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Regulation of Cd8 T Cell Dysfunction During a Chronic Viral infection

Abstract
After an acute infection or vaccination, antigen-specific CD8 T cells undergo memory differentiation once the
pathogen has been completely cleared. Memory CD8 T cells acquire cardinal properties that allow them to
confer long-term protection, including antigen-independent homeostasis and self-renewal, rapid reacquisition
of effector functions and the ability to mount a rapid, potent secondary response. During a chronic viral
infection, however, the pathogen is not cleared, and this appears to drive antigen-specific CD8 T cells down
an altered path of differentiation. During chronic viral infection, antigen-specific CD8 T cells become
functionally exhausted, in which they progressively lose effector function and upregulate the expression of
multiple inhibitory receptors. Specific memory defects also occur, as exhausted CD8 T cells do not use the
IL-7/IL-15 pathway efficiently. Antigen load and lack of CD4 help correlate to the severity of dysfunction,
and gene expression studies show that the differentiation of exhausted CD8 T cells may be regulated by a
unique transcriptional program. However, the exact pathways and mechanisms that directly regulate the
differentiation of dysfunctional CD8 T cells during chronic viral infection are not clear. In this work, we
examine transcriptional, homeostatic and ‘inflammatory’ vs. antigenic regulation of functional exhaustion.
Through a system of partial and total conditional deletion, we identify the transcriptional repressor Blimp-1 as
an important regulator of functional exhaustion and repressor of memory differentiation. We also describe a
key memory property defect and the mechanism by which exhausted antigen-specific CD8 T cells are
maintained during chronic infection. Lastly, we show that prolonged, pathogen-induced ‘inflammation’ alone
can alter memory CD8 T cell differentiation, while other signals such as antigen may be necessary to lead to
the loss of effector function and high expression of inhibitory receptors that are hallmarks of functional
exhaustion. Together, we have identified multiple pathways at different levels of regulation that further our
understanding of how functional exhaustion may occur during chronic viral infection.
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ABSTRACT 

 

REGULATION OF CD8 T CELL DYSFUNCTION DURING A CHRONIC VIRAL 

INFECTION 

Haina Shin 

E. John Wherry, Ph.D. 

 

 After an acute infection or vaccination, antigen-specific CD8 T cells 

undergo memory differentiation once the pathogen has been completely cleared.  

Memory CD8 T cells acquire cardinal properties that allow them to confer long-

term protection, including antigen-independent homeostasis and self-renewal, 

rapid reacquisition of effector functions and the ability to mount a rapid, potent 

secondary response.  During a chronic viral infection, however, the pathogen is 

not cleared, and this appears to drive antigen-specific CD8 T cells down an 

altered path of differentiation.  During chronic viral infection, antigen-specific CD8 

T cells become functionally exhausted, in which they progressively lose effector 

function and upregulate the expression of multiple inhibitory receptors.  Specific 

memory defects also occur, as exhausted CD8 T cells do not use the IL-7/IL-15 

pathway efficiently.  Antigen load and lack of CD4 help correlate to the severity of 

dysfunction, and gene expression studies show that the differentiation of 

exhausted CD8 T cells may be regulated by a unique transcriptional program.  

However, the exact pathways and mechanisms that directly regulate the 

differentiation of dysfunctional CD8 T cells during chronic viral infection are not 
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clear.  In this work, we examine transcriptional, homeostatic and ‘inflammatory’ 

vs. antigenic regulation of functional exhaustion.  Through a system of partial and 

total conditional deletion, we identify the transcriptional repressor Blimp-1 as an 

important regulator of functional exhaustion and repressor of memory 

differentiation.  We also describe a key memory property defect and the 

mechanism by which exhausted antigen-specific CD8 T cells are maintained 

during chronic infection.  Lastly, we show that prolonged, pathogen-induced 

‘inflammation’ alone can alter memory CD8 T cell differentiation, while other 

signals such as  antigen may be necessary to lead to the loss of effector functon 

and high expression of inhibitory receptors that are hallmarks of functional 

exhaustion.  Together, we have identified multiple pathways at different levels of 

regulation that further our understanding of how functional exhaustion may occur 

during chronic viral infection. 
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Chapter 1 

Introduction 

 

Immunological memory: A (brief) historical perspective. 

 The concept of immunological memory has existed for a long time, 

stretching back over two thousand years to the plague of Athens during the 

Peloponnesian War.  The historian Thucydides noted that in the time of this 

terrible disease, the most effective caregivers were those that had been 

previously infected and recovered, “for the same man was never attacked twice – 

at least not fatally” (1).  About a millennia later, the Chinese and Indians first put 

this concept to practice through a crude form of vaccination known as variolation 

(2).  In an attempt to protect against the scourge of smallpox, material from the 

pustules of infected patients was introduced into healthy individuals, who were 

subsequently protected from disease (2).  Despite the significant morbidity and 

mortality associated with variolation and the occasional epidemics that the 

practice caused, it remained popular until the observations of Edward Jenner (3).  

The birth of modern vaccinology is credited to Jenner, based on experiments that 

showed that innoculation of a milder disease (cowpox) would protect from a more 

severe but related infection (smallpox) (3).  

 Despite this breakthrough in disease prevention, the immunological and 

microbiological basis behind vaccination was unknown.  It was not until the 

establishment of the germ theory of disease and the discovery of multiple 
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microbes that the cause of infection was known (2, 4).  Later, the observation 

that immunity could be passively transferred through sera (antibodies) laid the 

immunological groundwork for the study of vaccines (2).  Although recognition of 

cellular immunity did not occur until well after the discovery of humoral immunity 

(5), the field of immunology was rapidly becoming very effective at combating 

many major public health threats. 

 By 1962, progress in the study of immunology, the ability to develop new 

vaccines and emergence of antibiotics caused the famed virologist and 

immunologist Sir McFarlane Burnet to declare that “…almost all the major 

practical problems of dealing with infectious disease had been solved” and that 

“The late 20th century will be the witness to the virtual elimination of infectious 

disease as a significant factor in social life” (6).  This, however, has not proven to 

be the case.  Rather than seeing the end of infectious disease, the late 20th 

century has been witness to the rise of enormous new problems, including super-

resistant pathogens and the HIV/AIDS pandemic.   

 At present, almost thirty years after the onset of the pandemic, over 33 

million people suffer from HIV/AIDS, with millions more infected each year (7).  

Hundreds of millions suffer from other chronic viral infections such as HCV and 

HBV (8).  While vaccines for HBV exist (8) and antiviral medications for these 

infections are available, their limited efficacy, uneven distribution and expense 

make it imperative to discover vaccination strategies and immunotherapies that 

will help relieve disease burden, particularly in the developing world.  Although 

great advances have been made in understanding the biology and pathogenesis 
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of infections such as HIV (9), all of the immunological determinants that are 

required in order to successfully control these infections have not yet been 

defined.  One parameter that appears to correlate with good viral control is potent 

cytotoxic T cell responses (10-13) .  However, during many human chronic viral 

infections, as well as animal models of chronic viral infection, virus-specific CD8 

T cells often lose their effector function and become functionally exhausted (14).  

The mechanisms that regulate functional exhaustion are not well understood, 

and the studies that lie herein will attempt to elucidate some of the the cell-

intrinsic and –extrinsic factors that regulate the differentiation of dysfunctional T 

cells during chronic viral infection. 

 

An overview of the adaptive immune system. 

 The immune system consists of two major arms – the innate immune 

system, and the adaptive immune system.  Lymphocytes within the adaptive 

immune system each express a unique receptor, and all together they create a 

broad repertoire of specificities (15, 16).  The defining characteristic of the 

adaptive immune system is its ability to use this broad repertoire to ‘adapt’ 

immune responses to individual pathogens by the process of clonal selection (15, 

16).  Another key characteristic of the adaptive immune system is immunological 

memory – the ability to ‘remember’ previous encounters with a particular 

pathogen (17).  The adaptive immune system is primarily composed of two cell 

types: T cells and B cells.  While B cells provide the humoral component of 
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adaptive immunity and are critical for most current vaccines, this study will focus 

on T cells, and specifically, CD8 T cells. 

 T cells, like all leukocytes, are generated from hematopoeitic stem cells 

(HSCs).  HSCs give rise to a number of progenitor cells, including a thymic 

settling progenitor that seeds the thymus and gives rise to an early thymic 

progenitor (18).  Within the thymus, thymocytes go through three distinct phases: 

double negative (CD4-CD8-, DN), double positive (CD4+CD8+, DP)  and single 

positive (CD4+CD8- or CD4-CD8+, SP) (18).  Expression of a functional pre-T 

cell receptor (TCR) by DN thymocytes leads to the DP stage (19), where 

successful V(D)J recombination of the TCRα chain leads to the expression of a 

TCR by DP thymocytes (20).  To pass from the DP to the SP stage, thymocytes 

must successfully go through positive selection, which determines the 

functionality of the TCR by its ability to recognize self-peptide bound to MHC 

class I (CD8 SP) or class II (CD4 SP), and the lineage of the future T cell is 

established (20).  DP thymocytes must also undergo negative selection, a 

process that mediates central tolerance and removes most self-reactive T cells 

from the repertoire (21). 

 Once in the periphery, naïve T cells are maintained by the cytokine IL-7 

and contact with the appropriate self-peptide/MHC complex (22).  Upon infection 

or vaccination, T cells become activated when they encounter a mature antigen-

presenting cell (APC) that carries a pathogen-derived peptide bound to an MHC 

molecule that is recognized by their specific TCR (signal 1).  Costimulatory 

signals (signal 2), such as those received from molecules like CD28, CD27, 
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OX40 and others (23), and a ‘signal 3’ provided by inflammation generally leads 

to a productive T cell response (24-26).  Once activated, the inflammatory 

environment can reinforce the type of response that will occur (27, 28).  Other 

signals, such as those received through toll-like receptors (TLRs) have been 

shown to play a role in the activation and proliferation of T cells (29, 30). 

CD4 and CD8 T cells perform distinct functions during immune responses.  

CD4 T cells, or T helper (Th) cells can determine the type of response that will be 

made to a pathogen.  The heterogeneity within the CD4 T cell population was 

first defined by the cytokines secreted by Th1 (IFNγ and IL-2) and Th2 cells (IL-4 

and IL-5) (31).  Ensuing work with Leishmania major infection showed that the T 

helper subsets could be further distinguished by the ability to protect against or 

exacerbate disease (32).  Subsequently, Th1 responses were designated as 

protective against intracellular pathogens, while Th2 responses were shown to 

be protective against helminths and extracellular pathogens (27).  More recently, 

a novel lineage has joined the T helper paradigm (33-35).  Called Th17 for the 

production of IL-17, this subset plays a an important role in host defense and 

promotes inflammation during autoimmune disorders (36).  These three subsets, 

along with regulatory T cells (Treg), were thought to be distinct, mutually 

exclusive lineages (28).  Th1, Th2, Th17 and Treg cells all express definitive 

transcription factors, and interactions between these transcription factors can 

lead to the repression of other lineages (28).  Furthermore, fully differentiated 

subsets of T helper cells can undergo chromatin remodeling to reinforce gene 

expression and silence genes of other lineages (37).  However, recent studies 
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with Tregs and Th17 cells show that the CD4 T cell lineages may be more plastic 

than originally thought (38).  In addition to the direct response of CD4 T cells 

against pathogens, T helper cells can condition DCs (39-41) and also provide 

help to both B cells (42) and CD8 T cells (43). 

CD8 T cells are cytotoxic lymphocytes (CTLs) that kill infected target cells.  

CD8 T cells can respond to both intracellular and extracellular pathogens as well 

as cancers (44).  CD8 T cells, like CD4 T cells, can differentiate into T cytotoxic 

type I (Tc1) cells, which secrete IFNγ and TNFα, and T cytotoxic type II (Tc2) 

cells, which produce IL-4, IL-5 and IL-10 (44, 45).  Although Tc2 cells have been 

found in situations of chronic infections as well as cancer (46-48), and can be 

generated in vitro (49), their role in the immune response has not been as well 

explored as Tc1.  CTLs are capable of directly lysing infected target cells using 

the cytotoxic granules granzyme and perforin (50), although in some murine 

cancer models Tc2 cells have been shown to be less effective at utilizing this 

pathway (51).  CTLs may also induce apoptosis of target cells through Fas/FasL 

interactions (50).  More recently, it has been shown that CD8 T cells can also 

produce IL-17, with or without genetic manipulation, although some Tc17 cells do 

not appear to have any cytolytic capacity (52-54). 

 Once activated, CD8 T cells undergo a massive clonal burst during which 

naïve precursors differentiate into effector CD8 T cells and increase in number by 

several orders of magnitude (55-57).  For CTLs, the size of the clonal burst can 

be programmed within a very short priming phase (58, 59).  Within the effector 

population, there is heterogeneity that can broadly be defined as cells that will 
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eventually die, and those that will not.  These two subsets are terminally 

differentiated effector CD8 T cells and memory precursors (60, 61).  Both 

subsets are equally cytotoxic have similar effector gene expression patterns, but 

terminally differentiated effector CD8 T cells are characterized by their high 

expression of KLRG-1, low expression of the IL-7Rα chain (CD127), and high 

levels of the transcription factor Tbet, while memory precursors are KLRG-

1lo/int,CD127hi, Tbetlo and can produce high levels of IL-2 (60-63).  Memory 

precursor cells survive and differentiate into a population of long-lived memory 

CD8 T cells (64).  Unlike memory precursors, many terminally differentiated 

effector CD8 T cells are destined to die during or shortly after the contraction 

phase (60, 61), although a small percentage does survive, most likely by IL-15 

signaling (60, 65).  These cells appear form a small pool of ‘terminal’ effector 

memory CD8 T cells with memory properties that are less developed than 

effector memory CD8 T cells that arise from memory precursors (60, 65, 66). 

It is not yet clear how the CD8 T cell effector subsets are generated, and 

there is also some contention as to whether there is a linear differentiation 

relationship between effector and memory CD8 T cells (66-69).  Several models 

have been set forth to explain the how these two subsets are formed, and thus 

far a model of progressive differentiation appears to encompass the current data 

most effectively (66).  In this model, two lineages are formed upon activation 

through differences in TCR signal strength and length of stimulation (60, 61, 70-

72). Asymmetric division has been proposed as a mechanism to initiate 

heterogeneity at the activation stage, where one single cell can give rise to two 
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daughter cells that are of different fates (72).  Although the subsets are formed 

early, they remain plastic as KLRG-1lo cells retain the ability to give rise to KLRG-

1hi cells (60, 61).  The size of each subset is likely determined not only by TCR 

signals, but also by the strength and length of exposure to inflammation (60, 61).  

While this model appears to best describe the events after an acute infection, it is 

possible that other models are more relevant in other situations, such as chronic 

infection or non-infectious immunizations (66, 73).  After a non-virulent 

immunization with DCs pulsed with an L. monocytogenes (LM)-derived peptide, 

the presence of memory-phenotype antigen-specific CD8 T cells have been 

observed at the peak of the CD8 T cell response (68).  Furthermore, these 

memory-phenotype antigen-specific CD8 T cells provide comparable protective 

immunity to antigen-specific memory CD8 T cells generated after acute LM 

infection (68).  It has also been shown that CD8 T cells treated in vitro with IL-15 

or low doses of IL-2 acquire a memory phenotype, suggesting that these cells do 

not need to bypass the effector stage to become memory (67).  Thus, while 

memory CD8 T cells may be generated through mutliple different pathways, this 

work will focus on the linear model in which memory CD8 T cells differentiate 

from effector CD8 T cells.  

 

Lymphocytic choriomeningitis virus model of infection. 

 Lymphocytic choriomeningitis virus, or LCMV, is an arenavirus whose 

natural reservoir is Mus musculus (74).  Although a natural mouse pathogen, 

LCMV is known to cause disease in humans, mostly from exposure to infected 
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rodents (75).  LCMV is a non-cytopathic virus that causes a systemic infection, 

and almost all of the tissue damage associated with the infection is due to 

immunopathology (76).  Although many genetic variants of this virus exist, the 

strains that are used for this study are LCMV Armstrong (Arm) and LCMV clone 

13.  

 Infection of  H-2(b) restricted C57BL/6 mice with LCMV induces a strong 

Tc1 response, and immunity to LCMV is mediated almost entirely by CD8 T cells 

(77-80).  Accordingly, LCMV Arm infection elicits an enormous CD8 T cell 

response which peaks around day 8 post infection (55, 56).  Of the CD8 T cells, 

85-95% are CD44hi, and almost all of the CD44hi CD8 T cells are LCMV-specific 

(81).  Two immunodominant epitopes, DbNP396 and DbGP33, as well as other 

epitopes including KbGP34, DbGP276 and KbNP205, comprise approximately 

80% of the LCMV-specific response, and are derived from the glycoprotein (GP) 

and nucleoprotein (NP) of the virus, which are products of the S-RNA segment of 

LCMV (81-83).  Recently, epitopes derived from the L-RNA segment of the 

LCMV genome were identified, and these L epitopes roughly account for the 

remaining 20% of the LCMV-specific CD8 T cell response (82).  Infection with 

LCMV Arm lasts for 8-10 days, after which the virus is completely cleared. 

 LCMV clone 13 is a genetic variant of LCMV Arm which was isolated from 

the spleens of carrier mice that were neonatally infected with LCMV Arm (84).  

While both LCMV Arm and clone 13 infect fibroblasts and macrophages, neither 

infects lymphocytes well (85).  Two amino acid changes in LCMV clone 13 

account for its persistence after infection.  One mutation in the glycoprotein (F-
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>L, position 260) provides LCMV clone 13 with greater affinity to its receptor, α-

dystroglycan, which allows the virus to infect a greater number of macrophages 

as well as infect DCs, something LCMV Arm is unable to do (85-88).  Another 

amino acid change in the viral polymerase (K->Q, position 1079) increases the 

viral replication rate, leading to greater virus yield after infection (85).  These two 

mutations lead to different patterns of dissemination, as LCMV Arm remains in 

the red pulp of the spleen, while LCMV clone 13 also invades the white pulp (87). 

 Infection of C57BL/6 mice with LCMV clone 13 leads to a chronic infection 

in which multiple tissues become infected.  LCMV clone 13 virus can be found in 

the spleen and liver for approximately one month after infection, in the serum for 

two to three months and in the kidney and brain for the life of the animal (89).  

LCMV clone 13 infection can also invade the bone marrow, lymph nodes and 

thymus, which leads to central tolerance early during chronic LCMV infection and 

in neonatally infected carrier mice (89).  LCMV clone 13 also elicits a strong CD8 

T cell response with kinetics that are similar to that of LCMV Arm (89).  Both 

LCMV Arm and clone 13 present the same CD8 T cell epitopes, which allows a 

direct comparison of CD8 T cell responses during infection (85, 86).  However, 

the overall CD8 T cell response during LCMV clone 13 is diminished compared 

to LCMV Arm due to the deletion of certain epitope-specific populations, resulting 

in mild lymphopenia (89-92).  Regardless, the availability and similarity of these 

two strains make LCMV a powerful tool in the study of CD8 T cell respones to 

chronic viral infections. 
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Antigen-specfic memory CD8 T cell differentiation after acute infection or 

vaccination. 

I. Generation of memory CD8 T cells. 

After an acute infection or vaccination, antigen-specific CD8 T cells 

become activated and differentiate into a heterogeneous pool of effector CTLs, 

as described above.  During the contraction phase, 90-95% of the effector 

population dies, and the remaining 5-10% survive to differentiate into memory 

CD8 T cells (66).  Apoptosis of CD8 T cells during this phase is mediated by the 

molecules such as Fas and Bim (93, 94).  After LCMV Arm infection, although 

memory precursors express high levels of CD127, expression of this marker is 

independent of IL-7 and does not confer any selective advantages (63, 95).  

Furthermore, memory precursors that are present within the effector population 

(d8 p.i.) are not yet able to respond to IL-7 and IL-15 signals in vivo (64).  It is 

important to note that memory differentiation of CTLs after acute infection occurs 

only after the infection has been completely cleared. 

As they differentiate, memory CD8 T cells acquire properties that allow 

them to confer long-term protection. Memory CD8 T cells have a resting 

phenotype and downregulate the expression of effector molecules, but upon 

restimulaton, can rapidly reacquire their effector function, including production of 

antiviral cytokines and cytolysis (43, 96-99).  In natural settings, the immune 

system is called upon to respond to a number of different infections.  It was 

originally thought that the size of the total memory CD8 T cell pool was 

constrained, and that with each new, heterologous infection, previously existing 
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memory populations would undergo attrition to make ‘room’ for new specificities 

(100, 101).  However, recent work by Vezys et al suggests that rather than 

undergo attrition, the memory CD8 T cell pool appears to increase in size to 

accommodate new specificities, and that previously existing populations remain 

intact (102).  It is not clear why this discrepancy has been observed, but could 

have important implications for vaccination strategies. 

Various components are required to generate functional memory CD8 T 

cells.  One key factor that is required for the proper differentiation of memory 

CD8 T cells is CD4 T cell help.  CD8 T cell responses to primary challenges are 

independent of CD4 T cell help, provided that sufficient inflammation is available 

to induce the maturation of DCs (43).  However, in the absence of CD4 T cells, 

memory CD8 T cells are deficient in secondary responses and do not appear to 

mature over time (103-105).  While the necessity of CD4 T cells in establishing a 

functional memory CD8 T cell population has been well described, the exact 

mechanism by which CD4 T cells provide help is still unclear.  Suggested 

mechanisms include CD40/CD40L interactions, via DCs or directly between CD4 

and CD8 T cells (39-41, 106), and the regulation of TRAIL expression on CD8 T 

cells (107).  IL-2 is required during the priming of CD8 T cells, so it is also 

possible that CD4 T cells may provide some help through early IL-2 production 

(108).  However, depending on the model of used to generate memory CD8 T 

cells, CD40/CD40L interactions and absence of TRAIL have been shown to be 

dispensible (109-112).  Furthermore, it is unclear as to when CD4 T cells provide 

help.  While originally thought to be necessary for the early ‘programming’ of 
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memory CD8 T cells (104, 113), it seems that CD4 T cells may be required for 

the mainenance, rather than the ‘programming’ of memory CD8 T cells (105).  

Also, while it is not clear what CD4 help imparts to a differentiating CTL, studies 

have shown that CD4 help may help ‘imprint’ a memory program through 

chromatin remodeling (114, 115).  Aside from CD4 help, certain inflammatory 

signals have been shown to be important for the generation of memory CD8 T 

cells.  Along with IL-2, depending on the priming agent, both IL-12 and type I 

interferons can support the differentiation of memory CD8 T cells (116, 117). 

 

II. Maintenance of memory CD8 T cells. 

 A major function of memory CD8 T cells is to provide protection against 

reinfection long after the primary challenge has been been encountered.  In order 

to do so, a memory CD8 T cell population must be stably maintained long-term.  

Original observations suggested that persistent antigen or interaction with MHC 

was necessary in order to maintain protective immunity (17, 118), but 

experiments in MHC class I knockout animals and adoptive transfer models have 

shown that antigen or interaction with MHC is not required (119, 120).  Upon the 

observation that adjuvants alone could drive transient, bystander proliferation of 

memory CD8 T cells (121), it was discovered that type I interferons induced the 

production of IL-15, which in turn acted directly on memory CD8 T cells (122).  

Memory CD8 T cells rely on the homeostatic cytokines IL-7 and IL-15 for their 

survival and self-renewal (73, 123, 124). IL-7 appears to provide a survival 

signal, most likely through the upregulation of pro-survival molecules such as 
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Bcl-2 (125, 126).  IL-15 mediates the slow, steady homeostatic proliferation of 

memory CD8 T cells (127, 128) which preferentially occurs in the bone marrow 

(129). 

 Since the self-renewal program that memory CD8 T cells undergo is 

reminiscent of stem cells, there has been interest in determining whether 

memory CD8 T cells possess any other stem-cell like qualities.  Unique 

populations of memory CD8 “stem cell” populations have been identified (130, 

131) in different inflammatory settings.  Comparisons of transcriptional profiles 

show that memory CD8 T cells are enriched for molecules that are also 

expressed by HSCs (132).  Expression of Bmi-1, a transcriptional repressor 

expressed by HSCs to prevent senescence, is upregulated in KLRG-1lo but not 

KLRG-1hi activated CTLs (133).  While intriguing, further studies are necessary to 

determine whether the ‘memory stem cell’ actually exists in memory populations 

generated after infection. 

 

III. Heterogeneity in the memory CD8 T cell population. 

Memory CD8 T cells continue to differentiate over an extended period of 

time, as a pool of less mature effector memory CD8 T cells (CD62Llo, CCR7lo; 

TEM) gradually converts to a population of central memory CD8 T cells (CD62Lhi, 

CCR7hi; TCM) (134, 135), although not all TEM may differentiate to TCM.  Some 

evidence suggest that a more terminally differentiated population of TEM may 

arise, perhaps from short-lived effector CD8 T cells (60, 65, 66), and that these 

TEM may never convert to TCM (136).  The lifespan of these ‘terminally 
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differentiated’ TEM, the role they may play in providing protective immunity and 

whether they are generated after different types of acute infections is not yet 

clear. 

As the conversion from TEM to TCM occurs, memory CD8 T cells also 

become CXCR3hi, CD43lo and CD27hi, indicating a more mature and less 

activated state (137).  Due to their differences in the expression of lymphoid 

homing markers, TEM and TCM also occupy different anatomical niches, with TEM 

localizing primarily in non-lymphoid tissues and TCM localizing in lymphoid organs 

(134, 138).  Functionally, TCM produce higher levels of IL-2 than TEM, have a 

higher proliferative capacity, may produce more antiviral cytokines such as TNFα 

and undergo more efficient homeostatic turnover (135, 139).  Upon secondary 

challenge, the protective capacity of TEM vs. TCM appears to depend on the route 

of infection and dissemination of the pathogen (i.e. systemic vs. local) (140, 141).  

Interestingly, it has also been shown that regardless of the subset, memory CD8 

T cells that have been ‘rested’ for a longer period of time after a primary 

challenge respond better than memory CD8 T cells that have been ‘rested’ for a 

short period of time (137, 142), indicating that maturation of the memory CD8 T 

cell population does not necessarily have to be accompanied by a phenotypic 

shift.    

While it is clear that the memory CD8 T cell population is dynamic, there is 

some controversy over the origins of the central and effector memory subsets.  

While considerable evidence suggests that the conversion from TEM to TCM is a 

linear path of differentiation (68, 135, 143, 144), some have suggested that the 
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two lineages may arise separately depending on the frequency of naïve 

precursors (136, 145, 146).  However, it has also been shown that many factors, 

including the strength of stimulation, clonal competition (143) and length of 

infection (68, 147) can affect the differentiation of TEM to TCM, and thus 

differences in precursor frequency may impact the rate of conversion (i.e. 

increasing precursor frequency leads to faster conversion). 

 

IV. Transcriptional control of memory differentiation. 

 The differentiation of CTLs from effector to memory CD8 T cells is 

accompanied by changes in gene expression (64).  Several transcription factors 

have been shown to play key roles in regulating this process.  The T-box factors 

Tbet and Eomesodermin (Eomes) have been shown to play critical roles in 

regulating CD122 expression and thus, IL-15 responsiveness in memory CD8 T 

cells (148).  Deletion of Tbet also corrects the defective TCM differentiation 

observed in memory CTLs that have not received CD4 help (149).  Blimp-1, a 

zinc-finger containing repressor, has been shown to play an important role in the 

activation and differentiation of CTLs.  Inactivation of Blimp-1 resulted in the 

improper activation of naïve T cells, which led to the accumulation of effector and 

memory-like populations (150, 151).  Both Tbet and Blimp-1 have been 

implicated in the fate decision between terminally differentiated effector and 

memory precursor after acute infection (Rutishauser et al, Immunity, in press; 

Kallies et al, Immunity, in press).  Other transcription factors such as Bcl6 and its 

homologue Bcl6b (152, 153), Id2 (154) and Bmi-1 (133) have also been shown to 
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play a role in the differentiation of memory CD8 T cells.  As more transcription 

factors are identified, it will be important to establish a molecular identity for 

memory CD8 T cells in order to better understand what happens when 

differentiation occurs improperly, as during chronic infections. 

 

CD8 T cell exhaustion during chronic infections. 

I. Properties of functionally exhausted CD8 T cells. 

 Proper memory differentiation occurs after acute infection or vaccination in 

the complete absence of antigen.  During chronic infection, however, the antigen 

persists, and this appears to have a profound impact on the differentiation of 

antigen-specific CD8 T cells.  First observed in the LCMV system, it was noted 

that ‘functionally exhausted’ antigen-specific CD8 T cells during chronic infection 

persisted but lost the ability to produce effector cytokines, and that the phenotype 

was more profound in the absence of CD4 help (90).  Subsequently, it was found 

that chronic infection could impact multiple properties of antigen-specific CTLs 

(89, 155), and that the loss of effector function occurred in a progressive manner 

(89, 155, 156).  IL-2 production, cytotoxicity and a high proliferative capacity are 

lost early during functional exhaustion, followed by TNFα production and finally, 

IFNγ production (89, 155, 156).  In extreme cases where antigen burden is 

particularly high, some antigen-specific CD8 T cells are physically deleted from 

the response (156, 157).  Functional exhaustion of CD8 T cells is not limited to 

chronic LCMV, as it has been described in other murine models of chronic 

infection such as polyoma virus, Friend’s leukemia virus, adenovirus and mouse 
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hepatitis virus (14).  Observations also extend to human chronic infections, 

including HIV, HCV and HBV and human T lymphotrophic virus (14).  It should be 

noted, however, that not all persistent infections lead to functional exhaustion.  

Persistent but latent infections such as CMV, EBV in humans and murine γHV 

leads to CD8 T cells that are dysfunctional but have intact effector functions (14). 

  One key characteristic of functionally exhausted antigen-specific CD8 T 

cells is their high expression of multiple inhibitory receptors (158-161).  A strong 

correlation has been shown between the amount and number of inhibitory 

receptors co-expressed per cell and the severity of dysfunction (160).  One 

inhibitory pathway that has received considerable attention is the PD-1/PD-L 

pathway.  First described within the LCMV system, PD-1 is highly expressed on 

antigen-specific CD8 T cells during chronic viral infection (162), and expression 

can be divided into two subsets of PD-1int and PD-1hi cells (163).  In vivo antibody 

blockade of this pathway led to selective re-invigoration of the PD-1int subset of 

CD8 T cells (163), resulting in vigorous proliferation and enhanced viral control 

(160, 162, 163).  It should be noted that all activated CD8 T cells upregulate PD-

1, but expression levels never reach that of exhausted CD8 T cells (162, 163).  

Since the initial observation, PD-1 expression on antigen-specific CD8 T cells 

has been noted during HIV (164, 165), HCV (166), and HBV (167), as well as 

during SIV (168).  PD-1 expression correlated directly with viral load and 

inversely with CD4 counts in HIV patients, and PD-1 levels declined in patients 

treated with HAART (164).  During HCV infection, CD8 T cells in the blood 

expressed less PD-1 than those found in the liver, suggesting that tissue-specific 

18



expression of the inhibitory receptor may be dependent on viral load (169, 170).  

In vivo blockade in an SIV model led to increased proliferation and improved 

effector function of virus-specific CD8 T cells (162, 171).  In vitro blockades show 

that PD-1 directly mediates the survival of exhausted CD8 T cells, and that 

increased proliferation and improved effector function are likely secondary effects 

(163, 172).  Although the role inhibitory receptors play in the initiation of 

functional exhaustion is uncertain, it is clear that they regulate multiple, distinct 

aspects of T cell dysfunction.  Other inhibitory receptors expressed by exhausted 

CD8 T cells include LAG-3, CD160, 2B4, Tim-3 and CTLA-4 (158, 160, 161, 

173).  Along with PD-1, inhibitory receptors such as LAG-3 and CD160 regulate 

proliferation and cytotoxicity, respectively (160).  In order to further understand 

the biology of functionally exhausted CD8 T cells and the factors that influence 

their differentiation, this thesis will examine, in three chapters, the cell-intrinsic 

and extrinsic mechanisms regulating T cell dysfunction during chronic viral 

infection. 

 

II. Transcriptional control of functional exhaustion. 

 While significant work has been done with the role of inhibitory receptors 

during chronic infection, very little is known about the transcriptional control of 

functional exhaustion.  Gene expression studies show that functionally exhausted 

CD8 T cells differentially express over three hundred genes as compared to 

effector and memory CD8 T cells (158), suggesting that functional exhaustion is 

a unique differentiation state.  Many of these genes included transcription factors, 
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including Blimp-1, Tbet, and Eomes (158).  It is interesting to note these 

transcription factors play an important role in regulating the fate decision between 

terminally differentiated effector CD8 T cells and memory precursors after an 

acute infection (Rutishauser et al, Immunity, in press; Kallies et al, Immunity, in 

press)(60).  Chapter 2 of this thesis will explore the role of Blimp-1 in regulating 

functional exhaustion during chronic viral infection.  Our data show that Blimp-1 

plays a role in regulating key aspects of functional exhaustion, including the 

upregulation of inhibitory receptors.  With this work, we have identified a 

molecular mechanism underlying functional exhaustion, and have provided a 

novel potential target for future therapeutic strategies. 

 

III. Memory defects in functionally exhausted CD8 T cells. 

 Despite their loss of effector function, exhausted antigen-specific CD8 T 

cells persist indefinitely in chronically infected hosts (90, 174).  Although the 

exhausted CD8 T cell population survives long-term like memory CD8 T cells, 

there are clear alterations in the memory differentiation program during chronic 

viral infection.  Unlike memory CD8 T cells which gradually convert from TEM to 

TCM over time, exhausted CD8 T cells do not adopt the CD62Lhi CCR7hi 

phenotype associated with TCM (174-176).  While effector functions that are lost 

during functional exhaustion can, to some extent, be recovered after viremia is 

controlled (155), the memory defects described here remain even after viral 

burden begins to decrease (174, 177). 
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After acute infection, memory CD8 T cells are maintained by the 

homeostatic cytokines IL-7 and IL-15, a mechanism which is facilitated by the 

high expression of CD127 and CD122 (43).  However, during many chronic 

infections, including LCMV, γHV, HIV, HCV, HBV and others, virus-specific CD8 

T cells fail to upregulate these receptors (14).  Exhausted CD8 T cells also do not 

respond to IL-7 and IL-15 in vitro, and do not use these cytokines efficiently in 

vivo (174, 178-180).  The persistence of the exhausted CTLs in vivo and their 

inability to make use of the IL-7/IL-15 pathways raises the question as to how 

these cells are maintained long-term during chronic infection.  Two studies have 

explored the possibility that recent thymic emigrants (RTEs) may join the existing 

pool of virus-specific exhausted CD8 T cells.  One study infected thymectomized 

mice with LCMV clone 13 and found that the antigen-specific CD8 T cell 

population could be stably maintained over a long period of time without input 

from the thymus (181).  Another study, however, showed that congenically 

marked CD8 T cells specific for polyoma virus could not be maintained after 

adoptive transfer to a new, infection-matched host (182).  Furthermore, it was 

shown that RTEs could be primed by persistent antigen, and that these RTEs 

contributed to the dynamic phenotype of the antigen-specific CD8 T cell 

population (182).  Aside from RTEs, other possible maintenance signals include 

persistent antigen, an unidentified cytokine or growth factor or some unknown 

cell-cell contact.  In the third chapter, we investigated these possibilities and 

found that persistent antigen is the required signal for the maintenance of the 

exhausted CD8 T cell population, and that these cells are maintained by a unique 
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proliferative mechanism.  We believe that our findings have important 

implications for the treatment of chronic infections in patients, where viral 

clearance or enhanced viral control could have an impact on the maintenance of 

protective immunity.   

 

IV. Extrinsic regulation of the differentiation of functional exhaustion. 

 The cellular changes that occur in functionally exhausted CD8 T cells are 

numerous.  Recently, several cell-extrinsic pathways have been identified that 

have an important impact on both the pathogenesis of infection as well as the 

differentiation of antigen-specific CD8 T cells.  During chronic LCMV infection, 

the immunosuppressive cytokine IL-10 was shown to play a role in suppressing T 

cell function (183, 184).  Genetic ablation of IL-10 production or treatment with 

αIL-10R antibody at the onset of infection prevented the infection from persisting 

and improved T cell responses (183, 184).  Furthermore, αIL-10R treatment after 

the establishment of infection enhanced viral control and led to an increase in 

IFNγ production from antigen-specific CD8 T cells (183, 184).  Since then, 

elevated IL-10 levels have been observed to correlate with viral load in HIV 

infected patients and in vitro blockade of the IL-10 pathway led to increased 

proliferation of HIV-specific CD8 T cells (185).  More recently, the cytokine IL-21 

was shown to play a critical role in regulating the functionality and survival of 

CD8 T cells (186-188).  The absence of IL-21 signaling in either IL-21-/- or IL-

21R-/- mice infected with LCMV clone 13 or high dose of LCMV Docile led to 

severe exhaustion and a gradual loss of the antigen-specific CD8 T cell 
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population, and that in turn led to impaired viral control (186-188).  It is unclear, 

however, whether IL-21 production (primarily from CD4 T cells) is higher or lower 

during chronic viral infection, as the two studies using LCMV clone 13 showed 

higher mRNA but lower protein as compared to LCMV Arm (186, 188).  Along 

with these two cytokines, the ‘inflammatory’ environment of LCMV clone 13 is 

markedly different than LCMV Arm infection (S. Blackburn, unpublished data), 

and it is likely that there are other factors present (or absent) during LCMV clone 

13 that could regulate T cell dysfunction.  Chapter 4 investigates the role of 

persistent ‘inflammation’ in the differentiation of exhausted CD8 T cells.  We find 

that ‘inflammation’ alone has a profound impact on memory differentiation, does 

not alter other key aspects of functional exhaustion such as the expression of 

inhibitory receptors.  Our results could have important implications in the design 

of vaccination strategies, particularly of people who are chronically infected, and 

have the potential to further our understanding of how functional exhaustion is 

regulated during chronic viral infection. 
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Chapter 2 

A role for the transcriptional repressor Blimp-1 in CD8 T cell 

exhaustion during chronic viral infection 

 

Abstract 

 After an acute infection, virus-specific CD8 T cells undergo memory 

differentiation once antigen has been cleared, resulting in a pool of highly 

functional memory CD8 T cells.  During chronic infection, however, virus-specific 

CD8 T cells follow an altered program of differentiation, resulting in a population 

of functionally exhausted CD8 T cells.  While multiple inhibitory pathways have 

been shown to play an important role in regulating different aspects of functional 

exhaustion, the transcriptional mechanism that leads to exhaustion has not been 

elucidated.  In this study, we describe a major role for Blimp-1 in CD8 T cell 

exhaustion during chronic viral infection.  We find that Blimp-1 represses the 

acquistion of important memory properties and promotes functional exhaustion 

by regulating the expression of inhibitory receptors.  Furthermore, our studies 

indicate that while high expression of Blimp-1 promotes functional exhaustion, 

moderate levels of Blimp-1 are required for effector function such as cytotoxcity.  

Thus, we define Blimp-1 as a transcriptional rheostat that balances expression of 

inhibitory receptors, memory differentiation and effector function. 
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Introduction 

 Functionally exhausted CD8 T cells have been identified and described in 

many different models of chronic viral infection.  The hallmarks of functional 

exhaustion include the hierarchical loss of effector function (14) and the high 

expression of multiple inhibitory receptors (158-160, 164, 173).  However, the 

molecular mechanisms that underlie these properties have not been investigated.  

Gene expression studies show there are a significant number of genes that are 

differentially expressed by exhausted CD8 T cells, including those encoding 

transcription factors such as Blimp-1 (158).  This suggests that there may be a 

unique transcriptional program guiding the differentiation of these cells.  In this 

chapter, we examine the role of transcription factor Blimp-1 in the regulation of 

functional exhaustion during chronic viral infection. 

 Blimp-1 is a zinc-finger containing transcriptional repressor that is perhaps 

best known for regulating fate decisions during the differentiation of activated B 

cells (189-191).  High expression of Blimp-1 leads to the repression of the 

memory B cell program and promotes the terminal differentiation of plasma cells 

(190).  Blimp-1 also plays a role in regulating the fate decisions of non-

hematopoeitic cells as well, including germ cells (192, 193) and hair follicle stem 

cells (194).  More recently, Blimp-1 was shown to be expressed in T cells, in 

which it regulates homeostasis and activation (150, 151).  Inactivating Blimp-1 

through mutation or deletion in naïve T cells led to an activated phenotype and 

the accumulation of effector and memory T cells (150, 151).  Blimp-1 also 

regulates the expression of effector molecules such as IFNγ (195), IL-2 (196) and 
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granzyme B (197) in T cells, and is induced by TCR signals as well as cytokines 

such as IL-2 and IL-4 (197, 198).  

Based on the role that Blimp-1 plays in regulating the fate decisions and 

differentiation in numerous cell types, we examined whether Blimp-1 could be 

playing a similar role in regulating the differentiation of exhausted CD8 T cells.  

We find that Blimp-1 is highly upregulated in antigen-specific CD8 T cells during 

chronic viral infection, and that expression correlated with severity of dysfunction 

and expression of inhibitory receptors.  The high inhibitory receptor levels and 

memory repression associated with CD8 T cell exhaustion were both reversed 

upon conditional deletion of Blimp-1.  However, haploinsufficient mice controlled 

virus more rapidly than either wt or the full conditional knockouts and indicated 

that some Blimp-1 expression is necessary to maintain some level of effector 

function.  Thus, our study suggests that Blimp-1 plays an important role in the 

regulation of exhaustion during chronic viral infection, and suggests that Blimp-1 

acts as a transcriptional rheostat, promoting CD8 T cell effector function when 

moderately expressed and CD8 T cell exhaustion when highly expressed.  

 

 

Materials and Methods  

Animals and viruses.  Four to six week old C57BL/6 mice were purchased from 

NCI.  B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/J (Rosa26-YFP) mice were purchased 

from Jackson Laboratories.  BAC transgenic Blimp-1 YFP reporters were 

obtained from Eric Meffre (Yale University, New Haven, CT).  Prdm1flox/flox (f/f) 
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mice were obtained from Kathryn Calame (Columbia University, New York, NY), 

granzyme B-Cre mice were obtained from Joshy Jacob (Emory University, 

Atlanta, GA) and CD4-Cre mice were obtained from Steven Reiner (University of 

Pennsylvania, Philadelphia, PA).  Prdm1f/f mice were crossed with either 

granzyme B-Cre or CD4-Cre mice to generate prdm1f/f x Cre+, prdm1f/f x Cre-, 

prdm1f/+ x Cre+, prdm1f/+ x Cre- and prdm1+/+ x Cre+ mice.  Rosa26-YFP mice 

were crossed with granzyme B-Cre mice to generate Rosa26-YFP+ x Cre+ and 

Rosa26-YFP- x Cre+ mice.  Mice were infected with 2x105 plaque forming units 

(PFU) of LCMV Armstrong (Arm) i.p. or 2x106 PFU LCMV clone-13 (Cl-13) i.v. as 

described (89).  Virus was grown and viral titers were determined by plaque 

assay as described (89).  All animals were used in accordance with IACUC 

procedures. 

 

Lymphocyte isolation and flow cytometry.  Lymphocyte isolation from 

lymphoid and non-lymphoid tissues, surface stains, intracellular cytokine stains 

and CD107 assay were performed as previously described (89, 199).  All 

antibodies were purchased from Biolegend except for CD127, CD160, TNFa, IL-

2 (eBioscience), 2B4 (eBioscience, BD Biosciences) LAG-3 (AbD Serotec), 

granzyme B (Caltag) and MIP-1α (R&D Systems).  LIVE/DEAD dead cell stain, 

CFSE, CD62L, streptavidin-APC and streptavidin-Quantum dot 655 were 

purchased from Invitrogen.  MHC class I peptide tetramers were made and used 

as described previously (89).  All flow cytometry data was acquired on an LSRII 

(BD Biosciences) and analyzed by FlowJo (Treestar).  Pie charts were created 
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using the Pestle and SPICE programs, written by Mario Roederer (Vaccine 

Research Center, NIAID, NIH). 

 

Quantitative PCR.  Cells were sorted by flow cytometry on a FACSAria (BD 

Biosciences).  RNA extraction was performed using the Trizol protocol 

(Invitrogen).  cDNA was generated using the High Capacity cDNA Archive Kit 

(Applied Biosystems).  Relative quantification real-time PCR was performed on 

an ABI Prism 7000 using inventoried primers purchased from Applied 

Biosystems.  All samples were normalized to an endogenous control of HPRT, 

and gene expression was measured as a fold-change over expression in naïve 

CD44lo CD8 T cells. 

 

In vitro killing assays.  CD8 T cells were purified with magnetic beads (Miltenyi 

Biotec) from splenocytes of CKO, het and wt mice.  Briefly, splenocytes were 

labeled with magnetic beads specific for CD8α and then run through a MACS LS 

separation column according to the manufacturer’s protocol.  Target cells were 

either labeled with GP33 peptide or SIINFEKL peptide and CFSE labeled at two 

different concentrations.  Equal numbers of DbGP33+ CD8 T cells were plated at 

a 2:1 ratio with the labeled target cells and total cell numbers were normalized 

with naïve splenocytes.  The cells were incubated at 37C for 16-20 hrs and 

specific lysis was calculated as described (200). 
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Results 

Blimp-1 is highly expressed in functionally exhausted CD8 T cells during chronic 

viral infection. 

In order to investigate the role of Blimp-1 in CD8 T cell exhaustion during 

chronic viral infection, we began by examining the kinetics of Blimp-1 expression 

in antigen-specific CD8 T cells by quantitative PCR (qPCR).  DbGP33-specific 

CD8 T cells were sorted from the spleens of LCMV Arm or LCMV clone 13 

infected mice at d8, 15 and 30 post-infection (p.i.).  We found that at an early 

effector time point (d8 p.i.), there was little difference in Blimp-1 expression in 

DbGP33-specific CD8 T cells from either an acute or chronic viral infection (Fig 

1a).  During an acute infection, as the antigen-specific effector CD8 T cell 

population differentiated into a memory population, the levels of Blimp-1 slowly 

decreased.  However, during chronic viral infection, Blimp-1 expression was 

greatly upregulated between d8 and d15 p.i., and remained high out to d30 p.i. 

(Fig 1a).  Blimp-1 expression was also examined using a Blimp-1 YFP reporter 

mouse infected with either LCMV Arm or LCMV clone 13.  After infection, only 

activated, CD44hi CD8 T cells expressed YFP (data not shown).  At 8 days p.i., 

Blimp-1 YFP levels were similar in antigen-specific CD8 T cells during both Arm 

and clone 13 infections.  While Blimp-1 YFP expression slowly decreased after 

d8 p.i. during acute infection, YFP MFI increased after d8 p.i. during chronic 

infection (Fig 1b).  The difference in Blimp-1 YFP MFI between antigen-specific 

CD8 T cells from acute or chronic infection was not isolated to a single tissue, as 

we found Blimp-1 YFP expression to be higher in antigen-specific CD8 T cells in 
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Figure 1.  Blimp-1 is highly expressed in exhausted antigen-specific CD8 T 
cells during chronic viral infection.  A) Blimp-1 message by qPCR.  DbGP33+
T cells were sorted by FACS from LCMV Arm (acute) or clone 13 (chronic) 
infected mice at the indicated d.p.i.. Naive controls were CD44lo CD8 T sorted 
from Arm immune.  Error bars show range of expression in triplicate wells.  
B) Kinetics of Blimp-1 reporter expression after LCMV Arm or clone 13 infection.  
Histograms are gated on DbGP33+ CD8 T cells from the blood of LCMV Arm 
(shaded) or LCMV clone 13 (open) infection.  Data points in graph show Blimp-1 
YFP MFI of DbGP33+ CD8 T cells from LCMV Arm (black circles) or LCMV clone 
13 (white circles) at the indicated d.p.i..  Error bars are standard error of the 
mean (SEM).  N=2-3 mice per time point.  D) Blimp-1 YFP reporter MFI in tissues 
30 d.p.i. with LCMV Arm or clone 13.  Dot plot is gated on total CD8 T cells.  
Histograms are gated on DbGP33+ CD8 T cells from LCMV Arm (shaded) or 
LCMV clone 13 (open) infection.  Open red histograms show CD44lo CD8 T cells 
from LCMV Arm infection.
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multiple lymphoid and non-lymphoid tissues during chronic infection as compared 

to acute infection (Fig 1c).  Thus, Blimp-1 was globally overexpressed in 

exhausted antigen-specific CD8 T cells during chronic viral infection.   

 

Blimp-1 correlates with severity of dysfunction and/or terminal differentiation 

during in exhausted CD8 T cells.  

The upregulation of Blimp-1 expression in virus-specific CD8 T cells 

during chronic viral infection corresponded with the onset of certain features that 

are the hallmarks of functional exhaustion, such as the high expression of 

inhibitory receptors.  To determine whether Blimp-1 expression correlated with 

inhibitory receptor expression, we first examined Blimp-1 expression in subsets 

of PD-1 expressing antigen-specific CD8 T cells during chronic viral infection.  

DbGP33-specific PD-1hi and PD-1int/lo cells were sorted and Blimp-1 mRNA was 

measured by qPCR.  We found that Blimp-1 expression was approximately 2-fold 

higher in the more terminally differentiated PD-1hi subset compared to the PD-

1int/lo subset (Fig 2a).  Furthermore, subsets of antigen-specific CD8 T cells that 

were high for other inhibitory receptors such as LAG-3, CD160 and 2B4 

expressed higher Blimp-1 YFP than subsets that were low (Fig 2b).  When we 

examined the number of different inhibitory receptors co-expressed on each cell, 

we found that those cells which expressed the highest number of inhibitory 

molecules had the highest Blimp-1 YFP MFI (Fig 2c).  We also observed a 

correlation between Blimp-1 YFP expression and the severity of functional 

exhaustion during chronic viral infection.  During LCMV clone 13, CD8 T cells 
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Figure 2.  Blimp-1 expression correlates with expression of inhibitory 
receptors on antigen-specific CD8 T cells during chronic viral infection.  
A) Blimp-1 mRNA in PD-1hi and PD-1int subsets of exhausted CD8 T cells. Plot is 
gated on wt CD8 T cells from spleen at d30 post LCMV clone 13 infection.  For 
qPCR, PD-1hi and PD-1int DbGP33+ CD8 T cells were sorted from the spleens of 
LCMV clone 13 infected wt mice.  Graph shows fold increase in Blimp-1 
expression over naive CD44lo CD8 T cells sorted from LCMV Arm immune mice.  
Error bars show range of expression in triplicate wells.  B) Blimp-1YFP reporter 
expression in inhibitory receptor hi vs. lo subsets of exhausted CD8 T cells at d30 
post LCMV clone 13 infection (spleen). Histograms are gated on inhibitory 
receptor lo (shaded) or hi (open) DbGP33+ CD8 T cells.  Numbers in gray are 
YFP MFI of shaded histograms, numbers in black are YFP MFI of open 
histograms.  C) Correlation of Blimp-1 expression and number of inhibitory 
receptors expressed.  Blimp-1 YFP reporter mice were infected with LCMV clone
13 and inhibitory receptor expression was determined on DbGP33+ CD8 T cells
from the spleen at d30 p.i..  Boolean gating established the populations that
expressed a combination of 3, 2, 1 or no inhibitory receptors and Blimp-1 YFP
MFI was determined for each subgroups.  Graph represents two independent
experiments.
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specific for immunodominant epitopes such as DbNP396 become severely 

exhausted and are often physically deleted from the CD8 T cell response.  We 

found that DbNP396-specific CD8 T cells had a higher Blimp-1 YFP MFI than 

DbGP33-specific CD8 T cells during LCMV clone 13, while Blimp-1 driven YFP 

expression was similar between these two populations after LCMV Arm infection 

(Fig 3).   Thus, Blimp-1 expression was higher in exhausted virus-specific CD8 T 

cells during chronic infections than in fully functional CD8 T cells after acute 

infection, and Blimp-1 expression correlated with increased severity of T cell 

dysfunction and/or terminal differentiation. 

 

Blimp-1 alters the differentiation of virus-specific CD8 T cells during chronic viral 

infection. 

Blimp-1 has been shown to play a role in T cell activation and 

homeostasis (150, 151), and based on the dramatic increase of Blimp-1 

expression we wanted to determine whether Blimp-1 played a role in regulating 

functional exhaustion during chronic viral infection.  To examine this, prdm1, the 

gene encoding Blimp-1, was conditionally deleted.  The prdm1flox/flox mice (191) 

were crossed to mice expressing Cre under the CD4 promoter, which deletes 

Blimp-1 in T cells at the double positive stage of T cell development.  The 

prdm1flox/flox x CD4-Cre mice will be referred to as CD4-Cre CKO mice.   CD4-Cre 

CKO mice and wt littermates were infected with LCMV Cl-13 and both viral 

control and T cell responses were examined ~30 days p.i..  Deletion of Blimp-1 in 

antigen-specific CD8 T cells restored a memory phenotype, as the cells were 
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Figure 4.  CD8 T cell responses in CD4-Cre driven Blimp-1 conditional 
knockout mice.  CD4-Cre CKO and wt littermates were infected with LCMV
clone 13 and CD8 T cells were analyzed in the spleen at d30 p.i..  A) Phenotype 
of wt and CD4-Cre CKO antigen-specific CD8 T cells.  Plots are gated on total 
CD8 T cells.  Numbers in plots show percent of DbGP33+ CD8 T cells that are 
high for each marker.  B) Granzyme B expression in wt and CD4-Cre CKO 
antigen-specific CD8 T cells.  Plots are gated on total CD8 T cells, histograms are 
gated on DbGP33+ CD8 T cells.  Numbers above gates show percent of 
DbGP33+ CD8 T cells that are granzyme Bhi.  C) Effector function of wt and 
CD4-Cre CKO antigen-specific CD8 T cells.  Splenocytes were stimulated with 
GP33 peptide for 5 hrs at 37C.  Plots are gated on total CD8 T cells.  Numbers in 
plots show percent of IFNγ+ CD8 T cells that also produce a second cytokine.
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CD127hi and CD62Lhi (Fig 4a).  Virus-specific CD8 T cells lacking Blimp-1 

expressed less granzyme B than wt virus-specific CD8 T cells, but produced 

higher levels IL-2 (Fig 4b,c).  However, despite acquiring a memory phenotype 

and having slightly improved effector function, the CD4-Cre CKO mice were 

unable to control the infection (Fig 5).  Viral titers were higher in multiple tissues 

in the CD4-Cre CKO mice as compared to wt mice (Fig 5). 

Since CD4-Cre conditionally deletes Blimp-1 prior to T cell activation and  

Blimp-1 has been shown to play a role during activation (150, 151), it is difficult to 

ascertain whether the differences observed between the CD4-Cre CKO and wt 

mice are due to an altered T cell compartment and improper activation, or due to 

the action of Blimp-1 on the differentiation of exhausted CD8 T cells.  Thus, to 

avoid any potential complications arising from the lack of Blimp-1 during T cell 

activation, prdm1flox/flox mice were crossed with mice expressing the Cre 

recombinase under the human GranzymeB promoter (gzmB-Cre) (201).  These 

conditional knockout mice will heretofore be referred to as CKO mice.   

To first determine the activity of the gzmB-Cre, we crossed the gzmB-Cre 

mice to Rosa26-stopfl/fl-YFP mice (Rosa26-YFP), which have a floxed stop codon 

upstream of the gene encoding YFP within the Rosa26 locus.  Upon Cre 

activation, the stop codon is excised and YFP is expressed.  Granzyme B is 

expressed in CD8 T cells 1-2 days after activation (72) and accordingly, we 

observed YFP expression in CD25+ CD8 T cells 3 days post-infection with LCMV 

clone 13 (Fig 6).  By d6 p.i., the majority of antigen-specific CD8 T cells were 

YFP+, indicating Cre recombination had occurred in most of the responding CD8 
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T cells.  It is still possible, however, that previously expressed Blimp-1 protein 

could temporarily persist after the deletion of prdm1. 

CKO and wildtype (wt) littermates were infected with LCMV clone 13, and 

T cell responses and viral control were examined 30 days p.i..  Unlike the CD4-

Cre CKO mice, the CKO mice had viral titers in the serum and tissues that were 

similar to wt through the first 20-30 days p.i. (Fig 7a).  The frequency of antigen-

specific CD8 T cells in the CKO mice was slightly elevated in the spleen and 

lymph node, and similar to wt in other tissues such as the bone marrow and liver 

(Fig 7b). In particular, the DbNP396-specific population, which is often deleted 

during chronic viral infection, was rescued to a greater degree in the CKO mice 

than populations specific for GP33 or another LCMV epitope, GP276 (Fig 7b).  

Contraction of the virus-specific CD8 T cell population in the CKO mice also 

appeared to be slightly delayed compared to wt (Fig 7b).  Like the CD4-Cre CKO 

mice, virus-specific CD8 T cells from the CKO mice also expressed CD127 and 

CD62L at a level similar to memory CD8 T cells from Arm immune mice (Fig 7c).  

Virus-specific CD8 T cells from the CKO cells also showed only a modest 

improvement in the production of the cytokines.  While IL-2 production was 

restored to levels near to that produced by memory CD8 T cells from Arm 

immune mice for both DbGP33- and DbNP396-specific CD8 T cells, TNFα 

production was still much lower than after an acute infection (Fig 7d, data not 

shown).  CKO virus-specific CD8 T cells also expressed lower levels of the 

chemokine MIP-1α than wt (Fig 7d).  Together, our data show that while Blimp-1 

alone may not regulate effector function in exhausted CD8 T cells, high levels of 
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Figure 7.  CD8 T cell responses in gzmB-Cre driven Blimp-1 conditional
knockout mice.  CKO mice and wt littermates were infected with LCMV clone 
13 and viral control and CD8 T cell responses were measured at 30 d.p.i. unless 
otherwise noted.  A) Viral control.  Viral load was measured by plaque assay at
the indicated days in the serum and d30 p.i. in all other tissues.  Error bars in 
serum are SEM, dashed line shows limit of detection.  N=3-10 mice per time 
point.  Data is representative of four independent experiments.  B) Absolute
number of antigen-specific CD8 T cells in wt and CKO mice.  Frequency of 
DbGP33+ CD8 T cells was measured in the blood at indicated time points.  
Absolute number of tetramer+ CD8 T cells was measured in each tissue at d30 
p.i..  Numbers above spleen graph show fold increase of CKO over wt for each
tetramer+ population.  Error bars are SEM, and n=4-8 for each tissue.  Data
represents three independent experiments.  (Figure continued on next page.)  
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Figure 7 (cont).  CD8 T cell responses in gzmB-Cre driven Blimp-1 conditional knockout mice.  C) Phenotype of wt 
and CKO CD8 T cells in the spleen.  Plots are gated on total CD8 T cells.  Numbers in leftmost plots show percent of total 
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CD8 T cells from Arm immune mice (~d30 p.i.).  Error bars are SEM.  For CD127, *p=0.04, **p=0.002 by Student’s t-test.
D) Effector function of wt and CKO antigen-specific CD8 T cells compared to memory CD8 T cells (d30+ Arm immune).
Splenocytes were stimulated with GP33 peptide for 5 hrs. at 37C.  Plots are gated on CD8 T cells.  Numbers in each plot
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Blimp-1 may repress memory CD8 T cell differentiation during chronic viral 

infection. 

 

Blimp-1 regulates the expression of inhibitory receptors on exhausted CD8 T 

cells. 

 Since high Blimp-1 levels are associated with the high expression of 

inhibitory receptors on exhausted CD8 T cells (Fig 2), we next examined the 

expression of inhibitory molecules in the CKO mice.  At d30 post LCMV clone 13 

infection, DbGP33-specific CD8 T cells from wt mice expressed high levels of 

PD-1 and LAG-3, and subsets of the DbGP33-specific CD8 T cell population also 

expressed high levels of CD160 and 2B4 (Fig 8a).  In the CKO mice, however, 

the DbGP33-specific CD8 T cells expressed nearly 2-fold lower levels of both 

PD-1 and LAG-3 (Fig 8a).  Furthermore, the subsets of CD160hi and 2B4hi 

DbGP33-specific CD8 T cells present in the wt population was absent in the CKO 

mice (Fig 8a).  We also assessed the number of different inhibitory molecules 

expressed by each cell in the CKO and wt mice by multi-parameter flow 

cytometry.  We found that within the DbGP33-specific CD8 T cell population, the 

majority of the cells expressed a combination of three or all four inhibitory 

receptors at once (Fig 8a).  However, within the CKO mice, very few cells 

expressed all four inhibitory receptors.  Rather, most of the population expressed 

either no inhibitory receptors or just one (Fig 8a).  This pattern of expression was 

not isolated to just the DbGP33-specific population.  Total activated CD44hi CD8 

T cells from the CKO mice also had lower levels of PD-1 and LAG-3 than the wt 
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Figure 8.  Blimp-1 regulates inhibitory receptor expression on antigen-
specific CD8 T cells during chronic viral infection.  CKO and wt littermates
were infected with LCMV clone 13 and CD8 T cells from the spleen were 
analyzed 30 d.p.i.. A) Inhibitory receptor expression on antigen-specific CD8 T 
cells from wt and CKO mice.  Plots are gated on total CD8 T cells.  Histograms
are gated on DbGP33+ CD8 T cells.  Numbers above the gates indicate the
percentage of DbGP33+ CD8 T cells in each gate.  Numbers in red are the MFI
of each marker.  Pie charts show DbGP33+ CD8 T cell populations from wt and
CKO mice.  Each colored slice indicates the fraction of DbGP33+ CD8 T cells
that express a combination of 4, 3, 2, 1 or no inhibitory receptors.  B) Inhibitory
receptor expression in total CD44hi CD8 T cells in wt (shaded) or CKO (open)
mice.  Open red histograms represent CD44lo CD8 T cells from wt mice.

43



CD44hi CD8 T cells, and very few activated CD8 T cells from the CKO mice 

expressed any CD160 or 2B4 (Fig 8b).  Together, our data show that Blimp-1 

plays a key role in regulating the elevated levels and co-expression of inhibitory 

receptors on exhausted CD8 T cells during chronic viral infection. 

 

Blimp-1 haploinsufficiency leads to rapid viral control during chronic viral 

infection. 

 Lower expression of inhibitory receptors on the CKO CD8 T cells 

suggested that long-term viral control may be enhanced.  However, since Blimp-

1 has been shown to regulate effector functions such as granzyme B expression 

(197), we also infected mice that were conditionally haploinsufficient for Blimp-1 

(prdm1fl/+ x gzmB-Cre; conditional hets) in order to examine the impact of 

decreased Blimp-1 expression on long-term viral control without the complication 

of altered T cell function.  When infected with LCMV clone 13, wt mice controlled 

viremia about 2 months p.i., and CKO mice maintained high serum titers (Fig 9a).  

Conditional haploinsufficiency for Blimp-1, however, resulted in viremia control 

that was more rapid than either the CKO or wt mice (Fig 9a).  The conditional het 

mice also had lower viral titers in multiple tissues compared to wt or CKO mice 

(Fig 9a).  To determine whether haploinsufficiency of Blimp-1 would also impact 

inhibitory receptor expression, we examined PD-1 at day 15 p.i., a time point 

when viral titers between the three groups of mice were similar (Fig 9b).  Virus-

specific CD8 T cells from the conditional het mice expressed significantly lower 

levels of PD-1 compared to wt mice (Fig 9b).  Furthermore, conditional het mice 
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Figure 9.  Blimp-1 haploinsufficiency in antigen-specific CD8 T cells leads 
to rapid viral control.  A) Viral titers in CKO, het and wt littermates d60 post
LCMV clone 13 infection.  Viral load was determined in the serum on the 
indicated days and in the tissues by plaque assay.  Dashed lines represent limit 
of detection for each tissue.  Data is representative of three independent 
experiments, n=3-17.  For kidney titers, wt vs. het *p=0.03, wt vs. CKO 
**p=0.003, het vs. CKO **p=0.002 by Student’s t-test.  B) PD-1 expression on 
antigen-specific CD8 T cells from CKO, het and wt mice.  PD-1 MFI was
measured on DbGP33+ CD8 T cells from the blood at d15 p.i.  Data is 
representative of three independent experiments.  Wt vs. het **p=0.007, wt vs.
CKO *p=0.01 by Student’s t-test.  Plots are gated on total CD8 T cells from the 
blood.  Numbers in red indicate the PD-1 MFI of the DbGP33+ CD8 T cells.
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also appeared to express slightly less PD-1 than CKO mice (Fig 9b).  Thus, while 

complete Blimp-1 insufficiency (CKO) resulted in poor long-term viral control, 

limiting Blimp-1 expression to a single intact copy of prdm1 was sufficient to both 

enhance viral control and decrease PD-1 expression on virus-specific CD8 T 

cells. 

 

Blimp-1 conditional heterozygosity leads to better maintenance of cytotoxicity 

than conditional knockouts. 

 To determine the cellular basis behind the difference in the kinetics of 

virus control, we first examined the number of antigen-specific CD8 T cells in the 

wt, conditional het and CKO mice.  The frequency of DbGP33-specific CD8 T 

cells in all three groups remained similar up to the first month p.i. (Fig 10a).  

However, the frequency of DbGP33-specific CD8 T cells in the blood continued 

to decline in the CKO mice whereas the frequency stabilized in both the wt and 

conditional hets and led to significant differences between the three groups (Fig 

10a).  When we examined the absolute number of antigen-specific CD8 T cells in 

the spleen, however, we found that the general trend did not change between the 

first and second months p.i. (Fig 10b,c).  We did observe, however, a small 

decrease in the number of DbNP396-specific CD8 T cells in the CKO mice 

between months 1 and 2 p.i., while this population was maintained in the 

conditional het mice (Fig 10c).  We next examined the functional properties of 

virus-specific CD8 T cells from the CKO, conditional het and wt mice.  The ability 

of virus-specific CD8 T cells from CKO and conditional het mice to co-produce 
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Figure 10.  Absolute number of antigen-specific CD8 T cells in CKO, haploinsufficient and wt mice.  CKO, 
conditional het and wt littermates were infected with LCMV clone 13.  Absolute numbers of LCMV-specific CD8 T cells
were measured in the blood and spleen at d30 or d60 p.i..  A) Frequency of DbGP33+ CD8 T cells was measured in 
blood at the indicated time points.  Error bars are SEM, n=4-15 per time point.  Graph is representative of three
independent experiments.  At d30, wt vs CKO *p=0.04, het vs. CKO *p=0.008.  At d50, wt vs. het *p=0.02, het vs. CKO
*p=0.006.  At d60, het vs. CKO ***p=0.0008.  All statistics measured by Student’s t-test.  B) Absolute number of tetramer+ 
CD8 T cells in the spleen at 30 d.p.i..  Data is representative of two independent experiments.  N=3-4 mice per group.  
Error bars are SEM.  C) Absolute number of tetramer+ CD8 T cells in the spleen at d60 p.i.  Data is representative of two 
independent experiments.  N=3-4 mice per group.  Error bars are SEM.  For het vs. CKO, *p=0.02, for wt vs. CKO *p=0.02 
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effector cytokines TNFα or IFNγ was not significantly different from wt cells, 

although the amount of IFNγ produced per cell was reduced in the CKO mice (Fig 

11a,b).   One copy of prdm1, however, was sufficient to restore co-production of 

MIP-1α and IFNγ to wt levels, and was also sufficient to repress IL-2 production 

(Fig 11a).  Virus-specific CD8 T cells from CKO, conditional het and wt mice 

were all equally capable of degranulation as measured by CD107 (Fig 11b).  

Blimp-1 has been implicated in the expression of granzyme B (197), and when 

examined, we found that antigen-specific CD8 T cells from the CKO were 

deficient in the expression of this cytotoxic granule as compared to the 

conditional het or wt mice (Fig 11c).  The loss of granzyme B expression is most 

likely due to loss of Blimp-1 expression rather than any competition between the 

hGzmB-Cre and endogenous granzyme B promoters, as CD8 T cells from the 

CD4-Cre CKO mice also show loss of granzyme B (Fig 4b).  While the killing 

ability of exhausted CD8 T cells is not as potent as memory CD8 T cells, 

exhausted CD8 T cells do retain residual cytotoxicity (89).  To test whether 

decreased granzyme B would impact the ability of CKO antigen-specific CD8 T 

cells to kill infected target cells, an in vitro killing assay was performed.  CD8 T 

cells from the CKO mice were deficient in their ability to lyse peptide-coated 

target cells at both early and late time points during chronic LCMV infection (Fig 

11d).  Wt and conditional het CD8 T cells, while not as efficient as memory CD8 

T cells, acquired and maintained their ability to kill (Fig 11d,e).  Thus, conditional 

deficiency indicated a role for Blimp-1 in controlling some aspects of T cell 

exhaustion, but complete loss of Blimp-1 also compromised a key CD8 T cell 
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Figure 11.  Blimp-1 regulates cytotoxicity in antigen-specific CD8 T cells during chronic viral infection.  CKO, het
and wt littermates were infectd with LCMV clone 13 and analyzed at d30 p.i unless otherwise noted.  A) Function of CD8
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degranulation based on CD107 staining was determined.  Plots are gated on total CD8 T cells.  Numbers in plots indicate
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experiments.  Error bars are SEM. (Figure continued on next page.)
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effector function that is partially maintained by exhausted CD8 T cells with either 

one or both copies of prdm1. 

 

Blimp-1 acts in a cell-intrinsic manner in exhausted CD8 T cells. 

  While the data described above suggest that Blimp-1 regulates key 

aspects of CD8 T cell exhaustion such as the expression of inhibitory receptors, 

they do not rule out the possibility that Blimp-1 may be acting in a manner that is 

not cell-intrinsic.  Use of the gzmB-Cre may lead to loss of Blimp-1 from other cell 

types, and differences in the infectious environment, such as pathogenesis and 

viral load, between the three groups of mice could impact CD8 T cell 

differentiation.  In order to address these issues, mixed bone marrow (BM) 

chimeras were generated by injecting equal numbers of B and T cell depleted 

bone marrow from Ly5.1+ wt and Ly5.2+ CKO mice into irradiated Ly5.1+ wt 

recipients (Fig 12a).  Once fully reconstituted, the BM chimeras were infected 

with LCMV clone 13 and the CD8 T cells were analyzed four weeks p.i..   

In the BM chimeras, virus-specific CD8 T cells lacking Blimp-1 displayed a 

phenotype that was distinct from the wt virus-specific CD8 T cells.  As in the 

separate mice, CKO CD8 T cells from the BM chimeras acquired a memory-like 

phenotype with high levels of CD127 and CD62L, while wt cells remained 

CD127lo and CD62Llo (Fig 12b).  Also, as in the separate mice, CKO virus-

specific CD8 T cells from the BM chimeras also co-produced more IFNγ and IL-2, 

slightly more TNFα, and less MIP-1α than wt virus-specific CD8 T cells (Fig 12c).  

Furthermore, granzyme B expression was also decreased in the CKO antigen-

51



1000 rads

Ly5.1 WT BM
Ly5.2 Blimp-1 CKO BM

Ly5.1 WT

infect with 
Cl-13

harvest tissues
for analysis

4 wks8 wks

A. B.

C. D.

0 103 104 105

0

103

104

105

0 102 103 104 105

0

103

104

105

0 102 103 104 105

0

103

104

105

0 103 104 105

0

103

104

105

0 102 103 104 105

0

103

104

105

0 102 103 104 105

0

103

104

105

IL-2 MIP-1α TNFα

IF
N
γ

WT

CKO

0.7 96.6 16.5

2.1 83.0 26.3

0 102 103 104 105

0

103

104

105

0 102 103 104 105
0

3

6

9

12

0 102 103 104 105

0

103

104

105

0 102 103 104 105
0

10

20

30

40

50

D
b G

P3
3

granzyme B

18.0

88.2

CKO

WT

0 103 104 105

0

103

104

105

0 103 104 105

0

103

104

105

0 103 104 105

0

103

104

105

0 102 103 104 105

0

103

104

105

0 102 103 104 105

0

103

104

105

0 102 103 104 105

0

103

104

105

0 102 103 104 105

0

103

104

105

CD8

Ly
5.

2

CD44 CD127 CD62L

D
b G

P3
3

CKO

WT

16.578.6

4.410.2

WT CKO
0

25

50

75

WT CKO
0
5

10
15
20
25

** *
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specific CD8 T cells as compared to wt (Fig 12d).  When inhibitory receptor 

expression was assessed in the BM chimeras, we found that virus-specific CD8 

T cells lacking Blimp-1 expressed less PD-1 and slightly less LAG-3 than the wt 

cells, while the subset of CD160hi and 2B4hi cells present in the wt virus-specific 

CD8 T cell population was absent in the CKO population (Fig 13a).  When the 

co-expression of inhibitory receptors was examined in the BM chimeras, we 

again found that a much larger fraction of the wt virus-specific CD8 T cell 

population expressed three or four inhibitory receptors at once as compared to 

the CKO virus-specific CD8 T cells (Fig 13a).  In parallel experiments, mixed BM 

chimeras using wt and CD4-Cre CKO bone marrow were also generated.  We 

observed similar patterns of memory differentiation, effector function and 

inhibitory receptor expression as we observed with the CKO BM chimeras (data 

not shown, Fig 13b), suggesting that the changes observed in the CKO CD8 T 

cells were not due to the timing of cre-mediated recombination or deletion of 

Blimp-1 in cytotoxic cell lineages other than CD8 T cells. Together, our data 

suggest that Blimp-1 has a cell-intrinsic role in regulating central features of T cell 

exhaustion such as inhibitory receptor expression, and identify Blimp-1 as a 

transcriptional regulator of CD8 T cell exhaustion during chronic viral infections. 
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Figure 13. Blimp-1 cell-intrinsically regulates the expression of inhibitory
receptors on exhausted CD8 T cells during chronic viral infection.  BM
chimeras generated with CKO and wt or CD4-Cre CKO and wt were infected with
LCMV clone 13.  A) Inhibitory receptor expression on CD8 T cells from mixed BM
chimeras.  Histograms are gated on wt DbGP33+ (shaded) or CKO DbGP33+
(open) CD8 T cells.  Pie charts show either wt or CKO DbGP33+ CD8 T cells.  
Colored slices indicate the fraction of the total population that expressed a 
combination of 4, 3, 2, 1 or no inhibitory markers.  B) Inhibitory receptor 
expression on CD8 T cells from mixed CD4-Cre BM chimeras.  Histograms are
gated on wt DbGP33+ (shaded) or CKO DbGP33+ (open) CD8 T cells.  Pie
charts show either wt or CKO DbGP33+ CD8 T cells.
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Discussion 

In this study, we identify an important role for the transcriptional repressor 

Blimp-1 in regulating several defining features of CD8 T cell exhaustion during 

chronic viral infection.  Exhausted CD8 T cells had substantially higher 

expression of Blimp-1 compared to functional effector or memory CD8 T cells 

generated following acute infection.  This higher expression of Blimp-1 correlated 

with high inhibitory receptor levels and repression of memory T cell properties.  

Conditional deletion of Blimp-1 led to the restoration of some key aspects of 

memory (i.e. CD127 and CD62L expression, IL-2 production) and decreased 

expression of inhibitory receptors.  Despite this, however, the full CKO mice did 

not resolve chronic infection, while haploinsuffcient mice controlled infection 

more rapidly than both wt and CKO mice.  This suggested that while 

overexpression of Blimp-1 can promote functional exhaustion and the repression 

of memory differentiation, some Blimp-1 is necessary in order to acquire and/or 

maintain important effector functions, such as cytotoxicity.  Thus, Blimp-1 

appears to be acting as a molecular rheostat, acting to regulate effector function 

at low levels, while both promoting functional exhaustion and repressing memory 

at high levels. 

CD8 T cell exhaustion is a common feature of many chronic viral 

infections in both animal models as well as in humans and is a likely reason for 

poor control of infection in these settings (14).  High and sustained expression of 

PD-1 has emerged as a hallmark of T cell exhaustion, and blocking the PD-1:PD-

L pathway can re-invigorate immune responses during persisting infections (160, 
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162, 171).  In this study we found that Blimp-1 expression was 2-3 times higher 

in the more terminally differentiated PD-1hi subset of exhausted CD8 T cells 

compared to the PD-1int/lo subset, which can be ‘revived’ by antibody blockade 

(163).  Other inhibitory receptors, including LAG-3, 2B4 and CD160, are also 

upregulated by exhausted CD8 T cells and these pathways cooperate to 

negatively regulate CD8 T cell responses during chronic viral infection (158, 

160).  Blimp-1 appeared to cell-intrinsically regulate expression of these 

additional inhibitory receptors since the absence of Blimp-1 resulted in reduced 

expression of PD-1, LAG-3, 2B4 and CD160 by virus-specific CD8 T cells at later 

time points during chronic infection.  However, PD-1 levels were higher on CKO 

virus-specific CD8 T cells at early time points (d8 p.i.) but had decreased below 

wt levels by d15 p.i. (data not shown).  This suggests at least two different 

mechanisms by which Blimp-1 regulates high inhibitory receptor expression: 1) 

direct (or indirect) transcriptional regulation, or 2) survival of highly exhausted 

CD8 T cell subsets.  The expression of inhibitory molecules occurs in a 

hierarchical manner, with PD-1 and LAG-3 most widely expressed, followed by 

2B4 (158, 160).  Only the most severely exhausted CD8 T cells appear to 

upregulate CD160 (158, 160).  The loss of CD160 and 2B4 expression as well as 

the decrease in the PD-1hi and LAG-3hi subpopulations could indicate that 

expression of these inhibitory receptors does not occur, or the most highly 

dysfunctional cells have undergone apoptosis.  Knockdown of Blimp-1 has been 

shown to decrease the survival of transformed plasma cells (202), thus it is 

possible that Blimp-1 may be acting in a similar manner in virus-specific CD8 T 
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cells early during chronic viral infection.  Further work is necessary to determine 

the exact mechanism by which Blimp-1 regulates this aspect of functional 

exhaustion. 

Despite lower expression of inhibitory receptors in the absence of Blimp-1, 

these CD8 T cells remained poor cytokine producers.  One possibility is that 

other negative regulatory pathways compensate in this setting.  Alternatively, 

Blimp-1 could positively regulate expression of antiviral cytokines, either directly 

or indirectly.  A third possibility is that Blimp-1 controls one “module” of the 

transcriptional program of T cell exhaustion which includes inhibitory receptor 

expression and memory repression, while another layer of transcriptional control 

also influences expression of antiviral cytokines. Such an idea of overlapping 

transcriptional modules is emerging for Foxp3+ Tregs (203, 204).  Future studies 

are necessary to dissect additional transcriptional pathways associated with T 

cell exhaustion and Blimp-1-independent regulation of cytokine production.  It will 

also be important to compare functional changes in exhausted CD8 T cells that 

occur following antibody-mediated inhibitory receptor blockade versus temporal 

deletion of Blimp-1.   

The amount of Blimp-1 expressed also appeared to have a crucial impact 

on CD8 T cell differentiation and exhaustion. Mice with one intact copy of the 

prdm1 gene were not intermediate between wt and CKO mice, but rather 

achieved more efficient control of infection than wt or CKO mice.  Many 

transcription factors function as transcriptional on/off switches (205).  In contrast, 

our data suggest that Blimp-1 could act as a molecular rheostat in CD8 T cells 
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during chronic infection, mediating different cell fates or transcriptional events at 

different expression levels.  Other transcription factors can function in a graded 

fashion, and some molecules that possess this property include master 

regulators of cell fate and differentiation such as Nanog, Sox2 and Oct-3/4 (206, 

207).  The transcription factor PU.1 also acts in a graded manner during 

hematopoietic differentiation (208). Accumulating evidence also points to the 

importance of quantitative changes in the expression of transcription factors such 

as Tbet and Eomes in memory CD8 T cell differentiation following acute infection 

(60, 148, 149).  The timing of conditional deletion also appears to have an impact 

on the functionality of exhausted CD8 T cells.  Conditional deletion prior to 

activation (CD4-Cre) results in poor viral control that is apparent by 1 month p.i., 

in contrast to deletion post-activation (gzmB-Cre), suggesting that Blimp-1 may 

be required upon activation to acquire even residual effector function.  Thus, our 

data on both temporal expression patterns and conditional deficiency suggest 

that low or intermediate expression of Blimp-1 is required for some effector 

functions and could be important in fate decisions between memory and terminal 

effector cell differentiation following acute infection, while overexpression of 

Blimp-1 promotes CD8 T cell exhaustion and represses memory differentiation.  

Our studies also point to a critical role for sustained cytolytic potential 

during chronic viral infections.  Recent work has demonstrated the importance of 

cytotoxicity in long-term control of chronic infections in humans (209-212).  While 

exhausted CD8 T cells are known to have partial defects in killing compared to 

highly functional effector or memory CD8 T cells (89), some residual cytotoxicity 
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by antigen-specific CD8 T cells can be maintained in vivo (213).  Blimp-1 

conditional het mice controlled virus substantially faster than either the wt or CKO 

mice, and this difference corresponded to sustained cytolysis in the conditional 

het mice compared to the CKO mice.  However, conditional het mice controlled 

virus in vivo more rapidly than wt mice as well, despite similar killing and cytokine 

production in vitro.  It is possible that lower PD-1 expression by conditional het 

mice may lead to improvements in effector function in vivo that are not obvious in 

vitro, as has been observed with blockade of other inhibitory pathways such as 

LAG-3 (160).  Conditional het mice also had slightly higher total numbers of 

antigen-specific CD8 T cells than wt mice including more DbNP396-specific CD8 

T cells.  Higher numbers of virus-specific CD8 T cells and improved effector 

functions in vivo by conditional het mice could account for this more efficient 

control of infection compared to wt mice, but future studies are necessary to 

investigate these issue further.  

In summary, we have identified Blimp-1 as a transcriptional regulator of 

functional exhaustion and repressor of memory differentiation in CD8 T cells 

during chronic viral infection. These studies provide a framework to begin 

dissecting Blimp-1 targets, regulation of Blimp-1 activity and additional 

transcriptional pathways involved in T cell dysfunction during chronic infection. 

While there are clearly additional transcription factors and transcriptional 

pathways that contribute to T cell exhaustion, our results identify Blimp-1 as a  

transcriptional regulator of CD8 T cell exhaustion during chronic viral infection. 
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Chapter 3 

Viral antigen and extensive division maintain virus-specific 

CD8 T cells during chronic viral infection 

 

Abstract 

Efficient maintenance of memory CD8 T cells is central to long-term 

protective immunity.  IL-7 and IL-15 driven homeostatic proliferation is essential 

for long-term memory CD8 T cell persistence following acute infections.  During 

chronic infections, however, virus-specific CD8 T cells respond poorly to these 

cytokines.   Yet, virus-specific CD8 T cells often persist for long periods of time 

during chronic infections.   We have addressed this apparent paradox by 

examining the mechanism for maintaining virus-specific CD8 T cells during 

chronic infection. We find that homeostatic cytokines (e.g. IL-7/15), inflammatory 

signals and priming of recent thymic emigrants are not sufficient to maintain 

virus-specific CD8 T cells over time during chronic infection.  Rather, our results 

demonstrate that viral peptide is required for virus-specific CD8 T cell persistence 

during chronic infection.  Moreover, this viral antigen-dependent maintenance 

results in a dramatically different type of T cell division than is normally observed 

during memory T cell homeostasis.  Rather than undergoing slow, steady 

homeostatic turnover during chronic viral infection, CD8 T cells undergo 

extensive peptide-dependent division, yet cell numbers remain relatively stable. 

These results indicate that antigen-specific CD8 T cell responses during 

60



persisting infection are maintained by a mechanism distinct from that following 

acute infection. 
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Introduction 

 A cardinal property of memory CD8 T cells that differentiate after acute 

infection is their long-term, antigen-independent survival and self-renewal, which 

is driven by the homeostatic cytokines IL-7 and IL-15 (22).  The ability to respond 

to these homeostatic cytokines is a property that is gradually acquired as 

memory CD8 T cells differentiate (64), and is mediated by the upregulation IL-

7Rα (CD127) and IL-15Rβ (CD122) (22).  During chronic viral infection, 

expression of these receptors is impaired (14, 174, 176), and in vitro responses 

of IL-7 and IL-15 are poor (174, 180).  CD127 levels are also decreased on 

antigen-specific CD8 T cells during human chronic infections such as HIV  and 

HCV (14).  When transferred to naïve recipients, exhausted CD8 T cells that are 

‘rested’ in an infection-free environment do not adopt a memory phenotype (i.e. 

upregulate CD127 or CD62L) and slowly decline in number over time (174).  

Despite this, exhausted antigen-specific CD8 T cells persist long-term within the 

original chronically infected host (90, 174).  This suggests that the mechanism of 

maintenance utilized by exhausted antigen-specific CD8 T cells during chronic 

viral infection is very different from the cytokine-driven homeostasis of memory 

CD8 T cells after an acute infection. 

 Despite numerous observations that the IL-7 and IL-15 pathways are 

impaired during chronic viral infection, the exact mechanism by which exhausted 

CD8 T cells are maintained is unknown.  Several possibilities exist: 1) IL-7 and 

IL-15 may be expressed at a different level or different manner during chronic 

infection, 2) an unknown cytokine or growth factor present only during chronic 

62



infection, 3) some unidentified cell-cell contact mediating survival, 4) the input of 

primed recent thymic emigrants (182) or 5) persistent antigen.  This chapter will 

explore these different possibilities to determine the signal(s) that are necessary 

to maintain exhausted CD8 T cells. 

 Our work from Chapter 2 shows that Blimp-1 may be a key factor in 

repressing memory differentiation during chronic viral infection.  In this chapter, 

we examine the consequences of altered memory differentiation and how 

homeostasis of the dysfunctional antigen-specific CD8 T cell population is 

impacted.  Our data indicate that IL-7 and IL-15 are not necessary in vivo for the 

persistence of these antigen-specific CD8 T cells during chronic viral infection.  

By using an adoptive transfer system with a variant LCMV clone 13 strain, we 

show that cognate antigen is required for the maintenance of virus-specific CD8 

T cells, and that primed RTEs do not have to join the existing pool of exhausted 

CD8 T cells to maintain stable numbers.  Furthermore, rather than undergoing 

the slow, steady homeostatic proliferation that is characteristic of memory CD8 T 

cells, exhausted CD8 T cells undergo rapid, antigen-driven division.  Thus, our 

study identifies a unique homeostatic mechanism of exhausted CD8 T cells and 

has implications for the maintenance of protective immunity during the treatment 

of chronic infections.    
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Materials and Methods 

Animals and viruses.  Four to six week old female C57BL/6 mice were 

purchased from the Jackson Laboratories, and four to six week old female 

congenic B6-Ly5.2/Cr mice were purchased from NCI.  Thymectomized and 

sham thymectomized C57BL/6 mice were purchased form Charles River 

Laboratories. IL-15-/- mice were originally obtained from Michael Caligiuri (Ohio 

State University, Columbus, OH).  Mice were infected with 2x106 plaque forming 

units (PFU) of LCMV clone 13 or the V35A clone 13 variant virus i.v. or 2x105 

PFU of LCMV Armstrong i.p. as described (89).  The V35A variant of LCMV 

clone 13 was isolated following infection of C57BL/6 mice containing LCMV-

specific TCR transgenic T cells (P14 cells).  Briefly, a small number of naïve P14 

splenocytes was adoptively transferred to C57BL/6 mice followed by LCMV clone 

13 infection.  Virus was isolated from viremic mice approximately 1 month post 

infection by plaque purification and sequenced through the GP33-41 encoding 

region.  Several clones were identified with the same Val to Ala mutation at 

residue 35, a mutation that has been previously observed (214).  Virus was 

grown and viral titers were determined by plaque assay as described (89).  The 

αIL-7Rα antibody was purified by the hybridoma core at the Wistar Institute from 

the supernatant of the A7R34 hybridoma and used as described (63).  All mice 

were used in accordance with institutional IACUC procedures. 

 

Lymphocyte isolation and flow cytometry.  Lymphocyte isolation from 

lymphoid and non-lymphoid tissues and surface and intracellular stains were 

64



performed as previously described .  All antibodies were purchased from BD 

Biosciences except for CD127, Ly5.2 (eBioscience) and granzyme B (Caltag).  

APC-streptavidin was purchased from Invitrogen.  MHC class I peptide tetramers 

were made and used as described previously (89).   

 

CFSE labeling and adoptive transfers.  After wt clone 13 or V35A clone 13 

infected mice were no longer viremic (2-3 months post-infection), wt clone 13 

donor mice were sacrificed and their spleens were harvested.  CD8 T cells were 

purified from splenocytes using magnetic beads (MACS beads, Miltenyi Biotec).  

Briefly, splenocytes were labeled with magnetic beads specific for CD8α and 

then run through a MACS LS separation column (Miltenyi Biotec) according to 

the manufacturer’s protocol. The purified CD8 T cells were then labeled with 

CFSE as described previously (89, 174).  Purified CD8 T cells were adoptively 

transferred intravenously to each recipient mouse.  Between 2-2.5x105 DbGP33-

specific CD8 T cells were transferred in the experiments shown.  In each 

individual experiment identical numbers of DbGP33 tetramer+ CD8 T cells were 

adoptively transferred to each separate recipient mouse.  Donor populations 

were monitored in the peripheral blood by retro-orbital blood collection as 

described previously (174). 
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Results 

Exhausted CD8 T cells persist long-term despite low expression of homeostatic 

cytokine receptors. 

 After an acute infection, antigen-specific CD8 T cells expand into a pool of 

effector cells, undergo contraction and are subsequently stably maintained as a 

population of memory CD8 T cells in the absence of antigen (66) (Fig 14a).  To 

examine the persistence of exhausted antigen-specific CD8 T cells after a 

chronic viral infection, C57BL/6 mice were infected with either LCMV Armstrong 

(Arm) or LCMV clone 13, and the frequency of DbGP33-specific CD8 T cells was 

tracked in the blood.  The kinetics of the DbGP33-specific CD8 T cell response 

was similar between LCMV Arm and clone 13 infection, and like memory CD8 T 

cells in the Arm immune mice, exhausted CD8 T cells were stably maintained for 

approximately one year post infection (Fig 14a).   

 A key feature of memory CD8 T cells is their high expression of the 

homeostatic cytokine receptors CD127 and CD122 (22).  DbGP33-specific CD8 

T cells from Arm immune mice all expressed high levels of CD127 and CD122 in 

both lymphoid and non-lymphoid tissues (Fig 14b).  However, DbGP33-specific 

CD8 T cells from chronically infected mice expressed lower levels of both 

receptors as compared to memory CD8 T cells from the Arm immune mice (Fig 

14b).  The distribution of CD127 expression was much broader, with a significant 

fraction of the total population being CD127lo, and the MFI of CD122 expression 

was consistently lower on exhausted CD8 T cells than memory CD8 T cells in 

both lymphoid and non-lymphoid tissues (Fig 14b).  Thus, while antigen-specific 
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Figure 14.  Exhausted antigen-specific CD8 T cells persist but do not 
express high levels of homeostatic cytokine receptors.  A) Longitudinal
analysis of DbGP33+ CD8 T cells in the blood after LCMV Arm or clone 13 
infection.  N=3-9 per time point.  Error bars are SEM.  B) Analysis of CD127 and
CD122 expression on DbGP276+ CD8 T cells from tissues of Arm immune 
(>d30 p.i.) and clone 13 infected mice (2-4 months p.i.).  Histograms are gated
on DbGP276+ CD8 T cells from Arm immune (open) or clone 13 (shaded) 
infected mice.  Similar results were obtained for DbGP33+ CD8 T cells (not
shown).
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exhausted CD8 T cells persist long-term in chronically infected mice, they do not 

upregulate the expression of key homeostatic cytokine receptors. 

 

Exhausted CD8 T cells do not require IL-7 and IL-15 for long-term maintenance. 

 As memory CD8 T cells generated after an acute infection use IL-7 and IL-

15 for their long-term survival and self-renewal, we wanted to examine whether 

exhausted CD8 T cells, despite their low expression of CD127 and CD122, could 

also use these two cytokines in vivo for their maintenance.  To test this, IL-15-/- 

or wt mice were infected with LCMV Arm or clone 13.  Two to three months post-

infection, wt mice were left untreated, and IL-15-/- mice were treated with an 

antibody that blocks the interaction with IL-7 and IL-7Rα (A7R34).  This approach 

has been previously used to block IL-7 signals, including those necessary for 

memory CD8 T cell homeostasis (63, 127, 215, 216).  As expected, DbGP33-

specific CD8 T cells in the untreated Arm immune wt controls were stably 

maintained in the blood, while the frequency of DbGP33-specific CD8 T cells in 

the Arm immune IL-15-/- mice declined significantly after A7R34 treatment (Fig 

15a).  However, in mice infected with LCMV clone 13, there was no difference in 

the frequency of DbGP33-specific CD8 T cells between untreated wt and IL-15-/- 

mice treated with A7R34 (Fig 15a).  When compared directly, it was apparent 

that lack of signals from the IL-7 and IL-15 pathways had a much greater impact 

on the maintenance of antigen-specific memory CD8 T cells in Arm immune mice 

than exhausted CD8 T cells from chronically infected mice (Fig 15a).  We also 

observed a decrease in the number of memory DbGP33-specific CD8 T cells in 
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Figure  15.  Virus-specific CD8 T cells do not require IL-7 and IL-15 to
persist in chronically infected hosts.  A) IL-15 KO and wt mice were infected
with LCMV Arm or clone 13.  After 2-3 months p.i., the IL-15 KO mice were
treated with 200 υg αIL-7Rα antibody (Ab) i.p. every 2-3 days for 2 weeks, and 
the maintenance of virus-specific CD8 T cells was compared to untreated wt 
mice.  Left graph shows Arm-infected Ab treated IL-15 KO and untreated wt mice.
Middle graph shows clone 13-infected Ab treated IL-15 KO and untreated wt
mice.  Right graph displays a direct comparison of the same LCMV Arm and 
clone 13 infected Ab treated IL-15 KO groups from the first two graphs.  All 
graphs show DbGP33+ CD8 T cell frequency in the blood as a percentage of
the DbGP33+ CD8 T cell frequency on the first day of treatment (initial).  Graphs
represent three independent experiments, n=8-11 per time point.  *p<0.05 by 
Student’s t-test. Error bars are SEM. B) Absolute number of DbGP33+ CD8 T 
cells in the spleens of LCMV Arm immune and clone 13 infected wt untreated and 
IL-15 KO Ab treated mice at the end of treatment.  Graphs represent two 
independent experiments, n=8-10 per group.  *p=0.03 by Student’s t-test.  Error 
bars are SEM.
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the spleens of Arm immune IL-15-/- mice treated with A7R34, but not in those 

infected with LCMV clone 13 (Fig 15b).  Thus, unlike memory CD8 T cells 

generated after an acute infection, exhausted CD8 T cells present after a chronic 

infection do not depend on the homeostatic cytokines IL-7 and IL-15 for their 

long-term maintenance in vivo. 

 

Recent thymic emigrants are not required for the maintenance of an antigen-

specific CD8 T cell population. 

 As IL-7 and IL-15 do not appear necessary for the long-term persistence 

of the exhausted antigen-specific CD8 T cell population, it appears that another 

mechanism is being engaged.  As exhausted CD8 T cells that are adoptively 

transferred to naïve recipients decline in number over time (174), it is likely that a 

factor unique to the environment of chronic viral infections is providing the 

maintenance signal.  One possibility is that recent thymic emigrants (RTEs) are 

being primed by persisting antigen and joining the pre-existing pool of antigen-

specific CD8 T cells.  Previous findings using thymectomized mice suggest that 

recent RTEs are not required for the maintenance of an antigen-specific CD8 T 

cell population (181).  However, Vezys et al showed that thymic emigrants can 

be primed by persisting antigen during both chronic LCMV and polyoma virus 

(PyV) infection, and that RTEs were necessary for the stable maintenance of 

PyV-specific CD8 T cells (182).  Also, the primed thymic emigrants contributed to 

the dynamic phenotype of the total antigen-specific CD8 T cell population (182).  

Thus, in order to determine whether thymic emigrants contribute to the 
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maintenance of virus-specific CD8 T cells during chronic LCMV infection, 

thymectomized, sham thymectomized or intact B6 (control) mice were infected 

with LCMV clone 13 and the virus-specific CD8 T cell response was tracked over 

time.  The frequency of DbGP33-specific CD8 T cells in the thymectomized mice 

was very similar to frequencies in either the intact B6 (exp 1) or the sham 

thymectomized mice (exp 2) (Fig 16a).  The absolute number of virus-specific 

CD8 T cells in the spleens of thymectomized and control mice was nearly 

indistinguishable for the three epitopes tested, and the number of DbGP33-

specific CD8 T cells in the liver and BM of the two groups was also very similar 

(Fig 16b).  To test whether the lack of RTEs in the thymectomized mice had an 

impact on the overall phenotype of the antigen-specific CD8 T cell population, we 

analyzed the expression of several different markers associated with mature 

memory CD8 T cells (137).  We found no significant difference between the 

thymectomized and control mice in CD127, CD62L, CD43 or CXCR3 expression 

(Fig 16c).  There was also no difference in the ability of virus-specific CD8 T cells 

to produce antiviral cytokines upon in vitro stimulation (data not shown).  Thus, in 

the LCMV model system, while RTEs can be primed by persistent antigen as 

shown by Vezys et al, they are not necessary for the long-term maintenance of 

an exhausted antigen-specific CD8 T cell population.  

 

Variant LCMV clone 13 virus does not elicit a DbGP33-specific CD8 T cell 

response. 
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Figure 16.  Thymic output is not necessary for the maintenance of virus-
specific CD8 T cells during chronic LCMV infection.  Thymectomized (thx), 
sham thymectomized or unmanipulated B6 (ctrl) mice were infected with LCMV 
clone 13 and CD8 T cells were analyzed ~3 months p.i. unless otherwise noted.  
A) Frequency of DbGP33+ CD8 T cells in the blood of thx, sham or ctrl mice at 
the indicated time points.  N=2-5 per time point.  Error bars are SEM.  B) Absolute
number of antigen-specific CD8 T cells in thx or ctrl mice.  Number of antigen-
specific CD8 T cells was measured in the indicated tissues.  N=2 per group.  
Error bars are SEM.  C) Phenotype of antigen-specific CD8 T cells in thx or ctrl
mice.  Plots are gated on total CD8 T cells from the spleen.  Numbers in plots
indicate percent of DbGP33+ CD8 T cells that are positive for each marker.  
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 To examine the mechanism by which antigen-specific CD8 T cells persist 

during chronic viral infection, we used a variant strain of LCMV clone 13 with a 

mutation in the GP33 epitope (V->A mutation at residue 35, V35A).  This 

mutation in the epitope abolishes binding of the GP33 epitope to Db MHC class I 

molecules (214).  Infection with the V35A virus establishes a chronic infection 

with viremia that is nearly identical to wt clone 13 (Fig 17a).  Unlike wt clone 13, 

infection with the V35A virus does not generate a DbGP33-specific response, 

although responses to four other epitopes were similar (Fig 17b). 

 To test whether the V35A virus could stimulate memory DbGP33-specific 

CD8 T cells, CD8 T cells were purified from the spleens of Arm immune mice, 

CFSE labeled and adoptively transferred to mice infected with V35A after the 

control of viremia (~2 months p.i.).  The donor DbGP33-specific CD8 T cells 

failed to expand, and rather appeared to undergo division that was reminiscent of 

the slow, steady homeostatic proliferation that is characteristic of resting memory 

CD8 T cells (22) (Fig 17c,d).  Donor memory CD8 T cells specific for the 

DbGP276 epitope, however, proliferated extensively upon adoptive transfer to 

V35A infected recipients, and the majority of the population became CFSE 

negative (Fig 17c,d).  Thus, infection with V35A causes a chronic viral infection 

with viral titers that are similar to wt LCMV clone 13.  Furthermore, while the 

mutated GP33 epitope in the V35A virus is does not activate a naïve or memory 

GP33-specific response, other epitopes can generate CD8 T cell responses that 

are similar to wt LCMV clone 13. 
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Figure 17.  The V35A clone 13 variant virus causes chronic infection similar
to wt clone 13.  B6 mice were infected with wt or V35A variant clone 13.
A) Viral load was determined in the blood of mice infected with wt or V35A variant
clone 13 by plaque assay.  Dashed line shows limit of detection.  Error bars are 
SEM.  B) Tetramer staining of splenocytes on day 8 p.i.  Plots are gated on total
CD8 T cells.  Numbers in plots show percent of CD8 T cells positive for each 
tetramer.  C) CD8 T cells from Arm immune (>d30 p.i.) were adoptively 
transferred into V35A-infected Ly5.1+ B6 mice (~2-7 months p.i.).  Donor Ly5.2+
DbGP276+ and DbGP33+ CD8 T cells were monitored in the blood.  Kinetics of
expansion were normalized to number at d5 post-transfer.  N=3-4 per time point.
Data are representative of two independent experiments.  Error bars are SEM.  
D) CFSE profiles are shown for the donor (Ly5.2+) DbGP33+ and DbGP276+ 
CD8 T cells in V35A-infected recipients 3 weeks post-transfer for the experiment 
in part C.  Plots are gated on donor Ly5.2+ CD8 T cells.  Histograms are gated 
on donor tetramer+ CD8 T cells.  Numbers over gates in the histograms show 
percent of cells that are CFSE-.  Data are representative of two independent 
experiments. 
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Cognate virus-derived antigen is required for the maintenance of antigen-specific 

CD8 T cell during chronic viral infection. 

 In order to determine the factor(s) that could be providing the maintenance 

signal to exhausted antigen-specific CD8 T cells, the V35A virus was used to 

narrow the possibilities to either antigen or some other factor present in the 

chronically infected environment.  An adoptive transfer system was used in which 

Ly5.2+ donor mice were infected with wt LCMV clone 13, and Ly5.1+ recipient 

mice were infected with either wt LCMV clone 13 or V35A virus, all at the same 

time (Fig 18a).  After all three groups controlled viremia (~2-3 months p.i.), CD8 T 

cells were purified by magnetic beads from the spleens of the donor wt LCMV 

clone 13 infected mice, and equal numbers of DbGP33-specific CD8 T cells were 

transferred to all recipient mice (Fig 18a).  This strategy allowed us to compare 

the maintenance of the donor DbGP33-specific population in recipient mice 

where cognate antigen is either present or absent.  A donor population of 

DbGP33-specific CD8 T cells was present and measurable at both early and late 

time points post transfer, as was a control population of donor DbGP276-specific 

CD8 T cells (Fig 18b).  As a second strategy, by tracking both donor populations 

in the same V35A infected recipient mouse, we could internally control any 

variability between different recipients. 

 When donor DbGP33-specific CD8 T cells were transferred to wt LCMV 

clone 13 infected recipients, the population was stably maintained over time (Fig 

18c).  However, when transferred to a recipient infected with V35A, the frequency 

of the donor DbGP33-specific population decreased over time (Fig 18c).  
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Figure 18.  Virus-specific CD8 T cells from chronically infected mice do not
persist without cognate antigen.  A) Experimental schematic.  Donor Ly5.2+ B6 
mice were infected with wt clone 13, and recipient Ly5.1+ B6 mice were infected 
with either wt or V35A clone 13 on the same day.  2-3 months later, CD8 T cells 
were purified from the spleens of donor Ly5.2+ mice using magnetic beads and 
equal numbers of DbGP33+ CD8 T cells were transferred to the recipients. 
B) Representative analysis of DbGP33+ and DbGP276+ donor Ly5.2+ CD8 T 
cells in the blood of recipient mice.  Numbers are the percent of donor CD8 T 
cells that are tetramer+.  C) Frequency of DbGP33+ donor cells in the blood of
wt and V35A clone 13 infected recipients.  At the last time point, wt vs V35A 
*p=0.008 by Student’s t-test.  Graph is representative of two independent
experiments.  D) Frequency of DbGP33 and DbGP276+ donor CD8 T cells in the
blood of V35A clone 13 infected recipients.  Difference between DbGP33+ and 
DbGP276+ frequency is significant at indicated time points (p<0.05 by Student’s
t-test).  Graph is representative of five independent experiments, n=2-3 per group.
E)  Number of donor tetramer+ CD8 T cells in  indicated tissues of V35A-infected
recipients.  BM represents two femurs.  Graphs represent 2-3 independent 
experiments, n=3-6 per group.  *p<0.04 by Student’s t-test. Error bars are SEM.     
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Furthermore, within the same V35A infected recipient, while the donor DbGP33-

specific population slowly declined in the absence of specific peptide, the donor 

DbGP276-specific CD8 T cells persisted (Fig 18d).  The disappearance of donor 

DbGP33-specific CD8 T cells was not simply due to a migration of these cells out 

of the blood, as the number of donor DbGP33-specific CD8 T cells was lower in 

both lymphoid and non-lymphoid tissues such as the spleen, liver and bone 

marrow (Fig 18e).  Together, our data suggest that virus-derived cognate antigen 

is the signal that is necessary to maintain a long-term population of antigen-

specific CD8 T cells during chronic viral infection. 

 

Virus-specific CD8 T cells are maintained by rapid, antigen-driven division during 

chronic viral infection. 

Following an acute infection, memory CD8 T cells undergo a slow, steady 

homeostatic proliferation to mediate their survival and self-renewal (22).  As the 

signal that maintains antigen-specific CD8 T cells during chronic viral infection is 

very different from that of memory CD8 T cells, we next wanted to determine 

whether the virus-specific CD8 T cells underwent a similar type of division.  As a 

control, CD8 T cells from the spleens of Arm immune mice were isolated, labeled 

with CFSE and transferred to naïve, congenically marked recipients.  As 

expected, the antigen-specific memory CD8 T cells underwent typical 

homeostatic proliferation, where only a portion (~50%) of the population divided 

no more than 5 times over the course of four weeks (Fig 19a,c,d).  In order to 

examine division during chronic viral infection, an adoptive transfer system 

77



D
b G

P3
3

D
b G

P2
76

D
b G

P3
3

CFSE CFSE

Im N WT Cl-13       V35A Cl-13
w/o antigen w/o antigen w/antigen

week 1

week 2

week 3

week 4

D
b G

P3
3

D
b G

P2
76

Liver

CFSE

w/o antigen w/antigen
WT C-13              V35A Cl-13

CFSE

9433
34363

Im        N
w/o antigen

0 54 46

D
b G

P2
76

D
b G

P3
3

D
b G

P3
3

6+ 1-5 0 
0

25

50

75

100

6+ 1-5 0 
0

25

50

75

100

6+ 1-5 0 
0

25

50

75

100

6+ 1-5 0 
0

25

50

75

100

6+ 1-5 0 
0

25

50

75

100

6+ 1-5 0 
0

25

50

75

100
w/o antigen w/antigenw/o antigen

Im        N Cl-13            V35A

number of divisions

PBMC

spleen

% 
D

b G
P3

3

% 
D

b G
P3

3

% 
D

b G
P2

76

A.

B.

C.

D.

Figure 19.  Virus-specific CD8 T cells are maintained by extensive
proliferation during chronic infection.  The experimental approach from Fig
18a was used to monitor cell division history of CFSE labeled donor cells during 
chronic LCMV infection.  A) Prolferation patterns of donor virus-specific CD8 T 
cells in the blood.  Left column shows homeostatic proliferation of memory CD8 T 
cells from Arm immune mice (>d30 p.i.) after adoptive transfer to naive mice.  
Middle column shows division of DbGP33+ CD8 T cells in V35A-infected 
recipients (without antigen).  Right column shows division of DbGP276+ CD8 T 
cell population from same V35A recipient (with antigen).  B) Proliferation of wt 
clone 13-derived donor virus-specific CD8 T cells in the liver of V35A-infected
recipients at 4 weeks post-transfer.  C) Histograms of donor tetramer+ CD8 T 
cells in the blood at 4 weeks post-transfer.  Numbers indicate the percent of
virus-specific CD8 T cells that have undergone no division (right gate), 1-5
divisions (middle) or 6+ divisions (left).  All histograms are gated on Ly5.2+ CD8
tetramer+ populations.  D) Graphs indicate percent of donor tetramer+ CD8 T 
cells that have undergone 0, 1-5 or 6+ divisions.  Top row is from the blood, 
bottom is from the spleen at 4 weeks post-transfer.  Error bars are SEM.  Data
is representative of 2-4 independent experiments.
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identical the one previously described (Fig 18a) was used with CFSE labeled 

donor CD8 T cells.  Briefly, Ly5.2+ donor mice were infected with wt LCMV clone 

13, and Ly5.1+ recipient mice were infected with V35A.  After control of viremia, 

CD8 T cells were purified from the spleens of the donor mice, CFSE labeled and 

adoptively transferred to the recipient mice.  The donor populations were tracked 

in the blood both in the presence (DbGP276) and absence (DbGP33) of cognate 

antigen.  Over the course of four weeks, the donor DbGP33-specific CD8 T cell 

population did not appear to undergo any sort of division in the absence of 

antigen, and indeed, declined in frequency over time (Fig 19a,c,d).  However, 

when the donor DbGP276-specific CD8 T cell population was examined, the 

pattern of division presented was strikingly different from that of memory CD8 T 

cells.  Donor DbGP276-specific CD8 T cells transferred to recipients chronically 

infected with V35A virus did not divide during the first two weeks post transfer 

(Fig 19a).  However, in the third week post transfer, a small population of CFSE 

negative donor DbGP276-specific CD8 T cells appeared, and this CFSE negative 

population increased in the fourth week (Fig 19a,c,d).  This was in stark contrast 

to the homeostatic proliferation of memory CD8 T cells, were no cells fully diluted 

CFSE over the course of four weeks (Fig 19a,c,d).  This rapid, antigen-driven 

division was not isolated to the blood, as it was also observed in the spleen and 

liver (Fig 19b,d).  In sum, our data suggest that during chronic viral infection, 

antigen-specific CD8 T cells are maintained by a mechanism of rapid proliferation 

that is driven by specific, virus-derived peptide rather than cytokine-driven 

homeostatic proliferation. 
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Discussion 

In this chapter, we have defined the mechanism of virus-specific CD8 T 

cell maintenance during chronic viral infection and have also uncovered a 

division pattern that is distinct from the homeostatic turnover of memory T cells.  

Our studies indicated that viral antigen was necessary for long-term persistence 

of virus-specific CD8 T cells during chronic infection, and also that the 

environment of chronic infection, including any inflammatory signals and altered 

IL-7 and IL-15 expression, was not sufficient to maintain virus-specific CD8 T 

cells in chronically infected mice.  It remains possible that environmental factors 

may play an accessory role, but they alone cannot sustain virus-specific CD8 T 

cells during chronic LCMV infection.   

During chronic LCMV infection, many virus-specific CD8 T cells had 

divided more than 5-6 times in ~1 month in the presence of viral antigen, yet the 

number of these virus-specific CD8 T cells numbers remained relatively stable.  

This observation suggests that either a very small subset of CFSEhi cells are 

recruited to divide or that the antigen-driven division of this CD8 T cell population 

is accompanied by extensive cell death.  This pattern of division may help explain 

the immunodominance changes and the immune “inflation” that has been 

observed during several persisting infections (89, 217, 218).  A difference 

between death and division rates during homeostatic proliferation following acute 

infection may lead to only a subtle change in cell numbers since the rate of 

division is slow.  In contrast, during chronic infection, where the persisting virus-

specific CD8 T cell population undergoes extensive division over the course of 
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several weeks, a minor discrepancy between the rates of division and death 

could be amplified to a large change in cell numbers.  Therapeutic manipulation 

of the rate of either recruitment into division or death may provide a novel means 

to modulate antigen-specific CD8 T cell responses to persisting viral antigen.   

The CFSE profiles in the present study reveal populations of both 

extensively divided and completely undivided virus-specific CD8 T cells during 

persisting infection.  It is unclear why some virus-specific CD8 T cells proliferate 

extensively during chronic infection while others did not.  The transfer of memory 

CD8 T cells from Arm immune mice to chronically infected recipients results in 

complete division of all DbGP276-specific donor cells (see Figure 2).  This 

observation suggests that lack of antigen encounter is an unlikely explanation for 

the undivided population of virus-specific CD8 T cells from chronically infected 

mice.  A second possibility is that only a subpopulation of the virus-specific CD8 

T cells generated during chronic infection are capable of the peptide-dependent 

division.  It will be important to determine whether heterogeneity exists in these T 

cell populations based on antigen-dependent maintenance potential or division 

history. 

The present study suggests that during chronic infections, virus-specific 

CD8 T cells acquire a mechanism of maintenance distinct from naïve CD8 T cells 

or effector and memory CD8 T cells generated following acute infection.  During 

chronic infection, virus-specific CD8 T cells appear to rely on TCR signals for 

persistence.  However, unlike naïve CD8 T cells, MHC and self-peptide alone 

cannot supply the TCR signal required by virus-specific CD8 T cells during 
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chronic infection.  Instead, viral antigen is necessary for long-term persistence.  

Unlike memory CD8 T cells that undergo proliferative expansion in response to 

antigen, virus-specific CD8 T cells present during chronic infection undergo 

extensive division, but the population does not expand dramatically in number in 

response to low levels of persisting viral antigen (compare the DbGP276 

response in Figure 17c and 18d).  Whether all virus-specific CD8 T cells undergo 

this antigen-driven division, or only a small subset of cells are recruited to divide, 

the observations are consistent with previous studies that found reduced 

proliferative potential of virus-specific T cells during chronic infection (89, 174, 

210).  This altered responsiveness to homeostatic signals and to persisting viral 

antigen suggests that during chronic infections, virus-specific CD8 T cells 

undergo a fundamentally different pattern of differentiation compared to memory 

CD8 T cells that develop in the absence of persisting antigen following acute 

infection.  Thus, during chronic viral infection, antigen-specific CD8 T cells 

appear to be “tuned” to respond to low levels of antigen in a dramatically different 

manner than memory CD8 T cells generated following acute infections.  

A recent study suggested that ongoing thymic output can result in priming 

of new virus-specific CD8 T cells during persisting infections (182).   In the 

current study, we found that chronic infection of thymectomized mice did not 

have a significant impact on the maintenance, function or phenotype of the 

antigen-specific CD8 T cell population.  We also used congenically marked donor 

populations and found that the number of tetramer+ CD8 T cells remains 

reasonably stable for ~10 weeks when antigen is present (see Figure 18).  These 
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results suggest that RTEs are not necessary to maintain a virus-specific CD8 T 

cell population during chronic LCMV infection.  However, our results do not 

exclude a qualitative contribution from RTEs primed on persisting antigen in the 

periphery.  It will be interesting to determine if a subpopulation of recently primed 

CD8 T cells possesses distinct functional characteristics compared to the 

majority of the antigen-specific population that has been maintained since early 

during the initial infection.  

In summary, the present work defines specific viral antigen, rather than IL-

7 and IL-15, inflammatory cytokines or new recruitment from RTEs, as an 

essential signal that governs the persistence of virus-specific CD8 T cells during 

chronic LCMV infection in mice.  In addition, we have identified a new 

mechanism for this type of antigen-dependent, long-term persistence by 

extensive cellular division without dramatic changes in cell numbers.  These 

observations may provide a framework to re-evaluate a long-standing debate 

about the role of persisting antigen in the maintenance of immunological 

memory.  Finally, the antigen-dependent maintenance mechanism described in 

this study may have implications for therapeutic interventions if either the rate of 

proliferation or cell death can be modulated in vivo to alter the size or quality of 

antigen-specific CD8 T cell populations during persisting infections.   
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Chapter 4 

A role for chronic inflammation in the regulation of CD8 T cell 

dysfunction during chronic infection 

 

Abstract 

Chronic infections represent a major social and economic problem around 

the world.  The control of disease burden can be further complicated by the co-

infections and secondary infections that accompany many chronic infections.  

Epidemiologically, chronic infections have been shown to have a negative impact 

on the control of secondary infections or co-infections.  However, there is little 

understanding as to how established chronic infections impact cellular responses 

to heterologous infections.  CD8 T cell exhaustion and failed memory 

differentiation are features that are shared by many chronic infections and may 

contribute to poor pathogen control and diminished protective immunity.  The 

factors that regulate altered memory CD8 T cell differentiation during chronic 

infection are not well understood.  In this study, we examine the impact of 

prolonged inflammation on CD8 T cell differentiation and find that effector CD8 T 

cells differentiating to memory are more sensitive to alteration by chronic 

inflammation than established memory CD8 T cells.  Furthermore, memory CD8 

T cells that differentiate in the presence of persistent inflammation have poor 

secondary responses and provide less protection.  Together, these data suggest 

that established, persistent inflammation can impact memory differentiation in a 
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bystander fashion, and may lead to decreased efficacy of preventative 

vaccination strategies and diminished immunity to heterologous pathogens 

during chronic infection. 
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Introduction 

 After an acute infection, memory differentiation occurs in the absence of 

antigen, but also in the absence of any factors generated by host-pathogen 

interactions (14).  However, during chronic infection, altered memory 

differentiation occurs not only in the presence of persistent antigen, but also in 

the continuous presence of all factors that arise from host-pathogen interactions 

(i.e. cytokines, chemokines, TLR ligands, etc.), which will heretofore be referred 

to as ‘inflammation’.  While the role of persistent antigen has been well described 

in regulating functional exhaustion (89, 219), the role that inflammation plays has 

not been as well studied.  Recently, some of these factors, including the 

immunoregulatory cytokine IL-10 (183, 184) and IL-21 (186-188), have been 

shown to play an important role in determining the chronicity of LCMV infection 

and the functionality of the responding CD8 T cells.  However, it is not entirely 

clear from these studies whether the impact on the cellular response is due to 

altered pathogenesis of the infection, or due to the direct effect of these cytokines 

on the T cells themselves.  In this chapter, we investigate the impact that chronic 

‘inflammation’ has on the differentiation of dysfunctional T cells during chronic 

infection at two stages – the effector to memory transition, and the TEM to TCM 

transition. 

  In addition to providing a greater understanding of how functional 

exhaustion is regulated during chronic infection, these studies could have 

important implications for understanding the biology of co-infections.  There is a 

considerable amount of epidemiological evidence that suggests that chronic 
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infections, even those that are not overtly immunosuppressive such as HIV, can 

have a negative impact on responses to secondary, heterologous infections.  

Malaria infections are associated with increased HIV viral loads, particularly 

during febrile episodes (220), leading to increased transmission and thousands 

of additional cases of HIV infection (221).  Infection with helminths such as 

schistosomes may also lead to increased viral replication of patients co-infected 

with HIV (222).  Even in situations where a chronic infection is not involved, co-

infection can have a negative impact on secondary infections.  For example, 

acute respiratory infections such as influenza and RSV and other viral infections 

such as measles can lead to increased incidences of bacterial co-infections (223, 

224).  Furthermore, these bacterial infections often become more severe and 

lead to the onset of bacterial sepsis (224).  While co-infections and their impact 

on disease control have been well documented, there is little understanding of 

how established chronic infection affects the development of cellular responses 

to heterologous infections.   

 The two previous chapters examined cell-intrinsic regulation and cell-

intrinsic properties of functionally exhausted CD8 T cells.  In this chapter, we 

address the effect that cell-extrinsic factors generated by interaction of the host 

and pathogen has on the regulation of T cell dysfunction.  We find that chronic 

inflammation has a profound impact on the differentiation of memory CD8 T cells.  

Non-LCMV-specific CD8 T cells adoptively transferred to chronically infected 

recipients did not acquire several key memory properties.  However, some 

features that are normally associated with functional exhaustion, such as the 
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upregulation of inhibitory receptors, were not impacted by inflammation alone.  

Our results suggest that distinct aspects of T cell dysfunction may be regulated 

by different signals.  We believe that our study furthers our understanding of how 

functional exhaustion is regulated during chronic infections.  Furthermore, our 

results could have important implications when designing treatment strategies to 

control disease burden, particularly for those involving prophylactic or therapeutic 

vaccination of chronically infected patients. 

 
 
 
Materials and Methods 

Animals and viruses.  Four to six week old female C57BL/6 mice and four to six 

week old female congenic B6-Ly5.2/Cr  were purchased from NCI.  OTI TCR Tg 

mice were obtained from Wolfgang Weninger (Sydney Medical School, 

Australia).  Vesicular stomatitis virus recombinantly expressing OVA (VSV-OVA) 

was propogated and titered as previously described (125).  Listeria 

monocytogenes recombinantly expressing OVA (LM-OVA) was also propogated 

and titered as previously described (225).  ME-49 strain of Toxoplasma gondii 

(toxo) was obtained from David Roos, and was grown and titered as previously 

described (226).  LCMV virus was grown and titers were determined by plaque 

assay as previously described (89).  Mice were infected with 2x105 plaque 

forming units (PFU) i.p. of LCMV Armstrong, 2x106 PFU i.v. of LCMV clone 13, 

2x106 PFU i.v. of VSV-OVA, 1.5x104 colony forming units (CFU) i.v. of LM-OVA 

for primary challenges or 100 parasites i.p of toxo.  Secondary challenges were 
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performed with 2.5-5x105 CFU i.v. of LM-OVA.  All animals were used in 

accordance with IACUC procedures. 

 

Lymphocyte isolation and flow cytometry. Lymphocyte isolation from 

lymphoid and non-lymphoid tissues, surface stains and intracellular cytokine 

stains were performed as described previously (89).  All antibodies were 

purchased from Biolegend except for CD127, TNFa, IL-2 (eBioscience), CD62L 

(Invitrogen).  LIVE/DEAD dead cell stain was purchased from Invitrogen.  MHC 

class I tetramers were made and used as described previously (89).  All flow 

cytometry data was acquired on an LSRII (BD Biosciences) and analyzed by 

FlowJo (Treestar).   

 

Adoptive transfers. Naïve OTI TCR Tg mice were sacrificed and spleens were 

harvested.  5x105 splenocytes were adoptively transferred i.v. into congenically 

marked B6-Ly5.2/Cr naïve recipient mice.  Recipients were infected with an OVA 

expressing pathogen and were sacrificed 8-30 days post infection (p.i.).  Spleens 

were harvested, and CD8 T cells were purified by magnetic beads (MACS beads, 

Miltenyi Biotec).  Briefly, splenocytes were incubated with beads specific for 

CD8a and then run through a MACS LS separation column (Miltenyi Biotec) 

according to the manufacturer’s protocol.  Frequency of OTI CD8 T cells was 

determined by flow cytometry.  Equal numbers of OTI CD8 T cells were 

adoptively transferred to either infected or naïve congenically marked B6-

Ly5.2/Cr recipients.  Donor populations were monitored by retro-orbital bleeding 
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as described previously (174).  The same adoptive transfer method was used for 

secondary challenges.   

 
 
 
Results 

Established chronic infections alter CD8 T cell differentiation after heterologous 

challenge. 

In order to determine the role of chronic inflammation in regulating 

memory CD8 T cell differentiation, we first employed a direct co-infection model.  

Mice were infected with LCMV clone 13 and allowed to rest for 30 days.  At d30 

p.i., the LCMV clone 13 infected mice and naïve controls were infected with 

Listeria monocytogenes expressing recombinant OVA protein (LM-OVA).  

Response to the OVA peptide SIINFEKL was tracked over time and analyzed at 

30 days post LM-OVA challenge (Fig 20a).  As the LM-OVA is cleared within a 

week and the SIINFEKL epitope is not expressed by LCMV, we could be 

confident that the antigen-specific CD8 T cells responding to SIINFEKL would be 

differentiating in the absence of persistent antigen but in the presence of the 

chronic inflammation generated by LCMV clone 13 infection.  30 days after LM-

OVA challenge, the KbSIINFEKL-specific CD8 T cells in the control mice had 

differentiated into a population of memory CD8 T cells uniformly expressing high 

levels of CD127, and with a small subset beginning to upregulate CD62L (Fig 

20b).  In contrast, the KbSIINFEKL-specific population in the LCMV clone 13 co-

infected mice expressed low levels of CD127 and very few cells were CD62Lhi 

(Fig 20b).  When the effector function of these cells was assessed, we found that 

90



d30 Cl-13

naive ctrl

LM-OVA 30 days bleed longitudinally
harvest tissues for analysis

0 102 103 104 105

0

102

103

104

105

0.7

0 102 103 104 105

0

102

103

104

105

1.0

0 102 103 104 105
0

5

10

15

20

23.1

0 102 103 104 105
0

5

10

15 9.4

0 102 103 104 105
0

5

10

15

20

88.7

0 102 103 104 105
0

2

4

6 23.7

CD44 CD62LCD127

ctrl

Cl-13

0 102 103 104 105

0

102

103

104

105

0 102 103 104 105

0

102

103

104

105

0 102 103 104 105

0

102

103

104

105

0 102 103 104 105

0

102

103

104

105

0 102 103 104 105

0

102

103

104

105

0 102 103 104 105

0

102

103

104

105

CD8 TNFα IL-2

IF
N
γ

0.9

1.0

ctrl

Cl-13

ctrl Cl-13
0

5

10

15

20

ctrl Cl-13
70

80

90

100

0 10 20 30
102

103

104

105

Cl-13
ctrl

days post challenge

ctrl Cl-13
103

104

105

106

ctrl Cl-13
103

104

105

A. B.

C. D.

Figure 20.  Chronic viral infection alters immune response to heterologous 
challenge.  A) Schematic of experiment.  B6 mice were infected with LCMV 
clone 13.  30 d.p.i., LCMV clone 13 infected mice and naive B6 were challenged 
with LM-OVA.  The OVA-specific response was analyzed 30 days after LM-OVA 
challenge.  B) Phenotype of OVA-specific CD8 T cells in ctrl and clone 13 
infected mice.  Plots are gated on total CD8 T cells.  Histograms are gated on 
OVA-specific CD8 T cells.  Numbers in plots show percent of total CD8 T cells 
that are OVA-specific.  Numbers in histograms show percent of OVA-specific CD8 
T cells that are positive for each marker.  C) Effector function of OVA-secific CD8 
T cells.  Splenocytes were stimulated with OVA peptide for 5 hrs at 37C.  All plots 
are gated on total CD8 T cells.  Number in plot shows percent of total CD8 T cells 
that produce IFNγ.  Graphs indicate percent of of IFNγ+ CD8 T cells that also 
produce the second indicated cytokine.  D) Number of OVA-specific CD8 T cells.  
Top graph shows frequency of OVA-specific CD8 T cells in the blood at the 
indicated time points.  Bottom graphs show absolute number of OVA-specific 
CD8 T cells in each indicated tissue.  Error bars are SEM.  N=5 at each time 
point.
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90-95% of the memory KbSIINFEKL-specific CD8 T cells in the control mice 

were capable of co-producing IFNγ and TNFα, and a substantial fraction 

expressed both IFNγ and IL-2 (Fig 20c).  In the LCMV clone 13 co-infected mice, 

however, while IFNγ and TNFα co-production appeared to be intact, IL-2 

production, a key memory property, was impaired (Fig 20c).  The frequency of 

KbSIINFEKL-specific CD8 T cells in the blood also differed between the control 

and LCMV clone 13 co-infected mice.  The peak of the antigen-specific CD8 T 

cell response in the LCMV clone 13 co-infected mice was slightly delayed and 

not as great as in the control mice (~d8 p.i.), although the frequency of 

KbSIINFEKL-specific CD8 T cells in the blood after the contraction phase was 

similar (~d30 p.i.) (Fig 20d).  The absolute number of KbSIINFEKL-specific CD8 

T cells was not significantly different in the spleen or liver between the two 

groups, though there was a trend towards fewer antigen-specific CD8 T cells in 

the spleens of the LCMV clone 13 co-infected mice and more in the liver (Fig 

20d).  Together, these results indicate that an established chronic viral infection 

can effect the differentiation of CD8 T cells responding to a heterologous 

infection by repressing the memory development and decreasing the magnitude 

of the effector response. 

 

Inflammation alone can repress memory CD8 T cell differentiation during chronic 

viral infection. 

 While the results from the direct co-infection model indicate that an 

established chronic viral infection can alter the CD8 T cell response to a 
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heterologous infection, a number of caveats complicate the interpretation of the 

data.  Co-infections can change the pathogenesis of both infections (220, 221, 

227) and LCMV clone 13 can infect APCs such as macrophages and DCs (87, 

88), which raises the possibility that antigen-presentation and activation of the 

KbSIINFEKL-specific CD8 T cells may not be normal.  To isolate the impact of 

chronic inflammation and focus directly on the memory differentiation stage, we 

switched to an adoptive transfer model.  5x105 OTI splenocytes were transferred 

to naïve recipients and challenged with vesicular stomatitis virus expressing the 

OVA protein (VSV-OVA).  At d8 p.i., CD8 T cells from the spleens of the infected 

OTI peripheral chimeras were purified and equal numbers of effector OTI CD8 T 

cells were transferred to control Ly5.1+ recipients that were either naïve or 

infected with VSV-OVA,  and to Ly5.1+ recipients that had been challenged with 

LCMV clone 13 8 days prior (Fig 21a).  Little difference was observed regardless 

of whether naïve or VSV-OVA infected recipients were used as controls.  At d8 

p.i., the effector OTI donor cells were mostly CD127lo and CD62Llo (Fig 21b).  By 

adoptively transferring an effector OTI CD8 population generated by an acute 

infection, we could ensure that the OTI CD8 T cells had been properly primed 

and were capable of differentiating into normal memory CD8 T cells.   

 After about one month post-transfer, the donor OTI CD8 T cells that had 

been adoptively transferred to the control recipient mice expressed high levels of 

CD127, and were beginning to upregulate CD62L (Fig 21c).  As in the direct co-

infection model, however, the donor OTI CD8 T cells transferred to the LCMV 

clone 13 infected recipients remained CD127lo and CD62Llo (Fig 21c).  Effector 
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Figure 21.  Memory CD8 T cell differentiation is repressed by chronic 
inflammation.  A) Schematic of experiment.  5x105 OTI splenocytes were 
adoptively transferred to naive B6 recipients.  Mice were challenged with 
VSV-OVA and one group of Ly5.1+ B6 recipients were infected with LCMV clone 
13 at the same time.  Control Ly5.1+ B6 mice were either challenged with 
VSV-OVA, LCMV Arm or naive.  No difference was observed between different 
controls.  At d8 p.i.,CD8 T cells were purified by magnetic beads from the spleens 
of the donor mice and equal numbers of OTI CD8 T cells were transferred to 
LCMV clone 13 infected and ctrl recipients.  Donor OTI CD8 T cells were 
analyzed ~1 month post-transfer.  B) Phenotype of donor OTI CD8 T cells pre-
transfer.  Plot is gated on total CD8 T cells.  Histograms are gated on OTI CD8 T 
cells.  Number in plot is percent of total CD8 T cells that are KbSIINFEKL+.  
Numbers in histograms show the percent of the OTI CD8 T cell population that is 
positive for each marker.  C) Phenotype of donor OTI CD8 T cells in the spleen 1 
month post-transfer.  Plots are gated on total CD8 T cells, histograms are gated 
on donor OTI CD8 T cells.  Numbers in plots indicate the percent of total CD8 T 
cells that are donor OTI.  Numbers in histograms show percent of donor OTI 
population that is positive for each marker.  Numbers are graphed to the right.  
N=2 per group, data is representative of seven independent experiments.  Error
bars are SEM.  (Figure continued on next page.)          
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Figure 21 (cont.).  Memory differentiation is repressed by chronic 
inflammation.  D) Effector function of donor OTI CD8 T cells.  Splenocytes were
stimulated with OVA peptide for 5 hrs at 37C.  Left plots are gated on total CD8
T cells, middle and right plots are gated on donor CD8 T cells.  Number in left
plots show percent of total CD8 T cells that produce IFNγ after OVA stim.  
Numbers in middle and left plots show percent of IFNγ+ CD8 T cells that also
produce the second indicated cytokine.  Numbers are graphed below.  N=2 per
group, data is representative of seven independent experiments.  Error bars are
SEM.  E) Number of OTI CD8 T cells in clone 13 infected or ctrl recipients.  
Frequency of donor OTI CD8 T cells was measured in the blood at the indicated
time points.  Absolute number of donor OTI CD8 T cells was measured in the 
indicated tissues.  Numbers above bar graphs indicate the fold increase in 
donor OTI numbers in ctrl recipients over LCMV clone 13 infected recipients. 
N=2 per groups, data is representative of seven independent experiments.  Error
bars are SEM.
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functions of donor OTI CD8 T cells transferred to LCMV clone 13 infected 

recipients were also somewhat compromised.  The frequency of donor OTI CD8 

T cells that co-produced IFNγ and TNFα was slightly lower in the chronically 

infected recipients, and IL-2 production was substantially, if not significantly, 

diminished (Fig 21d).  The survival of donor OTI CD8 T cells was also decreased 

in the chronically infected recipients compared to the controls.  The frequency of 

the donor OTI CD8 T cells in the blood of the control mice remained relatively 

stable over 30 days, whereas the frequency declined in the blood of the LCMV 

clone 13 recipients (Fig 21e).  More strikingly, the absolute number of donor OTI 

CD8 T cells was greatly decreased in both lymphoid and non-lymphoid tissues.  

The difference in recovery of donor OTI CD8 T cells ranged from 6-fold (liver and 

bone marrow) to 26-fold (spleen), indicating a systemic decrease rather than 

redistribution of donor OTI CD8 T cells due to differences in migration within the 

two recipient groups (Fig 21e).  Together, these data suggest that, like the direct 

co-infection model, chronic inflammation alone can impact the differentiation of 

CD8 T cell responses.  More specifically, chronic inflammation appears to be 

able to repress memory differentiation, preventing the acquisition of memory 

properties such as CD127 and CD62L expression and IL-2 production. 

 

Chronic inflammation alone does not regulate expression of inhibitory receptors. 

 Along with the repression of memory differentiation, the expression of 

inhibitory receptors is a cardinal feature of functional exhaustion.  In particular, 

the high expression of PD-1 has been associated with many human and murine 
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models of chronic viral infection (14), and of the numerous inhibitory molecules 

upregulated during chronic LCMV infection, PD-1 is one of the most commonly 

expressed by exhausted CD8 T cells (160).  Recent reports have also suggested 

that PD-1 expression can be upregulated by γ chain cytokines (228), some of 

which are elevated during chronic viral infection (data not shown).  To determine 

whether chronic ‘inflammation’ alone could regulate this property of functional 

exhaustion, we examined the donor OTI CD8 T cells for PD-1 expression after 

adoptive transfer to control or LCMV clone 13 infected recipients.  At 2 days post 

adoptive transfer, donor OTI CD8 T cells transferred to both control and 

chronically infected recipients expressed similar levels of PD-1 (Fig 22a).  It 

should be noted that effector and memory CD8 T cells also express PD-1 after 

acute infection (162, 163) though the majority of these cells are PD-1int/lo rather 

than PD-1hi as most exhausted CD8 T cells are (data not shown) (163).  

Inhibitory receptor expression was also not upregulated by chronic inflammation 

over time, as donor OTI CD8 T cells in both control and LCMV clone 13 infected 

recipients retained similar PD-1 expression at d30 post adoptive transfer (Fig 

22b).  Furthermore, the level of PD-1 expression on the donor cells was lower 

than on exhausted CD8 T cells specific for LCMV (Fig 22b).  Thus, while chronic 

inflammation alone seems capable of altering some key memory properties of 

differentiating CD8 T cells, another signal such as antigen may be required to 

regulate other aspects of T cell dysfunction during chronic viral infection, such as 

the high expression of inhibitory receptors.  
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Figure 22.  Chronic inflammation alone does not lead to high PD-1 
expression.  A) PD-1 expression pre- and post-transfer.  PD-1 expression on 
donor OTI CD8 T cells just prior to adoptive transfer to ctrl or LCMV clone 13 
infected recipients (pre-transfer), and two days post-transfer in the blood (ctrl, 
Cl-13).  Error bars are SEM.  Data is representative of seven independent 
experiments.  B) PD-1 expression 1 month post-transfer in the spleen.  Plots are 
gated on total CD8 T cells.  Numbers in plots indicate the percent of donor OTI 
CD8 T cells that are PD-1int/hi.  Histograms are gated on tetramer+ CD8 T cells, 
with the exception of naive.  Naive (shaded histogram) is gated on CD44lo 
CD62Lhi cells in ctrl mice.  Exhausted (dashed) is gated on DbGP33+ CD8 T cells 
in LCMV clone 13 infected recipients.  Ctrl OTI (red) and Cl-13 OTI (black) are 
gated on donor OTI CD8 T cells from ctrl and LCMV clone 13 infected recipients, 
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Different types of chronic inflammation can repress memory CD8 T cell 

differentiation. 

 While LCMV clone 13 is a very useful model for different types of chronic 

viral infection, it is possible that the inflammation induced by this pathogen is 

unique in its ability to repress memory differentiation.  To test whether our results 

were specific to LCMV, we also used Toxoplasma gondii (toxo) as another model 

of chronic infection.  While both LCMV and toxo induce inflammation that is 

skewed towards Th1, LCMV is primarily driven by type I interferons (92, 229), 

while toxo induces IL-12 mediated inflammation (230, 231).  The adoptive 

transfer system described previously was used (Fig 21a), but with toxo infected 

Ly5.1+ recipients as our experimental group.  As observed with LCMV clone 13, 

donor OTI CD8 T cells transferred to toxo infected recipients did not appear to 

differentiate into memory CD8 T cells, as the cells remained CD127lo (Fig 23a).  

There was also a drastic difference in the survival of donor OTI CD8 T cells 

between the control and toxo infected groups.  The frequency of donor OTI CD8 

T cells was much lower in toxo infected recipients compared to the controls 

immediately after adoptive transfer, and remained low over 30 days post transfer 

(Fig 23b).  The recovery of donor OTI CD8 T cells from the tissues of toxo 

infected recipients was also significantly lower in the spleen and liver, and a 

similar trend was observed in the lymph nodes, indicating that the decrease in 

donor cell numbers was not simply to due to migration (Fig 23b).  The parallels 

between the LCMV clone 13 model and the toxo model suggest that different 

types of chronic inflammation (i.e. type I interferon driven vs. IL-12 driven) may 
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show percent of donor OTI population that is CD127hi.  Red numbers show MFI 
of CD127 expression.  B) Number of donor OTI CD8 T cells in ctrl and toxo infected
recipients 1 month post-transfer.  Frequency of donor OTI CD8 T cells was 
determined in the blood at the indicated time points.  Absolute number of donor 
OTI CD8 T cells was measured in each of the indicated tissues.  N=3-4 per group.  
For spleen, *p=0.04, for liver, *p=0.02 by Student’s t-test.  Error bars are SEM.  All 
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repress memory differentiation, and that there may be factors common to 

different types of chronic infections that can alter memory CD8 T cell 

differentiation.    

 

Established memory CD8 T cells are plastic but less susceptible to chronic 

inflammation than differentiating effector CD8 T cells. 

 Our data thus far indicate that the memory CD8 T cell differentiation 

pathway can be altered by the inflammation present during chronic infections.  It 

is not clear, however, whether the responsiveness of CD8 T cells to their 

environment is maintained throughout the memory phase.  There is evidence that 

tissue microenvironments may be able to dictate the properties of memory CD8 T 

cells (232, 233), and the memory CD8 T cell population continues to differentiate 

long after the initial infection is cleared (64, 135, 137).  To test the plasticity of 

memory CD8 T cells, we examined whether established memory CD8 T cells 

could be influenced by chronic inflammation using our adoptive transfer system.  

5x105 OTI splenocytes were transferred to naïve recipients, which were 

challenged with VSV-OVA.  At approximately one month p.i., memory OTI CD8 T 

cells that were generated were transferred to either control Ly5.1+ recipients or 

Ly5.1+ LCMV clone 13 recipients that had been infected 30 days prior (Fig 24a).  

The transferred memory OTI CD8 T cells were mostly CD127hi, starting to 

upregulate CD62L and were capable of producing IL-2 (Fig 24b).   

At 30 days post transfer, donor OTI CD8 T cells in the control recipients 

retained high CD127 expression and further increased expression of CD62L (Fig 
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Figure 24.  Established memory CD8 T cells are more resistant to alteration
by chronic inflammation than effector CD8 T cells.  A) Schematic of 
experiment.  5x105 OTI splenocytes were adoptively transferred to naive donor 
B6 mice and challenged with VSV-OVA.  One group of recipient Ly5.1+ B6 
recipients was infected with LCMV clone 13 at the same time.  Another ctrl
recipient group was left naive or infected with VSV-OVA or LCMV Arm.  No 
difference was observed between the ctrl groups.  30 d.p.i., CD8 T cells were 
purified from the spleens of donor mice and equal numbers of donor OTI CD8 T
cells were adoptively transferred to Ly5.1+ LCMV clone 13 infected recipients
and Ly5.1+ ctrl recipients.  Donor OTI CD8 T cells were analyzed 1 month post-
transfer.  B) Donor OTI CD8 T cells pre-transfer (30 d.p.i.).   Left and middle
plots are gated on total CD8 T cells.  Numbers in plots indicate the percent of 
donor OTI CD8 T cells that are positive for each marker.  Right plot is gated on 
donor CD8 T cells.  Splenocytes were stimulated with OVA peptide for 5 hrs at
37C.  Number indicates the percent of IFNγ+ cells that  co-produce IL-2.  Data
is representative of three independent experiments.  (Figure continued on next
page.)         
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Figure 24 (cont.)  Established memory CD8 T cells are more resistant to
alteration by chronic inflammation than effector CD8 T cells.  C) Phenotype
of donor OTI CD8 T cells in the spleen 1 month post-transfer.  Plots are gated on
total CD8 T cells, histograms are gated on donor OTI cells.  Numbers in plots 
show percent of total CD8 T cells that are donor OTI.  Numbers in histograms 
indicate the percent of donor OTI that are positive for each marker.  Numbers are 
graphed below.  N=3 per group.  Error bars are SEM.  D) Effector function of donor 
OTI cells.  Splenocytes from recipient mice were stimulated with OVA peptide for 
5 hrs at 37C.  Left plots are gated on total CD8 T cells.  Numbers indicate percent 
of total CD8 T cells that produce IFNγ.  Middle and right plots are gated on donor 
CD8 T cells.  Numbers show the percent of IFNγ+ cells that also produce the 
second indicated cytokine.  Numbers are graphed below.  N=3 per group, error 
bars are SEM.  E) Number of donor OTI CD8 T cells.  Frequency of donor OTI 
CD8 T cells were measured in the blood at the indicated time points.  Absolute 
number of donor OTI CD8 T cells were determined in each tissue.  N=3 per 
group, error bars are SEM.  All data is representative three independent 
experiments.     
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24c).  The majority of donor OTI CD8 T cells transferred to LCMV clone 13 

infected recipients also remained CD127hi, though the level of expression was 

lower than in the control recipients (Fig 24c).  The upregulation of CD62L by a 

memory CD8 T cell population is an indicator of the transition from effector to 

central memory (68, 135, 143, 144), and though a subset of donor OTI CD8 T 

cells maintained high CD62L expression in the chronically infected recipients, no 

further upregulation was observed (Fig 24b,c).  Other molecules associated with 

memory ‘maturation’, including CD27 and CXCR3, were also not as highly 

expressed on donor OTI CD8 T cells in chronically infected recipients as 

compared to controls (data not shown).  While TNFα and IFNγ co-production by 

the donor OTI CD8 T cells did not appear to be compromised, IL-2 and IFNγ co-

production did not increase in the LCMV clone 13 infected recipients as it did in 

the controls (Fig 24d).  Unlike donor effector OTI CD8 T cells, the survival of 

donor memory OTI CD8 T cells did not appear to be greatly affected by chronic 

inflammation.  The frequency of donor OTI CD8 T cells in the blood remained 

similar and stable over the course of a month post transfer, and the absolute 

number of donor OTI CD8 T cells did not differ greatly between control and 

chronically infected groups in both lymphoid and non-lymphoid tissues (Fig 24e).  

Thus, our data indicate that while established memory CD8 T cells do not appear 

to be actively altered by low levels of persistent inflammation, the transition from 

effector memory to central memory seems to be prevented or delayed by 

prolonged inflammation. 
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Extent of memory CD8 T cell differentiation alteration is determined by severity of 

chronic inflammation and differentiation state of the cell. 

 Thus far, our data indicate that the transition from effector to memory CD8 

T cell is highly susceptible to alteration by chronic inflammation, while 

established memory CD8 T cells retain their memory properties but do not 

appear to transition from effector to central memory.  However, the transferred 

effector and memory OTI CD8 T cells were likely exposed to different amounts of 

inflammation.  During LCMV clone 13 infection, more virus is present at the early 

d8 time point than at d30 p.i., at which point the virus is beginning to be cleared 

from tissues such as the spleen and liver (89).  Furthermore, the CD8 T cell 

response, which peaks at ~d8 p.i., is more functional at this early time point than 

at the later d30 time point (89).  Thus, due to the differences in pathogen burden 

and effector functions of the immune response, it is likely that both the severity 

and composition of the inflammation present is different at early (d8) and late 

(d30) stages of the infection.  In order to determine whether our observations 

were due to the differentiation stage of the donor OTI CD8 T cells or due to the 

level of chronic inflammation, we adoptively transferred effector OTI CD8 T cells 

(d8) into recipient mice 30 days post infection with LCMV clone 13 (low 

inflammation) (Fig 25a).  We also transferred memory OTI CD8 T cells (d30) into 

recipient mice 8 days post infection with LCMV clone 13 (high inflammation) (Fig 

26a). 

 Donor effector OTI CD8 T cells that were transferred into d30 LCMV clone 

13 infected recipients unexpectedly did not display a sharp decrease in CD127 
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Figure 25.  Low levels of chronic inflammation have a less profound impact on effector CD8 T cells differentiating
into memory CD8 T cells.  A) Schematic of experiment.  Experimental design from Fig 21a and 24a was used, except
d8 effector OTI CD8 T cells were transferred into recipient mice infected with LCMV clone 13 30 days prior (d8 to 30).
Donor OTI CD8 T cells were analyzed one month post-transfer.  B) Phenotype of donor OTI CD8 T cells in the spleen.
Plots are gated on total CD8 T cells, histograms are gated on donor OTI CD8 T cells.  Numbers in histograms show 
percent of donor OTI CD8 T cells that are positive for each marker.  Numbers are graphed below.  For CD127, **p=0.002 
by Student’s t-test.  N=4 per group, error bars are SEM.  C) Effector function of donor OTI CD8 T cells.  Splenocytes from 
recipient mice were stimulated with OVA peptide for 5 hrs at 37C.  Graphs show percent of IFNγ+ that also produce 
the second indicated cytokine.  For TNFα *p=0.05, for IL-2 *p=0.02 by Student’s t-test.  N=4 per group, error bars are SEM.   
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expression 30 days post transfer. (Fig 25b).  While significant, the fold difference 

in CD127 expression between the control and chronically infected recipients was 

not as great as observed during the adoptive transfer to d8 LCMV clone 13 

infected recipients (high inflammation) (Fig 21c, 27).  There was also little 

difference in CD62L expression between the two groups (Fig 25b). Cytokine 

production, however, was still compromised by low levels of inflammation, and 

donor OTI CD8 T cells from the d30 LCMV clone 13 infected recipients had 

significantly less TNFα and IL-2 production as compared to the controls (Fig 

25c).  It should be noted that this data is preliminary, as the experiment has only 

been performed once.  When memory OTI CD8 T cells were transferred to d8 

LCMV clone 13 infected recipients (high inflammation), CD127 expression 

decreased significantly, and CD62L expression did not increase 30 days post-

transfer (Fig 26b).  Effector functions, however did appear to be greatly 

compromised.  Co-production of IFNγ with either TNFα or IL-2 by the donor OTI 

CD8 T cells was only slightly decreased in the chronically infected recipients (Fig 

26c).  These data suggest certain memory CD8 T cell properties, such as high 

CD127 expression and upregulation of CD62L, are more susceptible to the 

effects of chronic inflammation in differentiating effector CD8 T cells than in 

established memory CD8 T cells (Fig 27).  Together, our data indicate that CD8 

T cell differentiation can be impacted by both high and low levels of chronic 

inflammation at all stages of the immune response, including the effector to 

memory transition as well as the effector memory to central memory transition.   
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Figure 26.  Memory CD8 T cells are more resistant than effector CD8 T cells to high levels of chronic inflammation.
A) Schematic of experiment.  Experimental design from Fig 21a and 24a were used, except memory OTI CD8 T cells were
transferred to recipients at d8 post-LCMV clone 13 infection (d30 to 8).  Donor OTI CD8 T cells were analyzed 1 month 
post-transfer.  B) Phenotype of donor OTI CD8 T cells in the spleen.  Plots are gated on total CD8 T cells, histograms are
gated on donor OTI.  Numbers in histograms show percent of donor OTI that are positive for each marker.  Numbers are 
graphed below.  For CD127, ***p<0.0001, for CD62L *p=0.001.  N=8, error bars are SEM.  C) Effector function of donor
OTI CD8 T cells.  Splenocytes from recipient mice were stimulated with OVA peptide for 5 hrs at 37C.  Graphs represent
percent of IFNγ+ cells that also produce the second indicated cyokine.  N=4, error bars are SEM.  All data is representative
of two independent experiments.  
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memory OTI CD8 T cells (d30) transferred to early (d8) or late (d30) time points post-
LCMV clone 13 infection of recipients.  Data is representative of 1-7 independent 
experiments.
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Secondary responses of memory CD8 T cells may be compromised by exposure 

to chronic inflammation. 

 Our results thus far indicate that chronic inflammation appears capable of 

repressing memory CD8 T cell differentiation.  As the ability to mount a rapid, 

potent secondary response is a critical property of functional memory CD8 T cells 

(73), we examined whether exposure to chronic inflammation could affect this 

feature.  In order to assess the intrinsic potential of the donor CD8 T cells to 

respond to a secondary challenge, a second round of adoptive transfers were 

performed (Fig 28a).  In brief, experiments were carried out as described in Fig 

21a, 24a, 25a and 26a.  For each experiment, after a month post transfer, equal 

numbers of OTI CD8 T cells from the spleens of either LCMV clone 13 infected 

recipients or control recipients were transferred to new, naïve, Ly5.1+ recipients 

after CD8 purification by magnetic beads (Fig 28a).  These new Ly5.1+ recipients 

were then challenged with LM-OVA (Fig 28a).  Five to six days later, the 

secondary OTI CD8 T cell responses were analyzed and bacterial burden was 

measured.      

 Regardless of the differentiation state of OTI CD8 T cells at the time of the 

first adoptive transfer or the level of chronic inflammation, OTI CD8 T cells that 

had been transferred from chronically infected groups did not accumulate as 

much after secondary challenge as those that had been transferred from the 

control groups (Fig 28b).  Compared to the controls, the difference in magnitude 

of secondary responses was greatest for effector donor OTI CD8 T cells that had 

differentiated in the presence of high inflammation (d8 to 8) (Fig 28b).  The 
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Figure 28. Exposure to chronic inflammation compromises secondary responses.  A) Schematic of experiment.  
1 month after the transfers described in Fig 21a (d8 to 8), 24a (d30 to 30), 25a (d8 to 30), and 26a (d30 to 8), equal 
numbers of donor OTI cells from either ctrl or LCMV clone 13 infected recipients were transferred to new naive Ly5.1+ 
B6 recipients.  The new recipients were challenged with LM-OVA, and secondary responses were measured 5-6 days 
post-challenge. (Figure continued on next page.)  
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Figure 28 (cont.) Exposure to chronic inflammation compromises 
secondary responses.  B) Accumulation of donor OTI CD8 T cells after in the 
spleen. Top row shows donor OTI CD8 T cells that rested in the ctrl group for 1
month, bottom row shows donor OTI CD8 T cells that rested in the LCMV clone 
13 infected group for 1 month prior to secondary challenge.  All plots are gated on 
total CD8 T cells.  Numbers in plots show percent of total CD8 T cells that are
donor OTI.  Absolute number of donor OTI CD8 T cells are graphed below. 
Numbers above each graph show fold difference in accumulation between donor
OTI CD8 T cells from ctrl vs. LCMV clone 13 infected groups.  Data is 
represenative of 1-2 independent experiments.  C) Bacterial burden after 
secondary challenge.  Left graph shows secondary challenge after transfer of 
memory OTI to d30 LCMV clone 13 infected recipients, middle and right graphs
show secondary challenge after transfer of memory OTI to d8 LCMV clone 13
infected recipient.  Bacterial burden in each indicated tissue was measured by 
colony growth on BHI agar at 37C for 24 hrs.
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difference was minimal for memory OTI CD8 T cells that had differentiated in a 

situation of low inflammation (d30 to 30) (Fig 28b).  However, preliminary data 

indicate that these memory OTI CD8 T cells (d30 to 30) were not as efficient in 

controlling bacterial burden upon secondary challenge (Fig 28c).  Memory CD8 T 

cells that differentiated in a situation of high inflammation (d30 to 8) also 

appeared to be less protective, although it is difficult to compare the impact that 

exposure to low vs high inflammation may have had on protective immunity (Fig 

28c).  Thus, our data suggest that memory differentiation in the presence of 

chronic inflammation alone can lead to the development of memory CD8 T cells 

that may provide suboptimal protection. 

 

 

Discussion 

 In this study, we describe a role for inflammation in the dysregulation of 

memory CD8 T cell differentiation during chronic infection.  By using an adoptive 

transfer system with OTI TCR transgenic CD8 T cells that do not recognize any 

LCMV epitopes, we find that chronic ‘inflammation’ alone prevented the 

acquisition of several key memory properties during the effector to memory 

transition, including the upregulation of CD127 and CD62L, and high IL-2 

production, but did not lead to upregulation of inhibitory receptor expression.  The 

conversion of established TEM to TCM could also be prevented by persistent 

inflammation, although the impact was not as profound as on the effector to 

memory transition.  Both the activation state of the CD8 T cell (effector or TEM) 
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and the level of inflammation (early or late during chronic infection) were 

important in determining the severity of dysfunction.  Regardless of the situation, 

the cellular changes that occurred in the donor CD8 T cells resulted in impaired 

secondary responses. 

 During chronic viral infections, CD8 T cells can become functionally 

exhausted and undergo altered memory differentiation.  Although these two 

major defects are often observed together (14), there are certain models of 

chronic viral infection, such as γHV, where altered memory differentiation is 

uncoupled from loss of effector function and observed alone in dysfunctional CD8 

T cells (179, 234).  This raises the question as to whether different factors 

regulate distinct aspects of T cell dysfunction during chronic infection.  Our data 

suggest that chronic inflammation alone may regulate altered memory CD8 T cell 

differentiation, and that additional signals are required to mediate the loss of 

effector function (89, 90) and upregulation of inhibitory receptors (23) that are 

characteristic of functional exhaustion.  While expression of memory markers 

such as CD127 is downregulated by chronic inflammation, it is not yet clear 

whether this has any functional consequences for the cell.  The expression of 

CD127 can be regulated by both IL-7 (235, 236) and TCR stimulation (63). 

However, in human T cells, TCR signaling causes a more ‘permanent’ 

downregulation of CD127 than IL-7 signaling (237).  Furthermore, forced 

expression of CD127 does not impart any selective advantage in the 

differentiation of memory CD8 T cells after acute infection (95), suggesting that 

expression of this marker does not ensure memory differentiation.  Conversely, 
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this suggests that loss of CD127 may not necessarily deter a precursor cell from 

acquiring memory properties, such as the ability to use IL-7 for homeostasis.  In 

an LCMV model of chronic viral infection, as this work and other studies have 

shown, exhausted virus-specific CD8 T cells do not utilize IL-7 and IL-15 

efficiently, both in vitro and in vivo (Chapter 3) (174, 180).  Exhausted virus-

specific CD8 T cells appear to become ‘addicted’ to antigen (Chapter 3), and it is 

not yet clear whether chronic stimulation through the TCR as well as prolonged 

inflammation are necessary to limit reliance on homeostatic cytokines and induce 

antigenic ‘addiction’. In the future, it will be important to determine whether 

defective memory differentiation regulated by chronic inflammation alone is 

comparable to defective memory differentiation of exhausted CD8 T cells that 

have been stimulated by both persistent inflammation and antigen. 

 Effector cells and TEM are both populations that evolve over time, as 

memory precursors differentiate to long-lived memory and TEM convert to TCM 

(66).  Adoptive transfers performed with effector CD8 T cells and effector 

memory CD8 T cells indicated that effector memory CD8 T cells, while plastic, 

were less affected by chronic inflammation than effector CD8 T cells, regardless 

of the severity of inflammation.  This implies a cell-intrinsic resistance to 

alteration.  One possibility is that memory CD8 T cells do not express or 

downregulate expression of the receptors that are required to recognize input 

from the chronic inflammatory environment.  Another possibility is that gene 

expression patterns in memory CD8 T cells are more firmly imprinted than in 

effector CD8 T cells.  Differentiation and cell fate decisions are accompanied by 
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epigenetic control and chromatin remodeling in numerous different cell types.  

Epigenetic marks are used extensively in multiple different cells during 

development (238, 239).  Chromatin remodeling can also occur in more mature 

cell types, including CD4 T cells within the Th1/Th2 paradigm (37).  Epigenetic 

regulation leads to heritable changes in gene expression and can reduce (or 

increase) the accessibility to certain genes by cell-extrinsic signals (37, 238, 

239).  Memory CD8 T cells acquire histone modifications that aid their function 

(115), and rapid production of IL-2 is mediated by DNA demethylation (114).  

These epigenetic markers of differentiation could potentially render memory CD8 

T cells partially refractory to the effects of chronic inflammation.  Still, memory 

CD8 T cells are not completely unresponsive to persistent inflammation, as 

conversion from TEM to TCM is halted or delayed.  Thus, the question remains as 

to whether memory CD8 T cells generated after an acute infection ever reach a 

terminally differentiated, non-plastic state.  It will be important to determine 

whether memory properties, such as the ability to mount robust secondary 

responses, always remain open to the influence of inflammatory signals, as this 

could have critical implications for the function of previously established memory 

populations in patients infected with pathogenic chronic infections.   

 The specific signals present in chronic inflammation that alter memory 

differentiation have not yet been elucidated. Multiple factors that are generated 

during chronic infection have been shown to be critical in determining the 

functionality of T cells, including IL-10 (183, 184) and IL-21 (186-188).  After an 

acute infection, a ‘third signal’, such as IL-12 or type I IFN, is required for proper 
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activation and subsequent memory differentiation (116, 117).  Other non-cytokine 

signaling pathways, such as those mediated by MyD88, are also important for 

the proper differentiation (29).  It is not yet clear whether chronic inflammation is 

actively altering memory differentiation by the presence of a particular signal(s), 

or whether memory differentiation is not occurring because of the lack of a 

particular signal in the chronic inflammatory environment. One possible factor 

that may be lacking is CD4 help.  CD4 responses, like CD8 responses, are 

impaired during chronic viral infections, including LCMV (156, 240, 241), HIV 

(161, 242-244), and HCV (245, 246).  CD4 T cell exhaustion could potentially 

lead to insufficient CD4 help for CD8 T cells during chronic viral infection, which 

could contribute to memory defects.  Our data shows that the memory 

differentiation defects induced by chronic inflammation are not unique to LCMV 

clone 13 infection, as the IL-12-driven inflammatory environment of toxoplasma 

also leads to similar defects (i.e. CD127 expression, survival) in memory 

differentiation.  This indicates that there may be similarities across multiple 

different types of chronic infection that induce comparable dysfunction in CD8 T 

cells, and may be an efficient method of determining the signals are important in 

the regulation of memory differentiation.  In the future, it will be interesting to 

determine whether other types of chronic inflammation, including Th2- and Th17-

driven inflammation, as well as inflammation resulting from autoimmune disease 

or cancer, also result in functional exhaustion and altered memory differentiation. 

 In summary, we have identified a role for persistent inflammation in the 

regulation of memory differentiation during chronic viral infection.  Effector CD8 T 
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cells undergoing memory differentiation do not acquire key memory properties, 

such as the high expression of homeostatic cytokine receptors and ability to 

mount robust secondary responses to a challenge.  The transition from TEM to 

TCM is also prevented or delayed by prolonged inflammation.  The differentiation 

state of the CTL as well as the severity of inflammation both determined the 

extent of dysfunction.  Furthermore, our observations were not limited to chronic 

LCMV infection, as the inflammatory environment of toxoplasma also led to 

defects in memory differentiation, indicating that this may be a common feature 

of different types of chronic inflammation.    
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Chapter 5 

Discussion 

 

Overview of results. 

 Chronic infections are a severe burden on society, limiting quality of life, 

threatening public health and incurring a great cost for many of the world’s 

economies.  Hundreds of millions of people around the world are afflicted with 

one or more chronic viral infections such as HIV (7), HCV and HBV (8), as well 

as bacterial infections such as TB (247) and parasitic infections such as malaria 

(248).  While we have made great strides in understanding the pathogenesis of 

these infections, we still do not have sufficient knowledge of the impact these 

infections have on the immune system in order to restore natural clearance of the 

pathogen.  CD8 T cell exhaustion is a feature of many different chronic viral 

infections (14), and likely contributes to the poor control of these diseases.  While 

functional exhaustion has been observed in many different infections and model 

systems (14), we still do not fully understand how differentiation of exhausted 

CD8 T cells is regulated or what the underlying molecular mechanisms are. The 

work in this thesis attempts to further our understanding of functional exhaustion 

by addressing three different aspects: transcriptional regulation, homeostatic 

mechanisms and the regulation of the differentiation process by host-pathogen 

interactions. 
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While functional exhaustion is known to be a common feature of many 

chronic infections, the molecular mechanisms underlying this state have not been 

elucidated.  Gene expression studies suggest that functional exhaustion is a 

differentiation process that is guided by a unique transcriptional program (158).  

The first chapter focuses on the transcriptional repressor Blimp-1 and the role 

that it plays in regulating functional exhaustion.  We found that Blimp-1 is 

upregulated in exhausted antigen-specific CD8 T cells as compared to naïve, 

effector and memory CD8 T cells generated after acute infection, and that Blimp-

1 expression correlated with severity of dysfunction.  Conditional deletion of 

Blimp-1 led to decreased expression of inhibitory receptors and upregulation of 

memory markers such as CD127 and CD62L.  However, by controlling the 

number of alleles that were deleted, we found that some Blimp-1 expression was 

required for the acquisition and/or maintenance of effector function, especially 

cytotoxicity.  The temporal aspect of Blimp-1 expression also appeared to be 

crucial, as CD8 T cells lacking Blimp-1 prior to activation had higher viral titers 

than wt mice earlier during chronic infection.  Thus, our study suggested that 

Blimp-1 may be acting as a molecular rheostat, regulating effector function and 

memory differentiation at low or intermediate levels, while promoting functional 

exhaustion at high levels.  While we describe an important role for Blimp-1, it is 

likely that other transcription factors also play a critical role in the regulation of 

functional exhaustion.  Insight into the actions of Blimp-1 as well as other 

transcription factors in promoting (or repressing) T cell dysfunction could lead to 

new, potential therapeutic targets in the treatment of chronic infections. 
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Aside from the loss of effector function and upregulation of inhibitory 

receptors, dysfunctional CD8 T cells also follow a path of altered memory 

differentiation.  Unlike memory CD8 T cells that differentiate after acute infection, 

exhausted CD8 T cells express low levels of CD127 and CD122, and they do not 

use the cytokines IL-7 and IL-15 for their homeostasis.  Despite this, however, 

they persist long-term in chronically infected hosts.  In the third chapter we 

address this apparent paradox by performing adoptive transfers using a variant 

clone 13 strain that does not present the GP33 peptide.  With this variant virus, 

we found that rather than requiring a cytokine, growth factor or some unknown 

cell-cell contact, exhausted CD8 T cells require virus-derived antigen for their 

maintenance.  Furthermore, dysfunctional antigen-specific CD8 T cells also 

undergo a rapid, antigen-driven division that is distinct from the slow, steady, 

cytokine-driven homeostatic proliferation that is characteristic of memory CD8 T 

cells.  It is interesting to note that the features associated with functional 

exhaustion, such as loss of effector function and high amounts of inhibitory 

receptors, become less severe after the control of viremia (155).  However, the 

memory defects of these dysfunctional CD8 T cells remain after virus is 

controlled (174), though it is not known how long these defects persist.  HAART 

treatment of HIV infected patients can lead to a sharp decrease in viral load, 

which could compromise the survival signal that HIV-specific CD8 T cells may 

require (249, 250).  It will be important to determine whether any sort of 

protective immunity can be maintained in after the maintenance signal for 

exhausted antigen-specific CD8 T cell population is diminished or removed. 
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 While the functional exhaustion and altered memory differentiation often 

occur simultaneously during chronic viral infection, there are infection models, 

such as γHV, in which these two states can present separately (179, 234).  This 

suggests that different features of T cell dysfunction may be regulated by distinct 

signals.  Furthermore, co-infections involving pathogens that are not overtly 

immunosuppressive may repress immune responses to heterologous infections, 

suggesting that signals other than persistent antigen may be playing a role (220-

224).  The extrinsic signals that regulate the differentiation of exhausted CD8 T 

cells are not well known, and in the Chapter 4, we focus on the role of chronic 

inflammation in regulating T cell dysfunction.  We find that inflammation alone 

leads to the repression of memory differentiation, but does not lead to the 

upregulation of inhibitory receptor expression.  The effector to memory transition 

was more sensitive to alteration by chronic ‘inflammation’ than the TEM to TCM 

transition, and inflammation present at early time points (d8) after infection 

appeared to have a more severe impact on differentiation than the inflammatory 

environment at later time points (d30).  Furthermore, memory repression induced 

by persistent inflammation was not limited to our model system of chronic 

infection, as the inflammatory environment of chronic toxoplasma infection also 

led to a similar results.  In summary, chronic inflammation leads to repression of 

memory differentiation, but other signals, such as persistent antigen, may be 

necessary to induce the loss of effector function and upregulation of inhibitory 

receptors associated with functional exhaustion.  Our work could have important 

implications for the development of cellular responses in the case of co-
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infections.  Chronic infections could not only impact the differentiation of new 

memory populations after infection or vaccination, but they could also erode 

protective immunity established by prior infections or vaccinations.  A study by 

Puissant-Lubrano et al show that in ART-treated HIV patients, memory 

responses to childhood vaccination against smallpox were lost, but memory was 

maintained against the BCG vaccine, in which antigen persists (251).  While the 

study did not distinguish between a loss of immunity due to ‘inflammation’ and 

direct loss of T cells via HIV infection, it still raises the possibility that protective 

immunity to heterologous infections may be compromised by ongoing chronic 

infections. 

 

Regulation of T cell exhaustion and memory differentiation. 

 After an acute infection, inflammation can affect the antigen-specific CD8 

T cell population by regulating both the size of the clonal burst after activation 

(252) and the differentiation of terminally differentiated effectors vs. memory 

precursors (60).  While antigen load is a strong correlate for the severity of T cell 

dysfunction during chronic viral infection (89) and may directly cause functional 

exhaustion (219), it is not clear how prolonged inflammation impacts the 

regulation of functional exhaustion during chronic viral infection.  Our data from 

Chapter 4 show that inflammation can repress aspects of memory differentiation, 

but other signals such as antigen may be necessary to induce some of the 

hallmarks of functional exhaustion, such as loss of effector function and high 

expression of inhibitory markers.  Thus, in order to generate a functional 
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population of true memory CD8 T cells, rest from both antigen and inflammation 

appear to be necessary.   

The mechanism by which inflammation alters or represses the 

development of memory is not yet clear.  Further work needs to be done to 

determine the specific signals that are regulating this process, although it is 

intriguing that expression of two transcription factors, Tbet and Blimp-1, that play 

an important role in the fate decision between memory precursors and terminally 

differentiated effector CD8 T cells during acute infection can be mediated by 

inflammatory signals.  Tbet expression can be regulated by IL-12 in CD8 T cells 

(60), and the differential expression of Tbet between memory precursors and 

terminally differentiated effector CD8 T cells can be controlled by both strength of 

TCR and severity of inflammation (60, 61).  Likewise, Blimp-1 expression in T 

cells is regulated by cytokine signals such as IL-2 and IL-4 (197, 198), and in B 

cells can be regulated by a variety of factors, including cytokines and TLR 

ligands (253).  Furthermore, we show in Chapter 2 that Blimp-1 plays an 

important role in repressing memory differentiation in exhausted CD8 T cells 

during chronic viral infection (Fig 29).  It will be important to determine whether 

different types of persistent inflammation (i.e. Th2, Th17, cancer 

microenvironments, etc.) can also alter memory CD8 T cell differentiation, and 

whether there are changes to the transcriptional profiles of the antigen-specific 

CD8 T cells that are common to different inflammatory settings.  By using this 

approach, it may be possible to identify common factors within different settings 

of prolonged inflammation that can regulate the expression of certain 
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transcription factors such as Blimp-1, and thus alter memory differentiation. 

Determining the specific signal(s) that may regulate memory CD8 T cell 

differentiation during chronic infection could provide new targets for future 

therapies. 

 

Heterogeneity of the exhausted CD8 T cell population. 

After an acute infection, memory CD8 T cells form a heterogeneous 

population composed of different subsets.  While the lineage relationship 

between the TEM and TCM subsets remains under contention, it is clear that they 

are delineated by cells with differences in phenotype (134, 137), function, such 

as the ability to mount secondary responses and produce IL-2 (135, 140, 142), 

and tissue migration (134, 135, 138)  Another aspect of memory heterogeneity 

comes from a stem cell model of self-renewal (130-132), where only a subset of 

memory CD8 T cells would potentially be recruited to homeostatically proliferate 

and thus maintain the entire population.  The work from Chapter 3 suggests that 

heterogeneity may also exist in the long-term exhausted CD8 T cell population.  

Our data show that the antigen-driven ‘homeostatic’ mechanism of rapid division 

gives rise to two distinct populations – one that divides to antigen, and one that 

does not (Fig 19).  It is possible that all exhausted antigen-specific CD8 T cells 

do eventually divide, but it is also possible that this profile indicates differences in 

the properties of the cells themselves, including proliferative potential or tissue 

migration.  The divided vs. undivided profile may reflect subpopulations that are 

‘tuned’ to antigen differently, and thus possess different proliferative capabilities.  
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During chronic viral infection, immunodominance hierarchies amongst epitope 

specificities can change (89, 217, 218).  With an antigen-driven method of 

maintenance, immunodominance shifts could reflect differences in proliferative 

capacity between TCR specificities.  In addition, as the virus that drives this 

division post-viremia likely resides in tissue reservoirs such as the kidney and 

brain (89), those cells that divide may represent a subpopulation that can more 

efficiently migrate to peripheral tissues, in parallel to the different homing abilities 

of TEM and TCM cells (134, 138).  Subpopulations of cells with different functional 

capacities have been described within the total exhausted CD8 T cell population, 

such as the PD-1hi and PD-1int subsets (163), or those delineated by the 

expression of different numbers of inhibitory receptors (Fig 2 and 8) (160).  It will 

be interesting to examine whether these subsets correlate with cells that are 

capable of dividing upon a ‘homeostatic’ antigen encounter (Fig 29).  In the 

future, it will be important to determine whether this potential heterogeneity 

correlates to differences in the ability to provide protective immunity and how it 

may be manipulated to improve therapeutic strategies.   

 As a whole, exhausted antigen-specific CD8 T cell populations do not 

require IL-7 or IL-15 for their maintenance during chronic viral infections (174, 

178, 179).  However, it is difficult to rule out the possibility that a small subset of 

exhausted CD8 T cells may be able to utilize IL-7 and IL-15 rather than antigen 

for their homeostasis.  In Fig 18, a small population of donor cells persists in the 

absence of cognate antigen up to 10 weeks after adoptive transfer.  In human 

chronic infections such as HIV, HBV, HCV, CMV and EBV, antigen-specific CD8 
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T cells express low levels of IL-7Rα compared to cells specific for influenza or 

RSV (14, 180).  Furthermore, IL-7 and IL-15 signaling appears to be impaired in 

CMV-specific CD8 T cells .  However, treatment of HIV infected patients with IL-7 

leads to a transient increase in cell cycle entry by HIV-specific CD8 T cells (254).  

This suggests that despite low CD127 expression, some HIV-specific CD8 T cells 

were able to respond to IL-7, though not as efficiently as CD8 T cells specific for 

acute infections such as flu (254).  Also, CD127 expression on antigen-specific 

CD8 T cells during chronic LCMV infection can increase over time after the 

control of viremia (data not shown), and prolonged treatment of HIV patients with 

HAART can also lead to the restoration of CD8 T cell populations with high 

CD127 expression (177, 255).  Due to the potential for decreased protective 

immunity with an antigen-based mechanism of homeostasis after treatment of 

infections such as HIV, it will be important to examine whether there are small 

subsets of antigen-specific CD8 T cells that can be maintained by cytokine and 

whether exhausted CD8 T cells can ever regain their ability to use IL-7 and IL-15 

for homeostasis. 

 

Reversal of T cell dysfunction. 

 One of the ultimate goals of studying functional exhaustion is to uncover 

pathways that will permanently restore productive immune responses during 

chronic infections, and thus mediate natural clearance of a pathogen and provide 

optimal protective immunity.  This goal relies on the assumption that functional 

exhaustion can be reversed, and that the state of T cell dysfunction is not a 
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terminally differentiated one. Considerable evidence suggests that manipulation 

of multiple pathways, including inhibitory receptors (159-162, 171, 256) and 

cytokines (183, 184), can lead to the ‘revival’ of established exhausted CD8 T 

cells at late time points during chronic viral infection.  It is not known, however, 

whether the ‘revival’ of dysfunctional T cells is transient or permanent.  Simply 

resting established, exhausted CD8 T cells (post d15 p.i.) from antigen and 

inflammation is not sufficient to restore proper function (S. Blackburn data not 

shown) (174).  However, data from our lab show that removing antigen-specific 

CD8 T cells from a chronically infected environment at earlier time points (d8 p.i.) 

could rescue the cells from becoming functionally exhausted (S. Blackburn data 

not shown).  Also, only early HAART treatment of HIV patients seems to be 

effective at establishing of CD127hi HIV-specific CD8 T cells (177).   Together, 

the data suggests that functional exhaustion is progressive, and that it may 

become more ‘permanent’ or more difficult to reverse over time.  One possible 

reason for this may be that gradual changes in gene expression occur as 

exhausted CD8 T cells progress in their differentiation (158).  In many other cell 

types, chromatin remodeling plays a key role in limiting the plasticity of a 

particular lineage, whether during development of hematopoeisis (239) or within 

the Th1/Th2 paradigm (37).  As shown in Chapter 2, while expression of the 

transcriptional repressor Blimp-1 in effector CD8 T cells (d8 p.i.) is comparable 

between acute and chronic infection, by d15 p.i. expression during chronic 

infection is much higher than during acute infection (Fig 1).  This sharp 

upregulation correlates with the onset of other markers of functional exhaustion, 
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Figure 28.  Progression of functional exhaustion and population 
heterogeneity during chronic viral infection.  Model of data.  Upon chronic 
infection, naive CD8 T cells expand into a pool of effector CD8 T cells that still 
have the capacity to differentiate into functional memory CD8 T cells if rested 
from antigen and inflammation.  After the effector phase persistent antigen and 
inflammation regulate changes in the gene expression pattern of antigen-specific 
CD8 T cells, including the upregulaton of Blimp-1, as well as the high expression 
of inhibitory receptors.  Inflammation alone also prevents memory differentiation
through an unknown mechanism.  By altering the transcriptional and epigenetic 
landscape, the functionally exhausted fate may become ‘imprinted’ into virus-
specific CD8 T cells, rendering them resistant to memory differentiation without 
extrinsic manipulation (i.e. IL-10/IL-10R or PD-1/PD-L blockades).  
Heterogeneity in the exhausted CD8 T cell pool leads to a subpopulation of virus-
specific CD8 T cells that undergoes rapid, antigen-driven proliferation during the 
maintenance phase and a subpopulation that does not.  It is unclear whether the 
‘undivided’ subset is capable of eventually dividing, or whether it dies.  The model 
above assumes that those cells that are more exhausted will compose the 
population that is ‘undivided’.  It is also unclear whether a very small population of 
cytokine-dependent memory CD8 T cells is generated during chronic viral infection.
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such as the high expression of inhibitory receptors (158, 162).  Blimp-1 is known 

to exert its repressive role by epigenetic modification through the recruitment of 

co-repressors (257), HDACs (258) and methyltransferases (259, 260).  Thus, it is 

possible that the accumulation of effector and memory defects as well as the 

‘imprinting’ of the exhausted cell fate during chronic viral infection may occur 

through chromatin remodeling mediated by differential expression of transcription 

factors such as Blimp-1 (Fig 29).  It will be important to determine whether 

modification of Blimp-1 expression or other transcription factors after onset of 

exhaustion can lead to a lasting reversal of the T cell dysfunction that is present 

during chronic viral infection.  It will also be important to determine whether 

current methods to improve exhausted CD8 T cell function, such as blockade of 

the PD-1/PD-L pathway which leads to selective expansion rather than 

redifferentiation (163), can induce molecular changes that lead to a permanently 

improved population of antigen-specific CD8 T cells. 

 

 In sum, the work in this thesis has attempted to elucidate different 

pathways by which functional exhaustion is regulated during chronic viral 

infection, and to further our knowledge of the biology of these cells.  We hope 

that by understanding how cell-extrinsic and –intrinsic factors regulate the 

process, we can provide new, potential therapeutic targets and design strategies 

that can address different aspects of T cell dysfunction.  Also, by understanding 

the behavior of functionally exhausted CD8 T cells, we can better manipulate 
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them in order to lead to a productive immune response that will ultimately control 

infection and provide optimal protective immunity. 
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