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A Copula-Based Method for Analyzing Bivariate Binary Longitudinal Data

Abstract
The work presented as part of this dissertation is primarily motivated by a randomized trial for HIV
serodiscordant couples. Specifically, the Multisite HIV/STD Prevention Trial for African American Couples is
a behavioral modification trial for African American, heterosexual, HIV discordant couples. In this trial,
investigators developed and evaluated a couple-based behavioral intervention for reducing risky shared sexual
behaviors and collected retrospective outcomes from both partners at baseline and at 3 follow-ups to evaluate
the intervention efficacy. As the outcomes refer to the couples' shared sexual behavior, couples' responses are
expected to be correlated, and modeling approaches should account for multiple sources of correlation:
within-individual over time as well as within-couple both at the same measurement time and at different
times. This dissertation details the novel application copulas to modeling dyadic, longitudinal binary data to
estimate reliability and efficacy. Copulas have long been analytic tools for modeling multivariate outcomes in
other settings. Particularly, we selected a mixture of max-infinitely divisible (max-id) copula because it has a
number of attractive analytic features.

The dissertation is arranged as follows: Chapter 2 presents a copula-based approach in estimating the
reliability of couple self-reported (baseline) outcomes, adjusting for key couple-level baseline covariates;
Chapter 3 presents an extension of the max-id copula to model longitudinal (two measurement occasions),
binary couples data; Chapter 4 further extends the copula-based model to accommodate more than two
repeated measures in a different application examining two clinical depression measures. In this application,
we are interested in estimating whether there are differential treatment effects on two different measures of
depression, longitudinally.

The copula-based modeling approach presented in this dissertation provides a useful tool for investigating
complex dependence structures among multivariate outcomes as well as examining covariate effects on the
marginal distribution for each outcome. The application of existing statistical methodology to longitudinal,
dyad-based trials is an important translational advancement. The methods presented here are easily applied to
other studies that involve multivariate outcomes measured repeatedly.
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ABSTRACT

A COPULA-BASED METHOD FOR ANALYZING

BIVARIATE BINARY LONGITUDINAL DATA

Seunghee Baek

Scarlett L. Bellamy

The work presented as part of this dissertation is primarily motivated by a ran-

domized trial for HIV serodiscordant couples. Specifically, the Multisite HIV/STD

Prevention Trial for African American Couples is a behavioral modification trial for

African American, heterosexual, HIV discordant couples. In this trial, investigators

developed and evaluated a couple-based behavioral intervention for reducing risky

shared sexual behaviors and collected retrospective outcomes from both partners at

baseline and at 3 follow-ups to evaluate the intervention efficacy. As the outcomes

refer to the couples’ shared sexual behavior, couples’ responses are expected to be cor-

related, and modeling approaches should account for multiple sources of correlation:

within-individual over time as well as within-couple both at the same measurement

time and at different times. This dissertation details the novel application copulas to

modeling dyadic, longitudinal binary data to estimate reliability and efficacy. Copulas

have long been analytic tools for modeling multivariate outcomes in other settings.

Particularly, we selected a mixture of max-infinitely divisible (max-id) copula because

it has a number of attractive analytic features.

The dissertation is arranged as follows: Chapter 2 presents a copula-based ap-

proach in estimating the reliability of couple self-reported (baseline) outcomes, ad-
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justing for key couple-level baseline covariates; Chapter 3 presents an extension of

the max-id copula to model longitudinal (two measurement occasions), binary cou-

ples data; Chapter 4 further extends the copula-based model to accommodate more

than two repeated measures in a different application examining two clinical depres-

sion measures. In this application, we are interested in estimating whether there are

differential treatment effects on two different measures of depression, longitudinally.

The copula-based modeling approach presented in this dissertation provides a use-

ful tool for investigating complex dependence structures among multivariate outcomes

as well as examining covariate effects on the marginal distribution for each outcome.

The application of existing statistical methodology to longitudinal, dyad-based trials

is an important translational advancement. The methods presented here are easily

applied to other studies that involve multivariate outcomes measured repeatedly.
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Chapter 1

Introduction

The motivation for this dissertation work comes from a clinical trial for HIV

serodiscordant couples. Specifically, the Multisite HIV/sexually transmitted disease

(STD) Prevention Trial for African American Couples (AAC) is a behavioral modifi-

cation trial for African American, heterosexual, HIV discordant couples, whose goal

is to decrease risky sexual behaviors and increase health promoting behaviors among

couples. The main purpose of the study is to examine the efficacy of a couple-focused

HIV/STD risk reduction intervention versus an individual-focused health promotion

intervention in reducing sexual risk behaviors and STD incidence. To accomplish the

study’s goals, reliable assessments of HIV sexual risk behaviors are critical. In this

study, both partners are assessed independently for a number of shared sexual behav-

iors with their study partners. Thus, estimating the magnitude of the concordancy

and discordancy among couple outcomes will allow us to measure the reliability of

each partner’s self-reported behavior. Potential issues with many self-report mea-

sures are their susceptibility to response bias, that is, a tendency for subjects to

1



over/or under-report outcomes for a number of reasons. Therefore, developing such

a tool for estimating reliability is an important issue in dealing with self-reported

data. Copulas have been popular tools for modeling multivariate outcomes, since

they allow us to construct the dependence structure separately from the marginal

probabilities. Among several copulas, we select a max-id copula since it has desir-

able properties for modeling multivariate discrete data in that it has flexible positive

dependence structures and has a closed form cumulative distribution function (cdf).

Therefore, in Chapter 2, we will present a novel application using a mixture of max-

infinitely divisible (max-id) bivariate copulas to quantify dependence measures by

estimating dependency as a proxy for reliability among couples’ outcomes in the

context of a couple-based behavioral modification trial. Furthermore, the proposed

approach provides an estimation procedure to explore individual-level factors that

may be associated with the estimated dependency. We also conduct simulation stud-

ies to demonstrate that this approach performs well in terms of bias and coverage by

estimating the covariate effect on the dependence measure as well as on the marginal

probabilities. Another interesting feature of the motivating example is its complex

dependence structure. Unlike other bivariate outcomes, the couples’ outcomes of self-

reported sexual behavior at the same time may be more correlated than the repeated

measures within individual. Thus, ignoring the correlation between partner’s out-

comes at different time points may lead to invalid inferences regarding measures of

effect. Therefore, the second aim of this dissertation is to develop statistical methods

to estimate the longitudinal intervention effect as well as handle the complex corre-

lation structure in a statistically feasible way. We propose a copula-based approach

2



which is an extension of a multivariate logit model proposed in Nikoloulopoulos and

Karlis (2008), and used in Chapter 2, which uses a mixture of max-infinitely divisible

(max-id) bivariate copulas. This extension makes it applicable to bivariate longitu-

dinal data by incorporating time as a regression parameter as well as constructing a

complex dependence structure via the copula parameters. Through a number of simu-

lations, we evaluate this approach by estimating the covariate effects on the marginal

probabilities and of copula parameters in terms of bias and coverage. In Chapter 4,

as an extension of Chapter 3, we develop a copula-based method to model bivariate

longtidutinal binary outcomes to incorporate more than two repeated measures. In

Chapter 3, we focus on evaluating the extension of max-id copula as a statistical

tool for modeling longitudinal couples’ outcomes, while in Chapter 4 we focus on

generalizing the approach and the feasibility of modeling bivariate outcomes with

additional repeated measures. Diverting from the HIV prevention trial, we illustrate

the extended method using longitudinal data on depression among subjects treated in

primary care practices using two outcomes, the diagnosis of major depressive disorder

(MDD) and the Hamilton rating scale for depression (HAMD). Together, the work

developed in this dissertation provides a novel application of the bivariate max-id

copula approach to modeling dependence, specifically to evaluate reliability of paired

responses. In addition, the approach is developed for more complicated longitudi-

nal studies with potentially complex correlation structures, and provides a unified

approach to handling clustered, correlated, repeated binary data.

3



Chapter 2

A copula approach for estimating

the reliability of self-reported

sexual behaviors among HIV

serodiscordant couples

2.1 Introduction

Understanding relationships among multivariate outcomes is a fundamental prob-

lem in statistical science. In longitudinal and/or cluster-randomized trials, the de-

pendency among outcomes may not be of primary interest, but it must be accounted

for in order to make valid inference. In other settings where the dependency among

outcomes is of primary interest, copulas have become an increasingly popular analysis
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tool.

The motivation for our work comes from a clinical trial for HIV serodiscordant

couples. Specifically, the Multisite HIV/sexually transmitted disease (STD) Prerven-

tion Trial for African American Couples (AAC) is a behavioral modification trial for

African American, heterosexual, HIV discordant couples, whose goal is to decrease

risky sexual behaviors and increase health promoting behaviors among couples. The

main purpose of the study is to examine the efficacy of a couple-focused HIV/STD risk

reduction intervention versus an individual-focused health promotion intervention in

reducing sexual risk behaviors and STD incidence. A comprehensive description of

the study design and randomization process can be found in Bellamy et al. (2005)

and the primary findings of the trial are presented in El-bassell et al. (2010).

To accomplish the study’s goals, reliable assessments of HIV sexual risk behaviors

are critical. In this study, both partners are assessed independently for a number of

shared sexual behaviors with their study partners. Thus, estimating the magnitude of

the concordancy and discordancy among couple outcomes will allow evaluation of the

reliability of each individual partners self-reported behavior. We focus on estimating

the agreement between partners of self-reported, shared sexual behaviors at baseline.

Copulas allow us to model the dependence structure of outcomes separately from

the marginal probability in addition to constructing a joint multivariate distribution

of all outcomes. A nice feature of the copula approach in settings like AAC, where

each member of the couple dyad is assessed independently regarding shared behaviors

(e.g., male participants provide data on condom use with their female study partner in

the past 90 days and female participants provide data on condom use with their male

5



study partner in the past 90 days) is that each pair of responses can be used to measure

the reliability of these same self-reported, shared behaviors. Additionally, while we

construct the dependence structure, we are able to estimate dependency, a measure

of reliability in this context, adjusting for individual characteristics of interest. In

AAC, we are interested in (1) measuring dependency of partner outcomes to provide a

measure of reliability for a number of self-reported sexual behavioral measures and (2)

adjusting these estimates of dependency for a number of potentially important couple-

level characteristics. Thus, employing copulas is a feasible method for measuring

reliability of self-reported data in our motivating example. Our primary outcome

of interest is a correlated binary outcome, which is ’consistent condom use’ at every

sexual episode with study partner, for both male and female partners. Thus, we apply

a multivariate logit model introduced in Nikoloulopoulos and Karlis (2008), which uses

a mixture of max-infinitely divisible (max-id) bivariate copulas proposed in Joe and

Hu (1996). The application of copulas is usually limited for modeling multivariate

binary outcomes primarily because of theoretical and computational limitations since

the probability mass function should be obtained using finite differences for discrete

data (Nikoloulopoulos and Karlis (2008)). Therefore, in order to be able to use copula

models for multivariate discrete data, we need to specify copulas with rather simple

forms (Nikoloulopoulos and Karlis (2008)). There are some desired properties for a

parametric family of multivariate copulas applicable to discrete data described in Joe

and Hu (1996) and Nikoloulopoulos and Karlis (2008). The max-id copula approach

is attractive since it allows flexible positive dependence structures and has closed

form cumulative distribution function (cdf); no other copula family has both these

6



properties Joe and Hu (1996). However, it allows only positive dependence between

random variables. Unlike other copula families where dependence parameters have

joint constraints among them (Joe and Hu (1996) and Joe (1997)), the max-id copula

achieves dependency sufficiecy such that we can model the dependence parameter

using the covariate information.

Therefore, flexibility in modeling dependency while adjusting for covariates will

allow us to examine how a number of factors (e.g., sociodemographic or relationship

characteristics) may be associated with the reliability of self-reported shared behaviors

among couples.

In sum, this paper demonstrates how to model and estimate dependency (i.e.,

reliability) parameters from multivariate binary data using copulas, evaluates the

performance of this approach through a number of simulation studies and applies

the proposed method to our motivating example. Note that GEE Liang and Zeger

(1986) is another commonly used method that provides estimates of correlation as

well as covariates. Therefore, we conduct a simulation study to compare copula-based

estimates to moment estimates of GEE for the correlation coefficients, which are

common measure of dependency, and to examine how copula approach can estimate

the covariate effect on the copula parameter. Alternating logistic regression (ALR)

proposed in Carey et al. (1993) could be used to adjust for different levels of clustering

in the pairwise odds ratio (Carey et al. (1993) and lipsitz et al. (1991)). However,

one limitation of this approach is that it applies only when ni = n for all clusters, but

the copula-based method presenting here has no restriction on that. Also, estimates

of the covariate effect in the pairwise odds ratio are not directly comparable since

7



the copula method adjusts for covariates in the copula parameter, not in the pairwise

odds ratio.Based on the results from the simulation study, we apply what we believe

is the most appropriate copula to the data from AAC.

The following sections give more details on the motivating clinical application,

the copula-based approaches for bivariate binary data, parameter estimation based

on the log-likelihood, and estimation of odds ratios and binary correlations.

2.2 Motivating clinical example

Our motivating example is a randomized controlled trial (RCT) of HIV serodiscor-

dant, African American couples designed to assess the effect of a culturally tailored

HIV/STD risk reduction intervention on sexually transmitted infections and risky

sexual behaviors among couples. Heterosexual transmission of HIV is the dominant

route of infection worldwide, indicating a critical need for heterosexual couple-focused

interventions (Witte et al. (2007)). In addition, for couples who are serodiscordant

(one partner is HIV positive and one partner is HIV negative) putting the seronegative

partner at high risk of HIV, reliable assessments of HIV sexual risk behaviors are crit-

ical in informing the efficacy of behavioral modification interventions. Couple-based

studies provide a unique opportunity to measure the reliability of self-reported shared

sexual behaviors, as each partner is measured independently and one can measure the

degree to which couple responses are consistent. Reliable measures of self-reported

sexual behaviors in high-risk populations have direct and obvious implications for

estimating intervention effects. In this trial, couples assessed their condom use and
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other shared sexual behaviors retrospectively. A strength of the study is that each

shared sexual behavior of interest is reported independently by each study partner

(males and females, separately); therefore concordance of responses for these shared

couple behaviors can be readily evaluated and used as a measure of reliability.

Potential issues with many self-report measures are their susceptibility to response

bias, that is, a tendency for subjects to over or under report outcomes for a number

of reasons (Catania et al. (1990)). Additionally, there is no ”gold standard” for quan-

tifying the validity of sexual behaviors since these behaviors are largely unobtainable

by more objective methods. Nevertheless, in couples based studies, examining the

concordance of partner responses is a reasonable assessment of reliability for shared

behaviors. Additionally, exploring the influence of individual factors on estimated

concordance may also help explain sources of response biases, if they exist. The

effects of demographics and the couples’ relationship context on concordance of re-

ported sexual behaviors were examined using a measure of agreement such as Kappa

statistics, conditional probability and McNemar’s Statistics in El-bassell et al. (2010).

A few studies have quantitatively explored individual characteristics associated

with concordance of partner reporting of sexual behaviors (El-bassell et al. (2010),

Ochs and Binik (1999) and Seal (1997)). For the few studies that do try to estimate

the association of individual factors on discordant couple responses, often a single

outcome is constructed for each measure of interest that is a simple indicator of

whether or not both partners had identical responses, and a gender-stratified model is

used to predict the constructed couple indicator of discordance as a function of gender-

specific characteristics (El-bassell et al. (2010)). Since factors that are related to their
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responses should explain both concordance and discordance and not just one, ideally

we would like to employ a statistical tool to quantify dependence while simultaneously

adjusting for individual factors that may be associated with this dependence.

Accordingly, the purpose of this paper is to present a novel application to quantify

dependence measures by estimating association as a proxy for reliability in the context

of a couple-based behavioral modification trial. Also, the proposed method provides

an estimation procedure to explore individual-level factors that may be associated

with the estimated correlation. Specifically, we apply max-id copulas to the AAC

project in order to estimate the dependency of couple responses and gain insight

into the reliability of self-reported sexual risk behaviors among a sample of African

American, serodiscordant heterosexual couples.

2.3 Statistical methods

2.3.1 A copula approach for binary data

A copula-based model involves the generation of a multivariate joint distribution

for outcomes of interest given the marginal distributions of the correlated responses.

In the case of the AAC couples data, we can model a bivariate joint distribution

considering the correlated responses from male and female partners as bivariate out-

comes. Specifically, each partner is asked to report on shared sexual behaviors with

their study partner in the past 90 days. By construction, partner responses are ex-

pected to be correlated and a measure of the magnitude of this correlation can also
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serve as a measure of reliability of these self-reported, sexual behavior outcomes.

The definition of a copula C(u1, . . . , um) is a multivariate distribution function

defined over the unit cube linking uniformly distributed marginals (u1, . . . , um) (Sklar

(1959) and Nelsen (2006)). Let Fj(Yj) be the cumulative distribution function (cdf)

of a univariate random variable Yj (j = 1, . . . , m). Then, C(F1(y1), . . . , Fm(ym)) is

an m-variate distribution for y = (y1, . . . , ym)T with marginal distributions Fj(j =

1, . . . , m). Sklar first showed that there exists an m-dimensional copula C such that

for all y in the domain of H in Sklar (1959),

H(y1, . . . , ym) = C(F1(y1), . . . , Fm(ym)). (2.3.1)

If F1, . . . , Fm are continuous, then the function C is unique; otherwise, there are many

possible copulas as emphasized in Genest and Nešlehová (2007). However, all of these

coincide on the closure of Ran(H1)× . . .×Ran(Hm), where Ran(H) denotes the range

of H. While it is relatively easy to derive a joint distribution in the continuous case, it

is not so simple in the case of discrete data. The latter involves 2m finite differences of

H(y), thus, to compute the joint probability mass function, one needs to evaluate the

copula repeatedly. Therefore, in order to be able to use copula models for multivariate

discrete data, one needs to specify copulas with rather simple forms.

Joe and Hu (1996) proposed multivariate parametric families of copulas that are

mixtures of max-id bivariate copulas, allowing flexible dependence structures, having

closed form cdfs, and satisfying the closure property under marginalization. This

meets three desired properties for a parametric family of multivariate copulas appli-

cable to discrete data (Nikoloulopoulos and Karlis (2008)). One property this does
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not satisfy is allowing negative dependence.

Given that our primary outcomes of interest are binary responses collected from

male and female partners within each couple, we will use mixtures of max-id copulas.

The mixture of m-variate max-id copulas cdfs has the following form

C(u; Θ) = φ

(∑

j<k

log C ′
jk(e

−pjφ−1(uj ;θ), e−pkφ−1(uk;θ); θjk) +
m∑

j=1

vjpjφ
−1(uj; θ); θ

)

(2.3.2)

where C
′
jk(·; θ, θjk) is a bivariate max-id copula, φ(·; θ) is a Laplace transform (LT),

Θ = {θ, θjk : j, k = 1, ...,m, j < k} denotes the vector of all dependence parameters

of the copula, uj is cdf of a univariate random variable and pj = (vj +m−1)−1 where

vj is arbitrary. Specifically, the (j,k) bivariate marginal copula is

Cjk(uj, uk; θ, θjk) = φ(−logC ′
jk(e

−pjφ−1(uj ;θ), e−pkφ−1(uk;θ); θjk)

+ (vj + m− 2)pjφ
−1(uj; θ) + (vk + m− 2)pkφ

−1(uk; θ); θ).

(2.3.3)

We can simplify Equation (2.3.3) by assuming vj + m− 2 = 0, then Equation (2.3.2)

would become max-id copula with m(m-1)/2+1 dependence parameters. In our bi-

variate model, we need only one copula parameter and therefore force θjk equal to θ

for every pair. Some members of max-id bivariate copulas and LTs are presented in

Table 2.1. Thus, a combination of each family (5) and corresponding LT (4) in Table

2.1 will result in 20 parametric families with flexible dependence structure.

In particular, this approach allows us to estimate the measure of association be-

tween two binary outcomes through the copula dependence parameter, θ, which rep-

resents the degree of association. Moreover, we can incorporate covariate information

in estimating the copula parameter by using a log transformation; this will be ex-
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plained in detail in Subsection 2.3.2. Thus, we can obtain an estimate of correlation,

adjusting for covariates of interest. Note that the GEE method could be used to

model bivariate binary data by regarding the correlation between two outcomes as a

nuisance parameter (Liang and Zeger (1986)). Since GEE is a widely used method,

we will proceed to compare the estimated dependence from the copula approach with

the moment estimates of correlation coefficient from GEE.

2.3.2 Copula-based bivariate logit model

In this section, we will discuss how the copula-based method can be integrated into

a logit model and how to introduce covariate information in the copula parameter,

θ. For simplicity and to relate the notation to our couples data, we will describe the

bivariate logit model where j = 1, 2 denotes female and male responses respectively.

Note that these models can be easily extended to a multivariate logit model where

j > 2. Consider Equation (2.3.2) where y = (y1, y2) denotes the bivariate binary

response for a couple and Fj the cdf of the univariate Bernoulli distribution function

with probability of success πj,

Fj(yj; πj) =





1− πj if yj = 0

1 if yj = 1

j = 1, 2.

The standard logistic regression model for the probability of success πij corresponding

to the copula in Equation (2.3.2) is

logit(πij) = βT
j xij, j = 1, 2
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where βj is the vector of marginal regression parameters and Xij is a vector of covari-

ates for the ith couple with jth partner (female or male). As mentioned previously,

we can also model dependence structure and introduce a regression coefficient in the

copula parameter θi by choosing the appropriate log transformation for a given family

from Table 2.1. For example, if we assume a Frank copula with LTD, then we would

use the following model

log(θi) = bT
i Zi, i = 1, ..., n ,

where bT
i is a vector of regression coefficients in the dependence measure and Zi is

a vector of covariate for the ith couple. θi in the dependence model above will be

incorporated in Equation (2.3.2) and used for joint distribution modeling of bivariate

outcomes.

2.3.3 Parameter estimation

When marginal models are discrete, a multivariate probability function is obtained

by taking the Radon-Nikodym derivative for H(y) in Equation (2.3.2). Thus, for the

binary case, the bivariate probability function is given by

P (Y1 = y1, Y2 = y2) = C(u1, u2)− C(u1, v2)− C(v1, u2) + C(v1, v2) (2.3.4)

where uj = Fj(yj) and vj = Fj(yj − 1) (Song (2000)). It follows that the joint log-

likelihood of the bivariate logit copula model with various choices of copula family

14



and LT can be written as

L(β, b) = log

n∑
i=1

[C(F1(yi1), F2(yi2))− C(F1(yi1), F2(yi2 − 1))

− C(F1(yi1 − 1), F2(yi2)) + C(F1(yi1 − 1), F2(yi2 − 1)); Xij,βj , bi]

where C is max-id copula, F1, F2 are univariate marginal cdfs, β = (β1, β2) is a

vector of regression coefficients in the marginal model and bi is a vector of regression

coefficients in copula parameter. In this study, we focus on the standard maximum

likelihood (ML) method that maximizes the joint log-likelihood. By using the ML

method, we will simultaneously obtain the estimates of both copula and marginal

parameters.

2.3.4 Estimation of odds ratio and binary correlation

In this study, we present odds ratios and binary correlations as a measure of

dependency. The copula parameter may be presented as a measure of dependency in

the copula-based method. However, it is not directly comparable to other dependence

measures even among the copula-based approach since they differ according to which

copula families are used. Due to this limitation, many applications involving copula

methods use Kendall’s τ as a measure of association. Kendall’s τ is appropriate

for measuring the strength of dependence between continuous outcomes, but it is

less appropriate as a measure of association when applied to discrete variables. In

particular, it is no longer distribution-free and has a range narrower than [−1, 1],

and this has to be taken into account when assessing the strength of the dependence

(Denuit and Lambert (2005)). The bounds on Kendalls τ are plotted for Bernoulli
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margins with success probabilities p1 = p2 = p ∈ [0, 1] in Nikoloulopoulos and Karlis

(2008). Given the marginal probabilities of p1 and p2, we can rewrite Kendalls τ using

the copula-based joint distribution of success, C(1, 1),

τ(Y1, Y2) = 2[C(1, 1)− p1p2]

Thus, even in the most favorable cases, Kendall’s τ does not reach 1 or -1 and cannot

be comparable to usual measures of dependence when outcomes are binary. On the

other hand, the odds ratio, which is one of common measures of the association be-

tween pairs of responses, is not constrained by marginal probabilities in the same way

that Kendall’s τ is constrained. The odds ratio, ϕ, can take any value in (−∞,∞)

with ϕ = 1 corresponding to no association. Figure 2.1 shows the relationship be-

tween the odds ratio and correlation coefficient, for examples in which the marginal

probability of response for both males and females is 0.1, 0.2, 0.3, or 0.5.

We can write the odds ratio as a function of the joint probability of failure for both

outcomes and their marginal probabilities, p1 and p2. Denote the joint probability of

failure, p00, for both female and male partners as

p00 = Pr (Y1 = 0, Y2 = 0)

where Yj (Y1 =female response, Y2 =male response) denotes binary bivariate out-

comes from female and male partners considering our motivating example. By using

a copula approach, we have the following form of the joint probability of failure de-
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rived from Equation 2.3.2:

p00 = Pr (Y1 = 0, Y2 = 0) = C(u1, u2 : Θ)

= φ(−logC ′(e−p1φ−1(u1;θ), e−p2φ−1(u2;θ); θ)

+ (v1 + m− 2)w1φ
−1(u1; θ) + (v2 + m− 2)w2φ

−1(u2; θ))

(2.3.5)

where u1 = F (Y1 = 0) = 1−π1, u2 = F (Y2 = 0) = 1−π2, wj = (vj +m− 1)−1, m=2,

vj is arbitrary, and j = 1, 2. Let ϕ be the odds ratio between responses Y1 and Y2.

The odds ratio for binary responses is defined as

ϕ =
Pr(Y1 = 1, Y2 = 1)Pr(Y1 = 0, Y2 = 0)

Pr(Y1 = 1, Y2 = 0)Pr(Y1 = 0, Y2 = 1)
=

(p00 + p1 + p2 − 1)p00

(1− p1 − p00)(1− p2 − p00)

where p1 = Pr(Y1 = 1) and p2 = Pr(Y2 = 1); this is equivalent to the ratio of

the odds of concordant to discordant responses. p11 can be simply derived by using

the equation p11 = p00 + p1 + p2 − 1, where p00 is derived from the joint probability

estimated from Equation (2.3.5).

For the purpose of comparing a measure of dependence from the copula method

to a moment estimate for correlation coefficient from GEE, we also estimate binary

correlation using the formula of phi correlation in Streiner and Norman (1995). Binary

correlation coefficient using above probabilities that will always lie in [0, 1] is

Corr(ρ) =
p11 − p1p2√

p1(1− p1)p2(1− p2)
.

2.4 Simulation studies

We conducted a simulation study to explore the performance of the copula ap-

proaches in estimating correlations and covariate effects on the copula parameter, and
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compared copula-based correlation estimates to moment estimates for correlation co-

efficients obtained from the GEE method. We use the results from the simulation

study to determine which copula family might be the most appropriate for the AAC

data. We summarize estimated odds ratios and correlations from 500 simulated sam-

ples with true correlation values of 0.05, 0.1, 0.25 and 0.5. As for the covariate effect

on the copula parameter, data are simulated with true covariate coefficients of 0.01,

0.30 and 1.0. with 500 repetitions.

2.4.1 Data simulation method

We created correlated bivariate binary random variables by thresholding a normal

distribution using the package ‘bindata’ in R, which applies algorithm presented in

Qaqish (2003). We can set n samples from a multivariate normal distribution with

mean and variance chosen in order to get the desired margin and common probabil-

ities. We generated 500 simulation repetitions with 4 sets of correlation coefficients

(0.05, 0.1, 0.25, and 0.5), and separately with 3 sets of covariate coefficients (0.01, 0.30

and 1.00) on the copula parameter. The sample size was equal to 1000 (500 pairs

of correlated outcomes) in both settings. Parameter estimates and corresponding

standard errors for the odds ratio and correlation coefficient from the copula method

were estimated based on bootstrapped resampling (100 repetitions) within each simu-

lated dataset. The simulated marginal probability was set as 0.25 for both treatment

groups and couple measures. The marginal probability of 0.25 is a crude estimate of

the marginal probability for the primary outcome of interest for both treatment and
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control groups at baseline in the AAC sample.

2.4.2 Bias and efficiency in estimating correlations

For each of the four simulation scenarios, we estimate odds ratios and correla-

tion coefficients using the copula approach with a combination of 5 choices of max-id

copula families and 4 choices of corresponding Laplace transformations (LT) (Table

2.2). Here we present detailed results only for Gumbel copula with Laplace transfor-

mation D (Gumbel D) and Frank copula with Laplace tranformation A (Frank A)

as the other families provided similar results. To examine the performance of each

estimator, we present bias, 95% coverage probability and mean squared error (MSE).

For all underlying true correlations, Frank A performs the best or as well as the best

compared to both Gumbel D and the GEE method, providing a good 95% coverage

probability (93.6-95.6%), small bias (0.0005-0.0027), and small MSE (0.0019-0.0024).

Gumbel D provides good estimates for modest and strong correlation (ρ = 0.25, 0.5),

but performs worse when the true correlation is small (ρ = 0.05). For weak correla-

tion (ρ = 0.1), Frank A provides a close estimate to the real value with corresponding

bias 0.001, while estimates from Gumbel D provide highest 95% coverage probability.

For modest (ρ = 0.25) and strong (ρ = 0.5) correlations, all methods provide similar

results while the copula-based methods perform slightly better than GEE in terms

of bias. In sum, the copula approach with Frank A performs the best or as well

as the best in estimating correlations with respect to bias. Gumbel D does slightly

better than Frank A when ρ is 0.5 in terms of coverage. The standard errors from all
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methods are similar.

2.4.3 Bias and efficiency in estimating the covariate effect on

the dependence parameter

In order to examine the performance of the copula-based methods in estimating

the covariate effect on the dependence parameter, we also perform a simulation study.

We create one binary variable for covariate, and adjust for it on the dependence

parameter. Thus, as described in 2.3.2, we have two regression coefficients, b0 and

b1, on the dependence parameter, where b1 represents a regression coefficient for the

covariate. We set the value of b0 as 0.262 which corresponds to copula parameter

θ = 1.3, and represents moderate level of correlation. For each of simulation, we set

the covariate coefficient, b1, as 0.01, 0.30 and 1.00, respectively, where covariate effect

ranges from small to large with corresponding p-value from large to small. We also

use Gumbel D and Frank A. We present bias and 95% coverage probability to show

their performance (Table 2.3). We could fit the dependence model using different

levels of regression coefficients and different values of b0 (not presented here), but the

results appear consistent.

Both methods provide good estimators of both regression coefficients on the de-

pendence parameter. Gumbel D performs slightly better than Frank A with respect

to bias, while Frank A does better than Gumbel D with respect to coverage. As

expected, mean p-values for b1 decrease when true value of b1 gets bigger. Significant

p-value (< 0.05) represents a significant difference in dependency among two groups
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we adjust for on the dependence parameter. We do not present the performance of

copula-based approach in estimating marginal probability, but it appears to provide

unbiased estimates (bias=0.000-0.002).

2.5 Application

In this section, we analyze the clinical trial of HIV serodiscordant African Ameri-

can couples designed to assess the effect on HIV/STD Prevention trial and apply our

method to this data. As noted, we focus more on the dependency parameters than

the marginal parameters, so that the estimated dependency can serve as a measure

of reliability of self-reported sexual behaviors. The following subsections will describe

the study design and data, characteristics of study patients and study outcomes. In

the last subsection, the results of the analysis by applying copula approach are shown.

2.5.1 Study design and data

We use baseline data from HIV/STD Prevention trial, a two-arm, couple-based

randomized controlled intervention trial of HIV serodiscordant African American cou-

ples from four cities in the US (Atlanta, GA; Los Angeles, CA; New York, NY; and

Philadelphia, PA). The study was designed to test the efficacy of a couple-focused

HIV/STD risk reduction intervention vs. an individual-focused health promotion in-

tervention in reducing sexual risk behaviors and STD incidence (see NIMHa (2008)

and NIMHb (2008)).

The study includes 535 couples (1070 individuals) recruited from HIV care clinics,
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HIV testing and counseling sites, primary care clinics, AIDS services organizations,

substance abuse treatment programs, churches and HIV/AIDS ministries, HIV/AIDS

providers and community-based coalitions and advocacy organizations. Participants

met specific study criteria.

Data were obtained from three sources. First, participants completed a 90-

minute Audio Computer-Assisted Survey Interview (ACASI), which assessed sociode-

mographic and relationship characteristics, sexual behaviors and condom use, and

psychosocial mediators that had sound psychometric properties and had previously

been implemented with adult African American populations. Although both par-

ticipating male and female partners completed the same ACASI assessments, the

sexual behavior items were written to be appropriate for each gender. Subsequently,

a trained African American interviewer administered validated and reliable assess-

ments on sexual and physical abuse and a brief index assessing study participants’

commitment to the African American community.

2.5.2 Characteristics of study participants

Study partners were asked to indicate their age (in years), education, income, type

of health insurance, and incarceration history. HIV status at baseline was determined

via biological testing in order to confirm that couples were HIV serodiscordant. Study

participants were also asked questions that addressed relationship characteristics in-

cluding length of relationship with their study partner, whether or not participants

were married to their study partner (yes/no), and sexual dysfunction items (yes/no).
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To illustrate previously described copula methods in this data, we created categorized

couple variables with 3 levels for the following items: high school graduate, income

(over $850/month), insurance, incarceration history indicating whether each charac-

teristic was observed in neither, one or both partners within each couple. HIV status

refers to whether the female partner was the HIV positive partner. These 9 items

were considered covariates of interest in measuring the the dependence parameter.

Because our primary interest was to estimate the dependence parameter, the only

covariate used in estimating the marginal probability of the outcome of interest was

randomized treatment assignment.

2.5.3 Primary outcome

Participants provided data on the use of male and female condoms during sex

they had engaged in with study partners (vaginal, anal and oral intercourse) over

the past 90 days. Proportion of condom use was calculated first. For the purpose

of illustrating the present copula methodology and because it is a common primary

endpoint in HIV/STD risk modification trials, we constructed an outcome, ‘consistent

condom use’, that equals one when condom use was reported at every sexual episode

with study partner and zero otherwise, for both male and female partners.
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2.5.4 Results: Correlations according to different level of co-

variates

Our main purpose in this study is to determine how the associations between male

and female consistent condom use responses vary across the different sub-populations

and how the self-reported outcomes are reliable. We fit the model that incorporates

the covariates of interest in the copula parameter as described in Subsection 2.5.2.

Our preliminary analysis using PROC CORR showed estimated correlation of reported

consistent condom was 0.34. From the previous simulation study with modest corre-

lation, both Gumbel D and Frank A performed similarly. We arbitrarily fit our model

using the Frank A copula since we expect which copula family we choose does not

affect the results based on simulations in the previous section.

Table 2.4 summarizes the results of the estimated regression coefficients of covari-

ates on the dependence parameter, θ. Wald test is done at 0.05 significance level. The

result shows a statistically significant difference in the copula dependence parameter

between couples where both have insurance and those where neither or either has

insurance. Couples where both have insurance are likely to have more correlated

outcomes than those where neither or either has insurance. In addition, education,

income and duration of relationship have relatively smaller p-values indicating there

may be differences in the correlation of male and female partner responses between

subgroups of those covariates. Also, couples where both have high income (> $850)

or high school diploma are likely to have more correlated outcomes than those where

neither or either has high income or high school diploma, but these were not statisti-
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cally significantly different. Other covariates such as age, incarceration history, HIV

status (female or not), married to study partner, and sexual dysfunction had similar

correlations among subgroups.

Table 2.5 summarizes the odds ratios and correlation across different levels of the

covariates estimated from its corresponding dependence parameter. The average odds

ratio and correlation between female and male partners are 5.59 and 0.34, respectively.

As expected, as sociodemographic indices such as education, income, insurance sta-

tus and no incarceration history increases, the correlation between couples response

increases. The correlation where both have insurance is 0.401, while the correlation

where neither have insurance is 0.099, demonstrating the impact of these covariates

on correlation.

2.6 Conclusions and discussion

In this work, we applied a bivariate copula-based logit model to data from the

HIV serodiscordant couples study and estimated the correlation of the couples’ re-

sponses according to the different covariates. We have illustrated a novel application

of estimating dependency, while adjusting for covariates, as an estimator of reliabil-

ity of self-reported shared sexual behavior from a couple-based study. Prior to the

application, we conducted a simulation study to examine how copula-based models

perform relative to GEE, and to determine which copula family works well in a num-

ber of settings with varying levels of underlying correlations and covariate on the

copula parameter. We also compared the results of the copula-based method with
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those of GEE. In prior work with copulas, many have used the Kendall’s τ or copula

parameters as the measure of concordance. Since neither the Kendall’s τ nor copula

parameter is directly comparable to moment estimates for the correlation coefficient

from GEE, we introduced a copula-based estimator of binary correlation and odds

ratio to compare the moment estimates for the correlation coefficient from GEE.

Based on the results from the simulation study, we found that most of the models

with copula families perform well and provide similar results for moderate and strong

correlation. Frank A performed well for the weak correlation, however, Gumbel D did

not do well when true ρ is 0.05. In terms of small bias, both copula models performed

better than GEE when true correlations are 0.25 and 0.5. For correlation 0.1, Frank

A worked the best. In terms of 95% coverage rate, the results from all methods were

similar for all levels of correlation except for Gumbel D when true ρ is 0.05. Both

methods with Gumbel D and Frank A also performs well in estimating the regression

coefficient on the dependence parameter. Gumbel D performs better in terms of bias,

while Frank A does better in terms of coverage.

Finally, we fitted copula-based models to our data and focused on estimation of

the correlation between responses of consistent condom use from couples adjusting for

couple-level covariate information. We selected 9 different couple-based covariates.

The findings show that there is a statistically significant difference in the correlation

between couples where both have insurance and those where neither or either has

insurance. Couples where both have insurance have more correlated outcomes than

those where neither or either has insurance. Among couples where females and males

have high school diplomas compared to couples where neither or either has a diploma,
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the responses are more highly correlated. Couples where both have high income

(> $850) are likely to have more correlated outcomes than those where neither or

either has high income. Interestingly, in terms of relationship duration, the responses

from couples with more than 5 year relationship seem to be less correlated. Whether

the female partner is HIV infected or not does not affect the correlation. These

findings suggest that we need to pay attention to those couples with the covariates

such as no insurance, low income and low education, indicating low correlation, to

improve the reliability of self-reports.

To summarize, this work provide a good measure of reliability of self-reported

sexual behaviors among HIV serodiscordant couples by estimating correlation using a

copula-based method. This work also introduces systematic research on the influence

of the factors on the responses of self-reported sexual behaviors. Thus, we can see

the magnitude of matching responses based on the estimated correlation adjusting

for important covariates of interest, which can tell us the reliability of paired or

couple-based self-reported data.

This approach has the advantages of constructing separate models for the marginal

probabilities and the dependence parameters, which is more efficient. In addition, this

method is fully specified allowing joint and conditional probabilities to be derived eas-

ily, and is straightforward to apply using a standard and direct maximum likelihood

inference procedure. Also, it allows us to model the dependence parameter with co-

variate information of interest without computational difficulty. Therefore, it leads to

a better understanding of couple-level issues related to self-reported sexual behaviors.
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Figure 2.1: Relationship between the odds ratio and correlation coefficient.

Table 2.1: Max-id bivariate copulas and Laplace transforms (LTs)

Family C ′(uj, uk; θ) LTs: φ(t; θ) θ ∈ Log transformation

Gumbel(LTA) e−(ũj
θ+ũk

θ)1/θ
e−t1/θ

[1,∞) log(θ − 1)
Kimeldorf(LTB) (u−θ

j + u−θ
k − 1)−1/θ (1 + t)−1/θ (0,∞) logθ

Joe(LTC) 1− (ūj
θ + ūk

θ − ūj
θūk

θ)1/θ 1− (1− e−t)1/θ [1,∞) log(θ − 1)

Frank(LTD) −1
θ
log

{
1 + (e−θuj−1)(e−θuk−1)

e−θ−1

}
− log(1−(1−e−θ)e−t)

θ
(0,∞) logθ

Galambos ujuke
(ũj

−θ+ũk
−θ)−1/θ

[0,∞) logθ
Note that ūj = 1− uj and ũj = −loguj where uj = Fj(yj)
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Table 2.2: The average estimates and standard errors of odds ratios and correlation
coefficient for simulated data using copula approach and GEE

True Odds Ratio Correlation
Corr. Method Group Est. S.E. Est. S.E MSE Bias Coverage

ρ=0.05 Gumbel D Trt. 1.664 0.144 0.100 0.016 0.0027 0.0498 0.188
Ctrl. 1.664 0.144 0.099 0.016 0.0026 0.0495 0.182

Frank A Trt. 1.325 0.323 0.050 0.046 0.0023 -0.0005 0.950
Ctrl. 1.323 0.324 0.049 0.046 0.0023 -0.0009 0.944

GEE N.A. - - 0.047 0.046 0.0023 -0.0026 0.944
N.A. - -

ρ=0.1 Gumbel D Trt. 1.803 0.289 0.115 0.028 0.0010 0.0147 0.980
Ctrl. 1.803 0.289 0.115 0.028 0.0010 0.0150 0.980

Frank A Trt. 1.684 0.406 0.098 0.047 0.0020 -0.0017 0.950
Ctrl. 1.686 0.405 0.099 0.047 0.0020 -0.0014 0.956

GEE - - 0.096 0.047 0.0020 -0.0037 0.958
ρ=0.25 Gumbel D Trt. 3.440 0.833 0.248 0.048 0.0024 -0.0024 0.934

Ctrl. 3.445 0.836 0.247 0.048 0.0024 -0.0027 0.930
Frank A Trt. 3.440 0.825 0.248 0.048 0.0024 -0.0023 0.936

Ctrl. 3.445 0.827 0.247 0.048 0.0024 -0.0027 0.944
GEE - - 0.245 0.048 0.0024 -0.0048 0.942

ρ=0.5 Gumbel D Trt. 12.165 3.368 0.498 0.045 0.0019 -0.0023 0.954
Ctrl. 12.114 3.344 0.498 0.045 0.0019 -0.0022 0.954

Frank A Trt. 12.157 3.383 0.498 0.045 0.0019 -0.0024 0.950
Ctrl. 12.115 3.361 0.498 0.045 0.0019 -0.0022 0.950

GEE - - 0.496 0.045 0.0020 -0.0043 0.956

Table 2.3: The average estimates and standard errors of covariate coefficients on the
dependence parameter using copula approach

True Copula b0 b1
b = (b0, b1) family Est. S.E. Bias Coverage Est. S.E. Bias Coverage p-value∗

(0.262, 0.010) Gumbel D 0.266 0.082 0.004 94.0 0.010 0.117 0.000 94.4 0.506
Frank A 0.265 0.089 0.008 94.6 0.011 0.128 0.001 94.6 0.536

(0.262, 0.300) Gumbel D 0.266 0.082 0.003 94.0 0.310 0.137 0.010 94.4 0.102
Frank A 0.266 0.089 0.002 94.2 0.314 0.154 0.014 93.6 0.128

(0.262, 1.000) Gumbel D 0.264 0.082 0.001 93.6 0.979 0.203 0.021 91.2 0.001
Frank A 0.263 0.089 0.001 94.4 1.043 0.229 0.043 94.0 0.000

∗ p-value obtained from the Wald test
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Table 2.4: The estimates of dependence parameters adjusting for each of covariate
using max-id copula with Frank A

Covariate effect
covariates Est. S.E. p-value

Age -0.002 0.010 0.874
Education 0.225 0.133 0.092

Income 0.128 0.102 0.206
Insurance 0.176 0.081 0.029∗

Incarceration 0.091 0.100 0.358
HIV 0.007 0.134 0.959

Duration -0.171 0.135 0.205
Married -0.021 0.136 0.876

Sexual dysfunction -0.087 0.131 0.505
∗ statistically significant at 0.05 level
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Table 2.5: The corresponding odds ratios and correlation of each covariate level based
on estimated dependence parameter using max-id copula with Frank A

Odds ratio Correlation
Treatment group Control group Treatment group Control group

covariates Est. S.E. Est. S.E. Est. S.E. Est. S.E.
Age 5.566 1.689 5.572 1.723 0.341 0.056 0.341 0.056

Education
0 3.515 1.334 3.525 1.342 0.247 0.073 0.247 0.074
1 8.107 3.286 8.142 3.276 0.416 0.067 0.416 0.066

Income
0 4.120 1.484 4.117 1.455 0.279 0.064 0.280 0.065
1 6.667 2.439 6.657 2.434 0.377 0.062 0.378 0.062
2 10.202 8.625 10.174 8.651 0.458 0.103 0.460 0.102

Insurance
0 1.709 1.587 1.708 1.491 0.099 0.378 0.100 0.360
1 3.958 1.173 3.941 1.167 0.269 0.059 0.271 0.059
2 7.645 2.762 7.588 2.732 0.401 0.060 0.404 0.060

Incarceration History
0 3.902 2.677 3.911 2.702 0.269 0.108 0.269 0.109
1 5.545 1.544 5.558 1.533 0.341 0.050 0.342 0.051
2 7.629 4.037 7.644 4.049 0.404 0.084 0.405 0.085

HIV
0 5.383 2.395 5.363 2.371 0.333 0.076 0.335 0.076
1 5.537 2.001 5.516 1.953 0.339 0.065 0.341 0.065

Duration(>5yrs)
0 7.654 3.182 7.599 3.156 0.402 0.071 0.404 0.072
1 4.046 1.539 4.029 1.520 0.274 0.070 0.276 0.070

Married
0 5.636 1.792 5.614 1.774 0.343 0.059 0.344 0.060
1 5.185 2.638 5.167 2.581 0.326 0.086 0.327 0.086

Sexual dysfunction
0 6.297 2.333 6.275 2.294 0.365 0.065 0.366 0.066
1 4.573 2.007 4.562 1.971 0.300 0.077 0.301 0.077
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Chapter 3

Extension of Max-id Copula to

Longitudinal Binary Couples Data

3.1 Introduction

By definition, in a longitudinal study, multiple outcomes are measured repeatedly

for individuals or groups over time. In our motivating example, investigators devel-

oped and evaluated a couple-based behavioral intervention for reducing shared sexual

risk behavior and collected retrospective self-report outcomes from both partners at

baseline and at 3 follow-ups. See El-Bassell et al (2010) for more details of the trial.

As the outcomes refer to the couples’ shared sexual behavior, couples’ responses are

expected to be correlated. Thus, modeling couple responses should account for multi-

ple sources of correlation: within-individual over time as well as within-couple both at

the same measurement time and at different times. In this paper, we present a copula-

based approach for modeling multivariate longitudinal binary outcomes to estimate
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intervention effects for male and female partners as well as to account for multiple

sources of correlation in practical settings where dyads are measured repeatedly over

time.

There are several approaches to modeling multivariate longitudinal binary out-

comes. One is the generalized estimating equations (GEE) approach using a logit

link function proposed by Liang and Zeger (1986). The GEE approach is easy to

implement and gives efficient estimates of regression coefficients, although estimates

of the association among the binary outcomes can be inefficient [Carey et al, 1993].

When the association model is of primary interest, the second-order generalized es-

timating equation (GEE2) approach developed by Liang, Zeger, and Qaqish (1992)

gives more efficient estimates of association parameters. However, GEE2 becomes

computationally intense when the cluster size is large. Moreover, covariate effects on

marginal probabilities are biased if the association model is mis-specified.

Random effects approaches proposed by Ten Have, Kunselman and Tran (1999)

are often applied in analyses of longitudinal data with nested levels of clustering.

However, this approach would be challenging to accommodate several sources of cor-

relation, especially for binary outcomes, as in our motivating example. Also, it in-

volves complex assumptions regarding the distributions of the random effects, and

can be more challenging to implement. Additionally, this approach offers different

covariate effects on the marginal probabilities, as these effects are interpreted condi-

tional on random effects. Also, the estimates of these effects could be biased if the

random effects structure is mis-specified.

Another general analytic approach for modeling correlated outcomes is to employ
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copulas. There exist several copula-based approaches. Song, Li, and Yuan (2009)

proposed joint regression analysis of correlated data using Gaussian copulas, also

referred to as vector generalized linear models (VGLM). Escarela, Luis Carlos, and

Russel (2009) proposed a copula-based Markov chain model for the analysis of binary

longitudinal data using a probit link. Both of these copula-based methods use three

correlated outcomes (a single outcome measured at baseline and two follow-up times)

as an approach for modelling longitudinal data using Gaussian copula. Lambert and

Vandenhende (2002) also proposed a new model for multivariate non-normal longi-

tudinal data, where three responses are measured repeatedly and assumed to follow

different parametric marginal distributions. The normal copula was used to relate

those responses because the dependence structure can easily be specified through the

variance-covariance matrix, but it can be computationally intense when applied to

more than three correlated outcomes.

We extend the multivariate max-id copula logit model proposed by Nikoloulopou-

los and Karlos (2008), which was originally applied to multivariate outcomes. We an-

alyze longitudinal bivariate binary outcomes by incorporating possibly different sets

of covariate structure including time indicator for each marginal model and using a

max-id copula to accommodate the correlations for all pairs of outcomes. Specifically,

to assess the longitudinal effect, a time indicator was added to the covariate structure

in the marginal model. Thus, a single response at different time points has a differ-

ent covariate structure since time indicator changes depending on time point. The

application of copulas is usually limited in modeling multivariate discrete outcomes

primarily because of theoretical and computational restrictions; when the multivariate
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case is considered, the form of dependence is usually quite limited (Nikoloulopoulos

and Karlis 2009). For example, Archimedian copulas only allow for simple correlation

which is similar to an exchangeable structure and their range of dependence becomes

narrower as the dimension increases. However, the max-id approach is attractive

in that more flexible dependence structures can be accommodated for each possible

pair of outcomes and the cumulative distribution functions are available in closed

form, which can increase computational feasibility for discrete data. In the max-

id approach, the dependence structure is modeled via the copula parameter, which

permits separate estimates of the dependency with respect to clusters or covariates

of interest. It allows direct and intuitive interpretation of the correlation structure

through several sets of copula parameters describing various components (e.g., across

time, within-cluster, etc). Components are intuitive and interpretable as sources of

variation. Finally, the max-id approach uses its likelihood for estimation, which is

useful for conducting statistical inference and model selection.

The paper is organized as follows: we introduce our motivating example in Section

2; in Section 3, we present the max-id copula-based approach for bivariate, longitu-

dinal binary outcomes; Section 4 evaluates the performance of the max-id approach

through a number of simulations; and in Section 5, we apply the max-id approach to

our motivating example, the Multisite HIV/STD Prevention Trial for African Amer-

ican Couples (AAC)(NCT00644163).
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3.2 Statistical methods

3.2.1 Copula-based model for bivariate longitudinal data

Copula models involve the generation of a multivariate, joint distribution for out-

comes of interest, given the marginal distributions of the correlated responses. Let

Fj(yj) be the cumulative distribution function (cdf) of a univariate random variable

(j = 1, . . . , m). Sklar (1957) first showed that there exists an m-dimensional copula,

C, such that for all y in the domain of H,

H(y1, . . . , ym) = C(F1(y1), . . . , Fm(ym)). (3.2.1)

Joe and Hu (1996) proposed multivariate parametric families of copulas that are mix-

tures of max-id bivariate copulas, which have flexible dependence structures, closed

form cdfs, and satisfy the closure property under marginalization, all desired proper-

ties for modeling binary data using a parametric family of multivariate copulas (see

Nikoloulopoulos and Karlis 2009). The mixture of m-variate max-id copulas cdfs has

the following form

C(u; Θ) = φ

(∑

j<k

log C ′
jk(e

−pjφ−1(uj ;θ), e−pkφ−1(uk;θ); θjk) +
m∑

j=1

vjpjφ
−1(uj; θ); θ

)

(3.2.2)

where C
′
jk(·; θ, θjk) is a bivariate max-id copula, φ(·; θ) is a Laplace transform (LT),

Θ = {θ, θjk : j, k = 1, ...,m, j < k} denotes the vector of all dependence parameters

of the copula, uj is cdf of a univariate random variable and pj = (vj +m−1)−1 where
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vj is arbitrary. Specifically, the (j, k) bivariate marginal copula is

Cjk(uj, uk; θ, θjk) = φ(− log C ′
jk(e

−pjφ−1(uj ;θ), e−pkφ−1(uk;θ); θjk) (3.2.3)

+ (vj + m− 2)pjφ
−1(uj; θ) + (vk + m− 2)pkφ

−1(uk; θ); θ). (3.2.4)

Without loss of generality, we assume vj + m − 1 = 0 and obtain simple max-id

copulas with m×(m−1)
2

+ 1 dependence parameters. Note that the several choices of

copula families with 4 possible LTs to construct a max-id copula will result in a rich

class of 20 different parametric copula families (Table 2.1).

In the context of our motivating example, we consider 4 correlated outcomes:

(y1m, y1f , y2m, y2f ) where the first subscript (1, 2) denotes the baseline and follow-

up measurement, respectively and the second subscript (m/f) denotes male/female

partner, respectively. We model the multivariate joint distribution considering these

4 correlated responses using the max-id copula described above.

3.2.2 Copula-based model with a logit link

In this section, we demonstrate how the copula-based method can be integrated

into a logit model with a set of covariates in the univariate marginal probability,

πj, as described in Nikouloulopoulos and Karlis (2008). Consider Equation (3.2.2)

where y = (y1, . . . , ym) denotes the multivariate binary responses and Fj the cdf

of the univariate Bernoulli distribution function with probability of success πj (j =

1, . . . , m),

Fj(yj; πj) =





1− πj if yj = 0

1 if yj = 1

j = 1, 2.
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The standard logistic regression model for the probability of success πij corresponding

to the copula in Equation (3.2.2) is

logit(πij) = βT
j Xij, j = 1, 2

where βj is the vector of marginal regression parameters including time-varying co-

variates and Xij is a vector of covariates for the jth partner’s outcome for the ith

couple. Incorporating a time variable allows us to model longitudinal data, which

differs from the multivariate modeling in Nikoloulopoulos and Karlis (2008). This

requires construction of a separate covariate structure for the outcomes at each time

point by modeling the probabilities as a function of time.

3.2.3 Estimation of marginal model parameters

When marginal models are discrete, a multivariate probability function is obtained

by taking the Radon-Nikodym derivative for H(y) in Equation (3.2.1). Let c =

(c1, . . . , cm) be vertices where yj is discrete and each cj is equal to either yj or yj − 1,

j = 1, . . . , m. Then, the multivariate joint probability function h is given by the

copula representation

h(y1, y2, . . . , ym) =
∑

sgn(c)C(F1(c1), . . . , Fm(cm)) (3.2.5)

where the sum is taken over all vertices c, and sgn(c) is given by

sgn(c) =





1, if cj = yj − 1 for an even number of j’s

−1, if cj = yj − 1 for an odd number of j’s.
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See more details in Song (2000). Using this formulation, we can construct the joint

log-likelihood of the multivariate logit copula model for a variety of copulas paired

with a variety of LTs, where C is a max-id copula, Fj are j univariate marginal cdfs

and βj is a vector of regression coefficients in each marginal model.

We focus on standard maximum likelihood (ML). To obtain possible starting val-

ues, the j univariate log-likelihoods (Equation (3.2.6)) are maximized independently

in order to obtain j separate β̂j, e.g.,

Lj(βj) =
n∑

i=1

log(hj(yij; βj)) j = 1, . . . , m (3.2.6)

where h1, . . . , hm are the univariate probability functions. Next, the joint log-likelihood

(Equation (3.2.7)) is maximized over the copula and marginal regression parameters,

simultaneously, using optimization technique with the Nelder-Mead method.

L(β, Θ) =
n∑

i=1

log(h(yi1, . . . , yim;β, Θ)), j = 1, . . . , m (3.2.7)

3.2.4 Estimation of binary correlation

We can write the pairwise correlation as a function of the joint probability of failure

for both outcomes, yj and yk (j, k = 1, . . . , m) using the bivariate max-id copula and

the marginal probabilities of success, p1 and p2. Denote the joint probability of failure,

p00, as

p00 = P (yj = 0; yk = 0)

where yj and yk denote any two correlated outcomes when j, k = 1, . . . , m. Using a

bivariate max-id copula, the joint probability of failure derived from Equation (3.2.3)
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takes the form

p(yj = 0, yk = 0) = Cjk(1− πj, 1− πk; βj, βk, θjk)

where βj and βk are regression coefficients in the marginal model and θjk is a subset of

corresponding copula parameters for both outcomes, yj and yk. The binary correlation

for binary responses is defined as

φ =
p11 − p1p2√

p1(1− p1)p2(1− p2)

where p11 = p(yj = 1, yk = 1) = p00 + p1 + p2 − 1, p1 = p(yj = 1) and p2 = p(yk = 1).

3.3 A simulation study

3.3.1 Simulation set-up

We conducted a simulation study to evaluate the performance of the max-id cop-

ula in estimating marginal probabilities, copula parameters (Θ) and correlation coef-

ficients. We generated 200 samples of 4 correlated outcomes using inputs that were

similar to our motivating example. To generate correlated binary outcomes for a

given correlation matrix, we used the R package, ‘mvtBinaryEP’, which applies an

algorithm developed by Emrich and Piedmonte (1991).

Specifically, the primary focus of the motivating example was to estimate interven-

tion efficacy in reducing risky behavior during follow-up, in a randomized trial; there-

fore we simulated marginal probabilities such that these probabilities were equal in

the two interventions at baseline and different at follow-up. We assume the marginal
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probabilities of the outcomes for intervention (p1t) and control (p1c) at baseline are

both 0.2 and the probabilities for both groups (p2t and p2c for intervention and control,

respectively) at follow-up time are 0.4 and 0.6 (0.3 and 0.5 in some settings), respec-

tively, which covers a range of plausible scenarios. We arbitrarily choose a Gumbel

copula with the Laplace transformation D (Gumbel D). Based on simple correlation

estimates of the primary outcome of interest from AAC, we assume there is a back-

ground correlation for all pairs (θ) and 3 possible additional pair-wise correlations:

within-individual correlation over time (θ12), within-couple correlation at baseline

(θ1.) and within-couple correlation at follow-up (θ2.). For simplicity, we assume there

are no more additional sources of correlation (e.g., within-couple correlation at dif-

ferent time points). Additionally, we assume that the additional within-individual

correlation (θ12) is equal for males and females. See Figure 1 for a graphical de-

scription of these associations where y1m, y1f , y2m, y2f represent the outcomes from

male and female partners, respectively, at baseline and follow-up. We chose to es-

timate three sets of models depending on what copula parameters are estimated.

The first and second model use the copula parameters of θ, θ12, θ1. and θ2.. How-

ever, the first model assumes that the within-couple correlation at each time point

is the same (θ1.=θ2.), while the second model estimates these two parameters (θ1.

and θ2.) separately. The third model only estimates the copula parameter of θ. We

consider 5 simulation scenarios (see Table 1) : (1) strong background association

(θ) with weak additional within-individual correlation over time (θ12) and weak

additional within-couple correlation (θ1., θ2.); (2) weak background association (θ)

with strong additional within-individual correlation over time (θ12) and strong ad-
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ditional within-couple correlation (θ1., θ2.); (3) moderate background association (θ)

with strong additional within-individual correlation over time (θ12) and strong ad-

ditional within-couple correlation (θ1., θ2.); (4) weak background association (θ) with

weak additional within-individual correlation over time (θ12) and weak additional

within-couple correlation (θ1., θ2.) and (5) strong background association (θ) with

no additional correlation for any pair. The third model can be applied in setting 9

only. For each setting within each model, 1,000 simulations were performed in order

to evaluate the bias of the marginal probabilities (p’s) and copula parameters (θ, θ12,

θ1. and θ2.). In addition to estimating the copula parameters, we estimate all possible

pair-wise correlation coefficients (ρi where i = 1, . . . , 6 for 4 correlated outcomes) and

compare them to the true values. We also present 95% coverage probabilities for the

estimates of the copula parameters. We perform both Wald and likelihood ratio tests

(LRT) to evaluate whether each copula parameter is significantly different from their

respective null values (e.g., 0 for θ and 1 for θ12, θ1. and θ2.).

3.3.2 Simulation results

We explore the mean bias of the marginal probabilities, correlation coefficients

and copula parameters. Table 2 displays the mean bias of the marginal probabilities

of the outcomes at each time for each group (p1t, p2t, p1c, p2c). The mean bias

ranges between 0.000 and 0.005, and is smaller either when both the background and

additional associations are low (settings 7 and 8) or when the model has only one

copula parameter (θ) to be estimated (setting 9). However, the differences in mean
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bias from different settings were very small ranging from 0.000 to 0.005. Table 3

displays the mean bias of the correlation coefficient for all possible pairs (ρ1 and ρ6

: within-individual correlation over time for males and females, respectively; ρ2 and

ρ5 : within-couple correlation at baseline and follow-up, respectively; and ρ3 and ρ4:

within-couple correlation at different times). The mean bias is smaller when there is

no or low additional association (settings 1-2, 7-8 and 9). Within-couple correlation at

different times seems to be overestimated, while within-couple correlation at the same

time seems to be underestimated. However, the mean biases are very small in general

ranging from 0.000 to 0.019. Table 4 demonstrates the results for copula parameters.

Even though the mean bias of the correlation coefficients, which are derived from

estimated copula parameters, are very small, we found some biased estimates for the

copula parameters, especially . When additional association is weak (settings 7 and

8), we found less bias for copula parameters (θ12, θ1. and θ2.). Table 5 summarizes

95% coverage probabilities (CP) for the copula parameters. The 95% CP for the

copula parameter (θ) seems close to its nominal value, and those for the other copula

parameters (θ12, θ1. and θ2.) are fairly close to 0.95 in settings 1, 2, 7 and 8. However,

when there is strong additional correlation with weak background correlation (settings

3 and 4), the 95% CP for the other copula parameters are low. Table 6 displays the

test results for the copula parameters using Wald and likelihood ratio test (LRT). We

expect a large p-value when there is weak additional or low background association, to

help determine whether we need those parameters in the model. The Wald test seems

consistently more conservative than LRT in all simulation settings. In settings 3 and

5, all three copula parameters are significant in the model. However, in settings 4 and
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6, θ1. becomes a non-significant copula parameter when we add one more parameter

θ2. in the model. Also, when we add θ2. in the model, the likelihood does not change

significantly. In analyzing data from the motivating AAC study, we use LRT for

model selection and obtain p-values for θ using LRT by comparing the model with

only θ to one with an independence correlation structure. In summary, the max-id

logit copula model performs well in estimating marginal probabilities in all simulation

settings. The estimates for copula parameters are biased in some settings where we

set the copula parameters for additional pair-wise correlation as strong. However, the

estimates of the pair-wise correlation coefficients are robust and consistent with the

true values.

3.4 A motivating example

Our motivating example is a randomized controlled trial (RCT) of HIV serodiscor-

dant, African American couples designed to assess the effect of a culturally tailored

HIV/STD prevention intervention on sexually transmitted infections and risky sex-

ual behaviors among couples. In this trial, couples assess their condom use and

other shared sexual behaviors retrospectively at baseline, immediately following the

eight week intervention (IPT), and at 6 and 12 months following the conclusion of

the intervention. One strength of the couple-based design is that each outcome of

shared sexual behaviors is reported independently by each partner, so that each can

be modeled independently (male and female partners, separately) in a multivariate

setting. In this context, there exist two sources of correlation: within-couple cor-
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relations from measuring each partner of each couple regarding their shared sexual

behaviors and within-individual correlations induced from the repeated measures over

time. In order to estimate the intervention effect for each partner while accounting

for these multiple sources of correlation, we apply the max-id copulas to data from

the HIV/STD Prevention Trial for African American Couples (AAC). As described in

the simulation study, we choose 4 outcomes: male and female responses from baseline

and one follow-up, respectively. The efficacy of HIV/STD prevention intervention

was compared to a general health promotion intervention in terms of reducing sexual

risk behaviors. We separately fit the model to two different sets of outcomes, one

using baseline and IPT and the other using baseline and the 12 month follow-up. We

fit a copula model with 3 copula parameters (θ, θ12 and θ1.), assuming that back-

ground, additional within-couple at baseline and the follow-up time and additional

within-individual over time correlations exist. We further assume that the copula

parameters (θ12) for within-individual correlation are the same for males and females,

and that copula parameters for within-couple correlation (θ1., θ2.) are the same at

both baseline and at follow-up time. We could fit more complex models with combi-

nations of all possible copula parameters (e.g., estimating total 7 copula parameters

is possible in this setting), however, we found that adding more copula parameters for

these additional association does not improve the model fit (p-value from LRT: 0.389

(baseline vs IPT), 0.643 (baseline vs 12 mo f/u)). We added treatment, time and a

treatment x time interaction terms as regression parameters in each univariate model.

The estimates of the univariate regression parameters and 3 copula parameters are

presented in Tables 7 and 8. We fit a model with 4 copula parameters by adding θ2.,
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but the model fit of this model is not statistically different from the model with 3 cop-

ula parameters (p-value from LRT= 0.8 and 0.123 for Tables 7 and 8, respectively).

All parameters are statistically significant except ’treatment’, which represents no

treatment effect at baseline between the two interventions as expected. The estimate

for each copula parameter is also statistically significant from both the Wald and LR

tests. LR tests are performed by setting corresponding copula parameters (θ12 and

θ1.) equal to 1, which is the null value of the copula parameter for bivariate Gumbel

copula. Table 9 displays the estimates and standard errors of the correlation for 6

possible pairs, which are derived from a bivariate max-id copula using the estimated

3 copula parameters. Couple-level correlations are consistent at around 0.4-0.48 re-

gardless of time point; all other correlations are lower especially for the correlation

between the outcome at baseline and the outcome at 12 month follow-up time.

There is strong evidence that the HIV/STD prevention intervention is more effec-

tive at reducing risky sexual behavior than the general health promotion intervention

for both females and males, at both IPT and the 12 month follow-up. The size of

the treatment effect seems larger at IPT, and decreases at the 12 month follow-up

even though it remains statistically significant. The estimated correlation between

couples is largest at baseline and decreases slightly over time. Within-individual

correlation over time for both males and females seems moderate (0.317-0.353). In-

terestingly, within-couple correlations from different time points also appear to be

moderate (0.22-0.29).
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3.5 Discussion

In this work, we proposed an extension of max-id copula to couple-based longitu-

dinal binary data. Note that this approach can be extended to binary longitudinal

data or multivariate data with different kinds of outcomes. This modeling approach

was selected based on the analysis goals of a recently concluded RCT to promote less

risky sexual behaviors in an HIV-affected sample of couples. Also, our primary inter-

est was in modeling correlation (refer to Figure 1). The copula approach proposed

here allows direct and intuitive interpretation of the correlation, with decomposition

of correlation into various components using several sets of copula parameters (e.g.,

across time, within-cluster, etc). An appealing feature of the model is the ability to

allow the components of the copula parameter to depend on covariates of interest.
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Figure 3.1: Correlation structure among outcomes presented by copula parameters

Table 3.1: Simulation set-up: copula parameter choices in different settings

Copula Background Additional
Setting parameters association association
1 (θ, θ12, θ1.) High Low
2 (θ, θ12, θ1., θ2.) High Low
3 (θ, θ12, θ1.) Low High
4 (θ, θ12, θ1., θ2.) Low High
5 (θ, θ12, θ1.) Moderate High
6 (θ, θ12, θ1., θ2.) Moderate High
7 (θ, θ12, θ1.) Low Low
8 (θ, θ12, θ1., θ2.) Low Low
9 (θ, θ12, θ1.) High
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Table 3.2: Mean bias for estimators of the parameters of the marginal probabilities.

Mean Bias
Treatment Group Control Group

Setting True p Baseline F/U Baseline F/U
1 (0.2, 0.6, 0.2, 0.6) 0.0013 0.0038 0.0027 0.0009
2 (0.2, 0.6, 0.2, 0.6) 0.0019 0.0051 0.0024 0.0019
3 (0.2, 0.5, 0.2, 0.3) 0.0034 0.0010 0.0035 0.0017
4 (0.2, 0.5, 0.2, 0.3) 0.0030 0.0021 0.0026 0.0026
5 (0.2, 0.5, 0.2, 0.3) 0.0030 0.0027 0.0045 0.0021
6 (0.2, 0.5, 0.2, 0.3) 0.0027 0.0041 0.0037 0.0023
7 (0.2, 0.6, 0.2, 0.4) 0.0020 0.0004 0.0003 0.0016
8 (0.2, 0.6, 0.2, 0.4) 0.0004 0.0016 0.0003 0.0001
9 (0.2, 0.6, 0.2, 0.4) 0.0004 0.0013 0.0012 0.0032
F/U = follow-up

Table 3.3: Mean correlation structures and bias of the correlation coefficient estima-
tors




1 ρ1 ρ2 ρ3

ρ1 1 ρ4 ρ5

ρ2 ρ4 1 ρ6

ρ3 ρ5 ρ6 1




True ρ
Setting (ρ1, ρ2, ρ3, ρ4, ρ5, ρ6) ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

1 (0.40, 0.40, 0.30, 0.30, 0.48, 0.40) 0.002 0.002 0.009 0.009 0.003 0.002
2 (0.40, 0.40, 0.30, 0.30, 0.50, 0.40) 0.008 0.016 0.008 0.007 0.003 0.004
3 (0.35, 0.35, 0.10, 0.10, 0.35, 0.35) 0.014 0.008 0.019 0.019 0.004 0.017
4 (0.35, 0.35, 0.10, 0.10, 0.35, 0.35) 0.012 0.022 0.017 0.017 0.003 0.011
5 (0.40, 0.40, 0.20, 0.20, 0.43, 0.40) 0.010 0.008 0.014 0.013 0.008 0.010
6 (0.40, 0.40, 0.20, 0.20, 0.40, 0.40) 0.008 0.025 0.010 0.010 0.004 0.008
7 (0.20, 0.25, 0.10, 0.10, 0.26, 0.20) 0.005 0.003 0.005 0.005 0.002 0.005
8 (0.20, 0.25, 0.10, 0.10, 0.25, 0.20) 0.003 0.004 0.005 0.005 0.002 0.003
9 (0.28, 0.28, 0.28, 0.28, 0.36, 0.28) 0.001 0.001 0.001 0.002 0.000 0.002
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Table 3.4: Mean difference (θ̂ − θ) for the copula parameters

True θ′s
Setting (θ, θ12, θ1., θ2.) θ θ12 θ1. θ2.

1 (3.500, 1.290, 1.161,−) 0.368 0.025 -0.024 -
2 (3.500, 1.290, 1.161, 1.219) 0.002 0.104 -0.032 0.002
3 (1.015, 1.399, 1, 336,−) 0.243 -0.042 -0.027 -
4 (1.015, 1.399, 1, 336, 1.331) 0.219 -0.030 -0.021 -0.006
5 (2.077, 1.378, 1.317,−) 0.259 -0.027 -0.029 -
6 (2.077, 1.378, 1.317, 1.253) 0.217 0.002 -0.031 0.007
7 (1.015, 1.139, 1.182,−) 0.096 -0.007 -0.005 -
8 (1.015, 1.139, 1.182, 1.169) 0.101 -0.002 -0.005 0.007
9 (3.249,−,−,−) 0.113

Table 3.5: 95% Coverage probabilities for the copula parameters

Copula parameters
Setting θ θ12 θ1. θ2.

1 94.4 94.6 91.2
2 94.6 94/4 87.3 93.6
3 93.0 84.3 90.4
4 93.2 87.5 85.9 93.3
5 94.2 89.0 89.8
6 94.6 91.2 86.7 92.3
7 95.4 92.6 95.2
8 94.0 92.2 91.3 94.9
9 94.8

Table 3.6: Test results for the copula parameters by Wald test and Likelihood Ratio
(LR) Tests

θ θ12 θ1. θ2.

Setting Copula parameters Wald LRT Wald LRT Wald LRT Wald LRT
1 (θ, θ12, θ1.,−) 0.000 0.000 0.088 0.058 0.259 0.195 - -
2 (θ, θ12, θ1., θ2.) 0.000 0.000 0.098 0.054 0.352 0.272 0.265 0.246
3 (θ, θ12, θ1.,−) 0.124 0.000 0.002 0.000 0.010 0.003 - -
4 (θ, θ12, θ1., θ2.) 0.131 0.000 0.003 0.000 0.072 0.026 0.043 0.029
5 (θ, θ12, θ1.,−) 0.007 0.000 0.007 0.002 0.029 0.013 - -
6 (θ, θ12, θ1., θ2.) 0.010 0.000 0.009 0.002 0.120 0.061 0.123 0.101
7 (θ, θ12, θ1.,−) 0.116 0.000 0.176 0.155 0.105 0.079 - -
8 (θ, θ12, θ1., θ2.) 0.134 0.000 0.180 0.156 0.201 0.152 0.266 0.244
9 (θ,−,−,−) 0.000 0.000

50



Table 3.7: Parameter estimation for the marginal model using copula model (out-
comes at baseline vs IPT)

p-value p-value
Covariates Est. S.E. (Wald) (LRT)

Female Intercept -0.448 0.134 0.001
Trt 0.063 0.190 0.739

Time 0.727 0.147 0.000
Trt×Time 1.081 0.232 0.000

Male Intercept -0.312 0.133 0.019
Trt -0.016 0.188 0.932

Time 0.650 0.146 0.000
Trt×Time 1.497 0.250 0.000

Copula θ12 1.153 0.057 0.007 0.002
parameters θ1. 1.254 0.077 0.001 0.000

θ 3.036 0.388 0.000 -

Table 3.8: Parameter estimation for the marginal model using copula model (out-
comes at baseline vs 12mos f/u)

p-value p-value
Covariates Est. S.E. (Wald) (LRT)

Female Intercept -0.416 0.135 0.002
Trt 0.057 0.196 0.771

Time 0.493 0.152 0.001
Trt×Time 0.626 0.227 0.006

Male Intercept -0.342 0.134 0.011
Trt 0.053 0.195 0.786

Time 0.388 0.151 0.010
Trt×Time 0.563 0.223 0.012

Copula θ12 1.156 0.051 0.002 0.000
parameters θ1. 1.323 0.073 0.000 0.000

θ 2.340 0.338 0.000 -
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Table 3.9: Estimated correlation coefficient among outcomes using copula model

Correlations
Outcomes Baseline vs IPT Baseline vs 12mo F/U
(Pairs) Est. S.E. Est. S.E.
(y1f , y1m) 0.479 0.039 0.447 0.035
(y2f , y2m) 0.411 0.038 0.427 0.035
(y1f , y2f ) 0.353 0.042 0.317 0.039
(y1m, y2m) 0.337 0.043 0.325 0.039
(y1f , y2m) 0.267 0.044 0.223 0.036
(y1m, y2f ) 0.289 0.047 0.225 0.037
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Chapter 4

A Copula-based Model for

Longitudinal Data with Bivariate

Binary Outcomes, with

Application to Depression Data

4.1 Introduction

In longitudinal studies where multiple outcomes are measured repeatedly over

time which may be correlated, it is important to investigate the marginal effect of

covariates on each outcome as well as to accommodate the serial dependence of a

single outcome within each subject and the dependence between responses at the

same time and at different times across subjects. This paper presents a copula-based
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model for longitudinal bivariate binary data that estimates marginal covariate effects

on outcomes of interest while taking multiple sources of dependence into account.

The suggested model is illustrated by an examination of factors that are potentially

associated with two different measures of depression.

Generalized linear models with random effects are commonly used to model re-

peated multivariate data. Using different choices of models for the marginal and

dependence structures, several approaches have been proposed for longitudinal bi-

variate binary data. Ten Have and Morabia (1999) extended the original Dale (1986)

model to accommodate the time component in analyzing longitudinal bivariate binary

outcomes. Ribaudo et al. (2002) considered a generalized linear random coefficient

model (Longford 1995) for repeated multivariate binary data as a hierarchical logistic

regression model. The marginalized transition random effects models (MTM) were

proposed to model multivariate longitudinal binary data by Ilk and Daniels (2007).

The marginalized random effect model (MREM) was extended to model multivariate

longitudinal binary data using a new covariance matrix with a Kronecker decompo-

sition in Lee et al. (2009). However, common drawbacks of these methods include

their reliance on full likelihood approaches with many nuisance parameters leading to

diminished power, and the conceptual difficulty of modeling higher order associations

in a flexible and interpretable manner (Bahadur 1961).

Generalized estimating equations (GEE) are an alternative to a full likelihood

approach and are another commonly used method for analyzing longitudinal data.

For example, Lipsitz et al. (2009) recently proposed a modified GEE for modeling

multivariate longitudinal binary outcomes. Such marginal methods do not yield fully

54



efficient estimates, nor consistent estimates when data are missing at random since

the model is not fully specified. Thus, even using the modified GEE can still produce

biased estimates of marginal regression parameters when outcomes are missing at

random. Additionally, the GEE approach requires the specification of the association

parameters among the different outcomes.

Using a non-parametric approach, Agresti (1997) proposed multivariate Rasch

models for multivariate longitudinal binary data. Those models unfortunately do not

allow continuous covariates, but are restricted to categorical predictors, which may

be restrictive in many longitudinal settings.

Our proposed approach is an extension of the max-id copula approach of Nikolou

lopoulos and Karlis (2008), enabling modeling of bivariate longitudinal data with

more than two repeated measures. We consider a conditional joint distribution of

the current observation of bivariate outcomes, given the joint distribution of the

previous observation of the pair. This provides a dependence structure similar to a

first-order Markov type structure when considering bivariate outcomes at each time

as one unit. We construct the conditional joint distribution using a max-id copula

approach so that we can separately model the univariate marginal probability of each

outcome as well as accommodate the dependence between outcomes and over time.

Unlike other likelihood-based approaches, this model is algebraically simple; we have

a closed-form cumulative density function of joint probabilities as a function of the

model parameters using the copula. Thus, maximum likelihood estimation is feasible

and the number of terms in the likelihood is moderate with increased numbers of

repeated measures. Treating missing data in this approach has not been explored in
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this context and is beyond the scope of the current article so we assume MAR and

use multiple imputation for missing outcomes in the analysis presented here.

We illustrate the proposed approach using longitudinal depression data from an

observational study. The two main study outcomes were different instruments used

to assess depression in a general primary-care population. One instrument is a di-

agnostic tool that results in a binary indicator of major depressive disorder (MDD).

The second is a screening measure of depression, the Hamilton Rating Score - De-

pression (HAMD), that results in a continuous score; an established cutoff value for

this scale is indicative of high risk for a diagnosis of depression. Assuming that MDD

and HAMD are correlated, a bivariate model is not only necessary for the estimation

of the correlation between two outcomes, but should provide a better fit to the data

than two separate univariate models. Both outcomes were collected at baseline and at

two follow-up visits. Using the proposed model, we can accommodate the dependence

between two outcomes at each measurement occasion and the serial dependence as

well as capture the marginal effect on each outcome. In this paper, we primarily focus

on estimating the marginal regression parameters for each outcome; for this goal the

proposed approach is quite flexible in that the effects of covariates on the bivariate de-

pression outcomes need not be identical. The goal of this analysis is to assess changes

in longitudinal trend while identifying possible predictors of each outcome separately.

This paper is organized as follows. In Section 4.2, we present a brief introduction for

constructing the joint probability model for binary bivariate outcomes and a descrip-

tion of the extended model including max-id copula, the marginal regression model

and the parameter estimation approach. In Section 3, we evaluate the performance
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of this approach using several sets of simulations. In Section 4.4, we illustrate this

approach by analyzing the depression data from the motivating example. Concluding

remarks appear in Section 4.5.

4.2 Statistical methods

4.2.1 Modified conditional model

Consider r correlated outcomes for any subject i, y
(r)
ij ,r=1,2 with t measurement

times, j = 1, . . . , t. We drop the index i to simplify notation. Let f(y
(1)
1 , y

(2)
1 , y

(1)
2 , y

(2)
2 ,

. . . , y
(1)
t , y

(2)
t ) denote the joint probability of all responses. The joint probability can

be factorized as follows:

f(y
(1)
1 , y

(2)
1 , y

(1)
2 , y
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2 , . . . , y

(1)
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(2)
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(2)
t−1)

(4.2.1)

For all j, we assume the conditional distribution of joint probability of the two cor-

related responses at the jth observation (y
(1)
j , y

(2)
j ) is dependent only on the (j − 1)th

bivariate response, (y
(1)
j−1, y

(2)
j−1). That is, for all j, the conditional distribution of

(y
(1)
j , y

(2)
j ) given (y

(1)
1 , y

(2)
1 , . . . , y

(1)
(j−1), y

(2)
j−1) is identical to the conditional distribution
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of (y
(1)
j , y

(2)
j ) given (y

(1)
j−1, y

(2)
j−1) alone. Therefore, (1) can be re-expressed as

f(y
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2 , . . . , y

(1)
t , y

(2)
t )

= f(y
(1)
1 , y

(2)
1 )f(y

(1)
2 , y

(2)
2 |y(1)

1 , y
(2)
1 )f(y

(1)
3 , y

(2)
3 |y(1)

2 , y
(2)
2 ) . . . f(y

(1)
t , y

(2)
t |y(1)

t−1, y
(2)
t−1)

= f(y
(1)
1 , y

(2)
1 )

t∏
j=2

[
f(y

(1)
j , y

(2)
j , y

(1)
j−1, y

(2)
j−1)

f(y
(1)
j−1, y

(2)
j−1)

]

(4.2.2)

4.2.2 Max-id copula

In this subsection, we introduce a copula-based approach to obtain the joint prob-

ability function in Equation (4.2.2). By definition, a copula is a multivariate joint

distribution defined on the m-dimensional unit cube [0, 1]m such that every marginal

distribution is uniform on the interval [0, 1]. Let Fj(Yj) be the cumulative distribution

function (cdf) of a univariate random variable yj (j = 1, . . . , m); then there exists an

m-dimensional copula, C, such that for all y in the domain of H,

H(y1, . . . , ym) = C(F1(y1), . . . , Fm(ym)). (4.2.3)

Equation (4.2.2) can now be re-expressed using copulas. At each time point j, for

a given subject, we observe two related responses, and the corresponding likelihood

contribution for a given subject can be written using the copula density function c
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and a set of copula parameters, Θ, as follows:
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(4.2.4)

For discrete responses, a multivariate probability function is obtained by taking the

Radon-Nikodym derivative for H(y) in Equation (4.2.3)(see Song 2000). Then, the

multivariate joint probability of (y
(1)
j , y

(2)
j , y

(1)
j−1, y

(2)
j−1) given by the copula representa-

tion is

c(F1(y
(1)
j ), F2(y

(2)
j ), F1(y

(1)
j−1), F2(y

(2)
j−1)|Θ)

=
2∑

k1=1

2∑

k2=1

2∑

k3=1

2∑

k4=1

(−1)k1+k2+K3+k4 · C[F1(u
(1)
j,k1

), F2(u
(2)
j,k2

), F1(u
(1)
j−1,k3

), F1(u
(2)
j−1,k4

)|Θ]

where each u
(r)
j is equal to y

(r)
j or y

(r)
j − 1 for all j, r (j = 2, . . . , t, r = 1, 2, k1 =

1, 2, k2 = 1, 2, k3 = 1, 2, k4 = 1, 2).

Using Equation (4.2.4), we can construct the joint likelihood for the bivariate lon-

gitudinal outcomes of interest. Among several copula families, we chose the mixtures

of max-id bivariate copulas proposed by Joe and Hu (1996) and applied to multi-

variate binary outcomes with a logit link proposed by Nikoloulopoulos and Karlis

(2008). The mixtures of max-id copulas have flexible dependence structures, closed

form cdfs, and satisfy the closure property under marginalization, which are desired

properties for modeling binary data using a parametric family of multivariate copulas

(Nikoloulopoulos and Karlis 2008). However, this approach does not allow negative
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correlation.

Specifically, the cdf of the mixture of m-variate max-id copulas has the following

form

C(u; Θ) = φ

(∑

j<k

log C ′
jk(e

−pjφ−1(uj ;θ), e−pkφ−1(uk;θ); θjk) +
m∑

j=1

vjpjφ
−1(uj; θ); θ

)

(4.2.5)

where C
′
jk(·; θ, θjk) is a bivariate max-id copula, φ(·; θ) is a Laplace transform (LT),

Θ = {θ, θjk : j, k = 1, ...,m, j < k} denotes the vector of all dependence parameters

of the copula, uj is cdf of a univariate random variable and pj = (vj +m−1)−1 where

vj is arbitrary. For details regarding the (j,k) bivariate marginal copula, C
′
jk(·; θ, θjk),

see Joe (1996). θ of LT represents a common level of dependence among all outcomes,

whereas θjk describes the pairwise dependence among any pairs of outcomes, which is

additional to a common level of dependence described by θ. Without loss of generality,

we assume vj + m − 1 = 0 and obtain simple max-id copulas with (m×(m−1))
2

+ 1

dependence parameters for 4 correlated outcomes. We incorporate this formulation

of max-id copulas to model bivariate longitudinal responses with adjacent time points,

y
(1)
j+1, y

(2)
j+1, y

(1)
j , y

(2)
j into Equation (4.2.4) using 4×3

2
+1 possible dependence parameters.

Thus, to model bivariate longtitudinal data measured with t times, we obtain [(t −

1)× ( (4×3)
2

+ 1) + (t− 2)] dependence parameters in total. Note that the number of

dependence parameters can flexibly be reduced depending on how we parameterize the

dependence model. For example, we can simplify the model by letting the additional

dependence parameter between two adjacent single responses such as y
(1)
j+1 and y

(1)
j or

y
(2)
j+1 and y

(2)
j be the same for each time lag and the additional dependence parameter
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between two different responses such as y
(1)
j and y

(2)
j be the same at each time j. Note

that the several choices of copula families with 4 possible Laplace Transforms (LT) to

construct a max-id copula will result in 20 different parametric copula families (Table

2.1).

4.2.3 Copula-based logit model

In this section, we demonstrate how to construct the marginal model for binary re-

sponses integrated into the copula-based approach described in Subsection 4.2.2. Con-

sidering two correlated responses y
(r)
ij ,r=1,2 with t measurement times (j = 1, . . . , t) as

demonstrated in Subsection 2.1 and 2.2, we have a total of (2× t) responses assuming

that those have two separate cdfs, F1 and F2, for each response. Here we note one

attractive feature of the copula approach in being able to estimate covariate effects in-

dependently for each outcome from the marginal distributions as well as construct the

dependence structure separately from the margin. We assume that the two separate

cdfs for each response, F1 and F2, are the cdfs of the univariate Bernoulli distribution

functions with probability of success (r = 1, 2).

Fr(y
(r)
j ; πr) =





1− πr if y
(r)
j = 0

1 if y
(r)
j = 1

j = 1, . . . , t , r = 1, 2 (4.2.6)

The standard logistic regression model for the probability of success πr(r = 1, 2) is

integrated using each cdf, F1 and F2 in Equation (4.2.4),

logit(πr) = βT
r Xijr, i = 1, . . . , n, j = 1, . . . , t, r = 1, 2 (4.2.7)
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where βr is the vector of marginal regression parameters including coefficients for the

effect of time and Xijr is a vector of covariates for the rth response at jth time for the

subject i. Adding a time variable in Xijr allows us to estimate the longitudinal study

effect.

4.2.4 Parameter estimation

We focus on the two-step inference functions of margins (IFM) method (Joe 1997)

to reduce computational effort. In the first step, the r univariate log-likelihoods

(Equation (4.2.8) are maximized independently in order to obtain r separate β̂r,

Lr(βr) =
n∑

i=1

logfr(yijr; βr), r = 1, 2 (4.2.8)

where f1 and f2 are the univariate probabilities for each response. In the second step,

the joint log-likelihood (Equation (4.2.9)) incorporating the formulation in Equation

(4.2.4) is maximized over the set of the copula parameters (Θ) with β̂r from the first

step:

L(β, Θ) =
n∑

i=1

logf(y(1)
1 , y

(2)
1 , . . . , y

(1)
j , y

(2)
j ; β̂, Θ)

=
n∑

i=1

log[c(F1(y
(1)
1 ), F2(y

(2)
2 )|Θ)
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j=2
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(1)
j ), F2(y
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j−1), F2(y
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j−1)|Θ)

c(F1(y
(1)
j−1), F2(y

(2)
j−1)|Θ)

; β̂].

(4.2.9)

62



4.3 Simulation study

4.3.1 Simulation setting

We conducted a simulation study to evaluate the performance of the extended

max-id copula approach in estimating marginal probabilities. We generated 100 sam-

ples of 8 outcomes for each setting (bivariate responses at 4 different time points). We

considered 6 settings with 1000 repetitions of each (Figure 4.1). In settings 1 and 2,

we assumed that bivariate outcomes measured at the same time and adjacent times

have the same level of correlation for these 4 outcomes, mimicking an exchangeable

correlation structure. Non-adjacent outcomes were assumed to be uncorrelated. The

magnitude of correlation differs in setting 1 and 2. In settings 3 and 4, we set the

correlation between 8 outcomes to be correlated with the exchangeable correlation

structure and assumed the magnitude of correlation differs in setting 3 and 4. Setting

5 and 6 are similar to setting 1 and 2 in terms of that bivariate outcomes at the same

time and adjacent time are set to be correlated among 4 outcomes, however, but the

magnitude of correlation between two outcomes at the same time differs from those

of the other pairs of correlation; there is a moderate level of correlation for bivariate

outcomes at the same time and a weaker level of correlation for the other pairs.

In settings 1, 2, 3 and 4, among 23 possible copula parameters ((4− 1)× ( (4×3)
2

+

1) + (4 − 2) = 23), we reduce them to 1 copula parameter, θ, to incorporate simple

dependence structure by estimating only minimal level of correlations among 4 out-

comes (bivariate outcomes measured at the same time and adjacent times). Settings

5 and 6 use two copula parameters, θ and θ13, to estimate more complicated depen-
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dence structure, where θ describes a common level of correlation among 4 outcomes

and θ13 is used to estimate an additional correlation among bivariate outcomes at

each time point. Correlated binary data for a given correlation matrix were gener-

ated using the R package ‘mvtBinaryEP,’ which applies an algorithm developed in

Emrich and Piedmonte (1991). In each setting, we generated marginal probabilities

for each outcome where the true probabilities are different depending on the time and

covariate (Table 4.1). In this simulation study, we add only one covariate and 3 indi-

cator variables for time in each marginal probability. Table 4.2 displays the estimates

and p -values for the copula parameters in each setting, where bigger estimates of the

copula parameters represent a stronger dependence.

4.3.2 Simulation results

We explored the mean bias of the marginal probabilities. Table 4.1 displays the

mean bias of the marginal probabilities of the outcomes at each time for each covari-

ate group. The mean bias ranges between 0.000 and 0.016. The biases are slightly

bigger in settings 3 and 4 where we generated the outcomes based on the exchange-

able correlation structure among 8 outcomes, which is different from our scheme of

modeling dependence. However, even when the dependence model, where only ad-

jacent and bivariate outcomes are correlated, is different from the true dependence

structure, the biases were small. In general, when we generated the outcomes with

stronger association, the biases were bigger. Settings 5 and 6 have one more copula

parameter to estimate more complicated correlation structures and provide smaller
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bias than settings 1 and 2. Table 4.2 describes the estimates of the copula parame-

ters with corresponding p-values. Deviation of the estimates of the copula parameter

from 1 indicates stronger association, while the estimates of the parameter close to

1 means no minimal or additional association for corresponding pairs (for θ or θ13

respectively). The Wald test was performed to show whether the estimates of the

copula parameters are equal to 1, which is a null value. The LR test was done to

describe whether there is a significant difference in likelihood after adding the copula

parameters with the null value, 1. For example, in setting 1, the p-value for θ is 0.013

and 0.005 from both tests showing that the estimate of θ is not the null value. In

setting 2, bigger estimates and smaller p-value of θ indicate stronger association.

4.4 Application

As an illustration, we applied our method to an observational study for depres-

sion in patients in primary care. Primary care providers (PCPs), including physicians

(MDs), nurse practitioners (NPs), and physician assistants (PAs) were recruited from

Clinical Care Associates (CCA) of the University of Pennsylvania Health System.

There are 37 primary care practices and over 80 providers in CCA. Consenting PCPs

completed brief entry and exit questionnaires about their attitudes, communication

style and care delivery with regard to depression. Among several outcomes for de-

pression diagnosis, we selected the two likely correlated primary depression outcomes

(MDD and HAMD). These two outcomes were collected at baseline and at two follow-

up visits during the study. For our purpose, MDD represents a binary outcome in-
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dicating a diagnosis of major depression and HAMD score was dichotomized using

a standard cut-off score characterizing moderate to severe depression. To handle

the missing data, we used a multiple imputation procedure (Rubin 1987) to predict

missing values using PROC MI in SAS with The expectation-maximization (EM)

algorithm (Little and Rubin 1987) and produced 100 multiple imputed data sets.

Analysis was carried out on each imputed data set and combined to produce one

overall analysis using PROC MIANALYZE in SAS.

Using the proposed approach, we can model the marginal probability of MDD

and HAMD using separate sets of covariate as predictors as well as incorporating

the association between the two outcomes and serial dependence. As described in

Section 2, we assume a logit model for each marginal probability using standard

logistic regression. As possible covariates, we chose baseline neuroticism score (con-

tinuous), previous history of MDD (binary), baseline SCID score, insurance status

and time. We used standard backward elimination to find the best subset of pre-

dictors for the two marginal models, while simultaneously incorporating dependence.

In the marginal model of MDD, neuroticism has strong interaction with follow-up

time (p-value= 0.017). Therefore, the probability of MDD is similar across follow-up

times for patients who have low baseline neuroticism scores, however, this probabil-

ity significantly decreases over time among patients with moderate or high baseline

neuroticism scores (Table 4.4). In the marginal model of HAMD, the final subset of

predictors is different from those predicting MDD. Although baseline neuroticism is

a significant predictor in the model for HAMD, there was no significant interaction

between baseline neuroticism and follow-up times as was observed in the marginal
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model for MDD. Thus, the probability of a HAMD score above the cutoff decreased

over time regardless of baseline neuroticism (Table 4.4).

To incorporate correlations among outcomes, we used three copula parameters, θ.,

θ12, θ, in the model. θ describes a common level of dependence among all bivariate

outcomes with time j and j + 1 (j = 1, 2), whereas θ. and θ12 describe an addi-

tional pairwise dependence among bivariate outcomes at jth time and among single

outcomes at j and (j + 1)th measurement time (j = 1, 2). We found a moderate

correlation among all outcomes (θ = 1.253, p-value=< 0.000) and additional strong

association between the two responses, MDD diagnosis and elevated HAMD score, at

the same measurement times (θ. = 1.444, p-value=< 0.000). Additional serial corre-

lation within each outcome described by θ12 was not significantly strong (θ12 = 1.039,

p-value= 0.303).

4.5 Conclusions

In this paper, we have presented an extended max-id copula approach to mod-

eling bivariate longitudinal binary data. The proposed approach has an attractive

feature in terms of separately estimating the marginal probability of each outcome as

well as constructing flexible dependence structure. We assumed the current outcomes

only depend on the previous outcomes, which mimics a first-order Markov type cor-

relation structure for bivariate outcomes. Thus, the outcomes at non-adjacent times

are not included in estimating their correlations in this approach. The model could

be extended to incorporate the dependence among outcomes at non-adjacent times,
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but will be computationally tedious. The results of simulations have shown that this

approach provides unbiased estimates of the marginal probability even when the cor-

relation model is misspecified. We obtained the estimates of copula parameters with

p-values, which provide some information of the magnitude of dependence. However,

we find it hard to transform the values to a commonly used one such as a correlation

coefficient.
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Figure 4.1: Simulation set-up based on the correlation structure among outcomes
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Table 4.1: Mean bias of the marginal probabilities for each outcome
Mean Bias
Outcome 1

Settings true prob. Covariate Time1 Time2 Time3 Time4
1 (0.3,0.4,0.4,0.4) 0 0.000 0.001 0.004 0.002

(0.3,0.7,0.7,0.7) 1 0.005 0.001 0.002 0.004
2 (0.3,0.4,0.4,0.4) 0 0.007 0.009 0.009 0.009

(0.3,0.7,0.7,0.7) 1 0.012 0.006 0.007 0.000
3 (0.3,0.4,0.4,0.4) 0 0.000 0.001 0.005 0.003

(0.3,0.7,0.7,0.7) 1 0.005 0.001 0.001 0.003
4 (0.3,0.4,0.4,0.4) 0 0.010 0.010 0.014 0.011

(0.3,0.7,0.7,0.7) 1 0.015 0.009 0.009 0.003
5 (0.3,0.4,0.4,0.4) 0 0.001 0.001 0.005 0.003

(0.3,0.7,0.7,0.7) 1 0.002 0.000 0.002 0.003
6 (0.3,0.4,0.4,0.4) 0 0.005 0.005 0.007 0.006

(0.3,0.7,0.7,0.7) 1 0.005 0.003 0.004 0.000
Outcome 2

1 (0.3,0.4,0.4,0.4) 0 0.001 0.002 0.003 0.001
(0.3,0.7,0.7,0.7) 1 0.006 0.003 0.001 0.001

2 (0.3,0.4,0.4,0.4) 0 0.009 0.010 0.009 0.008
(0.3,0.7,0.7,0.7) 1 0.012 0.002 0.007 0.004

3 (0.3,0.4,0.4,0.4) 0 0.001 0.002 0.003 0.001
(0.3,0.7,0.7,0.7) 1 0.006 0.003 0.001 0.000

4 (0.3,0.4,0.4,0.4) 0 0.012 0.011 0.011 0.009
(0.3,0.7,0.7,0.7) 1 0.016 0.006 0.009 0.005

5 (0.3,0.4,0.4,0.4) 0 0.004 0.003 0.003 0.003
(0.3,0.7,0.7,0.7) 1 0.003 0.003 0.001 0.000

6 (0.3,0.4,0.4,0.4) 0 0.006 0.006 0.006 0.006
(0.3,0.7,0.7,0.7) 1 0.006 0.000 0.003 0.003

Table 4.2: Estimates and p-values for the copula parameters in each setting
p-value p-value

Settings Copula parameters Est. S.E. (Wald) (LRT)
1 θ 1.148 0.048 0.013 0.005
2 θ 1.574 0.096 0.000 0.009
3 θ 1.149 0.048 0.016 0.010
4 θ 1.781 0.118 0.000 < 0.000
5 θ13 1.544 0.126 0.000 < 0.000

θ 1.134 0.057 0.076 0.004
6 θ13 1.566 0.127 0.000 < 0.000

θ 1.420 0.089 0.000 < 0.000

70



Table 4.3: Parameter estimation for the marginal model using extended max-id copula
and corresponding predictive probabilities of MDD diagnosis and high HAMD score
(number of multiple imputation:100)

p-value p-value
Outcomes Covariates Est. S.E. (Wald) (LRT)

MDD Intercept -3.970 0.728 < 0.001
Neuroticism 0.036 0.007 < 0.001

Time1 1.522 0.999 0.128
Time2 1.589 1.105 0.151

Neuro × Time1 -0.023 0.009 0.017
Neuro × Time2 -0.025 0.010 0.017

HAMD Intercept -2.311 0.529 < 0.001
Neuroticism 0.018 0.005 0.000

Time1 -0.383 0.208 0.066
Time2 -0.952 0.247 0.000

Copula θ. 1.444 0.137 < 0.001 < 0.001
parameters θ12 1.039 0.049 < 0.001 0.303

θ 1.253 0.086 < 0.001 < 0.001

Prob. of Prob. of
Neuroticism Time MDD HAMD

50 Baseline 0.102 0.196
Time 1 0.142 0.143
Time 2 0.138 0.086

100 Baseline 0.409 0.375
Time 1 0.241 0.290
Time 2 0.217 0.188

150 Baseline 0.807 0.596
Time 1 0.378 0.501
Time 2 0.325 0.363
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Chapter 5

Conclusion

We have proposed a copula-based approach using max-id copulas for modeling bi-

variate longitudinal binary data and estimating their dependence structure. Examples

of this kind of data include studies in couples whose correlated responses are assessed

over time, or longitudinal studies in which multiple correlated outcome assessments

are taken on individuals at different intervals. In both cases we are interested in as-

sessing both correlation within an individual or outcome over time, and correlations

across members of a pair or cluster. In Chapter 2, we applied this modeling approach

to estimate the reliability (dependence) of self-reported, shared behaviors of couples in

cross-sectional data using a max-id copula, while constructing the dependence model

to explore the influence of additional covariate information on the dependence mea-

sure. This approach is useful since it allows estimation of the covariate effect on the

marginal probabilities as well as the covariate effect on the dependency. In this con-

text, the estimation of within-couple dependency is a useful proxy for the reliability of

subjects’ responses. Using a simulation study, we found that the approach performs
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well. We illustrated our method using data from the Multisite HIV/STD Prevention

Trial for African American Couples (AAC) Study to investigate the reliability of cou-

ple reports of sexual activity, adjusting for key individual baseline covariates. This

approach allows us to model dependence among outcomes, and in addition to model

whether patients’ characteristics affect the outcomes’ level of dependency. The results

indicated that the dependency among couples’ outcome responses, a good measure of

reliability, differs depending on their health insurance status.

In Chapter 3, we extended the max-id copula approach to be applied in bivariate

longitudinal data with two assessment times. This approach allows flexibility in the

construction of a complex correlation structure via the copula parameter. We per-

formed simulations, evaluating the performance of estimated covariate effects on the

marginal probabilities and of copula parameters by summarizing bias and coverage

for a number of simulations. In all simulation scenarios, a max-id copula approach

performed well in estimating the marginal probabilities of interest and the correla-

tions among outcomes. This approach was also illustrated using couples’ longitudinal

outcomes from the AAC study. The result showed that the HIV/STD prevention in-

tervention is more effective at reducing risky sexual behavior than the general health

promotion intervention for both females and males. The size of the treatment effect

seems larger at IPT, and decreases at the 12 month follow-up even though it remains

statistically significant. Also, the size of the treatment effect in males was larger than

in females. In Chapter 4, we proposed an extended max-id approach for incorporating

more repeated measures for bivariate outcomes using joint transition probabilities. To

allow a complex correlation structure, the distribution of the current observation of
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each bivariate outcome was modeled conditional on the previously observed values

using a Markov type correlation structure. Conditional probabilities were constructed

using a max-id copula. We focused on estimating the covariate effects on the marginal

probabilities in this work. We applied this approach to investigate the factors affecting

two correlated depression measures assessed simultaneously in patients receiving pri-

mary care. Specifically, major depressive disorder (MDD) diagnosis and the Hamilton

rating scale for depression (HAMD) were selected as two correlated primary outcomes

of interest. An attractive feature of this modeling approach is that it allows us to

consider both primary outcomes in a single model, but allows different sets of covari-

ates to be associated with each outcome separately, while easily incorporating the

correlation between two outcomes and from repeated measures of the same outcome

over time. Several simulation studies were performed to evaluate the performance of

this method, and revealed that the proposed copula-based modeling approach pro-

duced unbiased estimates of covariate effects on the marginal probabilities of each

outcome. The methods described here do not accommodate missing data; this is an

interesting topic for future study, but was unfortunately beyond the scope of this

dissertation work. Also, incorporating multivariate outcomes rather than bivariate

outcomes would be a valuable statistical tool. The model proposed in Chapter 4 can

be easily extended to include the dependence model with several sets of covariates of

interest. Also, comparing the performance of this approach in modeling multivariate

longitudinal data to other common methods such as GEE or generalized linear mixed

effect model, would be useful in evaluating this approach. This modeling approach

presented in this dissertation provides a useful tool for understanding intervention
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effects using longitudinal couples’ outcomes from HIV prevention trials or investigat-

ing the factors affecting correlated outcomes of depression. This approach can be

easily applicable in other studies that involve two correlated primary outcomes with

repeated measures.
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Song, P.X.K. (2000). Multivariate dispersion models generated from Gaussian copu-

las. Scandinavian Journal of Statistics; 27: 305–320

Song, P.X.K., Li, M. and Yuan, Y. (2009). Joint regression analysis of correlated data

using Gaussian copula. Biometrics; 65: 60–68.

Streiner, D.L. and Norman, G.R. (1995). Health measurement scales: Practical guide

to their development and use (3rd ed.).Oxford University Press: New York.

Ten Have, T.R., Kunselman, A.R. and Tran, L.A. (1999). A comparison of mixed

effects logistic regression models for binary data with two nested levels of cluster-

ing.Statistics in Medicine; 18: 947–960.

Ten Have, T.R. and Morabia, A.(1999). Mixed effects models with bivariate and

univariate association parameters for longitudinal bivariate binary response data.

Biometrics; 55: 85–93.

Witte, S.S., El-Bassel, N., Gilbert, L., Wu, E. and Chang, M. (2007). Predictors of

discordant reports of sexual and HIV/sexually transmitted infection risk behaviors

among heterosexual couples. Sexually transmitted diseases; 34: 302–308.

81


	University of Pennsylvania
	ScholarlyCommons
	Fall 12-22-2010

	A Copula-Based Method for Analyzing Bivariate Binary Longitudinal Data
	Seunghee Baek
	Recommended Citation

	A Copula-Based Method for Analyzing Bivariate Binary Longitudinal Data
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Keywords
	Subject Categories


	tmp.1289600841.pdf.0IQgo

