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Essays on Reputations and Dynamic Games

Abstract
This dissertation consists of three essays on reputations and dynamic games. I investigate how incomplete
information, Bayesian Learning and strategic behavior interplay in different dynamic settings. In Chapter 1, I
study reputation effects between a long-lived seller and different short-lived buyers where buyers enter the
market at random times and only observe a coarse public signal about past transactions. The signal measures
the difference between the number of good and bad outcomes in a biased way: a good outcome is more likely
to increase the signal than a bad outcome to decrease it. The seller has a short-run incentive to shirk, but
makes high profits if it were possible to commit to high effort. I show if there is a small but positive chance that
the seller is a commitment type who always exerts high effort and if information bias is large, equilibrium
behavior of the seller exhibits cyclic reputation building and milking. The seller exerts high effort at some
values of the signals in order to increase the chance of reaching a higher signal and build reputation. Once the
seller builds up his reputation through reaching a high enough signal, he exploits it by shirking. In chapter 2, I
study the reputation effect in which a long-lived player faces a sequence of uninformed short-lived players and
the uninformed players receive informative but noisy exogenous signals about the type of the long-lived
player. I provide an explicit lower bound on all Nash equilibrium payoffs of the long-lived player. The lower
bound shows when the exogenous signals are sufficiently noisy and the long-lived player is patient, he can be
assured of a payoff strictly higher than his minmax payoff. In Chapter 3 I study optimal dynamic monopoly
pricing when a monopolist sells a product with unknown quality to a sequence of short-lived buyers who have
private information about the quality. Because past prices and buyers’ purchase behavior convey information
about private signals, they jointly determine the public belief about the quality of the monopolist’s product.
The monopolist is essentially doing experimentation in the market because every price charged generates not
only current period profit but also additional information about the quality. I focus on information structures
with a continuum of signals. Under a mild regularity condition on information structures, I show that in
equilibrium, the optimal price is an increasing function of the public beliefs. In addition, I fully characterize
information cascade sets in terms of information structure. I find that the standard characterization in terms of
boundedness of information structure in the social learning literature no longer holds in the presence of a
monopoly. In fact, whether herding occurs or not depends more on the values of the conditional densities of
the signals at the lowest signal.
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ABSTRACT

Ju Hu

George J. Mailath

This dissertation consists of three essays on reputations and dynamic games. I

investigate how incomplete information, Bayesian Learning and strategic behavior in-

terplay in different dynamic settings. In Chapter 1, I study reputation effects between

a long-lived seller and different short-lived buyers where buyers enter the market at

random times and only observe a coarse public signal about past transactions. The

signal measures the difference between the number of good and bad outcomes in a

biased way: a good outcome is more likely to increase the signal than a bad outcome

to decrease it. The seller has a short-run incentive to shirk, but makes high profits

if it were possible to commit to high effort. I show if there is a small but positive

chance that the seller is a commitment type who always exerts high effort and if

information bias is large, equilibrium behavior of the seller exhibits cyclic reputation

building and milking. The seller exerts high effort at some values of the signals in

order to increase the chance of reaching a higher signal and build reputation. Once

the seller builds up his reputation through reaching a high enough signal, he exploits

it by shirking. In chapter 2, I study the reputation effect in which a long-lived player

faces a sequence of uninformed short-lived players and the uninformed players re-

ceive informative but noisy exogenous signals about the type of the long-lived player.

I provide an explicit lower bound on all Nash equilibrium payoffs of the long-lived

player. The lower bound shows when the exogenous signals are sufficiently noisy and

the long-lived player is patient, he can be assured of a payoff strictly higher than his

minmax payoff. In Chapter 3 I study optimal dynamic monopoly pricing when a mo-

nopolist sells a product with unknown quality to a sequence of short-lived buyers who

have private information about the quality. Because past prices and buyers purchase
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behavior convey information about private signals, they jointly determine the public

belief about the quality of the monopolists product. The monopolist is essentially

doing experimentation in the market because every price charged generates not only

current period profit but also additional information about the quality. I focus on

information structures with a continuum of signals. Under a mild regularity condi-

tion on information structures, I show that in equilibrium, the optimal price is an

increasing function of the public beliefs. In addition, I fully characterize information

cascade sets in terms of information structure. I find that the standard characteriza-

tion in terms of boundedness of information structure in the social learning literature

no longer holds in the presence of a monopoly. In fact, whether herding occurs or not

depends more on the values of the conditional densities of the signals at the lowest

signal.
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Chapter 1

Biased learning and permanent

reputation

1.1 Introduction

This chapter studies reputation effects between a long-lived seller and different short-

lived buyers where buyers enter the market at random times and only observe a coarse

and biased signal upon entry. When a potential client walks into a lawyer’s office,

the client usually does not really have detailed records of this lawyer’s career. The

client may know in how many cases this lawyer has succeeded in the past, through

advertisement or self-introduction, but typically he can rarely know how many cases

this lawyer has dealt with in his career. To know how successful this lawyer is, the

client has to speculate about how many cases this lawyer has dealt with but failed.

Much of the standard reputation literature assumes that short-lived players ob-

serve detailed history about past play. This assumption plays a critical role in the

analysis of reputation effects. However, in many markets where a long-lived player re-

peatedly interacts with different short-lived players, detailed information about past

transactions is typically not available to the short-lived players. Even if the short-
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lived players may have some partial or aggregate information about the past, in many

circumstances, this information is more likely to reveal past good outcomes than bad

outcomes, as is the case in the lawyer’s example. Other examples of this kind of bi-

ased information include “reporting bias” in online reputation systems that relies on

voluntary reporting (see a discussion below) and manipulated search engine results

as a result of so-called “online reputation management,” which suppresses negative

search contents by promoting positive ones.

Despite its salience in many situations, the implications of biased partial infor-

mation in reputation effects have been left unexplored. In fact, this information

environment has two conflicting effects on reputation building. On one hand, the

uninformed short-lived players only have very coarse information about the past and

can draw only imprecise inference about the characteristics of the long-lived player.

This fact discourages the long-lived player’s reputation building because his ability

to manipulate the short-lived players’ beliefs through past outcomes is limited. On

the other hand, because information about past bad outcomes is not as likely as good

outcomes to be revealed, the long-lived player is less afraid of producing bad outcomes

and hence has a larger incentive to milk his reputation, which in turn encourages him

to build reputation first. Hence it is not a priori clear whether the long-lived player is

willing to build a reputation or not if the short-lived players only have partial biased

information.

This chapter addresses this question. We examine repeated interactions between

a long-lived seller and different short-lived buyers. The seller faces a moral hazard

problem: he has a short-term incentive to exert low effort, but makes higher profits if

it were possible to commit to high effort. Buyers are willing to choose the customized

product if they are sufficiently confident that the seller exerts high effort; otherwise

they would like the standardized product. Buyers are unsure of the characteristics of

the seller. In particular, there are two types of the seller. One is a commitment type

2



who always exerts high effort. The other is a normal type who behaves strategically

to maximize his long-run payoff.

In every period, a new buyer enters the market. However, departing from standard

assumptions in repeated games, we assume that the entering buyers do not know the

number of transactions before them and only observe a coarse public signal upon

entry. The public signal measures the difference between the number of good and

bad outcomes in a biased way: a good outcome is more likely to increase the signal

than a bad outcome to decrease it. A prominent example of this information setting

is sellers’ feedback scores on eBay. When buyers complete a transaction on eBay,

they can leave either a positive, negative or neutral feedback, or leave no feedback

at all. A seller’s feedback score is measured as the difference between the number of

positive feedbacks and the number of negative feedbacks received by the seller. The

bias contained in the public signals reflects buyers’ “reporting bias”, a situation where

buyers exhibit different propensities to report different outcomes to online feedback

system (Dellarocas and Wood (2008)). In fact, a growing empirical literature on

eBay’s reputation systems has found that satisfied buyers are more likely to post a

positive feedback than dissatisfied buyers to leave a negative feedback (see for example

Bolton, Greiner, and Ockenfels (2013), Dellarocas and Wood (2008), and Nosko and

Tadelis (2015)).

In Theorem 1.3.1, we show that when the bias in the public signals is large,

repeated play of the stage Nash equilibrium would be the unique stationary public

equilibrium1 if there were no uncertainty about the characteristics of the seller. In this

equilibrium, the long-lived seller always exerts low effort and the buyers always choose

the standardized product. This result emphasizes that biased information about the

past cannot mitigate the seller’s moral hazard problem if there is no incomplete

1We focus on symmetric behavior of the buyers. For a detailed discussion of symmetry among

buyers, see Section 1.4.
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information and hence no room for the seller to build a reputation.2

In Theorem 1.3.2, we show that if there is a small but positive chance that the

seller is the commitment type who always exerts high effort and if the bias is large,

then in every equilibrium, the normal seller must exert high effort at some public

signals. In equilibrium, the normal seller is willing to exert high effort because he

wants to build up his reputation to induce the choice of the customized product.

Hence, even if only very coarse information is revealed to the buyers, the seller still

has the ability and incentives to build his reputation, as long as the information

is sufficiently biased. By imitating the commitment type and exerting high effort,

the normal seller increases his chance of getting a higher signal and thus a higher

reputation.

In Theorem 1.3.3 we show that the normal seller builds up his reputation only to

milk it. In every equilibrium, once the seller builds up reputation through reaching a

high enough signal, the buyers will be convinced that they are facing the commitment

type with large probability and hence choose the customized product. The normal

seller then exploits by exerting low effort. As a result, for a range of parameter

values, reputation is cyclic in equilibrium. When the signal is small, the seller exerts

effort to imitate the commitment type and build reputation. Once the signal is high,

the seller stops exerting effort and the signal will on average gradually decrease.

When the signal becomes small again, the seller then exerts high effort to rebuild

reputation. This cyclic feature of reputation building and exploitation is different

from the temporary reputation results in Cripps, Mailath, and Samuelson (2004,

2This result would be trivial if we focused on Markov perfect equilibrium in which both the seller’s

and the buyers’ strategies only depend on buyers’ posterior beliefs about the types of the seller since

posterior beliefs are never updated without incomplete information. However, in Theorem 1.3.1, we

allow the strategies to depend on public signals as is the case with incomplete information and hence

obtain a stronger result.
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2007).

Section 1.4 is devoted to resolve a conceptual difficulty in modelling symmetric

buyers in a formal random entry model. In the reputation game, we want to focus

on symmetric behavior of the buyers for tractability. Because buyers’ behavior de-

pends on their beliefs about the types of the seller, symmetric behavior of the buyers

requires that all buyers hold the same posterior beliefs about the types of the seller

when they enter and observe the same current record. This is what we call ex post

symmetry. One modelling approach to guarantee ex post symmetry is to assume ex

ante symmetry—-that all buyers are uniformed distributed across all periods so that

they all have the same prior belief about the number of transactions before them

which leads to the same posterior belief about the types of the seller. This approach

is commonly used in literature in similar contexts,3 and we take this approach in

Sections 1.2 and 1.3 to facilitate the understanding of the reputation game. However,

this approach is not consistent with any formal random entry model because there is

no uniform distribution over the set of countably many buyers and any formal ran-

dom entry model must induce nontrivial heterogeneity in buyers’ priors. To resolve

this difficulty, in Section 1.4 we take a different approach and directly focus on ex

post symmetry. The key results are that (a) there are indeed random entry models

that induce ex post symmetry and (b) ex ante symmetry and ex post symmetry are

equivalent in the reputation game as long as symmetric behavior of the buyers is

concerned. This is a technical contribution of this .

3For example, in anonymous local games, Kets (2011) assumes that there are countably many

potential players and every set of n candidate players with consecutive labels is equally likely to be

selected to participate in the local game; in an observational learning context with biased informa-

tion, Herrera and Hörner (2013) assumes a countable set of agents do not know their indices and

believe that they are equally likely to be anywhere in the sequence.
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1.1.1 Related literature

The adverse selection approach to reputations was first introduced in the context

of finitely repeated prisoners’ dilemma and chain-store game in Kreps, Milgrom,

Roberts, and Wilson (1982), Kreps and Wilson (1982) and Milgrom and Roberts

(1982). In infinitely repeated games, Fudenberg and Levine (1989, 1992) showed that

the incomplete information about one player’s characteristics imposes lower bounds

on ex ante equilibrium payoffs to the informed long-run player. 4

The long-run reputation effects of these games are explored in Cripps, Mailath,

and Samuelson (2004, 2007). They show that in the standard reputation games

with imperfect monitoring, reputation effect is only a temporary phenomenon. The

uninformed players will eventually learn the true type of the informed player and thus

equilibrium play will eventually converge to that of the complete information version

of the repeated game. For the results in Fudenberg and Levine (1989, 1992) and

Cripps, Mailath, and Samuelson (2004, 2007)to hold, it is important that short-lived

players receive detailed information about the play in each of the past period.

Recently, some papers have studied different mechanisms that sustain nondis-

appearing reputation effects. One strand of these papers consider cases where the

types of the long-run player are impermanent, e.g. Mailath and Samuelson (2001)

and Phelan (2006). In these models, the type of long-run player is governed by a

stochastic process, rather than being determined once and for all at the beginning

of the repeated game. As a result, the opponents will never be completely certain

of a player’s type. Then, permanent reputation arises if the long-lived player has

incentives to continually build reputation in order to demonstrate that his type has

not changed. Ekmekci, Gossner, and Wilson (2012a) further generalizes this idea

and considers general reputation models with replacement of the types. They show

4See also Gossner (2011a) for a simpler and unified derivation of these results using relative

entropy.
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that, under general conditions on the convergence rates of the discount factor to one

and of the rate of replacement to zero, in any Nash equilibrium the long-run player

can guarantee himself the Stacklberg payoff after any history reached with positive

probability.

Another strand of the literature shares with the current model the feature that

the observations of short-lived players are restricted, but we focus on different aspects

of what kind information is available. Liu (2011) and Liu and Skrzypacz (2014)

considers the case where the short-lived players can recall only a finite number of past

behavior of the long-lived player.5 In these two models, while the short-lived players’

observations are restricted to truncated histories, the long-lived player’s behavior in

recent periods is perfectly monitored. Hence, the incentive to build a reputation

arises from the long-lived player’s desire to “clean up” history. In equilibria of these

two models, the short-lived players actually know that they are facing the normal

type most of the time. Their posterior beliefs about the commitment type suddenly

jump up once the long-lived player cleans up recent history, but drop down to zero

once reputation milking occurs and remain so until next time when recent history

is cleaned up again. In contrast, because short-lived players in the current model

only observe a coarse signal, they can never distinguish the two types of the long-

lived player. Posterior beliefs in equilibria gradually change over time as a result of

reputation building and milking. Moreover, our analysis on how to model symmetric

buyers in Section 1.4 also provides a foundation for the model and analysis in Liu

and Skrzypacz (2014).

Ekmekci (2011) studies long-run reputation effects on the long-lived player’s payoff

when a rating system observes all past play and publicly announces one of a finite

5Liu (2011) assumes short-lived players must pay a positive cost C(n) to observe the long-lived

player’s past behavior in recent n periods. Because C(n) becomes large when n is large, there exists

a finite upper bound N such that acquiring information more than N periods is strictly dominated.

7



number of ratings to the player. Ekmekci (2011) shows that for any value close to

long-lived player’s Stackelberg payoff, he can construct a particular rating system and

an equilibrium under this rating system such that the long-lived player’s payoff after

every history is as least as high as the targeted value. His analysis is facilitated by

the fact that the desired rating system and equilibrium are jointly constructed. For

example, the details of the rating system depends on the payoff structure of the long-

lived player as well as the targeted value. Instead, the current chapter is interested in

the equilibrium behavior under a fixed information disclosure scheme that transmits

biased information to the short-lived players.

This chapter is also related to recent development in observational learning liter-

ature. Guarino, Harmgart, and Huck (2011) and Monzón and Rapp (2014) consider

observational learning models in which each short-lived agent enters at random times

and do not know his “position.” The common feature of these two models and the

current one is the assumption that agents do not know when the relationship started.

However, there are two key differences. First, while all agents in the above two mod-

els are short-lived, there is one long-lived agent in the current model and how the

long-lived agent strategically respond to the randomly entered agents is the main

focus of this chapter. Second, these two models both assumed finite population and

considered the asymptotic behavior as the population gets large. To model symmetric

agents, they simply assume that all agents are equally likely to enter in every period.

However, as mentioned above, this chapter considers random entry of infinite pop-

ulation and we need to develop nontrivial random entry model to model symmetric

agents. For a more detailed discussion about this, see Section 1.4.
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1.2 Model

1.2.1 Stage game

There is a long-lived seller with discount factor δ ∈ (0, 1) and a countable set of

short-lived potential buyers. When a buyer enters into the market, the seller and the

entering buyer play the following product-choice game. The seller chooses between

high effort (H) or low effort (L). The buyer chooses between a customized product

(c) or a standardized product (s). The outcome of each stage is either a product of

high quality (h) or low quality (l). We assume that the probability of a high quality

product only depends on the effort level of the seller. If the seller exerts high effort,

then with probability ρ(h|H) = α the product is of high quality. If the seller exerts

low effort, then with probability ρ(h|L) = β the product is of high quality. We assume

1 > α > β > 0, i.e., high effort leads to high quality with larger probability. As usual,

the distribution ρ(·|·) can be naturally extended to seller’s mixed actions.

The ex ante payoffs of this stage game are denoted by us : {H,L} × {c, s} → R

and ub : {H,L} × {c, s} → R. We make the following assumptions about the payoffs

of this stage game. 6

Assumption 1.2.1. us(L, c)− us(H, c) ≥ us(L, s)− us(H, s) > 0.

This assumption states that there is always a positive cost of exerting high effort

and the benefit from low effort when the customized product is chosen is weakly

higher than that when the standardized product is chosen.

Assumption 1.2.2. ub(H, c) > ub(H, s) and ub(L, s) > ub(L, c).

6In repeated games with imperfect monitoring, it is standard to assume that buyers’ ex ante

payoff is induced by his ex post payoff u∗b : {c, s} × {h, l} → R, i.e. ub(a1, a2) = ρ(h|a1)u∗b(a2, h) +

ρ(l|a1)u∗b(a2, l) for a1 ∈ {H,L} and a2 ∈ {c, s}. However, given the information structure of the

current model, while such assumption is natural, it is not necessary.
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This assumption states that if the seller exerts high (resp. low) effort, then the

buyers strictly prefer the customized product (resp. standardized product). When

the seller mixes between H and L, this assumption implies that there exists a cutoff

κ ∈ (0, 1) such that the buyer strictly prefers customized product (resp. standardized

product) if the seller makes high effort with probability larger (resp. smaller) than

κ. Assumptions 1 and 2 together imply that (L, s) is the unique Nash equilibrium of

this stage game.

Assumption 1.2.3. us(H, c) > us(L, s).

This assumption states that the seller could make higher profits if it were possible

to commit to high effort. Hence exerting high effort H is the pure Stackelberg action

of this stage game.

1.2.2 Random entry

Time is discrete t = 0, 1, 2, · · · . The above product choice game is repeatedly played

in every period. Departing from standard assumptions in repeated games, we assume

that the entering buyers do not know the number of transactions before them. Because

we assume that each transaction occurs in every period, the number of transactions

is equal to the calendar time. In this and next sections, we assume that all buyers

ex ante symmetric in the sense that they all have the same prior belief {µt}∞t=0 about

when they enter where µt is the probability of entering in period t. We also assume

{µt}∞t=0 follows a geometric distribution with parameter δ, i.e. µt = (1−δ)δt for t ≥ 0.

Some remarks are in order. This ex ante symmetry assumption allows us to focus

on symmetric behavior of the buyers, which makes the model tractable. However,

because there are countably many buyers, if buyers’ prior beliefs about when they

enter are derived from a formal random entry model, there must be nontrivial hetero-

geneity in these beliefs (see Lemma 1.4.1). Hence, this ex ante symmetry assumption
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can only be justified if improper prior distribution is invoked. Using improper prior

distribution to model symmetry or anonymity in models with countably many agents

in which some kind of randomness among the agents is involved is a common ap-

proach in literature (See, for example, Kets (2011), Herrera and Hörner (2013), Liu

(2011) and Liu and Skrzypacz (2014)). We follow this approach in Sections 1.2 and

1.3 in order to facilitate understanding of the reputation game. Later, in Section

1.4, we will consider formal random entry models without invoking improper prior

distributions and take a different approach to model symmetric behavior of the buy-

ers. There, we will show the contradiction between heterogeneous prior beliefs about

when they enter and symmetric behavior can be reconciled in formal random entry

models if we focus on ex post symmetry (for details, again see Section 1.4). Most

importantly, ex ante symmetry and ex post symmetry will lead to exactly the same

results in the reputation game, as long as symmetric equilibria are concerned. Hence

the development in Section 1.4 can be viewed as a foundation for ex ante symmetry

assumption. Moreover, we use the same parameter δ ∈ (0, 1) to denote both the

discount factor of the seller and the parameter in buyers’ beliefs about when they

enter for two reasons. One is for expositional ease. All the results will carry over

qualitatively if these two parameters are different. The other is that if we interpret

seller’s discount factor as the continuation probability of the repeated game,7 then

the prior belief {µt}∞t=0 exactly corresponds to the distribution of the length of play.

This is also the interpretation of δ we adopt in Section 1.4.

1.2.3 Biased information

The entering buyers do not observe detailed history about past play. Instead, upon

entry, each entering buyer only observes a public signal. This public signal measures

7For example, this interpretation is adopted in Jehiel and Samuelson (2012). For a detailed

discussion of this interpretation, see Section 4.2 in Mailath and Samuelson (2006a).
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the difference between the number of high and low quality products provided in the

past in a biased way: high quality product and low quality product are not equally

likely to change the public signal.

Formally, let R ≡ Z+ be the signal space. In period t = 0, before the game starts,

the initial signal is R0 = 0. As the game evolves, the signal evolves according to a

Markovian transition rule T : R× {h, l} → ∆{R} such that for all r ∈ R

T (r, h)[r + 1] = 1− ε,

T (r, h)[r] = ε,

and

T (r, l)[r] = ε,

T (r, l)[max{r − 1, 0}] = 1− ε,

where ε ∈ [0, 1]. That is, if the current signal is r and an additional high quality

product is provided, then the signal increases by 1 with probability 1−ε and remains

unchanged with probability ε. If, instead, an additional low quality product is pro-

vided, then the signal decreases by 1 with probability ε and stays unchanged with

probability 1− ε.

As mentioned in the introduction, here the signal structure models some online

rating systems such as sellers’ feedback scores on eBay, which measure the difference

between the number of positive and negative reviews from the buyers. The parameter

ε captures buyers’ behavioral bias in leaving reviews in online rating systems. As

found in Bolton, Greiner, and Ockenfels (2013), Dellarocas and Wood (2008), and

Nosko and Tadelis (2015), buyers with different purchasing experience are not equally

likely to leave a review. In particular, satisfied buyers are more likely to leave a

positive review than dissatisfied buyers to leave a negative review. This corresponds

to the case ε < 1/2. The smaller ε is, the larger the bias is. Notice that in the
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extreme case, ε = 0, the public signal exactly measures the number of high quality

products provided in the past. In this case, low quality products have no effect at all

on the evolution of the signals and information contained in the signals is completely

biased. In what follows, we will mainly focus on small but positive ε, which is a noisy

version of the extreme case.

1.2.4 Incomplete information and types

Following the standard reputation literature, we assume there is incomplete informa-

tion about the characteristics of the seller. In particular, there are two types of the

seller, ξ̂ and ξ̃. The type ξ̂ seller is a commitment type who always exerts high effort.

The type ξ̃ seller is a normal seller who behaves strategically and chooses between

high effort or low effort to maximize his expected long-run profits. The type of seller

is the seller’s private information. Assume that all buyers have common prior belief

about the type of the seller. Let b0 ∈ (0, 1) denote the prior probability that the seller

is the commitment type. Denote by Γ(b0, α, β, δ, ε) the reputation game.

1.3 Equilibrium

1.3.1 Strategies and equilibria

Because by assumption all buyers are ex ante symmetric, we consider their symmetric

strategies. Denote σ2 : R → [0, 1] as buyers’ symmetric strategy that specifies a

probability of choosing the customized product for each signal r ∈ R. Given a

symmetric strategy of the buyers, the normal seller always has a stationary best

response that only depends on the public signals. Denote σ1 : R → [0, 1] as the

normal seller’s stationary public strategy that specifies a probability of exerting high

effort for each r ∈ R.
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Every stationary public strategy σ1 of the normal seller, together with the distri-

butions of qualities and transition rule of the signals, induces probability measure P σ1

ξ̃

over R∞. This measure P σ1

ξ̃
defines a Markov chain {Rt}t≥0 over the state space R.

From the buyers’ point of view, the commitment type seller’s strategy also induces

a measure Pξ̂ and hence a Markov chain over the signals. After observing a signal

r, the entering buyer updates his belief about the commitment type given his prior

belief about the types and about when he enters according to Bayes’ rule:

ν(r) =
b0

∑∞
t=0 δ

tPξ̂
(
Rt = r)

b0

∑∞
t=0 δ

tPξ̂
(
Rt = r) + (1− b0)

∑∞
t=0 δ

tP σ1

ξ̃

(
Rt = r)

. (1.1)

The formula (1.1) can be understood as follows. If a buyer enters in period t, then

the probability of observing signal r under the commitment type (resp. normal type)

is Pξ̂
(
Rt = r

)
(resp. P σ1

ξ̃

(
Rt = r

)
). If the buyer knew that he enters in period t,

his posterior belief about the commitment type would be b0Pξ̂(Rt = r)/
(
b0Pξ̂

(
Rt =

r
)
+(1−b0)P σ1

ξ̃
(Rt = r)

)
. However, the entering buyer does not know when he enters.

In fact, he believes that he enters in period t with probability (proportional to) δt−1.

Hence the probability of observing r when he enters under the commitment type and

the normal type respectively are
∑∞

t=0 δ
tPξ̂
(
Rt = r) and

∑∞
t=0 δ

tP σ1

ξ̃

(
Rt = r). These

two probabilities together with the prior belief about the types then yield (1.1) as

buyer’s posterior belief after observing signal r.

Every stationary public strategy profile (σ1, σ2) induces a value function V : R→

R for the normal seller. It can be written recursively as

V (r) = (1− δ)us(σ1(r), σ2(r)) + δ
[
(1− ε)ρ(h|σ1(r))V (r + 1)

+
[
ερ(h|σ1(r)) + (1− ε)ρ(l|σ1(r))

]
V (r)

+(1− ε)ρ(l|σ1(r))V (max{r − 1, 0})
]
. (1.2)

For every r, V (r) is the normal seller’s expected long-run payoff at signal r under the

strategy profile (σ1, σ2).
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A stationary public equilibrium of this game requires that strategies be mutual

best responses given beliefs and that the beliefs be consistent with the strategies.

Definition 1.3.1. A stationary public equilibrium of the game Γ(b0, α, β, δ, ε) is the

triple (σ∗1, σ
∗
2, ν

∗) such that

(a) for all r ≥ 0,

σ1(r) ∈ arg max
ς1∈[0,1]

(1− δ)us(ς1, σ∗2(r)) + δ
[
(1− ε)ρ(h|ς1)V ∗(r + 1)

+
[
ερ(h|ς1) + (1− ε)ρ(l|ς1)

]
V ∗(r)

+(1− ε)ρ(l|ς1)V ∗(max{r − 1, 0})
]
,

where V ∗ is defined in (1.2);

(b) for all r ≥ 0, σ∗2(r) is a best response to ν∗(r) +
(
1− ν∗(r)

)
σ∗1(r);

(c) ν∗(r) is formed via Bayes’ rule according to (1.1).

The following lemma states that a stationary public equilibrium always exists. It is

a standard application of Glicksberg (1952)’s generalization of Kakutani’s fixed-point

theorem.

Lemma 1.3.1. A stationary public equilibrium exists.

Proof. See Appendix A.4.

1.3.2 Complete information benchmark

In this section, we analyze the complete information version of the above model. The

result here serves as a benchmark to see the effects of biased information and random

entry on the equilibrium behavior when there is no room for reputation building.

We apply Definition 1.3.1 to the case b0 = 0. It is clear that condition (c) in

Definition 1.3.1 becomes v∗(r) = 0 for all r as required by (1.1), meaning that the
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buyers’ posterior beliefs about the seller’s type are never updated. Moreover, it is

straightforward to see that if we focus on equilibrium in which both the seller and

buyers’ strategies only depend on posterior beliefs (equivalently, strategies that take

the same action at all public signals), then repeated play of the stage Nash is the

unique equilibrium and the seller never exerts high effort. The following theorem

states that this result continues to hold even if we allow the strategies to depend on

the public signals, as long as the bias in the signals is large.

Theorem 1.3.1. Assume b0 = 0. For any α > β, there exists ε such that for all

ε < ε and δ ∈ (0, 1), there is a unique stationary public equilibrium in Γ(0, α, β, δ, ε).

In this equilibrium, the seller always exerts low effort and the entering buyers choose

the standardized product.

Proof. See Appendix A.5.

This theorem states that high effort cannot be supported as equilibrium outcome

if there is no incomplete information about the seller’s characteristics and if the bias

of the signals is large, even if the continuation probability is sufficiently large. In this

case, the unique stationary public equilibrium is the repeated play of the stage Nash

equilibrium.

The intuition of this result is best understood by considering the extreme case

ε = 0. In this case, the public signal measures the number of high quality products

provided in the past. Every additional high quality product increases the signal while

low quality product does not change the public signal at all. In any equilibrium, if the

seller were willing to exert high effort with positive probability at a public signal r,

he must be rewarded at signal r+1 since high effort is strictly dominated in the stage

game. This leads to a discrete jump between the seller’s values at signal r+ 1 and r.

This fact immediately rules out equilibria in which the seller only exerts high effort at

finitely many signals. This is because if the seller were willing to exert high effort at

16



r and low effort at all signals higher than r, then the seller’s value at r+ 1 is only his

minmax payoff at r+ 1 because the buyers would choose the standardized product at

all signals higher than or equal to r+1 because of complete information, which in turn

implies the seller would have no incentives to exert high effort at r. If, instead, the

seller were willing to exert high effort at infinitely many signals, then there must be

infinitely many discrete jumps in the seller’s value function. This intuitively requires

that the seller get unboundedly high continuation payoff at high enough signals. But

this is impossible because the seller’s value function must be bounded by the stage

game payoffs.

1.3.3 Reputations

Having discussed the inability of biased information to support high effort in station-

ary public equilibrium under complete information, we now turn to the incomplete

information case. When b0 > 0, then ex ante all buyers believe there is a positive

chance that the seller is a commitment type who always exerts high effort. This

fact gives the normal seller an opportunity to build a reputation by imitating this

commitment type and making high effort.

The following theorem states that the normal seller is indeed willing to take this

opportunity when the bias and continuation probability are large.

Theorem 1.3.2. Assume 0 < b0 < κ and α > 2β. Then there exist δ ∈ (0, 1) and

ε ∈ (0, 1) such that for all δ > δ and ε < ε, in every stationary public equilibrium

(σ∗1, σ
∗
2, ν

∗) of the game Γ(b0, α, β, δ, ε), there exists r ∈ R such that σ∗1(r) > 0. If in

addition α > 3β, then ε can be chosen to be bigger than β.

Proof. See Appendix A.6.

The theorem states that if there is a small but positive chance of the commit-

ment type who always exerts high effort, and the distributions of the qualities under
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high effort and low effort are different enough, then always exerting low effort is no

longer an equilibrium if the continuation probability is sufficiently high and the bias

is sufficiently large. In this case, in every stationary public equilibrium, the normal

seller must exert high effort with positive probability at some values of the signals.

Notice that the parameter ranges in Theorem 1.3.1 and 1.3.2 overlap. In the com-

mon parameter range, the sharp contrast of these two theorems highlight the role of

incomplete information in supporting high effort as equilibrium behavior.

From Assumptions 1 and 3, we know that the normal seller would like the buyers

to choose the customized product, but the buyers are willing to do so only if they

expect the seller to exert high effort with large probability. In the presence of the

commitment type, the buyers expect high effort once they believe they are facing the

commitment type with large probability. Therefore, the normal seller has an incentive

to build a reputation. By imitating the commitment type and making high effort,

the normal seller can increase the chance of getting a higher signal and thus higher

reputation, which in turn makes the buyers more convinced that they are facing the

commitment type and thus induces the choice of the customized product.

Recall that the buyers are willing to choose the customized product if and only

if the seller exerts high effort with probability larger than or equal to κ. If b0 > κ,

then intuitively the normal seller has no incentive to build reputation because the

buyers have already been convinced by their prior belief that they are facing the

commitment type with large probability. The condition b0 < κ then rules out this

uninteresting case. When b0 < κ, in order to convince the buyers that they are

facing the commitment type, the normal seller has to first build up his reputation

by making high effort. But clearly this condition alone does not guarantee that the

seller is willing to build up his reputation. For the seller to have incentive to build

reputation, the cost of reputation building must be small compared to the value of

reputation. Holding the stage game payoffs fixed, this idea is then characterized by the
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four parameters α, β, ε, and δ. The condition α > 3β and small ε simply guarantees

that there is a good chance to get a higher signal and thus a higher reputation under

high effort while a bad chance under low effort. The large continuation probability δ

makes sure that the seller is willing to build a reputation at a current period cost in

order to get a higher reputation value from tomorrow on.

The intuition behind the contrast of Theorems 1.3.1 and 1.3.2 is as follows. In the

complete information case, the buyers are willing to choose the customized product

only if the normal seller exerts high effort with large probability. But for the seller

to exert high effort at some signal r, he must induce the choice of the customized

product at some higher signal r′ > r, which in turn requires the seller to exert high

effort at signal r′ and even at infinitely many signals. Theorem 1.3.1 then states that

this is impossible. In contrast, in the presence of the commitment type who always

exert high effort, this logic no longer holds. It is still true that high effort at some

signal r requires the choice of the customized product at some signal r′ > r, but for

the buyers to choose the customized product at r′, the normal seller does not need to

exert high effort again if he has built up his reputation and the buyers are convinced

they are facing the commitment type with large probability. This is why high effort

can be supported as equilibrium behavior, as Theorem 1.3.2 states, compared to the

impossibility result in Theorem 1.3.1. Moreover this reasoning also suggests that in

any equilibrium, the seller must milk his reputation. The following theorem states

that this is indeed true. The normal seller builds up his reputation only to milk it.

Theorem 1.3.3. In any equilibrium (σ∗1, σ
∗
2, ν

∗) of the game Γ(b0, α, β, δ, ε), there

exists a signal r such that for all r ≥ r, the normal type of the seller exerts low effort

σ∗1(r) = 0 while the buyers believe that they are facing the commitment type with large

probability and choose customized product σ∗2(r) = 1.

Proof. See Appendix A.7.
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This result states that the normal seller can effectively build a reputation and

then start milking his reputation when the signal becomes large. In equilibrium,

when entering buyers observe high enough signals, they believe that they are facing

the commitment type with large probability and expect that the seller exerts high

effort with large probability. Consequently, they choose the customized product.

However, on the other hand, the normal seller in fact only exerts low effort.

There are two possible consequences of reputation exploiting. If the bias in the

signals is extremely large, then the bad outcomes have little impact on the public

signals. This corresponds to the case when ε < β. In this case, even if the seller

exerts low effort, the probability of the public signal going up is larger than that of

going down, i.e. (1 − ε)β > ε(1 − β), because a large fraction of the bad outcomes

can not be reflected in the public signal. As a result, the public signal on average

will continue to increase and the incentive to build reputation will disappear in the

long run. A more interesting case is when the bias is moderate. This corresponds to

ε > β. In this case, when the seller exerts low effort, a relative large fraction of bad

outcomes will be reflected in the public signal. In fact, the probability of the public

signal going down is larger than that of going up, i.e. (1−ε)β < ε(1−β). As a result

of low effort, the public signal on average gradually decreases and when it becomes

low, the seller will exert high effort to build it up. Hence, in this case, the incentive

of building reputation never disappear no matter how long the game has been played

and cyclic reputation building and exploiting arises in equilibrium. This observation

is summarized in the following corollary.

Corollary 1.3.1. Assume ε > β and (σ∗1, σ
∗
2, ν

∗) is a stationary public equilibrium in

which the seller exerts high effort at some signals. Then the evolution of the signals

P
σ∗1
ξ̃

is recurrent. Hence seller’s incentive to build reputation never disappear in the

long-run.
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1.4 Formal random entry and learning model

In the above analysis, we focused on symmetric behavior of the buyers. This is jus-

tified by the assumption that all buyers are ex ante symmetric and have the same

prior belief about the number of transactions before them. In this section, we re-

examine this assumption by considering formal random entry models of the buyers.

As mentioned previously, this ex ante symmetry assumption is not consistent with

any random entry model, as we will formally see in Lemma 1.4.1. Then, to justify

symmetric behavior of the buyers, we take a different approach in this section and

focus on random entry models that induce the same posterior beliefs about the types

of the seller across all buyers. This is ex post symmetry and, as we will see, it can

be endogenized by formal random entry models. This ex post symmetry, together

with a stationarity condition, will fully rationalize the reputation game we analyzed

in Sections 1.2 and 1.3. The analysis also provides a foundation for the model used

in Liu and Skrzypacz (2014). Since the results here have their own interests and have

potential applications in various contexts other than the reputation game, we states

the model and results in a more general form.

Let Ξ be a finite type space and b =
(
b(ξ1), · · · , b(ξ|Ξ|)

)
∈ ∆|Ξ|−1 be a prior

distribution over types with full support. We continue to use R to denote a countable

signal space. Let G be the usual product σ-algebra over Ξ× R∞. Every probability

measure P over
(
Ξ×R∞,G

)
with marginal distribution b over Ξ defines a stochastic

process as follow. At period t = −1, nature selects a type ξ ∈ Ξ according to the

prior distribution b. In every period t ≥ 0, conditional on the realized type ξ, a signal

rt ∈ R is generated according to Pξ ≡ P
(
·
∣∣{ξ} ×R∞). Let P be the set of all such

probability measures.

Consider the situation where a countable set of agents, denoted by Z, randomly

enter into this stochastic process at period t = 0, 1, 2, · · · , one for each period. Upon
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entry, each agent does not know when he enters and only observes the current signal,

and updates his posterior belief about the types given this observation. In what

follows, we first model this situation formally and show there exist models in which

the posterior beliefs over types are identical across entering agents. Moreover, this

common belief property holds not only for a particular process, but for all possible

processes. This justifies the common belief assumption used in the reputation game.

1.4.1 Random entry model

A random entry model specifies (a) the distribution over the total number of agents

who enter, or in other word the length of the entry process, and (b) conditional on

the length of entry, who enters first, second and so on with what probability.

Formally, for each n = 1, 2, · · · , define

Σn ≡
{

(i0, i1, · · · , in−1) ∈ Zn
∣∣is 6= it if s 6= t

}
,

and

Σ ≡
∞⋃
n=1

Σn.

Let E be the power set of Σ.

Definition 1.4.1. A random entry model is a probability measure µ over (Σ,E ).

The set Σn contains the set of all possible orders of entry given the length of

entry n. For example, a vector θ = (i1, i2, · · · , in) ∈ Σn specifies that the length of

entry is n, agent i1 enters in period 0, agent i2 enters in period 1, and so on until

in enters in period n − 1. Notice the requirement that is 6= it if s 6= t simply means

that all agents are short-lived. Each agent enters at most once. If an agent enters in

period s, then he cannot enter in period t again. The entry of agents governed by a

random entry model µ can be considered as follows. First, the length of entry n is

realized according to distribution {µ(Σn)}n≥1. Second, conditional the realized length
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n, an order of entry θ = (i1, i2, · · · , in) ∈ Σn is realized according to the conditional

distribution µ( · |Σn). Finally, agents i1, i2, · · · , in enter successively in each period

t = 0, · · · , n− 1 and then the entry process ends.

Every random entry model induces the prior belief for each agent about when he

enters. For each agent i ∈ Z and every realization of orders of entry θ ∈ Σ, define8

τi(ω) ≡

 t if it = i,

+∞ if is 6= i ∀s.
(1.3)

Then, the mapping τi : Σ→ Z∪{+∞} is the random time at which agent i enters. For

example, (τi = t) represents the event that agent i enters in period t and (τi = +∞)

means that agent i never enters. The distribution of random variable τi in under µ

defines agent i’s prior belief about when he enters. Denote by µit ≡ µ(τi = t) the

probability that agent i enters in period t.

A special random entry model is the one used in Guarino, Harmgart, and Huck

(2011) and Monzón and Rapp (2014). To study observational learning where agents

do not know when they enter, these two papers both assume that there are only

finitely many agents and they are equally likely to enter in every period. In terms

of the formulation in the current chapter, this random entry model is just a uniform

distribution over the set of all permutations of (0, 1, · · · , n− 1), which is a subset of

Σn, for some n. A direct implication of this random entry model is that all agents are

ex ante symmetric. This allows these two papers to focus on symmetric equilibria.

However, to study reputation games, this chapter focuses on random entry models

where the number of agents who enter with positive probability is unbounded.9 We

do so for two reasons. First, in the reputation game, we have a long-lived agent which

8Notice for each ω ∈ Σ, by construction, there exists at most one t such that it = i.
9From Definition 1.4.1, a random entry model does not necessarily induce entry of infinite pop-

ulation, e.g. the one mentioned in previous paragraph. However, in the next subsection, we will

restrict attention to a special class of entry models where the number of agents who enter with

positive probability is infinity. See Definition 1.4.3.
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is absent from Guarino, Harmgart, and Huck (2011) and Monzón and Rapp (2014).

We believe that in reality, it is rarely the case that a seller knows exactly the number

of potential buyers. Although there is always physical upper bound on the number

of buyers, in a market with large number of potential buyers, a seller’s behavior is

better captured by models in which he believes that there are infinitely many potential

buyers.10 Second, considering infinitely repeated games, together with a stationarity

assumption (see Definition 1.4.3 below) makes the seller’s problem stationary and

more tractable.11

Despite its advantages, random entry models that induce entry of unbounded

number of agents have their intrinsic difficulty in modeling symmetry of the entering

agents.12

Lemma 1.4.1. Let µ be a random entry model. If infinitely many agents enter with

positive probability, i.e. #{i ∈ Z|µ(τi < ∞) > 0} = ∞, then prior beliefs about

entering time must be different across agents.

This lemma states there is an intrinsic conflict between the assumption of un-

bounded number of entering agents and ex ante symmetry. We hence will focus on

ex post symmetry instead and this idea is formalized in the next subsection.

10For more detailed discussions about the plausibility of finitely repeated games vs. infinitely

repeated games, see Osborne and Rubinstein (1994) Section 8.2 and Mailath and Samuelson (2006a)

Section 4.1.
11By definition, every entry model considered in this chapter ends for sure in finite time. An

alternative way to allow entry of infinite population is to consider random entry models that last

forever. However, such entry models do not have properties we need in the analysis of reputation

game. See Lemma A.8.1 in the appendix.
12Because a random entry model is mathematically equivalent to a random (partial) matching

scheme between the set of agents and calendar times, this lemma is essentially a well-known im-

possibility result in random matching between infinite number of agents, adapted to the current

context. See, for example, Section 3 in Boylan (1992).
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1.4.2 Posterior beliefs, ex post symmetry and stationarity

For any random entry model µ and a measure P ∈ P , the two spaces
(
Ξ×R∞,G , P

)
and

(
Σ,E , µ) form a product probability space

(
Ω,F , P ⊗ µ

)
where Ω ≡ Ξ ×

(
R ×

Z × {0, 1}
)∞

and F is the corresponding σ-algebra. For each agent i ∈ Z, signal

r ∈ R and type ξ ∈ Ξ, let νP⊗µi

(
ξ
∣∣r) be agent i’s posterior belief about type ξ when

he enters and observes signal r, i.e.

νP⊗µi (ξ|r) ≡ P ⊗ µ
(
{ξ}
∣∣Rτi = r, τi <∞

)
=

b(ξ)P ⊗ µ
(
Rτi = r, τi < +∞

∣∣∣{ξ})∑
ξ′ b(ξ

′)P ⊗ µ
(
Rτi = r, τi < +∞

∣∣∣{ξ′})
=

b(ξ)
∑∞

t=0 µ
i
tPξ

(
Rt = r

)
∑

ξ′ b(ξ
′)
∑∞

t=0 µ
i
tPξ′
(
Rt = r

) . (1.4)

where {ξ} denotes, for notational simplicity, the event {ξ} ×
(
R × Z× {0, 1}

)∞
, i.e.

type ξ.

The following definition formalize the idea that all entering agents are ex post

symmetric.

Definition 1.4.2. A random entry model µ satisfies ex post symmetry (EPS) if for

every probability measure P ∈ P , we have

νP⊗µi

(
ξ
∣∣r) = νP⊗µj

(
ξ
∣∣r) ∀i, j ∈ Z, ξ ∈ Ξ, r ∈ R. (1.5)

Hence, if a random entry model µ satisfies EPS, then for every stochastic processes

P ∈ P , if agents enter according to µ, then they will have the same posterior belief

about the types given the same signal. In other words, they are ex post symmetric.

The following lemma provides a characterization of EPS. It reduces EPS into a

condition on the ratios of entering probabilities between every pair of agents. A

random entry model µ satisfies EPS if and only if these ratios are constant over time.
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Lemma 1.4.2. Let µ be a random entry model. Then µ satisfies EPS if and only if

for all i, j, there exists cij such that µit = cijµjt for all t ≥ 0.

As a simple application of this lemma, consider again the entry model used in

Guarino, Harmgart, and Huck (2011) and Monzón and Rapp (2014). We have already

known the uniform entry model satisfies EPS because all agents are even ex ante

symmetric. In this case, cij = 1. Moreover this lemma implies that the uniform

entry model is the unique entry model for finite population that satisfies EPS. To see

this, suppose µ is such a model for population size n. Then we know µit = ci1µ1
t for

0 ≤ i, t ≤ n − 1. This implies that
∑

t µ
i
t = ci1

∑
t µ

1
t for all 0 ≤ i ≤ n − 1. Because

each agent must enter in some period, we have
∑

t µ
i
t = 1 for all i. This implies that

ci1 = 1 and hence uniform random entry.

As mentioned above, this chapter focuses on random entry models where infinitely

many agents enter with positive probability. In particular, we consider models in

which the arrival probability of an additional agent is stationary.

Definition 1.4.3. A random entry model µ satisfies stationarity (S) if there exists

δ ∈ (0, 1) such that for all n ≥ 1,

µ
( ∞⋃
k=n+1

Σk

∣∣∣ ∞⋃
k=n

Σk

)
= δ.

In this case, we call δ the continuation probability.

Stationarity simply states that the arrival probability of a new agent is constant

over time, independent of the number of agents who have entered. Thus, if there were

an outside observer, he would always believe that with probability δ one new agent

would enter in next period, regardless of the number of agents who entered in the

past.

It is easy to see that stationarity is equivalent to geometric distribution over the

length of entry, i.e. µ(Σn) = (1 − δ)δn−1 for all n ≥ 1. Hence, in any random entry
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model that satisfies stationarity, there are infinitely many agents who enter with

positive probability. According to Lemma 1.4.1, this implies that any random entry

model that satisfies S must induce ex ante heterogeneity across agents. However, the

following proposition shows that there exist random entry models which satisfy S and

render all agents ex post identical.

Proposition 1.4.1. For every δ ∈ (0, 1), there exists a random entry model that

satisfies EPS and S with continuation probability δ.

The random entry model that satisfies EPS and S is not unique. For example,

if µ is such a model, then so is µ ◦ ζ−1, where ζ : Z → Z is any permutation of the

agents. Despite this multiplicity, the following proposition shows different random

entry models that satisfy EPS and S with the same continuation probability are in

fact “equivalent”: the common posterior beliefs induced by these two models must be

the same. This is because EPS and S jointly pin down the form of common posterior

beliefs.

Proposition 1.4.2. Let µ be a random entry model that satisfies EPS and S with

continuation probability δ ∈ (0, 1). Then for any P ∈ P, the common posterior belief

can be written as

νP (ξ|r) =
b(ξ)

∑∞
t=1 δ

tPξ
(
Rt = r)∑

ξ′ b(ξ
′)
∑∞

t=1 δ
tPξ′
(
Rt = r)

,

for all ξ ∈ Ξ and r ∈ R.

1.4.3 Reputation game with random entry model

We now apply the results developed in this section to the reputation game studied

in Section 1.2. In the reputation game, Ξ = {ξ̂, ξ̃}, b = (b0, 1 − b0) and R = Z+ as

before.

Given any random entry model µ that satisfies EPS and S with continuation

probability δ, we incorporate it into the game and modify the original game as follows.
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Before the game starts in period t = −1, nature selects (a) the type of the seller

ξ ∈ {ξ̂, ξ̃} according to prior probability b0 and (b) the total demand n and the order

of entry ω = (i0, · · · , in−1) ∈ Σ according to the random entry model µ. As before,

the realized type of the seller is observed only by the seller. However the realized ω

is neither observed by the seller nor by the buyers. Then, the game starts. Buyer i0

enters in period 0, i1 enters in period 1 and so on until buyer in−1 enters in period

n−1, then the game ends. Assume everything else is the same as before, including the

stage game, the evolution of the public signals and that entering buyers only observe

the current signal and do not know the number of transactions before them. Denote

this game as Γµ(b0, α, β, δ, ε).

Because µ satisfies EPS, for any stationary public strategy of the normal seller,

all buyers will have the same posterior beliefs about the types and thus the same

expectation about the seller’s behavior. This allows us to restrict attention to sym-

metric strategies of the buyers. Because of Proposition 1.4.2, the posterior beliefs of

the buyers in the current model have exactly the same form as in (1.1). Because of S,

the seller always expects the arrival of next buyer with probability δ. Thus, the defi-

nition of stationary public equilibrium in Definition 1.3.1 applies to Γµ(b0, α, β, δ, ε).

Therefore, we have

Proposition 1.4.3. Let µ be a random entry model that satisfies EPS and S with

continuation probability δ. The set of stationary public equilibria of the game

Γµ(b0, α, β, δ, ε) coincide with that of Γ(b0, α, β, δ, ε).

This proposition states that the symmetry assumption of the buyers can indeed

be rationalized by formal random entry model if we replace ex ante symmetry by ex

post symmetry. As long as symmetric equilibria are, these two notions are in fact

equivalent in terms of the set of equilibria. Moreover, this proposition implies that

the details of the entry model are immaterial because all entry models that satisfy
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EPS and S with the same continuation probability lead to the same set of stationary

public equilibria. All these facts suggest that if our focus is symmetric behavior of

the buyers, then we should be comfortable with any choice of these models.13

1.5 Conclusion

This chapter studies reputation effects when the short-lived players do not know how

long the game has been played and there is only coarse and biased information about

the past available.

One key new feature of this model is that short-lived players enter the game at

random times and upon entry only observe biased signals about past outcomes. This

setting departs from the standard assumptions in repeated games where short-lived

players observe detailed history about the past and enter in fixed order, and it indeed

results in a different set of equilibria even in the complete information case. Without

the commitment type, we show that within the class of stage games we study, when

bias is large, repeated play of the stage Nash equilibrium is the unique stationary

public equilibrium.

In the presence of a Stackelberg type, we show that even if only coarse information

is revealed to the short-lived players, the normal type still has incentives to build

reputation, as long as the coarse information is sufficiently biased. In every stationary

public equilibrium, the normal type player must play the Stackelberg action at some

13In the definition of EPS, a random entry model must induce common posterior beliefs for all

stochastic processes over the signal space. When applied to the reputation game, this requirement

seems conceptually too strong because for symmetric behavior of the buyers, it is sufficient that the

buyers have identical posterior beliefs for all those processes that can be generated by some strategies

of the seller. One may worry that these two notions have different implications in the reputation

game. However, in the appendix, we show these two notions are in fact equivalent in the current

reputation model.
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values of the public signals. By doing so, the normal type increases his chance of

reaching a higher signal and hence a higher reputation. We also show that the normal

type is not willing to always imitate the Stackelberg type. In fact, he builds up his

reputation only to milk it. As a result of reputation building and milking, cyclic

reputation arises in equilibria.
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Chapter 2

Reputation in the presence of

noisy exogenous learning 1

2.1 Introduction

This chapter studies the reputation effect in the long-run interactions in which a

long-lived player faces a sequence of uninformed short-lived players and the unin-

formed players receive informative but noisy exogenous signals about the type of the

long-lived player. In the canonical reputation models without exogenous learning

(Fudenberg and Levine (1989), Fudenberg and Levine (1992)), the long-lived player

can effectively build a reputation by mimicking the behavior of a commitment type

because the short-lived player will play a best response to the commitment action

in all but a finite number of periods after always seeing the commitment action.

The underlying reason is the fact that the short-lived player cannot be surprised too

many times: every time the short-lived player expects the commitment action with

small probability and yet this action is actually chosen, the posterior belief on this

1A slightly shorter version of this chapter appears in Journal of Economic Theory 2014 Volume

153, 64-73.
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commitment type jumps up, but at the same time the beliefs can not exceed unity.

However this “finite number of surprises” intuition does not carry over to the case

with exogenous learning. It is still true that each surprise leads to a discrete jump

of the posterior beliefs. But after a surprise during the periods of no surprises, the

exogenous learning can drive down the posterior beliefs. After a long history without

surprises, the posterior beliefs may return to the original level, resulting in another

surprise. Typically, this can happen infinitely many times. Hence in the presence of

exogenous learning, there is no guarantee that we have a finite number of surprises.

Wiseman (2009) first presented an infinitely repeated chain store game example

with perfect monitoring and exogenous signals taking two possible values. He shows

that when the long-lived player is sufficiently patient and there is sufficient noise in

the signals, the long-lived player can effectively build a reputation and assure himself

of a payoff strictly higher than his minmax payoff.

This chapter extends Wiseman (2009) to more general reputation models with

exogenous learning. We provide an explicit lower bound on all Nash equilibrium

payoffs to the long-lived player. The lower bound is characterized by the commitment

action, discount factor, prior belief and how noisy the learning process is. For fixed

commitment action and discount factor, the lower bound increases in both prior

probability and noise in the exogenous signals. This is intuitive as a higher prior

probability on the commitment type and a noisier and slower exogenous learning

process both correspond to easier reputation building. When the long-lived player

become sufficiently patient, the effect of the prior probability vanishes while that of

the exogenous learning remains. This is again intuitive because the prior probability

represents the cost of reputation building in the initial periods. When the long-lived

player places arbitrarily high weight on future periods, the cost in the initial periods

becomes negligible. In contrast, learning has a long run effect. The longer the history,

the more the uninformed player can learn about the type of his opponent. Hence the

32



effect of learning remains even if the long-lived player become sufficiently patient.

Not surprisingly, the lower bound we derive is generally lower than that if there is

no exogenous learning, reflecting the negative effect of learning on reputation building.

In the case that signals are completely uninformative, these two bounds coincide.

Nonetheless, when the signals are sufficiently noisy, the lower bound shows that in

any Nash equilibrium, the long-lived player is assured of a payoff strictly higher than

his minmax value.

To derive the lower bound, we apply the relative entropy approach first introduced

by Gossner (2011b) to the study of reputations. Gossner (2011b) uses this approach

to the standard reputation game in Fudenberg and Levine (1992) and obtains an

explicit lower bound on all equilibrium payoffs. He also shows when the commitment

types are sufficiently rich and the long-lived player is arbitrarily patient, the lower

bound is exactly the Stackelberg payoff which confirms the result in Fudenberg and

Levine (1992). Ekmekci, Gossner, and Wilson (2012b) applied this method to the

reputation game in which the type of the long-lived player is governed by an underly-

ing stochastic process. They calculate explicit lower bounds for all equilibrium payoffs

at the beginning of the game and all continuation payoffs. In these two papers, rela-

tive entropy only serves as a measure of prediction errors. However, in this chapter,

in addition to a measure of prediction errors, the concept of relative entropy is also

naturally adapted to the learning situation as a measure of noise in the exogenous

signals. This again makes relative entropy as a more suitable tool.

The rest of the chapter is organized as follows. In section 2, we describe the

reputation model with exogenous learning and introduce relative entropy. Section 3

presents and discusses the main result, which is proved in Section 4.
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2.2 Model

2.2.1 Reputation game with exogenous learning

We consider the canonical reputation model (Mailath and Samuelson (2006b), Chap-

ter 15) in which a fixed stage game is infinitely repeated. The stage game is a two-

player simultaneous-move finite game of private monitoring. Denote by Ai the finite

set of actions for player i in the stage game. Actions in the stage game are imperfectly

observed. At the end of each period, player i only observes a private signal zi drawn

from a finite set Zi. If an action profile a ∈ A1 ×A2 ≡ A is chosen, the signal vector

z ≡ (z1, z2) ∈ Z1 × Z2 ≡ Z is realized according to the distribution π( · |a) ∈ ∆(Z).2

The marginal distribution of player i’s private signals over Zi is denoted by πi( · |a).

Both π( · |a) and πi( · |a) have obvious extensions π( · |α) and πi( · |α) respectively to

mixed action profiles. Player i’s ex-post stage game payoff from his action ai and

private signal zi is given by u∗i (ai, zi). Player i’s ex ante stage game payoff from ac-

tion profile (ai, a−i) ∈ A is ui(ai, a−i) =
∑

zi
πi(zi|ai, a−i)u∗i (ai, zi). Notice this setting

includes as special cases the perfect monitoring environment (Fudenberg and Levine

(1989)) in which Z1 = Z2 = A and π(z1, z2|a) = 1 if and only if z1 = z2 = a, and the

public monitoring environment (Fudenberg and Levine (1992)) in which Z1 = Z2 and

π(z1, z2|a) > 0 implies z1 = z2. Player 1 is a long-lived player with discount factor

δ ∈ (0, 1) while player 2 is a sequence of short-lived players each of whom only lives

for one period. In any period t, the long-lived player 1 observes both his own previous

actions and private signals, but the current generation of the short-lived player 2 only

observes previous private signals of his predecessors.

There is uncertainty about the type of player 1. Let Ξ ≡ {ξ0}∪ Ξ̂ be the set of all

possible types of player 1. ξ0 is the normal type of player 1. His payoff in the repeated

game is the average discounted sum of stage game payoffs (1− δ)
∑

t≥0 δ
tu1(at). Each

2For a finite set X, ∆(X) denotes the set of all probability distributions over X.
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ξ(α̂1) ∈ Ξ̂ denotes a simple commitment type who plays the stage game (mixed)

action α̂1 ∈ ∆(A1) in every period independent of histories. Assume Ξ̂ is either finite

or countable. The type of player 1 is unknown to player 2. Let µ ∈ ∆(Ξ) be player

2’s prior belief about player 1’s type, with full support.

At period t = −1, nature selects a type ξ ∈ Ξ of player 1 according to the

initial distribution µ. Player 2 does not observe the type of player 1. However,

we assume that the uninformed player 2 has access to an exogenous channel which

gradually reveals the true type of player 1. More specifically, conditional on the

type ξ, a stochastic process {ηt(ξ)}t≥0 generates a signal yt ∈ Y after every period’s

play, where Y is a finite set of all possible signals. To distinguish the signals z ∈ Z

generated from each period’s play and the signals y ∈ Y generated by {ηt(ξ)}t≥0,

we call the former endogenous signals and the latter exogenous signals. In addition

to observing previous endogenous signals, each generation of player 2 also observes

all the exogenous signals from earlier periods. We assume that for each type ξ ∈ Ξ,

the stochastic process {ηt(ξ)}t≥0 is independent and identically distributed across t.

Conditional on ξ, the distribution of the exogenous signals in every period is denoted

by ρ( · |ξ) ∈ ∆(Y ). Notice this assumes that the realization of the exogenous signals

are independent of the play, hence it models the exogenous learning of the uninformed

player 2.

For expositional convenience, we assume player 1 does not observe the exogenous

signals. This assumption is not crucial for our result. The same lower bound will

apply if we assume player 1 also observes the exogenous signals.

A private history of player 1 in period t consists of his previous actions and

endogenous signals, denoted by ht1 ≡ (a0
1, z

0
1 , a

1
1, z

1
1 , . . . , a

t−1
1 , zt−1

1 ) ∈ H1t ≡ (A1×Z1)t,

with the usual notation H10 = {∅}. A behavior strategy for player 1 is a map

σ1 : Ξ×
∞⋃
t=0

H1t → ∆(A1),
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with the restriction that for all ξ(α̂1) ∈ Ξ̂,

σ1(ξ(α̂1), ht1) = α̂1 for all ht1 ∈
∞⋃
t=0

H1t.

A private history of player 2 in period t contains both previous endogenous and

exogenous signals, denoted by ht2 ≡ (z0
2 , y

0
2, z

1
2 , y

1
2, . . . , z

t−1
2 , yt−1

2 ) ∈ H2t ≡ (Z2 × Y )t,

with H20 = {∅}. A behavior strategy for player 2 is a map

σ2 :
∞⋃
t=0

H2t → ∆(A2).

Denote by Σi the strategy space of player i.

Any strategy profile σ ≡ (σ1, σ2) ∈ Σ1 × Σ2, together with the prior µ and the

signal distributions {π( · |a)}a∈A and {ρ( · |ξ)}ξ∈Ξ, induces a probability measure P σ

over the set of states Ω ≡ Ξ×(A1×A2×Z1×Z2×Y )∞. The measure P σ describes how

the uninformed player 2 expects play to evolve. Let P̃ σ be the conditional probability

of P σ given the event that player 1 is the normal type. The measure P̃ σ describes

how play evolves if player 1 is the normal type. We use Eσ[ · ] (resp., Ẽσ[ · ]) to denote

the expectation with respect to the probability measure P σ (resp., P̃ σ).

A Nash equilibrium in this reputation game is a pair of mutual best responses.

Definition 2.2.1. A strategy profile σ∗ = (σ∗1, σ
∗
2) ∈ Σ1 × Σ2 is a Nash equilibrium

if it satisfies:

(a) for all σ1 ∈ Σ1,

Ẽσ∗
[
(1− δ)

∞∑
t=0

δtu1(at)
]
≥ Ẽ(σ1,σ∗2)

[
(1− δ)

∞∑
t=0

δtu1(at)
]
,

(b) for all ht2 ∈
⋃
τ≥0H2τ with positive probability under P σ∗ ,

σ∗2(ht2) ∈ arg max
α2∈∆(A2)

Eσ∗
[
u2

(
σ∗1(ht1, ξ), α2

)∣∣∣ht2].
Condition (a) states that given σ∗2, the normal type of player 1 maximizes his

expected lifetime utility. Condition (b) requires that given σ∗1, player 2 updates his
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belief via Bayes’ rule along the path of play and plays a myopic best response since

he is short lived.

2.2.2 Relative entropy

The relative entropy between two probability distributions P and Q over a finite set

X is the expected log likelihood ratio

d(P‖Q) ≡ EP log
P (x)

Q(x)
=
∑
x∈X

P (x) log
P (x)

Q(x)
,

with the usual convention that 0 log 0
q

= 0 if q ≥ 0 and p log p
0

=∞ if p > 0. Relative

entropy is always nonnegative and it is zero if and only if the two distributions are

identical (See Cover and Thomas (2006), Gossner (2011b) and Ekmekci, Gossner, and

Wilson (2012b) for more details on relative entropy).

Relative entropy measures the speed of the learning process of the uninformed

player 2. For each commitment type ξ(α̂1) ∈ Ξ̂, let λξ(α̂1) be the relative entropy of

the exogenous signal distributions when player 1 is the normal type and when he is

the commitment type ξ(α̂1), i.e.

λξ(α̂1) ≡ d
(
ρ( · |ξ0)

∥∥ρ( · |ξ(α̂1))
)
.

Relative entropy measures how different the two distributions ρ( · |ξ0) and ρ( · |ξ(α̂1))

are. In terms of learning, λξ(α̂1) measures how fast player 2 can learn from exogenous

signals that player 1 is not the commitment type ξ(α̂1) when player 1 is indeed the

normal type. The larger λξ(α̂1) is, the faster the learning process is. This is illustrated

by the two polar cases. If λξ(α̂1) = 0, then the distributions of the exogenous signals

when player 1 is the normal type and when he is of type ξ(α̂1) are identical. In this

case, from the exogenous signals, player 2 can never distinguish the normal type from

the commitment type ξ(α̂1) when player 1 is the normal type. If λξ(α̂1) = ∞, there

must be some signal y ∈ Y which will occur when player 1 is the normal type but will
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not occur when player 1 is the commitment type ξ(α̂1). Hence in this case, player

2 will learn that player 1 is not the commitment type ξ(α̂1) for sure in finite time

when player 1 is the normal type. For other intermediate values 0 < λξ(α̂1) < ∞,

conditional on the normal type, player 2 will eventually know that player 1 is not the

commitment type ξ(α̂1).

The following assumption rules out extremely fast learning. Technically, it re-

quires that the support of ρ( · |ξ) be contained in the support of ρ( · |ξ(α̂1)) for every

commitment type ξ(α̂1).

Assumption 2.2.1. λξ(α̂1) <∞ for all ξ(α̂1) ∈ Ξ̂.

Relative entropy measures the error in player 2’s one step ahead prediction on

the endogenous signals. Gossner (2011b) first introduced the following notion of ε-

entropy-confirming best response (see also Ekmekci, Gossner, and Wilson (2012b)):

Definition 2.2.2. The mixed action α2 ∈ ∆(A2) is an ε-entropy-confirming best

response to α1 ∈ ∆(A1) if there exists α′1 ∈ ∆(A1) such that

(a) α2 is a best response to α′1,

(b) d
(
π2( · |α1, α2)

∥∥π2( · |α′1, α2)
)
≤ ε.

The set of all ε-entropy confirming best responses to α1 is denoted by Bε(α1).

The idea of ε-entropy-confirming best response is similar to ε-confirming best

response defined in Fudenberg and Levine (1992). If player 2 plays a myopic best

response α2 to his belief that player 1 plays the action α′1, then player 2 believes

that his endogenous signals realize according to the distribution π2( · |α′1, α2). If

the true action taken by player 1 is α1 instead of α′1, then the true distribution

of player 2’s endogenous signals is indeed π2( · |α1, α2). Hence player 2’s one step

ahead prediction error on his endogenous signals is, measured by relative entropy,

d
(
π2( · |α1, α2)

∥∥π2( ·, |α′1, α2)
)
. The mixed action α2 is an ε-entropy-confirming best

response of α1 if the prediction error is no greater than ε.
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For any commitment type ξ(α̂1) ∈ Ξ̂, let

V ξ(α̂1)(ε) ≡ inf
α2∈Bε(α̂1)

u1(α̂1, α2)

be the lowest possible payoff to player 1 if he plays α̂1 while player 2 plays an ε-

entropy-confirming best response to α̂1. Let Vξ(α̂1)( · ) be the pointwise supremum of

all convex functions below V ξ(α̂1). Clearly Vξ(α̂1) is convex and nonincreasing.

2.3 Main result

For any δ ∈ (0, 1), let U1(δ) denote the infimum of all Nash equilibrium payoffs to the

normal type of player 1 if the discount factor is δ. Our main result is the following:

Proposition 2.3.1. Under Assumption 2.2.1, for all δ ∈ (0, 1),

U1(δ) ≥ sup
ξ(α̂1)∈Ξ̂

Vξ(α̂)

(
− (1− δ) log µ

(
ξ(α̂1)

)
+ λξ(α̂1)

)
.

To understand the equilibrium lower bound in Proposition 2.3.1, it suffices to

consider the reputation building on each ξ(α̂1) ∈ Ξ̂ since the overall lower bound

is obtained by considering all possible commitment types. Fix a commitment type

ξ(α̂1) ∈ Ξ̂. Proposition 2.3.1 states that in any Nash equilibrium, the normal type

of player 1 is assured of a payoff no less than Vξ(α̂1)

(
− (1− δ) log µ(ξ(α̂1)) + λξ(α̂1)

)
.

Recall that Vξ(α̂1) is a nonincreasing function. For fixed δ, this lower bound increases

with µ(ξ(α̂1)) while decreases with λξ(α̂1). The intuition is straightforward. A larger

prior probability on the commitment type ξ(α̂1) makes it easier for the normal type

of player 1 to build a reputation on this commitment type. In another word, the cost

of reputation building in the initial periods is smaller in this case which leads to a

higher lower bound. However the learning process goes against reputation building

because player 2 eventually learns that player 1 is not the commitment type ξ(α̂1).

It is then intuitive that the speed of learning matters. If the exogenous signals are
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sufficiently noisy, then λξ(α̂1) is small and it is hard for player 2 to distinguish the

normal type and the commitment type. This results in a rather slow learning process

and hence a high lower bound. If the learning process is completely uninformative,

λξ(α̂1) = 0, then the lower bound is given by Vξ(α̂1)

(
− (1 − δ) log µ(ξ(α̂1))

)
which is

exactly the same lower bound derived in Gossner (2011b) without exogenous learning.

In general, when λξ(α̂1) > 0, the lower bound is lower than that in Gossner (2011b)

due to the learning effect.

Another parameter in the lower bound is player 1’s discount factor δ. An in-

teresting feature in the lower bound is that δ only appears as a coefficient for the

term log µ(ξ(α̂1)), not for λξ(α̂1). This is because − log µ(ξ(α̂1)) captures the cost

of reputation building in the initial periods while λξ(α̂1) is the learning effect which

remains active as the game evolves. As a result, when player 1 becomes arbitrar-

ily patient, δ → 1, the cost of reputation building in the initial periods becomes

negligible since player 1 places higher and higher weight on the payoff obtained in

later periods, whereas the learning effect remains unchanged. In this case, the lower

bound becomes Vξ(α̂1)

(
λξ(α̂1)

)
.3 Moreover, in the presence of multiple commitment

types, which commitment type is the most favorable is now ambiguous. Intuitively,

this is because the effectiveness of reputation building does not only depend on the

stage game payoff from the commitment type but also on the learning process. Even

if player 2 assigns positive probability on the Stackelberg action, committing to the

Stackelberg action may not help player 1 effectively build a reputation because the

exogenous signals may reveal quickly to player 2 that player 1 is not the Stackelberg

commitment type. This is in a sharp contrast with the result in standard models

without exogenous learning.

We use the following example which is first considered in Wiseman (2009) to

illustrate the lower bound obtained in Proposition 2.3.1.

3Since Vξ(α̂1)(ε) is convex, it is continuous at every ε > 0.
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2.4 An example

There is a long-lived incumbent, player 1, facing a sequence of short-lived entrants,

player 2. In every period, the entrant chooses between entering (E) and staying out

(S) while the incumbent decides whether to fight (F ) or accommodate (A). The stage

game payoff is given in Figure 2.1, where a > 1 and b > 0.

E S

F −1, −1 a, 0

A 0, b a, 0

Figure 2.1: Chain store stage game.

The stage game is infinitely repeated with perfect monitoring. There are two types

of player 1, the normal type, denoted by ξ0, and a simple commitment type, denoted

by ξ(F ) who plays the stage game Stackelberg action F in every period independent

of histories. The prior probability of ξ(F ) is µ(ξ(F )). The exogenous signals observed

by player 2 only take two values: y and y. Assume ρ(y|ξ0) = β, ρ(y|ξ(F )) = α and

β > α. Thus

λξ(F ) = β log
β

α
+ (1− β) log

1− β
1− α

.

Now we apply Proposition 2.3.1 in this setting. Because monitoring is perfect, it

is easy to see Bε(F ) = {S} when ε < log b+1
b

. Therefore, we have

Vξ(F )(ε) =

 a− a+1
log b+1

b

ε, if ε < log b+1
b
,

−1 if ε ≥ log b+1
b
.

Proposition 2.3.1 then implies for all δ ∈ (0, 1)

U1(δ) ≥ a− a+ 1

log b+1
b

(
− (1− δ) log µ(ξ(F )) + λξ(F )

)
,

and in the limit

lim inf
δ→1

U1(δ) ≥ a− (a+ 1)
λξ(F )

log b+1
b

. (2.1)
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Wiseman (2009) considers symmetrically distributed signals, i.e., β = 1−α > 1/2,

and derives a lower bound of a − (a + 1)
log β

1−β
log b+1

b

. Because in this symmetric case

λξ(F ) = (2β − 1) log β
1−β , this bound is lower than that in (2.1). As signals become

less informative, i.e. β → 1
2
, both lower bounds become arbitrarily close to player 1’s

Stackelberg payoff.

Although it is not surprising that exogenous learning affects reputation building,

why does it take this particular form, i.e. the relative entropy of the exogenous signals?

As mentioned previously, the “finite number of surprises” argument in Fudenberg and

Levine (1989) does not apply because of the downward pressure on posterior beliefs

due to exogenous learning. In this particular example, the uninformed entrants may

enter infinitely many times even if he is always fought after any entry. Moreover, re-

ceiving the signal y always decreases the posterior beliefs (recall ρ(y|ξ0) > ρ(y|ξ(F )))

which is the source of the downward pressure. Thus the strength of this downward

pressure depends exactly on how frequently the entrants can receive the signal y

which, together with the size of surprise, in turn determines how long it takes for the

posterior beliefs to return after a surprise. In other words, the size of surprise and the

relative frequency of exogenous signals together determine the frequency of entries.

If it takes a long time for the posterior beliefs to return, then the entrants can not

enter too frequently and the incumbent can effectively build a reputation.

To see this, fix any Nash equilibrium σ. For any history h∞ in which F is always

played, let {µt}t≥0 be player 2’s posterior belief on the commitment type along this

history. Player 2 is willing to enter in period t only if

Prob(F ) ≡ µt + (1− µt)σ1(ξ0, h
t)(F ) ≤ b

b+ 1
.

So, if player 2 enters in period t, we must have

µt ≤
b

b+ 1
(2.2)
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and

σ1(ξ0, h
t)(F ) ≤ b

b+ 1
. (2.3)

We examine the odds ratio {µt/(1 − µt)}t≥0 along this history. Since the entrant is

always fought along this history, the odds ratio evolves as

µt+1

1− µt+1

=
(α
β

)
1y(yt)(1− α

1− β
)
1y(yt) µt

(1− µt)σ1(ξ0, ht)(F )
∀t ≥ 0,

where for y ∈ {y, y}, 1y is the indicator function, 1y(y
t) = 1 if yt = y and 0 otherwise.

Because σ1(ξ, ht)(F ) is always less than or equal to 1, we have

µt+1

1− µt+1

≥
(α
β

)
1y(yt)(1− α

1− β
)
1y(yt) µt

1− µt
(2.4)

if player 2 stays out in period t. Because inequality (2.3) holds if player 2 enters in

period t, we have

µt+1

1− µt+1

≥
(α
β

)
1y(yt)(1− α

1− β
)
1y(yt) b+ 1

b

µt
1− µt

(2.5)

if he enters in period t. For any t ≥ 1, let nE(t), ny(t) be the number of entries and

the number of signal y’s respectively in history ht. Inequalities (2.4), (2.5) and simple

induction imply

µt
1− µt

≥
(b+ 1

b

)nE(t)(α
β

)ny(t)(1− α
1− β

)t−ny(t) µ(ξ(F ))

1− µ(ξ(F ))
∀t ≥ 1. (2.6)

Moreover, if player 2 enters in period t, inequality (2.2) implies

b ≥ µt
1− µt

. (2.7)

Hence inequalities (2.6) and (2.7) together yield

b ≥
(b+ 1

b

)nE(t)(α
β

)ny(t)(1− α
1− β

)t−ny(t) µ(ξ(F ))

1− µ(ξ(F ))
(2.8)

for all t at which player 2 enters. Let {tk}k≥0 be the sequence of periods in which

entry occurs. By taking log and dividing both sides by tk, inequality (2.8) implies

lim sup
k→∞

nE(tk)

tk
≤ 1

log b+1
b

lim
k→∞

[ny(tk)
tk

log
β

α
+
(
1− ny(tk)

tk

)
log

1− β
1− α

]
=

λξ(F )

log b+1
b

,
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because limt ny(t)/t = β by law of large numbers. Because for every t ≥ 1, there

exists k ≥ 0 such that tk ≤ t < tk+1 and nE(t)/t = nE(tk)/t ≤ nE(tk)/tk, the above

inequality also holds for the whole sequence

lim sup
t→∞

nE(t)

t
≤

λξ(F )

log b+1
b

.

This inequality states exactly what we have mentioned above: the fraction of entries

along a typical history is determined by the size of surprise b+1
b

and the relative

frequency of the exogenous signals λξ(F ). Lastly, because this inequality holds for all

Nash equilibria, we have

lim inf
δ→1

U1(δ) ≥
(
1−

λξ(F )

log b+1
b

)
a+

λξ(F )

log b+1
b

(−1) = a− (a+ 1)
λξ(F )

log b+1
b

.

This is exactly the lower bound in (2.1).
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Chapter 3

Social learning and market

experimentation

3.1 Introduction

This chapter studies optimal dynamic monopoly pricing when a monopolist sells a

product with unknown quality to a sequence of short-lived buyers who have private

information about the quality. Because buyers purchase behavior conveys information

about their private signals, the market, including both the monopolist and subsequent

buyers, can gradually learn the quality of the product. Examples include that readers

buy books that are best sellers, that smart phone users download apps that are heavily

downloaded, that diners order food that are popular among other diners.1

Standard social learning literature (e.g. Bikhchandani, Hirshleifer, and Welch

(1992) and Banerjee (1992)) only focused on the buyers’ behavior of the above en-

vironment and analyzed the implications of information externality and learning,

1For example, Cai, Chen, and Fang (2009) found that in a randomized natural experiment in a

restaurant dinning setting, when customers are given ranking information of the five most popular

dishes, the demand for those dishes increases by 13 to 20 percent.
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ignoring the fact that the monopolist can and will strategically adjust the price of

the product as the learning proceeds. In fact, the different prices charged by the

monopolist have important effects on the buyers’ learning because the market belief

is jointly determined by the price and the buyer’s purchase behavior. For example,

when we see that an expensive restaurant is crowded, we may think that the food

there is very good. But when we see that a less expensive restaurant is crowded,

we attribute it to low price. Hence from the monopolist’s point of view, each price

not only extracts rents in current period, but also creates an experiment that deter-

mines the information available to the market. As a result, when choosing prices, the

monopolist is essentially doing experimentation in the market.

What is the optimal experimentation strategy for the monopolist? What are the

implications on social learning when the monopolist optimally experiments? Will the

monopolist have incentives to stop experimentation by either leaving the market or

charging low price so that buyer’s purchase behavior no longer provides information

about their private signals? This chapter addresses these questions in a simple model.

We assume the quality of the monopolist’s product can be either high or low. Neither

the monopolist nor the buyers know initially the true quality. The buyers enter

the market sequentially and each of them is endowed with a private signal about

the quality of the product. At the begining of each period, the monopolist can

post a price and the entering buyer, after observing previous prices and purchase

behavior his predecessors, decides whether to buy or not. Bose, Orosel, Ottaviani, and

Vesterlund (2006) and Bose, Orosel, Ottaviani, and Vesterlund (2008) first studied a

similar model and they focused on information structures that have only finitely many

signals. Unlike their settings, this chapter focuses on information structures that

have a continuum of signals and we show that the characterization of informational

casacades is qualitatively different from their results.

We first observe that the monopolist’s pricing problem is equivalent to setting
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cut-offs in posterior beliefs because in any Bayesian perfect equilibrium, after any

history the entering buyer’s willingness to pay increases with his poterior belief that

the quality is high. This simple observation reduces the monopolist’s problem into

a dynamic programming problem. Based on this, we further show that, under a

belief monotonicity condition on the information structure, the optimal cut-offs as a

correspondence of market belief increases in the strong set order. This then implies

that there always exists a Bayesian perfect equilibrium in which the monopolist posted

prices increase with market belief. Moreover, if in any Bayesian perfect equilibrium

the price charged after a history with high market belief is lower than that after a

history with low market belief, then the monopolist must be indifferent between these

two prices at these two histories.

We then characterize informational cascades and answer the question that whether

and when the monopolist has incentive to stop experimentation. Here, we distigu-

ish two cases about value of the product. One case is that the value of the low

quality product is lower than the buyers’ outside option, and the other is that the

buyers’ outside option is lower than the value of the product even if its quality is

low. Propositions 3.4.1 and 3.4.2 fully characterize whether the monopolist will stop

experimentation in terms of the information structure in these two cases respectively.

In the first case, if the private signals are of unbounded informativeness, then the

monopolist never stops experimentation. This is the same result as in Smith and

Sørensen (2000). However, if the private signals are of bounded informativeness,

although the monopolist always leaves the market when the market belief is low,

whehther the monopolist induces herding on purchasing when the market belief is

high depends on whether private signals are heavily distributed around the lowest

possible signal. If the density of the private signals at the lowest signal is strictly pos-

itive, then the monopolist indeed will induce herding on purchasing when the market

belief is high. But if the density of the private signals at the lowest signal is zero,
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then the monopolist will never stop experimentation. This is intuitive because in this

case, the monopolist would never want to charge a low price even if he were myopic.

Hence he never incentive to stop experimentation because experimentation will also

bring in future value. This finding is very different from Smith and Sørensen (2000).

The chracterization for the second case is similar to the first one, except the fact the

monopolist never wants to leave the market. Whether the monopolist will induce

herding on purchasing will again depends on whether the density at the lowest signal

is zero, for both bounded and unbounded informativeness. Again, this is also different

from Smith and Sørensen (2000). A large body of social learning papers have found

Smith and Sørensen (2000)’s characterization robust to various modifications of the

standard model. To our knowledge, this is the first time in this literature to find the

subtle relationship between informational cascades and the density of private signals,

besides its support.

Related Literature. The social learning framework was first introduced in-

dependently by Bikhchandani, Hirshleifer, and Welch (1992) and Banerjee (1992).

These two papers have shown that in a sequential decision problem where each agent

must make a decision from a finite set of actions after receiving his private signal

about the unknow states and observing previous agents’ actions, a herd arises. That

is eventually all agents will choose the same (possibly wrong) action regardless of

their own private signals. Smith and Sørensen (2000) provides a formal framework to

analyze herding behavior systematically. They found that herding on a wrong action

can occur if and only if the private signals are of bounded informativeness. That is the

public information contained in previous decisions will eventually swamp the agents’

private information if agents can only receive signals of uniformly bounded precision.

In all these papers, all the agents face the same fixed, exogenously given decision

problem. In contrast, the buyers in this chapter face different decision problems as

the monopolist endogenously chooses prices.
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Smith, Sørensen, and Tian (2015) conducted a welfare analysis in the above so-

cial learning framework. They assume that a social planner, who does not know the

underlying state and can not directly observe private signals, can dictate each agent’s

decision rule and wants to maximize the discounded sum of expected utilities. They

show that the social planner’s optimal solution is cut-off rules and exhibits “contrar-

ianism”: agent should lean against taking the myopically better actions. Their paper

and the current one share the similarity that a forward-looking agent maximizes long-

run expected payoff by changing and learning from short-lived agents’ behavior. In

fact, the techniques they developed in showing contrarianism can be adapted to the

current setting to show that the monopolist’s optimal pricing rule is monotonic with

respect to the market belief. However, we find very different characterization of in-

formational cascades from theirs which is basically the same as Smith and Sørensen

(2000). This is because in the current setting whehter a herd occurs depends on

whether the monopolist has incentive to stop experimentation, and the monopolist’s

incentive to stop experimentation is determined by the distribution of private signals

around the lowest possible signal.

Some papers have studied firm’s pricing behavior in a market where the buyers

have private information about the quality of the product. Moscarini and Ottaviani

(2001) studies static price competition between two firms in a setting where each firm

offers a variaty of a good to a buyer who receives a private binary signal on their

relative quality. Because this is a static setting, there is no learning from the buyer’s

behavior. More closely related papers to the current one are Bose, Orosel, Ottaviani,

and Vesterlund (2006) and Bose, Orosel, Ottaviani, and Vesterlund (2008). Simi-

larly as this chapter, both papers study the monopolist’s dynamic optimal pricing

problem when buyers have private signals and can learn from other buyers’ purchase

behavior. The major difference between these two papers and the current one is that

we focus on different kinds of information structures. While Bose, Orosel, Ottaviani,
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and Vesterlund (2006) considers information structure that contains finitely many

possible signals and Bose, Orosel, Ottaviani, and Vesterlund (2008) considers binary

information structure, this current chapter extend their analysis to information struc-

tures that has a continuum of signals. Both Bose, Orosel, Ottaviani, and Vesterlund

(2006) and Bose, Orosel, Ottaviani, and Vesterlund (2008) show that information cas-

cade must arise in these two models, as is the case in Bikhchandani, Hirshleifer, and

Welch (1992) and Banerjee (1992), even in the prensence of a monopolist who endoge-

nously and optimally charges prices. This result can be considered as robustness of

Smith and Sørensen (2000)’s characterization of informational cascade, because dis-

crete signals are always of bounded informativeness. In contrast, the characterization

of cascade sets in Section 3.4 in this chapter shows different results. We show whether

informational cascade occurs depends not only on the boundedness of the information

structure, but also on how private signals are distributed at the lowest possible signal.

Our result coincide with Bose, Orosel, Ottaviani, and Vesterlund (2006) and Bose,

Orosel, Ottaviani, and Vesterlund (2008) when the information structure is bounded

and private signals are heavily distributed around the lowest possible signal.2 How-

ever if private signals are not heavily distributed around the lowest possible signal,

then herding will not occur even if information structure is bounded.

3.2 Model

Time is discrete t = 0, 1, 2, · · · . There is a long-lived monopolist who sells a product

with unknown quality to an infinite sequence of short-lived buyers. The quality of

the product can be either high (h) or low (l). Initially, the market, including both the

monopolist and the buyers, has common prior belief about the quality of the product.

2Notice, when private signals are discretely distributed, there is always positive mass on the

lowest possible signal.
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Let π0 ∈ (0, 1) be the common prior belief that the quality is high. Let δ ∈ (0, 1) be

the monopolist’s discount factor.

Each buyer receives a private signal that conveys information about the quality of

the product. The private signal, via Bayes’ rule, results in a private belief r ∈ (0, 1).

We assume private beliefs are conditionally i.i.d among the buyers with distribution

F h and F l given quality h and l respectively. Moreover, F h and F l are mutually

absolutely continuous. Therefore, they have the same support and no private signal

perfectly reveals the quality of the product.3 In the following analysis, we will con-

centrate on F h and F l that have continuous and strictly positive densities fh and

f l respectively over the common support. Such a pair of distributions (F h, F l) is

referred to as an information structure. Following Smith and Sørensen (2000), we say

an information structure (F h, F l) is bounded if there exists 0 < r < r < 1 such that

suppF h = [r, r], and is unbounded if suppF h = [0, 1].

The timing is as follows. At the beginning of each period, the monopolist an-

nounces a price pt ∈ R. Then a new buyer comes into the market. The buyer then

decides whether to buy the product or not, based his information. If the quality of the

product is high (resp., low) and the buyer buys at price pt, his payoff is h− pt (resp.

l − pt). In both cases, the monopolist gets pt (we normalize the cost of production

to 0). If the buyer decides not to buy the product, then he gets his outside option v

and the monopolist gets 0.

We assume that past prices and purchase behavior are all publicly observed by

the monopolist and the buyers. However buyers’ private signals are only observed by

3Smith and Sørensen (2000) Appendix A shows that given any pair of mutually absolutely con-

tinuous private signal distributions (F̂h, F̂ l), there exists an equivalent pair of mutually absolutely

continuous private belief distributions (Fh, F l) in the sense that (F̂h, F̂ l) and (Fh, F l) always give

the same distribution of posterior beliefs given any prior belief. Hence focusing on distributions of

private beliefs is without loss of generality.
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themselves. Hence a public history ht of length t includes prices and the corresponding

purchase behaviors in periods s = 0, · · · , t − 1, i.e. ht = (p0, a0, · · · , pt−1, at−1) ∈

H t ≡ (R×{0, 1})t where as = 1 means the sth buyer buys the product while as = 0

means he does not buy. A strategy of the monopolist is a mapping σM : ∪t=0H t → R

and a strategy of the buyers is a mapping σB : ∪t=0H t × R × suppFH → {0, 1}.

Given a strategy σB of the buyers and a public history ht, both the monopolist and

the buyers can update their beliefs about the quality of the product via Bayes’ rule.

We call this belief as market belief since it is shared by all market participants. A

Bayesian perfect equilibrium of this game is a pair of strategies (σ∗M , σ
∗
B) such that

both the monopolist and the buyers are maximizing after any history. Formally,

Definition 3.2.1. A Bayesian perfect equilibrium of this game is a pair of strategies

(σ∗M , σ
∗
B) such that for any history ht, price pt, and private signal rt

1. given σ∗B, σ∗M |ht maximizes the monopolist’s expected continuation payoffE
[
(1−

δ)
∑∞

s=t δ
s−tσM(hs)σ∗B(hs, σM(hs), rs)

∣∣∣ht],
2. σ∗B(ht, pt, rt) ∈ arg maxς∈{0,1}E

[(
Q − pt

)
ς + (1 − ς)v

∣∣∣ht, rt], where Q is the

random variable for quality.

3.2.1 Preliminary result

For any π ∈ (0, 1) and r ∈ suppF h(r), let q(π, r) be the buyer’s posterior belief if the

market belief is π and he receives private signal r. That is

q(π, r) =
πr

πr + (1− π)(1− r)
.

Then condition 2 in Definition 3.2.1 simply requires that after any history (ht, pt, rt),

σ∗B(ht, pt, rt) = 1 if and only if q
(
π(ht), rt

)
h+

[
1− q

(
π(ht), rt

)]
l − pt ≥ v, (3.1)
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where π(ht) denotes the market belief that the quality is high after public history

ht.4 Thus in any Bayesian perfect equilibrium, after any history, the monopolist’s

price simply induces a cut-off in the buyer’s potential posterior beliefs such that the

buyer will buy if and only if his posterior belief is about this cut-off. As a result, we

can equivalently think about the monopolist’s problem as choosing a cut-off in the

postential posterior beliefs given the current market belief.

Formally, let G( · |π) be the distribution of the potential posterior beliefs given

market belief π ∈ (0, 1), i.e.,

G(q|π) =

∫
q(π,·)≤q

(
πfh(r) + (1− π)fL(r)

)
dr ∀q ∈ [0, 1].

Notice, because both fh and f l are continuous, G( · |π) also has a continuous density

g(·|π). We have the following lemma.

Lemma 3.2.1. Let (σM , σB) be a strategy profile. For each history ht, define

qM(ht) ≡


q
(
π(ht), r

)
if q
(
π(ht), r

)
h+

(
1− q

(
π(ht), r

))
l − σM(ht) ≤ v,

q
(
π(ht), r) if q

(
π(ht), r)h+

(
1− q

(
π(ht), r)

)
l − σM(ht) ≥ v,

σM (ht)+v−l
h−l if otherwise

(3.2)

Then (σM , σB) is a Bayesian perfect equilibrium if and only if for all ht, pt and rt

(i) (3.1) holds,

(ii) qM(ht) solves

max
q∈G( · |π(ht))

(1− δ)
[
1−G(q|π(ht))

][
qh+ (1− q)l − v

]
+ δ
[
1−G(q|π(ht))

]
V
(
πP (π(ht), q)

)
+ δG(q|π(ht))V

(
πN(π(ht), q)

)
,

4We assume for simplicity when the buyer is indifferent between buying and not buying, he always

buys the product. Because we focus on information structures that are absolutely continuous, this

assumption only simplifies exposition and is not essential.

53



where πP (π, q) =
∫
q̃≥q q̃g(q̃|π)dq̃

1−G(q|π)
and πN(π, q) =

∫
q̃<q q̃g(q̃|π)dq̃

G(q|π)
, and the function V (·)

solves the following Bellman equation

V (π) = max
q∈G( · |π)

(1− δ)
[
1−G(q|π)

][
qh+ (1− q)l − v

]
+ δ
[
1−G(q|π)

]
V
(
πP (π, q)

)
+ δG(q|π)V

(
πN(π, q)

)
. (3.3)

(iii) qM(ht) = q
(
π(ht), r) implies σM(ht) = qM(ht)h+ (1− qM(ht))l − v.

Lemma 3.2.1 reduces the equilibrium problem into a dynamic porgramming prob-

lem. Specifically, condition (ii) and (iii) states that a monopolist’s strategy σM is

part of a Bayesian perfect equilibrium if and only if its induced cut-offs in terms of

posterior beliefs satsify Bellman equation (3.3), and when the monopolist decides to

charge low price so that the incoming buyer will buy regardless of his private sig-

nal, the monopolist’s must charge the highest possible price that induces this kind of

behavior.

Equation (3.2) explains how each price is transformed into the posterior belief

cut-off given the buyers’ equilibrium behavior (3.1). Given the current market belief

π, If the charged price p is so high (resp. low) that even the buyer with the most

optimistic (resp. pessimistic) signal will not buy (resp. will buy), then the effective

cut-off is just the highest (resp. lowest) possible posterior belief given market belief

π. If the price is in the intermediate range so that the incoming buyer will buy if

he receives optimistic private signal and will not buy if receives a pessimistic signal,

then the effective cut-off is determined by qh + (1 − q)l − v = p. From the buyers’

equilibrium behavior (3.1), we know in this case the incoming buyer will buy if and

only if his posterior belief is above q.

Then the Bellman equation (3.3) can be easily understood as follows. If the

monopolist’s price leads to cut-off q, then the probability that the incoming buys

this product, or the demand, is 1 − G(q|π). Hence the expected myopic payoff to
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the monopolist is
[
1 − G(q|π)

][
qh + (1 − q)l − v]. Moreover, if the current period

buyer purchases the product, then the next period market belief, after the market

observes this purchase behavior, is going to be updated to πP (π, q) =
∫
q̃≥q q̃g(q̃|π)dq̃

1−G(q|π)
.

On the other hand, if the buyer does not buy, then the next period market belief

is πN(π, q) =
∫
q̃<q q̃g(q̃|π)dq̃

G(q|π)
. In this case, the expected continuation value is

[
1 −

G(q|π)
]
V
(
πP (π, q)

)
+G(q|π)V

(
πN(π, q)

)
. The monopolist’s optimal behavior is just

to choose the cut-off that maximizes his total payoff. We call V (·) the monopolist’s

value function. We say q is an optimal cut-off at π if q solves the maximization

problem on the right hand side of the Bellman equation (3.3) when the market belief

is π. The following lemma summarizes some basic properties of V .

Lemma 3.2.2. The monopolist’s value function V is convex, increasing and Lipschitz

continuous.

The most insteresting property of V is its convexity. This means that the monopo-

list benefits from the information generated from buyers’ purchase behavior. Because

whether an incoming buyer buys or not depends on the current period price, the

monopolist, by choosing different prices and thus different cut-offs in the potential

posteriors, can determine in every period the nature of the information that will be

generated from the buyer’s response. In other words, different prices lead to different

experiments. Because the monopolist can benifit from the information, when choos-

ing a price, the monopolist takes into account his current period payoff and what kind

of information to be generated. This is in the same spririt of experimentation.

3.3 Price monotonicity

This section studies an important feature of the monopolist’s equilibrium price. We

show under the following regularity conditions on the information structure, the mo-

nopolist’s equilibrium price must satisfy centain monotonic patern. In particular,
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there must exists a Bayesian perfect equilibrium in which the monopolist’s price in-

creases with the market belief.

Definition 3.3.1. An information structure (F h, F l) satisfies belief monotonicity if

for all 0 < π < π < 1, the ratio of the densities of the correponding posterior beliefs

g(q|π)

g(q|π)

increases in q ∈ suppG( · |π) ∩ suppG( · |π).

Belief monotonicity states that the distributions of the posterior beliefs updated

from different market beliefs (prior beliefs) satisfy monotonicity likelihood ratio prop-

erty. Notice, for any information structure (F h, F l), it is always true that higher prior

belief leads to larger probability of getting a high posterior belief. That is G( · |π) first

order stochastic dominates G( · |π) for all 0 < π < π < 1. But belief monotonicity

is stronger than this since it requires that the likelihood ratio be monotone. Hence,

there are indeed information structures that violate belief monotonicity. Lemma 4 in

Smith, Sørensen, and Tian (2015) provides a sufficient condition for the information

structure (F h, F l) to satisfy belief monotonicity.

Lemma 3.3.1. Assume the information structure (F h, F l) satisfies belief monotonic-

ity. For π < π, assume q∗(π) and q∗(π) are optimal cut-offs at π and π respectively. If

q∗(π) > q∗(π), then q∗(π) is also an optimal cut-off at π and q∗(π) is also an optimal

cut-off at π.

Lemma 3.3.1 states that the set of optimal cut-offs as a correspondence of market

belief increases with repect to the strong set order (see, for example, Milgrom and

Shannon (1994) and Topkis (1998)). It is worthnoting that Lemma 3.3.1 implies that

if the monopolist’s optimal cut-off is unique for every market belief, then the optimal
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cut-offs as a function of the market belief must be increasing.5 Moreover, Lemma

3.3.1 also implies that there always exists a Bayesian perfect equilibrium in which

the monopolist’s price increases with the market belief. This is summarized in the

following proposition.

Proposition 3.3.1. If the information structure (F h, F l) satisfies belief monotonic-

ity, then there exists a Bayesian perfect equilibrium in which the monopolist’s strategy

σ∗M increasese with respect to the market belief: for any ht and hs, if π(ht) > π(hs),

then σ∗M(ht) ≥ σ∗M(hs).

As mentioned above, each price charged by the monopolist determines current

period demand, which in turn leads to the current period payoff and additional infor-

mation about the quality. The relationship between the price and the current period

payoff is relatively straightforward. In fact, under belief monotonicity, if the monop-

olist were myopic, then it is easy to show that the monopolist’ optimal prices satisfy

the same monotonic property stated in Lemma 3.3.1.6

But how the current price changes the value of the information to the monopolist

is less obvious. When the monopolist charges different intermediate prices, different

kinds of experiments are induced. But how one experiment compares to another

in terms of their values to the monopolist is not simple. To see this, notice that

both πN(π, q) and πP (π, q) increases with q for a given π. This simply means that

the experiments induced by different prices are not ranked in the usual Blackwell

order. As a result, even though the monopolist always benefits from the additional

5If this is the case, then there exists an essentially unique Bayesian perfect equilibrium. In this

equilibrium, the monopolist’s strategy is Markovian. That is the monopolist’s equilibrium strategy

only depends on the current period market belief.
6To guarantee this, we only need that G(q|π) satisfies monotone hazard rate property: 1−G(q|π)

g(q|π) ≤
1−G(q|π)
g(q|π) for all π < π and q ∈ suppG( · |π) ∩ suppG( ·, |π). It is well known that monotone hazard

rate property is an implication of monotone likelihood ration property.
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information, the relationship between the price and the value of information is not

straightforward.

Nonetheless, Lemma 3.3.1 and Proposition 3.3.1 shows that if the information

structure satisfies belief monotonicity, then roughly speaking, in equilibrium the mo-

nopolist still has incentive to charge high price when the market belief is high and low

price when the market belief is low. One main step in the proof of Lemma 3.3.1 is to

show that belief monotonicity guarantees that even if the monopolist only cares about

his future payoff, then he has incentive to charge higher price when market belief is

higher. This, cominbing with the fact that the monopolist is willing to charge higher

price when market belief is higher if he is myopic, lead to the conclusion of Lemma

3.3.1.

3.4 Characterization of Cascade Sets

This section characterizes the cascade sets in any Bayesian perfect equilibrium of our

model. In the standard social learning model without a monopolist (Banerjee (1992),

Bikhchandani, Hirshleifer, and Welch (1992) and Smith and Sørensen (2000)), the

cascade sets are defined to be the set of public beliefs at which the new coming

agent’s behavior only depend on the public belief and thus social learning stops. In

the presence of a monopolist, these sets correspond to the set of market beliefs at

which the monopolist stops market experimentation. That is the monopolist charges

a price so that the incoming buyer’s purchase behavior does not depend on his own

private signal and thus later buyers can not draw inference based this buyer’s pur-

chase behavior. Therefore, the characterization of cascade sets will also characterize

whether the learning process is complete or not.

For ease of exposition in this section, when we say a Bayesian perfect equilibrium

q∗, we mean any Bayesian perfect equilibrium that is equivalent to q∗ by Lemma 3.2.1.
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Given any Bayesian perfect equilibrium q∗, define CN to be the set of all market beliefs

at which trade occurs with probability 0. In other words, the monopolist charges so

high a price at these market beliefs so that the incoming buyer will not buy regardless

of his private belief. Formally, we define

CN ≡
{
π ∈ (0, 1)

∣∣∣q∗(π) =
πr

πr + (1− π)(1− r)

}⋃{
π ∈ {0, 1}

∣∣∣q∗(π)h+(1−q∗(π))l−v < 0
}
.

Similarly, define CP to be the set of all market beliefs at which trade occurs with

probability 1. That is, the monopolist charges so low a price at these market beliefs

so that the incoming buyer will buy regardless of his private belief. Formally, we

define

CP =
{
π ∈ (0, 1)

∣∣∣q∗(π) =
πr

πr + (1− π)(1− r)

}⋃{
π ∈ {0, 1}

∣∣∣q∗(π)h+(1−q∗(π))l−v ≥ 0
}
.

The market beliefs contained in CN ∪ CP are absorbing states in the learning

process. In any equilibrium, if the market belief πt in some period t is in the set

CN∪CP , then in equilibrium the monopolist simply stops experimentation. He either

charges a high enough or low enough price so that the incoming buyer’s purchase

decision will not depend on his own private signal and hence his purchase behavior

provides no further information at all about the quality of the product. As a result,

the market belief will not be updated and remain the same at πt in all later periods

and hence the learning process completely stops. In contrast, if the market period

πt in period t is outside CN ∪ Cp, then the monopolist does experimentation in the

market by charing an intermediate price. As a result, the incoming buyer will buy

the product only if he has received a high enough signal. The charged price and

the purchase behavior of the incoming buyer together provide additional information

about the quality of the product to both the monopolist and future buyers.

In the following, We distinguish two cases and characterize CN and CP in Bayesian

perfect equilibria respectively.
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3.4.1 h > v > l

Because v > l, when the market believes that the quality of the product is low for

sure, the buyers will not buy the product since q ∗ (0) = 0 for all Bayesian perfect

equilibrium q∗. Hence 0 ∈ CN . Similarly, because h > v, when the market believes

that the quality of the product is high for sure, the buyers will buy the product since

q∗(1) = 1. Hence 1 ∈ CP . Therefore we have the following simple lemma.

Lemma 3.4.1. When h > v > l, in any Bayesian perfect equilibrium, both CN and

CP are nonempty. In particular, we have 0 ∈ CN and 1 ∈ CP .

Based on this lemma, we have the following definition

Definition 3.4.1. Assume h > v > l. The set Ck for k ∈ {N,P} is degenerate if it

is a singleton and non-degenerate if it contains at least one interval.

The following Proposition provides a full characterization of CN and CP in terms

of various private information structure in any Bayesian perfect equilibrium.

Proposition 3.4.1. Assume h > v > l. Then in any Bayesian perfect equilibrium,

1. if the information structure is unbounded, then both CN and CP are degenerate,

i.e. CN = {0} and CP = {1},

2. if the information structure is bounded, then CN is always non-degenerate, and

CP is degenerate if and only if f l(r) = 0.

The first part of Proposition 3.4.1 states that both CN and CP are degenerate if

h > v > l and if the information structure is unbounded and h > v > l, which is the

same as the result in Smith and Sørensen (2000). In any equilibrium, the monopolist

never charges a price that induces purchase or stops sale regardless of what the buyer’s

private signal is. Instead, the monopolist always charges an intermediate price so that
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the incoming buyer buys the product only if his private signal is high enough. The

reason is straightforward. Because the information structure is unbounded, there is

always positive probability that the incoming buyer receives an extremely optimistic

or pessimistic private signals. If the monopolist were to stop sale or sell to buyer with

all possible signals, he can only get zero or negative profit respectively. However, by

charging an intermediate price, the monopolist can always guarantee himself a strictly

positive profit. As a result of this pricing behavior, learning in this market must be

complete. In the long run, the market will eventually find out the true quality of the

product.

The second part of Proposition 3.4.1 differs from that in Smith and Sørensen

(2000). It states that although CN is always non-degenerate, whether CP is degener-

ate or not depends on the value of the density function at the lowest possible signal.

The reason that CN is always non-degenerate is straightforward. Specifically, in any

equilibrium, when the market belief becomes very low, the monopolist stops sale be-

cause any price that leads to sale with positive probability must result in negative

profit in the current period. The only reason that the monopolist would be willing to

receive a negative profit in the current period is that current sale can largely boost the

market belief and improve future profitability. But this is impossible when the market

belief is already very low. The characterization of CP is more complicated. When

fL(r) = 0, the probability that a buyer receives a very low private signal is very small.

Therefore, it is never the monopolist’s myopic incentive to charge the lowest price in

order to induce purchase since by charging a slightly higher price, the demand will not

decline much. Moreover, if it is not myopically optimal to charge the lowest possible

price, then it is not optimal to charge such a price because other prices can both

increase myopic payoff and provide valuable information for the future. In contrast,

when fL(r) > 0, then the probability that a buyer receives very low signal is larger

than the case where fL(r) = 0. Moreover, this probability becomes nonnegligible
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especially when the market becomes very optimistic about the quality. In this case,

it is indeed the monopolist’s myopic incentive to charge a price so that the incoming

buyer will buy regardless of his private information, because increasing price will lead

to a large decline in demand. Furthermore, as the market belief becomes higher, the

potential value of additional information to the monopolist becomes very small. As a

result, when the market belief is high, the monopolist simply stops experimentation

and charges a price that all buyers will buy regardless of their private information.

Hence, we have

Corollary 3.4.1. Assume h > v > l. In any Bayesian perfect equilibrium, if the

information structure is unbounded, then learning is complete, and if the information

structure is bounded, then learning is incomplete.

3.4.2 h > l > v

Because l > v, even if the market belief is π = 0, the monopolist is still willing to

sell the product. Hence it is clear that CN = ∅ and {0, 1} ⊂ CP in any equilibrium.

Similarly as Definition 3.4.1, we now have

Definition 3.4.2. Assume h > l > v. The set CP is degenerate if CP = {0, 1}, and

non-degenerate if it contains at least one interval.

We have the following full characterization of CP when h > l > v which is an

analogue of Proposition 3.4.1. The main idea of the proofs is similar to that of

Proposition 3.4.1 and thus is omitted.

Proposition 3.4.2. Assume h > l > v. Then for both unbounded and bounded

information structure, in any equilibrium CP is degenerate if and only if f l(r) = 0.

Proposition 3.4.2 states that whether CP is degenerate when h > l > v now

does not depend on whether the information structure is bounded or not. Rather,
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it solely depends on the value of the density of the private signals at the lowest

possible signal. When information structure is bounded, the result is essentially

identical to Proposition 3.4.1. When fL(r) = 0, then in any equilibrium, it is never

the monopolist’s myopic incentive to charge a low price so that the buyer will buy

regardless of his private information. As a result, the monopolist is never willing to

do so because there is another price that give him higher current period profit as well

as valuable information. However, when fL(r) > 0, as in the case with h > v > l,

the monopolist has strict myopic incentive to charge a low price when the market is

either extremely high or extremely low. Then it will also be the monopolist’s long-run

incentive to do so because the value of information from experimentation would be

small with extreme market beliefs.

When information structure is unbounded, the result is different from that with

h > v > l because now even if the market knows that the quality is low, the monopolist

is still willing to sell the product at price l and make strictly positive profit. Hence

the same logic as above then applies. When fL(r) > 0 and the market belief is low,

the monopolist just has incentive to stop experimentation by charging low price and

sell to buyers with all values of private signals.

In terms of learning, we have

Corollary 3.4.2. When h > l > v, for both bounded and unbounded information

structures, in any Bayesian perfect equilibrium, learning is complete if and only if

f l(r) = 0.

3.5 Further discussions

This chapter studies monopolist’s optimal dynamic pricing problem in a market where

buyers have private information regarding the quality of the product and they can

also infer information from other buyers’ purchasing behavior. Unlike standard social
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learning papers where the buyers all face a fixed price throughout the learning process,

this chapter focuses on the monopolist’s incentives to maximize profits and control

information for future buyers by charging different prices at different market beliefs.

Moreover, we fully characterize the informational cascades in any equilibrium.

Our results show that whether the monopolist has incentives to stop experimentation

and induce herding on purchasing depends not only on whether the buyers’ private

signals are of bounded informativeness, but also on whether private signals are heavily

distributed around the lowest possible signals. This characterization differs from the

standard results in social learning literature and largely extends the results obtained

in similar problems. In particular, this is the first time in social learning literature

to find the relationship between herding and the detailed property of the densities of

private signals besides its support.

One interesting avenue for future research is to consider the case that subsequent

buyers only get sales information about the past. In this case, the buyers’ inference

problem become much more complicated since they have to speculate on how many

buyers have endtered the market but decided not to buy. How to find a analytically

tractable model to capture this idea remains a challege.
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Appendix A

Proofs for Chapter 1

A.1 Mathematical preliminaries

This section lists three basic identities that will be used repeatedly in later analysis.

Lemma A.1.1. Let m ≥ 0 and n ≥ 1 be integers. Then the total number of ways to

put m indistinguishable balls into n distinguishable bins is

 m+ n− 1

n− 1

. Formally

∑
m1+···+mn=m

mi≥0

1 =

 m+ n− 1

n− 1

 ≡ (m+ n− 1)!

m!(n− 1)!
.

Proof. See Feller (1968), Section II.5.

Lemma A.1.2. Let
∑∞

m=0 c1mx
m
1 , · · · ,

∑∞
m=0 cnmx

m
n be n power series. Then in their

convergence ranges, we have

∞∑
m=0

∑
m1+···+mn=m

mi≥0

m∏
k=1

ckmkx
mk
k =

n∏
k=1

( ∞∑
m=0

ckmx
m
k

)
.

In particular,

( ∞∑
m=0

xm
)n+1

=
∞∑
m=0

 m+ n

n

xm ∀x ∈ [0, 1).
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Proof. The first part is just standard multiplication of convergent series. The second

part comes from Lemma A.1.1.

Lemma A.1.3 (Euler’s continued fraction formula). Let a1, · · · , an be real numbers.

Then

n∑
k=1

k∏
i=1

ai =
a1

1−
a2

1 + a2 −
a3

1 + a3 −
a4

. . .

1 + an−1 −
an−1

1 + an−1 −
an

1 + an

.

Proof. See Wall (1967), Theorem 2.1.

A.2 Distributions of signals under stationary strat-

egy

Fix a stationary public strategy σ1 of the seller. Recall σ1 induces a probability

measure P σ1

ξ̃
over R∞.

This measure P σ1

ξ̃
defines a Markov chain {Rt}t≥0 with initial state 0 and the

following transition rules:

x̃0 ≡ P σ1

ξ̃
(Rt+1 = 1|Rt = 0) = (1− ε)× ρ(h|σ1(r)), (A.1)

z̃0 ≡ P σ1

ξ̃
(Rt+1 = 0|Rt = 0) = 1− (1− ε)× ρ(h|σ1(r)), (A.2)
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and for r ≥ 1

x̃r ≡ P σ1

ξ̃
(Rt+1 = r + 1|Rt = r) = (1− ε)× ρ(h|σ1(r)), (A.3)

z̃r ≡ P σ1

ξ̃
(Rt+1 = r|Rt = r) = ε× ρ(h|σ1(r)) + (1− ε)× ρ(l|σ1(r)), (A.4)

ỹr ≡ P σ1

ξ̃
(Rt+1 = r − 1|Rt = r) = ε× ρ(l|σ1(r)). (A.5)

The values x̃r, ỹr and z̃r represent respectively the probabilities of upward, downward

and horizontal transitions of the signals at r given seller’s strategy σ1.1

In the remainder of this section, we derive the formula for P σ1

ξ̃
(Rt = r), the

probability of signal r in period t, in terms of {x̃r̃, ỹr̃, z̃r̃}r̃ for arbitrary t ≥ r.2 For

any r ∈ R and t ≥ r, let Φr,t ⊂ Rt+1 be the set of all possible paths from signal 0 to

signal r in t periods that have positive probability under P σ1

ξ̃
, i.e.

Φr,t ≡

(r0, r1, · · · , rt) ∈ Rt+1

∣∣∣∣∣∣∣∣∣
(1)r0 = 0 and rt = r,

(2)r1 − r0 ∈ {0, 1},

(3)rs − rs−1 ∈ {−1, 0, 1} for 2 ≤ s ≤ t.

 .

Clearly, P σ1

ξ̃
(Rt = r) = P σ1

ξ̃
(Φr,t) =

∑
ht+1∈Φr,t P

σ1

ξ̃
(ht+1). The main idea of the fol-

lowing calculation is to partition Φr,t into several cells of paths within which all paths

have the same probability. We then count the number of paths in each cell and sum

up all the probabilities. The partition of paths is based on the (1) highest signals

reached (2) the number of upward and downward moves at each signal, and (3) the

number of horizontal moves at each signal. The whole analysis is divided into 5 small

steps. In Step 1, we partition Φr,t according to (1). In Steps 2-3, we refine partitions

into smaller cells according to (2) and (3) respectively. In Step 4, we calculate the

number of paths in each final cell. In Step 5, we give the expression for P σ1

ξ̃
(Φr,t).

1For notational simplicity, we drop the dependence of {x̃r, ỹr, z̃r}r on σ1.
2It is easy to see Pσ1

ξ̃
(Rt = r) = 0 if t < r.
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Step 1: Partitioning Φr,t according to the highest signal reached along each

path.

For each k = 0, 1, · · · , b t−r
2
c, define

Φr,t(k) ≡
{

(r0, · · · , rt) ∈ Φr,t
∣∣ max

0≤s≤t
rs = r + k

}
,

where b t−r
2
c is the largest integer less than or equal to (t − r)/2. The set Φr,t(k)

contains the set of all possible paths in Φr,t such that the highest signal reached along

these paths is r + k. Because the signals can go up or down by at most 1, if a path

ht+1 ∈ Φr,t reached signal r+ k, then it needs at least r+ 2k periods because it takes

at least r + k periods to reach r + k and another k periods to decreases to r. Hence

there is an upper bound of k: r + 2k ≤ t, or equivalently k ≤ b t−r
2
c. Then it is easy

to see {Φr,t(k)}b
t−r

2
c

k=0 forms a partition of Φr,t.

Step 2: Partitioning Φr,t(k) according to number of upward and downward

moves at each signal.

First consider a path (r0, r1, · · · , rt) ∈ Φr,t(k). We know the highest signal reached

along this path is r + k for some 0 ≤ k ≤ b t−r
2
c. Let nr̃ and lr̃ denote the number of

upward moves and downward moves at r̃ respectively, for 0 ≤ r̃ ≤ r+ k. That is, for

0 ≤ r̃ ≤ r + k,

nr̃ ≡ #
{

0 ≤ s ≤ t− 1
∣∣rs = r̃ and rs+1 = r̃ + 1

}
and

lr̃ ≡ #
{

0 ≤ s ≤ t− 1
∣∣rs = r̃ and rs+1 = r̃ − 1

}
.

For {nr̃, lr̃}, we make the following simple observations.

Lemma A.2.1. 1. nr̃ ≥ 1 for 0 ≤ r̃ ≤ r + k − 1 and nr+k = l0 = 0.

2. lr̃+1 = nr̃ − 1, ∀ 0 ≤ r̃ ≤ r − 1.

3. lr̃+1 = nr̃, ∀ r ≤ r̃ ≤ r + k − 1.
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4.
∑r+k

r̃=0

(
nr̃ + lr̃

)
=
∑r+k−1

r̃=0 nr̃ +
∑r+k

r̃=1 lr̃ ≤ t.

Proof. 1. Because the signals can increase by only 1 in every period, for a path

to reach r + k from 0, there must be at least one upward move at every signal

r̃ ∈ {0, 1, · · · , r+ k− 1}. Hence nr̃ ≥ 1 for all 0 ≤ r̃ ≤ r+ k− 1. It is clear nr+k = 0,

otherwise the highest reached signal would be r+k+1. Because there is no downward

move at 0, l0 = 0.

2 and 3. Because the path eventually reaches r from 0, the number of upward

moves at 0 ≤ r̃ ≤ r − 1 must exceed that of downward moves at r̃ + 1 by exact 1.

Thus 2 follows. Every upward move at signal r̃ ≥ r must be coupled with a downward

move at r̃ + 1. Thus 3 follows.

4. The equality comes from property 1. The inequality comes form the fact that

the total number of upward and downward moves must be bounded above by t, i.e.∑r+k
r̃=0

(
nr̃ + lr̃

)
≤ t.

We are now ready to partition Φr,t(k) according to the number of upward and

downward moves at each signal. For 0 ≤ k ≤ b t−r
2
c, define

Ir,t(k) ≡ (A.6)
(n0, · · · , nr+k−1, l1, · · · , lr+k) ∈ Z2r+2k

+

∣∣∣∣∣∣∣∣∣∣∣∣∣

(1) nr̃ ≥ 1 ∀ 0 ≤ r̃ ≤ r + k − 1,

(2) lr̃+1 = nr̃ − 1, ∀ 0 ≤ r̃ ≤ r − 1,

(3) lr̃+1 = nr̃, ∀ r ≤ r̃ ≤ r + k − 1,

(4)
∑r+k−1

r̃=0 nr̃ +
∑r+k

r̃=1 lr̃ ≤ t.


.

(A.7)

Notice conditions (1)-(4) in this definition correspond to properties 1-4 in Lemma

A.2.1. For notational simplicity, we write (~n,~l) to denote a generic element in Ir,t(k).

Also as a convention, for any (~n,~l) ∈ Ir,t(k), when nr+k and l0 are involved in the

following context, they should be understood as 0 because of property 1 in Lemma

A.2.1.
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For every (~n,~l) ∈ Ir,t(k), let Φr,t(k)(~n,~l) be the set of paths in Φr,t(k) whose

number of upward and downward moves at each signal corresponds to (~n,~l). Lemma

A.2.1 shows for each history ht+1 ∈ Φr,t(k), its number of upward and downward

moves at each signal (~n,~l) must be in Ir,t(k). Hence
{

Φr,t(k)(~n,~l)
}

(~n,~l)∈Ir,t(k)
forms a

partition of Φr,t(k).

Step 3: Partitioning Φr,t(k)(~n,~l) according to the number of horizontal

moves at each signal.

Given (~n,~l) ∈ Ir,t(k), consider a history (r0, · · · , rt) ∈ Φr,t(k)(~n,~l). Let mr̃ denote

the number of horizontal moves at 0 ≤ r̃ ≤ r + k along this path. That is for

0 ≤ r̃ ≤ r + k,

mr̃ = #
{

0 ≤ s ≤ t− 1
∣∣rs = rs+1 = r̃

}
.

It is clear that mr̃ ≥ 0 for all r̃. Moreover, the sum of upward, downward and

horizontal moves over all signals corresponds to the length of this path, i.e. t. Hence

r+k∑
r̃=0

(
nr̃ + lr̃ +mr̃

)
= t,

or equivalently
r+k∑
r̃=0

mr̃ = t−
r+k∑
r̃=0

(
nr̃ + lr̃

)
.

Define

Jr,t(k)(~n,~l) ≡
{

(m0, · · · ,mr+k) ∈ Zr+k+1
+

∣∣∣ r+k∑
r̃=0

mr̃ = t−
r+k∑
r̃=0

(
nr̃ + lr̃

)
.
}
. (A.8)

Similarly as before, we use ~m to denote a generic element in Jr,t(~n,~l). Let Φr,t(k)(~n,~l)(~m)

be the set of all paths in Φr,t(k)(~n,~l) whose number of horizontal moves at each signal

corresponds to ~m. From above analysis, we know
{

Φr,t(k)(~n,~l)(~m)}~m∈J r,t(k)(~n,~l) forms

a partition of Φr,t(k)(~n,~l).
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Through Step 1-3, we can write

Φr,t =

b t−r
2
c⋃

k=0

⋃
(~n,~l)∈Ir,t(k)

⋃
~m∈J r,t(k)(~n,~l)

Φr,t(k)(~n,~l)(~m).

Importantly, for all k, (~n,~l) and ~m, all histories in Φr,t(k)(~n,~l)(~m) have the same

probability under P σ1

ξ̃
. In particular, if ht+1 ∈ Φr,t(k)(~n,~l)(~m), then

P σ1

ξ̃
(ht+1) =

r+k−1∏
r̂=0

x̃nr̂r̂ ỹ
lr̂+1

r̂+1 ×
r+k∏
r̄=0

z̃mr̄r̄ .

Therefore,

P σ1

ξ̃
(Φr,t) =

b t−r
2
c∑

k=0

∑
(~n,~l)∈Ir,t(k)

∑
~m∈J r,t(k)(~n,~l)

#
(
Φr,t(k)(~n,~l)(~m)

)
×

r+k−1∏
r̂=0

x̃nr̂r̂ ỹ
lr̂+1

r̂+1 ×
r+k∏
r̄=0

z̃mr̄r̄ .

(A.9)

To get an expression for P σ1

ξ̃
(Φr,t), it remains to calculate the number of paths in

Φr,t(k)(~n,~l)(~m). We do this in the next step.

Step 4: Calculating #
(
Φr,t(k)(~n,~l)(~m)

)
.

Fix 0 ≤ k ≤ b t−r
2
c, (~n,~l) ∈ Ir,t(k) and ~m ∈ Ir,t(k)(~n,~l). If r = 0 and k = 0, then

it is easy to see (~n,~l) = (~0,~0) and ~m = (t). Therefore #
(
Φr,t(k)(~n,~l)(~m)

)
= 1. In

what follows, we assume r + k ≥ 1.

From each path ht+1 = (r0, · · · , rt) ∈ Φr,t(k)(~n,~l)(~m), we can obtain a new,

shortened path, denoted by ψ(ht+1), by removing all horizontal moves in ht+1 while

keeping the number and order of upward and downward moves. Formally, define

t0 = 0 and inductively tj = min{tj−1 < s ≤ t|rs 6= rtj−1
}. This induction ends

in finite steps and let j̄ be the largest index. Because ht+1 ∈ Φr,t(k)(~n,~l)(~m), it is

straightforward to see j̄ =
∑r+k

r̃=0(nr̃ + lr̃) which is independent of ht+1. Moreover, the

resulting path ψ(ht+1) ≡ (r0, rt1 , · · · , rtj̄) is a path in Φr,j̄(k)(~n,~l). 3 The new path

3It is easy to see all paths in Φr,j̄(k)(~n,~l) contain no horizontal moves because j̄ =
∑r+k
r̃=0(nr̃+ lr̃).
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(r0, rt1 , · · · , rtj̄) preserves all the upward and downward moves in ht+1 and contains

no horizontal moves. The above operation defines a mapping

ψ : Φr,t(k)(~n,~l)(~m)→ Φr,j̄(k)(~n,~l).

We use h to denote a typical path in Φr,j̄(k)(~n,~l). Then we have

Φr,t(k)(~n,~l)(~m) =
⋃

h∈Φr,j̄(k)(~n,~l)

ψ−1({h}),

where ψ−1 is the pre-image of ψ. Figure A.1 presents an illustration of ψ and ψ−1.

Lemma A.2.2. For each h ∈ Φr,j̄(k)(~n,~l), we have

#
(
ψ−1({h})

)
=

r+k∏
r̃=0

 mr̃ + nr̃ + lr̃ − 1

nr̃ + lr̃ − 1

 .

Proof. Since the mapping ψ removes horizontal moves, ψ−1 adds them back. See

Figure A.1. Notice along the path h, signal r̃ is passed nr̃+lr̃ times for all 0 ≤ r̃ ≤ r+k.

If we are to add mr̃ number of horizontal moves to h, there are mr̃ + nr̃ + lr̃ − 1

nr̃ + lr̃ − 1


number of ways to add, by Lemma A.1.1. Then the result follows.

Notice #
(
ψ−1({h})

)
is independent of h. Thus

#
(

Φr,t(k)(~n,~l)(~m)
)

= #
(
Φr,j̄(k)(~n,~l)

)
×

r+k∏
r̃=0

 mr̃ + nr̃ + lr̃ − 1

nr̃ + lr̃ − 1

 . (A.10)

Therefore, what remains is to calculate #
(
Φr,j̄(k)(~n,~l)

)
. We do so in the following

analysis.

Fix (~n,~l) = (n0, · · · , nr+k−1, l1, · · · , lr+k) ∈ Ir,j̄(k). Recall j̄ =
∑r+k

r̃=0(nr̃ + lr̃).

Now we construct a sequence of vectors (~ns,~ls)r+ks=0 as follows: ∀ 0 ≤ s ≤ r + k,
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Figure A.1: Illustration of ψ and ψ−1.
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t
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The top-left panel illustrates a typical path h ∈ Φr,t(k)(~n,~l)(~m) where it is readily

to read off from the graph r = 3, t = 7, k = 0, ~n = (1, 2, 1, 0), ~l = (0, 0, 1, 0)

and ~m = (0, 1, 1, 0). The top-right panel is ψ(h) which is obtained by removing

the two horizontal moves (bold lines) in h while keeping the number and order of

upward and downward moves. It is straightforward to see ψ(h) = Ψr,j̄(k)(~n,~l) where

j̄ =
∑r+k

r̃=0(nr̃ + lr̃) = 5. The bottom four panels depict all paths in ψ−1(ψ(h)) which

are obtained by adding one horizontal move at r̃ = 1 and one at r̃ = 2 to ψ(h), because

~m = (0, 1, 1, 0). Because ψ(h) reaches r̃ = 1 and r̃ = 2 two times respectively, for

each r̃ = {1, 2}, there are two ways to add one horizontal move at r̃. Hence the total

number of ways to add these horizontal moves is 2× 2 = 4.
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nsr̃ ≡

 1 if 0 ≤ r̃ < s

nr̃ if s ≤ r̃ ≤ r + k − 1.

lsr̃+1 ≡

 nsr̃ − 1 if 0 ≤ r̃ ≤ r − 1

nsr̃ if r ≤ r̃ ≤ r + k − 1

js ≡
r+k∑
r̃=0

(
nsr̃ + lsr̃

)
.

For example, when s = r + k − 1, ns = (1, 1, · · · , 1, nr+k−1) ∈ Nr+k, and when s = 0,

(~ns,~ls) = (~n,~l) and js = j̄. Notice by construction, for every s, (~ns,~ls) ∈ Ir,js(k).

Hence Φr,js(k)(~ns,~ls) is well defined. Because by construction js ≡
∑r+k

r̃=0

(
nsr̃ + lsr̃

)
,

all paths in Φr,js(k)(~ns,~ls) involve only upward and downward moves, no horizontal

moves.

The main idea of the following analysis is to show all paths in Φr,js(k)(~ns,~ls) can be

“constructed” from paths in Φr,js+1
(k)(~ns+1,~ls+1) and each path in Φr,js+1

(k)(~ns+1,~ls+1)

generates a fixed number of paths in Φr,js(k)(~ns,~ls). This allows us to calculate

#
(
Φr,j̄(k)(~n,~l)

)
by induction. Given this main idea, we assume nr̃ > 1 for all

0 ≤ r̃ ≤ r + k − 1. Otherwise, if nr̃ = 1 for some r̃, then it is easy to see by

construction Φr,js+1
(k)(~ns+1,~ls+1) = Φr,js(k)(~ns,~ls) for s = r̃ and the question be-

comes trivial.

For any 0 ≤ s ≤ r + k − 2, consider a path h = (r0, · · · , rjs) in Φr,js(k)(~ns,~ls).

We know along this path, there are nss = ns periods, denoted by t1 < t2 < · · · < tnss ,

at which an upward move from s to s+ 1 occurs, i.e. rτ = s and rτ+1 = s+ 1 for all

τ ∈ {t1, · · · , tnss}. We also know there are lss+1 periods, denoted by t′1 < t′2 < · · · <

t′lss+1
, at which a downward move from s+ 1 to s occurs, i.e. rτ = s+ 1 and rτ+1 = s

for all τ ∈ {t′1, · · · , t′lss+1
}. The following lemma states downward moves from s+ 1 to

s and upward moves from s to s + 1 are coupled: every such downward move must

be followed by an immediate upward move, except possibly the very last downward
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move.

Lemma A.2.3. We have t1 < t′1 < t2 < t′2 < · · · < t′ns−1 < tns and t′τ + 1 = tτ+1

for τ = {1, 2, · · · , ns − 1}. Moreover, if we removes all these pairs of downward and

upward moves at {t′τ , t′τ + 1}ns−1
τ=1 from h, the resulting vector

(r0, · · · , rt′1 , rt′1+3, · · · , rt′2 , rt′2+3, · · · , rt′ns−1
, rt′ns−1+3, · · · , rjs)

is a path in Φr,js+1
(k)(~ns+1,~ls+1).

Proof. The inequality is straightforward. Consider any τ ∈ {1, 2, · · · , ns − 1}. By

construction, rt′τ = s+1 and rt′τ+1 = s. Because h does not contain horizontal moves,

rt′τ+2 is either s + 1 or s− 1. If s = 0, then rt′τ+2 = 1 because there is no downward

move at 0. Thus at t′τ + 1, an upward move from s to s + 1 occurs, which implies

t′τ + 1 = tτ+1 by definition of tτ+1 and the above inequality. Now consider s > 0 and

assume rt′τ+2 = s − 1. This implies tτ+1 > t′τ + 2. Because rtτ+1 = s, there must be

an upward move from s− 1 to s between periods t′τ + 2 and tτ+1. Moveover, because

rtτ = s, there must also be an upward move from s − 1 to s at period tτ − 1. Since

tτ −1 < t′τ −1 < t′τ +2, we know along the path h, there must be at least two upward

moves from s − 1 to s, i.e. nss−1 ≥ 2. But this contradicts the construction of ns.

Hence rt′τ+2 = s + 1, which implies t′τ + 1 = tτ+1. Lastly, if we remove periods t′τ

and t′τ + 1 from h, then the resulting vector is still a connected path because in h,

rt′τ = rt′τ+2. After removing ns− 1 pairs of these downward and upward moves, there

will be only 1 upward move from s to s + 1. Moreover, the number of upward and

downward moves at each other signal remain unchanged. Therefore, the resulting

vector is a path in Φr,js+1
(k)(~ns+1,~ls+1) by construction.

Lemma A.2.3 in fact defines a mapping

γs : Φr,js(k)(~ns,~ls)→ Φr,js+1

(k)(~ns+1,~ls+1)
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such that for every h ∈ Φr,js(k)(~ns,~ls), γs(h) is the path in Φr,js+1
(k)(~ns+1,~ls+1) after

removing ns− 1 pairs of downward move from s+ 1 to s and upward move from s to

s+ 1 in h, as in Lemma A.2.3. Let γ−1
s be the pre-image of γs. See Figure A.2 for an

illustration of γs and γ−1
s .

Lemma A.2.4. Assume 0 ≤ s ≤ r + k − 2. For all h ∈ Φr,js+1
(k)(~ns+1,~ls+1),

#
(
γ−1
s (h)

)
=

 ns + ls+2 − 1

ls+2

 .

Hence

#
(
Φr,js(k)(~ns,~ls)

)
=

 ns + ls+2 − 1

ls+2

×#
(
Φr,js+1

(k)(~ns+1,~ls+1)
)
.

Proof. Since γs removes ns−1 pairs of downward-upward moves, γ−1
s adds them back.

Notice the signal s+1 is reached ns+1
s + ls+1

s+2 = 1+ ls+2 times along the path h. Hence

the total number of ways to add ns − 1 downward-upward pairs to h is

#
(
γ−1
s (h)

)
=

 (ns − 1) + (1 + ls+2)− 1

(1 + ls+2)− 1

 =

 ns + ls+2 − 1

ls+2

 ,

by Lemma A.1.1.

Because #
(
γ−1
s (h)

)
is independent of h and

Φr,js(k)(~ns,~ls) =
⋃

h∈Φr,js+1 (k)(~ns+1,~ls+1)

γ−1
s (h),

we have

#
(
Φr,js(k)(~ns,~ls)

)
= #

(
γ−1
s (h)

)
×#

(
Φr,js+1

(k)(~ns+1,~ls+1)
)

=

 ns + ls+2 − 1

ls+2

×#
(
Φr,js+1

(k)(~ns+1,~ls+1)
)
.
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Figure A.2: Illustration of γs and γ−1
s .
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Assume r = 3, k = 0, ~n = (n0, 2, 2), ~l = (n0 − 1, 1, 0) for any n0 ≥ 1. Following

the construction of {~ns,~ls, js}, we have ~n2 = (1, 1, 2), ~l2 = (0, 0, 1), j2 = 5 and

~n1 = (1, 2, 2), ~l1 = (0, 1, 0), j1 = 7.

The top-left panel illustrates a typical path h ∈ Φr,j1(k)(~n1,~l1). The top-right panel

is γ1(h) which is obtained by removing the pair of downward move from 2 to 1 and

upward move from 1 to 2 (bold line in top-left panel). It is clear from the graph γ1(h)

is a path in Φr,j2(k)(~n2,~l2). The bottom two panels depict all paths in γ−1
1 (γ1(h))

which are obtained by adding a pair of downward move from 2 to 1 and upward move

from 1 to 2. Because γ1(h) reaches signal 2 two times at t = 2 and t = 4 respectively

(n2
1 + l23 = 2), there are two ways to add this pair. The bottom left panel depicts the

path if this pair is added to h at t = 2, which is the original h. The bottom right

panel depicts the path if this pair is added to h at t = 4.
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Recall these formula are derived under the assumption ns > 1. Notice these

formula also accommodate the case ns = 1 because 1 + ls+2 − 1

ls+2

 = 1

and we have already known #
(
Φr,js(k)(~ns,~ls)

)
= #

(
Φr,js+1

(k)(~ns+1,~ls+1)
)

when ns =

1.

Now using simple induction yields

#
(
Φr,j̄(k)(~n,~l)

)
= #

(
Φr,j0(k)(~n0,~l0)

)
=

r+k−2∏
r̃=0

 nr̃ + lr̃+2 − 1

lr̃+2

×#
(
Φr,jr+k−1

(k)(~nr+k−1,~lr+k−1)
)
.

But it is straightforward to see Φr,jr+k−1
(k)(~nr+k−1,~lr+k−1) only contains a single path

by construction. Hence

#
(
Φr,j̄(k)(~n,~l)

)
=

r+k−2∏
r̃=0

 nr̃ + lr̃+2 − 1

lr̃+2

 . (A.11)

Combining Equations (A.10) and (A.11) yields

#
(

Φr,t(k)(~n,~l)(~m)
)

=
r+k−2∏
r̃=0

 nr̃ + lr̃+2 − 1

lr̃+2

× r+k∏
r̄=0

 mr̄ + nr̄ + lr̄ − 1

nr̄ + lr̄ − 1

 (A.12)

Step 5: Expression for P σ1

ξ̃
(Rt = r).

Combining Equations (A.9) and (A.12) yields P σ1

ξ̃
(Rt = r) for t ≥ r:

P σ1

ξ̃

(
Rt = r

)
=

b t−r
2
c∑

k=0

∑
(~n,~l)∈Ir,t(k)

[
r+k−2∏
r̃=0

 nr̃ + lr̃+2 − 1

lr̃+2

× r+k−1∏
r̂=0

x̃nr̂r̂ ỹ
lr̂+1

r̂+1

×
( ∑

~m∈J r,t(k)(~n,~l)

r+k∏
r̄=0

 mr̄ + nr̄ + lr̄ − 1

nr̄ + lr̄ − 1

 z̃mr̄r̄

)]
. (A.13)
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As a final remark of this section, we note that though Equation (A.13) is derived

under the normal type, it should be clear that the probability of reaching signal r

in period t under the commitment type, i.e. Pξ̂(Φ
r,t), has the same form as Equa-

tion (A.13) except that {x̃r̃, ỹr̃, z̃r̃}r̃ are all replaced by the corresponding transition

probabilities {x̂r̃, ŷr̃, ẑr̃} under the commitment type.

A.3 Asymptotic behavior of posterior beliefs.

Recall Pξ̂ is the the probability measure over R∞ induced by the commitment type’s

strategy. In this section, we analyze the asymptotic behavior of the posterior likeli-

hood ratio

∑
t=r δ

tP
σ1
ξ̃

(Rt=r)∑
t=r δ

tP
ξ̂
(Rt=r)

.

We start by calculating
∑

t=r δ
tP σ1

ξ̃
(Rt = r). From Equation (A.13), we have

∑
t≥r

δtP σ1

ξ̃
(Rt = r)

=
∑
t≥r

b t−r
2
c∑

k=0

∑
(~n,~l)∈Ir,t(k)

δt

[
r+k−2∏
r̃=0

 nr̃ + lr̃+2 − 1

lr̃+2

× r+k−1∏
r̂=0

x̃nr̂r̂ ỹ
lr̂+1

r̂+1

×
( ∑

~m∈J r,t(k)(~n,~l)

r+k∏
r̄=0

 mr̄ + nr̄ + lr̄ − 1

nr̄ + lr̄ − 1

 z̃mr̄r̄

)]

=
∞∑
k=0

∞∑
t=r+2k

∑
(~n,~l)∈Ir,t(k)

[
r+k−2∏
r̃=0

 nr̃ + lr̃+2 − 1

lr̃+2

× r+k−1∏
r̂=0

(δx̃r̂)
nr̂(δỹr̂+1)lr̂+1

×
( ∑

~m∈J r,t(k)(~n,~l)

r+k∏
r̄=0

 mr̄ + nr̄ + lr̄ − 1

nr̄ + lr̄ − 1

 (δz̃r̄)
mr̄

)]
,

where the second equality comes from i) interchanging the order of the first two

summations in the first equality, and ii) the fact that for all 0 ≤ k ≤ b t−r
2
c, (~n,~l) ∈

Ir,t(k) and ~m ∈ J r,t(k)(~n,~l),
∑r+k

r̃=0(nr̃+lr̃+mr̃) = t (see the definition of J r,t(k)(~n,~l)

in (A.8)). Using the definition of Ir,t(k) in (A.6), we can also interchange the second
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and the third summations in the above expression:∑
t≥r

δtP σ1

ξ̃
(Rt = r)

=
∞∑
k=0

∑
(~n,~l)∈

⋃
τ≥r+2k Ir,τ (k)

[
r+k−2∏
r̃=0

 nr̃ + lr̃+2 − 1

lr̃+2

× r+k−1∏
r̂=0

(δx̃r̂)
nr̂(δỹr̂+1)lr̂+1

×
( ∞∑
t=

∑r+k
r=0(nr+lr)

∑
~m∈J r,t(k)(~n,~l)

r+k∏
r̄=0

 mr̄ + nr̄ + lr̄ − 1

nr̄ + lr̄ − 1

 (δz̃r̄)
mr̄

)]
. (A.14)

The term in the last line of Equation (A.14) can then be simplified:

∞∑
t=

∑r+k
r (nr+lr)

∑
~m∈J r,t(k)(~n,~l)

r+k∏
r̄=0

 mr̄ + nr̄ + lr̄ − 1

nr̄ + lr̄ − 1

 (δz̃r̄)
mr̄

=
∞∑

t=
∑r+k
r=0(nr+lr)

∑
∑r+k
r̄=0 mr̄=t−

∑r+k
r=0(nr+lr)

mr̄≥0 ∀r̄

r+k∏
r̄=0

 mr̄ + nr̄ + lr̄ − 1

nr̄ + lr̄ − 1

 (δz̃r̄)
mr̄

=
∞∑
s=0

∑
∑r+k
r̄=0 mr̄=s
mr̄≥0 ∀r̄

r+k∏
r̄=0

 mr̄ + nr̄ + lr̄ − 1

nr̄ + lr̄ − 1

 (δz̃r̄)
mr̄

=
r+k∏
r̄=0

( ∞∑
mr̄=0

 mr̄ + nr̄ + lr̄ − 1

nr̄ + lr̄ − 1

 (δz̃r̄)
mr̄
)

=
r+k∏
r̄=0

1

(1− δz̃r̄)nr̄+lr̄
, (A.15)

where the first equality comes from definition of J r,t(k)(~n,~l) in (A.8), the second from

change of variable s ≡ t−
∑

(nr + lr), third and forth from Lemma A.1.2. Plugging

(A.15) into (A.14) and rearranging yield∑
t≥r

δtP σ1

ξ̃
(Rt = r)

=
∞∑
k=0

∑
(~n,~l)∈

⋃
τ≥r+2k Ir,τ (k)

[
r+k−2∏
r̃=0

 nr̃ + lr̃+2 − 1

lr̃+2

× r+k−1∏
r̂=0

θ̃nr̂r̂ φ̃
lr̂+1

r̂+1

]
,(A.16)
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where

θ̃r̃ ≡
δx̃r̃

(1− δz̃r̃)
∀r̃ ≥ 0, and (A.17)

φ̃r̃ ≡
δỹr̃

(1− δz̃r̃)
∀r̃ ≥ 1. (A.18)

Notice for fixed r and k, (~n,~l) ∈
⋃
τ≥r+2k Ir,τ (k) if and only if i) nr̃ ≥ 1, for 0 ≤ r̃ ≤

r + k − 1, and ii) lr̃+1 = nr̃ − 1 if r̃ ≤ r − 1 and lr̃+1 = nr̃ if r̃ ≥ r. Thus A.16 can

then be written as

∑
t≥r

δtP σ1

ξ̃
(Rt = r)

=
∞∑
k=0

∑
n0,··· ,nr+k−1≥1

[
r−1∏
r̃=0

θ̃r̃ ×
r−2∏
r̂=0

 (nr̂ − 1) + (nr̂+1 − 1)

(nr̂+1 − 1)

 (θ̃r̂φ̃r̂+1)nr̂−1

×

 (nr−1 − 1) + nr

nr

 (θ̃r−1φ̃r)
nr−1−1 ×

r+k−1∏
r̄=r

 nr̄ + nr̄+1 − 1

nr̄+1

 (θ̃r̄φ̃r̄+1)nr̄

]

=
∞∑
k=0

∑
n̂r,n̂r+1,··· ,n̂r+k−1≥1

n̂r+k=0

[
r+k−1∏
r̄=r

 n̂r̄ + n̂r̄+1 − 1

n̂r̄+1

 (θ̃r̄φ̃r̄+1)n̂r̄

×
( r−1∏
r̃=0

θ̃r̃ ×
∑

n̂0,··· ,n̂r−1≥0

r−1∏
r̂=0

 n̂r̂ + n̂r̂+1

n̂r̂+1

 (θ̃r̂φ̃r̂+1)n̂r̂
)]
, (A.19)

where the second equality comes from change of variable n̂r̃ = nr̃− 1 if 0 ≤ r̃ ≤ r− 1

and n̂r̃ = nr̃ when r̃ ≥ r. In order to simplify (A.19) further, define ã0 ≡ θ̃0 and

inductively

ãr̃ ≡
θ̃r̃

1− ãr̃−1φ̃r̃
(A.20)

for r̃ ≥ 1.

81



Lemma A.3.1. For all r̃ ≥ 0, ãr̃ ≤ δ < 1. Then we have for all r ≥ 1,

( r−1∏
r̃=0

θ̃r̃ ×
∑

n̂0,··· ,n̂r−1≥0

r−1∏
r̂=0

 n̂r̂ + n̂r̂+1

n̂r̂+1

 (θ̃r̂φ̃r̂+1)n̂r̂
)

=
r−1∏
r̃=0

ãr̃ ×
( 1

1− ãr−1φ̃r

)n̂r+1

. (A.21)

Proof. From definitions of x̃r̃, ỹr̃, z̃r̃, θ̃r̃, φ̃r̃ in (A.1)-(A.5) and (A.17)-(A.18), it is easy

to see θ̃0 ≤ δ and θ̃r̃ + φ̃r̃ ≤ δ for r̃ ≥ 1. By construction, ã0 = θ̃0 ≤ δ. Now if ãr̃ ≤ δ,

then we have

ãr̃+1 =
θ̃r̃+1

1− ãr̃φ̃r̃+1

<
θ̃r̃+1

1− φ̃r̃+1

≤ δ.

Based on this, we now prove (A.21) by induction on r. When r = 1, we have

θ0 ×
∑
n0≥0

 n̂0 + n̂1

n̂1

 (θ̃0φ̃1)n̂0 = θ0 ×
( 1

1− θ̃0φ̃1

)n̂1+1

= ã0 ×
( 1

1− ã0φ̃1

)n̂1+1

,

where the first equality comes from Lemma A.1.2. Hence (A.21) holds when r = 1.
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Assume (A.21) holds for r = r′. When r = r′ + 1, we have

( r′∏
r̃=0

θ̃r̃ ×
∑

n̂0,··· ,n̂r′≥0

r′∏
r̂=0

 n̂r̂ + n̂r̂+1

n̂r̂+1

 (θ̃r̂φ̃r̂+1)n̂r̂
)

= θ̃r′ ×
∑
n̂r′≥0

[ n̂r′ + n̂r′+1

n̂r′+1

 (θ̃r′φ̃r′+1)n̂r′

×
( r′−1∏

r̃=0

θ̃r̃ ×
∑

n̂0,··· ,n̂r′−1≥0

r′−1∏
r̂=0

 n̂r̂ + n̂r̂+1

n̂r̂+1

 (θ̃r̂φ̃r̂+1)n̂r̂
)]

= θ̃r′ ×
∑
n̂r′≥0

[ n̂r′ + n̂r′+1

n̂r′+1

 (θ̃r′φ̃r′+1)n̂r′ ×
r′−1∏
r̃=0

ãr̃ ×
( 1

1− ãr′−1φr′

)nr′+1
]

=
r′−1∏
r̃=0

ãr̃ ×
θ̃r′

1− ãr′−1φr′
×
∑
n̂r′≥0

 n̂r′ + n̂r′+1

n̂r′+1

( θ̃r′φ̃r′+1

1− ãr′−1φ̃r′

)n̂r′

=
r′∏
r̃=0

ãr̃ ×
( 1

1− θ̃r′ φ̃r′+1

1−ãr′−1φ̃r′

)n̂r′+1+1

=
r′∏
r̃=0

ãr̃ ×
( 1

1− ãr′φ̃r′+1

)n̂r′+1+1

,

where the second equality comes from induction hypothesis and the third comes from

Lemma A.1.2. Hence the desired equation follows.

Combining (A.19) and Lemma A.3.1, we finally have

∞∑
t=r

δtP σ1

ξ̃
(Rt = r) =

r−1∏
r̃=0

ãr̃ ×Mσ1(r) (A.22)

where

Mσ1(r) ≡

∞∑
k=0

∑
n̂r,n̂r+1,··· ,n̂r+k−1≥1

n̂r+k=0

( 1

1− ãr−1φ̃r

)n̂r+1

×

[
r+k−1∏
r̄=r

 n̂r̄ + n̂r̄+1 − 1

n̂r̄+1

 (θ̃r̄φ̃r̄+1)n̂r̄

]
.
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It is important to notice that (A.22) is derived for arbitrary σ1. In particular,

it also holds for the commitment type’s strategy σ̂1 with σ̂1(r) = 1 for all r. Let

{x̂r̃, ŷr̃, ẑr̃, θ̂r̃, φ̂r̃, âr̃} be the corresponding values in (A.1)-(A.5), (A.17)-(A.18) and

(A.21) when σ̂1 is used. Then we have

∑
t≥r

δtPξ̂(Rt = r) =
r−1∏
r̃=0

âr̃ ×M σ̂1(r),

and consequently for any strategy σ1 of the normal type∑∞
t=r δ

tP σ1

ξ̃
(Rt = r)∑

t≥r δ
tPξ̂(Rt = r)

=
r−1∏
r̃=0

ãr̃
âr̃
× Mσ1(r)

M σ̂
1 (r)

.

In the remaining of this section we show if the normal seller exerts low effort at

infinitely many signals, i.e. #{r|σ1(r) = 0} = ∞, then limr→∞
∑∞

t=r δ
tP σ1

ξ̃
(Rt =

r)/
∑

t≥r δ
tPξ̂(Rt = r) = 0. This is accomplished in two steps. First we will show

limr→∞
∏r−1

r̃=0(ãr̃/âr̃) = 0. Second, we will show 1 ≤ supσ1,rM
σ1(r) <∞. The combi-

nation of these two will yield the desired result.

Define two functions: θ, φ : [0, 1]→ [0, 1] such that

θ(ς) ≡ δ(1− ε)ρ(h|ς)
1− δ + δ(1− ε)ρ(h|ς) + δερ(l|ς)

, (A.23)

and φ(ς) =
δερ(l|ς)

1− δ + δ(1− ε)ρ(h|ς) + δερ(l|ς)
. (A.24)

Notice given σ1, θ̃r̃ and φ̃r̃ defined in (A.17) and (A.18) are equal to θ
(
σ1(r̃)

)
and

φ
(
σ1(r̃)

)
respectively. Similarly θ̂r̃ = θ

(
σ̂1(r̃)

)
and φ̂r̃ = φ

(
σ̂1(r̃)

)
.

Lemma A.3.2. 1. The function θ is strictly increasing and function φ is strictly

decreasing. Moreover for all ς ∈ [0, 1], θ(ς)φ(ς) < 1/4.

2. For all a ∈ [0, 1], the function ς 7→ θ(ς)/(1 − aφ(ς)) is strictly increasing and

the function ς 7→ φ(ς)/(1− aθ(ς)) is strictly decreasing.

Proof. These properties be directly verified from the definition of θ and φ.
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Lemma A.3.3. Assume σ1 exerts low effort at infinitely many signals, i.e. #{r ∈

R|σ1(r) = 0} =∞, then

lim
r→∞

r−1∏
r̃=0

(ãr̃/âr̃) = 0.

Proof. First we show for arbitrary σ1, ãr̃ ≤ âr̃ for all r̃ ≥ 0. By definition ã0 = θ̃0 =

θ(σ1(0)) ≤ θ(σ̂1(0)) = θ̂0 = â0. Assume ãr̃ ≤ âr̃ for some r̃ ≥ 0. For r̃ + 1, we have

ãr̃+1 =
θ̃r̃+1

1− ãr̃φ̃r̃+1

≤ θ̃r̃+1

1− âr̃φ̃r̃+1

=
θ
(
σ1(r̃ + 1)

)
1− âr̃φ

(
σ̂1(r̃ + 1)

)
≤

θ
(
σ̂1(r̃ + 1)

)
1− âr̃φ

(
σ̂1(r̃ + 1)

) =
θ̂r̃+1

1− âr̃φ̂r̃+1

= âr̃+1,

where the first inequality comes from induction hypothesis ãr̃ ≤ âr̃ and the second

from Lemma A.3.2.

In addition, if σ1 exerts low effort at some signal r̃+ 1. Then the above inequality

implies

ãr̃+1 ≤
θ
(
0
)

1− âr̃φ
(
0
) < θ

(
1
)

1− âr̃φ
(
1
) = âr̃+1,

or equivalently

ãr̃+1

âr̃+1

≤ θ(0)

θ(1)

1− âr̃φ(1)

1− âr̃+1φ(0)
≤ θ(0)

θ(1)

1− δφ(1)

1− δφ(0)
< 1

where the second inequality comes from Lemma A.3.1 and strict inequality comes

from Lemma A.3.2.

Now assume σ1 exerts low effort at infinitely many signals. Let L(r) ≡ #{0 ≤

r̃ ≤ r|σ1(r) = 0}. Then the above analysis implies

lim
r→∞

r−1∏
r̃=0

ãr̃
âr̃
≤ lim

r→∞

(θ(0)

θ(1)

1− δφ(1)

1− δφ(0)

)L(r−1)

= 0.

The next lemma shows the Mσ1(r) is uniformly bounded across all σ1 and r.
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Lemma A.3.4. There exists M > 0 such that for all r ≥ 1 and all strategy σ1

1 ≤Mσ1(r) ≤M.

Proof. Fix a strategy σ1 and r. Define for fσ1,r
0 = 1 and k ≥ 1,

fσ1,r
k ≡

∑
nr,nr+1,··· ,nr+k−1≥1

nr+k=0

( 1

1− ãr−1φ̃r

)nr
×

[
r+k−1∏
r̄=r

 nr̄ + nr̄+1 − 1

nr̄+1

 (θ̃r̄φ̃r̄+1)nr̄

]
.

Then Mσ1(r) =
∑

k≥0 f
σ1,r
k . The lower bound is obvious. We now show the existence

of upper bound. Using a similar argument as in Lemma A.3.1, we can show that for

k ≥ 1,

fσ1,r
k =

r+k−1∏
r̃=r

ãr̃φr̃+1

1− ãr̃φr̃+1

.

For any K ≥ 1, applying Lemma A.1.3 to
∑K

k=0 f
σ1,r
k and using the recursive formu-

lation of {ãr̃} in (A.20) yield

K∑
k=0

fσ1,r
k =

1

1−
ãrφ̃r+1

1−
θ̃r+1φ̃r+2

1−
θ̃r+2φ̃r+3

. . .

1−
θ̃r+K−1φ̃r+K−1

1− θ̃r+K−1φ̃r+K

.

Define b̃1 = φ̃r+K , b1 = φ(0) where φ(·) is defined in (A.24), and inductively

b̃l =
φ̃r+K+1−l

1− b̃l−1θ̃r+K+1−l
and bl =

φ(0)

1− bl−1θ(0)
l = 2, · · · , K.

Notice that by construction, we have

K∑
k=0

fσ1,r
k =

1

1− ãrb̃K
.
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Because ãr ≤ δ < 1 by Lemma A.21, we know

K∑
k=0

fσ1,r
k ≤ 1

1− b̃K
.

Using the fact that the mapping ς 7→ φ(ς)
1−aθ(ς) decreases for all a ∈ [0, 1] by Lemma

A.3.2 and a similar argument as in Lemma A.3.1, we can show b̃K ≤ bK , which implies

K∑
k=0

fσ1,r
k ≤ 1

1− bK
.

Notice {bk} is independent of σ1 and r. Hence to show the existence of upper bound,

it suffices to show supK≥1 1/(1− bK) <∞ or equivalently supK≥1 bK < 1.

We show this by induction. Clearly b0 < 1. Assume bK < 1 then

bK+1 =
φ(0)

1− bKθ(0)
≤ φ(0)

1− θ(0)
< 1,

where the last inequality comes from the definition of θ and φ in (A.23) and (A.18).

Therefore supK≥1 bK ≤
φ(0)

1−θ(0)
< 1, completing the proof.

A.4 Proof of Lemma 1.3.1

Let S1 = S2 = B = [0, 1]R be the strategy space of the seller, the strategy space of

the buyers and the set of all possible posterior beliefs, respectively. Endow them with

the usual product topology. For each σ1 ∈ S1, recall νσ1 = (νσ1(0), νσ1(1), · · · ) ∈ B

is the associated posterior beliefs.

Lemma A.4.1. For any t and r, the mapping σ1 7→ P σ1

ξ̃
(Rt = r) from S1 to [0, 1] is

continuous.

Proof. If t < r, then P σ1

ξ̃
(Rt = r) = 0 for all σ1 and the result follows.

Now fix t ≥ r. From Equation (A.13), we know for any σ1, the value P σ1

ξ̃
(Rt = r)

only depends on σ1(0), · · · , σ1(r+ b t−r
2
c). Hence the mapping σ1 7→ P σ1

ξ̃
(Rt = r) can
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be viewed as a mapping from [0, 1]r+b(t−r)/2c to [0, 1] and we know it is continuous

from Equation (A.13) again. Therefore the mapping σ1 7→ P σ1

ξ̃
(Rt = r) from S1 to

[0, 1] is continuous.

Lemma A.4.2. For any r ≥ 0, the mapping σ1 7→ νσ1(r) from S1 to [0, 1] is contin-

uous.

Proof. Fix r ≥ 0. Notice for all σ1 ∈ S1,

1− νσ1(r)

νσ1(r)
=

1− b0

b0

∑
t=r δ

tP σ1

ξ̃
(Rt = r)∑

t=r δ
tPξ̂(Rt = r)

,

and the denominator of the right hand side is independent of σ1. Hence to show the

continuity of σ1 7→ νσ1(r), it suffices to show σ1 7→
∑

t≥r δ
tP σ1

ξ̃
(Rt = r) is continuous.

Because for every t ≥ r, the mapping σ1 7→ P σ1

ξ̃
(Rt = r) is continuous by previous

lemma and supσ1,t P
σ1

ξ̃
(Rt = r) ≤ 1, the discounted sum of all these mappings is also

continuous, i.e. σ1 7→
∑

t≥r δ
tP σ1

ξ̃
(Rt = r) is continuous.

Proof of Lemma 1.3.1. We first consider buyers’ problem. For each σ1 ∈ S1, let

Br2(σ1) ≡
{
σ2 ∈ S2

∣∣∣σ2(r) ∈ arg max
ς2∈[0,1]

ub

(
νσ1(r) + (1− νσ1(r))σ1(ξ̃, r), ς2

)
, ∀r ≥ 0

}
be the set of best responses of the buyers. It is easy to see the correspondence

Br2 : S1 ⇒ S2 is nonempty and convex valued. Because of Lemma A.4.2, for each r

the mapping (σ1, ς2) 7→ ub

(
νσ1(r) + (1− νσ1(r))σ1(ξ̃, r), ς2

)
is continuous. Therefore

the correspondence Br2 is upper hemicontinuous.

Now we turn to seller’s problem. Let B(R × S2) be the space of all bounded

continuous functions from R×S2 to R, endowed with the supremum norm.4 Define

f : [0, 1]×R×S2 → R as f(ς1, r, σ2) = (1− δ)us(ς1, σ2(r)). Clearly f is continuous.

4We endow R with the discrete topology.
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Let T : B(R×S2)→ B(R×S2) be the contraction mapping:

TV (r, σ2) = max
ς1∈[0,1]

f(ς1, r, σ2) + δ
[
(1− ε)ρ(h|ς1)V (r + 1, σ2)

+
(
1− (1− ε)ρ(h|ς1)− ερ(l|ς1)

)
V (r, σ2)

+ερ(l|ς1)V (max(r − 1, 0), σ2)
]
.

Let V ∗ be the unique fixed point of T and Γ : R×S2 ⇒ [0, 1] be the associated policy

correspondence. Clearly V ∗( · , σ2) is the value function to the seller when he plays a

best response. It is also easy to see a strategy σ1 is a best response to σ2 if and only

if σ1(r) ∈ Γ(r, σ2) for all r. Let Br1(σ2) be the set of all best responses of the seller

given σ2. Then we have Br1(σ2) =
∏

r≥0 Γ(r, σ2). Because the correspondence Γ is

nonempty, convex valued and upper hemicontinuous, so is Br1.

Finally, define Br : S1 × S2 ⇒ S1 × S2 as Br(σ1, σ2) ≡ Br1(σ2) × Br2(σ1).

Then Br is nonempty, convex valued and upper hemicontinous. Since S1 × S2 is

compact, by Glicksberg (1952)’s generalization of Kakutani’s fixed-point theorem, the

correspondence Br has a fixed point (σ∗1, σ
∗
2). This profile together with the associated

posterior beliefs ν∗ = νσ
∗
1 is a stationary public equilibrium.

A.5 Proof of Theorem 1.3.1

Define ∆ = us(L, s) − us(H, s) and ∆′ = us(L, c) − us(L, s). By Assumptions 1 and

3, both ∆ > 0 and ∆′ > 0.

Lemma A.5.1. Let (σ1, σ2) be any stationary strategy profile and V : R→ R be the

associated seller’s value function. Define ∆r = V (r + 1)− V (r) for all r ≥ 0. Then

if ε < β, we have

|∆r| ≤
1− δ
δ

∆′

β − ε
∀r ≥ 0.

Proof. To simplify notations, let u(r) = us(σ1(r), σ2(r)) and xr = ρ(h|σ1(r)) for all
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r ≥ 0. We show by induction

|∆r| ≤
(1− δ)∆′

δ(1− ε)β

r∑
r̃=0

(ε(1− β)

(1− ε)β

)r̃
.

When r = 0, we have

V (0) = (1− δ)u(0) + δ
[
(1− ε)x0V (1) + (1− (1− ε)x0)V (0)

]
.

Rearranging yields

∆0 =
(1− δ)

(
V (0)− u(0)

)
δ(1− ε)x0

.

Thus

|∆0| ≤
(1− δ)∆′

δ(1− ε)β
.

Now assume the desired inequality holds for r̃ = 0, · · · , r − 1. For r, we have

V (r) = (1− δ)u(r) + δ
[
(1− ε)xrV (r + 1)

+
(
1− (1− ε)xr − ε(1− xr)

)
V (r) + ε(1− xr)V (r − 1)

]
.

Rearranging yields

∆r =
(1− δ)

(
V (r)− u(r)

)
δ(1− ε)xr

+
ε(1− xr)
(1− ε)xr

∆r−1.

Thus we have

|∆r| ≤
(1− δ)∆′

δ(1− ε)β
+
(ε(1− β)

(1− ε)β

)
|∆r−1| ≤

(1− δ)∆′

δ(1− ε)β

r∑
r̃=0

(ε(1− β)

(1− ε)β

)r̃
,

where the second inequality comes from induction hypothesis. Hence the desired

inequality follows. When ε < β we then have

|∆r| ≤
(1− δ)∆′

δ(1− ε)β
1

1− ε(1−β)
(1−ε)β

=
1− δ
δ

∆′

β − ε
.
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Lemma A.5.2. Assume (σ∗1, σ
∗
2) is a stationary public equilibrium. Let V : R → R

be the associated seller’s value function. Define ∆r = V (r + 1)− V (r) for all r ≥ 0.

For all r ≥ 1, If σ∗1(r) = 0 and ∆r−1 > 0, then ∆r > 0.

Proof. If σ∗1(r) = 0, then we know σ∗2(r) = 0 since it is complete information and

buyers play myopic best response. Thus we know

V (r) = (1− δ)us(L, s) + δ
[
(1− ε)βV (r + 1)

+
(
1− (1− ε)β − ε(1− β)

)
V (r) + ε(1− β)V (r − 1)

]
.

Rearranging yields

V (r) =
(1− δ)us(L, s) + δε(1− β)V (r − 1) + δ(1− ε)βV (r + 1)

1− δ + δ(1− ε)β + δε(1− β)
.

Hence V (r) is a convex combination of us(L, s), V (r − 1) and V (r + 1). Notice

us(L, s) is the minmax value of the stage game, hence V (r) > V (r − 1) ≥ us(L, s)

where the first inequality comes from assumption ∆r−1 > 0. This directly implies

V (r + 1) > V (r), or equivalently ∆r > 0, completing the proof.

Proof of Theorem 1.3.1. Define

ε ≡ β∆

(α− β)∆′ + ∆
.

We show when ε < ε, Theorem 1.3.1 holds.

En route to a contradiction, assume (σ∗1, σ
∗
2) is a stationary public equilibrium in

Γ(0, α, β, δ, ε) and σ∗1(r) > 0 for some r. Let V be the associated value function and

∆r ≡ V (r + 1)− V (r) for r ≥ 0 as above. Because σ∗1(r) > 0, incentive at r requires

(1− ε)∆r + ε∆r−1 ≥
(1− δ)∆
δ(α− β)

.

Hence

(1− ε)∆r ≥
(1− δ)∆
δ(α− β)

− ε∆r−1 ≥
1− δ
δ

[ ∆

α− β
− ε

β − ε
∆′
]
> 0, (A.25)
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where the second inequality comes from Lemma A.5.1 and the third from ε < ε.

We now show value function V is strictly increasing from r on and converges to

infinity as r tends to infinity. This leads to contradiction, because value function

must be bounded by stage game payoffs.

Step 1: we show if σ∗1(r′) = 0 for all r′ = r + 1, r + 2, · · · , r + k, then V must be

strictly increasing on the domain {r, r+1, · · · , r+k+1}. From inequality (A.25), we

know ∆r > 0 and hence V (r+ 1)−V (r) > 0. If σ∗1(r+ 1) = 0, then by Lemma A.5.2,

we know ∆r+1 > 0 or equivalently V (r + 2) > V (r + 1). If σ∗1(r + 2) = 0, then we

apply Lemma A.5.2 again and show V (r + 3) > V (r + 2). This arguments continues

for r′ = r + 3, · · · , r + k and the result follows.

Step 2: we show it is impossible that σ∗1(r′) = 0 for all r′ > r. If this is the

case, then from above argument, we know V is strictly increasing from r on and

limr′→∞ V (r′) > us(L, s). But this is impossible because

V (r′) ≤ (1− δ)
r′−r∑
τ=0

δτus(L, s) + δr
′−rus(L, c)

and when r′ is arbitrarily large, V (r′) should be arbitrarily close to us(L, s).

Step 3: We show V must be strictly increasing from r on and converges to infinity.

From Steps 1 and 2, we know from r on, there must be infinitely many signals at

which the seller exerts high effort with positive probability. Let them be r = r0 <

r1 < r2 < · · · . Notice (a) Step 1 implies V must strictly be increasing on the domain

{rk + 1, · · · , rk+1} for all k ≥ 0 and (b) at each of these signals, inequality (A.25)

holds. This directly implies the desired result, completing the proof.
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A.6 Proof of Theorem 1.3.2

Assume α > 2β. It is easy to see there exists δ, ε ∈ (0, 1) such that when δ > δ and

ε < ε the following inequality holds

1− ε
1− δ + δε(1− β) + δ(1− ε)β

>
1

δ(α− β)
.

We now show if α, β, δ and ε are in the above range and b0 < κ, then there is no

stationary public equilibrium in which the seller always exerts high effort. En route

to a contradiction, (σ∗1, σ
∗
2, ν

∗) is stationary public equilibrium in which the normal

seller always exerts low effort, i.e. σ∗1(r) = 0 for all r ≥ 0.

We begin with analysis of the associated posterior beliefs.

Lemma A.6.1. There exist 0 < λ < λ < 1 such that

ν∗(r)

1− ν∗(r)
=

b0

1− b0

1− λ
1− λ

(λ
λ

)r
∀r ≥ 0.

Hence ν∗ strictly increases and ν∗(r)→ 1 as r →∞.

Proof. Notice for all r ≥ 1 and t ≥ r, we have

P
σ∗1
ξ̃

(Rt = r) = (1− ε)βP σ∗1
ξ̃

(Rt−1 = r − 1)

+
[
εβ + (1− ε)(1− β)

]
P
σ∗1
ξ̃

(Rt−1 = r − 1)

+ε(1− β)P
σ∗1
ξ̃

(Rt−1 = r + 1).
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This implies for all r ≥ 1

∑
t≥r

δtP
σ∗1
ξ̃

(Rt = r) = (1− ε)β
∑
t≥r

δtP
σ∗1
ξ̃

(Rt−1 = r − 1)

+
[
εβ + (1− ε)(1− β)

]∑
t≥r

δtP
σ∗1
ξ̃

(Rt−1 = r)

+ ε(1− β)
∑
t≥r

δtP
σ∗1
ξ̃

(Rt−1 = r + 1)

= δ(1− ε)β
∑
t≥r−1

δtP
σ∗1
ξ̃

(Rt = r − 1)

+ δ
[
εβ + (1− ε)(1− β)

]∑
t≥r

δtP
σ∗1
ξ̃

(Rt = r)

+ δε(1− β)
∑
t≥r+1

δtP
σ∗1
ξ̃

(Rt = r + 1),

where the second equality comes from the fact P
σ∗1
ξ̃

(Rt = r) = 0 for all t < r. For

each r ≥ 0, define

qr ≡
∑
t≥r

δtP
σ∗1
ξ̃

(Rt = r).

Then from the above equality, the sequence {qr}r≥0 must satisfy the following second

order difference equation

δ(1− ε)βqr+2 −
[
1− δεβ − δ(1− ε)(1− β)

]
qr+1 + δε(1− β)qr = 0 ∀r ≥ 0.

Thus we know there exist constants C1 and C2 such that

qr = C1λ
r
1 + C2λ

r
2, ∀r ≥ 0,

where

λ1 =(2δ(1− ε)β)−1 ×
(

1− δ + δ(1− ε)β + δε(1− β)

−
√

(1− δ)2 + 2δ(1− δ)
[
(1− ε)β + ε(1− β)

]
+ δ2

[
(1− ε)β − ε(1− β)

]2)
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and

λ1 =(2δ(1− ε)β)−1 ×
(

1− δ + δ(1− ε)β + δε(1− β)

+

√
(1− δ)2 + 2δ(1− δ)

[
(1− ε)β + ε(1− β)

]
+ δ2

[
(1− ε)β − ε(1− β)

]2)
are the two roots of the corresponding characteristic polynomial

δ(1− ε)βλ2 −
[
1− δεβ − δ(1− ε)(1− β)

]
λ+ δε(1− β) = 0.

Then it is easy to see that both λ1 and λ2 are real, and 0 < λ1 < 1 < λ2. Notice

∑
r≥0

qr =
∑
r≥0

∑
t≥r

δtP
σ∗1
ξ̃

(Rt = r) =
∑
t≥0

δt
∑

0≤r≤t

P
σ∗1
ξ̃

(Rt = r) =
∑
t≥0

δt =
1

1− δ

Hence qr → 0 as r → ∞. Because qr = C1λ
r
1 + C2λ

r
2 and λ2 > 1, we must have

C2 = 0. Therefore, qr = C1λ
r
1 for all r ≥ 0. From the above equation, we know

C1 = (1− λ1)/(1− δ). Define λ ≡ λ1. We then have

∑
t≥r

δtP
σ∗1
ξ̃

(Rt = r) =
1− λ
1− δ

λr ∀r ≥ 0.

Notice the above analysis also applies to
∑

t≥r δ
tPξ̂(Rt = r) with β being replaced

by α. If we replace all the β’s in the expression of λ by α and define this value to be

λ, we then have ∑
t≥r

δtPξ̂(Rt = r) =
1− λ
1− δ

λ
r ∀r ≥ 0.

Moreover, it is straightforward to check λ > λ because α > β. Therefore, we have

ν∗(r)

1− ν∗(r)
=

b0

1− b0

1− λ
1− λ

(λ
λ

)r
∀r ≥ 0

as desired.

Proof of Theorem 1.3.2. From previous lemma, we know

ν∗(0)

1− ν∗(0)
=

b0

1− b0

1− λ
1− λ

<
b0

1− b0

<
κ

1− κ
,
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where the fist inequality comes from λ > λ and the second inequality from the

assumption b0 < κ. Equivalently, ν∗(0) < κ. Because ν∗ strictly increases and

ν∗(r) → 1, we know there exists r ≥ 0 such that ν∗(r) < κ for r ≤ r and ν∗(r) > κ

for r > r. Because the normal seller always shirks and buyers play myopic best

response, we know σ∗2(r) = 0 for r ≤ r and σ∗2(r) = 1 for r > r, i.e. buyers choose the

standard product if the signal is less than or equal to r, and choose the customized

product if the signal is above r. Because by assumption, the normal seller always

exerts low effort, if the current signal is r ≤ r, the seller’s current period payoff is

us(L, s). If instead the current signal is r > r, the current period payoff is us(L, c).

Let V : R → R be the seller’s value function induced by (σ∗1, σ
∗
2). Because by

Assumption 1 and 3, us(L, c) > us(H, c) > us(L, s), it is easy to see V is increasing.

Then we have

V (r) = (1− δ)us(L, s) + δ
[
(1− ε)βV (r + 1) +

(
εβ + (1− ε)(1− β)

)
V (r)

+ε(1− β)V (max(r − 1, 0))
]

≤ (1− δ)us(L, s) + δ
[
(1− ε)βV (r + 1) +

(
1− (1− ε)β

)
V (r)

]
,

and

V (r + 1) = (1− δ)us(L, c) + δ
[
(1− ε)βV (r + 2) +

(
εβ + (1− ε)(1− β)

)
V (r + 1)

+ε(1− β)V (r)
]

≥ (1− δ)us(L, c) + δ
[(

1− ε(1− β)
)
V (r + 1) + ε(1− β)V (r)

]
.

where the first inequality comes from V (r) ≥ V (max{r − 1, 0}) and the second from

V (r + 2) ≥ V (r + 1). Combining these two inequalities yields

V (r + 1)− V (r) ≥ 1− δ
1− δ + δε(1− β) + δ(1− ε)β

(
us(L, c)− us(L, s)

)
.

Because by Assumptions 1 and 3 us(L, c)−us(H, c) ≥ us(L, s)−u(H, s) and us(H, c) >
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u(L, s), we have us(L, c)− us(L, s) > us(L, s)− us(H, s). Therefore,

(1− ε)
[
V (r + 1)− V (r)

]
+ ε
[
V (r)− V (max{r − 1, 0})

]
≥ (1− ε)

[
V (r + 1)− V (r)

]
≥ (1− ε)(1− δ)

1− δ + δε(1− β) + δ(1− ε)β
(
us(L, s)− us(H, s)

)
.

Since 1−ε
1−δ+δε(1−β)+δ(1−ε)β >

1
δ(α−β)

, we have

(1−ε)
[
V (r+1)−V (r)

]
+ε
[
V (r)−V (max{r−1, 0})

]
>

1− δ
δ(α− β)

(
us(L, s)−us(H, s)

)
.

Rearranging terms, we can see this inequality is equivalent to

(1− δ)us(H, s) + δ
[
(1− ε)αV (r + 1) +

(
εα + (1− ε)(1− α)

)
V (r)

+ε(1− α)V (max(r − 1, 0))
]

> (1− δ)us(L, s) + δ
[
(1− ε)βV (r + 1) +

(
εβ + (1− ε)(1− β)

)
V (r)

+ε(1− β)V (max(r − 1, 0))
]
.

Therefore, exerting high effort at signal r is a profitable deviation for the seller.

This contradicts to the assumption that (σ∗1, σ
∗
2, ν

∗) is an equilibrium, completing the

proof.

A.7 Proof of Theorem 1.3.3

The next lemma roughly states that there is no stationary public equilibrium in which

the normal type seller always mimics the commitment type. A similar argument also

appears in Mailath and Samuelson (2001).

Lemma A.7.1. There exists a K > 0 such that in all stationary public equilibrium σ∗,

for any K consecutive signals r, r+1, · · · , r+K−1, there exists at least 0 ≤ k ≤ K−1

at which the normal type seller makes low effort, i.e. σ∗1(rk) = 0.
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Proof. Define 4 ≡ us(L, s) − us(H, s) to be the minimal gain of the seller from

exerting low effort. By Assumption 1, 4 > 0. Define K to be any integer such that

4(1− δ)
δ(α− β)

K > us(L, c)− us(H, s).

Fix any stationary public equilibrium σ∗. Let {V (r)}r be the associated value

function of the seller. En route to a contradiction, assume there are K consecutive

signals r, · · · , r+K − 1 such that σ∗(r+ k) > 0 for all 0 ≤ k ≤ K − 1. Then At each

of these signal, the seller weakly prefers making high effort. Therefore a necessary

condition is for 0 ≤ k ≤ K − 1

(1− δ)us(H, σ∗2(r + k)) + δ(1− ε)αV (r + k + 1)

+δ(εα + (1− ε)(1− α))V (r + k) + δε(1− α)V (r + k − 1)

≥ (1− δ)us(L, σ∗2(r + k)) + δ(1− ε)βV (r + k + 1)

+δ(εβ + (1− ε)(1− β))V (r + k) + δε(1− β)V (r + k − 1).

This implies

δ(1− ε)(α− β)
[
V (r + k + 1)− V (r + k)

]
+δε(α− β)

[
V (r + k)− V (r + k − 1)

]
≥ (1− δ)

[
us(L, σ

∗
2(r + k))− us(H, σ∗2(r + k))

]
≥ (1− δ)4, ∀0 ≤ k ≤ K − 1,

where the last inequality comes from Assumption 1. Equivalently

(1−ε)
[
V (r+k+1)−V (r+k)

]
+ε
[
V (r+k)−V (r+k−1)

]
≥ (1− δ)4
δ(α− β)

, ∀0 ≤ k ≤ K−1.
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Summing up these inequalities yields

4(1− δ)
δ(α− β)

K

≤
K−1∑
k=0

(
(1− ε)

[
V (r + k + 1)− V (r + k)

]
+ ε
[
V (r + k)− V (r + k − 1)

])
= (1− ε)

[
V (r +K)− V (r)

]
+ ε
[
V (r +K − 1)− V (r − 1)

]
≤ us(L, c)− us(H, s),

where the last inequality comes from the face us(H, s) ≤ V (r) ≤ us(L, c) by Assump-

tions 1 and 3. This contradicts the definition of K.

Combining Lemmas A.7.1, A.3.1 and A.3.4, we have the following property about

asymptotic behavior of posterior beliefs in any stationary public equilibrium.

Lemma A.7.2. In any stationary public equilibrium σ∗, the associated posterior belief

ν∗(r)→ 1 as r →∞.

Proof. It suffices to show 1−ν∗(r)
ν∗(r)

→ 0. From Equation (A.22) and Lemma A.3.4, we

know

1− ν∗(r)
ν∗(r)

=
1− b0

b0

∑∞
t=r δ

tP
σ∗1
ξ̃

(
Rt = r

)∑∞
t=r δ

tPξ̂
(
Rt = r

) =
1− b0

b0

Mσ∗1 (r)

M σ̂1(r)

∏r−1
r̃=0 ãr̃∏r−1
r̃=0 âr̃

≤ 1− b0

b0

M

∏r−1
r̃=0 ãr̃∏r−1
r̃=0 âr̃

.

By Lemma A.7.1, in σ∗1 there are infinitely many signals at which the normal type

exerts low effort. Lemma A.3.3 then implies the right hand side converges to 0, as

desired.

Proof of Theorem 1.3.3. Fix a stationary public equilibrium (σ∗1, σ
∗
2, ν

∗). By Lemma

A.7.2, we know limr ν
∗(r) → 1. Hence there exists r† such that ν∗(r) > κ for all

r ≥ r†. Then all buyers who see signal r ≥ r† believes that the seller will exert effort

with probability at least ν∗(r) > κ. Because all buyers are short-lived, they just

play their best response. Therefore by Assumption 2, after seeing signal r ≥ r†, all

entering buyer chooses the customized product, i.e. σ∗2(r) = 1 for all r ≥ r†.
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We now turn to the behavior of the seller. Let V (·) be the associated value function

of the normal type of the seller. Let K > 0 be an integer such that

δK
[
us(L, c)− us(H, s)] <

1− δ
δ

us(L, c)− us(H, c)
α− β

.

Then at any signal r ≥ r† +K, we know all buyers who enter in the next K periods

will observe signal higher than or equal to r† because the signal can decrease by at

most 1 for every buyer. Therefore all of the next K entering buyers will choose the

customized product. Thus by exerting low effort for the next K buyers, the normal

seller can guarantee himself a payoff at least

(1− δ)
K−1∑
k=0

δkus(L, c) + δKus(H, s).

This in turn implies

V (r + 1)− V (r) ≤ δK
[
us(L, c)− us(H, s)

]
for all r ≥ r† + K because all V (r + 1) is bounded above by us(L, c) which is the

highest possible stage payoff to the seller from Assumptions 1 and 3. Then for all

r ≥ r† +K + 1, we have

(1− ε)
[
V (r + 1)− V (r)

]
+ ε
[
V (r)− V (r − 1)]

≤δK
[
us(L, c)− us(H, s)

]
<

1− δ
δ

us(L, c)− us(H, c)
α− β

.

But this is equivalent to

(1− δ)us(L, c) + δ(1− ε)αV (r + 1)

+δ(εα + (1− ε)(1− α))V (r) + δε(1− α)V (r − 1)

> (1− δ)us(H, c) + δ(1− ε)βV (r + 1)

+δ(εβ + (1− ε)(1− β))V (r) + δε(1− β)V (r − 1),

which implies that the normal seller strictly prefers L to H. Hence we have σ∗1(r) = 0

for all r ≥ r ≡ r† +K + 1. This completes the proof.
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A.8 Proofs for Section 1.4

Proof of Lemma 1.4.1. Suppose by contradiction there exists such a µ. Without loss

of generality, assume
{
i ∈ N

∣∣µ(τi < ∞) > 0
}

= Z. If all agents have identical prior

belief about when they enter, they must have the same probability of entering in

period 1, i.e. µi1 = µ1
1 for all i ≥ 0. Because by definition, ∪i(τi = 1) = Σ, we have∑

i≥1 µ
i
1 =

∑
i≥1 µ(τi = 1) = µ(Σ) = 1. This implies µ1

1 > 0 and
∑

i≥0 µ
i
1 = +∞, a

contradiction.

Proof of Lemma 1.4.2. We postpone the proof in Lemma A.8.3 below.

Proof of Proposition 1.4.1. Fix any δ ∈ (0, 1). We explicitly construct a random

entry model µ that satisfies EPS and S with continuation probability δ.

For each vector θn = (n− 1, n− 2, · · · , 0) ∈ Σn, define µ
(
{θn}

)
≡ (1− δ)δn−1. It

is easy to see µ is a probability measure over Σ. By construction, µ(Σn) = µ
(
{θn}

)
=

(1 − δ)δn−1 and hence S is satisfied. Moreover, for each i and t, agent i enters in

period t if and only if agent i+ t enters in period 1 if and only if θi+t is realized. Thus

(τi = t) = {θi+t} and µit = (1 − δ)δi+t. Therefore, µit = δi−jµjt for all i, j and t. By

Lemma 1.4.2, µ satisfies EPS.

Proof of Proposition 1.4.2. Let µ be a random entry model that satisfy EPS and S

with continuation probability δ. Let {µti}i,t be the corresponding prior beliefs about

entry time.

Because µ satisfies EPS, by Lemma 1.4.2 there exist {ci} such that

µit = ciµ1
t ∀i, t ≥ 0.

For any t ≥ 0, we then have

∑
i

µit =
(∑

i

ci
)
µ1
t .
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But notice
∑

i µ
i
t =

∑
i µ(τi = t) is the probability of at least t entries in model µ,

which is equal to
∑

n≥t(1− δ)δn−1 by S. Therefore we have

µ1
t =

δt−1∑
i c
i
∀t ≥ 0.

Plugging this expression into Equation (1.4) yields

νP1 (ξ|r) =
b(ξ)

∑∞
t=1 δ

tPξ
(
Rt = r)∑

ξ′ b(ξ
′)
∑∞

t=1 δ
tPξ′
(
Rt = r)

.

Because of EPS, every agent must have the same posterior belief as agent 1 does.

This leads to the desired result.

Remark A.8.1. As mentioned in footnote 11, an alternative way of modeling infinite

entries is to consider random entry models that last forever. Formally, let Σ∞ ≡

{(i1, i2, · · · ) ∈ Z∞|is 6= it, if s 6= t}. A random entry model that last forever is

just a probability measure over Σ∞. As in the context, we can similarly define prior

beliefs about entering time for each agent. Such a random entry model is naturally

stationary: it continues after every period with probability 1. However, there is no

such random entry model that satisfies EPS, as stated in the following lemma.

Lemma A.8.1. There is no random entry model µ over Σ∞ that satisfies EPS.

Proof. Suppose by contradiction µ satisfies EPS. Without loss of generality, assume

agent 1 enters in period 1 with positive probability. A careful examination of the proof

in Lemma 1.4.2 shows Lemma 1.4.2 also holds in this case. Hence for each i there

exists ci such that µit = ciµ1
t for all t ≥ 0. Hence 1 =

∑
i µ

i
t =

∑
i c
iµ1
t for all t. This

implies µ1
t = 1/(

∑
i c
i) for all t. But 1 ≥ µ(τ1 < +∞) =

∑
t µ

1
t =

∑
t 1/(

∑
i c
i) =∞,

a contradiction.

Remark A.8.2. As mentioned in footnote 13, the notion of EPS in Definition 1.4.2

seems too strong for the application of the reputation game because it requires com-

mon posterior beliefs even for stochastic processes that can not be generated by any

strategy of the seller. We examine this problem here.
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To do so, we first consider strategies of the seller in the reputation game. Because

the seller is long-lived, a private history of the seller consists of all past signals, actions

and qualities. A strategy of the seller is a mapping from the set of all possible private

histories to the interval [0, 1]. We now consider a particular class of strategies of the

seller that only depend on current signal and current period (calendar time). Denote

by S ∗
1 this class of strategies. It is clear that the set of all stationary public strategies

of the seller is a subset of S ∗
1 . Every strategy σ1 ∈ S ∗

1 , together with prior belief b0,

the strategy of the commitment type and the evolution of the public signals, induces

a probability measure over Ξ×R∞. Denote by Q∗ the set of all probability measures

generated by such strategies, which is clear a subset of P . We proceed to show that

any random entry model that induces common posterior beliefs for all processes in

Q∗ must also induces common posterior beliefs for all processes in P . This in turn

will imply the notion of EPS in Definition 1.4.2 is not as strong as it seems.

The following lemma states that though Q∗ is only a small subset of P , it is in

fact very rich.

Lemma A.8.2. There exists a sequence of strategies {σk1}k≥0 ⊂ S ∗
1 such that for all

k ≥ 1,

(i). P
σk1
ξ̃

(Rt = r) = P
σ0

1

ξ̃
(Rt = r) for all t 6= k, r ≥ 0, and

(ii). P
σk1
ξ̃

(Rk = 0) 6= P
σ0

1

ξ̃
(Rk = 0),

where P
σk1
ξ̃

is the probability measure over R∞ induced by σk1 .

Proof. We show this result by construction. Let σ0
1 be strategy which always mixes

between high and low effort with equal probability. For each k ≥ 1, we consider a

strategy σk1 that imitates σ0
1 in periods 0, 1, · · · , k − 2, k + 1, k + 2, · · · but differs

from σ0
1 in period k − 1 and k. Let ςk−1,0, · · · , ςk−1,k−1 and ςk,0, · · · , ςk,k denote the

corresponding actions (to be specified) in periods k−1 and k, i.e. ςt,r is the probability

of making high effort if the current signal is r in period t, for t = k− 1, k.5 It is clear

5Recall from the evolution of the public signals, in any period t, only signals 0, 1, · · · , t can be
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{σk1}k≥0 ⊂ S ∗
1 by construction because each strategy σk1 only depends on current

signal and current period.

It is straightforward to see the distributions of signals in period 0, 1, · · · , k−1 are

identical under P
σ0

1

ξ̃
and P

σk1
ξ̃

. Moreover the distributions of signals in period k and

k + 1 under P
σk1
ξ̃

now can be calculated recursively:

P
σk1
ξ̃

(Rk = 0) =
[
1− (1− ε)ρ(h|ςk−1,0)

]
P
σ0

1

ξ̃
(Rk−1 = 0)

+ερ(l|ςk−1,1)P
σ0

1

ξ̃
(Rk−1 = 1), (A.26)

P
σk1
ξ̃

(Rk = r) =
[
(1− ε)ρ(h|ςk−1,r−1)

]
P
σ0

1

ξ̃
(Rk−1 = r − 1)

+
[
ερ(h|ςk−1,r) + (1− ε)ρ(l|ςk−1,r)

]
P
σ0

1

ξ̃
(Rk−1 = r)

+ερ(l|ςk−1,r+1)P
σ0

1

ξ̃
(Rk−1 = r + 1) ∀r ≥ 1, (A.27)

P
σk1
ξ̃

(Rk+1 = 0) =
[
1− (1− ε)ρ(h|ςk,0)

]
P
σk1
ξ̃

(Rk = 0)

+ερ(l|ςk,1)P
σk1
ξ̃

(Rk−1 = 1), (A.28)

P
σk1
ξ̃

(Rk+1 = r) =
[
(1− ε)ρ(h|ςk,r−1)

]
P
σk1
ξ̃

(Rk = r − 1)

+
[
ερ(h|ςk,r) + (1− ε)ρ(l|ςk,r)

]
P
σk1
ξ̃

(Rk = r)

+ερ(l|ςk,r+1)P
σk1
ξ̃

(Rk = r + 1) ∀r ≥ 1. (A.29)

We are now ready to specify ςk−1,0, · · · , ςk−1,k−1 and ςk,0, · · · , ςk,k. Let ςk−1,r = 1
2

for

all 1 ≤ r ≤ k−1 and ςk−1,0 be some arbitrary number different from but close to 1
2
. It

is then straightforward to see that P
σk1
ξ̃

(Rk = 0) 6= P
σ0

1

ξ̃
(Rk = 0) from (A.26). Hence

condition (ii) of the lemma is satisfied. Given the determined ςk−1,0, · · · , ςk−1,k−1 (and

hence {P σk1
ξ̃

(Rk = r)}kr=0 from (A.26) and (A.27)), it is then easy to see from (A.28)

and (A.29), condition (i) of the lemma specifies k + 1 linear equations

P
σk1
ξ̃

(Rk+1 = r) = P
σ0

1

ξ̃
(Rk+1 = r) ∀r = 0, · · · , k (A.30)

in k + 1 unknowns ςk,0, · · · , ςk,k. By a careful examination of this system of linear

equations, it is easy to see that the corresponding coefficient matrix is always of full

reached with positive probability. Hence the actions at signal r > t in period t is irrelevant.
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rank. Therefore, this system of linear equations has a solution ςk,0, · · · , ςk,k. Moreover,

if ςk−1,0 is chosen to be close enough to 1
2
, then we know from (A.26) and (A.27), the

signal distribution in period k under P
σk1
ξ̃

and that under P
σ0

1

ξ̃
is close. This implies

the solutions ςk,0, · · · , ςk,k of the system of linear equations in (A.30) are also close to

1
2
, making sure ςk,0, · · · , ςk,k are well defined probabilities.

In sum we have shown under σk1 , condition (i) of the lemma is satisfied for all

periods t = 0, · · · , k−1, k+1. Notice by construction σk1 coincide with σ0
1 from period

k + 1 on. Therefore, condition (i) is also satisfied for all periods t = k + 2, k + 3, · · · .

This completes the proof.

We say a random entry model µ satisfies Q∗-EPS, if (1.5) holds for all P ∈ Q∗.

Finally we have

Lemma A.8.3. The following statements are equivalent:

(i) µ satisfies Q∗-EPS.

(ii) For all i, j ∈ Z, there exists cij such that µit = cijµjt for all t ≥ 0.

(iii) µ satisfies EPS.

Proof. (i) =⇒ (ii) : Assume µ satisfies Q∗-EPS. Let {σk1}k≥0 be the sequence of

strategies specified in Lemma A.8.2.

Because µ satisfies Q∗-EPS, we have for all i, j and P ∈ Q∗,

νP⊗µi

(
ξ
∣∣0) = νP⊗µj

(
ξ
∣∣0) and νP⊗µi

(
ξ′
∣∣0) = νP⊗µj

(
ξ′
∣∣0).

This implies i and j’s posterior likelihood ratios between ξ̃ and ξ̂ are identical. From

Equation 1.4, this can be written as∑∞
t=0 µ

i
tPξ̃

(
Rt = 0

)
∑∞

t=0 µ
i
tPξ̂′
(
Rt = 0

) =

∑∞
t=0 µ

j
tPξ̃

(
Rt = 0

)
∑∞

t=0 µ
j
tPξ̂′

(
Rt = 0

) ∀P ∈ Q∗. (A.31)

Define

cij ≡

∑∞
t=0 µ

i
tPξ̂

(
Rt = 0

)
∑∞

t=0 µ
j
tPξ̂

(
Rt = 0

) .
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When restricting attention to Pξ̃ ∈ {P
σk1
ξ̃
}k≥0 and rearranging, (A.31) can be written

as
∞∑
t=0

(µit − cijµ
j
t)P

σk1
ξ̃

(
Rt = 0

)
= 0 ∀k ≥ 0.

Using the fact that for each k ≥ 1, the two sequences {P σk1
ξ̃

(Rt = 0)}t≥0 and {P σ0
1

ξ̃
(Rt =

0)}t≥0 only differ when t = k, we immediately know that µit = cijµjt for all t ≥ 0.

(ii) =⇒ (iii) : Straightforward from Equation (1.4).

(iii) =⇒ (i) : Straightforward by definition.

106



Appendix B

Proofs for Chapter 2

B.1 Proof of Proposition 2.3.1

One important property of relative entropy is the chain rule. Let P and Q be two

distributions over the product X × Y (see for example Cover and Thomas (2006)

Chapter 2 and Gossner (2011b)). The chain rule states that the relative entropy of

P and Q can be expanded as the sum of a relative entropy and a conditional relative

entropy:

d(P‖Q) = d(PX‖QX) + EPX (d(P ( · |x)‖Q( · |x))),

where PX (resp., QX) is the marginal distribution of P (resp., Q) over X and P ( · |x)

(resp., Q( · |x)) is the conditional probability of P (resp., Q) over Y given x.

Fix a commitment type ξ(α̂1) ∈ Ξ̂. Suppose σ = (σ1, σ2) is a Nash equilibrium

of the reputation game with exogenous learning. Let P σ be the probability measure

over Ξ × (A1 × A2 × Z1 × Z2 × Y )∞ induced by σ, µ and {ρ( · |ξ)}ξ∈Ξ, as in section

2. Let P̂ σ be the conditional probability of P σ given the event that player 1 is the

commitment type ξ(α̂1). The measure P̂ σ determines how the play evolves if player

1 is of type ξ(α̂1).

Let σ′1 ∈ Σ1 be the strategy for player 1 in which the normal type of player
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1 mimics the behavior of the commitment type ξ(α̂1), i.e. σ′1(ξ0, h
t
1) = α̂1 for all

ht1 ∈
⋃
t≥0H1t. Let σ′ = (σ′1, σ2). The probability measure P̃ σ′ (recall from section 2,

P̃ σ′ = P σ′
(
·
∣∣{ξ0}×(A1×A2×Z1×Z2×Y )∞

)
) describes how the normal type of player

1 expects the play to evolve if he deviates to the commitment strategy of ξ(α̂1). The

only difference between P̃ σ′ and P̂ σ is the distributions of player 2’s exogenous signals.

Because we assume the realizations of player 2’s exogenous signals only depend on the

type of player 1 and are independent of the play, for all ht ∈ (A1×A2×Z1×Z2×Y )t

we have

P̃ σ′(ht) = P̂ σ(ht)
t−1∏
τ=0

ρ(yτ |ξ0)

ρ(yτ |ξ(α̂1))
,

where y0, y1, · · · , yt−1 are the exogenous signals contained in the history ht. Notice

by Assumption 2.2.1, ρ(y|ξ(α̂1)) > 0 whenever ρ(y|ξ0) > 0. Hence the right hand side

of the above equality is well defined.

Let P σ
2 , P̃ σ′

2 and P̂ σ
2 be the marginal distributions of P σ, P̃ σ′ and P̂ σ respectively

on player 2’s histories (Z2 × Y )∞, and let {P σ
2t}t≥1, {P̃ σ′

2t }t≥1 and {P̂ σ
2t}t≥1 be the

corresponding finite dimensional distributions. In period −1 before the play, player 2

believes that P σ
2t is the distributions of his signals (both endogenous and exogenous)

in the first t periods. However, if player 1 is the normal type and he deviates to the

commitment strategy of ξ(α̂1), P̃ σ′
2t is the true distribution of player 2’s signals in the

first t periods. The following lemma gives an upper bound on the prediction errors

in player 2’s first t periods signals.

Lemma B.1.1. For all t ≥ 1,

d
(
P̃ σ′

2t ‖P σ
2t

)
≤ − log µ

(
ξ(α̂1)

)
+ tλξ(α̂1).
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Proof. We show this by a simple calculation:

d(P̃ σ′

2t

∥∥P σ
2t) ≡

∑
ht2∈H2t

P̃ σ′

2t (ht2) log
P̃ σ′

2t (ht2)

P σ
2t(h

t
2)

=
∑

ht2∈H2t

P̃ σ′

2t (ht2) log

[
P̂ σ

2t(h
t
2)

P σ
2t(h

t
2)

t−1∏
τ=0

ρ(yτ |ξ0)

ρ(yτ |ξ(α̂1))

]

=
∑

ht2∈H2t

P̃ σ′

2t (ht2) log
P̂ σ

2t(h
t
2)

P σ
2t(h

t
2)

+
∑

ht2∈H2t

P̃ σ′

2t (ht2) log
( t−1∏
τ=0

ρ(yτ |ξ0)

ρ(yτ |ξ(α̂1))

)
.

Notice the second term is the relative entropy of the distributions on player 2’s ex-

ogenous signals in the first t periods when player 1 is the normal type and when

he is the commitment type ξ(α̂1). Because the exogenous signals are conditionally

independent across time, the chain rule implies the second term is exactly tλξ(α̂1).

Moreover, since P̂ σ
2t is obtained by conditioning P σ

2t on the event that player 1 is the

commitment type ξ(α̂1), we have

P̂ σ
2t(h

t
2)

P σ
2t(h

t
2)
≤ µ

(
ξ(α̂1)

)
∀ht2 ∈ H2t.

Therefore the first term is no greater than − log µ(θ̂). These two observations imply

the desired result.

For any private history ht2 ∈
⋃
t≥0H2t, P

σ
2,t+1 (resp., P̃ σ′

2,t+1) induces player 2’s one

step ahead prediction on his endogenous signals zt2 ∈ Z2, denoted by pσ2t( · |ht2) (resp.,

p̃σ
′

2t( · |ht2)).1 In the equilibrium, at the information set ht2, player 2 believes that his

endogenous signals will realize according to pσ2t( · |ht2). But if player 2 had known that

player 1 was the normal type and played like the commitment type ξ(α̂1), then player

2 would predict his endogenous signals according to p̃σ
′

2t( · |ht2).

1If ht2 has probability 0 under Pσ, i.e. it is not reached in the equilibrium σ, then the one step

ahead prediction is not well defined. But this does not matter because we will consider the average

(over ht2) one step prediction errors.
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For any t ≥ 1, let Ẽσ′
2t [ · ] denote the expectation over H2t with respect to the

probability measure P̃ σ′
2t . The following lemma is a direct application of the chain

rule.

Lemma B.1.2. For all t ≥ 0,

Ẽσ′

2t

[
d
(
p̃σ
′

2t( · |ht2)‖pσ2t( · |ht2)
)]
≤ d
(
P̃ σ′

2,t+1

∥∥P σ
2,t+1

)
− d
(
P̃ σ′

2t

∥∥P σ
2t

)
,

where d
(
P̃ σ′

2,0

∥∥P σ
2,0

)
≡ 0.

Proof. Let q2,t+1( · |ht2, zt2) (resp., q̃2,t+1( · |ht2, zt2)) be the one step ahead prediction on

his exogenous signals if he had observed his past private history ht2 and current period

endogenous signal zt2, induced by P σ
2,t+1 (resp., P̃ σ′

2,t+1). Because Assumption 2.2.1 and

Lemma B.1.1 implies d
(
P̃ σ′

2t

∥∥P σ
2t

)
<∞ for all t ≥ 1, applying chain rule twice yields

d
(
P̃ σ′

2,t+1

∥∥P σ
2,t+1

)
− d
(
P̃ σ′

2t

∥∥P σ
2t

)
= Ẽσ′

2t

[
d
(
p̃σ
′

2t( · |ht2)‖pσ2t( · |ht2)
)]

+ E†2,t+1

[
d
(
q̃2,t+1( · |ht2, zt2)‖q2,t+1( · |ht2, zt2)

)]
,

where E†2,t+1 is with respect to the marginal distribution of P̃ σ′
2,t+1 over (Z2×Y )t×Z2.

The desired result is obtained by noting that the last term in the above expression is

nonnegative because relative entropy is always nonnegative.

Let dδ,σξ(α̂1) be the expected average discounted sum of player 2’s one step ahead

prediction errors if player 1 is the normal type and he deviates to mimicking the

commitment type ξ(α̂1)

dδ,σξ(α̂1) ≡ Ẽσ′
[
(1− δ)

∞∑
t=0

δtd
(
p̃σ
′

2t( · |ht2)‖pσ2t( · |ht2)
)]

= (1− δ)
∞∑
t=0

δtẼσ′

2t

[
d
(
p̃σ
′

2t( · |ht2)‖pσ2t( · |ht2)
)]
,

where δ is player 1’s discount factor.

The next lemma, combining Lemma B.1.1 and Lemma B.1.2, provides an upper

bound for dξ(α̂1).
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Lemma B.1.3.

dδ,σξ(α̂1) ≤ −(1− δ)µ
(
ξ(α̂1)

)
+ λξ(α̂1).

Proof.

dδ,σξ(α̂1) ≤ (1− δ)
∞∑
t=0

δt
(
d
(
P̃ σ′

2,t+1‖P σ
2,t+1

)
− d
(
P̃ σ′

2t ‖P σ
2t

))
= (1− δ)

∞∑
t=0

δtd
(
P̃ σ′

2,t+1‖P σ
2,t+1

)
− (1− δ)

∞∑
t=0

δtd
(
P̃ σ′

2t ‖P σ
2t

)
= (1− δ)2

∞∑
t=1

δt−1d
(
P̃ σ′

2t ‖P σ
2t

)
≤ (1− δ)2

∞∑
t=1

δt−1
[
− log µ

(
ξ(θ̂)

)
+ tλξ(α̂1)

]
= −(1− δ) log µ

(
ξ(θ̂)

)
+ λξ(α̂1),

where the first inequality comes from Lemma B.1.2 and the second inequality from

Lemma B.1.1.

An important feature of Lemma B.1.3 is that the upper bound on the expected

prediction error is independent of P σ and P̃ σ′ , which allows us to bound player 1’s

payoff in any Nash equilibrium.

Proof of Proposition 2.3.1. In equilibrium, at any information set ht2 ∈
⋃
t≥0H2t

that is reached with positive probability, σ2(ht2) is a best response to E
(
σ1(ξ, ht1)

∣∣ht2)
and his one step ahead prediction on his endogenous signals is pσ2t( · |ht2). If player 1

is the normal type and he deviates to mimicking ξ(α̂1), the one step ahead prediction

is p̃σ
′

2t( · |ht2). Thus at any ht2 with positive probability under P̃ σ′ , player 2 plays a

d
(
p̃σ
′

2t( · |ht2)‖pσ2t( · |ht2)
)
-entropy confirming best response to α̂1.2 Because σ is a Nash

equilibrium, the deviation is not profitable. Hence in equilibrium, the payoff to the

2Because P̃σ
′

is absolutely continuous with respect to Pσ.
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normal type is at least as high as

Ẽσ′
[
(1− δ)

∞∑
t=0

δtu1(at)
]

= (1− δ)
∞∑
t=0

δtẼσ′

2t

[
u1

(
α̂1, σ2(ht2)

)]
≥ (1− δ)

∞∑
t=0

δtẼσ′

2t

[
V ξ(α̂1)

(
d
(
p̃σ
′

2t( · |ht2)‖pσ2t( · |ht2)
))]

≥ (1− δ)
∞∑
t=0

δtẼσ′

2t

[
Vξ(α̂1)

(
d
(
p̃σ
′

2t( · |ht2)‖pσ2t( · |ht2)
))]

≥ Vξ(α̂1)

(
− (1− δ) log µ

(
ξ(α̂1)

)
+ λξ(α̂1)

)
,

where the second inequality comes from the definition of Vξ(α̂1) and the last inequality

from Jesen’s inequality and Lemma B.1.3. Since the Nash equilibrium σ and the

commitment type ξ(α̂1) are arbitrary, the result follows.
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Appendix C

Proofs for Chapter 3

C.1 Proof of Lemma 3.2.1 and 3.2.2

Proof of Lemma 3.2.1. Just notice that the characterization of the buyers’ equilib-

rium strategies, i.e. (3.1), uniquely pins down the equilibrium strategy of the buyers

σ∗B in any Bayesian perfect equilibrium. Moreover, it is easy to see this strategy σ∗B

is a Bayesian strategy using market belief as the state variable: for any pt, rt and ht,

hs, if π(ht) = π(hs) then σ∗B(ht, pt, rt) = σ∗B(hs, pt, rt). This implies that the monopo-

list in fact faces a Bayesian decision problem with market belief as the state variable.

The solution to this Bayesian decision problem is precisely given by Bellman equation

(3.3), which is formulated in terms of posterior belief cut-offs. Then it is obvious that

the monopolist’s strategy is a best response to σ∗B after any history if and only if the

induced cut-off after any history solves maximization problem given expected future

payoff. This establishes the equivalence between the two different formulations.

Proof of Lemma 3.2.2. Monotonicity is straightforward.

Convexity: It is easy to see that the monopolist’s value function (3.3) also solves
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the following Bellman equation

V (π) = max
r∈[r,r]

(1− δ)
[
1− πF h(r)− (1− π)F l(r)

]
×
[ πr

πr + (1− π)(1− r)
h+

(1− π)(1− r)
πr + (1− π)(1− r)

l − v
]

+ (1− δ)
[
1− πF h(r)− (1− π)F l(r)

]
V
( π(1− F h(r))

π(1− F h(r)) + (1− π)(1− F l(r))

)
+ (1− δ)

[
πF h(r) + (1− π)F l(r)

]
V
( πF h(r)

πF h(r) + (1− π)F l(r)

)
.

Hence for convexity, we only need to show for any convex Ṽ , the function V̂ defined

as

Ṽ (π) = max
r∈[r,r]

(1− δ)
[
1− πF h(r)− (1− π)F l(r)

]
×
[ πr

πr + (1− π)(1− r)
h+

(1− π)(1− r)
πr + (1− π)(1− r)

l − v
]

+ (1− δ)
[
1− πF h(r)− (1− π)F l(r)

]
V̂
( π(1− F h(r))

π(1− F h(r)) + (1− π)(1− F l(r))

)
+ (1− δ)

[
πF h(r) + (1− π)F l(r)

]
V̂
( πF h(r)

πF h(r) + (1− π)F l(r)

)
∀π ∈ [0, 1].

is also convex. Because the maximum of a class of convex functions is also convex,

to show Ṽ is convex, it suffices to show for each r ∈ [r, r], the objective function in

the above equation is convex in π. The convexity of the mapping π 7→ (1 − δ)
[
1 −

πF h(r) − (1 − π)F l(r)
][

πr
πr+(1−π)(1−r)h + (1−π)(1−r)

πr+(1−π)(1−r) l − v
]

is straightforward. The

convexity of the mappings π 7→
[
1−πF h(r)−(1−π)F l(r)

]
V̂
(

π(1−Fh(r))
π(1−Fh(r))+(1−π)(1−F l(r))

)
comes from

πλF h(r)

πλF h(r) + (1− πλ)F l(r)
=λ

πF h(r) + (1− π)F l(r)

πλF h(r) + (1− πλ)F l(r)

πF h(r)

πF h(r) + (1− π)F l(r)

+ (1− λ)
π̃F h(r) + (1− π̃)F l(r)

πλF h(r) + (1− πλ)F l(r)

π̃F h(r)

π̃F h(r) + (1− π̃)F l(r)

where π and π̃ are arbitrary market beliefs, λ ∈ (0, 1) and πλ = λπ + (1− λ)π̃.
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Lipschitz continuity: Notice V (π) ≥ Vm(π) for all π ∈ [0, 1] where

Vm(π) ≡ max
r∈[r,r]

(
1− πF h(r)− (1− π)F l(r)

)
×
[ πr

πr + (1− π)(1− r)
h+

(1− π)(1− r)
πr + (1− π)(1− r)

l − v
]

is the monopolist’s myopice value function. Moreover, we have V (1) = Vm(1). Be-

cause V is increasing and convex, to show V is Lipschitz continuous, it suffices to

show Vm is Lipschitz continuous.

C.2 Proofs for Section 3.3

The proof of Lemma 3.3.1 is based on Smith, Sørensen, and Tian (2015) and adapted

to the current setting. Let V be the monopolist’s value function. Let V d(π) be V ’s

right derivative if π ∈ [0, 1) and V ’s left derivative if π = 1. By Lemma 3.2.2, we

know V d exists. Moreover, we must have

V (π) = max
π̃

V d(π̃)(π̃ − π) + V (π̃) ∀π ∈ [0, 1]. (C.1)

For all π ∈ (0, 1) and q ∈ (q(π), q(π)), define

Ṽ (q, π) ≡(1− δ)
[
1−G(q|π)

][
qh+ (1− q)l − v]

+ δ
[
1−G(q|π)

]
V
(
πP (q, π)

)
+ δG(q|π)V

(
πN(q, π)

)
.

The following lemma shows that Ṽ (·, π) is absolutely continuous for all π ∈ (0, 1).

Lemma C.2.1. For any π ∈ (0, 1) and q ∈ (π, π), define

Ṽ1(q, π) ≡(1− δ)
[
1−G(q|π)

]
(h− l)− (1− δ)g(q|π)[qh+ (1− q)l − v]

− δ
[
V d(πP (q, π))(q − πP (q, π)) + V (πP (q, π))

]
g(q|π)

+ δ
[
V d(πN(q, π))(q − πN(q, π)) + V (πN(q, π))

]
g(q|π).

Then Ṽ (q, π) =
∫ q
q(π)

Ṽ1(q̃, π)dq̃.
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Proof. From Equation (C.1), we know

(1−G(q|π))V
(
πP (q, π)

)
=(1−G(q|π)) max

π̃

[
V d(π̃)(πP (q, π)− π̃) + V (π̃)

]
= max

π̃
(1−G(q|π))

[
V d(π̃)(πP (q, π)− π̃) + V (π̃)

]
= max

π̃

[
V d(π̃)

∫ q

q

q̃g(q̃|π)dq̃ − V d(π̃)π̃(1−G(q|π))

+ (1−G(q|π))V (π̃)
]

= max
π̃

∫ q(π)

q

[
V d(π̃)(q̃ − π̃) + V (π̃)]g(q̃|π)dq̃.

By Corollary 4 and Theorem 2 in Milgrom and Segal (2002), we know the term

(1−G(q|π))V
(
πP (q, π)

)
is absolutely continuous and its almost everywhere derivative

is −
[
V d(πP (q, π))(q − πP (q, π)) + V (πP (q, π))

]
g(q|π) Similarly, we can show that

G(q|π)V (πN(q, π)) is also absolutely continuous and its almost everywhere derivative

is
[
V d(πN(q, π))(q − πN(q, π)) + V (πN(q, π))

]
g(q|π). This proves the lemma.

Proof of Lemma 3.3.1. Let q∗ be a solution to the monopolist’s Bellman equation

(3.3). Assume q∗(π) > q∗(π) for some π < π. Then it is clear that [q∗(π), q∗(π)] ⊂

suppG( · |π) ∩ suppG( · |π). Fix q ∈ [q∗(π), q∗(π)]. Because the information structure

satisfies belief monotonicity, we know (1 − G(q|π))/g(q|π) ≥ (1 − G(q|π))/g(q|π).

Moreover, Lemma 7 in Smith, Sørensen, and Tian (2015) shows that

V d(πN(q, π))(q−πN(q, π))+V (πN(q, π)) ≥ V d(πN(q, π))(q−πN(q, π))+V (πN(q, π))

and

V d(πP (q, π))(q−πP (q, π))+V (πP (q, π)) ≤
[
V d(πP (q, π))(q−πP (q, π))+V (πP (q, π)).

Therefore we have

Ṽ1(q, π) ≥ g(q|π)

g(q|π)
Ṽ1(q, π) ∀q ∈ [q∗(π), q∗(π)].
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Because the information structure satisfies belief monotonicity, Proposition 1 and

Proposition 2 in Quah and Strulovici (2009) show that q∗(π) is a solution to the

Bellman equation 3.3 at π and q∗(π) is a solution to the Bellman equation 3.3 at π,

completing the proof.

Proof of Proposition 3.3.1. By Lemma 3.3.1 and Theorem 2.4.3 in Topkis (1998), we

know there exists an increasing selection from the optimal cut-off correspondence.

Let it be q∗. Then define σ∗M(ht) = q∗(π(ht))h + (1 − q∗(ht))l − v for all ht. Then

from Lemma 3.2.1, it is easy to check that (σ∗M , σ
∗
B) is a Bayesian perfect equilibrium

where σ∗B satisfies (3.1).

C.3 Proof of Proposition 3.4.1

The whole proof of Proposition 3.4.1 is divided into several lemmas.

Lemma C.3.1. If h > v > l and information structure is unbounded, then in any

equilibrium, both CP and CN are degenerate.

Proof. Because r = 0 and r = 1, the support of private posterior beliefs given any

market belief π ∈ (0, 1) is always [0, 1], i.e. suppG( · |π) = [0, 1] for all π ∈ (0, 1).

Hence if π /∈ {0, 1} and π ∈ CN , by definition of CN we know q∗(π) = 1 and

the current period payoff to the monopolist is 0. Because buyer’s behavior does

not provide any information, the market belief will remain the same in the next

period. This implies the monopolist will charge q∗(π) = 1 in all later periods, and

thus V (π) = 0. But by charging a price q′ < 1, the monopolist can always guarantee

himself a strictly positive payoff, a contradiction. Now assume π /∈ (0, 1) and π ∈ CP .

By definition of CP , we know q∗(π) = 0. Then because v > l, the actual price

charged by the monopolist is l − v < 0. By the same argument as above, we know

V (π) = l − v < 0, a contradiction.
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Lemma C.3.2. If h > v > l and information structure is bounded, then in any

equilibrium, CN is non-degenerate.

Proof. We show there exists π > such that [0, π] ⊂ CN . Choose any ε > 0 such that

v − δ
1−δε > l. Given ε > 0, choose any π ∈ (0, 1) such that

h
πr

πr + (1− π)(1− r)
+ l

(1− π)(1− r)
πr + (1− π)(1− r)

− v < − δ

1− δ
ε,

and

V
( πr

πr + (1− π)(1− r)

)
< ε.

Such π exists because v− δ
1−δε > l and V is continuous with V (0) = 0. Then for any

π ∈ (0, π),

V (π) = (1− δ)
[
1−G(q∗(π)|π)

][
hq∗(π) + l(1− q∗(π))− v

]
+ δ
[
1−G(q∗(π)|π)

]
V
(
πP (q∗(π), π))

)
+ δG(q∗(π)|π)V

(
πN(q∗(π), π)

)
≤ (1− δ)

[
1−G(q∗(π)|π)

][
hq(π) + l(1− q(π))− v

]
+ δ
[
1−G(q∗(π)|π)

]
V
(
q(π))

)
+G(q∗(π)|π)V

(
π
)

where q(π) = πr
πr+(1−π)(1−r) ≥ q∗(π) and the inequality comes from πP (q∗(π), π) ≤

q(π), πN(q∗(π), π) ≤ π and the monotonicity of V . Because π ∈ (0, π), by construc-

tion we know V (q(π)) < ε. Then the above inequality inequality implies

(1−G(q∗(π)|π))V (π)

≤(1− δ)
[
1−G(q∗(π)|π)

][
hq(π) + l(1− q(π))− v

]
+ δ
[
1−G(q∗(π)|π)

]
ε.

If 1−G(q∗(π)|π)) > 0, this inequality reduces to

V (π) ≤ (1− δ)
[
hq(π) + l(1− q(π))− v

]
+ δε < −δε+ δε = 0.

But we know this is impossible, because the monopolist can always guarantee a payoff

at least 0 by always setting the cut-off to πr/(πr + (1 − π)(1 − r)). Hence we must
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have 1−G(q∗(π)|π)) = 0. This means

q∗(π) =
πr

πr + (1− π)(1− r)
,

and thus π ∈ CN . This proves there exists π such that [0, π] ⊂ CN .

Lemma C.3.3. In any equilibrium q∗, if q(π) = πr
πr+(1−π)(1−r) does not maximize the

monopolist’s myopic payoff for market belief π ∈ (0, 1), then q∗(π) 6= q(π).

Proof. En route to a contradiction, assume there exists an equilibrium q∗ such that

q∗(π) = q(π) for some π ∈ (0, 1) but there exists q ∈ suppG( · |π) such that[
1−G(q|π)

][
qh+ (1− q)l − v

]
> q(π)h+ (1− q(π))l − v.

Because q∗(π) = q(π), there will be no learning in current and later periods. Hence

V (π) = q(π)h+ (1− q(π))l − v. But we have

V (π) = q(π)h+ (1− q(π))l − v

< (1− δ)
[
1−G(q|π)

][
qh+ (1− q)l − v

]
+ δ(q

[
π)h+ (1− q(π))l − v

]
= (1− δ)

[
1−G(q|π)

][
qh+ (1− q)l − v

]
+ δV (π)

≤ (1− δ)
[
1−G(q|π)

][
qh+ (1− q)l − v

]
+ δ
[
1−G(q|π)

]
V
(
πP (q, π)

)
+ δG(q|π)V

(
πN(q, π)

)
,

where the second inequality comes from the fact that V is convex. This show that q is

a profitable deviation at π, contradicting the assumption that q∗ is an equilibrium.

Lemma C.3.4. If h > v > l, information structure is bounded and f l(r) = 0, then

CP = {1}.

Proof. By Lemma C.3.3, we can show this by showing that for any π ∈ (0, 1), q(π) =

πr/
[
πr + (1− π)(1− r)

]
is not the monopolist’s myopic best response. The myopic

payoff to the monopolist for any q ∈ suppG( · |π) is[
1−G(q|π)

][
qh+ (1− q)l − v

]
.
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Using the fact that

G(q|π) =

∫
πr

πr+(1−π)(1−r)≤q

[
πfh(r) + (1− π)fL(r)

]
dr, (C.2)

fh(r)/f l(r) = r
1−r and f l is continuous, the derivative of the myopic payoff with

respect to q is

[
1−G(q|π)

][
h− l

]
− g(q|π)

[
qh+ (1− q)l − v

]
.

When q = q(π), this boils down to

[
h− l

]
− g(q(π)|π)

[
q(π)h+ (1− q(π))l − v

]
.

Using Equation (C.2), we can easily show g(q(π)|π) = 0 if f l(r) = 0. Hence the

derivative of the myopic payoff at q(π) is strictly positive, proving that q(r) is not a

myopic best response.

Lemma C.3.5. If h > v > l, information structure is bounded and f l(r) > 0, then

CP is non-degenerate.

Proof. We show that there exists π ∈ (0, 1) such that [π, 1] ⊂ CP . For any π ∈ (0, 1)

and r ∈ [r, r], let q(r, π) be the posterior belief about the high quality given market

belief π and private signal r, i.e.

q(r, π) ≡ πr

πr + (1− π)(1− r)
.

The whole proof of this lemma can be divided into four steps.

Step 1: For any r ∈ (r, r), there exists πr ∈ (0, 1) such that

(1− δ)
[
q(r, π)h+ (1− q(r, π)l − v

]
+ δV (π)

>(1− δ)
[
1−G(q(r′, π)|π)

][
q(r′, π)h+ (1− q(r′, π))l − v

]
+ δ
[
1−G(q(r′, π)|π)

]
V
(
πP (q(r′, π), π)

)
+ δG(q(r′, π)|π)V

(
πN(q(r′, π), π)

)
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for all r > r′, π > πr.

Because V is increasing, by simple algebra, it is easy to see that a sufficient

condition for this claim is that for any r ∈ (r, r), there exists πr ∈ (0, 1) such that

(1− δ)G(q(r, π)|π)
[
q(r, π)h+ (1− q(r, π)l − v

]
>(1− δ)

[
1−G(q(r, π)|π)

][
q(r, π)− q(r, π)

]
(h− l)

+ δ
[
1−G(q(r, π)|π)

][
V
(
πP (q(r, π), π)

)
− V

(
π
)]
.

But this is obviously true because the left hand side converges to (1−δ)F h(r)(h−v) >

0 and the right hand side converges to 0 as π goes to 1.

Step 2: For any r ∈ (r, r) and L > 0, there exists πLr such that for all π > πLr and

r′ ∈ [r, r]

g
(
q(r′, π)|π

)
> L

where g( · |π) is the density of G( · |π).

Using Equation (C.2), we can show

g(q|π) =
π(1− π)2

(1− q)
[
(1− π)q + π(1− q)

]2fL( (1− π)q

(1− π)q + π(1− q)

)
.

Hence

g
(
q(r′, π)|π

)
=

(
πr′ + (1− π)(1− r′)

)2

π(1− π)(1− r′)
f l(r′) ≥ M

π(1− π)
,

where

M = min
r′∈[r,r]

(
πr′ + (1− π)(1− r′)

)2

(1− r′)
f l(r′).

Because f l(r) > 0, f l has full support and is continuous, M > 0. Therefore, for any

L > 0, there exists πLr such that

g
(
q(r′, π)|π

)
> L ∀r′ ∈ [r, r].

Step 3: For any r ∈ (0, 1) and any ε > 0, there exists πεr such that

πP
(
q(r′, π), π)− π ≤ εG

(
q(r′, π)|π

)
∀r′ ∈ [0, r], π ∈ [πεr , 1].
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Notice

πP
(
q(r′, π), π

)
− π = πP

(
q(r′, π), π

)
− πP

(
q(r, π), π

)
=

∫ q(r′,π)

q(r,π)

∂πP (q̃, π)

∂q̃
dq̃

=

∫ q(r′,π)

q(r,π)

πP (q̃, π)− q̃
1−G(q̃|π)

g(q̃|π)dq̃.

We have for all q̃ ∈ [q(r, π), q(r, π)],

πP (q̃, π)− q̃
1−G(q̃|π)

≤ q(r, π)− q(r, π)

1−G
(
q(r, π)|π

) → 0,

as π → 1. Therefore, for any r ∈ (0, 1) and ε > 0, there exists πεr ∈ (0, 1) such that

πP
(
q(r′, π), π

)
− π ≤ ε

∫ q(r′,π)

q(r,π)

g(q̃|π)dq̃ = εG
(
q(r′, π), π

)
, ∀r′ ∈ [r, r], π ∈ [πεr , 1].

Step 4: There exists π ∈ (0, 1) such that in any equilibrium q∗, q∗(π) = q(r, π) for all

π ∈ [π, 1].

Fix any arbitrary r ∈ (r, r). By Lemma 3.2.2, we know there exists some a > 0

such that |V (π) − V (π′)| ≤ a|π′ − π| for all π′, π ∈ [0, 1]. Pick any ε > 0 such that

h − v − δ
1−δaε > 0. Pick any L > 0 such that L(h − v − δ

1−δaε) > 2(h − l). Let

π = max{πr, πLr , πεr , π̃} where πr, π
L
r , π

ε
r are from Steps 1, 2 and 3 respectively and

π̃ ∈ (0, 1) is chosen so that q(r, π)h + (1 − q(r, π))l − v − δ
1−δaε >

1
2
(h − v − δ

1−δaε)

for all π > π̃.

From Step 1, we know for any π > π, q∗(π) < q(r, π). We now show q∗(π) =

q(r, π). Fix π ∈ [π, 1] and pick any r′ ∈ (r, r]. By construction, we know

g
(
q̃|π)

)[
q(r, π)h+ (1− q(r, π)l − v − δ

1− δ
aε
]
> h− 1 ∀q̃ ∈ [q(r, π), q(r′, π)].

Therefore∫ q(r′,π)

q(r,π)

[
g
(
q̃|π)

)[
q(r, π)h+ (1− q(r, π))l − v − δ

1− δ
aε
]
− (h− 1)

]
dq̃ > 0,
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or equivalently

(1− δ)G
(
q(r′, π)|π

)[
q(r, π)h+ (1− q(r, π))l − v

]
>(1− δ)

[
q(r′, π)− q(r, π)

]
(h− l) + δG

(
q(r′, π)|π

)
aε

≥(1− δ)
[
1−G

(
q(r′, π)|π

)][
q(r′, π)− q(r, π)

]
(h− l)

+ δ
[
1−G

(
q(r′, π)|π

)]
a
[
πP
(
q(r′, π), π)− π

]
.

But this will imply

(1− δ)
[
q(r, π)h+ (1− q(r, π))l − v

]
+ δV (π)

>(1− δ)
[
1−G

(
q(r′, π)|π

)][
q(r′, π)h+ (1− q(r′, π))l − v

]
+ δ
[
1−G

(
q(r′, π)|π

)]
V
(
πP (q(r′, π), π)

)
+ δG

(
q(r′, π)|π

)
V
(
πN(q(r′, π), π)

)
,

Because this inequality holds for all r′ ∈ (r, r], we know q∗(π) = q(r, π), completing

the proof.
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