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Energy Balance Effects of Central Melanocortin, Cocaine and
Amphetamine Related Transcript and Leptin: Moving Outside of the
Hypothalamic Box.

Abstract
Due to increasing rates of obesity and its comorbidities, there is tremendous interest in the central nervous
system (CNS) control of energy balance. This basic science interest is guided in part by the need to develop
effective drugs for the overweight and the obese patient. Despite a large literature, our understanding of the
circuits and neurochemical receptors that mediate energy balance is still limited. The studies described here
address this limitation by defining neural circuits that mediate melanocortin´s effects on energy balance.
Disruption in CNS melanocortin receptor (MCR) signaling is the single largest monogenic cause of human
obesity and also produces severe hyperphagia and reduced energy expenditure in rodents. Forebrain
ventricular application of MCR agonists, triggers sympathetically mediated expenditure responses that have
been attributed to signaling at hypothalamic structures. However, caudal flow of the injected ligands in CSF
makes them available to extrahypothalamic sites. Given the widespread distribution of MCRs it is impossible
to define which MCR-bearing neurons - among them several hypothalamic and hindbrain nuclei- contribute
to the observed effects. Here we characterized the respective contributions of the hypothalamic and caudal
hindbrain MCRs to energetic and intake control with ventricular (3rd and 4th v) as well as selective
parnechymal MCR agonist delivery. Results demonstrate that thermogenic, cardiovascular and anorexic
responses of similar size and duration can be obtained by stimulation of several hypothalamic and hindbrain
MCR populations. Using an antagonist treatment we evaluated the endogenous hindbrain MCR
contributions to the intake and thermogenic responses driven by leptin (a hormone produced by the adipose
tissue) and an exposure to palatable, high-energy diet. Results indicated that hindbrain MCRs are required for
mediation of anorexic and thermogenic effects of hindbrain leptin and for limiting overeating induced by
palatable high-energy diet. The data presented here confirm the hypothesis that the melanocortin system’s
contribution to food intake and energy expenditure is distributed across spatially distinct regions of the brain.
Taken together results demonstrate the presence of an independent hindbrain MCR-driven energy balance
circuitry that responds to peripheral inputs (e.g. leptin) and physiological challenges (e.g. high-energy diet)
similarly to what has been earlier ascribed to the hypothalamic MCR populations.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Neuroscience

First Advisor
Harvey Grill

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/26

http://repository.upenn.edu/edissertations/26?utm_source=repository.upenn.edu%2Fedissertations%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages


Keywords
brain, feeding, melanocortin, leptin, hindbrain, thermoregulation

Subject Categories
Circulatory and Respiratory Physiology | Digestive, Oral, and Skin Physiology | Medical Neurobiology |
Medical Nutrition | Neurosciences

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/26

http://repository.upenn.edu/edissertations/26?utm_source=repository.upenn.edu%2Fedissertations%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 



 ii 

Acknowledgements 

 

There are many people without whom the work presented here would not be possible. I 

owe my deepest gratitude to my supervisor, Dr. Harvey Grill, for his extraordinary mentorship.  

His commitment and enthusiasm provided constant motivation.  I could not imagine having a 

better advisor. I would also like to thank my committee: Drs. Kendra Bence, Irwin Lucki, Rexford 

Ahima and Minghong Ma, who provided invaluable input to this work throughout the years.  

I have learned much by working with Dr. Matt Hayes, who liberally shared his knowledge and 

time with me throughout the years. I have benefited greatly from the technical assistance of Grill 

laboratory technicians: Lisa Maeng and Theresa Leichner and undergraduates: Amber Alhadeff, 

Jolanta Jozefara, Grace Lee, Jon Rosenberg, Anita Deshpande, Hannah MacAyeal and Holly 

Greenwald.  

Special thanks should go to my dad Christopher, mom Justyna, stepmom Ewa, brother 

Russ, grandparents Albina, Krystyna, Tadeusz; for their constant encouragement and for always 

believing in me. My grandfather’s lifelong dream of having a doctor and an academic in the 

family has motivated me every day of this journey.   

I am also indebted to all my friends for their care, support, camaraderie and all those 

memorable fun-filled moments.  



 iii 

                                                            ABSTRACT 

ENERGY BALANCE EFFECTS OF CENTRAL MELANOCORTIN, 

COCAINE AND AMPHETAMINE RELATED TRANSCRIPT AND 

LEPTIN: MOVING OUTSIDE OF THE HYPOTHALAMIC BOX. 

KAROLINA PATRYCJA SKIBICKA 

                                         ADVISOR: HARVEY J GRILL 

 
Due to increasing rates of obesity and its comorbidities, there is tremendous 

interest in the central nervous system (CNS) control of energy balance. This basic 

science interest is guided in part by the need to develop effective drugs for the 

overweight and the obese patient. Despite a large literature, our understanding of the 

circuits and neurochemical receptors that mediate energy balance is still limited. The 

studies described here address this limitation by defining neural circuits that mediate 

melanocortin´s effects on energy balance. Disruption in CNS melanocortin receptor 

(MCR) signaling is the single largest monogenic cause of human obesity and also 

produces severe hyperphagia and reduced energy expenditure in rodents. Forebrain 

ventricular application of MCR agonists, triggers sympathetically mediated expenditure 

responses that have been attributed to signaling at hypothalamic structures. However, 

caudal flow of the injected ligands in CSF makes them available to extrahypothalamic 

sites. Given the widespread distribution of MCRs it is impossible to define which MCR-

bearing neurons - among them several hypothalamic and hindbrain nuclei- contribute 

to the observed effects. Here we characterized the respective contributions of the 

hypothalamic and caudal hindbrain MCRs to energetic and intake control with 

ventricular (3rd and 4th v) as well as selective parnechymal MCR agonist delivery. Results 

demonstrate that thermogenic, cardiovascular and anorexic responses of similar size 
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and duration can be obtained by stimulation of several hypothalamic and hindbrain 

MCR populations. Using an antagonist treatment we evaluated the endogenous 

hindbrain MCR contributions to the intake and thermogenic responses driven by leptin 

(a hormone produced by the adipose tissue) and an exposure to palatable, high-energy 

diet. Results indicated that hindbrain MCRs are required for mediation of anorexic and 

thermogenic effects of hindbrain leptin and for limiting overeating induced by palatable 

high-energy diet. The data presented here confirm the hypothesis that the melanocortin 

system’s contribution to food intake and energy expenditure is distributed across 

spatially distinct regions of the brain. Taken together results demonstrate the presence 

of an independent hindbrain MCR-driven energy balance circuitry that responds to 

peripheral inputs (e.g. leptin) and physiological challenges (e.g. high-energy diet) 

similarly to what has been earlier ascribed to the hypothalamic MCR populations. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

I. Energy Balance Control 

According to the center for disease control, about 65% of Americans are either 

overweight or obese (Hedley et al., 2004).  In the last decade obesity and comorbid 

pathologies including type 2 diabetes, hypertension, and cardiovascular disease have 

been dramatically increasing, becoming a great burden not only on the health care 

system but also on economy.  The desire to prevent these pathologies has sparked an 

interest in defining the mechanisms of neural control of energy balance.  Energy balance 

is achieved through the coordinated control of two systems, one controlling energy 

intake (feeding) and the other energy expenditure (limitation or facilitation of the use of 

available energy resources).  Changes in feeding patterns have been most commonly 

linked to increases in body weight.  Increases in the consumption of fats (particularly 

saturated fats), and simple carbohydrates, have contributed to the increases in the 

prevalence of obesity.  Chronic overconsumption of calorically dense meals causes a 

disruption in homeostatic mechanisms of body weight control, often progressively 

leading to an allostatic level of energy balance that defends the increased body weight 

even after the intake has been reduced. This ‘hard-wired’ defense of body weight has 

been attributed to the ineffectiveness of many weight reduction diets.  This brings 

attention to the second essential component of energy balance: energy expenditure (EE).  

Reduction in EE also contributes to the obesity epidemic.  Therefore treatments 

targeting both energy intake and EE will be more effective then dieting alone.  Clearly 

more attention needs to be focused on the EE side of the energy balance equation. 
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EE in mammals can be divided in to three main components: basal metabolism, 

adaptive thermogenesis and non-resting energy expenditure (physical activity).  

Adaptive thermogenesis is a response induced by challenging environmental stimuli 

such as cold, food consumption and pathogenic stimuli including infection and stress 

(Dulloo, 2002; Dulloo et al., 2004).  Thermogenic responses are tuned to these different 

environmental stimuli.  Relevant environmental and internal stimuli are processed and 

integrated, at a number of CNS sites and if need arises, thermogenic effectors are 

stimulated via the sympathetic nervous system (SNS).  A number of sympathetic pre-

motor nuclei drive thermogenic effectors.  SNS control of brown adipose tissue (BAT) 

has the largest thermogenic capacity in rodents (Cannon and Nedergaard, 2004). 

Various peptide systems contribute to both sides of energy balance control.  The 

major contributors can be organized into two classes: anabolic and catabolic.  On the 

catabolic side, central melanocortin system and leptin are of fundamental importance. 

In addition, cocaine and amphetamine related peptide (CART) has recently emerged as 

a potential counterpart of melanocortin in the energy balance effects. The work in this 

dissertation concerns the contribution of all three peptides to the control of feeding 

behavior and various aspects of energy expenditure.   

 

II. Central Melanocortin System 

 

a. General 

  Exogenous stimulation of the melanocortin system decreases food intake and increases 

EE; it is therefore, a potential target for treatment of obesity.  While the melanocortin 

influence on feeding is under extensive scrutiny, much less is known about the 

melanocortin circuitry contributing to EE.  The principal goals of the work proposed 
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below are to elucidate the central melanocortin circuits that contribute to EE control, to 

distinguish potentially separate contributions of melanocortin receptors (MCRs) in 

hypothalamus/forebrain and caudal brainstem, and to distinguish their engagement 

under different physiological conditions. 

 

The central melanocortin system is unique since it is composed of not only neurons 

that produce the endogenous agonists for MC3R and MC4R, the two central receptors, 

but also of neurons that produce an endogenous antagonist (Cone, 2005).  The 

endogenous agonists, α-MSH, β-MSH and γ-MSH, are products of the 

proopiomelanocortin (POMC) gene neurons which are located only in two regions of the 

brain: hypothalamic arcuate nucleus (ARC), and the nucleus of the solitary tract (NTS) 

within the caudal brainstem.  Neurons producing the antagonist (AgRP) are present in 

the ARC (Broberger et al., 1998; Bagnol et al., 1999; Haskell-Luevano et al., 1999).  The 

MC4Rs on the other hand, are widely distributed across the neuraxis, from the forebrain 

to the caudal brainstem (Mountjoy et al., 1994; Kishi et al., 2003).  MC3R mRNA is 

much less distributed than MC4R, with most abundant expression sites in hypothalamic 

areas participating in thermogenesis and cardiovascular function.   High MC3R 

expression has been identified in the ARC on POMC positive neurons and on terminal 

fields of these neurons, suggesting a possible role of MC3R as an autoreceptor in this 

area (Roselli-Rehfuss et al., 1993; Marks et al., 2006).  None of the MC3R positive cells 

were found in the caudal brainstem regions such as NTS, pointing to diversity of MCR 

expression among different levels of the melanocortin system (Roselli-Rehfuss et al., 

1993).   
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b. Food intake 

The central melanocortin system is already recognized as an important contributor to 

feeding control in the mammalian energy balance equation.  Disruption in CNS 

melanocortin activity is the single largest monogenic cause of human obesity.  

Polymorphisms and mutations of POMC gene as well as mutations of MC4R receptor 

have been linked to human obesity (Comuzzie et al., 1997; Krude et al., 1998; Hinney et 

al., 1999; Hixson et al., 1999).  Similarly a deletion of MC4R or POMC gene, or 

overexpression of AgRP in mice, causes a pronounced obese phenotype (Klebig et al., 

1995; Huszar et al., 1997; Wolff et al., 1999; Yaswen et al., 1999).  Most pharmacological 

studies to date have focused on the intake effects of melanocortins.  MC agonist and 

antagonist, administered directly into the rodent brain, cause a large decrease and a 

large long lasting increase in food intake respectively.  However, an alteration in food 

intake following a disruption of melanocortin signaling is not the only factor 

contributing to obesity.  MC4R KO mice for example have significantly altered EE, 

independent of the food intake effects, with 20% decrease in resting EE as measured by 

oxygen consumption, compared to weight matched controls (Ste Marie et al., 2000). 

 

For the energy balance field many functions are localized to hypothalamic neurons 

and circuits.  This is certainly true for the analysis of feeding control.  Also for EE, 

research has focused on the sensory, integrative and motor output control mechanisms 

seated within hypothalamic nuclei and related forebrain structures.  Unfortunately this 

focus has neglected potentially, and in some cases demonstrably, critical contributions 

of extrahypothalamic structures particularly those in caudal brainstem structures.  For 

feeding function, the contribution of the caudal brainstem melanocortin system is 

highlighted in previous work of our laboratory.  Emphasis on distributed control was 
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provided by the demonstration that local stimulation of MCRs in anatomically distinct 

regions (lateral and 4th ventricle injections) gives rise to an anorexic response (to 

melanocortin agonists) and orexigenic response (to antagonists) (Grill et al., 1998).  The 

case was strengthened by the demonstration that the same response was obtained with 

parenchymal injections in the dorsal medulla at doses well below threshold for the 

ventricular effect (Williams et al., 2000a).  This is not to discount the forebrain 

contribution.  Indeed responses from the third ventricle were observed even when the 

caudal flow of CSF was blocked with a cerebral aqueduct plug [unpublished 

observations, for method see (Faulconbridge et al., 2005)].  Here we will apply a similar 

strategy to explore the melanocortin contribution to EE.   

 

c. Thermoregulation 

Anatomical analysis of CNS networks controlling SNS outflow to BAT, with 

pseudorabies virus injections into the intercapsular BAT, show convergence of the 

retrogradely labeled structures and known distribution of MC4Rs and MC neuron 

projections.  As expected from literature on hypothalamic involvement in energy 

balance, BAT projections were traced with transsynaptically transported label to many 

hypothalamic sites including medial preoptic area of the hypothalamus (MPOA), as well 

as ventromedial and dorsomedial hypothalamus (Bamshad et al., 1999; Oldfield et al., 

2002; Morrison, 2004).  Importantly, all of the labeled hypothalamic nuclei receive 

melanocortin projections and express MCR (Jacobowitz and O'Donohue, 1978; Palkovits 

et al., 1987; Joseph and Michael, 1988; Sim and Joseph, 1994; Fan et al., 2005; Voss-

Andreae et al., 2007).  However the overlapping melanocortin projections with BAT 

retrograde tracing were also found in extrahypothalamic sites, particularly in caudal 

brainstem nuclei including: parabrachial nucleus (PBN) and raphe pallidus (RP), with 
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many BAT and melanocortin projections converging at the intermediolateral column, 

the site of BAT preganglionic sympathetic neurons (Voss-Andreae et al., 2007).  In 

addition, BAT projections could also be traced to ARC and NTS, the only two CNS sites 

containing POMC neurons (Voss-Andreae et al., 2007).  Such points of overlap may 

suggest that both hypothalamic and caudal brainstem divisions of the MC system may 

modulate BAT activity.  A level of complexity is added by the interaction between the 

brainstem and hypothalamic melanocortin neuron signaling, made possible by the dual 

innervation of given structures (including NTS, PBN, ARC, PVN) by both POMC neuron 

centers [for review see (Fan et al., 2007)].   

Pharmacological stimulation of central MCRs, with MTII (selective for MC3R and 

MC4R), in rats and wild type mice increases oxygen consumption (Fan et al., 1997; 

Zhang et al., 2004).  Hypothalamic MCR stimulation via MTII injections to third 

ventricle of free feeding rats during the dark cycle increase EE as reflected in increases 

in core temperature (Murphy et al., 2000).  MTII administration to the 3rd ventricle also 

dose-dependently increased sympathoexcitation to BAT, the effect was abolished by 

coadministration of MC3R/4R antagonist (SHU 9119) (Haynes et al., 1999).  Chronic 

AgRP (MC3R/4R antagonist) infusion to the third ventricle decreases BAT UCP-1 

(uncoupling protein associated with increased thermogenesis in BAT) expression 

independent of its orexigenic effects (Small et al., 2003).  Much less is known about 

caudal brainstem MCR-mediated control of BAT thermogenesis.  Forebrain but also 

caudal brainstem MCR stimulation via semi-chronic (3 injections over 36 hours) MTII 

administration to third and fourth ventricles leads to increased UCP-1 expression, which 

was shown to be dependent on sympathetic mediation as the denervation of BAT 

abolished the response (Williams et al., 2003).  Taken together, pharmacological 

stimulation experiments suggest that both caudal brainstem and hypothalamic MCRs 
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have the potential to drive sympathetically mediated BAT-dependent thermogenic 

response.  Therefore we will give both receptor populations equal attention while 

examining the hypothesis that anatomically distributed MCR expressing regions 

contributes to activation of thermogenic responses.   

 

d. Cardiovascular regulation 

Anatomical and pharmacological evidence points to a prominent role of 

melanocortins in cardiovascular function. Patients with dysfunctional MCRs have lower 

blood pressure and heart rate compared to weight matched controls, despite their 

obesity (Greenfield et al., 2009). Both parameters are also increased when MCR agonist 

is given to normal subjects (Greenfield et al., 2009). Central MCR agonist application 

produces profound and long lasting increases in blood pressure and heart rate in rats (D 

Ramaekers, 2002). Those effects are mediated by SNS excitation of the heart (Kuo et al., 

2004). Conversely, blockade of central MCRs decreases both blood pressure and heart 

rate (Kuo et al., 2003). Both effects are independent of the feeding effects of 

melanocortins as they persist in pair fed rats (Kuo et al., 2003). The dissociation of the 

feeding and cardiovascular effects of MCR stimulation is further strengthened by the 

fact that obesity induced by high fat feeding attenuates the anorexic effect of MCR 

agonist, however the tachycardic effects persist (Silva et al., 2006). This dissociation is 

of critical importance as it suggests that MCR signaling underlies the hypertension and 

tachycadia observed in obese patients (without MCR mutations). Despite the broad 

distribution of MCRs in areas associated with cardiovascular control the literature has 

ascribed the action of central (lateral or 3rd ventricular) MCR agonist and antagonist 

application to activation of MCRs in hypothalamic nuclei (Kuo et al., 2003). In fact, 

ventricular drug application potentially allows for stimulation of not only the 
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hypothalamic MCRs but also the hindbrain MCRs, as the drug flows caudally with CSF. 

Thus, it is not at all clear which of the MCR expressing nuclei contribute to the 

ventricular effect. The specific role of hindbrain MCR in those effects remained largely 

unexplored. Therefore here we specifically address the role of hindbrain MCRs in the 

cardiovascular regulation.  

 

e. Physical activity 

A decrease in spontaneous locomotor activity can be a contributing factor to the 

pathogenesis of obesity and fat pad deposition (Castaneda et al., 2005). While little is 

known about the neural basis of this response, available evidence implicates many of the 

neuropeptides associated with food intake in the control of physical activity. Central 

(ventricular) MTII stimulation increases and endogenous antagonist – AgRP application 

decreases spontaneous locomotor activity in rats (Hwa et al., 2001; Tang-Christensen et 

al., 2004; Koo et al., 2008). Similarly, as for the thermic and cardiovascular effects of 

melanocortins, the neuroanatomical substrate of this MCR function is unclear. Our 

studies will therefore evaluate the role of hindbrain, as well as several 

forebrain/hypothalamic MCR-expressing nuclei in physical activity control. 

 

III. Central Effects of Leptin 

Leptin, a circulating hormone produced by the white adipose tissue, like 

melanocortin, is anorexic and thermogenic when applied centrally (Scarpace et al., 1997; 

van Dijk et al., 1999; Rahmouni et al., 2002). POMC neurons and MCRs are an 

important downstream mediator of the energy balance effects of basal forebrain-

directed, third ventricular (3rd v) leptin delivery (Seeley et al., 1997; Satoh et al., 1998; 

Haynes et al., 1999). This perspective is supported by experiments that show that: leptin 
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signaling in these neurons increases POMC gene expression (Schwartz et al., 1997; 

Elmquist, 2001) and pretreatment with MCR antagonist attenuates the anorexic effects 

as well as some of the SNS- mediated energetic effects of 3rd v leptin delivery (Seeley et 

al., 1997; Haynes et al., 1999). Similarly, as described above for the melanocortin system, 

the central actions of leptin have been ascribed to the hypothalamic leptin receptor 

(ObRb) populations, without much attention given to the two hindbrain ObRb 

expressing nuclei (NTS, PBN).  While evidence exists that part of the anorexia induced 

by leptin is mediated by NTS ObRb (Huo et al., 2007), the energetic effects of selective 

hindbrain ObRb stimulation have not been examined. Here we examine a role of 

hindbrain ObRb stimulation in the thermoregulation, cardiovascular functions and 

activity regulation and evaluate whether hindbrain MCRs contribute to the energy 

balance effects triggered by selective hindbrain leptin stimulation.  

 

IV. Cocaine and amphetamine regulated transcript 

 In arcuate hypothalamic neurons CART is co-expressed with POMC. Increase in 

melanocortin signaling produces hypophagia, hyperglycemia, hyperthermia, tachycardia 

and increased activity (Fan et al., 2000; Gutierrez-Juarez et al., 2004; Skibicka and Grill, 

2008a). Leptin upregulates and food deprivation downregulates hypothalamic 

expression of  POMC as well as CART (Kristensen et al., 1998). These functional changes 

and the co-expression of CART with POMC, led to the suggestion that CART peptides 

have a catabolic function – with treatment producing reductions in food intake and 

increases in energy expenditure. The fact that 3rd and 4th v CART injection produces 

anorexia and arcuate and paraventricular nucleus CART delivery increases UCP-1 

expression in interscapular brown adipose tissue is consistent with that notion (Wang et 

al., 2000; Kong et al., 2003). However, the EE effects of CART have been insufficiently 



 10 

investigated, as those investigations have not gone beyond measuring UCP-1, which is a 

useful correlate of BAT activity, although not an accurate measurement of BAT 

thermogenesis. Here we investigate whether the EE function of CART parallels that of 

melanocortin at both the hindbrain and forebrain level of the neuraxis. 

 

V. Hindbrain competence (Chronic decerebrate preparation) 

 

We may demonstrate effects of MCR agonist and antagonist in hindbrain on 

thermogenesis.  Such results, as argued, would stand alongside similar demonstrations 

for isolated stimulation of forebrain structures, making part of the case for anatomically 

distributed controls for thermogenesis most generally, and specifically for the 

melanocortin contribution.  These outcomes, however, would not speak to the 

integrative substrates downstream of the MCRs that may be critical for expression and 

coordination of thermogenic responses.  The hindbrain may contain receptor “triggers” 

for responses, but the hypothalamus may perform essential operations entailing both 

ascending and descending pathways.  The sufficiency of the hindbrain substrates for 

mediation of responses observed in the whole animal is addressed below in proposed 

experiments with the utility of the chronic decerebrate (CD) rat preparation.  Our 

laboratory has developed this preparation over many years, and applied it successfully 

to evaluate the integrative potential of the hindbrain.  This work has focused on the 

control of ingestive behavior and to a lesser extent, endocrine function.  It has been 

shown, for example, that the CD behaves as its neurologically intact control with respect 

to discriminative response to gustatory stimulation and modulation of meal size by such 

prototypical treatment as nutrient preloads, sham feeding, food deprivation and 

systemic administration of CCK and central administration of anorexic agents such as 
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urocortin-1 [for review see (Grill and Norgren, 1978; Grill and Kaplan, 2002).  For 

feeding function, it can be concluded (from the intact like function in CD) that despite 

the many deficits of the CD rat (e.g.  blindness, anosmia) complete circuits, from 

sensory inputs to integrative processing and effector commend, are contained within the 

hindbrain.  We propose to determine whether a similar judgment can be derived with 

respect to thermoregulatory control.  At some level, the feeding related work offers some 

encouragement, because of the coordinated control of effectors on both sides of energy 

balance; and because many of the same structures in the brainstem are implicated in the 

control of sympathetic outflow to thermogenic effectors (e.g.  NTS, PBN, VLM) are also 

critical players in control of ingestive behaviors.  The story that emerges from the 

proposed work, however, may not conform to principles of parsimony.  A failure of the 

CD to display normal like responses would point to critical contributions of forebrain 

substrates, or at least to necessary neural communication that will add to our 

appreciation of the neuroanatomically distributed system for the control of EE.   

 

VI. Overview of dissertation 

 

The previous literature clearly establishes that administration of melanocortin to 

forebrain ventricles or directly to the hypothalamic nuclei results in decreased food 

intake and increased EE but the location of MCRs relevant to these responses had not 

been throughly explored. Given the presence of MCR in the hindbrain, we hypothesized 

that the thermogenic, tachycardic and activity responses to melanocortin may be 

triggered independently by MCR stimulation in the forebrain and separately in the 

hindbran.  Our hypothesis is strenghtened by previous work clearly showing a forebrain 

independent, hindbrain trigger for MCR stimulation induced hypophagia. In Chapter 2 
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we find support for this hypothesis by showing that selective hindbrain MCR 

stimulation produces a pronounced and long-lasting hyperthermia for the BAT and 

body core, as well as tachycardia and hypophagia. To establish the independence of the 

neurociruitry mediating those obtained responses we evaluate them in a CD model. 

Obtaining similar responses in a CD rat as those seen in an intact rat would indicate that 

the circuitry downstream of the MCR stimulation required for the production of an 

energetic effect is endemic to the hindbrain. Subsequently we deliver melanocortin 

agonist (MTII) directly to the hindbrain parenchyma (caudal raphe) at doses below the 

threshold for the ventricles and obtain feeding and energetic responses, affirming a role 

for the hindbrain in the energy balance effects of exogenous MCR stimulation. 

 

While Chapter 2 shall provide solid support for a hindbrain site of MCR action, it 

would not specify which of the several MCR expressing populations within the 

hindbrain underlie the responses obtained with fourth ventricular stimulation.  

Considering that several hindbrain MCR expressing nuclei (NTS, RVLM, and PBN) have 

well established connections to sympathetic and feeding behavior output we hypothesize 

that all of them contribute to MCR energy balance effects. We also predict that a similar 

range of energy balance effects could be obtained with MCR stimulation in the 

hypothalamic nuclei (PVN, RCh), as they are too well connected to the relevant output 

systems. We evaluate those predictions in Chapter 3 where we provide selective MCR 

stimulation to each of those nuclei and measure food intake, core temperature, heart 

rate and activity. If our predictions are correct we would have shown that 

melanocortinergic control of various parameters of energy balance is beyond doubt 

distributed across the whole neuraxis. 
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In Chapter 4 we begin to evaluate the peripheral inputs to the hindbrain 

melanocortin system. That a peripheral adipostat hormone, leptin, activates the 

hypothalamic melanocortin producing neurons and MCRs is well established. We 

examine whether a similar relationship exists for hindbrain selective leptin application. 

We first establish that hindbrain effects of leptin on energy expenditure are comparable 

to those obtained with hypothalamic/forebrain application. Next, we evaluate the effects 

of selective hindbrain MCR blockade on the hindbrain thermogenic, tachycardic and 

anorexic effects of leptin.  

 

In Chapter 5 we continue the evaluation of peripheral inputs that require 

downstream hindbrain MCR activation. In Chapter 4 we assessed the hindbrain specific 

leptin-MCR interaction. Here we examine an interaction of hindbrain MCRs with the 

endogenous input emerging from high-fat feeding on food intake and energy 

expenditure. The studies reported here are the first to identify a contribution of 

endogenous activity at hindbrain MCRs to thermoregulation and cardiovascular 

function.  

 

In Chapter 6, a similar strategy to that assessing hindbrain MCR effects is 

applied to examine the intake, blood glucose regulation, core temperature, heart rate 

and activity effects of hindbrain CART peptide application. In spite of the close 

association in the literature of CART with melanocortins and its assumed catabolic 

function, a surprising opposing effect of CART on temperature is obtained – a 

pronounced and long lasting hypothermia. Subsequently the neurocircuitry underlying 

this unexpected effect is characterized, to show that, unlike melanocortinergic 

hyperthermia, the CART hypothermia is mediated by forebrain processing and that both 
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the anorexia and hypothermia of hindbrain CART are mediated by hindbrain glucagon-

like-peptide-1 receptors. 

 

A general discussion of the results obtained across experiments is presented in 

Chapter 7.  
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CHAPTER 2. 

ENERGETIC RESPONSES ARE TRIGGERED BY CAUDAL BRAINSTEM 

MELANOCORTIN RECEPTOR STIMULATION AND MEDIATED BY 

LOCAL SYMPATHETIC EFFECTOR CIRCUITS1 

 

ABSTRACT 

The central melanocortin system is a critical contributor to energy balance control.  

Melanocortin receptors (MC-Rs) are widely distributed throughout forebrain and caudal 

brainstem nuclei.  In order to assess the contribution of hindbrain MC-Rs to the control 

of energy expenditure, the MC3/4R agonist MTII was delivered to either the 4th ventricle 

or medullary raphe of neurologically intact rats and chronic decerebrate rats and 

interscapular brown adipose tissue (IBAT) temperature (TIBAT), core temperature (TC), 

heart rate (HR) and spontaneous activity were recorded. Fourth ventricular MTII (0.1, 

1.0 nmol) significantly increased TIBAT, TC and HR in intact rats (TC: +0.33 ± 0.08, +0.41 

± 0.09 oC; HR: +40.84 ± 7.29, +69.04 ± 6.83 BPM) and in chronic decerebrates (TC: 

+1.39 ± 0.67, +1.52 ± 0.37 oC; HR: +83.21 ± 19.2, +107.38 ± 17.65 BPM). Response 

magnitude was greater in chronic decerebrate rats than in neurologically intact rats. 

TIBAT, TC and HR were significantly increased after 10 pmol MTII delivery to the 

medullary raphe of intact rats, and here too, the response magnitude was greater in 

decerebrate rats. The hyperthermia, IBAT thermogenesis, and tachycardia observed in 

chronic decerebrate rats following 4th ventricular and hindbrain parenchymal MTII 

injections supports the hypothesis that hindbrain MC-R stimulation engages endemic 

circuits that link sympathetic outflows to thermogenic and cardiac effectors and that 

                                                 
1
 These results were partially reported at the 2006 North American Association for the Study of Obesity 

Annual Meeting, in Boston MA, and appeared in Endocrinology, 149(7):3605-16, 2008. This work was 

supported by Systems and Integrative Biology and Behavioral Neuroscience Training Grants, and NIH 

grant DK-21397. 
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forebrain processing and forebrain-caudal brainstem communication is not required for 

response production.   

INTRODUCTION 

Melanocortin ligands and receptors are an essential component of the central nervous 

system (CNS) control of energy balance.  Mutations of the genes for the melanocortin 4 

receptor (MC4-R) or the ligand precursor, pro-opiomelanocortin (POMC) are associated 

with severe obesity in humans (Yeo et al., 1998; Krude et al., 2003; Dubern et al., 2007).  

In rodent models, agonist stimulation (pharmacologic or genetic) of MC4-R potently 

reduces food intake and body weight, while antagonism of the MC4-R results in 

hyperphagia and obesity (Huszar et al., 1997; Grill et al., 1998; Yaswen et al., 1999).  

While MC-R (MC4-R, MC3-R) treatment-induced changes in body weight are typically 

ascribed to changes in food intake, other data suggest that MC-R effects on body weight 

may also be mediated by alterations in energy expenditure.  For example, increased 

energy expenditure follows peripheral or forebrain ventricular application of MC-R 

agonists (Haynes et al., 1999; Murphy et al., 2000; Nordheim et al., 2006), while 

reduced expenditure results from MC-R antagonist treatment or targeted deletion of the 

MC4-R (Ste Marie et al., 2000; Voss-Andreae et al., 2007). Despite a wide anatomical 

distribution of MC4-R (Kishi et al., 2003), the field has emphasized hypothalamic 

contributions to MC4-R mediated energetic effects [e.g. (Harrold et al., 1999; Williams 

et al., 2000b)] but has not thoroughly characterized the contribution of extra-

hypothalamic MC4-Rs or the downstream neural circuitry mediating  MC4-R-induced 

energy balance effects.   

 

 This paper addresses whether MC-R bearing neurons in the caudal brainstem 

contribute to energy expenditure responses and whether the sympathetic output circuits 
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mediating the energetic effects involve processing by both caudal brainstem and 

forebrain structures. A useful strategy for highlighting the candidate MC-R bearing 

neurons comes from studies that examine MC4-R expression in the sympathetic pre-

motor neurons controlling interscapular brown adipose tissue (IBAT) temperature. 

Notable among the identified neurons are the MC4-R expressing neurons in the 

hypothalamic paraventricular nucleus (PVN), the dorsomedial hypothalamic nucleus 

(DMH) and lateral hypothalamic area (LH) that are retrogradely labeled with 

pseudorabies-virus injections into IBAT, a key thermogenic effector in rodents (Cano et 

al., 2003a; Voss-Andreae et al., 2007). While MC-R bearing hypothalamic neurons, 

especially those of the PVN, provide a focus for many studies addressing the mediation 

of MC-R effects on energy expenditure (Harrold et al., 1999; Williams et al., 2000b), 

MC4-Rs are also expressed extra-hypothalamically in several caudal brainstem nuclei 

that are linked to the control of IBAT and cardiac responses. Caudal brainstem neurons, 

including those of the nucleus tractus solitarius (NTS), medullary raphe (raphe pallidus 

[RPa], raphe obscurus, raphe magnus), parabrachial nucleus, and rostroventrolateral 

medulla (RVLM) express MC4-R and are retrogradely labeled by IBAT pseudorabies 

virus injection (Voss-Andreae et al., 2007). A critical role for RPa neurons in the control 

of IBAT thermogenesis, heart rate and sympathetic outflows is well established (Rathner 

et al., 2001; Blessing, 2003; Cao and Morrison, 2003; Morrison, 2003; Horiuchi et al., 

2004; Morrison, 2004; McAllen et al., 2006; Fan et al., 2007). Neurons expressing 

MC4-R in the RPa and RVLM are also associated with cardiovascular efferent control by 

other investigators (Coleman and Dampney, 1995; Samuels et al., 2002; Mountjoy et al., 

2003).  

 



 18 

To examine the contribution of MC-R-bearing caudal brainstem neurons to 

energy expenditure control and to determine whether processing endemic to the 

hindbrain (in the absence of forebrain processing) is required for MC-R mediated 

autonomic response production, MC-R agonist-induced energetic responses of 

neurologically intact rats were compared to those of rats whose caudal brainstem was 

neurally isolated from the forebrain via complete supracollicular transection. IBAT 

temperature, core temperature, heart rate, and spontaneous activity were monitored in 

response to hindbrain (4th) ventricular, medullary raphe parenchymal and systemic (i.p.) 

injection of melanotan II (MTII), a ligand of the MC4-R and MC3-R. Results establish a 

role for the hindbrain MC-Rs in the control of energy expenditure and show that 

endemic caudal brainstem circuits are sufficient for hindbrain-generated response 

production and that hypothalamic processing and hypothalamic-forebrain 

communication is not necessary. 

 

METHODS 

Subjects 

Male Sprague-Dawley rats (Charles River Laboratories, Wilmington, MA), weighing 

300–400 g at the time of surgery and housed individually in plastic bins under a 12:12-h 

light-dark cycle (8:00 am lights on), participated in the five experiments described 

below.  Pelleted food (Purina 5001; St. Louis, MO) and water were available ad libitum 

unless otherwise noted.  All procedures conformed to the institutional standards of 

animal care and use (University of Pennsylvania). 

Surgery 
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Rats were anesthetized with ketamine (90 mg/kg), xylazine (2.7 mg/kg), and 

acepromazine (0.64 mg/kg) delivered intramuscularly.   

4th intracerebroventricular and medullary raphe cannula. Rats in Experiments 1,3,4,5 

and 6 received a fourth-intracerebroventricular (4th i.c.v.) guide cannula (Plastics One, 

22-G) with its tip stereotaxically positioned 2.0 mm above the 4th ventricle (coordinates: 

on the midline, 2.5 mm anterior to the occipital suture, and 4.5 mm ventral to the dura, 

with injector aimed 6.5 mm ventral from dura). Rats in Experiments 4,5 and 6 also 

underwent a decerebration surgery. Rats in Experiment 3A received a guide cannula 

aimed at the medullary raphe (coordinates: on the midline, 3 mm posterior to lambda, 

and 7.4 mm ventral to the dura, with injector aimed 9.4 mm ventral to dura). Medullary 

raphe injections for the rats in Experiments 3B and 6 utilized the 4th i.c.v guide cannula 

(above) with injectors positioned 5 mm below the guide cannula aimed at the medullary 

raphe (injector aimed 9.5 mm ventral to dura). Cannulas were attached to the skull with 

dental acrylic and jeweler's screws and closed with an obturator.   

Decerebration surgery. Supracollicular decerebration was performed in two hemi-

transection stages separated by at least 1 wk, as previously described (Grill and Norgren, 

1978). Decerebrate rats received 4th i.c.v. cannulas during the second hemisection 

surgery. Pair-fed neurologically intact control rats were also anesthetized on two 

occasions and implanted with 4th i.c.v. cannulas during the second surgery. Rats 

recovered for at least 1 wk before the experiment started. The completeness of the 

intended transection was verified histologically after the experiment. Only rats with a 

histologically verified complete transection were included in the data analyses.   
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Telemetric transponder surgery: Telemetric transponders (HRC 4000 Mini-Mitter, 

VitalView, OR) for recording core temperature (Tc), heart rate (HR) and spontaneous 

physical activity (SPA) were inserted into the abdominal cavity, with the leads 

positioned subcutaneously and secured to the chest muscles on either side of the heart 

with sutures. In Experiment 3 animals received a smaller telemetric transponder for 

recording IBAT temperature (TIBAT) and SPA (G2, VitalView, OR). The skin overlying the 

IBAT pad was opened and the transponder positioned on the right side of IBAT, 

avoiding the midline vessels and nerves, and secured with sutures to the overlying 

muscle. In Experiments 1, 4 and 6, separate groups of animals were implanted with 

IPTT-300 (Bio Medic Data Systems, ID) transponders that measured only the TIBAT. 

 

Experimental procedure 

  

Cannula position verification.  At least 7 days after surgery, 4th i.c.v. cannula placement 

was assessed by measurement of the sympathoadrenal mediated glycemic response to 5-

thio-D-glucose [210 µg in 2 µl of artificial cerebral spinal fluid (aCSF)] (Ritter et al., 

1981). A post-injection elevation of at least 100% of baseline plasma glucose level was 

required for subject inclusion. The medullary raphe placement was determined 

histologically after the experiment with injection of pontamine sky blue at the 100 nL 

volume used in the experiments. 

Habituation training. Prior to the start of experimental testing, rats were acclimated to 

handling and to injections used in a given experiment [4th i.c.v., parenchymal, 

intraperitoneal (i.p.)]  
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Food intake and body weight monitoring: Food was removed at injection time (early in 

the light cycle, between hours 9.30 and 11:00 am) and returned 8 h later, late in the light 

phase. Thereby, food was not available during the period of energetic response 

measurement. Food intake and body weight measurements were performed 24 h after 

the injection of drug. Given this design, all noted differences in food intake reflect longer 

latency effects of MTII (from hour 8 to hour 24-post injection). For ad libitum feeding 

rats, food was always available during the dark cycle and a minimum of 48 h was 

allotted between experimental testing for all animals.      

Experiment 1: Effects of stimulating caudal brainstem MC-Rs via 4th i.c.v. MTII 

injection on energy expenditure. Neurologically intact rats (n=11) received 4th i.c.v. 

injections early in the light cycle. Three conditions were run in a counterbalanced 

fashion across separate days with at least 2 days between conditions. Responses were 

examined following a control condition with 4th i.c.v. vehicle (1 µl  aCSF) and two doses 

of MTII: 0.1 nmol and 1.0 nmol (dose selection based on (Haynes et al., 1999; Murphy et 

al., 2000)). HR, TC, and SPA were continuously monitored for 8 h at 5-min intervals (Tc 

and SPA) or 30-sec intervals (HR) in rats with implanted HRC-4000 transponders. TIBAT 

was monitored every hour for 7 h in Experiment 1. 

Experiment 2: Effects of systemic MC-R ligand injection on energy expenditure.  This 

experiment was designed to determine whether any of the energy balance effects seen 

with 4th i.c.v. MTII injection could be attributed to actions on peripheral MC-Rs via drug 

efflux from the brain. All other features of the design were identical to Experiment 1 

except that vehicle (0.2 ml saline) and MTII (1.0 nmol in 0.2 ml saline) were injected i.p. 

(n=12).   
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Experiment 3: Effects of stimulating medullary raphe MC4-Rs via intraparenchymal 

MTII injection on energy expenditure.  All rats received two counterbalanced conditions 

(100 nL injections of aCSF or MTII 10 pmol) separated by at least 2 days. Pilot studies 

determined that 5 or 10 pmol of MTII delivered 4th i.c.v. were without effect on Tc – data 

not shown. A: In one set of rats (n=8), TIBAT
 and SPA were monitored with G2 

transponders every 5 minutes for 8 h.  B: In a second set of rats (n=12), HR, Tc, and SPA 

were monitored with HRC 4000 transponders for 8 h at 5-min intervals (Tc, SPA) and 

30s intervals (HR).   

Experiment 4: Effects of stimulating caudal brainstem MC-Rs via 4th i.c.v. injection on 

IBAT temperature in chronic decerebrate rats and intact control rats.  Diet 

maintenance: Chronic decerebrate rats (CD) do not spontaneously ingest food (Grill 

and Norgren, 1978); therefore they were maintained with four daily gastric intubations 

of 9 ml of a liquid diet (AIN 76A rodent diet, Research Diets, New Brunswick, NJ). This 

maintenance regime provides 79 kcal/d and adequate hydration; rats gain weight on 

this regime. Feedings were separated by intervals of at least 2 h.  CD and gavage-fed 

(GF) intact control rats were maintained on this feeding paradigm except as noted below 

during experimental testing. TC of CD rats is more variable than that of GF control rats.  

Rectal temperature was measured at each gavage feeding and rats were cooled or heated 

if TC was below 34.0 or above 38.5oC (except during experimental testing). Test days: 

Experimental design was identical to that of Experiment 1, with the exception of the 

dose.  All rats (CDs: n=10, GF: n=9) were tested under control condition: 4th i.c.v. 

vehicle (1 µl aCSF) and 1.0 nmol MTII.  

Experiment 5: Effects of stimulating caudal brainstem MC-Rs via 4th i.c.v. MTII 

injection on core temperature, heart rate and activity in chronic decerebrate and in 
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intact rats with and without oral food access. Diet maintenance: CD (n=6) and GF 

control (n=11) rats were maintained as in Experiment 4. A third group, meal-fed intact 

rats (n=11), was included. These rats had oral access to the same diet that was intubated 

in the other two groups.  Meal-fed rats were presented with 9 mL of liquid diet at the 

same times that the other groups received the diet by gavage. In all cases the 9 mL 

aliquot was consumed within 5-10 minutes.  The feeding maintenance condition of the 

intact rats in the GF and meal-fed oral access groups were subsequently reversed in 

order to allow within-subject comparison. Rats were re-tested with MTII and vehicle 

injections after two weeks on a given feeding maintenance regime. Test days: 

Experimental design was identical to that of Experiment 1. 

Experiment 6: Effects of stimulating medullary raphe MC-Rs via intraparenchymal 

MTII injection on energy expenditure in chronic decerebrate and gavage fed intact 

rats.  CD (n=4) and GF intact controls (n=5) rats received medullary raphe injections 

early in the light cycle. The design was identical to that of Experiment 3. TIBAT 

temperature was recorded every hour for 7 h. 

Statistical analysis. All energy expenditure parameters were analyzed by ANOVAs on 5 

or 6 h post-injection averages and followed by post-hoc t-tests and Tukey’s honestly 

significant difference test as appropriate. Twenty-four h food intake and body weight 

were analyzed by ANOVA followed by post-hoc t-tests and Tukey’s honestly significant 

difference test as appropriate.  All statistical analysis was conducted using Statistica 

software (Tulsa.  Oklahoma). Differences were considered significant at P<0.05. 
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RESULTS 

Experiment 1: Core temperature: Figure 2.1A shows that 4th i.c.v. injection of each dose 

of MTII increased TC for the 6 h post injection period in neurologically intact rats. A 

one-way ANOVA examining treatment effects on average post-injection TC values 

revealed a significant drug treatment effect [F(2, 20) = 8.12, P < 0.005]. Post hoc 

analysis revealed a significant effect of both MTII doses on TC (0.1 nmol; P < 0.05, 1.0 

nmol: P < 0.005). IBAT temperature: Figure 2.1D shows that MTII significantly 

increased TIBAT [F (2, 16) = 8.39, P < 0.005]. Both MTII doses significantly elevated TIBAT 

(0.1 nmol; P < 0.005, 1.0 nmol: P < 0.05). A short latency increase in all measurements 

apparent in the vehicle condition reflects the animals’ arousal associated with the 

injection procedure. For the 1.0 nmol MTII dose however, some rats did not show the 

transient elevation in TC or TIBAT giving rise to the impression that temperature 

parameters declined to this dose.  This initial response was however variable and not 

statistically significant. Heart rate:  Figure 2.1B shows that MTII dose-dependently 

increased HR, compared with saline control. A one-way ANOVA of average HR values 

for the 6 h period post-injection yielded a significant drug effect [F(2, 20) = 33.33, P < 

0.0001]; post hoc analysis showed a significant effect of both doses of MTII on HR (0.1 

nmol; P < 0.0005, 1.0 nmol: P < 0.0001). Spontaneous locomotor activity was not 

significantly increased by 4th i.c.v. MTII [F (2, 20) = 2.45, P = 0.11] (Figure 2.1C). Food 

intake and body weight: Both MTII doses significantly decreased 24 h food intake [F (2, 

20) = 17.28, P < 0.0001] and body weight [F (2, 20) = 17.75, P < 0.0001] (Figure 2.1E-

F).   

Experiment 2.  Peripheral delivery (i.p.) of the higher dose of MTII (1.0 nmol) was 

without effect on all of the measured energetic and food intake parameters (Figure 2.2).   
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Experiment 3:  A, TIBAT group:  Figure 2.3E is a reconstruction of the injection sites for 

the 8 animals tested. Microscopic analyses of the dye injection revealed that 7 rats had 

placements within the medullary raphe. Figure 2.3A shows that average TIBAT was 

significantly increased (P < 0.005) after 10 pmol MTII injection. Average SPA was also 

increased (P < 0.05) (Figure 2.3B). No significant changes were observed in 24 h food 

intake or 24 h body weight of these rats (Figure 2.3C-D). B, Core temperature and heart 

rate group:  Figure 2.4F reconstructs the injection sites of a second group of animals 

and reveals that 9 rats had medullary raphe placements. Figure 2.4A-E displays the 

physiological response of the 9 rats with confirmed medullary raphe placements and 

shows that MTII injection significantly increased TC and HR (P < 0.05 and P< 0.0001). 

These rats also showed a decrease in 24 h food intake following MTII, while SPA and 24 

h body weight did not change significantly. Comparison of the injection sites in Figures 

2.3E and 2.4F revealed that on average, the medullary raphe placements of the first 

group were caudal to those of the second group.  These placement differences may 

account for the between group differences in SPA and food intake responses. 

Experiment 4:  Figure 2.5A shows that MTII (1.0 nmol) produced a large and long 

duration elevation in TIBAT in CD rats.  Two-way ANOVA (neurological preparation and 

drug treatment as main variables) revealed a significant interaction of drug and 

neurological preparation [F (1,17) = 33.85, P < 0.0001].  Post hoc test showed that there 

was a significant effect of MTII on CD TIBAT (P≤ 0.0001), but surprisingly no effect on 

GF control rats (P = 0.212) (see Figure 2.7D).  The absence of an energy expenditure 

effect in GF intact rats contrasted with the potent energetic effects of MTII observed in 

the chow-fed intact rats of Experiment 1 and suggested that oral access to food in intact 

animals could be a relevant variable in the MTII driven sympathetic responses.  This 
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finding encouraged inclusions of a second dose of MTII (0.1 nmol) and the addition of 

an oral food access meal-fed control group that was in Experiment 5. 

Experiment 5:  For chronic decerebrate rats, 4th i.c.v. administration of MTII 

significantly increased TC, HR and SPA [TC: F (2,10) = 4.97; P < 0.05, HR: F (2, 10) = 

19.99; P < 0.0005, SPA: F (2, 10) = 5.81; P < 0.05] (Figure 2.5B-D).  In meal-fed control 

rats with oral access to liquid diet, MTII treatment also significantly increased TC and 

HR [TC: F (2,20) = 5.10; P < 0.05, F (2, 20) = 22.26; P< 0.0001] (Figure 2.7A-B).  

Consistent with the TIBAT results for GF intact rats in Experiment 4, there was no overall 

significant effect of MTII on TC or SPA in GF controls (Figure 2.7A, C). While TIBAT was 

increased under baseline conditions in GF rats as compared to intact chow fed controls, 

which could potentially contribute to lack of effect of MTII, the TC of GF and chow fed 

rats after vehicle treatment was not significantly different, yet MTII effect was still not 

present in GF rats pointing to other mechanisms behind the lack of effect then increased 

baseline temperature. Although significant tachycardia was noted in these MTII treated 

GF rats [GF: F (2, 20) = 11.16; P < 0.0005] it was attenuated compared to the CDs or the 

meal-fed oral access controls (Figure 2.7B). Twenty-four h body weight was significantly 

decreased in the meal-fed rats with oral food access [F (2, 20) = 5.3; P < 0.05] following 

MTII delivery. Interestingly, body weight was also reduced by MTII in GF controls, [F 

(2, 20) = 6.3; P < 0.05] (Figure 2.8).  Post hoc tests revealed that this effect is produced 

by the highest dose of MTII in both groups.  CD body weight declined after both MTII 

doses; however that effect was not statistically significant.  All groups had identical 

energy intake, indicating that the MTII effect on energy expenditure provided the basis 

for the observed suppression in body weight. It should be noted that the values for Tc, 
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TIBAT and HR measured at baseline were the same for decerebrate and intact control 

rats.   

Experiment 6:  Reconstruction of the parenchymal placements revealed that the 

injection sites in 3 rats were located within the medullary raphe (Figure 2.6B).  The 

average TIBAT in CD rats with the confirmed medullary raphe placements was 

significantly increased (P < 0.05) after 10 pmol MTII injection (Figure 2.6A).  No MTII-

driven TIBAT effect was observed in GF controls (Figure 2.7E). 

DISCUSSION 

 

We show that MC-R-bearing caudal brainstem neurons and their local caudal 

brainstem projections to sympathetic effectors play a critical and previously 

unrecognized role in the central melanocortin system’s contribution to energy 

expenditure control. Long lasting and robust increases in thermogenesis and 

cardiovascular activity were observed after hindbrain ventricular delivery of MTII to 

neurologically intact control and to CD rats. Further support for the caudal brainstem 

MC-R site of action comes from the parenchymal injection results where IBAT 

thermogenesis and tachycardia were triggered by picomolar MTII stimulation of the 

medullary raphe MC4-Rs. These data are the first to demonstrate a functional effect of a 

ventricle sub-threshold MC-R agonist dose delivered to the MC4-R bearing neurons of 

the medullary raphe (Mountjoy et al., 1994; Kishi et al., 2003). The hyperthermia, IBAT 

thermogenesis and tachycardia observed in CD rats following 4th i.c.v. and parenchymal 

MTII injections supports the hypothesis that hindbrain MC-R stimulation engages 

endemic circuits that link autonomic outflows to thermogenic and cardiac effectors in 

the absence of forebrain processing or forebrain-caudal brainstem communication.   
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      The qualitative profile of results for CD and for chow-fed control rats was similar; 

increases in energetic and cardiovascular parameters were observed in both groups after 

hindbrain MC-R stimulation. Quantitatively, however, the magnitudes of the mean 

energetic responses were two- (HR) to four-fold (temperature) greater in CD rats than 

in intact rats after 4th i.c.v. MTII application (Table 1). Quantitative differences between 

neurological groups were also observed with application of 10 pmol of MTII to the 

medullary raphe. Here, intact chow-fed rats increased IBAT temperature by ~0.5oC on 

average. By contrast, the same dose of MTII increased IBAT temperature of a CD rat by 

~3.0oC (Figure 2.3A and 2.6A). There are several interpretations for these quantitative 

differences between decerebrate and intact rats. Endogenous agonist for the caudal 

brainstem MC-Rs originates from two anatomically disparate sources; one in the 

hypothalamic arcuate (ARC) nucleus (Knigge et al., 1981) and the other in the hindbrain 

NTS commissural nucleus (Joseph et al., 1983). Transection of the descending 

projections from ARC POMC neurons, could eliminate a significant percentage of the 

endogenous agonist for a given caudal brainstem nucleus. This could result in a 

compensatory increase in expression of MC-Rs in hindbrain nuclei. Upregulation of 

MC-Rs in response to decreased agonist availability has been reported (Harrold et al., 

1999). While projections from both ARC POMC and NTS POMC neurons terminate in 

the caudal brainstem, it is not clear what the source[s] of endogenous agonist is for each 

of the individual MC-R expressing hindbrain nuclei. For each nucleus it is possible that 

the agonist is supplied entirely by NTS POMC neurons, ARC POMC neurons or some 

combination of the two (Jacobowitz and O'Donohue, 1978). Sim et al (Sim, 1994) 

showed that ARC POMC projections innervate midline caudal brainstem nuclei whereas 

lateral caudal brainstem regions receive projections from NTS POMC neurons; in some 
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cases, structures received terminal fields from both sources. In collaboration with H.R. 

Berthoud we have begun to examine tissues from decerebrated rats to quantify the 

percentage of alpha-melanocyte stimulating hormone (MSH) fibers that originate in 

ARC POMC neurons and project to various hindbrain MC-R bearing nuclei. For the NTS, 

we recently showed that ~70% of the MSH fibers terminating in all subregions of the 

NTS, originate in ARC POMC neurons (Berthoud HR, 2008).  Additional work is needed 

to determine the source of MSH ligand for RPa, RVLM and other relevant hindbrain 

nuclei and whether eliminating a major source of endogenous ligand (ARC POMC 

neurons) increases exogenous agonist binding and receptor expression in caudal 

brainstem nuclei.   

 

The activation of MC-Rs is also influenced by the endogenous antagonist – 

agouti-related protein (AgRP) – that arises in ARC neurons (Ollmann et al., 1997).  It is 

generally thought that antagonist-containing neurons project most heavily to forebrain 

areas (Bagnol et al., 1999; Haskell-Luevano et al., 1999). However, hindbrain 

projections have also been reported (Broberger et al., 1998). The transection of 

descending AgRP projections may provide another explanation for the greater response 

to MTII observed in CD. The elimination of AgRP projections to hindbrain neurons that 

also receive MSH fibers (regardless of their origin) may result in greater MC-R 

activation and potentially contribute to the observed effects. A different type of 

interpretation for the greater response magnitude in CD rats relates to the role of 

forebrain-hypothalamic nuclei in mediating fine-grained response control. For example, 

heart rate is increased in response to skin cooling, and contributes to the dispersion of 

the heat produced by sympathetic activation of brown adipose tissue. For intact rats, 

there is a significant correlation between heart rate and ambient temperature over the 4o 
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to 23o C range.  By contrast, for decerebrate rats, the heart rate response to an 

intermediate cold temperature is as robust as that observed with the coldest 

temperature, indicating a loss of fine-grained control in the absence of connections with 

the forebrain (Grill et al., 2005). A similar explanation for the greater MTII-stimulated 

responses of the CD rats could apply in the current data.   

  

The responses of gavage-fed intact rats differed qualitatively from those of chow-

fed intact rats and oral-fed rats (Table 1). The variability of these responses was great, 

however, yielding trends but no significant differences between the intact rat subgroups. 

Nonetheless, the pattern of these between-group differences is clear, with lesser 

response magnitude for the gavage-fed intact group than for the two intact groups with 

oral access to food. This outcome suggests a role for oral stimulation in the observed 

responses. Saito et al (Saito et al., 1989) demonstrated that oropharyngeal stimulation 

contributes to IBAT thermogenesis. Gavage feeding reduced oropharyngeal stimulation 

and decreased IBAT norepinephrine turnover relative to that seen in oral-fed rats. Our 

studies are consistent with the view that gavage feeding decreases the magnitude of 

sympathetically mediated energy expenditure output. Our data place components of the 

melanocortin system within the SNS output circuitry that is altered by oral exposure to 

food. Two provisos are worth noting. First, CD rats responded robustly to MC-R agonist, 

yet they were gavage fed. This suggests that the inhibitory effect of bypassing the mouth 

on MTII-driven energetic responses is forebrain mediated. Second, even though the 

energetic response magnitude of gavage-fed intact rats was attenuated, the animals still 

exhibited significant weight loss after the drug treatment (Figure 2.8). This result 

underscores the contribution of MC-R induced energy expenditure to body weight 
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control, as the food intake of these rats was matched to that in the vehicle condition 

such that weight loss could not be attributed to the anorectic effect of the treatment. 

 

 The energetic effects obtained from selective stimulation of the MC4-R-bearing 

neurons of the medullary raphe and with 4th ventricular agonist delivery, highlight the 

role of hindbrain MC-R-bearing neurons in the control of sympathetic, thermic and 

cardiac responses. That said, there is also a role for hypothalamic-forebrain processing 

in melanocortin mediated energetic effects. Many reciprocal neural projections exist 

between hypothalamic nuclei (especially PVN, ARC and the lateral hypothalamic area) 

and hindbrain nuclei. In fact, the literature on sympathetic outflows and energy 

expenditure control emphasizes a role for these hypothalamic nuclei [for review see 

(Richard, 2007)]. The neural circuitry underlying the expression of thermic and cardiac 

responses to hindbrain MC-R stimulation may well involve descending hypothalamic 

projections. We have already discussed that ARC POMC neurons project to a variety of 

sympathetic pre-motor targets in the hindbrain and therefore it is appropriate to 

consider that the application of MC-R agonist to MC4-R hindbrain neurons mimics, at 

least in part, the effects of endogenous ligand input from ARC. In addition, non-

melanocortinergic projections from hypothalamic nuclei may also play a role in the 

control of MC-R-driven energetic response. MC-R-bearing PVN neurons receive ligand 

from ARC and project to the caudal brainstem ((Horvath and Diano, 2004)). At the 

same time, the results from the decerebrated rats make clear that forebrain processing 

and forebrain-brainstem communication are not required for caudal brainstem 

stimulated responses and that downstream circuits endemic to the caudal brainstem 

mediate the observed responses.  The current data are consistent with those from 

previous studies from our lab (Williams et al., 2003) that show that the increase in UCP-
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1 gene expression driven by 4th ventricular MTII can be mediated by circuitry intrinsic to 

the caudal brainstem and spinal cord.  

 

The increased energetic response to 4th ventricular application of MTII in chow-fed 

intact rats reported here is consistent with results from an earlier report by Zheng et al 

(Zheng et al., 2005). However, responses in that study were of lesser magnitude and 

duration than those observed here with MTII doses within a similar range. In the Zheng 

et al study, rats had access to food during energetic response recordings and recordings 

took place during the dark/active phase. In our study, rats were tested in the light phase 

in the absence of food. These paradigmatic differences appear to explain the observed 

differences in responses. We observed that rats stimulated with MTII in the light phase 

without access to food have greater response magnitude and duration than when the 

same rats are examined in the dark phase with access to food (unpublished 

observations).    

 

We showed that hindbrain MC-Rs contribute to the energy expenditure observed 

with central melanocortinergic stimulation. This result would seem consistent with the 

recent perspective of Balthasar et al (Balthasar et al., 2005). These investigators 

selectively expressed MC4-Rs in neurons of the PVN and amygdala in mice otherwise 

lacking the receptor. They found that this selective MC4-R expression reversed the 

hyperphagia seen in the MC4-R knockout mouse but did not increase the reduced 

energy expenditure profile of the knockout. Balthasar et al (Balthasar et al., 2005) 

suggest that the energy intake and energy expenditure effects of the central 

melanocortin system are controlled by anatomically distinct portions of the system. 

While we would agree that the melanocortin contribution to energy balance control is 
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distributed across different brain regions, our data and those of others [e.g. see (Grill 

and Kaplan, 2002; Taylor et al., 2007)] do not support the view that feeding function is 

uniquely associated with basal forebrain elements of the melanocortin system and that 

energetic function is controlled uniquely by more caudal elements of the system. In our 

view, stimulation of MC-Rs in a variety of central sites, including the hypothalamus and 

caudal brainstem, reduces feeding and increases energetic response. For example, the 

present findings show that in addition to the energetic effects of 4th ventricular MC-R 

agonist delivery, food intake was also significantly reduced. Previous work shows that 

hindbrain parenchymal application of pmol doses of MTII or the synthetic MC3/4R 

antagonist SHU-9119 results in a respective decrease or increase in food intake 

(Williams et al., 2000a). The idea that stimulation of anatomically disparate receptors 

can drive the same functional effect is however, not new. We and others have already 

shown that the feeding effect of central injection of leptin, urocortin, ghrelin, 

neuropeptideY, fenfluramine and norepinephrine is observed with basal forebrain, as 

well caudal brainstem ligand application (Grill and Kaplan, 2002; Faulconbridge et al., 

2005; Taylor et al., 2007). It seems then that such a similarity in the functional output 

resulting from stimulation of anatomically distinct sites represents a degree of 

redundancy in the melanocortin system.  While this suggests common outputs, it is 

likely that there are differences in the pattern of input received by MC-R bearing nuclei 

in different regions of the brain. Both energy intake and expenditure change in response 

to long term exposure to calorie dense diets (Bachman et al., 2002; Landsberg, 2006) 

and also in response to pathogens. The melanocortin system plays a role in mediating 

the energetic effects triggered by these diverse physiological conditions (Butler et al., 

2001; Voss-Andreae et al., 2007). It is possible that responses resulting from these 

distinct challenges are processed at different levels of the brain, making the receptors 
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divergent based on input, but still producing the same functional output – decrease in 

intake and increase in expenditure.   

 

 MC-Rs are expressed on peripheral organs, like the heart (Mountjoy et al., 2003) 

and adrenal medulla (Mountjoy and Wild, 1998), implicated in metabolic and 

cardiovascular activity. Peripheral application of high doses of MC-4R agonist increases 

heart rate, blood pressure, IBAT temperature, as well as locomotor activity (Nordheim 

et al., 2006). Therefore, some part of the energetic effects obtained after central 

application of MC-R agonists to the brain may arise from an action on peripheral 

receptors. To evaluate this possibility we applied the highest dose of the agonist used 

centrally to the periphery and showed no effect on any measured energy expenditure 

parameter. While this result does not eliminate the potential role of the peripheral MC-

Rs in energy expenditure, it confirms that energetic effects observed in our study are 

induced by stimulation of central and not peripheral receptors. 

 

We showed that hindbrain targeted MC-R stimulation and medullary raphe MC4-R 

agonist injection increases energetic responses including hyperthermia, IBAT 

thermogenesis and tachycardia. The source of endogenous agonist for caudal brainstem 

MC-Rs arises from both local (NTS) and forebrain (ARC) sources.  It is still unclear to 

what extent each nucleus contributes to the endogenous agonist supply of the specific 

MC-R bearing nuclei of the caudal brainstem mediated energetic responses under 

normal conditions. Therefore, the neural circuitry underlying the expression of thermic 

and cardiac responses to hindbrain MC-R stimulation may well involve descending 

hypothalamic projections. That the same pattern of response was observed in 

decerebrate and intact rats shows however, that the output circuitry responsible for the 
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observed effects lies within the hindbrain and does not require forebrain processing or 

forebrain-caudal brainstem communication. The results of this study suggest future 

investigations designed to determine the range of factors and environmental conditions 

(e.g. diet, pathogens, cold exposure) that engage the previously underappreciated caudal 

brainstem portion of melanocortin system as it participates in the control of energy 

expenditure.   
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Figure 2.1: Effect of caudal brainstem melanocortin receptor stimulation with 4th 

ventricular MTII on (A) core temperature, (B) heart rate, (C) spontaneous activity and 

interscapular brown adipose tissue temperature (TIBAT) (D) in chow fed neurologically intact rats. 
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Line graphs represent across-rat average parameter measurements through the recording period. 

The bracketed time period on the line graph x-axis indicates the periods used in the histograms. 

The histograms next to line graphs provide 6 h or 5 h (TIBAT) post-injection averages + SEM for 

each parameter at each dose. Effect of 4th ventricular MTII injection on 24 h food intake (E) and 

24 h change in body weigh (F) in chow fed intact rats. Food was made available to animals 8 h 

after injections and through the 12 h period of dark cycle. Histograms represent means + SEM. 

*P < 0.05, **P < 0.005, ***P < 0.0005.  
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Figure 2.2: Effect of peripheral (i.p.) MTII treatment on (A) core temperature, (B) heart 

rate, (C) spontaneous activity, (D) 24 h food intake and (E) 24 h change in body weigh in chow 

fed intact rats. Line graphs represent across-rat average parameter measurements through the 8 

h recording period. The bracketed time period on the line graph x-axis indicates the periods used 

in the histograms. Histograms represent means + SEM.  
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Figure 2.3: Effect of stimulation of medullary raphe MC4-Rs via parenchymal 

injection of 10 pmol MTII on (A) interscapular brown adipose tissue temperature (TIBAT), (B) 

spontaneous activity, (C) 24 h food intake and (D) change in body weight. Line graphs represent 

across-rat average parameter measurements through the 8 h recording period. The bracketed 

time period on the line graph x-axis indicates the periods used in the histograms. Histograms 

represent means + SEM. *P < 0.05, **P < 0.005. (E) Reconstruction of injection sites based on 

microscopic analysis of dye injection at the same volume (100 nL) as the melanocortin agonist.  

Microscopic analysis revealed that 7 of 8 rats had placements within the medullary raphe (raphe 

pallidus, raphe obscurus, raphe magnus). Solid line ovals indicate instances where the dye 

injection placement was within the medullary raphe (positive placements). Dotted line circles 

represent negative placements (injection sites that were judged to be outside of medullary raphe). 

Placements shown were between -10.52 and -11.60 mm from bregma. (Paxinos, 1998) 
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Figure 2.4: Effect of 10 pmol MTII stimulation of medullary raphe MC4-Rs on (A) 

core temperature, (B) heart rate, (C) spontaneous activity, (D) 24 h food intake and (E) 24 h 

change in body weigh. Line graphs represent across-rat average parameter measurements 
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through the 8 h recording period. The bracketed time period on the line graph x-axis indicates 

the periods used in the histograms. Histograms in a-c represent 6 h means + SEM. *P < 0.05, **P 

< 0.005, ***P < 0.0005. (F) Reconstruction of injection sites based on microscopic analysis of 

dye injection at the same volume (100 nL) as the melanocortin agonist.  Microscopic analysis 

revealed that 9 of 12 rats had placements within the medullary raphe. Solid line ovals mark the 

area of the dye injection for each rat with confirmed medullary raphe placement. Dotted line 

circles represent injection sites that were judged to be outside of medullary raphe. Placements 

shown were between -10.30 and -11.30 mm from Bregma. (Paxinos, 1998) 
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Figure 2.5: Effect of 4th ventricle MTII injection in chronic decerebrate rats on (A) 

interscapular brown adipose tissue temperature (TIBAT), (B) core temperature, (C) heart rate and 
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(D) spontaneous activity in chronic decerebrate rats. Line graphs represent across-rat average 

parameter measurements through the recording period. The bracketed time period on the line 

graph x-axis indicates the periods used in the histograms. Histograms represent 6 h or 5 h (TIBAT) 

means + SEM. *P < 0.05, **P < 0.005. 
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Figure 2.6: Effect of medullary raphe MC4-R stimulation with 10 pmol MTII in 

chronic decerebrate rats on (A) interscapular brown adipose tissue temperature (TIBAT). Line 

graph represents across-rat average parameter measurements through the 8 h recording period. 

The bracketed time period on the line graph x-axis indicates the periods used in the histograms. 

Histogram represents 6 h means + SEM. *P < 0.05. (B) Reconstruction of injection sites based 

on microscopic analysis of dye injection at the same volume (100 nL) as the melanocortin agonist.  

Microscopic analysis revealed that 3 of 4 rats had placements within the medullary raphe. The 

dye injection placement for each animal is represented by solid line ovals. Dotted line circles 

represent negative placements. Placements shown were between -10.52 and -11.30 mm from 

Bregma. (Paxinos, 1998) 
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Figure 2.7: Effect of caudal brainstem MC-R stimulation with 4th i.c.v. delivered 

MTII in gavage-fed and meal-fed neurologically intact control rats on (A) core 

temperature, (B) heart rate (C) spontaneous activity and (D) interscapular brown adipose tissue 

temperature (TIBAT). Effect of medullary raphe MTII delivery to gavage-fed rats on TIBAT (E). 

Histograms represent means + SEM. *P < 0.05, **P < 0.005, ***P < 0.0005. 
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Figure 2.8: Effect of 4th i.c.v. MTII treatment on 24 h body weight change of gavage-

fed and meal-fed neurologically intact rats. Note: all animals had identical food intake 

(either delivered by gavage or consumed in entirety during a meal), therefore all noted changes in 

body weight are a result of treatment induced changes in energy expenditure. Histograms 

represent means + SEM. *P < 0.05.  
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CHAPTER 3  

HYPOTHALAMIC AND HINDBRAIN MELANOCORTIN RECEPTORS 

CONTRIBUTE TO THE FEEDING, THERMOGENIC AND 

CARDIOVASCULAR ACTION OF MELANOCORTINS2 

 

 

ABSTRACT 

Forebrain Forebrain ventricular delivery of melanocortin receptor (MC3/4R) agonist 

(MTII) increases energy expenditure (EE) and decreases food intake (FI). As forebrain 

ventricular delivery provides ligand to various anatomically distributed MC3/4R-

bearing nuclei it is unclear which of the receptor subpopulations contributes to the 

feeding suppression and to the sympathetic-thermogenic effects observed. The literature 

indicates that re-expression of MC4R in the paraventricular nucleus (PVN) affects the 

feeding but not the energetic phenotype of the MC4R knockout; suggesting that 

divergent MC4R populations mediate EE (hindbrain) and FI (hypothalamus) effects of 

stimulation. Not consistent with this view are data indicating that PVN sympathetic pre-

motor neurons express MC4Rs and that feeding effects are induced from hindbrain 

MC4R sites. Therefore we hypothesize an opposing perspective: that stimulation of 

anatomically diverse MC3/4R-bearing nuclei triggers energetic as well as feeding effects.  

To test this hypothesis, ventricle subthreshold doses of MTII (5 and 10pmol) were 

applied in separate experiments to six hindbrain and hypothalamic sites; core 

temperature (Tc), heart rate (HR), spontaneous activity (SPA) and FI were measured in 

                                                 
2
 These results were reported at the 2008 meeting of Society for Ingestive Behavior, in Paris, France. This 

work was supported by NIH grants DK-21397 and NRSA NS-059254. 
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behaving rats. Nucleus tractus solitarius and PVN stimulation increased Tc, HR, and 

SPA and decreased FI. Rostral ventrolateral medulla, parabrachial nucleus and 

retrochiasmatic area stimulation increased Tc, HR, but not SPA, and decreased FI. The 

response profile differed to some extent for each nucleus tested, suggesting differential 

output circuitries for the measured parameters. Data are consistent with the view that 

energetic and feeding responses are not controlled by regionally divergent MC3/4Rs and 

can be elicited from multiple, anatomically distributed MC3/4R populations. 

 

INTRODUCTION 

 

Humans with melanocortin receptor-4 receptor (MC4R) mutation are 

hyperphagic and obese (Yeo et al., 1998; Ma et al., 2004). They also exhibit lower energy 

expenditure (Cai et al., 2006) and decreased cardiovascular parameters (heart rate and 

blood pressure)(Greenfield et al., 2009). MC4R knockout mice show a similar energy 

balance profile.  These results, and others, support the view that the central 

melanocortin system is an important element of the CNS circuits controlling food intake 

and energy expenditure.  Ventricular pharmacologic stimulation of central melanocortin 

receptors (MCRs; MC3 and MC4Rs) increases energy expenditure and cardiovascular 

parameters, and decreases food intake(Grill et al., 1998; Murphy et al., 2000; Skibicka 

and Grill, 2008a). It is unclear however which of the anatomically distributed MCR 

subpopulations contribute to the food intake and to the sympathetic-energetic effects 

observed.  

 

Despite the broad anatomic distribution of CNS MCRs, especially MC4R, MCR-

expressing neurons in the hypothalamus are viewed as the principal site of action for the 
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food intake as well as for the energy expenditure effects of melanocortin ligand 

stimulation. This view, especially pertaining to food intake, is supported by data 

indicating that 3rd ventricular injections of MC3/4 R agonist (MTII) as well as intra-

parenchymal injections into the paraventricular hypothalamic nucleus (PVN) reduces 

food intake (Murphy et al., 2000; Wirth et al., 2001). Additional support for this 

anatomical perspective comes from the results showing that re-expression of MC4Rs in 

the PVN (and in some other amygdala and hypothalamic neurons) in obese MC4R 

knockout mice reverses their hyperphagia to a level of food intake seen in wild-type 

control mice(Balthasar et al., 2005).  

 

The obesity of these selective MC4R-expressing mice is not, however, fully 

reversed as their energy expenditure (measured by oxygen consumption) is not affected 

by the treatment, in contrast to their feeding. This result is surprising since it is clear 

that MC4R expressing parvocellular PVN neurons are sympathetic pre-motor neurons 

whose output contributes to the control of brown adipose tissue (BAT) thermogenesis 

(Cano et al., 2003b; Voss-Andreae et al., 2007; Song et al., 2008).  This contrasting 

pattern of energy balance effects led to a new hypothesis about the control of energy 

balance function exerted by anatomically distinct MCRs – that hypothalamic/PVN 

MC4R expressing neurons contribute to control of food intake and MC4R expressing 

sites elsewhere, likely in the caudal brainstem, contribute to the energy expenditure 

effects of melanocortins.  

 

Consistent with this organizational perspective several caudal brainstem nuclei 

contain sympathetic pre-motor neurons that express MC4R and contribute to the 

control of BAT thermogenesis including the raphe pallidus, rostral ventrolateral medulla 
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(RVLM), nucleus of the solitary tract (NTS) and the pontine parabrachial nucleus (PBN) 

(Voss-Andreae et al., 2007).  Hindbrain ventricular or raphe pallidus injection of the 

MC3/4R agonist MTII increases energy expenditure (elevating core and BAT 

temperature) and heart rate (Skibicka and Grill, 2008a) (this combination appears to 

facilitate heat distribution and increases in uncoupling protein-1 expression in BAT 

tissue (Williams et al., 2003). While these caudal brainstem MCR-driven energetic 

effects are consistent with the idea of hypothalamic-caudal brainstem divergence of 

function for feeding versus energy expenditure other published findings are not.  

Application of  picomolar doses of MC3/4R agonist (MTII) and antagonist (SHU-9119) 

to the NTS results respectively in robust food intake inhibition or hyperphagia (Williams 

et al., 2000a; Zheng et al., 2005; Li et al., 2007)); low-dose agonist stimulation of raphe 

pallidus inhibits feeding (Skibicka and Grill, 2008a). These findings are inconsistent 

with the notion of that the feeding effects of CNS MCR stimulation are localized to 

hypothalamic MCR stimulation. Rather, these results appear to indicate that the energy 

balance effects of melanocortins are anatomically distributed and not regionally 

segregated.  

 

To better distinguish between the applicability of these two competing views of 

the relationship between MCR location and the control of energy intake and 

sympathetic-energy expenditure responses, investigation of responses obtained by 

stimulating a variety of individual MC4R expressing nuclei at the level of the 

hypothalamus and the caudal brainstem are required.  Here we pursue such studies.  

Using ventricle subthreshold, picomolar doses of the MC3/4R agonist MTII experiments 

assessed the energy balance response profiles observed with direct parenchymal 

stimulation of six different MC4R bearing nuclei, two within hypothalamus [PVN, 
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Retrochiasmatic area (RCh) and anterior hypothalamic area] and three within the 

caudal brainstem (NTS, RVLM and PBN). For each nucleus examined MCR expression 

and connections to sympathetic outflow have been affirmed. The three caudal brainstem 

sites are anatomically segregated such that stimulation of one would not indirectly 

stimulate the other.  Given that two hypothalamic sites are relatively close to each other 

a third site, the anterior hypothalamic area (AHA), was included as an anatomical 

control for the spread of injected ligand.  

 

Stimulation of all but one of the sites tested led to an increase in core 

temperature and heart rate, a decrease in food intake and body weight, and in some 

cases increases in activity. These results are consistent with the hypothesis that energy 

balance effects of melanocortins are distributed across many anatomically distinct sites 

within the CNS.  

 

METHODS: 

Subjects 

Male Sprague Dawley rats (Charles River Laboratories, Wilmington, MA), weighing 

300–400 g at surgery and housed individually in plastic bins maintained on a 12-h light, 

12-h dark cycle (0800 h lights on), participated in the four experiments described below. 

Pelleted food (Purina 5001; St. Louis, MO) and water were available ad libitum unless 

otherwise noted. All procedures conformed to the institutional standards of animal care 

and use (University of Pennsylvania).  
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Surgery 

Rats were anesthetized with ketamine (90 mg/kg), xylazine (2.7 mg/kg), and 

acepromazine (0.64 mg/kg) delivered im.  

Cannula implantation. 

All rats in received a guide cannula (22 gauge; Plastics One, Inc., Roanoke, VA) with its 

tip stereotaxically positioned 1.0 (AHA) or 2.0 mm above the target parenchymal site.  

Following coordinates were used: 1) NTS: 0.7mm from the midline, on the occipital 

suture, and 6.9mm ventral to the skull, with injector aimed  8.9mm ventral from skull. 

2) RVLM: 2mm from the midline, 1.8mm rostral to occipital suture, and -7.9mm ventral 

to the skull, with injector aimed 10.9mm ventral to skull. 3) PBN: 2.0mm lateral to 

midline, 9.5-mm posterior to bregma, and 4.5-mm ventral to the dura, with injector 

aimed 6.5-mm ventral to dura. 4) PVN: 0.5mm lateral to midline, 1.8-mm posterior to 

bregma, and 5.7-mm ventral to the dura, with injector aimed 7.7-mm ventral to dura 5) 

AHA: 0.5mm lateral to midline, 1.8-mm posterior to bregma, and 7.7-mm ventral to the 

dura, with injector aimed 8.7-mm ventral to dura 6) RCh: 0.5mm lateral to midline, 1.8-

mm posterior to bregma, and 7.7-mm ventral to the dura, with injector aimed 9.7-mm 

ventral to dura. Cannulas were attached to the skull with dental acrylic and jeweler’s 

screws, and closed with an obturator. Cannula placement was verified histologically after 

the experiment by examining the anatomical placement of an injection of pontamine sky 

blue (100 nl volume matched drug delivery in the experiments) made at sacrifice. Only 

rats whose dye injection site was found within the intended parenchymal site were 

included in the physiological data analysis. For the NTS group an additional functional 

verification was applied. The placement was assessed 7 days after the surgery by 

measurement of the sympathoadrenal-mediated glycemic response to an injection of 5-
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thio-D-glucose [21 µg in 100nl artificial cerebral spinal fluid (aCSF)] (Ritter et al., 1981). 

A post-injection elevation in baseline plasma glucose level of at least 100% was required 

for subject inclusion using this verification criterion. 

Telemetric transponder surgery. 

Under anesthesia telemetric transponders (HRC 4000 VitalView; Mini 

Mitter/Respironics, Bend, OR) for recording core temperature (TC), heart rate (HR), and 

spontaneous physical activity (SPA) were inserted into the abdominal cavity, with the 

leads positioned subcutaneously and secured to the chest muscles on either side of the 

heart with sutures as described in (Skibicka and Grill, 2008a). 

Experimental procedures. 

Habituation training. 

Before the start of experimental testing, rats were habituated to the handling and 

injection procedures to be used during formal testing.  

Testing days. 

All rats received vehicle injections (100 nl aCSF) counterbalanced with one (RCh, AHA; 

10pmol MTII) or two doses (NTS, RVLM, PBN, PVN; 5 and 10 pmol MTII) of MTII. 

Core temperature, heart rate and spontaneous activity were recorded telemetrically for 

1h before injections and for the 8h following injections; the frequency of measurement 

was every 5 min (TC, SPA) or 1 min (HR). Food was removed just prior to injection time 

(early in the light cycle, between 0930 and 1000 h) and returned 8 h later, late in the 

light phase. Thereby, food was not available during the period of energetic-

cardiovascular response measurement. Food intake and body weight measurements 

were performed 24 h after the injection of drug. Given this design, all noted differences 
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in food intake reflect longer latency effects of MTII (from 8–24 h after injection). For ad 

libitum-feeding rats, food was always available during the dark cycle. A minimum of a 

48 h period intervened between experimental testing.  

 

Statistical analysis: 

Core temperature, HR and SPA were analyzed by ANOVA on post-injection 6 h average 

values of each parameter and followed by student’s t-test or Tukey test as appropriate. 

Twenty four hour food intake and body weight were analyzed by ANOVA and followed 

by t-test or Tukey test as appropriate. 

 

RESULTS 

 

NTS: Microscopic assessment of the brains of rats in this group indicated that center of 

the dye injection was located within the NTS at the level of 4th ventricle; dye also 

reached the DMX in some cases. Figure 3.1 shows that MTII injection significantly 

increased Tc (5 pmol: P < 0.05; 10 pmol: P < 0.0005), HR (5 pmol: P < 0.0005; 10 pmol: 

P < 0.0005) as well as spontaneous activity (10 pmol: P < 0.05). Overnight food intake 

and body weight were reduced by 10 pmol MTII treatment (P < 0.0005, P < 0.0005 

respectively). The 5 pmol MTII dose did not yield significant changes in activity, food 

intake or body weight.  

 

RVLM: Microscopic analysis indicated that center of dye injection for these rats were 

located within the RVLM, with small amounts of ink in some cases reaching near the 

nucleus ambiguous. Figure 3.2 shows that MTII stimulation significantly increased Tc (5 

pmol: P < 0.05; 10 pmol: P < 0.05), HR (5 pmol: P < 0.05; 10 pmol: P < 0.0005).  No 
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significant spontaneous activity changes were noted after MTII application to the RVLM. 

Overnight food intake and body weight were reduced by 5 pmol MTII treatment (5 pmol: 

P < 0.005), (5 pmol: P < 0.05), respectively.  

 

PBN: The dye injection for this group was centered at the external lateral nucleus of 

PBN with only trace amounts of ink reaching other PBN nuclei. Figure 3.3 shows that 

MTII stimulation significantly increased Tc (5 pmol: P = 0.13; 10 pmol: P < 0.05), HR (5 

pmol: P < 0.0005; 10 pmol: P < 0.0005) but not spontaneous activity. Overnight food 

intake and body weight were reduced by the MTII treatment (5 pmol: P < 0.005; 10 

pmol: P < 0.005), (5 pmol: P =0.055; 10 pmol: P < 0.05), respectively.  

 

PVN: The dye injection for rats in this group was centered at the dorsal PVN. Figure 3.4 

shows that MTII stimulation significantly increased Tc (5 pmol: P=0.23; 10 pmol: P < 

0.05), HR (5 pmol: P < 0.0005; 10 pmol: P < 0.0005) and spontaneous activity (5 pmol: 

P < 0.0005; 10 pmol: P < 0.0005). Overnight food intake and body weight were reduced 

by the MTII treatment (5 pmol: P = 0.076; 10 pmol: P < 0.05), (5 pmol: P < 0.05; 10 

pmol: P < 0.05), respectively.  

 

RCh: Microscopic evaluation determined that in all rats in this group the dye injection 

was centered in the RCh.  Figure 3.5 shows that MTII stimulation significantly increased 

Tc (10 pmol: P < 0.01) and HR (10 pmol: P < 0.0005) but had no effect on spontaneous 

activity (10 pmol: P= 0.42). Overnight food intake and body weight were reduced by the 

MTII treatment (10 pmol: P < 0.01), (10 pmol: P < 0.005), respectively.  
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AHA: In order to show that the doses and volume chosen were selective for the target 

nuclei tested this site was selected as an anatomical control placement for the relative 

adjacency of PVN and RCh targets. MTII injected into the AHA did not produce any 

significant changes in any of the measured parameters (Figure 3.6).  The location of the 

AHA directly adjacent to the two hypothalamic targets that yielded a positive effect (just 

dorsally to RCh and just ventrally to PVN) and the lack of observed effects confirm that 

this target served as a negative control area. 

 

DISCUSSION 

Each of the sites targeted in these studies - PBN, NTS, RVLM, PVN and RCh - 

was selected for its expression of MC4Rs and its established connection to the 

sympathetic outflow (Mountjoy et al., 1994; Mountjoy and Wild, 1998; Voss-Andreae et 

al., 2007; Song et al., 2008).  This phenotypic profile provided the foundation for the 

hypothesis that direct melanocortinergic stimulation of these different hypothalamic 

and hindbrain neurons could drive energetic and cardiovascular responses. The results 

obtained are consistent with that hypothesis - direct administration of low, picomolar 

doses of MC3/4R agonist into these areas triggered hyperthermia, tachycardia and in 

some cases hyperactivity. Also noteworthy, stimulation of these sites induced anorexia 

and body weight loss. The lack of an effect on any measured parameter from 

melanocortinergic stimulation of the AHA site, intermediate between the PVN and RCh 

sites, supports the interpretation that the observed effects arise from ligand application  

to the targeted neurons. To our knowledge these are the first reports of the effects of 

direct melanocortinergic stimulation in PBN and RCh, and the first assessment of the 

energetic effects of PVN and RVLM MCR stimulation in a non-anesthetized rat. 

Collectively, the data presented indicate that the energy intake and the energy 
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expenditure effects of CNS MCR stimulation are mediated by an anatomically 

distributed network of MCR-bearing neurons.  These data are not consistent with an 

anatomical organization of MCR-stimulated energy balance response where the control 

of feeding and energetic-sympathetic responses is regionally segregated. 

 

Hyperthermia  

Stimulation of MCR expressing neurons in NTS, PBN, RCh and PVN increased 

core temperature significantly (RVLM and hyperthermia is discussed later in the 

paragraph). BAT thermogenesis driven by sympathetic outflows is a likely contributor  

to the observed hyperthermia as both MC4R expression and neural connections to BAT 

(retrograde viral tracing from BAT) are present in these nuclei (Voss-Andreae et al., 

2007). BAT temperature and UCP-1 gene expression was not measured in the current 

study, however, 4th ventricular delivery of MTII gives rise to a profile of response that 

includes hyperthermia, elevations in BAT temperature (Skibicka and Grill, 2008a) and 

in BAT UCP-1 mRNA (Williams et al., 2003; Song et al., 2008).  Direct MTII injection 

into the caudal raphe (10 pmol, lowest effective dose) increases BAT temperature 

(Skibicka and Grill, 2008a). Elevation in BAT temperature is also observed after PVN 

MTII stimulation (50 pmol, lowest effective dose) in the hamster (Song et al., 2008). 

This study is the first to show thermal effects of direct PBN melanocortin stimulation. A 

contribution of PBN to the neural control of thermoregulation has been suggested by the 

work of others.  Electrical stimulation of PBN produces BAT hyperthermia and increases 

oxygen consumption and bilateral PBN lesion disrupts the thermogenic response 

triggered by environmental cooling (Kobayashi and Osaka, 2003).  Lateral PBN neurons 

are activated by skin cooling and may influence BAT thermogenesis via their rostral 

projections to neurons of the hypothalamic medial preoptic area (Nakamura and 
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Morrison, 2007). The contribution of PBN output to BAT thermogenesis could also 

involve descending PBN projections (Hermann et al., 1997) to the raphe pallidus, a 

region critical for the neural control of BAT thermogenesis (Morrison, 2003). While not 

a focus of study for its effects on temperature, the connection between RCh neurons and 

BAT (viral-tracing studies) and the MC4R expression in these neurons (Oldfield et al., 

2002) suggests that the hyperthermia triggered by MCR stimulation of RCh involves 

BAT thermogenesis. Other mechanisms, may also contribute to the observed 

hyperthermia.  Neither skin temperature nor vascular resistance changes were 

measured here and as such vasoconstriction remains a possible mechanism contributing 

to the increasing core temperature response to central by melanocortinergic stimulation. 

In fact, studies employing neuroexcitation (chemical and electrical) of the RVLM show 

that thermoregulatory effects are associated with changes in sympathetic activity to 

vasculature (specifically tail vein) rather than to changes in BAT thermogenesis 

(Morrison, 1999; Ootsuka and McAllen, 2005). Here, we showed that MCR stimulation 

of RVLM increased core temperature. Therefore it will be important to consider whether 

a given effect of MCR stimulation– e.g., hyperthermia – can arise from distinct MC4R-

bearing nuclei via separable and distinct physiologic effectors.  We noted above that the 

hyperthermic effect observed for NTS stimulation may result from a BAT-mediated 

output, whereas the hyperthermic effect following RVLM stimulation may be mediated 

by SNS control of the vasculature. Consistent with this view is data showing that SNS 

output to certain tissues can be differential with potentially different output circuitries 

reaching different tissues (Morrison, 1999; Rathner and McAllen, 1999; Morrison, 

2001a, b).  
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Tachycardia 

MTII stimulation of both hindbrain and hypothalamic nuclei elicited a marked 

and long-lasting tachycardia.  The 5pmol MTII dose was effective in triggering this 

response from PVN, PBN, RVLM and NTS sites. The same dose was of varying 

effectiveness in inducing thermogenesis possibly implicating a higher sensitivity of the 

tachycardic response. All MTII stimulated tachycardic responsive areas in this study are 

directly or indirectly connected to autonomic outflow to the heart (Ter Horst et al., 1996; 

Ter Horst and Postema, 1997). A role for RVLM in cardiovascular control is well 

established; sympathoexitatory RVLM neurons project directly to intermediolateral cell 

column (IML) (Brown and Guyenet, 1985; Guyenet et al., 1996). MCR stimulated 

tachycardia from RVLM is likely mediated by the increased sympathetic nerve activity. 

Support for this interpretation comes from a study showing that RVLM injection of 

ACTH (with affinity for MC1-5R; greatest affinity for MC2R) in anesthetized rats 

increases sympathetic nerve activity, blood pressure and HR (Kawabe et al., 2006). The 

greater magnitude (2-3 fold larger) and duration (10 times longer; 20 min vs. 6h) of the 

HR effect in our study is likely attributable to the greater affinity of the agonist used 

(MTII vs. ACTH) and the behavioral state of rats. The tachycardic effect we report for 

NTS stimulation is not consistent with the direction of the effect – bradycardia – 

reported for ACTH injection into NTS at the area postrema level of anesthetized rats 

(Brown et al., 2006).  The same group of investigators however showed that injections of 

SHU 9119 (MC3/4R antagonist) also produces bradycardia in anesthetized rats, 

potentially blocking the effects of endogenously released melanocortin agonist. A role 

for the PBN in cardiovascular regulation is well established. Electrical or chemical 

stimulation of PBN elicits tachycardia via RVLM projections and subsequent SNS pre-

motor neuron activation (Mraovitch et al., 1982; Miura and Takayama, 1991; Agarwal 



 60 

and Calaresu, 1993).  Melanocortinergic stimulation of the PBN induced a small 

magnitude but statistically significant tachycardia; this is the first report of a direct 

effect on HR of melanocortins in PBN.  

 

Spontaneous locomotor activity 

Activity can be a contributing factor to the pathogenesis of obesity. Decreases in 

spontaneous activity are strongly correlated with obesity development and fat pad 

deposition (Castaneda et al., 2005). While little is known about the neural basis of this 

response, available evidence implicates many of the neuropeptides associated with food 

intake in the control of physical activity. Central (ventricular) MTII stimulation 

increases and antagonist (AgRP) application decreases spontaneous locomotor activity 

in rats (Hwa et al., 2001; Tang-Christensen et al., 2004; Koo et al., 2008). Our study 

suggests that MCR-bearing neurons of the PVN and PBN contribute to this effect of 

MTII, as low, picomolar doses of MTII in these nuclei increased physical activity.   

 

Food intake 

The NTS, RCh, PVN, and PBN are among the nuclei most prominently 

implicated in the neural control of food intake. The anorexia shown here after MTII 

delivery to NTS and PVN is consistent with the results of other publications (Giraudo et 

al., 1998; Williams et al., 2000a; Wirth et al., 2001). The anorexia induced by picomolar 

MTII dose delivered to PBN and RCh is the first such report. The size of the anorexic 

effect from these sites (~5g over the18 h measurement) is comparable to that observed 

after PVN and NTS stimulation. It is important to note that the experimental design 

employed here, however, only captures food intake effects of a longer term nature (6 h-

24 h post drug injections). It is entirely possible that the magnitude and temporal 
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pattern of the effect on food intake would differ across these sites if food had been 

available and intake measured during the initial post-injection period (1-6 h post drug).  

 

The energy balance effects reported here arise from the exogenous stimulation of 

a number of anatomically disparate sites and lead naturally to a consideration of the 

endogenous melanocortin system and its role in normal physiology. One important but 

unresolved question is the source of the endogenous agonist for the hypothalamic and 

hindbrain sites investigated. Two populations of POMC neurons, one in hypothalamic 

ARC and the other in hindbrain NTS, are the sources of endogenous α-melanocyte 

stimulating hormone (α-MSH). Some MCR-bearing nuclei are innervated by one of 

those populations but others might have dual innervation.  Until recently this problem 

has not been adequately explored. Berthoud et al. (Berthoud HR, 2008) showed that 

MC4R-bearing NTS neurons receive a majority (~70%) of their α-MSH input from the 

hypothalamic arcuate POMC population but some (~ 30%) originate locally from the 

NTS POMC neurons (Berthoud HR, 2008). This result is consistent with a suggestion by 

Palkowitz et al (Palkovits et al., 1987) that hypothalamic α-MSH fibers might provide a 

majority of the innervation for the midline hindbrain nuclei like NTS and medullary 

raphe whereas the more lateral MCR expressing hindbrain regions (e.g. RVLM) might 

receive a greater percentage of their innervation from NTS α-MSH fibers. The PVN and 

RCh receive projections from ARC POMC neurons (Joseph and Michael, 1988) but NTS 

α-MSH projections to these areas have not been extensively studied and cannot be ruled 

out (see (Sim, 1994; Sim and Joseph, 1994). The PBN receives input from the 

commissural NTS (Sim, 1994; Sim and Joseph, 1994) and from the ARC (Joseph and 

Michael, 1988) however more remains to be done in determining the neurochemical 

phenotype of the PBN-projecting ARC and NTS neurons. Given that ARC and NTS 
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POMC neurons might receive a different set of inputs, the MCR-bearing target nuclei 

that receive projections from both POMC sources would logically integrate a wider range 

of information.  

  

It remains to be determined how the melanocortinergic tone (i.e. activation of 

POMC neurons leading to α-MSH ligand release onto target nuclei) may be altered 

under specific environmental changes e.g. fasting, high-fat diet maintenance, cold 

challenge, infection etc.  One approach to addressing these questions would be to block 

endogenous melanocortin signaling in a given nucleus through the use of site-specific 

receptor antagonist or via viral knockdown of a given melanocortin receptor. Garza et al 

(Garza et al., 2008) used RNAi technology to show that MC4R signaling in PVN is 

necessary for the regulation of food intake and body weight regulation under unique 

circumstances (energy expenditure not measured).  The hyperphagia and obesity was 

observed only when rats were maintained on high-fat food; PVN MC4R knockdown rats 

maintained on chow were normophagic. The results suggest that the high-fat feeding 

alters endogenous melanocortinergic tone where normal MC4R function keeps high-fat 

induced hyperphagia in check.  

 

It will be useful to determine the neurochemical phenotype of the MTII-

stimulated neurons. Such detail could provide insight into the downstream pathways 

and help to better define the neurocircuitry mediating melanocortinergic effects. For 

example, in considering MCR function for NTS neurons it has become apparent that 

some MC4Rs are located presynaptically on vagal afferent terminals indicating that 

melanocortin signals are likely interacting with the vagal transmission to influence the 

excitability of NTS recipient neurons (Wan et al., 2008). This modulation could indicate 
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a potential mechanism for the anorexic effect of NTS MTII stimulation where vagal 

signals arising from e.g. gastric distention or CCK stimulation could be enhanced by 

MC4R activation leading to a more potent decrease of food intake than that induced by 

vagal activation alone (Wan et al., 2008). In the PVN, Mountjoy et al.(Mountjoy et al., 

1994) report that high concentrations of the MC4R mRNA are found in both the 

parvocellular and magnocellular neurons, indicating the potential of central (e.g. 

sympathetic) as well as neuroendocrine mediation of MC4R stimulation effects in this 

nucleus. PVN thyrotropin-releasing hormone (TRH) expressing neurons are densely 

innervated by melanocortin fibers and central intake, thermogenic and cardiovascular 

effects of TRH are similar to those of MC4R stimulation (Lechan and Fekete, 2006) 

making this neuropeptide a potential mediator of some of the observed effects of 

melanocortin signaling. Oxytocin is also expressed in the parvocellular PVN neurons 

that influence BAT function (Oldfield et al., 2002), however interaction of melanocortin 

with oxytocin has been mainly indicated at the magnocellular division of PVN 

(Caquineau et al., 2006), leaving mediation of effects by oxytocin expressing neurons 

unclear. In PBN MC4R are expressed on neurons that are activated (expression of c-fos 

mRNA) by lipopolysaccharide or lithium chloride treatment and potentially project from 

the external lateral PBN to the amygdala, relaying to the forebrain information of 

relevance to certain aspects of sickness behavior (Paues et al., 2006). 

 

 The current data are consistent with the hypothesis that different aspects 

of energy balance control can be elicited by melanocortin ligand stimulation of a single 

MCR-bearing nucleus. It remains to be determined, however, whether the same neurons 

within each nucleus relay signals pertaining to all relevant parameters, e.g., intake, 
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thermogenesis and tachycardia or whether different sub-populations of neurons relay 

information pertaining to each output parameter separately.  

 

Our results show that there is a certain degree of redundancy in the organization 

of the central melanocortin system, since the same responses can be obtained by 

stimulation of anatomically disparate MCR-expressing neurons. This idea of 

redundancy (Grill and Kaplan, 2002) is strengthened by the fact that rats with 

electrolytic PVN lesions show melanocortin-induced anorexia identical to that of 

controls (Dube et al., 2006) indicating that other MCR populations can be utilized when 

one is rendered dysfunctional. Although focal PVN MCR stimulation (as shown in the 

current data) induced energy balance effects it is not necessary for the physiological 

MCR output as shown in the PVN lesion result just noted.  Redundancy of function can 

have interesting implications for our understanding of the CNS control of energy 

balance. For example characterizing changes in MCR expression in one area of the brain 

is no longer sufficient for indicating a physiological change in behavior, given the 

presence of other brain regions that could still mediate the MCR effect with the end 

result of unaltered physiological outcome (Munzberg et al., 2004; Munzberg et al., 2005; 

Skibicka and Grill, 2009b).  Future studies should therefore benefit from extending 

their focus to a more distributed melanocortin system when evaluating control of energy 

balance. 
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Figure 3.1:  Effect of MTII stimulation of nucleus of the solitary tract (NTS) MCRs 

on (A) core temperature (TC), (B) heart rate (HR), (C) spontaneous activity in rats. Line graphs 
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represent across-rat average parameter measurements through the recording period. The 

bracketed time period on the line graph x-axis indicates the periods used in the adjacent 

histograms, which provide 6 h post-injection averages + SEM for each parameter at each dose. 

Effect of NTS MTII injection on 24 h food intake (D) and 24 h change in body weigh (E) in awake, 

non-anesthetized rats. Food was made available to animals 6 h after injections and through the 

12 h period of the dark cycle. Histograms represent means + SEM. *P < 0.05, **P < 0.005, ***P < 

0.0005. (F) Representative NTS injection site (indicated by the arrow). 4V, fourth ventricle; Sol, 

nucleus of the solitary tract; SolIM, intermedial nucleus of the solitary tract. All following figures 

presented in this chapter will have a similar format; the principal variable is the site of 

parenchymal site of injection of MTII. 
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Figure 3.2:  Effect of MTII stimulation of rostral ventrolateral medulla (RVLM) 

MCRs on TC (A), HR (B), spontaneous activity (C), 24-h food intake (D), and 24-h change in 

body weight (E). (F) Representative RVLM injection site (indicated by the arrow). 4V, fourth 

ventricle; SolIM, intermedial nucleus of the solitary tract; Amb, nucleus ambiguus. 
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Figure 3.3:  Effect of MTII stimulation of parabrachial nucleus (PBN) MCRs on TC 

(A), HR (B), spontaneous activity (C), 24-h food intake (D), and 24-h change in body weight (E). 

(F) Representative PBN injection site (indicated by the arrow). LPBV, lateral parabrachial 

nucleus ventral; LPBE, lateral parabrachial nucleus external; LPBC, lateral parabrachial nucleus 

central; MPBE, medial parabrachial nucleus external; scp, superior cerebellar peduncle. 
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Figure 3.4:  Effect of MTII stimulation of paraventricular nucleus  (PVN) MCRs on 

TC (A), HR (B), spontaneous activity (C), 24-h food intake (D), and 24-h change in body weight 
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(E). (F) Representative PVN injection site (indicated by the arrow). PaPo, paraventricular 

nucleus posterior part; PaMP, paraventricular nucleus medial parvicellular; LH, lateral 

hypothalamus; AHA, anterior hypothalamic area; VMHA, ventromedial hypothalamus anterior; 

opt, optic tract. 
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Figure 3.5:  Effect of MTII stimulation of retrochiasmatic area (RCh) MCRs on TC (A), 

HR (B), spontaneous activity (C), 24-h food intake (D), and 24-h change in body weight (E). ). (F) 
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Representative PVN injection site (indicated by the arrow). AHC, anterior hypothalamic area 

central; AHP, anterior hypothalamic area posterior; opt, optic tract; 3V, third ventricle. 
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Figure 3.6:  Effect of MTII stimulation of anterior hypothalamic area (AHA) MCRs 

on TC (A), HR (B), spontaneous activity (C), 24-h food intake (D), and 24-h change in body 

weight (E). 
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CHAPTER 4  

HINDBRAIN LEPTIN STIMULATION INDUCES ANOREXIA AND 

HYPERTHERMIA MEDIATED BY HINDBRAIN MELANOCORTIN3 

RECEPTORS       

 

  ABSTRACT 

 Of the CNS receptors that could mediate the energy balance effects of leptin those of the 

hypothalamic arcuate nucleus receive the greatest attention. Melanocortin receptors 

(MCRs) contribute to the feeding and energetic effects of hypothalamically delivered 

leptin.  Energy balance effects of leptin are also mediated by extra-hypothalamic 

neurons including the hindbrain nucleus tractus solitarius. Hindbrain leptin receptors 

play a role in leptin’s anorectic effects but their contribution to its energetic effects and 

their functional interaction with melanocortin systems within the hindbrain remains 

unexplored. Here, rats implanted with telemetric devices for recording 

energetic/cardiovascular responses were examined to determine whether: 1) hindbrain 

(4th ventricular; v) leptin receptor stimulation triggers energetic and cardiovascular 

effects, 2) these effects are altered by a 6 week high-fat diet maintenance, and 3) 

hindbrain MCRs mediate the thermogenic, cardiovascular and anorexic effects of 

hindbrain leptin delivery.  Results show that hindbrain leptin receptor stimulation 

produced long-lasting (>6h) increases in core temperature and heart rate and also 

decreased food intake and body weight. These responses were not altered by high-fat 

maintenance; in contrast to what has been reported for forebrain leptin delivery. Fourth 

v pretreatment with MCR antagonist SHU 9119 completely abolished the hyperthermia, 

                                                 
3
 These results were partially reported at the 2008 Keystone Meeting, in Banff, Canda and appeared in 

Endocrinology, 150(4):1705-11, 2009. This work was supported by NIH grants DK-21397 and NRSA NS-

059254. 
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anorexia and body weight loss seen with hindbrain-directed leptin but had no effects of 

its own. These data highlight a role for hindbrain leptin receptors in the initiation of 

energetic and anorexic responses and show that MCRs are part of the downstream 

mediation of hindbrain leptin-induced energy balance effects, paralleling effects 

observed for hypothalamic leptin receptors.  

 
 

INTRODUCTION 
 

 
Disruption in central nervous system (CNS) leptin signaling results in severe 

obesity (Pelleymounter et al., 1995). Exogenous leptin delivery reverses the hyperphagia 

and reductions in activity, metabolism, and body temperature that contribute to the 

obesity observed in ob/ob mice (Halaas et al., 1995; Pelleymounter et al., 1995; Halaas 

and Friedman, 1997). Central leptin receptors mediate these energy balance effects 

(Elmquist et al., 1997).  Although leptin receptors (Ob-Rbs) are anatomically distributed 

across nuclei in the basal forebrain, midbrain and hindbrain of relevance to energy 

balance control (Elmquist et al., 1998), the literature is dominated by a focus on the role 

of ObRb-bearing arcuate hypothalamic neurons.  Recent experiments establish 

contributions to the control of energy intake from leptin signaling in the ventromedial 

hypothalamus (Dhillon et al., 2006), ventral tegmental area (Hommel et al., 2006) and 

nucleus tractus solitarius (NTS) (Huo et al., 2007).  The neural mediation of leptin’s 

energy expenditure effects receives considerably less attention than its energy intake 

effects (Hermann et al., 2006), yet the focus here too is on hypothalamic leptin signaling 

(Rahmouni and Morgan, 2007). This paper addresses the contribution of caudal 

brainstem leptin receptors in mediating the energetic effects of leptin.  
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The energy balance effects of basal forebrain-directed, third ventricular (3rd v) 

leptin delivery are mediated, in part, by downstream effects on hypothalamic 

proopiomelanocortin (POMC) neurons and melanocortin receptors (MC-Rs) (Seeley et 

al., 1997; Satoh et al., 1998; Haynes et al., 1999). This perspective is supported by 

experiments that show that: leptin signaling in these neurons increases POMC gene 

expression (Schwartz et al., 1997; Elmquist, 2001) and pretreatment with MC-R 

antagonist attenuates the anorexic effects, as well as some of the sympathetically-

mediated energetic effects of 3rd v leptin delivery (Seeley et al., 1997; Haynes et al., 1999). 

Therefore, a second aim of this paper was to examine whether caudal brainstem MC-Rs 

and NTS POMC neurons contribute to the energy balance effects triggered by leptin 

signaling in the caudal brainstem.  

 

High-fat (HF) diet feeding in rodents and humans results in obesity, 

hyperleptinemia,  resistance to the effects of exogenous leptin and insulin delivery and 

glucose intolerance (Gleason et al., 2007; Myers et al., 2008).  Leptin resistance is 

characterized by a decreased sensitivity to the anorexic and body weight effects of leptin 

(Myers et al., 2008). As noted above, there is a developing consensus that the effect of 

leptin on energy balance is mediated by several brain nuclei. By contrast, the 

neuroanatomical basis of leptin resistance is less clear. Leptin resistance may result 

from alterations in leptin signaling across several CNS sites or by contrast may be 

attributable to specific populations of Ob-Rb expressing neurons in the CNS (Munzberg 

et al., 2004; Enriori et al., 2007). A variety of experimental evidence is consistent in 

revealing that forebrain ventricular delivery of leptin results in diminished hypophagia 

in rats maintained on HF diet than in chow-maintained controls (Widdowson et al., 

1997; Tulipano et al., 2004; Fam et al., 2007). While it is generally assumed that 
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hypothalamic Ob-Rb expressing neurons are the principal target of forebrain ventricular 

delivery, it is unclear whether other ObRb-expressing nuclei accessed by this injection 

also contribute to the reduction in response magnitude observed in HF-diet maintained 

rodents. Unexamined, are the effects of HF-diet maintenance on the hypophagia to 

hindbrain ventricular delivery of leptin.  It also remains to be determined whether some, 

but possibly not all, responses induced by central leptin delivery are attenuated by HF-

diet maintenance as sympathetic nervous system (SNS) activation is observed in leptin-

treated animals that are otherwise leptin resistant (Rahmouni et al., 2002; Rahmouni et 

al., 2008). For these reasons we pursue the functional consequences of high-fat diet 

maintenance on the energy intake, as well as energy expenditure responses triggered by 

hindbrain-delivered, 4th ventricle leptin. 

 

Collectively, the results described here establish a role for hindbrain Ob-Rb in 

mediating elevations in core temperature and heart rate. These energetic and 

cardiovascular responses, as well as anorexic and body weight responses triggered by 

hindbrain leptin delivery were found to be unaltered in rats fed high-fat diet. In addition, 

our studies provide support for the hypothesis that hindbrain MC-Rs are downstream 

mediators of hindbrain leptin-induced energetic and anorexic responses.  

 

METHODS 

Subjects: Male Sprague-Dawley rats (Charles River Laboratories, Wilmington, MA), 

weighing 300–400 g at the time of surgery, were housed individually in plastic bins, and 

maintained under a 12:12-h (8.00am lights on) light-dark cycle. Pelleted food (Purina 

5001; St. Louis, MO) and water were available ad libitum unless otherwise noted. All 
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procedures conformed to the institutional standards of animal care and use (University 

of Pennsylvania). 

Surgery: Rats were anesthetized with ketamine (90 mg/kg), xylazine (2.7 mg/kg), and 

acepromazine (0.64 mg/kg) delivered intramuscularly.   

4th intracerebroventricular cannulation. All rats received a fourth-

intracerebroventricular (4th v) guide cannula (Plastics One, 22-G) with its tip 

stereotaxically positioned 2.0 mm above the 4th v (coordinates: on the midline, 2.5 mm 

anterior to the occipital suture, and 4.5 mm ventral to the dura, with injector aimed 6.5 

mm ventral from dura). Cannulas were attached to the skull with dental acrylic and 

jeweler's screws and closed with an obturator.   

Telemetric transponder surgery: At the time of ventricular surgery, telemetric 

transponders (HRC 4000 Mini-Mitter, VitalView, OR) for recording core temperature 

(Tc), heart rate (HR) and spontaneous physical activity (SPA) were inserted into the 

abdominal cavity, external  leads were positioned subcutaneously, and secured to the 

muscles on either side of the heart with sutures [as previously described (Skibicka and 

Grill, 2008b)].  

 

Experimental procedure 

  

Cannula position verification.  At least 7 days after surgery, 4th v cannula placement was 

assessed by measurement of the sympathoadrenal mediated hyperglycemic response to 

the cytoglucopenia induced by 5-thio-D-glucose [210 µg in 2 µl of artificial cerebral 
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spinal fluid (aCSF)] (Ritter et al., 1981). A post-injection elevation of at least 100% of 

baseline glycemia was required for subject inclusion.  

Habituation training. Prior to the start of experimental testing, rats were acclimated to 

handling, 4th v injections, and gastric gavages for oral glucose tolerance tests (OGTT) 

testing.  

Food intake and body weight monitoring: Food was removed 1 h before treatment (1 h 

into the light cycle) and returned 8 h later, late in the light phase. Thereby, food was not 

available during the period of energetic response measurement as feeding can affect 

these responses. Food intake and body weight measurements were made 24 h after the 

injection of drug. Food was available during the dark cycle and a minimum of 48 h was 

allotted between experimental testing.      

Experiment 1: Effects of 4th v leptin delivery on energy expenditure and food intake 

in chow-fed and high fat-fed rats.  

Feeding maintenance: Rats were randomly assigned to standard chow (n=8) or HF diet 

[(Research Diets #D12266B, New Brunswick, NJ, USA; 4.47 kcal/g with 21% of the 

metabolizable energy content as protein, 31% as fat and 48% as carbohydrate), (n=16)] 

maintenance one week after surgery. All testing began after five weeks of maintenance 

on the respective diets. Food intake and body weight of all rats were monitored daily. 

The physiological alterations induced by HF-diet maintenance are well established and 

include hyperleptinemia-leptin resistance and hyperinsulinemia-insulin resistance [see 

for review (Gleason et al., 2007; Myers et al., 2008)].  The OGTT was administered 

before HF exposure and 1, 4 and 5 weeks after diet maintenance to provide one correlate 

of the physiological effects of HF diet maintenance.  Food was withheld for a 6-h period 
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(with access to water) during the first half of the light cycle; an oral glucose load (2 g/kg) 

was delivered to each rat by gavage. Blood glucose was measured before gavage and at 

30, 60, 90, 120 and 180 min post-glucose loading by collecting a drop of tail blood and 

placing it in a standard glucometer strip (Accucheck, Roche Diagnostics, Indianapolis, 

IN).  

Experimental testing: All rats received 4th v injections early in the light cycle. Due to the 

caudal flow of the cerebral spinal fluid, low volume injections through the 4th v cannula 

under specific experimental conditions provide selective stimulation of hindbrain CNS 

regions without affecting hypothalamic and other forebrain regions as shown by: (Flynn 

and Grill, 1985; Kinzig et al., 2002; Blevins et al., 2004; Fan et al., 2004). Three 

conditions were run in a counterbalanced fashion across separate days. Energetic 

responses were examined in chow- and HF-fed rats following a control condition with 

4th v vehicle (1 µl  sodium bicarbonate) and two doses of leptin: 3 and 10 µg [dose 

selection based on  (Widdowson et al., 1997; Levin and Dunn-Meynell, 2002; Tulipano 

et al., 2004)]. HR, TC, and SPA were continuously monitored for 8 h at 5-min intervals 

(Tc and SPA) or 30-sec intervals (HR) in rats with implanted HRC-4000 transponders.  

Experiment 2: Effect of hindbrain- delivered MC-R antagonist on the energy balance 

effects of leptin delivered to hindbrain.  All rats (n=9) received 4th v injections early in 

the light cycle. All conditions were separated by 2 days and run in a counterbalanced 

fashion. Responses were examined after four conditions as follows: 1) control condition 

with 4th v vehicle [1 µl of aCSF (vehicle for MC3/4-R antagonist - SHU 9119) with 1 µl of 

sodium bicarbonate (vehicle for leptin)], 2) aCSF +3 µg leptin, 3) 0.1 nmol SHU 9119 + 

sodium bicarbonate and 4) SHU 9119 with leptin. SHU 9119/vehicle was injected 20 

minutes before leptin/vehicle treatment. SHU 9119 dose was selected from results of a 
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pilot study that tested the efficacy of SHU doses in blocking the energy balance effects of 

4th v MC-R agonist (MTII; Phoenix Pharmaceutical, St Joseph, MO) without producing 

any independent effects alone. HR, TC, and SPA were continuously monitored as in 

Experiment 1.  

Statistical analysis. All energy expenditure parameters were analyzed by one or  two-

way ANOVAs on 6 h post-injection averages and followed by post-hoc t-tests and 

Tukey’s honestly significant difference test as appropriate. Twenty-four h food intake 

and body weight were analyzed by ANOVA followed by post-hoc t-tests and Tukey’s 

honestly significant difference test as appropriate.  All statistical analysis was conducted 

using Statistica software (Tulsa.  Oklahoma). Differences were considered significant at 

P<0.05.   

 

RESULTS: 

Experiment 1. Stimulation of hindbrain Ob-Rb increases energy expenditure and 

decreases food intake in chow- and high-fat fed rats:  

Chow- fed group: Core temperature: Figure 4.1a shows that hindbrain-delivered leptin 

injection increased TC for the 6 h post-injection period. A one-way ANOVA examining 

treatment effects on average post-injection TC values revealed a significant drug 

treatment effect [F (2, 10) = 13.89, P < 0.005]. Post hoc analysis showed a significant 

effect of both leptin doses on TC (3 µg; P < 0.005, 10 µg: P < 0.005). Heart rate:  Figure 

4.1b shows that leptin increased HR, compared with control treatment. A one-way 

ANOVA of average HR values for the 6 h post-injection period yielded a significant drug 
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effect [F (2, 10) = 6.40, P < 0.05); post hoc analysis showed a significant effect of the 

lower dose of leptin on HR (3 µg; P < 0.05, 10 µg: P < 0.323). Spontaneous physical 

activity was not significantly increased by leptin treatment [F (2, 10) = 1.79, P =0.216; 

Figure 4.1c]. Food intake and body weight: Fourth ventricle injection of leptin 

significantly decreased 24 h food intake [F (2, 14) = 6.883, P < 0.01; post hoc: 3 µg; P < 

0.28, 10 µg: P < 0.05] and body weight [F (2, 14) = 4.155, P < 0.05; post hoc: 3 µg; P < 

0.82, 10 µg: P < 0.05] (Figure 4.2a & b).  

High-fat fed group: Oral glucose tolerance tests were performed prior to HF-diet 

exposure [area under the curve ± SE: 315.4 ± 15.8 chow-fed (CH) vs. 320.3 ± 7.4 high fat 

(HF)] and after 1 week (CH: 312.6 ± 16.2 vs. HF: 312.9 ± 5.5), 4 weeks (CH: 313.1 ± 8.9 

vs. HF: 348.6 ± 6.5± 8.9) and 5 weeks (CH: 316.7 ± 8.0 vs. HF: 361.7 ± 6.4) on HF diet 

maintenance in comparison to chow-fed control rats. High-fat fed animals showed 

impairment in glucose clearance relative to chow-fed control rats after 4 weeks (P < 

0.005) and 5 weeks (P < 0.0005) of high fat exposure. All rats on HF diet showed 

reduced glucose clearance after 5 weeks on HF diet; therefore all were included in the 

energy expenditure analysis. Core temperature: Figure 4.3a shows that 4th v injection of 

each dose of leptin increased TC for the 6 h post injection period. A one-way ANOVA 

examining treatment effects on average post-injection TC values yielded a significant 

drug treatment effect [F (2,28) = 7.00, P < 0.005]. Post hoc analysis revealed a 

significant effect of both leptin doses on TC (3 µg; P < 0.01, 10 µg: P < 0.01). Heart rate:  

Figure 4.3b shows that leptin increased HR, compared with the aCSF vehicle treatment. 

A one-way ANOVA of average HR values for the 6 h period post-injection yielded a 

significant drug effect [F (2,28) = 5.47, P < 0.01]; post hoc analysis showed a significant 

effect of both doses of leptin on HR (3 µg; P < 0.05, 10 µg: P < 0.05). Spontaneous 



 83 

physical activity was not significantly increased [F (2, 28) = 0.029, P = 0.972] by leptin 

treatment (Figure 4.3c). Food intake and body weight: Both leptin doses significantly 

decreased 24 h food intake [F (2, 30) = 18.79, P < 0.0001; post hoc: 3 µg; P < 0.0005, 10 

µg: P < 0.0005] and body weight [F (2, 30) = 13.75, P < 0.0001; post hoc: 3 µg; P < 

0.0005, 10 µg: P < 0.0005] (Figure 4.4a & b). Between-group comparisons (chow-fed 

vs. high-fat fed) were made for all parameters. No significant differences in TC, HR, SPA 

and food intake of chow- and high-fat fed groups were found for any doses. Body weight 

responses were significantly different at the 0 µg and 10 µg doses, but when responses 

were expressed as change from vehicle no significant differences were found. 

Experiment 2: Hindbrain- delivered MC-R antagonist blocks the energy balance 

effects of hindbrain leptin delivery. Hindbrain pretreatment with a MC-R antagonist 

reversed the effects of 4th v leptin treatment on energetic/cardiovascular responses, food 

intake and body weight, but was without effects on its own (Figures 4.5 & 6). Core 

temperature: Figure 4.5a shows that the leptin-induced increase in TC for the 6 h post 

injection period was reversed by pretreatment with the MC-R antagonist SHU 9119. A 

two-way ANOVA examining the interaction of leptin and SHU 9119 on average post-

injection TC values revealed a significant interaction [F (1, 8) = 9.25, P < 0.05]. Post hoc 

analysis revealed a significant effect of only leptin alone on TC (3 ug; P < 0.05) compared 

to vehicle. The leptin + SHU 9119 condition was not significantly different from vehicle 

(P = 0.88). Heart rate:  Figure 4.5b shows that there was a trend for leptin to increase 

HR although the effect was not significant compared with the control treatment. A one-

way ANOVA of average HR values for the 6 h post-injection period yielded a significant 

drug effect [F (3, 24) = 3.714, P < 0.05]; post hoc analysis showed a trend for leptin to 

increase HR (3 µg; P < 0.078), but SHU 9119 pretreatment attenuated the effect of 
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leptin on HR (P = 0.999). A two-way ANOVA of average HR values for the 6 h post-

injection period examining the interaction of leptin and SHU 9119 did not reach 

significance [F (1, 8) = 2.61, P = 0.14]; Spontaneous physical activity was not 

significantly affected by leptin, SHU 9119, or their combination. There was no 

significant interaction [F (1, 8) = 2.06, P = 0.19] (Figure 4.5c). Food intake and body 

weight: Hindbrain-directed leptin delivery significantly decreased 24 h food intake. 

Two-way ANOVA revealed significant interaction of leptin and MC-R antagonist [F (1, 

8) = 7.83, P < 0.05]; post hoc Tukey tests revealed that leptin decreased food intake (P < 

0.005), pretreatment with SHU 9119 blocked the effects of leptin [leptin + SHU 9119: P 

= 0.97] (Figure 6a). Body weight was also significantly decreased by leptin treatment 

alone, pretreatment with SHU 9119 reversed this effect [F (1, 8) = 11.55, P < 0.05; post 

hoc Tukey test for leptin alone: P < 0.05, and for leptin SHU 9119: P = 0.79] (Figure 

4.6b). SHU9119 application itself had no effect on any of the parameters measured.  

DISCUSSION 

The data gathered indicate that hindbrain leptin receptors contribute to the 

energy balance effects of CNS leptin delivery. These are the first data to show that 

stimulation of hindbrain leptin receptors drives thermogenic and tachycardic responses. 

The hypophagia and body weight reduction also observed with hindbrain leptin delivery 

confirm our earlier work in lean chow-fed rats (Grill and Kaplan). The present study 

also shows that hindbrain leptin delivery in high-fat diet maintained rats with reduced 

glucose clearance triggers anorexic and energetic responses of the same magnitude as 

those observed in chow-fed controls. These data indicate that alterations in hindbrain 

Ob-Rbs signaling do not contribute to the physiology of leptin resistance. 
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A role for hypothalamic melanocortin gene expression and MC-Rs in the 

downstream effects of hypothalamic leptin signaling is well established (Seeley et al., 

1997; Haynes et al., 1999). Our experiments address a parallel but neglected question – 

whether hindbrain melanocortin signaling is downstream of the functional effects of 

hindbrain leptin signaling.  We show that hindbrain delivery of the MC3/4-R antagonist 

SHU-9119 blocked the food intake, body weight and energetic responses triggered by 4th 

v leptin. This pattern of results is parallel with data generated for forebrain ventricular 

delivery using a similar strategy (Seeley et al., 1997; Satoh et al., 1998; Haynes et al., 

1999). Systemic leptin treatment stimulates Ob-Rs on ARC POMC neurons, induces 

pSTAT3 in arcuate POMC neurons and increases POMC gene expression. These effects 

are mediated by direct action of leptin on these POMC neurons. Some controversy 

surrounds whether NTS POMC neurons express leptin receptors in mouse models 

(Ellacott et al., 2006; Huo et al., 2006). Whether the effects observed here are mediated 

by leptin receptor expression in rat NTS POMC neurons or leptin receptors on other 

neurons that in turn affect NTS POMC gene expression and melanocortin ligand release 

remains to be investigated. 

Obesity induced by multi-week HF-diet maintenance did not reduce the 

magnitude of either the anorexic or energetic-sympathetic responses elicited by 

hindbrain leptin administration. These functional results are consistent with the 

findings of Munzberg et al (Munzberg et al., 2004) who showed that multi-week, HF 

diet maintenance did not reduce Ob-Rb signaling (pSTAT3 immunohistochemistry) in 

NTS neurons or in the neurons of the ventromedial, dorsomedial or premammilary 

hypothalamus [see also (Ladyman and Grattan, 2004)].  Of the brain regions sampled in 

their study, an attenuation of leptin signaling with diet-induced obesity was observed 
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only in the hypothalamic ARC nucleus; this reduced ARC-leptin signaling was detected 

as early as 6 days after the start of HF diet feeding (Munzberg et al., 2004). While we 

have not examined forebrain-directed leptin responses, others investigators have 

established that lateral ventricular leptin delivery (doses overlapping with those used 

here) in rats made obese with HF feeding (Widdowson et al., 1997; Tulipano et al., 

2004) or in obese aged rats (Shek and Scarpace, 2000) result in markedly attenuated 

food intake and body weight effects of leptin.  These examples of attenuated functional 

effects of leptin delivered to the forebrain ventricles of rats with some degree of leptin 

resistance contrast with what we observed in similarly maintained rats receiving 4th v. 

leptin. These contrasting data sets suggest that specific CNS Ob-Rb expressing regions 

respond differently to the obesity resulting from high-fat diet maintenance and also that 

lack of alterations in NTS leptin signaling (Munzberg et al., 2004) correlate with 

preserved effects on feeding and energy expenditure. Hindbrain Ob-Rbs, due to their 

lack of molecular and functional leptin resistance, might therefore account for the 

preserved SNS activation observed after peripheral leptin injections in animals 

otherwise leptin resistant (Rahmouni et al., 2002; Rahmouni et al., 2008). Ob-Rbs in 

the hindbrain might also contribute to partial anorexic responses observed after lateral 

ventricle leptin application, since the drug can diffuse with the caudal CSF flow and 

stimulate ObRb-expressing hindbrain neurons.  

Our studies focus attention on the functional effects of hindbrain leptin receptors 

and, in addition, identify a downstream mediator of these effects, POMC neurons and 

hindbrain melanocortin receptors. Furthermore, our data along with findings by 

Munzberg et al (Munzberg et al., 2004) suggest that this hindbrain projection pathway 

may, unlike its hypothalamic counterpart, be less subject to the effect of the reduction in 
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leptin signaling observed with diet-induced obesity. The details of the mediating neural 

circuitry however still remain to be delineated. Neurons of the NTS and parabrachial 

nucleus (PBN) express OB-Rbs (Elmquist et al., 1998) and contribute to the control of 

feeding behavior and to sympathetic outflows (Grill and Kaplan, 2001; Cano et al., 

2003a). We have recently conduced studies employing targeted leptin delivery to NTS as 

well as PBN are to resolve this issue. Direct application of leptin into the NTS resulted in 

an energetic a feeding profile of responses similar to that obtaiend with 4th v leptin 

delivery. Thus it is likely that the energetic and part of the anorexic responses observed 

here reflect NTS Ob-Rb stimulation (Figures 4.7-4.8). Parabriachial Ob-Rb stimulation 

on the other hand did not alter body temperature or heart rate, however produced 

hyperactivity, anorexia and body weight loss (Figures 4.9-4.11). These are the first data 

indicating a role for PBN Ob-Rb in energy balance control. Results from our current 

studies do not exclude the possibility that projections to forebrain neurons are required 

for response production. Little is known about the neurochemical phenotype and 

anatomic projections of Ob-Rb-expressing hindbrain neurons. NTS neurons are known 

to project to hypothalamic neurons including those in ARC and paraventricular 

hypothalamus. NTS neurons may project to POMC-expressing ARC neurons, that in 

turn, project back to the NTS to provide for the release of MC ligand in the NTS from a 

hypothalamic origin (Palkovits et al., 1987; Berthoud HR, 2008). The requirement for 

forebrain-hindbrain neural communication for leptin-induced increases in energy 

expenditure might be suggested by a study of Harris et al (ref).  Harris et al. show that 

peripheral leptin stimulation in chronic decerebrate rats, that lack neural forebrain-

hindbrain communication, does not increase energy expenditure; in fact a decrease in 

oxygen consumption in these rats is noted under certain experimental conditions.  On 

the other hand in its simplest form, the mediating circuitry may be placed entirely 
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within hindbrain with circulating leptin stimulating hindbrain Ob-Rbs, which could in 

turn activate hindbrain POMC and MC-Rs, yielding behavioral and autonomic 

responses. We have already shown (Skibicka and Grill, 2008a) that the circuitry 

required for melanocortin receptor stimulation-induced hyperthermia and tachycardia 

is contained entirely within the hindbrain. Future experiments are needed to determine 

whether the neural link from hindbrain leptin to hindbrain melanocortin receptors is 

contained entirely within the hindbrain or whether the connection is mediated by 

circuitry involving forebrain neurons. 
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Figure 4.1: Effect of caudal brainstem leptin receptor stimulation (1 µl, 4th v. delivery) 

on (a) core temperature, (b) heart rate and (c) spontaneous activity in chow fed rats. Line 

graphs represent across-rat average parameter measurements through the 8 h-recording period. 

The bracketed time period on the line graph x-axis indicates the periods used in the histograms. 

The histograms provide 6 h post-injection averages + SEM for each parameter at each dose. *P < 

0.05, **P < 0.005, n=6. 
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Figure 4.2: Effect of caudal brainstem leptin receptor stimulation (1 µl, 4th v. delivery) 

on (a) food intake and (b) body weight in chow fed rats. The histograms provide average 

values ± SEM. *P < 0.05, **P < 0.005, n=8. 
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Figure 4.3: Effect of caudal brainstem leptin receptor stimulation (1 µl, 4th v. delivery) 

on (a) core temperature, (b) heart rate and (c) spontaneous activity in high-fat fed rats. Line 
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graphs represent across-rat average parameter measurements through the 8 h recording period. 

The bracketed time period on the line graph x-axis indicates the periods used in the histograms. 

The histograms provide 6 h post-injection averages + SEM for each parameter at each dose. *P < 

0.05, ***P < 0.0005, n=15. 
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Figure 4.4: Effect of caudal brainstem leptin receptor stimulation (1 µl, 4th v. delivery) 

on (a) food intake and (b) body in high-fat fed rats. The histograms provide average values 

±SEM. *P < 0.05, ***P < 0.0005, n=16. 
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Figure 4.5: Effect of caudal brainstem melanocortin receptor blockade (1 µl, SHU 

9119, 4th v. delivery) on caudal brainstem leptin receptor stimulation (1 µl, 4th v. 
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delivery) on (a) core temperature, (b) heart rate and (c) spontaneous activity in chow fed rats. 

Line graphs represent across-rat average parameter measurements through the 8 h recording 

period. The bracketed time period on the line graph x-axis indicates the periods used in the 

histograms. The histograms provide 6 h post-injection averages + SEM for each parameter at 

each dose. *P < 0.05, **P < 0.005, n=9. 
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Figure 4.6: Effect of caudal brainstem melanocortin receptor blockade (1 µl, SHU 

9119, 4th v. delivery) on caudal brainstem leptin receptor stimulation (1 µl, 4th v. 

delivery) on (a) food intake and (b) body in chow fed rats.  The histograms provide average 

values ±SEM. *P < 0.05, **P < 0.005, n=9. 
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Figure 4.7: Effect of nucleus of the solitary tract (NTS) leptin receptor stimulation 

(0.1 µl, unilateral NTS parenchyma delivery) on (a) core temperature, (b) heart rate and (c) 

spontaneous activity in chow fed rats. For details on surgery, coordinates, placement 
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confirmation, injection strategy and statistical analysis see Methods in Chapter 3. Line graphs 

represent across-rat average parameter measurements through the 8 h-recording period. The 

bracketed time period on the line graph x-axis indicates the periods used in the histograms. The 

histograms provide 6 h post-injection averages + SEM for each parameter at each dose. ***P < 

0.0005, n=9. 
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Figure 4.8: Effect of nucleus of the solitary tract (NTS) leptin receptor stimulation 

(0.1 µl, unilateral NTS parenchyma delivery) on (a) food intake and (b) body weight in chow fed 

rats. The histograms provide average values ± SEM. *P < 0.05, **P < 0.005, n=9. 
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Figure 4.9: Effect of parabrachial nucleus (PBN) leptin receptor stimulation (0.1 µl, 

unilateral PBN parenchyma delivery) on (a) core temperature, (b) heart rate and (c) spontaneous 

activity in chow fed rats. For details on surgery, coordinates, placement confirmation, 



 101 

injection strategy and statistical analysis see Methods in Chapter 3. Line graphs represent across-

rat average parameter measurements through the 8 h-recording period. The bracketed time 

period on the line graph x-axis indicates the periods used in the histograms. The histograms 

provide 6 h post-injection averages + SEM for each parameter at each dose. *P < 0.05, n=29. 
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Figure 4.10: Effect of parabrachial nucleus (PBN) leptin receptor stimulation (0.1 µl, 

unilateral PBN parenchyma delivery) on (a) food intake and (b) body weight in chow fed rats. 

The histograms provide average values ± SEM. *P < 0.05, n=29. 
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Figure 4.11. Effect of parabrachial nucleus (PBN) leptin receptor stimulation (0.1 µl, 

unilateral PBN parenchyma delivery) on the minute by minute food intake in chow fed rats. 

This experiment was performed in order to evaluate the novel anorexic effect of leptin in PBN 

that was initially discovered in the previous study (Figure 4.10). To focus on the intake effects, 

energy expenditure was not recorded here and unlike in the previous study standard chow 

(maintenance diet) was available to the rats immediately after injection. Injections took place 20 

minutes before lights-out, as indicated by the arrow. X-axis indicates time of day. Intake was 

recorder every minute for a period of 24 hours. The histogram provides average 24h intake 

values ± SEM from the graph above. *P < 0.05, n=8. 
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CHAPTER 5 

HINDBRAIN MELANOCORTIN RECEPTOR BLOCKADE EFFECTS ON 

HIGH-FAT DIET INTAKE AND BASELINE ENERGY EXPENDITURE 

 
 

ABSTRACT 
 
Palatable, high-fat diets induce hyperphagia that promotes positive energy balance.. The 

central melanocortin system is implicated in the compensatory adjustments of food 

intake and energy expenditure that are necessary to restore energy balance. 

Melanocortinergic contributions to energy balance regulation involve hypothalamic as 

well as hindbrain nuclei. Hypothalamic elements of this system are implicated in the 

compensatory response to high-fat feeding, but also in the maintenance of energy 

expenditure under baseline chow maintenance conditions. The contribution of 

hindbrain melanocortin receptors (MCRs) to both of those energy balance control 

responses is unexplored. Both questions are addressed here. To assess the role of 

endogenous hindbrain MCR activity to the control of energy balance under normal chow 

maintenance and under the energetic challenge posed by high energy diet maintenance 

feeding, cardiovascular, thermogenic and activity responses were examined in rats 

injected 4th ventricular (v) with the MC3/4 antagonist SHU 9119 or its vehicle. 

Hindbrain MCR blockade produced hypothermia and bradycardia without any changes 

in activity in chow-fed rats at baseline.  The same effects on energetic-cardiovascular 

responses were observed in rats maintained on medium-fat diet.  In contrast, diet 

maintenance differentially affected the feeding response to hindbrain MCR antagonism. 

4th v SHU application increased high or medium-fat food intake and body weight but 

was without effect in rats maintained on chow. The response size observed in high-fat 

fed rats with 4th v delivery did not differ from that obtained with 3rd v MCR antagonist 
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injections. These data indicate that endogenous hindbrain MCR activity contributes to 

baseline temperature and heart rate maintenance and is required for limiting the 

hyperphagia and weight gain induced by high-fat feeding, as rats fed a high-fat diet are 

more sensitive to hyperphagic effects of hindbrain MCR blockade than chow fed 

controls. 

 

INTRODUCTION 

Palatable, energy-dense diets are over-consumed by humans and rodent models 

and the resulting hyperphagia is a primary determinant of the current obesity epidemic 

(Rothwell and Stock, 1979). The hyperphagia triggered by exposure to these can be 

viewed as a challenge on the energy balance. Restoring energy balance is an active 

process mediated by CNS circuits that  involves curbing the  hyperphagia and increasing 

energy expenditure (Rothwell and Stock, 1979). The central melanocortin system is an 

essential contributor to energy homeostasis under baseline, chow maintenance, 

conditions as indicated by severe hyperphagia, decrease in energy expenditure, and 

weight gain observed in mice or rats with dysfunctional melanocortin signaling (Huszar 

et al., 1997; Adage et al., 2001). Melanocortin signaling appears to also contribute to the 

compensatory adjustments in energy balance that are triggered by high-energy diet 

maintenance. MCRs are expressed in several CNS areas critical to energy balance 

control (Kishi et al., 2003). Despite accumulating evidence that both hypothalamic and 

extra-hypothalamic MCRs contribute to energy balance control (Grill et al., 1998; 

Skibicka and Grill, 2008a, 2009a), a role for extra-hypothalamic MCRs in the 

maintenance of baseline energy expenditure and in the energetic challenge posed by 

energy-dense diet maintenance has not been explored.  

 



 106 

The coordinated control of energy intake and expenditure exerted by the POMC 

product α-melanocyte stimulating hormone (αMSH) and the responsiveness of POMC 

neurons to the metabolic signals, e.g., circulating fuels and metabolic hormones that are 

altered by high energy diet overconsumption (Schwartz et al., 1997; Benoit et al., 2002; 

Ibrahim et al., 2003; Jo et al., 2009) suggest that the central melanocortin system is 

well positioned to make energy balance adjustments in response to alterations in energy 

intake.  A role for the melanocortin system in coordinating the energetic responses to 

high energy diet maintenance is suggested by results from MC4R KO mouse studies 

(Butler et al., 2001). These mice, hyperphagic on chow maintenance, significantly 

increase (by 50%) their food intake when exposed to a moderate fat-diet (Butler et al., 

2001). Body weight, already greater than wild type controls on chow, increases further 

when MC4R-deficient mice are placed on moderate-fat diet. These data suggest that 

functional central MCR signaling is a critical element in curbing intake when rodents are 

maintained on high-energy diets. What is unaddressed by these results is a 

determination of which of the various melanocortin expressing nuclei contribute to 

these energy balance adjustments. The anorexic effects of central melanocortin signaling 

are often ascribed to the MCR-bearing hypothalamic nuclei, especially the 

paraventricular nucleus (PVN) (Balthasar et al., 2005; Taylor et al., 2007; Garza et al., 

2008).  A role for PVN MC4R signaling in the response to the high-energy diet 

maintenance challenge was highlighted recently in rats with targeted MC4R knock down 

in the PVN.  These rats, unlike their wild-type controls showed differential response to 

diet. They gained more weight when maintained on high-fat diet but not when fed 

standard, low-fat chow (Garza et al., 2008). 
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MC4Rs are widely expressed anatomically and accumulating evidence suggests 

that the energy balance function exerted by CNS MCR signaling is anatomically 

distributed with contributions from both hypothalamic and extrahypothalamic MCRs 

(Grill et al., 1998; Skibicka and Grill, 2008a, 2009a). Recent data support a role for 

multiple hindbrain nuclei in the feeding and energetic-cardiovascular effect of MCR 

agonist stimulation (Grill et al., 1998; Skibicka and Grill, 2008a, 2009a). Reduced 

feeding, thermogenic and cardiovascular responses were triggered by discrete 

melanocortinergic stimulation of several hindbrain nuclei including nucleus of the 

solitary tract (NTS), parabrachial nucleus (PBN) and caudal raphe (Skibicka and Grill, 

2009a). Endogenous contribution of hindbrain MCRs in chow fed rats was indicated by 

a hyperphagic effect of hindbrain MCR blockade with an MC3/4R antagonist (SHU 9119) 

(Grill et al., 1998; Williams et al., 2000a). In the current study we investigate whether 

pharmacological blockade of endogenous activity of hindbrain MCR disrupts (a) the 

intake response to the high-energy diet challenge and (b) to energy expenditure control 

under chow fed baseline conditions. These results are also compared to responses 

obtained by forebrain (3rd v) MCR blockade. 

 

 Diet-induced thermogenesis (DIT) describes the increase in sympathetic 

nervous system (SNS) activity to several organs including heart and brown adipose 

tissue (Dulloo, 2002) and the resulting increase in expenditure of energy driven by the 

sequential overconsumption of palatable, high-energy diets (Rothwell and Stock, 1979). 

POMC neurons are implicated in the energy expenditure adjustment to caloric over-

consumption and a variety of data show that hypothalamic and hindbrain sympathetic 

premotor neurons co-express MCRs (Voss-Andreae et al., 2007; Song et al., 2008).  

MC4R KO mice, in contrast to their wild type controls, fail to increase oxygen 
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consumption in response to high-energy diet consumption (Butler et al., 2001). While 

experiments needed to resolve which of the anatomically distributed MC4R expressing 

nuclei contribute to this effect have not been undertaken, the field focuses on 

contributions from MCR-bearing hypothalamic nuclei. The current experiments 

characterize the contribution of endogenous hindbrain MCR signalling to energy 

balance control (measured parameters include: feeding, thermogenesis, cardiovascular 

changes and activity) under baseline, chow intake conditions and under the energetic 

challenge posed by high-energy diet maintenance. This is the first study to explore the 

endogenous contribution of hindbrain MCRs to energy expenditure in both the chow 

and high-energy diet feeding environment.  

 

METHODS: 

Subjects 

Male Sprague Dawley rats (Charles River Laboratories, Wilmington, MA), weighing 

300–400g (10-12 weeks old) at surgery and housed individually in plastic bins under a 

12-h light, 12-h dark cycle (0800 h lights on), participated in the five experiments 

described below. Pelleted food (Purina 5001; St. Louis, MO) and water were available ad 

libitum unless otherwise noted. All procedures conformed to the institutional standards 

of animal care and use committee (University of Pennsylvania).  

Surgery 

Rats were anesthetized with ketamine (90 mg/kg), xylazine (2.7 mg/kg), and 

acepromazine (0.64 mg/kg) delivered im. 
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Fourth and third intracerebroventricular (v.) cannula implantation. 

Rats in experiments 1 and 2 received a fourth v. guide cannula (22 gauge; Plastics One, 

Inc., Roanoke, VA) with its tip stereotaxically positioned 2.0 mm above the fourth 

ventricle (coordinates: on the midline, 2.5-mm anterior to the occipital suture, and 4.5-

mm ventral to the dura, with injector aimed 6.5-mm ventral from dura). Drug injections 

to the 4th v. at volumes used in our experiments have been shown to be confined to the 

hindbrain regions without stimulation of regions rostral to the 4th v. (Flynn and Grill, 

1985; Blevins et al., 2004; Fan et al., 2004; Hayes et al., 2008b). A second group of rats 

in experiment 2 received a third v. guide cannula (coordinates: on the midline, 2-mm 

posterior to bregma, and 5.5-mm ventral to dura mater, with injector aimed 7.5-mm 

ventral to dura). Cannulas were attached to the skull with dental acrylic and jeweler’s 

screws, and closed with an obturator as previously described (Skibicka and Grill, 2008a, 

2009b).  

Telemetric transponder surgery. 

Telemetric transponders (HRC 4000 VitalView; Mini Mitter/Respironics, Bend, OR) for 

recording core temperature (TC), heart rate (HR), and spontaneous physical activity 

(SPA) were inserted into the abdominal cavity, with the leads positioned sc and secured 

to the chest muscles on either side of the heart with sutures.  

Experimental procedures 

Cannula position verification. 

At least 7 d after surgery, all brain cannula placements were assessed by measurement of 

the sympathoadrenal-mediated glycemic response to central injection of 5-thio-D-

glucose [210 µg in 2 µl artificial cerebral spinal fluid (aCSF; Harvard Apparatus) for both 
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3rd and 4th v.] (Ritter et al., 1981). A post-injection elevation of at least 100% of baseline 

plasma glucose level was required for subject inclusion.  

Habituation training. 

Before the start of experimental testing, rats were acclimated to the handling and 

ventricular injection procedures used in a given experiment.  

Experiment 1: We compared two groups of rats.  One was maintained on the 

moderate-fat (MF) diet (Research Diets, 31% fat content); the other on regular chow 

(Figure 5.1A).  Rats were weighed daily starting 2 days before MF diet exposure for 12 

days. Both groups were tested with SHU 9119 (0.2nmol; Sigma) and vehicle in a two 

condition counterbalanced design at week 1 (days 4 and 7) on the diet (Figure 5.1B).  

MCR antagonist testing was planned for the first week of fat diet exposure as all prior 

published data established the strongest connection between feeding and energetic 

responses of MCR blockade in acute responses to fat (Butler et al., 2001; Voss-Andreae 

et al., 2007). All rats received injections 2 hours into light cycle. Food was removed at 

the time of injections (early in the light cycle) and returned 8 h later, late in the light 

phase. Thus, in this design food was not available during the period of energetic 

response measurement. Food intake and body weight measurements were made 24 h 

after the injection of drug. Given this design, all noted differences in food intake reflect 

longer latency effects of SHU (i.e. intake from 8–24 h after injection). For ad libitum-

feeding rats, food was always available during the dark cycle.  

 

Experiment 2: All rats (n=12 4th v, n=12 3rd v) were tested with 0.1nmol of SHU 

counterbalanced with vehicle while still maintained on chow. At least 72h were allowed 

to pass between injection days. The dose of SHU was chosen to not produce energetic 
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and feeding effects when applied alone on chow. At least 7 days were allowed to pass 

from the initial SHU test before the high-fat (HF) diet exposure. They were then 

switched to HF diet for 72h (Research Diets, 64% fat content); during that time all rats 

received daily injections (at 0, 24, 48h of diet exposure)  of either SHU 0.1nmol (n=6 4th 

v, n=6 3rd v) or vehicle (n=6 4th v, n=6 3rd v). This paradigm was altered to capture 

possible immediate contribution of melancortin system to HF challenge based on results 

of a recent publication (Voss-Andreae et al., 2007) in which MC-R blockade attenuated 

brown adipose tissue activity induced by 48h HF diet exposure in mice. Food was 

available ad libitum at all times during this paradigm, with the exception of day 2 

(where animals were deprived only in the light cycle in order to obtain energetic 

recordings without the possible confounding effects of food intake). Energy expenditure 

parameters were measured from 0h-72h during the high fat diet exposure. Food intake 

and body weight were measured at 24, 48 and 72h as illustrated in Figure 5.1C. 

 

Statistical analysis: 

Core temperature, HR and SPA were analyzed by ANOVA on post-injection 8 h average 

values of each parameter and followed by student’s t-test or Tukey test as appropriate. 

Twenty four hour food intake and body weight were analyzed by ANOVA and followed 

by t-test or Tukey test as appropriate. Two way ANOVA was applied in experiment 1 

(diet, drug) and three way ANOVA in experiment 2 (ventricle, drug, time), those were 

followed up by 1-way ANOVAS or post-hoc tests as appropriate. All statistical analysis 

was conducted using STATISTICA software (StatSoft, Inc., Tulsa, OK). Differences were 

considered significant at P<0.05. 

 

 



 112 

RESULTS: 

Experiment 1: Rats consumed 50% more kcal on the first 24h of MF exposure, during 

the next 8 days MF consumption was increased by 20-30% on average as compared to 

the chow control group (Figure 5.2A). There were trends to increase body weight staring 

day 5 of MF exposure, however not significant (Figure 5.2B). Two-way ANOVA revealed 

a significant diet-drug interaction for food intake (P<0.05) after 4th v. MC-R blockade. 

Fourth v. MC-R blockade with 0.2nmol SHU did not significantly alter chow intake, 

however intake in MF-fed rats was significantly increased (P< 0.005). All rats (MF-fed 

rats and chow-fed controls) exhibited mild but significant hypothermia (P< 0.005) and 

tachycardia (P< 0.0005) under SHU condition with no significant changes in activity in 

response to SHU delivery to 4th v. There were no significant diet-drug interactions on 

any of the energy expenditure parameters measured.  

 

Experiment 2: A dose of MC-R antagonist without effect on any of the measured 

parameters was desired for a elucidating a specific effect of MC-R blockade on rats 

exposed to HF diet. SHU pretest on chow revealed that the 0.1nmol dose chosen for this 

study had no significant effect on any of the parameters measured while the rats were 

maintained on chow. After the rats were switched to HF diet however SHU application 

significantly increased HF food intake. Three-way ANOVA (ventricle, drug, time) 

revealed a significant effect of drug on food intake (P< 0.005) and no interaction of drug 

with ventricle (Figures 5.4A&C). Three-way ANOVA also indicated a significant effect of 

drug on body weight (P< 0.05) and no interaction of drug with ventricle (Figures 

5.4B&D). There was no significant effect of drug and no significant drug-ventricle 

interaction on any of the energy expenditure parameters in the dark cycle. (Figures 

5.5&6). In the light cycle there was no significant effect of drug and no drug-ventricle 
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interaction on heart rate or activity. High-fat fed rats that received SHU however had 

significantly increased core temperature (p<0.05). There was no drug-ventricle 

interaction. 

 

DISCUSSION 

 

Hindbrain MCR antagonism significantly decreased core temperature and heart 

rate, suggesting that endogenous hindbrain MCR activity and “melanocortinergic tone” 

contributes to the maintenance of body temperature and cardiovascular tone under 

chow fed, baseline conditions.  The bradycardia and reduced core temperature were also 

induced by hindbrain MCR blockade in high-energy diet maintained rats, indicating that 

the contribution of hindbrain MCRs to energy expenditure is not altered by high-fat 

challenge. Diet maintenance was a factor in the feeding response to MCR antagonism 

for hindbrain as well as forebrain ventricular delivery of SHU-9119. Rats maintained on 

high-energy diets (either moderate or high-fat) were hyperphagic and gained weight in 

response to MCR antagonism while chow-fed rats were unaffected.  These results 

suggest that increased endogenous melanocortinergic tone contributes to the 

compensatory reduction of high-energy diet consumption in response to chronic diet 

exposure.  

 

Forebrain ventricular MCR antagonist treatment or MC4R knockout profoundly 

disrupts endogenous melanocortin signaling under baseline, chow diet maintenance and 

results in pronounced hyperphagia, hypothermia and decreased activity (Adage et al., 

2001; Butler et al., 2001). The global nature of these procedures makes it impossible to 

distinguish between the contributions of anatomically distinct MCR populations to the 
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measured responses. The current study is the first to selectively implicate hindbrain 

MCRs in baseline energy expenditure maintenance by showing that hindbrain MCR 

antagonism triggers a long-lasting hypothermia and bradycardia. These data 

complement our experiments showing that agonist stimulation of hindbrain MCRs 

triggers responses of the opposite valence -  hyperthermia and tachycardia (Skibicka and 

Grill, 2008a, 2009a).  

 

As noted earlier MCR-bearing sympathetic pre-motor neurons are found in 

several hindbrain nuclei whose activity contributes to thermogenic and cardiovascular 

function (Skibicka and Grill, 2008a, 2009a). Additional experiments will be required to 

define which of these hindbrain MCR bearing neurons contributed to the energetic and 

cardiovascular effects observed here in response to 4th v antagonist delivery. It is likely 

that differences between the inputs and outputs of a given structure might make its 

contributions more relevant to the responses observed under chow maintenance than 

for those observed in response to high-energy diet maintenance.   

 

There are data that suggest that endogenous melanocortin signaling is affected 

by diet macronutrient content but the direction of these effects varies across studies. 

Stimulation and blockade of MCRs appears to selectively affect intake of diets high in fat, 

rather then those with increased carbohydrate or protein content (Hagan et al., 2001; 

Samama et al., 2003). Other experiments examine whether the anorexic or thermogenic 

responses to MCR stimulation (via forebrain application of MC3/4 agonist – MTII or 

αMSH) is affected by high-energy diet exposure. Results of those studies are highly 

variable ranging from indications that feeding responses to MCR agonist are enhanced 

(Hansen et al., 2001), unaltered (Li et al., 2004) or decreased (Clegg et al., 2003) in 
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high-fat fed rats.  In other studies it was observed that the decrease in food intake 

induced by involuntary overfeeding of high-fat diet for 16 days was associated with an 

increased expression of hypothalamic POMC mRNA (Hagan et al., 1999). This high-fat 

induced decrease in intake is abolished by low dose 3rd v SHU application (Hagan et al., 

1999). The role of PVN MCR signaling on palatable liquid diet intake was highlighted by 

results showing that PVN antagonist injection (agouti related protein; AgRP) potently 

increased intake (Taylor et al., 2007). More recently PVN MCR adenoviral vector 

knockdown increased high-fat intake without altering chow intake. Similar findings are 

reported with chronic interference with MCR signaling in the lateral hypothalamus (Kas 

et al., 2004).  The current results with 3rd v SHU-9119 application are consistent with a 

diet selective hyperphagic effect (present in high-fat and absent in chow fed rats).    

 

These studies conclude that hypothalamic MCRs are the principal site of action 

in mediating the observed effects. Not considered in those studies but the focus of the 

current experiments is a determination of whether MCR expressing neurons in the 

hindbrain contributes to the observed effects (Grill et al., 1998; Williams et al., 2000a; 

Zheng et al., 2005; Skibicka and Grill, 2009a).  Hindbrain SHU 9119 application (4th v 

and direct NTS delivery ) induced a pronounced chow hyperphagia similar in size and 

duration to that induced by forebrain drug application (Grill et al., 1998; Williams et al., 

2000a). The failure to consider a role for hindbrain MCR expressing nuclei in studies of 

high-energy diet induced CNS changes may result from the prevailing view that 

hindbrain circuits are relevant only to short-term feeding control (Cone, 2005). Current 

data highlight the contribution of the hindbrain MCRs to the longer term consequences 

of high-energy diet maintenance. The dose of the drug chosen in the current study was 

not effective on baseline chow intake, but selectively affected moderate and high-fat 
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intake. This is the first set of data showing an increased sensitivity to MCR blockade in 

the hindbrain in rats fed a high-fat diet, as compared to those maintained on chow. 

Several populations of neurons in the hindbrain express MCRs and contribute to food 

intake. Two most prominent sites are the nucleus of the solitary tract and the 

parabrachial nucleus (Williams et al., 2000a; Skibicka and Grill, 2009a). Both sites are 

implicated in taste and palatability processing, whether blockade of MCR activity alters 

the ability to sense the high caloric content of the diet, process the taste or perhaps 

increases the palatability of the diet remains to be resolved.  

 

The MCR antagonist used here targets both MCRs expressed in the brain – MC3 

and MC4R. It is possible that for the 3rd v study blockade of both receptors contributes 

to the hyperphagic response selective to high-energy diet fed rats. However the fact that 

only MC4R, not MC3R knockout mice show and exacerbated hyperphagia and weight 

gain on high-fat diets provides a counterpoint to a possible MC3R contribution (Butler 

et al., 2000; Butler and Cone, 2002). Previous reports indicate that only expression of 

MC4R and not MC3R is altered by exposure to energy-dense diets (Harrold et al., 1999). 

Even a stronger case for a primary MC4R effect in the hindbrain can be made as several 

reports indicate no MC3R expression in the hindbrain (Roselli-Rehfuss et al., 1993).  

 

The current data indicate that moderate and high-fat diet exposure engages the 

hypothalamic and hindbrain endogenous melanocortin system, what remains unknown 

is what signals, induced by fat feeding, directly engage POMC neurons. Leptin and 

insulin are peripheral circulating factors that increase with high-energy diet 

maintenance, and activate POMC neurons to potentially mediate fat diet activation of 

the central melanocortin system (Schwartz et al., 1997; Seeley et al., 1997; Satoh et al., 



 117 

1998; Benoit et al., 2002; Rahmouni et al., 2003; Skibicka and Grill, 2009b). 

Melanocortin receptor stimulation is the major downstream pathway within the CNS to 

propagate leptin mediated anorexia as well as energy expenditure (Schwartz et al., 1997; 

Seeley et al., 1997; Satoh et al., 1998; Skibicka and Grill, 2009b). Insulin-mediated 

anorexia as well as sympatho-excitation utilizes the melanocortin pathway (Benoit et al., 

2002; Rahmouni et al., 2003). Since both leptin and insulin receptors are expressed on 

ARC POMC neurons and can stimulate common intracellular signals it is also possible 

that the integration of the two signals is required for POMC neuron activation. Relevant 

to the hindbrain MCR selective high-energy intake response is that many of the 

aforementioned signals also reach the hindbrain (NTS) POMC neurons. Hindbrain 

POMC neurons are responsive to leptin treatment and blockade of hindbrain MCRs 

abolishes the anorexic and energetic responses to hindbrain leptin stimulation. Insulin 

receptors are also expressed in the hindbrain (Folli et al., 1994). Studies are needed to 

resolve whether hindbrain leptin and/or insulin stimulation is upstream of the dietary 

increase in activation of hindbrain MCRs. Another interesting possibility is that 

leptinergic, insulinergic or other stimulation of hypothalamic POMC neurons and 

subsequent projections to hindbrain MCR expressing populations leads to curbing of the 

high-fat diet intake reported here. 

 

No changes in thermogenesis and activity in rats challenged with moderate or 

high fat diet were observed. Previous reports showed for e.g. increased oxygen 

consumption after moderate-fat (25%) exposure already at the first 24h period in mice 

(Butler et al., 2001), however the same group reports that BAT SNS activity was not 

altered during that period, which would be consistent with lack of body temperature 

changes in our study. It is therefore possible that other tissues then BAT are involved in 
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the SNS DIT response (like muscle) as oxygen consumption is a more global measure of 

energy usage and reflects cumulative metabolic activity of all tissues. On the other hand 

another report shows an increase in molecular activity of BAT (via UCP-1 mRNA 

expression) in mice fed high fat (60%) diet (Voss-Andreae et al., 2007), which is 

suggestive of BAT activation. However direct measurement of BAT temperature would 

be necessary to assert translation of increased UCP-1 mRNA levels to increased 

thermogenesis. In fact Li et al (Li et al., 2004) report increased UCP-1 levels in rats fed a 

high-fat diet without any simultaneous changes in oxygen consumption. This could 

reflect a potential disassociation of molecular and physiological parameters of energy 

expenditure. Core body temperature is under tight central regulation. Therefore another 

possibility might be that while BAT thermogenic activity might increase after high-fat 

exposure, a change in core temperature is not seen as other counter-hyperthermic 

measures are engaged by the organism in order to maintain the core temperature at a 

constant level. 

 

Together the findings presented here bring attention to the endogenous 

contribution of the hindbrain MCRs to a variety of energetic parameters and feeding 

responses. Future studies should resolve how this newly outlined contribution is 

integrated into the current energy balance control model, to determine if it is integrated 

with the hypothalamic circuitry or does it function independently and parallel to the 

hypothalamus energy balance controlling circuits.  
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Figure 5.1: Experimental paradigm utilized for measurements of food intake (FI), body 

weight (BW), core temperature (TC), heart rate (HR) and spontaneous activity (SPA) in 

experiment 1 (A); experimental days 4 and 7 of experiment 1 (B); in experiment 2 (C). Black bars 

represent periods of lights out, white bars indicate lights on. Moderate fat (MF), high fat (HF), 

ventricle (V). 
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Figure 5.2: Enhanced hindbrain melanocortinergic tone after moderate-fat diet 

exposure (experiment 1). A. Daily average caloric intake of chow and moderate-fat fed rats B. 

Daily average body weight. Arrows represent 4th ventricle injection days. C. Hyperphagia and D. 

body weight gain after hindbrain MCR blockade with 0.2nmol SHU 9119 are selective for 

moderate-fat fed rats. Moderate fat (MF). * P<0.05 
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Figure 5.3: Energetic effects of blockade of hindbrain MCRs with SHU 9119 on A. 

core temperature B. Core temperature change relative to respective vehicle C. heart rate D. 

spontaneous activity in rats fed chow (baseline conditions) and moderate fat food. Histograms 

represent 8h average, with no food available during the period of energetic measurement. 

Moderate fat (MF). * P<0.05 
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Figure 5.4: Enhanced hindbrain melanocortinergic tone after high-fat diet 

exposure – comparison of 3rd and 4th v studies. Hyperphagia and body weight gain 

selective for high-fat fed rats after MCR blockade with 0.1nmol SHU 9119 in the forebrain (3rd 

ventricle injection) A-B and hindbrain (4th ventricle injection) C-D. *P<0.05 
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Figure 5.5: Energetic effects of blockade of hindbrain MCRs with daily 3rd 

ventricular application of a sub-threshold (in control chow fed condition) dose of 

SHU 9119 (0.1 nmol) in rats fed high-fat diet on A. core temperature B. heart rate C. 

spontaneous activity in the light (left) and dark (right) cycle. Histograms represent 8h average, 

with no food available during the period of energetic measurement.  
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Figure 5.6: Energetic effects of blockade of hindbrain MCRs with daily 4th 

ventricular application of a sub-threshold (in control chow fed condition) dose of 

SHU 9119 (0.1 nmol) in rats fed high-fat diet on A. core temperature B. heart rate C. 

spontaneous activity in the light (left) and dark (right) cycle. Histograms represent 8h average, 

with no food available during the period of energetic measurement.  
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CHAPTER 6 

HINDBRAIN CART INDUCES HYPOTHERMIA MEDIATED BY GLP-1 

RECEPTORS4      

                                                    

ABSTRACT 
 

 
 
Cocaine- and amphetamine-regulated transcript peptides (CART) are widely distributed 

throughout the neuraxis, including regions associated with energy balance. CART’s 

classification as a catabolic neuropeptide is based on its inhibitory effects on feeding, co-

expression with arcuate nucleus POMC neurons, and on limited analysis of its energy 

expenditure effects.  Here we investigate whether: 1) caudal brainstem delivery of CART 

produces energetic, cardiovascular and glycemic effects, 2) forebrain – caudal brainstem 

neural communication is required for those effects and 3) GLP-1 receptors (GLP-1R) 

contribute to the mediation of CART-induced effects.  Core temperature (Tc), heart rate 

(HR), activity and blood glucose were measured in rats injected 4th v. with CART (0.1, 

1.0 and 2.0µg). Food was withheld during physiologic recording and returned for 

overnight measurement of intake and body weight. CART induced a long-lasting (> 6h); 

hypothermia; a 1.5oC and 1.6oC drop in TC for the 1.0 and 2.0µg doses. Hindbrain CART 

application reduced food intake and body weight and increased blood glucose levels; no 

change in HR or activity was observed.  Supracollicular decerebration eliminated the 

hypothermic response observed in intact rats to hindbrain ventricular CART, suggesting 

that forebrain processing is required for hypothermia. Pretreatment with the GLP-1R 

antagonist (exendin-9-39) in control rats attenuated CART hypothermia and 

                                                 
4
These results were partially reported at the 2007 Obesity Society Meeting, in New Orleans, LA and 

appeared in Journal of Neuroscience, 2009. This work was supported by NIH grants DK-21397 and NRSA 

NS-059254 
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hypophagia, indicating that GLP-1R activation contributes to hypothermic and 

hypophagic effects of hindbrain CART while CART-induced hyperglycemia was not 

altered by GLP-1R blockade. Data reveal a novel function of CART in temperature 

regulation and open possibilities for future studies on the clinical potential of the 

hypothermic effect. 

 

INTRODUCTION 

 

 Cocaine-amphetamine-regulated transcript (CART) neuropeptides were 

initially localized to the striatum and nucleus accumbens; regions associated with 

reward, motivation and addiction (Douglass and Daoud, 1996). Later CART synthesis 

was described in regions associated with energy balance control including the arcuate 

and paraventricular hypothalamus, nucleus tractus solitarius (NTS) and vagal afferent 

neurons (Koylu et al., 1997; Koylu et al., 1998; Broberger, 1999; Broberger et al., 1999; 

Vrang et al., 1999b; Vrang et al., 1999a). In arcuate hypothalamic neurons, CART is co-

expressed with proopiomelanocortin (POMC) whose cleavage product, α-MSH, is a 

major catabolic contributor to energy balance (Butler and Cone, 2002; Cone, 2005). 

Leptin up-regulates and food deprivation down-regulates hypothalamic expression of 

both POMC and CART (Kristensen et al., 1998). Melanocortin receptor stimulation 

produces hypophagia, hyperglycemia, hyperthermia, tachycardia and increased activity 

(Fan et al., 2000; Gutierrez-Juarez et al., 2004; Skibicka and Grill, 2008a). Other 

studies reveal that forebrain ventricular CART delivery decreases food intake and in 

conjunction with the findings just described lead to the idea that CNS CART effects on 

energy balance are catabolic in nature (Kristensen et al., 1998; Kuhar et al., 2000; 

Rogge et al., 2008). The energy expenditure effects of CART are however, insufficiently 
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investigated. The experiments reported here contribute to a developing perspective that 

the functional effects of CNS CART signaling on energy balance are not consistent with a 

catabolic role of CART55-102, as they revealed a hypothermic effect whose mediating 

neural pathway is described.  

 

Central CART administration (forebrain ventricle) suppresses and blockade of 

CNS CART signaling with ventricular antiserum delivery increases food intake 

(Kristensen et al., 1998). Direct hypothalamic CART administration, however, elicits 

hyperphagia which contrasts with the hypophagia observed with ventricular delivery 

(Abbott et al., 2001; Smith et al., 2008). This disparity between the direction of effect 

for ventricular vs. direct hypothalamic CART administration suggests that the anorectic 

action of CART is mediated by extra-hypothalamic sites. In fact, several studies show 

that hindbrain ventricular (4th ventricle) delivery of CART produces anorexia (Aja et al., 

2001b; Zheng et al., 2001; Aja et al., 2002; Zheng et al., 2002). 

 

While an indirect measure, the increases in brown adipose UCP-1 expression in 

response to arcuate and paraventricular nucleus CART delivery (Wang et al., 2000; 

Kong et al., 2003) indicates a role of hypothalamic CART in thermogenesis and 

catabolic action.  However, the energetic and cardiovascular effects of hindbrain CART 

stimulation are largely unexplored (Hwang et al., 2004). CART is detected in several 

hindbrain regions associated with energy balance/thermoregulation including NTS, 

parabrachial nucleus (PBN), raphe pallidus, and rostral ventral lateral medulla (Dun et 

al., 2000; Dun et al., 2001).   For this reason our experiments examined the energetic 

and cardiovascular effects produced by hindbrain (4th v. and NTS) CART55-102 delivery.  
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Hindbrain glucagon-like peptide-1 receptors (GLP-1R) mediate CART55-102 - 

induced hypophagia and neuronal activation (Fos-Li) observed in multiple hindbrain 

sites (Aja et al., 2006). Some of these Fos-Li expressing nuclei are also relevant to 

thermoregulation. Therefore our experiments also assessed whether hindbrain GLP-1R 

contribute the energy expenditure effects of hindbrain CART55-102 stimulation. 

 

METHODS 

Subjects 

Male Sprague Dawley rats (Charles River Laboratories, Wilmington, MA), weighing 

300–400g (10-12 weeks old) at surgery and housed individually in plastic bins under a 

12-h light, 12-h dark cycle (0800 h lights on), participated in the five experiments 

described below. Pelleted food (Purina 5001; St. Louis, MO) and water were available ad 

libitum unless otherwise noted. All procedures conformed to the institutional standards 

of animal care and use committee (University of Pennsylvania).  

Surgery 

Rats were anesthetized with ketamine (90 mg/kg), xylazine (2.7 mg/kg), and 

acepromazine (0.64 mg/kg) delivered im. 

Fourth and third intracerebroventricular (v.) and NTS intraparenchymal 

cannula implantation. 

Rats in experiments 1, 3 and 4 received a fourth v. guide cannula (22 gauge; Plastics 

One, Inc., Roanoke, VA) with its tip stereotaxically positioned 2.0 mm above the fourth 

ventricle (coordinates: on the midline, 2.5-mm anterior to the occipital suture, and 4.5-

mm ventral to the dura, with injector aimed 6.5-mm ventral from dura). Rats in 



 129 

experiment 3 also underwent a decerebration surgery. Drug injections to the 4th v. at 

volumes used in our experiments have been shown to be confined to the hindbrain 

regions without stimulation of regions rostral to the 4th v. (Flynn and Grill, 1985; Blevins 

et al., 2004; Fan et al., 2004; Hayes et al., 2008b). A second group of rats in experiment 

4 received a third v. guide cannula (coordinates: on the midline, 2-mm posterior to 

bregma, and 5.5-mm ventral to dura mater, with injector aimed 7.5-mm ventral to dura). 

Rats in Experiment 5 received a cannula positioned 2.0-mm above the medial NTS 

(coordinates: 0.5-mm from the midline, on occipital suture, 5.9-mm ventral to skull; 

placement as we previously described in Hayes et al 2009). Cannulas were attached to 

the skull with dental acrylic and jeweler’s screws, and closed with an obturator as 

previously described (Fan et al., 2000; Gutierrez-Juarez et al., 2004; Skibicka and Grill, 

2008a).  

Decerebration surgery. 

Supracollicular decerebration was performed in two hemi-transection stages separated 

by at least 1 wk, as previously described (Grill and Norgren, 1978). Decerebrate rats 

received 4th v. cannulas and telemetric transponders (described below) during the 

second hemisection surgery. Pair-fed (gavage-fed) neurologically intact control rats were 

also anesthetized on two occasions and implanted with fourth v. cannulas and telemetric 

transponders during the second surgery. Rats recovered for at least 1 wk before the 

experiment started. The completeness of the intended transection was verified 

histologically after the experiment. Only rats with a histologically verified complete 

transection were included in the data analyses.  

Telemetric transponder surgery. 

Telemetric transponders (HRC 4000 VitalView; Mini Mitter/Respironics, Bend, OR) for 
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recording core temperature (TC), heart rate (HR), and spontaneous physical activity 

(SPA) were inserted into the abdominal cavity, with the leads positioned sc and secured 

to the chest muscles on either side of the heart with sutures.  

Experimental procedures 

Cannula position verification. 

At least 7 d after surgery, all brain cannula placements were assessed by measurement of 

the sympathoadrenal-mediated glycemic response to central injection of 5-thio-D-

glucose [210 µg in 2 µl artificial cerebral spinal fluid (aCSF; Harvard Apparatus) for 3rd 

and 4th v. and 21 µg in 0.1 µl for NTS] (Ritter et al., 1981). A post-injection elevation of at 

least 100% of baseline plasma glucose level was required for subject inclusion.  

Habituation training. 

Before the start of experimental testing, rats were acclimated to the handling and 

injection procedures used in a given experiment.  

Food intake and body weight monitoring. 

As described in Figure 6.1, food was removed at the time of injections (early in the light 

cycle) and returned 8 h later, late in the light phase. Thus, food was not available during 

the period of energetic/sympathetic response measurement. Food intake and body 

weight measurements were made 24 h after the injection of drug. Given this design, all 

noted differences in food intake reflect longer latency effects of CART (i.e. intake from 

8–24 h after injection). For ad libitum-feeding rats, food was always available during the 

dark cycle, and a minimum of 48 h was allotted between experimental testing for all 

animals. 
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Blood glucose response measurements: Blood glucose was measured before 

ventricular injections and at 30, 60, 120 and 240 min post-injection by collecting a drop 

of tail blood and placing it in a standard glucometer (Accucheck, Roche Diagnostics, 

Indianapolis, IN). Food (chow) was not available during the blood glucose 

measurements; it was returned immediately after the 240 min measurement and 

measured 24h after drug injection. 

Experiment 1 

To determine the energy expenditure and food intake effects of hindbrain CART55-102 

stimulation rats (n=23) received fourth v. vehicle injections (1 µl aCSF) counterbalanced 

with one dose of CART (CART55-102, American Peptide Company, Inc., Sunnyvale, CA): 

0.1 µg (19 pmol, n=4), 1.0 µg (190 pmol, n=9), 2.0 µg (380 pmol, n=10). CART55-102  was 

chosen for this study as this peptide fragment has been previously shown to have 

physiological effects when applied to the hindbrain (Aja et al., 2001b; Aja et al., 2001a; 

Zheng et al., 2001; Aja et al., 2002; Zheng et al., 2002; Aja et al., 2006) and also effects 

on thermogenesis when applied to PVN (Wang et al., 2000). Core temperature, HR and 

SPA were recorded telemetrically for 1h before injections and 8h following injections 

every 5 min (TC, SPA) or 30s (HR). Food intake and body weight were recorded 24h post 

injections. To assess whether hindbrain CART induced effects on glycemia changes in 

blood glucose were measured after 4th v. application of CART (2.0 µg) in a separate 

group of rats (n=12). 

 

Experiment 2 

All rats (n=11) received 2.0 µg of CART or vehicle (saline) intraperitoneally (ip). The 

purpose of this experiment was to test whether any of the effects of CART seen with the 
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central treatment can be ascribed to diffusion of the peptide out of CNS and stimulation 

of receptors in the periphery. Energy expenditure and food intake measurements were 

made as described in Experiment 1.  

 

Experiment 3 

To begin to define the neurocircuitry mediating the energy expenditure effects of 

hindbrain CART delivery the chronic decerebrate (CD) rat model was utilized. A lack of 

effect in CD rats compared to intact controls would indicate the requirement for 

forebrain neurocircuitry for mediation of a given effect. CD rats were maintained on a 

liquid diet (AIN 76A rodent diet; Research Diets, New Brunswick, NJ; 9ml, gavage-fed 4 

times daily) as they do not feed spontaneously. This maintenance regime provides 79 

kcal/d and adequate hydration; rats gain weight on this regime. Feedings were separated 

by intervals of at least 2 h. CD and gavage-fed intact control rats were maintained on this 

feeding paradigm except during experimental testing when animals were only fed three 

times: once 2 h before experiments commenced and twice after the experimental testing.  

Core temperature of CD rats is more variable than that of control rats. Rectal 

temperature was measured at each gavage feeding, and rats were cooled or heated if TC 

was less than 34.0 or above 38.5ºC (except during experimental testing). Rats received 

two doses of CART (1.0 and 2.0 µg) and vehicle in a counterbalanced design over three 

separate testing days (separated by a minimum of 48 h).  Core temperature, HR and 

SPA were recorded telemetrically for 1h before injections and 8 h following injections. 

 

Experiment 4 

To determine whether the CART-induced changes in energy expenditure are mediated 

by GLP-1Rs all rats (n=9: 3rd v, n=7: 4th v.) received four of the following ventricular 
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injections counterbalanced over four testing days and separated by at least 48 h: 1) aCSF; 

2) CART 1.0 µg;  3) CART 1.0 µg + Exendin-9 100 µg (Exendin 9-39, American Peptide 

Company, Inc., Sunnyvale, CA); 4) Exendin-9 100 µg. Exendin-9  dose selection based 

on (Aja et al., 2006). Core temperature, HR and SPA were recorded telemetrically for 1 h 

before injections and 8 h following injections. To determine if the CART-induced 

changes in blood glucose and food intake are mediated by GLP-1Rs, in a separate group 

of rats (n=10), blood glucose levels, 24 h food intake and body weight change were 

measured after 1) aCSF; 2) CART 2.0 µg; 3) CART 2.0 µg + Exendin-9 100 µg; 4) 

Exendin-9 100 µg.  Some effects of CART (e.g. gastric emptying)  are mediated by 

corticotrophin-releasing factor receptors (CRF-Rs) and not GLP-1Rs (Smedh and Moran, 

2003) indicating that CART exerts it’s CNS action through at least two separable 

neuropeptide pathways. To determine if the CART-induced changes in blood glucose 

and food intake are mediated by CRF-Rs, in a separate group of rats (n=8), blood 

glucose levels, were measured after 1) aCSF; 2) CART 2.0 µg; 3) CART 2.0 µg + CRF 

antagonist 38 µg (α -helical CRF-(9-41); Sigma-Aldrich) 4) CRF -(9-41). CRF-(9-41) 

dose selection was based on (Smedh and Moran, 2003). This dose was effective in 

blocking CART induced inhibition of gastric emptying, it was also shown to have  no 

effects on CART hypophagia (Smedh and Moran, 2003). 

 

Experiment 5 

NTS is innervated by CART fibers and is also a site of thermoregulatory and intake 

control(Koylu et al., 1997; Koylu et al., 1998; Broberger, 1999; Broberger et al., 1999; 

Vrang et al., 1999b; Vrang et al., 1999a). To examine whether the NTS is the hindbrain 

locus for the energy expenditure and food intake effects of CART observed following 4th 

v. application all rats (n=12) received unilateral vehicle injections (0.1µl aCSF) 
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counterbalanced with one dose of CART: 0.1 µg into the parenchyma of the NTS. Energy 

expenditure, food intake and body weight were recorded as in experiment 1. 

 

Statistical analysis: 

Core temperature, HR and SPA were analyzed by ANOVA on post-injection 6 h average 

values of each parameter and followed by student’s t-test or Tukey test as appropriate. 

Twenty four hour food intake and body weight were analyzed by ANOVA and followed 

by t-test or Tukey test as appropriate. All statistical analysis was conducted using 

STATISTICA software (StatSoft, Inc., Tulsa, OK). Differences were considered 

significant at P<0.05. 

 

RESULTS 

 

Experiment 1 

Core temperature: Fourth ventricular CART injections produced large and long-lasting 

hypothermic responses, with an maximum drop of 0.7oC, 1.5oC and 1.6oC in TC and 6h 

average effect size of -0.2ºC (P=0.902), -1.1ºC (P<0.0005), -1.3ºC (P<0.0005) for the 

0.1, 1.0 and 2.0µg doses respectively (Figure 6.2a). Heart rate: Although heart rate 

decreased slightly in some rats, this effect was not consistent across all rats and no 

significant changes were noted for any of CART doses used (Figure 6.2b). Spontaneous 

activity: No significant changes in spontaneous activity were observed (Figure 6.2c). 

Blood glucose was significantly increased after 2µg CART injection at 30 (P<0.05), 60 

(P<0.01) and 120 (P<0.05) minutes after injection, or as area under the curve (AUC; 

P<0.05) (Figure 6.3a). Food intake was decreased by the 1.0 (P=0.058) and 2.0 µg 

(P<0.05) CART doses (food available 8-24 h post injection), (Figure 6.3b). Body weight 
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was also significantly decreased by the 1.0 (P<0.05) and 2.0µg (P<0.05) CART (Figure 

6.3c). 

 

Experiment 2 

Peripheral application of CART had no effect on food intake, body weight and any of the 

measured energy expenditure parameters (Figure 6.4). 

 

Experiment 3 

Gavage-fed control rats: Core temperature was significantly decreased by 4th v. CART 

application at both the 1.0 (P<0.05) and 2.0 µg (P<0.0005) doses. CD rats: There was 

no significant hypothermia noted after CART application in this group. (Figure 6.5). To 

extract any possible short-term temperature effects that might have been present in the 

CD rats, data were reanalyzed this set of data (on both CD and gavage-fed control rats) 

by a two-way ANOVA looking at the interaction of time (30min periods) and drug. This 

analysis yielded a significant effect of drug (p=0.005), time (p<0.0005), and a 

significant interaction (p<0.0005) in gavage-controls. However there were no 

significant effects in CDs [drug (p=0.41), time (p=0.20), and drug-time interaction 

(p=0.74)].  

 

Experiment 4 

Significant hypothermia was noted when 1.0 µg of CART was applied alone in the 3rd 

(P<0.05) or 4th v. (P<0.05). This CART-induced hypothermic response was abolished 

following hindbrain-delivery of the GLP-1R antagonist Exendin-9 [100 µg; P=0.97 from 

aCSF, Tc]. Exendin-9 application alone was without effect [3rd v: P=0.72; 4th v.: p=0.99; 

Figure 6.6]. Consistently with results from Experiment 1 CART at 2.0 µg produced a 
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significant hyperglycemic response when delivered to the 4th v. (P<0.005); this effect 

was not altered by the Exendin-9 treatment (P<0.005 from aCSF). Fourth ventricular 

CART delivery (2.0 µg) significantly reduced chow intake (P<0.001); pretreatment with 

the GLP-1R antagonist attenuated this effect (P=0.21 from aCSF). Similarly the 

reduction in 24 h body weight produced by CART 4th v. (P<0.005) was attenuated by 

Exendin-9 pretreatment (P=0.69; Figure 6.7 a-d). In a separate group of rats the effect 

of CRF-R blockade on CART induced hyperglycemia was evaluated.  CART at 2.0 µg 

produced a significant hyperglycemic response when delivered to the 4th v (P<0.01); this 

effect was not altered by the CRF-(9-41) treatment (P<0.05 from vehicle; Figure 6.7e-f). 

There was no effect of the CRF-(9-41) alone (P=0.99 from aCSF). 

 

Experiment 5 

Intraparenchymal injection of CART at a dose that was ineffective when applied in the 

4th v. (0.1µg) significantly (P<0.05) decreased TC when applied to the medial NTS 

parenchyma (Figure 6.8a). Only rats with confirmed NTS placement were included in 

the data analysis (representative injection site is shown in Figure 6.8b). No significant 

changes were observed in HR, SPA, food intake, and body weight.  

 

DISCUSSION 

 

Our experiments addressed the hypothesis that CART peptide’s effects on energy 

balance cannot be characterized as simply catabolic in nature. CART peptide was 

applied to the 4th ventricle (hindbrain-directed), the 3rd ventricle (hypothalamus-

directed), and directly to the NTS parenchyma and its effects on energetic (TC and 

activity), cardiovascular (HR), food intake, body weight, and plasma glucose parameters 
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were measured.  Our data show that CNS delivery of CART results in a hypothermia. We 

discuss the hypothermic effect first, the GLP-1R mediation of this response next, and 

then review the other effects observed.  

  

These are the first data to show that hindbrain CART55-102 delivery induced a 

pronounced and long-lasting hypothermic response (a 1.5oC and 1.6oC decrease in TC for 

the 1.0 and 2.0 µg doses relative to vehicle treatment; >6h duration). Injections of CART 

into the forebrain ventricle (providing access of drug to forebrain and hindbrain sites 

due to the caudal flow of CSF), hindbrain ventricle, and hindbrain parenchyma (intra-

NTS) were each effective in decreasing TC. The potent and long duration of hypothermia 

triggered by injections selective to the hindbrain ventricle or NTS parenchyma, that 

bypass forebrain, indicated that CART responsive neurons located within the hindbrain 

and at least partially within the NTS mediated the hypothermic response. Additional 

experiments evaluating hypothalamic or forebrain parenchymal sites are needed to 

directly exclude the possibility of forebrain contribution to the hypothermic response. 

However, the few published studies that examine the energy expenditure effect of 

hypothalamic (ARC; PVN) CART injection show responses (increases in brown adipose 

tissue (BAT) UCP-1) that are typically associated with a hyperthermic action (Wang et 

al., 2000; Kong et al., 2003). That the thermic response to hypothalamic CART injection 

is opposite in direction to the current findings strengthens the hypothesis that the 

hypothermia was mediated by hindbrain CART responsive neurons.   

 

We recently showed (Hayes et al., 2008a) that stimulation of hindbrain GLP-1R 

induces hypothermia similar in duration and size to that produced by CART in the 

present study.  Current data establish that GLP-1 neurons and hindbrain GLP-1Rs are 
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downstream mediators of the effect of CART55-102 on Tc as the hypothermic effect of 

CART was eliminated by blockade of hindbrain GLP-1Rs with Exendin 9-39.  It is 

interesting to note that the hypothermic effect of hindbrain GLP-1R stimulation does 

not require intact forebrain-hindbrain communication as the effect was unaltered by 

supracollicular decerebration (Hayes et al., 2008a). By contrast, we showed here that 

the hypothermic effect of CART requires neural connections between the forebrain and 

hindbrain and forebrain processing is required, as the hypothermia was not present in 

rats with chronic supracollicular transsection. Therefore the circuitry mediating the 

hypothermic effect of CART might involve hindbrain neurons responsive to CART that 

project to the forebrain. The identity of those forebrain-projecting neurons is not known, 

however our data showing hypothermia in response to NTS CART stimulation suggests 

that at least part of CART’s effects on temperature is mediated by potential CART 

receptors located in or near the NTS. NTS neurons project heavily in a rostral fashion 

(e.g. PBN) to nuclei that relay peripheral thermal information to thermoregulatory 

neurons in the hypothalamic preoptic area (Nakamura and Morrison, 2008). The 

forebrain-relayed information would be subsequently transmitted back to the hindbrain 

resulting in putative GLP-1 release from the NTS proglucagon expressing neurons and 

subsequent hindbrain GLP-1R stimulation. Once activated, the output pathway 

following hindbrain GLP-1R activation inducing hypothermia is contained within the 

hindbrain (Hayes et al., 2008a). Several nuclei expressing GLP-1Rs within the hindbrain 

contain sympathetic premotor neurons (Yamamoto et al., 2002).  It is possible that 

inhibition of those neurons results in the observed hypothermia. Experiments 

evaluating hindbrain CART and GLP-1 effects on SNS neurons and BAT activity are 

needed to evaluate this possibility.  Another potential mechanism contributing to 

hypothermia is SNS-mediated vasodilatation. A role of other neurotransmitters (e.g. 



 139 

serotonin and dopamine) that are associated with hypothermic responses (Cryan et al., 

2000; Catalina et al., 2002) in this pathway is possible and remains to be investigated. 

 

While the hypothermic response to hindbrain CART55-102 peptide stimulation 

contrasts with the hyperthermic effect of hindbrain melanocortin receptor stimulation, 

the anorexia and acute hyperglycemic effects of CART injection are similar to those 

observed with melanocortin delivery (Fan et al., 2000). The anorexic effect of hindbrain 

CART stimulation observed here is consistent with several studies (Kristensen et al., 

1998; Rogge et al., 2008). Furthermore, Aja et al. (Aja et al., 2006) show that GLP-1Rs 

are downstream of the anorexia triggered by hindbrain CART as measured by 

alterations in palatable diet (Ensure®) intake. Our studies confirm this GLP-1R 

mediation of anorexic effects of CART and extend the conclusion to effects on 

consumption of standard chow (food of lesser palatability). We show, for the first time, 

that acute CART55-102 stimulation increased blood glucose levels. This is consistent with 

the direction of acute effect of CNS melanocortin stimulation on blood glucose (Fan et 

al., 2000). Unlike CART’s hypothermic and anorexic effect, the hyperglycemic effect was 

not mediated by hindbrain GLP-1Rs as blockade of hindbrain GLP-1Rs did not alter 

CART-induced hyperglycemia. Other effects of CART (e.g. gastric emptying) are 

mediated by CRF-Rs (Smedh and Moran, 2003), but not GLP-1Rs. Here we show that 

CART-induced hyperglycemia does not require hindbrain CRF-R mediation, indicating 

that a different mechanism might govern the hyperglycemic effect of CART. 

 

CART peptides are not only widely present in the CNS but also detected in some 

areas relevant to energy balance outside of the CNS including the adrenal medulla, gut, 

and pancreas (Thim et al., 1998; Jensen et al., 1999; Thim et al., 1999). In order to 
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evaluate the potential contribution of CART stimulation outside of the CNS to energetic 

and anorexic effects of CART rats were injected ip with the highest dose of CART applied 

in the ventricle. Peripheral CART55-102 application did not have any effects on any of the 

measured parameters, suggesting that effects seen after central CART application do not 

result from stimulation of potential receptors accessed by ip injection. 

 

Our current data, along with those of others [see (Kuhar et al., 2000) for review], 

suggest that CNS CART peptide plays a role in several anatomically separable circuits. 

CART stimulation within the cortical and mesolimbic regions elicits reward and 

motivation responses (Jaworski and Jones, 2006). CART stimulation in the mesolimbic 

nucleus accumbens produces anorexia (Yang et al., 2005). Hypothalamic CART 

injection has varied effects on food intake, but appears to increase energy expenditure 

(UCP1 activity) (Wang et al., 2000; Kong et al., 2003). In hypothalamic explants CART 

suppresses release of MSH and induces agouti-related protein release. In addition, while 

CART and  POMC are co-expressed in arcuate hypothalamus, CART is also co-expressed 

with the orexigenic peptide melanin-concentrating hormone in lateral hypothalamic 

neurons (Broberger, 1999). Hindbrain CART application decreases food intake, gastric 

emptying (Smedh and Moran, 2003), and as shown here core body temperature. 

Further evaluation of the complexity of CART’s functional effects and the mediating 

neurocircuitry awaits the discovery of CART receptors. 

 

The observed hypothermia was not associated with other anabolic indicators.  

Our measurements included several parameters that are associated with energy 

expenditure and sympathetic control (TC, activity, HR). Melanocortin treatment for 

example alters all three parameters in the catabolic direction consistent with increased 
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energy expenditure and sympathetic activation (Fan et al., 2000; Gutierrez-Juarez et al., 

2004; Skibicka and Grill, 2008a) . CART injection triggered a different pattern of 

response – hypothermia without alteration in activity and HR.  If CART hypothermia is 

not a part of a coordinated pattern of energy balance effects, then what is the 

physiological utility of potent and sustained hypothermic response? Several processes 

have been associated with a marked hypothermia. Conditioned taste aversion (CTA) is 

often accompanied by a hypothermic response. Some studies (Aja et al., 2002) suggest 

that CART plays a role in CTA response.  LiCl, a common inducer of CTAs, produces 

hypothermia via α1-adrenergic receptor (Amaro et al., 1996). It has been proposed that 

hypothermia might enhance CTA formation by extending the associative interval 

between presentation of taste conditioned stimuli and the unconditioned aversive 

effects of LiCl or other agents (Hinderliter et al., 2002; Hinderliter et al., 2004). 

Therefore the elicited CART hypothermia might be adaptive in facilitating CTA 

formation.  Another process enhanced by hypothermia is neuroprotection (Sahuquillo 

and Vilalta, 2007). Neuronal survival after conditions of decreased oxygen supply (e.g. 

ischemia) is often increased if core temperature is decreased after the ischemic episode; 

this phenomenon is observed in rat models of ischemia and is utilized as a treatment 

strategy in ischemic patients (see (Hoesch and Geocadin, 2007) and (Nagel et al., 2008) 

for review).  CART is associated with a neuroprotective effect in ischemia (Xu et al., 

2006; Jia et al., 2008). Induction of hypothermia could be a part of the mechanism by 

which CART exerts a neuroprotective effect. Other experiments are needed to evaluate 

this hypothesis and whether the CART-induced hypothermia is physiological in nature.  

Our results indicate that the hypothermia induced by CART is long lasting and shows 

little tolerance upon repeated exposure (data not shown), two properties highly sought 

after in potential hypothermia-inducing neuroprotective treatments.  
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Figure 6.1: Experimental paradigm utilized for measurements of core temperature 

(Tc), heart rate (HR), spontaneous activity (SPA) and food intake. 
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Figure 6.2: Effect of hindbrain CART stimulation (4th v. injection) on (a) core 

temperature (Tc), (b) heart rate (HR) and (c) spontaneous activity (SPA). Line graphs represent 
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across-rat average parameter measurements through the 8h recording period. The bracketed 

time period on the line graph x-axis indicates the periods used in the histograms. The histograms 

provide 6h post-injection averages + SEM for each parameter at each dose. *P < 0.05 from 

vehicle. 
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Figure 6.3: Effect of hindbrain CART stimulation (4th v. injection) on (a) blood 

glucose levels (b) 24h food intake (c) 24h body weight. The histograms provide averages + SEM 

for each parameter at each dose. *P < 0.05 from vehicle. 
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Figure 6.4: Effect of peripheral CART stimulation (ip delivery) on (a) core temperature, 

(b) heart rate and (c) spontaneous activity (d) 24h food intake (e) 24h body weight. The 

histograms provide averages + SEM.  
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Figure 6.5: Effect of hindbrain CART stimulation (4th v. injection) on core temperature 

(Tc) in (a) chronic decerebrate and (b) gavage-fed rats. Line graphs represent across-rat 

average parameter measurements through the 8h recording period. The histograms provide 6h 

post-injection averages + SEM for each parameter at each dose. *P < 0.05 from respective vehicle. 
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Figure 6.6: Effect of GLP-1R blockade by Exendin 9-39 (100 µg) on the CART-

induced (1 µg) hypothermia with drugs delivered to the (a) 4th v. (b) 3rd v. Line 

graphs represent across-rat average parameter measurements through the 8h recording period. 

The histograms provide 6h post-injection averages + SEM for each parameter at each dose. *P < 

0.05 from vehicle.  
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Figure 6.7: Effect of GLP-1R blockade by Exendin 9-39 (100 µg) on 4th v. 2 µg CART-

induced (a-b) hyperglycemia (c) hypophagia (d) 24h body weight, (e-f) effect of CRF 

receptor blockade by (CRF ant; 38 µg of α -helical CRF-(9-41)) on 4th v. CART 

induced hyperglycemia. The histograms provide post-injection averages + SEM. Area under 

the curve (AUC) *P < 0.05 from vehicle.  
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Figure 6.8: Effect NTS delivery of CART on core temperature (TC). (a) line graph 

represents across-rat average parameter measurements through the 8h recording period. The 

bracket outlines 6h post-injection period. *P < 0.05 from vehicle. (b) representative NTS 

injection site (indicated by the arrow). 4V: 4th ventricle, Sol: nucleus of the solitary tract, SolM: 

medial nucleus of the solitary tract, SolIM: intermedial nucleus of the solitary tract, SolCe: 

central nucleus of the solitary tract.  
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CHAPTER 7 
 

GENERAL CONCLUSIONS 
  

PHYSIOLOGICAL EFFECT  

DRUG 

SITE OF 

APPLIC

ATION 
TC HR SPA FI BW 

CHRONIC 

DECEREBRATE 

EFFECT 

 

INTERACTIONS 

4
th

 v ↑ ↑ ↔ ↓ ↓ TC↑,HR↑, SPA↑, 

(FI N/A) 

� All effects blocked 

by MC3/4R antagonist 

(SHU 9119) 

 

RVLM ↑ ↑ ↔ ↓# ↓# 

PBN ↑ ↑ ↔ ↓ ↓ 

RCh ↑ ↑ ↔ ↓ ↓ 

N/A 

RAPHE ↑ ↑ ↑# ↓# ↔ TBAT↑ as in intact 

NTS ↑ ↑ ↑ ↓ ↓ 

PVN ↑ ↑ ↑ ↓ ↓ 

MTII 
(Ch. 

2&3) 

AHA ↔ ↔ ↔ ↔ ↔ 

 

 

SHU 

9119 

(Ch. 5) 

4
th

 v ↓ ↓ ↔ ↑ ↑ N/A � TC and HR not 

altered by HF feeding, 

but increased FI & BW 

effect, suggesting 

enhanced hindbrain 

MSH tone with HF 

exposure 

4
th

 v ↑ ↑ ↔ ↓ ↓ N/A � 4
th

 v leptin TC,HR, 

FI & BW effects 

mediated by hindbrain 

MCRs as 4
th

 v SHU 

9119 attenuates those 

effects 

� All 4
th

 v effects not 

altered by high-fat diet 

feeding 

NTS ↑ ↑# ↔ ↓ ↓ 

Leptin 

(Ch. 4) 

PBN ↔ ↔ ↑ ↓ ↓ 

  

3
rd

 v ↓ ↔ ↔ ↓ ↓ N/A 

4
th

 v ↓ ↔ ↔ ↓ ↓ (TC,HR, SPA)↔ 

(FI N/A) 

� TC , FI & BW 

effects mediated by 

hindbrain GLP-1Rs 

(  their blockade  

attenuates 4
th

 v CART 

effects) 

 

CART 
(Ch. 6) 

NTS ↓ ↔ ↔ ↔ ↔ N/A  

GLP-1 

(Ch. 6) 

4
th

 v ↓ ↑ ↔ ↓ ↓ TC↑↓,HR↑, SPA↓, 

FI↓ 

 

 
Table 7.1: Summary of collected data. ↑ - increase, ↓ decrease, ↔ - no change in a measured 
parameter, # - weak effect (borderline significant or non consistent between experiments), N/A – 
not applicable, Ch - chapter. For a list of abbreviations please refer to appendix 1. 



 152 

 
 
The experiments described in this dissertation challenge the hypothalamus centered 

focus on energy balance control that dominates the literature and instead make clear 

that CNS control of energy balance is broadly distributed across the neuraxis. Strong 

support is provided for a critical contribution of hindbrain melanocortin and leptin 

signaling to energy balance control. The role of the hindbrain neural processing to 

energy balance regulation is highlighted in several complementary ways. Results 

presented in Chapter 2 clearly indicate that feeding, energetic and cardiovascular 

responses can be obtained by hindbrain melanocortin receptor (MCR) stimulation. 

Further, caudal brainstem processing was found to be sufficient for mediation of the 

energetic and cardiovascular responses, as the same direction and duration of effects 

were observed in a chronic decerebrate rat model as those produced in a neurologically 

intact rat. These findings indicate that the mediating circuitry, that engages sympathetic 

outputs following hindbrain MCR stimulation, is contained entirely within the 

hindbrain. These are the first data to demonstrate the sufficiency of hindbrain MCR in 

initiating energy expenditure responses. Chapter 3 introduced another level of 

anatomical analysis outlining the individual energy balance response profiles from 

several discrete hindbrain MCR-expressing populations. Here, the role of several 

hypothalamic nuclei is also investigated, highlighting the fact that the goal of the work 

was not to shift the energy balance control model to the hindbrain but to create a 

balanced, anatomically distributed perspective. Data presented in Chapter 4 are 

consistent with the presence of a hindbrain specific leptin-melanocortin circuit, possibly 

parallel to the one that has been well established in the forebrain. The data presented 

herein have begun to approach the issue of inputs integrated by the hindbrain MCR 

population. This concept was advanced in Chapter 5, where endogenous hindbrain MCR 
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activity was shown to be necessary for the adaptive feeding responses elicited by chronic 

ingestion of a high-fat maintenance diet. Chapter 6 provides data on hindbrain-directed 

cocaine and amphetamine related transcript (CART)-mediated energy balance effects. 

Due to coexpression of CART peptide with the proopiomelanocortin (POMC) peptide in 

the hypothalamic POMC neuron population, the functional effects of CART on energy 

balance have been often linked to those of melanocortins. This idea was strengthened by 

the fact that both hypothalamic and hindbrain CART stimulation, similarly to MCRs 

stimulation, resulted in anorexia (Kristensen et al., 1998; Zheng et al., 2002). Here 

however, we show that unlike the hyperthermic effect of CART in the hypothalamus, 

application of CART to the hindbrain produces a large and sustained hypothermia. 

These data thus provide caution to general characterizations of neuropeptide effects in 

the hypothalamus to the hindbrain and emphasize the need for direct hindbrain testing. 

 

With respect to the melanocortin system, our studies clearly provide support for 

an independent role of hindbrain MCRs in mediating energy balance effects, 

independent of neural communication with the forebrain. Those data speak to a 

hindbrain location of receptors and downstream mediating pathways for the 

melanocortinergic effects on energy balance. Future studies are needed to identify the 

endogenous source of hindbrain MCR activation that accounts for the energy balance 

effects observed here by exogenous hindbrain MCR ligand application. To affirm a 

completely independent hindbrain circuit two more questions, pertaining to events 

upstream of MCR activation, should be answered: 1) a source for endogenous ligand for 

the hindbrain MCRs would have to be located in the hindbrain (NTS POMC 

populations), and 2) this source would have to be driven by hindbrain selective inputs. 

In the simplest form, there could be two parallel independent circuits, one in the 
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forebrain and the other in the hindbrain. The first circuit would consist of a forebrain 

loop: peripheral inputs directly stimulating ARC POMC neurons that project to 

hypothalamic/forebrain MCR expressing nuclei that subsequently engage the 

sympathetic and anorexic output (by direct projections to spinal cords IML, or through 

hindbrain relays); and a hindbrain loop with peripheral inputs directly stimulating NTS 

POMC neurons projecting to hindbrain MCR expressing areas leading to sympathetic 

and anorexic action. This simplistic model however, was already challenged by several 

publications indicating that ARC POMC neurons send their projections caudally to the 

midline hindbrain MCR expressing nuclei, in addition to their multiple forebrain 

projections.  In fact we have recently showed (in collaboration with HR Berthoud; 

Berthoud HR et al., 2008) that nearly 70% of MSH fibers in the NTS are of 

hypothalamic origin. Thus, NTS POMC neuron projections are likely a minority in the 

midline hindbrain nuclei, however they may play a major role in stimulation of the more 

laterally distributed MCR populations in the hindbrain like the RVLM (Sim, 1994). An 

additional level of hindbrain-forebrain melanocortin interaction is added by the fact 

that some nuclei, such as the PBN, are likely innervated by both POMC sources (Joseph 

and Michael, 1988; Sim, 1994) and indicate that in addition to two simple, parallel and 

separable forebrain and hindbrain circuits there are other MCR-driven circuits that 

contain necessary elements in both forebrain and hindbrain regions.  

 

Inputs to the melanocortin agonist-producing POMC neurons from peripheral 

signals, conveying information about the metabolic status, are a fundamental element in 

the current model of CNS energy balance control. As is the case for existing MCR 

literature, here too the focus has mostly been on the inputs to the hypothalamic ARC 

POMC neurons. Data presented here (Chapters 2 and 3), however, clearly support the 
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need to extend the evaluation of inputs to the hindbrain NTS POMC populations. 

Studies in Chapters 4 and 5 have partly begun to evaluate the sources of inputs to the 

two CNS POMC populations. The hindbrain leptin-melanocortin study presented in 

Chapter 4 is highly suggestive of an independent hindbrain circuit, as both the input 

(hindbrain-directed leptin effects) and the output (MCR stimulation and downstream 

energetic effects) required to elicit a thermic and anorexic responses are located within 

hindbrain nuclei. To place this circuitry entirely within the hindbrain one more link, one 

from leptin receptor activation to NTS POMC activation, has to be characterized and 

localized to the hindbrain. Final confirmation of a circuit endemic to the hindbrain, 

bypassing any forebrain projection would be indicated if the same hindbrain leptin-

melanocortin interaction was shown in a chronic decerebrate rat, where all neural 

forebrain-hindbrain connections are severed. This would indicate that all necessary 

components from receptors of peripheral inputs, through integratory components to 

output are contained in a forebrain-independent, hindbrain circuit. 

  

Leptin is just one of many inputs potentially activating POMC neurons, resulting 

in release of the MSH ligand and activation of MCRs. It is still unclear which 

physiological or pathophysiological factors regulate the activity of the ARC and NTS 

POMC populations, and whether these populations are activated / inhibited together or 

separately. In the work presented here, we focus on view of brain organization that can 

be called distributed control in different contexts (high-fat diet, leptin) under which 

thermogenic, cardiovascular and feeding responses could be observed.  At both 

hindbrain and forebrain, MCR signaling is involved in generation of feeding responses 

to these presented challenges. The location of POMC neurons required for this feeding 

response remains an open question. Interestingly the energetic effects of melanocortins 



 156 

were not altered under high-fat conditions, indicating perhaps that some inputs (here 

arising from high-fat diet maintenance) regulate the feeding and energetic effects of 

melanocortins differentially.  

 

In future studies it will be important to incorporate different testing paradigms, 

as the mediating substrates, and pathways that ultimately converge on sympathetic and 

feeding control centers, are likely to vary to some extent given different sensory 

components (e.g. diet vs. cold vs. systemic pathogen introduction). Fever, for example, 

is a centrally mediated response that can be induced by a systemic infection with blood-

borne pathogens like bacteria (Saper, 1998; Zhang et al., 2000).  Peripheral 

administration of lipopolysacharide (LPS), a piece of gram-negative bacterial cell wall 

that induces an immune system response, is a common model for infection-induced 

fever. Although during a fever, core temperature increases above its normally tolerated 

range, the response is arguably under feedback control; i.e. the temperature set range is 

increased.  Brown adipose tissue (BAT) in rodents is the primary effector contributing to 

fever (Cannon and Nedergaard, 2004).  CNS pathways involved in the thermogenic 

response to LPS have been partially elucidated by immunohistological analysis (Fos-

like-immunoreactivity).  Areas of CNS showing c-Fos induction include brainstem 

regions, such as the NTS and VLM, as well as hypothalamic regions, such as the PVN 

and MPOA (Zhang et al., 2000).  Interestingly, melanocortin neurons and their 

receptors are found in these structures.   

 

Like all homeothermic animals, rats apply thermoregulatory mechanisms to 

defend body temperature in response to challenging ambient temperatures.  Thus, 

adaptive thermogenic responses are reliably driven by cold temperatures.  In rodents, 
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shivering thermogenesis is recruited first. Melanocortin contribution to acute cold 

thermogenesis in MCR knock-out mice has been recently indicated (Voss-Andreae et al., 

2007).  We explicitly addressed the potential MC contribution to cold thermogenesis, at 

forebrain and hindbrain levels of the neuraxis, but were not able to show any significant 

effects of MCR blockade on maintenance of body temperature in the cold. While these 

data might suggest that MCR system is not essential for cold and fever responses in a rat 

(contrary to what has been shown in a mouse), they do not rule out contribution of this 

system to those responses. Several factors might have contributed here to mask the 

MCR contribution, considering the redundancy in the control of thermogenesis in those 

complex responses. The environment and energy state of the rats before the experiment 

could interact to bypass the requirement for MCR activation during our studies. This 

idea has been evaluated recently in mice that lack UCP-1, an uncoupling protein utilized 

in BAT to generate heat (Feldmann et al., 2009). Initial studies of diet-induced-

thermogenesis in these UCP-1 KO mice have not been successful at showing any 

thermogenic dysfunction. However, a careful follow-up study has uncovered their deficit 

in mustering diet-induced thermogenesis but only when these mice were maintained at 

thermoneutrality (without thermal stress) (Feldmann et al., 2009). The constant 

thermal stress likely engaged other thermoregulatory mechanisms, which were then 

easily utilized for diet-induced thermogenesis despite the lack of UCP-1. Those findings 

underscore the importance of careful consideration of all environmental variables when 

conducting thermic studies. It is important to note that most experiments are conducted 

at a “room temperature”, comfortable for the experimenter, however several degrees 

below the rodent thermoneutral zone. It is entirely possible that alterations in the 

maintenance temperature also influenced the outcome of our above mentioned studies 

evaluating the MCR contribution to cold induced thermogenesis. Thus negative data 
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obtained may not be entirely conclusive and further studies availing of different 

paradigms are warranted. 

 

The lack of effect of acute pharmacological studies in the non-feeding focused 

paradigms described above along with the strong nutritional/metabolic status 

component of the so far characterized inputs to the melanocortin system leads to 

another important question: do the melanocortin/leptin peptides play a primary role in 

non-feeding induced thermogenesis (cold, pathogen etc.), or do they play a permissive 

role, integrating the energy status into an equation requiring loss/usage of energy? The 

first would be supported if evidence of direct influence of signals associated with each of 

those challenges reaching POMC neurons (e.g. PGE or IL receptors) was found directly 

on POMC neurons. Even under this situation, their activity could be gated by other 

input they receive. Such input raising PGE2 levels should increase activity of POMC 

neurons leading to increased thermogenesis. This increase in POMC activity could be 

tampered by a simultaneous drop in leptin signaling, indicating insufficient energy 

stores resulting in a lower fever then one that would have been permitted in conditions 

of sufficient energy stores. Conversely, if leptin or other input to POMC neurons would 

signal excessive energy stores, it is possible that fever could be larger. Consistent with 

this hypothesis is the fact that obese rats have exaggerated fever and anorexia responses 

to interleukin 1b (Plata-Salaman et al., 1998).  

  

 Based on the weight of evidence presented here, it is clear that both the 

melanocortin system and its leptinergic inputs controlling for energy balance regulation 

are anatomically distributed within the CNS. What is the utility of this distributed model? 

Stimulation of either the NTS or ARC POMC neuron populations can lead to 
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simultaneous release of ligand onto many neuroanatomically divergent MCR 

populations, which may again converge, to induce similar output responses. This 

divergence might on the surface seem redundant, since final output parameters are 

likely similar, however one advantage of this system design is the gained ability of the 

output to be modulated on many levels. Each nucleus in which MCR expressing neurons 

are stimulated presumably receives many other unique inputs. Each of these separate 

MCR-expressing neurons now has the ability to modulate the final energetic outcome 

response. Therefore, the final outcome can now be finely modulated, filtered and 

integrated with other available energy status information that is being communicated to 

the CNS through the neuroendocrine system. Thus, the putative simultaneous release of 

neuronal ligands onto various brain regions could allow for fast and effective influence 

on many circuits instantaneously. 
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Appendix 1. 
 

List of commonly used abbreviations: 
 
5-TG – 5 thio-glucose 

aCSF – artificial cerebrospinal fluid 

AgRP – Agouti related protein 

AHA – anterior hypothalamic area 

ARC – arcuate nucleus of the hypothalamus 

BAT – brown adipose tissue 

BW – body weight 

CART – cocaine and amphetamine related transcript 

CD – chronic decerebrate 

CNS – central nervous system 

CSF – cerebrospinal fluid 

EE – energy expenditure 

FI – food intake 

GLP-1 – glucagon like peptide 1 

HF – high fat 

HR – heart rate 

I.C.V. - intracerebroventricular 

IML – interomedial lateral column of the spinal cord 

LPS – lipopolysacharide (a piece of gram negative bacterial cell wall) 

MCR – melanocortin receptor 

MF – moderate fat 

MPOA – medial preoptic area of the hypothalamus 

MSH – melanocyte stimulating hormone, an MCR agonist 

MTII – melanotan II (exogenous MC3/4R agonist) 

NTS – nucleus of the solitary tract 

Ob-Rb – leptin receptors 

POMC – proopiomelanocortin (a precursor for MSH) 

PBN – parabrachial nucleus  

PVN – paraventricular nucleus of the hypothalamus 

RPa – raphe pallidus 

RVLM – rostroventral medulla 

RCh – retrochiasmatic area of the hypothalamus 

SHU 9119 – and exogenous MC3/4R antagonist 
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SPA – spontaneous activity 

Tc – core temperature 

UCP-1 – uncoupling protein 1 

V. - ventricular 
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