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When Do Faculty inputs Matter? A Panel Study of Racial/Ethnic
Differences in Engineering Bachelor's Degree Production

Abstract
Science, technology, engineering and mathematics (STEM) fields are widely credited as the primary drivers of
economic growth through innovation, with engineering universally identified as especially critical. Yet as
other nations have strengthened their engineering talent pools, the United States has struggled to cultivate an
engineering workforce that reflects its diversity and takes full advantage of its human capital. Reflecting this
dilemma, African Americans have consistently posted the weakest persistence and bachelor's degree
completion rates of all racial/ethnic groups in engineering, and by some indications, their postsecondary
outcomes are worsening.

The purpose of this study was to develop understanding about potential institutional levers for improving
engineering bachelor's degree attainment both for underrepresented minorities (URMs) broadly and Black
students specifically. Drawing on the higher education production function, I used multiple sources of
institutional panel data for 324 engineering schools/colleges from 2005 to 2011 to uncover differential
relationships between faculty predictors and engineering bachelor's degree production by student race/
ethnicity and institutional context. I used multiple imputation to handle missing data and estimated fixed
effects linear regression and dynamic panel models of engineering degree production, then I assessed
institutions' degree production efficiencies using stochastic frontier analysis.

The findings indicate that from 2005 to 2011, the number of engineering bachelor's degrees conferred to Black
students declined 10%, with the smallest declines occurring at highly competitive institutions (2%) and the
largest declines at HBCUs (30%). Results from the fixed effects models indicate that engineering faculty-to-
student ratio was positively related and the proportion of research faculty negatively related to engineering
bachelor's degree production for every student subgroup in at least one institutional setting. The share of
URM faculty was positively related to degree production for URMs and Blacks in some settings. However, no
faculty measure was predictive of degree output for every student subgroup across every institution type. And
in every instance where a faculty variable was related to degree output for multiple student subgroups, the
magnitude of the estimated effect was greatest for Black students, then URMs, then all students. Ultimately,
the study suggests that leveraging institutional resources to improve student outcomes in STEM calls for
targeted analyses to develop strategies that reflect the heterogeneity of STEM disciplines, STEM students, and
educational settings.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Education

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/790

http://repository.upenn.edu/edissertations/790?utm_source=repository.upenn.edu%2Fedissertations%2F790&utm_medium=PDF&utm_campaign=PDFCoverPages


First Advisor
Laura W. Perna

Keywords
engineering education, faculty, higher education production function, panel data, STEM, underrepresented
minorities

Subject Categories
Education Policy | Higher Education Administration | Higher Education and Teaching

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/790

http://repository.upenn.edu/edissertations/790?utm_source=repository.upenn.edu%2Fedissertations%2F790&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 

 WHEN DO FACULTY INPUTS MATTER?  A PANEL STUDY OF 

RACIAL/ETHNIC DIFFERENCES IN ENGINEERING BACHELOR’S DEGREE 

PRODUCTION 

Tafaya Ransom 

A DISSERTATION 

in 

Education 

Presented to the Faculties of the University of Pennsylvania 

in 

Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

2013 

Supervisor of Dissertation:       

_______________________________      

Laura W. Perna, Professor of Education        

 

Graduate Group Chairperson: 

________________________________ 

Stanton E. F. Wortham, Professor of Education 

 

Dissertation Committee: 

Laura W. Perna, Professor of Education 

Robert Boruch, Professor of Education and Statistics 

Marybeth Gasman, Professor of Education 

Levi T. Thompson, Professor of Chemical Engineering, University of Michigan 



 
 

 

WHEN DO FACULTY INPUTS MATTER?  A PANEL STUDY OF RACIAL/ETHNIC 

DIFFERENCES IN ENGINEERING BACHELOR’S DEGREE PRODUCTION 

 

COPYRIGHT 

2013 

Tafaya Shavon Ransom 

  



iii 
 

DEDICATION 
 

 

 

 

 

 

To Laura Idella Grier, who made higher education a family value.  

To Momma, Zaji, and Oni – we did it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



iv 
 

ACKNOWLEDGMENT 

 

Many people played a role in making this work possible.  I am indebted to my 

dissertation committee:  Laura Perna (my chair), Marybeth Gasman, Bob Boruch, and 

Levi Thompson.  Laura has truly helped me develop my ideas and my identity as a 

scholar – through her supportive and instructive mentorship and by the remarkable 

example she embodies.  Marybeth, whose prolific work first drew me to the University of 

Pennsylvania, has pushed me to keep my work relevant and grounded in the issues that 

matter most to me.  In and outside of class, Dr. Boruch has had a knack for opening my 

eyes to new insights and perspectives, which have helped me think through this study and 

other matters.  And Levi, who first introduced me to the notion of higher education 

research, has been an instrumental advisor, larger-than-life role model, and strong 

advocate throughout my journey from chemical engineer to education researcher.   

I am also grateful to other teachers and mentors who have played a critical role in 

getting me to this milestone – particularly, Jale and Ates Akyurtlu, Adeyinka Adeyiga, 

Morris Morgan, and Al Colón from my days at Hampton University; Pat Kinney and 

Pauline Bigby at the University of Michigan; Shaun Harper, Joni Finney, Matt Hartley, 

Karen Carter, Henry May, and Paul Allison at the University of Pennsylvania; Jackie 

Muhammad, Cory Phillips, Valarie Thomas, Stacey Nunley, Matt Van Italie, and John 

Sylvanus Wilson.   

Many thanks as well to the University of Pennsylvania Graduate School of 

Education (GSE) for giving me the opportunity (and Dean’s fellowship) to pursue this 

dream and the community of scholars at GSE who inspired and challenged me along the 



v 
 

way.  I am especially grateful to the U.S. Department of Education Institute for Education 

Sciences (IES) for their vital support of the University of Pennsylvania's Pre-doctoral 

Training Program in Interdisciplinary Methods for Field-Based Research in Education.  

As an IES Pre-doctoral fellow, I have benefited not only from financial support but also 

countless enriching experiences.   

 I am ever thankful for friends and family whose love and prayers carried me 

through this process.  Over the last two and half years especially, I have been humbled, 

affirmed, and spurred on by the unwavering support of my closest friends, my uncle and 

aunties, cousins, nephews, niece, sisters, brother, and mother.  To my sister Shanee and 

my brother Paul, you’ll never know how much I love, admire, and appreciate you both.  

To know you are always in my corner gives me peace and strength.  To Zaji and Oni, my 

beautiful twins – you made this experience so much richer and more important.    

Finally, even though I came up with more than 53,000 words in writing this 

dissertation, I can’t come up with any that are adequate to fully capture the depth of my 

gratitude for the constant and selfless support of my mother, Rhonda Grier.  I have 

always relished the occasions when people have commented that I look like, sound like, 

or am in any way similar to my mother.  But the longer and better I know my mother, the 

more I realize how difficult a task it will be to ever measure up to the woman she is.  

 

To God be the glory. 

  



vi 
 

The research reported here was supported in part by the Institute of Education Sciences, 

U.S. Department of Education, through Grant #R305B090015 to the University of 

Pennsylvania.  The opinions expressed are those of the authors and do not represent the 

views of the Institute or the U.S. Department of Education.  



vii 
 

ABSTRACT 

 

WHEN DO FACULTY INPUTS MATTER?  A PANEL STUDY OF RACIAL/ETHNIC 

DIFFERENCES IN ENGINEERING BACHELOR’S DEGREE PRODUCTION 

Tafaya Ransom 

Laura W. Perna 

 

Science, technology, engineering and mathematics (STEM) fields are widely 

credited as the primary drivers of economic growth through innovation, with engineering 

universally identified as especially critical.  Yet as other nations have strengthened their 

engineering talent pools, the United States has struggled to cultivate an engineering 

workforce that reflects its diversity and takes full advantage of its human capital.  

Reflecting this dilemma, African Americans have consistently posted the weakest 

persistence and bachelor’s degree completion rates of all racial/ethnic groups in 

engineering, and by some indications, their postsecondary outcomes are worsening.   

The purpose of this study was to develop understanding about potential 

institutional levers for improving engineering bachelor’s degree attainment both for 

underrepresented minorities (URMs) broadly and Black students specifically.  Drawing 

on the higher education production function, I used multiple sources of institutional panel 

data for 324 engineering schools/colleges from 2005 to 2011 to uncover differential 

relationships between faculty predictors and engineering bachelor’s degree production by 

student race/ethnicity and institutional context.  I used multiple imputation to handle 

missing data and estimated fixed effects linear regression and dynamic panel models of 



viii 
 

engineering degree production, then I assessed institutions’ degree production 

efficiencies using stochastic frontier analysis.   

The findings indicate that from 2005 to 2011, the number of engineering 

bachelor’s degrees conferred to Black students declined 10%, with the smallest declines 

occurring at highly competitive institutions (2%) and the largest declines at HBCUs 

(30%).  Results from the fixed effects models indicate that engineering faculty-to-student 

ratio was positively related and the proportion of research faculty negatively related to 

engineering bachelor’s degree production for every student subgroup in at least one 

institutional setting.   The share of URM faculty was positively related to degree 

production for URMs and Blacks in some settings.  However, no faculty measure was 

predictive of degree output for every student subgroup across every institution type.  And 

in every instance where a faculty variable was related to degree output for multiple 

student subgroups, the magnitude of the estimated effect was greatest for Black students, 

then URMs, then all students.  Ultimately, the study suggests that leveraging institutional 

resources to improve student outcomes in STEM calls for targeted analyses to develop 

strategies that reflect the heterogeneity of STEM disciplines, STEM students, and 

educational settings.     
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CHAPTER 1 – INTRODUCTION 

 

In 1987, Robert M. Solow won the Nobel Prize in Economic Sciences for his 

contributions to the theory of long-term macroeconomic growth.  Solow’s work showed 

that the primary force behind sustained economic growth is technological progress, which 

in the broadest sense encompasses invention, innovation and the diffusion of technology 

and which his growth models suggested explained more than 80% of the United States’ 

economic growth during the first half of the twentieth century
1
 (Solow, 1957, 1987).  The 

basic premise of Solow’s technological framework of economic growth endures not only 

in the abstract world of macroeconomic theory but is at the heart of the United States’ 

and other developed and emerging nations’ economic competitiveness agendas (Mokyr, 

2002; Nelson, 1993; U.S. Department of Commerce, 2012). 

Science, technology, engineering and mathematics (STEM) fields are widely 

credited as the primary drivers of economic growth through innovation (National 

Academy of Sciences, 2007, 2010; National Economic Council, Council of Economic 

Advisers, & Office of Science and Technology Policy, 2011; U.S. Department of 

Commerce, 2012).  And in today’s technology-driven world, these fields are perhaps 

even more vital to economic growth and job creation than in years past.  Add to that the 

increasingly global nature of the economic marketplace, and the result is an intense 

international contest to develop STEM talent.   

                                                           
1
 Other economists attribute economic growth to technological progress to varying degrees depending upon 

the underlying assumptions of their respective models.  By most indications, technological progress is 

responsible for one quarter to one half of the U.S.’s economic growth rate since World War II.  See for 

example Abramovitz (1986) and Mokyr (1990). 
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Over at least the last thirty years, however, numerous reports have sounded alarms 

about the United States’ ability to cultivate STEM talent (National Science Foundation, 

1982; National Science Board, 1986; National Academy of Sciences, 2007).  Central to 

these reports are several interrelated threats to U.S. innovative capacity:  an aging STEM 

workforce (e.g., Butz et al., 2004); the propensity for students and workers to leave 

STEM fields and careers (e.g., Carnevale, Smith, & Melton, 2010); declining interest in 

STEM fields among U.S. citizens and permanent residents (e.g., National Academy of 

Sciences, 2010); growing uncertainty associated with reliance on foreign-born talent to 

supplement the domestic STEM workforce (e.g., National Academy of Sciences, 2007; 

2010); and drastic demographic shifts in which the fastest growing segments of the 

population are those traditionally underrepresented in STEM fields (e.g., National 

Academy of Sciences, 2011). 

The Importance of Considering Engineering 

 

Among the STEM disciplines, engineering is universally identified as especially 

critical to technology-driven economic growth, as engineers develop new manufacturing 

processes and products; create, distribute and manage energy, transportation and 

communications systems; prevent new and redress old environmental problems; create 

pioneering health care devices; and, generally, make technology work (ASEE, 2010).  In 

fact, past national chairman of the National Academy of Engineering, Richard Morrow 

(1994) remarked, “the nation with the best engineering talent is in possession of the core 

ingredient of comparative economic and industrial advantage” (p. 16).  Recent reports 

published by the National Academy of Engineering (2003, 2008) synthesize the broad 



3 
 

scope of engineering in terms of specific products and processes of the past as well as 

looming 21
st
 Century challenges.  Others also provide compelling evidence of the 

important functions engineers serve (see, for example, Augustine, 2011; Petroski, 2010) 

and the extent to which engineers are highly sought-after in both technical and non-

technical sectors of the U.S. workforce (Identified, 2011). 

Yet as other nations have strengthened their engineering talent pools, the United 

States appears to be falling behind.  Figure 1.1 shows that although the U.S. produces 

natural science graduates at rates comparable to other nations, the share of engineering 

graduates among first university degree recipients was lower in the United States (4.7%) 

than in the European Union (12.1%), Japan (17.1%), China (31.2%) or any other country 

or group of countries included in the most recent National Science Foundation tabulations 

of international science and engineering higher education indicators (National Science 

Board, 2012).  
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Figure 1.1  Percentage of first university degrees in science and engineering: 2008 (or most 
recent year available). 

 

*
Asia-8a includes Bangladesh, Brunei, Cambodia, China, India, Japan, 

Kyrgyzstan, Laos, Malaysia, Mongolia, Philippines, Singapore, South Korea, 
Taiwan  

Source:  Appendix Table 2-32, National Science Board, 2012. 

 

These unfavorable international indicators reflect domestic challenges in 

engineering education.  For example, while the number of all bachelor’s degrees awarded 

in the U.S. increased by 60% between 1985 and 2008, the number of engineering 

bachelor’s degrees awarded in the U.S. fell by 11% over that time.  As a result, the 

percentage of U.S. bachelor’s degrees that were conferred in engineering declined from 

8% to 4% during 1985 to 2008 (National Science Foundation, 2011a).  And although the 

number of engineering doctorate degrees conferred in the U.S. increased 148% between 

1985 and 2008, temporary visa holders received 61% of the degrees awarded in 2008, up 

from 45% in 1985 (National Science Board, 2008; National Science Foundation, 2011b).  
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These trends have led to a host of recent efforts to increase the number of 

engineering graduates in the U.S.   For example, in 2011, President Barack Obama’s 

Council on Jobs and Competitiveness rolled out the 10,000 Engineers Initiative to 

increase the nation’s annual engineering degree production rate by as much, with help 

from private partners (Jobs Council, 2011).  Also in 2011, Kansas enacted multi-year 

legislation, the University Engineering Initiative, to increase the number of engineering 

graduates in the state by over 50% in ten years (Kansas Board of Reagents, 2011).  And 

other states (e.g., Utah, Alaska, Alabama, Texas, and Virginia) have similar policies to 

boost engineering degree production. 

But improving the nation’s fortunes in engineering also requires addressing the 

enduring struggle to cultivate an engineering workforce that reflects the diversity of the 

United States and takes full advantage of the nation’s talent base.  For example, although 

the number of women in engineering occupations increased by more than 100,000 

workers over the past twenty-five years, women held only 11% of engineering jobs in 

2009.  Yet they made up 44% of the entire college-educated workforce (National Science 

Board, 2012; National Science Foundation, 2011b).  Similarly, Table 1.1 shows that 

American Indians/Alaska Natives, African Americans, and Hispanics are 

underrepresented in STEM in general and engineering in particular relative to both their 

representation in the U.S. residential population and among college degree holders.  And 

at just 26% of parity with their share of the U.S. resident population, African Americans 

are the least well-represented racial/ethnic group in the engineering workforce (Table 

1.1).  
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Table 1.1  Racial/ethnic distribution (percent) of U.S. residential population, college 
graduates, S&E degree holders, S&E occupations, and engineering occupations:  2008. 

Race/ethnicity 
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Asian 4.7 8.5 11.2 16.9 15.6 3.3 

American Indian/Alaska Native 0.7 0.3 0.4 0.3 0.2 0.29 

Black 11.7 7.2 5.5 3.9 3.1 0.26 

Hispanic 13.9 6.2 5.6 4.9 5.6 0.40 

White  67.6 76.5 75.2 71.8 73.4 1.1 

Native Hawaiian/Other Pacific Islander 0.1 0.1 0.4 0.4 0.6 6.0 

Two or more races 1.2 1.1 1.7 1.7 1.6 1.3 

Note:  Tabulations based on data provided in National Science Board (2012). 

 

The Importance of Considering Institutional Performance in Engineering 

Education 

 

The evidence laid out so far suggests that engineering education faces dynamic 

challenges on multiple fronts:  rapid technological advances that trigger evolving roles 

and responsibilities for technical professions; globalization; ambitious national goals and 

prioritization of engineering by various constituencies; and shifting demographics 

favoring groups whose talents have historically been woefully underutilized in 

engineering.  In a broader climate of increasing accountability and fiscal pressure in 
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higher education, these challenges raise expectations for engineering education to do 

more (productivity) and better (quality) with less (efficiency) (Alexander, 2000; Chubin, 

May, & Babco, 2005).  For those with a stake in the future of U.S. engineering – business 

and civic leaders, federal and state governments, institutional trustees and leaders, ABET 

(formerly the Accreditation Board for Engineering and Technology, Inc.), faculty and 

students, and the public at large – accountability for performance outcomes rests at the 

institutional level.  

Lessons from the broader higher education research literature can help guide the 

engineering education community as it ponders how to assess institutions and hold them 

to account for producing more engineers.  First, higher education research has established 

that use of raw graduation, completion rates, or even degree counts to assess institutional 

performance can be misleading (DeAngelo, Franke, Hurtado, Pryor, & Tran, 2011).  For 

example, roughly two thirds or more of the variation between institutions in graduation 

rates is attributable to differences between students’ entering characteristics rather than 

“differential institutional ‘effects’” (Astin & Oseguera, 2005, p.45).  Therefore, 

institutions should not be judged or compared based on their degree completion rates 

without adjusting for students’ entering characteristics.   

Still, that at least one third of the variation in institutional degree completion rates 

is not explained by student characteristics means that “institutional effects” do matter.  In 

other words, there is room to improve institutional performance without simply raising 

admissions standards.  For example, emerging higher education research has found that 

institutional expenditures can have differential, statistically significant relationships with 
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institutional graduation rates depending on the functional category of spending (e.g., 

instruction, academic support, student services, research) (Webber & Ehrenberg, 2010;  

Chen, 2012; Webber, 2012).  Much of this work is grounded in microeconomic producer 

theory and involves estimating higher education production functions (Hopkins, 1990).  

These higher education production function studies occasionally include efficiency 

analyses (e.g., Blose, Porter, and Kokkelenberg, 2006).  Efficiency studies can show, for 

example, that two institutions that are ostensibly similar produce different levels of 

educational output (e.g., graduation rates) using the same level of inputs (e.g., 

instructional expenditures).  Such investigations might lead to replicating best practices 

from more efficient institutions at less efficient peer institutions.   

Still, compared to traditional student-centered persistence/retention literature, 

there has been no systematic exploration of the potential of institutional context on 

student outcomes in the higher education literature (Titus, 2004).  And with respect to 

STEM higher education research, Eagan (2010) contends that institutional forces are “at 

best under-studied or at worst ignored” (p. 2).  In recent years, scholars have begun to 

address this gap in the knowledge through various studies of how institutional factors 

shape underrepresented minority (URM) outcomes in STEM (Malcom, 2008, 2010; 

Hurtado et al, 2009; Perna et al., 2009; Eagan, 2010; Hurtado, Newman, Tran, & Chang, 

2010; Museus & Liverman, 2010; Hubbard & Stage, 2010; Ong, Wright, Espinosa, & 

Orfield, 2011; Ostreko, 2012).   Yet few researchers disaggregate STEM into specific 

fields or URM into specific racial/ethnic groups.   
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Engineering education research, however, still focuses almost exclusively on 

student-level predictors and outcomes and largely neglects institution- or multi-level 

analyses (Leetaru, 2010).  Ultimately, meeting the demands for accountability and 

designing effective institutional strategies for improving URM student outcomes in 

engineering, requires distilling what matters to institutional performance along these 

lines.  This means that research must consider which institutional levers offer promise for 

creating the conditions for success in engineering by examining relationships between 

institutional predictors and outcomes in engineering, rather than simply those at the 

individual student level.   

The Importance of Considering African American Outcomes in Engineering 

African Americans have consistently posted the weakest persistence and 

bachelor’s degree completion rates of all racial/ethnic groups in engineering.  The 

National Action Council for Minorities in Engineering (2012) reported that compared to 

all other racial/ethnic groups, Black engineering students are less likely to complete their 

degrees, take longer to complete their degrees, and more often transfer out of bachelor’s 

degree programs into associate’s degree or certificate programs.  Other research confirms 

that African American engineering students have graduation rates substantially lower 

than all other groups (Georges, 1999; Brown, Morning, & Watkins, 2005; Morse & 

Babcock, 2009).  For example, Morse and Babcock (2009) reported a six-year graduation 

rate of 31% for African American engineering students compared to 68% for non-

minorities and 45% for Hispanics.   
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By some indications, African American postsecondary outcomes in engineering 

are worsening.  Recent trends suggest a reversal of the modest gains achieved in the share 

of engineering bachelor’s degrees awarded to African Americans during the 1990s 

(National Science Board, 2012).  For example, based on data tabulated by NSF, Figure 

1.2 shows that the share of engineering bachelor’s degrees awarded to African Americans 

rose from 3.3% in 1990 to 5.1% by 1999, but declined to 4.6% by 2010 (i.e., a 10% 

decrease) (National Science Foundation, 2011b).  The National Action Council for 

Minorities in Engineering’s (2011) analysis of engineering degree trends indicates that 

African American representation among engineering baccalaureates declined 16% 

between 2000 and 2010.  And more recent data from the American Society for 

Engineering Education suggests a 22% decline in representation between 2002 and 2011 

(Yoder, 2012).  These recent trends stand in contrast to the consistent (though oftentimes 

modest) gains in Hispanic and Native American engineering baccalaureate attainment 

since the 1990s (National Science Foundation, 2011b).   
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Figure 1.2  Share of engineering bachelor’s degrees awarded to underrepresented minorities, 
1990-2010. 

 

Note:  Based on data provided in National Science Foundation (2011b). 

 

Given the relative growth of Latinos in the U.S. population in general and in 

higher education specifically (National Science Foundation, 2011b), it might be expected 

that African Americans would constitute a stable or even declining share of engineering 

baccalaureates.  However, regressive national trends are also apparent in the absolute 

numbers of African Americans earning engineering bachelor’s degrees.  Degree 

completions data from the National Center for Education Statistics’ Integrated 

Postsecondary Education Database (IPEDS) show a steep, upward trend in the number of 

engineering bachelor’s degrees conferred to African Americans that slowed around 1997 

and has been in reverse since at least 2004 (Figure 1.3).  
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Figure 1.3  Number of engineering bachelor’s degrees awarded to African Americans, 1990-
2010. 

  

Note:  Tabulated from IPEDS Completions Survey via NSF WebCASPAR data system. 

 

In fact, drawing on multiple data sources, Weinberger (2011) charts a rapid 

growth in the number of Black engineering baccalaureates beginning in the 1970s 

through the early 2000s.  She traces this period of growth to organized, well-funded 

efforts that were propelled by a coalition of corporations, professional organizations, and 

foundations.  These efforts, which date back to the 1970s, began in response to the 

shifting political climate toward equal employment opportunities (Wilburn, 1974).  

Whether to change the opportunity structure or simply avoid potential sanctions, 

engineering education stakeholders engaged several key strategies to stimulate African 

American participation in engineering.  These strategies included:  expanding and 

improving engineering programs at historically Black colleges and universities (HBCUs); 

establishing dual degree partnerships between engineering institutions and HBCUs 
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without engineering programs; providing minority engineering scholarships to 

prospective students; and providing financial incentives to engineering schools and 

colleges to expand minority recruiting and retention efforts (see, for example, American 

Society for Engineering Education, 1974; Lusterman, 1979; Blackwell, 1981; Blackwell, 

1987).  Weinberger’s (2011) preliminary analysis of engineering degree trends indicates 

that these efforts corresponded with a clear uptick in African American participation in 

engineering.   

Potential Institutional Levers for Addressing the Underrepresentation of African 

Americans in Engineering 

 

Empirical research examining African American experiences and outcomes 

specifically in engineering is scarce (studies identified include:  Good, Haplin, & Haplin, 

2002; Moore, Madison-Colmore, & Smith, 2003; Brown, Morning, & Watkins, 2005; 

Moore, 2006; Slaughter, 2009; Newman, 2011a; 2011b).  The available research 

consistently points to the importance of Black engineering students’ interactions with 

faculty inside and outside of the classroom in positively or negatively shaping their sense 

of belonging (e.g., Good, Haplin, & Haplin, 2002), perception of the academic climate 

(Brown, Morning, & Watkins, 2005), and persistence in engineering (Newman, 2011a, 

2011b).  However, these studies are largely small-scale, qualitative, and centered around 

students enrolled at a single institution.  Multi-institutional studies that consider African 

American outcomes in engineering offer only qualitative findings about the influence of 

faculty without direct quantitative measures to test potential relationships (Brown, 

Morning, & Watkins, 2005; Newman, 2011a). 
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Other research emphasizes the importance of faculty for African American 

outcomes in STEM more broadly.  In particular, qualitative research that examines the 

role of HBCUs in STEM higher education  (for example, Brazziel & Brazziel, 1997; 

Culotta, 1992; Southern Education Foundation, 2005; Perna et al., 2009) or compares 

Black students’ experiences in STEM at HBCUs and non-HBCUs (for example, 

Wenglinsky, 1997; Suitts, 2003; Fries-Brit, Younger, & Hall; 2010; Lent et al., 2005; 

Brown, Morning, & Watkins, 2005) calls attention to the role of faculty.  For example, 

Perna and colleagues’ (2009) case study highlighted the importance of small class sizes, 

faculty availability, faculty encouragement, and undergraduate research as critical to 

students’ success in the sciences at Spelman College, a historically Black women’s 

college.  Researchers have also found that compared to non-HBCUs, HBCUs offer 

students more academically supportive environments via positive interactions with 

faculty (and peers) (Fries-Brit, Younger, & Hall, 2010; Hurtado et al., 2009; Lent et al., 

2005; Brown, Morning, & Watkins, 2005).   

Moreover, research links positive interactions with STEM faculty – in the 

classroom, laboratory, and elsewhere – to self-efficacy, achievement, scientific identity 

development, and career expectations for underrepresented minorities in general 

(Santiago & Einarson, 1998; Carter 2002; Cole & Espinoza, 2008; Fries-Britt, 1998; 

Fries-Britt, Younger, & Hall, 2010; Hurtado et al., 2009; Thiry & Larsen, 2011; Leggon, 

2010).  Some research indicates that these positive outcomes are more pronounced when 

students interact with same-race faculty (Fries-Britt, 1998; Fries-Britt, Younger, & Hall, 
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2010; Griffin, Perez, Holmes, & Mayo, 2010; Price, 2010; Cole & Espinoza, 2008; 

Newman, 2011a).   

Scholars often recommend further research examining the role of faculty 

(Hubbard & Stage, 2010; Perna et al., 2009; Newman, 2011a), presumably because much 

of the available research represents single institutions or relatively small samples of 

students and/or institutions.  But what insights point to broadly available proxy measures 

to investigate the role of faculty on a larger scale, and in different institutional contexts?  

As it turns out, a few recent quantitative studies have examined institutional graduation 

and degree production rates for underrepresented minorities in STEM using various 

faculty-related predictors.   

Student-faculty ratios have been used to represent the extent of student 

interactions with faculty (Dolan & Schmidt, 1994; Sibulkin & Butler, 2011; Chen 2012); 

faculty racial composition has been used to approximate the extent of same-race 

interactions or availability of same-race role models (Price, 2010; Hubbard & Stage, 

2010; Ostreko, 2012); the proportion of part-time faculty or proportion of faculty by rank 

has represented the quality of student-faculty interactions (Eagan, 2010; Ostreko, 2012); 

and the ratio of research to instructional expenditures has been used to reflect institutional 

commitment to research relative to teaching, hence diminished opportunities for faculty-

student interaction (Griffith, 2010).  In this way, these studies offer more generalizable 

findings and – to a degree – partial tests of the insights gleaned from qualitative studies.  

Findings indicate that lower student-faculty ratios (Sibulkin & Butler, 2011), higher 

proportions of URM faculty (Price, 2010; Hubbard & Stage, 2010; Ostreko, 2012), higher 
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proportions of tenured/tenure track faculty, and lower proportions of part-time faculty 

(Eagan, 2010; Ostreko, 2012) were associated with higher graduation and degree 

production rates for underrepresented minorities in STEM, while research-to-

instructional expenditures was differentially related to STEM persistence and graduation 

depending on enrollment level (Griffith, 2010).  Yet none of these studies investigated 

potential differences in the role of faculty across different subcategories of STEM and 

URM.    

Purpose of the Study 

This study is driven by the juxtaposition of the need for developing a highly-

skilled and more diverse U.S. engineering workforce with the persistently meager, 

ostensibly worsening, outcomes for African Americans in undergraduate engineering 

education.  Available STEM higher education research offers instructive insights.  

However, its emphasis on student-level predictors and outcomes and broad 

conceptualizations of “STEM” and “URM” has left gaps in the knowledge about 

potential institutional levers for improving higher education performance in specific 

STEM disciplines and with respect to specific student populations.   

A review of recent research exploring relationships between institutional 

structures and context and URM outcomes in STEM as well as the origins of past 

improvements in African American attainment in engineering points to faculty as an 

under-investigated potential policy lever for shaping student outcomes in STEM.  No 

research identified examines faculty predictors with respect to African Americans 

outcomes in a particular discipline or the degree to which faculty measures matter within 
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different types of institutions.  Therefore, the purpose of this study is to uncover 

differential relationships between faculty predictors and engineering bachelor’s degree 

production by student race/ethnicity and institutional context.  The study is particularly 

designed to disentangle potential racial/ethnic differences in engineering bachelor’s 

degree production both in terms of a) underrepresented minorities relative to all students 

and b) Black students relative to URM students.   

Drawing on the higher education production function augmented by other 

disciplinary perspectives and empirical evidence, this study uses multiple sources of 

institutional panel data and appropriate multivariate statistics to understand the extent to 

which faculty “inputs” matter for predicting engineering bachelor’s degree “output” at 

different types of postsecondary institutions.  Specifically, the analyses combine data 

from the American Society for Engineering Education’s (ASEE) annual Survey of 

Engineering and Engineering Technology Colleges, the National Science Foundation’s 

Higher Education Research & Development Survey, and the U.S. Department of 

Education National Center for Education Statistics’ Integrated Postsecondary Education 

Database (IPEDS) and Delta Cost Project database over the seven-year period from 2005 

to 2011 to address the following research questions: 

1. How did engineering colleges and schools’ bachelor’s degree output by 

race/ethnicity and selected faculty inputs vary during the study period, 2005 to 

2011?  Were these trends consistent across institutional contexts? 

2. Do engineering colleges/schools’ faculty inputs similarly predict bachelor’s 

degrees production for all students, underrepresented minorities, and African 
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Americans, controlling for characteristics of the college/school and broader 

institutional characteristics? 

3. To what extent are engineering colleges/schools maximizing bachelor’s degree 

production for underrepresented minorities and African Americans based on the 

models specified in RQ2? 

Significance of the Study 

Expanding access and success for underrepresented minorities in science, 

technology, engineering, and mathematics continues to garner the attention and 

investment of myriad stakeholders (National Academy of Sciences, 2011).  And among 

the STEM disciplines, engineering stands out both in its critical role in sustaining the 

nation’s innovative capacity and its distinction as one of the least diverse STEM 

disciplines at all levels of education and the workforce.  Yet despite more than 30 years 

of research and policy efforts, the most recent decade has witnessed consistent declines in 

numbers and shares of engineering bachelor’s degrees awarded to African Americans. 

Available STEM higher education research offers instructive insights, yet there 

remain gaps in the knowledge about how factors within the direct control of institutions 

might be leveraged to improve institutional performance, especially for specific STEM 

disciplines and student populations.  Therefore, this study departs from previous research 

on underrepresented minority student success in STEM in at least four important ways.  

First, I disaggregate both STEM fields and underrepresented minorities to illuminate 

some of the nuances that might be washed out when researchers use aggregated 

measures.  Second, I draw on under-utilized, publicly available, recent institutional panel 
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data.  Third, I explicitly deal with missing data and match the panel data with appropriate 

analytic methods to partially alleviate the problem of omitted variables bias (the operative 

word being “partially”) (Allison, 2009).  Fourth, rather than focusing on how individual 

student predictors influence student outcomes, I examine institutional performance in 

engineering, which is appropriate in a climate increasing accountability and which adds 

another dimension to the knowledge about how institutional forces shape student 

outcomes in STEM fields. 

Organization of the Dissertation  

With the close of this introductory chapter, Chapter 2 picks up with a review of 

the guiding theoretical perspectives and empirical findings from research examining the 

influence of institutional factors on institutional performance outcomes, mainly in STEM 

higher education but also, to a limited extent, in the broader higher education literature.  

In Chapter 3, I discuss my research design, including the research questions; the data 

sources, analytic sample, and variables used in the study; and the analytic methods used 

to address each research question.  In Chapter 4, I present the results of the study, 

organized around each research question.  Lastly, Chapter 5 concludes with a discussion 

of the results, followed by a summary of the contributions of the study, suggested 

directions for future research, and policy recommendations.  
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CHAPTER 2 – REVIEW OF THE LITERATURE 

 

 Existing research examines at least three varieties of institutional outcomes that 

have resonance with the present investigation of engineering degree production:  

retention or student persistence rates; graduation or degree completion rates; and degree 

production, productivity, and/or efficiency.  Each of these outcomes reflects a different 

take on student success and offers insights about institutional performance.  This chapter 

reviews guiding theoretical perspectives and empirical findings from research examining 

the relationships between institutional predictors and these outcomes, mainly with respect 

to STEM fields but also considering broader higher education literature where STEM 

research is more limited.  First, though, a brief overview of traditional approaches to 

STEM higher education research is provided.   

 

An Orientation to Research on Science and Engineering Postsecondary Education 

Henderson, Finkelstein, and Beach (2010) identify three distinct communities 

involved in research on teaching and learning in science and engineering postsecondary 

education:  faculty development, discipline-based, and [STEM] higher education 

researchers. These communities operate in relative isolation and employ distinct lenses 

and research methods.  Faculty development and discipline-based research is mainly 

concerned with pedagogy within specific disciplines and rarely includes multiple 

institutions, theoretical underpinnings, or analyses targeting underrepresented students.  

Borrego’s (2007a) analysis of 700 engineering education publications found that just 7% 

were published in refereed journals, 4% “mentioned theory from the literature…or 
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reported on statistical data analysis,” and 4% focused on women or minorities (p. 13).  

On the other hand, STEM higher education research more often examines issues beyond 

pedagogy, is grounded in relevant social science theories, and explicitly considers 

underrepresented student outcomes.  However, STEM higher education research typically 

neglects disciplinary heterogeneity and instead operationalizes STEM as arbitrary 

assortments of natural, social, behavioral sciences and/or engineering. 

Both discipline-based (i.e., engineering education) research and STEM higher 

education research have traditionally emphasized student-level predictors.  To the extent 

that engineering education research has examined persistence and completion, it 

underscores such influences as high school preparation and course-taking patterns, 

student attitudes, personality traits, demographics, and choice of engineering discipline 

(Adelman, 1998; Felder, Mohr, Dietz, & Baker-Ward, 1994; Felder, Felder, & Dietz, 

2002; Ohland et al., 2008; Ohland & Zhang, 2002).  Higher education research concludes 

that pre-college academic preparation and achievement explain the vast majority of 

variance between students in STEM persistence and degree completion (for example, 

Elliot et al., 1996; Smyth & McArdle, 2004; Fleming & Morning, 1998; Huang, Taddese, 

& Walter, 2000).  Minority underrepresentation in STEM is also widely attributed to 

lower levels of self-efficacy, cultural congruity, ambition, or commitment to STEM (e.g., 

Leslie, McClure, & Oaxaca, 1998; Seymour & Hewitt, 1997; Gloria and Kurpius, 2001; 

Grandy, 1998; Hackett, Betz, Casas, and Rocha-Singh, 1992; Huang, Taddese, Walter, 

and Peng, 2000; Jackson, Gardner, and Sullivan, 1993).   
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While Eagan (2010) notes that institutional forces are neglected in STEM higher 

education research, he and other like-minded scholars have begun to address this gap in 

the knowledge through various studies of how institutional structures and contexts shape 

URM outcomes in STEM (for example, Malcom, 2008, 2010; Chang, Cerna, Hans, & 

Sàenz, 2008; Hurtado et al, 2009; Perna et al., 2009; Eagan, 2010; Hurtado, Newman, 

Tran, & Chang, 2010; Museus & Liverman, 2010; Hubbard & Stage, 2010; Newman, 

2011a; Ong, Wright, Espinosa, & Orfield, 2011; Ostreko, 2012).  This emergent literature 

greatly informs the present study. 

Theoretical Perspectives Used to Examine STEM Retention, Completion, or Degree 

Production 

 Research examining how institutional factors contribute to educational outcomes 

in science and engineering draws on multiple theoretical frameworks, which are shaped 

by diverse disciplinary perspectives.  In general, this research typically falls into one (or 

more) of three theoretical camps:  interactionalist, organizational, and/or production 

functions.   

Interactionalist frameworks.  Research focused on retention and degree 

completion in STEM draws largely on interactionalist frameworks (Astin, 1975, 1984, 

1993; Bean, 1980; Tinto, 1975, 1987, 1993) that emphasize (to varying degrees) the 

influence of academic and social integration on students’ progress through college.  In 

addition to the disputed applicability of these perspectives to underrepresented minority 

students (Cabrera, Nora & Castaneda, 1993; Flowers, 2004; Guiffrida, 2006; Hurtado & 

Carter, 1996; Nora, 2001; Terenzini et al., 1994; Tierney, 1999; Torres, 2003) or to non-
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traditional institutional contexts like HBCUs (Pascarella & Terenzini, 1991; Metz, 2004; 

Tinto, 2006), interactionalist perspectives have limited use for informing institutional 

efforts to improve retention (Berger & Braxton, 1998; Berger & Milem, 2000; Titus, 

2004; Tinto & Pusser, 2006).  

Indeed, Tinto and Pusser (2006) note that that while we have “made substantial 

progress in our understanding of the process of student persistence” to the extent that we 

“now know the broad dimensions of the process of student leaving...we are still unable to 

tell institutions what to do to help students stay and persist” (p. 2).  While some scholars 

have offered more comprehensive frameworks with clearer implications for institutions 

(Braxton, Hirschy, & McClendon, 2004; Kuh et al., 2006; Tinto & Pusser, 2006; Swail, 

Redd, & Perna, 2003), as Titus (2004) observes, the role of institutional contexts has not 

yet been systematically explored in the research on retention/graduation.  The absence of 

systematic consideration of the role of institutional context is also reflected in the 

prevalence of single-institution retention studies, which inherently offer no information 

about whether institutional contexts explain variations – between institutions – in 

institutional outcomes (Titus, 2004).   

Organizational frameworks.  Though virtually absent in the STEM higher 

education literature, organizational perspectives are recognized – though underutilized – 

in the broader higher education literature as more appropriate than internationalist 

theories for understanding the role of institutional characteristics and contexts in student 

persistence/completion (Tinto, 1993, 2006; Titus, 2004, 2006a, 2006b).  Two often cited 
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organizational frameworks are Bean’s (1980, 1981) student attrition model and Berger 

and Milem’s (2000) college impact model.   

Bean’s (1980, 1981) student attrition model marries the interactionalist concepts 

of academic and social integration and institutional commitment with concepts from 

worker turnover drawn from Price (1977), positing that organizational variables that can 

be “administratively manipulated” also influence student retention.  Organizational 

variables include peer and faculty contact, organization memberships, support services.  

Bean (1981) notes that the model is designed for student-level, single institution analyses 

rather than comparisons between institutions; therefore, structural characteristics of 

institutions are excluded.   

Berger and Milem’s (2000) college impact model combines organizational theory 

and empirical research on student involvement and peer group effects to postulate that 

institutional and student characteristics influence such student outcomes as persistence 

and completion.  Specifically, the Berger and Milem model suggests that student entry 

characteristics (e.g., gender, race/ethnicity, socioeconomic status, academic 

achievement); institutional characteristics (e.g., size, control, selectivity, location, 

Carnegie classification); institutional behaviors (e.g., resource allocation strategy); and 

student peer climate (e.g., aggregate student characteristics) influence student outcomes.   

Higher education production functions.  Production functions are rooted in 

microeconomic theory of the firm, specifically producer theory.  To produce something 

requires taking inputs and using some process or technology to transform them into 
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outputs.  For example, a firm’s workers might use chemicals and equipment to produce a 

vaccine.  In this case, the workers, chemicals, and equipment are the inputs; and the 

process by which these inputs come together to produce the output, a vaccine, can be 

represented mathematically by a production function.   In fact, a production function 

represents the process by which a firm generates the maximum output possible from a 

given mix of labor and capital inputs (Hanushek, 1979).  Thus, production functions 

provide a basis for describing efficient production and determining appropriate responses 

to changes in inputs or technology.   

Scholars and observers acknowledge that the notion of colleges and universities 

as producers with an estimable production function is tenuous at best (Salerno, 2002).  

Precise specification of the higher education production function requires that we can 

identify and quantify all relevant inputs and outputs, gauge the quality of the inputs and 

outputs, and express the nature of the relationships between inputs and outputs in 

mathematical terms (Hopkins, 1990).  Whereas the vaccine manufacturer can directly 

measure the inputs and outputs of production and use engineering and scientific 

knowledge of the process to specify the production function, the higher education 

production process is essentially a black box.  Reviewing thirty-two higher education 

production function studies, Hopkins (1990) concluded: 

It would be well to observe that no researcher to date has successfully 

characterized the [higher education] production function…and it is 

doubtful whether anyone ever will.  The reasons for this are many, but 

they all boil down to the fact that the technologies of instruction, research, 

and public service are poorly understood, and the tools for estimating the 

requisite functional forms and coefficients are woefully inadequate to the 

task.  To be more specific, not only are we lacking appropriate measures 
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of quality, but the very nature of the interactions between, for example, 

teaching and research is difficult to express in mathematical terms.  (p. 12) 

But even though efforts undertaken to estimate the true and complete higher education 

production function might be hopeless, the production function can still be a useful lens 

for examining educational outcomes.   

In fact, education production functions have provided a basis for studies of the 

impact of school resources on educational outcomes at the K-12 level dating back to the 

Coleman Report (Coleman et al., 1966).  Harris (2010) makes the case that any study of 

the quantitative relationship between education inputs and outputs falls under the 

education production function (EPF) umbrella, whether or not the models estimated 

adhere strictly to the textbook tenets of production functions.  Findings from EPF studies 

in K-12 are frequently used to inform policy debates and EPF methodologies are 

increasingly common in educational program evaluation (Harris, 2010).   

In the higher education context, production functions – along with closely related 

cost functions – are common in research on European, Australian, and Canadian 

institutions (see Salerno [2003] and Eagan [2010] for a review).  However, recent 

research explicitly drawing on producer theory to analyze American higher education is 

limited (some examples include: Dolan & Schmidt, 1994; Wolf-Wendel, Baker, & 

Morphew, 2000; Salerno, 2002; Blose, Porter, and Kokkelenberg, 2006; Titus & Eagan, 

2008; Titus, 2009; Eagan, 2010; Ostreko, 2012).  And fewer higher education production 

function studies examine STEM educational outputs (these studies include:  Wolf-

Wendel, Baker, & Morphew, 2000; Eagan, 2010; Ostreko, 2012).   
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Known Institutional Predictors of STEM Persistence, Completion, or Degree 

Production 

 
The present study estimates an engineering bachelor’s degree production function 

in which degree production is modeled as a function of institutional inputs, institutional 

characteristics, and aggregate student inputs.  Consistent with this framework, this section 

of the literature review synthesizes what has been learned about the influence of these 

predictors on educational outcomes in STEM or in higher education (where the STEM 

literature is more limited).  Specifically, institutional inputs include programmatic 

interventions, faculty factors, and institutional expenditures.  Institutional characteristics 

include institutional control, Carnegie classification, selectivity, and HBCU status.  

Aggregate student characteristics include pre-college academic preparation, racial/ethnic 

diversity, and socioeconomic status.  First, though, selected findings from pertinent 

qualitative research are presented. 

Selected qualitative findings.  Qualitative research suggests that how 

underrepresented minority students experience the culture(s) of science and interactions 

with faculty and peers may be at the heart of their persistence processes in science and 

engineering.  Therefore, understanding the dynamics of these experiences might be 

critical to institutional and policy efforts to support URM students’ STEM ambitions.  

These qualitative insights also offer directions for future research and color in the details 

of a picture that broader quantitative studies can only outline at best.  

Cultures of science.  Higher education researchers have devoted a great deal of 

attention to the ways that campus cultures, campus climates, and students’ perceptions 
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thereof, influence minority student outcomes (for example, Cabrera et al., 1999; Harper 

and Hurtado, 2007).  But STEM disciplinary cultures and academic climates may present 

unique academic and social obstacles for underrepresented minority students (Hurtado, 

Cabrera, Lin, Arellano, & Espinosa, 2009; Johnson, 2007).   

The “culture of science” presupposes a worldview meant to reflect the nature of 

science itself.  Investigating how the culture of science contributes to the 

underrepresentation of women and minorities in a critical ethnography of working 

scientists and engineers, Jones (1998) put it this way: 

Scientists believe they can remove subjectivity from their treatment of 

people because they are convinced they can do this in their empirical 

work…The oppressive nature of the situation conceals itself in the 

sciences because of the aura of objectivity and premise of value-neutral 

activities that are supposed to be part of the scientific method.  (p. 8)  
 

Students’ assimilation to the culture of science is a major thrust of STEM higher 

education that Seymour and Hewitt (1997) likened to induction into a fraternity.  Igbarra 

(1999) suggests that URM students may have more difficulty navigating perceived 

distances between their cultures of origin and the culture of science – the greater the 

distance the more diminished are students’ prospects for persistence (Kuh & Love, 2000).  

In another ethnographic study, Johnson (2007) found that URM women grappled with: 

a sense of being conspicuous, a hesitancy to draw attention to themselves, 

a conflict between the altruistic reasons that have drawn them to the study 

of science and their professors’ valuing science in and of itself, 

interpretation of professors’ narrow focus on science as hostility and lack 

of caring, and skepticism regarding science’s claim to be neutral to race, 

ethnicity, and gender… (p. 818)   
 

Underrepresented minority STEM students are also disproportionately weeded out 

of gatekeeper courses and report difficulty adjusting to pedagogical practices like grading 
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on a curve that foster competitive climates (Seymour & Hewitt, 1997; Johnson, 2007; 

Hurtado et al., 2009; Fries-Britt, Younger, & Hall, 2010).  (Gatekeeper or “weed-out” 

classes are usually taken during the first or second year of college, and success or failure 

often dictates whether students persist in their STEM major.  For example, engineering 

gatekeeper courses include calculus, physics, statics, etc.)  URM students often report 

facing stereotypes and assumptions of academic inferiority and feeling burdened to 

“prove” themselves in order to be accepted into the community of science (Moore, 

Madison-Colmore, & Smith, 2003; Fries-Britt, Younger & Hall, 2010).  Exploring the 

perceptions, attitudes, and experiences of 24 African American male juniors and senior 

engineering majors at a large, southeastern predominantly White institution, Moore, 

Madison-Colmore, and Smith (2003) coined the term “prove-them-wrong syndrome” to 

explain their persistence in engineering.  That is, the students in the study were driven to 

persist in engineering by a desire to prove faculty, peers, society, or anyone they 

perceived as doubting their academic potential wrong.  Yet not all students are able to 

turn negative perceptions or interactions into a source of motivation to achieve.  Kuh and 

Love (2000) suggest that institutions can moderate the negative influences of STEM 

cultures and disciplinary climates by creating opportunities for students to form positive 

sociocultural connections with faculty and peers.  

Interactions with faculty.   In a qualitative study of 73 undergraduate STEM 

students at two institutions, Thiry and Larsen (2011) found that more so than other 

students, URMs gained confidence and broadened their perspectives on career and 

educational options as a result of positive contact with faculty.  Others have also linked 

interactions with faculty to minority students’ self-efficacy, achievement, and career 
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expectations (Santiago & Einarson, 1998; Carter 2002; Cole & Espinoza, 2008) and 

suggested that positive outcomes are more pronounced when students interact with same-

race faculty (Fries-Britt, 1998; Fries-Britt, Younger, & Hall, 2010; Griffin, Perez, 

Holmes, & Mayo, 2010).  In Seymour and Hewitt’s (1997) landmark study, STEM 

defectors of color frequently cited unapproachable, intimidating faculty along with their 

experiences in gatekeeper courses as instrumental in their departure decisions.  

Experiences with faculty outside the classroom are also important.  Exploring the 

laboratory experiences of twenty-four students of color, Malone and Barabino (2009) 

concluded that rather than helping to develop their identity as researchers or scientists, 

laboratory experiences often involved ambiguous and subtly racial interactions with 

faculty and peers and feelings of isolation and disillusionment. 

Interactions with peers.  Like interactions with faculty, research highlights the 

importance of peer interactions in shaping minority students’ experiences in STEM.  For 

example, high-achieving URM physics majors described peers as their “saving grace,” 

particularly given the intensity of their programs and limited time to develop 

relationships outside their academic bubbles (Fries-Brit, Turner, & Hall, 2010).  Another 

study indicated that same-race peer interactions supported Black STEM students’ 

academic and racial identity development and diminished feelings of isolation (Fries-

Britt, 1998).  Willemsen (1995) also found that positive peer interactions diminished 

isolation, boosted learning in weed-out courses, and helped students feel less different 

and distant from their classmates.  These studies illustrate an emphasis in the literature on 

gains associated with same-major (e.g., Astin & Astin, 1992) and same-race (e.g., 
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Grandy, 1998) peer interactions.  Other studies suggest that engagement with non-STEM 

peers takes away from the time needed to meet the demands of STEM majors and 

marginalizes URMs from their respective STEM cultures (Bonous-Hammarth, 2000; 

Museus, Palmer, Davis, & Maramba, 2011; Cole & Espinoza, 2008).  

Summary of selected qualitative findings.  Qualitative research offers a window 

into underrepresented students’ STEM experiences, emphasizing the critical role of 

culture, faculty and peers.  However, results from these qualitative studies are not 

necessarily generalizable to URMs in STEM broadly or to specific racial/ethnic groups in 

specific STEM disciplines.  Nevertheless, institutional inputs, which are discussed in the 

next section, reflect institutional and public policy efforts to put this knowledge into 

practice by creating conditions to facilitate students’ assimilation to the cultures of 

science and foster positive interactions with faculty and peers.   

Institutional inputs.  Production functions typically specify a firm’s inputs in 

terms of capital and labor.  Research suggests that faculty are colleges and universities’ 

most important labor input because they are central in the production of all three outputs 

of higher education – instruction, research, and service (Salerno, 2002; Lewis & Dundar, 

2001).  Accordingly, proxy measures of faculty (labor) inputs – instructional 

expenditures, faculty salaries, or other faculty characteristics, for example – are almost 

universally included in higher education production function studies.  Production studies 

examining the instructional outputs of higher education (like degrees) occasionally 

account for student “labor” inputs or characteristics (e.g., Webber & Ehrenberg, 2010; 

Webber, 2012).  Purely capital inputs (for example, buildings, equipment, land, etc.), on 
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the other hand, are less frequently specified in multi-institution studies for at least two 

reasons.  Differences in accounting practices across institutions make obtaining 

consistent measures of institutional capital difficult (Salerno, 2002).  Also, institutional 

capital is not viewed as a realistic policy lever, since unlike faculty labor inputs over 

which institutions have a fair amount of discretion by assigning teaching loads, granting 

release time for research, or varying levels of adjunct and teaching assistant labor inputs, 

the majority of institutional capital is relatively fixed over time in land, buildings, 

equipment (Salerno, 2002).  Salerno (2002, 2003) reviews the tradeoffs involved with 

specifying labor and capital inputs in higher education production studies.   

This section of the review synthesizes what is known about the role of 

institutional inputs in the production of STEM higher education outputs.   Specifically, 

the inputs identified include programmatic interventions, faculty predictors, and 

institutional expenditures. 

Programmatic interventions.  Formal programs seem to be the cornerstone of 

institutional efforts to expand success in science and engineering for underrepresented 

minorities.  Yet despite their prevalence, little is known about the effects of various 

STEM programs on student outcomes (see Urban Institute [2005] for a comprehensive 

review of “effective” STEM programs).  Nevertheless, colleges and universities routinely 

operate and/or support programs designed to foster collaborative learning environments 

and facilitate positive interactions with faculty and peers – such as minority freshmen 

orientation, clustering, and structured study groups (Reichert & Absher, 1997); peer 

mentoring programs (Astin & Astin, 1992; Good, Haplin, & Haplin, 2000); and student-
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chapter professional organizations (Jackson, Gardner, & Sullivan, 1993; Reichert & 

Absher, 1997; Chang, Cerna, Han, & Saenz, 2008; Hurtado et al., 2007).  However, the 

most frequently studied systemized efforts to improve URM outcomes in STEM seem to 

be summer bridge, undergraduate research, and comprehensive retention programs.  

Summer bridge programs.  STEM summer bridge programs are pre-college 

programs that facilitate accepted students’ academic and social transition from high 

school to college.  These programs are often designed to 1) promote students’ interest in 

STEM and academic self-efficacy and 2) orient students to college life and the academic 

unit’s culture through intensive, structured academic and residential experiences (Evans, 

1999; Urban Institute, 2005; Pascarella & Terenzini, 2005).  In the process, students are 

thought to develop skills, career goals, and relationships, which are expected to mediate 

their subsequent persistence and eventual degree attainment in STEM.   

To a limited extent, research supports this premise.  For example, Evans (1999) 

found that participants in a six-week community college summer bridge program 

targeting minorities in STEM had comparable or higher academic performance, first-year 

persistence, and graduation rates relative to non-participants.  Walpole and colleagues 

(2008) analyzed longitudinal survey data and administrative records to show that summer 

bridge participants’ three-year persistence rates exceeded those of the control group.  A 

similar observational study found that participants in an engineering summer bridge 

program were 25% more likely to persist and graduate in engineering than non-

participants with similar high school GPAs (Ohland & Zhang, 2002).  Many others have 

attributed positive STEM outcomes to summer bridge programs based on less rigorous 
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(i.e., no control/comparison group) evaluation methods (Ami, 2001; Zhe, Doverspike, 

Zhao, Lam, & Menzemer, 2010).  Yet by and large, Perna’s (2003) conclusion remains 

true today:  despite widespread acceptance and appeal there is an absence of strong 

empirical evidence of the effectiveness of [STEM] summer bridge programs.     

Undergraduate research.  Relative to summer bridge, the literature on STEM 

undergraduate research programs is vast.  This is not surprising given the long history of 

undergraduate research in the sciences – liberal arts colleges have engaged 

undergraduates in research on a broad scale since at least the 1940s (Laursen et al., 2010).  

Federal support for STEM undergraduate research appears to date back to 1958 when the 

National Science Foundation (NSF) established the Undergraduate Research Program 

(National Science Foundation, 2008).  In fiscal year 2006, at least 11 federally funded 

STEM education programs expressly included undergraduate research, with NSF 

sponsoring seven of these programs to the tune of $116 million (Department of 

Education, 2007).  Federal dollars also support STEM undergraduate research indirectly 

through funding for infrastructure improvements to sustain research initiatives involving 

undergraduates.  And private funders make substantial investments in STEM 

undergraduate research through a variety of programs (Laursen et al., 2010).   

The STEM education movement advances research as a viable strategy for 

increasing persistence in STEM and expanding participation of traditionally 

underrepresented groups (Carter, Mandell, & Maton, 2009; Barlow & Villarejo, 2004; 

Hurtado, et al., 2008).  And participation in undergraduate research appears to be 

widespread.  Russell (2006) estimated that 53% of STEM undergraduates participate in 
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some form of research, based on data from a nationally representative sample of 22- to 

35-year-old STEM bachelor’s degree-holders.  Other research indicates that there are not 

enough research opportunities to accommodate interested students (Laursen et al., 2010).  

Undergraduate research programs are generally structured to include mentoring, 

training in laboratory techniques, and formal presentation of results (Laursen et al., 

2010).  A broad range of benefits have been linked to undergraduate research:  from 

increased technical knowledge, laboratory, problem-solving, and presentation skills to 

clarification of career and post-baccalaureate educational plans (Kardash, 2000; Lopatto, 

2004, 2007; Laursen et al., 2010).  Concerning underrepresented STEM students, 

undergraduate research reportedly increases academic performance, self-efficacy, 

undergraduate persistence, and graduate school enrollment (Barlow & Villarejo, 2004; 

Carter, Mandell, & Maton, 2009; Hurtado et al., 2007; Lopatto, 2004; Nagda et al., 

1998).  

 Though they attribute a range of positive effects to undergraduate research, 

scholars and evaluators also acknowledge the lack rigorous empirical evidence to support 

these claims (Laursen et al., 2010; Lopatto, 2007; Carter, Mandell, & Maton, 2009).   The 

1998 evaluation of the University of Michigan’s Undergraduate Research Opportunity 

Program (UROP) remains the one and only randomized controlled trial
2
 of a STEM 

                                                           
2 There are a number of explanations for the absence of RCTs or quasi-experimental designs with well-

matched comparison groups in the evaluation literature on STEM undergraduate research programs.  

Random assignment of subjects to participate (or not participate) in undergraduate research is often 

infeasible (Kardash, 2000; Lopatto, 2007; Bauer & Bennett, 2003).  Also, RCTs and quasi-experiments 

with sample sizes large enough to obtain findings with statistical significance can be considerably more 

costly and difficult to execute than, for example, one-group pre-post studies.  And the literature suggests 

that efforts to assess the impact of undergraduate research programs almost always begin after (in some 
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undergraduate research program (Nagda, Gregerman, Jonides, von Hippel, & Lerner, 

1998).  A large applicant pool and a limited number of spaces allowed University of 

Michigan evaluators to use a stratified random sampling method to select students for 

participation in the program.  Administrative records revealed that, compared to control, 

UROP participation improved persistence (in college) for African Americans at all 

enrollment levels and for Whites and Hispanics who participated as sophomores.  The 

program had the strongest positive effects for African Americans with GPAs below the 

median for their racial/ethnic group (Nagda et al., 1998). 

Although a number of other studies offer rich insights about the relationship 

between participation in undergraduate research and student outcomes in STEM, no 

causal links can be drawn from this research due to several methodological limitations.  

Chief among these limitations are measurement and selection problems.  For example, 

only a few observational studies examine the relationship between undergraduate 

research and direct outcome measures like GPA or persistence in major (for example, by 

analyzing administrative records as in Barlow, & Villarejo, 2004; Jones, Barlow, & 

Villarejo, 2010; and Carter, Mandell, & Maton, 2009).  However, most evaluation studies 

of STEM undergraduate research programs use self-report outcome measures based on 

participant ratings on items like:  understand the research process; learned x-y-z specific 

research skills, gained self-confidence, expect to earn a Ph.D., or interested in research 

career.  These self-reports are helpful for assessing learning and experience outcomes that 

                                                                                                                                                                             
cases many years after) the intervention is already underway – or once the opportunity to assign or 

thoughtfully construct groups has passed.   
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may be associated with the research program, but they fall short of pinpointing program 

effects (Kardash, 2000; Lopatto, 2007).  Another measurement issue that undermines the 

validity of STEM undergraduate research program evaluations is that other than a few 

studies (i.e., Lopatto, 2004, 2007; Bauer & Bennett, 2003; Zydney, Bennett, Shahid, & 

Bauer, 2002) the data used to assess program impact is drawn from surveys of 

participants who knew their responses would be used for evaluative purposes.  Also, 

students who apply or sign up for undergraduate research programs are likely to be more 

motivated to persist in STEM than students who do not, raising concerns about potential 

selection biases.  

Twelve years ago, an NSF program manager told Science Magazine, “As an 

assumption, undergraduate research makes logical sense.  But we have no idea what 

students actually learn from it” (Mervis, 2001, p. 1614).  Certainly, available research has 

contributed greatly to our understanding of how undergraduate research experiences 

might foster persistence and degree attainment for STEM students by fostering their 

academic and social engagement and increasing their self-efficacy.  However, there 

remains a need for stronger empirical evidence of their potential impacts.  

Comprehensive retention programs.  Legions of institutions have implemented 

comprehensive programs that integrate multiple interventions to foster success for 

underrepresented minority science and engineering students (Good, Haplin, & Haplin, 

2002; Committee on Equal Opportunities in Science and Engineering, 2004; Urban 

Institute, 2005; May & Chubin, 2003; Museus, Palmer, Davis, & Maramba, 2011).  But 

similar to summer bridge and undergraduate research programs, evidence of the 
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effectiveness of these efforts is limited.  Still, two well-regarded program models have 

been widely replicated and are frequently held up as exemplars of the programmatic 

approach:  The Meyerhoff Scholars Program, and the Minority Engineering Program.  

Established in 1988, the Meyerhoff Scholars Program incorporates a number 

strategies intended to foster student success in science and engineering: a four-year 

financial aid package, a mandatory summer bridge program, study groups, personal and 

academic counseling, tutoring, summer research internships, community service, and 

mentoring (Maton, Hrabowski, & Schmitt, 2000).  Although initially targeted to African 

American males, the program has since expanded to include all high-achieving students 

“interested in the advancement of minorities in the sciences and related fields” 

(University of Maryland, 2012). 

Numerous quantitative and qualitative studies have examined the effects of the 

Meyerhoff Scholars Program (Hrabowski & Maton, 1995; Maton, Hrabowski, Schmitt, 

2000; Maton & Hrabowski, 2004; Summers & Hrabowski, 2006; Carter, Mandell, & 

Maton, 2009; Fries-Britt, 1998).  The earliest published evaluation of the program 

compared the performance of the first three Meyerhoff cohorts (N = 69) to a matched pre-

Meyerhoff historical comparison group of Black students with comparable SAT scores 

and high school GPAs.  On average, Meyerhoff scholars’ overall GPA (Mean = 3.5) was 

significantly higher than that of comparison group students (Mean = 2.8), as were 

Meyerhoff grades in gatekeeper course (Hrabowski & Maton, 1995).  A subsequent study 

of the longer-term impacts of the program found that Meyerhoff students were more 

likely to persist and graduate in STEM, earned higher GPAs, and enrolled in STEM 
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graduate programs at higher rates than multiple comparison groups (Maton, Hrabowski, 

& Schmitt, 2000).  Other studies highlight the rate of STEM doctoral degree attainment 

among Meyerhoff alumni (Maton & Hrabowski, 2004), the effects of the summer 

research internship (Carter, Mandell, & Maton, 2009), participant experiences (Fries-

Britt, 1997, 1998), and the broader implications of the program (Hrabowski, 2002).  

The original Minority Engineering Program (MEP) was initiated by faculty at 

California State University, Northridge, in 1973 to improve minority retention and 

performance in engineering.  The MEP model has since been replicated at more than 100 

universities and privately operated programs (May and Chubin, 2003).  Though 

implementation of the MEP model varies, key elements include:  a formal freshmen 

orientation course, clustering of underrepresented students in common course sections, a 

student study center, and structured study groups.  To a lesser extent, MEP programs also 

include pre-college outreach, summer bridge, scholarships, supplemental instruction, 

professional development activities, advising, undergraduate research, and assessment 

tools (May & Chubin, 2003; Tsui, 2007).  May and Chubin (2003) note that essential to 

the success of the MEP model in operation is a focus on the academic rather than 

“student services” aspects of the program. 

 Evaluations of the MEP model at several institutions generally indicate significant 

gains in achievement and persistence for minority engineering students.  One early 

impact study reported that URM participants at the University of California and 

California State University campuses persisted at higher rates than all other engineering 

students and three times the rate of non-MEP minorities (Landis, 1988).  On average, 
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Berkeley MEP participants earned a letter grade higher in science and mathematics 

courses than non-MEP minority students and also achieved higher grades than White 

students in those courses (Treisman, 1985).  In a more recent study, Ohland and Zhang 

(2002) found that while MEP students at the Florida A&M University-Florida State 

University College of Engineering persisted at higher rates than non-participants, this 

difference was statistically non-significant after controlling for high school GPA.  On the 

other hand, examining the long-term program effects for Black engineering majors who 

participated in a freshman-oriented MEP, Good and colleagues (2002) detected no 

differences in sophomore GPA.  In another study, African American MEP participants 

had significantly higher sophomore persistence rates (76%) than non-participants (38%) 

(Good, Haplin, & Haplin, 2002).  These inconsistent findings from single institution 

studies no doubt point to widespread variations in program implementation. 

Summary of institutional programmatic interventions.  Programmatic 

interventions such as summer bridge, undergraduate research, and comprehensive 

retention and support programs represent key institutional inputs that appear to influence 

persistence and degree completion in science and engineering for underrepresented 

minorities.  Available empirical research is largely suggestive of positive effects on a 

range of student outcomes but provides little conclusive evidence.  Moreover, wide 

variability between institutions in the implementation of ostensibly similar programs 

limits the potential for systematic, multisite evaluations or meta-analyses of STEM 

programmatic efforts.  Variability between institutions in the role or salience of 

institutional agents in the operation of programs or as direct contributors to student 
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outcomes presents another potential confounder to systematic analyses.  And perhaps 

most important, the extent to which consistent measures of STEM programmatic inputs 

can be developed across institutions is questionable at best.  Yet there is still a pressing 

need to at least estimate the relationships between these institutional inputs and STEM 

educational outputs. 

Faculty predictors.  As noted, qualitative research examining underrepresented 

minority student outcomes in STEM often underscores how interactions with faculty 

shape students’ experiences, attitudes, and persistence processes (for example, Perna et 

al., 2009; Fries-Brit, Younger, and Hall, 2010).  Yet only a few quantitative studies have 

examined the relationship between faculty-focused measures and URM outcomes in 

STEM.  In fact, faculty measures have been largely neglected as potential predictors of 

educational outcomes in the broader higher education empirical literature as well (Chen, 

2012; Ehrenberg & Zang, 2005).  Most of the available research in this area 

operationalizes faculty predictors in terms of:  the proportions of part-time faculty or 

graduate student teaching assistants relative to tenured and tenure-track faculty (Bettinger 

& Long, 2004, 2006; Schibik & Harringon, 2004; Ehrenberg & Zhang, 2005; Eagan, 

2010; Hubbard & Stage, 2010; Chen, 2012; Ostreko, 2012); faculty-student ratios (Dolan 

& Schmidt, 1994; Sibulkin & Butler, 2011; Chen 2012); faculty racial composition 

(Griffith, 2010; Hubbard & Stage, 2010; Price, 2010; Ostreko, 2012); or faculty gender 

composition (Griffith, 2010; Ostreko, 2012).  Collectively, this research indicates that 

faculty inputs matter for retention, graduation, and degree production in higher education 

in general and in science and engineering specifically. 



42 
 

 As one of the most prominent trends in higher education, the growing reliance on 

part-time or adjunct instructors has prompted a number of scholars to examine the 

implications for educational outcomes in recent years (Bettinger & Long, 2004).   

Available research generally indicates that exposure to instructors outside the full-time, 

Ph.D.-trained traditional model is associated with worse outcomes for students, with 

differential effects noted across institutional control, Carnegie classification, academic 

disciplines, and student race/ethnicity.   

Bettinger and Long (2004, 2006) estimated the effects of adjuncts and graduate 

student teaching assistants on students’ subsequent course-taking patterns, major choice, 

and persistence, drawing on administrative data from four-year public institutions in the 

state of Ohio.  The latter study produced OLS and instrumental variables estimates of the 

effects of exposure to non-traditional instructors in the first semester on first-year 

dropout.  Both exposure to adjuncts and exposure to teaching assistants increased the 

likelihood of dropout (Bettinger & Long, 2006).  The earlier study used fixed effects 

regression models to analyze course-taking and major choice by subject (Bettinger & 

Long, 2004).  For the pooled sample of first-time, full-time students across all subjects, 

exposure to adjuncts and exposure to teaching assistants in the first semester reduced the 

number of subsequent credit hours taken in the subject and reduced the likelihood of 

majoring in the subject.  Yet, perhaps more interesting, these effects varied by academic 

disciplines, even specifically within STEM.  Whereas exposure to adjuncts in first 

semester biology, chemistry, physics and computer science courses reduced subsequent 

course taking and major selection in those subjects, adjuncts had no statistical 
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relationship with engineering students’ outcomes.  On the other hand, exposure to 

teaching assistants in biology, chemistry, and physics reduced students’ subsequent 

course taking in those subjects but was not related to course taking in computer science 

or engineering.  Exposure to teaching assistants in biology, physics, and engineering 

reduced the likelihood of selecting those subjects as majors, but was not statistically 

related for chemistry and computer science.   

Using administrative data on freshmen drawn from a single institution, Schibik & 

Harrington (2004) found that exposure to part-time faculty reduced the likelihood of 

persistence to the second semester.  Chen’s (2012) multi-level event history analysis 

found no relationship between part-time faculty and student dropout.  However, unlike 

the other student-level analyses, Chen (2012) modeled 6-year dropout and relied on 

assumptions about the extent of students’ exposure to part-time instructors rather that 

data directly linking students to instructors.  Ehrenberg and Zhang (2005) used 

institution-level panel data from the College Board and IPEDS and fixed effects 

regression models, finding that the proportion of part-time faculty and the proportion of 

full-time, non-tenure track faculty were negatively related to graduation rates.  The 

magnitude of the estimates varied by institutional control and Carnegie classification, 

being greatest at public master’s institutions.  In the same vein, Eagan (2010) found that 

the proportion of part-time faculty (institution-wide) reduced institutions’ STEM degree 

production rate.  Hubbard and Stage (2010) found that the share of tenure-track faculty 

was not related to alumni STEM doctoral degree productivity for underrepresented 

minorities, but given data limitations their “tenure ratio” was only a crude approximation 
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of what students’ may have experienced as undergraduates.  And, conceptually, Ostreko’s 

(2012) finding of no relationship between the proportion of tenure track faculty and 

engineering graduate degree production for underrepresented minorities seems reasonable 

since graduate students (especially Ph.D. students) should have less exposure to part-time 

instructors than lower-division undergraduates (Bettinger and Long, 2006).  Thus, the 

generally negative effects of exposure to non-traditional faculty are most pronounced at 

the undergraduate level, vary across academic disciplines, and are best detected with data 

that clearly links students and instructors.   

Faculty-student ratio has been linked with higher shares of alumni earning 

doctoral degrees for students in all fields (Dolan & Schmidt, 1994; Sibulkin & Butler, 

2011) but has been reported to be unrelated to alumni doctoral degree attainment for 

African Americans in STEM fields (Sibulkin & Butler, 2011).  Ehrenberg and Zhang 

(2005) found that the number of faculty was positively related to institutional graduation 

rates, but Chen (2012) found no relationship between faculty-student ratio and 

undergraduate persistence.  Overall, different outcomes, data, and analysis methods make 

it difficult to square these findings and suggest a need for further research. 

Available research indicates that faculty demographic characteristics may also be 

related to educational outcomes in STEM fields.  Price (2010) analyzed administrative 

records from public institutions in Ohio to generate instrumental variables estimates of 

the effects of exposure to Black instructors on first-semester and first-year persistence in 

STEM.  He found that exposure to Black instructors was not significantly related to 

outcomes for non-Black students but was positively related to Black students’ persistence 
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in STEM.  In the same spirit, the proportion of underrepresented minority faculty 

(institution-wide) was associated with higher shares of URM alumni earning STEM 

doctoral degrees (Hubbard & Stage, 2010).  Alternatively, Griffith (2010) reported that 

the proportion of female faculty (institution-wide) was negatively related to fist-year 

persistence but unrelated to fourth-year persistence in STEM for women, men, and non-

minorities.  The proportion of female faculty was also unrelated to any minority student 

outcomes.  However, Griffith did not control for faculty rank, which could potentially 

confound the results since women are more likely to hold lower rank positions in STEM 

(Nelson & Rogers, 2007).  In fact, Ostreko (2012) found that the percentage of female 

tenured/tenure-track faculty was positively related to graduate degree production for 

women in engineering. 

The influence of other faculty-centered measures on educational outcomes has 

also been examined.  Dolan and Schmidt (1994) reported that an institution’s average 

salary for associate professors was associated with higher shares of alumni earning 

doctorate degrees.  And Hurtado, Eagan, and Hughes (2012) found that the proportion of 

faculty involving undergraduates in research predicted student persistence in STEM 

fields.  Hurtado and colleagues (2012) used hierarchical generalized linear modeling to 

analyze student- and institution-level data from a variety of sources, including the CIRP 

Faculty Survey.  They actually tested two other faculty predictors – the proportion of 

faculty grading on a curve and a measure of the extent of student-centered pedagogy – 

but found no significant relationship with STEM persistence. 
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Summary of faculty predictors.  Exposure to part-time faculty is the most 

frequently studied measure in research examining relationships between faculty 

characteristics and educational outcomes.  By and large, this research associates adjuncts, 

teaching assistants, and other non-tenure track instructors with worse educational 

outcomes.  But differential effects are noted across institutional control, Carnegie 

classification, academic disciplines, and student race/ethnicity.  Some evidence suggests 

that faculty-student ratios may matter for educational outcomes.  And faculty race and 

gender have been significant predictors of various indicators of success for 

underrepresented students in STEM fields.  

Institutional expenditures.  At least one study measured the influence of faculty 

on underrepresented minorities’ STEM outcomes from another angle.  Griffith (2010) 

postulated that higher ratios of research to instructional expenditures reflected a greater 

institutional commitment to research relative to teaching, thus diminished opportunities 

for faculty-student interaction.  Her OLS estimates suggested differential relationships by 

STEM outcome measure (i.e., persistence vs. degree completion) and undergraduate 

enrollment level.  Currently, however, there is no conceptual framework that spells out 

the mechanism(s) by which institutional expenditures might influence educational 

outcomes – regardless of academic discipline – even though a growing literature 

specifically examines these relationships (Ryan, 2004).  And a preponderance of 

contradictory findings from this research stymies efforts to develop such a framework.   

Nonetheless, Salerno (2002) and Lewis and Dundar (2001) suggest that 

instructional expenditures, of which faculty salaries comprise a significant share, are 
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good proxies for institutions’ faculty inputs in a production framework.  This notion 

could be easily extended to other expenditure categories to the extent that costs for 

student services and academic support services are associated with faculty and staff time 

and effort, again assuming capital inputs (e.g., land, buildings, equipment) are relatively 

fixed.  Webber and Ehrenberg (2010) note that since we cannot directly measure the true 

inputs – time and effort – expenditures can be considered inputs multiplied by prices.  

Berger and Milem’s (2000) college impact model also offers some support for 

conceptualizing spending as an “institutional behavior” that reflects the priorities of the 

institution and is indirectly related to student outcomes.  

With few exceptions, empirical research that has considered links between 

various institutional expenditures and educational outcomes (i.e., retention, completion, 

degree production) indicates that expenditures generally matter.  However, inconsistent 

findings about the degree to which different types of expenditures matter suggest that the 

relationships between these inputs and outputs are fairly complex.  This section reviews 

recent studies that estimate the influence of institutional expenditures on educational 

outcomes for STEM students specifically and in higher education broadly.  

 Expenditures in STEM studies.  A handful of studies examine the relationship 

between institutional expenditures and educational output, focusing specifically on 

underrepresented minorities in science and engineering.  Collectively, the results of these 

studies are not easily reconcilable, since they reflect different outcome measures, 

academic disciplines, and expenditure categories.   
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Roper’s (2011) descriptive study found that institutions in the lowest per student 

expenditure quintile were most likely to produce “very high” numbers of 

underrepresented minority STEM baccalaureates.  However, without attempting to 

control for other institutional characteristics that could explain high numbers of URM 

baccalaureates (i.e., the racial composition of the student body), Roper’s (2011) analysis 

is limited.   

Griffith (2010) modeled first-year and fourth-year persistence in STEM separately 

for men, women, minorities and non-minorities using data from the Andrew Mellon 

Foundation’s National Longitudinal Survey of Freshmen.  She also modeled degree 

completion in STEM using the National Center for Educational Statistics’ National 

Education Longitudinal Study of 1988.  Controlling for student and institution 

characteristics, this study found that institutional research expenditures were negatively 

related to first-year persistence in STEM for URMs (and moderately so for non-URMs), 

but unrelated to fourth-year persistence for any students.  In addition, research 

expenditures were unrelated to degree completion in STEM for URMs but positively 

related to completion in STEM for non-URMs (Griffith, 2010).  Webber (2012) applied 

the production function in a competing risks regression framework to estimate the effects 

of institutional expenditures on six-year completion.  Drawing from student-level 

administrative data from four-year public institutions in Ohio public colleges and 

universities, Webber divided his sample and found that instructional expenditures were 

more important for predicting completion for STEM majors compared to non-STEM 

majors. 
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Amanda Ostreko (2012) used institutional data from the American Society for 

Engineering Education’s Engineering College Profiles and Statistics and OLS regression 

to examine predictors of graduate degree production, specifically in engineering.  She 

reported an inverse relationship between engineering research expenditures and 

engineering doctorate degree production for URMs, but no significant relationship for 

engineering master’s degree production, controlling for engineering school 

demographics.  Wolf-Wendel, Baker, and Morphew’s (2000) baccalaureate origin study 

found that instructional expenditures predicted alumni STEM doctoral degree 

productivity for White women but were not significant for Black and Latina women, 

controlling for structural and demographic characteristics of the baccalaureate institution.  

Hubbard and Stage (2010) also analyzed the baccalaureate origins STEM doctorate 

recipients.  They reported a negative relationship between institutional funded research 

expenditures and alumni STEM doctoral degree productivity for underrepresented 

minorities but no significant relationship for instructional expenditures, controlling for 

institutional characteristics (Hubbard and Stage, 2010). 

 Expenditures in higher education persistence/completion studies.  Although few 

STEM-focused studies consider institutional expenditures, they are increasingly 

examined in the broader higher education persistence/completion literature.  The reason 

is summed up by higher education public policy expert, Jane Wellman (2010):  

American higher education is being challenged as never before by the 

imperative to increase postsecondary access and degree attainment despite 

declines in funding.  The challenge is made all the more daunting because 

of rapid changes in student demographics.  Meeting these challenges 

without harming quality will require unprecedented attention to the 

intersection of resource use and performance…Institutional and policy 
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leaders are asking for guidance, and for data that tells them something 

about how to focus scarce resources in areas that make the biggest 

difference...  (p. 3) 

Wellman’s (2010) challenge to researchers to “connect the dots” between 

spending and student success in higher education seems to have taken hold, as a number 

of recent studies examine the relationship between institutional expenditures and 

educational outcomes (for example, Webber & Ehrenberg, 2010; Webber, 2012; Chen, 

2012; Peerenboom, 2012; Morrison, 2012).  The studies identified for this review 

operationalize expenditures in terms of total (aggregate) expenditures, a single 

expenditure category (e.g., instructional expenditures), or multiple expenditure 

categories.  

In regression models of institutional retention and graduation rates, total 

expenditures have consistently been associated with better outcomes, controlling for 

institutional demographic and structural characteristics (Goenner & Snaith, 2004; Porter, 

Blose, & Kokkelenberg, 2006; Morrison, 2012).  Studies that operationalize institutional 

expenditures in terms of a single expenditure functional category have also found 

significant positive associations.  Scott, Bailey, & Kienzl (2006) found that higher 

instructional expenditures predicted higher 6-year graduation rates using grouped logistic 

regression and controlling for institutional characteristics.  Kim, Rhoades, and Woodard 

(2003) used hierarchical non-linear modeling and found a borderline positive association 

between funded research expenditures and 5-year graduation rates, controlling for 

student- and institution-level characteristics.  Together, these studies confirm the 

importance of resource allocations.  But aggregate expenditures do not tell us which types 
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of expenditure categories actually make a difference.  And singular conceptions of 

expenditures are limited since they that do not control for spending in other functional 

categories. 

    Moreover, studies that disaggregate expenditures into multiple functional 

categories have not reached consensus on the extent to which different expenditure 

categories influence educational outcomes.  Research provides evidence of a positive 

relationship between retention/graduation/degree productivity and instructional 

expenditures (Ryan, 2004; Hamrick, Schuh, & Shelley, 2004; Scott, Bailey, & Kienzl, 

2006; Webber & Ehrenberg, 2010; Webber, 2012); academic support expenditures 

(Dolan & Schmidt, 1994; Hamrick, Schuh, & Shelley, 2004; Ryan, 2004; Gansemer-Topf 

& Schuh, 2006); and expenditures for student support services (Webber & Ehrenberg, 

2010; Chen, 2012; Webber, 2012).  Other research contradicts these findings, suggesting 

no statistically significant relationship between retention/graduation and instructional 

expenditures (Chen, 2012; Titus, 2006a, 2006b, Peerenboom, 2012); academic support 

expenditures (Webber & Ehrenberg, 2010; Chen, 2012; Peerenboom, 2012; Webber, 

2012); or expenditures for student support services (Ryan, 2004; Hamrick, Schuh, & 

Shelley, 2004).  And at least one model produced a negative relationship between 

retention/graduation and instructional expenditures (Peerenboom, 2012).   

Contradictory findings have also been reported concerning the role of funded 

research expenditures, with some research suggesting a negative association with 

graduation rates (Webber & Ehrenberg, 2010; Peerenboom, 2012) and others suggesting 

no significant relationship (Dolan & Schmidt, 1994; Titus, 2006a, 2006b).  A few studies 
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have also produced inconsistent findings concerning institutional support expenditures 

(Hamrick, Schuh, & Shelley, 2004; Ryan, 2004; Gansemer-Topf & Schuh, 2006; Titus, 

2006a, 2006b; Peerenboom, 2012) and expenditures for grants and scholarships (Dolan & 

Schmidt, 1994; Titus 2006a, 2006b; Gansemer-Topf & Schuh, 2006; Peerenboom, 2012). 

The lack of consistent findings between studies examining the links between 

expenditures and educational outcomes has been broadly attributed to data and 

methodological differences (Pike, Smart, Kuh, & Hayek, 2006; Webber & Ehrenberg, 

2010; Morrison, 2012).  Virtually all of the studies identified drew institutional 

expenditure data (for various fiscal years) from IPEDS and used basic regression models 

to analyze these data.  Yet contradictory findings are reported both within and between 

studies for just about every expenditure category.  Cleary, the relationships between 

institutional expenditures and educational outputs are complex.  Perhaps the main aspect 

of complexity, which undoubtedly gives rise to inconsistent findings, is the challenge of 

comparing institutions based on institution-level finances.  Reconciling expenditure data 

across diverse institutions is difficult both for researchers seeking to “connect the dots” 

along these lines and institution and policy leaders seeking practical guidance.  

Why are institutional comparisons based on finances so difficult?  Foremost, 

institutional finance data reported to the National Center for Education Statistics and 

published through IPEDS is simply not ideal for comparisons between institutions
3
 

                                                           
3
 Acknowledging the limitations of IPEDS finance data in raw form, Webber and Ehrenberg (2010) and 

Webber (2012) used data from the Delta Cost Project Database.  The Delta Cost Project compiles, 

organizes, and edits IPEDS finance data to mitigate changes in financial reporting standards over time, 

impute missing data, and facilitate fairer institutional and longitudinal comparisons (Lenihan, 2012). 
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(Toutkoushian, 2001).  Different reporting standards
4
 for public and private institutions 

and other differences in accounting practices across institutions could result in different 

institutions assigning the same expenditure item to different IPEDS expenditure 

categories.  Blose, Porter, and Kokkelenberg (2006) argued that mixing public and 

private institutions might confound the results of studies that compare funding levels 

across institutions.  For example, Scott, Bailey, and Kienzl (2006) reported that they 

stratified their sample by institutional control after initial specifications tests of a pooled 

sample (which included a dummy variable for institutional control) indicated that the 

covariates in their graduation rate model functioned differently for public and private 

institutions.  This evidence of variations by institutional control calls into question 

several of the studies identified in this review that combined public and private 

institutions (i.e., Goenner & Snaith, 2004; Ryan, 2004; Titus, 2006a, 2006b; Chen, 2012).  

Institution-level finance data from IPEDS also masks important differences 

between institutions in academic mission.  Some studies attempted to adjust for these 

potential differences by adding dummy variables to their models to control for Carnegie 

classification (for example, Hamrick, Schuh, & Shelley, 2004) or by restricting their 

sample(s) to institutions of similar Carnegie classes (for example, Ryan, 2004, Goenner 

& Smith; Gansemer-Topf & Schuh, 2006, and Morrison, 2012).    However, a U.S. 

Department of Education report on the Delaware Study of Instructional Costs and 

Productivity found that, after adjusting for Carnegie classification, over 80% of the 

                                                           
4
 Public colleges and universities use the Governmental Accounting Standards Board (GASB) reporting 

format, while private institutions use the Financial Accounting Standards Board (FASB) reporting format. 
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variation in instructional costs across four-year colleges and universities is attributable to 

the mix of disciplines offered at the institutions (Middaugh, Graham, & Shahid, 2003).   

Giving the example of two research/doctoral intensive universities – one heavily 

oriented toward natural and physical sciences and graduate education, the other focused 

on the social sciences and humanities and less so on graduate education – Middaugh and 

colleagues (2003) warned, “Any institution-wide comparison of costs without 

consideration of disciplines between these universities will be totally misleading.”  Blose, 

Porter, and Kokkelenberg (2006) offered an economic production perspective, noting that 

each discipline “requires different inputs and…often engages different technologies” (p. 

73).  Thus, not only do costs vary across disciplines, but the relationships between 

spending and educational output also vary across disciplines.  Nonetheless, IPEDS 

surveys do not collect discipline-based finance data, but three expenditure studies still 

accounted for the mix of academic disciplines (Blose, Porter, & Kokkelenberg, 2006; 

Webber & Ehrenberg, 2010; Webber, 2012).  Predictably, their findings conflict with 

expenditure studies that made no adjustments for curricular mix.   

Blose, Porter, and Kokkelenberg (2006) also adjusted their model of institutional 

graduation rates to account for potential variations between institutions in costs by 

student enrollment level.  Conceptually, their enrollment level adjustment reflected the 

assumption that the cost of educating, say, freshmen and senior engineering students was 

not the same.  Although Pike, Smart, Kuh, and Hayek (2006) examined the relationship 

between expenditures and engagement rather than retention/graduation, their regression 

analysis of data from the National Survey of Student Engagement (NSSE) and IPEDS 
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brought this point home.  Stratifying their sample by institutional control and student 

enrollment level, they found, for example, that expenditures for academic support were 

predictive of active and collaborative learning, student interactions with faculty, and 

enriching educational experiences first-year students at public institutions, but were not 

significantly related to the same outcomes for seniors at public institutions or students 

attending private institutions.  At the same time, expenditures for student services were 

not significantly related to any measures of engagement for students at public institutions 

but were positively related to interactions with faculty for students at private institutions 

and positively related to active and collaborative learning just for seniors attending 

private institutions (Pike et al., 2006).   

Institutional control, disciplinary mix, and enrollment distribution are but three 

sources of institutional heterogeneity that went unobserved in a number of the 

expenditure studies identified and that research clearly indicates can lead to inappropriate 

comparisons between institutions and inconsistent findings between studies.  Inconsistent 

findings within studies point to the importance of other sources of heterogeneity.  

Specifically, studies that stratified institution samples by institutional size (Peerenboom, 

2012), HBCU status (Pereenbom, 2012), selectivity (Gansemer-Topf & Schuh, 2006; 

Webber & Ehrenberg, 2010; Webber, 2012), and student financial need (Webber & 

Ehrenberg, 2010) offer evidence that financial comparisons between institutions depend 

on these institutional characteristics as well.   

For example, Webber and Ehrenberg (2010) showed that student services 

expenditures had the largest marginal impact on graduation rates at institutions with low 
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median SAT scores and high student financial need, while instructional expenditures had 

the biggest impact at institutions with high median SAT scores and low rates of student 

need.  In another example, Peerenboom (2012) found a negative relationship between 

research expenditures and six-year graduation rates for a pooled sample of public 

institutions.  But after stratifying the sample into enrollment quartiles this relationship 

was significant only for medium-sized institutions (i.e., 5,000 to 9,999 FTE students).  In 

fact, Peerenboom (2012) reported differential impacts of a number of predictors across a 

number of institutional characteristics.  A model of four-year graduation rates for the 

pooled sample of institutions indicated a negative relationship with research and 

scholarship expenditures and a positive relationship with SAT scores, enrollment, and 

residence hall capacity.  The same model applied to HBCUs revealed only one significant 

relationship, between residence hall capacity and graduation rates.   

While variations between studies in how researchers handled institution 

heterogeneity explain a lot of the inconsistencies in the findings from expenditure studies, 

variations between studies in sample selection, data handling procedures, and model 

specification also play a role.  In some cases, nearly identical models yielded different 

results.  For example, both Peerenboom (2012) and Hamrick et al. (2004) used OLS 

regression, IPEDS data on close to 450 public four-year institutions, and relatively 

similar controls to model 6-year graduation rates but arrived at different conclusions 

about academic support expenditures.  But Hamrick and her colleagues (2004) analyzed 

1997 graduation rates and 1998 financial data, while Peerenboom (2012) modeled 2009 
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graduation rates and averaged expenditures over six years to align with the students’ 

enrollment trajectory.   

In fact, all but one of the studies that incorporated multiple years of expenditure 

found no significant association between academic support expenditures and educational 

outcomes, whereas all of the studies that used a single year of financial data reported a 

positive relationship.  Conceptually, educational expenditures made during a cohorts’ 

sixth year might explain variation between institutions in six-year graduation rates.  

However, models that account for potential year-to-year variations in expenditure levels 

over the course of students’ progress toward the degree likely offer more precise 

estimates (for example, as in Webber & Ehrenberg, 2010; Chen, 2012; Peerenboom, 

2012; Webber, 2012).  

In another example, Webber and Ehrenberg (2010) and Peerenboom (2012) found 

a negative relationship between funded research expenditures and six-year graduation 

rates, contrary to prior research (for example, Titus 2006a, 2006b).  Pointing out that 

instructional expenditures actually include departmental research (i.e., research that is not 

externally funded or separately budgeted), Webber and Ehrenberg (2010) offered this 

explanation:   

Our intuition is that the institutions with high levels of funded research 

expenditures per student are also the institutions that have a greater share 

of their reported instructional expenditures in the form of departmental 

research.  To the extent that we are correct and faculty time spent on 

departmental research reduces the time available for instruction, this 

suggests that higher levels of funded research expenditures per student 

may appear to have a negative effect on graduation rates, when 
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instructional expenditures per student are held constant, because of their 

correlation with unobserved departmental research expenditures.  (p. 950) 

This speculation suggests that models that do not control for instructional expenditures 

might predict a positive relationship between funded research expenditures and 

graduation rates, which is precisely what Kim, Rhoades, and Woodard (2003) found.   

 Contradictory findings across expenditure studies could also be attributable to the 

different functional forms of the regression models specified (Webber & Ehrenberg, 

2010).  Four studies used log transformations of the expenditure variables, arguing that 

the transformations provided more accurate estimates by accounting for the diminishing 

marginal productivity of expenditure inputs and improved the interpretability of the 

results (Ryan, 2004; Pike, Smart, Kuh, & Hayek, 2006; Webber & Ehrenberg, 2010; 

Chen, 2012).  Three other studies estimated the effects of the percentage of total 

expenditures for each functional category (Titus, 2006a, 2006b; Peerenboom, 2012).  

Most other studies estimated the effects of per FTE student expenditures by category but 

at least two studies examined raw expenditures without controlling for institution 

size/enrollment (i.e., Kim, Rhoades, & Woodard, 2003; Goenner & Snaith, 2004).  

 Summary of institutional expenditures research.  Available research examining 

the relationship between institutional expenditures and educational outcomes has 

consistently produced inconsistent findings.  This inconsistency is most likely attributable 

to the fundamental challenges associated with comparing institutions based on institution-

level finance data available in IPEDS and the different ways researchers handled 

institution heterogeneity.  Other potential reasons for inconsistent results within and 
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between studies include differences in data handling procedures and model specification.  

Therefore, given the tenuous nature of institution comparisons based on finance data, 

comparing the findings from studies designed for this purpose is a tenuous proposition as 

well. 

Still, taken together, these studies have at least three clear implications for future 

research.  First, whenever possible, research should seek to estimate the effects of 

multiple categories of institutional expenditures on educational outcomes, rather than 

total expenditures or a single category of expenditures.  Second, the estimates should rely 

on comparisons between institutions with similar missions, demographics, and curricular 

mixes.  Along these line, models that utilize panel data and include institution fixed 

effects could help advance the research by alleviating the problem of unobserved, time-

invariant institution heterogeneity.  Third, the most accurate estimates will be based on 

comparisons not only between similar institutions but also within similar academic 

disciplines.    

Institutional characteristics.  Research examining the relationships between 

institutional inputs such as faculty predictors or expenditures and educational outputs 

clearly underscores the importance of the structural characteristics of institutions.  That 

is, research accounts for or demonstrates variations in the estimated impacts of these 

inputs by institutional control (Dolan & Schmidt, 1994; Ehrenberg & Zhang, 2005; 

Hamrick, Schuh, & Shelley, 2004; Kim, Rhoades, and Woodard, 2003; Bailey, Kienzl, 

&, 2006; Blose, Porter, & Kokkelenberg, 2006; Gansemer-Topf & Schuh, 2006; 

Ehrenberg & Webber, 2010; Webber, 2012; Peerenboom, 2012);  Carnegie classification 
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(Ryan, 2004; Goenner & Snaith, 2004; Ehrenberg & Zhang, 2005; Webber & Ehrenberg, 

2005; Morrison, 2012); HBCU status (Peerenboom, 2012); and selectivity (Ehrenberg & 

Zhang, 2005; Webber & Ehrenberg, 2010).   

Higher education research specifically drawing on Berger and Milem’s (2000) 

organizational college impact model to examine relationships between institutional 

characteristics (i.e. structural-demographic features) and student outcomes indicates that 

institutional size (Titus, 2004), selectivity (Titus, 2004, 2006a, 2006b; Gansemer-Topf & 

Schuh, 2006; Oseguera & Rhee, 2009), private control (Titus, 2006a; Ryan 2004), and 

residentiality (Titus, 2004) are positively related to student persistence and/or graduation.    

In addition, a growing literature examining how institutions shape 

underrepresented students’ outcomes in STEM has specifically considered selectivity and 

HBCU status.  This literature is discussed next. 

Selectivity.  In higher education research, institutional selectivity is generally 

associated with better institutional performance (e.g., graduation rates) (Astin & 

Oseguera, 2005; Pascarella & Terenzini, 2005).  Some research also suggests that 

selectivity positively contributes to degree completion for underrepresented minorities 

(for example, Bowen & Bok, 1998).  At the same time, studies that account for the self-

selection of students into institutions generally find either much smaller “selectivity 

effects” or no statistical relationship between selectivity and student outcomes (for 

example, Dale and Krueger, 2002).   
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 With respect to student and institutional outcomes in science and engineering, the 

role of selectivity is even more ambiguous.  Studies indicate that the relationship between 

selectivity and STEM-related outcomes depends on students’ race/ethnicity (Bonous-

Hammarth, 2000; Hurtado, Eagan, & Hughes, 2012).  Others find that the relationship 

between selectivity and persistence for URMs depends on whether students attend an 

HBCU or non-HBCU (Chang, Cerna, Han, & Saenz, 2008).  Other evidence suggests that 

the relationship depends on the outcome of interest (Georges, 1999; Eagan, 2010).  

Together, this research highlights the nuance in how selectivity may contribute to student 

outcomes in STEM and why context matters.  Evidence from this research also 

contradicts the controversial and recurring notion that characterizes the performance of 

underrepresented minority STEM students in terms of their “mismatch” to selective 

institutions, which is discussed next. 

 The “mismatch hypothesis” predicts that minority students who attend selective 

institutions will have worse STEM outcomes than those who attend less selective 

institutions where their academic credentials are a better match to the institutional 

average (Alon & Tienda, 2005).  For example, a 2010 briefing report of the U.S. 

Commission on Civil Rights noted: 

Data presented to the Commission showed that success in a STEM major 

depends both on the student’s absolute entering academic credentials and 

on the student’s entering academic credentials relative to other students in 

the class…There are fewer black and Hispanic physicians, scientists and 

engineers today than there would have been if colleges and universities 

had not recruited and admitted black and Hispanic students with 

significantly lower academic credentials than their average student.  (p. 3) 
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Among the data referenced in the quote above, were findings from two studies 

that examined racial/ethnic differences in STEM persistence at selective institutions, 

controlling for students’ pre-college academic characteristics (Elliot, Strenta, Adair, 

Matier, & Scott, 1996; Smyth & McArdle, 2004).  Elliot and colleagues (1996) used 

administrative records from four Ivy League institutions and found that Black students 

persisted in STEM majors at substantially lower rates (34%) than Hispanic (56%), White 

(61%) and Asian students (70%).  Perhaps more remarkably, they also reported that 

Hispanic students persisted more and Blacks persisted less than their pre-college 

academic credentials predicted.  Nevertheless, Elliot and others (1996) dismissed the 

notion that institutional contextual factors might account for the lower than expected 

African American persistence rates (or higher than expected Hispanic persistence rates) 

and concluded that the Black students were simply “mismatched” to highly selective 

institutions as a result of affirmative action policies.   

Smyth and McArdle (2004) used multilevel modeling and data on students from 

23 selective institutions in the College and Beyond database to examine STEM 

persistence.   They found that disparities in persistence between URMs and Whites as 

well as men and women were almost completely explained by SAT-math scores, which 

they offered as evidence of the validity of the mismatch hypothesis.  Their model also 

resulted in no statistical association between selectivity and STEM persistence, 

controlling for student demographic and academic characteristics – though this could 

have resulted from using a relatively homogenous sample of institutions with limited 

variation between institutions.   
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Other scholars have argued that the “mismatch” hypothesis is fundamentally 

flawed (for example, Alon & Tienda, 2005; Tapia, 2009; Hurtado, Newman, Tran, & 

Chang, 2010).  These studies suggest that high-status institutions may foster STEM 

environments marked by competition, weed-out mentality, faculty focused more on 

research than teaching, and limited role models for URMs.  These are precisely the 

conditions that qualitative research (discussed earlier) suggests decrease STEM 

persistence for URMs.  Moreover, the limited range of institutions used in studies 

supporting the notion of mismatch offer little insight about how selectivity plays out for 

URMs over a broader institutional spectrum.   

Seemingly consistent with the mismatch hypothesis, Bonous-Hammarth (2000) 

found a negative relationship between selectivity and four-year persistence in STEM for 

URMs, using data from the Cooperative Institutional Research Program’s (CIRP) 

1985/1989 freshmen and follow-up surveys and controlling for pre-college academic 

achievement.  Bonous-Hammarth (2000) speculated that the negative relationship was 

attributable to institutional climate factors such as stereotype threat but was unable to test 

this hypothesis due to data limitations.   Chang, Cerna, Han, and Saenz (2008) analyzed 

data on the 2004 CIRP freshman cohort and found that first-year persistence in 

biomedical and behavioral sciences was negatively related to institutional selectivity for 

all students, controlling for student and institutional characteristics.  Unpacking this, a 

separate analysis revealed that among HBCUs, URM persistence increased with 

institutional selectivity; but among non-HBCUs persistence decreased with selectivity 

(Chang et al., 2008).  Also analyzing data on the 2004 CIRP freshman cohort, Newman 
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(2011a) found no statistical relationship between selectivity and five-year engineering or 

computer science degree completion versus non-STEM completion for African 

Americans.  Hurtado, Eagan, and Hughes (2012) defined STEM more broadly and 

offered support for both sides of the selectivity debate.  Their analysis of 2004 CIRP 

freshmen suggested that selectivity was positively related to degree completion (versus 

dropout) but not statistically related to retention in STEM for all students.  For Black 

students, selectivity was negatively related to four- and five-year STEM degree 

completion but not statistically related to six-year STEM degree completion (Hurtado, 

Eagan, & Hughes, 2012).  

A few studies have used institutions as the unit of analysis to examine the 

relationship between selectivity and URM outcomes in STEM.  For example, Roper’s 

(2011) descriptive analysis of STEM degree production at over 1500 institutions using 

the Education Trust’s College Results Online database indicated that institutions in the 

lowest selectivity quintile were most likely to have very high STEM degree production 

rates.  However, Roper’s (2011) inclusion of institutions in U.S. territories like Puerto 

Rico makes it difficult to compare her results to most other analyses, which do not 

include these institutions.  Georges (1999) found a positive relationship between 

selectivity and retention rates in engineering, for minorities and non-minorities.  Georges’ 

(1999) findings may be questionable since the retention rates were not directly measured 

but computed based on aggregate enrollment and completions data reported to the 

Engineering Workforce Commission. 
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Summary of selectivity studies.  Studies that have considered how selectivity 

might contribute to students’ persistence processes and outcomes in STEM have 

produced mixed findings.  However, this review suggests that while selectivity 

contributes to degree attainment relative to dropout, it is not necessarily related to 

retention in STEM per se.  Different studies drawing on the same data indicate that the 

relationship between selectivity and STEM persistence varies based on student 

race/ethnicity, how researchers operationalized STEM, the STEM outcome examined, 

and HBCU status.  Therefore, future studies examining the relationship between 

selectivity and educational outcomes should account for these potential sources of 

variation. 

Historically Black colleges and universities.  Descriptive reports commend 

HBCUs for a longstanding record of producing African American STEM baccalaureates, 

suggesting, “In almost every STEM field, HBCUs lead the nation’s larger, better-

equipped colleges in producing Black graduates” (Southern Education Foundation, 2005, 

p. 5).  While generalizations like this are debatable and some of the oft-quoted statistics 

about the role of HBCUs in STEM are certainly outdated, HBCUs remain key players.   

Recent data suggest that HBCUs, which represented 3% of all four-year postsecondary 

institutions and enrolled roughly 16% of African American students in four-year 

institutions in 2010, conferred 20% of natural science and engineering bachelor’s degrees 

awarded to African Americans in 2010 (Ransom, in preparation). 

That HBCUs produce a disproportionate share of STEM graduates is seen as 

remarkable for at least four reasons.  First, HBCUs represent a small segment of STEM 

degree-granting institutions, for example, although HBCUs produced 20% of Black 
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engineering baccalaureates in 2010, HBCUs represent only 16 of the 399 (4%) 

institutions with ABET-accredited engineering programs HBCUs (Ransom, in 

preparation; ABET, 2012).  Second, HBCU students have, on average, lower 

socioeconomic status backgrounds and lower high school GPAs and college entrance 

exam scores than their non-HBCUs peers (Allen, 1992; Kim, 2002; Kim & Conrad, 2006; 

Li & Carroll, 2007), both of which have been linked to lower rates of STEM persistence 

and degree attainment (Elliot et al., 1996; Smyth & McArdle, 2004).  HBCUs also have 

lower institutional resources (i.e., proportions of faculty with doctorates, average faculty 

salaries, per student instructional expenditures, and endowments) and lower STEM 

resources (e.g., research and development funding and infrastructure) than non-HBCUs 

(Gasman et al., 2010; Kim, 2002; Kim & Conrad, 2006; Suitts, 2003; Swail, Redd, & 

Perna, 2003; Bennof, 2009; Matthews, 2011; Clewell, de Cohen, & Tsui, 2010).   

Despite some evidence of a disproportionate contribution by HBCUs in educating 

African Americans in science and engineering fields, little available research examines 

relationships between HBCU attendance or HBCU status and STEM educational 

outcomes.  Without a doubt, this is largely a consequence of the newness of research 

examining institutional predictors of STEM outcomes.  Nevertheless, the few studies that 

attempt to make this connection do so by either estimating an HBCU “effect” 

quantitatively or by examining (mostly qualitatively) the HBCU environment. 

Estimating HBCU “effects.”  Some quantitative research attempts to estimate 

HBCU effects by including HBCU attendance (student-level) or HBCU status 

(institution-level) as a predictor or stratification variable in models examining student or 
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institution-level educational outcomes.  Analyses of cohorts that attended college in the 

1970s and 80s generally indicated that HBCU status was positively related to degree 

completion, irrespective of discipline and controlling for students’ pre-college academic 

characteristics (Cross & Astin, 1981; Ehrenberg & Rothstein, 1994; Kane, 1994; 

Pascarella, Smart, Ethington, & Nettles, 1987).  Yet reflecting what Pascarella and 

Terenzini (2005) called an “empirically muted discussion,” current studies are sparse and 

more equivocal.  And depending on data and methodology, studies suggest no statistical 

relationship between HBCU attendance and degree completion (Kim & Conrad, 2006), a 

positive relationship (Ryan, 2004), or differential relationships by gender (Sibulkin & 

Butler, 2005).   

With respect to student outcomes in science and engineering, older studies 

suggest that African American students at HBCUs are more likely to choose STEM 

majors than those at non-HBCU (Thomas, 1987, 1991; Trent, 1991; Trent & Hill, 1994; 

Wenglinsky, 1997).  However, only a handful of recent studies, most of which were 

conducted by researchers affiliated with the UCLA Higher Education Research Institute 

(HERI), directly examine the relationship between HBCU attendance/status and STEM 

outcomes (Chang et al., 2008; Newman, 2011; Eagan, 2010; Hurtado, Eagan, & Hughes, 

2012).   

 With funding from the National Institutes of Health and the National Science 

Foundation, HERI researchers have published a number of studies that advance 

understanding about the factors contributing to underrepresented minority students’ 

success in STEM fields, with particular attention to the role institutional contexts and 
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characteristics.  Chang and colleagues (2008) used logistic regression to examine first-

year persistence of biomedical and behavioral science majors.  Based on a sample of 

close to 3000 students at 159 institutions, they found that as a predictor, HBCU status 

was not statistically related to URM persistence.  However, selectivity “effects” 

depended on HBCU status applied as a sample stratification variable, as discussed in the 

previous section.   

Hurtado and colleagues’ (2008) used multilevel modeling to estimate the 

probability of first-year students’ participation in health science research and detected no 

statistical association with HBCU attendance.  In another multilevel study, Hurtado, 

Eagan, and Hughes (2012) examined how institutional contexts contributed to STEM 

degree completion for URMs.  In a pooled model of URMs, HBCU status was not a 

significant predictor of four-, five-, or six-year STEM completion; however, 

disaggregating the sample revealed that Black students at HBCUs were 11.3 percentage 

points more likely complete a STEM degree in four years relative to Blacks at non-

HBCUs, controlling for student and institution-level characteristics.   HBCU status was 

not statistically related to five- or six-year completion, however (Hurtado, Eagan, & 

Hughes, 2012).   

Another HERI study by Christopher Newman (2011a) suggested no statistical 

association between HBCU status and five-year engineering and computer science 

bachelor’s degree completion for African Americans.  However, Newman (2011a) found 

that HBCU engineering and computer science students were less likely to switch to non-

STEM majors.  Finally, Eagan (2010) examined two different STEM outcomes for 
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URMs – STEM degree production efficiency using institutions at the unit of analysis and 

seniors’ aspirations for various advanced degrees in a multilevel framework.  While 

HBCU status was statistically unrelated to degree production efficiency, controlling for 

other institutional characteristics, STEM seniors attending HBCUs had a 21.5% higher 

average probability of aspiring to earn a Ph.D. and a 30% higher average probability of 

aspiring to earn an M.D. relative to URM seniors at non-HBCUs (Eagan, 2010). 

Outside of the HERI studies, few researchers have examined relationships 

between HBCU attendance/status and outcomes in STEM.  Georges (1999) descriptive 

analysis considered the extent to which institutions’ retention rate of URMs in 

engineering differed by various institutional characteristics.  Her descriptive analyses 

indicated that, on average, the retention rates of Blacks in engineering were higher at 

HBCUs (36.1%) than the national average for Black students (32.3%) (Georges, 1999).  

However, a subsequent regression model estimating engineering retention rates did not 

include HBCU status as a predictor (Georges, 1999).  

Despite the dearth of quantitative research estimating the effects of HBCU 

attendance/status on student outcomes in STEM overall, a substantial literature considers 

the role of HBCUs as the baccalaureate origin institution for African American STEM 

doctorate degree recipients (Pearson & Pearson, 1985; Solórzano, 1995; Leggon & 

Pearson, 1997; Wolf-Wendel, 1998; Wolf-Wendel, Baker, & Morphew, 2000; Burelli & 

Rapoport, 2008; Hubbard & Stage, 2010; Sibulkin & Butler, 2011).  This research – in 

which baccalaureate origin institutions are the unit of analysis – consistently indicates 

that, in absolute terms, HBCUs are the baccalaureate origins of a disproportionate share 
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of Black STEM doctorate recipients.  At the same time, these studies demonstrate that 

understanding the contribution of baccalaureate origin institutions to the production of 

doctorate degree earners is not as simple as rank ordering institutions by the number of 

alumni who become doctorate recipients.  That is to say, institutions that produce 

relatively large numbers of African American baccalaureates (i.e., HBCUs) naturally 

have larger pools of potential doctorate recipients.  Therefore, researchers have come up 

with a number of productivity indices or ratios designed to account for the size of an 

institution’s pool of potential doctorate recipients (See Sibulkin & Butler, 2011 for a 

review).  And some studies suggest that after adjusting for the number of bachelor’s 

degrees awarded to African Americans, the number of doctorate recipients from HBCUs 

is actually unremarkable or on par with non-HBCUs (Burelli & Rappaport, 2008; 

Sibulkin & Butler, 2011).  Other studies disagree (e.g., Wolf-Wendel, 1998; Wolf-

Wendel, Baker, & Morphew, 2000).  The use of different formulae gives rise to different 

results, interpretations, and implications.  In one noteworthy exception, however, 

Hubbard and Stage’s (2010) baccalaureate origin study ranked comprehensive public 

institutions’ production of URM STEM doctorates without computing a productivity 

ratio.  Instead they analyzed baccalaureate origins by comparing each institution’s actual 

performance to its predicted performance, which they computed using coefficient 

estimates from a model regressing the number of doctorates on measures of enrollment 

and institutional quality (Hubbard & Stage, 2010).  They found that six of the top ten 

“unexpected” producers of URM STEM doctorates were HBCUs. 
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Examining HBCU environments.  Researchers have also examined the ways that 

HBCU environments might foster success in STEM for Black students.  This research 

focuses on exemplary HBCUs that have demonstrated success in STEM (e.g., Brazziel & 

Brazziel, 1997; Culotta, 1992; Southern Education Foundation, 2005; Perna et al., 2009) 

and comparisons between Black students’ experiences in STEM at HBCUs versus non-

HBCUs (e.g., Wenglinsky, 1997; Suitts, 2003; Fries-Brit, Younger, & Hall; 2010; Lent et 

al., 2005; Brown, Morning, & Watkins, 2005).  By and large, this literature indicates that 

HBCUs provide supportive and affirming STEM environments, with cooperative rather 

than competitive peer climates (Hurtado et al., 2009; Perna et al., 2009; Fries-Britt, 

Younger, & Hall, 2010).  Likewise, this research suggests that HBCU STEM students 

tend to have more positive perceptions of their educational climates and experiences 

(Brown, Morning, & Watkins, 2005) as well as higher self-efficacy and post-

baccalaureate educational aspirations relative to African American STEM students at 

non-HBCUs (Lent et al., 2005). 

Summary of HBCU studies.  Qualitative and descriptive research consistently 

finds that HBCUs produce disproportionate shares of African American STEM graduates 

and eventual doctorate recipients, provide supportive and affirming environments, and 

foster self-efficacy, among a number of positive outcomes.  But, there is not yet a 

compelling body of quantitative evidence corroborating these findings on a broader, 

generalizable scale.  Still, some research by UCLA’s Higher Education Research Institute 

has begun addressing this void in the knowledge.  The HERI studies have found that the 

relationship between selectivity and STEM persistence depends on HBCU status (Chang 

et al., 2008); engineering and computer science majors at HBCUs were less likely to 
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switch to a non-STEM major (Newman, 2011); HBCU attendance was associated with 

higher 4-year STEM degree completion rates among Black students (Hurtado, Eagan, & 

Hughes, 2012); and HBCU attendance was positively related to graduate and professional 

degree aspirations among URMs (Eagan, 2010), for example.   

 

Aggregate student characteristics.  As discussed at the beginning of this 

chapter, STEM higher education research has traditionally focused on student-level 

predictors of student-level outcomes, finding that pre-college academic preparation is the 

main predictor of STEM persistence and degree completion (e.g., Elliot et al., 1996; 

Smyth & McArdle, 2004), with minority underrepresentation in STEM also attributed to 

lower levels of self-efficacy, cultural congruity, ambition, or commitment to STEM (e.g., 

Leslie, McClure, & Oaxaca, 1998; Seymour & Hewitt, 1997).  Along these lines, some 

research examining institutional predictors of URM outcomes in STEM considers the 

contribution of aggregate student characteristics, such as academic preparation.  In 

particular, Eagan (2010) found that the average SAT scores of the entering class was 

positively related and the proportion of URM undergraduates was negatively related to 

STEM bachelor’s degree production efficiency for URM students.  Ostreko (2012) found 

a positive relationship between the proportion of URM engineering undergraduates and 

master’s degree production for URMs as well as a positive relationship between the 

proportion of URM engineering master’s students and doctorate degree production for 

URMs. 

Like STEM-specific research, broader higher education research has also tested 

relationships between aggregate student characteristics and degree completion.  For 
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example, Titus (2006a) found that the average socioeconomic status and racial/ethnic 

diversity of the student body were positively associated with degree completion, 

irrespective of major field.  Webber & Ehrenberg (2010) and Webber (2012) showed that 

the estimated impact of institutional expenditures on graduation rates depended on 

aggregate student financial need as measured by Pell Grant dollars.   

Summary of Current Research 

The research surveyed in this chapter was selected to illustrate the ways that 

scholars have [at least implicitly] conceptualized institutional inputs, institutional 

characteristics, and aggregate student characteristics in examining educational outcomes 

in STEM specifically, and, to a lesser extent, in higher education broadly.  This research 

is primarily framed by interactionalist, organizational or economic (i.e., production 

function) theoretical perspectives.   

Institutional inputs that have been linked to higher education/STEM outcomes 

include programmatic interventions, faculty predictors, and institutional expenditures.  

Available research is largely suggestive of positive effects of summer bridge, 

undergraduate research, and comprehensive retention and support programs on a range of 

student outcomes in STEM but provides little conclusive evidence due data and 

methodological limitations.  In general, faculty predictors have been neglected as 

potential predictors of student- or institution-level outcomes.  But, by and large, this 

research associates non-tenured/tenure-track instructors with worse outcomes; finds 

differential effects across institutional control, Carnegie classification, academic 

disciplines, and student race/ethnicity; and hints that faculty-student ratios, faculty 
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race/ethnicity, and faculty gender may predict various success outcomes for URM STEM 

students.  Research examining the relationship between institutional expenditures and 

educational outcomes has consistently produced inconsistent findings, most likely due to 

the challenges associated with comparing institutional finance data and the different 

approaches to handling institution heterogeneity. 

That institutional characteristics contribute to student outcomes in higher 

education is clear from research on the relationships between institutional inputs and 

educational outcomes, since the estimated effects of institutional inputs differ by 

institutional control, Carnegie classification, selectivity, and HBCU status, for example 

(e.g., Scott, Bailey, and Kienzl, 2006; Webber & Ehrenberg, 2010; Peerenboom, 2012) .  

The role of institutional selectivity and HBCU status has also been directly explored in 

the STEM higher education research (Chang et al., 2008).  Findings suggest that 

selectivity contributes to degree completion relative to dropout but that the relationship 

between selectivity and STEM persistence varies based on student race/ethnicity, STEM 

discipline, the specific outcome examined, and HBCU status.  Qualitative and descriptive 

research consistently finds that HBCUs provide supportive and affirming environments 

and produce disproportionate shares of African American STEM graduates and eventual 

doctorate recipients but empirical evidence of statistically significant relationships 

between HBCU attendance/status and STEM persistence/completion is limited. 

Lastly, drawing on the findings from traditional STEM higher education research, 

scholars investigating how institutional factors shape student outcomes in STEM often 

control for student academic preparation either at the student-level (in multilevel studies) 

or in the aggregate (in institution-level analyses), since academic preparation is positively 
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related to STEM success.  Findings about the impact student racial/ethnic composition on 

URM STEM outcomes have been mixed (Eagan, 2010; Ostreko, 2012).  And the impact 

of expenditures on institutional graduation rates varies by aggregate student financial 

need (Webber & Ehrenberg, 2010). 

 

Limitations of Current Research 

The literature reviewed, particularly multi-institutional STEM-focused studies, is 

limited in terms of scope, data, and methodologies.  With respect to scope, STEM is 

consistently operationalized as arbitrary assortments of natural, social, behavioral science 

and/or engineering majors, which gives rise to a lack of consistency across studies in 

defining STEM major fields, confounds the insights gleaned, inhibits meta-analyses of 

the work, and obscures fundamental differences between STEM fields (and their 

students).  Potential heterogeneity in students’ experiences and outcomes in STEM is also 

diminished by the tendency to pool underrepresented minorities.  For example, 

descriptive evidence from some HERI studies suggest variations within the URM 

category in students’ STEM outcomes; descriptive evidence presented in Chapter 1 

suggests variations in national outcomes within STEM and variations within the URM 

category in students outcomes in engineering. 

These limitations notwithstanding, the absence of more narrowly defined 

quantitative studies examining relationships between institutional predictors and 

underrepresented minorities’ STEM educational outcomes is likely attributable to the 

dearth of robust, multi-institution data sets involving URM STEM students.  For instance, 
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national surveys such as the CIRP surveys target undergraduate populations broadly, 

resulting in too few cases for reliable analyses within specific STEM fields and/or 

specific racial/ethnic subpopulations.   

Three additional data limitations are apparent from studies examining the role of 

institutional inputs on educational outcomes.  First, these studies rely almost exclusively 

on institution-level data provided in IPEDS.  However, IPEDS does not include STEM- 

or program-level faculty or expenditures data, which limits analyses to broad institutional 

inputs that could lead to aggregation bias.  That is, institution-level faculty and 

expenditures data might not offer valid measures for understanding STEM-specific 

phenomena.  Second, the research reviewed draws primarily on cross-sectional data that 

can only provide a snapshot view of the relationships of interest, limiting the 

generalizability and interpretation of findings.  Third, the comparability and integrity of 

financial data across institutional samples is not explicitly addressed in studies examining 

the relationships between expenditures and institutional graduation rates. 

Methodological limitations of the multi-institution studies reviewed are at least 

four-fold.  First, few studies explicitly address the problem of missing data.  Neither the 

extent of missingness nor methods for handling missing data are typically presented.  

Second, owing to the cross-sectional structure of the data analyzed, the potential for 

omitted variables bias is inescapable in the studies reviewed.  The expenditures studies 

clearly demonstrated the limits of analyses that fail to adequately account for between 

institution heterogeneity, either by including control variables or by stratifying the 

sample. Third, although some of the studies reviewed include multiple years of data in 
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pooled OLS regression models, no studies employ panel data methods to exploit the 

structure of longitudinal data and (partially) mitigate the problem of omitted variables 

bias.  Likewise few STEM-related studies offer longitudinal perspectives on URM 

outcomes in STEM.  Fourth, few STEM-focused studies examine institution-level 

outcomes, which would inform institutional practice and address accountability concerns.  

Fifth, the higher education production function studies almost always fail to test the 

fundamental assumption that institutions maximize their outputs.   

Need for Additional Research 

In order to expand the knowledge on the role of institutions in determining 

underrepresented minority students’ outcomes in STEM, more systematic analysis that 

builds on the broad approaches already established is necessary.  Specifically, the extent 

to which broad findings about URMs in STEM higher education are generalizable to 

specific racial/ethnic groups in specific STEM disciplines such as engineering should be 

explored.  Also, given the inconsistencies in the estimated effects of institutional inputs 

on educational outcomes, research is required that relies on comparisons between or 

within institutions with similar missions, structures, and curricular mixes.  For example, 

stratification of institutions by control, Carnegie classification, etc., should diminish 

between-institution unobserved heterogeneity that could potentially confound findings.  

More research is needed drawing on and exploiting panel data to also limit the potential 

for unobserved heterogeneity bias.  Finally, with respect to higher education production 

function studies, more research is needed to investigate whether institutions produce 
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different levels of educational output with the same set of inputs, for example, through 

efficiency analyses. 
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CHAPTER 3 – RESEARCH DESIGN 

 

In this chapter, I describe my approach to advancing the knowledge about how 

institutional factors contribute to STEM educational outcomes.  First, I outline the 

research questions that guide the study.  Then, I provide an overview of the data, sample, 

and variables used in the study.  After outlining the variables selected, I describe the 

methods used to conduct the analyses.  Finally, I end the chapter by discussing the 

limitations of the study design. 

Research Questions 

In this quantitative study, I use institution-level, longitudinal data and a 

production framework to explore how U.S. engineering schools’ labor inputs contribute 

to engineering bachelor’s degree production for underrepresented minorities in general 

and for African Americans specifically.  In addition, I stratify the data to explore the 

potential for differential impacts of faculty inputs by institutional contexts.  The study is 

designed to address the following research questions: 

1. How did engineering colleges and schools’ bachelor’s degree output by 

race/ethnicity and labor (faculty) inputs vary during the sample period, 2005 to 

2011?  Were these trends consistent across institutional contexts? 

2. Do engineering colleges/schools’ labor inputs similarly predict bachelor’s degree 

output for all students, underrepresented minorities, and African Americans, 

controlling for characteristics of the college/school and broader institutional 

characteristics? 
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a. Do selected measures of physical and financial capital predict engineering 

degree output by race/ethnicity? 

b. Do selected institutional expenditure measures predict engineering degree 

output by race/ethnicity?  

c. To what extent do estimates differ when controlling for past degree output?   

3. To what extent are engineering schools/colleges maximizing bachelor’s degree 

production for all students, underrepresented, and African Americans based on the 

models specified in RQ2? 

Data 

This study used data drawn from five sources:  the American Society for 

Engineering Education’s (ASEE) annual Survey of Engineering and Engineering 

Technology Colleges, the National Science Foundation’s Survey of Research and 

Development Expenditures at Universities and Colleges, the U.S. Department of 

Education National Center for Education Statistics’ Integrated Postsecondary Education 

Database (IPEDS), the IPEDS Delta Cost Project Database, and Barron’s Profiles of 

American Colleges.  All data sources were linked using institutional ID numbers, names, 

and addresses.   

The ASEE is a nonprofit organization founded in 1893 whose mission is to 

promote engineering education through a range of endeavors in the interest of a 

membership of more than 12,000 individuals and organizations (ASEE, 2012).  ASEE 

administers the Survey of Engineering and Engineering Technology Colleges to U.S. and 

Canadian engineering schools and colleges that have at least one ABET-accredited 
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engineering program.  The data collected are published in ASEE’s online directory of 

programs, the Annual Profiles of Engineering and Engineering Technology Colleges 

book and a restricted-access electronic database (ASEE, 2012).  The online database 

contains annual records for over 370 engineering schools/colleges from 1998 to 2011 

including such information as:  undergraduate and graduate enrollment by level and 

intensity; number of bachelor’s, master’s, and doctoral degrees conferred; number of 

tenured/tenure-track faculty; numbers of “other teaching” and research personnel; and 

externally funded research expenditures by source (e.g., industry, government, non-profit 

organizations, etc.).  All data are reported by engineering discipline/department; faculty 

and student data have also been reported by race/ethnicity and gender since 2005.  The 

ASEE data served as the primary source for engineering degree outputs and faculty 

inputs analyzed in this study. 

The Survey of Research and Development Expenditures at Universities and 

Colleges, which was renamed the Higher Education Research and Development (HERD) 

Survey in 2010, has been administered annually by the NSF annually since 1972 

(NCSES, 2013).  The survey collects information on R&D expenditures by academic 

discipline as well as by source of funds from research-performing, non-profit 

postsecondary institutions.  Prior to 2010, the target population for the HERD survey 

included only institutions with R&D spending and degree programs in science and 

engineering, but as of the 2010 survey the target population was expanded to include all 

institutions with $150,000 or more in R&D spending in any field (NCSES, 2013).  In 

2011, the most recent survey year, data were collected from 912 institutions.  R&D data 
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on all participating institutions for survey years 1972 to 2011 are available through the 

National Center for Science and Engineering Statistics’ Integrated Science and 

Engineering Resources Data System, WebCASPAR.  The HERD survey provided 

additional data on engineering schools’ labor and capital inputs analyzed in this study.   

Every U.S. postsecondary institution that participates in federal student financial 

aid programs is required to participate in IPEDS surveys, reporting data on institutional 

characteristics, enrollments, program completions, graduation rates, faculty and staff, 

finances, institutional prices, and student financial aid (NCES, 2013).  This study drew 

data on broad institutional characteristics from IPEDS available through the online 

IPEDS Data Center.   

The IPEDS Delta Cost Project Database includes longitudinal data derived 

primarily from IPEDS finance data for 1987 to 2010, which have been “harmonized in 

order to mitigate changes in financial reporting standards over time by employing 

industry-accepted manipulations of the data” (Lenihan, 2012, p. 2).  The Delta Cost 

Project Database also includes imputations of missing data where possible and data 

organization to ease longitudinal analyses.  Delta Cost data provided information about 

broader institutional inputs analyzed in this study.  

Finally, Barron’s College Admissions Competitiveness Index was used to 

operationalize institutional selectivity.  This index uses multiple factors to rate 

institutions on a selectivity continuum from "noncompetitive" to "most competitive."  

These factors are based on the entering freshman cohort and include:  students’ entrance 
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exam scores; students’ academic ranking in high school; institutions’ class rank and GPA 

admissions requirements; and the percentage of applicants accepted by institution 

(Barron’s Educational Series, 2013).  

Sample 

 Since 1932, ABET (formerly, the Accreditation Board for Engineering and 

Technology) has been the primary accrediting agency for technical higher education 

programs in the U.S. and abroad – including engineering, engineering technology, 

computing, and applied science programs (ABET, 2013).  As of October 2012, 399 U.S. 

colleges and universities had at least one ABET-accredited engineering degree program; 

these institutions make up the target population of this study.  Because the key measures 

included in the analysis (and discussed in the next section) were not collected by ASEE 

until 2005, the sample period includes 2005 up to the most recent survey year, 2011.  

Over the sample period, ASEE data include records for 351 U.S. engineering 

schools/colleges with an ABET-accredited degree program in at least one of the 19 

disciplines listed in Table 3.1.  These institutions constitute 88% of the target population.  

Eliminating for-profit institutions, institutions located in Puerto Rico, institutions that did 

not report student enrollment and completions by race/ethnicity, institutions that did not 

report faculty information and institutions for which complete records were not available 

over the entire sample period, yielded 324 unique institutions (represented by N) over 7 

years or 2,268 institution-year observations (represented by n).   
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Table 3.1  ASEE engineering disciplines. 

Aerospace                  

Architectural  

Biological & Agricultural  

Biomedical                   

Chemical                     

Civil                         

Civil/Environmental  

Electrical/Computer         

Engineering (General)  

Industrial/Manufacturing  

Mechanical                    

Metallurgical & Materials 

Mining                       

Nuclear                      

Other   

Petroleum     

Engineering Management  

Eng. Science & Eng. Physics  

Environmental  

 

Source:  ASEE, 2012. 

Additional sample restrictions were necessary to reflect the study’s focus on 

bachelor’s degree production for underrepresented minorities in engineering.  First, 

analyzing data compiled in NSF’s WebCASPAR system revealed that 453 institutions 

conferred at least one bachelor’s degree to underrepresented minorities and 409 conferred 

at least one degree to African Americans over the sample period, 2005 to 2011.  Of the 

programs conferring degrees to URMs, 365 were ABET-accredited, of which 336 (92%) 

participated in the ASEE survey.  Likewise, 351 of the programs conferring degrees to 

African Americans were ABET-accredited, of which 326 (92%) participated in the ASEE 

survey.  However, several of these institutions conferred relatively few degrees to URMs 

during the sample period.  For example, 40 programs awarded a total of five or fewer 

engineering bachelor’s degrees to URMs over the seven-year period; 74 programs 

awarded five or fewer engineering bachelor’s degrees to African Americans.   

Therefore, institutions with relatively few URM undergraduates/baccalaureates 

were excluded from the analyses.  Specifically, the complete sample of 324 ASEE 
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institutions was stratified into two sets of quartiles, according to the total number of 

bachelor’s degrees conferred to URM and Black engineering students over the sample 

period.   Most analyses drew on the top three quartiles of ASEE participant institutions 

conferring bachelor’s degrees to URMs (N = 250 institutions, n = 1750).  A few 

alternative/sensitivity analyses focused specifically on Black students and drew on the 

top two quartiles of institutions conferring bachelor’s degrees to African Americans (N = 

167, n = 1169).  Tables 3.2 and 3.3 summarize the samples used in the analysis.  Table 

A.1 in the appendix lists the 324 institutions that comprised the complete sample. 

 Table 3.2  Summary of complete sample, ASEE participant institutions, 2005-2011. 

Sample n N 

Percentage of  
ABET-Accredited  

Institutions 

Initial 2417 351 88.0 

Restricted* 2268 324 81.2 
N = number of institutions 
n = number of institution-year observations 
*Excludes for-profit institutions, institutions located in Puerto Rico, institutions not reporting enrollment/completions 
by race/ethnicity, institutions not reporting faculty information, and institutions not participating in all survey years 
(2005-2011). 
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Table 3.3  Quartile cut-points for total number of engineering bachelor’s degrees conferred to 
underrepresented minorities and African Americans during 2005to 2011 and number of 
institutions (and observations) in each quartile. 

Percentile 

Total number of degrees, 2005-2011 

To URMs To African Americans 

25th 29.3  8.3 
50th 93.0 35.0 
75th 254.8 93.8 
   

   Quartiles 
N  

      (n)   
N 

      (n) 

1 
74 

(518) 
73 

(511) 

2 
82 

(574) 
84 

(588) 

3 
84 

(588) 
83 

(581) 

4 
84 

(588) 
84 

(588) 

Total 
324 

(2268) 
324 

(2268) 
N = number of institutions 
n = number of institution-year observations 

Variables 

The selection of variables used to model engineering bachelor’s degree 

production was guided by microeconomic producer theory and prior specifications of the 

higher education production function.  Given my focus on Black and other 

underrepresented minority students, variable selection was also informed by research on 

URM outcomes in science and engineering, which was laid out in Chapter 2.  Of course, 

variable selection was also constrained by the measures available in the data used.   

Dependent (output) variables.  Although higher education produces a range of 

outputs – Hopkins (1990) catalogued 49 potential measures – this study focuses on the 

instructional or education outputs of colleges and universities.  Salerno (2003) notes that 
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“in nearly all empirical studies of higher education production and costs: education 

output is almost exclusively proxied by physical headcounts of full time equivalent (FTE) 

enrollments or number of degrees” (p. 25).  While such purely quantitative measures are 

not ideal given the importance of intangible, qualitative features of higher education 

products like the quality of the education students obtain or the quality of effort put forth 

by students, most scholars readily acknowledge the lack of appropriate, informative 

measures of these features (Hopkins, 1990; Lewis & Dundar, 2001, Salerno, 2003).   

Kelly (2009) argues that among the three most common measures used to 

compare performance across higher education institutions or states, absolute numbers of 

degrees is the most basic and most problematic.  Numbers of degrees can shed light on 

the volume of production but is not a fair measure for comparing institutions particularly 

of different sizes.  Graduation rate – the percentage of first-time, full-time, degree-

seeking students who graduate within 150% of program time – is the most common 

completion metric.  However, this measurement of graduation rates does not account for 

part-time students or students who transfer into or out of an institution, who together 

make up an increasing share of college-goers.  Kelly (2009) contends that compared to 

graduation rates, the number of degree completions per full-time equivalent (FTE) 

students enrolled provides a better appraisal of an institution or system’s ability to 

produce degrees.  Institutions that produce fewer degrees relative to their enrollment are 

clearly less productive.  And, unlike graduation rate, the FTE denominator encompasses 

the entire student body of the institution.   
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In this study, the dependent variable used to represent the undergraduate 

educational output of engineering schools and colleges is defined as follows: 

1. The number of engineering bachelor’s degrees conferred per FTE undergraduate 

enrollment in engineering; 

2. The number of engineering bachelor’s degrees conferred to URMs per FTE URM 

undergraduate enrollment in engineering; and 

3. The number of engineering bachelor’s degrees conferred to African Americans 

per FTE African American undergraduate enrollment in engineering. 

Rather than simply examining the absolute numbers of underrepresented minorities 

earning degrees at various institutions, which invariably favors institutions with large 

URM enrollments, these measures are concerned with institutional productivity  – what 

are institutions able to do with the URM students they have?  Thus, these measures 

combine the precedents of higher education production function studies and policy and 

practice related to higher education performance.  

Independent variables.  Producer theory states that maximum firm output is a 

function of capital and labor inputs.  Yet most higher education economists recognize that 

production in higher education is more complex than in other sectors of the economy 

(Paulsen & Toutkoushian, 2006).   Similar to outputs, specification of inputs is typically 

limited to quantitative measures, and due to the “black box” nature of the higher 

education production function, there is no firm conceptual consensus to guide its 

specification (Lewis & Dundar, 2001; Salerno, 2003).  Therefore, drawing on 

organizational frameworks used to examine how institutions contribute to educational 

outcomes (in particular, Berger and Milem [2000]) and prior specifications of the higher 
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education production function (e.g., Webber and Ehrenberg [2010]), this study expands 

the notion of inputs to include aspects of the institutional context.   

The independent variables used in this study can be classified as institutional 

inputs, institutional characteristics, and student characteristics.  For the most part, 

“institution” refers to engineering schools and colleges.  However, given the limitations 

of the available data, inputs and characteristics of the broader institution served as proxies 

for the engineering schools/colleges in some cases. 

Institutional inputs (explanatory variables).  As discussed in Chapter 2, 

academic labor (faculty/staff and students) is viewed as the most important input driving 

higher education production and a practical lever for policymakers and institutional 

decision-makers.  Specifically, higher education production functions almost universally 

include proxies for faculty labor inputs, such as instructional expenditures (which are 

mainly comprised of faculty salaries) and faculty characteristics (e.g., Salerno, 2002, 

2003; Webber & Ehrenberg, 2010).  As well, empirical evidence presented in Chapter 2 

suggests that the racial/ethnic and gender composition of faculty may influence STEM 

outcomes for underrepresented minorities.   

In this study, engineering faculty inputs are the explanatory variables of interest.  

I operationalize faculty inputs through six separate measures:   

1. Proportion of FTE non-tenured/tenure-track teaching faculty in engineering; 

2. Proportion of FTE research faculty in engineering (of the entire FTE 

engineering faculty); 

3. FTE Faculty to FTE undergraduate student ratio in engineering; 
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4. Proportion of underrepresented minority tenured/tenure-track engineering 

faculty; 

5. Proportion of female tenured/tenure-track engineering faculty; and 

6. Funded expenditures for engineering research per FTE engineering 

undergraduate.   

In each case, part-time engineering faculty counts were reported in FTEs, which were 

simply added to full-time headcounts in order to generate necessary FTE faculty figures.  

However, part-time student enrollments had to be converted to FTE headcounts then 

added to the full-time headcounts to produce FTE undergraduate enrollment figures.  I 

multiplied part-time enrollments by factors drawn from the U.S. Department of 

Education’s annual Digest of Education Statistics to estimate the FTE student 

headcounts.  For four-year public and private institutions, the conversion factors were 

.403543 FTE/part-timer and .392857 FTE/part-timer, respectively (U.S. Department of 

Education, 2013).    

Physical and financial capital inputs are rare in empirical studies of higher 

education production (Salerno, 2002).  Capital, such as buildings, land, and financial 

assets, are difficult to reconcile across institutions due to differences in accounting 

practices.  Economic concepts are useful for understanding other reasons for excluding 

capital from empirical studies of higher education production.   Economists assume that 

production inputs can be either fixed or variable; fixed inputs do not change and variable 

inputs do change with the changes in the rate of output.  Economists also distinguish 

between the short run and long run, where the short run is a period in which there is at 

least one fixed input while all inputs are variable over the long run (Brinkman, 2007).  
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Higher education capital (e.g., buildings, land, endowment assess) is more often fixed 

over the typical short run periods examined in production function studies.  Thus, higher 

education capital is not a realistic policy lever, as changes in capital are not likely to have 

short run impacts on education output.  

Nevertheless, this study explores alternative specifications of the engineering 

degree production function that tests these notions about the influence of capital inputs.  

Specifically, the analysis includes the following measures: 

1. Funded expenditures for engineering research equipment per FTE engineering 

undergraduate enrollment; and 

2. (Institution-level) Revenue from affiliated entities, private gifts, grants and 

contracts, investment returns and endowment earnings per FTE undergraduate 

enrollment.  (I initially intended to include endowment revenue per FTE; 

however, institutions stopped reporting endowment earnings separately to 

IPEDS in 1997 [FASB reporting institutions] and 2002 [GASB reporting 

institutions]). 

Most recent higher education production function studies operationalize 

institutional inputs in terms of institutional expenditures by category (e.g., Blose, Porter, 

& Kokkelenberg, Webber & Ehrenberg, 2010; Webber, 2012).  Institutional expenditures 

are used to represent both faculty labor (e.g., instruction and/or research) and staff or 

physical resources (e.g., computing, libraries, support services).  Nonetheless, program-

specific expenditure data are generally not available.  Kelly (2009) contends that the lack 

of available data on the costs of producing degrees is the “most difficult barrier to 

conducting sound productivity analyses in postsecondary education” (p. 6). 

Notwithstanding this limitation, alternative specifications of the models estimated 

in this study include broader institutional expenditures by category: 
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1. Instructional expenditures per FTE undergraduate enrollment; 

2. Academic support expenditures per FTE undergraduate enrollment; 

3. Student support services expenditures per FTE undergraduate enrollment; 

4. Funded research expenditures per FTE undergraduate enrollment; and 

5. Total education and general expenditures per FTE undergraduate enrollment. 

Each of these expenditure categories was defined in Chapter 2 and refers to institution-

rather than engineering-level spending.  All institutional financial data were adjusted for 

inflation using the implicit price deflator for GDP (i.e., GDP deflator), which is available 

through the Bureau of Economic Analysis of the U.S. Department of Commerce (U.S. 

Department of Commerce, 2013). 

Aggregate student characteristics (control variables).  Berger and Milem’s 

(2000) organizational college impact model emphasizes the importance of student 

characteristics and peer context for student outcomes, and other research reviewed in 

Chapter 2 specifically touches on URM outcomes in STEM.  In addition, Salerno (2002) 

demonstrated that graduate students have an important role in higher education 

production as teaching and research assistants and role models for undergraduates.  On 

these bases, and in the absence of student-level data, I operationalized student 

characteristics using seven measures: 

1. Total FTE undergraduate enrollment in engineering; 

2. Proportion of female engineering baccalaureates; 

3. Proportion of underrepresented minority FTE undergraduate enrollment in 

engineering; 

4. Number of full-time engineering doctoral students; 
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5. Proportion of underrepresented minority  full-time engineering doctoral 

enrollment; 

6. (Institution-level) Mean 75
th

 Percentile SAT Math scores; 

7. (Institution-level) Gross amount of Pell grants disbursed by the institution per 

FTE undergraduate enrollment. 

To mitigate the extent of missing data on mean SAT math scores, I converted ACT math 

scores to SAT math scores wherever institutions reported only ACT scores using 

concordance tables provided by the College Board (Dorans, 1999). 

Institutional characteristics (control variables).  Berger and Milem’s (2000) 

organizational framework, recent higher education production function studies, and 

STEM higher education research indicate that structural features of institutions 

contribute, at least indirectly, to student outcomes.  Accordingly, I include five indicators 

of institutional characteristics: 

1. Institutional control; 

2. Land grant status (i.e., whether the institution is designated by its state 

legislature or Congress to receive the benefits of the Morrill Acts of 1862 and 

1890.  The original mission of these institutions included education in 

technical subjects such as engineering [Thelin, 2004 ].); 

3. Selectivity; 

4. Carnegie classification.  

5. HBCU status; and 

All institutional characteristics refer to the broader institution rather than engineering 

schools/colleges.  

Summary of variables.  Table 3.4 summarizes the variables and the sources of 

the variables selected to model engineering degree production in this study.  In many 
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cases, the functional form of the production models estimated included transformations of 

the variables in Table 3.4.  Relevant procedures are discussed in the Analysis section. 
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Table 3.4  Variables used to model engineering degree production 

Variable Calculated? Type Source 

Outputs    

Engineering bachelor’s degrees per FTE undergraduate enrollment (total, URM, African 

American) 

Yes Continuous ASEE 

Faculty Inputs (Explanatory Variables)    

Proportion of FTE non-tenured/tenure-track teaching faculty in engineering Yes Continuous ASEE 

Proportion of FTE research faculty in engineering  Yes Continuous ASEE 

FTE Faculty to FTE undergraduate student ratio in engineering Yes Continuous ASEE 

Proportion of underrepresented minority tenured/tenure-track engineering faculty  Yes Continuous ASEE 

Proportion of female tenured/tenure-track  engineering faculty Yes Continuous ASEE 

Expenditures for engineering research per FTE engineering undergrads Yes Continuous HERD 

Capital Inputs (Alternative Specifications)    

Expenditures for engineering research equipment per FTE engineering undergrads  Yes Continuous HERD 

Revenues from gifts, grants and contracts, endowment earnings, etc. per FTE 

undergrads 

Yes Continuous Delta Cost 

Other Inputs (Alternative Specifications)    

Institutional expenditures for instruction Yes Continuous Delta Cost 

Institutional expenditures for academic support per FTE undergrad Yes Continuous Delta Cost 

Institutional expenditures for student services per FTE undergrad Yes Continuous Delta Cost 

Institutional expenditures for research per FTE undergrad Yes Continuous Delta Cost 

Total institutional education and general research expenditures per FTE undergrad Yes Continuous  Delta Cost 

Aggregate Student Characteristics (Control Variables)    

Total FTE undergraduate enrollment in engineering Yes Continuous  ASEE 
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Table 3.4 (Cont.)  Variables used to model engineering degree production. 

Variable Calculated? Type Source 

Proportion of female engineering baccalaureates Yes Continuous ASEE 

Proportion of URM FTE undergraduate enrollment in engineering Yes Continuous ASEE 

Number of full-time engineering doctoral students No Continuous  ASEE 

Proportion of URM full-time engineering doctoral enrollment Yes Continuous ASEE 

Mean 75th Percentile SAT Math scores No Continuous IPEDS 

Gross amount of Pell grants disbursed by institution per FTE undergrad Yes Continuous Delta Cost 

Institutional Characteristics (Control Variables)    

Institutional control (public/private) No Binary IPEDS 

Land grant status No Binary IPEDS 

Selectivity Yes Categorical Barron’s 

HBCU status No Binary IPEDS 

Carnegie classification Yes Categorical IPEDS 

 



97 
 

Analytic Methods 
 

The research questions were addressed in four stages.  First, I used multiple 

imputation to deal with missing data.  In the second stage, I used descriptive statistics to 

examine trends over the period 2005 to 2011 in the outcome and explanatory variables of 

interest.  In the third stage of analysis, I estimated fixed effects linear regression and 

dynamic panel models of engineering degree production by race/ethnicity.  Finally, I used 

stochastic frontier analysis (SFA) to explore the extent to which engineering schools and 

colleges maximized degree production output (i.e., maximized technical efficiency) based 

on a production model developed in the prior stage of analysis.  All data preparation (i.e., 

variable generation and transformation, sample selection, etc.) as well as analysis 

procedures were carried out in Stata/IC 12.1.  Each stage of the analysis is discussed in 

detail below.    

Missing data.  In this study, missing data refers to item non-response, or missing 

information for some variables on some observations in my analytic sample.  Multiple 

imputation (Allison, 2002) was used to deal with missing data among the independent 

variables.  The degree of missing data in the analytic sample (i.e., top three quartiles of 

institutions conferring bachelor’s degrees to underrepresented minorities) varied among 

these variables.  Data on institutional characteristics were complete for all institutions 

over the entire sample period, 2005 to 2011.  All of the measures drawn from the ASEE 

database were missing on less than 5% of the observations.   
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The biggest missing data challenges arose from the variables drawn from NSF’s 

Higher Education R&D (HERD) Survey and the Delta Cost Project database.  In 

particular, both expenditures for engineering research and equipment from the HERD 

survey were missing on nearly 10% of the observations.  The missing data are largely due 

to the sampling frame of the survey, which prior to 2010 permitted a combined response 

from university systems with multiple campuses (e.g., University of Michigan, 

Pennsylvania State University, etc.).  As of 2010, each campus headed by its own 

president or chancellor responds to the HERD survey separately (NCSES, 2013).  

Therefore, for 2010 and 2011, engineering research and equipment expenditures were 

missing on less than 4% of the observations in my sample.  Institutional finance measures 

drawn from the Delta Cost Project database were missing on 26% to 32% of observations 

in the analytic sample.  This large amount of missing data arises because the Delta Cost 

database currently includes data up to 2010, which is one year shy of my sample period.  

Considering instead the period from 2005 to 2010, the variables drawn from Delta Cost 

were missing on 8% to 13% of observations.  Therefore, the alternative model 

specifications that include institutional finance variables from Delta Cost restrict the 

sample period to 2005 to 2010. 

Missing data estimation.  Once the “dirty little secret of statistics,” these days the 

ubiquitous problem of missing data in social science research can be addressed through a 

number of approaches (Allison, 2009, p. 72).  Justification for using a particular approach 

starts with an assumption about how the data came to be missing.  The strongest 

assumption is that data are missing completely at random (MCAR).  For my study, the 
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MCAR assumption would imply that the probability that a particular variable is missing 

for a particular (institution-year) observation does not depend on the value of any 

variables in my production model (Allison, 2009).  My approach to dealing with missing 

data is based on a weaker, but still strong, assumption that the data are missing at random 

(MAR).  This assumption implies that the probability that a variable is missing for a 

particular observation does not depend on the value of that variable itself, after 

controlling for the other explanatory and control variables in the production model.  

Allison (2002, 2009) describes two broad approaches for dealing with MAR data that 

have potentially excellent statistical properties:  maximum likelihood and multiple 

imputation.  I chose multiple imputation because it can be implemented in a number of 

conventional statistical packages, and applying it to panel data is fairly straight forward in 

Stata 12.1.  

In general, multiple imputation methods use available data to estimate regression 

models for each variable with missing data, and a random draw from the simulated error 

distribution for each regression model is added to produce the imputed values.  This 

method is used to create several imputed data sets, but the imputed values across the data 

sets will differ because the random components differ.  Thus, the model of interest is 

estimated for each imputed data set, the parameter (coefficient) estimates are averaged 

across the data sets, and the variability across the estimates corrects the standard errors 

(Allison, 2010). 

For this study, the Stata 12.1 command mi impute mvn was used to create 

imputed data sets.  Using data augmentation – an iterative Markov Chain Monte Carlo 
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(MCMC) procedure – mi impute mvn generates imputed values for one or more 

continuous variables assuming an underlying multivariate normal model.  In my study, 

starting values for the MCMC procedure were obtained based on the means and 

covariance matrix estimated via the Expectation Maximization (EM) algorithm (Allison, 

2002; Stata, 2011).  Since the multivariate normal model assumes that all imputation 

variables have a normal distribution, logarithmic transformations of some highly 

(positively) skewed variables were imputed.  Autocorrelation plots of the Worst Linear 

Function were used to assess MCMC convergence (Stata, 2011).     

Given the large number of potential imputation variables relative to the number of 

institution-year observations in my sample, the MCMC procedure would not converge 

with all of my variables included in the multiple imputation model.  Therefore, rather 

than estimating one imputation model that included all the variables (i.e., generating data 

sets that included imputations for every possible variable), I took an on-demand approach 

to the imputation process.  I estimated separate imputation models at different stages of 

the analysis to limit the number of imputation variables.  For example, for engineering 

degree production functions that included faculty inputs but not capital or institutional 

inputs, I estimated an imputation model that generated imputed values only for faculty 

input and control variables, and not for capital or institutional input variables.    

Research question #1:  Trends in engineering degree output and faculty 

inputs.  In the second stage of the analysis, I compiled descriptive statistics for the 

variables used in the analysis over all institution-year observations.  To broadly assess 

overall variation in the outcome and explanatory variables of interest, I specifically 
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considered the seven-year (2005 to 2011) change in engineering bachelor’s degrees by 

student race/ethnicity, proportion of non-tenured/tenure-track teaching faculty, faculty-to-

student ratio, gender and racial/ethnic composition of tenured and tenure-track faculty, 

and engineering research expenditures across multiple institutional contexts.   

A prerequisite for the fixed effects linear regression models used to address 

Research Question #2 is that the outcome and explanatory variables change over time 

(Allison, 2009).  Therefore, I also examined within-institution variation by considering 

decomposed statistics for the outcome and explanatory variables.  That is, each variable 

(     was decomposed to provide overall, between-institution, and within-institution 

information.  Overall information refers to the overall mean,   , or variation over all 

institution-year observations.  Between-institution information refers to panel level 

means,    , or variation between each institution’s seven-year mean.  And within-

institution information refers to the variable variation relative to the overall mean, 

           (Garcia & Stewart, 2012).  Non-zero standard deviations for the within 

portion of the variables provided evidence that variables changed over time within 

institutions. 

Research question #2:  Estimating an engineering degree production 

function.  The third stage of the analysis involved specification and estimation of three 

sets of panel data models to test whether the relationships between engineering bachelor’s 

degree output and engineering school/college inputs differed by student race/ethnicity.  

Before detailing these steps, however, I present some background on panel data, fixed 
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effects linear regression models, and dynamic panel models in order to provide the basis 

for my model estimation strategy.  

 

Panel data.  Because cross-sectional studies involve multiple units (institutions, 

students, etc.) observed at a single point in time, traditional regression analyses drawing 

on cross-sectional data rely on variations between units to infer relationships among the 

predictors and outcomes (Zhang, 2010).  The only way to statistically “control” for 

potential differences between units that might affect the outcome is to measure them and 

put them in the model.  This approach opens the door to the classic problem of omitted 

variable bias or unobserved unit heterogeneity, which can easily undermine even the 

most meticulous analyses (Allison, 2009). 

 This study utilizes longitudinal or panel data in which multiple units – 

engineering schools – are observed at multiple points in time.  When paired with 

appropriate statistical methods, panel data offer at least three advantages over cross-

sectional data that are pertinent to the goals of this study.  First, because panel data are 

two dimensional (i.e., involving multiple units and multiple time points), they usually 

contain additional useful information, greater sample variability, and more degrees of 

freedom.  These advantages improve the statistical efficiency of the estimates (Hsiao, 

2007).  Second, when appropriately applied, panel methods can control for unobserved 

between-unit heterogeneity, which Zhang (2010) contends is their main “statistical 

attraction” for higher education policy studies (p. 308).  In particular, fixed effects 

regression models (one of many panel methods) can control for institution effects that do 
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not change over time (Allison, 2009).  Third, panel models are conceptually appealing 

given their attention to within-unit variation (Zhang, 2010).  For example, a cross-section 

of engineering schools for, say, 2005, enables me to examine the extent to which 

differences between institutions’ faculty inputs in 2005 explain why some institutions had 

higher or lower than average engineering degree output in that year.  Focusing on within-

unit variation enables me to directly test the relationship between changes in faculty 

inputs and changes in degree output.  That is, are changes in faculty inputs related to 

changes in degree output?   

 Fixed effects linear regression models.  Two common methods for estimating 

linear regression models using panel data are fixed effects (FE) and random effects (RE) 

estimation.  These panel models take the form 

                                                                        

where the outcome y for the i-th unit at time t is determined by k different predictors 

observed for each unit at each time point.  The disturbance (or random error) term,      is 

also different for each unit at each time period.  However, the slope coefficients,   , and 

the term    are assumed to be constant over time (i.e., they do not have a t subscript) 

(Allision, 2009; Woolridge, 2009).  The term    goes by many names, including the 

“unobserved effect” (Woolridge, 2009), “unobserved heterogeneity” or “unit 

heterogeneity” (Allison, 2010), and “fixed effect” (Woolridge, 2009; Zhang, 2010) to 

name a few; what is most important is that    represents the combined effect on y of all 

unobserved variables that are constant over time (Allison, 2009; Woolridge, 2009).   
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 The choice of whether to use RE or FE methods to estimate the model represented 

by Equation 3.1 is determined by the assumed relationship between    and xit (Woolridge, 

2009).  Random effects estimation is based on the assumption that    is uncorrelated with 

all the independent variables, whereas fixed effects estimation allows for arbitrary 

correlation between    and xit.  I chose a fixed effects approach because as Zhang (2010) 

notes, “in many scenarios in higher education research, there are strong reasons to believe 

that the individual-specific effects are correlated with explanatory variables” (p. 319).  

With respect to my seven-year study, unobserved, time-invariant effects,    might 

include such measures as geographic location of an engineering school, institutional 

prestige, or presence of a minority engineering retention program, all of which could 

conceivably correlate with the sets of faculty inputs, student characteristics, or 

institutional characteristics that were specified as independent variables. 

 In practice, i.e., in Stata and other statistical packages, the FE method estimates 

Equation 3.1 by first averaging Equation 3.1 over time for each institution i, 

                                                                        

then subtracting Equation 3.2 from Equation 3.1 to get, 

                                                                               

    
        

          
       

                                                          

Where,     
 =        , etc.  Through this procedure    is eliminated.  In other words, the 

combined effect on y of all unobserved variables that are constant over time gets 
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subtracted out.  This is called the fixed effects transformation or within transformation 

(Woolridge, 2009).  Next, y* is regressed on x* as usual, and the coefficient estimates 

obtained are called fixed effects estimators or within estimators.  The fixed effects 

transformation effectively controls for all time-invariant predictors (measured or 

unmeasured) that may differ between institutions because Equation 3.4 uses variation 

within units rather than between units to estimate the coefficients (Allison, 2009; Zhang, 

2010).   

 FE models control for the effects of unobserved predictors that are constant over 

time but do not control for unobserved predictors that change over time.  Therefore, the 

potential for omitted variables bias is reduced with fixed effects estimation but not 

eliminated.  There are also disadvantages to using fixed effects rather than random effects 

models.  Estimating the “direct” effect of time-invariant predictors like gender or HBCU 

status can only be done with random effects models.  Random effects models produce 

more efficient estimates (smaller standard errors) compared to FE models.  However, FE 

estimates are less prone to bias (Allison, 2009).  Statistical tests (i.e., the Hausman test, 

the Mundlak test) have been developed that compare RE and FE models in order to 

address these modeling trade-offs (Garcia & Stewart, 2012).   

 Woolridge (2009) argues that, “FE is almost always much more convincing than 

RE for policy analysis using aggregated data” (p. 493).  But the following assumptions 

must also be met for FE coefficient estimates to be unbiased: 

1. Each predictor variable changes overtime (for at least some units i), and there is 

no perfect linear relationship among any predictors.    
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2. The random errors,    , have the same variance given any value of the of the 

predictor variables for all time periods (i.e., homoskedasticity).  

3. There is no correlation between errors,    ,  in different time periods (i.e., errors 

are serially uncorrelated). 

4. Strict exogeneity on the predictor variables.  That means that the predictor 

variables are statistically independent of the random error term,      for any time 

t.   

 My analysis procedures, which are discussed later, included steps to address 

Assumptions #1, 2, and 3 in the fixed effects framework.  In order to address potential 

violation of Assumption 4, I used a dynamic panel model.      

Dynamic panel models.  Allison (2009) notes that Assumption #4 – that the 

predictor variables, xit, are statistically independent of the random error term,    at any 

time period – can be violated if “    is affected by y at an earlier point in time or if one 

component of     is y itself at an earlier point in time” (p. 94).  The latter scenario implies 

that at least one lag of the dependent variable is included among the predictors.  The 

basic panel model becomes, 

                                                                      

where yit-1 is now thought to predict yit.  Panel models that include lagged dependent 

variables as predictors, as in Equation 3.5, are dynamic models (Allison, 2009).  Many 

social science issues might be considered dynamic:  dynamic wage equations (i.e., wage 

in one period is related to wage in the previous period); dynamic employment models 

(employment status in one period is related to employment in the previous period) 

(StataCorp, 2011).  Titus (2009) showed that states’ bachelor’s degree production 

inefficiency was also dynamic in nature.  With respect to my study, it might be plausible 
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that the outcome degrees awarded per FTE in 2011was related to degrees per FTE in 

2010, for example.   

Estimating Equation 3.5 starts much like estimating 3.1.  However, instead of 

using the within transformation (    
 =        , etc) I use the first difference 

transformation to eliminate    as follows, 

                                                                  

                                                                                    (3.6) 

                                                                   

Equation 3.7 clearly violates the exogeneity assumption because, by construction, 

the predictor        is correlated with the error term     because        is correlated with 

     , violating the strict exogeneity assumption (Woolridge, 2009).  Thus,       is an 

endogenous variable, and least squares coefficient estimates for endogenous variables are 

biased and inconsistent (Woolridge, 2009).  Therefore, basic panel estimation methods 

cannot be used to estimate Equation 3.7.  Instead, econometric approaches using 

generalized method of moments (GMM) and instrumental variables have been developed 

to estimate dynamic models (Allison, 2009).  Perhaps the most popular approach is that 

of Arellano and Bond (1991).  The Arellano-Bond estimator starts by transforming all the 

predictors to eliminate   – usually by first differencing as in Equation 3.6 – and uses 

GMM with instrumental variables to estimate the coefficients.  The Arellano-Bond 

estimator uses all past information on yit (i.e., the full set of available lags) as instruments 

for the lagged dependent variable (Arellano & Bond, 1991).   
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 Model specification and estimation.  To address Research Question #2, I 

specified three sets of panel data models to test whether the relationships between 

engineering bachelor’s degree output and engineering school/college inputs differed by 

student race/ethnicity.  First, baseline fixed effects regression models were specified to 

examine potential differences by race/ethnicity in the role of faculty inputs.  Second, 

alternative fixed effects models were specified to consider the role of capital inputs and 

broader institutional expenditures.  Third, a dynamic model was specified to relax the 

exogeneity assumption of basic fixed effects regression.  These models and the 

procedures used to estimate them are discussed next.   

Baseline FE models.  To address Research Question #2, I specified a logarithmic 

functional form of Equation 3.1.  In vector notation and substituting my outcome and 

predictor variables, the model becomes, 

   
       

   
                                                                       

where the outcome is the natural log of engineering bachelor’s degrees per FTE 

engineering undergraduate of enrollment; F contains the faculty inputs listed in Table 3.4, 

including the natural log of engineering research expenditures per FTE; and S contains 

the student characteristics listed in Table 3.4, including the natural logs of total FTE 

engineering undergraduate enrollment and number of full-time engineering doctoral 

students.  I used logarithmic transformations for three reasons:  1) to allow for nonlinear 

relationships between the outcome and explanatory variables; 2) to narrow the ranges of 

the variables of interest, making the coefficient estimates less sensitive to extreme 
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observations; and 3) to allow for more meaningful interpretations of the coefficient 

estimates.  In particular, following Woolridge’s (2009) rules of thumb, the natural log is 

often applied to large positive integer values such as dollar amounts, number of 

employees, school enrollment, etc.; the natural log is sometimes used to transform 

proportion or percentage variables as well.  Histograms presented in Figures A.1 and A.2 

of the appendix provide graphical displays of the distribution of log transformed 

variables, before and after applying the transformation.   

 Fixed effects linear regression was used to estimate Equation 3.8 by race/ethnicity 

by specifying three different outcomes:  engineering bachelor’s degrees to all students per 

FTE undergraduate engineering enrollment of all students; engineering bachelor’s 

degrees to underrepresented minorities per FTE undergraduate engineering enrollment of 

underrepresented minorities; and engineering bachelor’s degrees to African Americans 

per FTE undergraduate engineering enrollment of African Americans.  Recognizing that 

the outcomes could change either because FTE enrollment or number of degrees awarded 

by race/ethnicity changes, I used the basic logarithm rule that    
       

   
  

                to rewrite Equation 3.8 as  

                                                                                 

                                                                                  

where the ln(FTErace) term that appears in Equation 3.9 is folded into the set of student 

characteristics, S, in Equation 3.10.  This procedure allowed me to not only account for 

the fact that engineering schools with large numbers of URMs, for example, will award 
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more degrees to URMs, it also allowed me to directly estimate this ‘enrollment effect.’  

In addition to estimating Equation 3.10 by race/ethnicity, similar to Zhang (2009), I 

stratified the samples to examine how the relationship between faculty inputs and degree 

output for these student groups varied across different institutional contexts.  Specifically, 

I estimated separate fixed effects models by institutional control, Carnegie classification, 

institutional selectivity, and HBCU status.  Equation 3.10 can be thought of as my 

baseline model – the model of primary interest in the study from which alternative model 

specifications were derived. 

 Alternative inputs FE models.  To test whether selected measures of capital 

predicted engineering degree output by race ethnicity (Research Question #2a), I 

estimated Equation 3.10 replacing the set of faculty inputs with the set of capital inputs, 

C, listed in Table 3.4, 

                                                                         

Then I estimated the model with both capital and faculty inputs, 

                                                                          

 I used a similar approach to test whether selected institutional expenditure 

measures predicted engineering degree output (Research Question #2b).  Specifically, I 

estimated Equation 3.10 including the set of institutional expenditures, E, listed in Table 

3.4, 
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Estimation procedures for FE models.  The Stata command xtreg with the fe 

option was used to estimate the baseline and alternative inputs models.  The xtreg 

option vce(robust), which produces  robust standard errors, was used to adjust for 

potential heteroskedasticity or within-panel serial correlation in the random error term,      

(Garcia & Stewart, 2012).  I prefixed these estimation commands with mi estimate 

in order to fit the models separately on each of the twenty imputed data sets, pool the 

results, and adjust the coefficients and standard errors for the variability between 

imputations (StataCorp, 2011).  

Dynamic model.  To relax the exogeneity assumption of basic fixed effects 

regression and examine the extent to which estimates differed when controlling for past 

degree output (Research Question #2c), I specified a dynamic panel model that included 

one lag of the dependent variable as a predictor, 

                                                                         

For the dynamic model, I used the Arellano-Bond GMM estimator via the Stata 

command xtabond.  This procedure combined panel data transformations with 

instrumental variables techniques to address endogeneity.  The option vce(robust) 

was used to adjust for potential heteroskedasticity.  The xtabond estimators require that 

the random error, ɛit, be serially uncorrelated.  Woolridge (2009) notes that assuming no 

serial correlation is equivalent to assuming that only one lag of the dependent variable 

appears in the model.  Therefore, to test this assumption, I used the command estat 
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abond to evaluate the results of the Arellano-Bond test for serial correlation after 

estimating each dynamic model.   

Research question #3:  Assessing degree production efficiency.  The fourth 

stage of the analysis was an exploratory efficiency assessment, which is arguably a 

necessary step in estimating a “production function” in the strict economic sense.  This 

section explains the motivation for this stage of the analysis, the method chosen to 

estimate (in)efficiency, and the Stata procedures that were used. 

Production frontiers.  Estimating production functions from observed data is 

fairly standard practice in econometrics.  Fundamental to these analyses is the assumption 

that a production function represents what Greene (2007) characterizes as the “ideal,” the 

maximum output possible from a given set of inputs.  This ideal or maximum level of 

production is defined as the production frontier.  Estimations of technical efficiency
5
 

uncover to the extent to which the observed behavior of firms reaches (or falls short of) 

the ideal level of production (Greene, 2007).  Technical efficiency can be represented by 

the distance from the observed behavior of a firm to the production frontier given a set of 

inputs.  This is illustrated in Figure 3.1.  The hypothetical production frontier shows 

output, q, as a function of input vectors, x.   The data point (xA, qA) represents the 

observed behavior of firm O given xA set of inputs.  The figure shows that firm O can 

increase technical efficiency by reducing inputs (to θAxA) to produce the same output (qA) 

or by increasing output (to φAqA) using the same inputs (Greene, 2007).  

                                                           
5
 Other efficiencies that have been estimated in higher education studies include allocative, scale, and 

economic or overall efficiency (see Salerno [2002, 2003] for a review). 
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Figure 3.1  Measures of technical efficiency 

 

Source:  Greene, 2007 

The notion that there exists some theoretically ideal production level, i.e. 

production frontier, comes from the producer theory-based expectation of optimal firm 

decisions, in which firms try to maximize profits through decisions about the right mix of 

inputs to achieve a desired output.  Yet, some (perhaps many) might reasonably argue 

that concepts like ‘output maximization’ or ‘efficient production’ are inappropriate for 

higher education institutions given their unique qualities (Stanford News Service, 1995; 

Lewis and Dundar, 2001).  Likewise, the higher education production function is 

essentially a “black box”; we do not explicitly know the inputs and process necessary to 

produce maximum outputs, which we also cannot specify definitively (Lewis & Dundar, 

2001).  Hopkins (1990) explains, 

…there is no reason to believe that the educational enterprise has been 

operating on the efficient frontier of production possibilities; and there are 

many reasons to believe that it has not.  This means that even if we were 

able to specify the true and complete functional form, we would still be 
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unable to estimate the true coefficients of the model from any existing set 

of data. (p. 13) 

Perhaps understandably then, most (higher) education production function studies make 

no attempt to assess technical efficiency (for example, Dolan & Schmidt, 1994; Wolf-

Wendel, Baker, & Morphew, 2000; Hubbard & Stage, 2010; Ostreko, 2012).  In fact, 

without a known production function, it is impossible to estimate technical efficiency in 

absolute terms.  Nevertheless, a few recent institution-level production function studies 

use stochastic frontier analysis (SFA) to tease out relative inefficiency from standard 

regression estimates (Blose, Porter, & Kokkelenberg, 2006; Eagan, 2010; Webber & 

Ehrenberg, 2010).  

Stochastic frontier analysis.  Frontier production functions are basically familiar 

regression models that have been modified to reflect the theoretical premise that firms 

cannot exceed the ideal output and deviations from the ideal are due to inefficiency 

(Greene, 2007).  This is depicted graphically in Figure 3.2.  Standard regression models 

of higher education production trace out the average behavior of institutions (dashed line 

labeled “OLS” in Figure 3.2).  By design, observations lay above and below the 

regression line, but in a production function framework this implies that institutions 

above the line exceed the maximum attainable output.  On the other hand, stochastic 

frontier estimators approximately trace the observed production frontier, i.e., maximum-

output observations, and account for random error (i.e., measurement error and random 

noise) as well as inefficiency.  In Figure 3.2, observations that exceed the observed 

frontier (line labeled “SFA”) are attributable to random error.  Observations below the 

frontier are due to some combination of random error and technical inefficiency.    
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Figure 3.2  Traditional and stochastic frontier production functions. 

 

   

 

Stochastic frontier analysis, which was developed simultaneously by Aigner, 

Lovell, and Schmidt (1977) and Messuen and van der Broeck (1977), is now the standard 

method for econometric analysis of technical efficiency (Kumbhakar & Lovell, 2000; 

Greene, 2007).  Efficiency analysis via SFA is essentially an analysis of the residuals 

from the production model.  Mathematically, stochastic frontier analysis extends 

traditional regression models by decomposing the familiar random error term into an 

error term (   and an inefficiency term ( ).  For panel data, with output y for the i-th 

institution at time t, given a vector of k inputs x, SFA models of the form, 
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The random error term, vit, is assumed to have a symmetric distribution and to be 

independent (i.e., uncorrelated with the predictors, xjit).  Technical inefficiency, uit, is 

strictly nonnegative and is assumed to have a half normal distribution and be uncorrelated 

with vit and x.  The complete derivation of panel data production frontier models is 

provided in Kumhakar and Lovell (2000).  In practice, particularly in Stata, the SFA 

production model uses a log-log functional form.  Therefore, substituting the variables 

and notation from my earlier analyses, my SFA engineering degree production model is 

                                                                     

I used this model to generate inefficiency scores based on uit for each engineering 

school/college in the production of bachelor’s degrees.  I considered both time-invariant 

and time-varying inefficiency estimates using the Stata command xtfrontier.  

Time-invariant inefficiency (uit =  ui ) suggests that inefficiency was constant within 

institutions over the 7 year sample period.  The time-varying case allowed for a unique 

inefficiency score for each institution in each year.  Since the Stata command 

xtfrontier provided estimates for a log-log linear production frontier model, 

logarithmic transformations of the data were necessary before estimation (StataCorp, 

2011). 

 Multiple comparisons.  Because this study involved estimating and comparing 

degree production models across multiple student subgroups and multiple institutional 

settings, the classical statistical problem of multiple comparisons (i.e. multiple testing) 

might be a fair concern.  The main problem with multiple testing is that the probability of 
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detecting a statistically significant relationship when there is not one (i.e., false positives 

or Type I errors) increases with each additional test (Schochet, 2008; Gelman, Hill, & 

Yajima, 2012).  That is, since the statistical significance level chosen also indicates the 

acceptable Type I error rate, a significance level of α = .05 indicates that I would expect 

to incorrectly detect a statistically significant relationship only 5% of the time.  However, 

if I consider or compare multiple models together, the combined Type 1 error rate will 

exceed the 5% threshold (Schochet, 2008). 

 There are many methods for dealing with multiple comparisons.  Most traditional 

methods rely on adjusting the p-values at which the statistical significance of the 

estimates are evaluated.  For example, the Bonferonni method divides p-values by the 

number of hypothesis tests/models estimated (Schochet, 2008).  Although such methods 

reduce the Type I error rate, they also reduce statistical power and increase the 

probability of not detecting true relationships (Type II error).  A technical methods report 

of the U.S. Department of Education’s Institute for Education Sciences explains, “There 

is disagreement about the use of multiple testing procedures and the appropriate tradeoff 

between Type I error and statistical power” (Schochet, 2008, p.1) but offers practical 

guidelines for addressing the problem in evaluations of educational interventions. 

 In this study, I decided not to formally adjust for Type I error or multiple 

comparisons.  The analyses conducted are not designed to prove conclusive evidence of 

the effect of faculty predictors on engineering degree output but rather provide 

preliminary information and insights about these relationships.  Accordingly, IES advises 

that multiple testing procedures are not required for such exploratory analyses (Schochet, 
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2008).  However, I have attempted to manage expectations regarding my findings by 

including notes in my results tables (Chapter 4) to indicate the increased likelihood of 

Type I errors, given my statistical significance level of α = .05 

At the same time, recent research by Gelman, Hill, and Yajima (2012) suggests 

that the real problem is not multiple testing/comparisons at all but insufficient modeling 

of the relationships of interest.  In their article entitled, “Why We (Usually) Don’t Have 

to Worry about Multiple Comparisons,” Gelman and others (2012) argue that testing the 

null hypothesis that no relationships exist is an unhelpful proposition to begin with.  For 

example, in the context of my study, there is no reason to believe that there are no 

relationships whatsoever between faculty predictors and engineering bachelor’s degree 

output.  In fact, I have conducted the study precisely because there are some indications 

from available research that these relationships do exist.  Similarly, there is evidence to 

suggest that there may be differences across student subgroups and institutional contexts.  

Therefore, Gelman, Hill, and Yajima (2012) suggest focusing on more appropriate 

statistical modeling techniques rather than multiple comparisons adjustments. 

       

Limitations 
 

The research design is limited with respect to both the data and analysis methods 

used.  With respect to data, the primary source for this study, ASEE’s Survey of 

Engineering and Engineering Technology Colleges, is neither a census nor a random 

sample of ABET-accredited engineering schools.  Therefore, the findings from the study 
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may not be representative of all programs.  For example, only 12 out of 16 ABET-

accredited HBCU engineering schools are included in the ASEE data set.  Nevertheless, 

high participation rates among all institutions (92% of all eligible institutions are 

represented) help to mitigate this general limitation.  Also, unlike data drawn from the 

National Science Foundation or the U.S. Department of Education, the ASEE data are not 

subject to clear quality standards and quality control procedures. 

Financial data are also inherently limited for multi-institution comparisons, as 

discussed in Chapter 2.  In particular, expenditures may not be comparable across 

institutions depending on institutional accounting and reporting practices.  According to 

an IPEDS official, the largest discrepancies between institutions come from accounting 

differences between public and private institutions (GASB vs. FASB institutions) (C. 

Lenihan, personal communication, February 14, 2013).  The use of Delta Cost Project 

data directly addresses this issue since these data are specifically translated to allow for 

such comparisons.  Nevertheless, the IPEDS official also noted that despite instructions, 

definitions, and support provided by IPEDS, “The tough part of all of this is that there is 

no way of knowing what institutions are counting in different expense categories to 

indicate if there are any adjustments that should be made to the data” (personal 

communication, February 14, 2013).  The official also advised that the best comparisons 

would be among similar institutions, for example, Carnegie classification or other 

institutional groupings.  As described earlier in this chapter, this recommended strategy 

was used throughout the study.  
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Another key limitation of the study is its use of data on broader institutional 

characteristics as proxies for the engineering schools.  Unfortunately program-level 

expenditures, student SAT Math scores, Pell grants, etc. were not available.  However, 

these measures were included only in alternative models that were not central to the 

study.      

With respect to the analysis, in addition to the problem of multiple comparisons, 

the main limitation is the potential for omitted variables bias.  The “true” engineering 

production function, like the broader higher education production function is essentially a 

black box.  There is no way specifying inputs conclusively, so the potential for omitting a 

potentially significant input remains.  The estimation of fixed effects models diminishes 

the problem, but there are likely unobserved variables that change over time, which FE 

cannot address.   

For example, colleges and universities routinely operate and/or support STEM 

programmatic interventions designed to foster collaborative learning environments and 

facilitate positive interactions with faculty and peers – such as minority freshmen 

orientation, clustering, and structured study groups (Reichert & Absher, 1997); peer 

mentoring programs (Astin & Astin, 1992; Good, Haplin, & Haplin, 2000); and student-

chapter professional organizations (Jackson, Gardner, & Sullivan, 1993; Reichert & 

Absher, 1997; Chang, Cerna, Han, & Saenz, 2008; Hurtado et al., 2007).  Available 

empirical research is largely suggestive of positive effects on a range of student outcomes 

in STEM as a result of participation in summer bridge programs (Evans, 1999; Ami, 

2001; Ohland & Zhang, 2002; Walpole et al., 2008; Zhe, Doverspike, Zhao, Lam, & 
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Menzemer, 2010); undergraduate research programs (Nagda et al., 1998; Kardash, 2000; 

Zydney, Bennett, Shahid, & Bauer, 2002; Bauer & Bennett, 2003; Barlow & Villarejo, 

2004; Lopatto, 2004, 2007; Hurtado et al., 2007; Hurtado, et al., 2008; Laursen et al., 

2010); and comprehensive retention programs like the Meyerhoff Scholars Program 

(Hrabowski & Maton, 1995; Fries-Britt, 1998; Maton, Hrabowski, Schmitt, 2000; Maton 

& Hrabowski, 2004; Summers & Hrabowski, 2006; Carter, Mandell, & Maton, 2009) and 

programs falling under the Minority Engineering Program (MEP) umbrella (Treisman, 

1985; Landis, 1988; Ohland & Zhang, 2002; Good, Haplin, & Haplin, 2002; May & 

Chubin, 2003; Tsui, 2007).  Thus, the potential availability of these types of interventions 

within the engineering schools/colleges included in my study might confound my results, 

since no measures were available to capture this input.  Other potential confounders 

include:  expenditures for instruction and academic support specifically for engineering 

schools and colleges; special curricula; the availability of dual degree partnerships with 

other institutions; and admissions and enrollment rates in engineering. 

Finally, this study is discipline-specific only with respect to the broad notion of 

“STEM”; I do not consider the disciplinary heterogeneity within engineering.  Similarly, 

the study does not fully disaggregate “underrepresented minorities.”  That is, I do not 

consider outcomes for Latino or Native American students separately, nor do I consider 

potential gender differences within or across racial/ethnic groups.  
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CHAPTER 4 – FINDINGS 

 

 The central objective of this study was to estimate an engineering bachelor’s 

degree production function, with particular attention to possible differential effects of 

faculty inputs on degree output by student race/ethnicity and institutional context.  To 

accomplish this goal, I analyzed descriptive statistics and trends in engineering degree 

output by race/ethnicity and faculty inputs over the sample period, 2005 to 2011, and 

across different institutional contexts.  I estimated fixed effects linear regression degree 

production models to examine the relationship between faculty inputs and degree output 

and specified alternative models to explore the effects of capital and institutional inputs.  

I also estimated a dynamic panel model to compare against the basic fixed effects degree 

production model.  Finally, I used stochastic frontier analysis (SFA) to explore the degree 

to which the engineering schools/colleges in my sample had maximized degree output 

based on my production model.  The results of these analyses are presented in this 

chapter. 

 

Research Question #1:  Trends in Engineering Degree Output and Faculty Inputs 
 

Before estimating panel data models of engineering degree production, I 

examined descriptive statistics to understand how the outcome and explanatory variables 

changed over the sample period and within different institutional contexts.  Table 4.1 

presents overall descriptive statistics for all the variables used in the study.  On average, 

the engineering schools and colleges in the sample awarded 249 bachelor’s degrees per 
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year during 2005 to 2011, with 28 degrees going to underrepresented minorities and 11 to 

Blacks specifically.  The faculty to student ratio in engineering schools averaged 1:10.  

The average share of non-tenured/tenure-track members of the teaching faculty was 14%, 

and the tenured and tenure-track faculty were 6% underrepresented minority, 3% Black, 

and 13% female.  Research faculty constituted 9% of the entire engineering faculty and 

an average of $14,000 was spent on engineering research for every FTE engineering 

undergraduate.   

On average, the engineering schools in the sample enrolled 1380 FTE 

undergraduates, 15% and 7% of whom were underrepresented minorities and African 

Americans, respectively.  The schools also enrolled an average of 176 full-time Ph.D. 

students, who were 3% URM and 2% Black.  

Among the 324 institutions in the sample, 63% were public, 37% were private, 

19% were land grant institutions, and 3% were HBCUs.   With respect to institutional 

selectivity, 28% of the institutions in the sample were most competitive or highly 

competitive, 24% were very competitive, 38% were competitive, and 10% were less 

competitive or noncompetitive, according to Barron’s competitiveness index.  Also, the 

majority of the institutions in the sample, 58%, were doctorate or research institutions, 

31% were master’s institutions, just under 10% were bachelor’s institutions, and only 5 

institutions (close to 2%) were special schools of engineering according to the 2010 basic 

Carnegie classifications.   
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Table 4.1  Descriptive Statistics for all variables used in the study.  (Calculated over all 
institution-year observations) 

Variable N Mean 
Std. 

Dev. Min Max 

Engineering Bachelor’s Degrees 
    to all student 2266 249 264 1 1950 

 to URM students 2221 28 40 0 414 

to Black students 2221 11 19 0 206 

Faculty Inputs 
     Proportion non-TTT faculty 2191 0.14 0.14 0 0.91 

Proportion research faculty 2191 0.09 0.13 0 0.80 

Faculty-student ratio 2169 0.10 0.11 0.01 1.60 

Proportion URM faculty 2137 0.06 0.08 0 1 

Proportion Black faculty 2137 0.03 0.07 0 1 

Proportion female faculty 2191 0.13 0.08 0 0.67 

Engr. research exp per engr. FTE 1899 14,292 30,482 0 479,492 

Alternative Inputs 
     Engr. equipment exp per FTE 1899 896 2186 0 48,717 

Endowment/gift revenue per FTE 1793 8691 44,784 -594,815 516,393 

Inst. instructional exp per FTE  1802 13,042 12,341 2465 109,681 

Inst. academic sup exp per FTE 1802 3471 4146 13 36,801 

Inst. student sup exp per FTE 1802 2456 2464 141 26,538 

Inst. research exp per FTE 1636 6953 12,874 3 135,395 

Education & related exp per FTE 1802 23,491 21,115 5436 330,050 

Student Characteristics 
     Total engr. undergrad FTE 2241 1380 1379 12 8990 

URM engr. undergrad FTE 2177 201 271 0 2364 

Black engr. undergrad FTE 2177 81 128 0 1366 

Prop. female engr. B.S. 2266 0.17 0.09 0 1 

Prop. URM engr. undergrad 2177 0.15 0.16 0 0.98 

Prop. Black engr. undergrad 2177 0.07 0.14 0 0.98 

Engr. PhD students 2268 176 324 0 2263 

Prop. URM engr. PhD 2225 0.03 0.06 0 0.50 

Prop. Black engr. PhD 2225 0.02 0.05 0 0.50 

Avg. SAT-Math scores 2172 633 68 440 800 

Pell grant dollars per FTE 1767 742 470 22 3443 
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Table 4.1 (Cont.)  Descriptive Statistics for all variables used in the study.  (Calculated over all 
institution-year observations) 

Variable N Mean 
Std. 

Dev. Min Max 

Institutional Characteristics 
     Public 2268 0.63 0.48 0 1 

Land grant 2268 0.19 0.39 0 1 

Selectivity 2268 2.29 0.98 1 4 

Carnegie classification 2268 1.56 0.76 1 5 

HBCU 2268 0.03 0.17 0 1 
Source:  Analysis of data from the ASEE Annual Survey of Engineering and Engineering Technology 
Colleges, the NSF Higher Education R&D Survey, IPEDS, the Delta Cost Project Database, and Barron’s 
Profiles of American Colleges.   

   

Table 4.2 presents information on how bachelor’s degrees by race/ethnicity and 

faculty inputs varied from 2005 to 2011 across all institutions in the sample.  The total 

number of engineering bachelor’s degrees awarded each year increased 10% across the 

sample.  The annual number of engineering bachelor’s degrees earned by URMs 

increased 18%, but the number of degree degrees earned by Black students specifically 

dropped 10% during the sample period, which is consistent with the regressive trends 

discussed in Chapter 1. 

The share of non-tenured/tenure-track teaching faculty increased 8% during the 

sample period, while the share of research faculty increased 52%, and the faculty to 

student ratio dropped nearly 10%.  At the same time, engineering faculty became more 

diverse, as the proportion of URM tenured/tenure-track faculty increased 22%, the 

proportion of Black faculty increased 19%, and the proportion of female faculty 

increased 30%.  There was little change, however, in average engineering research 

expenditures per FTE undergraduate across the sample. 
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Considering changes in degree output and faculty inputs across different 

institutional contexts reveals the inherent limitations of broad generalizations about both 

degree output and faculty inputs.  Concerning degree output by institutional control, 

Table 4.3 shows that public institutions were primarily responsible for the growth in the 

numbers of engineering bachelor’s degrees awarded to underrepresented minorities (20% 

increase), whereas private institutions saw substantial declines in degrees awarded to 

Black students (18% decrease) over the seven-year period.  The most competitive and 

highly competitive institutions had greater percentage increases in URM engineering 

baccalaureates (26%) and the smallest reductions in Black engineering baccalaureates 

(2%) than institutions at other competitiveness levels.  Master’s institutions also 

increased (on a percentage change basis) URM baccalaureate output more and decreased 

Black baccalaureate output less than other Carnegie classes of engineering schools.  And 

HBCUs experienced across the board declines in engineering bachelor’s degrees, with a 

nearly 30% drop in the total number of degrees awarded to Black students from 2005 to 

2011.
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Table 4.2 Number of bachelor's degrees and average faculty inputs across all sample institutions. 

Total # Bachelor’s Degrees 
 

Average Faculty Inputs 

Year 
All 

Students  URM Black   

Prop. 
non-TTT 

faculty 

Prop. 
research 

faculty 

Faculty-
student 

ratio 

Prop. 
URM 

faculty 

Prop. 
Black 

faculty 

Prop. 
female 
faculty 

Engr. 
research 

exp per 
FTE 

student 

2005 79425 8537 3963 
 

0.143 0.078 0.092 0.058 0.032 0.108 14,946 

2006 79418 8623 3779 
 

0.141 0.090 0.089 0.059 0.032 0.116 15,396 

2007 77909 8460 3616 
 

0.144 0.102 0.090 0.062 0.034 0.122 15,021 

2008 78397 8655 3528 
 

0.135 0.109 0.088 0.063 0.034 0.125 15,223 

2009 78929 8672 3499 
 

0.146 0.118 0.086 0.066 0.034 0.131 14,971 

2010 82828 9332 3473 
 

0.149 0.126 0.086 0.066 0.034 0.134 15,056 

2011 87578 10036 3549 
 

0.154 0.119 0.083 0.071 0.038 0.141 14,986 

7-year 
change 10.3% 17.6% -10.4%   7.5% 52.1% -9.6% 22.1% 19.0% 30.4% 0.3% 

Note:  Abbreviations:  “Prop.” = proportion; “non-TTT” = non-tenured/tenure-track; “Engr.” = engineering; and “exp” = expenditures.  
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Table 4.3  Change in number of bachelor's degrees awarded and average faculty inputs from 2005 to 2011, by student race/ethnicity and 
institutional contexts. 

 
Total # Bachelor’s Degrees 

 
Average Faculty Inputs 

Institutional Contexts 
All 

Students URM Black   

Prop. 
non-
TTT 

faculty 

Prop. 
research 

faculty 

Faculty-
student 

ratio 

Prop. 
URM 

faculty 

Prop. 
Black 

faculty 

Prop. 
female 
faculty 

Engr. 
research 
exp per 

FTE 
student 

All 10.3% 17.6% -10.4%   7.5% 52.1% -9.6% 22.1% 19.0% 30.4% 0.3% 

Institutional  Control 
          Private 6.7% 5.7% -17.9% 

 
-2.6% 75.6% -7.5% 29.0% 40.7% 34.0% 2.7% 

Public 11.3% 20.4% -8.4% 
 

13.0% 44.8% -11.0% 19.9% 11.3% 28.3% 0.6% 

Land Grant 7.8% 7.5% -13.2% 
 

12.2% 57.8% -8.4% 27.8% 32.3% 34.1% -9.5% 

Selectivity  
         Highly Competitive 11.6% 25.8% -2.0% 

 
3.2% 60.8% -4.8% 22.5% 29.1% 27.5% 0.6% 

Very Competitive 8.3% 15.0% -16.4% 
 

11.3% 82.5% -13.4% 16.3% 17.7% 31.6% 9.7% 

Competitive 11.2% 13.9% -13.3% 
 

18.1% 19.6% -12.5% 26.3% 17.2% 32.9% -7.2% 

Less Competitive 5.2% 8.9% -14.2% 
 

-18.7% 51.2% -8.5% 14.4% 13.4% 30.5% -5.3% 

Carnegie Classification (2010) 
         Doctorate/Research 10.1% 15.2% -12.8% 

 
15.4% 57.2% -5.6% 13.5% 8.6% 30.8% -0.5% 

Master's 11.4% 26.2% -2.7% 
 

-16.8% 11.1% -21.5% 14.2% 1.4% 32.6% 4.0% 

Baccalaureate 1.4% 10.5% -15.4% 
 

13.0% 74.5% -10.7% 173.1% 200.6% 23.7% 115.2% 

            HBCUs -17.1% -28.3% -29.5% 
 

-3.1% 167.7% 1.0% 11.8% 14.1% 51.4% 1.4% 
Note:  Abbreviations:  “Prop.” = proportion; “non-TTT” = non-tenured/tenure-track; “Engr.” = engineering; and “exp” = expenditures.  
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Table 4.3 also illustrates heterogeneity across institutional contexts with respect to 

the rate of change in engineering schools’ faculty inputs from 2005 to 2011.  For 

example, although the proportion of non-tenured/tenure-track faculty increased overall 

(8%), it decreased in some institutional settings – at a slower rate within private 

institutions and HBCUs (3% decrease respectively) and at a higher rate within master’s 

institutions (17% decrease) and less competitive and noncompetitive institutions (19% 

decrease).  Likewise, the proportion of research faculty increased substantially on the 

whole – by as much as 168% at HBCUs (where the share of research faculty grew from 

2% to 6%) – but increased by only 11% at master’s institutions, for example.  The 

engineering faculty-to-student ratio at HBCUs increased ever-so slightly (1%) despite 

overall declines, with master’s colleges experiencing the greatest percentage decline 

(22%).  Baccalaureate colleges had greater rates of increase in their shares of URM and 

African American tenured/tenure-track engineering faculty compared to all other 

institutional contexts, but rates of change in the share of female tenured/tenure-track 

faculty were fairly consistent across institutional contexts.  Spending on engineering 

research increased substantially at baccalaureate institutions (115%), but decreased at 

land grant (10%), competitive (7%), and less/noncompetitive institutions (5%). 

The information provided in Tables 4.2 and 4.3 demonstrates that engineering 

bachelor’s degrees by student race/ethnicity and faculty inputs varied over time across all 

institution-year observations.  Next, I decomposed this overall variation for each variable 

of interest into between- and within-institution components in order to confirm variation 

over time within institutions, a prerequisite for subsequent analyses.  The results, which 
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are presented in Table A2, indicate that all of the variables of interest did in fact change 

within institutions over time.  Specifically, the within-institution standard deviations from 

the overall means of all the variables were greater than zero.  

 

Research Question #2:  Estimating an engineering degree production function 
 

 To address Research Question #2, I specified three sets of panel data models to 

test whether the relationships between engineering bachelor’s degree output and 

engineering school/college inputs differed by student race/ethnicity and across 

institutional contexts.    

Results of the Hausman Test – presented in Table A.3 – confirmed that relative to 

random effects, fixed effects estimation is more appropriate for estimating the basic panel 

data models of engineering degree production.  Thus, baseline fixed effects regression 

models of engineering bachelor’s degree production for all students, URM students and 

Black students were estimated to examine potential differences by student race/ethnicity 

in the role of faculty inputs using 20 imputed data sets.  These models were estimated 

across 9 different strata of institutional context, including categories of institutional 

control (i.e., private, public, land grant), institutional selectivity (i.e., highly competitive, 

very competitive, competitive, less competitive), and Carnegie classification (i.e., 

doctorate-granting/research and master’s institutions).  The model of degree production 

for Black students was also estimated separately for HBCUs.  In total, this step involved 

estimation of 28 separate models.  The coefficient estimates obtained for these models are 

presented in Tables 4.4 to 4.7.  
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Given the functional form of the production model, which consists of a log 

transformed dependent variable and several log transformed independent variables, 

interpretation of the coefficient estimates is not exactly straightforward.  (Please recall 

that log refers to the natural log throughout this study.)  Consider the following general 

estimated model to understand the procedure for interpreting the coefficient estimates.  A 

similar derivation is provided in Woolridge (2009),  

                               ,                                 (4.1) 

where the hat (^) above the estimates is used to denote predicted values.  In 

microeconomic terms, the predicted coefficient    is the elasticity of y with respect to x1, 

which means that when x1 increases by 1%, y changes by    %.  The coefficient     is the 

semi-elasticity of y with respect to x2, which is often interpreted to mean that a 1 unit 

change in x2 is associated with an approximately (100*   )% change in y.  However, as 

Woolridge (2009) notes, as the change in log(y) increases, this approximation becomes 

less accurate.  Instead, the exact percentage change in the predicted y can be calculated.  

Holding x1 constant and differencing Equation 4.1 gives, 

                                                                                

which, upon multiplication by 100 to convert proportionate change to percentage change, 

reduces to,  

                                                               (4.3) 
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Therefore, to avoid potential approximation errors, I used Equation 4.3 to interpret all 

semi-elasticities (i.e., coefficient estimates of variables that were not log transformed).   

 In addition to the coefficient estimates, Stata’s fixed effects regression output 

includes (among other statistics) three R
2
 estimates:  within, between, and overall.  The 

within R
2
 is similar to that reported with basic OLS output; it is computed using the mean 

deviation variables and is interpreted as the proportion of within-institution variance in 

the dependent variable explained by the model (Allison, 2009).  (The between- and 

overall-R
2
 have more complex interpretations, which are not critical to the focus of my 

study.)  Unfortunately, Stata does not automatically calculate R
2
 when imputed data are 

used.   However, according to Rubin's (1987) rules for multiple imputation, the estimate 

of the value of interest such as R
2
 should be computed for each imputation, and the 

overall value will be the mean of these estimates.  Therefore, with the help of the Stata 

command mi xeq, I “manually” obtained the within-R
2
 for each of 20 imputed data sets 

and computed the mean R
2
 for all the models.   

Variations in faculty effects by student race/ethnicity.  The baseline fixed 

effects estimates for the full sample of institutions, which are presented in Table 4.4, 

clearly suggest variation in the relationships between faculty inputs and degree output by 

student race/ethnicity.  Referring first to the estimates obtained for the model of 

bachelor’s degrees to all students (second column of Table 4.4), the share of research 

faculty was negatively related, while the faculty-to-student ratio was positively related, to 

the number of degrees awarded to all students, controlling for other faculty and student 

characteristics.  More precisely, for every percentage point increase in the share of 
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research faculty, the number of degrees awarded to all students is predicted to decrease 

19% (from Equation 4.3, 100*[exp[-0.21] – 1] = 19%), controlling for other faculty and 

student characteristics.  Increasing the faculty-to-student ratio by 1 is associated with an 

88% increase in the number of degrees awarded, controlling for other variables.  The 

“enrollment effect” is also statistically significant and positive; a 1% increase in FTE 

undergraduate enrollment is associated with a .35% increase in bachelor’s degrees.  

Interestingly, a 1% increase in full-time doctoral enrollment is associated with a .07% 

increase in bachelor’s degrees.  The R
2 

of .182 suggests that, on average, the model 

explained 18% of the variation within institutions in log(degrees) awarded to all students 

over the period 2005 to 2011. 

In contrast, estimates for the model of engineering bachelor’s degrees to 

underrepresented minority students indicate that no faculty inputs are significantly related 

to the number of degrees awarded to URMs when all institutions are pooled together 

(third column of Table 4.4).  There are statistically significant enrollment effects:  a 1% 

increase in URM FTE enrollment is associated with a .75% increase in degrees to URMs; 

and a 1-percentage point increase in the share of URM undergraduates is associated with 

a 97% decrease in degrees awarded to URMs, controlling for other factors.  And a 1-

percentage point increase in the share of women among bachelor’s degree recipients is 

associated with a 136% increase in the number of bachelor’s degrees awarded to URMs.  

This model explained nearly 14% of the variation within institutions in log(degrees) 

awarded to URM students over the sample period. 
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The estimates obtained for the model of engineering bachelor’s degrees to Black 

students across the pooled sample of institutions differ from the URM student estimates.  

Whereas no faculty inputs were significant predictors of URM degrees, a 1-percentage 

point increase in the share of female tenured/tenure-track engineering faculty was 

associated with an 82% decrease in the number of degrees awarded to Black students, 

controlling for faculty and student characteristics.  Also noteworthy, no student 

characteristics were found to be statistically significant predictors of the number of 

degrees awarded to Black students.  This model had noticeably less explanatory power 

compared to the models for all and URM students.  The R
2
 of .023 suggests it explains 

only 2% of the variation within institutions in log(degrees) awarded to Black students. 
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Table 4.4  Fixed effects estimates of log engineering bachelor’s degrees by student 
race/ethnicity using full sample (all institutions) and 20 imputed data sets. 

Variables All students URMs Blacks 

Faculty Inputs    
Proportion non-TTT faculty -0.06 -0.09 -0.14 

(0.10) (0.17) (0.21) 
Proportion research faculty -0.21** 0.18 -0.39 

(0.08) (0.19) (0.23) 
Faculty-student ratio 0.63* 0.87 1.04 

(0.28) (0.52) (0.77) 
Proportion URM faculty 0.04 0.08 0.48 

(0.19) (0.37) (0.57) 
Proportion female faculty -0.40 -0.12 -1.71* 

(0.29) (0.54) (0.85) 
Log engr research exp per FTE 0.02 0.04 -0.06 

(0.02) (0.05) (0.07) 
Student Characteristics 
Log URM FTE 0.06 0.75*** 0.29 

(0.06) (0.21) (0.19) 
Log total FTE 0.35*** -0.27 0.02 

(0.09) (0.26) (0.26) 
Proportion URM PhD 0.05 0.36 0.50 

(0.20) (0.36) (0.52) 
Log total PhD 0.07*** 0.03 -0.02 

(0.01) (0.05) (0.07) 
Proportion female B.S. 0.27 0.86* 0.51 

(0.17) (0.40) (0.52) 
Proportion URM FTE -0.85 -3.55** -1.98 

(0.57) (1.14) (1.27) 
    
R2, within .182 .137 .023 
Observations 1206 1200 1132 
Institutions 182 182 182 
Notes:  Standard errors in parentheses 
legend: * p<0.05; ** p<0.01; *** p<0.001 

 

Despite these interesting, perhaps curious, initial findings, it is my contention that 

they hold limited substantive meaning.  As discussed in Chapter 3, the fixed effects 

estimator (i.e., within estimator) works by estimating coefficients based on variation 

within each institution over time, then averaging those results across the sample.  



136 
 

Therefore, given the broad assortment of institutions in the pooled sample, the truly 

meaningful relationships might be distorted.  More valuable insights about engineering 

degree production might arise from consideration of institutional context in examining 

variations in faculty effects across student race/ethnicity.   

Variations in faculty effects by student race/ethnicity and institutional 

context.  The baseline fixed effects regression models were next estimated across 

multiple institutional contexts.  These results are presented in this section by student 

race/ethnicity category.  

All students.  Table 4.5 presents the fixed effects estimates of log engineering 

degrees awarded to all students by institutional control, selectivity, and Carnegie 

classification.  The results suggest differential estimated effects of faculty inputs on 

bachelor’s degree output for all students by institutional context.  In particular, the 

proportion of research faculty was negatively related to engineering bachelor’s degree 

output to all students only within public institutions, very competitive institutions, and 

doctorate-granting/research institutions.  For these institution types, a 1-percentage point 

increase in the share of research faculty was associated with a 16% to 31% decrease in 

the number of engineering bachelor’s degrees conferred to all students, controlling for 

other faculty and student characteristics.  A 1-unit increase in engineering faculty-to-

student ratio was predictive of a 23% to 166% increase in engineering bachelor’s degree 

output for all students within private institutions, highly competitive and very competitive 

institutions, and doctorate-granting/research institutions, controlling for other variables.  
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No other
6
 faculty inputs were significantly related to the number of engineering 

bachelor’s degrees conferred to all students. 

 Table 4.5 also shows that a statistically significant enrollment effect was detected 

for the all-students engineering degree production models.  Specifically, within public 

and land grant institutions, highly and very competitive institutions, and doctorate-

granting/research institutions, a 1% increase in total FTE undergraduate engineering 

enrollment was associated with a .34% to .51% increase in the number of bachelor’s 

degrees conferred.  Other student (control) variables were statistically predictive of 

engineering bachelor’s degree output for all students.  Engineering doctoral enrollment 

was positively related to bachelor’s degree output within all institution types except land 

grant, very competitive, and master’s institutions.   The proportion of URM FTE 

undergraduates in private and competitive institutions and the proportion of URM 

doctoral students in highly competitive institutions were negatively related to the 

numbers of engineering bachelor’s degrees awarded to all students.   

 The within-R
2
’s estimated for the all-students degree production models also 

varied across institutional contexts.  Table 4.5 indicates that these models explained 16% 

to 31% of the variance within institutions in the numbers of degrees awarded to all 

students.  

 

                                                           
6
 The negative relationship between engineering research expenditures per FTE and degree output for all 

students was statistically significant.  However, because this relationship was not detected in any other 

models, it could likely be a consequence of chance given the large number of hypotheses (models) tested.  
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Table 4.5  Fixed effects estimates of log engineering bachelor’s degrees to ALL STUDENTS by institutional control, institutional selectivity, and 
Carnegie classification using 20 imputed data sets. 

Variables All Inst. 

Institutional Control Selectivity  Carnegie 2010 

Private Public 
Land 
Grant 

Highly 
Comp-
etitive 

Very 
Comp-
etitive 

Comp-
etitive 

Less 
Comp-
etitive 

Doctoral/ 
Research Master’s 

Faculty Inputs           

Proportion non-TTT 
faculty 

-0.06 -0.19 0.12 -0.11 -0.33 0.07 0.09 0.23 -0.09 -0.02 

(0.10) (0.19) (0.10) (0.21) (0.23) (0.16) (0.13) (0.29) (0.12) (0.37) 

Proportion research 
faculty 

-0.21** -0.26 -0.17* -0.29 -0.15 -0.37** -0.05 -0.08 -0.20* -0.31 

(0.08) (0.17) (0.07) (0.18) (0.14) (0.12) (0.13) (0.29) (0.08) (0.27) 

Faculty-student ratio 0.63* 0.88* 0.23 1.81 0.98* 0.21 -0.40 -0.56 0.67* 3.28 

(0.28) (0.42) (0.33) (1.40) (0.45) (0.45) (0.78) (1.56) (0.28) (2.49) 

Proportion URM 
faculty 

0.04 0.30 -0.21 0.87 -0.39 -0.26 -0.07 0.45 -0.25 0.26 

(0.19) (0.23) (0.34) (0.56) (0.47) (0.61) (0.23) (0.48) (0.30) (0.32) 

Proportion female 
faculty 

-0.40 -0.67 -0.15 -0.35 -1.20 -0.22 -0.17 -0.13 -0.61 1.19 

(0.29) (0.56) (0.29) (0.37) (0.72) (0.45) (0.41) (0.24) (0.34) (1.01) 

Log eng. research 
expenditures per FTE 

0.02 0.03 0.01 0.07 0.03 -0.01 0.01 0.06 0.04 -0.10* 

(0.02) (0.06) (0.03) (0.05) (0.05) (0.03) (0.04) (0.05) (0.03) (0.04) 

Student Characteristics         

Log URM FTE 0.06 0.21 0.00 -0.01 0.10 -0.03 0.22 -0.02 0.07 -0.11 

(0.06) (0.11) (0.05) (0.09) (0.13) (0.07) (0.12) (0.08) (0.06) (0.34) 

Log total FTE 0.35*** 0.28 0.34*** 0.51**  0.40** 0.37** 0.08 0.10 0.37*** 0.51 

(0.09) (0.17) (0.09) (0.18) (0.14) (0.11) (0.19) (0.29) (0.09) (0.48) 
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Table 4.5 (Cont.)  Fixed effects estimates of log engineering bachelor’s degrees to ALL STUDENTS by institutional control, institutional 
selectivity, and Carnegie classification using 20 imputed data sets. 

Variables All Inst. 

Institutional Control Selectivity  Carnegie 2010 

Private Public 
Land 
Grant 

Highly 
Comp-
etitive 

Very 
Comp-
etitive 

Comp-
etitive 

Less 
Comp-
etitive 

Doctoral/ 
Research Master’s 

Proportion URM Ph.D. 0.05 -0.24 0.14 0.45 -1.01** -0.58 0.36 0.21 0.17 -0.09 

(0.20) (0.48) (0.19) (0.25) (0.37) (0.35) (0.28) (0.28) (0.23) (0.46) 

Log total Ph.D. 0.07*** 0.13** 0.06*** 0.08 0.14** 0.05 0.07** 0.06* 0.06*** 0.09 

(0.01) (0.04) (0.02) (0.04) (0.04) (0.03) (0.02) (0.02) (0.02) (0.05) 

Proportion female B.S. 0.27 0.20 0.32 0.29 0.37 -0.22 0.40 0.33 0.27 0.81 

(0.17) (0.33) (0.22) (0.37) (0.33) (0.44) (0.27) (0.36) (0.19) (0.40) 

Proportion URM FTE -0.85 -2.21* -0.14 -0.20 -1.06 0.06 -1.56* 0.14 -1.02 0.59 

(0.57) (0.97) (0.39) (1.29) (1.06) (0.50) (0.73) (0.78) (0.74) (1.11) 

           
R2, within .182 .296 .162 .212 .312 .212 .183 .208 .192 .211 

Observations 1206 319 887 359  425 336 356 89 1107 78 

Institutions 182 49 133 52  63 51 54 14 164 15 

Notes:  Standard errors in parentheses 
legend: * p<0.05; ** p<0.01; *** p<0.001 
This set of analyses includes comparisons across 9 institutional contexts, which increases the probability of Type I errors. 
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 URM students.  Table 4.6 shows that the estimated effects of faculty inputs on 

engineering bachelor’s degree outputs for underrepresented minority students also vary 

across institutional contexts.  A 1-unit increase in the share of engineering research 

faculty was associated with a 41% decrease in the number of bachelor’s degrees 

conferred to URM students within private institutions and a 58% increase in degrees to 

URMs in public institutions, controlling for other faculty and student variables.  Within 

private institutions, highly competitive institutions, and research institutions, a unit 

increase in engineering faculty-to-student ratio was predictive of 180% to 447% increase 

(i.e., roughly a 2- to 4-fold increase) in the number of bachelor’s degrees to URM 

students.  And, contrary to the all-students production models, faculty demographic 

variables were significantly related to degree output for URM students within less 

competitive institutions.  In particular, a 1-percentage point increase in the proportion of 

URM tenured/tenure-track engineering faculty was associated with a nearly 13-fold 

(1274%) increase in the number of bachelor’s degrees to URMs.  But a 1-percentage 

point increase in the proportion of female tenured/tenure-track engineering faculty was 

associated with a 79% decrease in bachelor’s degrees to URMs.  

 Similar to the all-students degree production models, enrollment effects were 

statistically significant  for URMs within multiple institutional contexts.  Specifically, a 

1% increase in URM FTE undergraduate enrollment was associated with a .62% to .94% 

increase in the number of degrees awarded to URMs within all institutions except highly 

competitive and master’s institutions.  The estimates indicate that three other control 

variables were statistically related to degree output for URMs in some institutional 
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settings.    Doctoral enrollment within private and highly competitive institutions and the 

share of female baccalaureate recipients within public, highly competitive, and research 

institutions were positively related to bachelor’s degree production for URMs.  The 

proportion of URM undergraduates was negatively related to degree production for 

URMS within private and public institutions, competitive institutions, and research 

institutions.      

 Finally, compared to the all-students degree production models, the within-R
2
 

estimates indicate that the URM-students models have somewhat less explanatory power.  

The proportion of within-institution variance explained by these models ranged from 

11% to 28% across institutional contexts. 
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Table 4.6  Fixed effects estimates of log engineering bachelor’s degrees to URM STUDENTS by institutional control, institutional selectivity, 
and Carnegie classification using 20 imputed data sets. 

 

 

 

 

 

 

 

 

Variables All Inst. 

Institutional Control Selectivity  Carnegie 2010 

Private Public 
Land 
Grant 

Highly 
Comp- 
etitive 

Very 
Comp- 
etitive 

Comp-
etitive 

Less 
Comp- 
etitive   

Doctoral/ 
Research Master’s 

Faculty Inputs           

Proportion  non-TTT 
faculty 

-0.09 -0.19 0.11 -0.94 -0.26 0.41 -0.05 0.68 -0.28 -0.60 

(0.17) (0.17) (0.24) (0.74) (0.23) (0.37) (0.35) (0.67) (0.18) (1.04) 

Proportion research 
faculty 

0.18 -0.53* 0.46* 0.07 -0.03 0.13 0.79 0.11 0.13 -0.14 

(0.19) (0.25) (0.22) (0.59) (0.22) (0.39) (0.43) (0.60) (0.20) (0.59) 

Faculty- student ratio 0.87 1.70** 0.19 4.92 1.42* -0.78 0.23 -4.14 1.03* 9.08 

(0.52) (0.59) (0.74) (4.31) (0.58) (0.74) (1.52) (5.57) (0.49) (6.46) 

Proportion URM faculty 0.08 0.22 -0.42 1.74 0.09 -2.41 -0.18 2.62* -0.60 1.37 

(0.37) (0.39) (0.86) (1.46) (0.57) (1.44) (0.60) (1.20) (0.66) (1.09) 

Proportion female 
faculty 

-0.12 0.33 -0.11 -0.77 -0.28 -0.25 0.58 -1.58* -0.35 2.22 

(0.54) (0.84) (0.67) (1.09) (1.00) (1.27) (0.94) (0.69) (0.59) (2.64) 

Log eng. research 
expenditures per FTE 

0.04 -0.07 0.11 0.26 0.01 -0.04 0.09 0.11 0.05 -0.10 

(0.05) (0.08) (0.06) (0.16) (0.07) (0.11) (0.10) (0.23) (0.06) (0.10) 

Student Characteristics         

Log URM FTE 0.75*** 0.71** 0.76** 0.79** 0.48 0.83* 0.62* 0.94*** 0.74** 0.16 

(0.21) (0.21) (0.25) (0.29) (0.30) (0.33) (0.28) (0.17) (0.22) (0.66) 

Log total FTE  -0.27 -0.16 -0.30 0.14 0.08 -0.53 -0.21 -0.78 -0.25 1.34 

(0.26) (0.36) (0.29) (0.40) (0.38) (0.38) (0.30) (0.57) (0.27) (1.21) 
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Table 4.6 (Cont.)   Fixed effects estimates of log engineering bachelor’s degrees to URM STUDENTS by institutional control, institutional 
selectivity, and Carnegie classification using 20 imputed data sets. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Notes:  Standard errors in parentheses 
legend: * p<0.05; ** p<0.01; *** p<0.001 
This set of analyses includes comparisons across 9 institutional contexts, which increases the probability of Type I errors. 

  

Variables All Inst. 

Institutional Control Selectivity  Carnegie 2010 

Private Public 
Land 
Grant 

Highly 
Comp- 
etitive 

Very 
Comp- 
etitive 

Comp-
etitive 

Less 
Comp- 
etitive   

Doctoral/ 
Research Master’s 

Proportion URM Ph.D.  0.36 0.47 0.09 -0.48 0.03 0.24 0.24 0.59 0.65 0.39 

(0.36) (0.87) (0.38) (0.60) (1.00) (1.12) (0.50) (0.40) (0.41) (0.87) 

Log total Ph.D. 0.03 0.20* -0.02 -0.04 0.22* -0.02 0.01 -0.08 0.01 0.09 

(0.05) (0.08) (0.06) (0.13) (0.09) (0.10) (0.07) (0.17) (0.06) (0.12) 

Proportion Female B.S. 0.86* 0.41 1.39** 2.18 1.26* 0.16 1.20 0.30 1.03* 0.73 

(0.40) (0.63) (0.52) (1.20) (0.58) (0.85) (0.81) (0.97) (0.41) (1.43) 

Proportion URM FTE -3.55** -4.87** -2.54* -1.70 -2.87 -2.83 -3.71* -1.19 -3.17* -2.11 

(1.14) (1.72) (1.27) (2.20) (2.84) (2.08) (1.46) (1.25) (1.49) (2.16) 

           
R2, within .137 .173 .159 .266 .171 .192 .113 .346 .140 .275 

Observations 1200 319 881 354  425 334 354 87  1101 78 

Institutions 182 49 133 52  63 51 54 14  164 15 
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Black students.  Table 4.7 presents the fixed effects coefficient estimates for the 

engineering bachelor’s degree production model for Black students.  These results 

indicate that similar to the all-students and URM-students production models, the share 

of research faculty and faculty-to-student ratio were statistically related to degree output 

for Black students within some institutional contexts.  Specifically, a 1-percentage point 

increase in the share of engineering research faculty was associated with a 40% decrease 

in bachelor’s degrees to Black students in doctorate-granting/research institutions and 

83% decrease in the number of degrees conferred to Black students at HBCUs, 

controlling for other variables.  On the other hand, within private and highly competitive 

institutions, a unit increase in the engineering faculty-to-student ratio was associated with 

5- to 6-fold (505% to 590%) increase in bachelor’s degree output for Black students, 

controlling for other variables.  Similar to the estimates from the models for URM 

students, faculty demographic characteristics were predictive of degree output for Black 

students.  Within land grant and less competitive institutions, a unit increase in the share 

of URM tenured and tenure-track engineering faculty was associated with a 46- to 170-

fold (4550% to 17,400%) increase in degree output to Black students.  And within highly 

competitive and doctorate institutions, the share of female tenured and tenure-track 

engineering faculty was associated with a 97% and 89% decrease in degree output to 

Black students respectively.  The estimates also indicate that unlike the models for all 

students and URM students, a unit increase in the share of non-tenured/tenure-track 

engineering teaching faculty was associated with a 50% decline in engineering bachelor’s 

degrees conferred to Black students. 
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Also similar to the degree production model estimates for all students and URM 

students, enrollment effects were statistically significant but only in private and highly 

competitive institutions.  In these settings, a 1% increase in URM undergraduate 

enrollment was predictive of a .77% to .85% increase in the number of engineering 

bachelor’s degrees to Black students.  Unlike the models for all students and URM 

students, doctoral enrollment was negatively related to bachelor’s degree output for Black 

students but only within less competitive institutions.  The proportion of URM 

engineering doctoral students in highly competitive institutions and the proportion of 

URM engineering undergraduates in private institutions were negatively related to 

bachelor’s degree output for Black students. 

Compared to the engineering degree production models for all students and URM 

students, the models for Black students have a much broader range of explanatory power.  

The within-R
2
 estimates indicate that the models for Black students explain as little as 1% 

of the variation in degree output within public institutions and as much as 61% of 

variation in degree output within HBCUs.  Because the R
2
 gives an indication of how 

well the independent variables predict the outcome, this variation in R
2
 suggests that the 

true engineering degree production model for Black students involves different inputs 

across different institutional settings, and in the case of low R
2 

important inputs remain 

unobserved.   
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Table 4.7  Fixed effects estimates of log engineering bachelor’s degrees to BLACK STUDENTS by institutional control, institutional selectivity, 
and Carnegie classification using 20 imputed data sets. 

Variables All Inst. 

Institutional Control Selectivity  Carnegie 2010 

HBCU Private Public 
Land 
Grant 

Highly 
Comp- 
etitive 

Very 
Comp- 
etitive 

Comp-
etitive 

Less 
Comp- 
etitive Ph.D. 

M.A./ 
M.S. 

Faculty Inputs            

Proportion non-TTT 
faculty 

-0.14 -0.24 0.11 -0.61 -0.702* 0.26 0.18 0.96 -0.35 0.26 -0.29 

(0.21) (0.28) (0.27) (0.68) (0.30) (0.44) (0.33) (1.23) (0.23) (0.84) (0.41) 

Proportion research 
faculty 

-0.39 -0.42 -0.33 -0.66 -0.37 -0.73 0.01 -0.76 -0.51* 1.38 -1.79* 

(0.23) (0.37) (0.26) (0.68) (0.27) (0.44) (0.42) (0.75) (0.23) (0.96) (0.65) 

Faculty-student ratio 1.04 1.80* 0.19 2.42 1.93** -0.20 -0.85 -5.83 1.39 -4.25 1.38 

(0.77) (0.86) (0.72) (4.00) (0.70) (0.98) (1.57) (8.94) (0.72) (6.40) (2.64) 

Proportion URM 
faculty 

0.48 1.11 0.11 3.84* -0.43 -2.93 -0.76 5.17*** -0.55 -0.02 1.07 

(0.57) (0.63) (1.12) (1.64) (0.86) (2.23) (0.70) (0.95) (0.86) (2.17) (1.37) 

Proportion female 
faculty 

-1.71* -2.37 -0.84 -1.62 -3.44* -2.53 1.41 -4.32 -2.21* -0.65 -1.79 

(0.85) (1.45) (1.04) (2.23) (1.45) (1.65) (1.22) (2.67) (0.91) (2.95) (2.55) 

Log eng. research 
expenditures per FTE 

-0.06 -0.23 0.02 0.23 -0.05 -0.13 -0.10 0.17 -0.09 -0.05 0.77 

(0.07) (0.13) (0.07) (0.20) (0.10) (0.17) (0.11) (0.34) (0.08) (0.24) (0.34) 

Student Characteristics          

Log URM FTE 0.29 0.85** -0.06 -0.48 0.77* -0.04 0.45 0.64 0.26 -0.11 1.75 

(0.19) (0.28) (0.19) (0.28) (0.38) (0.20) (0.48) (0.84) (0.22) (0.97) (2.58) 

Log total FTE 0.02 -0.43 0.27 0.95 -0.04 0.16 -0.78 -0.49 0.06 0.82 -0.17 

(0.26) (0.46) (0.24) (0.52) (0.46) (0.30) (0.61) (1.34) (0.26) (1.61) (2.73) 
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Table 4.7 (Cont.)  Fixed effects estimates of log engineering bachelor’s degrees to BLACK STUDENTS by institutional control, institutional 
selectivity, and Carnegie classification using 20 imputed data sets. 

Variables All Inst. 

Institutional Control Selectivity  Carnegie 2010 

HBCU Private Public 
Land 
Grant 

Highly 
Comp- 
etitive 

Very 
Comp- 
etitive 

Comp-
etitive 

Less 
Comp- 
etitive Ph.D. 

M.A./ 
M.S. 

Proportion URM Ph.D. 0.50 -0.39 0.63 0.60 -2.43* 0.14 0.52 0.60 0.92 -0.33 0.56 

(0.52) (0.95) (0.55) (0.82) (1.06) (1.16) (0.64) (0.50) (0.52) (1.13) (0.47) 

Log total Ph.D. -0.02 0.13 -0.05 -0.06 -0.01 -0.07 0.18 -0.46**  -0.05 0.16 0.09 

(0.07) (0.11) (0.07) (0.17) (0.11) (0.09) (0.10) (0.15) (0.07) (0.25) (0.10) 

Proportion female B.S. 0.51 0.57 0.46 -1.29 1.35 -0.74 0.14 0.92 0.55 2.87 -0.44 

(0.52) (0.88) (0.60) (1.36) (0.77) (1.50) (0.75) (2.27) (0.51) (2.73) (1.10) 

Proportion URM FTE -1.98 -5.29* 0.16 4.38 -5.24 -1.12 -2.95 0.78 -1.32 -3.44 -5.10 

(1.27) (1.99) (1.25) (2.24) (3.94) (2.08) (1.83) (6.51) (1.78) (2.78) (4.45) 

            
R2, within .023 .119 .011 .059 .113 .062 .040 .335 .034 .140 .607 

Observations 1132 308 824 314 421 301 337 73  1040 74 48 

Institutions 182 49 133 52 63 51 54 14  164 15 7 

Notes:  Standard errors in parentheses 
legend: * p<0.05; ** p<0.01; *** p<0.001 
This set of analyses includes comparisons across 10 institutional contexts, which increases the probability of Type I errors.  
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Alternative inputs models.  Models using alternative inputs were estimated to 

test whether selected measures of capital and institutional inputs were predictive of 

engineering degree output by student race ethnicity.  Given their focus on measures of 

institutional finance, these models were estimated by institutional control but not across 

other institutional contexts.  I made this decision based on research reviewed in Chapter 

2, which emphasized that most variation across institutions in financial accounting and 

reporting arises between public and private institutions (Toutkoushian, 2001).    

I used an incremental approach to investigate the potential relationship between 

each capital input measure and engineering degree output separately, for each of the 

race/ethnicity-focused outcomes.  The results indicate that variations in neither 

engineering equipment expenditures nor institutional endowment/gift/contract revenue 

per FTE were statistically related to engineering degree output.  This was the case in 

fixed effects models by institutional control without faculty inputs (Table 4.8) and with 

faculty inputs (Table 4.9).  Not only were these measures statistically insignificant across 

the board, but the coefficient estimates of the capital variables were also approximately 

equal to zero in all cases. 
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Table 4.8  Fixed effects estimates of log engineering bachelor’s degrees by student 
race/ethnicity and institutional control, using capital inputs and 20 imputed data sets. 

 
All Students  URM Students  Black Students 

Variables Private Public  Private Public  Private Public 

Log exp  for 
equip per FTE 

0.03 0.01  0.00 0.01  -0.04 -0.05 

(0.02) (0.01)  (0.05) (0.02)  (0.06) (0.03) 

         
Log endow, etc. 
revenue per FTE 

0.00 -0.01  -0.03 0.01  -0.01 0.01 

(0.02) (0.01)  (0.03) (0.02)  (0.05) (0.03) 

         
Faculty Inputs No No  No No  No No 

Student Controls Yes Yes  Yes Yes  Yes Yes 

         
R2, within 0.239 0.078  0.139 0.107  0.073 0.019 

Observations 226 690  226 684  218 640 

Institutions 48 132  48 132  48 132 

Notes:  Standard errors in parentheses 
* p<0.05; ** p<0.01; *** p<0.001 

    

Table 4.9 Fixed effects estimates of log engineering bachelor’s degrees by student 
race/ethnicity and institutional control, using capital and faculty inputs and 20 imputed data 
sets. 

Notes:  Standard errors in parentheses 
* p<0.05; ** p<0.01; *** p<0.001 

 

 
All Students  URM Students  Black Students 

Variables Private Public  Private Public  Private Public 

Capital Inputs 
  

      

Log exp  for 
equip per FTE 

0.03 0.01  0.03 -0.01  0.05 -0.05 

(0.02) (0.01)  (0.06) (0.02)  (0.06) (0.03) 

         
Log endow, etc.  
revenue per FTE 

-0.01 0.00  -0.04 0.01  -0.05 0.03 

(0.02) (0.01)  (0.04) (0.02)  (0.05) (0.03) 

Faculty Inputs Yes Yes  Yes Yes  Yes Yes 

Student Controls Yes Yes  Yes Yes  Yes Yes 

         
R2, within 0.346 0.106  0.228 0.138  0.208 0.032 
Observations 214 672  214 666  206 623 

Institutions 47 130  47 130  47 130 
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The second set of alternative inputs models were intended to examine the 

potential relationships between broad institutional expenditures by category and 

engineering degree output.  However, multiple imputation of all the missing categorical 

expenditure variables was not possible due to their extensive missingness.  Instead, I 

estimated the effects of changes in total education and related expenditures per FTE on 

engineering degree output.  These models also included institution-wide student 

characteristics (control variables):  Pell grant dollars per FTE and mean SAT math scores.  

The estimates for these models, which are presented in Table 4.10, indicate that 

variations in institutions’ educational and general expenditures over the sample period 

were statistically unrelated to engineering bachelor’s degree output.  Variations in the 

mean SAT math scores of the entire institution were also unrelated to engineering 

bachelor’s degree output; and the magnitude of the estimated effect was nearly zero in all 

cases.  Changes in the amount of Pell grant dollars dispersed were statistically unrelated 

to the number of bachelor’s degrees awarded to all students and URM students at public 

and private institutions and unrelated to the number of degrees awarded to Black students 

at public institutions.  However, a 1% increase in Pell grant dollars at private institutions 

was associated with a .22% decrease in the number of engineering bachelor’s degrees 

awarded to Black students.  
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Table 4.10  Fixed effects estimates of log engineering bachelor’s degrees by student 
race/ethnicity and institutional control, using broad institutional inputs, faculty inputs, and 20 
imputed data sets. 

 All Students  URM Students  Black Students 

Variables Private Public  Private Public  Private Public 

Broad Institutional Inputs        
Log E&G†  
exp per FTE 

-0.18 -0.08  -0.25 -0.13  -0.52 -0.28 
(0.10) (0.07)  (0.20) (0.16)  (0.34) (0.21) 

Log Pell grant 
dollars per FTE 

-0.03 0.03  -0.07 0.11  -0.22* -0.07 
(0.06) (0.03)  (0.07) (0.07)  (0.11) (0.11) 

Mean SAT math 
score 

0.00 0.00  0.00 0.00  0.00 0.00 
(0.00) (0.00)   (0.00) (0.00)  (0.00) (0.00) 

         
Faculty Inputs Yes Yes  Yes Yes  Yes Yes 
         
Student Controls Yes Yes  Yes Yes  Yes Yes 
         
R2, within 0.387 0.105  0.070 0.075  0.163 0.032 
Observations 260 739  260 733  252 687 
Institutions 47 130  47 130  47 130 
 Notes:  Standard errors in parentheses 
†
Total education and general expenditures 

* p<0.05; ** p<0.01; *** p<0.001 

 

 It is worth noting that although the estimates for the faculty inputs are not shown 

above in Tables 4.9 and 4.10, all of the alternative inputs models that included faculty 

variables yielded coefficient estimates similar to those predicted in the baseline models 

for public and private institutions (Tables 4.5, 4.6, and 4.7).       

 

 Dynamic panel model of engineering degree production.  The final step of 

addressing Research Question #2 involved estimating a dynamic model of engineering 

degree production in order to relax the exogeneity assumption of basic fixed effects 

regression.  Unfortunately, Stata 12.1 does not support dynamic panel model estimation 

using multiply imputed data, so this set of analyses is based on unimputed data.  

However, before proceeding with the analysis, I reconsidered the extent of missingness 
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on the variables of interest and made a few adjustments to the baseline model 

specification.  Specifically, given that the doctoral enrollment variables were missing on 

as much as 40% of the observations, I dropped these variables from the set of student 

control variables.  Comparing the estimates obtained using imputed and unimputed data 

helped to confirm this approach.  That is, the estimates based on imputed and unimputed 

data for the baseline model that included doctoral enrollment variables were inconsistent.  

Yet, the estimates based on imputed data that included doctoral variables were consistent 

with the estimates based on unimputed data that did not include doctoral variables.  

Because the main goal of this dynamic analysis was simply to explore the consequences 

of relaxing the exogeneity assumption, estimates were only obtained by institutional 

control and other institutional contexts were not examined. 

   The procedures for estimating the dynamic model using the Arellano-Bond 

estimator (via the xtabond Stata command) which were outlined in Chapter 3, indicated 

my intent to estimate a models that included one lag of the dependent variables (i.e., log 

bachelor’s degrees by race/ethnicity at time, t-1).  If this specification – with one lag of 

the dependent variable, log engineering degrees – was appropriate for my data, then the 

assumption of no serial correlation in the random error would not be violated.   

Therefore, after estimating each dynamic model, I evaluated the result of the Arellano-

Bond test for serial correlation.  The results of this specification test for the dynamic 

models of bachelor’s degrees by race/ethnicity and institutional control are presented in 

Table 4.11.  
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Table 4.11  Arellano-Bond tests for serial correlation for dynamic models of log engineering 
bachelor's degrees by race/ethnicity and institutional control. 

  Private Institutions Public Institutions 
 Order z Prob > z z Prob > z 

All  
Students 

1 -3.14 0.00 -3.12 0.00 
2 1.00 0.32 1.37 0.17 
3 - - - - 

      
URM 
Students 

1 -2.73 0.01 -5.03 0.00 
2 -0.99 0.32 -2.29 0.02 
3 - - 1.26 0.20 

      
Black 
Students 

1 -3.37 0.00 -4.51 0.00 
2 -0.80 0.43 -1.44 0.15 
3 - - - - 

Note:  H0:  no serial correlation 

Referring to Table 4.11, the null hypothesis of no serial correlation 

(mathematiclly,                                  is rejected at a significance level 

of α = 0.05 if Prob < 0.05 (Cameron & Trivedi, 2010).  As noted, serial correlation is 

expected at order = 1 but not at higher orders.  Therefore, if Prob < 0.05 when order = 2 

or 3, then the errors are serially correlated and the coefficient estimates are inconsistent.  

The results in provided in Table 4.11 indicate that, of the 12 dynamic models specified, 

serial correlation of the error terms was detected in only one model.  Specifically, there is 

evidence of serial correlation in the model estimating log engineering bachelor’s degrees 

to URM students at public institutions because Prob > 0.02 at order 2.  This result 

indicated that a second lag of the dependent variable was warranted for this model.  The 

results of the specification test after adding log engineering degrees to URMs at time, t-2 

as a predictor, which are provided in Table 4.12, showed no evidence of serial 

correlation. 
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Table 4.12  Arellano-Bond tests for serial correlation for dynamic models of log engineering 
bachelor's degrees to URMs, including 2 lags of the dependent variable. 

  Public Institutions 

 Order z Prob > z 

URM 

Students 

1 -2.87 0.00 

2 -1.31 0.19 

3 0.52 0.60 

Note:  H0:  no serial correlation 

 The coefficient estimates for the dynamic degree production models are presented 

in Table 4.13.  When controlling for the number of degrees awarded to all students in the 

previous year, all faculty inputs were statistically insignificant within both private and 

public institutions.  However, faculty-to-student ratio was predictive of degrees awarded 

to URM and Black students at private institutions, even after controlling for degrees 

awarded in the previous year.  In fact, a unit increase in the engineering faculty-to-student 

ratio was associated with a 7.5-fold increase in bachelor’s degrees to URMs and a more 

than 14-fold increase in degrees to Black students at private institutions.  With respect to 

public institutions, a 1% increase in engineering research expenditures was associated 

with a .08% increase in the number of engineering degrees awarded to Black students, 

controlling for the number of degrees awarded in the previous year.  A unit increase in 

the engineering faculty-to-student ratio was associated with a 64% decrease in the 

number of degrees awarded to URMs.  This estimate is clearly suspect, since we would 

more likely expect the faculty-to-student ratio to be positively related to degree output 

based on prior findings.  This unexpected result might be attributable to violation of the 

serial correlation assumption, which was indicated in Table 4.11.   
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In general, the statistical significance of the estimates from the dynamic models 

differ somewhat from the basic fixed effects models presented in Tables 4.5, 4.6, and 4.7.  

However, it is difficult to draw any conclusions about these differences since the fixed 

effects models used imputed data and controlled for doctoral student enrollment and the 

dynamic models did not.  At a minimum, the preliminary dynamic model estimates 

confirm the importance of engineering faculty-to-student ratio for bachelor’s degree 

output at private institutions and suggest the need for further consideration of dynamic 

specifications of the production function.     

Table 4.13  Dynamic estimates of log engineering degrees by race/ethnicity and institutional 
control using unimputed data. 

 All Students URM Students Black Students 
 Private Public Private Public Private Public 

Lagged Dependent Variables†  
L1. (log total B.S.) 0.19 0.19     

(0.13) (0.17)     
L1. (log URM B.S.)   -0.11 0.10   

  (0.11) (0.17)   
L2. (log URM B.S.)    -0.06   

   (0.08)   
L3. (log AfAm B.S.)     0.19 0.09 

    (0.14) (0.11) 
Faculty Inputs      
Proportion non-TTT 
faculty 

-0.02 -0.11 -0.11 -0.16 -0.57 -0.30 

(0.17) (0.10) (0.32) (0.20) (0.45) (0.32) 

Proportion research 
faculty 

-0.05 -0.10 -0.34 0.20 -0.89 -0.51 

(0.21) (0.09) (0.40) (0.23) (0.71) (0.35) 

Faculty-student ratio 0.43 0.13 2.14* -1.01* 4.97** -0.63 

(0.45) (0.25) (1.07) (0.44) (1.52) (0.66) 

Proportion URM 
faculty 

-0.08 -0.09 0.09 0.34 -0.28 0.52 

(0.17) (0.33) (0.50) (0.76) (1.12) (1.00) 
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Table 4.13 (Cont.)  Dynamic estimates of log engineering degrees by race/ethnicity and 
institutional control using unimputed data. 

Variables 
All Students URM Students Black Students 

Private Public Private Public Private Public 

Proportion female 
faculty 

0.16 -0.08 1.05 -0.20 1.29 -1.38 

(0.30) (0.29) (0.97) (0.73) (1.64) (0.93) 

Log eng. research 
expenditures per FTE 

0.01 0.02 0.09 0.06 0.04 0.08* 

(0.02) (0.02) (0.06) (0.03) (0.12) (0.04) 

Student Characteristics      
Log URM FTE 0.27* -0.08*   0.31 0.69 -0.05 -0.50 

(0.11) (0.04) (0.30) (0.36) (0.35) (0.49) 

Log total FTE -0.02 0.48*** 0.24 -0.11 0.39 0.94 

(0.17) (0.09) (0.64) (0.45) (0.73) (0.61) 

Proportion female 
B.S. 

-0.16 0.23 -0.16 1.30* -1.03 1.37* 

(0.16) (0.23) (0.57) (0.58) (0.97) (0.67) 

Proportion URM FTE -2.41* 1.08*** -2.94 -2.19 -5.65* 1.89 

(0.94) (0.32) (2.00) (1.89) (2.34) (2.07) 

       
Observations 316 722 312 567 275 619 
Institutions 69 163 68 161 63 150 
Notes:  Standard errors in parentheses 
† L1 refers to lag at time, t-1; L2 refers to lag at time, t-2  

* p<0.05; ** p<0.01; *** p<0.001 

   

       

  

Research Question #3:  Assessing Degree Production Efficiency 
 

 In the final stage of the analysis, I generated technical efficiency scores for the 

engineering schools in the analytic sample to assess the extent to which these institutions 

maximized degree output for URMs and African Americans.  As discussed in Chapter 3, 

the efficiency scores were based on a stochastic frontier analysis (SFA) of the log-log 

functional form of the baseline production model of engineering bachelor’s degrees by 

race/ethnicity.  In order to determine whether a time-invariant or time-varying SFA 
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model was appropriate, I estimated both models and compared the estimates obtained 

from each.  Although not shown, the results of the time-varying SFA models suggested 

little change over time (i.e., the limited 7-year sample period) in institutions’ efficiency 

scores.  Likewise, the coefficient estimates for the time-varying SFA models were very 

close to the estimates obtained for the time-invariant models.  Therefore, it was 

appropriate to assume no time-variation in the degree to which engineering schools 

maximized bachelor’s degree output for URMs generally, and African Americans 

specifically.  The statistical significance of the SFA estimates obtained for the time-

invariant model, which are presented in Table 4.15, were consistent with the basic fixed 

effects regression estimates obtained for the full sample (Table 4.4).   

Table 4.14  Stochastic frontier production model estimates by race/ethnicity for the full 
analytic sample. 

 URM Students Black Students 

Faculty Inputs                  
Log proportion non-TTT 
faculty 

-0.03 -0.01 

(0.02) (0.04) 

Log proportion research 
faculty 

-0.03 -0.09**  

(0.02) (0.03) 

Log faculty-student ratio 0.32*** 0.21 

(0.06) (0.12) 

Log proportion URM 
faculty 

0.03 0.00 

(0.03) (0.06) 

Log proportion female 
faculty 

-0.01 -0.15*   

(0.04) (0.07) 

Log eng. research 
expenditures per FTE 

-0.03 0.08 

(0.02) (0.05) 

Student Characteristics   

Log URM FTE 0.84*** 0.58*** 

(0.03) (0.10) 

Log total FTE 0.09* 0.04 

(0.04) (0.09) 
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Table 4.14 (Cont.)  Stochastic frontier production model estimates by race/ethnicity for the 
full analytic sample. 

 URM Students Black Students 

Log proportion female 
B.S. 

0.25*** 0.18 

(0.05) (0.10) 

Log proportion URM FTE† 0.00 0.00 

(.) (.)    

   
Observations 916 867 

Institutions 190 187 

Notes:  Standard errors in parentheses 
†
Dropped automatically due to collinearity.   

* p<0.05; ** p<0.01; *** p<0.001 

 

Table 4.15 shows that, on average, engineering schools were 84% efficient in the 

production of bachelor’s degrees to URM students, or operated with 16% technical 

inefficiency.  And the maximum efficiency achieved by any institution was 95% (note, 

again, that the model assumes constant efficiency within each institution over the seven-

year period).  However, engineering schools were, on average, only 62% efficient (38% 

inefficient) in the production of bachelor’s degrees to Black students.  The maximum 

efficiency achieved by any institution with respect to Black students was 90%.  

Table 4.15  Descriptive statistics for technical efficiency (TE) estimates for time-invariant SFA 
degree production models. 

 Observations Mean TE 

Std. 

Dev. Min Max 

URM Students 2268 0.84 0.12 0.29 0.95 

      

Black Students 2268 0.62 0.27 0.03 0.90 
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 To further unpack the SFA results, I decided to examine the notion of “top degree 

producers” with respect to URM and African American engineering baccalaureates.  

First, I identified the top 50 producers of URM engineering baccalaureates in the sample 

by ranking institutions on the total number of engineering bachelor’s degrees conferred to 

URMs over the period 2005 to 2011.  Next, I ranked these top producers by their 

technical efficiency scores to assess the extent to which they had maximized their degree 

output for URMs.  I used the same procedure to assess degree production for Black 

students.   

 Table 4.16 summarizes degree output and efficiency scores for the top 

engineering bachelor’s degree producers for URMs and African Americans during the 

sample period.  On average, the top 50 producers conferred 679 bachelor’s degrees to 

URMs with 87% efficiency and 278 bachelor’s degrees to African Americans with 63% 

efficiency, respectively, between 2005 and 2011.   

Table 4.16  Average number of degrees and efficiency scores for top 50 engineering bachelor’s 
degree producers by student race/ethnicity, 2005 to 2011,  

         N Mean 
Std. 

Dev. Min Max 

Number of bachelor’s degrees, 2005-2011     
URM Students  52 678.75 361.67 349 2333 
       
Black Students  58 277.55 184.93 134 1091 
      
Technical efficiency scores      
URM Students  52 0.87 0.07 0.59 0.95 
       
Black Students  58 0.63 0.19 0.17 0.90 
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 Table 4.17 provides another way to frame the results of the efficiency analysis – 

presenting side-by-side rankings of institutions by absolute numbers of degrees and 

degree production efficiency.  These data show that 56% of top producers are 90% or 

more efficient in producing URM baccalaureate engineers.  Eighty-five percent are 80% 

or more efficient in bachelor’s degree production for URMs.  It is also worth noting that 

the top 3 URM baccalaureate producers in the sample – Florida International University, 

University of Florida, and Georgia Tech – were also the top 3 in terms of efficiency.  

However, the University of Texas at El Paso ranked 4
th

 in terms of the absolute number 

of engineering bachelor’s degrees awarded to URMs but 12
th

 in terms of efficiency 

(although still more than 90% efficient).  Likewise, the University of Michigan ranked 4
th

 

in terms of efficient production of URM engineering baccalaureates but 20
th

 in terms of 

the absolute number of engineering bachelor’s degrees awarded to URM students.  

George Mason University was 8
th

 in efficiency but 44
th

 in absolute numbers of degrees 

conferred to URMs.  These patterns suggest that best practices in engineering bachelor’s 

degree production might be identified within a range of institutions that may or may not 

include the very top producers in terms of absolute numbers of degrees conferred. 
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Table 4.17  Top 50 producers of engineering bachelor's degrees to URM students, by absolute number of degrees and technical efficiency (TE), 
2005 to 2011. 

Rank 
B.S. Institution 

# of 
B.S. 

 Rank  
TE Institution 

TE  
(%) 

1 Florida International University       2333  1 Georgia Institute of Technology-Main Campus 94.61 

2 University of Florida        1414  2 Florida International University 94.34 

3 Georgia Institute of Technology-Main Campus        1361  3 University of Florida 93.96 

4 The University of Texas at El Paso        1283  4 University of Michigan-Ann Arbor 93.81 

5 California State Polytechnic University-Pomona      1197  5 University of California-Berkeley 93.26 

6 North Carolina A & T State University       1115  6 Texas A & M University-Kingsville 92.91 

7 The University of Texas at Austin       1062  7 University of Central Florida 92.90 

8 Texas A & M University-College Station      1052  8 George Mason University 92.88 

9 New Jersey Institute of Technology         980  9 New Jersey Institute of Technology 92.85 

10 University of Central Florida         979  10 University of Maryland-College Park 92.81 

11 Massachusetts Institute of Technology       813  11 University of California-San Diego  91.77 

12 New Mexico State University-Main Campus         796  11 California State University-Northridge   91.77 

13 Florida Agricultural and Mechanical University        774  11 California Polytechnic State University-San Luis Obispo    91.77 

14 Arizona State University      752  11 Southern University and A & M College    91.77 

15 Prairie View A & M University        732  11 University of Miami    91.77 

16 California Polytechnic State University-San Luis Obispo        722  11 Rutgers University-New Brunswick  91.77 

17 CUNY City College         721  11 Massachusetts Institute of Technology 91.77 

18 North Carolina State University at Raleigh         716  11 San Jose State University  91.77 

19 The University of Texas at San Antonio      679  12 The University of Texas at El Paso   90.98 

20 University of Michigan-Ann Arbor        667  13 Texas Tech University    90.93 

21 University of Maryland-College Park        658  14 Rensselaer Polytechnic Institute    90.88 
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Table 4.17 (Cont.)  Top 50 producers of engineering bachelor's degrees to URM students, by absolute number of degrees and technical 
efficiency (TE), 2005 to 2011. 

Rank 
B.S. Institution 

# of 
B.S. 

 Rank  
TE Institution 

TE  
(%) 

22 Alabama A & M University         615  15 California State Polytechnic University-Pomona    90.83 

23 University of South Florida-Main Campus        611  16 The University of Texas-Pan American    90.78 

24 Texas A & M University-Kingsville         605  17 Florida Atlantic University    90.69 

25 University of Houston         604  18 North Carolina State University at Raleigh    90.12 

26 University of Arizona         573  19 University of Illinois at Chicago    89.93 

27 The University of Texas-Pan American       568  20 University of Arizona    89.92 

28 Southern University and A & M College        532  21 Virginia Polytechnic Institute and State University    89.71 

29 Florida Atlantic University      527  22 University of Southern California    89.64 

30 California State University-Long Beach        515  23 University of New Mexico-Main Campus    88.97 

31 Rutgers University-New Brunswick        492  24 Prairie View A & M University    88.86 

32 Stanford University        491  25 California State University-Long Beach    88.78 

33 Virginia Polytechnic Institute and State University         482  26 CUNY City College    88.73 

34 University of New Mexico-Main Campus         475  27 University of South Florida-Main Campus    88.21 

35 University of California-San Diego         473  28 The University of Texas at Austin    88.02 

36 Morgan State University         470  29 Alabama A & M University    87.12 

37 Texas Tech University         468  30 Pennsylvania State University-Main Campus    86.75 

38 Rensselaer Polytechnic Institute         451  31 New Mexico State University-Main Campus    86.30 

39 San Jose State University        436  32 Morgan State University    85.38 

39 University of Illinois at Chicago        436  33 The University of Texas at San Antonio    83.95 

39 University of Illinois at Urbana-Champaign        436  34 Texas A & M University-College Station      81.51 

40 University of Miami         417  35 North Carolina A & T State University    80.76 

41 Howard University       412  36 Arizona State University   80.17 

42 University of California-Berkeley         411  37 Howard University    79.56 
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Table 4.17 (Cont.)  Top 50 producers of engineering bachelor's degrees to URM students, by absolute number of degrees and technical 
efficiency (TE), 2005 to 2011. 

Rank 
B.S. Institution 

# of 
B.S. 

 Rank  
TE Institution 

TE  
(%) 

43 University of Southern California         404  38 University of Illinois at Urbana-Champaign    79.46 

44 George Mason University       391  39 University of Oklahoma Norman Campus    79.06 

45 The University of Texas at Arlington        390  40 University of Houston    78.94 

46 Pennsylvania State University-Main Campus         369  41 Tennessee State University    76.44 

47 California State University-Northridge        368  42 Florida Agricultural and Mechanical University     75.76 

48 Tennessee State University         362  43 The University of Texas at Arlington    72.67 

49 University of Oklahoma Norman Campus         356  44 Stanford University    71.20 

50 University of California-Davis        349  45 University of California-Davis    59.19 
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 Compared to the production of underrepresented minority baccalaureate 

engineers, top producers are considerably less efficient when it comes to Black students 

specifically.  Table 4.18 shows that only 24 out of 58 engineering schools (41%) are 70% 

or more efficient in the production of Black engineers, whereas only a single top 

producer operated at less than 70% efficiency with respect to URM engineers 

collectively.    In fact, 15 out of 58 (26%) top producers are less than 50% efficient in the 

production of Black engineering baccalaureates.   

 Table 4.18 also highlights the role of HBCUs in the production of Black 

engineers.  North Carolina A&T was both the most productive and the most efficient 

institution in producing African American baccalaureate engineers.  Moreover, of the 

seven HBCUs that were among the top 10 producers, five showed up among the top 10 in 

terms of efficiency – North Carolina A&T University, Alabama A&M University, Prairie 

View A&M University, and Morgan State University.  This result is noteworthy not only 

because HBCUs make up just 3% of ABET-accredited institutions but also because 

HBCUs have experienced substantial declines in the numbers of engineering degrees 

conferred to Black students in recent years. 

 While it might seem intuitive that historically Black colleges and universities 

would be a fruitful place to look for best practices in producing Black baccalaureate 

engineers (the previous discussion suggests this is still true even despite recent declines 

in degree output), Table 4.18 highlights other promising avenues that might be less 

intuitive.  For example, Washington University in St. Louis was 50
th

 in terms of the 

absolute number of bachelor’s degrees conferred to African Americans but 5
th

 in 
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efficiency.  The University of South Carolina-Columbia was 35
th

 and 5
th

 in number of 

degrees to African Americans and efficiency, respectively.  And the University of 

Minnesota-Twin Cities was 39
th

 in absolute degrees to African Americans but 7
th

 in 

efficiency.
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Table 4.18  Top 50 producers of engineering bachelor's degrees to BLACK students, by absolute number of degrees and technical efficiency, 
2005 to 2011. 

Rank 
B.S. Institution  

# of 
B.S. 

 Rank 
TE Institution 

TE 
(%) 

1 North Carolina A & T State University       1091  1 North Carolina A & T State University 89.58 

2 Georgia Institute of Technology-Main Campus       811  2 Alabama A & M University 88.29 

3 Prairie View A & M University         690  3 Prairie View A & M University 87.82 

4 Alabama A & M University        615  4 University of the District of Columbia 86.85 

5 Florida Agricultural and Mechanical University        557  5 Washington University in St Louis 86.57 

6 Southern University and A & M College         532  5 University of South Carolina-Columbia 86.57 

7 North Carolina State University at Raleigh       468  5 Rutgers University-New Brunswick 86.57 

8 Morgan State University          463  5 Massachusetts Institute of Technology   86.57 

9 University of Maryland-College Park         442  5 Southern University and A & M College   86.57 

10 Howard University          412  6 Georgia Institute of Technology-Main Campus 86.05 

11 New Jersey Institute of Technology         371  7 University of Minnesota-Twin Cities 85.45 

12 University of Florida        367  8 Indiana University-Purdue University-Indianapolis 84.13 

13 Tennessee State University         358  9 University of Michigan-Ann Arbor 83.28 

14 University of Michigan-Ann Arbor         354  10 Morgan State University 82.74 

15 Tuskegee University         345  11 Tuskegee University 80.80 

16 Florida International University         340  12 Auburn University 79.48 

17 CUNY City College         297  13 Florida Agricultural and Mechanical University 79.41 

18 University of Central Florida         285  14 The University of Tennessee 77.66 

19 Virginia Polytechnic Institute and State University        284  15 University of Maryland-College Park 77.11 

20 Massachusetts Institute of Technology        273  16 Tennessee State University 76.67 

21 Clemson University         247  17 North Carolina State University at Raleigh 75.78 
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Table 4.18 (Cont.)  Top 50 producers of engineering bachelor's degrees to BLACK students, by absolute number of degrees and technical 
efficiency, 2005 to 2011. 

Rank 
B.S. Institution  

# of 
B.S. 

 Rank 
TE Institution 

TE 
(%) 

22 Auburn University          241  18 Virginia Commonwealth University 74.70 

23 Rutgers University-New Brunswick          240  19 University of Virginia-Main Campus 73.82 

24 Florida Atlantic University         236  20 Howard University 73.03 

25 Indiana University-Purdue University-Indianapolis        228  21 University of North Carolina at Charlotte 66.58 

26 University of South Florida-Main Campus       220  22 University of Illinois at Chicago 66.55 

27 Louisiana State University and A & M College         214  23 Stony Brook University 65.80 

28 Old Dominion University          213  24 Old Dominion University 64.80 

29 Drexel University          203  25 Pennsylvania State University-Main Campus 64.54 

30 Missouri University of Science and Technology         202  26 Rensselaer Polytechnic Institute 63.92 

31 Ohio State University-Main Campus        195  27 Rochester Institute of Technology 62.48 

32 Wayne State University         192  28 Drexel University 61.27 

33 Stanford University         189  29 Virginia Polytechnic Institute and State University 60.54 

33 Mississippi State University         189  30 University of Maryland-Baltimore County 58.56 

34 George Mason University          187  31 New Jersey Institute of Technology 58.25 

35 University of South Carolina-Columbia          185  32 Florida International University 56.59 

36 University of North Carolina at Charlotte         181  33 University of Pittsburgh-Pittsburgh Campus 56.59 

37 Pennsylvania State University-Main Campus         167  34 George Mason University 56.44 

38 The University of Alabama        165  35 Missouri University of Science and Technology 52.79 

38 Rensselaer Polytechnic Institute         165  36 Mississippi State University 52.46 

39 University of Minnesota-Twin Cities        162  37 The University of Alabama 52.24 

40 University of Virginia-Main Campus         160  38 Louisiana Tech University 52.02 

41 Michigan State University         157  39 Clemson University 51.00 
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Table 4.18 (Cont.)  Top 50 producers of engineering bachelor's degrees to BLACK students, by absolute number of degrees and technical 
efficiency, 2005 to 2011. 

Rank 
B.S. Institution  

# of 
B.S. 

 Rank 
TE Institution 

TE 
(%) 

41 Stony Brook University         157  40 CUNY City College 47.91 

41 The University of Tennessee         157  41 Ohio State University-Main Campus 47.83 

42 Rochester Institute of Technology         156  42 University of Memphis 47.77 

43 Texas A & M University-College Station         154  43 Louisiana State University and A & M College 45.18 

44 University of Memphis         151  44 Florida Atlantic University 44.65 

44 The University of Texas at Austin         151  45 University of Central Florida 42.34 

45 University of Maryland-Baltimore County          149  46 Wayne State University 42.19 

46 The University of Texas at Arlington        148  47 University of South Florida-Main Campus 41.24 

46 University of Pittsburgh-Pittsburgh Campus        148  48 University of Florida 39.72 

47 University of the District of Columbia         147  49 Michigan State University 39.32 

47 Louisiana Tech University         147  50 The University of Texas at Arlington 32.38 

48 University of Illinois at Chicago         137  51 Stanford University 31.84 

49 Virginia Commonwealth University         135  52 University of Illinois at Urbana-Champaign 25.82 

50 University of Illinois at Urbana-Champaign        134  53 The University of Texas at Austin 18.41 

50 Washington University in St Louis          134  54 Texas A & M University-College Station 17.08 
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CHAPTER 5 – CONCLUSIONS 
 

In this concluding chapter, I summarize the major findings and implications of the 

study.  I discuss the contributions of the study to the broader STEM higher education 

literature.  Finally, I end the chapter by offering recommendations for institutional and 

public policy.   

Summary of Findings 
 

In this study, I examined variations in engineering bachelor’s degree production 

by student race/ethnicity and institutional context, with particular attention to possible 

differential relationships between faculty predictors and degree production.  Using fixed 

effects linear regression within a higher education production function framework, I 

developed baseline models of the effects of faculty inputs on bachelor’s degree 

production by student race/ethnicity and institutional context as well as alternative 

models that included selected capital and broad institutional input measures.  I also 

estimated an alternative dynamic panel model of engineering degree production to relax 

assumptions related to the fixed effects models.  Finally, I conducted an efficiency 

analysis to test the fundamental assumption of production functions – that firms (i.e., 

engineering schools) maximize output (i.e., bachelor’s degrees).  These analyses yielded 

numerous findings, which are summarized next. 

Variations in inputs and outputs at engineering schools and colleges (RQ# 1).  

Descriptive analysis of faculty inputs and engineering degree output for all students, 

URM students, and Black students revealed variations in these measures between 
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institutions by institutional control, selectivity, Carnegie classification, and HBCU status 

over the period from 2005 to 2011.  The degree of change in the proportion of non-

tenured/tenure-track engineering teaching faculty varied across categories of institutional 

context.  The proportion of research faculty generally increased across all institutions (to 

varying degrees), while the engineering faculty-to-student ratio generally decreased (also 

to varying degrees).   Tenured and tenure-track engineering faculty grew more diverse, 

with increasing shares of URM, Black, and female faculty at all institutional types.  

Engineering research expenditures more than doubled in baccalaureate institutions but 

were either subject to much smaller swings or generally stable in other institutional 

settings. 

Corroborating descriptive reports about national trends in engineering bachelor’s 

degree attainment (National Action Council for Minorities in Engineering, 2011; 

National Science Foundation, 2011b; Yoder, 2012), this study showed that from 2005 to 

2011, the number of engineering bachelor’s degrees conferred to all students and URM 

students increased 10% and 18% respectively.  And most of the growth in engineering 

bachelor’s degree production for URMs occurred in public institutions, highly 

competitive institutions, and master’s institutions.  At the same time, engineering 

bachelor’s degree awards to Black students declined 10%, but less so at highly 

competitive institutions (2% decline) and at an especially high rate at HBCUs (30% 

decline).   

That the decline in African American engineering bachelor’s degree production is 

so large within HBCUs is particularly troublesome given the past contributions of 
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HBCUs in the growth of engineering attainment among Black students from the early 

1970s through the late 1990s, both through the handful of engineering programs at 

HBCUs and through dual degree partnerships with non-HBCUs (Weinberger, 2011).  

Likewise, available research suggests that Black engineering students at HBCUs have 

more positive perceptions of their academic climates and are less likely to switch to non-

STEM majors compared to their peers at non-HBCUs (Brown, Morning, & Watkins, 

2005; Newman, 2011).  At the same time, this study showed that HBCUs, which 

represent only 3% of ABET-accredited engineering schools/colleges, remain among the 

most productive and most technically efficient producers of Black engineers.  

Specifically, seven HBCUs were among the top 10 producers of engineering bachelor’s 

degrees for Black students and five of the seven were among the top 10 in terms of 

efficiency.  This finding indicates that HBCUs are not performing less well with the 

inputs they have; rather, for some reason, they are enrolling precipitously fewer 

engineering students.  Given their historic leading role in educating Black engineers, 

future research might investigate HBCUs’ apparent enrollment problem to uncover 

further insights into the engineering attainment issue facing African Americans.    

 Which faculty inputs matter for whom and in which contexts (RQ# 2)?  Fixed 

effects regression models of engineering degree production uncovered differential 

relationships between selected faculty inputs and degree outputs by student race/ethnicity 

and institutional context.  Figure 4.1 graphically synthesizes key findings along four 

dimensions.  Shaded cells indicate statistically significant predictors and the institutional 

contexts in which the predictors were significant.  The +/- and letters inside the cells 
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indicate for whom (all students [A], URM students [U], or Black students [B]) a positive 

or negative relationship was detected.   

Figure 5.1  Summary matrix of faculty input effects by institutional context and student 
race/ethnicity. 
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The only faculty inputs that predicted degree output in at least one institutional 

context across the three race/ethnicity categories were faculty-to-student ratio and the 

proportion of research faculty.  Faculty-to-student ratio was consistently positively 

related to degree output in private institutions, highly competitive institutions, and 

doctorate-granting/research institutions.   In each instance, the magnitude of the estimated 

positive effect of faculty-to-student ratio was stronger for URMs compared to all students 

but strongest for Black students compared to either URMs or all students.  Faculty-to-

student ratio was operationalized in the study as total FTE engineering faculty to total 

FTE undergraduate enrollment.  I conducted a sensitivity analysis to determine if 

replacing this measure with the tenured/tenure-track only faculty-to-student ratio would 

change the findings and concluded that the model estimates were not sensitive to this 

modification (see Table A.4 in the appendix). 

The proportion of research faculty was negatively related to degree output for all 

students, URM students, and Black students in multiple institutional contexts (i.e., public 

and private institutions, very competitive institutions, doctorate/research institutions, and 

HBCUs).    This finding might suggest that, in general, greater commitments to research 

within these types of engineering schools might be at the expense of instructional outputs 

– to the extent that greater shares of the faculty are, presumably, not focused on teaching 

or interacting with undergraduate students.  However, within public engineering schools, 

increasing shares of research faculty was positively related to degree output for URM 

students.  This contradictory finding might reflect efforts at public institutions to engage 
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undergraduates in research thereby increasing their interaction with research faculty. 

Regardless, further investigation is necessary to more fully explain these findings. 

The engineering degree production model estimates confirmed that faculty 

demographics are significant predictors of degree output for underrepresented minorities 

and Black students specifically.  First, the proportion of female tenured/tenure-track 

engineering faculty was negatively related to URM degree output at less competitive 

institutions and to Black degree output at highly competitive and doctorate-granting 

institutions.  This finding is particularly interesting given that the proportion of female 

baccalaureates was associated with greater degree output for underrepresented minorities 

in public, highly competitive, and doctorate/research institutions.  Because no prior 

research identified examines the links between faculty gender and student outcomes in 

STEM by race/ethnicity, further study is needed to understand the mechanism and 

implications of this statistical association.   

On the other hand, increasing proportions of URM faculty was positively related 

to engineering bachelor’s degree output for URMs and Black students at less competitive 

institutions and Black students at land grant institutions.  Again, the magnitude of the 

relationship was stronger for Black students relative to URMs.  I conducted a sensitivity 

analysis of the Black student degree output models to determine if replacing the URM-

focused variables with same-race predictors would affect my findings.  That is, I replaced 

the proportion of URM faculty with the proportion of African American faculty, URM 

FTE enrollment with African American FTE enrollment, etc.  The findings (presented in 

Table A.5) were qualitatively similar in that the proportion of Black faculty was 
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positively related to degree production for Black students.  However, this relationship 

was detected in private institutions and land grant institutions, whereas the shares of 

URM faculty predicted bachelor’s degrees to Black students in less competitive and land 

grant institutions.    

Alternative models.  Selected capital inputs – expenditures for engineering 

equipment and the share of institutional revenues from endowment, gifts, contracts, etc. – 

were not statistically related to engineering degree output.    Although capital inputs 

likely have long term effects on instructional outputs, the seven-year period investigated 

in this study is more aptly described as the short run, over which capital inputs are 

relatively fixed (Paulsen & Toutkoushian, 2006).  Likewise, relative to labor inputs, 

institutional capital inputs are not generally considered to be practical policy levers for 

influencing higher education output (Salerno, 2002).   

The dynamic degree production models, which included lagged dependent 

variables, confirmed the importance of faculty-to-student ratio in predicting degree 

output at private institutions – with stronger estimated effects observed for Black students 

relative to URM students.   However, due to specification differences, the dynamic 

estimates were not directly comparable to the basic fixed effects estimates.  Still, the 

results suggest a need for further consideration of dynamic higher education production 

models. 

Gaining insights from analyzing efficiencies (RQ# 3).  The efficiency analysis 

provided evidence that there is room for all engineering institutions to increase their 
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degree output for URM and Black students with the existing levels of selected faculty 

inputs.  In other words, engineering schools and colleges can do more with what they 

already have, especially with respect to degree production for Black students.  By 

identifying technically efficient degree producers, subsequent qualitative research could 

identify best practices within these institutions, instead of simply looking to institutions 

that confer large numbers of degrees to URMs and Blacks specifically.  However, like 

any efficiency analysis based on an estimated higher education production function (as 

opposed to a “true” production function), misspecification of the production function is 

always a looming possibility.   

Discussion 

Perhaps the most important finding from this study was no finding at all.  That is 

to say, no faculty input was predictive of degree output for every student race/ethnicity 

category across every institutional context.  In production function language, engineering 

degree production technologies differ across student race/ethnicity and institutional 

contexts.   This conclusion is important because it makes clear that broad generalizations 

about relationships between the faculty predictors specified in this study and engineering 

degree output may be problematic or unhelpful for improving institutional performance.   

Nevertheless, future research would benefit from more complete, more extensive 

data on engineering schools and colleges.  For example, as part of the Survey of 

Engineering and Engineering Technology Colleges, the American Society for 

Engineering Education currently collects information on aggregate student background 

characteristics (high school GPA, SAT/ACT scores, etc.); the number of degrees awarded 
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through dual degree programs with partner institutions; numbers of graduate teaching 

assistants; and the availability of retention, support programs, and student organization.  

However, these data were largely incomplete and unusable for this study.  Available 

research has already demonstrated links between some programmatic interventions and 

URM persistence in engineering, for example (e.g., Good, Haplin, & Haplin, 2002).  

Therefore, if the unobserved measures also varied over time within institutions, they 

potentially confound this study’s findings.  Future research might also identify other data 

sources, and as a result, other analytic methods to facilitate engineering education 

production function studies.  For example, administrative data on students enrolled in 

engineering colleges and schools, such as the data available through the restricted 

Multiple-Institution Database for Investigating Engineering Longitudinal Development 

(MIDFIELD) project at Purdue University (MIDFIELD, 2013) would enable multi-level 

analyses of engineering degree production or retention.    

Contribution 
 

 This study makes several contributions to the higher education literature.  First, 

the key findings of this study provide evidence that institutional inputs (i.e., faculty 

predictors) are differentially related to institutional outcomes (i.e., bachelor’s degree 

production) in a STEM discipline (i.e., engineering) both by student race/ethnicity and 

institutional setting.  These findings have multiple policy-relevant implications given 

existing gaps in the knowledge and growing interest in:  (a) the role of institutional 

predictors in students’ outcomes in STEM fields, which emerging research has only 

recently begun to examine (e.g.,  Malcom, 2008; Chang, Cerna, Hans, & Sàenz, 2008; 
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Hurtado et al, 2009; Eagan, 2010); (b) institutional performance and accountability in 

higher education (Alexander, 2000; Chubin, May, & Babco, 2005); (c) access and 

success in STEM fields for traditionally underrepresented students (National Science 

Board, 2011); and (d) engineering degree production (Petroski, 2010; Augustine, 2011; 

Jobs Council, 2011).      

Second, the study demonstrates the utility of publicly available, institutional data 

that up to now have not been exploited in higher education research.  Use of data from 

the American Society of Engineering Education and the National Science Foundation 

enabled me to examine measures – faculty characteristics and degree completions, for 

example – that were specific to engineering schools and colleges.  This study provided 

new perspectives and insights particularly because these measures have received little 

attention in prior studies.    

Third, the methodologies employed in this study also help to advance the 

knowledge about STEM/higher education phenomena.  The study explicitly dealt with 

missing data through multiple imputation, whereas existing (quantitative) STEM higher 

education research often neglects to even comment on missing data.  The study also drew 

on longitudinal/panel data and appropriate econometric analysis methods, which 

diminished the problem of unobserved heterogeneity and provided a more direct test of a 

potential institutional policy lever (i.e., faculty) (Zhang, 2010).  Relative to cross-

sectional data, panel data have many statistically attractive properties (Woolridge, 2009; 

Allison, 2009; Zhang, 2010).  Therefore, given the increasing availability of panel data 
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sets, future higher education research should continue to exploit the advantages of panel 

data.  

Fourth, the study provided clear evidence that aggregating institutions and 

students can obscure substantive differences in the relationships of interest.    My results 

showed that while some faculty measures (i.e., faculty-to-student ratio and the proportion 

of research faculty) were statistically related to degree production for all student 

subgroups in some institutional settings, no faculty measures were completely equally 

predictive of engineering degree production across these categories.  The results suggest 

that wherever possible, future research about and eventual solutions to the nation’s 

STEM workforce development problems should be targeted at specific disciplines, 

specific student subgroups, and specific educational settings.   

Policy Recommendations 
 

This study sought to develop understanding regarding institutional levers that 

might offer promise for expanding student participation and success in engineering – 

particularly with respect to underrepresented minorities broadly, and Black students 

specifically.  Such understanding could lead to more strategic use of resources and better-

targeted interventions.   The following policy recommendations, which are aimed at both 

institutional decision-makers and the broader engineering education community, are 

suggested to facilitate this understanding: 

Fist, data collection and sharing efforts must be improved.  Existing data 

collection efforts (e.g., through ASEE and the Engineering Workforce Commission 
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[EWC]) should include clear reporting standards and other strategies to ensure the quality 

and completeness of the data collected.  Other efforts might be undertaken to broaden 

access to existing multi-institutional administrative databases (e.g., MIDFIELD) or create 

new ones.  New and existing engineering education surveys and databases should also 

solicit information about program/school level expenditures for instruction, academic 

support, and student support services.  Available research has already established a 

connection between institutional expenditures and institutional graduation rates (e.g., 

Ryan, 2004; Webber & Ehrenberg, 2010; Chen, 2012; Webber, 2012).  In order to 

examine the potential role of expenditures (or other potentially relevant inputs) in the 

context of STEM fields, program-level data are needed. At the very least, institutions 

interested in understanding their own education production function “technologies” must 

collect relevant, longitudinal program and student-level data.   

Second, institutions should undertake efforts to increase opportunities for 

meaningful engineering faculty-student interaction.  That total FTE faculty-to-student 

ratio was generally positively related to degree production but research faculty was 

negatively related to degree production for URM and Black students suggests a need to 

increase the opportunity for meaningful interaction between engineering students and all 

facets of the faculty.  For example, undergraduate research programs, which are typically 

structured to include mentoring, training in laboratory techniques, and formal 

presentation of results (Laursen et al., 2010) have been credited with a broad range of 

benefits to STEM students in general:  from increased technical knowledge, laboratory, 

problem-solving, and presentation skills to clarification of career and post-baccalaureate 
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educational plans (Kardash, 2000; Lopatto, 2004, 2007; Laursen et al., 2010).  

Concerning URM STEM students, undergraduate research reportedly increases academic 

performance, self-efficacy, undergraduate persistence, and graduate school enrollment 

(Barlow & Villarejo, 2004; Carter, Mandell, & Maton, 2009; Hurtado et al., 2007; 

Lopatto, 2004; Nagda et al., 1998).   Therefore, undergraduate research opportunities that  

connect engineering students with both teaching and research faculty members might 

foster other potentially positive outcomes, especially for URM and Black students.   

Findings from this study also echo previous findings about the importance of 

same-race faculty-student interactions for improving URM and Black student outcomes 

in STEM (for example, Fries-Britt, 1998; Fries-Britt, Younger, & Hall, 2010; Griffin, 

Perez, Holmes, & Mayo, 2010; Price, 2010; Cole & Espinoza, 2008; Hrabowski & 

Maton, 2009).  Therefore, institutions and other stakeholders should seek to increase 

these opportunities, both with respect to existing URM faculty (e.g., through mentoring 

and advising) as well as through initiatives to create a new cadre of URM engineering 

doctorate-recipients/academic faculty.  

Third, whenever possible, institutions and other stakeholders should develop 

targeted STEM education interventions that are based on targeted STEM education 

research.  Despite three decades of research examining URM success in STEM, many 

have argued that the nil to modest gains made by URMs do not come close to mirroring 

the efforts (and dollars) invested (Committee on Equal Opportunities in Science and 

Engineering, 2004; Watson & Froyd, 2007).  This lack of more substantial progress may 

be due, in part, to the limitations of broadly defined notions of STEM and URMs and, 
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consequently, broadly defined interventions.  This study demonstrated that even within 

one STEM discipline, institutional measures are not equivalently predictive of 

educational outcomes by student race/ethnicity or across institutional contexts.  Thus, 

broad institutional initiatives might not be equivalently effective.  Targeted approaches 

are needed to move the needle on this issue. 

Science, technology, engineering and mathematics (STEM) fields are widely 

credited as the primary drivers of economic growth through innovation.  And among the 

STEM disciplines, the contributions of engineering are universally identified as 

especially critical.  Yet as other nations have strengthened their engineering talent pools, 

the United States has struggled to cultivate an engineering workforce that reflects its 

diversity and takes full advantage of its human capital.  Reflecting this dilemma, African 

Americans have consistently posted the weakest persistence and bachelor’s degree 

completion rates of all racial/ethnic groups in engineering, and by most indications, their 

postsecondary outcomes in engineering are worsening.   

In several institutional contexts examined in this study, increasing the opportunity 

for student contact with engineering faculty was associated with increased bachelor’s 

degree production.  Increasing the opportunity for URM and Black students to interact 

with URM faculty was also associated with increased bachelor’s degree production (in 

some institutional contexts), and especially for Black students.  Rather than focusing 

solely on individual students’ backgrounds (as STEM higher education research 

traditionally has), this study showed that there is clearly room to more effectively 

leverage institutional assets like faculty to increase engineering bachelor’s degree 
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completion among all students, underrepresented minority students, and African 

American students.   
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APPENDIX 

Table A.1  Engineering schools/colleges included in the study by state. 

Alabama 
Alabama A & M University 
University of Alabama at Birmingham 
University of Alabama at Huntsville 
The University of Alabama 
Auburn University 
University of South Alabama 
Tuskegee University 
 
Alaska 
University of Alaska Anchorage 
University of Alaska Fairbanks 
 
Arizona 
Arizona State University 
University of Arizona 
Embry-Riddle Aeronautical University-Prescott 
Northern Arizona University 
 
Arkansas 
University of Arkansas at Little Rock 
University of Arkansas 
Arkansas State University-Main Campus 
Arkansas Tech University 
John Brown University 
 
California 
California Institute of Technology 
California Polytechnic State University-San Luis 
Obispo 

California (Cont.) 
California State Polytechnic University-Pomona 
California State University-Chico 
California State University-Fresno 
California State University-Fullerton 
California State University-East Bay 
California State University-Long Beach 
California State University-Los Angeles 
California State University-Northridge 
California State University-Sacramento 
University of California-Berkeley 
University of California-Davis 
University of California-Los Angeles 
University of California-Riverside 
University of California-San Diego 
University of California-Santa Barbara 
University of California-Santa Cruz 
California Maritime Academy 
Harvey Mudd College 
Humboldt State University 
Loyola Marymount University 
University of the Pacific 
San Diego State University 
University of San Diego 
San Francisco State University 
San Jose State University 
Santa Clara University 
Stanford University 
University of Southern California 

Colorado 
University of Colorado Denver 
University of Colorado-Colorado Springs 
University of Colorado Boulder 
Colorado School of Mines 
Colorado State University-Fort Collins 
University of Denver 
Colorado State University-Pueblo 
United States Air Force Academy 
 
Connecticut 
University of Bridgeport 
University of Connecticut 
Fairfield University 
University of Hartford 
University of New Haven 
Trinity College 
United States Coast Guard Academy 
Yale University 
 
Delaware 
University of Delaware 

 

District of Columbia 
Catholic University of America 
University of the District of Columbia 
George Washington University 
Howard University 
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Table A.1 (Cont.)  Engineering schools/colleges included in the study by state. 

Florida 
University of Central Florida 
Embry-Riddle Aeronautical University-Daytona Beach 
Florida Agricultural and Mechanical University 
Florida Atlantic University 
Florida Institute of Technology 
Florida International University 
University of Florida 
University of MiamiUniversity of North Florida 
University of South Florida-Main Campus 
 
Georgia 
Georgia Institute of Technology-Main Campus 
University of Georgia 
Mercer University 
 
Hawaii 
University of Hawaii at Manoa 
 
Idaho 
Boise State University 
Idaho State University 
University of Idaho 
 
Illinois 
Bradley University 
University of Illinois at Chicago 
University of Illinois at Urbana-Champaign 
Illinois Institute of Technology 
Northern Illinois University 
 
 
 

Illinois (Cont.) 
Northwestern University 
Southern Illinois University Carbondale 
Southern Illinois University Edwardsville 
 
Indiana 
Indiana University-Purdue University-Fort Wayne 
Indiana University-Purdue University-Indianapolis 
Indiana Institute of Technology 
University of Notre Dame 
Purdue University-Calumet Campus 
Purdue University-Main Campus 
Rose-Hulman Institute of Technology 
Trine University 
Valparaiso University 
 
Iowa 
Iowa State University 
University of Iowa 
Saint Ambrose University 
 
Kansas 
University of Kansas 
Kansas State University 
Wichita State University 
 
Kentucky 
University of Kentucky 
University of Louisville 
Union College 
Western Kentucky University 
 

Louisiana 
Louisiana State University and A & M College 
Louisiana Tech University 
McNeese State University 
University of New Orleans 
Southern University and A & M College 
University of Louisiana at Lafayette 
Tulane University of Louisiana 
 
Maine 
University of Maine 
University of Southern Maine 
 
Maryland 
Capitol College 
Johns Hopkins University 
Loyola University Maryland 
University of Maryland-Baltimore County 
University of Maryland-College Park 
Morgan State University 
United States Naval Academy 
 
Massachusetts 
Boston University 
Harvard University 
University of Massachusetts-Lowell 
University of Massachusetts Amherst 
Massachusetts Institute of Technology 
Massachusetts Maritime Academy 
Merrimack College 
Northeastern University 
Smith College 
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Table A.1 (Cont.)  Engineering schools/colleges included in the study by state. 

Massachusetts 
University of Massachusetts-Dartmouth 
Tufts University 
Wentworth Institute of Technology 
Western New England University 
Worcester Polytechnic Institute 
 
Michigan 
Calvin College 
University of Detroit Mercy 
Ferris State University 
Kettering University 
Grand Valley State University 
Lake Superior State University 
Lawrence Technological University 
University of Michigan-Ann Arbor 
Michigan State University 
Michigan Technological University 
University of Michigan-Dearborn 
Oakland University 
Saginaw Valley State University 
Wayne State University 
Western Michigan University 
 
Minnesota 
Minnesota State University-Mankato 
University of Minnesota-Twin Cities 
University of Minnesota-Duluth 
Saint Cloud State University 
University of St Thomas 
Winona State University 
 
 

Mississippi 
University of Mississippi 
Mississippi State University 
 
Missouri 
University of Missouri-Columbia 
University of Missouri-Kansas City 
Missouri University of Science and Technology 
Saint Louis University-Main Campus 
Southeast Missouri State University 
Washington University in St Louis 
 
Montana 
Carroll College 
Montana Tech of the University of Montana 
Montana State University 
 
Nebraska  
University of Nebraska-Lincoln 
 
Nevada 
University of Nevada-Las Vegas 
University of Nevada-Reno 
 
New Hampshire 
Dartmouth College 
University of New Hampshire-Main Campus 
 
New Jersey 
Fairleigh Dickinson University-Metropolitan Campus 
Rowan University 

New Jersey (Cont.) 
Monmouth University 
New Jersey Institute of Technology 
Princeton University 
Rutgers University-New Brunswick 
Stevens Institute of Technology 
The College of New Jersey 
 
New Mexico 
New Mexico Institute of Mining and Technology 
University of New Mexico-Main Campus 
New Mexico State University-Main Campus 
 
New York 
Alfred University 
Clarkson University 
Columbia University in the City of New York 
Cooper Union for the Advancement of Science and Art 
Cornell University 
CUNY City College 
Hofstra University 
Manhattan College 
New York Institute of Technology 
Polytechnic Institute of New York University 
Rensselaer Polytechnic Institute 
Rochester Institute of Technology 
University of Rochester 
SUNY at Binghamton 
Stony Brook University 
SUNY College of Environmental Science and Forestry 
SUNY College at Buffalo 
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Table A.1 (Cont.)  Engineering schools/colleges included in the study by state. 

New York (Cont.) 
State University of New York at New Paltz 
Syracuse University 
United States Merchant Marine Academy 
United States Military Academy 
Webb Institute 
 
North Carolina 
Duke University 
North Carolina A & T State University 
University of North Carolina at Charlotte 
North Carolina State University at Raleigh 
 
North Dakota 
North Dakota State University-Main Campus 
 
Ohio 
University of Akron Main Campus 
Case Western Reserve University 
University of Cincinnati-Main Campus 
Cleveland State University 
University of Dayton 
Marietta College 
Miami University-Oxford 
Ohio Northern University 
Ohio State University-Main Campus 
Ohio University-Main Campus 
University of Toledo 
Wright State University-Main Campus 
Youngstown State University 
 

Oklahoma 
Oklahoma Christian University 
Oklahoma State University-Main Campus 
University of Oklahoma Norman Campus 
Oral Roberts University 
University of Tulsa 
 
Oregon 
Oregon Institute of Technology 
Oregon State University 
Portland State University 
University of Portland 
 
Pennsylvania 
Bucknell University 
Carnegie Mellon University 
Drexel University 
Gannon University 
Grove City College 
Lafayette College 
Lehigh University 
Messiah College 
Pennsylvania State University-Erie-Behrend College 
Pennsylvania State University-Harrisburg 
Pennsylvania State University-Main Campus 
University of Pennsylvania 
Philadelphia University 
University of Pittsburgh-Pittsburgh Campus 
Swarthmore College 
Temple University 
 
 

Pennsylvania (Cont.) 
Villanova University 
Widener University-Main Campus 
Wilkes University 
York College Pennsylvania 
 
Rhode Island 
Brown University 
University of Rhode Island 
Roger Williams University 
 
South Carolina 
Citadel Military College of South Carolina 
Clemson University 
University of South Carolina-Columbia 
 
South Dakota 
South Dakota School of Mines and Technology 
South Dakota State University 
 
Tennessee 
Christian Brothers University 
University of Memphis 
The University of Tennessee at Chattanooga 
The University of Tennessee 
The University of Tennessee-Martin 
Tennessee State University 
Tennessee Technological University 
Vanderbilt University 
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Table A.1 (Cont.)  Engineering schools/colleges included in the study by state. 

Texas 
Baylor University 
University of Houston 
Lamar University 
LeTourneau University 
University of North Texas 
The University of Texas-Pan American 
Prairie View A & M University 
Rice University 
Southern Methodist University 
Texas A & M University-Kingsville 
Texas A & M University-Galveston 
Texas A & M University-College Station 
The University of Texas at Arlington 
The University of Texas at Austin 
The University of Texas at Dallas 
The University of Texas at El Paso 
The University of Texas at Tyler 
Texas Christian University 
The University of Texas at San Antonio 
Texas Tech University 
Trinity University 
 
 
 
 

Utah 
Brigham Young University-Provo 
Utah State University 
University of Utah 
 
Vermont 
Norwich University 
University of Vermont 
 
Virginia 
George Mason University 
Old Dominion University 
Virginia Polytechnic Institute and State University 
Virginia Commonwealth University 
University of Virginia-Main Campus 
Virginia Military Institute 
 
Washington 
Gonzaga University 
Saint Martin's University 
Seattle Pacific University 
Seattle University 
 
 

Washington (Cont.) 
Walla Walla University 
Washington State University 
University of Washington-Seattle Campus 
 
West Virginia 
West Virginia University Institute of Technology 
West Virginia University 
 
Wisconsin 
Marquette University 
Milwaukee School of Engineering 
University of Wisconsin-Stout 
University of Wisconsin-Madison 
University of Wisconsin-Milwaukee 
University of Wisconsin-Platteville 
 
Wyoming 
University of Wyoming 
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Figure A.1   Histograms of model variables before and after log transformations:  number of bachelor’s degrees to all students, URM students, 
and African American students. 
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Figure A.2  Histograms of model variables before and after log transformations:  total FTE engineering undergraduates, URM FTE engineering 
undergraduates, number of full-time

  



191 
 

 

Table A.2 Decomposed descriptive statistics for outcome and explanatory variables, computed to confirm variation over time. 

Variable 
 

Mean Std. Dev. Min Max Observations 

B.S. degrees to all 
students 

overall 249 264 1 1950 N = 2266 

between 
 

262 3 1733 N = 324 

within 
 

34 30 516 T-bar = 6.99 

B.S. degrees to URM 
students 

overall 28 40 0 414 N = 2221 

between 
 

39 0 333 n = 324 

within 
 

9 -58 109 T-bar = 6.85 

B.S. degrees to Black 
students 

overall 11 19 0 206 N = 2221 

between 
 

18 0 156 n = 324 

within 
 

5 -39 63 T-bar = 6.85 

Proportion non-TTT 
faculty 

overall 0.14 0.14 0 0.91 N = 2191 

between 
 

0.10 0 0.65 n = 323 

within 
 

0.09 -0.26 0.83 T-bar = 6.78 

Proportion research 
faculty 

overall 0.09 0.13 0 0.80 N = 2191 

between 
 

0.11 0 0.66 n = 323 

within 
 

0.06 -0.35 0.48 T-bar = 6.78 

Faculty-student ratio overall 0.10 0.11 0.00 1.60 N = 2169 

between 
 

0.10 0.02 1.16 n = 321 

within 
 

0.04 -0.21 0.54 T-bar = 6.76 
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Table A.2 (Cont.)  Decomposed descriptive statistics for outcome and explanatory variables, computed to confirm variation over time. 

Variable 

 

Mean Std. Dev. Min Max Observations 

Proportion URM faculty overall 0.06 0.08 0 1 N = 2137 

between 
 

0.08 0 0.69 n = 318 

within 
 

0.03 -0.11 0.66 T-bar = 6.72 

Engineering research 
expenditures per FTE 

overall 14292 30482 0 479,492 N = 1899 

between 
 

28634 0 401,391 n = 299 

within 
 

6594 -57,164 114,553 T-bar = 6.35 
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Table A.3  Hausman Test comparing fixed effects and random effects estimates of log 
engineering degree production for URM students. 

 
Coefficients  

 

FE 
estimates 

RE 
estimates Difference (diag(Vb - VB))1/2 

Variables (b) (B) (b-B) S.E. 

Proportion non-TTT faculty -0.06 0.00 -0.06 0.09 

Proportion research faculty 0.14 -0.24 0.38 0.10 

Faculty-student ratio 0.86 1.38 -0.51 0.27 

Proportion URM faculty 0.22 0.44 -0.21 0.28 

Proportion female faculty -0.24 -0.57 0.33 0.34 

Log eng. research exp per FTE 0.04 0.01 0.03 0.04 

Log URM FTE 0.79 0.83 -0.04 0.08 

Log total FTE -0.29 0.02 -0.31 0.12 

Proportion URM Ph.D. 0.33 0.48 -0.15 0.14 

Log total Ph.D. 0.03 0.07 -0.04 0.03 

Proportion female B.S. 0.56 0.85 -0.30 0.21 

Proportion URM FTE -3.52 -0.05 -3.46 0.69 

Notes:  Hausman test computation: 

b = consistent under Ho and Ha; obtained from fixed effects regression 
B = inconsistent under Ha, efficient under Ho; obtained from random effects regression 
 Test:  Ho:  difference in coefficients not systematic 
chi2(12) = (b-B)'[(V_b-V_B)^(-1)](b-B) =  122.56 
Prob>chi2 = 0.0000 
Therefore, under the current specification, the null hypothesis that the faculty effects are adequately 
modeled by a random-effects model is resoundingly rejected.  
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Table A.4  Sensitivity analysis:  Faculty-to-student ratio (Fixed effects estimates of log 
engineering degree bachelor’s degrees to URM students using pooled sample of institutions 
and 20 imputed data sets). 

Variables Model 1 Model 2 

Faculty Inputs   
Proportion non-TTT faculty -0.09 0.10 

(0.17) (0.13) 
Proportion of research faculty 0.18 0.30 

(0.19) (0.18) 
Faculty-student ratio (ALL 
faculty) 

0.87                 
(0.52)                 

Faculty-student ratio 
(tenured/tenure-track only) 

 1.95 
 (1.90) 

Proportion URM faculty 0.08 0.06 
(0.37) (0.37) 

Proportion female faculty -0.12 -0.05 
(0.54) (0.53) 

Log eng. Research 
expenditures per FTE 

0.04 0.04 
(0.05) (0.05) 

Student Characteristics   
Log URM FTE 0.75*** 0.76*** 

(0.21) (0.21) 
Log total FTE -0.27 -0.24 

(0.26) (0.28) 
Proportion URM Ph.D. 0.36 0.37 

(0.36) (0.35) 
Log total Ph.D. 0.03 0.03 

(0.05) (0.05) 
Proportion female B.S. 0.86* 0.88*   

(0.40) (0.41) 
Proportion URM FTE -3.55** -3.58**  

(1.14) (1.15) 
   
Observations 1200 1200 
Institutions 182 182 
Notes:  Standard errors in parentheses 
legend: * p<0.05; ** p<0.01; *** p<0.001   
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Table A.5  Sensitivity analysis:  Same-race predictors (Fixed effects estimates of log engineering degree bachelor’s degrees to BLACK students 
by institutional context using 20 imputed data sets). 

Variables All Inst. 

Institutional Control Selectivity 
2010 Carnegie 
Classification 

HBCU Private Public 
Land 
Grant 

Highly 
Comp- 
etitive 

Very 
Comp- 
etitive 

Comp- 
etitive 

Less 
Comp- 
etitive   

Doctoral/ 
Research Master’s 

Faculty Characteristics           
Proportion non-TTT 
faculty 

-0.16 -0.26 0.11 -0.42 -0.49 0.34 0.16 0.72 -0.34 0.25 -0.24 
(0.21) (0.25) (0.28) (0.70) (0.28) (0.45) (0.37) (1.25) (0.23) (0.81) (0.37) 

Proportion research 
faculty 

-0.39 -0.39 -0.30 -0.73 -0.26 -0.75 -0.03 -0.76 -0.49* 1.12 -1.65* 
(0.23) (0.37) (0.26) (0.68) (0.27) (0.45) (0.40) (1.07) (0.24) (0.92) (0.58) 

Faculty-student ratio 1.13 1.85* 0.20 3.32 1.80* -0.11 -0.01 -2.61 1.46* -2.53 0.58 
(0.74) (0.83) (0.74) (4.15) (0.75) (0.98) (1.71) (8.78) (0.69) (6.45) (2.48) 

Proportion Black 
faculty 

0.92 1.40* 0.10 4.96* 0.51 -3.54 -0.19 2.64 -0.21 -2.47 0.72 
(0.53) (0.63) (1.51) (2.46) (1.54) (2.56) (0.76) (3.31) (1.26) (5.42) (1.05) 

Proportion female 
faculty 

-1.85* -2.69 -0.86 -0.57 -3.53* -2.69 0.95 -3.81 -2.15* 0.77 -1.37 
(0.84) (1.41) (0.99) (2.09) (1.41) (1.65) (1.36) (3.15) (0.89) (2.72) (2.29) 

Log eng. Research 
expenditures per FTE 

-0.05 -0.18 0.02 0.24 -0.03 -0.10 -0.09 0.23 -0.09 -0.07 0.74 
(0.07) (0.15) (0.07) (0.20) (0.10) (0.17) (0.11) (0.43) (0.07) (0.17) (0.34) 

Student Characteristics           
Log Black FTE 0.12 0.34 -0.16 -0.46* 0.20 -0.30 0.30 0.31 0.22 -1.10 1.77 

(0.15) (0.20) (0.16) (0.19) (0.25) (0.32) (0.28) (0.48) (0.14) (0.56) (1.36) 
Log total FTE 0.19 0.11 0.35 0.87 0.50 0.43 -0.57 0.18 0.11 1.48 -0.25 

(0.23) (0.40) (0.24) (0.56) (0.40) (0.40) (0.46) (0.97) (0.21) (0.91) (1.56) 
Proportion Black 
Ph.D. 

0.84 1.07 0.55 1.03 -1.95 1.30 0.61 -0.82 1.65** -0.46 0.53 
(0.67) (1.08) (0.67) (0.62) (4.31) (1.09) (0.74) (1.32) (0.55) (0.97) (0.53) 

 



196 
 

Table A.5 (Cont.)  Sensitivity analysis:  Same-race predictors (Fixed effects estimates of log engineering degree bachelor’s degrees to BLACK 
students by institutional context using 20 imputed data sets).  

Variables All Inst. 

Institutional Control Selectivity Carnegie Classification 

HBCU Private Public 
Land 
Grant 

Highly 
Comp- 
etitive 

Very 
Comp- 
etitive 

Comp- 
etitive 

Less 
Comp- 
etitive   

Doctoral/ 
Research Master’s 

Log total Ph.D. -0.01 0.17 -0.05 -0.07 0.06 -0.08 0.18 -0.56** -0.04 0.03 0.11 
(0.06) (0.11) (0.07) (0.15) (0.12) (0.10) (0.10) (0.18) (0.06) (0.21) (0.10) 

Proportion female 
B.S. 

0.56 0.75 0.34 -1.82 1.56 -0.74 0.32 1.75 0.63 1.20 -0.39 
(0.52) (0.94) (0.61) (1.30) (0.84) (1.57) (0.72) (1.78) (0.53) (2.15) (1.02) 

Proportion Black FTE -1.92 -4.30* 2.03 3.06 -1.00 2.12 -3.37 -4.30 -1.95 3.69 -4.54 
(1.62) (1.91) (1.83) (2.52) (6.48) (5.64) (1.81) (3.49) (1.92) (5.45) (3.06) 

            
R2, within .024 .118 .012 .063 .096 .066 .039 .217 .041 .266 .616 
Observations 1132 308 824 314 421 301 337 73  1040 74 48 
Institutions 182 49 133 52 63 51 54 14  164 15 7 
Notes:  Standard errors in parentheses 
legend: * p<0.05; ** p<0.01; *** p<0.001 
This set of analyses includes comparisons across 9 institutional contexts, which increases the probability of Type I errors. 
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