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Notch Signaling and Bone Fracture Healing

Abstract
Bone fractures can exhibit delayed or non-union healing. Current treatments have well- documented
limitations. Although morphological aspects of fracture healing are well- characterized, molecular
mechanisms that regulate the complex progression of healing are poorly understood. Therefore, a need
persists for the identification of novel pathways that regulate fracture healing, and for development of
therapeutics targeting these pathways to enhance regeneration. Notch signaling regulates bone development,
and many aspects of bone development are recapitulated during repair. Notch signaling is also required for
repair of other tissues, and enhancing Notch signaling promotes regeneration. Therefore, the objective of this
thesis was to determine the role of Notch signaling during bone fracture healing, and to create a translatable
therapy targeting the pathway to enhance bone tissue formation. We hypothesized that (i) Notch signaling
components are active during bone repair; (ii) inhibition of Notch signaling alters healing; (iii) expression of
the Jagged1 ligand in mesenchymal cells regulates bone formation; and (iv) therapeutic delivery of Jagged1
will activate the Notch signaling pathway and promote osteogenesis.

We first characterized activation of Notch signaling during tibial fracture and calvarial defect healing, and
demonstrated that Notch signaling components are active during both methods of repair with Jagged1 the
most highly upregulated ligand. Then we determined the importance of Notch signaling by using a temporally
controlled inducible model (Mx1- Cre;dnMAMLf/-) to impair canonical signaling in all cells during tibial
fracture and calvarial defect healing, and demonstrated that Notch inhibition alters the temporal progression
of events required for healing, including inflammation, cartilage formation, callus vascularization and bone
remodeling. Next we deleted Jagged1 in mesenchymal progenitors (Prx1-Cre;Jagged1f/f) or committed
osteoblasts (Col2.3-Cre;Jagged1f/f), and determined that Jagged1 promotes bone formation during
development. Finally, we developed a biomaterial construct comprised of Jagged1 and a poly(β-amino ester)
scaffold, and demonstrated that it activates Notch signaling and enhances osteoblast differentiation.

This thesis identified Notch signaling as an important regulator of fracture healing, developed a translatable
therapeutic targeting the pathway to improve bone tissue formation. The study design outlined can also serve
as a model for the discovery of novel pathways that regulate, and therefore could enhance, bone fracture
healing.
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ABSTRACT 

NOTCH SIGNALING AND BONE FRACTURE HEALING 

Michael I. Dishowitz 

Kurt D. Hankenson, D.V.M., Ph.D. 

 

Bone fractures can exhibit delayed or non-union healing. Current treatments have well-

documented limitations. Although morphological aspects of fracture healing are well-

characterized, molecular mechanisms that regulate the complex progression of healing are poorly 

understood. Therefore, a need persists for the identification of novel pathways that regulate 

fracture healing, and for development of therapeutics targeting these pathways to enhance 

regeneration. Notch signaling regulates bone development, and many aspects of bone 

development are recapitulated during repair. Notch signaling is also required for repair of other 

tissues, and enhancing Notch signaling promotes regeneration. Therefore, the objective of this 

thesis was to determine the role of Notch signaling during bone fracture healing, and to create a 

translatable therapy targeting the pathway to enhance bone tissue formation. We hypothesized 

that (i) Notch signaling components are active during bone repair; (ii) inhibition of Notch signaling 

alters healing; (iii) expression of the Jagged1 ligand in mesenchymal cells regulates bone 

formation; and (iv) therapeutic delivery of Jagged1 will activate the Notch signaling pathway and 

promote osteogenesis.  

We first characterized activation of Notch signaling during tibial fracture and calvarial 

defect healing, and demonstrated that Notch signaling components are active during both 

methods of repair with Jagged1 the most highly upregulated ligand. Then we determined the 

importance of Notch signaling by using a temporally controlled inducible model (Mx1-

Cre;dnMAMLf/-) to impair canonical signaling in all cells during tibial fracture and calvarial defect 

healing, and demonstrated that Notch inhibition alters the temporal progression of events 

required for healing, including inflammation, cartilage formation, callus vascularization and bone 

remodeling. Next we deleted Jagged1 in mesenchymal progenitors (Prx1-Cre;Jagged1f/f) or 
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committed osteoblasts (Col2.3-Cre;Jagged1f/f), and determined that Jagged1 promotes bone 

formation during development. Finally, we developed a biomaterial construct comprised of 

Jagged1 and a poly(β-amino ester) scaffold, and demonstrated that it activates Notch signaling 

and enhances osteoblast differentiation. 

This thesis identified Notch signaling as an important regulator of fracture healing, 

developed a translatable therapeutic targeting the pathway to improve bone tissue formation. The 

study design outlined can also serve as a model for the discovery of novel pathways that 

regulate, and therefore could enhance, bone fracture healing. 
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CHAPTER 1 

Introduction to Bone Fracture Healing and the Notch Signaling Pathway 

 

1.1 Clinical Significance of Bone Fractures 

It is estimated that approximately 7.9 million fractures occur in the United States each 

year, and although the majority of fractures heal with standard care, approximately 10-13% have 

reported to exhibit delayed healing or develop into non-unions [1, 2]. Direct treatment costs are 

approximately $3,400-$5,300 per fracture. However, the total financial burden to society is 

approximately $12,500-17,300 per fracture when including associated costs such as lost 

productivity [3]. Direct and societal costs are of course much higher for fractures that experience 

delayed healing due to increased medical visits and continued loss of productivity. Furthermore, 

fractures in an elderly population have increased costs upwards of $81,300 per injury, of which 

nursing facility expenses account for nearly half, as well as result in an increased mortality rate 

[4].  

To treat severe injuries, therapeutic approaches have focused on delivery of 

osteoinductive (biological cues to stimulate osteoblast activity) and osteoconductive (scaffold or 

other cue to support bone formation) signals. Autologous bone grafts often harvested from the 

patient’s iliac crest are considered the gold standard of care, but can result in significant donor 

site morbidity and post-surgical pain, and yield only a limited amount of graft material [5]. 

Demineralized bone matrix, a common allograft therapeutic, is more readily available but has 

limited osteoinductive potential and can induce immunogenic reactions [5]. More recently, growth 

factor-based therapies have been developed to promote bone formation. Use of bone 

morphogenetic proteins (BMPs) has become one of the more common treatments [6, 7]. 

However, recent reports suggest that BMPs lack the clinical efficiency and safety that has been 

widely demonstrated in pre-clinical animal models [8, 9]. Furthermore, gene-based therapeutics 

that deliver osteoinductive genetic information to cells have demonstrated suboptimal efficiency 
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[10] or induced significant immunogenic responses [11]. Therefore, a clinical need persists for the 

development of new methods to enhance bone fracture healing. 

 

1.2 Bone Fracture Healing 

 Bone fracture healing occurs through a series of carefully regulated spatiotemporal 

events that recapitulate many aspects of embryological bone development (Figure 1.1) [12-14]. 

Endochondral bones such as the tibia and femur heal primarily through endochondral ossification. 

Following injury, inflammation and hematoma formation mediate an influx of undifferentiated 

mesenchymal cells to the site of injury that rapidly proliferate to produce the initial fibrovascular 

callus. These cells then condense and undergo chondrogenic differentiation to produce an 

avascular cartilaginous callus. Terminal chondrocyte hypertrophy and cartilage matrix 

mineralization are then followed by apoptosis and resorption, which allows for vascular invasion 

of the callus. During this cartilage-to-bone transition, the vascular network mediates an influx of 

osteoprogenitor cells that undergo differentiation and produce immature bone on top of the 

resorbing cartilage matrix. Concomitantly, periosteal-derived osteoblasts form a mineralized bony 

shell surrounding the callus. Over time, the callus matures and is remodeled through osteoblast-

mediated bone formation and osteoclast-mediated bone resorption, ultimately restoring the 

structure and function of the original bone. Alternatively, intramembranous bones such as the 

calvarium as well as other bones that are rigidly fixed during repair heal through 

intramembranous ossification, which involves direct bone formation without a cartilage precursor 

[15, 16]. 

 Although physiological mechanisms of fracture healing are well-characterized, molecular 

signals that control the complex temporal progression of events required for healing are poorly 

understood, with most investigations limited to understanding the role(s) of the BMP [17] and Wnt 

[18, 19] signaling pathways. Elucidating the significance of novel signaling pathways that regulate 

fracture healing will allow for the identification of novel therapeutic targets to improve bone repair. 
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Figure 1.1. Schematic of the temporal progression of endochondral fracture repair. Figure adapted from 

Gerstenfeld et al. [20] 

 

 

1.3 Notch Signaling Pathway 

The Notch signaling pathway is a developmentally conserved cell-to-cell signaling 

pathway that regulates cell proliferation, differentiation, fate determination and apoptosis [21]. 

Activation of the pathway occurs when a Notch ligand (Jagged 1,2 and Delta-like 1,4) expressed 

on the surface of a signaling cell interacts with a Notch receptor (Notch 1-4) expressed on the 

surface of a receiving cell. The Notch intracellular domain (NICD) is released via a two-stage 

proteolytic event mediated first by the ADAM family metalloproteinase tumor necrosis factor α 

conversion enzyme (ADAM/TACE), and then by the γ-secretase complex comprised of 

Presenilins 1 and 2. Once released, NICD translocates to the nucleus where it binds to 

Recombination Signal Binding Protein For Immunoglobulin Kappa J Region (RBPjκ), converting it 

from a transcriptional repressor into an activator. Mastermind-like protein (MAML) then binds to 

create the NICD-RBPjκ-MAML complex and serves as a scaffold to recruit other co-activators 

necessary to initiate transcription of canonical Notch target gene families Hes and Hey (Figure 

1.2) [22-24]. 

 

Initial Injury         Cartilage Formation    Cartilage-to-Bone Transition   Secondary Bone Formation 
Inflammation                      Callus Vascularization               Bone remodeling 
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Figure 1.2. 

Schematic of the 

Notch signaling 

pathway. Figure 

adapted from 

Fischer et al. [25] 

 

 

 

 

 

 

1.4 Notch Signaling and Bone Formation 

The Notch signaling pathway regulates mesenchymal cell lineage behavior and 

embryological bone formation [26-33]. Deletion of Notch components in undifferentiated 

mesenchymal progenitor cells stimulates osteoblast differentiation and early bone formation, 

which is ultimately lost during aging due to depletion of the progenitor pool [26]. Constitutive 

activation of Notch in committed but not completely mature osteoblasts promotes proliferation 

while inhibiting differentiation, resulting in osteosclerotic immature bone formation that does not 

properly mature [27]. These results demonstrate that activation of Notch signaling maintains 

osteoprogenitor cells in an undifferentiated state. Deletion of Notch components in the same 

committed osteoblast population or in mature osteoblasts does not alter early bone formation, but 

instead results in osteopenia during aging due to increased osteoclast activity [26-28], 
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demonstrating that activation of Notch signaling in mature osteoblasts promotes net bone gain by 

secondarily inhibiting osteoclast activity. 

Transient activation of Notch signaling in progenitor cells is required to initiate 

chondrogenesis [34]. However, constitutive expression of Notch components prevents 

differentiation from occurring [29, 30, 34], whereas sustained inhibition in undifferentiated 

mesenchymal progenitor cells or committed chondrogenic cells results in the pathological 

overproduction of chondrocytes [29, 30]. Reactivation of Notch is then required for proper 

terminal hypertrophic chondrocyte maturation [31]. These results demonstrate that while transient 

activation is required to initiate chondrogenesis, constitutive activation of Notch signaling inhibits 

differentiation, but must be reactivated to complete terminal differentiation.  

Since many aspects of bone development are recapitulated during repair, these results 

collectively suggest that Notch signaling also regulates bone fracture healing. 

 

1.5 Notch and Vasculogenesis 

 Bone formation during development and fracture repair is dependent upon proper 

vascularization, which mediates an influx of osteogenic cells to sites of new bone formation. 

Various gain-of-function and loss-of-function models have demonstrated that Notch signaling is a 

critical regulator of vascular development. With regards to ligand activity, homozygous Jagged1 

deletion [35] as well as Dll4 haploinsufficiency [36, 37] results in embryonic lethality due to 

vascular defects. With regards to receptor activity, conditional Notch4 gain-of-function in VEGFR-

expressing cells results in embryonic lethality due to a restricted and disorganized vascular 

network [38]. Interestingly, homozygous Notch4 deleted mice develop normally, but homozygous 

Notch1 deleted mice as well as double homozygous Notch1 and Notch4 deleted mice show 

vascular remodeling defects that result in embryonic lethality [39]. Furthermore, Notch1 deletion 

in Tie2-expressing endothelium-specific cells also produce vascular abnormalities that result in 

embryonic lethality [40]. The fact that gain-of-function and loss-of-function of Notch components 

both result in embryonic lethality suggests that the proper spatiotemporal expression of Notch 

components is required for proper vascular developmental patterning and remodeling. 



 6 

 Notch signaling has also been shown to regulate postnatal angiogenesis and 

vasculogenesis. Use of various tissue-specific and inducible Jagged1 gain- and loss-of-function 

mouse models have demonstrated that Jagged1 promotes angiogenesis and vessel sprouting by 

antagonizing Dll4-Notch interactions, which are inhibitory [41]. Jagded1 expression also promotes 

endothelial cell proliferation, differentiation and migration, whereas Dll1 has no effect [42]. 

 

1.6 The Notch Ligand Jagged1 (Jag1) 

 Clinically, loss-of-function mutations to Jagged1 are primarily responsible for Alagille 

Syndrome (ALGS) [43, 44]. ALGS incorporates a wide range of developmental defects, including 

chronic liver cholestasis, bile duct paucity, cardiovascular disease, kidney and pancreatic 

disease, craniofacial development alterations and other musculoskeletal defects [45]. ALGS 

patients present with decreased bone mass [46] and increased risk of fracture [47], which is often 

assumed to be secondary to chronic liver cholestasis, where the resulting malabsorption of fat 

soluble vitamins and minerals is believed to be primarily responsible for impaired skeletal 

development. However, liver transplantations, which are common treatments for ALGS patients, 

have not been able to recover normal bone growth [46, 48]. A recent study demonstrated a direct 

role for Jagged1 in craniofacial development [49] and a SNP at the Jagged1 locus is associated 

with bone mass. Furthermore, Jagged1 is the mostly highly expressed Notch ligand in 

mesenchymal cells during skeletal development [30], (as stated above) enhances vasculogenesis 

by promoting endothelial cell proliferation, differentiation and migration [41, 42], and its 

expression in mesenchymal lineage cells promotes hematopoietic stem cell expansion [50, 51] 

and inhibits osteoclast differentiation [52]. These results suggest that Jagged1 activity in 

mesenchymal lineage cells directly regulates bone formation. 

 

1.7 Notch and Regeneration 

Notch signaling is upregulated following injury to many tissues including skin [53], retina 

[54], brain [55, 56], heart [57], intestine [58], kidney [59, 60] and pancreas [61]. Activation of 

Notch signaling is required for successful wound healing [53] and regeneration of muscle [62]. 
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Manipulations to Notch signaling can also enhance tissue regeneration. Specifically, transient 

upregulation of Notch signaling via adenoviral transfection of NICD significantly improved 

myocardial function in infarcted hearts [57]. These results identify Notch as a potential therapeutic 

target for other injuries as well where the pathway is endogenously active. 

Interestingly, in vivo delivery of soluble Notch ligands Jagged1 or Dll4 through an osmotic 

pump did not improve healing following ischemic-induced brain injuries [55, 63]. However, 

previous studies have demonstrated a requirement for Notch ligands to be immobilized to a 

substrate in order to active NICD cleavage and downstream Notch signaling, such that free-

floating soluble ligands are also able to bind to receptors but instead effectively inhibit the 

pathway [64-69]. It has been hypothesized that the naturally-occurring immobilized state of a 

membrane-bound Notch ligand is required to apply a pulling force on the extracellular domain of 

the Notch receptor, which precedes cleavage of the intracellular domain (NICD) [70]. These 

results demonstrate the requirement for ligand immobilization to activate the Notch signaling 

pathway for therapeutic applications. 

 

1.8 Use of Poly(β-amino ester)s for Therapeutic Applications 

 A combinatorial library of degradable, photocrosslinkable, acrylate-terminated poly(β-

amino ester)s (PBAE) comprised of amines and diacrylates was developed for the rapid 

screening and design of biomaterials for a variety of therapeutic applications (Figure 1.3) [71]. 

Polymerization occurs through step-growth with resulting linear macromers containing ester and 

tertiary amines in their backbones. Following addition of a photoinitiator and exposure to UV light, 

crosslinking occurs between the functionalized acrylate groups. After photocrosslinking, PBAE 

networks degrade via hydrolysis to their backbone esters into small molecule bis(β-amino acid)s, 

diol products, and poly(acrylic acid) kinetic chains. PBAEs are clinically advantageous polymers 

to use as therapeutics because they are simple to synthesize with no byproducts formed, thus 

eliminating the need for multiple purification steps, and are inexpensive and commercially 

available. Mechanical properties and degradation rates of PBAEs can be controlled by altering 

the diacrylate-to-amine molar ratio [72], further expanding their applicability. 
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 PBAEs have successfully been used for a variety of therapeutic applications. PBAEs 

have been used as gene-delivery vehicles for cardiovascular therapeutics [73] and as nonviral 

DNA vectors for cancer therapeutics [74]. PBAE nanoparticles have also shown to be effective 

drug delivery vehicles for targeting cancerous cells [75]. Importantly, one PBAE in particular, 

diethylene glycol diacrylate combined with isobutylamine, has demonstrated osteoconductive 

properties when used as a scaffold carrier for BMP delivery [76]. 

 

 

Figure 1.3. General poly(β-amino ester) polymerization schematic and chemical structures. Synthesis of 

amines and diacrylates (top). Monomers depicting the 12 amines and 10 diacrylates (bottom). Figure from 

Anderson et al. [71] 
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1.9 Conclusions 

 This chapter provides an overview of the Notch signaling pathway and bone fracture 

healing. The Notch signaling pathway has been shown to regulate embryological bone 

development. Since many aspects of development are recapitulated during repair, Notch 

signaling may also regulate bone fracture healing. Furthermore, activation of the pathway has 

been shown to promote regeneration of other tissues, identifying it as a potential therapeutic to 

also enhance regeneration of bone. The work described in this thesis will report on the 

comprehensive assessment of Notch signaling during fracture. The significance of Notch 

signaling will be determined by blocking canonical Notch signaling during fracture healing. The 

role of Jagged1 specifically during bone development and remodeling will also be assessed by 

deleting the gene in the osteoblast lineage, and finally, we will develop a biomaterial by delivering 

the Jagged1 ligand to promote bone healing. 
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CHAPTER 2 

Specific Aims and Hypotheses 

 

Bone fractures can exhibit delayed healing or develop into non-unions. Autologous bone 

grafts and growth factor therapies such as bone morphogenetic proteins are common therapeutic 

strategies to treat such severe injuries. However, they have well-documented limitations and 

safety concerns. Furthermore, although the physiological mechanisms of fracture healing are well 

characterized, the molecular mechanisms that regulate the complex spatiotemporal progression 

of events required for healing are poorly understood. Therefore, a need persists for the 

identification of novel signaling pathways that regulate fracture healing, and the development of 

new therapies targeting these pathways to enhance bone regeneration. 

Notch signaling regulates mesenchymal cell behavior and embryological bone formation, 

and many aspects of bone formation are recapitulated during bone fracture healing. Furthermore, 

Notch signaling has been shown to be required for successful wound healing, and targeting the 

pathway can promote tissue regeneration. However, the role of Notch signaling during bone 

fracture healing and the ability of the pathway to enhance regeneration has not been investigated.  

Therefore, the overall objective of this thesis is to determine the role of Notch signaling 

during bone fracture healing, and to create a clinically translatable therapy targeting the pathway 

to enhance healing. 

 

2.1 Specific Aim I (Chapter 3) 

Characterize and compare activation of the Notch signaling pathway during endochondral and 

intramembranous fracture healing using murine tibial fracture healing as a model of endochondral 

bone repair and murine calvarial defect healing as a model of intramembranous bone repair. 

2.1.1 Hypothesis I 

Notch signaling components are active during murine tibial fracture and calvarial defect healing. 
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Gene and protein expression of Notch signaling components will be quantified and 

localized to specific cell populations. 

 

2.2 Specific Aim II (Chapter 4) 

Determine the importance of Notch signaling in regulating bone fracture healing by using a 

temporally controlled inducible transgenic mouse model to impair canonical Notch signaling in all 

cells during murine tibial fracture and calvarial defect healing 

2.2.1 Hypothesis II 

Inhibition of Notch signaling will alter murine tibial fracture and calvarial defect healing. 

A floxed GFP-tagged dnMAML transgene will be activated in all cell types just prior to 

injury using the inducible Mx1-Cre model. dnMAML expression inhibits the Notch signaling 

pathway just prior to transcription of target genes. Multiple stages of healing will be evaluated, 

including cartilage formation, callus vascularization, bone formation and remodeling, and 

inflammation, as well as other cell behaviors such as proliferation and apoptosis. 

 

2.3 Specific Aim III (Chapter 5) 

Determine the direct role of Jagged1 during bone formation. 

2.3.1 Hypothesis III 

Jagged1 expression in the mesenchymal lineage regulates bone formation through paracrine cell-

to-cell signaling. 

Jagged1 will be conditionally deleted in two skeletal-specific mouse models; first in a 

mesenchymal progenitor cell population by using the Prx1-Cre model and then in a committed 

osteoblast population by using the Col2.3-Cre model. Trabecular and cortical bone formation will 

be analyzed as well as gene expression of Notch components and markers of osteoblast and 

osteoclast differentiation and proliferation. 

 

2.4 Specific Aim IV (Chapter 6) 
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Develop a clinically translatable biomaterial construct comprised of Jagged1 and an 

osteoconductive scaffold, and evaluate its ability to induce bone tissue formation. 

2.4.1 Hypothesis IV 

Delivery of Jagged1 immobilized to a poly(B-amino ester) polymer will activate the Notch 

signaling pathway and promote osteoblast differentiation. 

The ability of direct and indirect Jagged1 immobilization strategies to activate the Notch 

signaling pathway and promote an osteogenic phenotype will be evaluated in standard growth 

media. Then, the ability of the ideal immobilization strategy to induce osteoblast differentiation 

and calcified mineral deposition will be evaluated in osteogenic media. Finally, translatable 

biomaterial constructs will be evaluated in murine calvarial defects and tibial fractures. 

 

This thesis aims to uncover the role of the Notch signaling pathway during bone fracture 

healing, and to develop a clinically translatable therapy targeting the pathway to improve bone 

repair. In all, this thesis serves as the foundation for Notch signaling-based translational research 

in regenerative orthopaedic medicine, and represents a model approach to uncover additional 

novel signaling pathways that regulate – and therefore could potentially enhance – bone fracture 

healing. 
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CHAPTER 3 

Notch Signaling Components Are Upregulated During Endochondral and 

Intramembranous Bone Regeneration 

 

3.1 Introduction 

Bone regeneration occurs through a series of spatiotemporal events that recapitulate 

many aspects of embryological development [1, 2]. Long bones such as the tibia develop and 

heal primarily through endochondral ossification (indirect bone formation on a cartilage 

intermediate), whereas bones such as the calvarium develop and heal through intramembranous 

ossification (direct bone formation) [3]. A number of growth factor pathways, including bone 

morphogenetic protein (BMP) and Wnt signaling, have been widely demonstrated to be required 

for fracture healing and have also been shown to promote regeneration [4-9]. However, despite 

the importance of these pathways, the significance of other growth factor pathways that regulate 

bone healing is not as well described.    

Notch signaling is a developmentally conserved pathway that mediates the development 

of stem and progenitor cell populations in many tissues. Activation of the canonical Notch 

signaling pathway occurs through direct cell-to-cell contact. When one of four Notch ligands, 

Jagged (Jag) 1,2 and Delta-like (Dll) 1,4, interacts with one of four Notch receptors, Notch1-4, a 

two-stage proteolytic event liberates the Notch intracellular domain (NICD) which then 

translocates to the nucleus and binds with co-activators to initiate transcription of Notch target 

gene families Hes and Hey.    

Notch gain of function mutations in the murine mesenchymal lineage result in enhanced 

cell proliferation while inhibiting differentiation, which prevents mature endochondral and 

intramembranous bone development [10, 11]. Alternatively, loss of Notch signaling in the 

mesenchymal lineage results in enhanced osteoprogenitor differentiation and early endochondral 

bone formation, which is rapidly lost during aging due to depletion of the progenitor pool [12, 13]. 
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Notch signaling in osteoblasts has also been shown to negatively regulate osteoclast behavior 

[10, 13-15]. Collectively, these studies demonstrate that the Notch signaling pathway regulates 

endochondral and intramembranous bone formation.  

Although Notch signaling has been shown to regulate tissue repair in a variety of tissues 

[16-21], an extensive characterization of Notch signaling during bone fracture healing has not 

been reported. Therefore, the objective of this study was to rigorously characterize and compare 

activation of the Notch signaling pathway during endochondral and intramembranous bone 

regeneration, using tibial fracture healing (TF) as a model of endochondral bone repair and 

calvarial defect healing (CD) as a model of intramembranous bone repair. We hypothesize that 

Notch signaling components are active during murine tibial fracture and calvarial defect healing. 

 

3.2 Methods 

3.2.1 Experimental Design 

All in vivo protocols were approved by the IACUC. Bilateral tibial fractures or bilateral 

calvarial defects were created in 8-11 week old male C57Bl/6 mice to evaluate Notch signaling 

during endochondral and intramembranous bone healing, respectively. Specimens were 

harvested at 0, 5, 10 and 20 days post-fracture (dpf). Quantitative real-time polymerase chain 

reaction (QPCR) was used to quantify gene expression of Notch pathway components including 

ligands (Jag1,2, Dll1,4), receptors (Notch1-4), and target genes (Hes1, Hey1,2,L) (n=4-5). 

Immunohistochemistry (IHC) was used to identify cell types that express the Jag1 ligand and the 

activated form of the Notch2 receptor, called the Notch2 intracellular domain (NICD2). 

 

3.2.2 Tibial Fracture (TF) Procedure 

Closed, transverse, mid-diaphyseal bilateral tibial fractures were created similar to 

previously published methods [22]. Briefly, under isoflurane anesthesia, a small incision was 

made medial to the tuberosity. A canal was punctured through the cortex using a 26-gauge 

needle, and a 0.009-inch diameter rod was inserted through the length of the intramedullary 

canal. The incision was closed with surgical glue. Fractures were created using a custom made 
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three-point bending apparatus. Radiographs were generated to verify correct pin placement and 

fracture location (Faxitron X-Ray) (Figure 3.1A). 0.05 mg/kg of buprenorphine was administered 

subcutaneously once after surgery. Mice recovered on heating pads and were fed ad libitum. 

 

3.2.3 Calvarial Defect (CD) Procedure 

Bilateral 1.5 mm diameter calvarial defects were created similar to previously published 

methods [23]. Under isoflurane anesthesia, the mouse was placed into stereotaxic equipment 

(Stoelting) and a sterile tegaderm drape (3M Health Care) was applied to the cranium after hair 

removal (Nair, Church & Dwight). A midline incision exposed the parietal bones, and a 1.5 mm 

diameter biopsy punch (Premier) was used to create a defect in the central portion of each 

parietal bone, leaving the surrounding periosteum intact (Figure 3.1B). PBS was used to hydrate 

the tissue. The incision was closed with 5-0 prolene non-absorbable sutures (Ethicon). 0.05 

mg/kg of buprenorphine was administered subcutaneously once after surgery. Mice recovered on 

heating pads and were fed ad libitum. 

 

 

 

 

Figure 3.1. Radiographs of closed, transverse, mid-diaphyseal bilateral fractures with intramedullary pin 

stabilization taken at the time of injury (A), and 1.5 mm diameter bilateral calvarial defects taken at the time 

of harvest (B). Radiographs were acquired at 15 sec with 25 kV. 

 

3.2.4 Quantitative Real-Time Polymerase Chain Reaction (QPCR) 

Fractured tibial calluses were dissected from the surrounding soft tissue at 5, 10 and 20 

dpf. Uninjured diaphyseal bone, flushed of marrow, served as 0 dpf controls. Calvarial defects 

were dissected at 5, 10 and 20 dpf using a 3 mm diameter punch to excise the defect and 
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surrounding bone tissue. Uninjured calvarial bone was similarly dissected for 0 dpf controls. 

Tissue was placed in Qiazol lysis reagent (Qiagen) and homogenized using the Tissue Tearor 

(BioSpec Products). mRNA was extracted using the Qiagen miRNeasy Mini Kit with DNase 

digestion to remove DNA contamination. RNA yield was determined spectrophotometrically. 1 µg 

of mRNA was reverse transcribed into cDNA using the Applied Biosystems High Capacity RNA-

to-cDNA Kit. Gene expression was quantified from 0.5 µl of cDNA in 10 µl of Power SYBR Green 

PCR Master Mix (Applied Biosystems) using a 7500 Fast Real-Time PCR system (Applied 

Biosystems). For each gene of interest, samples were run in duplicate with several controls per 

primer set to verify that the measured signal was not due to DNA contamination or primer dimer 

binding. Proper amplicon formulation was confirmed by melt curve analysis.  

Fracture healing involves a temporally changing profile of cells derived from different 

lineages. Although there is no ideal housekeeping gene for normalization across different cell 

types, a series of genes were identified that show minimal variation in expression [24]. We 

included three of those genes, run in duplicate and averaged together, as our housekeeping 

control: β-actin, which regulates cell motility; ornithine decarboxylase antizyme (OAZ1), which 

regulates polyamine synthesis; and 40S ribosomal protein 29 (RPS29), a component of the 40S 

ribosomal subunit that regulates protein synthesis. QPCR data is presented as relative gene 

expression to housekeeping control, calculated using the formula 2-ΔC(t), where ΔC(t) is the 

difference in C(t) values between the gene of interest and the average of all three housekeeping 

genes. 

 

3.2.5 Histology and Immunohistochemistry (IHC) 

Tissue was fixed in 4% paraformaldehyde at 4°C for 2-3 days, decalcified in a 4% 

hydrochloric acid 4% formic acid solution, paraffin embedded, and sectioned into 5 µm 

longitudinal slices. For Jag1 and NICD2 IHC, sections were deparaffinized and gradually 

hydrated. Sections were treated with blocking serum (5% donkey, 4% BSA, 0.1% Triton-X 100, 

0.05% Tween 20) for 60 minutes at room temperature. Primary antibodies goat Jag1 (Santa Cruz 
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sc-6011, 1:100) and rabbit cleaved NICD2 (Millipore 07-1234, 1:100) were incubated in a dilution 

buffer (2% BSA, 0.25% Triton-X 100) overnight at 4°C in a humidified chamber. Control sections 

were treated with goat IgG (Santa Cruz sc-2028, 1:200) or rabbit IgG (Santa Cruz sc-2027, 

1:200) to match the concentration of the appropriate antibody. Sections were then treated with 

3% H2O2 for 30 minutes at room temperature, followed by biotinylated secondary antibody 

donkey anti-goat (Santa Cruz sc-2043, 1:200) or donkey anti-rabbit (Santa Cruz sc-2089, 1:200) 

for 30 minutes at room temperature, and finally streptavidin-HRP (Abcam ab7403, 1:500) for 30 

minutes at room temperature. Sections were developed with DAB (Vector SK-4100) and 

counterstained with Hematoxylin. Additional sections were stained with Hematoxylin and Eosin 

(H&E) for 15 and 2.5 minutes, respectively, or 0.1% Safranin O and 0.03% Fast Green (SafO) for 

5 minutes each to visualize tissue structure and cell morphology. Slides were imaged in 

brightfield with an Olympus BX51. Color images were acquired with a Spot RT3 2 megapixel 

camera. 

 

3.2.6 Statistical Analysis 

Significance was assessed by one-way ANOVAs comparing the effect of time on gene 

expression during TF and CD separately, followed by Tukey’s post-hoc test. Pairwise t-tests were 

made to evaluate the level of gene expression during TF vs. CD at each time point. 
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3.3 Results 

3.3.1 Validation of TF and CD Models for EO and IO, Respectively 

Stabilized tibial fractures have been shown to heal primarily through endochondral 

ossification, whereas calvarial defects have been shown to heal via intramembranous 

ossification. We further set out to verify these injuries as appropriate models to study 

endochondral and intramembranous bone repair by quantifying gene expression of collagen type 

II (Col2), a marker of cartilage formation, and osteocalcin (Ocn), a marker of bone formation, and 

by analyzing SafO histology for cartilage formation.  

During tibial fracture healing (TF), Col2 was transiently upregulated, whereas Ocn was 

initially downregulated and then upregulated later (Figure 3.2). Histology confirmed extensive 

cartilage in the callus at 10 dpf, which was replaced with bone through endochondral ossification 

by 20 dpf. During calvarial defect healing (CD), Col2 expression did not change, whereas Ocn 

was upregulated. The absence of cartilage formation confirmed by histology verifies healing 

through intramembranous ossification.  

 

 

 

Figure 3.2. Col2 and Ocn gene expression during TF and CD. Col2 

is up-regulated during TF but not CD. Ocn is up-regulated during CD, 

and also during TF between 10dpf and 20dpf. A common letter above 

any two bars indicates a significant difference between those time 

points (p<0.05). Data presented as fold change to 0dpf, calculated by 

2-ΔΔC(t). 
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3.3.2 Comparison of Notch Gene Expression Over Time During TF and CD 

Tissue was collected at 0, 5, 10 and 20 dpf for quantitation of Notch ligand, receptor and 

target gene expression. All Notch genes examined were upregulated over time during TF (Figure 

3.3). Generally, the most highly expressed ligand, receptor and target gene during TF (relative to 

each other) were Jag1, Notch2 and Hes1, whereas the least expressed were Dll4, Notch4 and 

Hey2. The ligand, receptor and target gene that showed the greatest change (upregulation) 

during TF (relative to 0 dpf) were Jag2 (71-fold, 10 dpf), Notch4 (19-fold, 10 dpf) and Hes1 (172-

fold, 10 dpf). 

Only Jag1, Notch2 and Notch4 were upregulated over time during CD. However, 

consistent with TF, the most highly expressed ligand, receptor and target gene during CD 

(relative to each other) were Jag1, Notch2 and Hes1, whereas the least expressed were Dll1, 

Notch4 and Hey2. The ligand, receptor and target gene that showed the greatest change 

(upregulation) during CD (relative to 0 dpf) were Jag1 (4.2-fold, 10 dpf), Notch4 (11-fold, 20 dpf) 

and HeyL (2.4-fold, 10 dpf). 

 

3.3.3 Comparison of Notch Gene Expression During TF vs. CD at Each Time Point 

We next compared the level of expression for each gene (relative to housekeeping gene 

expression) during TF vs. CD at each time point (0, 5, 10 and 20 dpf). Basal expression levels (0 

dpf) of Jag1, Dll4, Notch1, Notch2, Notch3, Hes1, Hey1, Hey2, and HeyL were higher in uninjured 

calvaria.  No genes were expressed higher in uninjured tibiae (Figure 3.3). 

After injury (5, 10, 20 dpf), a greater number of genes were more highly expressed 

(relative to housekeeping gene expression) during TF compared to CD. Jag2, Dll1, Notch1, 

Notch3 and Notch4 were greater during TF, whereas Notch2 and Hey2 were greater during CD. 

Hes1 was the only gene to show variable expression during both CD and TF at different time 

points. 
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Figure 3.3. Gene expression of Notch ligands (left), receptors (middle) and target genes (right) during TF 

(white bars) and CD (grey bars). # indicates a significant difference between TF vs. CD at a given time point 

(p<0.05). A common letter above any two bars indicates a significant difference between those time points 

during TF (a,b,c) or CD (x,y,z) (p<0.05). Data is presented as relative gene expression to the housekeeping 

genes, calculated using the formula 2-ΔC(t) (arbitrary units). 
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3.3.4 Identification of Cells That Express Jagged1 and NICD2 During TF 

Consistent with previous studies investigating mesenchymal tissues [12, 13, 25], Jag1 

and Notch2 were the predominantly expressed ligand and receptor during both TF and CD at all 

time points. Therefore, using IHC, we identified cells that express the Jag1 ligand and the 

activated form of the Notch2 receptor, called the Notch2 intracellular domain (NICD2), which is 

indicative of activated Notch signaling. 

Jag1 and NICD2 were expressed in identical cell populations that participate in 

endochondral bone repair during TF (Figure 3.4). Interestingly, it appears that more cells stain 

positive for NICD2 than Jag1 (non-statistical comparison). At 5 dpf, undifferentiated mesenchymal 

cells undergo rapid proliferation to produce a fibrovascular callus. These cells are largely Jag1 

and NICD2 positive (Figure 3.4A, black arrows), though isolated cells appear negative (white 

arrows). By 10 dpf, these progenitors gradually lose Jag1 and NICD2 expression as they 

differentiate into proliferative (Figure 3.4B), pre-hypertrophic (Figure 3.4C), and finally 

hypertrophic chondrocytes (Figure 3.4D) when they become largely Jag1 and NICD2 negative. 

During the cartilage-to-bone transition at 10 dpf, mineralized cartilage is resorbed allowing for 

vascular invasion of the callus.  Many vascular endothelial cells that penetrate the matrix are 

Jag1 and NICD2 positive (Figure 3.5). Surprisingly, terminal hypertrophic chondrocytes that 

populate the chondro-osseous junction and border the invading vasculature appear to re-express 

Jag1 and NICD2 (Figures 3.4E and 3.5). The vascular network mediates an influx of Jag1 and 

NICD2 positive osteoprogenitor cells that lay the initial osteoid matrix on top of the resorbing 

cartilage (Figure 3.4F). By 20 dpf, these cells differentiate into immature and mature osteoblasts 

to produce primary (Figure 3.4G) and remodeled bone (Figure 3.4H), and continue to 

overwhelmingly, but not completely, express Jag1 and NICD2. Osteocytes embedded in 

remodeled bone are both positive and negative for Jag1 and NICD2 (Figure 3.4H). IgG control 

slides show no positive staining (Figure 3.4 bottom two rows). Figure 3.6 provides further 

evidence of these observations during TF. Localization of Jag1 and NICD2 to terminal 

hypertrophic chondrocytes, areas of vascular invasion, and immature osteoblasts was also 
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observed in growth plates of uninjured adult mice (Figure 3.7). However, pre-hypertrophic 

chondrocytes appear to stain more negative in the growth plate than in the fracture callus. 

 

3.3.5 Identification of Cells That Express Jagged1 and NICD2 During CD 

Jag1 and NICD2 were also expressed in identical cell populations that participate in 

intramembranous bone repair during CD (Figure 3.8). Following injury, periosteal-derived 

osteoprogenitors rapidly proliferate to re-establish a fibrous layer surrounding the defect (Figure 

3.8A). At the same time, undifferentiated mesenchymal cells within the defect proliferate to 

produce fibrovascular tissue that initially fills the defect (Figure 3.8B). Cells that line the defect 

appear to have initiated early stages of osteogenesis. Consistent with TF, these cell populations 

are overwhelmingly, though not completely, Jag1 and NICD2 positive. Also consistent with TF, 

cells at various stages of osteogenic maturity continue to stain positive for Jag1 and NICD2 in 

areas of new (Figure 3.8C) and remodeled bone (Figure 3.8D). Furthermore, osteocytes 

embedded in remodeled bone are both positive and negative for Jag1 and NICD2 (Figure 3.8D). 

IgG control slides show no positive staining (Figure 3.8 bottom two rows). Figure 3.9 provides 

further evidence of these observations during CD. Localization of Jag1 and NICD2 was also 

observed in osteoblasts lining uninjured calvarial bone, and to a lesser extent periosteal-derived 

cells (Figure 3.7). However, more osteocytes appear to stain negative in uninjured bone than in 

healing calvarium. 
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Figure 3.4 (above). Jag1 and NICD2 are expressed in identical cell populations that participate in 

endochondral bone repair during TF. Undifferentiated mesenchymal cells (A) are largely positive (brown 

staining, black arrows), but expression gradually decreases as cells differentiate into proliferative (B), pre-

hypertrophic (C), and hypertrophic chondrocytes (D), and then is re-expressed in terminal hypertrophic 

chondrocytes (E). Alternative to chondrogenesis, osteogenic cells at various stages of maturity, located in 

osteoid (F), primary (G) and remodeled bone formation (H) are mostly positive. Note that varying amounts of 

Jag1 and NICD2 negative cells are present in distinct cell population (white arrows). H&E and SafO images 

acquired at 200X magnification. Jag1 and NICD2 images acquired at 600X magnification. IgG control 

sections show no positive staining (bottom two rows, 200X magnification) 

 

  

 

 

 

 

Figure 3.5. Jag1 and NICD2 are expressed in vascular endothelial 

cells invading the cartilage matrix, as well as terminal hypertrophic 

chondrocytes adjacent to the invading vasculature. Black arrows and 

brown staining indicate positive cells. White arrows indicate negative 

cells. SafO image acquired at 200X magnification. Jag1 and NICD2 

images acquired at 600X magnification 
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Figure 3.6. Another example of Jag1 and NICD2 immunolocalization during TF with IgG control sections 

(related to Figure 3.4). Images acquired at 200X magnification. 
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Figure 3.7. Jag1 and NICD2 expression in 

uninjured tibial growth plate and calvarium. In 

growth plates, Jag1 and NICD2 are mostly not 

expressed in pre-hypertrophic and 

hypertrophic chondrocytes (white arrows). 

However, at the chondro-osseus junction, 

terminal hypertrophic chondrocytes express 

Jag1 and NICD2, as do areas of vascular 

invasion and immature osteoblasts lining the 

trabecular spongiosa (black arrows). In 

calvarium, osteoblasts lining cortical bone as 

well as some periosteal-derived mesenchymal 

cells are Jag1 and NICD2 positive. 

Osteocytes are mostly Jag1 and NICD2 

negative. H&E and SafO images acquired at 

100X magnification. Jag1 and NICD2 images 

acquired at 400X magnification. 
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Figure 3.8. Jag1 and NICD2 are expressed in identical cell populations that participate in intramembranous 

bone repair during CD. Undifferentiated mesenchymal cells located in the periosteum (A) and adjacent to 

the defect site (B) are largely positive (brown staining, black arrows). As osteogenesis progresses, cells at 

various stages of maturity continue to stain positive in areas of new (C) and remodeled bone (D). 

Osteocytes (D) are both positive and negative. Note that Jag1 and NICD2 negative cells (white arrows) are 

present in each area. H&E images acquired at 400X magnification. Jag1 and NICD2 images acquired at 

600X magnification. IgG control sections show no positive staining (bottom two rows, 200X magnification). 
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Figure 3.9. Another example of Jag1 and NICD2 immunolocalization during CD with IgG control sections 

(related to Figure 3.8). Images acquired at 200X magnification. 
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3.4 Discussion 

This is the first study to extensively characterize the Notch signaling pathway during 

endochondral and intramembranous bone fracture healing, which has previously been shown to 

be required for proper embryological bone development [10-13, 26]. Our results demonstrate that 

Notch signaling components are actively regulated during both endochondral and 

intramembranous fracture healing.  

Consistent with previous studies, we identified Jag1 and Notch2 as the predominantly 

expressed ligand and receptor during TF and CD [12-14, 25]. This Notch ligand-receptor pair has 

been shown to primarily interact with one another in a variety of cell types [27]. We further 

identified Jag1 and activated Notch2 (NICD2) to be expressed in the same cell populations during 

endochondral and intramembranous repair. Jag1 and NICD2 expression is strong in 

undifferentiated mesenchymal cells, but gradually decreases during chondrogenesis. Previous 

studies have shown that transient activation of Notch components, including Jag1, is required in 

uncommitted mesenchymal progenitor cells both in vivo and in vitro, but must downregulate in 

order to initiate chondrogenesis [25, 28]. Furthermore, sustained activation of Notch signaling in 

committed chondrocytes (cells that express the Col2a1 promoter) inhibits both proliferation and 

differentiation [26]. Many studies have specifically shown that Notch negatively regulates the pre-

hypertrophic to hypertrophic chondrocyte transition [13, 26, 28, 29]. NICD and its downstream 

target genes Hes1 and Hey1 are known to inhibit chondrogenic differentiation by binding to a 

Sox9 binding site on the Col2a1 promoter [26, 30]. Collectively, the data suggests decreased 

Notch signaling occurs during chondrogenic lineage commitment and hypertrophic maturation.  

This is the first study to show that terminal hypertrophic chondrocytes have the ability to 

re-express Jag1 and NICD2 in areas that have been infiltrated by Jag1 and NICD2 positive 

vascular endothelial cells. This applies to the chondro-osseous junction in both the callus during 

endochondral fracture healing, and in the growth plate during endochondral bone formation. This 

is consistent with a previous study, which showed that although Notch signaling negatively 

regulates hypertrophic chondrocyte differentiation, it positively regulates the progression of 
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hypertrophic chondrocytes to their terminal differentiation, identified by Mmp-13 expression, at the 

chondro-osseous junction in the growth plate [13]. The Notch signaling pathway is initiated 

through direct cell-to-cell contact. It is plausible that this re-activation is initiated by endothelial-

mesenchymal cell interactions, whereas prior activation of Notch signaling was initiated by 

mesenchymal-mesenchymal cell interactions. However, more research is required to understand 

the mechanism of this re-activation as well as the functional significance of Notch signaling in 

terminal hypertrophic chondrocytes. 

Alternative to chondrogenesis, Jag1 and NICD2 are expressed in osteogenic cells at all 

stages of differentiation. Although this is the first study to show this via histology in vivo, Notch 

signaling has previously been shown to perform pro-osteogenic functions in osteoblasts at all 

stages of differentiation. Activation of Notch signaling in uncommitted mesenchymal progenitors 

(cells that express the Prx1 promoter [31]) maintains cells in an undifferentiated state while 

stimulating proliferation [12, 13]. However, alternative to chondrogenesis, activation of Notch 

signaling in osteoprogenitors (Col3.6 promoter [32]) and committed but immature osteoblasts 

(Col2.3 promoter [32]) continues to promote proliferation while inhibiting differentiation [10, 11, 

14]. Notch pathway components have been shown to prevent early and late osteoblast 

differentiation by binding to Runx2 (NICD1, Hes1, Hey1) [10, 13, 33] and the Ocn promoter 

(Hes1) [34]. Interestingly, instead of directly regulating bone formation, activation of Notch 

signaling in mature osteoblasts (Ocn promoter) reduces bone resorption by inhibiting osteoclast 

differentiation [13-15]. Collectively, the data suggests that during endochondral and 

intramembranous fracture healing, elevated levels of Notch signaling in undifferentiated cells may 

serve to increase the number of progenitors available to differentiate and produce a mature tissue 

matrix, and that Notch signaling in mature osteoblasts maintains the tissue matrix through a 

negative feed-back of osteoclast-mediated bone resorption. 

In addition to regulating osteoblast and chondrocyte behavior, Notch signaling also 

regulates angiogenesis, which is critical for fracture healing. Dll4 signaling through Notch1 has 

been shown to restrict angiogenesis [35], whereas Jag1 is pro-angiogenic [36]. Not surprisingly 

Jag1 was the only ligand upregulated during both TF and CD, whereas Dll4 was the least 
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expressed ligand during TF. Notch4 has been shown to have a redundant angiogenic function to 

Notch1 [37]. Consistent with this, our data showed that Notch4 was the least expressed receptor 

during both TF and CD. However, Notch4 was one of only two receptors to be upregulated during 

both TF and CD, and also demonstrated the greatest fold change among all receptors relative to 

0 dpf, suggesting that while redundant, it still may play an active role in the Notch-mediated 

angiogenic response during bone repair.  

When considered in total, Notch ligands demonstrated a higher magnitude of change 

during healing than receptors, suggesting that downstream target gene activation may be more 

regulated by ligand rather than receptor activity. Manipulations of Notch signaling to enhance 

fracture healing could possibly target ligand expression for the most potent therapeutic effect. 

Previous studies have shown that bones derived from different embryological germ layers 

have distinct tissue matrix compositions [38]. The calvarium and tibia originate from the ectoderm 

and mesoderm, respectively [39], which may explain the difference in basal expression levels of 

Notch genes in those tissues. There are injury models that would allow for comparison of 

endochondral and intramembranous fracture healing using a single long bone, which would 

control for factors intrinsic to the tissue. It is possible that Notch signaling may not be equivalent 

during intramembranous ossification in all types of bone. However, in this study we show that 

expression of Notch components are equivalently localized in osteogenic cells regardless of germ 

layer origin, embryological development, or method of healing, which may suggest that similar 

results would be expected in all models of bone repair. Importantly, we chose our injury models in 

order to develop a broader understanding of Notch signaling with applications to both craniofacial 

and long bone skeletal regeneration.  

In conclusion, this study demonstrates that Notch signaling is upregulated during 

endochondral and intramembranous bone repair, with expression generally greater during 

endochondral repair. Furthermore, Jag1 and NICD2 are expressed in identical cell populations 

during healing, with expression gradually decreasing during chondrogenesis, but remaining 

present at multiple stages of osteoblastogenesis. Targeting the Notch signaling pathway may 

ultimately provide a mechanism to enhance bone repair; however, much more research is 
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required to understand the spatiotemporal effects of Notch signaling in mesenchymal, 

hematopoietic and vascular cells. 
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CHAPTER 4 

Inhibition of Canonical Notch Signaling Results in Sustained Callus Inflammation 

and Alters Multiple Phases of Fracture Healing 

 

4.1 Introduction 

Bone fracture healing occurs through a series of carefully regulated spatiotemporal 

events. Following injury, inflammation and hematoma formation mediates an influx of 

undifferentiated mesenchymal cells to the site of injury. During endochondral fracture healing, 

these cells undergo chondrogenesis to produce a cartilaginous callus that mineralizes and is 

resorbed permitting vascular invasion of the callus. The vascular network mediates an influx of 

osteoprogenitor cells that differentiate to produce immature bone on top of the resorbing cartilage 

matrix. Callus bone matures and is remodeled over time through osteoblast-mediated bone 

formation and osteoclast-mediated bone resorption [1]. 

Bone fractures are a significant clinical and economic problem. While the majority of 

fractures restore original structure and function in a scarless manner, some fractures result in 

delayed or non-union healing [2]. This increases the cost of care, necessitates additional 

surgeries, and results in a prolonged period of convalescence, which is associated with increased 

mortality in an aged population [3]. Common therapeutic strategies such as autologous bone 

grafts and bone morphogenetic proteins have well-documented limitations [4, 5]. Therefore, a 

clinical need persists for the development of new methods to enhance healing.  Although the 

spatiotemporal progressions of fracture healing are well-characterized [1], the signaling pathways 

that regulate these events required for healing are not as well understood. Identifying and 

elucidating the roles of signaling pathways that regulate fracture healing will allow us to identify 

novel therapeutic targets for improved regeneration of bone. 

Notch signaling is a developmentally conserved pathway that regulates stem cell 

proliferation, fate determination, and differentiation [6]. Activation of the cell-to-cell signaling 

pathway occurs when a Notch ligand (Jagged 1,2 and Delta-like 1,4) expressed on the surface of 
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a signaling cell interacts with a Notch receptor (Notch 1-4) expressed on the surface of a 

receiving cell. A two-stage proteolytic event liberates the Notch intracellular domain (NICD), 

which translocates to the nucleus and binds to RBPjκ and Mastermind-like proteins (MAML). 

MAML serves as a scaffold to recruit other co-activators required to initiate transcription of 

canonical Notch target gene families Hes and Hey.  

The Notch signaling pathway regulates multiple cell lineages that participate in bone 

formation. Notch signaling in mesenchymal progenitor cells promotes proliferation while inhibiting 

differentiation [7, 8]. In committed chondroprogenitors, Notch inhibition promotes differentiation, 

but is reactivated for terminal hypertrophic maturation [8-12]. In osteoprogenitors, Notch inhibition 

also promotes differentiation [7, 13]. However, Notch components are endogenously expressed 

at various stages of osteogenic differentiation [12], where expression in mature osteoblasts 

indirectly inhibits osteoclast differentiation [7, 13, 14]. Notch signaling also inhibits osteoclast 

differentiation directly through expression in macrophage precursors [15]. Finally, Notch signaling 

both positively and negatively regulates endothelial cell behavior [16, 17]. These studies have 

collectively demonstrated that the Notch signaling pathway regulates embryological bone 

development. 

Bone fracture healing recapitulates many aspects of embryological bone development 

[18-20]. In Chapter 3, we demonstrated that the Notch signaling pathway was upregulated during 

bone fracture healing, and that Notch signaling components were active in mesenchymal and 

endothelial lineage cells [12]. Furthermore, Notch signaling has also been shown to regulate 

tissue repair of other injuries [21]. Collectively, the data suggests that Notch signaling also likely 

regulates bone fracture healing. However, the precise role is unknown. Therefore, the objective of 

this study was to determine the importance of Notch signaling in regulating bone fracture healing 

by using a temporally controlled inducible transgenic mouse model to impair RBPjκ-mediated 

canonical Notch signaling in all cells during repair. We hypothesize that inhibition of Notch 

signaling will alter murine tibial fracture and calvarial defect healing. 

 

4.2 Methods 
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4.2.1 Generation of mice 

dnMAML (Mx1-Cre+; dnMAMLf/-) and WT (Mx1-Cre-; dnMAMLf/-) mice generated on a 

C57Bl/6 background were included in this study. The GFP-tagged dominant negative MAML 

(dnMAML) transgene is a truncated version of MAML, and contains only the NICD binding 

domain that allows it to bind to the NICD-RBPjκ complex, but lacks the binding domain necessary 

to recruit other co-activators that are required to initiate transcription of Notch target genes. 

Therefore, dnMAML inhibits canonical Notch signaling at the level of transcriptional complex 

assembly just prior to gene transcription [22, 23]. The dnMAML-GFP transgene is preceded by a 

floxed transcriptional stop sequence allowing it to be conditionally regulated by Cre recombinase 

expression [24-26]. The inducible Mx1-Cre promoter was used in this study to activate dnMAML 

expression in all cell types just prior to fracture [27], allowing both dnMAML and WT mice to 

undergo unaltered embryological development and skeletal maturation. The Mx1 promoter is 

normally silent, but can be induced by intraperitoneal (IP) injection of polyinosinic-polycytidylic 

acid (polyI:C). Resulting expression of Cre recombinase deletes the upstream transcriptional stop 

sequence allowing for systemic dnMAML expression on the ROSA26 locus.  

 

4.2.2 Experimental Design 

All in vivo protocols were approved by the institutional animal care and use committee. At 

the onset of skeletal maturity at 3 months of age [28, 29], dnMAML and WT mice were IP injected 

with 500 µg of polyI:C 10 times over 20 days. This protocol induces dnMAML-GFP expression in 

greater than 95% of total bone marrow cells [25] and 90% of bone marrow-derived mesenchymal 

progenitor cells. 

After polyI:C injections, closed bilateral tibial fractures were created according to 

previously published methods using a custom-made three-point bending apparatus with 

intramedullary pin fixation of the tibia, resulting primarily in endochondral bone repair (also see 

Chapter 3) [12, 30, 31]. Radiographs were generated to verify correct pin placement and fracture 

(Faxitron X-Ray). 0.05 mg/kg of buprenorphine was administered subcutaneously twice for four 

days following injury, including a pre-operative dose. Mice recovered on heating pads and were 
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allowed to ambulate freely. Fracture calluses were harvested for quantitative real-time 

polymerase chain reaction (QPCR) analysis of gene expression at 5, 10 and 20 days post 

fracture (dpf) (n=6-9), quantitative histology and immunohistochemistry (IHC) at 10 and 20dpf 

(n=4-7), and micro-computed tomography (µCT) at 10 and 20dpf (n=7-13). Both males and 

females were included in this experiment to decrease the number of animals used, and because 

several studies have reported similar responsivity of both sexes to manipulations of Notch 

signaling [7, 14, 32, 33]. However, because male and female skeletons present with different 

quantities of bone during aging [29], the sexes were separated into different time points for 

histological and µCT analysis of bone and cartilage. Females were harvested at 10dpf, males at 

20dpf, and mixed gender at 5dpf for gene expression analysis only prior to bone or cartilage 

formation. 

3 mm diameter bilateral calvarial defects were also created in a separate group of 3-

month-old mice following polyI:C injections according to previously published protocols (also see 

Chapter 3) [12] to evaluate intramembranous bone repair. dnMAMLf/f and dnMAMLf/- mice were 

utilized in this experiment in both dnMAML and WT groups. Defects were harvested at 4 weeks 

(males, n=11-12) and 16 weeks (females, n=8) post injury for µCT analysis. 

 

4.2.3 Histology and Immunohistochemistry (IHC) 

 Tissue was fixed in 4% paraformaldehyde at 4°C for 2-3 days, decalcified in 15% formic 

acid, paraffin embedded, and sectioned at 5 µm. For IHC, sections were deparaffinized and 

gradually rehydrated. Heat-mediated antigen retrieval via the microwave method was performed 

using Sodium Citrate Buffer at pH 6.0 for 20 minutes on high (for PCNA antibody) or Citra Plus 

(Biogenex) for 2 minutes on high followed by 15 minutes at 20% (for GFP antibody), and then 

cooled in buffer to room temperature. Sections were incubated in serum blocking solution (5% 

donkey serum, 4% BSA, 0.1% Triton-X 100, 0.05% Tween 20 in PBS) for 60 minutes, and then 

with primary antibody (see below) diluted in buffer solution (0.5% donkey serum, 2.4% BSA, 

0.26% Triton-X 100, 0.005% Tween 20 in PBS) overnight at 4°C in a humidified chamber. Control 
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sections were incubated in buffer solution only. Sections were then treated with 3% H2O2 for 30 

minutes, followed by biotinylated secondary antibody Donkey anti-Rabbit (Santa Cruz sc-2089, 

1:200 diluted in 0.5% donkey serum, 0.4% BSA, 0.01% Triton-X 100, 0.055% Tween 20 in PBS) 

for 30 minutes, and finally streptavidin-HRP (Abcam ab7403, 1:500 diluted in PBS) for 30 

minutes. Sections were developed with DAB (Vector Laboratories) and counterstained with 

Hematoxylin. All incubations other than antigen retrieval and primary antibody were done at room 

temperature. Sections were washed in 0.02% Tween 20 in PBS after each step except between 

serum blocking and primary antibody incubation. 

To identify cells that express the dnMAML-GFP transgene, sections were stained with 

Rabbit anti-GFP antibody (Abcam ab6556, 1:100). To quantify cell proliferation, sections were 

stained with Rabbit anti-Proliferating Cell Nuclear Antigen (PCNA) antibody (Abcam ab2426, 

1:100), which is expressed in cells undergoing DNA synthesis. To quantify cartilage formation, 

sections were stained with Safranin O and Fast Green (SafO), which stain proteoglycans red. To 

quantify osseous tissue formation, sections were stained with Masson’s Trichrome (Sigma HT15-

1KT), which stains collagenous tissue blue. Sections were also stained with Hematoxylin and 

Eosin (H&E) for semi-quantitative analysis of inflammation and Gram stain. 

 

4.2.4 Histomorphometric Analysis 

 Slides were imaged in bright field with an Olympus BX51. Color images were acquired 

with a Spot RT3 2 megapixel camera. ImageJ (National Institutes of Health) was used to quantify 

all histological data. 

 20x SafO images of the entire callus were acquired and stitched together as needed for 

analysis of cartilage formation. Contours were manually drawn around the total callus area 

excluding original cortical bone, marrow and muscle tissue. A fixed, global, color threshold was 

used for automated quantitation of cartilage area for all specimens. For 10dpf specimens, 

cartilage components were further broken down into immature, mature, and hypertrophic cartilage 

using semi-automated analysis based on cell morphology and intensity of SafO staining. 400x 
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images were acquired in areas of immature, mature, and hypertrophic cartilage for automated 

analysis of chondrocyte cell density and size. 

 20x Masson’s Trichrome images were similarly acquired for analysis of osseous tissue 

formation. Total callus area and osseous tissue area were similarly quantified. High-resolution 

images were acquired in areas of immature bone and mature bone for manual analysis of active 

osteoblast density (400x) and osteoclast density (200x). Active osteoblasts were defined as 

mononuclear cells aligning the bone surface with a cuboidal or columnar morphology. 

Osteoclasts were defined as cells aligning the bone surface with greater than two nuclei. 

 400x PCNA images of 10dpf specimens were acquired in areas of undifferentiated 

mesenchymal cells and mature cartilage for automated analysis of percent PCNA positive cells at 

each stage of differentiation. Similar analysis was conducted for area of PCNA staining in areas 

of immature bone. 

 For semi-quantitative analysis of inflammation at 10dpf, H&E sections were graded for 

neutrophil and mononuclear cell (macrophages and leukocytes) inflammation individually. A score 

of 1-5 was given based on the level of inflammatory cell infiltration within each of the 

intramedullary cavity, the callus surrounding cortical bone, and the periosteal callus, and the 

scores were added together for a maximum of 15. For neutrophil inflammation, a score >12 

indicated high inflammation (30-50%), 9-12 indicated micro abscess formation, 6-9 indicated 

moderate inflammation (10-30%), 3-6 indicated mild inflammation (<10%), and 3 indicated no 

inflammation. Similarly, for mononuclear cell inflammation, a score >12 indicated severe, 9-12 

moderate, 6-9 mild, 3-6 minimal, and 3 no inflammation.  

 

4.2.5 Micro-computed Tomography (µCT) 

 Tibial fracture calluses were scanned using a Scanco vivaCT40 (Scanco Medical) with 

the following parameters: 21 µm isotropic voxel size, 55 kVp. 145 µA, 500 projections per 180°, 

650 millisecond integration time, 2D transverse reconstructed 1024x1024 pixel images. User-

defined contours were drawn every 10 images (0.210 mm) or less around the callus for inclusion, 

with automated morphing used to interpolate the contours for all images in between. Similarly, 



 50 

user-defined contours were drawn around the original cortical bone and marrow cavity for 

exclusion with automated morphing in between. This semi-automated segmentation method 

analyzes the callus outside the pre-existing cortical bone. The entire length of the callus was 

analyzed. A fixed, global threshold of 16% of the maximum gray value, which corresponds to a 

mineral density of 169.8 mg HA/cm3 was applied to distinguish mineralized from unmineralized 

tissue. The following parameters were quantified: total callus volume, callus bone volume, bone 

volume fraction, tissue mineral density, trabecular number, trabecular thickness, trabecular 

separation, connectivity density, and structure model index. 

Calvarial defects were scanned using the same machine with the following parameters: 

10.5 µm isotropic voxel size, 55 kVp. 145 µA, 1000 projections per 180°, 381 millisecond 

integration time, 2D reconstructed 2048x2048 pixel images. Reconstructed images were 

reoriented transverse to the depth of the defect such that 2D reconstructed images presented 

with a circular defect surrounded by calvarial bone. 3.6 mm diameter cylindrical contours were 

drawn within the entire depth of the defect to evaluate bone formation within and adjacent to the 

defect. Bone volume and tissue mineral density were quantified. 

 

4.2.6 Quantitative Real-Time Polymerase Chain Reaction (QPCR) 

 Fracture calluses were dissected from the surrounding tissue, placed in Qiazol lysis 

reagent (Qiagen) and stored at -80°C until further processing. Tissue was then homogenized 

using the Tissue Tearor (BioSpec Products) and mRNA was extracted using the Qiagen 

miRNeasy Mini Kit with DNase digestion to remove DNA contamination. RNA yield was 

determined using a NanoDrop 1000 spectrophotometer (ThermoScientific). 1 µg of mRNA was 

reverse transcribed into 20 µl of cDNA using the Applied Biosystems High Capacity RNA-to-

cDNA Kit, and then diluted with RNase- and DNase-free H2O to a 40 µl volume. Gene expression 

was quantified using a 7500 Fast Real-Time PCR system (Applied Biosystems) from a total of 10 

ul of Master Mix per well, which included 1x Fast SYBR Green (Applied Biosystems), forward and 

reverse primers (0.45 µM), and 0.5 µl of cDNA. For each gene of interest, samples were run in 
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duplicate and control wells were run to rule out DNA contamination and primer dimer 

amplification. Proper amplicon formulation was confirmed by melt curve analysis. qPCR data is 

presented as relative gene expression to β-actin housekeeping control, calculated using the 

formula 2-ΔC(t).  

 

4.2.7 Statistical Analysis 

For parameters quantified at multiple time points, two-way ANOVAs were performed to 

test the main effects of dnMAML expression and time, and the interaction between the two. The 

main objective of this study is to evaluate how dnMAML expression affects fracture healing. 

Therefore, post-hoc student’s t-tests were performed to compare dnMAML to WT at each time 

point if there was a significant (*p<0.050) or trend (#p<0.100) effect of either dnMAML expression 

or the interaction between dnMAML expression and time. For parameters quantified at only one 

time point, a student’s t-test was used to compare dnMAML to WT. For neutrophil and 

mononuclear cell inflammation, a Mann-Whitney non-parametric test was used to compare 

dnMAML to WT. Data is presented as mean ± standard deviation. 
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4.3 Results 

4.3.1 dnMAML Expression During Bone Fracture Healing 

The dnMAML transgene is tagged with GFP. GFP gene expression was highly 

upregulated in dnMAML mice relative to WT mice at 5, 10 and 20dpf (Figure 4.1A). GFP IHC 

demonstrated that it was also widely expressed in multiple cell populations present during 

fracture healing in dnMAML mice including undifferentiated mesenchymal cells, chondrocytes, 

osteoblasts, endothelial cells, hematopoietic cells, and inflammatory cells (Figure 4.1B), verifying 

that dnMAML was expressed during fracture healing. Expression was undetectable in WT mice. 

 

 

 

 

Figure 4.1. GFP-tagged dnMAML is expressed in 

dnMAML mice during fracture healing. (A) GFP gene 

expression is upregulated in dnMAML fractures. (B) 

GFP is expressed in undifferentiated mesenchymal 

cells, chondrocytes, osteoblasts, endothelial cells, 

hematopoietic cells and inflammatory cells in 

dnMAML fractures. There is no expression in WT 

mice. GFP IHC images were acquired at 200x 

magnification. Gene expression data is presented as 

relative expression to β-actin, calculated using the 

formula. 2-ΔC(t). *p<0.050 (dnMAML vs WT) 

 

 

 

 



 53 

4.3.2 dnMAML Decreases Cartilage Formation During Fracture Healing 

During the endochondral phase of fracture healing, undifferentiated mesenchymal cells 

condense at the fracture site and undergo chondrogenesis to produce an initial cartilaginous 

callus matrix. To evaluate cartilage formation, sections were stained with SafO at 10 and 20dpf 

and chondrogenic gene expression was assessed at 5, 10 and 20dpf. dnMAML fractures had 

decreased percent cartilage area within the callus (CA/TA) at 10dpf (Figure 4.2A). Almost all 

cartilage was resorbed in both groups by 20dpf. Consistent with these histological results, 

dnMAML fractures had decreased Col2a1 (Figure 4.2B) and Sox9 (Figure 4.2C) gene expression 

at 10dpf, but were not different from WT at 5 or 20dpf. A two-way ANOVA showed decreased 

ColX gene expression in dnMAML fractures, though post-hoc analysis did not uncover time-point 

specific differences (Figure 4.2D). Collectively, the data demonstrates that dnMAML expression 

decreases cartilage formation during endochondral fracture healing. 

 The cartilage matrix develops from immature cartilage (IC) populated by proliferating 

chondrocytes, which develops first into mature cartilage (MC) populated by pre-hypertrophic 

chondrocytes and then finally into hypertrophic cartilage (HC) populated by hypertrophic 

chondrocytes. To evaluate differences in relative cartilage maturation, the specific components of 

the cartilage matrix were quantified based on maturity at 10dpf when peak formation occurs. 

There were no differences between dnMAML and WT mice in the percent of IC, MC, or HC to 

total cartilage area within the callus (CA), demonstrating that the rate of cartilage maturation was 

not delayed or enhanced by dnMAML expression (Figure 4.2E). Chondrocyte density within each 

of these regions was also not affected by dnMAML expression, indicating that dnMAML 

expression did not affect individual chondrocyte function, specifically matrix production (Figure 

4.2F). 
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Figure 4.2. dnMAML decreases cartilage formation during fracture. (A) Percent of cartilage area to total 

callus area (CA/TA) via SafO histomorphometric analysis is decreased in dnMAML fractures at 10dpf. (B) 

Col2a1 and (C) Sox9 gene expression are decreased in dnMAML fractures at 10dpf. (D) ColX gene 

expression is non-significantly decreased in dnMAML fractures at 10dpf. (E) There are no differences 

between WT and dnMAML fractures in percent of immature (IC), mature (MC) or hypertrophic cartilage (HC) 

to cartilage area (CA) at 10dpf. (F) There are no differences in chondrocyte density within these areas at 

10dpf. SafO images were acquired at 20x magnification. Gene expression data is presented as relative 

expression to β-actin, calculated using the formula. 2-ΔC(t). *p<0.050 #p<0.100 (dnMAML vs WT) 

 

4.3.3 dnMAML Inhibits Expression of Vascular Endothelial Cell Markers During Fracture Healing  

Bone formation during fracture healing requires vascularization of the callus mediated by 

endothelial cells. PECAM gene expression, an endothelial cell marker, is decreased in dnMAML 

fractures at 20dpf, indicating that dnMAML activation impairs callus vascularization (Figure 4.3A). 

VEGFα gene expression, a marker of angiogenesis, was not statistically altered due to dnMAML 

expression, though it was increased by 28% at 20dpf (Figure 4.3B). 
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Figure 4.3. dnMAML inhibits expression of vascular endothelial cell markers during fracture healing. (A) 

PECAM gene expression is decreased in dnMAML fractures at 20dpf. (B) There are no differences in 

VEGFα gene expression. Gene expression data is presented as relative expression to β-actin, calculated 

using the formula. 2-ΔC(t). *p<0.050 

4.3.4 dnMAML Alters Bone Remodeling During Fracture Healing 

During endochondral bone formation that occurs during fracture healing, immature bone 

is produced on top of a resorbing cartilage callus. Maturation and remodeling occurs over time 

through osteoblast-mediated bone formation and osteoclast-mediated bone resorption. To 

evaluate bone mass within the callus, fractures were analyzed via three-dimensional µCT and 

two-dimensional Masson’s Trichrome histology at 10 and 20dpf. Osteogenic gene expression 

was also assessed at 5, 10 and 20dpf.  

dnMAML fractures presented with an increased proportion of bone mass during the 

remodeling phase (20dpf), indicated by increased bone volume fraction (BV/TV) (Figure 4.4A). 

Percent osseous tissue area within the callus (OA/TA) was also non-statistically increased at 

20dpf (Figure 4.4B). This appears to be the result from a moderate decrease in callus size (TV 

and Avg TA), with no difference in total bone mass (BV and Avg OA) (Figure 4.5). Osteocalcin 

(Ocn) gene expression was also increased in dnMAML fractures at 20dpf (Figure 4.4C). 

However, Osterix (Osx) and Collagen type I (Col1a1) were not changed (Figure 4.4D,E).  

 Trabecular bone morphometry was altered in dnMAML fractures at 20dpf, with increased 

trabecular thickness (Tb.Th), but decreased structural model index (SMI) characteristic of 
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concave trabeculae (negative value) and trabecular connectivity density (Conn.D) (Table 4.1). 

Trabecular number (Tb.N), trabecular separation (Tb.Sp), and tissue mineral density (TMD) were 

not different.  

 

Figure 4.4. dnMAML alters bone remodeling during fracture healing. (A) Bone volume fraction (BV/TV) via 

µCT analysis is increased in dnMAML fractures at 20dpf. (B) There are no differences in percent osseous 

tissue area to total callus area (OA/TA) via Masson’s Trichrome histomorphometric analysis. (C) Osteocalcin 

(Ocn) gene expression is increased in dnMAML fractures at 20dpf. There are no differences in (D) Osterix 

(Osx) or (E) Collagen type I (Col1a1) gene expression. (F) TRAP gene expression is decreased in dnMAML 

fractures at 20dpf. µCT images were acquired at a 21 µm voxel size. Masson’s Trichrome images were 

acquired at 20x magnification. Gene expression data is presented as relative expression to β-actin, 

calculated using the formula. 2-ΔC(t). *p<0.050 (dnMAML vs WT) 
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Table 4.1. µCT morphometric analysis of WT and dnMAML fractures at 10 and 20dpf. 

 10dpf 20dpf 
 WT dnMAML WT dnMAML 
Tb.N (1/mm) 1.13 ± 0.19 1.05 ± 0.22 6.08 ± 0.43 6.37 ± 0.42 
Tb.Th (mm) 0.110 ± 0.013 0.111 ± 0.017 0.099 ± 0.013 0.137 ± 0.033 * 
Tb.Sp (mm) 0.98 ± 0.13 1.05 ± 0.22 0.17 ± 0.02 0.16 ± 0.02 
TMD (mg HA/cm3) 347 ± 19 344 ± 18 420 ± 22 438 ± 27 
SMI 2.0 ± 0.4 2.2 ± 0.7 1.1 ± 0.7 -0.3 ± 1.5 * 
Conn.D (1/mm3) 15.1 ± 10.9 9.9 ± 3.5 175 ± 19 150 ± 21 * 
Trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), tissue mineral 

density (TMD), structural model index (SMI) and connectivity density (Conn.D) were quantified via µCT. 

Results are presented at mean ± standard deviation. * p<0.050 (WT vs dnMAML) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. dnMAML decreases callus size at 20dpf but not bone mass during fracture healing. Total callus 

volume (TV, top left) via µCT analysis and average total callus area (Avg TA, top right) via Masson’s 

Trichrome histomorphometric analysis are decreased in dnMAML fractures at 20dpf. Bone volume (BV, 

bottom left) and average bone area (Avg BA, bottom right) are not different. µCT images were acquired at a 

21 µm voxel size. Masson’s Trichrome images were acquired at 20x magnification. #p<0.100 (dnMAML vs 

WT) 
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Surprisingly, despite increases in BV/TV and Tb.Th, both osteoblast density (normalized 

to bone perimeter and area) in immature and mature bone and osteoclast density in mature bone 

were decreased in dnMAML fractures at 20dpf (Table 4.2). Consistent with decreased osteoclast 

density, TRAP gene expression was decreased in dnMAML fractures at 20dpf (Figure 4.4F).  

These molecular and phenotypic changes to bone occurred only during the late stage of repair, at 

early time points, there was no indication of an alteration in bone volume or osteoblast-related 

gene expression suggesting that dnMAML expression alters bone remodeling, but does not affect 

early bone formation. 

Bone formation and remodeling during intramembranous fracture healing was also 

evaluated using a calvarial defect model. dnMAML expression significantly decreased BV 4 

weeks post injury (Figure 4.6A). Similar results persisted at 16 weeks but were not significant.  

TMD was increased at 16 weeks. (Figure 4.6B).  

 

 

Table 4.2. Osteoblast and osteoclast density in immature bone at 10 and 20dpf and mature bone at 20dpf. 

 10dpf 20dpf 
 Immature Bone Immature Bone Mature Bone 
 WT dnMAML WT dnMAML WT dnMAML 
Obl/BP 
(1/mm) 

55 ± 6 53 ± 4 58 ± 9 47 ± 2 * 63 ± 10 45 ± 5 * 

Obl/BA 
(1/mm2) 

4029  
± 671 

4279  
± 1244 

6114  
±1487 

3898  
± 1115 * 

3819  
± 1098 

2197  
± 368 * 

Ocl/BP 
(1/mm) 

1.1 ± 0.5 1.1 ± 0.3 0.8 ± 0.2 0.7 ± 0.2 1.0 ± 0.3 0.5 ± 0.3 * 

Ocl/BA 
(1/mm2) 

59 ± 24 63 ± 23 67 ± 19 45 ± 18 41 ± 10 19 ± 14 * 

Osteoblast density is normalized to bone perimeter (Obl/BP) and bone area (Obl/BA). Osteoclast density is 

also normalized to bone perimeter (Ocl/BP) and bone area (Ocl/BA). Results are presented at mean ± 

standard deviation. * p<0.050 (WT vs dnMAML) 

 

 

 

 



 59 

 

 

 

 

 

 

 

Figure 4.6. dnMAML decreases bone mass during 

calvarial defect healing. (A) Bone volume (BV) is 

decreased in dnMAML defects 4 weeks post injury. (B) 

Tissue mineral density (TMD) is decreased in dnMAML 

defects at 16 weeks post injury. (C) µCT images were 

acquired at a 10.5 µm voxel size. #p<0.100 (dnMAML vs 

WT) 

 

 

 

 

 

 

4.3.5 dnMAML Prolongs Inflammation During Fracture Healing 

 The area of non-cartilage and non-osseous tissue, known as the void area within the 

callus, includes undifferentiated mesenchymal cells, hematopoietic cells and unstained empty 

space [34]. The percent void space within the callus (Void/TA) was significantly increased in 

dnMAML mice at 10dpf (Figure 4.7A). To further characterize this area, semi-quantitative analysis 

of inflammatory cells was performed at 10dpf, and inflammatory cytokine gene expression was 

evaluated at 5, 10 and 20dpf. Neutrophil inflammation was characterized as high for dnMAML 

fractures (>12) and moderate for WT fractures (6-9) (Figure 4.7B). These values were 
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significantly different. Mononuclear cell inflammation was characterized as mild for both dnMAML 

and WT fractures (6-9) (Figure 4.7C). Gram staining showed no bacterial infection in any fracture 

(data not shown). Consistent with neutrophil inflammation, TNFα (Figure 4.7D) and IL-1β (Figure 

4.7E) were upregulated in dnMAML mice at 10dpf. Collectively, the data demonstrates that 

dnMAML expression results in enhanced prolonged inflammatory cell infiltration and cytokine 

expression during fracture healing. 

 

 

Figure 4.7. dnMAML prolongs inflammation during fracture healing. (A) Percent void area to total callus area 

(Void/TA) via histomorphometric analysis is increased in dnMAML fractures at 10dpf. (B) Neutrophil 

inflammation via semi-quantitative analysis of H&E images is increased in dnMAML fractures at 10dpf. (C) 

There is no difference in mononuclear cell inflammation. (D) TNF-α and (E) IL-1β gene expression are 

increased in dnMAML fractures at 10dpf. IL-1β is decreased at 20dpf. Gene expression data is presented as 

relative expression to β-actin, calculated using the formula. 2-ΔC(t). *p<0.050 #p<0.100 (dnMAML vs WT) 

 

0 
3 
6 
9 

12 
15 

0 

3 

6 

9 

12 

0% 

20% 

40% 

0.000 

0.001 

0.002 

0.003 

0.00 

0.02 

0.04 

0.06 

0.08 

WT         dnMAML 

Void/TA 

10dpf 

N
eu

tro
ph

il 
In

fla
m

m
at

io
n 

10dpf 10dpf 

M
on

on
uc

le
ar

 C
el

l 
In

fla
m

m
at

io
n 

TN
F-
! 

ex
pr

es
si

on
 

  5dpf        10dpf       20dpf 

Il-
1"

 e
xp

re
ss

io
n 

  5dpf        10dpf        20dpf 

A B C 

D E 

!"

#"

!"

!"

!"



 61 

4.3.6 dnMAML Does Not Alter Cell Proliferation or Apoptosis During Fracture Healing 

 In addition to regulating differentiation, Notch signaling has been shown to control cell 

proliferation and apoptosis. However, dnMAML expression did not affect proliferation or apoptosis 

during fracture healing. Specifically, PCNA (Figure 4.8A), Cyclin D1 (Figure 4.8B), and Caspase 3 

(Figure 4.8C) gene expression were not different at any of the time points. Furthermore, PCNA 

IHC staining at 10dpf (Figure 4.8D) revealed no difference in the % of PCNA+ staining cells in 

undifferentiated mesenchymal cells (UDM) or mature chondrocytes (MC) (Figure 4.8E), nor in the 

PCNA+ staining area normalized to bone perimeter in areas of immature bone (IB) formation, 

which primarily includes osteoblasts, but also endothelial cells, osteoclasts, and other 

hematopoietic cells (Figure 4.8F). 

 

Figure 4.8. dnMAML does not alter cell proliferation or apoptosis during fracture healing. There are no 

differences in (A) PCNA, (B) Cyclin D1, and (C) Caspase 3 gene expression during fracture healing. (D) 

PCNA IHC staining shows no differences in (E) % PCNA+ cells in undifferentiated mesenchymal cells 

(UDM) or in mature chondrocytes, and no differences in (F) PCNA+ area per bone perimeter (PCNA+ 

area/BP) in immature bone (IB). PCNA IHC images were acquired at 400x magnification. Gene expression 

data is presented as relative expression to β-actin, calculated using the formula. 2-ΔC(t).
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4.4 Discussion 

 The Notch signaling pathway regulates embryological bone development [7, 8, 10, 11, 

13, 14, 32, 33], and because many aspects of development are recapitulated during repair [18-

20], we set out to identify the role of Notch signaling during bone fracture healing. To do this, we 

crossed heterozygous dnMAML mice with inducible Mx1-Cre promoter mice. A series of polyI:C 

injections just prior to injury activated the Mx1 promoter and Cre expression in all cell types, 

resulting in systemic dnMAML expression, which inhibits the Notch signaling pathway at the level 

of transcriptional complex assembly (NICD- RBPjκ-MAML) just prior to gene transcription [22-27]. 

It is important to note that there are other functions of the Notch pathway that dnMAML is not 

known to affect, including direct binding of NICD to Runx2 [13], RBPjκ-independent Notch cell 

autonomous and non-autonomous functions [10], and potential reverse ligand intracellular 

domain signaling in the signaling cell [35, 36]. Heterozygous dnMAML mice were chosen as a 

more clinically relevant model since any potential therapeutic applications that would attempt to 

inhibit Notch signaling would likely achieve partial but not complete Notch ablation.  

Our results demonstrate that Notch signaling is required for the spatiotemporal cascade 

of healing, where systemic inhibition of canonical Notch signaling alters inflammation, cartilage 

formation and callus vascularization, which in turn secondarily affect bone formation and 

remodeling. Our results also indicate that Notch signaling primarily regulates processes 

governing the cell-types present, and in turn tissue types, in callus, but doesn’t appear to affect 

cell proliferation or apoptosis during repair. 

 The acute inflammatory phase is required to initiate the repair cascade by promoting 

mesenchymal cell recruitment to the fracture site and initiating early angiogenesis [37]. However, 

chronic inflammatory diseases that occur in mouse models such as type I diabetes impair fracture 

healing [38]. Our results show that systemic Notch inhibition prolongs the inflammatory phase, 

increasing cytokine gene expression and neutrophil but not mononuclear cell inflammation. 

Neutrophils and macrophages (a primary component of identifiable mononuclear cells) are the 
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dominant inflammatory cell types present during fracture healing [37, 39]. Previous studies have 

also shown that Notch inhibition prolongs inflammation and delays dermal wound closure [21], 

results in severe airway inflammation [40], and mice with conditional Notch inhibition in the 

developing skeleton died prematurely and presented with severe ulcerative dermatitis possibly 

due to excessive inflammation [7]. Collectively, these studies demonstrate the requirement of 

Notch signaling to resolve the inflammatory phase and prevent chronic inflammation. 

 During endochondral fracture healing, mesenchymal cells recruited to the fracture site 

condense and undergo chondrogenesis to produce an initial cartilaginous callus [1]. Systemic 

Notch inhibition reduced cartilage formation during fracture healing. Previous studies have shown 

that Notch inhibition in fact enhances chondrogenesis [7, 8, 11]. However, transient activation of 

Notch is required to initiate chondrocyte differentiation [9]. In our model, Mx1-Cre mediated Notch 

inhibition occurred prior to injury, which prevented the transient Notch activation required for 

chondrogenic induction of mesenchymal cells at the fracture site. Alternatively, prolonged 

inflammation due to Notch inhibition could also be responsible for reduced cartilage formation. 

Previous studies have shown that inflammatory cytokines inhibit chondrogenesis and that chronic 

inflammation destroys articular cartilage [41-43]. 

Concomitant with cartilage resorption, callus vascularization mediates an influx of 

osteogenic cells to the fracture. Systemic Notch inhibition reduced vascularization of the callus, 

specifically endothelial cell expression, during bone formation and remodeling. Notch inhibition 

has also shown to impair vascularization during dermal wound healing [21] and craniofacial 

development [44]. Interestingly, Notch regulation of vascularization appears to be ligand 

dependent, with Jagged1 beneficial and Dll4 inhibitory [16]. Jagged1 is the most highly expressed 

ligand during fracture healing [12] suggesting that dnMAML inhibition of Jagged1-initiated Notch 

signaling may be responsible for decreased vascularization of the callus. Alternatively, it could 

also be hypothesized that Notch inhibition in tissues with high Dll4 expression would in fact 

promote vascularization. 

 Bone formation and remodeling during endochondral fracture healing requires the proper 

spatiotemporal progression of inflammation, cartilage formation, and callus vascularization, all of 
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which were altered due to dnMAML expression. Downstream effects from these tissues may be 

primarily responsible for the observed bone remodeling phenotype, as opposed to direct effects 

of Notch on osteoblasts and osteoclasts. For example, Notch inhibition in mesenchymal cells 

enhances osteogenic differentiation. However, our model of systemic Notch inhibition had no 

effect on bone formation at early time points, and in fact decreased osteoblast density during later 

stage bone remodeling. Enhanced expression of inflammatory cytokines, which inhibits 

osteogenesis [45], may be primarily responsible for the observed osteoblast phenotype in 

dnMAML fractures. Similarly, Notch inhibition promotes osteoclast differentiation directly through 

expression in macrophage precursors [15] and indirectly through expression in osteoblasts [7, 13, 

14]. Inflammatory cytokines also promote osteoclast differentiation [46]. Thus, at this point the 

dominant mechanism behind systemic Notch regulation of osteoclast activity is unknown, as there 

were no differences within the cartilaginous callus and decreased osteoclast activity during bone 

remodeling in dnMAML fractures. 

 Interestingly, bone remodeling during intramembranous repair of calvarial defects was 

also impaired due to systemic Notch inhibition. However, this injury model presented with 

decreased bone mass. These injury models differ in that direct bone formation without a cartilage 

precursor occurs during calvarial defect healing. Furthermore, adult wild type murine calvarial 

defects as small as 1.8 mm in diameter do not heal within one year [47], whereas closed 

transverse tibial fractures normally regenerate completely. This suggests that inhibiting the Notch 

pathway for the duration of healing is not an ideal therapeutic to enhance repair via direct bone 

formation, or to promote healing in fractures that are at high risk of non-union. Note that bone 

formation is not much different between 16-week injuries in females and 4-week injuries in males. 

This is likely due to a combination of the lack of bone formation that occurs during the later stages 

of non-union healing and the fact that female mice naturally have decreased bone mass during 

aging [29]. 

Because of the complexity of the spatiotemporally changing population of cells and 

tissues during healing, we were unable to assess the role of Notch signaling in distinct cell 

populations, including osteoblasts and osteoclasts. To address this limitation, future studies could 
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utilize tissue-specific models of Cre recombinase expression to activate dnMAML in specific 

lineages. Utilizing Prx1, Col3.6 or Col2.3 promoters would inhibit Notch signaling in 

undifferentiated mesenchymal progenitors, osteoprogenitors, or committed osteoblasts, 

respectively. Similarly, TRAP promoters would inhibit Notch signaling in osteoclast lineage cells, 

and expressing Cre in lineage-restricted inflammatory cells would be useful for exploring the 

contribution of inflammatory cells.   Alternatively, the use of gamma secretase inhibitors (GSI) 

would allow temporal control of Notch signaling to isolate or exclude the role of Notch signaling in 

specific phases of healing. For example, GSI injections following the conclusion of the acute 

inflammatory phase could exclude any secondary effects of altered inflammation on the rest of 

healing, providing a model to better understand the direct role of Notch signaling in cartilage 

formation, callus vascularization, and bone formation and remodeling. Similarly, GSI injections 

starting at the cartilage-to-bone transition would isolate the role of Notch signaling during bone 

formation and remodeling. 

In conclusion, our results demonstrate that the Notch signaling pathway is required for 

the proper temporal cascade of bone fracture healing, and that systemic inhibition of the pathway 

for the duration of healing is not an ideal therapeutic to improve regeneration. However, more 

research is required to understand the role of Notch signaling in individual cell populations during 

repair. 
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CHAPTER 5 

The Role of the Notch Ligand Jagged1 During Bone Development and Aging 

 

5.1 Introduction 

Embryological development of long bones utilizes endochondral ossification. 

Mesenchymal cells form condensations and then differentiate into chondrocytes to produce an 

initial cartilage matrix that is eventually replaced by bone. Cells at the periphery of the 

condensations elongate and form a layer of connective tissue known as the perichondrium and 

periosteum. These cells ultimately differentiate into osteoblasts forming the bone collar, which is 

the precedent to cortical bone. Chondrocytes in the center of the condensations continue to 

differentiate and produce the cartilage matrix, eventually becoming enlarged hypertrophic 

chondrocytes. The hypertrophic cartilage matrix mineralizes and cells begin to undergo 

apoptosis. The invading vasculature from the surrounding bone collar mediates an influx of 

osteoblasts, which forms the initial bone matrix on top of resorbing cartilage. This initial bone is 

known as the primary spongiosa, which is the prequel to trabecular bone. Chondrocytes either 

proximally or distally to this primary site of ossification continue to proliferate and arrange into 

columns of avascular cartilage known as the growth plate, which is found at each end of 

expanding bone. The growth plate is responsible for longitudinal bone growth through the 

sequence of chondrocyte proliferation, which effectively expands the growth plate towards the 

bone center, followed by differentiation, hypertrophy, apoptosis, and replacement of cartilage by 

bone.  A secondary site of ossification forms between the growth plate and the distal ends of the 

bone. In the trabecular region contained within the cortical compartment, hematopoietic elements 

form the marrow cavity. During post-natal growth, long bones continue to elongate through 

endochondral ossification until chondrocytes in the growth plate cease to proliferate and the 

cartilage is completely replaced by bone in most mammals. Cortical bone growth and remodeling 

continues throughout adulthood through osteoblast-mediated expansion of the outer periosteal 
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surface and osteoclast-mediated resorption of the inner endosteal surface, which together 

regulate thickness of the cortical compartment [1-4]. 

 The Notch signaling pathway is a developmentally conserved cell-to-cell signaling 

pathway that regulates cell proliferation, differentiation, fate determination, apoptosis, and other 

behaviors [5]. Activation of this signaling pathway occurs when a Notch ligand (Jagged 1,2 and 

Delta-like 1,4) expressed on the surface of a signaling cell interacts with a Notch receptor (Notch 

1-4) expressed on the surface of a receiving cell. The Notch intracellular domain (NICD) is 

cleaved via a two-stage proteolytic event mediated first by the ADAM family metalloproteinase 

tumor necrosis factor α conversion enzyme (ADAM/TACE), and then by the γ-secretase complex 

comprised of Presenilins (Psen) 1 and 2. Cleaved NICD translocates to the nucleus where it 

binds to RBPjκ converting it from a transcriptional repressor to an activator. Mastermind-like 

proteins (MAML) then bind to the NICD-RBPjκ complex and serve as a scaffold to recruit other 

co-activators necessary to initiate transcription of canonical Notch target gene families Hes and 

Hey [6-8].  

 Notch signaling and its components have been shown to regulate embryological bone 

development and maturation. Deletion of Notch1 and Notch2 in mesenchymal progenitor cells 

(utilizing Cre recombinase driven by the Prx1 promoter) (Prx1-Cre; Notch1-/f Notch2f/f) or similar 

deletion of Psen1 and Psen2 (Prx1-Cre; Psen1f/f Psen2-/-) stimulates osteoblast differentiation 

and early trabecular bone formation, which is ultimately lost during aging due to depletion of the 

progenitor pool and increased osteoclast activity [9]. These results demonstrate that early 

expression of Notch components maintains progenitors in an undifferentiated state. Deletion of 

Notch receptors or Psens in committed osteoblasts (Col2.3 promoter) or mature osteoblasts (Ocn 

promoter) does not alter early bone formation, but results in osteopenia during aging, 

demonstrating that expression of these Notch pathway components in more mature osteogenic 

cells primarily serves to indirectly inhibit osteoclast activity (Col2.3-Cre; Notch1f/f Notch2f/f) [9] 

(Col2.3-Cre; Psen1f/f Psen2-/-) [10] (Ocn-Cre; Notch1f/f) [11]. Global deletion of Notch target gene 

Hey1 also results in osteopenia [12], further demonstrating the role of Notch components to 

inhibit osteoclast activity. Although the roles of Notch receptors, mediators of NICD cleavage, and 
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target genes are well-characterized, the roles of Notch ligands, which are the initiators of the 

pathways, during embryological bone development and maturation are not as well-understood. 

 Jagged1 (Jag1) is the most highly expressed Notch ligand during skeletal development 

[13], bone fracture healing [14], and chondrogenesis [15]. High Jag1 expression in osteochondral 

progenitor cells gradually decreases during chondrogenic differentiation [14, 15], whereas it is 

expressed at multiple stages of osteoblast differentiation [14]. Jag1 expression in the 

mesenchymal lineage also regulates hematopoietic cell behavior. Activation of parathyroid 

hormone and its receptor in osteoblast-lineage cells increases Jag1 expression, which then 

promotes hematopoietic stem cell expansion [16, 17]. Co-culture of Jag1-expressing stromal cells 

with bone marrow-derived macrophages inhibits osteoclast differentiation [18]. Collectively, the 

data suggests that Jag1 regulates bone formation and resorption. 

Clinically, loss-of-function mutations to Jag1 are primarily responsible for Alagille 

Syndrome (ALGS) in humans [19, 20]. ALGS incorporates a vast array of developmental defects, 

including chronic liver cholestasis, bile duct paucity, particular facial structural abnormalities, 

cardiovascular disease, kidney and pancreatic disease, and musculoskeletal defects [21]. ALGS 

patients present with decreased bone mass [22] and increased risk of fracture [23], which is often 

assumed to be secondary to chronic liver cholestasis, where the resulting malabsorption of fat 

soluble vitamins and minerals is believed to be primarily responsible for impaired skeletal 

development. However, liver transplantations, which are common treatments for ALGS patients, 

have not been able to recover normal bone growth [22, 24]. A recent study demonstrated a direct 

role for Jag1 in craniofacial development [25]. Furthermore, in Chapter 3 we showed Jag1 to be 

highly expressed in mesenchymal lineage cells during bone fracture healing [14], suggesting that 

low bone mass and increased risk of fracture in ALGS patients may be due to direct effects of 

Jag1 expression in the skeleton, which a liver transplantation would not address. However, the 

role of Jag1 in mesenchymal lineage cells during skeletal development is unknown.  

Therefore, the objective of this study was to determine the direct role of Jag1 during bone 

formation by using two skeletal-specific conditional Jag1 knockout mouse models; first removing 

the gene in a mesenchymal progenitor cell population (Prx1 promoter), and then deleting the 
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gene in a committed osteoblast population (Col2.3 promoter). We hypothesize that Jag1 

expression in the mesenchymal lineage regulates bone formation through paracrine cell-to-cell 

signaling.  

 

5.2 Methods 

5.2.1 Generation of Mice 

Jag1f/f mice [26] were crossed with mice expressing Cre recombinase on the Prx1 

promoter (Prx1-Cre;Jag1f/f). The Prx1 promoter is active in undifferentiated osteochondral 

progenitor cells, and all mesenchymal lineage cells in the developing mouse limb bud are derived 

from Prx1-expressing cells [27]. Therefore, in this model Jag1 will be conditionally deleted in 

osteochondral progenitor cells of the limb-bud prior to skeletal development (Figure 5.1). Wild 

type mice are heterozygous and homozygous Jag1 floxed but Cre-negative (WT). These mice are 

on a C57Bl/6 background. 

 Jag1f/f mice were also crossed with mice expressing Cre recombinase from the 2.3 kb 

fragment of the collagen type I promoter, also known as the Col2.3 promoter (Col2.3-Cre;Jag1f/f). 

The Col2.3 promoter is active in committed osteoblasts that align trabecular and cortical bone, 

but not in cells in the growth plate or osteoprogenitors in the periosteum [28, 29]. Therefore, in 

this model Jag1 will be deleted in an osteoblast-specific population later on during differentiation 

(Figure 5.1). Wild type mice are heterozygous and homozygous Jag1 floxed but Cre-negative 

(WT). These mice are on a mixed C57Bl/6 and CD1 background. 

 

Figure 5.1. Schematic depicting Prx1 and Col2.3 expression during osteochondral lineage differentiation. 

Prx1 is first expressed in undifferentiated osteochondral progenitor cells [27]. Col2.3 is first expressed in 

committed osteoblasts [28, 29]. 
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5.2.2 Experimental Design 

 Femurs were harvested for micro-computed tomography (µCT) analysis of bone 

formation from Prx1-Cre;Jag1f/f and Col2.3-Cre;Jag1f/f male and female mice with respective WT 

controls at 8 weeks of age. Additional femurs from Prx1-Cre;Jag1f/f male mice and WT mice were 

also harvested at 9 months (n=7-12). 

 RNA from whole tibiae (including cortical bone, trabecular bone, and marrow) was 

harvested for quantitative real-time polymerase chain reaction (QPCR) analysis of gene 

expression from Prx1-Cre;Jag1f/f and Col2.3-Cre;Jag1f/f mice with respective WT controls at 8 

weeks of age. RNA was also isolated from the tibial cortical bone compartment (excluding 

trabecular bone and marrow) from Prx1-Cre;Jag1f/f mice and WT control at 8 weeks (n=3-5). 

 

5.2.3 Micro-computed Tomography (µCT) 

Femurs were scanned using a Scanco vivaCT40 µCT system (Scanco Medical) with the 

following parameters: 10.5 µm isotropic voxel size, 55 kVp, 145 µA, 1000 projections per 180°, 

200 milliseconds integration time, 2D transverse reconstructed 2,048 x 2,048 pixel images. 

Cortical bone parameters were measured by analyzing 50 slices (0.525 mm) in the mid-diaphysis. 

This defined region was the central portion between the proximal and distal ends of the femur. A 

semi-automated contouring method was used to determine the outer cortical bone perimeter. 

Briefly, a user-defined contour was drawn around the cortical bone perimeter of the first slice. 

This initial estimate was then subjected to automated edge detection. This semi-automated 

contour then served as the initial estimate for the next slice, and the automated contouring 

process continued for all 50 slices. A fixed, global threshold of 37.2% of the maximum gray value 

was used to distinguish cortical bone from soft tissue and marrow. Trabecular bone parameters 

were measured by analyzing 101 slices (1.06 mm) of the distal metaphysis. Briefly, the distal end 

of the analysis region was chosen to be 0.105 mm proximal to the end of the primary spongiosa 

in the marrow cavity. This assured that only trabecular bone was analyzed. Starting at this image, 

a user-defined contour was drawn to include trabecular bone within the marrow cavity and 

exclude cortical bone. User-defined contours were drawn every 10 slices (0.105 mm) and an 



 76 

automated morphing program was used to interpolate the contours for all images in between. A 

fixed, global threshold of 23% of the maximum gray value, which corresponds to 321.6 mg 

HA/cm3 was used to distinguish trabecular bone from soft tissue and marrow. A Gaussian low-

pass filter (σ = 0.8, support = 1) was used for all analyses. 

 

5.2.4 Quantitative Real-Time Polymerase Chain Reaction (QPCR) 

Tissue was placed in RNAlater solution and stored at -80°C until further processing. 

Specimens were then thawed on ice and placed in Qiazol lysis reagent (Qiagen). Tissue was 

homogenized using the Tissue Tearor (BioSpec Products) and mRNA was extracted using the 

Qiagen miRNeasy Mini Kit with DNase digestion to remove DNA contamination. RNA yield was 

determined using a NanoDrop 1000 spectrophotometer (ThermoScientific). 1 µg of mRNA was 

reverse transcribed into 20 µl of cDNA using the Applied Biosystems High Capacity RNA-to-

cDNA Kit. Gene expression was quantified using a 7500 Fast Real-Time PCR system (Applied 

Biosystems) from a total of 10 µl of Master Mix per well, which included 1x Fast SYBR Green 

(Applied Biosystems), forward and reverse primers (0.45 µM), and 0.5 µl of cDNA. For each gene 

of interest, samples were run in duplicate and control wells were run to rule out DNA 

contamination and primer dimer binding. Proper amplicon production was confirmed by melt 

curve analysis. QPCR data was first normalized to β-actin housekeeping control, and then 

presented as fold change expression to each genotype’s respective whole bone (Prx1-Cre;Jag1f/f 

or Col2.3-Cre;Jag1f/f) calculated using the formula 2-ΔΔC(t). 

 

5.2.5 Statistical Analysis 

 A student’s t-test was used to compare each Jag1 knockout group to its respective wild 

type control for all µCT and QPCR parameters (*p<0.050, #p<0.100). For linear regression 

analysis, genes are presented as relative expression to β-actin calculated using the formula 2-

ΔC(t).  
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5.3 Results 

5.3.1 Jag1 Deletion During Early and Late Differentiation Inhibits Trabecular Bone Formation 

 Jag1 deletion in Prx1 lineage cells decreased trabecular bone volume fraction (BV/TV) 

and tissue mineral density (TMD) in 8-week-old female mice (Figure 5.2). This phenotype 

persisted during aging in 9-month-old male mice. Similarly, there was an increase in trabecular 

number (Tb.N) and decrease in trabecular separation (Tb.Sp) in 8-week-old male mice that 

persisted to 9 months. There were no differences in trabecular thickness (Tb.Th). 

 

Figure 5.2. µCT 

analysis of trabecular 

bone in Prx1 mice at 

8 weeks (females and 

males) and 9 months 

of age (males): bone 

volume fraction 

(BV/TV, top left), 

tissue mineral density 

(TMD, top right), 

trabecular number 

(Tb.N, middle left), 

trabecular thickness 

(Tb.Th, middle right), 

trabecular separation 

(Tb.Sp, bottom left), 

and representative 3D 

images (bottom right). 

*p<0.050, #p<0.100 
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 Jag1 deletion on the Col2.3 promoter also decreased trabecular BV/TV, TMD, Tb.N, 

Tb.Th and increased Tb.Sp at 8 weeks (Figure 5.3). This phenotype was observed in male mice 

only. Collectively, the data suggests that endogenous Jag1 expression during both early and late 

differentiation positively regulates trabecular bone mass during development and aging.  

 

 

 

 

Figure 5.3. µCT analysis of 

trabecular bone in Col2.3 mice at 

8 weeks (females and males) of 

age: bone volume fraction 

(BV/TV, top left), tissue mineral 

density (TMD, top right), 

trabecular number (Tb.N, middle 

left), trabecular thickness (Tb.Th, 

middle right), trabecular 

separation (Tb.Sp, bottom left), 

and representative 3D images 

(bottom right). *p<0.050, 

#p<0.100 
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5.3.2 Jag1 Deletion During Early and Late Differentiation Promotes Periosteal Expansion and 

Endosteal Resorption of Cortical Bone 

 Jag1 deletion on the Prx1 promoter increased total area (Tt.Ar), marrow area (M.Ar), 

cortical bone area (Ct.Ar) and cortical bone thickness (Ct.Th) in 8-week-old male and female mice 

(Figure 5.4). This phenotype largely persisted in 9-month-old males. 

 

Figure 5.4. µCT analysis of cortical bone in Prx1 mice at 8 weeks (females and males) and 9 months of age 

(males): total area (Tt.Ar, top left), marrow area (M.Ar, top right), cortical bone area (Ct.Ar, middle left), 

cortical bone thickness (Ct.Th, middle right), and representative 2D images (bottom left). *p<0.050, #p<0.100 
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 Jag1 deletion on the Col2.3 promoter also increased Tt.Ar and M.Ar in 8-week-old female 

mice (Figure 5.5). However this did not translate to a difference in Ct.Ar or Ct.Th. No differences 

were found in male mice. Collectively, the data suggests that endogenous Jag1 expression 

during early and late differentiation negatively regulates periosteal expansion, indicated by Tt.Ar, 

and endosteal resorption of cortical bone, indicated by M.Ar. Endogenous Jag1 expression during 

early differentiation also negatively regulates cortical bone mass, indicated by Ct.Ar and Ct.Th. 

The observed cortical bone phenotype is in apparent opposition to the trabecular bone 

phenotype. 

 

Figure 5.5. µCT analysis of cortical bone in Col2.3 mice at 8 weeks (females and males) of age: total area 

(Tt.Ar, top left), marrow area (M.Ar, top right), cortical bone area (Ct.Ar, middle left), cortical bone thickness 

(Ct.Th, middle right), and representative 2D images (bottom left). *p<0.050, #p<0.100 
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5.3.3 Jag1 regulation of Notch Pathway, Osteoblast, Osteoclast, and Proliferation Gene 

Expression 

 To understand the role of Jag1 on gene expression, RNA was harvested from whole 

bone (tibia) of Prx1-Cre;Jag1f/f female and Col2.3-Cre;Jag1f/f male mice at 8 weeks of age. 

Because there was an opposite cortical bone phenotype, RNA was also harvested from the 

diaphyseal cortical compartment from Prx1-Cre;Jag1f/f male mice. Sexes were chosen based on 

intensity of observed phenotypes via µCT and availability of RNA specimens. β-actin C(t) values 

were not different between Jag1 deletion and respective WT groups in whole and cortical bone. 

 Jag1 gene expression is decreased in whole bone of Prx1-Cre;Jag1f/f and Col2.3-

Cre;Jag1f/f mice as well as in cortical bone of Prx1-Cre;Jag1f/f mice (Figure 5.6). In whole bone, 

this resulted in decreased Notch target Hey1 and Hes1 gene expression. However, there was no 

change in expression in cortical bone, which already had reduced levels of basal Notch target 

gene expression. This demonstrates that Jag1 deletion inhibits Notch target gene expression in 

whole bone but not in cortical bone.  
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Figure 5.6 (above). Gene expression of Notch pathway components Jag1, Hes1 and Hey1. Data is 

presented as fold change expression to each genotype’s respective whole bone (Prx1-Cre;Jag1f/f or Col2.3-

Cre;Jag1f/f) calculated using the formula 2-ΔΔC(t). *p<0.050, #p<0.100 

 

 Jag1 disruption from either Prx1 or Col2.3 promoters decreased expression of osteogenic 

genes osterix (Osx), osteocalcin (Ocn) and collagen type I (Col1a1) in whole bone (Figure 5.7). 

However, Jag1 deletion on the Prx1 promoter had no affect on osteogenic gene expression in 

cortical bone, demonstrating that Jag1 deletion inhibits osteoblast activity in whole bone but not 

within the cortical bone. 

 

Figure 5.7. Osteogenic gene expression of osteocalcin (Ocn), osterix (Osx) and collagen type I (Col1a1). 

Data is presented as fold change expression to each genotype’s respective whole bone (Prx1-Cre;Jag1f/f or 

Col2.3-Cre;Jag1f/f) calculated using the formula 2-ΔΔC(t). *p<0.050, #p<0.100 
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 Prx1 and Col2.3 specimens were pooled together for linear regression analysis. Gene 

expression of Notch components Jag1, Hes1 and Hey1 were each positively significantly 

correlated to Col1a1 gene expression regardless of specimen (whole bone and cortical bone 

combined) (Figure 5.8). Hey1 was further positively significantly correlated to Ocn gene 

expression within whole bone. This data demonstrates that expression of Notch components are 

positively correlated with expression of osteogenic markers. 

 

Figure 5.8. Linear correlation of Notch components (Jag1, Hes1, Hey1) with osteogenic markers (Col1a1, 

Ocn) for whole bone (WB only) or whole bone and cortical bone combined (WB and CB). All data includes 

both Prx1 and Col2.3 models. Data is presented as relative expression to β-actin calculated using the 

formula 2-ΔC(t).  
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 Jag1 deletion on the Prx1 and Col2.3 promoters also decreased expression of RankL, a 

pro-osteoclast ligand expressed by osteoblasts that binds to RANK expressed on the surface of 

osteoclasts to promote differentiation, as well as osteoprotogerin (OPG), an anti-osteoclast decoy 

receptor expressed by osteoblasts that binds to RankL to inhibit its activity, in whole bone but not 

in cortical bone (Figure 5.9). Although the OPG:RankL ratio was unaltered in both compartments, 

TRAP gene expression, a direct marker of osteoclasts, was increased due to Jag1 deletion on the 

Prx1 promoter in cortical bone. Collectively, the data suggest that Jag1 deletion does not alter the 

balance of pro- and anti-osteoclast genes expressed by osteoblasts in whole bone and cortical 

bone, but does increase expression of direct osteoclast markers in cortical bone only. 

 

Figure 5.9. Gene expression of osteoblast mediators of osteoclast activity – RankL, osteoprotogerin (OPG) 

and the ratio between the two (OPG:RankL) – and osteoclast marker TRAP. Data is presented as fold 

change expression to each genotype’s respective whole bone (Prx1-Cre;Jag1f/f or Col2.3-Cre;Jag1f/f) 

calculated using the formula 2-ΔΔC(t). *p<0.050, #p<0.100 
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 Jag1 deletion on the Col2.3 promoter decreased expression of Cyclin D1 in whole bone 

(Figure 5.10). Col2.3 and Prx1 trends were similar but non-significant for PCNA gene expression. 

Alternatively, Jag1 deletion on the Prx1 promoter increased PCNA expression in cortical bone, 

suggesting that Jag1 deletion moderately inhibits proliferation gene expression in whole bone, but 

moderately promotes expression in cortical bone. 

 

Figure 5.10. Gene expression of proliferation markers Cyclin D1 and PCNA. Data is presented as fold 

change expression to each genotype’s respective whole bone (Prx1-Cre;Jag1f/f or Col2.3-Cre;Jag1f/f) 

calculated using the formula 2-ΔΔC(t). *p<0.050, #p<0.100 
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5.4 Discussion 

 The objective of this study was to determine the role of Jag1 during bone formation and 

remodeling. We found a similar role for Jag1 during early (Prx1) and late (Col2.3) osteoblast 

differentiation. Endogenous Jag1 expression in whole bone positively regulated notch target and 

osteogenic gene expression, had no effect on osteoclast gene expression, and moderately 

stimulated proliferation genes. Whole bone gene expression results strongly correlated with 

increased trabecular bone formation in wild type mice at 8 weeks and 9 months of age. 

Osteoblast density in trabecular bone is more than two times greater than in cortical bone [30], 

suggesting that osteogenic components of whole bone gene expression analysis are primarily of 

trabecular osteoblast origin. Alternatively, it is also possible that there is greater ability to liberate 

RNA from trabecular bone than from cortical bone. Collectively, the data shows that in trabecular 

bone Jag1 activates the Notch signaling pathway, and promotes osteoblast differentiation and 

proliferation, ultimately enhancing bone formation. Furthermore, gene expression analysis of all 

compartments and animal models demonstrated that Jag1-induced Notch signaling was positively 

and linearly correlated with osteogenic gene expression. This pro-osteogenic role for Jag1 has 

not been identified for other Notch ligands, and the results are in contrast to previous results 

showing that expression of Notch receptors in the mesenchymal lineage primarily serve to 

maintain mesenchymal progenitors in an undifferentiated state [9] or indirectly inhibit osteoclast 

activity [9-11]. However, consistent with this finding, Notch ligands have previously demonstrated 

reciprocal effects on cell function. Dll4 inhibits vascularization, whereas Jag1 promotes it [31]. 

Furthermore, a recent study demonstrated that Dll1 directly enhances osteoclast differentiation, 

whereas Jag1 directly inhibits it [32]. Therefore, it is not surprising that Jag1 could function as a 

discrete positive regulator of osteoblast differentiation and bone formation in opposition to what 

has been shown for other Notch components.  

The differences in bone geometry in Prx1-Cre;Jag1f/f mice present at 8 weeks persisted 

during aging to 9 months, demonstrating a consistent role for Jag1 during skeletal development, 
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maturation and aging. Again, this is opposed to other studies that have shown differing 

phenotypes in young and aged mice due to Notch loss of function [9, 10]. 

 Surprisingly, Jag1 appears to have divergent roles in trabecular and cortical 

compartments. The loss of Jag1 in cortical bone affected neither notch target nor osteogenic 

gene expression, enhanced osteoclast gene expression, which is consistent with other Notch 

components, and moderately promoted proliferation genes. This also strongly correlated with 

enhanced periosteal expansion, endosteal resorption, and bone mass in the cortical 

compartment. The mechanism behind this is currently unknown. However, it is of note that Jag1 

does not appear to regulate Notch target gene expression in cortical bone. Hey1 and Hes1 are 

also targets of the BMP/TGF-β signaling pathway [33, 34]. It is possible that the BMP/TGF-β 

pathway compensated for the loss of Jag1-initiated Notch activity in the cortical compartment 

only. However, basal expression levels of Notch target genes in the cortical compartment of wild 

type mice are already at reduced levels relative to whole bone, suggesting that Notch signaling 

may be decreased in normal mature cortical bone. Alternatively, Jag1 could function non-

canonically in cortical bone. There is evidence that Jag1 could signal within its own cell by 

reverse ligand cleavage of the intracellular domain independent of the Notch signaling pathway 

[35, 36]. Furthermore, Jag1 expression by cells outside of the cortical compartment could function 

in a non-paracrine manner acting on cortical bone, such as in a long range cell non-autonomous 

fashion [37]. Similarly, compensatory effects caused by decreased trabecular bone formation in 

knockout mice may regulate cortical bone mass independent of the Notch pathway. Finally, the 

cortical bone phenotype may also be due to changes in gene expression that occurred prior to 

the earliest 8-week time point analyzed. Regardless, more work is needed to fully elucidate a 

potential mechanism. 

 Prx1 trabecular and cortical bone phenotypes were present in both males and females. 

However, trabecular phenotypes in Col2.3 mice were more pronounced in males, whereas 

cortical bone phenotypes were more pronounced in females. A previous study showed that using 

the Col2.3 promoter model, floxing of alleles in the absence of germ-line transmission of the Cre 

recombinase gene (which would be considered a wild type mouse) could happen in as many as 



 88 

50% of females but just 15% of males [38]. Thus, aberrant activity of the Col2.3 promoter in 

female gametes may account for the lack of trabecular phenotypic differences. The presence of a 

stronger cortical phenotype in Col2.3 females relative to male mice also further suggests that 

changes to cortical bone may be independent of Jag1 activity. 

 In conclusion, we demonstrate that Jag1 expression in the skeleton directly and positively 

regulates bone formation. This suggests liver transplantations for ALGS patients as an 

incomplete therapeutic strategy. While this will address secondary effects of liver function on 

bone mass, direct strategies should be taken to target the skeleton and mesenchymal lineage 

cells to improve Jag1 and ultimately osteogenic function. Our data demonstrated a pro-

osteogenic role for Jag1 during bone formation. Delivery of Jag1 to the metaphysis (which 

includes the growth plate and trabecular bone) of developing long bones may improve bone 

formation prior to skeletal ALGS phenotypic onset. Jag1 can also be targeted to address other 

skeletal disorders. For example, delivery of Jag1 could enhance osteogenesis and improve bone 

formation during fracture healing. 

 Further characterization of Col2.3-Cre;Jag1f/f and Pr1-Cre;Jag1f/f mice is required to 

better understand the role of Jag1 on cellular behavior. Future studies will harvest bone marrow-

derived mesenchymal progenitor cells to quantify the effect of Jag1 deletion during early and late 

differentiation on mesenchymal progenitor number (CFU-F assay), cell proliferation (Alamar Blue 

assay), and osteoblast differentiation (Alizarin Red S staining). Furthermore, histological analysis 

of bones will help localize the observed changes in gene expression, as well as allow for analysis 

of the cartilaginous growth plate. 
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CHAPTER 6 

Activation of Notch Signaling by Jagged1 Immobilization to a Poly(β-amino ester) 

Polymer Induces Osteoblastogenesis 

 

6.1 Introduction 

Bone fractures are a significant clinical and economic problem. While the majority of fractures 

heal with standard care, a considerable number exhibit delayed healing and can develop into 

non-unions [1, 2]. To treat these injuries, therapeutics have been developed to deliver 

osteoinductive (biological cues to stimulate osteoblast activity) and osteoconductive (scaffold or 

other cue to support bone formation) signals. Autologous bone grafts are considered the ‘gold 

standard’, but can result in donor site morbidity and yield only a limited amount of graft material. 

Demineralized bone matrix is more readily available, but has limited osteoinductive potential and 

can induce immunogenic reactions [3]. More recently, growth factor-based therapies have been 

developed to induce bone formation. Use of bone morphogenetic proteins (BMPs) has become a 

common clinical treatment to promote bone repair [4, 5]. However, recent reports suggest that 

BMPs lack the clinical efficiency and safety that has been widely demonstrated in pre-clinical 

animal models [6]. Therefore, a need persists for the identification of new targets and 

development of new therapies to promote bone tissue formation through delivery of 

osteoinductive and osteoconductive signals. 

 The Notch signaling pathway has been shown extensively to regulate mesenchymal cell 

behavior and embryological bone formation [7-14]. Briefly, activation of the cell-to-cell signaling 

pathway occurs when a membrane-bound ligand (Jagged 1,2 and Delta-like 1,4) from one cell 

interacts with a membrane-bound receptor (Notch 1-4) on the receiving cell. A two-stage 

proteolytic event cleaves the Notch intracellular domain (NICD), which translocates to the nucleus 

and binds with co-activators to initiate transcription of Notch target gene families Hes and Hey.  

Jagged1 is the most highly expressed Notch ligand in mesenchymal cells [11, 15]. In 

Chapter 3, we demonstrated that it is also the most highly upregulated Notch ligand during bone 
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fracture healing [16]. Furthermore, in Chapter 5, we demonstrated that endogenous Jagged1 

activity during early and late osteoblast differentiated promotes trabecular bone formation. 

Clinically, loss-of-function mutations to Jagged1 are responsible for Alagille Syndrome in humans 

[17, 18], a genetic disorder characterized by defects to multiple organs including the skeleton, 

where patients present with decreased bone mass and an increased risk of fracture [19, 20]. 

Collectively, the data demonstrates that Jagged1 regulates bone formation and may be a 

potential therapeutic target to improve bone regeneration. Therefore, the objective of this study is 

to develop a clinically translatable biomaterial construct comprised of Jagged1 and an 

osteoconductive scaffold, and evaluate its ability to induce bone tissue formation. 

 Previous studies have demonstrated a requirement for Jagged1 immobilization to a 

substrate in order to activate the Notch signaling pathway [21-23]. It has been hypothesized that 

the naturally-occurring immobilized state of a membrane-bound Notch ligand is required to apply 

a pulling force on the extracellular domain of the Notch receptor, which precedes cleavage of the 

intracellular domain (NICD) [24]. However, non-immobilized ligands are also able to bind to the 

Notch receptor and effectively inhibit Notch activity by preventing other immobilized ligands from 

binding to that receptor [25]. A previous study comparing Jagged1 immobilization strategies 

demonstrated that indirect immobilization of a recombinant Jagged1/Fc protein to a substrate via 

anti-Fc antibody binding was more effective than direct Jagged1/Fc adsorption at activating Notch 

signaling at lower protein concentrations (0.14–1.42 µg/mL [26]). It has been hypothesized that 

indirect immobilization of Jagged1/Fc bound by the Fc region results in uniformly oriented protein 

with the Jagged1 extracellular binding domain readily available for receptor binding, whereas 

direct adsorption results in randomly oriented protein with some binding domains inaccessible 

[26]. However, the optimal immobilization strategy to induce Notch activation at higher 

concentrations likely required for in vivo therapeutic effects is unknown. Therefore, we first set out 

to evaluate the ability of direct and indirect Jagged1 immobilization strategies at 2.5 and 10 

µg/mL to induce Notch activity. We hypothesize that direct Jagged1 immobilization increases 

Notch activation relative to indirect at higher protein concentrations. Then we evaluated the 
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osteoinductive capabilities of the ideal Jagged1 immobilization strategy, with the hypothesis that 

Jagged1/A6 biomaterial constructs promote osteoblast differentiation. 

Poly(β-amino ester)s (PBAEs) are clinically advantageous polymers to use as 

therapeutics because they are simple to synthesize with no by-products formed, and are 

inexpensive and commercially available. A combinatorial library of acrylate-terminated 

photocrosslinkable PBAEs was developed and characterized based on mechanics, degradation 

rate, and cellular interactions in vitro [27, 28]. One PBAE in particular, diethylene glycol diacrylate 

combined with isobutylamine, known as A6, was shown to promote bone tissue regeneration 

when used as a carrier for BMP-2 [29]. Based on its osteoconductive capability, A6 was utilized 

as the biomaterial substrate for Jagged1. 

This research aims to develop a clinically translatable therapy to improve bone 

regeneration by targeting the Notch signaling pathway. The global hypothesis is that delivery of 

Jagged1 immobilized to A6 [Jagged1/A6] will activate Notch signaling and promote osteoblast 

differentiation. 

 

6.2 Methods 

6.2.1 Macromer Synthesis and Photopolymerization 

A6 was synthesized as previously described [27]. Briefly, diethylene glycol diacrylate (‘A’) 

(Sigma, St. Louis, MO, USA) and isobutylamine (‘6’) (Sigma, St. Louis, MO, USA) were mixed 

together at a 1.2:1 molar ratio for 40 h at 90°C. 0.5 wt% of the photoinitiator 2,2-dimethoxy-2-

phenylacetophenone (DMPA) (Sigma, St. Louis, MO, USA) diluted in dichloromethane was then 

mixed in for 1 h at 90°C.  

For in vitro experiments, A6 was mixed with an equal volume of ethanol and 30 µL was 

added to coat the bottom of each 24-well tissue culture plate. Ethanol was allowed to evaporate 

overnight. The A6 macromer was photopolymerized by exposure to ultraviolet light (~10 mW/cm2, 

365 nm, 15 min) (Omnicure S1000 UV Spot Cure System, Exfo, Ontario, Canada) in a nitrogen-

purging environment. 
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6.2.2 Jagged1 Immobilization Strategies 

Recombinant rat Jagged1/Fc (98% homology to human Jagged1, R&D Systems, 

Minneapolis, MN, USA) was used to evaluate direct and indirect immobilization strategies. For 

direct immobilization, Jagged1/Fc diluted in PBS was adsorbed to the A6 surface for 2 h followed 

by two PBS washes.  

For indirect immobilization, 15 µg/mL of F(ab’)2 fragment rabbi anti-human IgG-Fc 

specific fragment (anti-Fc antibody, Jackson Immunoresearch, West Grove, PA, USA) diluted in 

PBS was first adsorbed to the A6 surface for 2 h followed by two PBS washes. Anti-Fc-bound-A6 

wells were then blocked in 1% BSA diluted in PBS for 2 h. Finally, Jagged1/Fc diluted in 0.1% 

BSA in PBS was added for 2 h, allowing for the anti-Fc antibody to bind to the Fc portion of the 

recombinant Jagged1/Fc protein. In the following sections, recombinant Jagged1/Fc will simply 

be referred to as Jagged1. All incubations were done at room temperature. 

 

6.2.3 In vitro Experimental Design 

Direct and indirect Jagged1 immobilization strategies to A6 [Jagged1/A6] at 0, 2.5 and 10 

µg/mL (Direct[0/A6], Direct[2.5/A6], Direct[10/A6], Indirect[0/A6], Indirect[2.5/A6], Indirect [10/A6]) 

were evaluated in primary human bone marrow-derived mesenchymal stem cells (hMSCs, Lonza, 

Walkersville, MD, USA) plated at 5000 cells/cm2 at passage 4 in 24-well plates and cultured in 

standard growth media (SGM: αMEM, 20% FBS, 1x l-glutamine, 1x pen/strep). Cells were 

harvested for gene expression analysis of Notch target and osteogenic genes at days 1, 3, 5 and 

7 post-plating (n=3). Control tissue culture polystyrene (TCPS) wells with no A6 and no Jagged1 

[0/TCPS] were included for gene expression analysis. Cell number was assessed using an 

Alamar Blue assay at days 1, 3, 5 and 7 (n=5).  Alkaline phosphatase, an enzyme produced by 

osteoblasts during bone formation, was evaluated histochemically at day 7 (n=5). Successfully 

immobilized Jagged1 to the A6 surface through direct and indirect strategies was quantified using 

an enzyme-linked immunosorbent assay (ELISA) (n=4). The 40-day release kinetics profile of 

direct and indirect immobilized Jagged1 was similarly quantified by ELISA (n=1). 
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 Then to evaluate the ability of direct Jagged1/A6 immobilization at 0 and 10 µg/mL 

(Direct[0/A6], Direct[10/A6]) to induce osteogenesis, hMSCs were plated at 10,000 cells/cm2 at 

passage 4 in 24-well plates and cultured in osteogenic media (OGM: αMEM, 10% FBS, 1x l-

glutamine, 1x pen/strep, 200 µM ascorbic acid 2-phosphate, 100 mM β-glycerophosphate, 100 

nM dexamethasone). Cell number was assessed using Alamar Blue at days 1 (n=9), 7 (n=6), 10 

(n=6) and 13 (n=3). Alkaline phosphatase was evaluated using histochemistry 7 (n=3). Calcified 

mineral tissue deposition by cells, which is indicative of terminal osteoblast differentiation, was 

assessed by Alizarin Red S staining at days 10 and 13 (n=5). Control TCPS wells with no A6 and 

no Jagged1 [0/TCPS] were also included for calcified mineral deposition analysis (n=3). 

 

6.2.4 Quantitative Real-Time Polymerase Chain Reaction (QPCR) 

mRNA was extracted from cells using the Qiagen RNeasy Mini Kit with DNase digestion 

to remove DNA contamination. Yield was determined spectrophotometrically. 0.125 µg of mRNA 

was reverse transcribed into 20 µL of cDNA using the Applied Biosystems High Capacity RNA-to-

cDNA Kit. Gene expression was quantified using a 7500 Fast Real-Time PCR system (Applied 

Biosystems, Foster City, CA, USA) from a total of 10 µL of master mix per well, which included 1x 

Power SYBR Green (Applied Biosystems, Foster City, CA, USA), forward and reverse primers 

(0.45 µM), and 0.5 µL of cDNA. For each gene of interest, samples were run in duplicate and 

control wells were run to rule out DNA contamination and primer dimer amplification. Proper 

amplicon development was confirmed by melt curve analysis. QPCR data is normalized to β-actin 

housekeeping control and presented as fold change relative to direct A6 control (Direct[0/A6]) at 

day 1 for each experiment using the formula 2-ΔΔC(t).  

 

6.2.5 Alamar Blue Assay 

At each time point, cells were incubated in 500 µL of 10% Alamar Blue solution 

(Invitrogen, Carlsbad, CA, USA) diluted in media and protected from light. Experiments in SGM 

comparing direct and indirect immobilization strategies were incubated for 4 h. Experiments in 
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OGM evaluating the ability of Jagged1 to induce osteogenesis were incubated for 2 h. 100 µL 

from each well were then transferred to a 96 well plate and fluorescently measured (excitation 

570 nm, emission 585 nm). Wells were then refreshed with new media. 

 

6.2.6 Alkaline Phosphatase (AP) Histochemical Staining 

Cells were fixed and stained using an Alkaline Phosphatase kit (Sigma, St. Louis, MO, 

USA) according to the manufacturer’s instructions. Plates were scanned and area of alkaline 

phosphatase staining within each well was quantified using ImageJ (National Institutes of Health). 

 

6.2.7 Alizarin Red S Staining 

Cells were fixed in ice cold 70% ethanol for 10 min and then incubated in 0.5% Alizarin 

Red S diluted in dH2O (pH adjusted to 4.1-4.3) for 10 min. Alizarin Red S stains calcified mineral 

tissue red and the A6 background yellow. Multiple images were acquired from each well using an 

Olympus CKX41 inverted microscope with a Spot Idea 5 megapixel camera. Area of mineral 

staining within each well was quantified using ImageJ. 

 

6.2.8 ELISA 

Jagged1 was immobilized to A6 as described above in 96-well plates in order to quantify 

the concentration of successfully immobilized Jagged1 through direct and indirect strategies. 

Wells were then incubated with biotinylated goat anti-rat Jagged1 detection antibody for 2 h 

followed by streptavidin-HRP for 20 min. H2O2 equally mixed with tetramethylbenzidine was used 

as the substrate for 20 min followed by addition of 2 N H2SO4 to stop the reaction. Optical density 

of each well was read at 450 nm with wavelength correction at 570 nm. 

Jagged1 was similarly immobilized to A6 as described above in 48-well plates to evaluate 

the release kinetics profile of direct and indirect strategies. Following Jagged1 immobilization, 

wells were incubated in PBS at 37°C. At days 1, 3, 5, 7, 14, 21, 28 and 40, PBS supernatants 

were removed and saved, and wells were refreshed with new PBS. The amount of Jagged1 

released from A6 over time was quantified within the supernatants. 96-well ELISA plates were 
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coated with goat anti-rat Jagged1 capture antibody overnight. Wells were blocked in 1% BSA. 

Supernatants were then added to wells for 2 h followed by (as described above) Jagged1 

detection antibody, streptavidin-HRP, substrate solution, stop solution, and optical readout. All 

reagents used were from R&D Systems (Minneapolis, MN, USA). 

 

6.2.9 In vivo Analysis 

 Directly immobilized Jagged1/A6 scaffolds were evaluated in two injury models with 

different scaffold fabrication techniques. First, Jagged1/A6 scaffolds were implanted in 3 mm 

diameter murine calvarial defects. Porous A6 scaffolds were fabricated as previously described 

[29]. Briefly, poly(methyl methacrylate) (PMMA) beads with an average diameter of 200 µm were 

sintered together in a 3 mm diameter by 1 mm thick teflon mold overnight at 120°C. A6 was 

added to the mold, allowed to settle within the void space, and photopolymerized. PMMA beads 

were then leached out in serial washes of acetone. Resulting 3D porous A6 scaffolds were 

washed in PBS and sterilized via UV exposure. 10 µg/mL of Jagged1 was directly adsorbed to A6 

for 2 h. Bilateral 3 mm diameter murine calvarial defects were created with a dermal punch as 

previously described [16] (also see Chapters 3 and 4). Scaffolds were press fit into the defects 

and mid-line skin incisions above the calvarium were sutured closed. 

 Jagged1/A6 fracture wrap biomaterials were also implanted in intramedullary stabilized, 

closed transverse murine tibial fractures created by three point bending, as previously described 

[16] (also see Chapters 3 and 4). 1 mm thick solid A6 biomaterials were crosslinked and cut into 

0.5 cm x 1.2 cm rectangular wraps. At 3 days post fracture, incisions were made to expose the 

fractured tibia, which by then had formed a provisional mesenchymal callus. The surrounding 

muscle was peeled back and the Jagged1/A6 fracture wrap (Direct[10] and Direct[0], 2 h 

incubation) was slid underneath the tibia between the fibula. The biomaterial was cut as needed 

and wrapped around the fracture callus. Normal muscle position was re-established and the skin 

sutured closed. 

 

6.2.10 Statistical Analysis 
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Two-way ANOVAs were used to test the effects of Jagged1 dose (0, 2.5, 10) and 

immobilization strategy (direct vs. indirect) at each time point for SGM experiments, followed by a 

Tukey’s post-hoc test with planned comparisons reported (comparison of Jagged1 doses to each 

other within direct and indirect strategies, and comparison of direct to indirect strategies for each 

Jagged1 dose). To evaluate the effect of A6 alone, an additional student’s t-test was used to 

compare A6 to TCPS controls (Direct[0/A6] vs [0/TCPS]) for SGM gene expression data. A 

student’s t-test was also used to evaluate the effects of Jagged1 and A6 for OGM experiments. 

Data is presented as mean ± standard deviation.  
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6.3 Results 

6.3.1 Direct Jagged1/A6 Is More Effective at Activating Canonical Notch Signaling 

To evaluate the ability of each Jagged1/A6 immobilization strategy to activate the Notch 

signaling pathway, hMSCs were cultured in SGM and harvested at days 1, 3, 5 and 7 for gene 

expression analysis of Notch target gene Hey1. Overall, Jagged1/A6 upregulated Hey1 gene 

expression in a dose-dependent manner (Figure 6.1a). Hey1 activation was transient, with 

expression gradually decreasing over time. Specifically, Direct[10/A6] increased expression 

relative to Direct[0/A6] at all time points and relative to Direct[2.5/A6] at days 1, 3 and 7. Indirect 

Jagged1/A6 did not increase Hey1 gene expression for any concentration at any time point. 

Furthermore, comparing across immobilization strategies, Direct[10/A6] increased expression 

relative to Indirect[10/A6] at days 3 and 7, demonstrating that the direct immobilization strategy 

was more effective at activating the Notch signaling pathway. 

 Direct[0/A6] also increased Hey1 gene expression relative to [0/TCPS] at day 1 (Figure 

6.1b), demonstrating that A6 on its own transiently activated the Notch signaling pathway. 

 

6.3.2 More Jagged1 is Successfully Immobilized to A6 via the Direct Method 

To determine the mechanism responsible for increased Notch activation via the direct 

method, the relative surface density of successfully immobilized Jagged1 to A6 was quantified for 

both strategies. More Jagged1 was immobilized to A6 via the direct method at 10 µg/mL than the 

indirect method (Figure 6.2a). The direct strategy also increased the amount of Jagged 

immobilized in a dose-dependent manner, with Direct[10/A6] greater than Direct[2.5/A6]. There 

was no difference between Indirect[10/A6] and Indirect[2.5/A6]. 

 The release kinetics profile showed that less than 0.2% of successfully immobilized 

Jagged1 was released into the incubation media over 40 days for both direct and indirect 

methods. (Figure 6.2b) 
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Figure 6.1. Notch target Hey1 gene expression of hMSCs cultured on direct and indirect Jagged1/A6 in 

SGM (n=3). Jagged1/A6 transiently upregulates Hey1 gene expression, with direct more effective than 

indirect (a). A6 polymer alone transiently upregulates Hey1 gene expression relative to TCPS (b). Solid lines 

indicate significance (p<0.050) and dashes lines indicate a trend (p<0.100) between Jagged1 doses for 

direct or indirect strategies. A common letter (a,b) above any two bars indicates significance (p<0.050) 

between direct and indirect strategies at that given Jagged1 dose. 
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Figure 6.2. Relative surface density of successfully immobilized Jagged1 to A6 via Direct and Indirect 

strategies, and the release kinetics profile. More Jagged1 is successfully immobilized to A6 via the direct 

strategy at 10 µg/mL as measured by the colormetric readout (absorbance) (a). The direct strategy also 

increases the amount of Jagged1 immobilized in a dose-dependent response. Less than 0.2% of 

successfully immobilized Jagged1 is released over 40 days for both direct and indirect strategies (b). Solid 

lines indicate significance (p<0.050) between Jagged1 doses for direct or indirect strategies. A common 

letter (a,b) above any two bars indicates significance (p<0.050) between direct and indirect strategies at that 

given Jagged1 dose. 
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6.3.3 Direct and Indirect Jagged1/A6 Immobilization Does Not Increase Cell Number 

 The Notch signaling pathway has been shown to increase mesenchymal progenitor cell 

proliferation. An Alamar Blue assay was used to assess the effects of direct and indirect 

Jagged1/A6 immobilization strategies on hMSC cell number, indicative of proliferation, at days 1, 

3, 5, and 7 during SGM culture. Although hMSC number gradually increased over time for all 

groups, there was no significant effect of Jagged1 dose or immobilization strategy on cell number 

at any time point analyzed (Figure 6.3).  

 

 

Figure 6.3. Cell number of hMSCs cultured on direct and indirect Jagged1/A6 in SGM (n=5). Direct and 

indirect Jagged1 immobilization strategies do not increase cell number. 

 

6.3.4 Direct Jagged1/A6 is More Effective at Promoting an Osteogenic Phenotype 

 To evaluate the ability of direct and indirect Jagged1/A6 immobilization strategies to 

promote an osteogenic phenotype, bone sialoprotein (BSP) and alkaline phosphatase (AP) gene 

expression were quantified at days 1, 3, 5 and 7 during SGM culture. Overall, Jagged1/A6 

increased BSP gene expression in a dose-dependent response (Figure 6.4a). Similar to Hey1, 

BSP activation was transient. Specifically, Direct[10/A6] increased BSP expression relative to 
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Direct[0/A6] at days 1 and 3. Also similar to Hey1, indirect Jagged1/A6 did not increase BSP 

gene expression for any concentration at any time point. 

Overall, Jagged1/A6 also increased AP gene expression, with Direct[10/A6] increased 

relative to Direct[0/A6] at days 3 and 5, and relative to Direct[2.5/A6] at day 5 (Figure 6.4b). 

Direct[2.5/A6] was also increased relative to Direct[0/A6] at day 5. Indirect[10/A6] increased AP 

gene expression relative to Indirect[0/A6] at day 5. However, comparing across immobilization 

strategies, Direct[10/A6] was increased relative to Indirect[10/A6] at day 5. Collectively, the data 

demonstrates that the direct immobilization strategy was more effective at inducing osteogenic 

gene expression.  

 Direct[0/A6] also increased BSP gene expression relative to [0/TCPS] at day 1 (Figure 

6.4c), demonstrating that A6 promotes transient osteogenic gene expression. However, the A6 

polymer did not have an effect on AP gene expression (Figure 6.4d). 

There was also a significant positive linear correlation between Hey1 and BSP gene 

expression independent of Jagged1 dose, immobilization strategy, or time post plating (Figure 

6.5), demonstrating that expression of Jagged1-induced Notch target genes and mature 

osteoblast markers are related and have similar expression patterns. 

hMSCs were also stained for AP enzymatic activity at day 7 during SGM culture (Figure 

6.6a). Overall, Jagged1/A6 increased AP activity in a dose-dependent manner (Figure 6.6b). 

Direct[10/A6] and Direct[2.5/A6] were increased relative to Direct[0/A6]. Indirect[10/A6] was also 

increased relative to Indirect[0/A6]. However, comparing across immobilization strategies, 

Direct[10/A6] increased AP enzymatic activity relative to Indirect[10/A6], demonstrating that the 

direct immobilization strategy was more effective at inducing osteogenic enzymatic activity. 

Similar results were also found for AP staining normalized to cell number, demonstrating 

increased osteogenic activity for direct Jagged1/A6 on a per cell basis (Figure 6.6c). 
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Figure 6.4. Osteogenic gene expression of hMSCs cultured on direct and indirect Jagged1/A6 in SGM 

(n=3). Jaged1/A6 transiently increases bone sialoprotein (BSP) gene expression, with direct more effective 

than indirect (a). Jagged1/A6 also increases alkaline phosphatase (AP) gene expression, with direct more 

effective than indirect (b). A6 polymer alone increases BSP (c) but not AP gene expression (d) relative to 

TCPS alone. Solid lines indicate significance (p<0.050) and dashes lines indicate a trend (p<0.100) between 

Jagged1 doses for direct or indirect strategies. A common letter (a,b) above any two bars indicates 

significance (p<0.050) and a common symbol (#) indicates a trend (p<0.100) between direct and indirect 

strategies at that given Jagged1 dose. 
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Figure 6.5 (left). There is a significant positive linear 

correlation between Hey1 and bone sialoprotein 

(BSP) gene expression. Samples include both direct 

and indirect immobilization strategies at all Jagged1 

doses (0, 2.5, 10) at all time points (days 1, 3, 5, 7) 

(n=72). 

 
Figure 6.6 (below). Alkaline Phosphatase (AP) enzymatic activity of hMSCs cultured on direct and indirect 

Jagged1/A6 in SGM at day 7 (n=5). Representative plate scan demonstrating the average amount of AP 

staining (a). Jagged1/A6 increases AP activity, specifically % area of staining (b) and % area of staining 

normalized by cell number (c), with direct more effective than indirect. Solid lines indicate significance 

(p<0.050) and dashes lines indicate a trend (p<0.100) between Jagged1 doses for direct or indirect 

strategies. A common letter (a,b) above any two bars indicates significance (p<0.050) between direct and 

indirect strategies at that given Jagged1 dose.  
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6.3.5 Direct Jagged1/A6 Induces Osteoblast Differentiation and Calcified Mineral Deposition 

For SGM experiments, direct Jagged1/A6 was more effective at activating the Notch 

signaling pathway and inducing an osteogenic phenotype. In general, Jagged1-induced activity 

was transient and dose-dependent, with maximum expression found in Direct[10/A6]. 

Furthermore, the direct strategy increased the amount Jagged1 successfully immobilized to A6. 

Therefore, we next set out to evaluate the ability of Direct[10/A6] and Direct[0/A6] to induce 

osteogenesis when cultured in OGM. 

 hMSC number gradually increased over time in OGM culture (Figure 6.7), with 

Direct[10/A6] increased relative to Direct[0/A6] at day 7. Direct[10/A6] also increased AP 

enzymatic activity at day 7 (Figure 6.8a,b), though there were no differences when normalized by 

cell number (Figure 6.8c). Finally, Alizarin Red S staining of calcified mineral tissue deposition by 

cells was conducted at days 10 and 13 to evaluate the ability of direct Jagged1/A6 and A6 alone 

to induce terminal osteoblast differentiation. Direct[10/A6] increased calcified mineral deposition 

relative to Direct[0/A6] at all time points (Figure 6.9a). Direct[0/A6] and Direct[10/A6] also 

increased calcified mineral deposition relative to [0/TCPS] at all time points. Collectively, the data 

demonstrates that direct Jagged1/A6 moderately promotes cell proliferation and strongly induces 

osteoblast differentiation and calcified mineral deposition, with the A6 polymer further 

demonstrating its osteoconductive properties. 
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Figure 6.7. Cell number of hMSCs cultured 

on direct Jagged1/A6 in OGM (n=3-9). 

Direct[10/A6] increases cell number at Day 7. 

Solid line indicates significance (p<0.050). 

 

 

 

 

 

 

Figure 6.8. Alkaline Phosphatase (AP) 

enzymatic activity of hMSCs cultured on direct 

Jagged1/A6 in OGM (n=3). Representative 

plate scan demonstrating the average amount 

of AP staining (a). Direct[10/A6] increases % 

area of AP staining (b), but has no effect when 

% area is normalized by cell number (c). Solid 

line indicates significance (p<0.050).  
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Figure 6.9. Calcified mineral deposition of hMSCs cultured on direct Jagged1/A6 in OGM with [0/TCPS]. 

Direct[10/A6] increases % area of calcified mineral deposition relative to Direct[0/A6] and [0/TCPS] at days 

10 and 13 (a). Direct[0/A6] is also increases relative to [0/TCPS]. Solid lines indicate significance (p<0.050) 

and dashes lines indicate a trend (p<0.100). Representative images demonstrating the average amount of 

mineral produced by cells (b). Mineral stains red. Areas of dense mineral appear black. A6 polymer stains 

yellow. Scale bars are 1 mm. 
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6.3.6 In vivo Evaluation of Jagged1/A6 

 Direct[0/A6] and Direct[10/A6] biomaterial constructs using 1 mm thick porous A6 

scaffolds (Figure 6.10a) were implanted in bilateral 3 mm diameter murine calvarial defects. For 

preliminary experiments, animals were harvested between 5-14 days post injury. 18 total animals 

were included. However, 12/18 (67%) animals presented with at least one scaffold out of place, 

demonstrating a suboptimal surgical success rate (33%). Scaffolds were most commonly found to 

be adhered to the subcutaneous skin surrounding the calvarium (Figure 6.10b) or to have moved 

medial towards the mid-line suture of the calvarium (Figure 6.10c). Only a single Direct[10/A6] 

scaffold located within the defect at harvest was successfully processed for histology, sectioned 

and stained with H&E. This specimen, harvested at 14 days post injury, presented with cellular 

infiltration and fibrous tissue formation (Figure 6.10d,e).  

 Direct[10/A6] and Direct[0/A6] fracture wraps using solid A6 biomaterials (0.5 cm x 1.2 

cm x 1 mm) were implanted around murine tibial fracture calluses at 3 days post fracture (Figure 

6.11a) and harvested at 13 days post fracture. Due to lack of suture pullout strength of A6, 

fracture wraps were not sutured together. Damage to the surrounding muscle tissue caused by 

the fracture also prevented muscle from being sutured around the fracture wrap to hold it in place. 

At the time of harvest, all 15 specimens presented with fracture wraps that had opened up and 

not adhered to the callus (Figure 6.11b). Specimens were processed for histology and stained 

with Safranin-O/Fast Green. Images show that solid A6 biomaterials with and without Jagged1 

induced a strong a foreign body response in the tibial fracture model with no tissue infiltration 

(Figure 6.11c). All A6 fracture wraps were entirely encapsulated by macrophages, foreign body 

giant cells and other inflammatory components involved in the foreign body response (Figure 

6.11d,e). 
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Figure 6.10 (above). Evaluation of Jagged1/A6 porous scaffolds in murine calvarial defects. 1 mm thick 

porous A6 scaffolds were created (a) and implanted into murine calvarial defects. 67% of implants resulted 

were unsuccessful, with scaffolds most commonly found adhered to the surround skin (b) or moved towards 

the mid-line of the calvarium (c). 100x (d) and 400x (e) H&E images of Direct[10/A6] at 14 days post fracture 

show cell infiltration and fibrous tissue formation. 

 

Figure 6.11 (left). Evaluation of Jagged1/A6 fracture 

wraps in murine tibial fractures. Solid fracture wraps were 

implanted around tibial fracture calluses at 3 days post 

fracture (a). At 13 days post fracture, all 15 limbs 

presented with scaffolds (arrows) that had opened up and 

were not in direct contact with the callus (^) (b). Safranin-

O/Fast green histology images at 20x (c) and 400x (d,e) 

show that A6 solid scaffolds were completely surrounded 

by a foreign body response. There was no tissue 

infiltration of solid wraps causing them to fall out during 

histological processing. They were located in the empty 

space between the tibial fracture callus and fibula (*).  
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6.4 Discussion 

 Previous studies have demonstrated that the Notch signaling pathway regulates bone 

tissue formation. Specifically, Jagged1 is the most highly expressed Notch ligand in 

mesenchymal cells [11, 15] and is the most highly upregulated ligand during fracture healing 

(Chapter 3) [16]. In Chapter 5, we also demonstrated that endogenous Jagged1 expression 

during early and late osteoblast differentiation promotes bone tissue formation during 

embryological bone development and aging. Furthermore, Alagille Syndrome patients with 

Jagged1 loss-of-function have decreased bone mass and an increased risk of fracture [19, 20]. 

These results identify Jagged1 as a potential therapeutic target to improve bone tissue formation. 

Therefore, we developed a translational biomaterial-based cell culture model to evaluate the 

ability of Jagged1 to activate the Notch signaling pathway and induce osteoblast differentiation. 

Our results demonstrate that Jagged1 immobilization to a PBAE scaffold comprised of 

diethylene glycol diacrylate and isobutylamine (A6) activated the Notch signaling pathway and 

promoted an osteogenic phenotype in hMSCs. Moreover, direct immobilization was more potent 

than indirect, suggesting it as a more viable immobilization strategy for clinical use. Results also 

further demonstrate the osteoconductive properties of A6 that have previously been established 

[29]. 

Increased Notch activation via the direct method was most likely due to an increased 

amount of Jagged1 successfully bound to A6, specifically at the incubation concentration of 10 

µg/mL. A previous study showed that at lower Jagged1 incubation concentrations (0.14-1.42 

µg/mL), the indirect strategy improved Notch activation, resulting in the hypothesis that optimized 

Jagged1/Fc protein orientation from indirect anti-Fc antibody binding, leaving the Jagged1 

extracellular binding domain exposed, was more effective at activating the Notch pathway than 

increasing the total amount of protein immobilized [26]. However, for the indirect strategy, Notch 

activation plateaued for Jagged1 incubation concentrations of 1.42 µg/mL and greater. Our data 

similarly showed no increase in Notch activation for indirect incubation concentrations between 

2.5-10 µg/mL, which corresponded with no change in the amount of Jagged1 successfully 
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immobilized to A6. The maximum amount of Jagged1 able to bind indirectly is limited by the 

amount of anti-Fc antibodies that are appropriately oriented. Increasing the anti-Fc incubation 

concentration could increase the number of available Jagged1/Fc binding locations. However, it 

could also eventually cause antibody clustering that effectively decreases the number of available 

locations; and in fact, these two studies found similar plateaus using different anti-Fc antibody 

incubation concentrations (10 µg/mL [26] and 15 µg/mL), suggesting that the maximum amount of 

available Jagged1/Fc binding locations may have been achieved or possibly surpassed 

(clustering). Our study shows that the direct immobilization strategy maximizes the amount of 

Jagged1 successfully bound to A6, which in turn is primarily responsible for increased Notch 

activation at higher Jagged1 incubation concentrations. In vivo therapeutic applications may 

require even higher protein concentrations than were evaluated in vitro, further indicating direct 

Jagged1 immobilization as a more viable strategy for clinical use. 

We also found that directly immobilized Jagged1/A6 constructs promoted an osteogenic 

phenotype when cultured in SGM, and induced osteoblast differentiation and calcified mineral 

deposition when cultured in OGM. This is the first study to demonstrate the osteoinductive 

potential of Jagged1 using a clinically translatable biomaterial construct. We also identified a 

positive correlation between Notch target and osteogenic gene expression. Previous studies have 

also shown that Jagged1 enhances vasculogenesis by promoting endothelial cell proliferation, 

differentiation and migration [30, 31]. Successful fracture healing is dependent on both callus 

vascularization and osteoblast activity. These results indicate that the Jagged1/A6 biomaterial 

construct developed in this experiment may enhance bone tissue regeneration in vivo. 

 Previous studies of embryological bone formation have shown that constitutive or 

sustained activation of Notch signaling prevents osteoblast differentiation [7, 8]. However, here 

we demonstrate that Jagged1/A6 transiently activated the Notch signaling pathway, with 

expression gradually decreasing over time, which in fact enhanced osteoblast differentiation. 

Transient transfection of immortalized osteogenic cell lines with NICD1, Jagged1, or Dll1 have 

previously also been shown to promote differentiation [32, 33]. Similar results have been found 

regarding the temporal regulation of Notch on chondrogenesis as well, where sustained Notch 
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signaling inhibits differentiation, but a transient Jagged1 signal stimulates it [15]. Collectively, the 

data suggests that transient Notch activation promotes osteoblast differentiation, whereas 

constitutive activation may inhibit differentiation. Development of a Jagged1/A6 biomaterial 

construct with sustained Notch signaling, for example by embedding the Jagged1 protein into the 

A6 material as well as adsorbing it to the surface such that as the material degrades more 

Jagged1 is exposed for cells to interact with, would allow for investigation into the temporal 

regulation of Jagged1-induced Notch activity on osteogenesis in a clinically translatable model. 

Alternatively, in Chapter 5, we demonstrated that Jagged1 activity promotes osteoblast 

differentiation regardless of its temporal expression. These results are in contrast to previous 

experiments showing that expression of other Notch components in fact inhibits differentiation [7, 

8]. However, in the context of the Notch signaling pathway, Jagged1 has also been shown to 

differentially regulate behavior of other cell lineages. Jagged1 promotes vasculogenesis, whereas 

Dll4 is inhibitory and Dll1 has no effect [30, 31]. Jagged1 also inhibits osteoclast differentiation 

whereas Dll4 enhances differentiation [34]. We’ve previously localized Jagged1 expression to 

osteogenic cells at varying stages of maturity [16]. However, it is unknown whether the magnitude 

of expression is consistently high (sustained) or variable (transient). Development of a conditional 

Jagged1 gain of function mouse model would allow for the investigation of sustained versus 

endogenous Jagged1 activity on osteoblast differentiation and bone tissue formation.  

Sustained and transient Notch activity also appears to differentially regulate cell 

proliferation. Sustained Notch activity in osteogenic cells strongly promotes proliferation [8], 

whereas here we show that Jagged1-induced transient Notch activity had only limited effects on 

proliferation. However, it is unclear if this is due primarily to the effects of Jagged1 or the A6 

biomaterial. 

 In summary, we have developed a biomaterial construct comprised of the osteoinductive 

Notch ligand Jagged1 and the osteoconductive poly(β-amino ester) polymer A6 that transiently 

activates the Notch signaling pathway and promotes osteoblast differentiation. 

 Next, Jagged1/A6 biomaterial constructs were evaluated in two in vivo animal models. 

First, porous scaffolds were implanted into murine calvarial defects. Development and use of this 
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model is beneficial because it would allow for future investigations into whether Jagged1/A6 can 

recover function in mice with Notch receptor or Jagged1 loss-of-function, which is applicable to 

Alagille Syndrome patients. However, porous A6 scaffolds, which had to be at least 1 mm thick 

for structural stability, did not fit within murine calvaria, which are less than 200 µm thick. The 5x 

difference in thickness was likely responsible.  

Then we created solid biomaterial constructs and implanted them 3 days post fracture 

during murine tibial fracture healing. Many fractures do not present as segmental defects but still 

require therapeutic intervention. This biomaterial construct could be used to treat such injuries, as 

it would be wrapped around the provisional callus, with the hypothesis that Jagged1 would 

interact with cells on the periosteal surface of the expanding fracture callus. Jagged1/A6 release 

kinetics show that Jagged1 stays immobilized to the A6 surface, possibly due to the large size of 

the protein (140kDa). Therefore, the fracture wrap must stay in direct contact with the callus, 

creating a cell-biomaterial interface in order for Jagged1 to have an effect. However, our inability 

to suture the biomaterial to the callus resulted in the fracture wrap opening up. Furthermore, 

alternative to porous A6 scaffolds, which promoted cell and tissue infiltration, solid A6 

biomaterials induced a strong foreign body response that completely encapsulated the 

biomaterial, and prevented Jagged1 from interacting with the mesenchymal callus. Future studies 

using this implant model should include materials with stronger suture pullout strength and that 

are less reactive with cells as solid polymers. Furthermore, A6 was originally utilized in these 

experiments because of its osteoconductive properties. However, in this implant model, it did not 

serve as a scaffold for cell infiltration and bone tissue formation. A successful therapeutic will 

likely need to interact with cells inside the callus as well as on the surface. A smaller or lower-

affinity binding molecule that will gradually release from the polymer should be used with this 

implant model.  

Future studies investigating Jagged1/A6 should use segmental defect models where A6 

could serve as a scaffold for cell infiltration and Jagged1 could promote osteogenesis. A6 has 

previously been successfully used in rat calvarial defect models (~1 mm thick calvarium) [29]. 

The scaffold can also be used in long bone segmental defects in rats and larger animal models.
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CHAPTER 7 

Summary, Limitations and Future Directions, Conclusions 

 

7.1 Summary 

Many fractures exhibit delayed healing or develop into non-unions [1, 2]. Current 

therapeutic interventions to treat these injuries include autologous bone grafts, demineralized 

bone matrix, and growth factor therapies, such as bone morphogenetic proteins. However, there 

are several disconcerting issues associated with the use of these therapeutics, including post-

surgical pain and limited graft material, limited osteoinductive capability with immunogenic 

potential, and limited clinical efficiency and safety concerns [3, 4], respectively. Thus, there 

remains a significant need to develop new methodologies to promote bone regeneration. Our 

research is based on the premise that the development of new therapeutics must be predicated 

on a thorough understanding of molecular mechanisms regulating fracture healing.  

Unfortunately, the molecular mechanisms that regulate the spatiotemporal progression of fracture 

healing are poorly understood. Therefore, we set out to identify the role of a novel signaling 

pathway during bone fracture healing, with the down-stream objective of potentially targeting that 

pathway to improve bone tissue regeneration. 

 The Notch signaling pathway has been shown to regulate embryological bone 

development [5-8], and many aspects of embryological development are recapitulated during 

fracture healing [9-11]. Furthermore, Notch signaling has been shown to be required for tissue 

repair of other injuries [12, 13], and targeting the pathway can promote regeneration [14]. 

However, the role of Notch signaling during bone fracture healing and the ability of manipulating 

the pathway to improve regeneration is unknown. Therefore, the overall objective of this thesis 

was to determine the role of Notch signaling during bone fracture healing, and to create a 

clinically translatable therapy to target the pathway and enhance healing. 
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7.1.1 Specific Aim I (Chapter 3) 

In Aim I (Chapter 3), we set out to characterize and compare activation of the Notch 

signaling pathway during endochondral and intramembranous fracture healing using murine tibial 

fracture healing as a model of endochondral bone repair and murine calvarial defect healing as a 

model of intramembranous bone repair. Our results demonstrated that Notch signaling 

components, including ligands, receptors and target genes were upregulated during both 

endochondral and intramembranous fracture healing. Notch ligands demonstrated a higher 

magnitude of change during healing than receptors, suggesting that activation of the pathway 

may be more regulated by ligand density rather than receptor. Jagged1 was the most highly 

expressed ligand and was the only ligand to be upregulated during both injury models, suggesting 

that manipulations of Notch signaling to enhance fracture healing could target Jagged1 for the 

most potent therapeutic effect. Notch2 was the most highly expressed receptor, and was one of 

two upregulated during both injury models, the other one being Notch4. 

Jagged1 and the activated form of the Notch2 receptor (NICD2) were expressed in the 

same cell populations during endochondral and intramembranous fracture healing. During 

chondrogenesis, Jagged1 and NICD2 were widely expressed in undifferentiated mesenchymal 

cells, but the number of positive cells gradually decreased during differentiation until expression 

was largely absent in hypertrophic chondrocytes. However, Jagged1 and NICD2 were re-

expressed in terminal hypertrophic chondrocytes located in areas of resorbed cartilage that had 

been infiltrated by vascular endothelial cells, which were also largely Jagged1 and NICD2 

positive. 

Alternative to chondrogenesis, Jagged1 and NICD2 were expressed in osteogenic cells 

at all stages of differentiation, from undifferentiated mesenchymal and osteoprogenitor cells 

located in the early fibrovascular callus, to osteoblasts that aligned the surface of immature and 

remodeled bone, and to a lesser extent osteocytes embedded within the remodeled matrix. This 

expression pattern was observed during both endochondral and intramembranous fracture 

healing. 
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In summary, these results demonstrate that Notch signaling was active during 

endochondral and intramembranous bone fracture healing, with expression gradually decreasing 

during chondrogenesis, but remaining present at multiple stages of osteogenesis. Expression 

was also widely found in vascular endothelial cells. Furthermore, results identify the Notch ligand 

Jagged1 as a potential therapeutic target to upregulate the Notch signaling pathway. 

 

7.1.2 Specific Aim II (Chapter 4) 

In Aim I (Chapter 3), we found that Notch signaling was active during bone fracture 

repair. Therefore, in Aim II (Chapter 4), we set out to determine the significance of Notch 

signaling during bone fracture healing by using a temporally controlled inducible transgenic 

mouse model to impair canonical Notch signaling in all cells during murine tibial fracture and 

calvarial defect healing. dnMAML mice were crossed with inducible Mx1-Cre promoter mice such 

that a series of polyI:C injections just prior to fracture would activate the Mx1 promoter and 

expression of Cre recombinase in all cell types, which in turn would delete the transcriptional stop 

sequence upstream of dnMAML allowing for systemic expression [15, 16]. dnMAML is a 

truncated version of MAML that is able to similarly bind to the NICD-RBPjκ complex, but lacks the 

binding domain to recruit other co-activators necessary to initiate transcription of Notch target 

genes, thus inhibiting canonical Notch signaling at the level of transcriptional complex assembly 

[17]. Wild type mice were negative for Cre recombinase. 

Our results demonstrated that Notch signaling is required for the proper spatiotemporal 

progression of bone fracture healing. However, Notch signaling did not appear to regulate 

proliferation or apoptosis of cells during repair.  

Specifically, inhibition of Notch signaling resulted in a sustained inflammatory phase 

including increased cytokine gene expression and neutrophil infiltration of the callus.  

Notch inhibition also decreased chondrogenic gene expression and overall cartilage 

formation, though the rate of cartilage maturation was not affected. Notch regulation of cartilage 

formation was likely due to direct effects on chondrocyte behavior as well as secondary effects 

from the sustained presence of inflammatory cells and cytokines, which can also inhibit cartilage 
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formation [18-20]. Expression of vascular endothelial cell markers was also inhibited during bone 

repair.  

Based on previous studies utilizing tissue-specific models of Notch loss- and gain-of-

function, we expected Notch inhibition to increase osteoblast and osteoclast activity [5-7, 21, 22]. 

However, systemic inhibition of Notch signaling in all cells during endochondral fracture healing 

had no affect on early osteoblast behavior, and in fact osteoblast and osteoclast density was 

decreased during later stages of remodeling. This resulted in an overall increase in bone volume 

fraction that was due to a decrease in callus volume with no change in bone volume. Patterning 

of bone formation was also altered with decreased connectivity density and structural matrix 

index and increased trabecular thickness. These changes were only observed during later stages 

of remodeling. Expression of inflammatory cytokines can inhibit osteoblast differentiation [23], and 

proper callus vascularization is required for osteoblast recruitment to the callus. Secondary 

effects from sustained inflammation and impaired callus vascularization may be primarily 

responsible for the observed bone phenotype. We also found that inhibition of Notch signaling 

altered bone remodeling during intramembranous repair. However, that injury model presented 

with decreased bone mass. 

In conclusion, our results demonstrated that the Notch signaling pathway is required for 

the proper spatiotemporal progression of bone fracture healing. 

 

7.1.3 Specific Aim III (Chapter 5) 

In Aim I (Chapter 3), we found that Notch signaling was active during bone formation. 

Importantly, Notch ligands demonstrated a higher magnitude of change during healing relative to 

receptors, suggesting that activation of the pathway may be more regulated by ligand density and 

type rather than receptor. Jagged1 was the most highly expressed and upregulated Notch ligand 

during healing, suggesting its potential use as a therapeutic target to upregulate the Notch 

signaling pathway. In Aim II (Chapter 4), we found that Notch signaling is required for the proper 

spatiotemporal progression of fracture healing. However, the role of Jagged1 during this process 

was not studied.  
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Loss-of-function mutations in Jagged1 result in Alagille Syndrome (ALGS) [24, 25], which 

is characterized by defects to many organs including the skeleton, where patients present with 

decreased bone mass and increased risk of fracture [26, 27]. Changes in the skeleton are often 

assumed to occur secondarily to impaired liver function. However, the direct effects of Jagged1 

during bone formation were not known. Therefore, the objective of Aim III (Chapter 5) was to 

determine the direct role of Jagged1 during bone formation by using two skeletal-specific 

conditional Jagged1 knockout mouse models.  

Floxed Jagged1 mice were first crossed with Prx1-Cre mice. The Prx1 promoter is active 

in undifferentiated osteochondral progenitor cells such that all mesenchymal lineage cells in the 

developing mouse limb bud are derived from Prx1-expressing cells [28]. In this model, Jagged1 

was conditionally deleted in osteochondral progenitor cells prior to skeletal development. Floxed 

Jagged1 mice were also crossed with Col2.3-Cre mice. The Col2.3 promoter is active in 

committed osteoblasts that align trabecular and cortical bone [29, 30]. In this model, Jagged1 was 

conditionally deleted in an osteoblast-specific cell population later on during differentiation. All 

wild type mice were negative for Cre recombinase. 

Our results demonstrated a similar role for Jagged1 in both models during early and late 

osteoblast differentiation, where endogenous Jagged1 expression (WT specimens) in whole bone 

activated Notch target gene expression, promoted osteogenic gene expression, had no effect on 

osteoclast gene expression, and moderately stimulated proliferation gene expression. This 

correlated with increased trabecular bone formation at 8 weeks of age that persisted at 9 months. 

These results demonstrated that endogenous Jagged1 expression during early and late 

osteoblast differentiation promoted bone formation. 

Surprisingly, we found divergent roles for Jagged1 in the trabecular and cortical 

compartments. When Jagged1 was deleted in cortical bone during early and late osteoblast 

differentiation, there was no significant change in Notch target gene expression or osteogenic 

gene expression, but there was an increase in osteoclast gene expression, and moderately 

enhanced proliferation gene expression. This correlated with decreased periosteal expansion, 

endosteal resorption and cortical bone mass. We did not uncover the primary mechanism 
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regulating this phenotype, but we concluded that Jagged1 expression does not appear to regulate 

Notch target gene activity in the cortical compartment, suggesting that alterations to cortical bone 

are due to non-canonical Notch activity or secondary effects independent of Notch signaling. 

We also found that expression of Jagged1 and Notch target genes Hey1 and Hes1 were 

positively correlated with expression of osteogenic markers regardless of whether it was of 

trabecular or cortical origin. 

In conclusion, this study demonstrated that Jagged1 expression in the skeleton directly 

and positively regulated bone formation. This suggests liver transplantations for ALGS patients as 

an incomplete therapeutic strategy. The pro-osteogenic role for Jagged1 also indicated that 

delivery of Jagged1 could potentially enhance bone formation during fracture healing. 

 

7.1.4 Specific Aim IV (Chapter 6) 

In Aim I (Chapter 3), we found that Notch signaling was active during bone formation. In 

Aim II (Chapter 4), we found that Notch signaling was required for the proper spatiotemporal 

progression of fracture healing, where Notch inhibition did not result in improved healing. In Aim 

III (Chapter 5), we found that Jagged1 expression in the osteoblast lineage enhanced osteogenic 

gene expression and bone formation. Collectively, the studies identified Jagged1 as a potential 

therapeutic target to promote bone regeneration. Therefore, the objective of Aim IV (Chapter 6) 

was to develop a clinically translatable biomaterial construct comprised of Jagged1 and an 

osteoconductive scaffold, and evaluate its ability to induce bone tissue formation. The poly(β-

amino ester) polymer comprised of diethylene glycol diacrylate and isobutylamine, known 

shorthand as A6, was chosen as the osteoconductive scaffold because it was previously shown 

to promote bone formation when used as a carrier polymer for BMP2 [31].  

We first set out to compare direct and indirect Jagged1/A6 immobilization strategies on 

human MSC behavior in standard growth media. Overall, Jagged1/A6 biomaterial constructs 

transiently activated the Notch signaling pathway and induced an osteogenic phenotype. 

However, direct Jagged1/A6 was more effective than indirect at upregulating Notch target Hey1 

gene expression. This correlated with increased surface density of Jagged1 successfully bound 
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to A6 via the direct method versus the indirect method at the same Jagged1 incubation 

concentrations. Furthermore, direct Jagged1/A6 was more effective at stimulating bone 

sialoprotein gene expression as well as alkaline phosphatase gene expression and enzymatic 

activity. These results identified direct Jagged1/A6 as a more viable immobilization strategy for 

potential clinical use. Additionally, Hey1 gene expression was positively correlated with bone 

sialoprotein gene expression independent of Jagged1 concentration, immobilization strategy or 

time post plating, further identifying Jagged1 and the Notch signaling pathway as potential 

therapeutic targets to enhance bone tissue formation. 

Therefore, we next set out to evaluate the ability of directly immobilized Jagged1/A6 

biomaterial constructs to induce human MSC osteoblast differentiation in osteogenic media. We 

found that direct Jagged1/A6 enhanced osteoblast differentiation, indicated by increased alkaline 

phosphatase enzymatic activity and importantly increased calcified mineral deposition of cells, 

which is indicative of terminal osteoblast differentiation. The A6 polymer alone also increased 

calcified mineral deposition relative to tissue culture polystyrene control wells with no A6 or 

Jagged1, further demonstrating the osteoconductive properties that were previously established 

[31]. 

In conclusion, we developed a biomaterial construct using Jagged1 and the 

osteoconductive scaffold A6, and demonstrated its ability to activate the Notch signaling pathway 

and induce osteoblast differentiation and calcified mineral deposition. 

 

7.2 Limitations and Future Directions 

 

7.2.1 Specific Aim I (Chapter 3) 

Aim I utilized tibial fracture healing as a model of endochondral bone repair and calvarial 

defect healing as a model of intramembranous bone repair. Previous studies have shown that 

bones derived from different embryological germ layers have distinct tissue matrix compositions 

[32]. The calvarium and tibia originate from the ectoderm and mesoderm [33], respectively, which 

could explain the difference in basal expression levels of Notch genes in those tissues. Utilizing a 
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tibial fracture segmental defect model with rigid fixation, for example through an external fixator, 

would have allowed us to study intramembranous repair in the tibia, controlling for factors intrinsic 

to the tissue, and this could have been compared to the calvaria to determine whether differences 

that exist between tibia and calvaria are related to germ layer of origin or location. It is possible 

that Notch signaling may not be equivalent during intramembranous ossification in all types of 

bone. However, in this study we demonstrated that expression of Notch components are 

equivalently localized in osteogenic cells regardless of germ layer origin, embryological 

development, or method of healing. This suggests that similar results would be expected in all 

models of endochondral and intramembranous bone repair. Furthermore, we chose to use the 

long bone fracture and calvarial defect models in order to develop a broader understanding of 

Notch signaling with applications to both craniofacial and appendicular skeletal regeneration. 

Future studies can use specimens collected from this study to screen for other cell 

signaling pathways known to regulate repair of other injuries but have yet to be studied during 

bone repair. Furthermore, ongoing studies are characterizing activation of Notch signaling during 

bone repair in geriatric mice. Future studies could also look into characterizing Notch activation 

during fracture healing in mice in various diseased states. Correlation of Notch activity with 

impaired fracture outcome would identify the Notch signaling pathway as a potential therapeutic 

target to improve healing in that diseased state. 

 

7.2.2 Specific Aim II (Chapter 4) 

The dnMAML transgene used in Aim II inhibits canonical Notch signaling at the level of 

transcriptional complex assembly [17]. However, there are other known functions of the Notch 

pathway that dnMAML does not affect. NICD binds to the required transcription factor Runx2 to 

inhibit osteoblast differentiation [5]. While dnMAML binds to the NICD-RBPjκ complex, it is 

unlikely that this impacts the ability of NICD to have other, non-canonical effects. A recent study 

also demonstrated non-canonical and cell non-autonomous functions of Notch signaling during 

embryological bone formation [34]. dnMAML would not affect these behaviors. Finally, there is 
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evidence of potential reverse ligand intracellular domain signaling in the ligand-expressing 

signaling cell [35, 36]. dnMAML would also not affect this pathway. 

Heterozygous dnMAML mice were used in this study. The use of homozygous mice could 

have resulted in stronger phenotypes with clearer interpretations into the role(s) of certain cell 

populations during repair. However, in general, use of heterozygous mice can be more clinically 

relevant since potential therapeutic applications are likely to achieve partial but not complete 

ablation of function. Since dnMAML is not an endogenous gene, we were not as concerned with 

compensatory effects from a redundant protein that are more likely to occur in heterozygous 

mouse models.  There are also other models of inhibition of canonical Notch signaling that could 

have been used, such as Notch receptor knockout mice [5, 7], or mice with conditional deletion of 

RBPjκ [8, 22, 34, 37], but again, or goal was to modulate Notch signaling, not completely ablate 

it. 

Both males and females were included in this study, but were appropriately separated 

into different groups and not compared to each other since they present with different amounts of 

bone during development [38]. However, many previous studies have demonstrated similar 

responsivity of male and female mice to manipulations of Notch signaling [6, 7, 21, 22] and male 

and female mice follow the same spatiotemporal pattern of healing. Therefore, it is scientifically 

justifiable to conclude that the phenotype of females during cartilage formation is equivalent to 

what would be observed in males, and vice versa during bone formation. 

As with all studies, including later time points closer to or after expected complete healing 

would allow for better understanding of the final outcome due to Notch inhibition. However, only 

three time points were chosen due to resource and time constraints, and the time points chosen 

were based on critical stages of fracture healing (5dpf – mesenchymal callus formation; 10dpf – 

cartilage formation and early bone formation; 20dpf – bone formation and remodeling) that also 

allow for comparison across many studies. 

Importantly, our results demonstrated the importance of Notch signaling to resolve the 

inflammatory phase. However, our experimental design did include time points during peak 
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inflammation, which occurs immediately after injury. Future studies should additionally investigate 

the role of Notch activity during peak inflammation. 

Because of the complexity of the spatiotemporally changing population of cells and 

tissues during healing, we were unable to assess the role of Notch signaling in distinct cell 

populations, including osteoblasts and osteoclasts. To address this limitation, future studies could 

utilize tissue-specific models of Cre recombinase expression to activate dnMAML in specific 

lineages. Utilizing Prx1, Col3.6 or Col2.3 promoters would inhibit Notch signaling in 

undifferentiated mesenchymal progenitors, osteoprogenitors, or committed osteoblasts, 

respectively. Similarly, TRAP promoters would inhibit Notch signaling in osteoclast lineage cells, 

and expressing Cre in lineage-restricted inflammatory cells would be useful for exploring the 

contribution of inflammatory cells.    

Alternatively, the use of gamma secretase inhibitors (GSI) would allow temporal control of 

Notch signaling to isolate or exclude the role of Notch signaling in specific phases of healing. For 

example, GSI injections following the conclusion of the acute inflammatory phase could exclude 

any secondary effects of altered inflammation on the rest of healing, providing a model to better 

understand the direct role of Notch signaling in cartilage formation, callus vascularization, and 

bone formation and remodeling. Similarly, GSI injections starting at the cartilage-to-bone 

transition would isolate the role of Notch signaling during bone formation and remodeling. 

Calvarial defect experiments included in this thesis are at this stage preliminary work 

demonstrating the broader application of Notch relevance. More research is needed to fully 

understand the role of Notch signaling during calvarial defect healing. However, results from the 

tibial fracture model demonstrate that Notch signaling is needed for successful repair. Future 

calvarial defect studies should focus on creating a smaller defect since 1.8 mm diameter injuries 

result in non-union [39]. Using an intramembranous repair model that normally regenerates would 

allow for better understanding into the requirement of Notch signaling for successful 

intramembranous fracture healing. 

Finally, in Aim I, we identified Jagged1 as the most highly upregulated ligand, suggesting 

it as a potential therapeutic target to manipulate Notch signaling. Future studies should look into 
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evaluating the role of Jagged1 during fracture healing using a similar experimental design to Aim 

II. However, we have had difficulty in generating Mx1-Cre+;Jagged1f/f mice because of small litter 

size and poor animal health. 

 

7.2.3 Specific Aim III (Chapter 5) 

In Aim III, Jagged1 was inhibited during early and late osteoblast differentiation using the 

Prx1-Cre and Col2.3-cre promoter mouse models, respectively. Prx1 trabecular bone phenotypes 

were present in both males and females. However, trabecular phenotypes in Col2.3 mice were 

more pronounced in males. A previous study showed that using the Col2.3 promoter model, 50% 

of females showed recombination in the absence of germ line transmission of the Cre 

recombinase gene [40], presumably due to spurious Cre expression in maternal gametes.  This 

mouse would be considered to be wild type, but would have the transgenic protein deleted. 

Intriguingly, only 15% of males showed this unexpected recombination. Thus, aberrant activity of 

the Col2.3 promoter in female gametes may account for the lack of trabecular phenotypic 

differences. Furthermore, in general, the use of tissue-specific promoters can result in unintended 

expression. As one example, lineage tracing of the Col2.3 promoter has identified positive cells in 

the growth plate, though results were variable [29]. 

Results from these experiments demonstrated that early and late endogenous Jagged1 

expression promotes osteoblast differentiation and bone formation. In Aim I, we showed that 

Jagged1 is expressed in osteogenic cells at various stages of differentiation. However, the 

magnitude and frequency (sustained vs. cyclical) of Jagged1 expression during differentiation is 

unknown. Use of in situ hybridization or immunoflourescence would allow us to quantify the 

relative amounts of Jagged1 RNA or protein expressed per cell, respectively. Because it can be 

difficult to identify various osteogenic lineage cells and specific stages of differentiation based on 

morphology alone, co-localization of Jagged1 with markers of differentiation such as Prx1, Col3.6, 

Col2.3, or Ocn via immunoflourescence would help compartmentalize the magnitude of Jagged1 

expression in undifferentiated mesenchymal cells, osteoprogenitors, committed osteoblasts, and 

mature osteoblasts, respectively. Furthermore, development of a conditional Jagged1 gain-of-
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function mouse model would allow for the investigation of sustained versus endogenous Jagged1 

activity on osteoblast differentiation and bone formation. 

Further characterization of Col2.3-Cre;Jagged1f/f and Prx1-Cre;Jagged1f/f mice is 

required to better understand the role of Jagged1 on cellular behavior. Ongoing studies are 

harvesting bone marrow-derived mesenchymal progenitor cells to quantify the effect of Jagged1 

deletion during early and late differentiation on mesenchymal progenitor number (CFU-F assay), 

cell proliferation (Alamar Blue assay), and osteoblast differentiation (Alizarin Red S staining). 

Furthermore, histological analysis of bones will help localize the observed gene expression 

changes from QPCR, as well as allow for analysis of the cartilaginous growth plate. 

Future studies can also focus on the clinical relevance of these findings with regards to 

ALGS patients. For example, liver transplants are currently used to treat patients with impaired 

bone mass. This study suggests that increasing Jagged1 activity in the skeleton is what is 

actually required to promote bone tissue formation. Creation of mice with conditionally deleted 

Jagged1 in the skeleton as well as the liver would allow for investigation into whether localized 

delivery of Jagged1 is sufficient to restore a successful fracture healing outcome, or if Jagged1 

delivery in combination with liver transplantation is needed. 

This study also identified a novel role for Jagged1 that was not observed in Notch 

receptor loss-of-function mouse models. Creating combined receptor and Jagged1 loss-of-

function mice would allow for investigation into whether bone development or fracture healing is 

regulated primarily by ligand or receptor activity. 

 

7.2.4 Specific Aim IV (Chapter 6) 

 In Aim IV, we developed a biomaterial construct by immobilizing Jagged1 to a poly(β-

amino ester) polymer. We decided to use two well-described immobilization strategies, direct 

adsorption and indirect binding through an anti-Fc antibody (that binds to the Fc portion of the 

Jagged1/Fc recombinant protein) that is first adsorbed [41]. Although there are other 

immobilization strategies, for example covalent binding [42], we decided to take the simplest 

approach for maximal translatability to the clinic. Developing an easy to use ‘off-the-shelf’ 
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therapeutic should involve minimal processing prior to implantation. Direct adsorption of a protein 

to a material, which was shown to be most effective, is a simple technique that can be used in 

any operating room. 

 Our data demonstrated that transient Notch activation via Jagged1 delivery enhances 

osteoblast differentiation. However, gain-of-function mouse models have shown that sustained 

Notch activation in fact inhibits differentiation [5, 7]. Development of a Jagged1/A6 biomaterial 

construct with sustained Notch signaling, for example by embedding the Jagged1 protein into the 

A6 material as well as adsorbing it to the surface such that as the material degrades more 

Jagged1 is exposed for cells to interact with, would allow for investigation into the temporal 

regulation of Jagged1-induced Notch activity on osteogenesis in a clinically translatable model. 

Jagged1/A6 biomaterial constructs were evaluated in two in vivo animal models. First, 

porous Jagged1/A6 scaffolds were implanted into murine calvarial defects. However, scaffolds 

had to be at least 1 mm thick for structural stability, whereas murine calvaria are less than 200 

µm thick. We believe that this 5-fold difference in thickness ultimately prevented scaffolds from 

consistently staying within the defect.  

Solid biomaterial constructs were also implanted 3 days post fracture during murine tibial 

fracture healing. They were wrapped around the provisional callus so that the Jagged1 would 

interact with cells on the periosteal surface of the expanding fracture callus. However, our inability 

to suture the biomaterial in place resulted in the fracture wraps not maintaining contact with the 

callus. Furthermore, relative to porous scaffolds that promoted cell and tissue infiltration, solid 

biomaterials induced a strong foreign body response, which completely encapsulated the 

biomaterial, therefore preventing Jagged1 from interacting with the mesenchymal callus. Future 

studies using this implant model should include materials with stronger suture pullout strength, 

and that cause a minimal foreign body response. Similarly, a lower-affinity binding molecule that 

is likely to be released should be used. Our results demonstrated that Jagged1 does not release 

from the biomaterial during 40 days of culture. This would limit Jagged1 to interacting with only 

the periosteal surface of the callus. Successful therapeutics would likely need to interact with cells 
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inside the callus as well. Furthermore, A6 was included in this study based on its osteoconductive 

properties but in this model was alternatively used as a biocompatible delivery vehicle instead. 

Future studies investigating Jagged1/A6 should use segmental defect models where A6 

would serve as a scaffold for cell infiltration and Jagged1 would promote osteogenesis. A6 has 

previously been successfully used in rat calvarial defect models (~1 mm thick calvarium). This 

biomaterial construct can also be evaluated in long bone segmental defects in rats and larger 

animal models. 

 

7.3 Conclusion 

 This thesis was the first to discover the Notch signaling pathway as an important 

regulator of bone fracture healing, and identify the pathway as a therapeutic target to improve 

repair. Specifically, Notch signaling was shown to be active during bone fracture healing. 

Inhibition of the pathway altered the temporal progression of events required for healing. The 

Notch ligand Jagged1 was shown to promote embryological bone formation. Finally, development 

of a biomaterial construct comprised of Jagged1 and a poly(β-amino ester) polymer containing 

diethylene glycol diacrylate and isobutylamine was shown to activate the Notch signaling pathway 

and induce osteoblast differentiation. Future studies should evaluate the ability of this tissue 

engineering therapy to improve bone regeneration in vivo. 

 Importantly, the study design outlined in this thesis can serve as a model for future 

experiments looking to uncover novel signaling pathways that regulate, and therefore could 

potentially enhance, bone fracture healing or any other injury: 1) identify whether the target is 

active during healing, 2) identify the role of the target, 3) attempt to improve healing by 

upregulating, inhibiting, or modulating the target depending on its observed role. 
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