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Abstract
Understanding how axon guidance receptors are activated by their extracellular ligands to regulate growth
cone motility is critical to learning how proper wiring is established during development. Roundabout
(Robo) is one such guidance receptor that mediates repulsion from its ligand Slit in both invertebrates and
vertebrates. Here we show that endocytic trafficking of the Robo receptor in response to Slit-binding is
necessary for its repulsive signaling output. Dose-dependent genetic interactions and in vitro Robo activation
assays support a role for Clathrin-dependent endocytosis, and entry into both the early and late endosomes as
positive regulators of Slit-Robo signaling. We identify two conserved motifs in Robo's cytoplasmic domain
that are required for its Clathrin-dependent endocytosis and activation in vitro, and gain of function and
genetic rescue experiments provide strong evidence that these trafficking events are required for Robo
repulsive guidance activity in vivo. Our data support a model in which Robo's ligand-dependent
internalization from the cell surface to the late endosome is essential for receptor activation and proper
repulsive guidance at the midline by allowing recruitment of the downstream effector Son of Sevenless in a
spatially constrained endocytic trafficking compartment. We then go on to provide evidence for the
placement of Robo endocytosis after the previously reported kuzbanian-mediated juxtamembrane activating
cleavage and before a newly reported inactivating presenilin-mediated transmembrane cleavage that serves to
curtail the timecourse of signaling from activated Robo.
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ABSTRACT 
 

SLIT-DEPENDENT ENDOCYTIC TRAFFICKING OF THE ROBO RECEPTOR IS 
REQUIRED FOR SON OF SEVENLESS RECRUITMENT AND MIDLINE AXON 

REPULSION 

Rebecca Kent Chance 

Greg J. Bashaw 

Understanding how axon guidance receptors are activated by their extracellular ligands 

to regulate growth cone motility is critical to learning how proper wiring is established 

during development. Roundabout (Robo) is one such guidance receptor that mediates 

repulsion from its ligand Slit in both invertebrates and vertebrates.  Here we show that 

endocytic trafficking of the Robo receptor in response to Slit-binding is necessary for its 

repulsive signaling output. Dose-dependent genetic interactions and in vitro Robo 

activation assays support a role for Clathrin-dependent endocytosis, and entry into both 

the early and late endosomes as positive regulators of Slit-Robo signaling.  We identify 

two conserved motifs in Robo’s cytoplasmic domain that are required for its Clathrin-

dependent endocytosis and activation in vitro, and gain of function and genetic rescue 

experiments provide strong evidence that these trafficking events are required for Robo 

repulsive guidance activity in vivo.  Our data support a model in which Robo’s ligand-

dependent internalization from the cell surface to the late endosome is essential for 

receptor activation and proper repulsive guidance at the midline by allowing recruitment 

of the downstream effector Son of Sevenless in a spatially constrained endocytic 

trafficking compartment. We then go on to provide evidence for the placement of Robo 

endocytosis after the previously reported kuzbanian-mediated juxtamembrane activating 

cleavage and before a newly reported inactivating presenilin-mediated transmembrane 

cleavage that serves to curtail the timecourse of signaling from activated Robo. 
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PREFACE 

This dissertation is an original intellectual product of the author, R. Chance. All 

experiments were performed by the author except those at the beginning of Chapter 3 

performed by Hope Coleman and Greg Bashaw (Coleman Labrador Chance & Bashaw 

2010) clearly demarcated in the figure legend that are included to introduce the rationale 

behind the experiments performed in the rest of the Chapter 3. 
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CHAPTER 1: Introduction 
The complex wiring patterns of the adult central nervous system are established 

by the stepwise navigation of growth cones and migrating cells through a series of 

choice points during development. At each choice point, the complement of guidance 

receptors expressed on the growth cone’s plasma membrane determines which of the 

cues in the extracellular environment will inform the cell’s guidance decision as it 

navigates toward its eventual synaptic partner (Yu and Bargmann 2001; Dickson 2002; 

Huber et al. 2003; Garbe and Bashaw 2004). Understanding how an individual growth 

cone deploys its guidance receptors to make specific guidance decisions is critical to 

learning how proper wiring is established in development.  

Researchers have discovered several phylogenetically conserved families of 

guidance cues and receptors, including (a) semaphorins (semas) and their plexin (Plex) 

and neuropilin receptors (Pasterkamp and Kolodkin 2003) , (b) netrins and their deleted 

in colorectal carcinoma (DCC) and UNC5 receptors (Kennedy 2000), and (c) ephrins 

and their Eph receptors (Kullander and Klein 2002) (Figure 1.1). More recently, 

additional protein families previously recognized for other developmental functions have 

been implicated in growth cone guidance including sonic hedgehog (Shh) (Charron et al. 

2003), bone morphogenetic proteins (BMPs) (Butler and Dodd 2003), and Wingless-type 

(Wnt) proteins (Lyuksyutova et al. 2003; Yoshikawa et al. 2003). 

Roundabout (Robo) receptors comprise another family of highly conserved axon 

guidance receptors that mediate repulsion in response to their Slit ligands during 

neuronal development (Kidd et al. 1998a; Brose et al. 1999a; Kidd et al. 1999a; Wang et 

al. 1999b). Robo receptors have also been implicated in genome-wide association 

studies with the pathogenesis of several human diseases including autism and 
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schizophrenia (Anitha et al. 2008; Potkin et al. 2009c), and they are thought to be 

causatively linked to dyslexia and periventricular nodular heterotopia (Hannula-Jouppi et 

al. 2005; Chang et al. 2007; Bates et al. 2011), suggesting roles in guidance of more 

diverse axonal projections in the human cortex that are yet to be characterized. 

In both invertebrates and vertebrates, Slits serve as repulsive cues to their Robo 

receptors by demarcating regions into which axons cannot maintain their exploratory 

projections. In the case of the Drosophila embryonic ventral nerve cord (VNC), Slit is 

expressed by midline glia, which creates a barrier for axonal projection for any growth 

cones expressing Robo at their surface (Kidd et al. 1998a; Kidd et al. 1999b).  In robo 

mutants normally ipsilaterally-projecting (ipsilateral or post-crossing commissural) axons 

ignore the presence of this repulsive cue and project into the midline and even circle 

there in namesake roundabouts (Seeger et al. 1993).  Repulsive guidance can also 

instruct axonal projections by corralling fascicles into relative valleys of Slit expression- 

mouse callosal axons project between the indusium griseum and the glial wedge 

structures (Shu and Richards 2001; Lopez-Bendito et al. 2007)- or by directing a 90° turn 

in bifurcating branches of sensory axons into the dorsal funiculus (Ma and Tessier-

Lavigne 2007).  Analogously, there exists a relative valley in Slit expression in medio-

lateral axis of the Drosophila VNC through which a sizeable set of longitudinal fascicles 

project (Johnson et al. 2004).  

The mechanism by which Slit triggers repulsion at the cellular level is not 

completely understood, but must involve an initial mis-projection into Slit-expressing 

regions in order to sense and then respond to the presence of the repulsive cue. One 

growth cone phenotype resulting from loss of Robo is defective filopodial retraction from 

the Slit-containing embryonic midline in Drosophila, resulting in stabilization of 
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contralateral filopodial projections (Murray and Whitington 1999).   Similarly, loss of 

robo2 (astray) in zebrafish leads to abnormal stabilization of mis-projecting growth cones 

in the ventral forebrain, ‘errors’ that are normally corrected in wild-type (Hutson and 

Chien 2002).  The error-correction implicit in repulsive guidance from an initially 

adhesive protein-protein interaction requires some sort of physical severing which has 

been ascribed to juxtamembrane cleavage, endocytosis, or both (Hattori et al. 2000; 

Marston et al. 2003; Zimmer et al. 2003; Cowan et al. 2005; Janes et al. 2005; Lin et al. 

2008a). 

Regulated Endocytosis and Axon Guidance Receptor Function 

Regulating the delivery of guidance receptors to the growth cone plasma 

membrane can have profound influences on axon growth and guidance; therefore, it is 

not surprising that the regulation of receptor expression at the cellular level is not 

confined strictly to surface expression, as reviewed in (O’Donnell Chance and Bashaw 

2009), but also includes regulated removal by endocytosis. In several cases, receptor 

endocytosis appears to be an obligate step in receptor activation that is evoked by ligand 

binding, whereas other examples point to the modulation of guidance responses by 

receptor endocytosis that is triggered by an independent pathway. Here I will briefly 

consider a few examples of endocytosis as a prerequisite for receptor signaling; in 

particular, I discuss the role of the Rac specific GEF Vav2 in the regulation of Eph 

receptor endocytosis. In addition, I will highlight the role of protein kinase C (PKC) 

activation in the regulation of responses to netrin through the specific endocytosis of the 

UNC5 receptor (Figure 1.2).  

Ephrin ligands and Eph receptors contribute to the guidance of retinal ganglion 

cell (RGC) axons in the visual system; specifically, EphB receptor mutations in mice 
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result in a reduction in the ipsilateral projection to the dorsal lateral geniculate nucleus. 

Disruption of vav-2 and vav-3, members of the Vav family of RacGEFs, leads to similar 

defects in the targeting of ipsilateral RGC axons in mice (Cowan et al. 2005). Unlike 

wild-type RGCs, growth cones of RGCs cultured from vav-deficient mice do not collapse 

in response to ephrin. Surface labeling of Ephrin in vav-deficient RGC growth cones 

reveals a selective deficit in Ephrin ligand endocytosis in response to pre-clustered 

ephrin- A1 treatment, suggesting that endocytosis of activated Eph receptors at the 

growth cone is necessary to allow for proper forward signaling, leading to growth cone 

retraction (Cowan et al. 2005) (Figure 1.2B). A similar dependency on endocytosis to 

trigger axon retraction is observed in neurons responding to sema 3A, where the L1 

IgCAM, a component of the sema receptor complex, mediates endocytosis of the sema 

3A holoreceptor in response to ligand binding (Castellani et al. 2004).  

In addition to contributing to receptor signaling, endocytosis can also modulate 

axon responses by regulating which receptors are expressed at the surface of the 

growth cone. This type of mechanism is best exemplified by regulated endocytosis of the 

repulsive netrin receptor UNC5 in vertebrate neurons. Here, activation of protein kinase 

C (PKC) triggers the formation of a protein complex including the cytoplasmic domain of 

UNC5H1, protein interacting with C-kinase 1 (Pick1), and PKC and leads to the specific 

removal of UNC5H1 (but not DCC) from the growth cone surface; reducing surface 

levels of UNC5H1 correlates with the inhibition of the netrin-dependent collapse of 

cultured hippocampal growth cones (Williams et al. 2003). Furthermore, PKC activation 

leads to colocalization of UNC5A with early endosomal markers, supporting the idea that 

the observed inhibition of growth cone collapse is due to UNC5A endocytosis (Bartoe et 

al. 2006). Thus, PKC-mediated removal of surface UNC5 provides a means to switch 

Netrin responses from repulsion, mediated by either UNC5 alone or an UNC5-DCC 
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complex, to attraction mediated by DCC. How then is this switch activated, or which 

signals lead to the activation of PKC? Interestingly, recent evidence supports the model 

that the G protein-coupled Adenosine 2B (A2b) receptor is a likely mediator of PKC 

activation because activation of A2b leads to the PKC-dependent endocytosis of UNC5 

(McKenna et al. 2008). A2b is a Netrin receptor that, together with DCC, appears to be 

required to mediate axon attraction (Corset et al. 2000), although this proposal has been 

quite controversial, and other evidence indicates either that A2b plays no role in Netrin 

signaling (Bouchard et al. 2004, Stein et al. 2001) or that its role in Netrin signaling is to 

modulate Netrin responses (Shewan et al. 2002). In the context of UNC5 regulation, A2b 

acts independently of Netrin, and its ability to regulate UNC5 surface levels supports its 

role as a potent modulator of Netrin responses (Figure 1.2A). 

Another piece of evidence pointing to the importance of control over the surface 

of guidance receptors comes from the regulation over Robo surface levels provided by 

the fly-specific protein Commisureless, and the analogous vertebrate protein Rig-

1/Robo3. Several lines of evidence, including subcellular localization experiments and 

transgenic expression of mutant forms of comm, indicate that Comm can recruit Robo 

receptors directly to endosomes for degradation before they ever reach the cell surface 

and that this sorting function is important for regulating midline repulsion (Keleman et al. 

2002) (Figure 1.2C). The endosomal sorting model has been extended to show that 

Comm can prevent Robo delivery to the growth cone surface in living embryos (Keleman 

et al. 2005). Expression of green fluorescent protein (GFP) tagged Robo in sensory 

axons provides investigators with live visualization of the anterograde axonal transport of 

Robo positive vesicles. When Comm is genetically introduced into these Robo-GFP-

positive neurons, the transport of Robo positive vesicles is almost completely abolished, 

providing strong evidence for the in vivo significance of Comm-directed endosomal 
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targeting of Robo (Keleman et al. 2005). 

Are there vertebrate Comm homologs that serve similar functions during 

commissural axon guidance in the spinal cord, or instead do other molecules play this 

role? So far, no vertebrate Comm proteins have been found; however, compelling 

genetic evidence indicates that another molecule may have an analogous function in the 

spinal cord. Rig-1/Robo3, a divergent vertebrate-specific Robo family member, is 

required in pre-crossing commissural neurons to down-regulate the sensitivity to midline 

Slit proteins, although this function is achieved by a distinct mechanism (Sabatier et al. 

2004).  

Based on these findings suggesting a role for endocytosis in modulating axon 

guidance receptor activity and signaling, we could envision at least two plausible models 

for how Robo receptor endocytosis might regulate axon repulsion (Figure 1.3).  If 

endocytosis’ dominant contribution to the Slit/Robo pathway is to modulate the amount 

of Robo receptor on the surface of the growth cone, as reported previously by diversion 

of Robo from the biosynthetic pathway (Keleman et al. 2002; Keleman et al. 2005), a 

reduction in receptor endocytosis would be predicted to lead to increased levels of 

surface receptor and more robust repulsive signaling.  Alternatively, if Robo receptor 

endocytosis is an obligate step in receptor activation, as has been observed in the case 

of Wingless signaling (Seto and Bellen 2006), preventing or reducing Robo endocytosis 

would result in impaired Slit-Robo signaling. 

In Chapter 2 we identify a novel mechanism that is required for Robo receptor 

activation and Robo-dependent axon repulsion in vivo. Using a combination of molecular 

genetic and cell biological approaches, we define a role for Slit-dependent trafficking of 

Robo from the plasma membrane to the early and late endosomes in contributing to 
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Robo activation and signaling.  In previous work, endocytic trafficking has been shown to 

modulate axon guidance responses by altering available surface pools of axon guidance 

receptors. Our observations indicate that rather than acting to modulate responses by 

regulating surface levels, endocytosis of the Robo receptor itself is a key component of 

receptor activation and precedes the recruitment of the Ras/Rho GEF Son of Sevenless, 

a key downstream signaling effector, to the receptor cytoplasmic domain. 	
  

 

Regulated Proteolytic Processing and Axon Guidance 

 Another mode of regulation contributing to axon guidance is that provided by 

proteolytic processing to both guidance ligands and receptors, which can have profound 

impacts on path finding. A role for proteolysis in axon guidance was supported by a 

number of early studies demonstrating that growth cones secrete proteases, and 

investigators proposed that cleavage of extracellular matrix components is required to 

advance through the extracellular environment (Krystosek & Seeds 1981, Schlosshauer 

et al. 1990). Later, genetic screens for defects in axonal navigation at the midline in 

Drosophila, and subsequent cloning and characterization of mutated genes, implicated 

the Kuzbanian ADAM family transmembrane metalloprotease in the regulation of axon 

extension and guidance at the midline (Fambrough et al. 1996). Several additional 

studies have implicated ADAM metalloproteases as well as matrix metalloproteases in 

contributing to axon guidance in vivo in both invertebrate and vertebrate nervous 

systems (Chen et al. 2007, Hehr et al. 2005). Here, I focus our discussion on emerging 

links between these proteases, in particular Kuzbanian/ADAM10, and the regulated 

proteolysis of axon guidance receptors and their ligands. 

 Several studies have implicated Kuzbanian/ ADAM10 activity in the signaling 
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pathways of guidance receptors. For example, in Drosophila, mutations in kuzbanian 

(kuz) exhibit dose- dependent genetic interactions with Slit, the midline repulsive ligand 

for Robo receptors. Specifically, ectopic midline crossing of ipsilateral interneurons, a 

hallmark of defective midline repulsion, is observed in kuz zygotic mutant embryos and 

in embryos where both slit and kuz activity are partially reduced. This dose-dependent 

interaction supports the idea that Kuz may be a positive regulator of Slit-Robo signaling 

(Schimmelpfeng et al. 2001). Antibody staining for Robo1 in kuz mutants reveals that the 

midline phenotype is accompanied by a failure to exclude Robo1 protein expression 

from the midline-crossing portions of axons, which suggests that kuz activity may be 

necessary for exclusion from, but more likely clearance of Robo from, axons (Coleman  

Labrador Chance & Bashaw 2010). Galko & Tessier-Lavigne (2000) observed a similar 

effect on receptor expression in the context of metalloprotease-dependent ectodomain 

shedding of DCC. Specifically, blocking the function of metalloprotease activity results in 

enhanced DCC receptor expression at the membrane, suggesting that proteolytic 

cleavage regulates clearance of receptors from the plasma membrane. The outcome of 

preventing metalloprotease function in these two examples is opposite: Elevated levels 

of DCC potentiate DCC’s ability to mediate Netrin-induced axon outgrowth, whereas 

Robo expression in axon commissures evidently reflects impaired receptor function. 

Together, the alteration in Robo receptor expression and the reduction in midline 

repulsion in kuz mutants led to the intriguing conclusion that Kuz likely regulates 

guidance by regulating the cleavage of Robo (Figure 1.3, Coleman et al 2010, Chapter 

3). 

 Investigators have detailed more direct links between Kuz/ADAM10 and guidance 

molecule cleavage of Eph receptors and ephrin-A2 ligands. Eph receptors and their 

ephrin ligands are both capable of transmitting signals in the cell in which they are 
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expressed: Eph receptor signaling is termed forward signaling, and ephrin ligand 

signaling is termed reverse signaling (reviewed in (Egea and Klein 2007)). ADAM10 

forms a stable complex with ephrin-A2, and upon EphR interaction with ephrin-A2, the 

resulting ligand-receptor complex is clipped by selective ADAM10-dependent cleavage 

of ephrin-A2 (Hattori et al. 2000) (Figure 1.4). This model has been extended through 

the study of additional EphR/ephrin receptor/ligand pairs, and Janes et al. (2005) have 

beautifully elucidated the molecular and structural basis for how cleavage events are 

restricted to only those ephrin ligands that are engaged by receptors. Ligand/receptor 

binding and formation of an active complex expose a new recognition sequence for 

ADAM10, resulting in the optimal positioning of the protease domain with respect to the 

substrate (Janes et al. 2005). The ligand-dependence of the cleavage event provides an 

elegant explanation for how an initially adhesive interaction can be converted to 

repulsion and offers an efficient strategy for axon detachment and attenuation of 

signaling. Emerging evidence indicates that the matrix metalloprotease family can play a 

similar role in converting ephrinB/EphB adhesion into axon retraction by specific 

cleavage of the EphB2 receptor (Lin et al. 2008b) and the EphA4 receptor (Gatto et al. 

2014). Thus, both ephrin ligands and Eph receptors can be substrates for regulated 

proteolysis, and these proteolytic events appear to be critical in mediating axon 

retraction.  

 

Processive Proteolysis: Gamma-Secretase and Guidance Receptors 

Kuzbanian (Kuz) was originally identified in Drosophila for its role in regulating Notch 

signaling during neurogenesis (Rooke et al. 1996; Pan and Rubin 1997a). Kuz-directed 

cleavage of Notch releases the extracellular domain and triggers the subsequent 

cleavage and release of the Notch intracellular domain (ICD) by the gamma-secretase 
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complex. This second cleavage event releases Notch ICD from the membrane, allowing 

it to translocate to the nucleus where it acts as a transcriptional regulator (Mumm et al. 

2000). This well-characterized model of processive proteolytic cleavage of Notch is 

becoming increasingly relevant to an expanding list of type I transmembrane receptors, 

including axon guidance molecules (Beel and Sanders 2008). More specifically, 

evidence is mounting for a common regulatory mechanism for DCC and a number of 

ephrin ligands in which metalloprotease- mediated ectodomain shedding is followed by 

intra-membrane gamma-Secretase cleavage (Figure 1.4). These sequential cleavage 

events produce an ectodomain fragment which is shed into the extracellular space and a 

C- terminal fragment (CTF) that is subsequently cleaved within the membrane to release 

the ICD (Selkoe and Wolfe 2007). 

 In the case of DCC, metalloprotease- dependent proteolytic fragments are 

detected in endogenous tissue and explant cultures (Galko and Tessier-Lavigne 2000; 

Bai et al. 2011). Furthermore, detection of DCC fragments in mouse brain lysates that 

correspond in size to fragments engineered to estimate the size of presumptive DCC 

CTF is enhanced in Presenilin-1 (PS1) knockout mice (Taniguchi et al. 2003; Parent et 

al. 2005). Accordingly, in primary neural cultures from PS1 mutant mice, accumulation of 

surface DCC is enhanced. The functional significance of these processing events is 

underscored by the fact that accumulation of transmembrane forms of DCC in neuronal 

cells transfected with both full-length DCC and DCC-CTF is correlated with enhanced 

neurite outgrowth in the presence of a gamma-Secretase inhibitor. This observation 

suggests a role for Presenilin-mediated cleavage of DCC- CTF in attenuating the 

intracellular signaling process that drives neurite outgrowth (Parent et al. 2005). 

Inhibiting gamma-Secretase activity by either PS1/columbus mutants or by direct 

application of a gamma-secretase inhibitor to mouse motor neuron explant cultures is 
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sufficient to confer Netrin-dependent outgrowth (Bai et al. 2011).  This effect is likely 

mediated by the DCC-CTF fragment as membrane-tethering an ICD construct with a 

myristoylation sequence, distinguishing it from soluble ICD, confers responsiveness to 

midline Netrin, as assayed by midline crossing in electroporated chick embryonic neural 

tube.  That membrane-tethering is required for this effect suggests that the mechanism 

of Netrin-attraction depends on local signaling at the plasma membrane. DCC CTF’s 

mechanism of action was further attributed to Robo silencing by the authors but may in 

fact simply reflect an enhancement of DCC signaling by addition of the simulated 

product of an activating cleavage, as the authors also show that Netrin treatment 

induces the formation of CTF.  Further experiments would be required to elucidate 

whether Presenilin activity in fact regulates DCC which directly regulates Robo as 

opposed to only modulating the Netrin/DCC pathway signal strength. In addition to DCC, 

several ephrin ligands and Eph receptors appear to undergo a similar ADAM10/gamma-

secretase sequential proteolysis (Georgakopoulos et al. 2006; Tomita et al. 2006; Litterst 

et al. 2007). As in the case of DCC, in vitro evidence supports the idea that these 

cleavage events lead to functional consequences for ephrin-EphR- dependent process 

extension (Figure 1.4C,D). 

What is the in vivo significance of these processing events, and what is the fate 

of the released extracellular and ICD domains? Although in vivo evidence supporting 

physiological roles for these gamma-Secretase-directed cleavage events has yet to 

emerge, several observations from in vitro studies hint at potentially important regulatory 

activities of released receptor ICDs. In the case of Notch and APP, the ICD generated by 

gamma-Secretase cleavage is translocated to the nucleus to control gene transcription 

(Selkoe & Wolfe 2007). A chimeric version of DCC with a Gal4 DNA- binding domain 

inserted in its intracellular domain can initiate transcription in a gamma-secretase-
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dependent manner, suggesting that like Notch ICD, DCC-ICD could be acting as a 

transcriptional regulator in mammalian cells (Taniguchi et al. 2003). In the case of 

Ephrin’s ICD, in vitro evidence supports an additional model in which the released ICD 

can bind to and activate Src family kinases, thereby contributing to ephrin-dependent 

cytoskeletal rearrangement (Georgakopoulos et al. 2006) (Figure 1.4D). An alternative 

possibility is that these cleavage events represent a mechanism to limit the duration of 

receptor signaling because once the ICD is released from the full-length receptor, the 

spatial regulation of signaling conferred by directional detection of ligand would 

presumably be rapidly lost. If and how these processing events contribute to in vivo 

receptor function will be an important area of future research. 

In Chapter 3 we provide genetic interactions and in vitro activation assay 

evidence in support of a model in which a second transmembrane cleavage by gamma-

Secretase is required for the termination of signaling from activated Robo.  Like the 

proteolytic cascades described here, the second cleavage likely depends on the first 

juxtamembrane, activating cleavage of Robo by the ADAM10 Kuzbanian (Coleman et al. 

2010), which I briefly review for the purpose of highlighting my contributions and the 

motivation for having pursued evidence for a second cleavage of Robo. Finally I provide 

preliminary evidence for an inactivating, transmembrane cleavage by gamma-Secretase 

that serves to curtail the signaling from activated and likely internalized Robo receptor. 
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Figure 1.1: A diverse array of axon guidance signaling molecules competent to be 
expressed on the growth cone plasma membrane 
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Figure 1.1: A diverse array of axon guidance signaling molecules competent to be 
expressed on the growth cone plasma membrane 

While navigating through each choice point on the path to its eventual synaptic partner, 

the complement of guidance receptors expressed on the growth cone’s plasma 

membrane determines which of the cues in the extracellular environment will inform the 

cell’s guidance decision. Here I’m showing you four conserved families of guidance 

receptors and their ligands – Netrin Unc5 and DCC, Ephrin and Eph, Semaphorin Plexin 

and Neuropilin and the pair I’ll be focusing on in this document- the repulsive guidance 

receptor Roundabout (Robo) that mediates repulsion from its ligand Slit in both 

invertebrates and vertebrates.  Control over the combinatorial array of the illustrated 

guidance molecules, and others, is by definition an important biological process, and 

therefore likely to be subject to regulation. 
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Figure 1.2: Endocytic trafficking modulates growth cone surface receptor 
availability   
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Figure 1.2: Endocytic trafficking modulates growth cone surface receptor 
availability   

A: Adenosine2b receptor (A2b) activity leads to PKC-dependent endocytosis of UNC5, 

which requires a physical interaction between PKC, Pick1, and the cytoplasmic domain 

of UNC5. This change in receptor composition at the plasma membrane leads to a 

switch in responsiveness to netrin from repulsion mediated by UNC5 alone, or by an 

UNC5/DCC complex, to attraction mediated by DCC. N, netrin. B: The Vav family of Rac 

GEFs is required for endocytosis of ephrin ligand (and presumedly Eph receptor in 

complex) in retinal ganglion cell growth cones. Vav2 is recruited to the ephrin-stimulated 

juxta-membrane phosphorylated tyrosine of EphA and EphB receptors and then 

stimulates endocytosis. This endocytotic event is an obligate step in the forward 

signaling leading to growth cone retraction or repulsion. C: Diversion of Robo from 

growth cone delivery to endosomal compartments following biosynthesis in the Trans-

Golgi Network is controlled by Commissureless, which negatively regulates the amount 

of Robo competent to respond to Slit on the growth cone surface. 
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Figure 1.3: A dichotomous model for how endocytic trafficking might modulate 
Robo signaling in the growth cone  
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Figure 1.3: A dichotomous model for how endocytic trafficking might modulates 
Robo signaling in the growth cone   

 

If endocytosis regulates our ligand-receptor pair of interest Slit-Robo, we envisioned that 

this could occur either by contributing to surface occupancy levels before ligand-binding 

(A), or be an active step in signaling (B). In the first case, endocytosis would remove a 

portion of the total pool of Robo on the growth cone surface, which would in turn reduce 

the magnitude of repulsion upon Slit binding, thereby negatively regulating repulsive 

signaling. Endocytosis that occurs as part of Robo’s signaling mechanism would instead 

positively regulate repulsive guidance.   
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Figure 1.4: Regulated proteolysis contributes to guidance molecule function 
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Figure 1.4: Regulated proteolysis contributes to guidance molecule function 

A: Processive proteolysis of a prototypical type I transmembrane (TM) protein, such as 

Notch or APP. Upon ligand-binding, cleavage by an ADAM10 in the juxta-membrane 

region causes release of an N-terminal fragment into the extracellular space 

(ectodomain) and generates a C-terminal fragment (CTF) with a small extracellular 

stub. A second, constitutive cleavage by the gamma-Secretase complex within the plane 

of the plasma membrane releases the intracellular domain (ICD). In the case of Notch, 

the ICD translocates to the nucleus, where it regulates transcription. B: Regulated 

proteolysis of DCC occurs by ADAM10-mediated creation of a CTF, followed by gamma-

secretase-mediated intramembraneous cleavage releasing DCC ICD. This ICD is 

competent to translocate to the nucleus when fused to Gal4. The cleavage event by 

ADAM10 leads to attenuation of neuritogenesis in vitro. C: Following ligand-receptor 

complex formation, ADAM10 cleaves the ephrin-A5 ligand. This regulated proteolytic 

event leads to release from the initial cell-cell adhesion, allowing for growth cone 

retraction, and is necessary for the transduction of the EphA3 forward signal. D: 

Processive cleavage in the ephrinB/ephB system indicates that the released ephrinB 

ICD may activate SRC-family kinases to contribute to reverse signaling. On the other 

hand, cleavage of the EphB2 receptor, in this case by matrix metalloproteases, is 

required for activation in vitro. E: Kuzbanian acts positively in the Slit-Robo signaling 

pathway. On the basis of genetic observations and the abnormal presence of Robo 

protein on the commissural portions of axons in kuz mutants, we postulate that Kuz 

cleaves Robo to regulate receptor activity. 
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CHAPTER 2: Slit-dependent endocytic trafficking of the Robo receptor is 
required for Son of Sevenless recruitment and midline axon repulsion 

Introduction 
Endocytosis in the growth cone has been implicated in the plasma membrane 

dynamics necessary for such responses as collapse (Jurney et al. 2002; Castellani et al. 

2004; Cowan et al. 2005; Piper et al. 2006), or, when applied asymmetrically, turning 

(Hines et al. 2010; Tojima et al. 2010; Onishi et al. 2013).  Endocytosis has also been 

implicated in the control over the complement of guidance receptors expressed on the 

growth cone surface, thereby fine-tuning sensitivity to extracellular cues (Williams et al. 

2003; Bartoe et al. 2006; O'Donnell et al. 2009).  Endocytic trafficking of Robo by 

Commissureless has also been demonstrated to negatively regulate delivery to the 

growth cone surface (Keleman et al. 2002; Keleman et al. 2005).  Endocytic trafficking of 

guidance receptors might serve not only to control surface receptor levels, but also to 

gate their activation once inside the cell. Evidence for this idea comes from the 

correlation between a requirement for the RhoGEFs vav2 and vav3 in both Ephrin 

endocytosis and proper retinogeniculate axon targeting (Cowan et al. 2005), as well as 

the correlation between Rac activity in EphA receptor endocytosis and retinocollicular 

targeting (Yoo et al. 2011).  Whether receptor endocytosis represents a general 

mechanism to control activation of repulsive guidance receptor signaling and whether 

the transit of internalized guidance receptors through distinct endocytic compartments is 

required for in vivo signaling is not known. 

In this study, we identify Clathrin-dependent endocytosis of the Robo receptor as 

an obligate step in receptor activation and repulsive signaling.  We present evidence that 

it is trafficking through endocytic compartments - following ligand-binding on the surface 

of the cell - that is required for receptor activation. We identify - with subcellular 
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resolution – the early and late endosomes as compartments from which Robo signals, 

and identify the sequence motifs in Robo’s C-terminus that are required for its Slit-

dependent internalization.  Finally, we show that Slit-dependent endocytosis is required 

for both in vitro recruitment of the Ras/Rho GEF Son of Sevenless (Sos), a downstream 

effector of Robo repulsive signaling and for Robo-mediated midline repulsion in vivo. 

 

Endocytic trafficking genes genetically interact with slit and robo 
Based on previous findings suggesting a role for endocytosis in modulating axon 

guidance receptor activity and signaling, we could envision at least two plausible models 

for how Robo receptor endocytosis might regulate axon repulsion.  If endocytosis 

modulates the amount of Robo receptor on the surface of the growth cone, a reduction 

in receptor endocytosis would be predicted to lead to increased levels of surface 

receptor and more robust repulsive signaling.  Alternatively, if Robo receptor endocytosis 

is an obligate step in receptor activation, preventing or reducing its endocytosis would 

result in impaired Slit-Robo signaling. To test which, if either, of these functions 

endocytosis might contribute to Slit-Robo signaling, we first sought genetic evidence 

implicating endocytic trafficking in midline axon repulsion.  We examined an ipsilateral 

subset of axons whose projection patterns depend on Robo’s repulsive response to Slit. 

In robo mutants the FasII-positive fascicles invariably collapse and circle at the midline.  

Reducing slit and robo gene dose by half in heterozygous slit, robo/+ embryos results in 

a partial loss of repulsion, which represents a sensitized background in which we can 

detect both suppressors and enhancers (Fig. 1).  We, and others, have used this 

sensitized genetic background to uncover additional genes that contribute to midline 

repulsion (Fan et al. 2003; Hsouna et al. 2003; Hu et al. 2005; Coleman et al. 2010).  In 

addition to offering a sensitive readout for alterations in midline repulsion, this strategy 



31	
  
	
  

allows us to detect dominant genetic interactions, which avoids potential complications 

from removing all endocytic gene function, which would be predicted to have broad and 

early developmental defects.  

We screened mutants in known regulators of endocytosis for genetic interactions 

with slit and robo, including mutations in genes involved in (1) Clathrin-dependent 

endocytosis- alpha-adaptin and endophilinA -, (2) entry into the early endosome –rab5- 

and (3) entry into the late endosome- rab7. In these experiments, we detect genetic 

enhancement by endocytic trafficking genes, supporting the model in which endocytosis 

serves as a positive regulator of slit-robo midline repulsion.  Removing one copy of α-

adaptin and endophilinA- genes involved in cargo loading and formation of clathrin 

coated pits (Gonzalez-Gaitan and Jackle 1997; Guichet et al. 2002) – enhances the 

number of crossing errors compared to slit, robo/+ heterozygotes (Fig. 1B-D).  Removing 

one copy of either rab5, which regulates entry into the early endosome, or rab7, which 

regulates entry into the late endosome also enhances ectopic crossing (Fig. 1E, F). In 

order to corroborate these findings, we tested for genetic interactions between the 

mutant alleles of endocytic trafficking genes and slit in another, more restricted subset of 

axons (Fig. 2A).   Just like the FasII+ subset of axons, the normally ipsilateral Apterous+ 

(Ap) axons are sensitive to partial loss of repulsion; a loss of one copy of slit alone 

induces ectopic crossing events in 11% of embryonic segments (Fig. 2B).  Inhibiting 

Clathrin-dependent endocytosis in this sensitized background by removing one allele of 

α-adaptin or endophilinA enhances the frequency of ectopic crossing events (Fig. 2F).  

Removing one copy of rab5 or rab7 also enhances ectopic crossing errors. These 

genetic interactions suggest that trafficking from the plasma membrane, and into the 

early and late endosome positively regulate repulsive midline guidance.  Together these 
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observations are consistent with endocytosis contributing to receptor activation, as 

opposed to a modulation of surface levels available to bind Slit.  

To determine whether the endocytic trafficking events relevant for midline 

guidance are occurring in neurons, we mis-expressed Dominant-Negative (DN) 

transgenes to inhibit components of the endocytosis machinery in the Ap neurons.  

Ectopic expression of DN forms of shibire, Drosophila Dynamin, (to block scission of 

endocytic vesicles (van der Bliek et al. 1993; Moline et al. 1999)), Rab5 and Rab7 (to 

prevent entry into early and late endosomes, respectively), but not Rab4 and Rab11 (to 

prevent entry into the recycling endosome), results in enhancement of the ectopic 

crossing defects that are observed in slit heterozygotes (Fig2C-F).  These findings are 

consistent with a model in which endocytic trafficking in neurons is contributing to Slit-

Robo mediated repulsion.  Further, the ectopic crossing events caused by expressing 

ShiDN or Rab5DN in the Ap axons in slit heterozygotes are fully rescued by increasing 

signaling of the Robo pathway by co-expression of a wild type Robo transgene 

(Supplemental Fig. S1A): an observation that is consistent with a specific requirement 

for endocytic regulation during Slit/Robo repulsion. Taken together, these data are 

consistent with a model in which endocytic trafficking from the plasma membrane into 

the early and late, but not the recycling endosome of neurons positively regulates Robo-

mediated midline repulsion.   

However these interactions alone cannot distinguish between the possibilities of 

endocytosis positively regulating repulsion from the midline, or negatively regulating 

attraction to the midline.  We directly tested the latter hypothesis by assaying whether 

reducing the dosage of endocytic trafficking genes could enhance the ectopic crossing 

errors induced by enhanced midline attraction resulting from ectopic expression of the 
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attractive guidance receptor Frazzled.  We detect no statistically significant difference 

between the observed crossing frequency and the predicted percentage crossing 

frequency from an additive interaction (Supplemental Fig. S1B), suggesting that 

endocytosis is not negatively regulating attractive guidance.  These observations further 

support the interpretation that disrupting endocytosis is specifically affecting midline 

repulsion.  

Clathrin-dependent endocytosis from the cell surface through the early and late 
endosome positively regulate Robo signaling in vitro 

Our genetic interaction data are consistent with endocytosis in neurons positively 

regulating Slit/Robo-mediated repulsive guidance, but they do not provide insight into the 

cell and molecular mechanism.  In order to test whether this positive regulation of 

repulsive signaling is due to endocytosis of the Robo receptor itself, we assayed whether 

manipulations to Robo’s capacity to undergo endocytosis would affect its signaling.  

Using sequence alignment with known binding motifs to AP-2, the Clathrin adaptor 

complex expressed specifically on the surface of cells, we identified two tyrosine-based 

motifs in Robo’s C-terminus that are both conserved in human Robo sequence and 

predicted to be required for loading of Robo into Clathrin-coated pits - (1) YLQY, of the 

type YXXΦ (Ohno et al. 1995), and (2) YQAGL, like the tyrosine containing sorting 

signals in the epidermal growth factor receptor (EGFR) and L1/NgCAM (Sorkin et al. 

1996; Wisco et al. 2003) (Supplemental Fig. S2J).  If Robo’s trafficking through the 

endocytic pathway is required for its repulsive response to Slit binding, then we would 

predict that both reducing Shibire function, and disrupting Robo’s ability to be loaded into 

Clathrin-coated pits would disrupt Robo signaling. 

To explore these possibilities, we developed an in vitro system to determine 

whether endocytosis of the Robo receptor can occur in response to Slit, and whether this 
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process contributes to receptor signaling. Drosophila embryonic cells transfected with 

Robo that are bath treated for 10 minutes with Slit-conditioned media exhibit a spreading 

behavior, forming elaborate branched structures (Fig. 3A).  In contrast, cells transfected 

with Robo and treated with CM from cells expressing empty vector show no such 

response (Fig. 3 and Supplemental Fig. S2B, S4A, B). We have quantified this 

spreading behavior in two ways- first, we compute the total area of each cells’ processes 

as a number of pixels, and, average across many cells to get a histogram displaying 

Average Process Area as a function of transfected Robo and type of CM treatment (Fig. 

3D).  To characterize the branching of processes in Slit-treated cells, we also performed 

Sholl analyses to compute the complexity of a cell’s process field as a function of its 

radius starting after the cell cortex. These analyses are graphically displayed as the 

average Sholl profile of many cells treated with Slit CM (Fig. 3D). 

To assay whether the observed process elaboration behavior is indeed a readout 

of Robo activation in response to Slit we tested the following negative control variants of 

Robo: 1) deletion of the ectodomain (RoboΔEcto (Supplemental Fig. S2A’), 2) deletion of 

the first immunoglobulin domain (RoboΔIg1, Fig3B), the minimal region that interacts 

physically with Slit’s D2 domain (Howitt et al. 2004; Liu et al. 2004; Fukuhara et al. 

2008), or 3) Robo missing its entire C-terminus (ΔC, Fig3C), which is required for all 

signaling output (Bashaw and Goodman 1999).  Each of these mutated forms of Robo 

show a loss of process elaboration in response to Slit.  Robo that is missing its 

Conserved Cytoplasmic CC2 and CC3 motifs, required for binding of the downstream 

effectors Ena, Dock, Pak, SOS and therefore Rac activation (Bashaw et al. 2000; Fan et 

al. 2003; Yang and Bashaw 2006), also display impaired spreading behavior 

(Supplemental Fig. S2C). These observations support the idea that Robo signaling in 
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response to Slit binding is required for the Rac-dependent spreading behavior seen in 

WT Robo-expressing cells. 

Next we wanted to test for a role for Clathrin-dependent endocytosis in Robo’s 

ability to generate branched processes in response to Slit treatment.  We find that 

inhibiting endocytosis directly by co-transfection with DN Shibire (Fig. 3E), or treatment 

with the Dynamin inhibitor Dynasore (Supplemental Fig. S2D), reduces the complexity of 

processes generated in response to Slit, as does deleting entirely, or point mutating the 

tyrosine residues of either of the two putative AP-2 binding motifs in Robo’s C-terminus 

(Fig. 3F, G, Supplemental Fig. S2F-H). Deleting both motifs at the same time also 

results in a smaller maximum radius of the process field (Fig. 3H,Supplemental Fig. 

S2E), similar to deleting the entire C-terminus, suggesting that the two AP-2 interacting 

motifs are each required for, and additively contribute to, Robo signaling. The qualitative 

and quantitative similarity in the process morphology of Slit-treated cells where Robo 

endocytosis is prevented, either by global disruption (Dynasore or DN Shibire) or by 

specific Robo mutations, suggests a contribution of receptor internalization to Robo’s 

activation.  In addition, we find that endocytic trafficking, beyond internalization from the 

surface, through the early and late endosome also positively regulate Slit-dependent 

process elaboration.  Inhibiting entry to the early or late endosome by co-expression of 

DN-Rab5 (Fig. 3I), or DN-Rab7 (Fig. 3J), respectively, also reduces branching 

complexity in Robo expressing Slit CM-treated cells.  These data are consistent with a 

requirement for Clathrin-dependent endocytosis of the Robo receptor and trafficking into 

the early and late endosome for Slit-dependent process branching and outgrowth. 
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Slit-dependent Robo removal from surface depends on C-terminal motifs 
In order to assess whether Robo’s C-terminal putative AP-2 interaction motifs 

indeed disrupt ligand-dependent endocytosis we directly assayed for a change in 

surface Robo levels in response to Slit in the same in vitro system. Using pHluorin, a pH 

sensitive GFP tag, on Robo’s N-terminus to isolate the signal of surface Robo from the 

Robo signal in the lower pH environment of most cytosolic compartments, we analyzed 

the Slit-dependent reduction in surface receptor levels in S2R+ cells (Fig. 4A-F).  In cells 

transfected with wild-type pHluorin–tagged Robo, there is a reduction in the fluorescence 

intensity of pHluorin in Slit-treated, as compared to control treated cells, which we 

quantified as a percent decrease in average signal intensity across many cells (Fig. 4A, 

B, G).  This Slit-dependent decrease in surface signal is inhibited by deleting Robo’s C-

terminus (Fig. 4C, D), suggesting a requirement for signaling in the Slit-dependent 

reduction in Robo surface levels. Evidence that our small deletions disrupt Clathrin-

dependent endocytosis comes from the similarity of their effect on surface levels to the 

effect observed by inhibiting Shibire with the Dynamin inhibitor drug Dynasore (Macia et 

al. 2006). In both cases the Slit-dependent decrease in surface Robo is prevented (Fig. 

4E, F, Supplemental FigS3), consistent with Slit stimulating Clathrin-dependent 

endocytosis of Robo. 

Analyzing trends in the spatial distribution of surface Robo intensity with 

reference to anatomical structures reveals clues about the mechanism of Robo 

internalization and branch formation.  Tips of S2R+ processes bear peaks in surface 

Robo signal (closed arrowheads in Fig. 4A, Supplemental Fig. 3A), which is similar to 

Robo localization on the tips of filopodia in the developing fly embryo (Kidd et al. 1998a) 

and in primary Drosophila neuron cultures (Slovakova et al. 2012).  In the cells that have 

responded to Slit treatment by reducing their Robo surface levels, presumably by 
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Clathrin-dependent internalization from the surface, process branch-points are marked 

by reduction in surface Robo levels (open arrowhead in Fig. 4B).  When inhibiting 

endocytosis, Robo signal stays high on both the processes with enlarged diameters and 

in the branch points that do exist (open arrowhead Fig. 4F), likely due to lack of Slit-

dependent internalization.  The correlation between lack of receptor internalization, 

either by globally inhibiting endocytosis with Dynasore (Supplemental Fig.S4A, B), or by 

deleting or point-mutating AP-2 adaptor motifs in Robo’s C-terminus (Fig. 4E-

G,Supplemental Fig. S3C-G), and decreased process elaboration (Fig. 3H,Supplemental 

Fig.3F-H) suggests that Clathrin-dependent endocytosis of Robo is required for its 

signaling output. 

 To test whether the link between endocytic trafficking and Robo signaling is also 

observed in vivo, we analyzed Robo distribution and midline guidance in the embryo.  

The endogenous expression pattern of Robo throughout the embryonic ventral nerve 

cord is characterized by commissural exclusion and longitudinal enrichment (Kidd et al. 

1998a). If endocytic trafficking of Robo is required for repulsive signaling, we would 

expect to see a correlation between Robo mislocalization and guidance errors in 

embryos with defective endocytic trafficking.  In fact, when we induce guidance errors by 

manipulating entry into the early endosome by expressing DN-Rab5 (asterisks, Fig. 4H), 

we see mislocalization of Robo to the ectopically midline projecting segments of 

normally ipsilateral axons (open arrowheads, Fig. 4I).  This correlation between Robo 

mislocalization and guidance errors is specific to endocytic trafficking manipulations; 

when we induce ectopic crossing events by overexpressing the Frazzled attractive 

guidance receptor (asterisk, Fig. 4J), we find no mislocalized Robo on the crossing 

portions of axons, despite the similar strength of ectopic crossing events (closed 
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arrowhead, Fig. 4L).  Further, Robo missing its AP-2 adaptor motif is also mislocalized to 

the commissural segments (open arrowheads Fig4M) of ectopically crossing axons 

(asterisks, Fig4L). Finally, Robo is mislocalized to the collapsed Ap axon fascicles in 

embryos deficient for Slit, and to the ectopically crossing portions of axons in slit,robo/+ 

double heterozygotes expressing Robo missing its Slit-binding domain (Supplemental 

FigS3H). Taken together these data suggest that Slit stimulates endocytosis of the Robo 

receptor, and that this decrease in surface signal is required for receptor signaling in the 

receiving cell as evidenced by the reduction in process elaboration in S2R+ cells and 

midline guidance errors in vivo. 

 

Slit induces Robo colocalization with the early endosomal marker Rab5  
If our receptor manipulations indeed disrupt endocytosis, then we would expect 

to observe an effect on the intracellular trafficking of internalized Robo in experiments 

where we track Robo’s C-terminus in vitro following Slit treatment.  We find that not only 

do our C-terminal motif deletions inhibit the Slit-dependent removal of Robo from the 

surface, but they also reduce Slit-dependent colocalization of Robo with endogenous 

Rab5, a marker of the early endosome.  Immunostaining for Slit and Rab5 reveals 

colocalization between Slit and the early endosome in cell processes (Fig. 5A, B, P).  In 

response to Slit treatment, we also observe an induction of colocalization between Robo 

and Rab5, specifically in the varicosities and branchpoints of cell processes (Fig. 5C-E), 

the same structures that showed Slit-dependent Robo turnover (arrowheads in Fig. 4B 

and Fig. 5B). We have quantified this response as the percentage change in Manders’ 

overlap coefficient between Slit and Control CM treatment (Fig. 5C-E, Q). Expression of 

DN-Shibire (Fig. 5F,G), or deletion of Robo’s AP-2-binding motifs (Fig. 5K, L), prevents 
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the Slit-dependent recruitment of Rab5 in cell processes, resulting in less colocalization 

of Slit with Rab5.  There is a concomitant reduction in colocalization of Rab5 with the 

Robo C-terminal tag in the same endocytosis-deficient conditions (Fig. 5H-Q). These 

data provide evidence that Slit stimulates the translocation of Robo to the early 

endosome, and that this process requires Clathrin-dependent endocytosis specifically 

from the surface of cells. 

 

Robo endocytosis is required for Sos recruitment  
If Robo endocytosis is required for downstream signaling, then we would predict 

that inhibiting Clathrin-dependent endocytosis of Robo may prevent the recruitment of 

Son of Sevenless, which has previously been shown to be recruited to Robo in response 

to Slit-treatment in mammalian cells (Yang and Bashaw 2006). First, we assayed the 

relative contribution of Sos to the spreading behavior in our in vitro activation assay by 

co-expressing Sos missing its RacGEF domain (Fig. 6B).  This dominant-negative 

construct blocks the Slit-dependent spreading behavior so effectively that the 

morphology of these cells are indistinguishable from those expressing Robo missing its 

entire C-terminus (Fig. 6A), indicating that this in vitro activation assay depends on the 

ability of Sos to activate Rac.  Having shown that Sos is required for Robo-dependent 

cell spreading, we sought to examine the capacity of Robo to direct the subcellular 

localization of endogenous Sos in response to Slit treatment.  Extracting the feature of 

endogenous Sos fluorescence intensity in processes reveals an increase in signal in Slit 

CM (Fig. 6D) over Control CM-treated Robo-expressing cells (Fig. 6C, I), consistent with 

recruitment of Sos to processes in response to Slit treatment.  Not only is Sos required 

for process elaboration in response to Slit, and actively recruited into the processes in 
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cells treated with Slit, but it also it is also localized to regions previously shown to carry 

hallmarks of endocytic activity (reduction in surface receptor levels (Fig. 4B) and 

receptor colocalization with an early endosomal marker (Fig. 5E)).  Peaks in 

endogenous Sos signal in Slit CM processes occur at varicosities and branchpoints 

(arrowheads Fig. 6D, F), the analogous structures to those enriched for markers of 

endocytic activity.  Further evidence that Sos recruitment to processes depends on Slit 

binding comes from the observation that deleting the Ig1 domain or deleting the CC2 

and CC3 domains also block Sos recruitment (Fig. 6E-F’).  Finally, inhibiting Clathrin-

dependent endocytosis also abrogates the increase in endogenous Sos signal intensity 

in Slit-CM- treated processes over Control CM-treated processes (Fig 6. G-H’), 

consistent with a model in which Sos recruitment requires, and therefore occurs 

following, Clathrin-dependent endocytosis of the Robo receptor in response to Slit-

binding. 

 

Robo endocytosis is required for axon guidance in vivo  
Next, to test whether Robo endocytosis is important for its activation in vivo, we 

assayed these Robo constructs that are defective in Clathrin-dependent endocytosis for 

their midline guidance activity. First, we overexpressed either wild-type or mutant Robo 

transgenes in an otherwise wild-type background in two ectopic repulsion assays.  All of 

the transgenes that we used were tagged with an HA epitope, inserted in the same 

genomic site and were expressed at comparable levels based on immunostaining for 

their HA epitope tags (Fig. 7I-K). Driving expression of wild-type Robo in all neurons 

(Fig. 7B) is sufficient to signal repulsion so strongly that we see 76% of embryonic 

segments lose their commissures (Fig. 7L).  In contrast, none of our endocytosis-
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defective deletion constructs are able to disrupt midline crossing when similarly 

expressed (Fig. 7C, D, L, Supplemental Fig. S5E). We see a similar requirement for 

endocytosis motifs in a commissural subset of axons- the EW’s- whose projection 

pattern is imaged in Fig. 7E with GFP and schematized on the right as a crossed 

fascicle. Overexpressing wild-type Robo specifically in this subset (Fig. 7F, I) causes 

ectopic repulsion from the midline (Fig. 7M). In contrast, Robo missing its endocytosis 

motifs (Fig. 7G-K, M, Supplemental Fig. S5F, G) does not cause ectopic repulsion, 

consistent with a requirement for endocytosis of the Robo receptor for its repulsive 

midline guidance activity in vivo. If these AP-2 interaction motifs are indeed required for 

repulsive signaling then one would predict that over-expressing them might compete 

with endogenous receptors for access to ligand, thereby acting as a dominant-negative 

for midline repulsion.  Accordingly, in embryos with reduced Slit dosage, expressing a 

Robo transgene missing both its AP-2 motifs, like that missing its entire C-terminus, 

does inhibit midline repulsion causing ectopic crossing of the medial-most FasII fascicles 

(Supplemental Fig. S5B-D).   

Finally, to further assess the in vivo repulsive function of these receptor variants, we 

compared the ability of wild-type versus endocytosis-deficient Robo transgenes to 

rescue the loss of repulsion defects in robo mutant embryos in two normally ipsilateral 

subsets of axons.  The FasII-positive axons project in three (Fig. 8A), and the Ap axons 

project in one fascicle (Fig. 8G), on either side of the midline. In robo mutants the 

medial-most pair of FasII, and both Ap, fascicles collapse onto the midline (Fig. 8B, H).  

Adding back wild-type Robo transgene either in all neurons or specifically in the Ap 

subset (Fig. 8C, I) is sufficient to rescue the ipsilateral projection pattern of these axons. 

In contrast, expressing Robo transgenes missing the AP-2-binding motifs, either singly 
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or together, cannot rescue the midline crossing errors in robo mutants when expressed 

in all neurons (Fig. 8D-F) or specifically in the Ap ipsilateral subset (Fig. 8J-L), consistent 

with a requirement for Robo endocytosis in its repulsive guidance function in vivo.	
  

Discussion 
In this study, we demonstrate genetic interactions between endocytic pathway 

components and Slit-Robo signaling consistent with endocytosis positively regulating 

repulsive midline guidance. Several lines of in vitro evidence support the idea that Slit-

binding triggers Robo endocytosis and that this event is important for receptor activation 

and downstream signaling.  First, we find that inhibiting Clathrin-dependent endocytosis 

by manipulating Dynamin, or by deleting putative Clathrin adaptor AP-2 consensus sites 

on Robo leads to increased surface occupancy of Robo. Second, Slit stimulation of 

Robo-expressing cells leads to co-localization between Slit, Robo and the early 

endosome marker Rab5, and manipulations that block endocytosis globally or that 

specifically block Robo endocytosis, prevent Robo co-localization with Rab5.  Third, 

inhibiting Clathrin-dependent endocytosis, entry into the early and into the late 

endosome inhibit the ability of Robo to induce changes in cell morphology, as well as its 

ability to recruit the downstream effector Sos.  In addition, we present in vivo evidence 

that Robo proteins that lack AP-2 binding motifs are unable to induce ectopic repulsion 

when expressed in all neurons or in subsets of commissural neurons.  Finally, we show 

that in contrast to wild-type Robo, Robo variants missing their AP-2 binding motifs are 

unable to rescue the midline crossing defects in robo mutant embryos.  Taken together, 

these data strongly support the model that Clathrin-dependent endocytosis of Robo in 

response to Slit serves is a critical step in transmitting Robo’s repulsive signal across the 

plasma membrane. 
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How does Robo endocytosis contribute to spatially restricted repulsive signaling? 

In contexts other than axon guidance, endocytic trafficking has been 

demonstrated to contribute to receptor signaling by allowing receptor recruitment to 

specific subcellular compartments.  In the case of Wingless (Seto and Bellen 2006), 

Notch (Vaccari et al. 2008), EGFR and PVR (Jekely et al. 2005) and VEGFR2 (Lanahan 

et al. 2010), receptor activation is regulated by entry into the early endosome in 

response to ligand-binding at the surface. Regulation of receptor activation by entry into 

endocytic compartments can occur by gating spatial access to downstream effectors 

encountered in signaling complexes – such as Rac or CDC42 in the early endosome 

(Slessareva et al. 2006; Palamidessi et al. 2008), and MEK1 in the late endosome (Teis 

et al. 2006), reviewed in (Sorkin and von Zastrow 2009). These observations lend 

precedent to a model in which endocytic trafficking gates Robo’s spatial access to 

downstream effectors, such as Sos. 

The subcellular localization pattern of Slit, Robo, Rab5 and Sos in our in vitro 

process elaboration assay support this model; Slit and Robo-C terminal tag demarcate- 

with their peaks in fluorescence intensity- varicosities and nascent branch points along 

processes at the 2’ early time point (arrowheads in Fig. 5B, E, Supplemental Fig. 4B) 

which at 10’ become annexes within branch points (arrowhead in Fig. 3A, Supplemental 

Fig. 4D).  Within these enlargements occur correlated valleys in surface Robo signal 

(arrowhead, Fig. 4B) and peaks in markers of both early endosome, Rab5 (arrowheads, 

Fig. 4B, E, Supplemental Fig. 4B-D) and Sos (arrowhead, Fig. 6D). Taking the formation 

of branchpoints to be the readout of repulsive signaling in the process elaboration assay, 

we propose that Slit binds to Robo to induce recruitment of both Rab5 and Sos to create 

what become hubs of endocytosis activity by two minutes, a timepoint previously verified 
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as required for Clathrin-dependent endocytosis in S2R+ cells and in growth cones (Piper 

et al. 2005; Gupta et al. 2009).  In this model, Slit binding to the cell is instructing the 

spatial location of Robo internalization to the early endosome and recruitment of its 

downstream effector Sos.  Consistent with this, when Clathrin-dependent endocytosis is 

inhibited, Slit binding is intact, but fails to instruct recruitment of Rab5 and therefore 

there is a correlation between loss of both translocation of Robo from the cell surface to 

the early endosome, and a blunting of Sos recruitment. 

Our data are consistent with a model in which endocytic trafficking is 

mechanistically contributing to Robo’s activation by fully or partially gating access to its 

downstream effector Sos.  Evidence from the literature suggests that Sos recruitment 

might not occur exclusively at the surface of the cell as we had previously reported 

(Yang and Bashaw 2006; Coleman et al. 2010), but also in closely apposed early or late 

endosomal compartments (Galperin and Sorkin 2003). Sos encodes a Pleckstrin 

Homology (PH) Domain just C-terminal to the Dbl Homology (DH) domain that is 

required for both its RacGEF function in Slit/Robo midline guidance in the fly (Yang and 

Bashaw 2006), and the process elaboration Robo activation readout reported here (Fig. 

6B).  PH domains bind phosphoinositols of the plasma membrane, and are invariably 

found adjacent to DH domains strongly suggesting a functional link between DH and PH 

activity.  In the case of Sos the PH domain has been suggested to act as a mechanical 

switch to allow initiation of the RacGEF activity of the DH domain upon conversion of a 

bound PIP2 to PIP3 by PI3K (Das et al. 2000).  Phosphoinositides have also been linked 

to early endosome fusion; Rab5 actively recruits PI3K, which in turn is required for 

Rab5-mediated conversion of plasma membrane to early endosome (Li et al. 1995; 

Christoforidis et al. 1999).  It will be interesting to determine whether Sos activation 
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downstream of Robo is gated by PI3K in concert with recruitment to the Rab5-positive 

early endosome, as this would provide a mechanism by which Robo activation requires 

Clathrin-mediated endocytosis and Rab5 activity. 

 

How are in vitro process elaboration and branching related to in vivo repulsion? 

At first glance, the ability of Robo to induce elaboration and branching of cell processes 

in vitro may seem inconsistent with a repulsive output; however, our rescue and gain of 

function genetic data make a strong case that the signaling output that we observe in 

vitro is critical for repulsion in vivo.  In addition, there is ample precedent for Slit/Robo 

signaling to induce branching in both in vitro and in vivo contexts.  For sensory afferents 

that bifurcate and send collaterals into iterative segments of the spinal cord, uniform Slit 

treatment induces branching in vitro either by suspension cultures of Rat DRGs in 

collagen gels or bath application to rodent trigeminal neurons (Wang et al. 1999b; 

Ozdinler and Erzurumlu 2002). The branched morphology of the peripheral arbor of 

trigeminal projections to the eye requires Slit2 and Slit3 and Robo1 and Robo2 (Ma and 

Tessier-Lavigne 2007). Interestingly, bath application of Slit is sufficient to induce 

Robo1-dependent growth and branching of dendritic fields of mouse cortical neurons 

(Whitford et al. 2002), similar to our observations of Slit-induced branching and process 

growth in S2R+ cells. 

A role for Robo endocytosis in filopodial dynamics?  

Since Robo is enriched in growth cone filopodia it is likely that during active 

migration Robo-containing filopodia would mediate adhesive interactions with Slit in the 

extracellular matrix (ECM).  Subsequent Slit-induced filopodial retraction likely requires 
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more than the filopodial dynamics provided by Ena- a Robo effector that is known to 

localize to the distal tips of filopodia (Lanier et al. 1999; Matusek et al. 2008), since Robo 

missing its CC2 domain is not fully deficient for midline repulsion (Bashaw et al. 2000). A 

commonality between our in vitro activation assay and previous analyses of growth cone 

collapse in culture may provide a clue to the mechanism at play. Filopodial contact of a 

sympathetic growth cone to a retinal neurite is sufficient to initiate an increased rate of 

growth cone movement- a rapid retraction of an actin-rich structure along the existing 

axon (Kapfhammer and Raper 1987a), all while filopodia stay attached, suggesting the 

existence of a retrograde cue from the filopodial point of contact to more proximal growth 

cone structures.  Similarly, live imaging of pHluorin-Robo-expressing S2R+ cells in our 

assay reveals that bath-treatment of Slit CM induces an increase in the rate of motility of 

engorged plasma membrane along existing processes, leaving branch points behind 

(data not shown). Given that the process elaboration response we observe requires the 

RacGEF domain of Sos, it is likely that the increased rate of motility upon Slit treatment 

is due to alterations in Rac-dependent actin dynamics.  Since the process elaboration 

and branching behavior also requires endocytic trafficking from the cell surface to the 

late endosome, we can speculate that Robo endocytosis is required to direct the Sos-

induced actin motility required for spreading in vitro.  It is the same receptor 

manipulations that abrogate Clathrin-dependent endocytosis in vitro that lead to impaired 

repulsive signaling in vivo, strongly supporting the idea that Robo endocytosis is 

required for proper repulsive output in the growth cone, perhaps by allowing the actin-

based motility that leads to filopodial retraction and growth cone repulsion. 
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What might the relevance of Robo endocytosis be to a migrating growth cone? 

Might Slit-binding trigger a similar endocytic trafficking cascade in a growth cone, 

thereby mobilizing Robo so that it could serve as the retrograde cue informing growth 

cone behavior from the tips of filopodia? Evidence from others shows that Clathrin-

dependent endocytosis exists in the right time and place to play such a role in guidance 

behavior.  First, markers of endocytic compartments, including the early endosome, 

have been identified in the growth cone (Falk et al. 2014; van Bergeijk et al. 2015).  If 

endocytosis serves as a general mechanism for expanding the spatial range of an 

activated receptor after exposure to ligand on filopodial tips, then we would expect to 

see examples of correlation between guidance cues trafficking retrogradely and 

guidance behavior. Endocytosis of guidance molecules in the growth cone has been 

shown to be initiated both from the base of the growth cone central domain and from the 

tips of filopodia (Itofusa and Kamiguchi 2011; Onishi et al. 2013).  Retrograde movement 

of endoyctic compartments has been reported in the growth cone and in the case of 

internalized L1CAM movement occurs at the rate of F-actin retrograde flow (Diefenbach 

et al. 1999; Kamiguchi and Lemmon 2000), providing evidence that endocytic trafficking 

provides an effective spatial track from which a guidance cue might influence the 

cytoskeleton to affect growth cone behavior. The timing reported by others of 

endocytosis in the growth cone also shows correlation with the endocytic trafficking of 

Robo we characterize here in vitro. At the same two minute timepoint we report Slit 

induces Robo removal from S2R+ cell surface here, Sema-3A has affected both a 

reduction in Neuropilin-1 levels (Piper et al. 2005)– and growth cone collapse in the 

Xenopus RGC growth cone, albeit with different ligand concentrations (Campbell and 

Holt 2001). Finally, Frizzled endocytosis in a migrating growth cone reveals a correlation 
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between filopodial dynamics and Frizzled endocytosis, allowing for the transduction of 

the presence of an asymmetrically applied gradient of guidance cue into a turning 

response (Onishi et al. 2013).  It remains to be determined whether retrograde Robo 

movement from the tips of filopodia is required for repulsion in response to Slit. 

Finally, here we have addressed how an endocytic cascade positively contributes 

to signaling from the Robo receptor, effectively expanding our conception of the spatial 

range of activated receptor within the growth cone.  While allowing exposure to the 

machinery within the growth cone beyond filopodial tips would be required for behaviors 

such as growth cone retraction or turning in response to filopodial contact with Slit, 

allowing a receptor to signal too far from the spatial origin of its cue might ultimately 

prove confusing to a growth cone.  It will be interesting to learn if there is a process that 

serves to curtail signaling from an endocytosed and activated receptor. 

 

Materials and Methods 
 

Genetics 

The following Drosophila mutant alleles were used: roboGA285, roboz1772, robo5, slit1, slit2, 

slite158, endoAEP297, endoA∆4, endoA10, ada1, ada3, rab52, P[lacW]Rab5k08232, 

P[EPgy2]Rab7EY10675, rab7FRT82B/knock-out. The following transgenes were used: P[UAS-

Shi.K44A]4-1;UAS[shi.K44A]3-7, P[UASp-YFP-Rab5.S43N], P[UASp-YFP-

Rab7.T22N]06, P[UASp-YFP-Rab4.S22N]37, P[UASp-YFP-Rab5.S25N]35. The 

following transgenic flies were generated by BestGene Inc (Chino Hills, CA) using 

ΦC31-directed site-specific integration into landing sites at cytological position 86F8 
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(controlling for expression level effects from chromosomal position): P[5xUAS-3xHA-

Robo-6xmyc]86Fb, P[5xUAS-3xHA-Robo∆YLQY-6xmyc]86Fb, P[5xUAS-3xHA-Robo-

1xmCherry]86Fb, P[5xUAS-3xHA-Robo∆YQAGL-1xmCherry]86Fb, P[5xUAS-3xHA-

Robo∆YQAGL-6xmyc]86Fb, P[5xUAS-3xHA-Robo∆YLQY∆YQAGL -6xmyc]86Fb, P[10xUAS-

3xHA-Robo∆Ig1]86Fb, P[10xUAS-3xHA-Robo∆C-6xmyc]86Fb, P[GAL4-elav.L]3 (elav-

GAL4), egMZ360 eg-GAL4 (Ito et al. 1995), ap-GAL4 (Calleja et al. 1996). All crosses were 

carried out at 25°C. Embryos were genotyped using balancer chromosomes carrying 

lacZ markers or by the presence of epitope-tagged transgenes. 

 

Molecular Biology 

pUAST cloning: Robo coding sequences were cloned into a pUAST vector 

(p5UASTAttB) including 5xUAS and an attB site for ΦC31-directed site-specific 

integration. All p5UASTattB constructs include identical heterologous 5’ UTR and signal 

sequences (derived from the Drosophila wingless gene) and an N-terminal 3×HA tag. 

Robo domain deletion variants created for this study were generated by PCR and 

include the following amino acids (numbers refer to Genbank reference sequences 

AAF46887 [Robo]: Robo∆Ig1 (153-1395) (Evans et al 2014), Robo∆C (56-950) (Evans et al 

2014), Robo∆YLQY (1090-1093), Robo∆YQAGL (1233-1237), Robo∆YLQY ∆YQAGL (1090-1093; 

1233-1237), RoboY1090A (1090), RoboY1233A (1233), RoboY1090A,Y1233A (1090;1233).  All 

Robo constructs used in the in vitro S2R+ activation assay were cloned into the 5xUAS-

AttB plasmid containing 3xHA(N) and 6xMyc(C) tags, or 3xHA no C-terminal Tag (Barry 

Dickson, shuttled into p5AttB here), or 3xHA-1xpHluorin:  The pHluorin-Robo tag was 

added with the following primers: TAGCTAGCAGCAAAGGAgAAGAAc, 

CGATCGAGATCCGGAGCTAGCTA.  1x-mCherry C-terminal tag was obtained by PCR 
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amplification of mCherry CDS genomic extraction of mCherry::CAAX flies (Kyoto DGRC 

courtesy of Roger Tsien) using the following primers: atactagtatggtgagcaagggc, 

atatatagcggccgcTTActtgtacagctcgtcca to swap out the 6xMyc tag using SpeI/NotI sites; 

or deletion of the 3xHA tag to include 6xMyc tag only by first deleting the BmtI sites in 

the backbone using the following primers: 

AAATGCTTGGATTTCACTGGAACTAGGCTTTCATAACTTCGTATAATGTATGCTATAC

GAAGTTATGCTAGCG,CGCTAGCATAACTTCGTATAGCATACATTATACGAAGTTATG

AAAGCCTAGTTCCAGTGAAATCCAAGCATT,GGCTTTCATAACTTCGTATAATGTATG

CTATACGAAGTTATGCTTTCGGATCCAAGCTGGCCG,CGGCCAGCTTGGATCCGAA

AGCATAACTTCGTATAGCATACATTATACGAAGTTATGAAAGCC, (also the template 

for ΔIg1 in p5AttB) then serial overlap extension PCR with the following primers: 

tatatataGAATTCTATCATACCCCGTGTGTCAGTGTG,GCTCGATGATACGTGGATCTA

AGCTAGCGCGCGCCCTTCCGGAT,ATCCGGAAGGGCGCGCGCTAGCTTAGATCCA

CGTATCATCGAGC, GTTTGATTGGCAGGTCCGATTTGAA.  Robo ΔEcto 

(3xHA/6xMyc) was created by PCR using the following primers: 

tatataCGCTAGCatgACCACTGACTACCTATCTGGACC, tcgggtggctattgggatgc.  

RoboΔYLQY was created using the following primers: 

TTGTCAAATCCAACCCGGTTGAACCGATCA,TGATCGGTTCAACCGGGTTGGATTT

GACAA; ALQY: GTCAAATCCAACgccCTTCAGTATCCG, 

CGGATACTGAAGGGCGTTGGATTTGAC; ΔYQAGL: CAGCCAGCGAGAATGCAGCG, 

CGCTGCATTCTCGCTGGCTG; AQAGL: CAGCCAGCGAGgcCCAGGCT, 

AGCCTGGgcCTCGCTGGCTG;  

pALG cloning: WT Rab5 and WT Rab11 were obtained from Dr. Avital Rodal in the 

Actin5C promoter N-terminal GFP-tag pALG plasmid.  The Rab5 Dominant-Negative 
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(DN) S43N point mutation was created with the following 

primers:CGAGTCCGCTGTGGGCAAGAACTCACTGGTGCTGCGCTTCG,CGAAGCGC

AGCACCAGTGAGTTCTTGCCCACAGCGGACTCG. WT Rab7 was obtained from 

BDGP Gold Collection (clone ID GH03685) and shuttled into pALG using the following 

primers:tatataGCGGCCGCCCCCTTCACCATGATGTCCGGACGTAAGAAATCCCTAC

TGAA, TATATATAcgatcgTTAGCACTGACAGTTGTCAGGATTGCC.  The Rab7 T22N 

point mutation was created by PCR with the following primers:TGTGGGCAAGAACTC 

TCTGATGAAT, GATTCATCAGAGAGTTCTTGCCCACACT. shibire cDNA was PCR 

amplified from pOT2 BDGP Gold Collection clone (LD21622) and shuttled to pALG using 

the following primers:ataGCGGCCGCCCCCTTCACCATGatggatagtttaattacaattgtta 

acaagctgcaa,TATATATAcgatcgattacttgaatcgcgaactgaaggcat. Shibire K44A (DN) was 

created using the following primers:gaactttgtgggcGCagatttcttgcc,ggcaagaaatctGCgc 

ccacaaagttc. 

 

Immunofluorescence and Imaging 

in vitro Robo activation assay: Drosophila S2R+ cells were cultured at 25°C in 

Schneider’s media plus 10% FBS and 1% Penicillin-Streptomycin. To assay for Slit 

response, cells were plated on acid-etched, poly-L-lysine coated coverslips in duplicate 

in six-well plates (Robo-expressing cells) at a density of 1-2×106 cells/mL, and 

transfected with 0.25ug of p5AttB construct and pMT-GAL4/2mL Schneider’s (a one-day 

lag between CM and Robo cells) using Effectene transfection reagent (Qiagen). GAL4 

expression was induced with 0.5 mM CuSO4 for 24 hours, then Slit-Conditioned Media 
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(CM) was collected and concentrated from cells transfected with empty pUAST vector or 

Slit. Robo-transfected cells were incubated with CM on an orbital shaker at room 

temperature for 2 (pHluorin, Rab5 colocalization, Sos recruitment) or 10 minutes 

(process area/Sholl analysis), then fixed for 10 minutes at RT in 4% PFA. Cells were 

rinsed with 1XPBS, permeabilized with PBS+0.1% Triton X-100 (PBT) for 2 minutes, 

then blocked for 1Hr and stained with antibodies diluted in PBT+4% NGS, except for the 

pHluorin surface assay, which used no detergent and MetOH-free PFA. Antibodies used 

were: mouse anti-Slit-C (c555.6D, DSHB, 1:100), mouse anti-cMyc (9E10, 1:1000), 

rabbit anti-cMyc (Sigma c3956, 1:1000), rabbit anti-GFP (Invitrogen #A11122, 1:1000), 

rabbit anti-HA (Covance, 1:1000), rabbit anti-dRab5 (abcam 31261,1:1000), rabbit anti-

dRab7 (Tanaka & Nakamura 2008, 1:3000), rabbit anti-Sos (SantaCruz C23 1:500), Cy3 

goat anti-mouse (Jackson Immunoresearch, 1:1000), and Alexa488 goat anti-rabbit 

(Molecular Probes, 1:500). Coverslips were mounted in Aquamount. 0.252µM totalZ 

confocal stacks were collected using a Leica TCS SP5 confocal microscope at 63X and 

zoom3 and processed with FIJI and hand-calculations in Excel.  

Quantification: The morphological profiles of S2R+ cells were generated by binary 

thresholding the signal from Slit or Myc (Robo-Cterm epitope tag), then we manually 

defined a region of interest cropping out the variably sized cell cortices and computed 

the total pixel area of the process (FIJI histogram: count-mode), and averaged across 

many cells for each genotype to compute average process area.  For the Sholl analysis 

a manually drawn ray defined the center of the cell with a starting radius manually 

defined starting after the cell cortex and continuing until the maximal radius of the 

process field (with any intervening cells cleared from the background) was entered into 

FIJI Sholl plugin.  The resulting number of intersections from multiple cells were 
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concatenated onto a common radius scale in Excel and the average number of 

intersections for each radius/genotype was plotted, only for the radii for which more than 

one cell had process field. For colocalization analysis a region of interest around the 

processes was defined and in Robo-C/Rab5 signal was subtracted Myc -80, Rab5 -15 

across the whole image, then the average Mander’s Overlap Coefficient from FIJI 

Coloc2 algorithm in the Slit-only condition for Slit-Rab5, or the ratio of SlitCM/Control CM 

for RoboMyc-Rab5, from representative cells (n’s indicated in histograms). 

Embryos: Dechorionated, formaldehyde-fixed, methanol-devitellinized Drosophila 

embryos were fluorescently stained using standard methods.  The following antibodies 

were used in this study: FITC-conjugated goat anti-HRP (Jackson # 123-095-021, 

1:250), mouse anti-Fasciclin-II/mAb 1D4 [Developmental Studies Hybridoma Bank, 

(DSHB), 1:100], mouse anti-βgal (DSHB, 1:150), Alexa-488 conjugated goat-anti-HRP 

(Jackson #123-605-021 1:100), Cy3-conjugated goat anti-mouse (Jackson #115-165-

003, 1:1000), Alexa-488-conjugated goat anti-rabbit (Molecular Probes #A11008, 1:500). 

Embryos were filleted and mounted in 70%glycerol/1XPBS and imaged on Leica TCS 

SP5 at 63X with a zoom of 1.7. Images were processed using FIJI. 

Biochemistry 

Control and Slit CM were boiled for 10’ in 2X SDS Loading Buffer.  Proteins were 

resolved by SDS Page and transferred to nitrocellulose and incubated with anti-Slit-C 

(C555-6D) 1:100 overnight at 4°C in PBS/0.05% Tween-20/5% non-fat dry milk.  Blots 

were incubated with HRP-conjugated anti-mouse secondary antibody for 1 hour at RT 

and signal was detected using ECL Prime (Amersham). 
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Robo Endocytosis Figures 

Figure 2.1: Genetic interactions between Clathrin-dependent endocytosis, and 
endocytic trafficking genes, and slit and robo 
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Figure 2.1: Genetic interactions between Clathrin-dependent endocytosis, and 
endocytic trafficking genes, and slit and robo 

(A) An ipsilateral subset of axons in the ventral nerve cord of WT stage 16 Drosophila 

embryos are stained with a monoclonal antibody (mAb) to FasciclinII (FasII), and 

quantified in the histogram below as having 0% error in the number of embryonic 

segments with fascicles crossing the midline. (B) Double heterozygous slit, robo 

embryos have a mild loss-of-repulsion phenotype (induction of ectopic crossing events in 

16% of embryonic segments).  Inhibiting Clathrin-dependent endocytosis by removing 

one copy of either α-adaptin or endophilinA in the slit,robo/+ background enhances the 

number of crossing defects (C, D), as does inhibiting either entry into the early 

endosome by removing one copy of rab5 (E), or entry into the late endosome by 

removing one copy of rab7 (F).  These genetic enhancements of the slit,robo/+, but not 

of the +/+, ectopic crossing frequency are statistically significant (*, indicates p<0.0001) 

by two-way ANOVA, Sidak’s 95% Confidence Interval. Error bars indicate standard error 

of the mean. (+/+ n (number of segments)=121, slit1,robo5/+: 132; α-ada1/+ 121, α-ada1/ 

slit1,robo5 99; α-ada3/+ 121, α-ada3/ slit1,robo5 154; endoA10/+ 121, slit1,robo5/+; 

endoA10/+ 154; endoAEP927/+ 121, slit1,robo5/+; endoAEP927/+ 121; rab5k08232/+ 121, 

slit1,robo5/rab5k08232 154; rab52/+ 121, slit1,robo5/rab52 121; rab7EY10675/+ 121, 

slit1,robo5/+; rab7EY10675/+ 176; rab7FRT82B/+ 121, slit1,robo5/+; rab7FRT82B/+ 154.) 
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Figure 2.2: Genetic interactions between Dominant-Negative Transgenes for 
Clathrin-dependent endocytosis, and endocytosis through the late endosome, and 
slit 



57	
  
	
  

Figure 2.2: Genetic interactions between Dominant-Negative Transgenes for 
Clathrin-dependent endocytosis, and endocytosis through the late endosome, and 
slit 

A more restricted ipsilateral subset of axons are genetically labeled with Tau-Myc-GFP 

transgene to highlight their microtubules and therefore axonal projection patterns. (A) In 

stage 16 WT embryos the two Ap axon fascicles on either side of the midline project 

ipsilaterally in all embryonic segments (3 shown here, 8 abdominal scored).  (B) In 

animals where one copy of slit has been removed, a partial loss of repulsion phenotype 

results with 11% of segments exhibiting ectopic crossing events (indicated by *).  (C) 

Inhibiting Clathrin-dependent endocytosis in a WT background by adding in Dominant-

Negative (DN) transgenes to Shibire, the fly homolog to Dynamin, causes ectopic 

crossing errors in the Ap axons. (D) Inhibiting entry into the early endosome by 

expressing DN-Rab5 Transgene causes ectopic crossing, which enhances the 

background level present in slit heterozygotes. (E) Inhibiting entry into the late 

endosome with DN-Rab7 transgene expression also causes loss of repulsion, which 

enhances the background level of crossing in slit heterozygotes.  (F) Histogram: 

Inhibiting entry into the recycling endosome does not enhance the background crossing 

in slit heterozygotes. These genetic enhancements are statistically significant (*, 

indicates p<0.0001)) by two-way ANOVA, Sidak’s 95% Confidence Interval. Error bars 

indicate standard error of the mean.  

(+/+ n (number of segments)=112, slit2/+: 104; α-ada1/+ 320, α-ada1/ slit2  112; α-ada3/+ 

112, α-ada3/slit2 80; endoAΔ4/+ 88, slit2/+; endoAΔ4/+ 112; endoA10/+136, slit2/+; 

endoA10/+ 120; UAS-ShiDN/+;UAS-ShiDN/+ 112, slit2/UAS-ShiDN; UAS-ShiDN/+ 80; 

rab5k08232/+ 144, slit2/rab5k08232 110; rab52/+ 232, slit2/rab52 152; UAS-Rab5DN/+ 168, 

slit2/+; UAS-Rab5DN/+ 88; rab7EY10675/+ 128, slit2/+; rab7EY10675/+ 112; UAS-Rab7DN/+ 
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128, slit2/+; UAS-Rab7DN/+ 152; UAS-Rab4DN/+;UAS-Rab11DN/+ 128, slit2/UAS-

Rab4DN; UAS-Rab11DN/+ 136.) See also Supplemental Figure1. 
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Figure 2.3: Clathrin-dependent endocytosis from the cell surface through the early 
and late endosome positively regulate Robo signaling in vitro 
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Figure 2.3: Clathrin-dependent endocytosis from the cell surface through the early 
and late endosome positively regulate Robo signaling in vitro 

Morphological profiles of Drosophila embryonic cells bath treated for 10’ with 

Conditioned Media (CM) from cells either expressing empty vector (“Control”, A-C, E-G, 

I-J), or secreting Slit (A-C’, E-G’, I-J’).  Cells expressing WT Robo that are treated with 

Control CM show a baseline level of process generation (A) that are more branched and 

elaborated if Slit treated, with two representative examples shown in (A’).  This change is 

quantified as an increase in the average process area of multiple cells in the histogram, 

which is statistically significant by Two-way ANOVA, Sidak’s 95% Confidence Interval 

(n’s denoted on histogram). Error bars indicate standard error of the mean (D: n’s 

displayed on each bar). The Sholl analysis profile below reflects process field complexity 

as a function of the cells’ radii for cells treated with Slit CM (WT n=13, ∆C n=5, ∆Ig1 

n=8).   (B) Cells that express Robo missing their Slit-binding motif (∆Ig1), do not 

elaborate processes in response to Slit treatment (B’), and show a smaller total process 

area, and a drop in the process field maximum radius in the Sholl profile (D). (C) Cells 

expressing Robo that lacks the ability to signal (∆C-terminus) show short processes that 

don’t branch or elaborate in response to Slit treatment (C’, D, E, E’). Inhibiting Clathrin-

dependent endocytosis directly by cotransfection of WT Robo with DN-Shibire, the fly 

homolog of Dynamin, causes no change in the average process area of cells treated 

with Control CM but a defect in process elaboration in response to Slit treatment as 

compared to WT alone (A’), quantified as a decrease in the total process area in cells 

treated with Slit CM and a downward shift in the Sholl profile (H: ShiDN n=13, ∆YQAGL 

n=13, ∆YQAGL n=12, ∆YLQY∆YQAGL n=10). 

(F, G) Cells expressing Robo carrying deletions of either of two motifs predicted to be 

required for binding to AP-2, the Clathrin-adaptor complex expressed on the surface of 
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cells, look similar to cells in (E’). (I, J) Inhibiting entry into the early (I’), or late (J’) 

endosome by co-expression of DN-Rab5, or DN-Rab7, respectively, with WT Robo 

causes a decrease in total process area, and a downward shift in the Sholl profile (K: 

Rab5DN n=14, Rab7DN n=13). See also Supplemental Fig. 2. 
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Figure 2.4: Clathrin-dependent Endocytosis is required for removal of Robo from 
the cell surface  
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Figure 2.4: Clathrin-dependent Endocytosis is required for removal of Robo from 
the surface  

An N-terminal pH sensitive tag on Robo (A-F) reveals the pool of Robo expressed on the 

surface of S2R+ cells after 2’ of conditioned media (CM) bath-treatment.  S2R+ cells 

treated with CM from cells expressing Slit (B) as opposed to empty vector (A) show a 

decrease in surface levels of Robo, quantified in (G) as a percent decrease in average 

pixel intensity value of processes in (B) as compared to (A).  (C, D) Inhibiting Robo 

signaling by deleting the entire C-terminus shunts the Slit-dependent reduction in 

average pixel intensity value of surface Robo, leading to a smaller percentage decrease 

in (G).  (E, F) Deleting both of Robo’s putative AP-2 motifs abrogates the Slit-dependent 

reduction in surface receptor levels, leading to a smaller % decrease in average pixel 

intensity in (G). (H-M) The ectopic crossing events of a normally ipsilateral subset of 

axons in the ventral nerve cord of Stage 16 Drosophila embryos are induced by either 

manipulating entry to the early endosome with expression of DN-Rab5 transgene (H), or 

by overexpression of an attractive guidance receptor, Frazzled (J, L). Robo transgene is 

mislocalized to the ectopically crossing segments of axons in embryos defective for 

endocytic trafficking (I) but not in those with excessive attractive guidance (K), despite 

the similarity in strength of ectopic crossing phenotype (N).  In contrast, Robo transgene 

defective for AP-2 binding is mislocalized to the ectopically crossing segments of axons 

(M) in the same gain of attraction background (L). See also Supplemental Fig. 3. 
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Figure 2.5: Slit induces Robo colocalization with Rab5 in cell processes 
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Figure 2.5: Slit induces Robo colocalization with Rab5 in cell processes 

S2R+ cells expressing Robo and treated with SlitCM were fixed at an earlier timepoint 

(2’) and stained for endogenous Rab5, a marker of the early endosome, (A, D, F, I, K, N) 

and either bound Slit ligand (B, G, L), or Robo’s C-terminal tag (C, H, M).  Cells with Slit 

bound to processes show covariance between ligand and early endosome signal (B, P 

(n=# cells indicated below histogram bar)). This colocalization is reduced either by 

reducing Slit-binding (ΔIg1 in P), or by inhibiting Clathrin-dependent endocytosis globally 

with DN-Shibire (F, G), or the Dynamin inhibitor Dynasore (P), or by deleting Robo’s AP-

2-binding motifs (K, L). Treatment with Slit CM induces colocalization between Robo and 

Rab5 in processes as compared to cells treated with Control CM, quantified as a percent 

increase of thresholded Mander’s Overlap Coefficient between Slit and Control CM (E, 

Q).  Inhibiting Clathrin-dependent endocytosis by coexpression with DN-Shibire (H-J), 

use of Dynasore, or deleting AP-2 adaptor motifs (M-O), or inhibiting Slit-binding by 

deleting the first Ig domain, causes a loss of Slit-dependent colocalization between Robo 

C-terminus and the early endosome in processes, quantified as the percent change in 

colocalization between Slit and Control CM.  The percentage change switches from 

positive to negative (Q (n’s for Ctrl CM on top, Slit CM on bottom). See also 

Supplemental Fig. 4. 
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Figure 2.6: Robo Endocytosis is required for Sos recruitment in vitro 
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Figure 2.6: Robo Endocytosis is required for Sos recruitment in vitro 

Co-expression of a version of Son of Sevenless dominant-negative for its RacGEF 

activity (B) inhibits spreading and branching of processes in response to Slit CM as 

effectively as deleting Robo’s entire C-terminus (A).  Feature extraction of the pixel 

intensity of endogenous Sos in processes reveals recruitment of Sos to processes in Slit 

(D) versus Control CM (C) treatment.  The increase in Sos signal in processes in 

response to Slit seen in RoboWT-expressing cells, quantified in the histogram as a 

statistically significant increase (*) in average signal intensity (I, n’s displayed on 

histogram), is missing in cells expressing RoboΔIg1 (E, E’).  Cells expressing a 

Robo∆CC2∆CC3 receptor that can’t bind Ena or Dock, required for Sos binding (F, F’) 

also show impaired recruitment of endogenous Sos to processes, as do conditions 

inhibiting endocytosis (G-H’), despite comparable number of pixels (process area) 

analyzed (J). Statistical significance quantified by two-way ANOVA, Sidak’s 95% 

Confidence Interval. Error bars indicate standard error of the mean. 
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Figure 2.7: Endocytosis motifs are required for ectopic repulsion in vivo 
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Figure 2.7: Endocytosis motifs are required for ectopic repulsion in vivo 

The projection pattern of all axons of the ventral nerve cord of late stage 14 Drosophila 

embryos are imaged with HRP (A-D) and the fascicles of the Eg commissural subset are 

imaged with a Tau-myc-GFP transgene (E-H).  (A) In wild-type embryos, all segments (3 

shown here) have two horizontal commissures, which are quantified as 0% of segments 

with error in the histogram (L n=88). (B) Overexpressing wild-type Robo transgene in all 

neurons causes gain of repulsion from midline Slit, resulting in a loss of commissures in 

76% of embryonic segments (L, n=99).  In contrast, overexpressing similar levels of 

Robo transgene that is missing its AP-2 binding motifs (C, D) can not signal ectopic 

repulsion from the midline, with all segments projecting in a commissural pattern 

indistinguishable from embryos without transgene (L ΔYQAGL n=152, ΔYLQY n=136, 

ΔYLQYΔYQAGL n=88).   (E) The Ew commissural subset of axons, schematized on the 

right, cross the midline in each embryonic segment, quantified as 0% error in (M, n=88).  

(F) Expressing wild-type Robo transgene (I) specifically in the Ew commissural subset of 

axons is sufficient to cause ectopic repulsion, with loss of projection across the midline 

(schematized in dotted gray) in 96% of embryonic segments (M, n=99). In contrast, 

expressing either Robo∆YQAGL (G, J) or Robo∆YLQY (H, K) does not cause ectopic 

repulsion of the Ew projection pattern, with a 0% error in (M, ΔYQAGL n=152, ΔYLQY 

n=136, ΔYLQYΔYQAGL n=88).  Error bars indicate standard error of the mean. See also 

Supplemental Fig. 5. 

 

 

 



70	
  
	
  

Figure 2.8: Robo Endocytosis is required for axon guidance in vivo 
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Figure 2.8: Robo Endocytosis is required for axon guidance in vivo 

Two ipsilateral subsets of axons are imaged in Stage 17 Drosophila embryos- the FasII+ 

axons with a monoclonal antibody to FasII (A-F) and the Ap axons (G-L) with a GFP 

antibody detecting Tau-Myc-GFP transgene.  In wild-type embryos these ipsilateral 

subsets project on either side of the midline, with three fascicles on either side for FasII 

(A) and one fascicle on either side for Ap (G).  In robo mutant embryos, the two medial-

most of the FasII+ fascicles (B) and both of the Ap fascicles (H) collapse onto the 

midline, scored as 100% of embryonic segments having ectopic collapse/circling events.  

Expressing wild-type Robo transgene is sufficient to restore repulsive signaling and 

therefore rescue the crossing defects in the FasII+ axons (C, +/+ n=121, roboGA285/robo 

GA285 n=121, roboGA285/robo GA285;ElavGAL4/UAS-RoboWT n=121) and the Ap axons (I +/+ 

n=120, roboGA285/Ap, roboz1772 n=120, roboGA285/Ap, roboz1772;UAS-RoboWT n=80).  In 

contrast, expressing Robo∆YQAGL (D, J), Robo∆YLQY (E, K), or Robo∆YQAGL ∆YLQY 

(F, L) is not sufficient to rescue the ectopic crossing events, with a large portion of 

embryonic segments carrying severe errors (crossing/circling events represented by 

dark gray) remaining. Dark gray indicates a qualitatively more severe crossing error, light 

gray indicates a less severe crossing error, with the stacked histogram bar height 

indicating total % of embryonic segments with loss-of-repulsion errors for each 

genotype.  Error bars indicate standard error of the mean. (roboGA285/robo GA285; 

ElavGAL4/UAS-Robo∆YQAGL n=154, roboGA285/robo GA285; ElavGAL4/UAS-Robo∆YLQY n=99, 

roboGA285/robo GA285; ElavGAL4/UAS-Robo∆YLQY∆YQAGL n=121. roboGA285/ApGAL4, 

roboz1772;UAS-Robo∆YQAGL n=80, roboGA285/ApGAL4, roboz1772;UAS-Robo∆YLQY n=120, 

roboGA285/ApGAL4, roboz1772;UAS-Robo∆YLQY∆YQAGL n=136.) 
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Figure 2.9: A model for how Endocytosis might contribute to Robo signaling 
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Figure 2.9: A model for how Endocytosis might contribute to Robo signaling 

Following ectodomain binding to Slit, Pak and Dock are recruited to the Conserved 

Cytoplasmic (CC) Domains #2 & 3 within Robo’s C-terminus, and contingently upon 

Dock-binding Son of Sevenless (Sos) is recruited to the activation complex, to induce 

Rac activation (Fan et al. 2003, Yang et al. 2006).  Juxtamembrane extracellular 

cleavage by the ADAM Metalloprotease Kuz is required for recruitment of Sos (Coleman 

et al. 2010).  Both Clathrin-dependent endocytosis and endocytic trafficking into the early 

endosome are required for Sos recruitment to the Robo receptor, potentially gated by 

spatial access to PI3K Kinase activity of Sos’s Pleckstrin Homology Domain in the early 

endosome, leading to a stronger activation of Rac in the early endosome than that by 

Pak alone. 
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Figure 2.10: Endocytosis positively regulates Slit-Robo repulsion, not Frazzled-
mediated attraction 
A: Expression of UAS-HA-Robo transgenes specifically in the Ap subset of neurons 

rescues the defects caused by overexpression of ShibireDN and Rab5DN in slit2/+ 

heterozygotes. B: Reducing the dosage of endocytic trafficking genes do not enhance 

(not statistically significant, n.s.) the ectopic crossing errors induced by enhanced 

midline attraction resulting from ectopic expression of the attractive guidance receptor 

Frazzled beyond the predicted percentage crossing frequency from an additive 

interaction in the Ap neurons. Error bars indicate standard error of the mean. 
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Figure 2.11: Endocytosis positively regulates Robo signaling in vitro 
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Figure 2.11: Endocytosis positively regulates Robo signaling in vitro 

Representative examples of the morphological profiles of Drosophila embryonic cells 

transfected with Robo and bath-treated for 10’ with Control CM or Slit CM are displayed. 

(A) Cells that express Robo deficient for Slit-binding by deletion of the first Ig domain, or 

by deletion of the entire ectodomain (A’, schematized in domain structure cartoon below) 

do not elaborate processes as much (A) or at all (A’) in response to Slit treatment.  (C) 

Robo missing its CC2 and CC3 domains, required for Rac activation, display a 

qualitatively distinct class of impaired process elaboration.  There is an increase in the 

number of short branches, but the total process area and therefore Sholl profile is 

shunted as compared to WT-expressing cells (Sholl n=11).  Inhibiting Clathrin-

dependent endocytosis either directly by treatment with 20µM Dynasore, a dynamin 

inhibitor (D), or by deleting its AP-2 binding motifs together (E), or point-mutating the 

catalytic tyrosines each singly (F, G) or both together (H) leads to the same qualitative 

type of spreading behavior.  In all cases, there is a reduction in process branching, 

which is quantified as a reduction in the process area in Slit-CM treated cells and a 

downward shift in the Sholl profile (quantified on the right) as compared to WT-

expressing cells.  Deleting both AP-2 motifs together results in a smaller maximal 

process radius. (I) Expression of the attractive guidance receptor Frazzled causes S2R+ 

cells to spread in a qualitatively distinct manner with more lamellipodial-appearing 

spreading that does not respond to Slit-CM treatment. J: Box-shade alignments of amino 

acid sequence of the identified AP-2 adaptor motifs show sequence conservation 

between Drosophila Robo1 and Human Robo1, and the originating sequences, 

suggesting conservation of function throughout phylogeny.  Domain structure diagrams 

show the location of the putative AP-2-binding motifs, and the other variants assayed 

here, within Drosophila Robo1. 
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Figure 2.12: Slit-dependent Robo endocytosis occurs upstream of Sos recruitment 
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Figure 2.12: Slit-dependent Robo endocytosis occurs upstream of Sos recruitment 

A-F: Surface Robo signal in S2R+ cells is isolated by a pH sensitive GFP tag, pHluorin, 

on Robo’s ectodomain.  In cells treated with the Dynamin inhibitor Dynasore, Robo is still 

expressed on the tips of processes in Control CM conditions (arrowheads, A), but the 

downregulation of surface signal in response to Slit treatment seen with WT-Robo 

expressing cells is blunted and surface Robo remains high (B, G).  Disrupting Robo’s 

AP-2 binding motifs singly does not affect the average pHluorin signal intensity in 

Control CM conditions (C, E), but inhibits the reduction in Slit CM conditions (D, F) seen 

in WT-Robo expressing cells, resulting in a reduced % decrease in average signal 

intensity (G).  Point-mutating the catalytic tyrosines of the AP-2 motifs singly or together 

also reduces the Slit-dependent decrease in surface Robo signal, while inhibiting Sos-

mediated activation of Rac by co-expressing Son-of-sevenless missing its Dbl Homology 

domain does not affect surface Robo levels (G). Number of cells analyzed are indicated 

on the histogram (top number, n from Control CM, bottom number, Slit CM).  (H) Signal 

from an HA epitope tag on Robo’s ectodomain expressed in the ipsilateral Ap subset of 

neurons is imaged by immunostaining in Stage 16 Drosophila embryos.  Inhibiting Slit by 

either creating slitmutant/hypomorph embryos or by deleting Robo’s Slit-binding domain 

(∆Ig1) causes mislocalization of Robo to ectopically collapsed or crossing portions of 

axons, respectively. 
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Figure 2.13: Slit colocalization with Rab5 persists over 10’ in vitro 
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Figure 2.13: Slit colocalization with Rab5 persists over 10’ in vitro 

Endogenous Rab5 in S2R+ Robo-expressing cells bath-treated with Control CM (A) or 

Slit CM for 2’ (B), 5’ (C) or 10’ (D).  Slit antibody staining is specific for cells treated with 

Slit CM (B-D), and Rab5 is recruited to processes in cells that have bound Slit.  At all 

three timepoints Slit and Rab5 are colocalized in varicosities and branchpoints of 

elaborating processes (arrowheads, B-D). 
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Figure 2.14:  Robo missing its AP2 motifs functions as a Dominant-Negative in 
vivo 
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Figure 2.14:  Robo missing its AP2 motifs functions as a Dominant-Negative in 
vivo 

In slit2/+ embryos, Robo missing its entire C-terminus (C) functions as a strong 

dominant-negative for midline repulsion, inducing an 100% error rate (D) when driven in 

all neurons, quantified here in the normally-ipsilateral medialmost FasII+ axons (A).  Like 

Robo∆C RoboΔ
YQAGL

Δ
YLQY overexpression in all neurons in a partial loss of Slit background 

causes ectopic crossing (B). (E-G) Robo∆YQAGL∆YLQY can not signal repulsion to 

cause loss of commissural projection pattern when overexpressed either in all neurons 

(E), or in the Eg commissural subset (F, G). 
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CHAPTER 3: Proteolytic Processing regulates signaling from the 
Roundabout receptor 

 

Abstract 
 

Understanding how an individual growth cone deploys its guidance receptors to 

make guidance choices is critical to learning how proper wiring is established in 

development. Roundabout (Robo) is one such guidance receptor that mediates 

repulsion from its ligand Slit in both humans and Drosophila. As with other guidance 

receptors, Robo influences guidance by modulating intracellular cytoskeletal dynamics. 

Little is known about how Robo receptor signaling is activated and how the timing and 

duration of this signaling is controlled. Here we present genetic and biochemical 

evidence supporting a role for proteolytic processing and receptor trafficking in 

regulating Slit-Robo repulsive signaling in the Drosophila embryonic ventral nerve cord. 

We have previously found that Kuzbanian (Kuz), an ADAM protease, is required for (1) 

the normal localization and expression of Robo protein, and (2) Robo proteolysis that 

positively regulates repulsive guidance (Coleman et al 2010). Here we present evidence 

that after Kuz-dependent cleavage activates Robo, γ-Secretase catalyzes a second 

cleavage that likely acts to limit the duration of signaling from the activated Robo C-

terminal fragment. We present data that (1) show γ-secretase can cleave Robo in vitro 

and (2) suggest that γ-Secretase negatively regulates repulsive signaling in vitro and in 

vivo. Taken together, these data suggest that proteolytic processing provides a 

mechanism for the precise temporal control over the activity of the Robo guidance 

receptor.  

We are also investigating a role for the interplay between endocytosis and 

proteolysis of Robo. In commissural axons, Robo expression on the growth cone is 
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normally prevented prior to midline crossing; this is reflected in the exclusion of Robo 

protein from the commissural portion of axons as they cross.  Surprisingly, we find that in 

kuz and slit mutants that have ectopic midline projections due to loss of repulsion, Robo 

is mislocalized to the crossing portions of axons. This raises the possibility that Robo 

internalization by cleavage or endocytosis may be essential for repulsive signaling.  We 

are currently testing for a link between Robo cleavage and endocytosis in mediating 

axon repulsion at the midline.  

 

Introduction 

	
  

Drosophila roundabout (robo) is a member of a conserved gene family with 

demonstrated importance in midline guidance in humans (Jen et al. 2004) that was 

originally identified in a genetic screen in the embryonic nerve cord of Drosophila for a 

similar role in midline guidance (Seeger et al. 1993; Kidd et al. 1998a; Kidd et al. 1998b). 

Robo is an IgCAM guidance receptor that mediates repulsion from the midline in 

response to its ligand Slit (Brose et al. 1999b; Kidd et al. 1999b); robo mutants exhibit 

ectopic entry of normally-ipsilateral axons into the midline zone, and re-entry into the 

same region by post-crossing contralateral axons, thereby creating hallmark circular 

axon paths resembling roadway roundabouts. 

Given that it is the array of guidance receptors expressed on the surface of the 

growth cone that influences guidance decisions made at choicepoints, it is not surprising 

that a variety of investigations have revealed the importance of molecules exerting 

control over receptor surface expression for guidance (see Chapter 1).  In the case of 
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Robo, the impact of the spatiotemporal pattern of surface expression is evidenced by the 

role of commissureless (comm) in gating Robo delivery to the growth cone plasma 

membrane, such that the times when Robo is sequestered from delivery by comm are 

the times in which growth cones are able to ignore Slit and cross the midline (Seeger et 

al. 1993; Kidd et al. 1998a; Keleman et al. 2002; Keleman et al. 2005; Gilestro 2008). 

Until now this receptor sorting mechanism has been assumed to provide the primary 

means by which Robo trafficking regulates midline repulsion.  More recently, we have 

provided evidence in our lab that the kuzbanian (kuz) metalloprotease also regulates the 

spatial patterns of Robo protein and, in contrast to Comm, positively regulates repulsive 

guidance (Coleman et al. 2010). 

The endogenous expression pattern of Robo throughout the embryonic ventral 

nerve cord is characterized by commissural exclusion and longitudinal enrichment (Kidd 

et al. 1998a).  This pattern of commissural exclusion is observed for all three Robo 

proteins even when they are over-expressed (Rajagopalan et al. 2000).  Interestingly, 

this Robo-free commissural pattern is abolished in embryos that are defective for kuz 

function (Schimmelpfeng et al. 2001; Coleman et al. 2010). kuz mutant embryos also 

display an axon guidance phenotype similar to that in robo mutant embryos; impaired  

midline repulsion (Coleman et al 2010). The striking association between a phenotype 

resembling robo loss-of-function (ectopic midline crossing by normally-ipsilateral axons) 

and failure to exclude Robo1 protein from the midline-traversing segments of axons 

suggests that kuz activity is necessary for Robo’s ability to sense Slit, and further 

suggest the possibility that following Kuz activity, Robo is cleared from the plasma 

membrane.  
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A Kuzbanian-catalyzed juxtamembrane cleavage of Robo is required for its 

repulsive guidance activity in vivo 

 

kuz is a metalloprotease that was identified by a genetic screen in our lab for 

molecules involved in Slit/Robo-mediated midline repulsion (Coleman et al 2010).  

Ectopic midline crossing of ipsilateral interneurons, a hallmark of defective midline 

repulsion, is observed in both kuz zygotic mutant embryos and in embryos where both 

slit and kuz activity are partially reduced (Schimmelpfeng et al. 2001; Coleman et al. 

2010). This dose-dependent interaction supports the idea that Kuz is a positive regulator 

of Slit-Robo signaling.  

kuz was originally discovered for its role in the Notch pathway, where it cleaves 

Notch in response to binding of its ligand Jagged, leading to the creation of an 

ectodomain and a C terminal fragment (CTF) (Rooke et al. 1996; Pan and Rubin 1997b). 

Like Notch, Robo is a substrate for Kuzbanian-mediated juxtamembrane cleavage both 

in vitro and in vivo (Figure 3.1B).  Co-transfection of kuz enhances the abundance of an 

~120 KDa N-terminal fragment of Robo in S2R+ cells, consistent with its identity as an 

ectodomain generated by juxtamembrane cleavage. Expressing a N-terminal tagged 

transgene of Robo panneuronally results in the production of a full-length receptor and a 

N-terminal fragment of similar size to that observed in the in vitro ectodomain shedding 

assay, showing that juxtamembrane cleavage of Robo can occur in vivo.  Some 

evidence that the in vivo cleavage product is catalyzed by kuz comes from dose-

dependance on Kuz function: adding a WT Kuz transgene enhances the abundance of 

this fragment, while a dominant negative Kuz transgene (missing its prodomain and 

metalloprotease domain) reduces its abundance. To test whether this juxtamembrane 
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cleavage contributes to midline repulsion, we assayed whether an uncleavable version 

of Robo (Figure 3.1B, top), a chimeric receptor with Fra identity at its predicted cleavage 

site (Figure 3.1A) could rescue the robo mutant phenotype in vivo (Figure 3.1D).  In robo 

mutants, the medial-most of the normally ipsilateral FasII-positive fascicles ectopically 

enter into and circle within the midline, and the ipsilateral apterous (ap) axon tracts 

collapse onto the midline. Expressing a WT Robo transgene in all neurons mostly 

rescues ectopic circling of the medial-most FasII+ fascicle, and completely rescues the 

Apterous ectopic crossing (quantified on right).  However, expressing two independent 

Robo-U transgenes does not rescue either FasII circling or the collapse of the two 

apterous fascicles on to the midline.  This defect in Robo signaling is not likely due to 

any defect in ligand-binding caused structural changes caused by the chimeric receptor, 

as Slit-binding is qualitatively intact in S2R+ cells (Figure 3.1C).   These observations, 

along with the biochemical evidence for Kuz-dependent generation of Robo fragments, 

strongly suggest that Kuz-mediated cleavage of Robo is necessary for repulsive 

signaling. 

 

Robo clearance from commissural segments is correlated with repulsion 

	
  

Another clue about Kuz’s mechanism of action comes from a puzzling 

phenomenon in kuz loss-of-function embryos. Compared to heterozygotes (Figure 3.2A, 

whose midline guidance phenotype is equivalent to WT), kuz mutants, like slit 

hypomorphs (Figure 3.2E), have reduced midline repulsion, as evidenced by the ectopic 

entry of axons into the midline area, which results in thinner longitudinal and thicker 

commissural segments of axons (Figure 3.2C). What is surprising here is that in spite of 



95	
  
	
  

this loss of repulsive activity, there is a paradoxical increase in repulsive receptor protein 

levels (Figure 3.2G), concomitant with mislocalization of Robo to the midline-traversing 

segments of axons. Normally Robo is excluded from commissures (Figure 3.2B), even 

when expressed at high levels (Rajagopalan et al. 2000), but in kuz mutants and slit 

hypomorphs, surface Robo is mislocalized to the commissural segments of axons 

(carrots, Figure 3.2D,F).  To look with more spatial resolution at this phenomenon we 

used the GAL4-UAS system to test whether N-terminally tagged Robo is retained on 

single fascicles of axons exhibiting loss-of-repulsion defects in slit and kuz loss-of-

function embryos. We find that there is a correlation between loss of repulsion, and 

retained Robo receptor on both ectopically crossing, normally ipsilateral Ap axons 

(Figure 3.2I), as well as on commissural Eg axons (Figure 3.2H). These in vivo 

observations provide evidence for a mechanistic link between clearance from axons and 

signaling, but also raise the question of how a cleavage event that leaves a membrane-

bound signaling fragment could lead to removal of this fragment from the cell surface. 

 

γ-Secretase catalyzes Robo cleavage and negatively regulates Slit-Robo signaling  

Insight from Kuz’s role in other signaling pathways implicates a putative 

subsequent cleavage event for Robo.  Many ADAM10/Kuz substrates, like Notch and 

APP, undergo processive proteolytic cleavage whereby the metalloprotease-mediated 

ectododomain shedding event is constitutively followed by a gamma-secretase mediated 

intramembrane proteolysis, which generates a soluble intracellular domain, or ICD (Beel 

and Sanders 2008; van Tetering et al. 2009).  In the case of DCC this second cleavage 

evidently promotes receptor clearance, as surface accumulation is enhanced in Ps1 

mutant primary mouse neuron cultures (Parent et al. 2005).  That this event follows a 
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metalloprotease shedding event is likely; inhibiting the first cleavage event by application 

of metalloprotease inhibitors to dorsal spinal cord explant cultures from rat results in 

higher DCC levels (Galko and Tessier-Lavigne 2000).  Given the observation of higher 

levels of membrane retained Robo in kuz mutants, it is possible that Kuz’s activating 

cleavage allows Robo turnover by a subsequent gamma-secretase mediated cleavage 

event (Selkoe and Wolfe 2007). It is likely that turnover of Robo CTF by such a second 

cleavage would occur not at the surface but following entry into an endocytic 

compartment, which we showed positively regulates Robo signaling (Chapter 2). 

Presenilin, the catalytic member of the gamma-Secretase complex, prefers the acidic 

environment of the endosome to perform its cleavages; inhibition of Clathrin-dependent 

endocytosis by expression of Shibire-DN wing and eye imaginal disc fly extracts 

abrogates the generation of Notch ICD as well as does direct application of a gamma-

Secretase inhibitor (Vaccari et al. 2008). 

If this proteolytic cascade indeed underlies kuz mutant embryos’ commissural 

clearance defect, then one would predict that we could detect a dependence on 

Presenilin activity of the conversion of Robo CTF to Robo ICD.  Others have 

demonstrated such a dependency in the case of human Robo; Robo CTF conversion 

into ICD in transfected HEK293T cells is inhibited by treatment with the gamma-

secretase inhibitor L-685,458 (Seki et al. 2010). I have found that there is a ~60 KDa C-

terminal Robo fragment whose abundance is enhanced by both cotransfection of Kuz, 

and inhibition of gamma-secretase activity (Compound E, a gamma-secretase inhibitor) 

in Drosophila cell lysates.  The fact that the abundance of this fragment is increased 

when kuz activity is limited (Figure 3.3A) and reduced when gamma-Secretase activity is 

inhibited (Figure 3.3B) is consistent with its identity as a Robo CTF.  There is also a ~58 
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KDa fragment whose abundance is enhanced by treatment with a proteasomal inhibitor, 

consistent with its identity as an ICD that is degraded quickly (Figure 3.3B).  The sizes at 

which these fragments run in SDS-PAGE analysis match both their predicted molecular 

weights (with 6XMyc tags, CTF: 63KDa, ICD: 59KDa) and their respective engineered 

cleavage products based on predicted cleavage sites.  Finally, their abundance is 

enhanced by treatment with Slit CM as compared to Control CM in S2R+ cells 

suggesting a ligand-dependency to the second cleavage event. 

Gamma-Secretase is a multi-molecular complex, consisting of Presenilin 

Enhancer 2 (pen-2), Anterior Pharynx Defective 1 (aph-1), Nicastrin (nct), and Presenilin 

(psn).  Nicastrin is thought to recognize the ectodomain remnants of sheddase substrate 

CTF’s -not by consensus sequence but by size.  Presenilin provides the enzymatic 

activity by its catalytic aspartic acid residues in an aqueous pore within the plane of the 

membrane. This cleavage event is thought to be constitutive upon access to sheddase 

substrate by Nicastrin, and only dependent on the pH-sensitivity of the cleavage 

mechanism.  To test for a functional contribution of γ-Secretase activity to the Slit/Robo 

pathway in vivo, I generated embryos that were heterozygous for slit,robo and 

homozygous for presenilin (and aph-1, and nct) and tested for genetic interactions 

between members of the γ-secretase complex and the Slit/Robo pathway. I detect a 

decrease in the number of ectopic crossing events in FasII-positive ipsilateral fascicles 

(Figure 3.4A). This genetic suppression is statistically significant by the Student’s 

unpaired t-test for two heteroallelic combinations (Figure 3.4B).  The same polarity of 

regulation is observed in the more restricted ipsilateral subset of Ap axons (Figure 3.4C).  

In embryos mutant for psn, the intermediate loss of repulsion in slit heterozygous 

embryos alone is suppressed. Additionally, the even stronger ectopic crossing 
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phenotype observed in slit heterozygous embryos that also express Rab5DN, which 

inhibits entry to the early endosome (Chapter 2), are also suppressed in psn mutants. 

These observations are consistent with a model in which Presenilin negatively regulates 

Slit-Robo mediated midline guidance.  psn mutant embryos do not have a midline 

guidance phenotype on their own, but, likely due to its role in Notch-regulated 

neurogenesis, presenilin exhibits one of the highest levels of maternal deposition of 

mRNA, strongly suggesting that embryos that are zygotically null for psn are not 

completely defective for Presenilin function. 

To directly test whether gamma-Secretase negatively regulates Slit-dependent 

Robo activation, we turned to a newly established in vitro activation assay (see Figure 

2.3). Application of a gamma-Secretase inhibitor to Robo-transfected S2R+ cells (Figure 

3.5B) enhances the increase in branching and process length over that observed in WT 

Robo alone (Figure 3.5A).  The gamma-Secretase inhibitor-induced enhancement of 

Robo-transfected S2R+ process generation effect is so obvious that I noticed it as a 

novice in the lab before I was focusing on this cellular behavior as anything of interest. 

The enhancement of process length is consistent with our genetic interaction results that 

implicate gamma-Secretase as a negative regulator of Slit-Robo signaling, and a model 

in which Presenilin catalyzes an inactivating cleavage of Robo.   If we are inhibiting a 

second cleavage that normally inactivates Robo signaling then we would expect to see a 

prolonged time-course in which activated Robo can stimulate what we know to be Rac-

based cytoskeletal motility that underlies process growth, as co-expression of Sos 

missing its RacGEF domain blocks Slit-dependent process elaboration (Figure 2.6). The 

gamma-Secretase modulation of this behavior is still a preliminary result without 

quantification, but consistently across two trials I am seeing cells that can no longer be 

captured in the field size I used to image many cells over the past couple of years. To 
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give you a better sense of this I have included representative WT Robo expressing Slit 

CM-treated cells from the same experimental trial in (Figure 3.5A, same trial as 3.5B,D). 

Applying this same gamma-Secretase inhibitor to cells expressing Robo missing its AP-2 

adaptor motifs (see Figure 2.3, Figure 3.5D) are indistinguishable from those untreated 

with the drug (Figure 3.5C), missing the increase in branching and length resulting from 

drug treatment observed in WT-Robo expressing cells. Taking this analysis to be similar 

to epistasis of endocytosis and transmembrane cleavage on the common substrate of 

Robo, we propose that endocytosis is epistatic to transmembrane cleavage, consistent 

with the second cleavage event occurring downstream of endocytosis.   

This is consistent with the dependence of Notch ICD generation on Clathrin-

dependent endocytosis (Vaccari et al. 2008; Gupta et al. 2009). The dependence of 

Presenilin activity on endocytic trafficking may be explained by the spatial restriction of 

gamma-Secretase complex localization or activity to the acidic late endosome.  Nicastrin 

has been demonstrated to localize to the lysosome (Pasternak et al. 2003), and the NGF 

treatment-dependent conversion of p75 CTF into ICD occurs in the sub-cellular fraction-

derived compartment of endosomes in PC12 cells (Urra et al. 2007).  If Robo’s cleavage 

by Presenilin releases the ICD into the lysosome for degradation, thereby terminating its 

signaling, this would explain how the turnover of Robo protein depends on Kuz’s 

activating cleavage and why we see a negative regulatory role for psn in in vivo genetic 

interactions and in vitro activation. 

If the second cleavage event serves to terminate signaling from an activated CTF 

then we would expect that the cleavage product would have no repulsive activity. 

Consistent with this model, the engineered ICD displays neither cell spreading (or 

process generation) activity when expressed either in S2R+ cells (Figure 3.5F,G) nor 

midline guidance activity when expressed transgenically in the Drosophila embryo.  
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Over-expressing an insert of C-terminal epitope-tagged ICD, that is inserted into the 

same chromosomal site – and therefore not subject to positional-induced expression 

level differences- as the Full-length, wild-type Robo analyzed in (Figure 2.7), is not 

sufficient to signal repulsion from the midline either in all neurons or in the Eg 

commissural subset (data not shown).  Similarly, the same insert is not able to rescue 

loss of midline repulsion in either the FasII or Ap+ axons in robo mutant embryos, in 

contrast to full-length Robo Transgene (data not shown, compared to Figure 2.8).  Robo 

ICD’s lack of ability to signal to the cytoskeleton of S2R+ cells or navigating growth 

cones are not due to any obvious effects on protein localization as the ICD construct is 

detected by immunostaining uniformly throughout a given S2R+ cell, and in axon 

fascicles when expressed in subsets of neurons(data not shown).  

 Interestingly driving expression of Robo CTF in S2R+ cells (Figure 3.5E) confers 

slightly more cortical spreading capacity than does expressing ICD, but this effect is 

modest comparing cortical size of cells expressing Robo missing its first Ig domain or 

even the entire C-terminus. This indicates that Robo ectodomain beyond the first 9 

amino acids from the TMD confers some signaling capacity to Robo.  This might reflect a 

requirement for Robo ectodomain in either a low level of auto-activation by self-

association between high concentrations of receptors, or a conformational change that is 

enhanced by ligand-binding, as occurs in the Notch pathway (Kopan and Ilagan 2009). 

Future work with ectodomain swaps or serial ectodomain deletions in this assay may be 

able to shed insight into this question.  This may also simply reflect the speed with which 

the constitutive cleavage of a CTF into an ICD occurs, if indeed the second cleavage 

event is inactivating for this assay.  Regardless, Robo ICD’s lack of repulsive signaling 

capacity when overexpressed along with endogenous Robo in the embryo rules out a 
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model for ICD function in which it serves as a positive feedback loop effector in ligand-

induced receptor activation, as is the case for Eph ICD (Georgakopoulos et al. 2006). 

 

Robo juxtamembrane cleavage is required for Robo activation, and occurs 

upstream of Slit-binding 

To more directly test for the polarity of regulation provided by the first ectodomain 

shedding event we turned to the same in vitro Slit-dependent Robo activation assay just 

described.  ADAM10 metalloproteases both catalyze the cleavage of and contribute to 

the signaling of other axon guidance molecules, often in a ligand-dependent manner 

(Galko and Tessier-Lavigne 2000; Hattori et al. 2000; Janes et al. 2005; 

Georgakopoulos et al. 2006; Litterst et al. 2007); reviewed in (Beel and Sanders 2008)).  

It was previously demonstrated that KuzDN co-expression abrogates the Slit-dependent 

recruitment of Sos to the Robo receptor in HEK293T cells (Coleman et al 2010), and that 

the juxtamembrane region of Robo is required for repulsive midline guidance.   

Here, using finer molecular genetic manipulations than the original RoFraRo 

(Robo-U, Figure 3.1), we again provide evidence that Robo’s juxtamembrane region is 

required for its activation in vitro. Expressing versions of Robo where the entire 55aa 

juxtamembrane domain between its FN3 and TMD is deleted (Figure 3.6B), or versions 

with two smaller deletions encompassing the putative Kuz cleavage site on dRobo1 

(Figure 3.6C,D) inhibits the Slit-dependent process elaboration seen in cells expressing 

WT Robo (Figure 3.6A).  Unlike a human Robo juxtamembrane deletion that included 

part of the FNIII domain (Seki et al 2010), this deletion is expressed in cells, as assayed 

by immunostaining for a C-terminal epitope tag.  Importantly, adding back human 
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Robo1’s JM Domain (33amino acids, Figure 3.6E) restores the process elaboration 

response, consistent with a restoration of the activating cleavage, suggesting that this 

cleavage site is interchangeable and therefore conserved across phyla.  

The crystal structure of human Robo1 reveals a beta-bulge (an electron-dense 

region) that is predicted to provide steric hindrance to hRobo1’s ADAM10 cleavage site 

Glutamine888-Glutamine889. A point mutation to an aspartic acid residue that is 

predicted to destabilize the beta-bulge has been demonstrated to enhance the 

abundance of Robo ectodomain from transiently transfected HEK293T cells (Barak et al. 

2014). To test whether this may have an effect on Drosophila Robo activation, I assayed 

the effect of the analogous point mutation on the process elaboration response to Slit. 

Slit-CM-treated cells expressing this construct appear to have an increase in process 

length (Figure 3.6F), a feature which reflects Robo activation, as the maximal Sholl 

radius is decreased in cells expressing Robo missing its entire C terminus or Slit-binding 

region (Figure 2.3).  What is surprising is that combining this point mutation with a 

deletion of the Ig1 domain results in cells that look qualitatively like ∆Ig1 (Figure 3.6G), 

but that have an increase in process length (Figure 3.6H). Whether this difference can 

be accounted for by the amount of Robo that is still able to bind Slit (there is still a very 

faint amount of Slit detectable by immunostaining on cells expressing Robo ∆Ig1, as 

compared to cells expressing CTF, or no Robo at all), or that the cleavage is occurring 

upstream of Slit binding but is still required for activation is not known. A piece of 

evidence supporting the latter hypothesis is that ectodomain is still shed into the media 

from S2R+ cells expressing Robo missing its Ig1 domain.  Further, Robo that is missing 

both its juxtamembrane domain and its Ig1 domain look more like ∆JM, whereas those 

that are missing their Ig1 domain and treated with the Clathrin-dependent endocytosis 
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inhibitor Dynasore look more like ∆Ig1 alone (data not shown).  One significant caveat to 

any conclusions about ordering ligand-binding and Kuzbanian-mediated proteolysis from 

this assay alone is that we have never been able to detect any Slit-dependency of 

ectodomain shedding from S2R+ or HEK293T cells in our lab.  We can detect 

enhancement or abrogation by co-transfection with WT or DN-Kuz, respectively.  This 

may reflect that the cleavage event indeed occurs before Slit binding, or it may reflect a 

shortcoming of our reduced complexity in vitro system.  

Barak et al. propose a mechanism for in vivo Robo activation in which the 

mechanical tension generated by the force between a migrating growth cone and its 

tethering to the ECM by Robo-Slit-binding overcomes the intramolecular interactions 

stabilizing Robo’s JM beta-bulge to induce a conformational change that allows ADAM10 

access to its cleavage site on Robo. This model does accommodate the need for 

repulsion from an initially ‘adhesive’ event, implicated by others in repulsive guidance, 

however the relative avidities of the proposed protein-protein(-sulfate) interactions have 

not been quantified and therefore this model, though informed by that from other 

pathways (Notch and Ephrin) is unverified.  A more lucid conclusion from this in vitro 

activation assay is that endocytosis and juxtamembrane cleavage both contribute to 

Robo activation as deleting both the juxtamembrane and the AP-2 adaptor motifs 

(Chapter 2) lead to a strong abrogation of process generation (Figure 3.6J) that is 

indistinguishable from deleting the entire C-terminus (Figure 3.6K).  This evidence 

argues against a simple passive model in which Kuz-mediated cleavage or endocytosis 

are passive agents required for release of a migrating growth cone, but instead argue for 

a requirement for Robo internalization in the activation of cytoskeletal dynamics. Future 

work will have to be performed to elucidate the mechanics of Robo activation in vivo. 



104	
  
	
  

Taking the smallest juxtamembrane deletion identified to have reduced Robo 

activation (Figure 3.6D), and reduced CTF/ICD generation in S2R+ cells here (Figure 

3.7C), I assayed its ability to induce gain of repulsion. Unlike over-expressing a 

juxtamembrane manipulation that does not affect ectodomain shedding in S2R+ cells 

(Figure 3.7A), that is sufficient to induce thinning commissures and thickened 

longitudinals, Robo missing its HKK residues does not display gain of repulsion, despite 

comparable expression levels, as assayed by HA antibody signal in (Figure 3.7B vs. A). 

There does also appear to be some commissural signal of transgene, like that in kuz 

mutants or in over-expressed Robo-U (Coleman et al 2010), consistent with membrane-

bound, inactivated Robo retained on the segments of axons as they ignore repulsive cue 

within the midline. This construct gives worse rescue than WT Robo when expressed in 

the ipsilateral Ap axons of robo mutants (Figure 3.7D). Whether this trend holds up 

across multiple inserts and in the full array of assays utilized in Figures 2.7 and 2.8 

remains to be tested. 

 

Discussion 

 

The in vivo paradoxical correlation between increase in repulsive receptor levels 

and decreased midline repulsion suggest that Kuz positively regulates (1) repulsive 

guidance, (2) exclusion of Robo from commissures, and (3) a reduction in Robo protein 

levels. Together with the biochemical analysis, we can conclude that the mechanism of 

Kuz’s action in repulsive guidance is juxtamembrane cleavage of Robo, which somehow 

couples exclusion of Robo from commissures to repulsive signaling. This suggests that 
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somehow this cleavage event is both necessary for activation of Robo (and therefore 

repulsion) and linked to clearance from commissural segments of axons. We provide 

evidence that this cleavage event may occur upstream of Slit-binding, not refuting that it 

is required for Robo’s activation, but future work is required to provide a formal decision 

on the relative order of these two events in vivo. 

The correlation between clearance from axons and signaling is consistent with 

internalization into a given growth cone that we demonstrated is provided by Slit-

dependent Robo endocytosis in Chapter 2.  The in vitro S2R+ Robo activation assay 

corroborates that a juxtamembrane cleavage provided by the ADAM10 metalloprotease 

Kuzbanian is required for its repulsive signaling in vivo. We also demonstrate that this 

process, combined with Robo endocytosis, can fully account for all Robo signaling as 

assayed by process elaboration provided by the C-terminus.  Finally, we presented 

evidence supporting a model in which a second, inactivating gamma-Secretase 

mediated cleavage of Robo shortens the time-course of signaling from an activated, 

internalized receptor fragment. 

A Presenilin-mediated inactivating cleavage of Robo 

Given that the Uncleavable Robo in vivo rescue data predict Kuz to be 

performing an activating cleavage, a subsequent cleavage might serve to shorten the 

time course of activation, thereby providing evidence for an attenuation of signaling from 

an activated guidance receptor.  Metalloproteases have been shown to both cleave and 

contribute to the signaling of other axon guidance molecules. For example, Kuz-

mediated cleavage of ephrin-A2 allows for repulsion from an initial point of adhesion with 

its cognate EphA receptor (Janes et al. 2005; Atapattu et al. 2012). The signaling role of 
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the second, constitutive gamma-Secretase-mediated cleavage is not conserved between 

pathways; for example, in the case of Notch the ICD acts as a transcriptional regulator 

(Mumm et al. 2000), in the case of Ephrin-B it acts as a local signaling molecule to 

positively regulate phosphorylation of uncleaved ligands (Georgakopoulos et al. 2006).  

In our system we have shown that gamma-Secretase provides a negative 

regulatory cleavage event to Robo signaling both at the midline and in a ligand-

dependent cytoskeletal readout in vitro.  Our in vitro Robo activation and in vivo genetic 

interactions are consistent with gamma-Secretase negatively regulating Slit-Robo 

midline repulsion and Slit-dependent process elaboration, respectively.  If gamma-

Secretase’s cleavage of Robo occurs in the multi-vesicular bodies of the late endosome, 

then releasing a soluble ICD into the topology-reversed lysosomal compartment would 

passively lead to turnover of Robo protein levels. That Kuzbanian’s activating cleavage 

would gate this second cleavage event provides an explanation for how and why the 

juxtamembrane cleavage that is required for Robo signaling is coupled with turnover of 

protein levels. We predict that the Kuzbanian-mediated Robo cleavage product, the 

CTF, if already afforded Dock recruitment by Slit-binding when generated from Full-

length receptor (as opposed to engineered CTF which is incapable of Slit-binding) would 

signal as it trafficks through endocytic pathways until its solubilization into the MVB’s. 

Degradation of Robo ICD in the lysosome would curtail the time-course of signaling from 

a receptor that has lost the spatial fidelity to the original location of its activating ligand at 

the surface of the cell. 

Future work to further elucidate the relative order and interplay between 

endocytosis and proteolytic regulation of Robo activation dynamics should shed insight 

onto the contribution of these pathways to Robo-mediated midline repulsion. 
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Materials and Methods 
 

Genetics 

The following Drosophila mutant alleles were used: roboGA285, roboz1772, robo5, slit1, slit2, 

slite158, kuze29, kuzH143, psn12, psn145 , psn227, nctEY, aph-1D35. The following transgenes 

were used: P[UASp-YFP-Rab5.S25N]35. The following transgenic flies were generated 

by BestGene Inc (Chino Hills, CA) using ΦC31-directed site-specific integration into 

landing sites at cytological position 86F8 (controlling for expression level effects from 

chromosomal position): P[5xUAS-RoboICDKozak-6xmyc]86Fb,  P[GAL4-elav.L]3 (elav-

GAL4), egMZ360 eg-GAL4 (Ito et al. 1995), ap-GAL4 (Calleja et al. 1996), eg-GAL4. All 

crosses were carried out at 25°C. Embryos were genotyped using balancer 

chromosomes carrying lacZ markers or by the presence of epitope-tagged transgenes. 

 

Molecular Biology 

pUAST cloning: The RoboICDKozak coding sequences were cloned into a pUAST 

vector (p5UASTAttB) including 5xUAS and an attB site for ΦC31-directed site-specific 

integration. All p5UASTattB constructs include identical heterologous 5’ UTR and signal 

sequences (derived from the Drosophila wingless gene) and a C-terminal 6×myc tag. 

The pUAST-3xHA-RoboΔHKK-6xMyc transgenic lines were created by standard 

transgenic methods without control over chromosomal insertion site.  Robo domain 

deletion variants created for this study were generated by PCR and include the following 

amino acids (numbers refer to Genbank reference sequences AAF46887 [Robo]: 

Robo∆Ig1 (153-1395) (Evans et al 2014), Robo∆C (56-950) (Evans et al 2014), Robo∆YLQY 
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∆YQAGL (1090-1093; 1233-1237), Robo∆(Juxtamembrane) (862-916), RoboJM D>A (863), 

Robo∆DINPTTHKK (900-908), Robo∆HKK (906-908), Robo∆Juxtamembrane (862-916), 

RobohumanRobo1 swap (865-897 of hRobo).  All Robo constructs used in the in vitro S2R+ 

activation assay were cloned into the 5xUAS-AttB plasmid containing 3xHA(N) and 

6xMyc(C) tags, or 3xHA no C-terminal Tag (Barry Dickson, shuttled into p5AttB here), 

Robo ΔEcto/CTF (3xHA/6xMyc) was created by PCR using the following primers: 

tatataCGCTAGCatgACCACTGACTACCTATCTGGACC, tcgggtggctattgggatgc.  

RoboΔYLQY was created using the following primers: 

TTGTCAAATCCAACCCGGTTGAACCGATCA,TGATCGGTTCAACCGGGTTGGATTT

GACAA; ΔYQAGL: CAGCCAGCGAGAATGCAGCG, CGCTGCATTCTCGCTGGCTG; 

RoboΔ(JM):TGGACCTTACTCCAAACCGATATCACTATTCTACCTATCTGGACCGTG

GCTAATGG,CCATTAGCCACGGTCCAGATAGGTAGAATAGTGATATCGGTTTGGAG

TAAGGTCCA; RoboΔDINPTTHKK: CATACCACCTGGCACCACTGACTACC, 

GGTAGTCAGTGGTGCCAGGTGGTATG;RoboΔHKK:GACATTAATCCCACCACTACCA

CTGACTACCTATCT, AGATAGGTAGTCAGTGGTAGTGGTGGGATTAATGTC; 

RoboJMD>A : TCACTATTCATGGcCCCCACCCAT,ATGGGTGGGGgCCATGAATAGTGA 

; Robo ICD:tatataCGCTAGCatgCATCAAATGACCAAGGAATTGGGTC, 

TAGATCTGGTGGTTGGAGGAGGTC=RKC179; 

RoboICDKozak:tatatataGAATTCcaccatgCATCAAATGACCAAGGAATTGGGTC, 

(RKC179), cloned into vector 192 (BmtI-less backbone, see Chapter2 Materals & 

Methods);  RoboCTF: CGCTAGCTTAGATACCACTGACTACCTATCTGGACC, 

(RKC179). 

Immunofluorescence and Imaging 
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in vitro Robo activation assay: Drosophila S2R+ cells were cultured at 25°C in 

Schneider’s media plus 10% FBS and 1% Penicillin-Streptomycin. To assay for Slit 

response, cells were plated on acid-etched, poly-L-lysine coated coverslips in duplicate 

in six-well plates (Robo-expressing cells) at a density of 1-2×106 cells/mL, and 

transfected with 0.25ug of p5AttB construct and pMT-GAL4/2mL Schneider’s (a one-day 

lag between CM and Robo cells) using Effectene transfection reagent (Qiagen). GAL4 

expression was induced with 0.5 mM CuSO4 for 24 hours, then Slit-Conditioned Media 

(CM) was collected and concentrated from cells transfected with empty pUAST vector or 

Slit. Robo-transfected cells were incubated with CM on an orbital shaker at room 

temperature for 10 minutes, then fixed for 10 minutes at RT in 4% PFA. Cells were 

rinsed with 1XPBS, permeabilized with PBS+0.1% Triton X-100 (PBT) for 2 minutes, 

then blocked for 1Hr and stained with antibodies diluted in PBT+4% NGS. Antibodies 

used were: mouse anti-Slit-C (c555.6D, DSHB, 1:100), mouse anti-cMyc (9E10, 1:1000), 

rabbit anti-cMyc (Sigma c3956, 1:1000), rabbit anti-GFP (Invitrogen #A11122, 1:1000), 

rabbit anti-HA (Covance, 1:1000), Cy3 goat anti-mouse (Jackson Immunoresearch, 

1:1000), and Alexa488 goat anti-rabbit (Molecular Probes, 1:500). Coverslips were 

mounted in Aquamount. 0.252µM totalZ confocal stacks were collected using a Leica 

TCS SP5 confocal microscope at 63X and zoom3 and processed with FIJI and hand-

calculations in Excel.  

Embryos: Dechorionated, formaldehyde-fixed, methanol-devitellinized Drosophila 

embryos were fluorescently stained using standard methods.  The following antibodies 

were used in this study: FITC-conjugated goat anti-HRP (Jackson # 123-095-021, 

1:250), mouse anti-Fasciclin-II/mAb 1D4 [Developmental Studies Hybridoma Bank, 

(DSHB), 1:100], rabbit anti-GFP (Invitrogen #A11122), 1:1000, mouse anti-HA (1:1000), 
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mouse anti-βgal (DSHB, 1:150), Alexa-488 conjugated goat-anti-HRP (Jackson #123-

605-021 1:100), Cy3-conjugated goat anti-mouse (Jackson #115-165-003, 1:1000), 

Alexa-488-conjugated goat anti-rabbit (Molecular Probes #A11008, 1:500). Embryos 

were filleted and mounted in 70%glycerol/1XPBS and imaged on Leica TCS SP5 at 63X 

with a zoom of 1.7. Images were processed using FIJI. 

Biochemistry 

Robo ectodomain: S2R+ cell conditioned media/supernantant was boiled for 10’ in 2X 

SDS Loading Buffer. Robo CTF/ICD: S2R+ cell lysates were lysed in TBS-V with NP40. 

Robo ectodomain from embryos:  embryos were lysed with TBS-V with NP40 and 

immunopreciptated with mouse-anti-HA to detect full-length and ectodomain products 

from  UAS-HA-Robo-myc p5 AttB inserts into the 86Fb chromosomal site. Proteins were 

resolved by SDS Page and transferred to nitrocellulose and incubated with anti-HA 

(Covance 1:1000) or anti-Myc (9E10 1:1000) overnight at 4°C in PBS/0.05% Tween-

20/5% non-fat dry milk.  Blots were incubated with HRP-conjugated anti-mouse 

secondary antibody for 1 hour at RT and signal was detected using ECL Prime 

(Amersham). 
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Robo proteolytic processing figures 
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Figure 3.1: A kuzbanian-catalyzed juxtamembrane cleavage of Robo is required 
for its repulsive guidance activity in vivo 
A-C: Robo is cleaved by Kuzbanian metalloprotease, chimeric Ro-Fra-Ro (Robo-U) is 

not. 

B. The kuzbanian metalloprotease enhances shedding of an N-terminal Robo fragment 

in S2R+ cells, and has a dose-dependent effect on the same fragment of Robo 

transgene in embryos. A chimeric version of Robo (“Robo-U”), lacking Robo identity at 

its putative cleavage site (blue dotted line), is uncleavable by Kuz in an in vitro assay 

(A,B). Robo-U’s juxtamembrane Frazzled identity does not affect its ligand-binding (Slit 

signal on S2R+ cells expressing indicated receptors, C). 

D. Kuz-mediated Robo cleavage is important for repulsive guidance 

robo null embryos show ectopic entry of the medial-most of the normally ipsilateral FasII-

positive fascicles into, and collapse of the ipsilateral apterous (Ap) axons onto, the 

midline. Expressing a WT Robo transgene in neurons largely rescues ectopic circling of 

the medialmost FasII fasicle, and completely rescues apterous ectopic collapse 

(quantified on right). Expressing two independent Robo-U transgenes does not rescue 

either FasII or apterous ectopic crossing (quantified on right). These data provide strong 

evidence that Kuz-mediated cleavage of Robo is important for repulsive guidance in 

vivo.  

(Figure adapted from Coleman et al. 2010- Experiments in B in vitro and D were 

performed by Hope Coleman, Experiments in B in vivo and C were performed by RKC. 

All schematics were created by RKC.) 
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Figure 3.2: Robo clearance from commissural segments is correlated with 
repulsion 
A-F: Stage 14 Drosophila embryos are stained with either HRP, marking all neurons, or 

13C9, detecting endogenous Robo protein levels. B and D were stained before fixation, 

reflecting surface Robo distribution while F reflects signal from both intra- and extra-

cellular Robo.  kuzbanian mutant and slit hypomorphic embryos display Robo protein 

mislocalized to the commissural segments of axons. 

H-I: The projection pattern of the Eg commissural subset of axons(H) and the ipsilateral 

Apterous subset of axons (I) are labeled with a GFP-tagged microtubule transgene. An 

N-terminal epitope tag on Robo is imaged in red and schematized on the right in pink.  

kuzbanian and slit are required for repulsive guidance and clearance of Robo transgene 

from axon fascicles. In a commissural subset of axons in slit hypomorphs, there is a 

displacement towards the midline, with ectopically retained HA-Robo signal (H).  In slit 

mutants, the normally ipsilateral Ap axon fascicles that collapse onto the midline express 

HARobo signal (Figure 3.2I).  In slit/kuz transheterozygotes, there are subtle crossing 

events, that, also bear HA signal.  

(Figure adapted from Coleman et al. 2010- Experiments in A-D; G were performed by 

Greg Bashaw. All others were performed by RKC.) 
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Figure 3.3: gamma-Secretase catalyzes Robo cleavage in vitro 
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Figure 3.3: gamma-Secretase catalyzes Robo cleavage in vitro 

 

A-C: Antibody signal to C-terminal epitope tag on Robo from Western Blots of samples from 

S2R+ cell lysates transiently transfected with Robo are displayed.  

 D: The schematic illustrates processive proteolysis of a full-length receptor into an ectodomain 

and CTF by Kuz/ADAM10, and subsequent γ-Secretase-mediated cleavage of membrane-bound 

CTF into a soluble ICD.   

SDS-PAGE analysis of S2R+ cell lysates reveals two C-terminal fragments of Robo. The 

abundance of a ~60KDa C-terminal fragment is enhanced either by enhancing Kuz function by 

co-transfection with WT Kuz (A), or by inhibition of gamma-Secretase activity by co-transfection 

with UAS-Presenilin-DN (B).  The generation of these fragments from full-length receptor is 

enhanced by Slit Conditioned Media treatment (C, lane 2 as compared to lane 1), and they run at 

the same size as engineered Robo missing its ectodomain (CTF), and that which starts after the 

Transmembrane domain (ICD).  Note that the size-matched ICD generated from full-length Robo 

also displays Slit-sensitive abundance. 
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Figure 3.4: gamma-Secretase complex genes genetically interact with the 
Slit/Robo pathway 
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Figure 3.4: gamma-Secretase complex genes genetically interacts with the 
Slit/Robo pathway 

(A) An ipsilateral subset of axons in the ventral nerve cord of stage 16 Drosophila 

embryos are stained with a monoclonal antibody (mAb) to FasciclinII (FasII). Double 

heterozygous slit, robo embryos have a mild loss-of-repulsion phenotype (induction of 

ectopic crossing events in 22% of embryonic segments).  Inhibiting gamma-Secretase 

activity by removing heteroallelic combinations of members of its complex presenilin 

(psn), nicastrin (nct) or anterior pharynx 1 (aph-1) suppresses the crossing defects to 

0%. These suppressions are statistically significant by the Student’s Unpaired t-test 

when indicated by *’s (B). 

C: A more restricted ipsilateral subset of axons are genetically labeled with Tau-Myc-

GFP transgene to highlight their microtubules and therefore axonal projection patterns. 

In stage 16 WT embryos the two Ap axon fascicles on either side of the midline project 

ipsilaterally in all embryonic segments.  In animals where one copy of slit has been 

removed, a partial loss of repulsion phenotype results with 11% of segments exhibiting 

ectopic crossing events (indicated by *).  In embryos that also express DN-Rab5, 

inhibitng early endosome entry, in the same background the crossing errors are 

enhanced.  Inhibiting gamma-Secretase by introducing two mutant psn alleles in first 

background, and one allele each of aph-1 and psn, suppresses the ectopic crossing 

errors to 0%, and 22%, respectively (D).  
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Figure 3.5: gamma-Secretase negatively regulates Robo signaling 
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Figure 3.5: gamma-Secretase negatively regulates Robo signaling 

Morphological profiles of Drosophila embryonic cells bath treated for 10’ with 

Conditioned Media (CM) from cells either expressing empty vector (“Control”), or 

secreting Slit.  A: Cells expressing WT Robo that are treated with Control CM show a 

baseline level of process generation that are more branched and elaborated if Slit 

treated, with two representative examples for Slit CM shown. B: Cells expressing WT 

treated with 20µM of the gamma-Secretase inhibitor S2188 (Wolfe et al. 1998) show 

enhancement of process length and branching seen in A; displayed cells are determined 

to be representative from two trials. In contrast, cells expressing Robo missing its AP-2 

binding motifs (Figure 2.3,C) do not show sensitivity to S2188 by enhancement of 

process length or branching upon treatment with the same drug (D). E-G: Cells 

expressing engineered C-terminal fragments of Robo to approximate kuzbanian and 

presenilin-mediated cleavages are not responsive to SlitCM treatment.  Cells expressing 

engineered Robo CTF (E, containing 9 amino acids N-terminal to the Transmembrane 

Domain) exhibit low levels of spreading behavior.  Cells expressing Robo ICD (F, 

soluble), or the ICD with a Kozak sequence (G), do not show the cortical spreading 

behavior that Robo-CTF+ cells do, but do show a very low basal process generation 

above untransfected cells.   
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Figure 3.6: Juxtamembrane Robo cleavage required for its signaling occurs 
upstream of Slit-binding in vitro 
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Figure 3.6: Juxtamembrane Robo cleavage required for its signaling occurs 
upstream of Slit-binding in vitro 

Morphological profiles of Drosophila embryonic cells bath treated for 10’ with 

Conditioned Media (CM) from cells either expressing empty vector (“Ctrl CM”), or 

secreting Slit.  A: Cells expressing WT Robo that are treated with Control CM show a 

baseline level of process generation that are more branched and elaborated if Slit 

treated, with two representative examples for Slit CM shown. B-F: Manipulations to 

Robo’s juxtamembrane domain, illustrated in domain structure diagrams and in more 

detail in the box-shade sequence alignment between Drosophila and Human Robo1 in 

(L) are assayed for effect on process elaboration behavior.  B: Cells expressing Robo 

with its entire JuxtaMembrane (JM), the 55 amino acid stretch between the third 

FibroNectin Domain (FNIII) and the TransMembrane Domain (TMD), deleted show a 

reduction in process branching behavior, consistently across many trials (not quantified).  

C,D: Finer, nested deletions of 9 (C) and 3 (D) amino acids encompassing the predicted 

dRobo1 Kuzbanian cleavage site (aligned with hRobo1’s Q-Q cleavage site indicated by 

the dotted line in the box shade alignment in L) also inhibit Slit-dependent process 

elaboration. E: Swapping in humanRobo1’s juxtamembrane domain is sufficient to 

restore a process branching response to Slit treatment. F: Point-mutating an aspartic 

acid residue at the very N-terminus of the JuxtaMembrane domain, homologous to the 

one shown by others to enhance the abundance of Human Robo ectodomain shed from 

transiently transfected HEK293T cells (Barak et al 2014), show an increase in process 

length in response to Slit CM treatment as compared to WT Robo-expressing cells. G: 

Cells missing their first ImmunoGlobulin (Ig) domain, required for Slit-binding in Human 

Robo1 (Fukuhara et al. 2008; Hohenester 2008) show a decrease in process field 

maximal radius and a characteristic ‘beaded string’ process morphology.  H: Cells 
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expressing Robo missing its Ig1 and bearing the JM D>A point mutation are of a 

qualitative type that is an amalgamation of those with either manipulation singly; they 

have the beaded string process morphology of ∆Ig1 with the increase of JM D>A in 

process length over just ∆Ig1 alone. I: In contrast, cells missing both their Ig1 Domain 

and JM domain do not bear the qualitative type of processes that the ∆Ig1 alone 

expressing cells do; instead they resemble ∆JM alone. M: Western blots of conditioned 

media from cells expressing either WT or ∆Ig1 Robo-expressing cells both reveal Robo 

ectodomain (HA+ Fragment at ~120KDa), demonstrating that Kuz-mediated 

juxtamembrane cleavage is not affected in this assay by deletion of Robo’s Slit-binding 

domain.  J: Cells missing both their JM Domain and their AP-2 Binding motifs show 

strong complete abrogation of process elaboration response to Slit CM-treatment, 

rendering them indistinguishable from those expressing Robo missing it’s entire C-

terminus (K). 
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Figure 3.7: Robo ICD generation requires kuz-mediated juxtamembrane cleavage   
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Figure 3.7: Robo ICD generation requires kuz-mediated juxtamembrane cleavage   

A-B: The nerve cords of Stage late 14 Drosophila embryos are stained with HRP to 

reveal the entire neuropil scaffold (all neurons in green), and HA to reveal the spatial 

pattern of Robo transgene overexpressed in all neurons (N-terminal tag, red).  A: Robo 

expressing a double point mutation that is sufficient to cause gain of repulsion in all 

neurons, and displays ectodomain shedding in embryos (data not shown) and therefore 

taken to function as a WT receptor is excluded from the commissural segments of 

axons.  B: Robo missing its putative Kuz cleavage motif, that contributes to receptor 

activation (Figure 3.6D), does not cause appreciable thinning of the commissures and is 

faintly mislocalized to the commissural segments of axons (asterisks). C: Western blots 

of S2R+ lysates stained for Robo’s C-terminal epitope tag preliminarily reveal that there 

is a shunting of the Slit CM-dependent increase in CTF upon deletion of the same 3 

amino acid motif shown in B.  D: One transgenic insertion is less effective than WT at 

rescuing the ectopic crossing defects in robo mutant embryos when transgenically 

expressed in the Ap ipsilateral subset of axons, as compared to one WT Robo insert. E: 

Immunopreciptations of N-terminal epitope tag on Robo transgenes expressed in the 

Apterous ipsilateral subset of axons using the GAL4-UAS system are blotted with 

antibody to the same HA tag.  The abundance of the ectodomain fragment (120KDa) is 

not reduced in Robo constructs defective for AP-2 binding and therefore Clathrin-

dependent endocytosis, as compared to WT, consistent with Kuzbanian-mediated 

juxtamembrane cleavage occurring upstream of endocytosis. 
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Figure 3.8: A Model detailing Proteolytic Processing cascade and endocytic 
trafficking’s contributions to Robo’s activation dynamics	
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Figure 3.8: A Model detailing Proteolytic Processing cascade and endocytic 
trafficking’s contributions to Robo’s activation dynamics 

Upon Slit-binding Robo is activated; the adaptor protein Dreadlocks (Dock) is recruited 

to Robo’s CC2 and CC3 motifs, which in turn activated PAK and consequently initiates 

Rac activation (Fan et al. 2003).  Juxtamembrane cleavage of Robo by Kuzbanian (Kuz) 

is required for both Robo activation in vitro and midline repulsion in vivo (Coleman et al. 

2010). This cleavage event may occur after Slit-binding, but all evidence indicates that it 

is still required for Robo signaling output.  Robo endocytosis occurs following 

juxtamembrane Kuz cleavage, as Robo defective for endocytosis still effectively 

generates Robo ectodomain in the embryo.  Juxtamembrane proteolysis and Clathrin-

dependent endocytosis cooperate to account for all the Robo activation provided by 

Robo’s C-terminus in vitro.  The correlation between retained surface Robo and 

decreased activation in Kuz-inhibited conditions may be explained by both internalization 

into the growth cone of Robo as well as the subsequent gamma-Secretase-mediated 

cleavage that allows its degradation, after entry into the late endosome, into the 

multivesicular bodies of the mature late endosome bound for lysosomal degradation. 
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CHAPTER 4: General Conclusions and Future Directions 
 

This work presented in this dissertation was designed to further our 

understanding of the genetic determinants of anatomical connectivity patterns 

established in development.  It is comprised of basic research into the mechanisms 

regulating the activity of our axon guidance receptor of interest.  This gene, roundabout, 

is both causatively linked to a rare Human genetic disorder (Horizontal Gaze Palsy with 

Progressive Scoliosis) (Jen et al. 2004) and implicated either directly, or by its signaling 

partners, by Genome-Wide Association Studies in the pathogenesis of a number of 

common developmental disorders (schizophrenia, autism, and dyslexia/periventricular 

nodular heterotopia (Hannula-Jouppi et al. 2005; Chang et al. 2007; Anitha et al. 2008; 

Potkin et al. 2009a; Bates et al. 2011; Wilson et al. 2011; Gulsuner et al. 2013), which 

fall into the common-disease, common-variant category, and implicated in the 

generation of human specific cortical wiring programs (Dennis et al. 2012) (Table 4.1).  

Understanding the molecular mechanisms regulating the function of this receptor in 

normal development will improve our understanding of both those neurological disorders 

that have well-defined anatomical and functional correlates and those with higher 

incidence levels and therefore relevance to healthcare systems.   

Slit is a repulsive guidance cue that activates the Roundabout receptor, 

expressed on the tips of filopodia of migrating growth cones, which incites retraction of 

actin-rich filopodia on the short term to ultimately inhibit the eventual cable-like axonal 

projections marking the track of a previously migrating growth cone from growing into 

Slit-containing regions. Endocytosis has been implicated in several repulsive guidance 

pathways to contribute to growth cone or axon guidance behaviors by passively turning 
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over guidance molecules expressed on the surface to inform the combinatorial array of 

signaling molecules competent to respond to subsequent cues encountered as the 

growth cone membrane advances. A requirement for endocytosis has also been 

implicated in the latter projection pattern readout of growth cone behavior; a correlation 

between endocytosis of guidance cues and the ligand-dependent growth cone behaviors 

of collapse or turning has emerged in vitro and (2) a requirement for Rac-dependant 

endocytosis in axon targeting has been evidenced in vivo.  Here we provide the first 

mechanistic detail elucidating how the spatial fate of a ligand-bound repulsive guidance 

cue is gated by endocytic trafficking to activate its downstream cytoskeletal effector Son 

of Sevenless in the early endosome to affect a novel, but well-validated, cytoskeletal 

behavior in vitro.  We identify sequence motifs in the Receptor necessary for both its 

endocytosis in this Slit-dependent cell motility response in vitro to also be required for 

axon targeting in the well-established axon model system of the fruit fly embryo, 

providing the first evidence for causation of axon guidance receptor endocytosis to 

inform its growth cone’s behavior by signaling to the cytoskeleton. 

This work has been designed to test whether internalization of an axon guidance 

receptor itself, instead of its downstream effectors, mechanistically contributes to the 

cytoskeletal dynamics necessary for growth cone behavior by serving as a retrograde 

cue from the tips of filopodia to the growth cone central domain to inform repulsion from 

a ligand-containing region.  The motivation for this hypothesis was largely formed from 

the curious co-occurrence of receptor mislocalized to the very regions from which it is 

failing to signal repulsion in kuz loss-of-function embryos (Figure 3.2). We had originally 

thought that the mechanistic link between repulsive signaling and membrane clearance 

could be accomplished by either endocytosis or by a proteolytic event that would free the 
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activated signaling fragment (CTF) from the confines of the plasma membrane to allow it 

access to the many cytoskeletal components of the growth cone.  In fact we learned that 

both endocytosis and transmembrane cleavage both occur, likely following the first 

juxtamembrane activating cleavage, but that they confer the opposite polarity of 

regulation to Slit-Robo signaling.  Robo endocytosis is a positive regulator while gamma-

Secretase provides negative regulation to Robo signaling.  We are in the beginning 

stages of assembling the relative order and contribution of these two proteolytic events 

and the endocytic trafficking pathway, but based on knowledge from other signaling 

pathways and evidence we have reported here, we propose the following probable 

model (Figure 4.1). 

We learned from a novel in vitro activation assay that Slit binding to Robo does 

induce local endocytosis of receptor through the early and into the late endosome which 

gates the recruitment of its validated downstream Rac effector Son of Sevenless.  The 

evidence that the small sequence motifs in Robo’s C-terminus that are required for its 

Clathrin-dependent endocytosis are necessary for established axon guidance behaviors, 

and that inhibiting both endocytosis and juxtamembrane proteolysis together in vitro are 

sufficient to abrogate the Slit-dependent process elaboration response comprised by 

Robo’s entire C-terminus, strongly argue for the importance of both juxtamembrane 

proteolysis and endocytosis in Robo’s activation.  
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Figure 4.1: An integrated model of Robo endocytosis and Proteolysis regulating 
the spatiotemporal dynamics of receptor signaling 

 

 

 

 

 

 

 

 

Kuz cleavage: CTF
ectodomain fragment 
shed, CTF generated 
signaling commenced

Repulsive 
signaling 

commences

Kuz

Robo-CTF

Robo-ectodomain

Dock

Rac

Slit

slit binding

Robo-CTF

Dock

SOS

Rac

Robo endocytosis
Clathrin-dependent 
endocytosis through early 
and late endosome 
positively regulate 
signaling; gate Sos access

Shibire

gamma secretase cleavage: ICD
signaling terminated

Repulsive signaling 
terminates

Pak

Rab5
Early Endosome

H+
H+

Dock

RacRac

Rac

Pak

Rab7

Late Endosome

SOS

H+

H+
H+H+

MVB

Robo-ICD

gamma-secretase

H+
SOS

Rac
Rac



139	
  
	
  

Figure 4.1: An Integrated Model of Robo endocytosis and proteolysis regulating 

the spatiotemporal dynamics of receptor signaling 

Upon Slit-binding Robo is activated; the adaptor protein Dreadlocks (Dock) is recruited 

to Robo’s CC2 and CC3 motifs, which in turn activates PAK and consequently initiates 

Rac activation (Fan et al. 2003).  Juxtamembrane cleavage of Robo by Kuzbanian (Kuz) 

is required for both Robo activation in vitro and midline repulsion in vivo (Coleman et al. 

2010). This cleavage event may occur after Slit-binding, but all evidence indicates that it 

is still required for Robo signaling output (Figure 3.1D, 3.6B).  Robo endocytosis occurs 

following juxtamembrane Kuz cleavage, as Robo defective for endocytosis still 

effectively generates Robo ectodomain in the embryo (Figure 3.7E).  Juxtamembrane 

proteolysis and Clathrin-dependent endocytosis cooperate to account for all the Robo 

activation provided by Robo’s C-terminus in vitro (Figure 3.6K).  The correlation between 

retained surface Robo and decreased activation in Kuz-inhibited conditions (Figure 3.2) 

may be explained by both internalization into the growth cone of Robo as well as the 

subsequent gamma-Secretase-mediated cleavage (Selkoe and Wolfe 2007) that allows 

its degradation, after meeting Sos to evoke further Rac activation in the early and late 

endosome (Chapter 2), into the multivesicular bodies of the mature late endosome 

bound for lysosomal degradation. 
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Future Directions 

The effect of spatiotemporal dynamics of activated Robo within a growth 
cone 

If indeed endocytosis of Robo serves to expand the spatial range of signaling 

beyond Ena (Lanier et al. 1999; Matusek et al. 2008) at its originating location in 

filopodial tips (Kidd et al. 1998a; Slovakova et al. 2012) to affect filopodial retraction from 

Slit-containing regions (Murray and Whitington 1999; Hutson and Chien 2002), then we 

would expect to be able to observe a spatiotemporal correlation between Robo at the 

base of filopodia with the repulsive growth cone behaviors of filopodial retraction, or 

growth cone collapse/turning within a single growth cone upon encountering Slit.  The 

feasibility of imaging the subcellular resolution of Robo in dissociated Drosophila 

neurons required for such an experiment has recently been demonstrated in dissociated 

cultures (Katsuki et al. 2009; Slovakova et al. 2012).  Similar fluorescent microscopy 

analysis of individual growth cone filopodial behavior in response to endogenous Slit 

might also be conducted in an intact, whole-mounted or live, filleted prep (Chen et al. 

2009; Featherstone et al. 2009; Figard and Sokac 2011). Combining the genetic 

manipulations displayed in Chapters 2 & 3 with transgenic fluorescent fusion proteins to 

track the dynamics of filamentous Actin and Robo in subsets of axons could 

demonstrate the dependence on Robo mobility- granted by endocytosis or the first 

proteolytic event- of validated dynamic filopodial behaviors.   

First one must demonstrate the established filopodial phenotype in robo mutants 

(Murray and Whitington 1999) still holds in this experimental prep by testing for a 

difference between wild-type and robo mutant neurons in filopodial retraction upon either 

bath treatment of Slit, or midline contact in a filleted prep.  Then the fluorescent imaging 
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conditions need to be calibrated in order to test for a spatiotemporal correlation in Robo 

(full length, or CTF) translocation from filopodial tip to filopodial base and subsequent 

retrograde movement within the growth cone with F-actin-imaged growth cone behavior.  

Next, analysis of the contribution of Clathrin-dependent endocytosis and proteolysis to 

the above behavior can be assayed by the use of alpha-adaptin/slit loss of function 

genetic manipulations, and the Robo AP-2 adaptor motif deletions in robo mutants, and 

kuz/slit loss-of-function and Robo-uncleavable (Juxtamembrane) transgenes ability to 

rescue robo mutants’ filopodial retraction defects.  One would predict that if 

juxtamembrane cleavage and endocytosis are both required for the internalization of a 

motile retrograde cue, then inhibiting either process would cause Robo to stay on the 

tips of filopodia and never signal to the base of the filopodia to retract or to the growth 

cone to collapse/turn.  In contrast, one would predict that inhibiting Robo’s gamma-

Secretase-mediated inactivating cleavage would cause no defect in the aforementioned 

process but would instead show prolonged or enhanced repulsive growth cone behavior. 

Although some of the early seminal findings on the ability of single filopodial 

contacts to inform (attractive) growth cone guidance was performed in insect 

(grasshopper) embryos (O'Connor et al. 1990; Myers and Bastiani 1993), most of our 

knowledge of growth cone response to extracellular ligands comes from the larger size 

and control over cue delivery in dissociated neuronal preparations  (mollusk- Aplysia 

californica (Suter and Forscher 1998; Lovell and Moroz 2006; Suter 2011) and Helisoma 

(Torreano et al. 2005)), vertebrate – Xenopus laevis (Sann et al. 2008; Hines et al. 2010; 

Lowery et al. 2012; Myers and Gomez 2012), chick (Kapfhammer and Raper 1987b; 

Kapfhammer and Raper 1987a; Fan and Raper 1995), and mouse (Ma and Tessier-

Lavigne 2007)). An alternative, and less risky, approach would be to assess the effect of 
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Robo endocytosis on the previously validated growth cone responses to Slit of collapse 

or turning.  Studies of vertebrate growth cone behavior have shown that not only is Slit 

treatment sufficient to induce dissociated Robo-positive axons to branch (Wang et al. 

1999a; Ozdinler and Erzurumlu 2002), but also to guide repulsion (Brose et al. 1999b; 

Nguyen Ba-Charvet et al. 1999; Wu et al. 1999; Niclou et al. 2000; Plump et al. 2002).  

Determining whether endocytosis is required for the chemo-repulsive effect of Slit on 

Robo-expressing explant neuronal cultures could be accomplished by testing for a lack 

of Slit response in human Robo missing its AP-2 binding motifs, as compared to wild 

type human Robo, electroporated in the chick model system.  Further mechanistic 

insight could be gained by examining the sub-cellular resolution of transgenically-

expressed C-terminal mCherry-tagged Robo (AP-2 binding defective versus wild type) 

transgenes in single growth cones during the established behavior of collapse in 

Xenopus growth cones (Piper et al. 2006). If endocytosis is required for Robo to meet its 

downstream Rac effector Sos in the growth cone peripheral domain, then we would 

expect to find that in growth cones expressing AP-2 binding defective Robo, receptor 

stays on the tips of filopodia as growth cones ignore Slit and do not collapse.  In 

contrast, our model predicts that in WT-Robo expressing growth cones, the initiation of 

collapse would not occur until Robo that had previously bound Slit (with a two minute 

time delay upon contact with a Slit-bearing source), reaches the peripheral domain of the 

growth cone. 
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Determining the contribution of psn-mediated Robo cleavage to midline 

guidance 

A chimeric Presenilin-uncleavable version of Robo, created with a technique 

verified for other receptors by swapping out its TMD for FasR’s (Zampieri et al. 2005), 

would be predicted by our model to serve as a receptor that has an extended temporal 

period of signaling once activated by Slit, as it is not subject to an inactivating cleavage.  

Such a receptor should be assayed for its modulation of the Slit-dependent process 

generation in the S2R+ Robo activation assay described in Chapters 2 & 3. 

Future work to order the proteolytic regulation events and endocytic trafficking 

events will be assayed in the S2R+ Robo activation assay.   The juxtamembrane Robo 

constructs that evidence reduced process elaboration in response to Slit (∆JM, 

∆DINPTTHKK, ∆HKK, JM D>A) should be assayed for their cleavage capacity, by ability 

to generate Ectodomain and CTF fragments in vitro and their repulsive guidance activity 

in transgenic rescue assays in vivo. These receptor variants should also be assayed for 

their ability to be cleaved by gamma-Secretase, by virtue of generation of an ICD. 

 

A potential role for extracellular HSPGs in Slit and Robo distribution 

Our findings indicating that Slit-binding does not affect ectodomain shedding in 

vitro, suggest that the Kuz-mediated juxtamembrane cleavage might occur before Slit-

binding.  These observations are consistent with two earlier reports. First, the lack of 

dependency of Robo ectodomain generation in S2R+ cells on Slit treatment (Fig3.6M)- 

that ectodomain exists in the media of Control CM-treated cells and is not enhanced in 

Slit CM-treated cells, or abolished in cells expressing Robo that can’t bind Slit– is 
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consistent with a finding by others reported before the significance of Robo cleavage 

had been investigated. The abundance of a Robo C-terminal fragment in lysates of HEK 

cells requires the presence of its Fibronectin (FN) domains (and presumedly the 

juxtamembrane domain) but not the five Immunogloblin (Slit-binding (Ig1)) domains, 

consistent with our findings that the first Ig domain does not inhibit shedding of the 

ectodomain into S2R+ cell media (Chen et al. 2001). Second, an observation that the 

spatial pattern of Slit in a whole animal depends on the midline-crossing of axons is 

consistent with the shedding of Slit-bound Robo ectodomains occurring before Robo 

(CTF) is endocytosed into the growth cone. In the case of the Drosophila midline, Slit 

protein expressed from midline glia is spread by migrating axons into an expression 

pattern with a peak at the midline (Zlatic et al. 2009) and two valleys of Slit protein levels 

along the Medio-Lateral axis (Kidd et al. 1999b; Johnson et al. 2004).  Given that 90% of 

axons normally cross the midline in this system, and the fact that in embryos where 

axons never cross the midline this lateral distribution of Slit is abolished (Bhat et al. 

2007), it is likely that the growth cones crossing the midline are the causative factor.  

Ectodomain shedding of Robo bound with Slit from migrating growth cones could explain 

the presence of Slit away from their cells of origin. If the redistribution of Slit indeed 

represents the population of Slit that has bound and signaled to Robo on navigating 

growth cones and is in turn shed, this would mean that at least some population of Slit is 

not internalized into either the navigating growth cone, or the signal-presenting midline 

glia from which it originated.  The lack of Robo-ectodomain/Slit complex endocytosis into 

midline glia would differentiate Slit/Robo from the Notch pathway in which 

Delta/Serrate/Lag2 (DSL) ligand internalization by trans-endocytosis contributes to 

signaling in the ligand-presenting-sending cell (Le Borgne 2006; Nichols et al. 2007).    
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Given that Heparan Sulfate ProteoGlycans (HSPGs) have been previously 

demonstrated to contribute to Robo localization (Schulz et al. 2011; Smart et al. 2011), 

and Robo activation (Seiradake et al. 2009), a future trainee might want to pursue the 

potential contribution of HSPGs, as implicated in the network of genes not focused on in 

this work but detailed in (Table 4.2), to the distribution of Slit as well as the clearance of 

Robo from the commissural segments of axons. 
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Table 4.1: Slit/Robo pathway genes associated with variations in Human cortical 
wiring 

Human 
Condition 

Anatomical Feature Human 
Gene 

GWAS 
Reference 

Schizophrenia Dorsolateral Prefrontal Cortex Robo1, 
Robo2 

(Potkin et al. 
2009b) 

  Slit2 (Brennand 
and Gage 
2011) 

  SrGAP3 (Wilson et 
al. 2011) 

Autism Dorsolateral Prefrontal Cortex Robo3, 
Robo4  

(Anitha et 
al. 2008) 

Dyslexia Dorsolateral Prefrontal Cortex, 
periventricular nodular 
heterotopia (Chang et al. 2007), 
Thalamocortical, Left Occipito-
temporal (Fan et al. 2014) 

Robo1 (Hannula-
Jouppi et al. 
2005; Bates 
et al. 2011) 

Horizontal Gaze 
Palsy and 
Progressive 
Scoliosis 

Hypoplasia medullary 
pyramids,defective Decussation 
in Pons of CST (Sicotte et al. 
2006; Jen 2008) 

Robo3 (Jen et al. 
2004; Abu-
Amero et al. 
2009; 
Amouri et 
al. 2009) 

Adolescent 
Idiopathic 
Scoliosis 

Spinal Cord CNTNAP
2/NrxIV 

(Sharma et 
al. 2011) 

Neofunctionaliz
ation 
/Evolutionary 
duplication 

- srGAP2 (Dennis et 
al. 2012) 
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Table 4.1: Slit/Robo pathway genes associated with variations in Human cortical 
wiring 

 
 

Genes in the Slit/Robo pathway implicated by Genome-wide association studies in 

diseases or variations of human cortical wiring are displayed along with any current 

knowledge about the anatomical structures affected by the disease.  In the case of 

Horizontal Gaze Palsy and Progressive Scoliosis (HGPPS) the relationship between 

gene, the anatomical defects of oculomotor nuclei in the medullary pyramids and lack of 

decussation of the descending cortico-spinal tract, and the functional deficit (lack of 

crossed motor output control, and defective vergence eye movements leading to diplopia 

(double vision)) have been well-elucidated. The recent innovation of diffusion tensor 

imaging allowing tract-tracing in the human cortex has begun to allow the discovery of 

the specific defects in the aforementioned HGPPS disorder (Jen 2008, Sicotte et al 

2006) as well as another rare disorder of periventricular nodular heterotopia, which 

shares the functional deficit with dyslexia of impaired language fluency (Chang et al 

2007).  Hopefully future work will uncover other subtle defects in wiring that may occur 

due to dysregulated axon guidance genes; it looks like the dorso-lateral prefrontal cortex 

is a prime candidate for future study given the current data listed above. 
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Table 4.2: Genes required for Robo’s commissural exclusion 

 

Table 4.2: Genes required for Robo’s commissural exclusion 
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A summary of published and unpublished genes that, like (and including) kuzbanian, 

contribute to the commissurally excluded expression pattern of Robo, also noting the 

physical and genetic interactors in order to survey the network of molecules involved in 

this localization pattern. The genes encode the proteins as follows: Son of Sevenless 

(Yang and Bashaw 2006), (Fritz and VanBerkum 2002); Dreadlocks (Fan et al. 2003); 

Kuzbanian (Coleman et al. 2010), (Schimmelpfeng et al. 2001); Slit; (Rac DN transgene 

(Fan et al. 2003)); Vav, not a validated member of this group, but a candidate for future 

study if combined with other genes listed in this table (Malartre et al. 2010); Syndecan 

(Johnson et al. 2004), (Smart et al. 2011);  and Neurexin-IV (Banerjee et al. 2010). 
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