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ABSTRACT 
 

ASSESSING THE IMPACTS OF SMOKING AND OBESITY ON MORTALITY AND 

MORBIDITY IN THE UNITED STATES 

Bochen Cao 

Michel Guillot 

 

Smoking and obesity are two leading risk factors that account for the current US lags in 

advances in health and longevity compared to other wealthy nations. This dissertation 

consists of three independent studies of the impacts of smoking and obesity on population 

health outcomes among older adults in the United States. The first study estimates the 

effects of the recent smoking decline on future all-cause mortality, based on the 

association observed between cohort smoking pattern and cohort death rates from lung 

cancer. We find that change in smoking is expected to have a large effect on U.S. 

mortality. However, compared to men, women are expected to have smaller increase in 

future life expectancy, because of their lagged decline in smoking. The second study 

extends the first one and estimates the joint effects of smoking and obesity on both 

mortality and disability. A multistate lifetable approach is applied to estimate the 

transition rates between different health states, which are in turn projected up to 2040 

using a modified Lee-Carter model that incorporates cohort histories of smoking and 

obesity. The results indicate men and women both are expected to experience 

compression of disability, with increasing proportions of their future gain in life 

expectancy likely to be disability free. Nevertheless, due to gender difference in smoking 
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history and in response to obesity, men will likely to have an advantage over women in 

health improvement in the next three decades. The third study investigates the direct 

effects of both obesity and weight change on mortality. A dynamic causal model is 

applied to adjust for reverse causality that is attributable to illness-associated and 

smoking-associated weight loss in a time-dependent fashion, a problem that prior studies 

often fail to adequately handle. This study demonstrates that both the confounding by 

illness and by smoking lead to overestimates of the effects of being underweight and of 

weight loss, but underestimates the effect of being obese. Moreover, not only being 

underweight or severe obese, but also sharp weight fluctuations are associated with 

excess mortality risk. 
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Chapter 1 Projecting the Effect of Changes in Smoking on 
Future Life Expectancy in the United States 

 

Samuel H. Preston 

Bochen Cao 

    

Introduction 
 

  A wide variety of personal behaviors affect an individual’s health. In the 

aggregate, these behaviors affect the health of populations. The leading behavior that has 

been singled out as especially damaging to the health of the US population is smoking. 

Estimates by the Centers for Disease Control suggest that 18% of deaths in the US in 

2000 were attributable to smoking (Mokdad, Marks, Stroup, & Gerberding, 2004, 2005). 

 Uncertainty about the future impact of smoking is a central component of the   

uncertainty surrounding projections of future mortality (Technical Panel, 2011). 

According to simulations by the Office of the Actuary, the 75-year actuarial balance of 

the Old-Age and Survivors Insurance program of the Social Security Administration is 

more sensitive to variation in future mortality rates than it is to any other demographic or 

economic parameter except real wages (Trustees, 2012). A reliable projection of the 

effect of smoking on future life expectancy would contribute to a better understanding of 

the fiscal future of the United States (King & Soneji, 2011; Soneji & King, 2012). 

 In this paper, we estimate the effects of declining smoking on mortality at ages 

40+ in the United States over the period 2010-2040. Our estimates incorporate 

information about cohorts’ smoking history, allowing mortality rates to be a function not 

only of current smoking pattern but also of the past.  Duration of smoking is strongly 
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related to mortality risks among current smokers (Thun et al., 1997). An analytic 

advantage of incorporating smoking history into projections of future mortality levels is 

that many features of this history have already been observed and are not themselves 

products of an uncertain future. 

 

Overview of Analytic Strategy 

 Our goal is to estimate the effect of changes in the lifetime distributions of 

smoking on future death rates.  We take advantage of the fact that there is a clear marker of 

the impact of smoking histories on mortality:  death rates from lung cancer. Smoking is the 

overwhelming factor accounting for variation in lung cancer mortality. Among US men aged 30 

and older in 2005, it is estimated that 90% of lung cancer deaths are attributable to smoking; for 

females, the figure is 84-85% (Oza, Thun, Henley, Lopez, & Ezzati, 2011). Consistent with a 

major role for behavioral histories, death rates from lung cancer are organized on a cohort basis in 

the United States and elsewhere. This feature permits the identification of “cohort effects” that 

can be projected into the future as cohorts age. The final step in our analysis is translating 

projected death rates from lung cancer into all-cause mortality rates, using statistical relations that 

have been developed between smoking’s impact on lung cancer and its impact on all-cause 

mortality.  

 Another goal is to estimate the proportionate effect of changes in smoking on age-

specific death rates. Our comparison schedule is simply the age-specific death rates at 

baseline, 2009-2010, which reflect the behavioral histories that had been accumulated at 

that point. We are not attempting to project mortality rates themselves, only to estimate 

the effect of changes in smoking on mortality. If there are other sources of future change 
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in mortality, we are implicitly assuming that the effects of changes in these behaviors will 

be independent of them.1 

 

Projecting the Effects of Changes in Smoking    

 The risk of death from smoking is a function of a multitude of smoking-related 

behaviors, including the number of cigarettes smoked per day, the degree of inhalation, 

the filtration and tar content of the cigarette, and how each of these (and other) 

components of a smoking profile have developed over a lifetime.  Historical information 

is important because of a long lag between smoking behavior and its effects on mortality. 

A single cross-sectional indicator of smoking prevalence cannot effectively capture these 

many dimensions. Prevalence-based estimates of smoking risks are also affected by 

imprecise classification of smoking status among participants. For example, the largest 

prospective study of smoking risks, the Cancer Prevention Study II (CPS II) included 

among “lifetime non-smokers” persons who had smoked but who had not reported 

themselves as smoking daily for at least a year. 

 Fortunately, there is another indicator of the health effects of smoking that reflects 

the many dimensions of smoking:  the death rate from lung cancer.  As noted above, 

smoking is the overwhelming risk factor in death from lung cancer, with 90% of male 

and 84-85% of female lung cancer deaths in the US attributable to smoking (Oza et al., 

2011).  Because of the cumulative and delayed impact of smoking on lung cancer 

mortality, lung cancer exhibits prominent “cohort effects”; rates of death from lung 

                                                            
1 Soneji and King (2012) incorporate data on smoking and obesity into their Bayesian projections of future 
mortality in the US, but “do not attempt to estimate causal effects of specific risk factors” (p. 1046). See 
also King and Soneji (2011). 
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cancer are more predictably arrayed by birth cohort rather than by period (Janssen & 

Kunst, 2005; S. Preston & Wang, 2006; Willets, 2011; Yamaguchi, Mochizuki-

Kobayashi, & Utsunomiya, 2000).  Figure 1.1A shows male death rates from lung cancer 

in the United States in various birth cohorts. Clearly, there is a near parallelism among 

these rates on a log scale, implying that the sequence of death rates for one cohort is 

nearly a constant multiple of the death rates for another cohort. Figure 1.1B shows that 

this parallelism is missing when data are arrayed by period rather than by cohort. 

 Our estimates of the mortality effects of changes in smoking are based on the 

identification of cohort effects in lung cancer mortality. Mortality levels that are unique 

to cohorts are obviously a convenient vehicle for projecting mortality because cohorts age 

with completely predictable regularity. A second stage in the estimation of the effect of 

changes in smoking patterns is to translate projected changes in lung cancer mortality 

into changes in all-cause mortality.   

 

Data 

 Data on lung cancer deaths by age, sex, and period are drawn from annual 

volumes of Vital Statistics of United States for periods from 1940 through 1949, from the 

website of the World Health Organization/International Agency for Research on Cancer 

for 1950 through 1998, and from files of Underlying Cause of Death 1999-2009 on CDC 

WONDER Online Database for 1999-2009 (National Center for Health Statistics, 2012). 

In this paper, lung cancer refers to cancer of lung, bronchus, trachea and pleura. The 

International Classification of Diseases (ICD) was used to identify lung cancer deaths. 
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The entire study period of 65 years from 1945 to 2009 are covered by ICD from version 5 

to version 10. The corresponding ICD version codes used for each individual time period 

are list in the table below. 

Year (ICD Version) ICD Codes 

1939-1948 (ICD-5) 47b-47f 

1949-1957 (ICD-6) 162, 163 

1958-1967 (ICD-7A) 162, 163 

1968-1978 (ICD-8A) 162 

1979-1998 (ICD-9) 162 

1999-2009 (ICD-10) C33, C34 

 

Estimates of population size and counts of deaths from all causes combined are 

taken from the Human Mortality Database for 1933-2007. These data for 2008 and 2009 

are drawn from National Center for Health Statistics (2012). 2  

 Data on smoking by cohort are based on a detailed reconstruction of smoking 

histories by Burns et al. (1998). They employed a total of 15 National Health Interview 

                                                            
2 Estimates pertaining to birth cohorts are created by organizing a data matrix in 5-year age groups and 5-
year time blocs. In order to align cohort mortality data with cohort smoking data, we defined 5-year birth 
cohorts that were centered on birth years 1900-04, 1905-09, etc.  For example, mortality rates in the birth 
cohort of 1905-09 were comprised of death rates at ages 40-44 in 1947-51, death rates at ages 45-49 in 
1952-56, and so on. The final mortality observations for cohorts still alive consisted of death rates in 2007-
09. 
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Surveys (NHIS) conducted between 1965 and 1991 to estimate cohort smoking histories. 

David Burns supplied us with unpublished estimates using the same methodology that 

incorporated data from three additional National Health Interview Surveys through 2001 

(Burns et al., 1998). We updated the series using NHIS data through 2009. We converted 

these data into an estimate of the average number of years spent as a current smoker 

before age 40. This value is derived by summing across ages between 0 and 39 the annual 

proportion of cohort members who were estimated to be current cigarette smokers. 

 For cohorts that had not reached age 40 in 2010, we estimate the future 

cumulative years of smoking by age 40 based on observed cumulative years smoked at 

younger ages. For this purpose, we use regressions predicting the mean cumulative years 

of smoking by age 40 with independent variables representing cumulative smoking 

indexes by age 35, by age 30, by age 25, and by age 20. We add a sex indicator and a 

trend variable to the regressions. Regressions are estimated on data for the 16 cohorts for 

which we have complete data up to age 40. The regressions in all cases explain at least 

97% of the variance in cumulative years of smoking before age 40. For the two cohorts 

born after 1990, we fix the variable at its level estimated for the 1985-90 cohort.  The 

resulting series are presented in Figure 1.2. 

 

Methods 

Methods for projecting the mortality effects of smoking 

 Our initial goal is to identify how lung cancer mortality varies from cohort to 

cohort so that we can project these cohort effects into the future. We try two principal 
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ways to estimate cohort effects. One is to relate lung cancer mortality to a cohort smoking 

variable that had proven useful in prior research on all-cause mortality (S. Preston & 

Wang, 2006; H. Wang & Preston, 2009).  As noted, that variable is the mean cumulative 

number of years that a member of a cohort had smoked prior to age 40, designated cS for 

cohort c.  For each sex, we estimate an equation of the form  

 ln( ) ln( )c c
a a a sM A X S                                                                             (1) 

where c
aM  is the lung cancer death rate at age a in cohort c, aX is an indicator of age 

category a, a is the coefficient of age category aX  , and s  is the coefficient of ln( )cS . 

We estimate this model using negative binomial regression on death counts on all 

observations at ages 40-44 to 80-84 for periods beginning in 1947-51. This starting 

period was chosen because it produced the best fit to actual death rates in 2009 among all 

potential start years from 1937 to 1987. The coefficients of ln( )cS are 1.279 for males 

and 0.929 for females. Greater sensitivity of males than females to their respective 

smoking histories was also found by Wang and Preston (2006) and Preston and Wang 

(2009) based on all-cause mortality. It is also a common finding in prospective cohort 

studies, perhaps because women smokers on average consume fewer cigarettes per day, 

inhale less frequently, and smoke cigarettes lower in tar content (Thun et al., 1997) Age 

coefficients are monotonically and smoothly rising at a diminishing rate for both sexes.  

  The second approach is to estimate “cohort effects” as coefficients of dummy 

variables pertaining to various cohorts, without any reference to smoking histories.3 

                                                            
3 Such an estimate could be made using an age/period/cohort model, but it is widely recognized that 
introducing age, cohort, and period variables into the same model creates an identification problem because 
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Using negative binomial regression on death counts, we estimate the parameters of a 

straightforward age/cohort model,   

ln( )c
a a a c cM A X X       ,                                                             (2) 

where c
aM is the lung cancer death rate in cohort c at age a, a and c  are the coefficients 

of age category a and cohort c and aX  and cX  are indicators of age and cohort 

membership.   

 Figures 1.2A and 1.2B plot cohort effects estimated from equation (2) and the 

mean number of years of smoking before age 40 for each cohort, used to estimate 

equation (1).  The two series for women obviously track one another closely for both 

sexes, including a bump for female cohorts born 1955-64. For men, both series are hill-

shaped, although the peak of the smoking series occurs earlier than the peak cohort 

coefficient. Figure 1.2 illustrates that cohort effects in lung cancer are dominated by 

smoking histories.  

 Our projections are based on equation (1), which uses the smoking series. A main 

advantage of this approach is that we are able to observe smoking behavior for cohorts as 

young as age 15-19. In contrast, the cohort coefficients from equation (2) are not robustly 

estimated until a cohort has reached the 40’s, when substantial numbers begin to die from 

lung cancer. Furthermore, the smoking-based analysis produces predicted death rates in 

                                                                                                                                                                                 
of the perfect linear association between any two of these variables and the third (Fienberg & Mason, 
1978). Our efforts to introduce period measures into an age/cohort model were unsuccessful in the sense 
that they resulted in implausible cohort and period effects, presumably because of these colinearity issues. 
A second reason for not invoking an age/period/cohort model is that we had no strong hypothesis about 
period effects on lung cancer mortality, since we considered such mortality to be primarily a function of 
cohort smoking histories. 
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2009 that are much closer to the actual death rates in that year than the analysis using 

cohort coefficients, which underestimate mortality significantly for older cohorts. 

 We test the predictive validity of Model (1) by estimating the parameters of the 

model on data through 1995-99 and using the age and cohort coefficients to project 

mortality in 2005-09. Comparing the projected mortality level to the actual level in the 

prime ages of 50-84, the mean error in projected rates is 1.54% for males and 1.17% for 

females. The mean absolute error is 4.64% for males and 5.64% for females. A prediction 

of “no change” between 1995-99 and 2005-09 produces a mean error of -28.23% for 

males (i.e., an overprediction) and -9.65% for females. The mean absolute errors for a no-

change prediction are 28.23% for males and 14.36% for females. These are obviously 

many times greater than errors produced by our model, which performs well in predicting 

changes in lung cancer mortality between 1995-99 and 2005-09. We conclude that our 

model proves effective in out-of-sample prediction. It is worth noting that, at these ages, 

a 10% error in all age-specific death rates would produce an error of less than 3% in life 

expectancy (Keyfitz & Golini, 1975). 

 

Translating changes in lung cancer mortality into changes in all-cause mortality 

 Although lung cancer mortality serves as an excellent marker of the health effects 

of smoking, lung cancer does not account for a majority of deaths attributable to 

smoking. Cardiovascular diseases, other cancers, and chronic obstructive pulmonary 

diseases (COPD, which includes bronchitis and emphysema) also make large 

contributions. Two methods have been developed to connect smoking-related mortality 
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from lung cancer to smoking-related mortality from other causes of death. Peto et al. 

(1992) convert observed lung cancer death rates into an estimate of smoking 

“prevalence” by referring to the difference between lung cancer death rates for smokers 

and non-smokers in Cancer Prevention Study II (CPS-II) (Peto, Lopez, Boreham, Thun, 

& Heath, 1992). This estimate of smoking prevalence is then used to estimate the risk 

attributable to smoking for other smoking-related causes of death by employing the 

cause-specific relative risks for smokers versus non-smokers from CPS-II.   

 The second method also uses lung cancer mortality as the basic indicator of the 

damage caused by smoking (S. Preston, Glei, & Wilmoth, 2010, 2011). However, rather 

than relying on the relative risks from CPS-II or any other study, it estimates the macro-

level statistical association between lung cancer mortality and mortality from all other 

causes of death in a dataset of 21 countries covering the period 1950 to 2006, including 

9.9 billion person-years of exposure and 284 million deaths. In addition to lung cancer 

mortality, the statistical model includes age, sex, period, and country effects as well as 

interactions among them. This approach is motivated by the expectation that lung cancer 

mortality is a reliable indicator of the damage from smoking and that such damage has 

left a sufficiently vivid imprint on other causes of death that it is identifiable in country-

level data. The strong statistical relations that emerge are consistent with that expectation. 

 The two methods of translating lung cancer mortality into all-cause mortality give 

very similar results. The proportion of deaths attributable to smoking that are estimated 

by the two methods is correlated at 0.96 for males and 0.94 for females across 20 

countries in 2000 (S. Preston et al., 2011). Both methods implicitly assume that the 

pattern of lags between smoking and lung cancer death is similar to that between smoking 



11 
 

and other causes of death. Is that assumption reasonable? Preston, Glei, and Wilmoth 

(2011) (PGW) experimented with various lags between lung cancer mortality and 

mortality from other causes of death and found that a model in which the two death rates 

were contemporaneous (i.e., exhibited no lags) worked best (unpublished result). Oza et 

al. (2011) examine time-patterns of relative mortality risks of smokers from various 

causes of death. Relative to the lag between smoking behavior and death for lung cancer, 

they found the lag structure to be longer for chronic obstructive pulmonary disease 

(COPD) and shorter for cardiovascular diseases. Using the Peto et al. (1992) approach, 

the estimated number of deaths attributable to smoking differed by only 1.7% when lag 

structures were incorporated compared to when they weren’t. Thus, it appears that the 

pattern of lung cancer lags is sufficiently similar to that for the aggregate of other causes 

of death that serious distortions do not arise from assuming that they are, on average, the 

same. 

  To translate projected lung cancer death rates into death rates from all causes, we 

use the set of translation factors by age and sex drawn from Preston, Glei, and Wilmoth 

(2011).4 Below, we explore the sensitivity of results to this choice of translation factors. 

 

Uncertainty analysis 

We analyze uncertainty in our estimates of the effects of smoking on change in 

life expectancy using a bootstrapping procedure (Efron & Tibshirani, 1986).  We 

                                                            
4 Preston, Glei, and Wilmoth do not estimate coefficients for ages below 50. We assume that the 
coefficients for ages 50-54 apply to ages 40-49. Since coefficients decline with age, this choice probably 
produces an underestimate of smoking-attributable deaths, but there are very few deaths in the age interval 
40-49, so results are scarcely affected by this assumption. 
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generate 1000 sets of bootstrapped coefficients for the lung cancer mortality and PGW 

models. We then apply the 1000 sets of age-specific lung cancer mortality rates to the 

1000 sets of PGW coefficients to calculate mortality from all causes and life expectancies 

at age 40. The 2.5 and 97.5 percentile values from the simulated life expectancy estimates 

are extracted as the 95% confidence interval.    

 

Results 

 Figure 1.3 presents the results of this analysis. Male age-specific death rates are 

expected to decline at every age throughout the projection period. The heaviest smoking 

male cohorts are already aged 80+ in 2010 and the impact of persistent declines in 

smoking from cohort to cohort is to produce a steady decline in relative death rates as 

time advance. In contrast, female rates are expected to rise in the oldest age intervals 

during the early years as heavier-smoking cohorts replace lighter-smoking ones (cf. 

Figure 1.4). Projected male declines are larger than female declines in nearly all 

comparisons, reflecting the more gradual changes in cohort smoking propensities among 

women.   

  Table 1.1 converts the age-specific projections of mortality change into estimates 

of the effect on life expectancy at age 40. Males show a relatively steady improvement in 

life expectancy from smoking reductions and a total gain of 1.52 years by 2040. In 

contrast, female life expectancy is expected to fall from changing smoking patterns 

between 2010 and 2015 as the heaviest smoking cohorts continue moving into the prime 

ages of dying. There is projected to be virtually no gain in female life expectancy as a 
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result of smoking reductions between 2010 and 2020. However, female gains accelerate 

after 2025 as the heaviest smoking cohorts begin to disappear. By 2040, women are 

projected to have gained 0.85 years in e(40) from smoking reductions.  

 Two other projections have been made of anticipated changes in mortality as a 

result of changing smoking patterns. Wang and Preston (2009) add a cohort smoking 

term to the conventional Lee-Carter model of mortality change from all causes of death 

combined. They summarize their results in the form not of life expectancy but rather of 

the probability of surviving from age 50 to age 85. For the projection period 2009-2034, 

they estimate that reductions in smoking will increase the probability of male survival by 

15.8% and of female survival by 7.2%. In the present set of projections, changes in this 

probability between 2010 and 2035 are 13.4% for males and 4.7% for females. The 

proportion of lung cancer deaths attributable to smoking is in the range of 85-90% (Oza 

et al., 2011), whereas the proportion of all-cause deaths attributable to smoking is in the 

neighborhood of 20% (Mokdad et al., 2004, 2005). Accordingly, mortality from lung 

cancer is a much more sensitive indicator of the damage from smoking than is all-cause 

mortality. As a result, we believe the present estimates are more reliable.   

  Stewart et al. (2009) also project the effects of changes in smoking on future life 

expectancy by extrapolating trends in smoking distributions and applying death rates by 

smoking status from NHANES (Stewart, Cutler, & Rosen, 2009).  They do not 

differentiate between the sexes. They estimate that, in a 15-year projection period 

beginning in 2005, declines in smoking will produce a 0.31 year gain in life expectancy at 

age 18. In our 15-year projection beginning in 2010, we estimate that declines in smoking 

will raise life expectancy at age 40 by 0.80 years for males and 0.15 years for females, 
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with an average gain of 0.47 years.5 While our results appear to show a faster 

improvement than theirs, the rate of improvement accelerates through the period. In our 

10-year projection ending in 2020, the same year that the Stewart et al. projections end, 

our gain in life expectancy (mean, males and females) is 0.28 years compared to their 

0.31 years over the preceding 15-year period. Thus, our results appear reasonably 

consistent with theirs over this short projection period.  

 

Sensitivity Analyses 

 We performed sensitivity analyses of the effect of changes in procedures on 

outcomes, by estimating the effect of an alternative procedure on age-specific death rates 

and converted those rates into estimated effects on life expectancy at age 40. Results for 

life expectancy at age 40 are shown in Table 1.2. The values in that table are the 

difference between the life expectancy value produced by the alternative procedure and 

that produced by our main procedures. A positive value means that the alternative 

procedure resulted in a gain in projected life expectancy relative to the main procedure.   

 The sensitivity analysis uses an alternative set of relations between lung cancer 

mortality and all-cause mortality. The main results presented above are based on relations 

estimated across 21 countries from 1950 to 2006. Fenelon and Preston (2012) instead 

estimate coefficients relating lung cancer to all-cause mortality that are based on 

variations across 50 states of the US between 1996 and 2004 (Fenelon & Preston, 2012). 

Coefficients that predict mortality from other causes of death on the basis of lung cancer 

                                                            
5 Changes in life expectancy at ages 18 and 40 are highly comparable because so few years of life are lost 
between these ages. 
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mortality are very similar for men to those in Preston, Glei, and Wilmoth (2011) but they 

are lower for women at younger ages.6  

 Results in Table 1.2 show that the sensitivity of results is minor for the first 10 

years of projection, modest for the second 10 years, and sizeable by 2040. Of the 

projected 1.52 years of gain in life expectancy from reductions in smoking by 2040 for 

males in Table 1.1, 0.32 years would be eliminated if the alternative relations were used. 

Of the 0.85 year gain for women, 0.36 years is eliminated if the alternative relations are 

used. The alternative results have the virtue of being based on contemporary relations in 

the US, but the main results are based on many more data points. We believe that the 

comparison of the two approaches provides a realistic picture of the degree of uncertainty 

in the smoking results. However, using either the main approach or the alternative, 

declines in smoking are expected to produce substantial gains in life expectancy by 2040. 

 

Conclusion 

 The effects of past and future changes in smoking are likely to result in an overall 

improvement in US life expectancy over the next 30 years. This improvement occurs 

mainly because the advantages of reductions in smoking. Over the next decade, however, 

the effect of smoking is likely to produce only a very small improvement in mortality for 

women because the heaviest smoking cohorts of American women are still in or 

                                                            
6 Neither approach estimated a coefficient for ages 85+. Preston, Glei, and Wilmoth (2011), the source of 
the main analysis, used the mean coefficient at ages 70-74, 75-79, and 80-84 to apply to ages 85+. We 
make this same assumption for the alternative method based on Fenelon and Preston (2012). 
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approaching the ages of greatest vulnerability to death. Our results appear to be in 

reasonable accord with those of Stewart et al. (2009) over their shorter projection period. 

 Are the changes that we have projected large or small? One useful metric is 

provided by projections made by the Social Security Administration (Bell and Miller 

2005). They anticipate that life expectancy at age 40 will grow between 2010 and 2040 

by 2.55 years for men and 2.17 years for women,  somewhat smaller gains than forecast 

by most other analysts (Wilmoth, 2005). Relative to projections by the Social Security 

Administration, the mean of male and females gains that we estimate from reduced 

smoking (1.54 years among men and 0.85 year among women) would themselves 

account for almost exactly half of the projected mean gain in life expectancy. Smoking 

clearly exerts a major influence on American mortality and warrant continued monitoring 

and analysis. 
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Figure 1.1: U.S. Lung Cancer Mortality for Males 

A. By Cohort 

 

B. By Period 
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Figure 1.2: Cohort Coefficients Predicting Lung Cancer Mortality and Cumulative 
Cohort Smoking by Age 40 

A. Males 

 

B. Females 
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Figure 1.3:: Effects of Projected Trends in Smoking on Age-Specific Death Rates 

Males                                                                Females 
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Figure 1.4: Mean Number of Years Spent as a Cigarette Smoker before Age 40  

by Cohort 
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Table 1.1: Changes in Life Expectancy at Age 40 

Year        Male                Female 

2015 
0.26 -0.03 

(0.07, 0.47) (-0.52, 0.46) 

2020 
0.54 0.04 

(0.33, 0.76) (-0.44, 0.53) 

2025 
0.81 0.15 

(0.58, 1.08) (-0.33, 0.63) 

2030 
1.05 0.32 

(0.78, 1.35) (-0.15, 0.81) 

2035 
1.31 0.62 

(1.00, 1.67) (0.20, 1.13) 

2040 
1.54 0.85 

   (1.18, 1.94) (0.41, 1.38) 
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Table 1.2: Sensitivity of Results to Changes in Procedures 

Year Male Female 

2020 -0.067 0.012 

2030 -0.173 -0.107 

2040 -0.322 -0.360 

 

A positive value means that the alternative procedure resulted in 

a gain in projected life expectancy relative to the main procedure 
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Chapter 2 Forecasting the Healthy Life Expectancy 
among Older Adults in the US Using Cohort Smoking 
and Obesity History 

 

 

Introduction 
 

Life expectancy (LE) in the United States has experienced gradual increases over 

the past decades, reaching historic highs of 76.2 years for men and 81.0  years for women 

in 2010 (Murphy, Xu, & Kochanek, 2013).  This mortality fall is primarily a result of 

health care improvements and lifestyle changes, among which reduction in smoking is a 

leading cause. Nearly 800,000 lung cancer deaths in the US were prevented due to the 

decline in smoking between 1975 and 2000 (Moolgavkar et al., 2012). However, obesity, 

(particularly Class II/III obesity) is thought to be responsible for an increasing proportion 

of deaths, as its prevalence has been growing in recent years (K M Flegal, Carroll, 

Kuczmarski, & Johnson, 1998; Mokdad et al., 2004; Ogden, Carroll, Kit, & Flegal, 2012; 

Peeters et al., 2003; Y. Wang & Beydoun, 2007). The current trends of both smoking and 

obesity are expected to continue, so are the trends of deaths associated with these two 

factors (S. H. Preston, Stokes, Mehta, & Cao, 2014).  

Despite its popularity as a summary indicator of mortality, life expectancy alone 

is not sufficient to measure the quality of population health. Whether the fall in mortality 

is accompanied by a fall in disability is also of great interest in health studies. Just like 

mortality, disability is also affected by health behaviors. At the individual level, smoking 

and obesity are found to be associated with both higher rates  and longer duration of 
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disability among older adults in the US (Jenkins, 2004; Reynolds & McIlvane, 2009; 

Reynolds, Saito, & Crimmins, 2005; U.S. Department of Health and Human Services, 

2014; Walls, Backholer, Proietto, & McNeil, 2012). This is primarily because smokers 

and obese individuals have a higher chance of suffering from many chronic diseases, 

particularly lung cancer, cardiovascular diseases, and diabetes (Al Mamun et al., 2004; Al 

Snih et al., 2007; Gregg et al., 2005; P. N. Lee, Forey, & Coombs, 2012; Mokdad et al., 

2003). However, at the population level, the degree of disability (often summarized by 

the prevalence of disability) is influenced by many factors. Not only increase in disability 

incidence or decline in disability recovery, but also increase in survival rates of the 

disabled or of those who may become disabled later in life could lead to higher 

prevalence of disability. To summarize the impacts of the interplay of morbidity and 

mortality on population health, healthy life expectancy is often calculated using 

combined mortality and morbidity information (Robine, Romieu, & Michel, 2003). The 

most common forms used for measuring healthy life expectancy are disability-free life 

expectancy (LEND) and life expectancy with disability (LED), respectively defined as the 

average number of years one is expected to live without and with disability. In addition, 

the proportion of years living without disability (LEND /LE) can be used as a relative 

measure for morbidity.  

Three major hypotheses about the evolution of the population’s morbidity over 

time have been developed. The “compression of morbidity” hypothesis argues that 

effectively postponing the onset of chronic disease and consequent disability will create a 

decrease in the number of years spent with disability (Fries, 1980). In contrast, Olshansky 

et al. (1991) proposes a “expansion of morbidity” hypothesis that claims the gain in life 
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expectancy is primarily due to keeping those who suffer from chronic diseases alive in a 

disabled state, and therefore not necessarily accompanied by more years of disability-free 

life expectancy (Olshansky, Rudberg, Carnes, Cassel, & Brody, 1991). The “dynamic 

equilibrium” hypothesis states that although increase in total life expectancy is likely to 

be a result of increase in both LEND and LED, the number of years spent with severe 

morbidity is prone to remain stable (K. G. Manton, 1982). 

In order to understand which of the three hypotheses best describes the actual past 

experience of the older adults in the US, one needs to study the past mortality and 

morbidity trends of the population during the observed period as well as the underlying 

epidemiological transitions that drive these trends. Throughout the 20th century, the 

prevalence of cigarette smoking in the US can be best described as an inverse U-shaped 

curve, in the presence of sex difference (Centers for Disease Control and Prevention 

(CDC), 2005; S. H. Preston et al., 2014). Although the population is smoking less, there 

is no consensus in the literature on whether this change is leading to fewer years spent 

with disability. Some studies claim that smoking is associated with both smaller LEND 

and smaller LED, leaving never-smokers the same or even more years with disability (Al 

Mamun et al., 2004; Ferrucci et al., 1999; Klijs, Mackenbach, & Kunst, 2011; Reuser, 

Bonneux, & Willekens, 2009; Van Oyen et al., 2014). In contrast, other studies support 

the hypothesis that smokers are subject to expansion of disability in both absolute and 

relative terms, despite their already relatively shorter life (Brønnum-Hansen & Juel, 

2001; Hubert, Bloch, Oehlert, & Fries, 2002; Nusselder, Looman, Marang-van de Mheen, 

van de Mheen, & Mackenbach, 2000). The discrepancy between the above conclusions 
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lies primarily in whether the mortality or disability associated with smoking contributes 

more to the difference in LEND and LED based on smoking status. 

On the other hand, obesity is associated with many conditions that are disabling 

but not fatal, including osteoarthritis and back pain that limit mobility and daily activities 

(Sach et al., 2007; Stürmer, Günther, & Brenner, 2000). In addition, the mortality risks of 

obesity-related chronic diseases, such as cardiovascular diseases, strokes and diabetes, 

have declined over the last two decades as a result of improvement in medical 

intervention and prevention (Gregg et al., 2005; N. K. Mehta & Chang, 2011; NCCDHP- 

CDC, 1999). This further extends life spent with disability for the obese individuals. 

Many studies accordingly conclude that obesity may have stronger impact on disability 

than mortality and creates extra burden for health care (Al Snih et al., 2007; Must et al., 

1999; Reuser et al., 2009; Reynolds et al., 2005). 

The cohort patterns of the impact of smoking and obesity on health have been 

recognized by many existing studies (Masters et al., 2013; Peeters et al., 2003; S. Preston 

& Wang, 2006). Hence, these are valuable information that can be applied to forecasting 

future health outcome of the population. The prevalence of obesity is projected to 

continue the current rising trend, while the prevalence of smoking is expected to keep 

falling in the US over the next few decades (E. a Finkelstein et al., 2012; Ruhm, 2007; 

Stewart et al., 2009). Given that smoking and obesity affect mortality and morbidity 

differently, their trends combined have important implications for population health in 

the future. Although abundant studies have forecasted future mortality, few have 

attempted to do so for future morbidity. To date, there have been only two studies that 
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forecast the healthy life expectancy, among which only one is an application to the US 

population, and none of them accounts for the underlying factors that drives mortality and 

morbidity (Majer, Stevens, Nusselder, Mackenbach, & van Baal, 2013; K. Manton, Gu, 

& Lamb, 2006). As Wang and Preston (2009) show, including a smoking covariate 

substantially reduces the anomalies in the shape and sex differences for parameter 

estimates which may otherwise be severely distorted as the projection period extends 

further.   

The present study aims to contribute to the literature by producing projections of 

both LEND and LED for the US population at age 55 in associations with its observed 

history of health behaviors at younger ages. A multi-state life table (MSLT) approach 

proposed by Majer et al. (2013) is applied to estimate the transition rates among different 

health status. A modified Lee-Carter model that incorporates cohort smoking and obesity 

history will then be used to fit and forecast the obtained transition rates, based on which 

LEND and LED will be calculated. 

 

Data 
 

The information for disability, smoking and obesity is obtained from the 

Integrated Health Interview Series (IHIS), which maintains a harmonized set of the 

public use data and documentation of the US National Health Interview Survey (NHIS) 

(Minnesota Population Center and State Health Access Data Assistance Center, 2012). 

NHIS is a nationally representative cross-sectional survey of US non-institutionalized 
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civilians, and is conducted annually by the National Center for Health Statistics. It 

collects comprehensive information about demographic, social-economic status, general 

health, health-related behaviors and activity limitations. The sample used in this study 

contains observations that are 55 years old and above in survey years from 1982 to 2010. 

The disability variable is constructed using questions that ask individuals’ 

limitations in activities due to chronic conditions. For surveys from 1982 to 1996, four 

categories are available, including not able to perform major activities, limited in amount/ 

kind of major activities, limited in other activities and not limited. However, there are 

only three categories for surveys after 1996, including limited in any way, not limited in 

any way and unknown. In order to make the disability status comparable across surveys, 

an individual is considered to be disabled if he/she reports any limitations of activities at 

all.  

The smoking history by 5-year gender-specific birth cohort (e.g. 1885-1889, 

1890-1894) is reconstructed based on the data in Burns et al. (1998). Their original cohort 

smoking history is estimated using 15 NHIS between 1965 and 1991 (Burns et al., 1998). 

This data is further updated by Preston et al. (2014) using additional NHIS surveys 

through 2009 and converted into an estimate of the average number of years a cohort had 

smoked prior to age 40 (S. H. Preston et al., 2014).  

Similarly, the variable for obesity is constructed in a cohort fashion as well. I 

compute the obesity prevalence at age 40 for each 5-year birth cohort by sex using NHIS 

data. Obesity is defined as having a Body Mass Index (BMI) that is over 30. 
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In order to extrapolate the mean cumulative years of smoking by age 40 for 

cohorts that are still below 40 years old by 2010, I regress a cohort’s mean cumulative 

years of smoking by age 40 on the observed mean cumulative years of smoking by age 

35, by age 30, and by age 25 for the cohorts for which this information is all available. 

Similarly, I regress a cohort’s prevalence of obesity at age 40 on the observed prevalence 

at age 35, at age 30 and at age 25 for those cohorts that have complete BMI information 

up to age 40. Dummy variables for sex and birth cohorts are added to these regressions. 

For smoking, the above models explain at least 97% of the variance in the dependent 

variable in all cases. For obesity, over 92% of the variance is explained. I then estimate 

the corresponding values for the smoking and obesity variables based on the coefficients 

estimated in the regression models. Because the end of the forecast period is 2040, the 

youngest cohort that requires extrapolation for the smoking and obesity variables are born 

in 1985-1989 and will reach 55 years old by 2040. However, the obesity variable also 

needs to be extrapolated back for cohorts born before 1935, as body weight information 

is collected only after 1976. I only extrapolate this variable back to cohorts born in 1920-

1924 and fix it at this level for cohorts born prior to 1920.  

In order to estimate the transition rates between different health states using a 

multi-state life table, population-level age- and gender- specific mortality data is also 

needed. The Human Mortality Database (HMD) is used for this purpose. Mortality rates 

are drawn from the HMD for age 55 and above for the observation period (1982-2010). 
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Methods 
 

Estimation of the Transition Rates 

Three health states (non-disabled, disabled, dead) are considered in this study.  

Given this, there are four possible types of transitions: a healthy person may experience 

onset of disability or may die; and a disabled person may recover or may die. As Guillot 

and Yu (2009) and Majer et al. (2013) both point out, the prevalence of disability for a 

cohort aged x+1 at time t+1 is a function of the following: prevalence of disability for the 

same cohort when it was aged x at time t, the probability of disability onset and recovery, 

as well as the probability of death for both non-disabled and disabled during this one-year 

time interval (Guillot & Yu, 2009; Majer et al., 2013). This can be expressed by the 

equation below. 
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, , , ,

(1 ) (1 )

1 (1 )
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                                                                  (1) 

where 1, 1
U
x t    and ,

U
x t  are the corresponding prevalence of disability for a cohort 

aged x+1 at time t+1 and for the same cohort exactly a year ago. These prevalence rates 

are estimated using NHIS surveys conducted in two consecutive years, using NHIS 

sample weights to account for non-responses and make prevalence rates representative 

for the US non-institutionalized population.  

,
HD
x tq  and ,

UD
x tq  respectively denote the probability that non-disabled and disabled 

individuals aged x at time t will die between time t and t+1. These probabilities can be 

separately derived from the mortality rates of non-disabled and disabled, as shown in the 
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Appendix 1.  However, no separate age-specific mortality rates are available for disabled 

and non-disabled, because of the lack of a longitudinal dataset that is large enough to 

provide reliable estimates for multiple age groups in a long period, as needed for the 

forecasting purpose in this study. Therefore I take advantage of the following inter-

relationship among overall mortality ( ,x tm ), state-specific mortality ( ,
HD
x tm and ,

UD
x tm ), 

relative mortality risk of disabled ( ,x tHR ), and prevalence of disability ( ,
U
x t ) to derive 

separate mortality rates for disabled and non-disabled:  

, , ,
UD HD
x t x t x tm m HR                                                                                                          (2) 

and ,
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, , ,(1 )
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x t U U
x t x t x t
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
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                                                                               (3) 

The only unknown in equation (3) is the hazard ratio of disabled. This is 

estimated using individual-level data from NHIS conducted in 1986-2004, during which 

period each participant in the survey is linked to death certificate data found in the 

National Death Index (NDI). A Cox proportional hazard model with left truncation is 

fitted by sex, and no significant age or year interaction is found (Cox, 1972). 

Consequently, I assume the estimated hazard ratios, 2.10 (95% CI: 2.07-2.13) for men 

and 2.02 (95% CI: 1.99-2.05) for women, are constant over time and age. 

Now only the probability of disability onset ( .
HU
x tq ) and the probability of recovery 

from disability ( .
HU
x tq ) in equation (1) are left unsolved. For simplicity of modeling and to 

obtain more robust forecast, I assume the recovery from disability is absent, as practiced 

in Majer et al. (2013). As a result, the transition from non-disabled to disabled can be 
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considered as the net incidence of disability, and equation (1) can be re-written as below 

and can be used to derive the only unknown .
HU
x tq : 
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Modeling and Forecasting the Transition Rates 

Once the probability of non-disabled becoming disabled ( .
HU
x tq ) in equation (4) is 

estimated, it can be converted to transition rates .
HU
x tm  (see Appendix 1).  I assume the 

variations in transition rates for both mortality and disability can be partially explained by 

age and period, as argued by Lee and Carter (R. D. Lee & Carter, 1992). The portion, 

except for the residual, that is left unexplained by age and period is considered to be 

influenced by the history of smoking and obesity (H. Wang & Preston, 2009). 

Accordingly, I use the Lee-Carter model that incorporates cohort smoking and obesity 

history to fit and forecast all three types of transition rates. Given that the two leading 

risk factors, smoking and obesity, of mortality and morbidity are adjusted for, the same 

temporal trend in both mortality and morbidity is assumed for both sexes (H. Wang & 

Preston, 2009). The model can be expressed as: 

, , , , , ,
, ,ln g i g i g i i g i g g i g g i

x t x x t t x t x x tm S O                                                                        (5) 

where g specifies gender and i specifies the three types of transition: non-disabled 

to disabled (HU), non-disabled to death (HD) and disabled to death (UD). The parameter

x is the average of the log transition rate at age x over time, t quantifies the underlying 
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development of transition rates over time and is assumed to be the same for men and 

women when smoking and obesity are adjusted for. x  is the changes in transition rates 

at age x in response to changes in t  over time. t xS  and t xO   are respectively cohort 

history of smoking and obesity for a cohort born in year t-x, and   and  are 

corresponding coefficients that measure the effect of smoking and obesity on the specific 

transition rates. The cohort smoking history is measured by the average number of years 

that members from a birth cohort smoked prior to age 40. The cohort obesity history is 

measured by the prevalence of obesity (BMI>=30) at age 40 for a birth cohort.  

The parameters are estimated by minimizing the sum of squared errors of the 

singular value decomposition performed for both sexes combined, as specified by the 

following equation (H. Wang & Preston, 2009): 
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                                            (6) 

In order to find a model that best fits the actual transition rates, the model 

specified in equation (5) is tested using different sets of covariates. Specifically, the 

model is run with no covariates as the standard Lee-Carter model, with only cohort 

smoking history, with only cohort obesity history, with both cohort smoking and obesity 

history, and with both cohort smoking and obesity history as well as their interaction. 

A few different specifications of ARIMA time series models are tested for 

forecasting t  for each type of transition. I found the random walk model with drift, 

ARIMA (0, 1, 0), yields reasonably good fit for all types of transitions and hence is used 
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to produce future values of t  for year 2011 to 2040. The variance-covariance matrix for 

t  of all three types of transitions is estimated to account for the future trends of these 

transitions jointly, and is used to produce 95% confidence intervals for the projected 

transition rates and life expectancy through simulation. In the simulation, the distribution 

of the disturbances is assumed to be an independently and identically distributed 

multivariate normal distribution, which has a mean of zero and a covariance matrix 

identical to the variance-covariance matrix discussed above. 

Moreover, I use cohort-specific rather than period-specific measures of smoking 

and obesity, as making projections with the latter will require extrapolating the smoking 

and obesity variables for all ages for the entire forecasting period. On the other hand, 

only few cohort-specific measures need to be extrapolated since the data for most cohort 

behaviors are already available for the older population in this study. Specifically, people 

from the cohort born in 1970-1974 all reach age 40 by 2010, the last year of the 

observation period, and reach age 55 by 2025. And people from the cohort born in 1985-

1989 will all reach age 55 by 2040, the last year of the forecasting period. Consequently, 

smoking and obesity variables need to be extrapolated for only three cohorts (1975-1979, 

1980-1984 and 1985-1989). Then the future values of k, as well as corresponding cohort 

smoking and obesity history are used to estimate the future transition rates from 2011 to 

2040, which are eventually translated into disability-free life expectancy (LEND) and life 

expectancy with disability (LED) using a multi-state life table approach described in the 

Appendix 1 (S. H. Preston, Heuveline, & Guillot, 2001).  Because individuals aged 85 

and above are top-coded in the NHIS surveys, the LEND and LED are estimated as partial 

life expectancies between age 55 and age 85.  
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Results 
 

Figure 2.1 shows the disability prevalence for populations aged 55 to 64, aged 65 

to 74, aged 75 to 84 and aged 85+ over time by gender. In general, the prevalence of 

disability increases with age. For those under 75 years old, disability prevalence has 

fallen over time for both sexes, although the decline has slowed down in recent years. 

This may well reflect the smoking decline and obesity epidemic among the younger 

cohorts. In contrast, the prevalence of disability has remained relatively constant over 

time for those 75 years and older. Additionally, the prevalence of disability for men and 

women below 75 years old are nearly identical throughout the observation period, while 

for those above 75 years old, women have higher disability prevalence. This is possibly 

because men born in the early cohorts tend to smoke more and thus are less likely to be 

disabled due to higher mortality. 

Figure 2.2 plots the trends of smoking and obesity by cohort. We see a rise in the 

average cumulative years a cohort had smoked by age 40 for both men and women 

among the earlier born cohorts and a decline among the younger cohorts. The peak is 

reached for the male cohorts born in 1910-1920 and the female cohorts born in 1935-

1945 respectively. In contrast, both sexes have experienced continuous increases in the 

prevalence of obesity at age 40, for cohorts born after 1925. The values of both smoking 

and obesity variables are extrapolated for the youngest cohorts, for whom data are not yet 

available. In general, the declining smoking trend for cohorts born after 1970 and the 

increasing obesity trend for cohorts born after 1965 are preserved for the youngest 

cohorts. 
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Figure 2.3 shows the trends of mortality and disability transitions over time by 

plotting the ratio of transition rates throughout the observation period (1982-2010) to 

those observed in 1982 at several ages (55, 65, 75 and 84). Because the relative risk of 

disability on mortality is assumed to be constant at all ages, the ratios for mortality of 

disabled and those for mortality of non-disabled are identical. Therefore, only the ratios 

for overall mortality are plotted. It is evident that men at all ages have experienced larger 

reductions in both mortality and disability than women during the entire observation 

period, reflecting men’s earlier decline in smoking (Centers for Disease Control and 

Prevention (CDC), 2005; S. H. Preston et al., 2014; H. Wang & Preston, 2009). 

Table 2.1 presents results from fitting the modified Lee-Carter models to the three 

types of transition rates with different sets of covariates for both sexes. Model 1 is simply 

a Lee-Carter model without any covariates. Model 2 includes cohort smoking history 

only, while Model 3 includes cohort obesity history only. In Model 4, both smoking and 

obesity covariates are included. Model 5 additionally includes an interaction term of 

smoking and obesity. Due to the constant assumption for the relative mortality risk of 

being disabled, the estimates for mortality of disabled and of non-disabled are the same 

for all models. 

When I only adjust for smoking in the Lee-Carter model, a negative effect of 

smoking on survival is observed for both men and women, with the smoking risk for men 

being higher than that for women. This is consistent with existing literature that finds 

men are more responsive to the adverse effect of smoking than women (Chao et al., 2002; 

H. Wang & Preston, 2009). However, obesity is found to be associated with lower 
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mortality for both sexes (especially for men) when it is the only covariate included. As 

Figure 2.1 shows, the rise in cohort obesity prevalence is accompanied by the fall of 

cumulative smoking duration, to which the mortality decline in recent years is mainly 

attributed, particularly for men. Consequently, omitting smoking in the model leads to 

these counterintuitive estimates and smaller adjusted R-square in Model 3.  

Adjusting for both covariates simultaneously to some extent reduces the 

confounding introduced by smoking. Since at the individual level smokers are on average 

leaner and less healthy, smoking decline tends to lead to higher obesity prevalence at the 

aggregated level. This may explain why the impact of obesity is still confounded and 

appears to be positive in Model 4. In Model 5, an interaction of smoking and obesity is 

added. Both smoking and obesity are now found to be associated with higher mortality 

and interact with each other negatively. This is consistent with findings in the literature 

(Koster et al., 2008; Krueger, Rogers, Hummer, & Boardman, 2004). Although the 

effects of smoking and obesity are not directly comparable using the coefficient estimates 

because of their different metrics, it is possible to compare the individual impact of 

smoking and obesity on men relative to women. For mortality, the coefficient of the 

smoking covariate for men is almost twice of that for women, the coefficient of obesity 

for men is nearly 6 times of that for women, and the coefficient of interaction for men is 

4 times of that for women. This suggests men are more responsive to the impact of 

smoking and obesity on mortality even when interaction is taken into account, confirming 

the gender-difference arguments in existing studies (Chao et al., 2002; E. A. Finkelstein, 

Brown, Wrage, Allaire, & Hoerger, 2010). 
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In contrast, despite the small magnitude, smoking alone is shown to increase the 

net disability transition rate for men but decrease it for women, while the signs are 

reversed for the effects of obesity in Model 3 just as in the models for mortality. This is 

likely because for men the past decline in smoking has averted more disability incidence 

than the rise in obesity prevalence has caused, but for women it is the opposite as a result 

of both the delayed trend of smoking and obesity’s greater disabling impact for women 

(Reynolds & McIlvane, 2009; Reynolds et al., 2005; Whitson et al., 2010). Including 

both covariates only partially removes the bias, while adding the interaction term 

produces results suggesting that both smoking and obesity are associated with higher 

risks of becoming disabled. Furthermore, compared to the estimates from Model 5 for 

female mortality, the estimates from Model 5 for female disability yield a larger effect for 

obesity but a disproportionately smaller effect for smoking, while the effects for 

interaction are similar, suggesting that obesity contributes to a greater proportion of 

female disability than to female mortality. For men, in contrast, the relative impacts of 

smoking and obesity are roughly the same for both mortality and disability. 

Overall, the addition of both smoking and obesity covariates and their interaction 

explains respectively 25% and 10% of the variances of mortality and disability that are 

otherwise left unexplained by simple Lee-Carter model with no covariates. Specifically, 

the adjusted R-squares increase from 0.9461 to 0.9597 for mortality and from 0.9884 to 

0.9895 for disability. Accordingly, projections of the transition rates are made based on 

the relationship discovered in Model 5 for both mortality and disability. 
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Figure 2.4A and Figure 2.4B present the estimates for a(x), b(x) and k(t) from 

Model 1 and Model 5 respectively. Again, due to the assumption of a constant impact of 

disability on mortality, the estimates of k(t) and b(x) are identical for mortality for 

disabled and non-disabled, although the estimates for a(x) for these two types of 

transition differ. The addition of covariates and interaction does not lead to substantial 

change in k(t). In fact, as shown in Figure 2.5, the estimates of k(t) for both mortality and 

disability for models with and without covariates are very close. Nevertheless, when k(t) 

is multiplied by b(x) and then added to a(x) which both change substantially due to 

different model specifications, variations in transition rates and their translations into life 

expectancy can still be striking. The comparison of the plots of a(x) for mortality 

demonstrates that the inclusion of the two covariates and their interaction explains a great 

proportion of the gender-difference in the underlying mortality profile by age. 

Furthermore, in Figure 2.4A the underlying disability incidence rates at younger ages are 

higher for men than women, reflecting the greater reduction in cumulative smoking 

history for men at younger ages, which results in a higher survival of the already disabled 

or potentially disabled population. This bias disappears once covariates and interaction 

are included, and the underlying disability incidence appears to be higher for women 

particularly at higher ages, consistent with previous epidemiologic studies that find 

women are more vulnerable to disabling conditions such as fractures, osteoarthritis and 

back problems (Reynolds & McIlvane, 2009; Reynolds et al., 2005; Whitson et al., 

2010). 

Similar to the findings in Wang and Preston (2009), when smoking and obesity 

are not adjusted for in the Lee-Carter models, the disparities in the b(x) estimates 
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between men and women are evident for both mortality and disability. Once smoking and 

obesity are included, the disparities become much smaller and the slopes of the age 

pattern of change in transition rates become more level, as shown in Figure 2.4B. 

Specifically, the b(x) estimates for mortality for men and women show less distorted 

pattern. Similarly, those estimates for disability for men and women are more parallel and 

their differences are reduced by approximately 40%. Moreover, for younger ages, the 

age-specific mortality change in response to the temporal trend of mortality change is 

larger than for older ages in Figure 2.4A, but smaller in Figure 2.4B. Since the younger 

cohorts have experienced more remarkable declines in smoking but increases in obesity, 

the above result indicates that adjusting for the time trends of smoking and obesity 

produces a less distorted age pattern of mortality change. Also, the impacts of smoking 

decline are more salient than the impacts of obesity increase.  

Figure 2.6 compares the ratio of projected transition rates at 2040 to those 

observed at 2010 for Model 1 and Model 5. Because the impact of disability on mortality 

is assumed to be constant over age, the ratios for mortality of disabled and of non-

disabled are identical. Therefore, only the graph for the ratio for mortality of non-

disabled is shown. On the one hand, the ratios of mortality (both disabled and non-

disabled) estimated using both model specifications for women are greater than the ratios 

for men, reflecting men’s sharper decline in smoking among these cohorts. Inclusion of 

covariates leads to lower mortality as expected. For both sexes, the differences in ratios 

for disabled/ non-disabled mortality estimated with and without covariates are greater at 

older ages, as the cohorts that will reach older ages by the end of the projection period are 

the ones experienced the largest smoking decline. Contrarily, inclusion of covariates 
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leads to higher disability incidence. And the differences in ratios for disability estimated 

with and without covariates are greater at younger ages, reflecting the fact that the 

obesity epidemic is more recent. This may also suggest that in the future disability is 

more likely to be attributable to obesity than to smoking.  

Furthermore, model selection has a greater impact on disabled/ non-disabled 

mortality projection for women but a greater impact on disability projection for men. 

Given men and women have similar patterns in cohort obesity history as shown in Figure 

2.2, the difference in projections due to different model selection seems to origin from the 

gender difference in smoking history. The larger impact of model selection on mortality 

projection for women, particular at older ages, is consistent with the timing of extinction 

of the heaviest smoking female cohorts. Similarly, the disability projection for men is 

more sensitive to model selection, particular at younger ages, because men’s extended 

trend of smoking decline has provided relatively larger exposure for the disabling effect 

of obesity to operate.   

Figure 2.7 presents the projected mortality and disability transition rates over time 

relative to the observed ones in 2010, for several age groups. Overall, all age groups for 

both sexes will experience decline in mortality and disability incidence. The oldest cohort 

in this figure is born in 1925-1929, which is younger than the heaviest smoking male 

cohort but older than the heaviest smoking female cohort. Therefore, the mortality 

associated with smoking will decline steadily for men across all cohorts. However, the 

younger cohorts, particularly for those born after 1955 (aged 55 in 2010), have 

substantially higher prevalence of obesity that offsets the smoking-related mortality 
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declines. Thus, a crossover is seen on the graph for male mortality. The decline in 

smoking for women, on the other hand, only occurred for cohorts born after 1945. 

Therefore, the pattern of mortality decline for women across cohorts is more complex, 

given both directions of change in smoking-related mortality and the increase of obesity 

prevalence as well as their interaction. Nevertheless, in general, the obesity epidemic 

seems to reduce the rates of mortality decline for women as well.  

Besides mortality, the incidence of male disability is also expected to decline for 

all age groups over time. Compared to the projected trends of male mortality and female 

disability, male disability shows less of a cohort pattern, except for cohorts born recently 

that have highest prevalence of obesity. This indicates that smoking is more likely to 

have a fatal than disabling effect for men, while obesity is disabling for men but the 

effect is not as strong as it for women. The decline in male disability incidence is more 

likely to be attributable to improvement in medical care that affects the underlying 

mortality profile at all ages. For women, a clear cohort pattern can be seen for all age 

groups. Additionally, this pattern is only observed among cohorts born after 1950, 

suggesting that this cohort pattern origins from the increase in obesity prevalence rather 

than from the change in smoking. Therefore, it is consistent with previous studies that 

argue obesity has stronger impact on female disability. 

Finally, the life expectancy (LE), disability-free life expectancy (LEND) and life 

expectancy with disability (LED) between age 55 and 85 are projected up to 2040 for both 

sexes, as shown in Table 2.2 and Figure 2.8. In accordance with the findings in Crimmins 

et al. (1997, 2009), I find the US elderly have experienced substantial increases in both 
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LE and LEND during the observation period from 1980s to 2010, and the increases in LE 

is mostly attributable to the increase in LEND along with the decrease in LED, suggesting 

compression of disability (Crimmins, Hayward, Hagedorn, Saito, & Brouard, 2009; 

Crimmins, Saito, & Ingegneri, 1997). While this is true for both sexes, men appear to 

benefit from more years of gain in LEND than women.  

Standard Lee-Carter model projects continued gains in LE and LEND for men and 

women in the coming decades, although with slower rates of increase than the previous 

30 years. Compared to 2010, men will have 1.72 years gain in LE between age 55 and 85, 

whereas the figure for women is half of it. The gains in LE can be decomposed to about 

1-year loss in LED for both sexes, and about 2.7 years and 1.7 years gain in LEND for men 

and women respectively. 

For men, the addition of cohort smoking and obesity history, along with their 

interaction, yields even more optimistic projections than the model with no covariates. 

Relative to Model 1, Model 5 projects an extra 0.30, 0.57 and 0.70 years gain in LE at 

2020, 2030 and 2040 respectively, and an extra 0.22, 0.41 and 0.50 years gain in LEND at 

2020, 2030 and 2040 respectively. This indicates that net of the increase in obesity 

prevalence, the decline in smoking still leads to progressive gain in the adjustments of 

life expectancy for American men over the next three decades, of which over 70% is 

attributable to increase in disability-free life expectancy. 

In contrast, including both covariates and their interaction produces a smaller 

increase of LE and LEND for women, because of the slower improvement in survival 

produced by their lagged decline in smoking during the observation period. Compared to 
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Model 1, this model only leaves women an additional 0.19, 0.24 and 0.19 year of LE at 

2020, 2030, and 2040 respectively, and an additional 0.09, 0.05 and 0.03 year of LEND at 

2020, 2030, and 2040 respectively. As the heaviest smoking female cohort reaches its 

prime age of death in 2020s, the decline in gains in LE and LEND adjustments over time 

relative to the model without covariates can be best explained by the fact that obesity has 

large destructive impact on women’s health.  

Moreover, both sexes are expected to spend a larger proportion of their remaining 

life time disability free. Relative to the model without covariates, however, the model 

proposed in this study produces only slightly smaller of this proportion for men 

throughout the projection period but an almost 1% decrease for women by 2040. This 

indicates the impact of fall in smoking and the impact of rise in obesity prevalence tend 

to balance each other out for men in terms of quality of health, but for women the 

negative effect of rise in obesity will likely to outweigh the positive effect of fall in 

smoking in the next 25 years, confirming the findings in existing literature about the 

gender difference in the impacts on mortality and morbidity of both smoking and obesity. 

 

Model Validation 
 

In addition to measuring the goodness-of-fit for the forecasting model using R-

squares, I perform out-of-sample model validation by holding out the data from 2001 to 

2010 and comparing these data with 10-year projections made with data only from 1982-

2000. For men, the maximum error relative to the observed value is roughly 0.22 year for 
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LE, 0.35 year for LEND and 0.29 year for LED. For women, it is 0.16 year for LE, 0.19 

year for LEND and 0.23 year for LED. In conclusion, these results indicate the forecasting 

model is valid and generalizable for data from varying periods. 

 

Sensitivity Analyses 
 

The NHIS data used in this study is limited to the non-institutionalized population 

which is presumably healthier than the institutionalized population. Therefore, the net 

disability transition rate tends to be underestimated. I evaluate the magnitude of this 

underestimation by performing the analysis with additional data from the American 

Community Survey (ACS) for the institutionalized population. In addition to variables 

indicate whether a respondent has limitations in activity, a variable that indicates whether 

one resides in institutions is available from 2006 to 2010. I calculate the prevalence of 

disability for the entire population using these information and re-run the forecasting 

model. Relative to the life expectancy measures for 2006-2010 calculated in this practice, 

using data for only non-institutionalized population overestimates the LE by a maximum 

of 0.002 year and the LEND by a maximum of 0.15 year, but underestimates the LED by a 

maximum of 0.15 years for men. For women, the LE and the LEND are overestimated by 

a maximum of 0.003 year and 0.26 year, and the LED is underestimated by a maximum of 

0.26 year. Moreover, I use the estimates from this analysis and project the LEND and LED 

for 2011-2015 and compare these projections with those from projections based on NHIS 

surveys in 2006-2010. If only data for the non-institutionalized population is used, the 

projections for the LE and the LEND in 2011-2015 are overestimated by a maximum of 
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0.03 year and 0.14 year respectively, but the projection for the LED is underestimated by 

a maximum of 0.12 year. For women, the LE and the LEND are overestimated by a 

maximum of 0.003 year and 0.18 year respectively, but the projection for the LED is 

underestimated by a maximum of 0.18 year. Therefore, the effect of excluding the 

institutionalized population on the estimates and projections can be considered small. 

Furthermore, the proposed model is subject to two assumptions: 1) the impact of 

disability on mortality is constant over age. 2) There is no recovery from being disabled. 

Two additional sensitivity analyses are performed to test the robustness of the model, by 

estimating the effects of violation of these two assumptions on age-specific transition 

rates and its aggregated effects on healthy life expectancy at age 55. 

As suggested in Guillot and Yu 2009, I model both the relative mortality risk of 

disability and the probability of recovery as exponential functions of age as below 

1
1

x
xHR e  

2
2

xUH
xq e  

The parameter estimates from Guillot and Yu 2009 is used for the values of 1

(5.51), 1 (-0.049), 2 (0.353) and 2 .(-0.043). These parameters are estimated for men 

and women combined based on data from Health and Retirement Study (HRS) 1998 and 

2000 with a transformed age a=x-65.  Results of projected healthy life expectancy at 

2010, 2020, 2030 and 2040 are shown in Table 2.3A and Table 2.3B. 

When it is modeled as an exponential function, the mortality risk of being 

disabled can be as high as 8.98 times and as low as 2.06 times of the mortality risk of 
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being healthy at age 55 and 85 respectively. Once translated into healthy life expectancy, 

however, the effect of violation of the constant impact of disability on mortality 

assumption produces only small changes, as shown on Table 2.3A. Overall, increase in 

the relative mortality risk of disability leads to only 0.15 year increase in LEND, 0.13 year 

decline in LED and hence 0.02 year increase in LE for males by the end of the projection 

period. Similarly, the corresponding changes for females are 0.18 year increase in LEND, 

0.2 year decrease in LED and 0.02 year decreases in LE at 2040. 

Neither does the inclusion of recovery from being disable result in substantial 

changes in the projection of future healthy life expectancy. Table 2.3B shows that 

including recovery in the model yields gain in LEND and loss in LED for both sexes. The 

maximum gain in LEND is 0.14 year for both men and women, while the maximum loss 

in LED is 0.13 year and 0.08 year for men and women respectively. Overall, the gain in 

LEND and loss in LED offset each other, and hence lead to respectively 0.1 year and 0.08 

year gain in LE for men and women. 

 

Conclusion 
 

Smoking and obesity both have independent negative influences on individuals’ 

health, including both survival and activities. Operating jointly, they unanimously raise 

mortality for both disabled and non-disabled. However, their interplay may yield 

different possibilities for disability, as both the incidence and prevalence of disability 

have to do with survival which is affected by the two risk factors in a different direction. 

To some extent, this results in a competition between death and disability.   
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This study uses summary measures (LEND and LED) to evaluate the quality of 

health for the US adults aged 55 years old and above in the past and future, in association 

with observed and projected trends of smoking and obesity. Estimates from the modified 

Lee-Carter model suggest that a large proportion of the difference in mortality and 

disability between men and women can be attributed to their different smoking patterns 

and the gender difference in the impacts of smoking and obesity. 

Men and women are both expected to have rising LE and LEND as well as falling 

LED over the next 25 years, resulting in compression of disability. However, mostly due 

to gender difference in smoking history, men will benefit more from their earlier decline 

in smoking and have larger improvement in LE than women, narrowing the gender gap in 

current LE down to 0.5 year by 2040. In addition to extending life expectancy, the 

combined effects of existing and expected change in smoking and obesity will likely lead 

to more years living without disability and fewer years living with disability. Specifically, 

men are projected to have a 3.2 years increase in LEND over the 30-year forecasting 

period, almost twice the gain for women. Besides men’s advantage in LE due to an 

earlier start in smoking decline, this difference in LEND may as well be partially 

attributable to the greater impact of obesity on disability for women, which offsets some 

of the gains in LEND produced by the smoking decline.  
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Figure 2.1: Disability Prevalence for US Elderly (1982-2010) 
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Figure 2.2: Smoking and Obesity Trends by Birth Cohorts 
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Figure 2.3: Normalized Transition Rates over Time (1982-2010) 
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Figure 2.4: Parameter Estimates of the Lee-Carter Model 

A. Without Covariates  
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B. With Smoking, Obesity and Interaction  
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Figure 2.5: Comparison of kt values in models with and without covariates 



55 
 

 
Figure 2.6: Ratios of Projected Transition Rates in 2040 to Transition Rates Observed in 2010 
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    Figure 2.7: Normalized Transition Rates over Time for the Forecasting Period  

(2010-2040) 
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Figure 2.8: Observed and Projected Healthy Life Expectancy (LE and LEND) Using Different Models 
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Table 2.1: Parameter Estimates from Different Models 

       Mortality   Net Disability Incidence 

     

Model 
1 

Model 
2 

Model 
3 

Model 
4 

Model 
5 

Model 
1 

Model 
2 

Model 
3 

Model 
4 

Model 
5 

Male 
Smoking - 0.0266 - 0.0263 0.0668 - 0.0078 - 0.0036 0.0255

Obesity - - -0.0129 -0.0077 0.0674 - - -0.005 -0.0035 0.0289

Interaction - - - - -0.0042 - - - - -0.0018

Female 
Smoking - 0.0222 - 0.0161 0.033 - -0.0002 - 0.0006 0.0088

Obesity - - -0.0038 -0.0012 0.0115 - - 0.0069 0.0068 0.0181

Interaction - - - - -0.001 - - - - -0.0011
R-

Square   
0.9461 0.9528 0.9311 0.9494 0.9597 0.9884 0.9881 0.9889 0.9888 0.9895
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Table 2.2: Life Expectancy between Age 55-85 by Disable Status 

     Males Females 

   Year LE LEND  LED  
LEND/LE 

 (%) LE LEND  LED 
LEND/LE 

 (%) 

Observed 

1982 19.96 12.98 6.98 65.03 23.40 14.90 8.50 63.68 

1990 20.70 14.32 6.38 69.18 23.64 15.82 7.82 66.92 

2000 21.75 15.80 5.95 72.64 23.92 17.04 6.88 71.24 

2010 22.82 16.92 5.90 74.15 24.69 17.53 7.16 71.00 

Projected 
without  

Covariates 

2020 
23.53 

(23.26, 23.77) 
17.64 

(17.45, 17.83) 
5.89 

(5.73, 6.02) 
75.00 

(74.57, 75.49) 
24.92 

(24.81, 25.03) 
17.91 

(17.81, 18.00) 
7.01 

(6.91, 7.10) 
71.89 

(71.56, 72.18) 

2030 
24.06 

(23.60, 24.43) 
18.58 

(18.21, 18.95) 
5.48 

(5.10, 5.80) 
77.22 

(76.14, 78.59) 
25.25 

(25.08, 25.43) 
18.62 

(18.37, 18.83) 
6.64 

(6.42, 6.90) 
73.72 

(72.79, 74.49) 

2040 
24.54 

(23.94, 25.01) 
19.6 

(19.04, 20.13) 
4.94 

(4.40, 5.45) 
79.87 

(78.11, 81.86) 
25.55 

(25.33, 25.77) 
19.27 

(18.96, 19.68) 
6.18 

(5.86, 6.59) 
75.82 

(74.36, 76.98) 

Projected 
With 

Covariates 
 and 

Interaction 

2020 
23.83 

(23.58, 24.05) 
17.86 

(17.70, 18.03) 
5.97 

(5.81, 6.14) 
74.95 

(74.41, 75.45) 
25.11 

(24.95, 25.24) 
18.00 

(17.89, 18.13) 
7.09 

(6.99, 7.21) 
71.72 

(71.32, 72.08) 

2030 
24.63 

(24.24, 24.98) 
18.99 

(18.68, 19.36) 
5.62 

(5.30, 6.06) 
77.17 

(75.61, 78.38) 

 
25.49 

(25.23, 25.69) 
 

18.67 
(18.41, 18.97) 

6.80 
(6.54, 7.13) 

73.28 
(72.13, 74.23) 

2040 
25.24 

(24.75, 25.67) 
20.10 

(19.60, 20.64) 
5.10 

(4.65, 5.78) 
79.79 

(77.35, 81.53) 
25.74 

(25.40, 26.00) 
19.30 

(18.88, 19.77) 
6.41 

(6.00, 6.96) 
75.03 

(73.07, 76.53) 
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Table 2.3: Sensitivity of Results to Alternative Assumptions 

A. Non-constant Impact of Disability on Mortality
  Males Females 

  LE LEND LED LE LEND LED 
2010 -0.02 0.01 -0.03 0.02 0.02 0 
2020 -0.01 0.07 -0.06 -0.01 0.01 -0.03 
2030 0 0.12 -0.12 -0.03 0.1 -0.13 
2040 0.02 0.15 -0.13 -0.02 0.18 -0.2 

A positive value means that the alternative assumption resulted in 
a gain in life expectancy relative to the main model 

 

B. With Recovery 
  Males Females 

  LE LEND LED LE LEND LED 
2010 0.05 0.11 -0.06 0.04 0.12 -0.08 
2020 0.03 0.12 -0.09 0.02 0.1 -0.08 
2030 0.1 0.14 -0.04 0.08 0.1 -0.02 
2040 0.07 0.2 -0.13 0.08 0.14 -0.06 

A positive value means that the alternative assumption resulted in 
a gain in life expectancy relative to the main model 
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Chapter 3 Estimating the Effects of Obesity and Weight 
Change on Mortality Using a Dynamic Causal Model 

 

 

Introduction 
 

Many studies investigate the association between obesity and mortality (Adams et 

al., 2006; Allison, Faith, Heo, & Kotler, 1997; Berrington de Gonzalez et al., 2010; 

Comoni-Huntley, Harris, & Everett, 1991; Katherine M Flegal, Kit, Orpana, & Graubard, 

2013; Gelber, Kurth, Manson, Buring, & Gaziano, 2007; Manson, Stampfer, Hennekens, 

& Willett, 1987; Singh & Lindsted, 1998; Tayback, Kumanyika, & Chee, 1990). 

Although it is commonly agreed that low body weight and severe obesity are associated 

with increased mortality risks, whether overweight and moderate obesity is protective or 

hazardous are still in debate (Adams et al., 2006; Katherine M Flegal et al., 2013; Lantz, 

Golberstein, House, & Morenoff, 2010; N. Mehta & Chang, 2009). A well-known 

challenge in estimating the mortality risks of obesity is reverse causality attributable to 

illness-associated weight loss. Reverse causality is thought to downwardly bias the 

observed mortality risks of obesity, because low weight and weight loss are often a result 

of illness or smoking that is associated with increased mortality. Given that the likelihood 

of chronic and acute illnesses rises with age, reverse causality is most threatening to 

estimates derived from elderly populations. Similarly, many smoking-related illnesses are 

associated with disease-induced weight loss and estimates among smokers are also 
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thought to be highly influenced by reverse causal processes. These diseases include 

chronic obstructive pulmonary disease (COPD), many cancers, cardiac diseases, and 

renal disease (Claessen, Brenner, Drath, & Arndt, 2012; He, McGee, Niu, & Choi, 2009; 

He, 2011; S. H. Preston, Mehta, & Stokes, 2013; Reas, Nygård, Svensson, Sørensen, & 

Sandanger, 2007).  

To date, most attempts to deal with reverse causality are thought to be inadequate 

(N. K. Mehta & Chang., 2011). The most common practices to account for reverse 

causality in longitudinal studies are excluding subjects with preexisting diseases at 

baseline (Allison, Fontaine, Manson, Stevens, & VanItallie, 1999; Singh & Wang, 2001; 

Stewart et al., 2009), excluding subjects that experienced substantial weight loss (>=10lb) 

in previous years (Allison, Faith, Heo, Townsend-Butterworth, & Williamson, 1999; 

Evans & Frank, 1997), and excluding the first few years of follow-up in order to 

eliminate premature deaths that were potentially caused by illness present at baseline 

(Allison, Faith, et al., 1999; Katherine M Flegal, Graubard, Williamson, & Cooper, 2011; 

Singh & Wang, 2001). These strategies often lead to waste of substantial amount of data, 

and deletion of large proportion of deaths, reducing statistical power and potentially 

causing more biases than eliminating them (Ajani et al., 2004; Baik & Ascherio, 2000; 

Evans & Frank, 1997). 

Among those with relatively better data for information in body weight history 

and diagnosis history of diseases, only a few studies (Claessen et al., 2012; He et al., 

2009; He, 2011; S. H. Preston et al., 2013) attempt to examine the association between 

weight status and mortality risks from a dynamic perspective. Most studies only use a 
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single measurement for weight status, confounders, and other relevant covariates 

measured at baseline. Some studies show that instead of using a stock measure of weight 

status taken at one point in time, a flow measure such as change in body weight is a 

stronger predictor of mortality risks, especially for the elderly (Mikkelsen, Heitmann, 

Keiding, & Sørensen, 1999; Myrskylä & Chang, 2009; Somes, 2002). 

Diseases that cause weight loss are best thought of as time-varying confounders to 

the body weight and mortality association because they fulfill three criteria: (1) body 

weight predicts the onset of disease, (2) disease predicts subsequent body weight; and (3) 

diseases are themselves independently predictive of mortality. Thus, diseases operate as 

both confounders and mediators along the causal pathway, making conventional 

analytical methods produce biased estimates (Hernán & Robins, 2006; J M Robins, 

Hernan, & Brumback, 2000). Diagram A1 in the Appendix shows a simple example with 

only two time points. Weight change occurred at t(0) has impact on the incidence of 

chronic diseases between time t(0) and time t(1), which in turn affects weight change at 

t(1) and raises the probability of death. In the mean time, the final outcome, death, may 

be affected by weight change at both time points. A more complex example with 

comprehensive causal pathway can be seen in Diagram A2 in the Appendix.  

The present study attempts to address the time-varying confounding of the body 

weight and mortality association by applying a marginal structural model (MSM) 

(Hernán & Robins, 2006; J M Robins et al., 2000; James M Robins, 1998) to a nationally 

representative sample. I specifically fill the gaps in existing literature by: (1) modeling 

both baseline weight and time-varying weight change using multiple waves of interviews, 
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and (2) treating both incident illness and health behaviors as time-varying confounders. 

To my knowledge, no prior study has used a marginal structural model to estimate the 

mortality risks of obesity and body weight change.  

 

Data 
 

Sample 

Data for this study are extracted from a nationally representative dataset, the 

Health and Retirement Study (HRS). The HRS is sponsored by the National Institute on 

Aging (grant number NIA U01AG009740) and is conducted by the University of 

Michigan. It is a longitudinal survey of Americans aged 50 and above (HRS 2010). 

Analyses in this study are performed with the RAND HRS data, version L (RAND, 

2011). As a prospective study, HRS serves the purpose of this study better than 

retrospective studies that are used in many prior studies. Each respondent’s current body 

weight, health conditions, health behaviors, as well as other relevant characteristics are 

asked at each HRS interview. In contrast, retrospective studies rely on respondents’ 

recalling their personal history, thus making it less possible to collect data that is as 

accurate and contains as many repeated measures for relevant variables as the HRS does. 

Additionally, retrospective studies are more likely to have selection bias problem. For 

instance, the individuals who were severely obese may not have survived to the survey to 

report their weight history.  
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In this paper, I only include the initial HRS cohort that born in 1931-1941 and 

entered survey in 1992, and the War Babies (WB) cohort that born in 1942-1947 and 

entered survey in 1998. These two cohorts entered the survey at approximately same age 

(50-60 years old) and are both interviewed every two years. 

The initial HRS cohort and the WB cohort have a sample size of 9,763 and 2,760 

respectively, making a total of 12,523 respondents. In order to calculate weight change 

between subsequent interviews, I exclude those who died or dropped out of the study 

before the second interview, and those whose body mass index (BMI) is missing in any 

interview. I further exclude outliers that with very high baseline BMI (>60) and that have 

experienced extraordinary weight loss (>30% of body weight) between two consecutive 

interviews. This leads to a sample of 8,678 respondents and 67,772 observations (person-

interviews).  

Weight Variables 

Body weight is measured in BMI (kg/m2), which is calculated from self-reported 

weight and height at each interview. Five levels of body weight are categorized according 

to the guidelines provided by World Health Organization (World Health Organization, 

2000), including Underweight (BMI<18.5), Normal Weight (18.5<=BMI<25), 

Overweight (25<=BMI<30), Class I Obese (30<=BMI<35) and Class II/III Obese 

(BMI>=35). Weight change is measured by the percentage change in BMI between any 

two consecutive interviews and is classified into five categories: Large Weight Loss 

(BMI drops by >=10%), Small Weight Loss (BMI drops by [5%, 10%]), Stable Weight 
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Change (BMI changes by (-5%, 5%)), Small Weight Gain (BMI increases by [5%, 

10%)), and Large Weight Gain (BMI increases by >=10%). In this analysis, Normal 

Weight and Stable Weight Change are used as reference groups. 

Confounders 

A dummy variable for preexisting diseases is constructed using self-reported 

diagnosis of chronic diseases at each interview. If a respondent answers yes at an 

interview to any of the questions that ask whether he/she has been told that he/she has 

one of the five types of chronic disease (diabetes, cancers, lung diseases, heart problems 

and stroke) ever (for the first interview) or since last interview (for the subsequent 

interviews), he/she will be marked as having had preexisting diseases. In addition, self-

rated health is included to account for unobservable factors that can not be easily 

measured or diagnosed. The original variable in HRS has five categories (excellent, very 

good, good, fair and poor) and is re-grouped into two. The first three categories 

(excellent, very good and good) are combined to indicate good self-rated health, while 

the other two (fair and poor) are combined to indicate poor self-rated health and used as 

the reference group. 

Three dummy variables are created based on individuals’ smoking status, whether 

one has never smoked or previously smoked or is currently smoking, at each interview. 

Never smoker is used as the reference group.  

In addition, a dummy variable for physical activity and exercise is created based 

on the frequency of vigorous physical activity. However, since this frequency is 
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measured differently in the first six and the rest four rounds of interviews, the dummy 

variable is assigned one if the respondent had vigorous physical activity three or more 

times a week in the first six interviews, or two or more times a week in the other 

interviews. 

Some time-independent characteristics are adjusted in this analysis as well. Those 

include gender, age at first interview, race/ethnicity (non-Hispanic white, non-Hispanic 

black, Hispanic and Other), education levels (no high school diploma, high school 

diploma or GED, some college and college degree).  

Furthermore, several time-dependent socio-economic (SES) covariates that are 

measured at both first and subsequent interviews, including marital status (never married, 

married, divorced or separated, and widowed), and log of household income/wealth are 

also controlled. All time-dependent covariates that are measured subsequent to baseline 

are lagged for one interview, in order to ensure these risk factors and weight change line 

up in the correct order along the causal pathway. On the other hand, time-dependent 

covariates that are measured at first interview are used as baseline controls in the 

analytical models.  

 

Methods 
 

As earlier discussed, it is critical to model the association between obesity and 

mortality dynamically and at the same time properly adjust for the confounding caused 

by time-varying health conditions and time-varying health behaviors. Because the direct 
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result of  sickness or smoking is weight change rather than having a certain level of  body 

weight, I separate one’s BMI measures into two components, a stock measure (baseline 

BMI) and a flow measure (weight change between any two consecutive interviews), by 

controlling BMI measured at first interview and modeling time-varying weight change.  

In addition, standard regression models fail to yield unbiased estimates of effects 

of weight change on mortality when there are time-dependent confounders that are 

predictors of mortality and weight change and that can also be affected by prior weight 

change. This bias occurs because controlling time-dependent confounders in regression 

will lead to over-adjustment for the mortality risks of prior weight change and hence 

produce underestimates of the mortality risks of weight change. I apply a Marginal 

Structural Model (MSM) that creates a pseudo-population in which the association 

between weight change and mortality is considered not confounded (Hernán & Robins, 

2006; J M Robins et al., 2000). Essentially, MSM is similar to the Propensity Score 

method, but the latter lacks the capability of generating weights using both baseline and 

time-varying factors (Hernán & Robins, 2006). The basic idea of MSM is to weight the 

sample from the observational longitudinal study with the inverse probability of an 

individual experiencing a certain level of weight change between two interviews 

conditional on the values of confounders and other covariates. This weighting resembles 

a randomized experiment where time-dependent weight changes are thought to be 

assigned to an individual randomly and therefore the confounding by health conditions is 

eliminated. Specifically, a single weight is generated for each observation during this 

procedure. The newly created weights are then supplied to models that estimate the 
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effects of obesity and weight change on mortality. A detailed discussion of the MSM 

approach used in this paper is presented in the Appendix. All analyses are performed with 

SAS program Proc Genmod. 

 

Results 
 

Figure 3.1 plots the mean BMI trajectory for a synthetic cohort constructed from 

the entire sample by baseline BMI levels. For the underweight subsample, continuing 

increase in body weight is observed. In contrast, the heaviest obese subsample shows 

continuing weight loss from age 50 to 80. The rest BMI categories display relatively 

constant weight over years until very old age, namely after 75 years old. In sum, the 

weight trajectories tend to regress toward the mean. This provides evidence that only 

looking at baseline weight status may produce biased estimates of the impact of obesity 

on mortality. 

Table 3.1 presents the baseline characteristics from the whole sample by body 

weight change history over time during the entire study. Overweight people constitutes 

the largest group (41.31%) of the sample, followed by people with normal weight 

(33.58%), while Class II/III obese (7.01%) and  underweight (1.14%) are observed in 

only a small proportion of the sample. A large majority (80%) of the sample self-rated 

their health at baseline as at least good, and 70.81% has never been diagnosed with any of 

the five types of chronic disease. However, only 35.92% of the sample was free from 

these chronic diseases through the follow-up years. 
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Also shown in Table 3.1 is that relative to those who remained of stable weight 

throughout the study, every type of weight change is more common among 

current/former smokers, those with less vigorous physical activity, those with worse self-

rated health and those with more incidents of chronic disease both prior and during the 

study.  

In order to examine whether pre-existing health conditions are predictors of 

weight change and mortality, and in the meantime can be predicted by previous weight 

change so that the time-dependent confounding conditions underlying MSM are satisfied, 

three pairs of model are estimated. The first pair of models test the hypothesis that weight 

change can be predicted by pre-existing health conditions, by fitting two multinomial 

logistic models with categories of weight change (1=large weight loss, 2=small weight 

loss, 3=stable weight, 4=small weight gain, 5=large weight gain) between survey n 

(n>=2) and n+1 as dependent variables, both controlling time-varying smoking status as 

well as demographic and socio-economic covariates, but one (Model A1) includes 

dummy variable for diagnosis of chronic diseases between n-1 and n as an predictor 

while the other one (Model A0) simply works as a null model. The likelihood ratio test 

(LR=13.08, p<0.01) of these two models suggests that Model A1 predicts weight change 

better than the null model. In addition, Model A1 shows that having pre-existing chronic 

diseases is significantly associated with weight loss (relative risk=1.93, p<0.001). 

The second pair of models test whether pre-existing health conditions predict 

mortality, using Cox hazard models with time-varying covariates that predict the 

mortality risk. Both models control for baseline weight categories, weight change history, 
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smoking status, as well as demographic and socio-economic covariates, but one is a null 

model (Model B0) and the other one (Model B1) includes time-varying dummy variable 

for diagnosis of chronic diseases. The likelihood ratio test of these two models produces a 

LR=218.85 (p<0.001), and the estimate of the pre-existing chronic disease variable in 

Model B1 shows an association with higher risk of mortality (hazard ratio=2.43, 

p<0.001) that is statistically significant, indicating pre-existing chronic diseases do 

predict mortality.  

The third pair of models examine whether weight change predicts incidence of 

chronic diseases. Two logistic models both controlling baseline weight categories, 

smoking status, as well as demographic and socio-economic covariates, are fitted. Again, 

one of the two models (Model C1) includes weight change history, while the other one is 

the null model (Model C0). The likelihood ratio test (LR=157.91, p<0.001) suggests that 

prior weight change does predict incidence of chronic diseases. In addition, weight gains 

(both small size (odds ratio=1.08, p<0.01) and large size (odds ratio=1.26, p<0.001)) are 

associated with excess risk of experiencing chronic disease. 

Alternatively, substituting self-reported health conditions for diagnosis of chronic 

diseases in all the above models yields similar results, indicating that health conditions 

(both observable and non-observable) indeed operate simultaneously as confounders and 

mediators along the causal pathway.  

Table 3.2 presents the estimated hazard ratios (with 95% confidence intervals) of 

baseline body weight and time-dependent weight changes between consecutive 
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interviews, using Marginal Structural Models. Model 1 is a null model that includes only 

baseline weight status and weight change history. U-shaped and J-shaped association 

with mortality are observed for baseline weight status and time-dependent weight change 

respectively. Underweight and Class II/III obese at baseline are associated with excess 

mortality risks relative to normal weight, while the effects for overweight and Class I 

obese are not statistically significant. Similarly, large weight loss, small weight loss, and 

large weight gain are all associated with higher mortality relative to stable weight change. 

Model 2 adjusts for socio-demographic and SES characteristics, measured at first 

interview and follow-up interviews. The estimates from this model change only slightly 

from those in Model 1. Overall, the hazard ratios for weight change and baseline weight 

status for all categories decline as expected, as the covariates adjusted tend to have 

negative associations with weight status and weight change. 

Further controlling time-dependent health behavior covariates (smoking and 

physical activity) in Model 3, I show how these covariates confound the estimates of 

mortality risks. Inclusion of these covariates leads to increase in hazard ratios for Class 

II/III obese at baseline, but decrease for other baseline weight categories and all weight 

change categories except for small weight gain. The amount of physical activity is a time-

dependent confounder in this model, as it has impact on future weight status as well as 

mortality and can be affected by past weight and health status. However, it only has a 

negligible effect on the estimated hazard ratios (model un-shown). The majority of the 

change in the estimated hazard ratios between Model 2 and Model 3 is attributable to 

smoking. On the one hand, because smoking accounts for disproportionate number of 
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those non-obese and those who have experienced weight loss, failure to control for it will 

result in underestimate of the mortality risk of obesity and overestimate of the mortality 

risks of being underweight and weight loss, which is consistent to the results in Model 3. 

On the other hand, it has been shown that cessation of smoking is likely to lead to weight 

gain (Carney & Goldberg, 1984; Cook, Shaper, Pocock, & Kussick, 1986; Foy, Bell, 

Farmer, Goff, & Wagenknecht, 2005; Rimm et al., 1995; Wannamethee, Shaper, & Perry, 

2001), hence after including a dummy variable for ever-smokers, the decrease in 

estimated mortality risk for time-dependent weight gain is not implausible. This result 

may also be explained by prior studies that find active smoking is a modifiable risk factor 

of type 2 diabetes which is associated with both large weight gain and increased mortality 

(Foy et al., 2005; Hu et al., 2001; Manson, Ajani, Liu, Nathan, & Hennekens, 2000; Will, 

Galuska, Ford, Mokdad, & Calle, 2001). 

Model 4 additionally accounts for both diagnosed and underlying health 

conditions by including time-dependent measurements for diagnose history of chronic 

diseases and self-rated health respectively. Because the subsample who were underweight 

at baseline and who have experienced weight loss consist disproportionately individuals 

with relatively poor health status, it is expected that once health conditions are adjusted 

the estimated hazard ratios for weight loss and underweight at baseline will decline, while 

effects of obesity and weight gain will increase. The results in Model 4 confirm this 

expectation.  

Overall, the estimates produced in Model 4 are consistent with existing literature. 

With reference to normal weight, underweight and Class II/III at baseline are associated 



74 
 

with hazard ratios that are 2.0 and 1.8 respectively, whereas overweight and Class I 

obesity do not significantly lower or raise the mortality risks. Furthermore, relative to 

stable weight change, all types of weight change lead to significantly increased risk of 

mortality. Specifically, large weight loss results in a mortality risk that is nearly four 

times of staying in the stable weight range and small weight loss is about 1.8 times 

riskier. In contrast, large weight gain and small weight gain are associated with hazard 

ratios that are 2.0 and 1.2 respectively. These large hazard ratios indicate that weight 

change has stronger effects on mortality than baseline BMI. 

Alternatively, changes in BMI units are used in the MSMs instead of the 

percentage changes in body weight, as some may argue that changes in BMI units 

directly reflect the variations in dietary intake. In this case, weight change is classified 

into five categories based on the magnitude of change in BMI units: Large Weight Loss 

(BMI drops by over 3 units), Small Weight Loss (BMI drops by 0.5-3 units), Stable 

Weight Change (BMI changes by (-0.5, 0.5) unit), Small Weight Gain (BMI increases by 

0.5-3 units), and Large Weight Gain (BMI increases by over 3 units). Using this 

alternative measurement for weight change does not lead to substantial change in the 

estimated effects of weight change and baseline weight status on mortality. The results 

for this exercise are shown on Table A1 in Appendix 2. 

One underlying assumption of Model 3 and Model 4 is that the statistical 

confounding by smoking and health status are independent. However, in fact, they are 

closely associated with each other, as smoking raises the risks of developing various 

chronic diseases that result in weight loss. I repeat Model 4 with subsamples split by 
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smoking status, accounting for the fact that the reverse causation is greater among 

smokers. Table 3.3 presents the results of this subsample analysis, confirming the 

disparity of mortality risks among ever-smokers and never-smokers. In general, ever-

smokers have higher risk of dying from weight loss and underweight. The mortality risk 

for being underweight at baseline is over twice as great among ever-smokers than among 

never-smokers. Also, never-smokers are subject to higher mortality for Class II/III 

obesity at baseline, but lower mortality for large weight gain. This is consistent with the 

change in results from Model 2 to Model 3 in Table 3.2 where smoking status is adjusted 

for. Moreover, the estimates for ever-smokers are further apart from those of Model 4 in 

Table 3.2, indicating the impact of reverse causation associated with health status is 

greater among ever-smokers compared to never-smokers. 

In order to demonstrate how standard regression models bias the estimates, I 

repeated the analyses presented in Table 3.2, using Cox hazard model with time-

dependent covariates. Results are presented in Table 3.4. Compared to its MSM 

counterpart, Model 1 estimated using Cox model has a considerably smaller hazard ratio 

for large weight loss. This is very likely because the MSMs take into account the 

dependency that between weight changes during consecutive survey windows and that 

between weight changes and baseline weight status, while the Cox models do not. To test 

this hypothesis, I regress weight change between survey n (n>=2)  and survey n+1 on 

baseline weight status and weight change between survey n-1 and survey n. The estimates 

suggest prior weight gain and being at least Class I obese at baseline are associated with 

higher chances of weight loss at a later time. In contrast, prior weight loss is associated 
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with future weight gain. This is consistent with Figure 3.1 which shows body weight 

trajectory tends to regress toward the mean that is associated with lower mortality. As a 

result, failing to account for these dependencies incline to lead to underestimates of the 

mortality risks of both weight change and baseline weight status, especially for the 

extreme body weight levels. 

Similar to the MSM, the estimates from Model 2 using Cox model change only 

slightly from those in model 1. Overall, the hazard ratios for weight change and baseline 

weight status for all categories decline as expected, as the covariates adjusted tend to 

have negative associations with weight status and weight change. Adding health 

behaviors in the Cox model yields similar changes in the estimated hazard ratios at it 

does for the MSM. Comparing to Model 2, Model 3 shows increase in hazard ratios for 

Class II/III obese at baseline, but decrease for other baseline weight categories and all 

weight change categories. 

Model 4 additionally adjusts for confounding by health conditions. It is expected 

that the estimated hazard ratios for weight loss and being underweight at baseline will 

decline, while effects of obesity and weight gain will increase. In fact, although the 

effects of weight loss and being underweight at baseline on mortality decline as expected, 

the effects of weight gain and being Class II/III obesity at baseline on mortality drop by 

4% and over 25% respectively. This is because the Cox hazard model fails to produce 

unbiased estimates when the time-dependent confounder in this model, health conditions, 

is simultaneously 1) predicted by past weight or weight change history, 2) a predictor of 

future weight change and mortality. Simply including time-dependent health status in the 
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Cox model will lead to over-adjustment for the effects of baseline weight status, as time-

dependent health status after baseline operates as a mediator between baseline weight 

status and mortality. This explains why the effect of being Class II/III obese at baseline 

drops by 25.5% from Model 3 to Model 4. Similarly, the over-adjustment could be the 

reason of the slight decline in the effects of large weight gain as well. In contrast, the 

MSM includes the time-dependent health condition covariates only in the re-weighting 

models that calculate the probability a respondent experiencing a certain level of weight 

change or being censored at a certain time-point, but not in the model to which the new 

weights are supplied to calculate the direct effects of weight change and baseline weight 

status on mortality. Consequently, the MSM is free from the over-adjustment problem 

and produce unbiased estimates for the direct causal effects of weight change and 

baseline weight status on mortality.  In sum, the comparison between Model 4 using 

MSM and Cox model demonstrates that MSM is the appropriate model to apply when 

health status operates as a time-dependent confounder. In fact, the estimates produced in 

Model 4 using MSM are consistent with existing literature. 

The analysis for Model 4 in Table 3.2 is also repeated with subsamples split by 

baseline weight status. Results are shown in Table 3.5. Large weight loss is associated 

with excess mortality across all weight categories, while large weight gain is an indicator 

of increased mortality for those who have at least normal weight. Small weight loss is 

also found to be associated with higher mortality risk for people in normal and 

overweight range at baseline. And small weight gain increases mortality risk for those 

who are above Class I obese. The significance of these estimates varies as a result of 
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smaller sample size, but overall the estimated effects of weight change on mortality in 

this analysis are consistent with estimates from the whole sample, except for the 

underweight group which now appears benefit from weight gain. The estimates from this 

analysis are in general also consistent with Myrskylä and Chang (2009) who use 

quadratic terms of BMI and weight change measured by the number of units of change in 

BMI from only the first two interviews. But this present study also shows that weight 

change will be associated with excess mortality risk for more groups of people depending 

on their baseline weight status and scale of weight change. 

 

Sensitivity Analyses 
 

I perform sensitivity analyses to test the robustness of the associations between 

time-dependent weight change as well as baseline weight status and mortality estimated 

above, by applying alternative sample- and model- specifications. The remaining parts of 

the models other than the altered parts are kept unchanged. The results are displayed in 

Table 3.6, and are compared with Model 4 in Table 3.2, the main model. 

Model SA1 restricts the sample to subjects that were free from any of the five 

types of chronic diseases in all interviews they have participated. This restriction ends up 

with keeping only 3,117 subjects, 21,319 observations and 319 deaths from the original 

sample. The estimates of hazard ratios for weight gain and being overweight or above at 

baseline remain relatively constant from the main model, while the estimated effects of 
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weight loss and being underweight at baseline decline but still are associated with 

increased mortality. Some hazard ratios lose significance in this analysis. 

Model SA2 restricts the sample to subjects that have rated their health status as at 

least good in all surveys they participated. This restriction strategy aims to obtain a 

subsample that is subject to minimum unobservable confounders and it produces a total 

of 4,219 subjects (30,168 observations) among which only 377 were observed death. 

Both small and large weight loss remains to be associated with excess mortality. Class 

II/III obese at baseline is now associated with only slightly lower mortality risk relative to 

the model with the whole sample, while the effects of other three weight categories lose 

significance but their point estimates do not change much. 

The third sensitivity analysis limits the sample to never smokers at baseline that 

remained non-smokers until death or dropping off the study (identical to column 2 in 

Table 3.3). After exclusion of current and former smokers, the number of observations 

drops to 23,823 and the number of respondents reduces to 3,195, among whom 346 died. 

The basic associations continue to exist. As smokers are more likely to be leaner and to 

die, excluding this group would presumably yield larger hazard ratio for obesity but 

lower hazard ratio for underweight. It is confirmed by the estimates from this model.  

Given that people tend to lose weight during the years closer to death due to 

illness, the fourth sensitivity analysis attempts to find out how the results would change if 

this bias is minimized by excluding individuals those died within eight years (four 

follow-up interviews) after their first interview. Since those who lost weight due to severe 
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illness tend to die in a much shorter period (1-3 years), this restriction using eight years 

will yield more conservative estimates. This leaves 7,073 respondents, 56,892 

observations and 1,145 deaths. All changes in point estimates of hazard ratios are in 

general considerably small, as regard to the main model. Nevertheless, it is worth to 

notice that the mortality risk associated with Class I obese becomes statistically 

significant, and its magnitude increases as expected. 

The fifth model uses a quadratic measure instead of dummy variables for BMI 

measures. As the estimates in previous models, the alternative quadratic BMI measures 

also show a U-Shaped association with mortality. Again, the hazard ratios associated with 

time-dependent weight changes remain relatively constant in all categories, compared to 

the main model. 

Overall, the sensitivity analyses suggest the associations observed from the main 

model is fairly robust, and all results are consistent with the finding that being 

underweight and class II/III obese at baseline, as well as weight change in all directions 

are associated with increased mortality risk, relative to the reference groups. Although 

variations in estimates of hazard ratios are observed in some cases, they are not 

unacceptably large. And this variation is most likely due to much smaller sample sizes 

which lead to less precise estimates and loss of statistical power. 

 

Discussion 
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In this study, the confounding by health behaviors and health conditions is 

adjusted in a time-dependent manner along the causal pathway through application of 

marginal structural models. As expected, the findings demonstrate that both the 

confounding by health behaviors and by health conditions lead to overestimates of the 

effects of being underweight at baseline and of weight loss, but underestimates the effect 

of being obese at baseline. These results confirm the hypothesis that smoking and 

sickness often induce low weight and weight loss (Katherine M Flegal et al., 2013; S. H. 

Preston et al., 2013; Willett, Dietz, & Colditz, 1999), and as a result bias estimates of the 

mortality effects of obesity and weight change. In addition, subsample analysis 

demonstrates that the confounding by poor health conditions has greater impact on 

smokers than never-smokers, as smoking is associated with excess risks of developing 

many chronic diseases which may in turn lead to weight loss and higher mortality.  

A major strength of this study is addressing the interrelated association between 

health conditions and weight change in a dynamic framework, while controlling baseline 

weight status. It is shown that although being underweight or Class II/III obese at 

baseline is associated with excess mortality risk, being overweight or moderate obese is 

not. On the other hand, relative to stable weight change, all other levels of weight change 

significantly raise mortality risk. The association is J-shaped, with large weight loss being 

nearly twice as riskier as large weight gain. These results is consistent with Mikkelsen et 

al (1999) who find both weight level and weight change have independent U-Shaped 

associations with mortality, adjusting for smoking and excluding individuals with 
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preexisting and subclinical diseases. Also, compared to BMI measured at baseline, 

weight change over time is indeed a stronger predictor of mortality.  

The J-shaped association is generally preserved in subsample analyses by initial 

weight status. This seems to be in contrary to the hypothesis that weight loss for obese or 

overweight individuals is associated with decreased mortality risk, relative to their initial 

weight status. However, given that the reference group contains weight loss under 5%, 

these results are not inconsistent with prior studies (Myrskylä & Chang, 2009). In 

addition, several observational studies have shown that even voluntary weight loss, such 

as dieting and exercise, may be associated with increased mortality even for those who 

are overweight (Arnold, Newman, Cushman, Ding, & Kritchevsky, 2010; French, 

Jeffery, Folsom, Williamson, & Byers, 1995; Manson et al., 2000; Newman et al., 2001). 

Also, many practices for losing weight such as diet drug, fasting and smoking are known 

to have adverse effect. Moreover, anorexia due to aging is likely to be reflected by 

reduced dietary intake and impaired ability to maintain energy balance among older 

adults. Accordingly, failing to maintain weight at a stable level may indicate poor 

homeostatic control, which may be associated with functional impairment and mortality, 

and may form a tendency of more weight loss among unhealthy people, leading to 

increased mortality risk (Arnold et al., 2010; Newman et al., 2001). In contrast, large 

weight gain is associated with increased mortality only for those at or above overweight 

level, and small weight gain increases mortality only for those who are at least Class I 

obese. This is supported by physiological studies that find weight gain can be attributable 

to sedative lifestyle and therefore is associated wit cardiovascular problems. Weight gain 
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may also cause impairment in pulmonary functions that makes breathing difficult (Arnold 

et al., 2010; Newman et al., 2001). As shown in Table 3.1, there is much larger 

proportion of underweight or normal weight people losing weight than the proportion of 

obese people gaining weight, thus more concerns should be paid to weight loss. 

The present study has several limitations. First, BMI measures are constructed by 

self-reported heights and weights, which are found to often underestimate BMI in prior 

studies (Ezzati, Martin, Skjold, Vander Hoorn, & Murray, 2006), although strong 

correlation between self-reported and clinically measured BMI have been found in many 

studies (Myrskylä & Chang, 2009; Willett WC, 1998). Second, heterogeneity in mortality 

related to weight change may exist across different diseases. Despite the fact that HRS 

provides diagnosis history for many diseases, without information on cause of death it is 

unreasonable to infer deaths are caused by a certain type of diagnosed disease. Third, the 

HRS does not provide measures for historical body weight, such as BMI at age 25 or 

maximum weight observed; therefore it is impossible to investigate the mortality risk of 

younger age obesity.  Fourth, although the marginal structural model can minimize biases 

introduced by time-dependent observable confounders, it still demands appropriate model 

specifications and, as other statistical approaches, it cannot deal with unobservable 

confounders. 

In summary, after addressing some of the concerns in the literature by applying a 

time-dependent causal model, the findings from this present study suggest that BMI at 

baseline has a U-shaped association with mortality among elderlies. Additionally, adverse 

effects are shown for weight change larger than 5% of prior body weight. Future research 
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may investigate the association between obesity and cause-specific mortality, adjusting 

for confounding by specific types of disease, as some diseases (e.g. diabetes) are more 

prone to be related to obesity. 
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Table 3.1: Baseline Characteristics by Weight Change Status Through All Interviews 

  Whole Sample
(n=8,678) 

Large Weight Loss 
At Least Once

(n=2,337) 

Small Weight Loss 
At Least Once

(n=4,314) 

Stable Weight 
All Time 

(n=1,414) 

Small Weight Gain
At Least Once

(n=5,062) 

Large Weight Gain 
At Least Once

(n=2,610) 

Women (%) 50.97 59.22 53.76 41.02 53.38 60.88 

Mean age at first interview, Years 55.14 (3.17)  55.33(3.21) 55.20(3.19) 55.26(3.16) 55.01(3.15) 54.93(3.14) 

Death (%) 20.29 27.00 18.57 22.91 15.73 18.74 

Follow-up years             
For those who died    10.56(4.69) 11.90(4.39) 12.21(4.18) 7.33(4.11) 12.42(4.17) 12.37(4.22) 

For those who were censored 14.80(4.93) 16.08(3.80) 16.09(3.69) 11.15(6.42) 15.93(3.75) 16.03(3.68) 

Race/Ethnicity (%)             

White, non-Hispanic 75.43 71.16 73.67 79 75.86 72.26 

Black, non-Hispanic 15.08 18.4 16.32 12.66 14.54 16.86 

Hispanic 7.37 8.69 8.14 6.01 7.55 9 

Other 2.11 1.75 1.88 2.33 2.05 1.88 

Education (%)             

Less than a high school diploma 22.31 28.07 23.83 18.03 22 25.82 

High school diploma/ GED 37.48 37.44 37.26 36.56 37.29 38.97 

Some college 20.18 18.53 20.59 19.09 20.77 19.92 

College degree or higher 20.02 15.96 18.32 26.31 19.94 15.29 

Marital Status (%)             

Married 74.91 71.39 73.84 78.58 75.23 71.3 

Never married 4 3.95 4.05 3.62 3.9 4.19 

Divorced/separated 15.11 17.44 15.37 13.33 14.86 17.43 

Widowed 5.98 7.22 6.74 4.47 6 7.08 

Mean Household Income, $1,000s 54.10(62.14) 43.98(48.26) 51.69(79.48) 64.86(80.63) 53.68(92.26) 49.30(90.61) 

Smoking Status (%)             

Never smoker 36.81 34.83 36.95 36.85 37.71 35.59 

Former smoker 36.66 34.02 35.95 39.46 36.78 33.95 

Current smoker 26.54 31.15 27.1 23.69 25.5 30.46 

Vigorous Physical Activity 
 (%, ≥3 times per week) 

25.55 22.04 24.4 29.21 25.04 24.75 

Notes:  
Numbers are percentages unless otherwise noted.  

Standard deviations for continuous variables are in parentheses. 
Individuals can appear in multiple weight change categories. 
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Table 3.1 (Continued): Baseline Characteristics by Weight Change Status Through All Interviews 

  
Whole Sample

(n=8,678) 

Large Weight Loss 
At Least Once

(n=2,337) 

Small Weight Loss 
At Least Once

(n=4,314) 

Stable Weight 
All Time 

(n=1,414) 

Small Weight Gain
At Least Once

(n=5,062) 

Large Weight Gain 
At Least Once

(n=2,610) 

Baseline BMI Categories (%)             

Underweight (<18.5) 1.14 0.73 1 1.49 0.97 1.38 

Normal (18.5–24.9) 33.58 24.99 29.25 44.34 32 28.43 

Overweight (25.0–29.9) 41.31 38.72 43.23 38.47 42.67 40.11 

Class I obese (30–34.9) 16.96 23.06 18.94 11.74 17.4 20.73 

Class II/III obese (≥35.0) 7.01 12.49 7.58 3.96 6.95 9.35 

Self-report of health (%)             

Excellent 23.04 16.26 22.28 27.09 23.55 19.12 

Very Good 29.43 26.27 28.44 31.61 29.53 27.24 

Good 27.24 29.44 28.23 24.54 27.99 29.31 

Fair 13.26 17.63 14.28 10.25 13.14 16.05 

Poor 7.03 10.4 6.77 6.51 5.79 8.28 

Chronic Diseases diagnosed before 
entering the study (%) 

            

Diabetes 10.46 14.08 10.67 9.62 8.75 11 

Cancer 5.19 6.5 5.49 4.46 5.16 5.86 

Lung Disease 7.14 9.07 7.23 5.73 6.72 8.31 

Heart Problem 12.18 13.99 12.12 11.6 11.75 12.18 

Stroke 2.57 3.63 2.41 2.12 2.21 2.95 

No preexisting diseases 70.81 65 70.12 74.05 72.36 68.54 
Chronic Diseases diagnosed 
during the study (%)             

Diabetes 26.17 34.27 29.53 17.11 27.01 30.92 

Cancer 19.59 23.75 21.44 13.72 19.93 21.03 

Lung Disease 15.61 21.01 17.08 10.4 15.74 19.89 

Heart Problem 31.55 40.39 35.4 22.14 32.67 36.59 

Stroke 10.43 16.35 12.22 5.3 10.9 13.6 

No preexisting diseases 35.92 24.48 30.2 50.57 34.16 29.23 

Notes:  
Numbers are percentages unless otherwise noted.  

Standard deviations for continuous variables are in parentheses. 
Individuals can appear in multiple weight change categories. 
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Table 3.2: Adjusted Effects of Baseline BMI and Weight Change Over Time on 
Mortality, Marginal Structural Models 

Parameter Model 1 Model 2 Model 3 Model 4 

Weight Loss 10%+ 4.68 *** 
(4.058,5.396) 

4.673 *** 
(4.036,5.409) 

4.292 *** 
(3.683,5.161) 

3.863 *** 
(3.258,4.580) 

Weight Loss 5-10% 2.066 *** 
(1.798,2.374) 

2.001 *** 
(1.738,2.304) 

1.936 *** 
(1.674,2.238) 

1.81 *** 
(1.551,2.112) 

Weight Gain 5-10% 1.143 . 
(0.978,1.336) 

1.075  
(0.903,1.376) 

1.181 * 
(1.005,1.387) 

1.196 * 
(1.017,1.405) 

Weight Gain 10%+ 1.882 *** 
(1.571,2.255) 

1.816 *** 
(1.496,2.202) 

1.751 *** 
(1.446,2.12) 

1.977 *** 
(1.667,2.345) 

Underweight 2.715 *** 
(1.908,3.862) 

2.634 *** 
(1.731,3.96) 

2.383 *** 
(1.578,3.599) 

2.074 *** 
(1.277,3.368) 

Overweight 0.989 . 
(0.884,1.107) 

0.874 * 
(0.778,0.982) 

0.94 . 
(0.833,1.061) 

0.907 . 
(0.80,1.028) 

Obese I 1.017 . 
(0.885,1.168) 

0.936 . 
(0.811,1.079) 

1.046 . 
(0.902,1.213) 

1.144 . 
(0.99,1.322) 

Obese II/III 1.49 *** 
(1.258,1.765) 

1.421 *** 
(1.194,1.692) 

1.718 *** 
(1.434,2.059) 

1.824 *** 
(1.539,2.162) 

                                                          Notes: 
Model 1: Includes only baseline weight status and time-dependent weight change. 
Model 2: Adds SES and socio-demographic covariates (both baseline and time-varying). 
Model 3: Adds confounding by time-dependent health behaviors. 
Model 4: Adds confounding by time-dependent health conditions. 
*p < .05. **p < .01. ***p < .001. 
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Table 3.3: Adjusted Effects of Baseline BMI and Weight 
Change Over Time on Mortality, Marginal Structural 

Models by Smoking Status 

Parameter Ever-Smokers 
(N=5,483) 

Never-Smokers 
(N=3,195) 

Weight Loss 10%+ 4.089 *** 
(3.032,5.472) 

3.754 *** 
(3.047,4.606) 

Weight Loss 5-10% 1.976 *** 
(1.52,2.562) 

1.723 *** 
(1.423,2.081) 

Weight Gain 5-10% 1.431 **  
(1.106,1.851) 

1.079 .  
(0.877,1.327) 

Weight Gain 10%+ 2.116 *** 
(1.568,2.885) 

1.904 *** 
(1.55,2.349) 

Underweight 4.229 *** 
(2.019,8.545) 

1.846 *** 
(1.082,3.033) 

Overweight 0.959 .  
(0.761,1.207) 

0.881 .  
(0.758,1.024) 

Obese I 1.089 .  
(0.891,1.337) 

1.011 .  
(0.888,1.154) 

Obese II/III 1.738 **  
(1.292,2.35) 

1.894 *** 
(1.535,2.342) 

Notes: Both models are built on Marginal Structural Model that 
includes covariates for SES and socio-demographic characteristics 
(gender, age at first interview, race/ethnicity, education, and 
household income), covariates for health behaviors (physical 
activity), and covariates for health conditions (previous diagnosis of 
chronic diseases and self-rated health conditions) 
*p < .05. **p < .01. ***p < .001. 
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Table 3.4: Adjusted Effects of Baseline BMI and Weight Change Over Time on 

Mortality, Cox Hazard Models with Time-Varying Covariates 

Parameter Model 1 Model 2 Model 3 Model 4 

Weight Loss 10%+ 3.946 *** 
(3.349,4.65) 

3.84 *** 
(3.257,4.527) 

3.522 *** 
(2.985,4.156) 

3.102 *** 
(2.627,3.662) 

Weight Loss 5-10% 2.012 *** 
(1.721,2.352) 

1.952 *** 
(1.669,2.283) 

1.845 *** 
(1.576,2.161) 

1.721 *** 
(1.469,2.015) 

Weight Gain 5-10% 1.21 * 
(1.017,1.441) 

1.216 * 
(1.021,1.449) 

1.181 . 
(0.991,1.407) 

1.151 . 
(0.966,1.372) 

Weight Gain 10%+ 1.831 *** 
(1.488,2.253) 

1.798 *** 
(1.46,2.214) 

1.631 *** 
(1.323,2.012) 

1.552 *** 
(1.277,1.892) 

Underweight 2.414 *** 
(1.571,3.71) 

2.32 *** 
(1.502,3.585) 

1.826 ** 
(1.168,2.854) 

1.748 * 
(1.119,2.732) 

Overweight 1.031 . 
(0.904,1.176) 

0.921 . 
(0.806,1.053) 

0.962 . 
(0.841,1.1) 

0.916 . 
(0.801,1.048) 

Obese I 1.138 . 
(0.97,1.335) 

1.022 . 
(0.87,1.201) 

1.111 . 
(0.943,1.31) 

0.973 . 
(0.825,1.148) 

Obese II/III 1.375 *** 
(1.08,1.734) 

1.295 *** 
(1.029,1.619) 

1.691 *** 
(1.384,2.066) 

1.259 * 
(1.028,1.542) 

                                                          Notes: 
Model 1: Includes only baseline weight status and time-dependent weight change. 
Model 2: Adds SES and socio-demographic covariates (both baseline and time-varying). 
Model 3: Adds confounding by time-dependent health behaviors. 
Model 4: Adds confounding by time-dependent health conditions. 
*p < .05. **p < .01. ***p < .001. 
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Table 3.5: Marginal Structural Models by Baseline Weight Status 

Parameter Underweight Normal Overweight Class I 
Obese 

Class II/III 
Obese 

Weight Loss 
10%+ 

2.65 **  
(1.40,5.03) 

2.31 **  
(1.32,4.05) 

4.09 *** 
(3.10,5.40) 

4.16 *** 
(3.29,5.25) 

4.60 *** 
(2.59,8.05) 

Weight Loss  
5-10% 

1.03  
(0.50,2.10) 

1.42* 
(1.11,2.09) 

1.84 *** 
(1.45,2.34) 

1.34 
(0.93,1.96) 

1.45 
(0.87,2.44) 

Weight Gain  
5-10% 

0.52 
(0.11,2.45) 

1.20  
(0.84,1.71) 

1.06  
(0.81,1.39) 

1.77 *** 
(1.30,2.41) 

1.13 *** 
(0.73,1.74) 

Weight Gain 
10%+ 

0.89  
(0.15,5.27) 

1.47  
(0.97,2.22) 

1.75 **  
(1.23,2.50) 

3.02 *** 
(1.99,4.58) 

2.45 **  
(1.81,3.90) 

Notes: All models are based on Model 4 in Table 2. 
*p < .05. **p < .01. ***p < .001. 
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Table 3.6: Sensitivity Analyses 

Parameter Main SA1 SA2 SA3 SA4 SA5 
BMI Square           1.01 *** 

(1.00,1.01) 
BMI           0.75 *** 

(0.71,0.79) 
Weight Loss 10%+ 3.86 *** 

(3.26,4.58) 
3.13 *** 
(2.10,4.68) 

3.12 *** 
(2.14,4.56) 

3.75 *** 
(3.05,4.61) 

4.22 *** 
(3.45,5.14) 

3.84 *** 
(3.28,4.48) 

Weight Loss 5-10% 1.81 *** 
(1.55,2.11) 

1.57 **  
(1.12,2.19) 

1.70 *** 
(1.26,2.29) 

1.72 *** 
(1.42,2.08) 

1.96 *** 
(1.64,2.34) 

1.80 *** 
(1.55,2.08) 

Weight Gain 5-10% 1.20 * 
(1.02,1.41) 

1.15   
(0.83,1.61) 

1.07 
(0.79,1.45) 

1.08 .  
(0.88,1.33) 

1.18 .  
(0.96,1.45) 

1.29 **  
(1.09,1.52) 

Weight Gain 10%+ 1.98 *** 
(1.67,2.35) 

1.89 * 
(1.58,2.26) 

1.09 
(0.66,1.80) 

1.90 *** 
(1.55,2.35) 

1.77 *** 
(1.40,2.24) 

1.91 *** 
(1.57,2.33) 

Underweight 2.07 *** 
(1.28,3.37) 

1.84   
(0.76,4.47) 

1.88 
(0.62,5.67) 

1.85 *** 
(1.08,3.03) 

1.94 *  
(1.05,3.57)   

Overweight 0.91 . 
(0.80,1.03) 

0.85  
(0.66,1.09) 

0.91 
(0.72,1.15) 

0.88 .  
(0.76,1.02) 

1.07 .  
(0.92,1.24)   

Obese I 1.14 
(0.99,1.32) 

1.03 
(0.73,1.44) 

1.21 
(0.90,1.63) 

1.01 
(0.89,1.15) 

1.31 **  
(1.10,1.57) 

  

Obese II/III 1.82 *** 
(1.54,2.16) 

1.68 
(0.96,2.95) 

1.80 ** 
(1.250,2.74) 

1.89 *** 
(1.54,2.34) 

1.90 *** 
(1.52,2.38)   

                                                                                             Notes: 
Main: Refers to Model 4 in Table 2. 
SA1: Sample is restricted to subjects that were free from any of the five types of chronic diseases in all interviews. 
SA2: Sample is restricted to subjects that have rated their health status as at least good in all interviews. 
SA3: Sample is restricted to never smokers at baseline that remained non-smokers in all interviews. 
SA4: Excludes individuals those died within eight years (four follow-up interviews) after their first interview. 
SA5: Use quadratic BMI measures for baseline weight status. 
*p < .05. **p < .01. ***p < .001. 
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Figure 3.1: Mean BMI Trajectory by Baseline BMI Levels 
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Appendices 
 

Appendix 1 
 

Let ,x tM  be the matrix of the instantaneous transition rates between different 

health states at age x and time t. The element in the ith row and jth column therefore 
indicates the transition rate that an individual aged x at time t in the ith state will move 
into the jth state instantaneously. For this particular study,  
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m m m
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Similarly, the matrix of the probability an individual aged x at time t in the ith 
state will transit into the jth state within a one-year interval can be written as: 
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Assuming the distributions of the transitions are linear with age and all transitions 
occur at exact the middle of the one-year interval, a relationship between ,x tM  and ,x tQ  

can be established, 
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where I is an identity matrix. 

The transition probabilities between specific health states can be converted as 
below, given the assumption of no recovery from disabled to non-disabled, 
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Let ,x tl denote the matrix of number of persons alive at age x and time t in 

different health states, and ,
,

,

H
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l
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Accordingly, the number of people alive one year later is  
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Next, person-years lived by people aged x alive at time t by health status can be 
estimated by 
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The cumulative persons-years lived by individuals aged x alive at time t is  
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Finally, LEND and LED as well as the total LE at age x and time t are calculated as 
below 
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Appendix 2 
 

In this paper, the association between body weight change and mortality is 

modeled in a dynamic way. Not only individuals’ body weights tend to vary over time, 

the association is also likely to be confounded or mediated by both observable and 

unobservable time-dependent confounders. For instance, the development of chronic 

diseases is possibly a consequence of prior weight gain and could lead to both subsequent 

weight loss and mortality. And the confounding caused by chronic diseases could be 

more complicated when time-dependent health-related behavior, such as smoking, 

drinking and exercise, are taken in to account. Diagram A2 demonstrates a complex 

causal pathway, given that ∆W(t) denotes the individual’s exposure (change in body 

weight) between time t and t+1, O(t) and U(t) denote all observable (e.g. diagnosed 

diseases) and unobservable confounders at time t respectively, where O(t) and U(t) 

temporally precede ∆W(t), and D stands for the final outcome (mortality). As shown in 

the diagram, one’s body weight change at a certain time point could influences his/her 

mortality through both direct and indirect causal pathways along the timeline, and this 

relation is subject to both observable and unobservable confounding from earlier time 

periods. In addition, one’s current body weight change could be influenced by the past 

changes. 

However, conventional regression approaches that estimate the direct effects of 

change in weight on mortality yield biased estimates when there are time-dependent 

confounders, such as some chronic diseases, which are influenced by previous weight 

change, even if these confounders are adjusted in regression models. Consequently, 
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adopting an appropriate model that accounts for the variations of body weight over time 

and adjusts for time-dependent confounding is essential in this study. 

Suppose the association between weight change and mortality is not biased by 

either observable or unobservable confounders, then the effects of weight change on 

mortality can be considered causal and direct. In other words, not only there is no history 

of unobservable confounders U(0), U(1), U(2), ……, U(t-1), and U(t), at each time point t, 

one’s past weight change history ∆W(1), ∆W(2), ……, ∆W (t) is also not associated with 

the history of measured confounders O(1),O(2) ……, O(t). To simplify the model, let us 

assume there is only one data point for each individual. The primary goal is to estimate 

the adjusted direct effect of experiencing a certain level of weight change (∆Wi) on 

mortality outcome (Di) for individual i after sufficiently adjusted for all confounders and 

risk factors (Oi) including health conditions and health behaviors, assuming there is no 

other unobservable confounder. In this case, the probability for individual falling into 

different weight change categories (large weight loss, small weight loss, stable weight 

change, small weight gain, and large weight gain) would be the same, as if an individual 

is assigned the amount of weight change randomly in an experiment. This being assumed, 

one can use the risk ratios to measure the casual effect of one’s weight change being at a 

certain level as opposed to being at another level on mortality. Let Di(∆w) denote the 

counterfactual mortality outcome of individual i if his level of weight change is set to 

∆Wi=∆w. The risk ratio that compares mortality for this counterfactual outcome to 

mortality observed at level ∆Wi=∆w* can be written as *
*

( ( ) 1)
( , )

( ( ) 1)
i

i

P D w
RR w w

P D w

 
  

 
, 

where ( ( ) 1)iP D w   and *( ( ) 1)iP D w  , are the probabilities that an individual dies 
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given the levels of weight change are ∆w and ∆w* respectively. This risk ratio can be 

estimated by fitting a log-linear model as below using the observed data 

0 1log[ ( 1| )]i i i iP D W w W         

where ∆wi represents the observed weight change for individual i. The parameter 

β1 gives an unbiased estimate of the direct causal effect of weight change on mortality, 

given the assumption so far is that confounders do not exist.  

However, since the association between weight change and mortality is in fact 

confounded, the above model will fail to produce an unbiased estimate and the 

probability of an individual having a certain level of weight change will be conditional on 

the confounders. To adjust the bias, a pseudo-population, in which individuals’ weight 

changes are uniformly distributed with equal probability as if they are randomly assigned, 

can be created by applying a weight that is the inverse of the probability of one’s weight 

change being at a certain level conditional on his/her vector of all confounders and other 

relevant covariates as observed in the data set, again assuming all confounders can be 

adjusted using information provided by the observational dataset and unobservable 

confounders do not exist. The weight can be expressed as 
1

( | )i
i i i i

wt
P W w O o


   

, 

where ∆wi and oi are observed weight change and observed confounders and other 

relevant covariates for individual i. This weight can be estimated from observed data 

using logistic regression for ∆W with binomial values, multinomial logistic regression for 

∆W with multi-level values, and ordinary linear regression for ∆W with continuous 

values. The corresponding function form of ∆W will be on the left-hand side of the 
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equation as the dependent variable and the vector of O will be on the right-hand side of 

the equation as a set of independent variables.  

This idea of weighting described above can be extended to a Marginal Structural 

Model (James M Robins, 1998; Robins JM, 1999)  which can be applied to longitudinal 

dataset. In essential, Marginal Structural Model (MSM) is a weighted longitudinal 

analysis. It treats the exposure/ treatment, in this case the levels of weight change, as a 

time-dependent covariate. For this study, the key idea therefore is to conduct survival 

analyses with a set of weights that have been calculated for each individual at each 

interview.  

A typical Cox proportional hazard model with time-dependent treatment variables 

but no time-dependent confounders is expressed in the form of: 

   0 1 2( | ( ), ) ( )( ( ) )h t W t V h t W t V       

Where ( )W t  represents the observed history of one’s weight change over time 

up to time t (the overbar notation is also adopted for time-dependent confounders O(t)), 

and V represents one’s observed time-independent characteristics at baseline, such as 

gender, race and age at baseline, that do not vary over time, and  0 ( )h t  is the unspecified 

underlying hazard. When time-dependent confounders are not absent, particularly when 

the time-dependent confounders are both influenced by prior weight changes and are 

predictors for the subsequent weight changes and final mortality outcome, the causal 

effect of weight change on mortality will be biased (Hernán & Robins, 2006; J M Robins 

et al., 2000). In order to correctly adjust for the time-dependent confounders and obtain 

unbiased causal effect estimates, appropriate weights need to be applied in estimating 
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parameters in the hazard function. Parameters estimated using MSM are called inverse-

probability-of-treatment-weighted (IPTW) estimators. However, because the conditional 

probability of having a certain level of weight change ( | )i i i iP W w O o     may have 

large variations when time-dependent confounders Oi are strongly associated with ∆Wi, 

large weights may be produced for some observations and make the weighted analysis 

dominated by these observations. Therefore, instead of using the inverse of the 

conditional probability of the treatment, Robins et al. (2000) proposes to use “stabilized” 

weights that can reduce the variations of the IPTW estimators by replacing the numerator, 

1, with the conditional probability of having a certain level of weight change conditional 

on weight change history and time-independent characteristics. For subject i, the 

stabilized weights at time t is  

0

( ( ) ( ) | ( 1) ( 1), )
( )

( ( ) ( ) | ( 1) ( 1), ( ) ( ))

t
i i i i i i

i
k i i i i i i

P W k w k W k w k V v
sw t

P W k w k W k w k O k o k

        


          

where k is an integer that denotes the number of corresponding time unit (day, month, 

year, etc). The maximum value of k is the integer less or equal to time t. 

( 1) ( (0), (1),..., ( 1))i i i iW k W W W k       ,represents the subject’s entire weight change 

history up to the (k-1)th time unit, and ( ) ( (1), (2),..., ( ))i i i iO k O O O k , denotes subject i’s 

entire history of time-dependent observable risk factors including time-dependent 

confounders up to the kth time unit. iV  denotes one’s time-independent characteristics at 

baseline and is contained in (1)iO . 

One special feature for longitudinal observational datasets is that not every 

subject’s final outcome is observed. Censoring by loss to follow-up often occurs when 
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the subject drops from the study or when the end of the study has been reached. In order 

to create a pseudo-population that takes into account not only confounding but also loss 

to follow-up to make the estimates of the direct causal effect unbiased, censoring has to 

be adjusted by introducing an additional set of weights. Let ( )iC k =1 indicates that the 

subject i is lost to follow-up at the kth time unit and ( )iC k =0 otherwise, the weights can 

be then expressed as: 

0

( ( ) 0 | ( 1) 0, ( 1) ( 1), )
( )

( ( ) 0 | ( 1) 0, ( 1) ( 1), ( ) ( ))

t
C i i i i i i

i
k i i i i i i

P C k C k W k w k V v
sw t

P C k C k W k w k O k o k

        


          

Finally, the two weights are multiplied together to get the final weights which will 

then be used in the models that estimate the direct effects. Hence, for subject i, the weight 

at time t is ( ) ( ) * ( )C
i i iwgt t sw t sw t . Each of the two multiplier weights can be estimated 

using pooled logistic regression (J M Robins et al., 2000) that treats each person-time unit 

as an individual observation. 

The last step is to estimate the direct effect of weight change on mortality using a 

hazard model that incorporates the above weight. However, most statistical packages for 

estimating Cox proportional model do not support weights that vary over time. One way 

to circumvent this is to apply weighted pooled logistic regression which has been proved 

to be equivalent to Cox proportional hazard model (D’Agostino et al., 1990), controlling 

for baseline hazard and baseline covariates. Let ( ) 1iD k   represents that subject i died by 

the kth time unit, and ( ) 0iD k   otherwise, the pooled logistic regression can be written 

as: 
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Logit 0 1 2[ ( ) 1 | ( 1) 0, ( 1) ( 1), ] ( ) * ( 1)i i i i i i i iP D k D k A k a k V v k A k V              

where 0 ( )k  is the unspecified baseline hazard at the kth time unit, 1  is the coefficient 

vector for the degrees of weight change, and 2 is the coefficient vector for the baseline 

covariates. The hazard ratio can be obtained by simply taking the exponent of 

corresponding coefficients. Time-dependent confounders have already contributed in 

calculating the stabilized weights and therefore are not included in the final model, in 

order to avoid the over-adjustment problem. The above models for estimating weights 

and the direct effects of weight change on mortality can be fitted with SAS Proc Genmod. 
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Table A1: Adjusted Effects of Baseline BMI and  
Weight Change in BMI Unit Over Time on Mortality 

Marginal Structural Models 

Parameter Model 1 Model 2 Model 3 Model 4 

Weight Loss 3+ Units 4.661 *** 
(3.901,5.568) 

4.646 *** 
(3.876,5.569) 

4.219 *** 
(3.494,5.093) 

3.964 *** 
(3.283,4.787) 

Weight Loss 0.5-3 Units 1.87 *** 
(1.637,2.135) 

1.824 *** 
(1.596,2.085) 

1.769 *** 
(1.542,2.031) 

1.719 *** 
(1.499,1.97) 

Weight Gain 0.5-3 
Units 

1.168  
(1.02,1.338) 

1.192  
(1.04,1.366) 

1.185 * 
(1.029,1.365) 

1.177 * 
(1.024,1.354) 

Weight Gain 3+ Units 2.021 *** 
(1.634,2.499) 

2.064 *** 
(1.666,2.558) 

1.972 *** 
(1.58,2.462) 

1.822 *** 
(1.46,2.273) 

Underweight 2.889 *** 
(2.018,4.135) 

2.934 *** 
(1.967,4.378) 

2.452 *** 
(1.598,3.765) 

2.252 *** 
(1.491,3.403) 

Overweight 0.95 . 
(0.848,1.064) 

0.84  
(0.707,0.985) 

0.901 . 
(0.797,1.017) 

0.908 . 
(0.804,1.025) 

Obese I 0.938 . 
(0.814,1.082) 

0.861  
(0.715,0.997) 

1.271 . 
(1.034,1.53) 

1.115 . 
(0.985,1.362) 

Obese II/III 1.3 ** 
(1.09,1.551) 

1.236 * 
(1.032,1.482) 

1.519 *** 
(1.26,1.832) 

1.974 * 
(1.655,2.238) 

                                                          Notes: 
Model 1: Includes only baseline weight status and time-dependent weight change. 
Model 2: Adds SES and socio-demographic covariates (both baseline and time-varying). 
Model 3: Adds confounding by time-dependent health behaviors. 
Model 4: Adds confounding by time-dependent health conditions. 
*p < .05. **p < .01. ***p < .001. 
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Diagram A1: Simplified Causal Associations between Weight Change and Mortality 
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Diagram A2: Comprehensive Causal Associations between Weight Change and Mortality 
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