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Abstract
Nuclear hormone receptors comprise a large family of ligand-sensitive transcription factors that can directly
bind and regulate target genes to affect various physiological processes including development, differentiation,
circadian rhythm and metabolism. Classically, activation of transcription by nuclear receptors (NRs) is due to
a ligandinduced switch from corepressor- to coactivator-bound states. Highly analogous corepressors
including NCoR and SMRT facilitate repression by NR via recruitment and activation of the histone
deacetylase HDAC3. Liver X Receptor (LXR) is an NR that functions to regulate diverse physiological
processes including cholesterol metabolism, lipid homeostasis, immunity and inflammation. Selective
modulators of LXR to specifically target pathways for peripheral cholesterol efflux were developed and
observed to function as partial agonists of LXR. We determined that the selective partial agonism of LXR by
these ligands was indeed related to differential recruitment of the corepressor NCoR. Secondly, to understand
the structural basis for physiological v repression of NR by NCoR we co-crystallized a small peptide
comprising a region of the interaction domain of NCoR with the ligand-binding domain of Rev-erba. This
revealed that the relative structural requirements for the previously reported antagonized PPARa- bound
SMRT were distinct from that of the Rev-erba:NCoR complex. Altogether, these studies provide novel
molecular insight into the function of NCoR in regulating transcription by nuclear hormone receptors.
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ABSTRACT 

MOLECULAR AND STRUCTURAL INSIGHTS INTO NUCLEAR 

HORMONE RECEPTOR REPRESSION MEDIATED BY THE       

COREPRESSOR NCOR 

 

                                              Caroline A. Murphy 

 

     Advisor:  

Mitchell A. Lazar M.D, Ph.D. 

 

Nuclear hormone receptors comprise a large family of ligand-sensitive transcription 

factors that can directly bind and regulate target genes to affect various physiological 

processes including development, differentiation, circadian rhythm and metabolism.  

Classically, activation of transcription by nuclear receptors (NRs) is due to a ligand-

induced switch from corepressor- to coactivator-bound states. Highly analogous 

corepressors including NCoR and SMRT facilitate repression by NR via recruitment and 

activation of the histone deacetylase HDAC3.  Liver X Receptor (LXR) is an NR that 

functions to regulate diverse physiological processes including cholesterol metabolism, 

lipid homeostasis, immunity and inflammation.   Selective modulators of LXR to 

specifically target pathways for peripheral cholesterol efflux were developed and 

observed to function as partial agonists of LXR.  We determined that the selective partial 

agonism of LXR by these ligands was indeed related to differential recruitment of the 

corepressor NCoR.  Secondly, to understand the structural basis for physiological 
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repression of NR by NCoR we co-crystallized a small peptide comprising a region of the 

interaction domain of NCoR with the ligand-binding domain of Rev-erbα.  This revealed 

that the relative structural requirements for the previously reported antagonized PPARα-

bound SMRT were distinct from that of the Rev-erbα:NCoR complex.  Altogether, these 

studies provide novel molecular insight into the function of NCoR in regulating 

transcription by nuclear hormone receptors.   
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1.  Nuclear Hormone Receptors (NHRs) 

Nuclear hormone receptors represent a diverse and evolutionarily conserved class of 

transcription factors that serve to sense both the cellular and external environment by 

association with cognate ligands which include steroids, lipids and fatty acids, 

metabolites, and signaling molecules such as heme (Gronemeyer et al., 2004).  

Physiologically, these receptors play integral roles in the regulation of growth, 

differentiation, endocrine disorders and metabolism, and circadian rhythm (Mangelsdorf 

et al., 1995; Yang et al., 2006).  Due to their ability to directly regulate these pathways 

via direct DNA binding of their target genes as well as the nature of their small, 

hydrophobic ligands, NRs constitute extremely attractive therapeutic targets.  Among the 

48 human NR, their respective pharmacological agents including tamoxifen (estrogen 

receptor), dexamethasone (glucocorticoid receptor) and thiaziolidiones, or TZDs 

(PPARγ) constitute some of the most commonly prescribed drugs.  However, 

pharmacological targeting of these receptors is limited by the numerous pathways under 

control of single receptors and even the ability of NRs to regulate multiple genes within 

pathways relevant in pathophysiological states.   Thus, further attempts to exploit these 

receptors in drug development will rely upon increased efforts to characterize their 

molecular mechanism of action. 

 

1.1    Classes of Nuclear Hormone Receptors 

 

The nuclear hormone superfamily can be divided into four distinct classes which include 

the Class I steroid receptors, the Class II retinoid X receptor (RXR) heterodimers, the 
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Class III homodimers and the Class IV monomers.  Overall, the segregation of the 

receptors into these classes is largely indicative of their unique DNA binding properties, 

ligands, and dimerization status on target genes (Mangelsdorf et al., 1995).  Specifically, 

distinction among the classes is based upon relative similarities within the DNA-binding 

domain (DBD) and the ligand-binding domain (LBD). Class III and Class IV receptors 

include a significant number of orphan NRs, for which a putative physiological ligand 

has not yet been identified.    

 

1.2   The Modular Structure of Nuclear Hormone Receptors 

Nuclear hormone receptors are conserved in all metazoan species but are absent in plants 

and yeast (Figure 1.1).  Indeed, the initial discovery of the ERα and GR receptors and the 

high degree of similarity observed provided profound evidence of the modular nature of 

these transcription factors (Green et al., 1986; Hollenberg et al., 1985).  The most critical 

and highly conserved domains include the N-terminal DNA-binding domain (DBD), also 

termed the C domain (Luisi et al., 1991), and the α-helical C-terminal ligand-binding 

domain (LBD), or E domain, which functions to recognize ligand and for some receptors, 

promote dimerization (Wurtz et al., 1996).   The extreme N-terminal A/B domain 

contains a flexible and highly variable region termed the AF-1 or activation function-1 

domain.  For some receptors, including PPARγ and AR, this region demonstrates 

autonomous activation function through recruitment of activating cofactors which may be 

independent of ligand binding (Hu et al., 1996; McEwan, 2004).  Situated between the 

DBD and the LBD is  the hinge region or D region, which is poorly conserved and highly 
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variable both in terms of molecular structure as well as amino acid length.  Altogether, 

the receptor functions by interaction with coactivators or corepressors that specifically 

associate with DNA-bound receptors depending upon the Apo or ligand-bound state of 

the receptor. 

 

1.2a  DNA-binding domain and NHR Target Sequence Recognition 

Nuclear hormone receptors can directly influence gene transcription by binding to unique 

hormone response elements (HRE) which are functionally associated with their target 

genes (Beato, 1989).  Typically, HRE are hexa-nucleotide sequences of 5’-AGGTCA-3’ 

or 5’-AGAACA-3’, termed half-sites, which are spatially oriented as direct, inverted or 

everted repeats or simply as monomeric sequences.  Recognition of the half site is 

coordinated by two highly conserved zinc finger motifs which are unique to NRs.  The 

zinc finger motif of the DBD is a small α-helical region which requires zinc ion 

association for proper protein conformation as well as to confer DNA-binding via charge 

interaction.  The N-terminal zinc finger motif forms a recognition helix which binds the 

major grove of DNA and via the three-nucleotide P-box confers DNA sequence 

specificity, whereas the second zinc finger motif is hypothesized to promote 

homodimerization of steroid NR (Umesono and Evans, 1989)s.  Overall, the DBD also 

contributes to appropriate dimerization pairing of the receptors, which for some 

receptors, including Rev-erb, is critical for efficient binding to cofactors (Harding and 

Lazar, 1995; Mader et al., 1993; Zamir et al., 1997b). Furthermore, a third α-helix, 

immediately adjacent to the DBD and contained within the hinge region, termed the C-
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terminal extension (CTE), may contribute to relative DNA binding affinity and 

specificity (Harding and Lazar, 1995; Wilson et al., 1992; Zhao et al., 1998). 

In addition to the high degree of similarity within the DBDs (~50% across all receptors), 

the HRE themselves vary little in terms of sequence.  Overall, with the exception of the 

steroid receptors, which utilize 5-AGAACA-3’, 5’-AGGTCA-3’ is the most commonly 

utilized element. A first-order level of specificity is derived from the unique spacing and 

orientation of the half-site repeats.  In the case of direct repeats, the spacing between 

repeats comprises a small number of nucleotides, typically a 1-5 nucleotide spacing.  This 

spacing is defined according to the number of nucleotides found between the direct 

repeats and is referred to as DR2, DR4, etc.  Upon the systematic, in vitro and unbiased 

determination of the binding site preferences for a series of RXR heterodimers and NR 

homodimers, the so-called “1 to 5” rule was described (Mangelsdorf and Evans, 1995).  

Subsequent structural and biochemical studies further clarified the basis for HRE binding 

specificity as well as other overall architecture of the receptor:DNA complex.  For most 

RXR heterodimers, it was determined that the RXR binds at the 5’ response element 

whereas the heterodimer partner binds 3’ in a head-to-tail spatial orientation (Rastinejad 

et al., 1995). Incidentally, this is not the case for PPAR-RXR heterodimers, which bind to 

DR1 elements and the RXR molecule is 3’ (Chandra et al., 2008). In either case, the 

heterodimer partner is regulated by the relative steric availability conferred by the half-

site spacing.  Thus, the spacing dictates both receptor:DNA specificity as well as RXR 

heterodimer pairing.  Subtle alterations in spacing have been demonstrated for Rev-erb 

homodimers, which bind to a DR2 element, to induce steric hindrance which completely 

abrogates binding.   
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Structural studies of receptor DBD:DNA complexes for TR-RXR as well as Rev-erb 

homodimers also provided evidence for additional sites of protein-DNA interaction and 

specificity.  RXR-TR structures revealed the importance of the CTE in DNA sequence 

binding specificity by contacts with the DNA minor groove (Rastinejad et al., 2000).  

Rev-erb homodimer:DNA crystal structures confirmed that indeed Rev-erb also utilized a 

CTE to promote homodimer cooperative binding and increased DNA binding specificity.  

Furthermore, Rev-erb utilizes a GRIP box element, which provides contacts with an A/T- 

rich nucleotide region upstream of the AGGTCA half-site (Zhao et al., 1998).  Quite 

recently, the crystal structure of a (DBD-hinge-LBD) PPAR-RXR:DNA ternary complex 

was reported as well as functional data comparing GR:DNA binding-activity relationship 

(Chandra et al., 2008).  Increasingly, these and other studies support a role for the DBD 

allosterically modulating  receptor activity, by potentially affecting AF-1 function as well 

as cofactor interactions (Lefstin et al., 1994; Meijsing et al., 2009).  Thus, the role of the 

DBD may extend well beyond DNA sequence recognition. 

 

1.2b Ligand Binding Domain  

The carboxy-terminal ligand-binding domain is a ligand-dependent molecular switch, 

which through its Activation Function-2 (AF-2) activity serves as a platform for 

interactions with various cofactors, depending on ligand status.  Structurally, the ligand 

binding domain is globular and displays a three-layer α-helical “sandwich” comprised of 



7 

 

12 α-helices and commonly, two or three β folds.  The architecture of the LBD results in 

a hydrophobic pocket typically formed by helices 5, 7 and 10, which can accommodate 

ligand (Egea et al., 2000).  The size of the ligand pocket varies tremendously across the 

family of NHRs.  For example, Class I steroid hormone receptors have small volume 

ligand pockets, on the order of ~500 cubic angstroms and bind ligands with high 

specificity and low nanomolar affinity.  In contrast, other NRs such as the PPARs and 

PXR display large pockets up to 1600 cubic angstroms, which accommodate larger, more 

structurally diverse ligands such as phospholipids and xenobiotics with decreased 

specificity and much lower micromolar affinity (Nagy and Schwabe, 2004).   

 

The surface of the ligand binding pocket comprised of helices 5, 7 and 10 makes specific 

contact with the ligand via key hydrophobic interactions and hydrogen binding.  In the 

case of TR, the ligand is completely buried in the pocket and makes as many as eight 

specific contacts with the LBD (Wu and Koenig, 2000).  Indeed, the relative degree of 

hydrophobic “burying” as well as the number of contacts made between ligand and 

receptor can correlate to the relative Kd, or “off-rate” of ligand with receptor.  Once the 

receptor becomes engaged with ligand, key allosteric changes in receptor conformation 

are induced.  Most prominently, there is a complete re-orientation of helix 12 which is 

critical for the AF-2 function of the LBD.  Helix 12 shifts from its unliganded position at 

a 45degree angle away from the receptor, to contact the core LBD and form surface 

contacts with the ligand itself via a charge clamp mechanism (Hu and Lazar, 2000) .  

Additionally, helices 3-5 form a hydrophobic groove on the LBD surface which contacts 
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an α-helical hydrophobic leucine/isoleucine-rich motif in commonly found in coregulator 

molecules (Hu and Lazar, 1999; Hu et al., 2001; Nagy et al., 1999b; Nagy and Schwabe, 

2004).  Regions of the LBD also contribute to receptor dimerization.  Helix 9 and 10 in 

particular, contain hydrophobic as well as key polar residues which promote specific 

protein-protein interactions between receptor LBDs.   

 

Recent structures and supporting biochemical studies have also prominently 

demonstrated the inducible nature of the LBD ligand pocket.  For example, crystallization 

of apo-receptors including Rev-erbβ demonstrated the presence of bulky side chains from 

hydrophobic residues occluding the proposed ligand binding pocket (Woo et al., 2007).  

However, it was later shown that Rev-erb receptors can bind the large, planar heme  

molecule (Pardee et al., 2009a).  Thus, there may be more plasticity in the LBD structure 

in accommodating physiological or synthetic ligands than previously appreciated.   

 

1.2c A/B Domain and Ligand-Independent Activation Function-1 Activity 

Across all nuclear hormone receptors, the N-terminal A/B domain constitutes the most 

variable region both in terms of sequence homology and amino acid length.  NMR 

studies to deduce structural confirmation of numerous receptors show this region to be 

highly unordered and variable independent of ligand (Chandra et al., 2008).  The 

receptors for which the A/B domain may have an activation function include the steroid 

hormone receptors (He et al., 2004).  Interestingly, these receptors have the longest A/B 
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domain in terms of amino acid length and in some cases, have been observed by NMR to 

become increasingly ordered by DNA binding.  In the case of androgen receptor for 

example, the A/B domain was shown to have autonomous, ligand-independent activation 

function which was critically mediated by a sequence of α-helical leucine-rich 

hydrophobic residues.  Presumably, these residues are interacting with cofactors via 

hydrophobic protein-protein interactions to influence AR transcriptional activity.  

Additionally, the A/B domain of PPARγ was demonstrated in several reports to be 

subject to MAPK phosphorylation, which markedly affected the activity of the receptor 

in 3T3-L1 cells (Hu et al., 1996).  The physiological relevance of the phosphorylation 

status at this MAPK site was further shown to have affects on body weight and glucose 

metabolism in mouse knock-in models mimicking the phosphorylated form of the 

receptor (Rangwala et al., 2003).  Thus for many receptors, this region appears to play a 

role in influencing the overall transcriptional activity. 

 

Recently, for receptors such as Rev-erbα, this A/B region has been shown to be critical 

for protein stability.  Phosphorylation of the Rev-erbα A/B domain by the kinase GSK-

3β stabilizes the receptor, preventing proteasome-induced degradation (Yin et al., 2006).  

Inhibition of GSK-3β activity pharmacologically by lithium as well as manipulation of 

kinase levels by siRNA knockdown, dramatically reduced Rev-erbα protein levels in a 

proteasome-dependent manner.  Since Rev-erbα is a critical component of the core 

circadian clock, and its protein levels are known to vary in a biphasic manner over the 
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24-hour cycle, regulation of this receptor within the A/B domain plays a very significant 

role in its molecular function.   

 

In addition to phosphorylation, other post-translational modifications have been 

increasingly described to occur within this region, including sumoylation (Ghisletti et al., 

2007) .  These modifications may couple NHR with cellular and physiological signals in 

a temporal or tissue-specific manner.  Modification of receptors within this domain 

would be hypothesized to alter protein-protein interactions, for example, to directly affect 

receptor activity.   

 

1.2d Hinge/D Domain 

The hinge domain, which varies in length among receptors, has long been hypothesized 

to function as an unordered, flexible domain linking the DBD to the LBD.  For receptors 

such as GR, it contains the nuclear localization signal and can be a site of post-

translational protein modification (Tsai and O'Malley, 1994).  The recent X-ray crystal 

structure of ∆-A/B-PPARγ and ∆-A/B-RXRα has shed some light into the structure of 

this particular domain.  In these studies it was uniquely demonstrated that beyond the 

aforementioned α-helical CTE, the hinge domain is highly unordered and by deuterium 

exchange assay, is in a highly unordered state independent of the ligand status, including 

the examined apo-, partial-agonist of full-agonist-bound states (Chandra et al., 2008).  

However,  it must be noted that for PPARγ, the hinge domain is extremely small and that 
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for receptors such as Rev-erb, where the domain exceeds 200 amino acids, it may have an 

allosteric function, which may be governed by post-translational modifications or 

DNA/ligand binding.  Other recent studies have indicated that the hinge region may be 

post-translationally modified by acetylation and other modifications, dramatically 

affecting the transcriptional activity of the receptor, as in the case of FXR (Kemper et al., 

2009). 

 

2.  Nuclear Hormone Receptor Mechanism of Action 

Ligands serve as molecular messengers of physiological status.  Alterations in endocrine 

signaling or metabolic parameters, for example, may lead to dramatic changes in 

endogenous ligand concentrations.  NRs initiate a response to these changes in ligand 

levels by coordinately regulating target genes and pathways to rapidly restore 

homeostasis (Yang et al., 2007).  The ability of ligand to direct gene transcription is 

largely based on the principle that the liganded receptor promotes coactivator binding 

whereas the apo- or unliganded receptor binds corepressors.  Coactivator and corepressor 

molecules in turn serve as molecular scaffolds to recruit complexes containing histone 

acetyltransferase or deacetylation activity, respectively, which drive chromatin 

remodeling at their associated target genes to induce gene activation or repression.  In 

addition, to ligand-dependent cofactor recruitment, NR activity can also be affected by 

sequence-specific response element properties, ligand-induced translocation, and ligand-

induced DNA binding.     
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2.1  Allosteric Effects of DNA Binding 

Intriguingly, new data have revealed that hormone response elements may function as 

allosteric regulators of NR function. Relative activation levels among a panel of 

endogenous glucocorticoid response elements in the presence of ligand show dramatic 

variation, despite differences in sequence of as little as 1 nucleotide (Meijsing et al., 

2009).  Interestingly, there is no correlation in GR DNA binding activity, such that 

response elements with low intrinsic activity demonstrate robust DBD binding 

comparable to highly active RE.  Structural, mutational and knockdown analysis revealed 

that subtle alterations in GRE sequence could induce conformational changes in the GR 

DBD which can subsequently affect cofactor recruitment or activity.  Thus, independent 

of ligand, response element sequences are hypothesized to function as allosteric 

modulators of NR activity.  Future studies may reveal if this phenomenon is generalizable 

to other NRS.   

 

2.2   Ligand Effects on Subcellular Localization and DNA Binding 

Class I nuclear hormone receptors, which bind steroidal ligands, include the 

glucocorticoid receptor (GR), androgen receptor (AR), estrogen receptor (ER), 

progesterone receptor (PR), and mineralocorticoid receptor (MR).  They are unique in 

that in that in the absence of ligand they are localized to the cytoplasm and bound to 

molecular chaperones such as heat shock proteins.  Despite the tight association with 

chaperoning complexes, these receptors are still highly accessible to ligand binding.  

Ligand binding promotes dissociation of the chaperone complex, translocation to the 
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nucleus, homodimerization and association on palindronmic response elements with 3-

base pair spacing (Beato et al., 1995).  For all other NRs, DNA binding is constitutive 

and independent of ligand.   

 

2.2  Ligand-Mediated Regulation of LBD Activity 

For a number of nuclear hormone receptors including TR, LXR and RAR it has been 

demonstrated that in the absence of ligand, target genes are actively repressed below a 

basal level (Baniahmad et al., 1992; Hartman et al., 2005; Horlein et al., 1995; Hu et al., 

2003)  In contrast, ligand association incrementally promotes both relief of repression to 

the basal level as well as dramatic increases in target gene activation.  Thus, the 

difference in gene expression can be on the order of several magnitudes. In this way, the 

LBD can function as a “molecular switch” to dramatically affect target gene expression 

(Figure 1.3).   

 

Isolation of peptides differentially associated with unliganded TR and RAR receptors by 

yeast two hybrid screening methods led to the discovery of the corepressors NCoR and 

SMRT  (Chen and Evans, 1995; Horlein et al., 1995).      Mapping of the RID revealed 

the presence of C-terminal receptor interaction domains in both coactivators and 

corepressors.  Further studies isolated the specific motifs within the RIDs, LxxLL for 

coactivators, and IxxII for corepressors, referred to as NR boxes (coactivators) and 

CoRNR boxes (corepressors), respectively, which were required for binding (Darimont et 
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al., 1998; Hu and Lazar, 1999; Nagy et al., 1999b; Nolte et al., 1998; Shiau et al., 1998) .  

Structurally, these NR and CoRNR motifs were demonstrated to bind overlapping regions 

of the LBD comprised of helix 3, 4, 5, and sometimes 12.  Differential binding between 

coactivators and corepressors is due to the ligand-induced re-positioning of helix 12 and 

the formation of a charge clamp between coactivator and helices 3 and 12, which 

sterically occludes corepressor binding (Figure 1.4).  Proof that that these structural 

changes ascribed to helix 12 underlies cofactor selectivity is the demonstration that 

constitutively active receptors such as LRH-1 and Nurr1 adopt an LBD structure in which 

helix 12 is stably in the active conformation.  On the contrary, Rev-erb, which lacks helix 

12, constitutively associates with corepressors.  Thus, ligand-induced alterations in the 

conformation of the LBD underlie differential recruitment of coactivators versus 

corepressors in a ligand-dependent manner.   

 

2.2a Coactivators 

A large number of coactivators, in excess of 200, have been indentified in both genetic 

screens (yeast two hybrid and others) as well as by proteomic co-precipitation methods.  

These cofactors bind in a ligand-dependent manner and in co-transfection or knockdown 

studies affect ligand-dependent activity of their cognate receptors.  Increases in 

transcriptional activity associated with binding can be attributed to autonomous 

enzymatic activity, primarily histone acetyltransferase (HAT) activity, or the ability to 

recruit additional cofactors containing HAT activity, which direct local covalent histone 

modification.  Among the first coactivators identified were those of the p160 family, 
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which were shown to bind TR, RAR and ER in a ligand-sensitive manner (Onate et al., 

1995).  The p160 family of proteins possesses relatively weak HAT activity.  Other 

coactivators, including members of the CBP/p300 family, which have robust HAT 

activity, were later identified (Chen et al., 1999b). In contrast to the p160 family, these 

cofactors are recruited and bound indirectly in large activation complexes.  In addition to 

HAT activity, histone methyltransferases such as CARM-1 function as coactivators and 

similarly modify the chromatin template by arginine and lysine methylation to induce 

gene activation  (Chen et al., 1999a). 

 

Additional coactivator complexes are reported to bind to liganded receptors which 

include cofactors with ATP-dependent nucleosome remodeling activity.  In particular, 

recruitment of Swi/Snf proteins have been described for numerous NRs (Wade and 

Wolffe, 1999).  ATP-dependent chromatin remodeling promotes repositioning of 

nucleosome structures to allow access for additional histone modifiers as well as drive 

association of basal transcription machinery to induce gene activation.  Thus, in addition 

to covalent histone modifications to alter the histone code, these coactivators can enhance 

target gene expression by higher order chromatin remodeling.   

 

Recent genome-wide studies to examine transcription factor occupancy utilizing 

chromatin immunoprecipitation (ChIP)-CHIP and ChIP-SEQ approaches coupled to gene 

expression assays have provided further insight into the mechanism of gene activation by 

NR at target genes (Carroll et al., 2006).  For NRs including ERα, additional 
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transcription factors, or so-called “pioneer factors” were shown to colocalize to NR 

response elememts (Carroll et al., 2005).  Binding of these factors appears to be required 

for robust activation of a large number of target genes (Zhang et al., 2005).  Hypotheses 

for the function of pioneer-factor recruitment include the fully synergistic recruitment of 

chromatin modifiers to induce transcription, or to initiate chromatin remodeling upstream 

of ligand-induced NR activation.  It is unclear if other NRs utilize neighboring 

transcription factors in this manner to fine-tune the regulation of target genes (Zhang et 

al., 2005). 

 

2.2b Corepressors 

Prior to the discovery of the corepressors NCoR and SMRT, it was recognized that 

nuclear hormone receptors could actively repress transcription below basal levels in the 

absence of ligand.  Through mutational analysis, it was known that regions of the LBD 

were required for repression (Casanova et al., 1994; Tong et al., 1996).  The subsequent 

identification of NCoR (originally described as receptor interacting protein 13, RIP13) 

and SMRT (originally described as TR-associated cofactor TRAC) revealed that these 

large, highly analogous proteins functioned as molecular scaffolds for recruitment of 

other cofactors with histone deacetylase activity.  Although additional corepressors have 

since been described, including RIP140 and others, it is clear that there are very few 

corepressors utilized by NRs when compared to coactivators, for which over 200 have 

been identified (Wei et al., 2000).    
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 Antagonism of these NRs stably repositions helix 12 in a manner that cannot be achieved 

in the absence of ligand. This antagonist-driven repositioning of helix 12 promotes strong 

corepressor association, which generally requires binding of a potent, full agonist to 

displace.   A number of pharmacological antagonists have been developed for clinical 

use.  Tamoxifen, an antagonist for ER, takes advantage of relative NCoR and SMRT 

expression differences in various tissues to mechanistically function as a selective 

modulator.  That is, in target tissues containing high levels of corepressors, antagonized 

ER has strong repression function, whereas in tissues with limited corepressor 

expression, minimal repression of target genes occurs (Osborne et al., 2000; Shang and 

Brown, 2002).  Thus, for antagonists as well as partial agonists, it is possible to 

pharmacologically target various tissues and pathways in a gene-selective manner 

depending upon the relative expression levels of corepressor as well as the relative 

affinities for corepressor that the ligand or antagonist induces.   

 

NCoR/SMRT 

SMRT and NCoR corepressors are critical proteins for control of gene transcription.  

Genetic deletions of NCoR and SMRT in mice have shown that they are required for life 

(Jepsen et al., 2008; Jepsen et al., 2000) .  NCoR and SMRT are encoded by separate loci, 

but share a similar modular structure, possess over 45% amino acid homology, and 

function using the same mechanism (Figure 1.3).  NCoR and SMRT are high-molecular 

weights protein of approximately 270kD which are ubiquitously expressed, with some 

exceptions. The liver contains higher NCoR levels whereas thymocytes predominantly 
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express SMRT.   Alternative splicing of NCoR and SMRT can occur, which generates 

alternate protein products including SMRTτ, Rip13a and RIP13∆1, but the expression 

profile or function of these alternate forms is not fully understood  (Privalsky, 2004).   

 

NCoR and SMRT share many modular functional domains (Privalsky, 2004).  The N-

terminus contains several repression domains (RDs), for which autonomous repression 

function can be demonstrated in reporter assays utilizing Gal-DBD fusions containing 

these regions.  The proteins that can associate with these RDs include HDAC3, GPS2, 

TBL1 and TBLR1 (Guenther et al., 2000; Wen et al., 2000).  The C-terminus contains 

several receptor interaction domains (RIDs), which contain hydrophobic, α-helical 

CoRNR motifs which can dock to the hydrophobic surface of NRs.  Thus, the RIDs serve 

to facilitate ligand-sensitive and specific binding to NRs, whereas the N-terminal 

repression domains initiate formation of a high-molecular-weight complex containing 

HDAC activity.   

 

Among the C-terminal repression domains, which NCoR has two and SMRT three, 

preference for NR binding partners can be observed.  For example, TR, Rev-erb and LXR 

have been show to prefer NCoR (Hu et al., 2003; Ishikawa et al., 1990; Ishizuka and 

Lazar, 2003; Zamir et al., 1997b), whereas RAR preferentially binds SMRT (Harding and 

Lazar, 1995).  Even further, amino acids adjacent to the N-terminus of the CoRNR motif 

contained in the RID can promote both preference for NCoR versus SMRT, as well as 
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preference for a particular repression domain.  TR, for example, prefers NCoR RD1 and 

RD2.  In contrast RXR is permissible in terms of both corepressor association and RD 

domains.  In this way, dimerization of the receptors results in a stoichiometry of one 

corepressor molecule (NCoR or SMRT) associated with a DNA-bound dimer.   

 

NCoR and SMRT can repress genes both by competing with coactivators for binding as 

well as by active recruitment of additional repressive cofactors.  Immunopurification of 

SMRT and NCoR-containing corepressor complexes demonstrated stoichiometric 

association with HDAC3 and the WD-40 repeat containing proteins TBL1, TBLR1 and 

GPS2 (Guenther et al., 2000).  The core corepressor complex contains potent 

deacetylation activity on histone tails; however, recombinant HDAC3 contains negligible 

deacetylase activity.  Newly translated HDAC3 is bound by the molecular chaperone 

Hssp90, and becomes associated with SMRT/NCoR via a transient, ATP-dependent 

association with the TRiC complex (Guenther et al., 2002).  SMRT and NCoR function 

as activating cofactors of HDAC3.  NCoR/SMRT regions required for HDAC3 activation 

were mapped by deletion mutagenesis to regions previously described as having 

autonomous repression function.  NCoR/SMRT contain deacetylase activation domains, 

or DADs, which contain SANT motifs (Guenther et al., 2001).  Indeed, the DAD motif is 

necessary and sufficient for HDAC3 activation.   Further examination of the DAD 

domain demonstrated the requirement for Tyrosine 478 in HDAC3 activation (Ishizuka 

and Lazar, 2005).  The requirement of the DAD domain and specifically Y478 in 

mediating HDAC3-dependent NCoR repression was confirmed in NCoR DADm mice, 
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which displayed dramatic decreases in gene repression of well-characterized NCoR target 

genes (Alenghat et al., 2008). Further studies also defined a role for a second SANT 

motif contained with the N-terminal RDs, termed the histone interaction domain (HID).  

This motif increased corepressor affinity for deacetylated histones, suggesting that the 

HID functioned in a feed-forward mechanism to further stabilize association of the core 

corepressor complex at target genes (Yu et al., 2003).   

 

The ability of HDAC3 to repress gene transcription is related to its ability to affect the 

local chromatin environment.  In vivo, 147 base pairs of DNA are packaged around an 

octamer of core histone proteins (two copies each of H2A, H2B, H3 and H4) which 

constitutes a nucleosome, and organized into higher order structures to facilitate packing 

of the DNA into the nucleus.  Thus, accessibility of the DNA to transcription factors and 

the general transcription machinery is tightly regulated.   In response to upstream 

signaling events, ATP dependent reactions including histone modifications and 

nucleosome repositioning occur to alter what is otherwise a chromatin structure that is 

highly repressive and structurally inaccessible (Berger, 2007).  Subtle changes in the 

chromatin structure by these events results in an “opening” of the compacted DNA, 

rendering a more exposed chromatin structure that generally results in gene activation.  

To some extent, histone hyperacetylation by HATs  neutralizes the positively-charged 

lysine residues on which these modifications occur, resulting in decreased charge 

interaction with the negatively-charged DNA, thus loosening the tight nucleosome to 

DNA interaction (Strahl and Allis, 2000).  In contrast, hypoacetylated histone structures 
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resulting from HDAC activity increase the charge contacts between DNA and the histone 

tails, which closes the chromatin structure and is generally repressive (Lee and Workman, 

2007). 

 

However, within the last decade, it has been recognized that histone modification of 

chromatin occurs in patterns, known as the “histone code”, to allow for tight regulation of 

gene transcription in response to developmental, spatial and temporal cues (Strahl and 

Allis, 2000).  Multiple post-translational modifications including acetylation, 

methylation, ubiquitination, sumoylation, and phosphorylation can occur on histone tails.  

These modifications can occur on similar residues of the histone tails, so that in effect 

there are “competing” modifications.  In addition, the level of modification can be mono, 

bi or tri-valent, with varying outcomes on transcription.  Generally, tri- methylation of 

H3K4 in the promoter regions is thought to be associated with active genes (Ruthenburg 

et al., 2007), whereas H3K27 methylation, driven by Polycomb group proteins is 

repressive, and the associated genes are generally inactive (Trojer and Reinberg, 2006).  

However, this simplistic view does not reflect the combinatorial effects of various histone 

modifications.  For example, several genes important in development are found to contain 

both activating and repressing marks and thus have bivalent modification (Bernstein et 

al., 2006).  This may represent a priming mechanism for the temporal control of gene 

transcription.  Furthermore, the temporal progression of modifications leading to 

transcriptional activation and repression are still being elucidated.  HDACs, for example, 

which can rapidly alter lysine modification status, could function early in the sequence, to 
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deacetylate and “reset” lysine status for methyltransferases.  Or, in contrast, HDACs 

could function late in the pathway, to rapidly expose the positive lysine charge of the 

histone tails and stimulate rapid histone:DNA interaction.   

 

3.  Physiological Functions of LXR 

LXRα (NR1H3) and LXRβ (NR1H2) are members of the nuclear hormone receptor 

superfamily (Janowski et al., 1996).  Their physiological ligands are oxysterols, including 

oxidized LDL (oxLDL) and cholesterol metabolites including 24(S),25-epoxycholesterol 

and 22 (R)-hydroxycholesterol (Willy et al., 1995).  LXRα is highly expressed in the 

liver, and to a lesser extent in the intestine, adipose tissue, macrophages, lung, kidney, 

and adrenal glands, whereas LXRβ has ubiquitous expression.  LXRs, together with 

RXR, have been shown to have important roles in cholesterol homeostasis by regulating 

cholesterol metabolism and reverse cholesterol uptake.  These receptors have a 

pronounced protective role in atherogenesis, which is thought to be derived from the 

ligand-sensitive induction of the reverse cholesterol transporters of the ABCA family as 

well as the modulation of the inflammatory response in macrophages (Joseph et al., 2003; 

Joseph et al., 2002; Levin et al., 2005). 

 

Macrophages play important roles in various immune functions in secretion of potent 

inflammatory factors such as cytokines.  Atherosclerosis is a chronic inflammatory 

disease and a pathological process in which the pro-inflammatory activities of 
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macrophages are well documented.  The nuclear receptor LXR has been shown to have a 

negative role in regulating these inflammatory events (Tangirala et al., 2002).   

 

It has been demonstrated that there is a reciprocal repression, or transrepression, of 

inflammatory target genes such as iNOS, COX-2, IL-6 and IL-1β following exposure to 

pro-inflammatory stimuli such as LPS, TNF-α, IL-1β in the presence of LXR agonists 

(Joseph et al., 2003).  In addition to the genes described, large subsets of inflammatory 

and innate immune response genes were characterized by microarray as negatively 

regulated by LXR transrepression (Ogawa et al., 2005).  Furthermore, transrepression 

was shown to be isoform independent, as transrepression was competent in wild-type, 

LXRα-/-, LXRβ-/- mouse macrophages, and only abolished is LXRαβ-/- macrophages 

(Joseph et al., 2003).   

 

Mouse models of the anti-inflammatory properties of LXR agonists further demonstrate 

the clinical implications of their use as pharmacological agents.  Intraperitoneal injection 

of LPS in LXRαβ-/- mice leads to exaggerated systemic cytokine response and expression 

(Joseph et al., 2003).  Mouse models have also demonstrated anti-inflammatory roles for 

LXR agonists in cutaneous inflammation and allergic dermatitis (Tontonoz and 

Mangelsdorf, 2003).  Finally, atherogenic inflammation was shown to be reduced upon 

treatment of hypercholesterolemic apoE -/- mice with non-steroidal LXR agonist (Joseph 

et al., 2002). 
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The mechanism of ant-inflammatory transrepression associated with LXR is thought to 

be indirect and not due to recruitment of LXR to LXREs, but rather to proximal promoter 

regions of these pro-inflammatory target genes.   A new mechanism of transrepression 

involving the ligand-dependent repression of inflammatory genes regulated by the PPAR-

γ and LXR receptors has been proposed (Pascual and Glass, 2006).  In this model, 

transrepression was shown to be dependent upon the presence of the corepressor N-CoR 

at pro-inflammatory target gene promoters such as iNOS.  As iNOS is known to be 

repressed in the presence of PPAR-γ and LXR agonists, it was demonstrated that 

sumoylated LXR/PPAR-γ can stabilize an N-CoR-HDAC3-TBL1-TBLR1 corepressor 

complex at NF-κB-bound target genes.  Such stabilization occurs by sumoylation of 

LXR/PPAR-γ and subsequent inhibition by sumoylated LXR/PPAR-γ of the 

ubiquitination-mediated proteasomal degradation of the N-CoR repressor complex at the 

iNOS promoter (Ghisletti et al., 2007; Pascual et al., 2005).  Thus, the ability of LXR to 

direct cholesterol metabolism as well as its potent-anti-inflammatory effects suggest that 

targeting of this receptor in cardiovascular disease may be of strong clinical value.   

 

4.  Physiological Functions of Rev-erbαααα 

Rev-erbα plays a critical role in regulation of the core circadian clock.  It directly 

represses transcription of the Bmal1 gene in addition to regulating its own transcription, 

and thus serves to link the positive and negative limbs of the circadian clock.  Knockout 

of the mouse Rev-erbα gene leads to a number of defects in reproduction and modest 
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effects on cerebellar development (Chomez et al., 2000).  Due to the role of Rev-erbα in 

regulating the core clock, analysis of the physiological circadian rhythm by mouse wheel 

behavior indicates that indeed deletion of this receptor results in circadian abnormalities 

(Preitner et al., 2002).  A number of Rev-erbα target genes have now been described, 

including genes known to regulate lipid homeostasis, glucose homeostasis, cholesterol 

metabolism and regulation of adipogenesis and adipokine expression (Duez and Staels, 

2008) .  There appears to be an intimate link between metabolic regulation and the core 

circadian clock (Kohsaka et al., 2007).  Rev-erbα may participate both by its regulation 

of the core clock as well as its direct metabolic gene targets.   
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Figure 1.1.  General schematic of nuclear receptor structure. 
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Figure 1.2.  General schematic of corepressor modular domains.  The red regions 
represent SANT domains 1 and 2.  The RD1, 2 and 3 domains have autonomous 
repression function whereas the C-terminal repression domains interact with nuclear 
hormone receptors. 
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Figure 1.3 Mechanism of corepressor exchange.  A. Represents the liganded NR state.  
The NR is associated with coactivators and HAT activity.  B.  Represents the unliganded 
NR state.  The NR is associated with corepressor and HDAC activity.  
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Figure 1.4 Binding of agonist to nuclear hormone receptors flips the “molecular switch”, 
or helix 12, to confer a conformation that exposes a hydrophobic cleft that promotes 
coactivator association via the LxxLL motif.
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CHAPTER TWO  

SELECTIVE PARTIAL AGONISM OF THE LIVER X RECEPTORαααα  IS 

RELATED TO DIFERENTIAL RECRUTMENT BY COREPRESSORS 
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I. INTRODUCTION: 

The Liver X Receptors, LXR [nuclear receptor (NR1H3) and LXRβ (NR1H2) are highly 

homologous members of the nuclear hormone receptor superfamily that are encoded by 

two distinct genes (Willy et al., 1995) . LXR displays a more limited expression profile, 

with high expression in the liver, adipose, intestine, kidneys, and macrophages, whereas 

LXRβ is ubiquitously expressed. These receptors have been shown to play important 

roles in cholesterol and lipid homeostasis as well as innate immunity and inflammation. 

Although first described as an orphan nuclear receptor, LXR was later shown to be 

regulated by endogenous oxysterol ligands (Janowski et al., 1996; Lehmann et al., 1997). 

LXRs regulate transcription at target genes via binding to LXREs (liver X receptor 

response element) within promoters of target genes. In the unliganded state, LXR 

preferentially associates with the nuclear receptor corepressor (NCoR) (Hu et al., 2003). 

Upon ligand binding, the corepressor complex is dismissed and coactivators such as 

steroid receptor coactivator-1 (SRC-1) are recruited, facilitating alterations to local 

chromatin architecture and subsequent recruitment of the general transcription machinery.  

 

LXR regulates whole-body cholesterol metabolism via direct transcriptional regulation of 

ATP-binding cassette transporter (ABC) A1 in macrophages, which promotes cellular 

cholesterol mobilization and efflux from macrophages to apolipoprotein A-1 and 

apolipoprotein E acceptors to form nascent high density lipoprotein particles (Repa et al., 

2000). Together with other LXR target genes including apolipoprotein E, these proteins 

regulate a pathway for the removal of cholesterol from the periphery for transport to the 
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liver termed reverse cholesterol transport (Laffitte et al., 2001).  Additionally, in rodents 

LXR- promotes the hepatic induction of cholesterol 7, which facilitates hepato-biliary 

cholesterol secretion in the face of excess dietary cholesterol (Chiang et al., 2001). This is 

dramatically illustrated by mice lacking LXR, which display severe hypercholesterolemia 

and hepatic steatosis on a high-fat, high-cholesterol diet (Peet et al., 1998). 

 

Due to the potential of LXR as a drug target for dyslipidemia, several highly potent and 

active agonists have been synthesized, including T091317 (Schultz et al., 2000). 

However, the therapeutic utility of LXR ligands has been limited by hepatic steatosis and 

hypertriglyceridemia (Grefhorst et al., 2002; Schultz et al., 2000). These effects may be 

due to direct induction of the lipogenic transcription factor sterol-regulatory element 

binding protein 1 (SREBP1) as well as other lipogenic LXR target genes including fatty 

acid synthase (FAS), which leads to a robust induction of fatty acid synthesis in the liver. 

The limitations imposed by the dual regulation of de novo lipogenesis and reverse 

cholesterol transport by LXR indicate that a target-specific approach to modulation of 

LXR activity will be critical for successful therapeutic intervention. It is also critical to 

study LXR effects in humans because the beneficial induction of cholesterol 7α may be 

rodent specific, and rodents also lack functional cholesteryl ester transport protein, which 

is a detrimental LXR target gene in humans  (Luo and Tall, 2000) 

In the case of estrogen receptor (ER), differential recruitment of coactivators and 

corepressors may explain why selective ER modulators (SERMs) have target gene and 

cell type selectivity (Shang and Brown, 2002). SERM binding induces ER conformations 
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that are different from those of ER bound to potent agonists. Similarly, different 

conformations have been noted for LXR bound to the partial agonist 24(S), 25-

epoxycholesterol and the potent synthetic agonist T091317, suggesting that it may be 

possible to selectively modulate the activity of LXR (Williams et al., 2003). Selective 

modulation could involve quantitative or qualitative differences in coactivator association 

with liganded LXR (Quinet et al., 2004; Schmidt et al., 2006), (Jaye et al., 2005; Miao et 

al., 2004; Traves et al., 2007). Alternatively, although not mutually exclusively, different 

ligands could alter interaction with NCoR (Albers et al., 2006). 

 

Here we show that NCoR binding plays a critical role in the differential response of LXR 

to a variety of ligands. Using 
in vitro biochemical studies and chromatin 

immunoprecipitation (ChIP) analysis in cells, we demonstrate that, independent of 

binding affinity, different LXR agonist ligands have vastly different properties in 

destabilizing the association of NCoR with LXR target genes. In addition, modulation of 

the level of NCoR protein differentially influences ligand activation of LXR and is target 

gene specific. Moreover, individual ligands have target gene-specific effects on NCoR 

dismissal from endogenous LXR targets. Thus, differential NCoR recruitment underlies 

gene-specific differences in activation by these ligands. 
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II. MATERIALS AND METHODS: 

Reagents  Compounds were provided by GlaxoSmithKline or obtained from Calbiochem 

(La Jolla, CA). DMSO was obtained from Sigma (St. Louis, MO). For Western blot 

analysis, the antibody for NCoR has been previously described, and antibodies for β-actin 

(Kuwabara and Sigman) and Ran (BD Biosciences, San Jose, CA) were obtained. For 

chromatin immunoprecipitation, antibodies for NCoR were obtained from Abcam 

(Cambridge, MA), and control IgG antibodies were from Calbiochem. Protein A-

Sepharose was from Amersham Biosciences (Piscataway, NJ).  

 

Plasmids  pFA-CMV-Gal4-hLXRα ligand-binding domain (LBD) (162–447), pFA-

CMV-Gal4-DBD, and pGL3-hABCA1-Luc were provided by GlaxoSmithKline; GAL-

5XUAS-SV40 luciferase, β-galactosidase, pCMX-NCoR-FLAG, pCMX-mLXRα, and 

pCMX-mRXRα plasmids have been previously described.   pGL3-basic was obtained 

from Promega (Madison, WI), and pCIS and pCIS-LXRE-Luc were obtained from 

Stratagene (San Diego, CA).  

 

FRET Assay  A modified polyhistidine tag was fused in frame to the human LXR ligand-

binding domain and subcloned into the expression vector pRSETa (Invitrogen) The 

human LXR ligand binding domain was expressed in Escherichia coli strain BL21(DE3) 

in Rich PO4 media with 0.1 mg/ml ampicillin at 25 C for 12 h, and 0.25 mM isopropyl-β-

D-thiogalactopyranoside was added Cells were resuspended and concentrated cell slurries 
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were stored in PBS at –80 C. Cell paste was resuspended in TBS, pH 8.0 (25 mM Tris, 

150 mM NaCl). Cells were lysed by an APV Rannie MINI-lab homogenizer, and cell 

debris was removed by centrifugation. The cleared supernatant was filtered through 

coarse prefilters, and TBS, pH 8.0, containing 500 mM imidazole was added to obtain a 

final imidazole concentration of 50 mM. Lysate was loaded onto Sepharose (Ni++ 

charged) Chelation resin (Pharmacia) and preequilibrated with TBS (pH 8.0)/50 mM 

imidazole. The column was washed with approximately one column volume of TBS (pH 

–8.0) containing 95 mM imidazole. LXR-LBD was eluted with a gradient from 50–500 

mM imidazole. Column peak fractions were pooled immediately and diluted 5-fold with 

25 mM Tris (pH 8.0), containing 5% 1,2-propanediol, 0.5 mM EDTA, and 5 mM 

dithiothreitol (DTT). The diluted protein sample was then loaded onto Poros HQ, washed 

with the dilution buffer, and the protein was eluted with a gradient from 50 –500 mM 

NaCl. Peak fractions were pooled and concentrated using Centri-prep 10K (Amicon) 

filter devices and subjected to size exclusion, using Superdex-75 resin (Pharmacia) 

preequilibrated with TBS (pH 8.0), containing 5% 1,2-propanediol, 0.5 mM EDTA, and 5 

mM DTT. LXR protein was diluted to in PBS, and 5-fold molar excess of NHS-LC-

Biotin (Pierce Chemical Co., Rockford, IL) was added in a minimal volume of PBS and 

incubated for 30 min. The biotinylation modification reaction was stopped by the addition 

of 2000x molar excess of Tris-HCl, pH 8. The modified LXR protein was dialyzed 

against PBS containing 5 mM DTT, 2 mM EDTA, and 2% sucrose. The biotinylated 

LXR protein was subjected to mass spectrometric analysis until approximately 95% of the 

protein had at least a single site of biotinylation; and the overall extent of biotinylation 

followed a normal distribution of multiple sites, ranging from one to nine. The 
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biotinylated protein was incubated for 20–25 min at a concentration of 25 nM in assay 

buffer [50 mM KCl, 50 mM Tris (pH 8), 0.1 mg/ml fatty acid-free BSA; 10 mM DTT] 

with equimolar amounts of streptavidin-AlloPhycoCyanin (APC, Molecular Probes Inc., 

Eugene, OR). At the same time, the biotinylated peptide of SRC-1 or NCoR at a 

concentration of 25 nM was incubated in assay buffer with a molar amount of 

streptavidin-labeled Europium (Wallac, Inc., Boston, MA) for 20–25 min. After the initial 

incubations are completed, a 10 molar excess of cold biotin was added to each of the 

solutions to block the unattached streptavidin reagents. After 20 min the solutions were 

mixed yielding a concentration of 12.5 nM for the dye-labeled LXR protein and SRC-1 or 

NCoR peptide.  

 

Mammalian Cell Culture and Transfection  HEK-293T and HepG2 cells were 

maintained in DMEM (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine 

serum (Hyclone Laboratories, Inc., Logan, UT) and penicillin/streptomycin (Invitrogen) 

at 37 C in 5% CO2. Transient transfection of 293T cells was performed with 

Lipofectamine 2000 (Invitrogen) according to manufacturer’s instructions. Briefly, cells 

were seeded in 24-well plates and allowed to adhere before transfection with 1.1 µg total 

of appropriate plasmids and 2.5µl of lipofectamine reagent in Opti-MEM (Invitrogen). 

Transfection mixture was incubated with cells overnight in DMEM containing 10% 

delipidated bovine serum (Intracel, Frederick, MD). The following day, the transfection 

mixture was aspirated and replaced with fresh delipidated medium. Cells were then 

treated with indicated compounds or vehicle in delipidated medium overnight for 16 h.  
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RNA Interference  293T cells were seeded into six-well plates and transfected with 

siRNA duplexes (Dharmacon, Lafayette, CO) targeting human NCoR or a nontargeting 

control using Lipofectamine 2000. Cells were then seeded in 24-well plates for further 

studies. HepG2 knockdown was carried out using the same siRNA duplexes, but cells 

were transfected using the Amaxa system, Cell Solution V, protocol T-28. For all 

knockdown studies, cells were harvested 96 h after knockdown for further analysis.  

 

Luciferase Reporter Assay  After compound treatment for 16 h, cells were lysed in 100 

µl of Passive Lysis Buffer (Promega) containing complete protease inhibitor (Roche, 

Indianapolis, IN). Cells were lysed by freeze-thaw at –80 C, and 5 µl of lysate was used 

for luciferase assay (Promega) or β-galactosidase assay. Relative light units for luciferase 

were normalized to β-gal activity.  

 

Reverse Transcription and Quantitative PCR  Cells were lysed in Buffer RLT and 

processed using the RNeasy kit (QIAGEN, Chatsworth, CA) according to manufacturer’s 

instructions. Isolated RNA was reverse transcribed with oligo-dT primers using either 

Sprint Power Script reagents (CLONTECH Laboratories, Inc., Palo Alto, CA) or 

SuperScript II (Invitrogen) according to the supplied protocol. cDNA was used in 

Taqman reactions using commercially available primer/probe sets (Applied Biosystems, 

Foster City, CA) and Taqman Universal PCR mix (Applied Biosystems). Quantitative 

PCR was performed on the Applied Systems 7900HT or 7500 Real-Time System. Data 
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were analyzed using the standard curve method with 36B4 serving as the housekeeping 

gene.  

 

Chromatin Immunoprecipitation  293T cells were transfected as described in 10-cm 

dishes according to manufacturer instructions or HepG2 cells were plated in 10-cm 

dishes. Compounds were added in delipidated media overnight for 16 h. Cells were 

washed with PBS, and cell pellets were lysed in ChIP lysis buffer [50 mM 

HEPES/NaOH, 1% sodium dodecyl sulfate (SDS), 10 mM EDTA, 1 mM 

phenylmethylsulfonylfluoride, and complete protease inhibitor], incubated on ice for 10 

min, and diluted in ChIP dilution buffer (50 mM HEPES/NaOH, 155 mM NaCl, 1.1% 

Triton X-100, 0.11% Na-deoxycholate, 1 mM phenylmethylsulfonylfluoride, and 

protease inhibitors with EDTA). Lysate was sonicated three times for 15 sec to yield an 

average DNA fragment length of approximately 500 bp. Lysates were clarified by 

centrifugation at 13,000 rpm for 10 min at 4 C. HepG2 samples were precleared for 2 h at 

4 C with protein-A-sepharose beads containing sonicated salmon sperm DNA. Lysates 

were then incubated overnight at 4C with the following antibodies: anti-NCoR (Abcam) 

or rabbit IgG (Calbiochem) as a negative control. Immune complexes were then 

precipitated with protein A-sepharose for 2 h at 4 C. Complexes were subsequently 

washed with low-salt buffer, high-salt buffer, lithium chloride buffer, and Tris-EDTA as 

described by Upstate Biotechnology, Inc. (Lake Placid, NY) with minor modifications. 

Complexes were eluted in SDS elution buffer, and cross-links were reversed for a 

minimum of 6 h at 65 C. Eluted DNA was processed either by phenol/chloroform 
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extraction or with the PCR Purification Kit (QIAGEN). DNA was used for quantitative 

PCR with POWER SYBR mix (Applied Biosystems) and the following primers: hFASN-

forward (F)-gttactgccggtcatcgca, hFASN-reverse (R)-tctcgggtctgggttccc, hABCA1-F-

acgtgctttctgctgagtga, hABCA1-R-accgagcgcagaggttacta, hSREBF1-F-

tgctgcacccatattatctcc, hSREBF11-R-gctccaaccctccgtttact, SV40- F-

ttccggtactgttggtaaaatgg, SV40-R accagggcgtatctcttcatagc, h36B4-F-acgctgctgaacatgctcaa, 

h36B4-R-gatgctgccattgtcgaaca. Upstream primer sequences are available upon request.  

 

Immunoblotting  Lysates were prepared in passive lysis buffer for cotransfection studies 

or in RIPA buffer [50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1% Triton X-100, 0.4% 

deoxycholate, 0.1% SDS]. Lysate (15–20 µg) was loaded on 4–20% Tris-Glycine gels 

(Invitrogen) and electrophoresed. Transfer was performed onto Immobilon-P (Millipore 

Corp., Bedford, MA) membranes, and membranes were blocked with 5% nonfat milk in 

Tris-buffered saline with Tween 20. Membranes were incubated overnight at 4 C with 

primary antibodies diluted in blocking buffer. Membranes were washed extensively and 

incubated with appropriate secondary antibodies (Pierce). After washes, 

chemiluminescent signal was detected with ECL-Plus (Amersham Biosciences, Arlington 

Heights, IL). 
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III.  RESULTS 

Partial Agonism of LXR   

We studied two ligands that have been previously described, the sulfonamide T091317 

and GW3965 (Schultz et al., 2002, Collins, et al., 2002), as well as a novel LXR ligand 

GSK418224 (Fig. 2.1A), referred to as T09, GW965, and GSK224. The activities of the 

ligands were tested by in vitro
 fluorescence-resonance energy transfer (FRET) assays, 

luciferase reporter assays using Gal-LXR or full-length LXR in human kidney 293T cells, 

and assays of endogenous gene expression in human liver cells. The results are 

summarized in Table 1. In transient transfections, T09 induced high levels of LXR 

transactivation, relative to the maximum efficacy of GW965, which was only 

approximately 23% of that of T09 (Fig. 2.1B). Maximum efficacy of GSK224 was an 

order of magnitude lower still and approximately 1% that of T09 (Fig. 2.1B, see inset). 

Thus, both GW965 and GSK224 functioned as partial agonists relative to the full agonist 

T09. To determine whether the reduced efficacies at saturating concentrations were due to 

differences in coactivator recruitment, a cell-free FRET assay was used to measure 

recruitment of a biotinylated SRC-1 NR box peptide (Heery et al., 1997) in the presence 

of increasing concentrations of ligand. Comparisons of the relative ability to recruit 

coactivator at maximal ligand concentration revealed only a minor difference between 

T09 and GW965, whereas the effectiveness of GSK224 was less but nevertheless 

considerably more than would have been predicted by its low relative level of 

transcriptional activity (Fig. 2.1C). 
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Differential Effects of Ligands on Target Gene Recruitment of NCoR by LXR 

We next employed ChIP to assess the effects of LXR ligands on NCoR recruitment by 

Gal4-LXR in intact cells. As expected, NCoR was robustly recruited by Gal-LXR relative 

to the Gal DNA-binding domain (DBD) alone (Fig. 2.3). Consistent with the predictions 

from in vitro studies, GSK224 had little effect on NCoR recruitment, and GW965 had a 

moderate effect, whereas T09 led to near complete dissociation of NCoR from the 

reporter gene (Fig. 2.3).  

 

LXR Transactivation Is Modulated by Cellular NCoR Levels 

To determine the role of NCoR in modulating the activity of LXR ligands, we repeated 

the transactivation assays at saturating concentrations of ligands after a reduction in 

NCoR levels using small interfering RNA (siRNAs). Under these conditions, activation 

by GSK224 increased approximately 5.2-fold, and the activity of GW965 also increased 

markedly (3.7-fold, Fig. 2.4A). Even T09 activity was increased when NCoR levels were 

reduced, although the change was more modest (Fig. 2.4A). Over-expression of NCoR 

had its greatest effect on the activity of GW965, which was reduced by about 50% (Fig. 

2.4B). GSK224 activity was decreased only approximately 1.3-fold, consistent with the 

previous conclusion that endogenous NCoR was already bound in this setting and the 

activity of the full agonist T09 was affected even less by exogenous NCoR (Fig. 2.4B). In 

sum, GW965-mediated association with NCoR was highly dynamic and thus most 

sensitive to the level of NCoR. 
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Partial Agonism of LXR/Retinoic X Receptor (RXR) Heterodimers 

We next determined whether the ligands also differentially activated the full-length 

receptor LXR by cotransfection expression plasmids for LXR and RXR along with LXR-

responsive luciferase reporter constructs into 293T cells. Using a reporter containing 

three copies of an LXR-response element (DR-4) cloned upstream of the herpes simplex 

virus thymidine kinase promoter, T09 and GW965 induced similar levels of activation, 

whereas GSK224 treatment led to a lower induction (Fig. 2.5A). We also examined a 

luciferase reporter driven by the human ABCA1 promoter. 293T cells were cotransfected 

with a luciferase reporter driven by 1.45 kb of the proximal human ABCA1 promoter, 

containing the LXR-response element (Costet et al., 2000).   hABCA1-driven luciferase 

activity was induced to the greatest extent by T09, followed by GW965, and then 

GSK224. Together, these results confirm that T09 is the strongest LXR agonist, with 

GW965 intermediate, and GSK224 a weaker agonist. 

 

Partial Agonism of LXR in Human Liver-Derived Cells 

We next determined the activity of these LXR ligands on endogenous gene expression in 

human HepG2 hepatoma cells. Fatty acid synthase (FAS), an LXR target that may 

contribute to hepatic triglyceride accumulation that is an undesirable side effect for 

clinical LXR agonism, was dramatically induced by T09, whereas GW965 was less active 

at inducing FAS mRNA and GSK224 even less so (Fig. 2.6A). By contrast, in the same 

cells, the expression of another lipogenic LXR target, SREBP1, was increased to similar 

extents by all three ligands (Fig. 2.6B). Similarly all three ligands activated another LXR 
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target, the cholesterol efflux gene ABCA1 (Fig. 2.6C). Thus, T09 behaved as a full 

agonist at all genes tested, whereas the degree of agonism of GSK224 and GW965 was 

gene specific. 

 

NCoR Occupancy of Endogenous LXR Target Genes in Liver Cells 

To further assess the contribution of NCoR association to relative expression levels at 

these LXR target genes, we performed ChIP in the vicinity of known LXREs in the 

endogenous FAS, SREBP1, and ABCA1 genes at saturating concentrations of each of the 

LXR ligands. The degree of NCoR dismissal from the fatty acid synthase gene was ligand 

specific and, consistent with the gene expression, reduced only modestly by GSK224, 

moderately by GW965, and markedly by T09 (Fig. 2.7A). By contrast, only a modest 

difference in relative NCoR recruitment was observed among the ligands at the SREBP1 

promoter, consistent with the gene expression data (Fig. 2.7B). Examination of the LXRE 

at ABCA1 revealed a trend of graded occupancy; however, the only significant difference 

observed was between GW965 and T09. Thus, the level of NCoR occupancy correlated 

with the differential activation of these LXR target genes.  

 

Knockdown of NCoR Enhances Expression of LXR Target Genes 

Given the gene-specific occupancy by NCoR in the presence of various LXR ligands, we 

explored the consequence of NCoR knockdown. Consistent with NCoR occupancy shown 

earlier, depletion of NCoR induced expression of the FAS gene (Fig. 2.8A). Reduction in 

NCoR levels also enhanced activation by GSK224 and GSK965, but not T09, which was 



44 

 

also consistent with the level of NCoR occupancy in the presence of these compounds 

(Fig. 2.8A). NCoR depletion also potentiated induction of SREBP1 and ABCA1 mRNA 

by GSK224, and in the case of ABCA1 activation was also increased, but to a lesser 

extent, by the other compounds (Fig. 2.8, B and C). Thus, the degree of association with 

NCoR in the presence of LXR ligands is a target gene-specific determinant of partial 

agonist activity. 

 

IV. DISCUSSION 

We have described a mode of selective modulation of LXR in which the relative 

recruitment of the corepressor NCoR is a critical determinant of transcriptional efficacy. 

Two compounds that function as partial agonists relative to T09 fail to completely 

dissociate NCoR from LXR, with the least active compound causing almost no 

dissociation either in FRET assays performed in vitro
 or in ChIP assays in living cells. 

Affinity of liganded LXR for NCoR is likely to explain a portion of the reduced efficacy 

of these compounds. Consistent with this, removal of NCoR from cells enhanced the 

activity of the partial agonists. Others have previously correlated failure to dissociate 

NCoR with partial agonist activity (Albers et al., 2006). However, the present report is 

the first to demonstrate differential NCoR dismissal from endogenous genes and the first 

to test and confirm the NCoR hypothesis by manipulating NCoR concentrations.  
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It is likely that partial agonism reflects a combination of altered coactivator affinity as 

well as failure to completely dissociate NCoR. In this regard, it is of interest that SERMs 

differ from the full agonist estradiol because they alter the range of coactivator specificity 

as well as favoring interaction with corepressors (Shang et al., 2000). Note that, unlike 

LXR, ER does not have affinity for NCoR nor is it mostly bound to target genes in the 

unliganded state. Thus the role of corepressors is likely to be greater for LXR. This 

mechanism is potentially applicable to all NRs that bind corepressors, and particularly 

those that are bound to target genes in the absence of ligand (Hu et al., 1999).  

 

For the development of potential therapies targeting LXR, the concomitant induction of 

hepatic de novo lipogenesis remains a major obstacle. Thus, it was of great interest to 

assess whether compounds that functioned as partial agonists in vitro and in transient 

transfection assays retained these properties on endogenous genes in liver cells. Indeed, 

GSK224 had very little effect on the lipogenic FAS gene, in part due to its failure to 

dissociate NCoR. Consistent with the differential effects of these ligands on NCoR 

dismissal at the FAS promoter, rodent studies have shown that indeed GW965 treatment 

results in decreased hepatic triglyceride accumulation compared with the full agonist T09 

(Miao et al., 2004). However, GSK224 did activate the lipogenic SREBP1 gene, and 

enhanced dissociation of NCoR, about as well as the full agonist T09. Because both FAS 

and SREBP1 were evaluated in the same cells, these data strongly suggest that additional 

cis-elements in the SREBP1 gene, perhaps interacting with gene-specific factors, alter the 

conformation of the GSK224-bound LXR so as to recapitulate that of the full agonist-
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bound form. A better understanding of these factors will be critical to the rational design 

of selective LXR modulators that do not cause hepatic lipogenesis. 
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Figure 2.1. Transactivation by LXR Ligands Disproportionate to Coactivator 

Recruitment.  A, Structures of LXR agonists. B, Activity of LXR agonists in transient 
transfection assay with Gal4-LXRα cotransfected with 5xUAS-SV40-luciferase reporter. 
EC50 values were 1.0 µM (GSK224), 2.8 µM (GW965), and 1.3 µM (T09). Inset shows a 
magnified view of GSK224 and vehicle data. C, FRET assay for the indicated 
compounds incubated with LXRα LBD and SRC-1 peptide. EC50 values were 5.90 µM 
(GSK224), 6.60 µM (GW965), and 7.10 µM (T09). Data shown are representative results 
(n = 3), and the experiment was repeated two times with similar results. 

Gal-LXRαααα 

Shree Joshi, Joseph Weaver, GSK 
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Table 2.1 LXR Ligand Properties 

Shree Joshi, Joseph Weaver, GSK 
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Figure 2.2 LXR Ligands Differentially Dismiss Corepressor CoRNR Peptide in 

Vitro.  Relative FRET for the indicated compounds was determined by incubation of 
LXRα LBD with NCoR peptide in the presence of increasing ligand concentration. A, 
T0901317 B, GW965. C, GSK224. EC50 values were 5.01 µM (GSK224), 7.51 µM 
(GW965), and 7.53 µM (T09). Data shown are representative results, and the experiment 
was repeated two times with similar results. 

 

 GSK 
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Figure 2.3 Differential Dismissal of Corepressor from LXR on an LXRαααα-Responsive 

Reporter Gene  293T cells were cotransfected with 5xUAS-SV40-luciferase and Gal-
LXRα or Gal-DBD control and treated with ligand (10 µM) or vehicle overnight. ChIP 
assay was performed with anti-NCoR antibody as described in Materials and Methods. 
ChIP signal was normalized to nonspecific 36B4 gene. Gal-DBD was a negative control 
for NCoR recruitment by ChIP, and relative recruitment was compared with Gal-DBD, 
DMSO treatment. Error bars represent SEM, n = 3 from three independent experiments. 
**, P < 0.01 calculated by Student’s t test. 

 

Dave Steger 



51 

 

 

Figure 2.4 Modulation of NCoR Levels Differentially Influences Ligand-Dependent 

Transactivation of LXRαααα  A, NCoR knockdown. 293T cells were cotransfected with 
5xUAS-SV40-luciferase and Gal-LXRα along with siRNA against human NCoR or 
nontargeting control (NTC). Cells were treated with ligands (10 µM) or vehicle overnight. 
Relative activation was determined as fold change vs. Gal-DBD controls. *, P < 0.05 or 
**, P < 0.01 compared with NTC. NCoR knockdown was confirmed by immunoblotting 
(inset), and Ran protein level is shown as loading control. B, NCoR overexpression. 293T 
cells were cotransfected with 5xUAS-SV40-luciferase and Gal-LXRα along with human 
NCoR expression vector or empty control plasmid. Cells were treated with ligands (10 
µM) or vehicle overnight. Each bar is the mean value ± SE (n = 3) from three independent 
experiments. NCoR expression was confirmed by immunoblotting (inset), and β-actin 
protein level is shown as a loading control. *, P < 0.05 compared with vector control for 
each ligand treatment calculated by Student’s t test. siNCoR, small interfering NCoR. 

Shree Joshi, Joseph Weaver 
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Figure 2.5 Differential Activation of Full-Length LXR.  A, DR-4 Element. 293T cells 
were cotransfected with pCIS control plasmid or 3x-(DR-4)-tk-luciferase, pCMX-LXRα, 
pCMX-RXRα and β-galactosidase and treated with 10 µM ligand or vehicle for 18 h. B, 
hABCA1 promoter activity. 293T cells were cotransfected with pGL3 control plasmid or 
pGL3 containing a 1.45-kb proximal promoter fragment of the human Abca1 promoter 
spanning the LXRE site, pCMX-LXRα, pCMX-RXRα, and β-galactosidase and treated 
with 10 µM ligand or vehicle for 18 h. Luciferase activity was measured and normalized 
to cotransfected β-galactosidase activity. Relative activation was determined by 
normalizing to control vector treated with corresponding vehicle or ligand. Results are 
representative of a minimum of three independent experiments. Activation upon 
treatment with DMSO was set to equal 1. Each bar is the mean value ± SE of triplicate 
samples from three independent experiments. Statistically significant induction compared 
with DMSO: *, P < 0.5 or **, P < 0.01 by Student’s t test or between ligands where 
indicated. 
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Figure 2.6 Endogenous Gene Regulation by LXR Ligands in Hepatoma Cells  

HepG2 cells were seeded in 24-well plates and incubated with increasing concentrations 
of ligand or vehicle in media containing 10% delipidated media overnight, after which 
target gene expression was analyzed by quantitative real-time PCR. A, FAS gene 
expression. B, SREBP1 gene expression. C, ABCA1 gene expression. Results indicate 
mean ± SE from triplicates of a representative experiment repeated three times with 
similar results. 
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Figure 2.7 LXR Ligands Differentially Recruit NCoR to Endogenous Target Genes  
HepG2 cells were seeded in 24-well plates and incubated with ligand (10 µM) or vehicle 
in media containing 10% delipidated media overnight, after which ChIP analysis for 
NCoR was performed. A, FAS gene. B, SREBP1c gene. C, ABCA1 gene. ChIP signal 
was normalized to nonspecific DNA region spanning the 36B4 gene, and data represent 
mean ± SEM (n = 3). Data are from a representative experiment repeated three times with 
similar results. *, P < 0.05 calculated by Student’s t test. 
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Figure 2.8 NCoR Depletion Induces Basal Activation of LXR Target Genes and 
Differentially Potentiates Ligand-Dependent Gene Activation  HepG2 cells were 
electroporated with siRNA targeting human NCoR or NTC. Cells were treated with the 
indicated ligands (10 µM) or vehicle control overnight in media containing 10% 
delipidated serum. Relative expression was calculated by normalizing real-time PCR data 
to 36B4 expression, and fold change indicates relative increase over NTC vehicle-treated 
cells. A, Fatty acid synthase gene expression. B, SREBP1c gene expression. C, ABCA1 
gene expression. Data represent mean ± SEM of triplicate samples. Data are from a 
representative experiment repeated three times with similar results. *, P < 0.05; **, P < 
0.01; or ***, P < 0.005 relative to siNTC calculated by Student’s t test. NTC, 
Nontargeting control; siNCoR, small interfering NCoR; siNTC, small interfering NTC. 
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CHAPTER THREE 

STRUCTURAL ANALYSIS OF REV-ERBαααα REPRESSION BY THE NUCLEAR 

COREPRESSOR NCoR 
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Introduction 

Nuclear receptors (NRs) comprise a large family of ligand-sensitive transcription factors 

that regulate growth, development, metabolism, circadian rhythm, and other 

physiological processes (Desvergne et al., 2006; Mangelsdorf et al., 1995; Teboul et al., 

2008).  These receptors bind coactivator molecules in the presence of ligand and 

corepressors in the absence of ligand, which facilitates local chromatin remodeling to 

effect target gene transcriptional activation or repression (Aranda and Pascual, 2001; 

Glass and Rosenfeld, 2000; Hu and Lazar, 2000; Privalsky, 2004).  NRs contain two 

modules that contribute to their activation functions.  A ligand-insensitive activation 

domain known as Activation Function-1 (AF-1) is located in the NR N-terminus, whereas 

the ligand-dependent activation domain, known as AF-2, is contained within the C-

terminal ligand binding domain (LBD) (Moras and Gronemeyer, 1998).   

 

Coactivator molecules contain multiple motifs that are sufficient to mediate association 

with the liganded NR LBD (Darimont et al., 1998; McInerney et al., 1998; Westin et al., 

1998; Wurtz et al., 1996). These motifs include the sequence LxxLL (where x is any 

amino acid and L is leucine), and have been referred to as NR boxes (Heery et al., 1997).  

Crystal structural studies have revealed that NR LBDs consist of 12 α-helical regions, of 

which helices 3, 4, 5, and 12 form the surface that binds the NR box  (Bain et al., 2007; 

Moras and Gronemeyer, 1998).  Biochemical studies show that helix 12 (H12) is required 

for transcriptional activation as well as coactivator binding by NRs (Danielian et al., 

1992; Feng et al., 1998). Conversely, in the absence of ligand, receptor LBDs associate 
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with co-repressors such as NCoR (Nuclear Co-Repressor) and SMRT (Silencing 

Mediator of Retinoid and Thyroid Receptors), which each contain two or three CoRNR 

(Co-repressor Nuclear Receptor) motifs with a core IxxI/VI sequence (Hu and Lazar, 

1999; Hu et al., 2001; Perissi et al., 1999) (Fig. 3.1).  CoRNR peptides interact with a 

surface of the NRs that contains H3, 4, and 5 and thereby overlaps with the binding 

surface for NR box peptides (Hu et al., 2001; Perissi et al., 1999). However, H12 is not 

required and, indeed, hinders for the CoRNR interaction with NRs (Chen and Evans, 

1995). This is not only of biochemical interest, as it explains the dominant negative 

activity of the oncogene v-erbA (Saaticioglu et al., 1993) as well as naturally occurring 

thyroid hormone receptor mutations that cause the clinical syndrome of resistance to 

thyroid hormone (Chatterjee et al., 1991; Yoh et al., 1997; Yoh and Privalsky, 2000). 

 

The structural determinants of nuclear hormone receptor-mediated repression were first 

demonstrated by X-ray crystallography of an antagonist-bound PPARα co-crystallized 

with a CoRNR peptide derived from SMRT (Xu et al., 2002).  Interestingly, this structure 

revealed that the NR interacts not only with the core IxxI/VI CoRNR motif but also with 

an extended α-helix in the CoRNR box.  Although its I/LxxI/VI core led to the naming of 

the CoRNR box by analogy to the coactivator NR box "LXXLL" (Hu and Lazar, 1999; 

Nagy et al., 1999a), this critical detail was more consistent with earlier suggestions that 

the key interaction motif consists of the sequence LxxHIxxxI, with the first 4 amino acids 

(LxxH) comprising an extended helix and the last 5 amino acids (IxxxI) corresponding to 

the I/LxxI/VI CoRNR motif (Perissi et al., 1999; Xu et al., 2002).  The key difference is 
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that, in the extended helix model and in the PPARα/SMRT crystal structure, the fourth 

amino acid of the CoRNR motif does not contribute to the interaction.  However, Nagy et 

al showed that mutation of "ISEVI" to "ISEAI" in a SMRT CoRNR peptide, which 

destroys the "IxxV/II" motif but does not affect the “LXXXIXXXL/I” motif, abrogates 

corepressor interaction with thyroid hormone receptor (TR) (Nagy et al., 1999b).  Thus, it 

is unclear whether binding of corepressors to NR requires the IxxII, or “two-turn” 

CoRNR box motif or the extended “LXXXIXXXL/I”, or the “three-turn” CoRNR box 

motif (Figure 3.1).   

 

Of particular interest to repression by NRs is Rev-erbα, a receptor for heme (Raghuram 

et al., 2007; Yin et al., 2007), that lacks H12 and thus does not contain an AF-2 domain 

(Lazar et al., 1989; Miyajima et al., 1989). Rev-erbα exerts its repressive activity by 

association with NCoR (Harding and Lazar, 1995; Yin and Lazar, 2005; Zamir et al., 

1997a), and has a preference for the CoRNR motif contained in NCoR amino acids 2024-

2065 which has been variously referred to as ID1 (Hu et al., 2001) or ID2 (Perissi et al., 

1999). NCoR binding to Rev-erbα has important biological consequences including 

repression of the circadian clock transcription factor Bmal1 to influence the period length 

and circadian amplitude (Preitner et al., 2002; Yin and Lazar, 2005).  Additionally, Rev-

erbα also directly regulates genes and metabolic processes including the adipokine PAI-1 

(Wang et al., 2006), the gluconeogenic enzymes glucose-6-phosphatase (G6Pase) and 

phosphoenolphyruvate carboxykinase (PEPCK) (Yin et al., 2007), lipid metabolism 

genes including Apo-AI and ApoC-III (Coste and RodrÄ±Ì guez, 2002; Coste and 
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Rodriguez, 2002; Raspe et al., 2002), hepatic cholesterol and bile acid metabolism (Duez 

et al., 2008; Le Martelot et al., 2009), muscle differentiation (Downes et al., 1995), 

adipocyte differentiation (Wang and Lazar, 2008) and the transcriptional coactivator 

PGC1α (Wu et al., 2009). Thus, a molecular understanding of its repression function is 

critical for further study of the basis for nuclear hormone receptor-mediated repression as 

well as to provide insight into the potential pharmacological manipulation of this receptor 

in disease.    

 

Here we present the crystal structure of the Rev-erbα LBD co-crystallized with an 

NCoR-derived CoRNR peptide.  We demonstrate using alanine substitution that this 

receptor utilizes the core IxxII “two-turn” CoRNR box motif to facilitate corepressor 

interaction, and thus this represents a different mode of binding compared to that of the 

PPARα/SMRT extended “three-turn” α-helical CoRNR box motif interaction.  

Furthermore, performing alanine substitutions of key hydrophobic residues within the 

LBD predicted to make important contacts with the CoRNR box demonstrates the 

necessity of these residues for Rev-erbα/NCoR-mediated repression. Thus, this structure 

provides insight into the nature of the repressive function of Rev-erbα and, more 

generally, demonstrates that different NRs may utilize different CoRNR motif registries. 
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Experimental Procedures 

Plasmids.  Human FLAG-Rev-erbα, VP16-Rev-erbα, Gal-DBD, 5xUAS-SV40-

Luciferase, DR-2-Luciferase, Bmal1-Luciferase and Gal-NCoR-ID1 have been described 

previously (Harding and Lazar, 1995; Yin and Lazar, 2005; Zamir et al., 1997b).  Site-

directed mutagenesis was performed using Stratagene site-directed mutagenesis II XL 

according to manufacturer’s instructions and commercially available primer design 

program (Stratagene).  All point mutants were verified by sequencing.   

 

Cell Culture and Transfection.  293T cells were maintained in DMEM plus 10% fetal 

bovine serum in .5% penicillin/streptomycin at 37°C, 5% CO2.  24 hours prior to 

transfection, cells were seeded into 24-well plates.  Transfections were performed in fresh 

media lacking antibiotics.  For mammalian two-hybrid assays, each well was transfected 

with 0.25µg Gal-ID1 of Gal-DBD, 0.25µg of VP16 or VP16-Rev-erbα/β, 0.25µg of 

5xUAS-SV40-Luciferase, and 0.1µg of β-galactosidase and 2µl/well of Lipofectamine 

2000 (Invitrogen) in 100µl Opti-MEM.  For repression assays, cells were co-transfected 

with 0.2µg DR-Luciferase or Bmal1-Luciferase, 0.6µg of pcDNA or FLAG-Rev-erbα 

and 0.1µg of β-galactosidase.    For gene expression analysis, cells were co-transfected 

with 0.6µg plasmid.  Transfections were carried out for 36 hours and cells lysed in 

Passive Lysis Buffer (Promega) or Buffer RLT (Qiagen) for mRNA extraction. 
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Luciferase Assay.  Cells were lysed in 100 µl of Passive Lysis Buffer (Promega) 

followed by freeze-thaw at -80°C.  5µl of lysate was used for luciferase assay 

(Promega) or β-galactosidase assay. Relative light units for luciferase were normalized to 

β-gal activity. 

 

Gene Expression Assay.  Lysates were processed using RNeasy (Qiagen) and mRNA 

quantitated.  Reverse transcription was performed using the High Capacity cDNA 

Synthesis Kit (Applied Biosystems).  20ng of cDNA was amplified using primers for 

human Bmal1 (Qiagen) and Gapdh (Qiagen) using SYBR Green Quantitative PCR 

Master Mix (Applied Biosystems) on a Real-Time 7700 (Applied Biosystems).  Data was 

normalized to Gapdh housekeeping gene. 

 

Immunoblotting.  Extracts were electrophoresed by SDS-PAGE on a 4-20% Tris-

Glycine gradient gel (Invitrogen).  Protein transfer was carried out on PVDF Immobilon-

P membranes (Amersham) overnight at 22V at 4°C.  Membranes were blocked for 90 

minutes in Tris-buffered saline/0.1% Tween-20 (TBST) containing 5% non-fat milk with 

gentle agitation at room temperature.  Membranes were incubated in blocking buffer 

containing primary antibodies overnight at 4°C.  The following antibodies were used: 

rabbit anti-NCoR (REF), mouse ant-FLAG (Sigma-Aldrich) and rabbit anti-HDAC3 

(Upstate).  Following four washes in TBST, secondary antibodies (Pierce) were applied 
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for one hour at room temperature.  Following four TBST washes, membranes were 

processed using ECL Plus (Amersham).     

 

Results 

Crystallization of Rev-erbαααα LBD bound to NCoR peptide. To further characterize the 

repression function of Rev-erbα, a soluble deletion mutant of the human Rev-erbα LBD 

was constituted and co-crystallized with the highest affinity NCoR-containing CoRNR 

peptide (amino acids 2045-2065) and the structure derived to 2.6Å.  Examination of the 

LBD structure revealed a canonical 3-layer α-helical sandwich comparable to other 

published NR LBD structures (Nettles and Greene, 2005) (Fig 3.2B).  Remarkably, given 

that the Rev-erbα LBD lacks H12, we observed a short anti-parallel β-sheet derived from 

the extreme C-terminus of the LBD as well as the N-terminus of the CoRNR peptide.  

Following this β-strand, the NCoR peptide adopts an amphipathic α-helical conformation 

that contacts regions of the ligand-binding pocket, specifically helices 3, 4, and 5 and 

terminates at a conserved H3 residue, K455.  However, this internally deleted clone 

produced regions devoid of electron density for residues between H1 and H3 and the 

generally conserved intra-molecular β-sheet region between H5 and H6, as illustrated by 

the red arrows.  

 

Two regions of Rev-erbαααα underlie its interaction with NCoR. The Rev-erbα LBD 

contains several regions that have been previously described to be important for its 
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repression function, including helix 1, domain within the poly-proline region, helix 3, and 

C-terminal domain encompassing amino acids 602-614 (Fig.3.2A) (Renaud et al., 2000).  

The unique anti-parallel β-strand between the C-terminus of Rev-erbα (amino acids 609-

614) and the N-terminus of the CoRNR box peptide (2047-2049) corresponds to a 

predicted interaction region in the C-terminus that is required for Rev-erbα repression 

(Renaud et al., 2000).  Rev-erbα residue Trp436 underpins and supports the previously 

described Y-domain β-strand. Phe609 provides packing interactions near Ile2049 of NCoR 

ID1. N-CoR Leu2051 marks the start of an amphipathic α-helix (below left) that directs 

hydrophobic residues Leu2051, Ile2055, Ile2058, Ile2059 and Phe2063 towards the mostly 

hydrophobic Rev-erbα binding surface (Fig 3.3A).  Noted hydrogen bonds are Thr444 to 

His2054 and Lys473 to Thr2060 of NCoR and a water-mediated interaction from the 

conserved charge clamp Lys455 to the Asp2062 ID1 backbone. 

 

Structure-guided analysis of repression by full length Rev-erbαααα. As the structural 

analysis predicted that Rev-erbα contains several hydrophobic residues that make 

important contacts with the amphipathic α-helical CoRNR motif, we next used alanine 

substitution mutagenesis to probe the contribution of specific residues to the repression 

function of full length Rev-erbα in cells.  As expected, full-length human Rev-erbα 

potently represses a reporter gene containing a direct repeat of ATTGCA nucleotides 

spaced by two bases (DR-2), which is the canonical Rev-erbα DNA binding sequence 

(Harding and Lazar, 1995) (Fig. 3.3A).  However, mutation of Trp436, Phe443, Val447, 

Val451, Arg461, Leu472, Phe477, as well as several residues at the extreme C-terminus 
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including Leu606, Phe609, and Arg610, resulted in a marked loss of repression function (Fig. 

3.5a).  As a control, mutation of Gln433, which was not predicted to contact the NCoR 

peptide, had minimal effects on repression function.  Interestingly, point mutations of 

Trp436, Phe609 and Arg610, which underpin the anti-parallel β strand shown to be required 

for repression (Fig. 3.4A), minimally affected repression, suggesting that the single 

amino acid substitutions are insufficient to completely disrupt interaction.   In addition to 

the reporter gene assay, the Phe443, Val447, and Phe477
 mutants were all defective in 

repressing expression of the endogenous Bmal1 gene (Fig. 3.5B).   Together, these data 

suggest that these residues mediate important contacts with the NCoR CoRNR box motif 

and are required for Rev-erbα repression of Bmal1.   

 

Novel mode of binding of Rev-erbαααα to the NCoR CoRNR motif. Superimposition of 

the NCoR CoRNR peptide (magenta) bound to Rev-erbα with PPARα bound to the 

SMRT CoRNR peptide (white) revealed different binding modes for the corepressor 

peptides (Fig. 3.6A, 3.6B).  Most notably, the extended α-helix of the NCoR peptide 

("LADH", defined as residues i+1 to i+4) do not make significant contacts with Rev-

erbα, whereas the isoleucine residues in the core “two-turn” CoRNR box motif "ICQII" 

are critical.  This difference equates to a 4 position N-terminal shift in the NCoR CoRNR 

peptide alignment bound to Rev-erbα relative to the binding of SMRT CoRNR peptide to 

PPARα. The formation of the β-sheet structure between NCoR and Rev-erbα is likely to 

account for the shift. Interactions such as hydrogen-bonding between Lys473 to Thr2060, a 

unique threonine in the NCoR peptide, potentially contribute to motif selection as well.  
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Next, we tested this novel mode of CoRNR peptide binding predicted by the structure 

functionally.  The effects of mutation in the NCoR CoRNR peptide on binding to the 

Rev-erbα LBD were determined in vitro by fluorescence resonance energy transfer assay 

(Fig. 3.7A).  As hypothesized from the structure, mutation of residues i+1 and i+4 had 

minimal effects on binding affinity.  By contrast, mutation of residues i+5, i+8, i+9, 

which comprise the core CoRNR motif, dramatically reduced binding affinity for Rev-

erbα LBD.  

 

The structural predictions were also tested in living cells using a mammalian two-hybrid 

assay.  Co-transfection of the NCoR-CoRNR peptide fused to the DBD of the Gal4 

transcription factor, with Rev-erb fused to the VP16 transcriptional activation domain 

led to the potent activation of a luciferase reporter gene containing Gal4 binding sites, 

indicative of an interaction between the NCoR peptide and Rev-erbα (Fig. 3.7B).  

Mutations in the CoRNR residues i+5, i+8, and i+9 abolished the interaction, whereas 

those in the extended N-terminal α-helix (i+I, i+4) had little effect.  Thus, the core 

"IxxII" motif was required for interaction with Rev-erbα, whereas the "LADH" extension 

was not.   

 

The novel mode of CoRNR binding extends to the TR. To further explore this novel 

mode of CoRNR binding to NRs, we tested chimeric CoRNR-derived peptides constructs 
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for their ability to interact with thyroid receptor (TR), which also preferentially binds 

NCoR(Ishizuka and Lazar, 2003).  In ID1 and ID2 of N-CoR, these sequences are 

"ICQII" and "LEDII", respectively (Fig. 3.7a). In the alignment of based on the 

antagonized PPARα:SMRT crystal structure and previous reports, ID2 is shifted relative 

to ID1 by 4 amino acids toward the N-terminus, such that the “ICQII” of the first 

interaction domain is aligned with "IRKAL" (Fig. 3.7A) (Perissi et al., 1999; Xu et al., 

2002). Indeed, in the co-crystal structure of antagonist bound PPARα and a peptide 

derived from the second interaction domain of SMRT, the L of the "IRKAL" motif, 

which is downstream of the putative CoRNR box "LEDII", makes important contacts 

with PPARα. This is not inconsistent with the CoRNR box alignment, because we and 

others have shown that the core motif is necessary but not sufficient; specific flanking 

amino acids are also required, presumably due to important contacts with the receptor 

such as those demonstrated in the structure. 

We tested the two potential alignments by making hybrids of ID1 and ID2, with ID2 

sequences following the "ICQII" of the ID1domain (ID1/ID2) or replacing the "ICQII" 

with "IRKAL" (ID1/ID2-RKAL)(Fig  3.7B).  Both hybrid peptides contain the extended 

"LXXXIXXXL/I” motif, however, while the peptide with the LEDII motif substitution 

was able to interact with TR, the peptide with the IRKAL motif (but lacking any “I/L X 

X I/V I”) did not (Fig. 3.7B).  These data, together with those of Nagy et al showing that 

mutating the CoRNR motif but not the “LXXXIXXXL/I” abrogates corepressor 

interaction with TR (Nagy et al., 1999b), suggest that TR interacts with NCoR by in a 
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manner similar to that of Rev-erbα, involving interaction with the core “I/L X X I/V I” 

CoRNR motif. 

 

Discussion 

Nuclear hormone receptors can actively repress transcription via recruitment of the 

corepressors NCoR and SMRT.  NCoR and SMRT binding is mediated by C-terminal 

interaction domains, which contain α-helical isoleucine rich motifs, termed CoRNR box 

motifs which are structurally analogous to the motif which drives coactivator binding.  

The original reports of these CoRNR motifs varied in their requirement of an additional 

N-terminal α-helical region.  The “two-turn” CoRNR motif is simply IxxII whereas the 

“three-turn” CoRNR motif is LxxHIxxxI.   

 

Since the binding modes of coactivators and corepressors are virtually identical and the 

regions of the NR ligand-binding domains they contact are overlapping, efforts were 

made to address the relative selectivity of coactivator versus corepressor binding 

structurally.  Taking advantage of the known structure activity relationship of a potent 

synthetic ligand for PPARα, a novel antagonist was generated that impaired PPARα 

activity and enhanced binding to SMRT (Xu et al., 2002).  X-ray crystal structure of the 

ternary PPARα/antagonist/SMRT complex revealed that SMRT adopted a three-turn α-

helical structure.  Interestingly, the extended “three-turn” CoRNR motif adopted in this 

structure by SMRT resulted in the repositioning of helix 12, which is critical for 
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coactivator binding, and thus provided a molecular mechanism for antagonist-mediated 

PPARα/SMRT interaction.   

 

To further understand the structural basis for physiological repression by nuclear 

hormone receptors we co-crystallized a binary complex of NCoR and the ligand-binding 

domain for Rev-erbα, which does not contain helix 12 and thus functions as a 

constitutive receptor.  This structure immediately revealed a fundamental difference in 

the mode of PPARα/SMRT and Rev-erbα/NCoR binding.  The NCoR CoRNR motif was 

N-terminally shifted in its mode of binding, utilizing a “two-turn” CoRNR motif as 

opposed to the “three-turn” utilized by SMRT.  Furthermore, the N-terminus of the 

CoRNR motif adopted an anti-parallel β-sheet motif with the extreme C-terminus of Rev-

erbα.  To ask whether this CoRNR motif binding mode could be recapitulated in vivo, we 

mutated residues predicted to be critical for Rev-erbα NCoR binding and repression.  

Indeed, these results confirmed the “two-turn” CoRNR motif mode is physiologically 

required for repression by full-length Rev-erbα in cells, whereas mutations of residues 

predicted for a “three turn” interaction surface were not.  These results suggest that 

nuclear hormone receptors can utilize differing modes of co-repressor binding depending 

upon the receptor/corepressor interaction.   

 

Recently, several X-ray structures of the highly related receptor Rev-erbβ have been 

solved and reported (Pardee et al., 2009b; Woo et al., 2007).  One structure reflects apo-



70 

 

Rev-erbβ whereas the other structure reports the heme-bound Rev-erbβ receptor.  During 

this study it was discovered that indeed, Rev-erbα has a putative ligand, heme, and that 

binding of the ligand stabilized the receptor binding with its corepressor NCoR.  Binding 

of the ligand was shown to be dependent on a critical histidine in the C-terminus of the 

ligand-binding domain, His602.  Efforts were made to co-crystallize a tertiary complex of 

Rev-erbα-LBD:NCoR-ID1:heme, but were ultimately unsuccessful.  Interestingly, the 

report of Rev-erbβ:heme crystal structure remarkably showed coordination of the 

analogous histidine, His568 as well as contacts with a cysteine, Cys384 contained within 

the hinge domain.  The deletion mutant construct comprising Rev-erbα LBD used in this 

study did not contain this cysteine residue, Cys417, and may explain an inability to co-

crystallize the complex.  Consistent with this, mutation of the analogous Cysteine, Cys417 

to Alanine significantly diminished the repression function of Rev-erbα, consistent with 

requirement of other residues to facilitate heme binding (shown).  This suggests that 

while His602 is necessary for Rev-erbα:heme binding, it is likely not sufficient.     

Altogether, the receptor:heme:co-repressor complex appears to be liganded by critical 

histidine and cysteine residues necessary for heme binding which promote interaction 

between liganded Rev-erbα and the CoRNR box of NCoR.   

An understanding of the structural basis for repression by nuclear hormone receptor 

repression provides a molecular basis for structure-guided efforts in the development of 

synthetic ligands and antagonists for Rev-erbα and other nuclear hormone receptors.  The 

physiological significance of Rev-erbα repression has recently been demonstrated in 

NCoR mutant mice (Alenghat et al., 2008).  These mice, which are unable to sufficiently 
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repress Bmal1, have altered circadian period length and are also resistant to diet-induced 

obesity.  Furthermore, the identification of the Rev-erb ligand heme, which facilitates 

recruitment of corepressor has also led to the report of a selective, synthetic ligand for 

Rev-erb receptors (Meng et al., 2008) This ligand was shown to directly affect the 

circadian clock phase through modulation of Rev-erb repressive activity.  Given the role 

of Rev-erb receptors in regulating the positive limb of the circadian clock as well as 

regulation of physiological pathways including obesity, cholesterol homeostasis, 

gluconeogenesis and lipid metabolism, the pharmacological manipulation of Rev-erb 

activity in the treatment of biomedical disease is becoming increasingly plausible 

(Alenghat et al., 2008; Coste and Rodriguez, 2002; Duez et al., 2008; Raspe et al., 2002; 

Yin et al., 2007).  Thus, an increased understanding of the structural basis for its 

repressive function is integral to pursuit of pharmacological targeting of this receptor. 
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Figure   3.1    Model of two-turn vs. three-turn for interaction domains of NCoR and 

SMRT.  TWO-TURN “CoRNR alignment” of NCoR and SMRT, which utilizes an IxxII 
motif. THREE-TURN α-helical CoRNR box alignment, which utilizes and LxxxIxxxI/L 

motif and predicted residues in the ID of NCoR and SMRT are shown.   
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Figure 3.2.  Co-crystallization of Rev-erbαααα ∆∆∆∆323-423LBD and NCoR Interaction Domain 1 (2040-

2065).  A).  Depiction  of functional domains of full-length Rev-erbα.  A/B domain, C domain (DBD), D 
domain (hinge region) and E domain (LBD).  Helix 1 and 3 (H1 and H3) and the poly-proline insert 
region (amino acids 312-433) are noted.  The deletion mutant used for crystallization lacks a region of the 
poly-proline insert, amino acids 323-423.   
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Figure 3.3B Two views of the NCoR Rev-erbαααα LBD crystal structure with labeled helices. Rev-erbα (281-614 delete 324-422, 
yellow) mostly conforms to the canonical nuclear receptor LBD α-helical fold and binds the NCoR CoRNR box peptide (magenta) at 
the AF2 domain (green). Devoid of a classical AF2 helix, the native Rev-erbα C-terminus adopts a short β-strand (green) structure and 
with the NCoR N-terminus forms an inter-molecular anti-parallel β-sheet. NCoR then switches to an amphipathic α-helical 
conformation that contacts the classical activation function2 (AF2) region defined by helices 3, 4, and 5 (green) and terminates 
without directly hydrogen bonding to the conserved charge clamp residue, K455 (Ackerman et al.) in H3. Unstructured regions 
between H1-H3 and H5-H6 are indicated with red lines.   

b 

Robert T. Gampe, Jr. 
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Figure 3.3 Detailed analyses of key Rev-erbαααα residues which comprise the contact surface 

for the NCoR peptide.  Residue L2051 of NCoR initiates an amphipathic α-helix comprised of 
the hydrophobic residues L2051, I2058, I2059, and F2063.  Furthermore, examination of the Y-
domain, which has previously been shown to be important for Rev-erbα repression, revealed an 
anti-parallel β-strand formed by residues 2047-2049 of NCoR and 606-609 of Rev-erbα.  
Hydrogen bonds are indicated.  

Robert T. Gampe, Jr. 
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Figure 3.4  Key Hydrophobic Residues of Rev-erbαααα which mediate NCoR binding are 

required for Rev-erbαααα repression function.  A). 293T cells were transiently co-transfected with 
empty vector (control), wild-type Rev-erbα or alanine mutants at indicated residues in addition to 
a plasmid containing a DR-2 response element upstream of a luciferase reporter.  A plasmid 
containing β-galactosidase was also co-transfected to control for transfection efficiency.  At 48 
hours, cells were lysed and analyzed for luciferase and β-galactosidase activity.  After 
normalizing to β-gal activity, relative repression was determined by calculating fold reduction 
compared to empty vector.  B). 293T cells were transfected with empty vector, wild-type Rev-
erbα, alanine mutants, or the heme-binding H602F mutant.  48-hours post-transfection mRNA 
was collected and Bmal1 mRNA expression is reported compared to 36B4 housekeeping gene.  
All data is mean of three independent experiments +/- SEM. 
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Figure 3.5  NCoR binds Rev-erbαααα differently than antagonized PPARαααα binds SMRT.  A)  
Overlay of NCoR/Rev-erbα(yellow) crystal structure with SMRT/PPARα (aqua) structure.  
NCoR is the white ribbon whereas SMRT corepressor is purple.   B)  Focusing on the modes of 
corepressor binding, the relative N-terminal shift of NCoR binding compared to that of SMRT 
bound to PPARα is depicted.   

a 

b 

Robert T. Gampe, Jr. 
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TR-FRET 

NCoR Peptide  Amino Acids  Binding (µµµµM)  Fold Decrease  Contact <5Å  

WT  2040-2065  0.22  -  

 

H2046A  i-5  0.54  2.5  D437, S608  

L2048A  i-3  0.57  2.5  W436, L606  

L2051A  i+1  0.60  2.7  F443, F447  

H2054A  i+4  0.25  1.2  L607, F609  

I2055A  i+5  50.3  229.0  V447, F477  

I2058A  i+8  8.1  36.8  T441, V447  

I2059A  i+9  19.4  88.2  L472, K473  

F2063A  I+13  1.9  8.6  V451, V469  

a 

Robert T. Gampe, Jr. GSK 
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Figure 3.6  Rev-erbαααα repression requires the IxxII CoRNR box motif of NCoR.  A). GST-
Rev-erbα LBD was incubated with increasing amounts of wild-type NCoR ID1 peptide or alanine 
mutants as indicated in a TR-FRET assay.  Relative binding affinity of NCoR ID1 as well as 
mutants was determined.  Fold decrease is reported compared to wild-type.  Amino acids of Rev-
erbα which mediate close molecular contact to the indicated NCoR residues are noted.  B).  293T 
cells were co-transfected with Gal-DBD or Gal-NCoR ID1 wild-type or mutants and either VP16 
or VP16 fused to full-length Rev-erbα, as well as a 5xUAS luciferase reporter and β-
galactosidase (to measure transfection efficiency).  Relative interaction was determined as 
luciferase units normalized to β-galactosidase activity. All data is mean of three independent 
experiments +/- SEM. 

b 
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Figure 3.7  Nuclear hormone receptors utilize different modes of corepressor binding.  A).  
Gal- ID1/2 construct is shown, which utilizes the two-turn “CoRNR alignment”.  Gal ID1/2-
RKAL construct is shown, which utilizes the extended α-helical motif sequence as in B.  B)  
Mammalian two-hybrid assay using indicated Gal-fusions co-transfected in 293T cells along with 
VP16-thyroid receptor (TR) and Gal-5xUAS-luciferase reporter.  Following normalization to β-
gal control, relative interaction is shown normalized to Gal-DBD.

a 

b 

Xiao Hu 
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4.1 Summary 

This thesis has explored the molecular mechanisms of NCoR repression in selective 

modulation of nuclear hormone receptors including LXR as well as the structural basis 

for physiological repression by Rev-erbα.  In chapter two, we explored the relative 

transcriptional effects of full versus partial agonists on LXRα transcriptional activation.  

Full agonists such as T09 robustly activate LXRα whereas partial agonists such as 

GW965 and GSK224 exhibit dramatically lower levels of LXR activation.  Furthermore, 

even amongst partial agonists, there is a relative spectrum of activity, such that GSK224 

can be considered a very weak agonist as its activity is far reduced compared to the 

intermediate partial agonist GW965.  We hypothesized that the differential effects for 

LXRα transactivation by full versus partial agonists might be related to their ability to 

recruit different levels of coactivators and corepressors, specifically NCoR.  We found 

that reduced transcriptional efficacy observed for the partial agonists GW965 and 

GSK224 correlated to increased NCoR recruitment by the Gal4-DBD:LXRα-LBD fusion 

protein associated with a Gal-4 response element.  We manipulated NCoR levels both by 

over-expression and knockdown and assessed the effect on LXRα transactivation on a 

DR4 element in reporter gene assays.  These data suggested that relatively weak partial 

agonists such as GSK224 showed a strong preference to NCoR compared to a full agonist 

T09, which had little association with NCoR and preferred coactivators.  Interestingly, 

the more modest partial agonist, GW965, could associate with both NCoR and 

coactivators, and its relative activity was highly dependent on the relative ratio or 

expression levels of NCoR.   
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We extended these studies to cellular gene expression assays in human liver hepatoma 

cells to determine if differences in transcriptional activity observed for these agonists in 

transactivation assays were recapitulated in vivo.  For some of the genes we tested, 

including fatty acid synthase, we could observe gene expression profiles which strongly 

correlated with transcriptional efficacy observed in reporter gene assays.  For FAS, we 

observed an ordered increase in gene expression, T09>GW965>GSK224 between full to 

weak partial agonists.  However, another gene, SREBP1, showed robust activation in the 

presence of all three ligands, independent of full versus partial agonist.  To explore 

whether these gene-specific expression profiles were related to NCoR recruitment, we 

tested NCoR occupancy at LXR response elements by chromatin immunoprecipitation.  

Indeed, NCoR recruitment to the FAS gene was highest for the weak partial agonist 

GSK224 and lowest for the full agonist T09.  However, for SREBP1, NCoR recruitment 

was modest and showed no differences among the agonists.  Thus, in vivo, the 

differential recruitment of NCoR induced by these agonists is gene- specific.  It is likely 

that other transcriptional factors can influence activation and NCoR recruitment at genes 

such as SREBP1.   

 

In chapter three, we explored the structural basis for repression of Rev-erbα by NCoR.   

Previously, the structural basis of SMRT-antagonism of PPARα had been described.  

This data revealed that SMRT utilized a three-turn α-helical CoRNR box to mediate 

contact with PPARα, which was consistent with a previously described extended form of 
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the CoRNR box (Nagy et al., 1999b; Xu et al., 2002).  To better understand the molecular 

features of physiological repression by NRs, Rev-erbα, which functions as a constitutive 

repressor, was co-crystallized with a peptide containing the NCoR CoRNR box motif.  In 

contrast to the antagonized PPARα:SMRT structure, we observed that Rev-erbα:NCoR 

binding utilized a two-turn α-helical CoRNR box.   This two-turn CoRNR motif was 

consistent with the description of a shorter, core CoRNR box motif originally proposed 

by our laboratory (Hu and Lazar, 1999).  Thus, these receptors differed in their mode of 

corepressor binding.  We next determined by scanning mutagenesis that these features 

observed in the Rev-erb:NCoR structure were indeed required for repression by Rev-erbα 

in cells. Altogether, this work provided novel insight into the structural basis of 

repression by NRs. 

 

4.2  Future Directions 

4.2a Selective Modulation of Nuclear Hormone Receptors 

Nuclear hormone receptors constitute important therapeutic targets for endocrine, 

metabolic and circadian disorders.  However, the varying roles of even the same receptor 

in multiple pathways, target tissues and on individual genes poses limitations in 

developing effective pharmacological agents that lack unwanted side effects.  Original 

hypotheses from both a structural and functional standpoint were that NR LBDs 

functioned as ON and OFF switches, largely dependent on the positioning of helix 12.  

That is, in the liganded state, corepressors were dismissed and coactivators were fully 
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bound and genes were induced. In the OFF state, corepressors could be bound and gene 

expression was either at a basal or repressed state.  However, our own studies with LXR 

as well as other reports suggest that NR transcriptional activity can be governed by a 

spectrum of relative coactivator and corepressor affinities.  Surprisingly, our own partial 

agonist studies with LXR as well as studies with mice lacking function RID domains of 

NCoR suggest that full agonists for NRs such as LXR even induce a modest affinity for 

NCoR (Astapova et al., 2008).  In these studies, a reduction in NCoR expression or 

function could further increase the activity of LXR even in the presence of a potent full 

agonist such as T09.  Structurally, large-scale deuterium exchange studies of PPARγ with 

a host of partial ligands provides evidence that subtle changes in LBD conformation  

independent of helix 12 can correlate to the relative  transcriptional efficacy  of partial 

agonists  (Bruning et al., 2007).  Thus, the ON/OFF switch hypothesis for NR activity 

misrepresents the true nature of NR activation whereby NRs may function more as a 

transcriptional “dimmer switch”, depending on ligand-induced conformational changes 

driving changes in  cofactor affinities. 

 

From our partial agonist studies, it is clear that we can effectively fine-tune 

transactivation potential of NRs pharmacologically on reporter genes.  However, our in 

vivo data in cells suggests we have a very incomplete understanding of the nature of 

cofactor recruitment by NRs at specific genes.  What cofactors are being recruited by 

liganded LXR at the SREBP1 promoter?  What chromatin modifications are occurring at 

the SREBP1 promoter prior to and upon LXR activation?  The genome-wide occupancy 
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studies by ChIP-CHIP and CHIP-SEQ have become available for a number of NRs 

including ERα and PPARγ (Carroll et al., 2006; Lefterova et al., 2008b; Nielsen et al., 

2008).  These data sets provide unbiased, large-scale binding profiles for NRs, which has 

important implications in profiling pathways of regulation as well as the identification of 

specific target genes directly regulated by NRs.  Application of these approaches to 

LXRα/β and its known cofactors including NCoR and SRC-1 for example, could 

delineate novel LXR target genes as well as the cofactor recruitment profile for LXR 

target genes.  These types of analyses for example, could identify other transcription 

factors important for LXR activity, analogous to PPARγ and C/EBPs, which might play 

critical roles in modulating LXR activity in a synergistic manner (Lefterova et al., 

2008a).  Next, secondary genome-wide profiling of NCoR and SRC-1 could identify the 

coregulator profiles associated with specific LXR target genes in human hepatoma cells 

in the presence of full versus partial agonists.  Other approaches could include genome-

wide profiling of chromatin modifications of LXR target genes under unliganded, full 

agonist and partial agonist conditions.  Perhaps the chromatin context of certain LXR 

targets, such as SREBP1differ from that of FAS, such that addition of the partial agonist 

GSK224, which otherwise has weak transcriptional efficacy, can result in gene activation 

profiles more similar to that of a full agonist.  Combined with gene expression profiling, 

these methods can provide a systematic and complete interrogation of LXR binding, 

association with cofactors, and the chromatin environment at LXR target genes under 

different ligand conditions.   
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4.2b LXR as a Pharmacological Target 

Due to its important roles in cholesterol metabolism and inflammation, LXR remains an 

important therapeutic target in cardiovascular disease.  Pan-agonists of the LXR isoforms 

have been reported, but similar to our own studies, appear to induce lipogenic pathways 

in the liver (Fiévet and Staels, 2009) .  Since LXRα is the predominant LXR isoform in 

the liver and is expressed at significantly higher levels in the liver than LXRβ, one 

potential approach might be to selectively target LXRβ.  

To understand if targeting of LXRβ might be sufficient to mediate physiological effects 

on peripheral cholesterol metabolism, mice lacking LXRα were crossed with ApoE-

deficient mice, which can spontaneously develop atherosclerosis.  These mice exhibited 

massive cholesterol accumulation in both peripheral target tissues and the liver, and the 

progression of atherosclerotic disease was significantly increased in the LXRα-/-/ApoE -/- 

mice compared to ApoE-/- controls.  To explore the function of liganded LXRβ in 

ameliorating this phenotype, these LXRα/ApoE-deficient mice were challenged with 

Western diet containing placebo or the potent LXR pan-agonist GW965 for 

approximately 30 days.  Mice treated with LXR agonist showed dramatic decreases in 

peripheral cholesterol burden and demonstrated a potent induction of macrophage 

cholesterol efflux genes including ABCA1 (Bradley et al., 2007).  In light of this study 

which suggests feasibility of LXRβ targeting in atherosclerotic disease, there exists a 

large challenge in the design of an LXRβ-selective agonist given the high degree of 

amino acid homology between the isoforms.   However, recent reports suggests that 
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selectivity can be achieved with a novel class of non-steroidal ligands for LXR, N-

acylthiadiazolines, so this strategy may be viable (Molteni et al., 2007). 

 

4.2c Mechanisms of Ligand-Dependent Repression by Rev-erbαααα 

 The physiological significance of Rev-erbα repression has recently been demonstrated in 

NCoR mutant mice (Alenghat et al., 2008).  These mice, which are unable to sufficiently 

repress Bmal1, have altered circadian period length and are also resistant to diet-induced 

obesity.  Furthermore, the identification of the Rev-erb ligand heme (Raghuram et al., 

2007; Yin et al., 2007), which facilitates recruitment of corepressor has also led to the 

report of a selective, synthetic ligand for Rev-erb receptors (Meng et al., 2008) This 

ligand was shown to directly affect the circadian clock phase through modulation of Rev-

erb repressive activity.  Given the role of Rev-erb receptors in regulating the positive 

limb of the circadian clock as well as regulation of physiological pathways including 

obesity, cholesterol homeostasis, gluconeogenesis and lipid metabolism, the 

pharmacological manipulation of Rev-erb activity in the treatment of biomedical disease 

is becoming increasingly plausible (Alenghat et al., 2008; Coste and Rodriguez, 2002; 

Duez et al., 2008; Raspe et al., 2002; Yin et al., 2007).  Thus, an increased understanding 

of the structural basis for its repressive function is integral to pursuit of pharmacological 

targeting of this receptor. 

 



90 

 

Recently, several X-ray crystal structures of the highly related receptor Rev-erbβ have 

been solved and reported (Pardee et al., 2009b; Woo et al., 2007).  One structure reflects 

apo-Rev-erbβ whereas the other structure reports the heme-bound Rev-erbβ receptor.  

During this study it was discovered that indeed, Rev-erbα has a putative ligand, heme, 

and that binding of the ligand stabilized the receptor binding with its corepressor NCoR.  

Binding of the ligand was shown to be dependent on a critical histidine in the C-terminus 

of the ligand-binding domain, His602.  Efforts were made to co-crystallize a tertiary 

complex of Rev-erbα-LBD:NCoR-ID1:heme, but were ultimately unsuccessful.  

Interestingly, the report of Rev-erbβ:heme crystal structure remarkably showed 

coordination of the analogous histidine, His568 as well as contacts with a cysteine, Cys384 

contained within the hinge domain.  The deletion mutant construct comprising Rev-erbα 

LBD used in this study did not contain this cysteine residue, Cys417, and may explain an 

inability to co-crystallize the complex.  Consistent with this, our preliminary experiments 

show that mutation of the analogous Cysteine, Cys417 to Alanine significantly diminished 

the repression function of Rev-erbα, consistent with requirement of other residues to 

facilitate heme binding.  This suggests that while His602 is necessary for Rev-erbα:heme 

binding, it is likely not sufficient.     Altogether, the receptor:heme:corepressor complex 

appears to be liganded by critical Histidine and cysteine residues necessary for heme 

binding which promote interaction between liganded Rev-erbα and the CoRNR box of 

NCoR.   
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Additional areas of investigation include the nature of heme liganding of the Rev-erb 

receptor in cells.  Studies examining the intracellular levels of heme ligand indicate that 

heme levels oscillate with an 8-hour period (Rogers et al., 2008).  The relative 

importance of both the eight-hour period, as well as the dynamic changes of heme 

concentration on Rev-erbα function are unknown.  Furthermore, in vitro evidence 

suggests that heme may serve as a sensor for signaling gases such as NO.  NO binding 

was reported to reduce Rev-erb repression, but the mechanism for this, i.e., changes in 

NCoR binding or NCoR function, are unknown (Pardee et al., 2009a). 

 

4.2d Rev-erbββββ Function 

Rev-erbβ was initially cloned by the Moore laboratory based on the relative homology to 

other previously discovered nuclear hormone receptors (Dumas et al., 1994).  This 

receptor shares ~95% homology with the Rev-erbα DNA Abinding domain and ~75% 

homology with the Rev-erbα ligand binding domain.  There is little homology shared 

between the A/B (N-terminal domain) of these receptors, as well as reduced homology 

within the hinge region, which separates the DBD from the LBD.  Thus, it is likely that 

some molecular targets of Rev-erbα may be conserved between the receptors.  However, 

relative expression levels in various tissues as well as divergent regulation by post-

translational modifications may likely mean these isoforms have unique functions 

depending upon the tissue or physiological context.   Since its initial discovery, little has 

been published regarding the biological role of this receptor.  In terms of circadian 

function, knockdown of this receptor was shown to affect Bmal1 amplitude in mouse 
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embryonic fibroblasts (Liu et al., 2008). It has been implicated to play a role in hepatic 

lipid metabolism via regulation of Apolipoprotein C-III, which was recently described to 

be dependent upon acetylation status of the DNA binding domain (Jiadong Wang, 2007; 

Wang et al., 2008).  Most recently, the crystal structure of the ligand binding domain of 

this receptor has been reported by two independent groups, both in the apo state as well 

as complexed with its putative ligand, heme (Pardee et al., 2009a; Woo et al., 2007). 

 

Preliminary evidence indicates that Rev-erbβ contains repressive function on Rev-erb 

response elements including DR-2 and the mouse Bmal1 promoter.  However, when 

compared to Rev-erbα, its repression function is markedly reduced, by 50% or more.  

The nature of this reduced repression function is unknown.  Examination by ChIP of 

Rev-erbβ binding to response elements in Bmal1 indicates a relative enrichment that is 

similar to that of Rev-erbα, suggesting the DNA binding activity of this isoform is intact.  

We also probed corepressor binding by immunoprecipitation methods and determined 

that binding of NCoR, SMRT and HDAC3 were robust.  Binding of NCoR to Rev-erbβ 

was also shown to be ligand-dependent, as heme depletion reduced NCoR association.   

 

We also asked whether Rev-erbβ might be differentially regulated by post-translational 

modifications which might be affecting its repression function.    Sumoylation, which 

occurs on lysine residues, has been shown to critically regulate the activity of a number 

of transcription factors and coregulators including nuclear hormone receptors as well as 
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the critical clock component Bmal1 (Cardone et al., 2005; Chen et al., 2004; Lee et al., 

2008).   We performed an in silico scan of putative sumoylation residues and discovered 

that Rev-erbβ contains a perfect sumoylation consensus motif within its N-terminal A/B 

domain.  The repression function of this and other potential sumoylation sites was 

examined using lysine to arginine substitution at these putative residues.  Interestingly, 

the A/B domain sumoylation mutant, K68R, had dramatically increased repression 

function, suggesting that Rev-erbβ repressive activity can be affected by amino acid 

substitutions within the A/B domain. When we co-expressed factors necessary for 

sumoylation, we also observed an apparent molecular weight shift of Rev-erbβ protein, 

consistent with our hypothesis that Rev-erbβ might be sumoylation target.  Recent reports 

that PPARα sumoylation status alters the ability of the receptor to bind NCoR (Pourcet et 

al., 2009), further illustrates the potential for post-translational modifications such as 

sumoylation to be playing important roles in regulation of NR activity 

 

Interestingly, recent reports suggest there may be novel cofactors recruited by Rev-erbβ 

(Jiadong et al., 2007; Wang et al., 2008).  It will be of interest to confirm binding of these 

putative cofactors and test their ability to alter Rev-erbβ transcriptional activity.  

Furthermore, given the decreased repression function of Rev-erbβ observed in reporter 

assays, a recent report has suggested that Rev-erbβ may even activate transcription of 

SREBP2 (Ramakrishnan et al., 2009).  Thus, future experiments can be performed to 

identify the molecular mechanism for reduced Rev-erbβ function, as well as the potential 

role of post-translational modifications, such as sumoylation, on Rev-erbβ function.  In 
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the longer term, it also will be important to address via ChIP-CHIP or ChIP-SEQ 

methods the putative target genes for Rev-erbβ, and the pathways which are co-regulated 

by the Rev-erb receptors or specific to Rev-erbβ.   
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