next (where on rice calls to mind rice in an 

edible state, while grows rice is more evocative of farming the plant).  On the other hand, 

nouns and verbs might differ systematically in their “changeability” across phrasal 

contexts; that is, noun-sharing phrases might be more or less variable around a noun than 

verb-sharing phrases are around a verb. 

In order to check for this potential source of similarity structure in our stimuli, we 

first looked at the pairwise norming scores taken from the Amazon Mechanical Turk 

survey.  We found that there was a significant difference (p<0.05) between noun-sharing 

pairs and verb sharing pairs (M=3.16 and M=3.44, respectively, on a Likert scale of 0-7, 

7 being maximal difference between a pair of word phrases), indicating that, on average, 

noun-sharing phrases were rated as more similar than verb-sharing phrases.  This normed 

similarity measure was not predictive of neural similarity in either left ATL or left AG at 

any feature level (50, 100, 200, or 500) when taking verb- and noun-based correlations 

together, nor was there a main effect of noun- vs. verb-sharing on neural similarity scores 

across ROIs. However, we found a significant correlation between AMT similarity norms 
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of verb-containing phrases and neural similarity scores in the 100 best voxels in left AG 

(r = -0.12, p < 0.05; see Tables 5 and 6 of Appendix for AG and ATL correlations across 

voxel selection criteria).  

Discussion 

 While functional neuroimaging studies have made great strides in mapping brain 

areas involved in language processing, a model of the neural bases of semantic 

processing is still in its nascence. This may be in part due to the fact that the cognitive 

neuroscience of semantics does not always utilize linguistic theory. Indeed, it sometimes 

does not need to. After all, the legacy of model-theoretic semantics has concerned itself 

primarily with formalizing “the metaphysics of truth in natural language” rather than the 

various constraints on language processing or the representations of concepts (Seuren, 

2009). Cognitive neuroscientists are often more explicitly interested in semantics as it 

deals with binding sensorimotor features of object-concepts, or how different categories 

of objects are represented with regard to action-oriented events, e.g., function vs. 

manipulability (Yee, Drucker, & Thompson-Schill, 2010), etc.  For instance, early 

attempts to define “category-specific” regions of cortex using lesion studies provided 

evidence that damage to ATL was associated with deficits specific to the knowledge of 

living things (Gainotti, 1996), while damage to left temporo-parietal junction affected 

knowledge of man-made artifacts (e.g. wrench, hammer, etc. which, interestingly, are 

often also verbs) (Tranel, Damasio, & Damasio, 1997).  However, such emphasis on 

accounting for sensorimotor and action-based properties of language may neglect the 

more abstract significations our language is capable of expressing, and thus miss 
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potential means of generalizing certain embodied aspects of cognition. In this study, we 

expanded the purview of conceptual semantics from the domain of object concepts and 

action semantics to more abstract dimensions – here, composition type, argument 

structure, and event semantics. 

 We were particularly interested in two regions of the brain – the left ATL and left 

AG –implicated neuroanatomically as “convergence zones,” and also as “semantic hubs” 

for their involvement in processing compositional language.  We found that the left AG 

displayed a markedly different pattern-similarity profile from that of left ATL. The only 

dimension of stimulus similarity that produced a detectable effect on neural similarity in 

AG was shared verb, and by extension, shared event.  Left AG appears to be invariant to 

composition type, and therefore the level at which AG tracks argument structure may not 

be as general as that described by “argument-type” composition as denoted above, but 

rather may explicitly subserve verb argument structure, namely thematic relations.  This 

is an important distinction, as there are many more types of argument structure in 

language than verbs and their arguments, and these data now behoove us to examine 

AG’s selective involvement in composing verbs and their arguments.   

Angular gyrus and thematic relations 

 It is still unclear exactly what information carried on the verb might be engaging 

AG.  Evidence that bilateral AG activity is parametrically modulated by the valency of a 

verb – that is, the number of arguments a verb can take (Meltzer-Asscher et al., 2013; 

Thompson et al., 2007, 2010) – suggests that the AG may read out the syntactic 
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complexity of a verb constituent, rather than, or in addition to, the semantic content of the 

verb itself.  Left AG has also been implicated in the detection of syntactic errors (Embick 

et al., 2000).  However, AG is also involved in the processing of connected discourse as 

opposed to unrelated sentences (Fletcher et al., 1995; Homae et al., 2003; Xu et al., 

2005), suggesting that AG participates in the construction or analysis of event semantics.  

Thus it may be that AG acts as an interface between semantic memory and syntactic 

structure, mapping semantic-thematic relations onto structural constraints surrounding 

verbs and their arguments.  Indeed, electrophysiological and neuroimaging studies 

support an overlap between (morpho-)syntactic and semantic-thematic verb violations. 

Kuperberg et al. (2008) compared three different types of verb violations: (1) semantic–

thematically violated verbs (e.g. “at breakfast the eggs would eat”) (2) 

morphosyntactically violated verbs (e.g. “at breakfast the boys would eats”) and (3) real-

world violations (e.g. “at breakfast the boys would plant”).  They found that, unlike real-

world violations, both semantic-thematic and morpho-syntactic violations elicited activity 

in a frontal/inferior parietal/basal ganglia network, in accord with previous 

electrophysiological findings that semantic-thematic and syntactic violations evoked 

P600 event-related potentials highly similar in latency and scalp distribution (Hoeks et 

al., 2004; Kuperberg, 2007). The authors concluded that this frontal/AG/basal ganglia 

activity reflected attempts to integrate structural constraints of the verb with semantic 

properties of the Agent NP argument (Buccino et al., 2001; Chao & Martin, 2000; 

Damasio et al., 2001; Fogassi et al., 2005). 

 Evidence from lesion analyses also suggests that such thematic role knowledge is 
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privileged in bilateral AG.  The literature on semantic knowledge has long distinguished 

between so-called taxonomic semantic knowledge, or knowledge of 

shared/commensurate features, and thematic semantic knowledge, or knowledge of the 

relations between object-concepts (crucially from different taxonomic categories) that 

play complementary roles in events. Speakers’ semantic errors tend to reflect either 

taxonomic fidelity (that is, uttering an incorrect word, but one which has commensurate 

features, such as when “apple” is named as “pear”) or co-occurrence fidelity (that is, 

uttering “dog” when “bone” was intended, reflecting the thematic relation between “dog” 

and “bone”) (Schwartz et al., 2011).  Schwartz and colleagues (2011) analyzed the error 

typologies of 86 individuals with post-stroke aphasia and conducted voxel-based lesion-

symptom mapping (VLSM) on each error type separately (with shared variance between 

error types regressed out). Taxonomic errors were mapped to left ATL lesions, while 

thematic errors were localized to left AG. This double dissociation between ATL and AG 

supports the view that the ATL and AG support distinct semantic computations, 

corresponding roughly to feature-based and relation-based operations, respectively (but 

cf. Lewis, Poeppel, & Murphy (2015) for evidence that both taxonomic and thematic 

associations engage AG, while ATL subserves taxonomic associations specifically).   

It is interesting to note that word pairs in a thematic error, such as “dog” and 

“bone,” can be described as related by virtue of some implicit verb/event; in this case 

“chews” or “buries,” etc.  That is, thematic knowledge is precisely knowledge of verbs 

and their arguments.  Our current study provides evidence that verbs in particular, not 

nouns, and not just any argument-type composition, may indeed be the representational 
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substrate of semantic knowledge in AG. 

Semantic representations or semantic control?   

 There is some debate, however, as to whether AG is a hub for mapping syntactic 

and semantic representations, or if it is rather part of an extended regulatory “semantic 

control” network. Indeed, the functional heterogeneity of bilateral AG apparently defies 

neat description.  While AG activity is most consistently and robustly elicited by tasks 

involving semantic processing, both in auditory and visual modalities (see Seghier, 2012, 

for review), AG is also implicated in the default network, where AG is deactivated during 

goal-oriented tasks (Shehzad et al., 2009); number processing (Dehaene, Piazza, Pinel, & 

Cohen, 2003); attention and spatial cognition, where AG may play a role in shifting 

attention toward particular stimuli having greater salience in terms of motion, value, 

emotion, and meaning (Gottlieb, 2007); and verbal working memory retrieval and 

episodic memory retrieval (Vilberg & Rugg, 2008). Generally, AG activation increases 

with the amount of semantic information that can be retrieved from a given input, 

whether exogenously generated or self-generated during mentation (Binder & Desai, 

2011; Seghier, 2012). 

 The ostensible functional heterogeneity of AG in the literature may arise more 

from ROI definitions that (unintentionally) obscure neuroanatomical divisions within 

AG.  In a meta-analysis of studies comparing semantic tasks with high-vs.-low demands 

on executive control, Noonan et al., 2013, found a functional divergence between dorsal 

AG (bilateral, including dorsal/anterior AG and boundaries with superior marginal gyrus 
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(SMG) and inferior parietal sulcus (IPS)) and left mid AG (somewhat closer to PGp than 

PGa), with respect to executive and representational roles in semantic processing.  Dorsal 

AG showed reliably greater activation in high >low semantic conditions, and was 

characterized as allocating attention to semantic representations in a task-dependent and 

goal-driven manner. This characterization is not in itself inconsistent with a model of AG 

as a site of conceptual combination, as such compositional operations require selective 

attention to certain properties of events in order to construct higher-order concepts. 

However, dorsal AG’s role in semantic control was contrasted with mid AG, the activity 

of which was modulated by the semantic representational content of stimuli even when 

matched on task demands.  While mid AG is associated with the “default mode network” 

(Raichle et al., 2001), and thus shows more positive activation in the absence of a task, it 

shows more negative activation for abstract as compared with concrete concepts (Binder, 

Westbury, McKiernan, Possing, & Medler, 2005; Wang, Conder, Blitzer, & Shinkareva, 

2010), and more positive deflection from baseline for semantic as compared with 

phonological decisions matched on executive demands (Binder et al., 1999, 2009).  

 The left and right AG ROIs drawn in our study encompassed both dorsal and mid 

AG regions, but voxel features across subjects were highly dispersed across the ROI in 

standard space such that we could not determine a difference in pattern similarity profiles 

between dorsal and middle aspects of AG.  It is thus possible that the patterns we report 

here captured a combination of executive demand and semantic-thematic representation 

similarities. 

 However, if there were differences across our dimensions of interest in executive 
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demand, or syntactic/semantic complexity broadly construed, we might expect to have 

seen evidence for this in univariate contrasts. Yet we found no evidence of significant 

univariate differences across our dimensions of interest: there were no significant clusters 

in our ROIs for the noun-based vs verb-based phrase contrast (where eats quickly and 

eats were verb-based phrases, and tasty meat, with meat, and meat were noun-based 

phrases), and neither did the argument-vs-adjunct-type contrast reveal any significant 

differences in either ROI.  Nevertheless, we cannot rule out the possibility that the voxel 

pattern correlations in our AG ROI also reflect semantic control processes. 

Limitations, future directions, and conclusions 

 Our claim is primarily in regard to composition, rather than lexical effects per se, 

because we are investigating the changes in the voxel pattern “template” of a given base 

word – e.g. eats or meat – when composed with a function head, an argument, or an 

adjunct.  The voxel selection criteria we used specifically targeted composition-

responsive voxels; that is, voxels the activity of which changes maximally when adding 

another word to a given base word (e.g. adding the argument meat to eats.)  Given that 

our dependent measure is change (or similarity) in voxel patterns, rather than univariate 

changes in activity across a cluster or ROI, we chose to include voxels that responded 

both maximally positively and maximally negatively to an instance of composition.  

Sampling the ends of both tails allows us to capture a greater range of possible variance 

in voxel patterns, a range that would be limited if we only looked at positive voxel 

changes.  In addition to facilitating the pattern analysis, the inclusion of composition-

negative voxels was motivated by emerging evidence that a region of left AG is part of 
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the so-called “default network,” as discussed above. Seghier et al. (2010), found that the 

left mid AG was a region within the default network that responded more negatively to 

perceptual decisions than semantic decisions, though both stimuli elicited a negative 

divergence from baseline. Mid AG has also been found to be less active for more 

“difficult” semantic stimuli: e.g. more negative activation for items with longer decision 

or processing times (Binder et al., 2009; Noonan et al., 2013).  Since compositional items 

might be understood as more semantically “rich,” or more “difficult,” the mid AG region 

might be expected to index compositionality, but in the composition-negative direction. 

We did not want to exclude this region when we cast our net over AG voxels, and so we 

included both composition-positive and composition-negative voxels.  It should be noted 

that analysis of similarity patterns derived from composition-positive voxels alone yield 

highly similar profiles in both left ATL and left AG, though the shared verb correlation 

was slightly weaker in left AG.  

 As mentioned above, the voxels we selected for similarity analysis were highly 

spatially distributed across subjects, and we were not able to define a particular region of 

AG (dorsal vs. med) driving similarity patterns.  Further study into the functional 

differences (1) between dorsal and mid AG and (2) between composition-positive and 

composition-negative voxels across the brain, may clarify whether voxels responding 

negatively to composition reflect attention-based or representation-based information 

about verb composition. 

 It is also important that we discern lexical effects from composition effects when 

characterizing the role of left AG in verb semantics.  When examining voxel pattern 
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similarity across composition-positive and composition-negative voxels, we do not find a 

correlation between the non-compositional one-word item eats and the compositional 

phrase eats meat. However, as the voxels were selected to maximize the differences 

between exactly this contrast, a lack of correlation is not only unsurprising, but expected. 

Instead of choosing voxels most sensitive to the composition vs. non-composition 

contrast, we collapsed the two-word compositional and one-word non-compositional 

conditions together and contrasted this combined “word condition” with the ITI fixation 

period.  We then selected the 100 voxels and the 500 voxels within left AG with the 

highest positive t statistic for combined word task over fixation baseline.  This more 

agnostic selection criterion allowed us to assess the eats ~ eats meat correlation and also 

compare it with the eats meat ~ eats quickly correlation.  Using the word-vs.-fixation 

selection criterion, these correlations were neither significantly different from chance nor 

from one another. This indicates that the word task>baseline contrast is not optimal for 

testing the substrate of our verb-based effect, and that this effect is indeed driven by 

composition-sensitive voxels 

 While this study provides evidence that left AG contains patterns representing 

information specific to verbs, regardless of whether these verbs are composed with 

adverbial adjuncts or noun arguments, we cannot entirely rule out the possibility that AG 

is also involved with argument-type composition in general.  In addition to “eats meat”-

type verb phrases, the other argument-type compositional phrase included here was the 

prepositional phrase (e.g. “with meat”).  Prepositions have several unique properties. 

High-frequency, semantically vacuous/impoverished prepositions might have a very 



 

 

86 

different combinatorial effect than adjectives or verbs when composing with nouns 

(“tasty meat,” “eats meat,” respectively).  Indeed, the preposition is little more than a 

function word, and lacks the semantic content carried on adjectives and verbs. Not only 

do the prepositions in our stimuli set have the highest average item frequency, but 

prepositions as a class may also combine with many more surface forms than either 

nouns or adjectives. This “compositional diversity” may render prepositions, and 

prepositional phrases, qualitatively different from the other parts of speech used here, and 

this diversity may make extraction of stable patterns from the prepositional phrase items 

less likely.  Nevertheless, further study is needed to examine whether preposition 

function heads engage AG in the same way we found verbs do.  While this study 

provides evidence that a shared argument (meat in eats meat and with meat) is not 

sufficient to drive pattern similarity in AG, it does not query whether a shared preposition 

(with in with x and with y) is possibly sufficient to drive similarity in the same way a 

shared verb is (eats in eats meat and eats quickly). 

The current study only investigates cases of minimal composition: that of two 

words isolated from a sentence or discourse.  However, it is unlikely that AG is only 

tracking this level of composition. There is abundant evidence that AG may engage in 

domain-general event processing in event structures as broad as discourse and in non-

verbal depictions of events. Indeed, both ATL and AG are best described as “hubs” at a 

domain-general level.  While the current study did not directly test the manner in which 

left ATL might subserve feature-based combination, a large body of literature suggests as 

much. In contrast to ATL, we find increasing evidence that AG is engaged in semantic 
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integration of relation-based event structure, and we must now consider whether this 

distinction between ATL and AG is ultimately reducible to the well-attested difference 

between the ventral “what” pathway (the combinatorial hub of which is the ATL) and the 

dorsal “how/where” pathway (the integrational hub of which is the AG) (Binder & Desai, 

2011).  The AG is surrounded by the dorsal spatial attention networks, the posterior 

temporal regions involved in motion perception, and the anterior parietal regions 

involved in representing action (Kravitz, Saleem, Baker, & Mishkin, 2011).  While AG 

may have originated as a dorsal “where/how” convergence zone of spatial, goal-oriented, 

and action information, it may have been co-opted by language to represent increasingly 

abstract relational information.  These relations might be learned merely by tracking co-

occurrence statistics (“dog” often co-occurs with “bone”; “eggs” often co-occur with 

“breakfast), or, more likely, these thematic relations are learned part and parcel of 

hierarchical structures arising in natural language syntax.  Thus, the emergence of event 

and argument structure in thought and language may have been an extension of the 

already extant dorsal pathways underpinning action and goal understanding. 

It is interesting to note, however, that while the fronto-temporal language network 

may have evolved to be strongly left-lateralized, it is less clear the degree to which right 

and left AG diverged with regard to processing events and representing thematic 

relations.  Graves et al. (2010) offer a connectionist account of how noun-noun 

compounds, such as “lake house,” when compared with their less compositional reversals 

(“house lake”), show differential activity in right AG but not left AG.  They suggest that 

left and right AG can be modeled as attractor networks, where such a network is said to 
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settle into an attractor basin when it optimizes the error space in the mapping between 

inputs and outputs.  Whereas left AG is suggested to have relatively narrow attractor 

basins, reflecting highly specific and constrained mappings between words and meanings, 

right AG may contain wider, shallower basins, representing more extensive overlap in 

meanings.  This would accommodate “looser” meanings, and thus enable the 

interpretation of compounds like “dog bone” that lack the explicit (morpho)syntactic 

information (i.e. “a bone that a dog chews on”) that would otherwise aid in resolving the 

relation between the two nouns in the phrase.  This attractor network account of the 

difference between left and right AG accords with Beeman and colleagues' (1994) 

“coarse semantic coding hypothesis” of the right hemisphere.  In this study, “summation 

primes,” three words weakly related to a target word, were found to better prime a target 

when the triplet was presented to the left visual hemifield (right hemisphere, RH) than the 

right visual hemifield (left hemisphere, LH), while the converse was true for “direct 

primes,” where there was one strongly associated prime flanked by two unrelated primes.  

This was taken as evidence that RH contains larger semantic fields weakly activating 

concepts more distantly related to an input word, whereas LH contains smaller semantic 

fields that conservatively activate concepts highly related to an input word.  This 

distinction might account for why we found evidence of verb-specific pattern 

conservation in left AG but not right AG.  It may be that left AG subserves specifically 

strong thematic relations, while right AG weakly activates to a wider variety of 

compositional items.  Further study is needed to examine whether such strong vs. weak 

relations between words in compositional phrases might differentially engage right and 

left AG.   
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We suggest that multi-voxel pattern similarity analysis is uniquely suited to 

address such questions. Our study has demonstrated the sensitivity of this technique to 

compositional operations even at the level of minimal two-word phrases. We are only just 

beginning to characterize the AG with respect to its involvement in semantic 

composition, and this study suggests that the “feature-function” dichotomy may be a 

fruitful distinction in beginning to operationalize the compositional processes occurring 

in both ATL and AG. 
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IV. A MATTER OF AMBIGUITY?  USING EYE MOVEMENTS TO EXAMINE 

COLLECTIVE VS. DISTRIBUTIVE INTERPRETATIONS OF PLURAL SETS 

Introduction 

 Human language processing is remarkably fast, and there is a growing consensus 

that this is because language comprehension is not only a function of receiving input, but 

also of anticipating and hypothesizing structures to be checked against that input. The 

facilitation afforded to the language processor when a prediction is correct, however, is 

balanced against the risk that the predicted linguistic form will be incorrect and require 

re-analysis.  Given this trade-off, it may sometimes favor the processor to abstain from a 

prediction, for instance in cases when the preceding linguistic information has high 

Shannon entropy or is otherwise under-predictive.  However, even in high-uncertainty 

contexts, the processor may often be induced to commit to a representation/interpretation 

in order to proceed with an incremental parse. As Frazier et al.'s Minimal Semantic 

Commitment (MSC) formalizes it, the processor will commit to a representation in the 

absence of specific evidence for that representation “when faced with alternative 

decisions that are grammatically incompatible with each other or when the failure to 

make a decision would violate a grammatical principle” (p. 88). These forced predictions 

differ from cases when the processor is merely opportunistic, committing to an 

interpretation where pragmatic factors, rather than purely grammatical inducements, 

provide evidence in favor of one interpretation over the other. Whereas the grammatical 

constraint on the processor prompts a “necessary decision,” the pragmatic factors produce 

an “invited decision.” Both these types of “decisions” operate over representations that 

are termed ambiguous, since the possible interpretations of that representation are finite 



 

 

91 

and limited.  However, when such possible interpretations are not grammatically or 

pragmatically constrained – e.g. when the grammar does not require a particular 

representation or feature specification– the representation is termed vague. Vague 

representations do not prompt the processor to commit to a representation, and a 

representation can remain underspecified at no cost to the processor. 

 The following two sentences together illustrate a case in which certain linguistic 

material constitutes neither a “necessary” nor “invited” decision of ambiguity: 

5 a. John ate. 

 b. John ate quickly.   

The difference in meaning between (5a,b) resides in the adverb “quickly.” In sentence 

(5a), the manner in which John ate is left unspecified, and yet a reader will find sentence 

(5a) perfectly interpretable without knowing the manner in which John ate.  On the other 

hand, if the sentence lacked information specifying other propositional content, 

including, for instance, the number (singular) or tense (past) of the verb, this sentence 

would be grammatically uninterpretable. Thus, while some information about the verb 

must be determined in order to parse the sentence, other features ostensibly need not be, 

as in the case of the adverbial adjunct “quickly” (5b). Adjunct information, such as the 

manner in which John ate, is therefore characterized as vague, rather than ambiguous. 

While ambiguous representations require the processor to commit to one 

representation, which is then abandoned and re-analyzed if later found incorrect, vague 

representations incur no such processing costs. Given these predictions, Frazier et al. 

(1999) used eye-tracking measures of reading times to compare processing loads of 

sentences that were explicitly distributive (6a), explicitly collective (6b), and locally 
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indeterminate at the predicate (6c,d). 6a and 6b indicate early on in the sentence whether 

the “cake-eating” event is distributive (i.e. John is eating a piece of cake and Bill is eating 

a (separate) piece of cake) or collective (John and Bill are participating in the same cake-

eating event), while (6c,d) specify this information only at the end of the sentence.  

Frazier et al. state that if the “decision” as to whether an event is collective or distributive 

is a matter of vagueness, then (6c,d) should not incur any extra processing cost relative to 

(6a,b), since the presence of “each/together” would not prompt any revision on an earlier 

collective/distributive interpretation. If, on the other hand, the distinction is a matter of 

ambiguity, then a decision as to whether the event was collective or distributive is 

prompted earlier, even in the absence of the disambiguating “each/together” adverb. In 

the latter case, the sentence-final adverb in either 6c or 6d might incur a processing cost 

reflecting the revision of an earlier commitment to a collective/distributive reading. 

6 a. John and Bill each ate a piece of cake. 

b. John and Bill together ate a piece of cake. 

c. John and Bill ate a piece of cake each. 

d. John and Bill ate a piece of cake together. 

Finding increased processing load associated with sentences like (6c), Frazier et 

al. claimed that the distinction between the distributive and collective interpretations was 

one of ambiguity and not vagueness. They note a prevailing theory of distributivity 

(Heim et al., 1991) in which the distributive is the marked reading and involves 

stipulating a distributive operator D (the spell-out of which is “each”).  Given the 

distributive representation is more complex, an early ambiguity should favor a 

commitment to the collective reading rather than the more complex distributive reading: 
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7 a. [John and Bill] ate a piece of cake. (default: collective) 

b. [John and Bill D] ate a piece of cake. (D: distributive operator) 

However, given the account that the D operator adds structural complexity to the 

underlying representation, an increased reading time for the distributive form might be 

expected regardless of whether the decision itself is vague or ambiguous. Interestingly, 

Frazier et al. found an increased processing load for explicit as well as locally 

indeterminate distributives, suggesting that the distributive operator is sufficient to 

increase processing load, with or without an occasion for revision. They claim, however, 

that the increased processing load found for locally indeterminate distributives could not 

be accounted for by the presence of the distributive alone, and suggested that this 

processing cost was due to the processor having committed to the collective reading and 

then revising that commitment. 

 One major limitation of the Frazier et al. study was that it tested a representational 

hypothesis using processing load measures. In the present study, we improved upon 

Frazier et al.'s basic design by employing the visual world paradigm. With this method, 

we monitored the eye movements of participants as they listened to explicit or locally 

indeterminate collective and distributive sentences and considered collective and 

distributive scenes on a computer screen. Rather than relying on processing times to infer 

representational commitments, we tracked which representations were considered along 

the time course of the sentence. Additionally, instead of finally disambiguating the 

locally indeterminate sentences with an adverb, we disambiguate all sentences on a 

sentence-terminal object or objects (for collective and distributive actions, respectively). 

We also gathered normed ratings for every verb in our critical sentence stimuli such that 
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we had measures of the verbs’ lexical-pragmatic biases for collective vs. distributive 

events. This allowed us to query separately those verbs that might be lexically more 

biased towards distributive readings (e.g. wearing, eating), potentially interacting with a 

putatively a priori preference for collective interpretations. 

 Our first study targeted sentences beginning with conjoined noun phrases (NPs), 

such as “John and Bill…” (see Table 2 below), since there is now a rich literature 

investigating collective and distributive readings on these types of NP.  In the case of a 

distributive reading, the “atomization” of a conjoined NP like John and Bill into its parts 

– John and Bill – is particularly intuitive. While the collective interpretation is formalized 

as applying a predicate to a “sum” of individuals John and Bill (Clifton & Frazier, 2012; 

Link, 1983; Moxey, Sanford, Wood, & Ginter, 2011), the distributive interpretation 

applies the predicate separately to the elements John and Bill (Heim, Lasnik, & May, 

1991).  

 Our second study sought to compare the conjoined NP sentences from 

Experiment 1 with sentences using simple plural NP subjects, as in The boys ate a piece 

of cake (cf. 6a-d above).  There has been some periodic debate as to whether theplural, as 

in The boys, can sensibly accommodate a distributive reading, or whether it is 

unambiguously collective.  Scha (1984; inter alia) argues that plural the can only be read 

as collective, while others treat it as ambiguously collective or distributive (Bennett, 

1974; Hausser, 1974).  The status of the definite plural amid other NPs is interesting. For 

instance, consider 4 below (examples from Roberts (1987)): 

8 a. Four women brought a salad to the potluck. 

b. Jane and Mary brought a salad to the potluck. 
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c. Each woman brought a salad to the potluck. 

d. The women brought a salad to the potluck. 

While 8a and b are compatible with either a distributive or a collective interpretation, 8c 

can only be distributive.  The plural NP subject in 8d is strongly collective, but it is not 

clear from this sentence alone that the collective is the only possible reading. In fact, 

given the case in (9) below (example also from Roberts (1987)), the assumption that 

theplural must be collective is defeasible: 

9 Every woman brought a dish to the potluck. 

 The hostess asked those from Acton to bring a casserole. 

 The women from Boxborough brought a salad, and those from Littleton a dessert. 

The italicized content in sentence (9) clearly conveys a distributive reading, even though 

such a reading for sentence 8d might be less accessible. Therefore, it would seem that 

The boys may be subject to the same ambiguity/vagueness between collective and 

distributive as the conjoined NP John and Bill from Experiment 1. 

 In the experiments reported below, we recorded the eye movements of listeners 

while they chose between a depicted distributive or collective scene when hearing 

sentences like those in Table 2 below (John and Bill [each/together/ Ø] are carrying a 

ball/box). If the decision to assign a collective or distributive reading to an event is a 

matter of vagueness, then looks to the collective and distributive scenes when hearing 

sentences like John and Bill are carrying a ball/box should not diverge until the 

disambiguation at the end of the sentence (in our case, the object – ball or box).  

However, an earlier divergence in gaze would indicate either a “necessary” or “invited” 

decision, in which the processor encounters an ambiguity that it must resolve even if it 
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does not have enough information to choose between the collective and distributive 

meanings.  We find evidence that the collective vs. distributive distinction is a matter of 

ambiguity, regardless of the type of subject NP.  However, while conjoined NP subjects 

(John and Bill) prompt early looks to the collective, even when the verb is relatively 

more biased towards a distributive reading (e.g. wearing, eating), the plural determiner 

phrase subjects (The boys) produce looks to the distributive. We discuss reasons for this 

difference in gaze preference below. 

Experiment 1 

Method 

Participants 

Twenty-seven undergraduate students (15 female) participated in this study for 

course credit. All participants were native English speakers and undergraduates at the 

University of Pennsylvania. Two subjects were omitted due to incomplete data recording. 

Additionally, it was noted during the recording process that one subject was fixating on 

the center of the screen during the task, and since this was a marked departure from the 

instructions and potentially problematic for our dependent measure, this subject’s data 

were not included in the analysis. Of the remaining 24 participants, 13 were female. This 

study was approved by the University of Pennsylvania Institutional Review Board, and 

subjects received course credit for their participation. 

Apparatus 

The images were presented on a 17'' Samsung screen with 1680x1050 resolution, 

and the sound was played on Altec Lansing FX2020 ASIO speakers. The sentence onset 

was synchronized to 500ms after the appearance of the scene pair.  The subjects’ 
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responses were recorded using VPIxx ResponcePixx tabletop button box.  Right eye gaze 

was recorded using an Eyelink 1000 eye tracker on a desktop mount at a sampling rate of 

1kHz (re-sampled offline to 100Hz). 

Procedure 

 The experimental session began with a calibration procedure, which usually lasted 

no more than three minutes. Participants were then instructed to fixate on a small dot in 

the center of the screen, which also corresponded to a point equidistant from two scenes 

that would appear during the trial period. Participants were told to fixate on this point 

between trials but to consider the trial scenes freely and at their own pace. 

Materials and Design 

In this study, we employed a visual world paradigm in which two scenarios, one 

distributive (two characters engaging in two distinct actions) and one collective (the same 

two characters engaging in the same activity together) were presented on a screen. While 

subjects contemplated a scene pair, they listened to a sentence describing a distributive or 

collective scenario. Subjects were instructed to indicate with a button press which 

scenario corresponded to the sentence they heard. Sentences were ultimately 

disambiguated by the object that underwent the action, though sentence items with an 

adverb (“each” or “together”) were effectively disambiguated earlier. 

Target items consisted of 24 sets of six prerecorded sentences. The words and 

phrases in the sentences were recorded and coded for onset and offset times using 

PRAAT and FAVE (Boersma & Weenink, 2015; Rosenfleder, Fruehwald, Evanini, & 

Yuan, 2011). The six items in each of the 24 sets were derived from a base sentence that 

included a plural subject (e.g. “John and Bill”), a predicate that was ambiguous between a 
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collective and distributive reading (e.g. “are carrying”), and a direct object that could bias 

the sentence towards a collective or distributive reading. To extend the ambiguity period 

for the ambiguous sentences, all objects were modified by a neutral (non-disambiguating) 

adjective. The six sentences in each of 24 critical item sets were as follows: 
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Table 2 

Conjoined NP  Disambiguator  Ambiguous region 

1 (verb) 

Ambiguous 

region 2 

(adjective) 

Object 

1. John and 

Bill 

Ø are  carrying a bright red ball. 

2. John and 

Bill  

each (distributive) are  carrying a bright red ball. 

3. John and 

Bill  

together 

(collective) 

are  carrying a bright red ball. 

4. John and 

Bill 

Ø are  carrying a bright red box. 

5. John and 

Bill  

each (distributive) are  carrying a bright red box. 

6. John and 

Bill  

together 

(collective) 

are  carrying a bright red box. 

 

Table 2: Experiment 1: Conjoined NP sentences. Subjects listened to one of these 6 

sentence types while viewing a scene diptych like that shown in Figure 8. Sentences 

began with conjoined NP subjects and were either not disambiguated until the object 

word (1,4) or were disambiguated early by distributive “each” (2, 5) or collective 

“together” (3,6). 
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Figure 8 

 

 

Figure 8: Two typical scene pairs, A and B, only one of which would appear for a given 

item in a given list.See (1)-(6) in Table 2 for list of sentences matched to each scene pair. 

Scenes were clipart images edited in Gimp and Paintbrush software. 

 To avoid repetition and priming effects, we presented each given subject with 

only one of the six variants of each sentence set.  In addition to the 24 test items, there 

were 24 fillers. These fillers were sentences of the same basic form as the test items, and 

each filler was presented along with two scenes (one target scene and one distracter 

scene). Eight of the fillers were disambiguated at the subject, eight at the predicate and 

eight at the object. Thus the targets and fillers were distributed across six lists in a Latin 

Square design, with targets counterbalanced on disambiguating term, object bias, and the 

side of the screen the target scenario appeared on. Items were pseudorandomized and 

item order was matched across lists. 
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Note that though the object (ball/box) was not uttered until the end of the 

sentence, the relative “collective bias” of a scenario was represented in the visual world 

independent of the sentence. If subjects find collective or distributive scenes more salient 

or attractive in some way, regardless of the ambiguity/vagueness of an accompanying 

sentence, then we should see preference for one or another type of event as depicted in 

the visual world alone.  We conducted an online survey asking subjects (n=12) to indicate 

which of the two scenes was more “plausible.” The two scenes were paired as they were 

in the eye-tracking study: one collective, one distributive, and both depicting the same 

base event (carrying, eating, etc.)  There were no significant differences in plausibility 

preference for collective vs. distributive scenes.  We were thus able to proceed under the 

assumption that the collective and distributive scenes themselves did not bias looks 

independent of the sentence uttered. 

Our hypothesis states that a late, adverb-prompted divergence in looks between 

collective and distributive scenes would indicate the decision was a matter of vagueness, 

while an earlier divergence in gaze (say, at the verb) would suggest a case of ambiguity. 

However, we have no explicit cut-off for what is “early” enough to be a forced 

grammatical decision or “late” enough to be a more opportunistic invited decision. In the 

case of pre-adverb gaze divergence, examination of other factors around the verb allows 

us to see how robust an early preference for a collective or distributive scene might be.  

Therefore, we conducted another survey to assess the verb’s “collective/distributive 

affordance;” that is, a normed measure of the likelihood a verb denotes a collective or 

distributive event.  
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To collect such a measure, we used a methodology introduced by Berent, Pinker, 

Tzelgov, Bibi, & Goldfarb (2005) and extended by Patson & Warren (2010) to examine 

how singular indefinite noun phrases in distributed predicates (as in a ball/box) can be 

interpreted as conceptually plural. When shown sentences like those in 2 and 3 in Table 2 

above, subjects in the Patson & Warren study indicated how many balls were involved in 

the event: one or many.  Instead of using a real-world object as the indefinite NP in our 

study, we replaced a ball with a nonce word, such as a wug (Albright, 2009; Berko, 

1958).  This allowed us to query subjects’ intuitions about the verb independent of the 

affordances of real-world objects like balls, boxes, pieces of cake, etc. Assessing verb-

level biases gives us a more local measure of participants’ preferences at the verb, before 

the disambiguating object is uttered. We conducted a survey on Amazon Mechanical 

Turk (Buhrmester et al., 2011) asking subjects (n=114)  to indicate their confidence on a 

1-4 Likert scale that there was/were “definitely one wug” (1), “probably one wug” (2), 

“probably more than one wug” (3), and “definitely more than one wug” (4).  We later 

used these ratings to identify the twelve most distributive-biased verbs (second quartile of 

24 verbs; M=3.11, s.d. 0.34) and examine how their time course compared with that of all 

24 verbs. 

Analysis 

Areas of interest were drawn around the distributive and collective scenes, and 

using these boundaries, fixations were coded as “collective,” “distributive,” or “other.” 

Eye-tracking data were first scrutinized for accuracy and track loss: any missing data 

points and trials which led to incorrect responses were removed from the data before 

further analysis.  A sample was coded as ‘‘track loss” if the participant’s eyes were 
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closed or otherwise occluded, and a trial was dropped from analysis if track loss 

accounted for more than 25% of the frames (this made up less than 5% of the data).  

Timecourses of fixations to collective and distributive scenes were plotted for Ø-, 

each-, and together-disambiguated sentences for each subject. The dependent measure is 

termed the “collective advantage,” as it is the number of fixations on distributive scenes 

subtracted from the number of fixations for each sample in each disambiguation 

condition. Plotted in Figure 9 below are the timecourses time-locked to the onset of the 

verb (e.g. carrying), with a delay of 150 ms to account for saccade planning and 

execution. We also aggregated collective advantage measures across time windows 

defined by the onsets and offsets (delayed by 150ms) of the following phrases: John and 

Bill | each/together/Ø | are carrying | a bright red | ball/box.  This time window analysis 

allowed us to time-lock to multiple time points in the sentence, rather than just to the 

predicate onset, in order to analyze gaze preferences at each phrase.  Statistical analysis 

was conducted over an empirical logit (e-logit) transform of the collective advantage 

measure for each subject.  The e-logit is a quasi-logit transformation optimized for 

handling cases for which the standard logit is too large or small (when the probabilities 

approach 0 or 1) (Barr, 2008). 

Results 

Predicate-locked time-courses 

 By the time the predicate is uttered, the subject has received disambiguating 

information for the together and each conditions, and so has enough information to 

resolve on a scene even while the predicate is heard. However, subjects hearing the non-

disambiguated sentences have no prior disambiguating information. Figure 9 shows plots 
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of the collective advantage time-locked to the onset of the predicate. Since the predicate 

is hypothesized to carry the distributive operator, it is reasonable to treat the predicate as 

the effective disambiguator for the Ø condition. These plots provide a visual confirmation 

that once the disambiguating term (each/together) is uttered (~500ms prior to predicate 

onset), looks to the collective and distributive scenes diverge rapidly. Ø sentences appear 

to pattern initially with the together, prompting increased looks to the collective scene.  

Interestingly, though the each sentences initially prompt looks to the distributive scene, 

there is an increase in looks to the collective during the adjectival phrase (~100ms post-

predicate). This reconsideration of the other scene is not found in the together trajectory, 

in which looks to the collective scene persist or increase monotonically throughout the 

evolution of the utterance post-adverb. The non-disambiguated sentences (purple and 

yellow in Fig 9) prompt an initial increase in looks to the collective during the utterance 

of the verb, returning to chance at the adjective phrase.   
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Figure 9 

 

Figure 9: Plots of collective advantage to collective (positive) and distributive (negative) 

scenes over time for conjoined NP subjects, time-locked to the onset of the verb. 

Timecourses of each-disambiguated sentences are in red and timecourses of together-

disambiguated sentences are in blue. Note that the Ø condition is split into those 

sentences eventually disambiguated by the object ball/box to a collective (purple) or 

distributive (yellow) scene.   

Time window analyses 

 We also ran a by-subject 3x3 ANOVA on e-logit collective advantage measures, 

with factors Disambiguator (each/together/Ø) and Time window (“John and Bill”/“are 

carrying”/“a bright red”). Since the disambiguator (each/together) time window was 
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non-existent in the Ø disambiguator condition, this time window was not included in the 

ANOVA, though we do include it among the planned pairwise t-tests of disambiguator 

effects in each time window (see Figure 10).  There was a main effect of both 

Disambiguator (F(2,46) = 18.33, p<0.001) and Time window (F(2,46) = 4.59,  p=0.02), 

as well as a significant interaction between Disambiguator and Time window (F(4,92) = 

10.2, p< 0.001).  

Figure 10 

 

Figure 10: Plots of collective advantage for conjoined NP sentences in four time 

windows. Average fixations across subjects for each-disambiguated sentences are plotted 
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in red, together-disambiguated sentences in blue, and non-disambiguated (until object) 

sentences in green.  The final convergence on ball or box is not shown here, and the non-

disambiguated sentences that eventually converge on ball or box are collapsed here 

(purple and yellow timecourses from Figure 9 are collapsed and indicated in green here.) 

We also ran pairwise two-sided t-tests on each vs. together, each vs. Ø, and 

together vs. Ø, using the Holm (1979) method of correction for multiple comparisons. 

Within the conjoined NP (John and Bill) window, we found no pairwise differences in 

collective advantage between each, together, and Ø, and none of the disambiguator 

conditions differed significantly from chance (µ=0). In the each vs. together time 

window, we still found no significant divergence in looks, and neither condition was 

different from chance.  In the verb (are carrying) time window, however, we see that the 

each condition is significantly more likely to prompt looks to the distributive than the Ø 

condition (p<0.001), together condition (p<0.001), and chance (p<0.001).  The together 

and Ø conditions are not significantly different, and the together condition directs looks 

to the collective scene above chance (p=0.03) while the Ø condition is marginally above 

chance (p=0.06).  Finally, in the adjective time window (a bright red), immediately 

preceding the object (ball/box), we find all three disambiguator conditions diverging from 

one another: the each condition is significantly more likely to direct looks to the 

distributive scene than chance, Ø, and together conditions (all p<0.001), while together is 

also prompting looks to the collective scene above both chance and Ø (p<0.001). The Ø 

condition is equally likely to direct looks to the collective and distributive scenes in this 

time window. 



 

 

108 

Distributive-biased verbs 

 The timecourse and time window data indicate that the together and Ø conditions 

pattern together early on, both favoring the collective scenario at the verb. While this 

collective preference is trivial for the together conditions, as the sentence has already 

explicitly indexed the collective meaning via together, it is interesting that the Ø 

condition timecourse initially evolves as if there were an implicit “together.” Does this 

collective preference also hold for the Ø condition of the subset of verbs in our stimuli for 

which we have evidence of a lexical/pragmatic distributive bias? 
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Figure 11 

 

Figure 11: Timecourse of sentences with distributive-biased verbs. Note that carrying is 

not a distributive-biased verb, but is included here for ready comparison with previous 

figures. 

 Looking only at the twelve most distributive-biased verbs according to our 

Mechanical Turk survey scale (Figure 11), we find that even if a verb has a 

subcategorization preference for distributive events or plural objects, there is still a 

preference for the collective meaning at the predicate (p<0.1 against chance).  

Summary of Experiment 1 
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 This profile of disambiguator effects across time windows demonstrates that the 

together and Ø conditions pattern together and diverge from the each condition as early 

as the onset of the verb.  Thus, even though the ambiguous Ø sentences do not have 

information discerning between a possible collective or distributive interpretation, they 

nevertheless prompt looks to the collective, the time course for which is reliably different 

from the time course of distributive-directed each sentences. This provides evidence that 

the subject has committed to the collective interpretation in the absence of 

disambiguating information. 

 In this analysis of the dynamics of looks to collective and distributive scenes, we 

find evidence that the processor does not passively await information before committing 

to a collective representation.  Rather, the processor appears to default to an underlying 

collective reading even in the absence of disambiguating information. Moreover, in the 

absence of an adverbial distributivity operator, the processor still pre-emptively commits 

to a collective meaning even when we consider those verbs more likely to denote a 

distributive event (Figure 11). 

 We now ask whether sentences with conjoined NP subjects like John and Bill 

differ from sentences with another type of subject NP. If the collective reading is indeed 

the default interpretation, we should also find evidence for preferential gaze to the 

collective when sentences begin with a plural determiner phrase such as The boys.  

Experiment 2 

Method 
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Participants 

Twenty-seven undergraduate students (18 female) participated in this study for 

course credit. None of these subjects had participated in Experiment 1. All participants 

were native English speakers and undergraduates at the University of Pennsylvania. This 

study was approved by the University of Pennsylvania Institutional Review Board, and 

subjects received course credit for their participation. 

Apparatus 

The images were presented on a 17'' Samsung screen with 1680x1050 resolution, 

and the sound was played on Altec Lansing FX2020 ASIO speakers. The sentence onset 

was synchronized to 500ms after the appearance of the scene pair.  The subjects’ 

responses were recorded using VPIxx ResponcePixx tabletop button box.  Right eye gaze 

was recorded using an Eyelink 1000 eye tracker on a desktop mount at a sampling rate of 

1kHz (re-sampled offline to 100Hz). 

Procedure 

 The experimental session began with a calibration procedure, which usually lasted 

no more than three minutes. Participants were then instructed to fixate on a small dot in 

the center of the screen, which also corresponded to a point equidistant from two scenes 

that would appear during the trial period. Participants were told to fixate on this point 

between trials but to consider the trial scenes freely and at their own pace. 

Materials and Design 

This study employed the same visual world paradigm as in the first study. The 

exact same scene diptychs were presented to subjects: one distributive scene and one 

collective scene. This study differed from Experiment 1 only insofar as the sentences 
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played during presentation of the scenes included a plural determiner phrase, such as The 

boys, the girls, or the friends instead of conjoined NPs like John and Bill.  

Target items consisted of 24 sets of six prerecorded sentences. The six sentences 

in each of 24 critical item sets were as follows: 

Table 3 

Conjoined NP  Disambiguator  Ambiguous region 

1 (verb) 

Ambiguous 

region 2 

(adjective) 

Object 

1. The boys Ø are  carrying a bright red ball. 

2. The boys each (distributive) are  carrying a bright red ball. 

3. The boys together 

(collective) 

are  carrying a bright red ball. 

4. The boys Ø are  carrying a bright red box. 

5. The boys each (distributive) are  carrying a bright red box. 

6. The boys together 

(collective) 

are  carrying a bright red box. 

 

Table 3: Experiment 2: Plural NP sentences. Subjects listened to one of these 6 sentence 

types while viewing a scene diptych like that shown in Figure 8. Sentences began with 

plural NP subjects and were either not disambiguated until the object word (1,4) or were 

disambiguated early by distributive “each” (2, 5) or collective “together” (3,6). 
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Analysis 

Areas of interest were drawn around the distributive and collective scenes, and 

using these boundaries, fixations were coded as “collective,” “distributive,” or “other.” 

Eye-tracking data were first scrutinized for accuracy and track loss: any missing data 

points and trials which led to incorrect responses were removed from the data before 

further analysis.  A sample was coded as ‘‘track loss” if the participant’s eyes were 

closed or otherwise occluded, and a trial was dropped from analysis if track loss 

accounted for more than 25% of the frames (this made up less than 5% of the data).  

Timecourses of fixations to collective and distributive scenes were plotted for Ø-, 

each-, and together-disambiguated sentences for each subject. The dependent measure is 

termed the “collective advantage,” as it is the number of fixations on distributive scenes 

subtracted from the number of fixations for each sample in each disambiguation 

condition. Plotted in Figure 12 below are the timecourses time-locked to the onset of the 

verb (e.g. carrying), with a delay of 150 ms to account for saccade planning and 

execution. We also aggregated collective advantage measures across time windows 

defined by the onsets and offsets (delayed by 150ms) of the following phrases: The boys | 

each/together/Ø | are carrying | a bright red | ball/box 

Results 

Predicate-locked time-courses 

 Timecourses of conditional looks to collective and distributive scenes prompted 

by plural determiner (e.g. The boys) sentences show a marked departure from the pattern 

we observed in Experiment 1.  Figure 12 shows plots of the collective advantage time-

locked to the onset of the predicate. As expected, we see that each and together sentences 
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diverge rapidly, with Ø sentences appearing to pattern initially more with the each 

condition in prompting increased looks to the distributive scene.  

Figure 12 

 

Figure 12: Plots of collective advantage to collective (positive) and distributive (negative) 

scenes over time for plural NP subjects, time-locked to the onset of the verb. Timecourses 

of each-disambiguated sentences are in red and timecourses of together-disambiguated 

sentences are in blue. Note that the Ø condition is split into those sentences eventually 

disambiguated by the object ball/box to a collective (purple) or distributive (yellow) 

scene.   
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Time window analyses 

 We ran a by-subject 3x3 ANOVA on e-logit collective advantage measures, with 

factors Disambiguator (each/together/Ø) and Time window (“The boys”/“are 

carrying”/“a bright red”). Since the disambiguator (each/together) time window was 

non-existent in the Ø disambiguator condition, this time window was not included in the 

ANOVA, though we do include it among the planned pairwise t-tests of disambiguator 

effects in each time window (see Figure 13).  We found a main effect of Disambiguator 

(F(2,52) = 16.07, p<0.001) and a significant interaction between Disambiguator and Time 

window (F(4,104) = 12.14, p< 0.001).  
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Figure 13 

 

Figure 13: Plots of collective advantage for plural determiner NP sentences in four time 

windows. Average fixations across subjects for each-disambiguated sentences are plotted 

in red, together-disambiguated sentences in blue, and non-disambiguated (until object) 

sentences in green.  The final convergence on ball or box is not shown here, and the non-

disambiguated sentences that eventually converge on ball or box are collapsed here 

(purple and yellow timecourses from Figure 12 are collapsed and indicated in green 

here.) 
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We also ran pairwise two-sided t-tests on each vs. together, each vs. Ø, and 

together vs. Ø, using the Holm (1979) method of correction for multiple comparisons. As 

with the conjoined NP (John and Bill) window, we found no pairwise differences in 

collective advantage between each, together, and Ø in the The boys time window, and 

none of the disambiguator conditions differed significantly from chance (µ=0). In the 

each vs. together time window, we still found no significant divergence in looks, though 

the together condition was, interestingly, significantly more likely to direct looks to the 

distributive scene compared with chance.  In the verb (are carrying) time window, we 

found that the together condition is marked, it being significantly more likely to prompt 

looks to the collective than the Ø condition (p<0.001), each condition (p<0.001), and 

chance (p<0.001).  The each and Ø conditions are not significantly different, and the Ø 

condition directs looks to the distributive scene above chance (p=0.006) while the each 

condition does not differ significantly from chance (p>0.1).  Finally, in the adjective time 

window (a bright red), immediately preceding the object (ball/box), we find all three 

disambiguator conditions diverging from one another: the each condition is significantly 

more likely to direct looks to the distributive scene than chance (p<0.001), Ø (p=0.001), 

and together conditions (p<0.001), while together is also prompting looks to the 

collective scene above both chance (p=0.004) and Ø (p=0.03). The Ø condition is equally 

likely to direct looks to the collective and distributive scenes in this time window. 

Distributive-biased verbs 

 The timecourse and time window data for plural NP sentences indicate that the 

each and Ø conditions pattern together early on, both favoring the distributive scenario at 

the verb. While this distributive preference is expected for the each condition, it is rather 
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surprising, especially given the Ø condition’s collective preference in Experiment 1, that 

the Ø condition directs looks to the distributive scene.  We examined whether the subset 

of verbs showing a relative collective bias (twelve verbs with highest collective score on 

the Mechanical Turk survey) also favored the distributive scenes at the predicate time 

window.  We found that collective-biased verbs were at chance for collective advantage.  

Thus, the more distributive-biased verbs in our stimuli appear to drive the overall 

distributive gaze preference at the verb in sentences beginning with plural NPs like The 

boys. 

Summary of Experiment 2 

 As in Experiment 1, we find evidence that verbs taking plural NP subject 

arguments demonstrate preference for a particular reading even in the absence of 

information determining a collective or distributive meaning. However, unlike previous 

studies and Experiment 1, we find that plural determiner NPs direct looks to the 

distributive reading, not the collective.  Targeting the verb time window (are carrying), 

we indeed find an interaction between the type of subject NP (conjoined NP like John 

and Bill vs. plural determiner phrase like The boys) and disambiguator type 

(each/together/ Ø) (F(2,98) = 8.68, p<0.001), reflecting the fact that Ø and together 

pattern together in conjoined NP sentences while Ø and each pattern together in plural 

determiner NP sentences. 

This may appear to be inconsistent with theories stating that because an extra 

operator must be posited to “distribute” a predicate over individuals in a group, the 

introduction of such a distributive operator is dispreferred in the absence of an explicit 

(adverbial) quantifier (Clifton & Frazier, 2012; Roberts, 1987; inter alia).  Below, we 
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discuss several possible reasons why sentences beginning with The boys might differ 

from sentences beginning with John and Bill. 

Discussion 

A matter of ambiguity 

 In both Experiments 1 and 2, we find fixation patterns consistent with what 

Frazier et al. (1999) call “necessary decision”: when the processor reaches the verb, it 

forces a commitment to one interpretation (the collective or the distributive). In 

Experiment 1, we found that even the time course of sentences with pragmatically 

distributive-biased predicates favor the collective reading until the object re-directs 

attention to the distributive scene (Figure 11), which suggests this is a grammatical forced 

choice rather than a pragmatic “invited decision.” In the case of an “invited decision,” a 

lexical or pragmatic bias might induce an immediate preference for one meaning or 

another based on a particularly strong collective or distributive “cloze” (where we intend 

this to mean a preference for a collective/distributive event rather than any one particular 

lexical item).  However, since even distributive-biased predicates prompt looks initially 

to the collective scene, it is unlikely that the ambiguity is a lexical/pragmatic “invited 

decision.”  Similarly, if there were a preference for the images depicting collective scenes 

over those depicting distributive scenes, we would have seen this in our image survey.  

Therefore, the immediacy of the preference for the collective scene in Experiment 1 is 

highly suggestive of a grammatical forced choice, or a “necessary decision” in the 

parlance of Frazier et al. (1999). 

 Both experiments support a theory that treats the collective/distributive distinction 

as ambiguous rather than vague. However, a limitation of these studies and others is the 
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treatment of the “vagueness” hypothesis as the null hypothesis. Whereas Frazier et al. do 

not suggest any positive test for vagueness (only negative results would “confirm” 

vagueness), our study is able to test one prediction of the vagueness hypothesis: if the 

collective/distributive distinction were a matter of vagueness only, we would expect 

increased looks to be a function of new information only. That is, we would expect 

increased looks to the collective scene when together was presented to be just as likely as 

increased looks to the distributive scene when each was presented. However, each was 

the only disambiguator for which there was a significant divergence from chance in both 

the each/together time window and the are carrying time window in the conjoined NP 

sentences (Experiment 1). Likewise, together was the only disambiguator for which there 

was a divergence from chance in both the each/together time window and the are 

carrying time window in the plural NP sentences. This suggests that each is somehow 

more informative than together in conjoined NP sentences, while together is more 

informative in plural NP sentences. 

 While the distinction between “vagueness” and “ambiguity” remains weak, and 

may ultimately be better characterized non-dichotomously, there are still other hallmarks 

of ambiguity to investigate with the current paradigm. For instance, the literature on so-

called “digging-in effects” details evidence from grammaticality judgments and RTs that, 

as a period of ambiguity (say, in a garden-path sentence) is extended, the commitment to 

the initial interpretation strengthens with time and is more difficult to re-analyze if wrong 

(Ferreira & Henderson, 1991; Tabor & Hutchins, 2004).  Interestingly, we fail to see such 

strengthening of an initial interpretation in our experiments: neither the initial 

commitment to the collective in Experiment 1 nor the initial commitment to the 
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distributive in Experiment 2 persist into the adjectival phrase (a big red…) This could 

indicate a fixation profile less consistent with ambiguity than with vagueness. We did not 

have enough variability in the length of the ambiguous adjectival phrases across our 

sentences to test whether ambiguity duration might affect re-analysis difficulty. It would 

be interesting to examine possible digging-in effects by extending the ambiguous region 

in our sentence – for instance, by adding more adjectives or disfluencies like “um, uh.” In 

such a replication of Experiment 1, we would expect that an increase in the length of the 

ambiguous period would not only allow for more looks to the collective scene to 

“accumulate” prior to disambiguation (given the increased time in which to pursue a 

collective bias), but, more importantly, a delayed or decreased “recovery” to the 

distributive scene upon disambiguation. A comparison of distributive recovery profiles in 

sentences with shorter ambiguities vs sentences with longer ambiguities would require a 

measure of proportion of shifts in fixation rather than a proportion of fixations to the 

distributive: given a fixation to the collective at time t immediately prior to distributive 

disambiguation, we would expect the probability of shifting to the distributive scene at 

time t+1 (arbitrary units, post-disambiguation) would decrease with longer ambiguities. 

This “digging-in” dependent measure could he highly useful in further characterizing the 

nature and degree of the collective bias. 

 

Conjoined NPs and plural determiners differ in selecting between collectivity and 

distributivity 

 There are a number of reasons why the collective interpretation should be 

preferred, when, in the absence of a disambiguator, the decision arises between a 
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collective and distributive meaning.  For instance, under Referential Theory (Crain & 

Steedman, 1985), the distributive reading might be dispreferred not only because it must 

stipulate an operator, but also because it entails the existence of several distinct events. 

Thus both the grammatical and conceptual semantics of distributivity are characterized as 

more complex than the collective. Moreover, in both our experiments, the scenes 

depicting distributive events are also superficially more complex, in that there are two 

objects rather than one. 

 While several prevalent theories of distributivity hold that the distributive D 

operator applies over the VP (Crain & Steedman, 1985; Heim et al., 1991), we find 

evidence that the affordances on the subject NP may determine whether a D operator is 

stipulated at the predicate. Regarding the collective affordances of conjoined NPs, Moxey 

et al. (2011) found that readers were more likely to use a plural pronoun (such as they) 

when completing sentence fragments involving conjoined NPs (like John and Bill arrived 

at the restaurant…) than fragments introducing the same entities in separate phrases 

(John arrived at the restaurant with Bill…), even though both sentences denote collective 

events. That is, even when compared with unequivocally collective events like John 

arrived at the restaurant with Bill, ambiguous/vague sentences beginning with a 

conjoined NP like John and Bill arrived at the restaurant are more likely to prompt a 

joint they anaphor.  This suggests that a collective reading is (even more) preferred when 

the subject NP is a conjoined NP, compared with when the collective event sentence 

involves a John… with Bill construction.   

Consistent with this, other studies found that readers exhibit comprehension 

facilitation when members of a conjoined NP like John and Bill are referred to as they 
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compared with when just one member is referred to in isolation (as in John alone) 

(Albrecht & Clifton, 1998; Garrod & Sanford, 1988; Gordon, Hendrick, Ledoux, & 

Yang, 1999).  This provides further evidence that conjoined NPs are particularly 

conducive to a collective reading, even in the absence of disambiguating information.  

Thus, even though we see in the current study that collective/distributive biases emerge at 

the onset of the VP, it may be the affordances of the subject NP that actually determine 

whether the predicate is distributed across multiple events or considered collectively. 

 While Experiment 1 is congruent with the expectation that the collective scene be 

preferred, Experiment 2 poses an interesting contrast.  There are several possible 

explanations for why the plural determiner NP The boys should differ from John and Bill 

and prompt looks to the distributive scene at the onset of the verb. One possibility is that 

The boys is also highly selective for a collective interpretation, so much so that the 

presence of a distributive scene as an option is more salient and surprising than in the 

John and Bill case.  Though we have reason to believe John and Bill should be biased 

towards a collective reading, the conjoined NP may yet be more accommodating of a 

distributive reading than is The boys. An eye-tracking study by Patson & Ferreira (2009) 

showed that participants’ parsing strategy for sentences with anaphors and reciprocal 

verbs (e.g. wrestle) depended on whether the plural NP in the preceding sentence was a 

conjoined NP (The trainer and the vet) or a definite plural NP (The trainers); e.g. The 

trainers / The trainer and the vet were near the swamp.  While they wrestled the alligator 

watched them closely. Reading times (RTs) at the disambiguating region watched 

indicated whether participants were garden-pathed.  They found RTs were shorter at the 

disambiguating region when the preceding sentence had a conjoined NP compared with 
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sentences having a plural definite.  Patson and Ferreira interpreted this as evidence that 

conjoined NPs, more so than definite plural NPs, are Complex Reference Objects 

(CROs), consisting of a representation of both (1) a single sum or group entity 

(conducive to a collective reading) and (2) sets of individuals within that entity 

(conducive to a distributive reading) (Barker, 1992; Moxey, Sanford, Sturt, & Morrow, 

2004; Moxey et al., 2011). 

It must be noted that the distributive option, however “surprising,” is not 

anomalous or uninterpretable in either our conjoined NP or plural NP experiments: 

participants continued to click on the “correct” scene in Experiment 2 as well as in 

Experiment 1 (that is, participants clicked on the scene that matched the object(s) uttered 

in the sentence, whether collective or distributive).  As we saw in example 9 above (see 

Introduction), though the distributive reading of sentences like The boys are carrying a 

box is the marked reading, a context which defeases the collective reading of The boys 

are carrying a box is certainly possible. Therefore, it seems an unsatisfactory explanation 

that it is the “surprise” of seeing a distributive scene that drives the early distributive 

preference in Experiment 2 

 Given the immediate and automatic preference for the collective we see in the 

case of John and Bill, it is interesting that such a preference should be reliably overridden 

in The boys by what is an ostensive dispreferred distributive reading.  What could 

override this semantic collective bias? The early distributive fixations in The boys 

sentences may instead be due to morphosyntactic properties of the definite plural.  The 

definite plural NP has an explicit plural morpheme (as in the –s in The boys) where the 

conjoined NP does not. As such, the definite plural may place greater focus on the 
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plurality of the subject NP, if not also the event. Both intuition and the Patson & Ferreira, 

2009, findings described above might tell us that it is instead the conjoined NP, by 

separating and naming John and Bill explicitly, that emphasizes the individuals in the 

plurality; however, we have also reviewed evidence that collective anaphors, like they, 

facilitate comprehension of conjoined NPs more than do distributed references to the 

individuals in the plural set (Albrecht & Clifton, 1998; Garrod & Sanford, 1988; Gordon, 

Hendrick, Ledoux, & Yang, 1999). Thus, though conjoined NPs accommodate 

distributive readings, they are still biased towards collective readings. We suggest that the 

collective bias of the conjoined NP John and Bill arises at the level of the semantics (as 

does the intuition that The boys are carrying a ball is also collective-biased), whereas the 

initial distributive bias of The boys arises at the level of the morphosyntax. 

 Under this interpretation of the results of Experiment 2, early fixation to the 

distributive is not necessarily a “commitment” to that scene’s meaning, though in the case 

of Experiment 1, early looks to the collective scene may be such. If the initial distributive 

fixation reflects an automatic but transient initial parse prompted by the plural -s 

morpheme, then this is potentially compatible with the notion of vagueness, whereby a 

subject refrains from committing to an interpretation until disambiguating information is 

available. (This should not be subject to a "digging in effect," since the morphosyntactic 

plurality should arise and decay independent of the duration of the (semantic) ambiguity. 

Futhermore, in Experiment 2, the fact that the together condition directed looks to the 

distributive scene above chance at the each/together time window, and not to the 

collective scene, suggests that the initial consideration of the distributive is automatic and 

is induced even in the face of contrary evidence (together being an explicit lexical-
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semantic marker of the collective reading). In this case, we suggest that morphosyntactic 

evidence for a plural distributive reading temporarily trumps, or is processed prior to, 

semantic/pragmatic biases for a collective reading. 

This interpretation is consistent with so-called “syntax-first” models of language 

processing: various electrophysiological studies of language find that certain temporal 

signatures of syntactic processing occur prior to lexical-semantic processes. For instance, 

event-related potentials (ERPs) to syntactic violations are seen at ~125ms post stimulus 

onset (Early Left Anterior Negativity (ELAN); Friederici, Pfeifer, & Hahne, 1993; 

Neville, Nicol, Barss, Forster, & Garrett, 1991), while neural correlates of lexical 

semantic violations are observed later at ~400ms (N400; (Marta Kutas & Hillyard, 1980; 

M. Kutas & Federmeier, 2011; Lau, Phillips, & Poeppel, 2008). Some researchers have 

put forth strictly serial models, whereby syntactic and semantic processing are separately 

encapsulated (Friederici, 2002), while more recent models allow that these processes are 

highly interactive and parallel, but that syntactic forms facilitate processing at levels of 

representation that can be accessed more rapidly at word presentation than lexical 

semantic information (Boylan et al., 2014; Dikker & Pylkkanen, 2011; Dikker, 

Rabagliati, Farmer, & Pylkkanen, 2010). 

Conclusions and Future Directions  

Taken together, these studies provide evidence of a productive distinction between two 

different types of NP with regard to the interpretation of plurality. Though we find prima 

facie evidence that plural determiner NPs like The boys prompt consideration of the 

distributive meaning before the collective, while conjoined NPs like John and Bill favor 
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the collective reading, we have reason to believe the mechanisms prompting early 

fixations might be different.  We propose that the early distributive preference following 

The boys arises from the morphosyntactic plural –s marker, and that this preference 

dissipates over the time course of the sentence, giving way later to the semantically 

collective bias that is intuitive in the reading of both John and Bill are carrying a ball 

and The boys are carrying a ball.  Further study examining other types of definite plural 

subject NPs may shed more light on the differences between definite plural and conjoined 

NPs. For instance, this line of inquiry may bridge a gap between the well-established 

literature on formal semantic theories of plurality and a growing body of work on 

children’s acquisition of plurality and number words: there is mounting evidence that 

children appear to prefer distributive readings of sentences like Two boys are pushing a 

car, where adults prefer the collective interpretation (Syrett & Musolino, 2013). This will 

require further study of collectivity and distributivity across various different NPs and 

events.  
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V. GENERAL DISCUSSION 

Reviewing the aims of the dissertation 

 In this dissertation, I sought to demonstrate the following: 

iv. Semantic compositionality can be characterized along a “feature-vs.-function” 

dichotomy in several possible dimensions (chapters 2 and 3) 

v. The AG supports various aspects of function-/relation-based composition, among 

them verb-specific argument structure around events (chapter 3) and more general 

thematic relation-based composition (chapter 2). 

vi. Semantic decisions on the collective or distributive representation of plural events 

occur early on in sentence processing – at the verb phrase – even in the absence of 

disambiguating evidence. However, the bias of this decision is largely determined 

by the affordances of the subject noun phrase, and not just the verb phrase 

(chapter 4). 

 While we refer to the typology of semantic composition in (i) as a division of 

“features” vs. “functions,” this shorthand belies a longstanding dichotomy appearing 

all the way from semiotics to developmental psychology.  We discuss and test several 

possible instantiations of the division, including taxonomic vs. thematic associations, 

attributive vs. relational associations (chapter 2), object vs. event (verb) concepts 

(chapter 3), and adjuncts vs. arguments (chapters 3). However, other similar 

dichotomies we have not touched on include the following:  

i. Paradigmatic vs. syntagmatic distinction, where the syntagm can be said to be 

a structure-sensitive combination of “this-and-this-and-this” (as are the words 
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in the sentence the man cried), while the paradigm is the selection of “this-or-

this-or-this” from a set of items with similar features (replacing “the man” 

with “the woman” to form the sentence the woman cried). (Chandler, 2007; de 

Saussure, 1916) 

ii. “vertical” vs. “horizontal” similarity distinction in language acquisition, where 

horizontal similarity describes the sort of within-sentence co-occurrence 

statistics toddlers could use to learn novel words (as in man cried) and also 

learn thematic relationships about nouns co-occurring in the same event. 

Vertical, or positional, similarity refers to words that can be used in the same 

position across sentences (man and woman in the man/woman cried), and by 

virtue of this are often in a similar category, sharing properties and features 

(Wojcik & Saffran, 2015) 

iii. predicate modification vs. function application, which are Merge operations 

over adjuncts and arguments, respectively (Heim & Kratzer, 1998) 

This is by no means an exhaustive list, but we include it here to illustrate that the 

fundamental “feature-function” division has been a productive one long before our 

current line of research found potential neural substrates for the division.  We now review 

the research detailed in the above chapters on the feature-function dissociation in the 

ATL and AG.  

The neural bases of the feature-function division 

 The studies in chapters 2 and 3 focused on characterizing the role of AG in 

semantic composition, contrasting this function with the manner in which left ATL might 
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subserve feature-based combination (Bemis & Pylkkänen, 2011b; Westerlund et al., 

2015). In contrast to ATL, we find increasing evidence that AG is engaged in semantic 

integration of relation-based event structure. While the current studies only investigate 

cases of minimal composition – that of two words isolated from a sentence or discourse –

it is unlikely that AG and ATL are only tracking this level of composition. There is 

abundant evidence that AG, for one, engages in domain-general event processing in event 

structures as broad as discourse and in non-verbal depictions of events.   

 Indeed, both ATL and AG are best described as “hubs” at a domain-general level, 

and the typology of semantic composition described in (ii) above may cleave along the 

dorsal-ventral streams. As described in earlier chapters, the left ATL is a “convergence 

zone” receiving heavy traffic from the ventral visual object identification pathway and 

auditory “what” pathway, supporting its involvement in compositional operations over 

features of object-concepts (Rauschecker & Tian, 2000). The AG is surrounded by the 

dorsal spatial attention networks, the posterior temporal regions involved in motion 

perception, and the anterior parietal regions involved in representing action (Kravitz et 

al., 2011). This supports the conditions of AG involvement in action and event 

representation.  While AG may have originated as a dorsal “where/how” convergence 

zone of spatial, goal-oriented, and action information, it may have been co-opted by 

language to represent increasingly abstract relational information.  These relations might 

be learned by tracking co-occurrence statistics (“dog” often co-occurs with “bone”; 

“eggs” often co-occur with “breakfast), and/or these thematic relations are learned part 

and parcel of hierarchical structures arising in natural language syntax. Thus, the 

emergence of event and argument structure in thought and language may have been an 
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extension of the already extant dorsal pathways underpinning action and goal 

understanding. 

The lateralization puzzle 

 Though the fronto-temporal language network appears to have become strongly 

left-lateralized, it is less clear the degree to which right and left AG diverged with regard 

to processing events and representing thematic relations.  Chapter 2 offers evidence that 

lateralization in AG did not necessarily isolate language to one hemisphere, but that the 

division of labor across bilateral AG is more subtle.  That left AG might be more attuned 

to grammaticalized relation information (that is, information encoded directly on the 

verb) is supported by the fact that left AG is sensitive to the relatively fine-grained level 

of verb argument structure, and not other types of argument structure (Chapter 3). The 

fact that we see activity in right AG reflecting the distinction between non-

grammaticalized relational vs. attributive interpretations of nominal compounds suggests 

that right AG also represents thematic relations between concepts (Chapter 2).  However, 

while left AG may operate within the more constrained limits of grammatically explicit 

argument structure, right AG may pick up the slack in computing thematic associations 

between conceptual relations that are not explicitly realized in the morphosyntax.   

The AG and verb/event semantics 

 Chapters 2 and 3 provided evidence that AG tracks relational information 

potentially tuned to verb semantics. Taken in combination with work showing that verb 

valency – the number of arguments a verb can take – also modulates activity in AG, this 

invites the question as to whether AG is also sensitive to number information on a subject 
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NP argument.   Does the singular/plural number on a subject NP and verb modulate 

activity in AG?  If so, could observing patterns of AG and surrounding parietal activity 

elucidate the nature of plural representation when the event could be either collective or 

distributive (that is, when the subject NP could be either a group or a set of atomic 

individuals)? A recent fMRI study by Boiteau, Bowers, Nair, & Almor (2014) found that 

left AG was more active in response to plural subjects as compared with singular 

subjects.  When comparing conjoined NP sentences (e.g. Jeremy and Lucy did some work 

on the house) with unconjoined NPs (Jeremy did some work with Lucy on the house), 

they found that conjoined NPs elicited more activity in right AG compared with 

unconjoined NPs.  This is consistent with studies reviewed in chapter 4 indicating that 

conjoined NPs are more likely to prompt plural anaphors like they, and as such may be 

“more plural” than unconjoined NPs (Moxey et al., 2011).  Given this finding, AG 

activity might prove a tractable means of measuring the gradient along which collective 

and distributive plurality might vary.  A targeted fMRI analysis of AG activity might also 

be another means of assessing whether the cardinality of The boys is more or less plural 

than John and Bill (see chapter 4). 

Conclusion 

 This dissertation introduced and motivated a framework by which to begin a 

systematic typology of semantic composition.  Using a range of methods, from fMRI 

multi-voxel pattern analysis to eye-tracking, we were able to measure both the “where,” 

and possibly also the “when,” of semantic composition.  Of particular interest is the role 

of AG in function-/relation-based semantic composition.  It remains to be seen how left 
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and right AG compare with respect to representing events and thematic relations 

grammatically or otherwise. The study of the role of bilateral AG as a semantic 

combinatorial hub benefits from comparison with another established “semantic hub,” the 

left ATL, and continuing to study these regions as a pair is well motivated both 

theoretically and empirically. 

 Finally, it is worth mentioning that the ATL and AG are at the center of a debate 

over whether representations in these areas are multi-modal or amodal.  Though this 

dissertation did not arbitrate this particular debate, it should nonetheless make clear the 

utility of modality-invariant representations in a system, such as language, that must be 

both receptive and expressive in multiple modalities. While distributed semantic 

knowledge could be instantiated in modality-specific, multimodal, or amodal areas, 

regions involved specifically in compositional semantics are, more or less by necessity, 

multimodal or amodal. After all, if we were constantly composing meanings that carried 

with them fully intact sensorimotor and emotional simulations, it is not clear that we 

would be able to process spoken language at the rate of 3-4 words per second (Binder & 

Desai, 2011).  Ultimately, it is exactly this disposition to compose which allowed the 

brain to achieve the abstract symbolic system that is language. 

  



 

 

134 

APPENDIX  

Table 1: Pearson’s r values for verb-relevant correlations in left AG  

 50 voxels 100 voxels 200 voxels 500 voxels 

shared noun AND 

shared composition 

type 

(eats meat ~ with meat) 

0.027 0.035 0.019 0.018 

shared noun  

(eats meat ~ tasty 

meat) 

0.010 -0.029 -0.0097 0.0036 

shared verb 

(eats meat ~ eats 

quickly) 

0.044 0.17 * 0.056† 0.059 * 

†: 0.05<p < 0.1;  *: p <0.05 

Table 1:  Correlations in left AG between the argument-saturated (eats meat) item with 

(a) an argument-saturated phrases without a verb (with meat), (b) a phrase sharing only a 

noun, but not composition type or verb (tasty meat), and (c) a phrase sharing a verb but 

constituting adjunct phrase (eats quickly) without argument saturation.  Pairwise 
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comparisons are reported using the best 50, 100, 200, and 500 voxels with highest 

(unsigned) t-statistics from the composition -vs.-non-composition contrast in left AG.   
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Table 2:  T-tests of differences between verb- or noun-based correlations in left AG (p-

values reported) 

 50 voxels 100 voxels 200 voxels 500 voxels 

shared verb vs. shared 

noun  

0.092  † < 0.0001 * 0.052 † 0.034 * 

shared verb vs. shared 

noun +composition 

0.48 ns < 0.0001 * 0.23 ns 0.11 ns 

shared noun vs. 

shared noun + 

composition 

0.54 ns 0.051 † 0.18 ns 0.62 ns 

†: 0.05<p < 0.1;  *: p <0.05 

Table 2: T-tests of pairwise differences between verb-sharing phrase correlations, noun-

sharing phrase correlations, and noun+composition phrase correlations using the best 50, 

100, 200, and 500 voxels with highest (unsigned) t-statistics from the composition -vs.-

non-composition contrast in left AG. Correlations being contrasted are those between the 

argument-saturated verb phrase “eats meat” and those phrases delineated in Table 1 of 

Appendix.  
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Table 3: Pearson’s r values for verb-relevant correlations in left ATL 

 50 voxels 100 voxels 200 voxels 500 voxels 

shared noun AND 

shared composition 

type 

(eats meat ~ with meat) 

0.030 0.13 * 0.071† 0.026 

shared noun  

(eats meat ~ tasty 

meat) 

0.026 0.088 * 0.052 0.042 

 

shared verb 

(eats meat ~ eats 

quickly) 

0.027 0.023 0.012 0.037 

†: 0.05<p < 0.1;  *: p <0.05 

Table 3:  Correlations in left ATL between the argument-saturated (eats meat) item with 

(a) an argument-saturated phrases without a verb (with meat), (b) a phrase sharing only a 

noun, but not composition type or verb (tasty meat), and (c) a phrase sharing a verb but 

constituting adjunct phrase (eats quickly) without argument saturation.  Pairwise 

comparisons are reported using the best 50, 100, 200, and 500 voxels with highest 

(unsigned) t-statistics from composition -vs.-non-composition contrast in left ATL.  
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Table 4:  T-tests of differences between verb- or noun-based correlations in left ATL (p-

values reported) 

 50 voxels 100 voxels 200 voxels 500 voxels 

shared verb vs. shared 

noun  

0.96 ns 0.041 * 0.27 ns 0.92 ns 

shared verb vs. shared 

noun +composition 

0.91 ns 0.0050 * 0.13 ns 0.66 ns 

shared  noun vs. 

shared noun + 

composition 

0.91 ns 0.13 ns 0.74 ns 0.62 ns 

†: 0.05<p < 0.1;  *: p <0.05 

Table 4: T-tests of pairwise differences between verb-sharing phrase correlations, noun-

sharing phrase correlations, and noun+composition phrase correlations using the best 50, 

100, 200, and 500 voxels with highest (unsigned) t-statistics from composition -vs.-non-

composition contrast in left ATL. Correlations being contrasted are those between the 

argument-saturated verb phrase “eats meat” and those phrases delineated in Table 3 of 

Appendix.  
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Table 5: Pearson’s r values for correlations of AMT similarity norms with neural 

similarity scores in left AG split by nouns and verbs 

 50 voxels 100 voxels 200 voxels 500 voxels 

verbs -0.10 -0.12 * -0.096 -0.14 

nouns -0.016 0.023 -0.039 -0.028 

†: 0.05<p < 0.1;  *: p <0.05 

Table 5:  Comparisons of correlations between similarity norms from AMT survey of 

pairwise phrase similarity (inclusive of both compositional (e.g. eats meat) and non-

compositional (e.g. meat) phrases) and neural similarity norms calculated by averaging 

correlations between all pairs of phrases sharing a verb and all pairs of phrases sharing a 

noun  (including both compositional and non-compositional phrases.  Table 5 shows 

those verb- and noun-based correlations in best (unsigned) 50, 100, 200, and 500 voxels 

in left AG. 
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Table 6: Pearson’s r values for correlations of AMT similarity norms with neural 

similarity scores in left ATL split by nouns and verbs 

 50 voxels 100 voxels 200 voxels 500 voxels 

verbs -0.013 0.041 0.038 0.026 

nouns -0.090 -0.097 -0.034 -0.048 

†: 0.05<p < 0.1;  *: p <0.05 

 

Table 6:  Comparisons of correlations between similarity norms from AMT survey of 

pairwise phrase similarity (inclusive of both compositional (e.g. eats meat) and non-

compositional (e.g. meat) phrases) and neural similarity norms calculated by averaging 

correlations between all pairs of phrases sharing a verb and all pairs of phrases sharing a 

noun  (including both compositional and non-compositional phrases.  Table 6 shows 

those verb- and noun-based correlations in best (unsigned) 50, 100, 200, and 500 voxels 

in left ATL. 
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