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Qualifying and Quantifying the Rate of Decomposition in the Delaware
River Valley Region

Abstract
Human decompositional changes and the post-mortem interval (PMI) required to produce those effects have
been demonstrated to vary tremendously based on environmental conditions specific to the region in which
decomposition is taking place. Studies to that effect have been conducted in select areas throughout the
country, but have yet to be undertaken in southeastern Pennsylvania, New Jersey, and Delaware. Given the
hypothesis regarding regional differences in the rate of decay, this study set out to assess the decomposition
process as it applies to the Delaware River Valley (DRV) region and to provide formulas from which to
estimate time since death. The dearth of studies in this area, highlighted the need for region-specific standards,
increased the accuracy of time since death estimates, and improved quantitative methods. To this end, a
retroactive approach was taken in which cases from the Delaware Office of the Chief Medical Examiner with a
known "date last seen" and "date recovered" were compiled. Using these cases, a qualitative analysis was
conducted examining the specific decompositional changes which occur in various contexts. Quantitatively, a
linear regression analysis was employed to determine if accumulated degree days (ADD) or PMI explained
more of the variation in decomposition. To complement this work, a multivariate regression analysis was
conducted to identify key covariates and assess their impact on the rate of decay. Lastly, to validate region-
specific standards, the DRV models were compared to those presented in Megyesi et al. (2005). For this
validation process, a specific progression to decomposition in the DRV was identified and total body score
(TBS) systems for both outdoor and indoor cases, and aquatic depositions, were developed. ADD and TBS
were determined to be central components in modeling decay. In addition, outdoor cases were demonstrated
to decompose fastest. Finally, the DRV model explained more of the variation in decomposition and more
accurately estimated ADD than that of Megyesi et al. (2005). In total, a set of time since death estimation
formulas applicable to indoor, outdoor, and aquatic contexts were produced, and region-specific standards
best-suited to estimating time since death in the Delaware River Valley were developed.
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ABSTRACT 
 

QUALIFYING AND QUANTIFYING THE RATE OF DECOMPOSITION IN THE 

DELAWARE RIVER VALLEY REGION 

Sergio C. Guerra 

Robert Schuyler, PhD 

Human decompositional changes and the post-mortem interval (PMI) required to 
produce those effects have been demonstrated to vary tremendously based on 
environmental conditions specific to the region in which decomposition is taking place.  
Studies to that effect have been conducted in select areas throughout the country, but 
have yet to be undertaken in southeastern Pennsylvania, New Jersey, and Delaware.  
Given the hypothesis regarding regional differences in the rate of decay, this study set out 
to assess the decomposition process as it applies to the Delaware River Valley (DRV) 
region and to provide formulas from which to estimate time since death.  The dearth of 
studies in this area, highlighted the need for region-specific standards, increased the 
accuracy of time since death estimates, and improved quantitative methods.  To this end, 
a retroactive approach was taken in which cases from the Delaware Office of the Chief 
Medical Examiner with a known “date last seen” and “date recovered” were compiled.  
Using these cases, a qualitative analysis was conducted examining the specific 
decompositional changes which occur in various contexts.  Quantitatively, a linear 
regression analysis was employed to determine if accumulated degree days (ADD) or 
PMI explained more of the variation in decomposition.  To complement this work, a 
multivariate regression analysis was conducted to identify key covariates and assess their 
impact on the rate of decay.  Lastly, to validate region-specific standards, the DRV 
models were compared to those presented in Megyesi et al. (2005).  For this validation 
process, a specific progression to decomposition in the DRV was identified and total 
body score (TBS) systems for both outdoor and indoor cases, and aquatic depositions, 
were developed.  ADD and TBS were determined to be central components in modeling 
decay.  In addition, outdoor cases were demonstrated to decompose fastest.  Finally, the 
DRV model explained more of the variation in decomposition and more accurately 
estimated ADD than that of Megyesi et al. (2005).  In total, a set of time since death 
estimation formulas applicable to indoor, outdoor, and aquatic contexts were produced, 
and region-specific standards best-suited to estimating time since death in the Delaware 
River Valley were developed. 
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Chapter One: History of Post-Mortem Interval Studies in Anthropology 

 When presented with a case, one of the first questions asked by a forensic 

anthropologist is: How long has this individual been dead?  This specific question guides 

interpretations of the narrative surrounding events, narrows the list of missing persons, 

confirms or refutes suspects’ alibis, and leads to the identification of unidentified 

remains.  In order to make such a determination, the forensic anthropologist must weigh 

the effects of multiple factors known to alter the rate of decomposition.  However, for 

years, this particular question was outside of the purview of forensic anthropology.  Not 

until the principles of taphonomy were incorporated into physical anthropology, and 

eventually applied to forensic anthropology, were estimates of the post-mortem interval 

(PMI) within the bounds of the discipline. 

 In order to provide a detailed background of the transition from the early days of 

forensic anthropology to its current constitution, one must consider the paradigm shift 

which has occurred since Mehmet Yascar Isçan’s 1988 discussion of the current state and 

future of the discipline.  In this seminal paper, the purview of forensic anthropology was 

limited to considerations of sex, age, race and stature of individuals, reducing the field to 

laboratory-based analyses lacking in quantitative methods, modern comparative samples, 

and statistical parameters from which conclusions could be based (Isçan 1988).  In 

essence, the goals of the discipline were whittled down to a single task: the determination 

of the biological profile for the purposes of identification.  Nowhere was there a mention 

of forensic taphonomy, estimates of post-mortem interval, or the reconstruction of events 

surrounding death, which combine to form a crucial part of modern forensic 

anthropological examinations (Dirkmaat et al. 2008). 
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Developments in DNA Analysis 

 In order to understand the root causes behind the paradigm shift in forensic 

anthropology and, more importantly, the rationale for conducting decomposition studies 

within anthropology, two key external factors must be identified, as they set the stage for 

the diversification of the scope of the field and the formulation of new research questions 

and goals.  Firstly, as the capabilities of DNA for the purposes of identification began to 

unfold, it became clearer and clearer that eventually the day would come when victim 

identification via DNA comparisons would be routine, transforming the question from if 

this would happen, to when (Dirkmaat et al. 2008).  Given this threat to the usefulness 

and vitality of forensic anthropological analyses, forensic anthropologists were forced to 

expand the focus of the field beyond traditional determinations of the biological profile to 

a larger range of problems, or else run the risk of becoming irrelevant (Dirkmaat et al. 

2008). 

Court Rulings 

 Secondly, with the Supreme Court ruling on the case of Daubert vs. Merrell Dow 

Pharmaceuticals (1993), Kumho Tire Co. vs. Carmichael (1999), and Federal Rules of 

Evidence rule 702 (2000), scientific conclusions presented by an expert in a court of law 

were required to be replicable and reliable with consistent results and scientific 

acceptance, testable via the scientific method, and valid with the determination of 

statistically estimated error rates when possible (Dirkmaat et al. 2008; Dirkmaat and 

Cabo 2012).  Given the newfound focus on the expert’s methods rather than experience, 

analyses using quantitative methods were preferred over qualitative ones (Dirkmaat et al. 

2008).  These crucial rulings, combined with the findings of the National Academy of 
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Sciences’ (2009) report on the state of the forensic sciences in the United States, 

compelled forensic anthropology to improve its methods and the samples upon which its 

standards were based, in order to demonstrate their validity, reliability, and accuracy, as 

well as provide statistical interpretations and error rates regarding its analyses. 

Paradigm Shift 

 Faced with the looming impact of the application of DNA analysis to 

identification and the call for improvements in methodology, forensic anthropology was 

forced to adapt to new technical and legal challenges or face extinction.  In response to 

them, one of the most crucial developments in the field was the usurpation of the 

principles of taphonomy.  This move transformed forensic anthropology from a lab-based 

subject to a scientific discipline with a strong field component, providing the 

anthropologist with a spot in modern-day investigations (Dirkmaat et al. 2008).   

Originally developed in paleontology, I.A. Efremov introduced taphonomy 

(taphos meaning grave and nomos meaning ordinance or law) as the “study of the 

transition of animal remains from the biosphere into the lithosphere (Efremov 1940: 83).”  

The field arose from the need to better understand the processes associated with the 

preservation of plant and animal materials, especially vertebrates (1940).  This specific 

area of study was initially oriented toward an understanding of the mechanisms that 

transform the state of body tissues, particularly those aspects most influential in 

introducing bias into the fossil record (1940).  Given the potential for differential 

preservation, part of that understanding involved not only analyzing how the ecology of 

sites changed with the introduction of organic material, but also how the site affected the 

preservation of said material (1940).   
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From there, taphonomy slowly expanded beyond research regarding the 

differential preservation of vertebrates to a successful application to hominid sites, first 

exemplified by Raymond Dart’s “osteodontokeratic culture (Dirkmaat et al. 2008; Beary 

and Lyman 2012).”  This new trend was quickly adopted and applied to physical 

anthropology, and subsequently accepted as a component of archaeological practice as 

well.  The new association meant that the analysis of sites and assemblages could no 

longer be approached independently by different professionals in different venues, but 

instead required a partnership between taphonomy and anthropology.  By subsuming the 

principles of taphonomy within the purview of forensic anthropology, the stage was set 

for the development of renewed goals and an expanded focus in the discipline (Dirkmaat 

et al. 2008).  As the relationship continued to flourish, the collaboration provided forensic 

anthropology with a pathway to demonstrate its applicability and potential for further 

informing medico-legal investigations, especially as they relate to estimates of time since 

death. 

 As stated by Dirkmaat et al. (2008), forensic anthropology and taphonomy share 

virtually identical goals, which explains the rapid and dramatic impact that taphonomy 

has had on the field.  It expanded the objectives of the discipline far beyond its original 

definition, morphing the paradigm previously centered on positive identification into a 

broader and farther reaching field.  Given the changing landscape of forensic science, 

without the incorporation of forensic taphonomy into anthropological analyses, the field 

would be headed toward obscurity.  More importantly, such a statement reflects why 

decomposition studies in the present day certainly fall under the purview of forensic 

anthropology and are necessary to its vitality. 
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Incorporating Forensic Taphonomy 

 To help make this point, it will be useful to review the impact of taphonomy on 

the redevelopment of the goals of forensic anthropology through comparison of the 

definitions of both approaches.  Forensic taphonomy is defined as the “use of taphonomic 

models, approaches, and analysis in forensic contexts to estimate the time since death, 

reconstruct the circumstances before and after deposition, and discriminate the products 

of human behavior from those created by the earth’s…subsystems (Haglund and Sorg 

1997: 3).”  Likewise, modern forensic anthropology is defined as “the scientific 

discipline that focuses on the life, death, and the post-life history of a specific individual, 

as reflected primarily in their skeletal remains and the physical and forensic context in 

which they are emplaced (Dirkmaat et al. 2008: 47).”  Given the shared focus on post-

mortem reconstructions and the emphasis on context demonstrated in both definitions, the 

critical role played by decomposition studies in forensic anthropology becomes self-

evident, undoubtedly justifying its inclusion within anthropology.  Furthermore, with the 

determination of statistically backed error rates and research grounded in the scientific 

method, the incorporation of decomposition studies, and the principles of taphonomy into 

forensic anthropology, have proven crucial to meeting the demands of greater 

applicability of the discipline to medico-legal investigations and the improvement of 

quantitative methods.  Without the reformulation of forensic anthropology to include 

evaluations of the time since death or any of the other applications of forensic 

taphonomy, the discipline would be well on its way to irrelevancy. 
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Forensics in Physical Anthropology 

 Moreover, the renewed focus of the discipline states that forensic anthropology 

involves the application of physical anthropological principles employed during the 

reconstruction of identity and events surrounding and subsequent to death, relying 

heavily upon data collected at a site (Dirkmaat et al. 2008).  As stated by Dirkmaat et al. 

(2008: 47),  

“Physical anthropology is defined and understood as a holistic field, with a conceptual and 
methodological flexibility that allows the definition [stated] above to fall well within its 
conceptual framework.  Historical considerations, and the training and background of forensic 
practitioners also justify the inclusion of forensic anthropology as a discipline clearly entrenched 
in the physical anthropology tradition.” 
  

By employing a bioenvironmental and biocultural approach, the principles of taphonomy 

and thus modern forensic anthropology, are very much in line with the conceptual 

framework of physical anthropology (Sorg and Haglund 2002).  In addition, given the 

critical need for the search for, recovery, and preservation of physical evidence at the 

scene, the contextual relationship between evidence and its depositional environment is 

emphasized, making important use of the principles of archaeology as well (Dirkmaat et 

al. 2008).  Thus, given the importance of time since death studies to the “new” forensic 

anthropology as evidenced by its reformulated definition, revamped research questions, 

and renewed focus, PMI research clearly sits squarely within the boundaries of 

anthropology. 
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Chapter Two: Forensic Anthropology: Contributions to Anthropological Problem 

Solving 

Given the paradigmatic shift in forensic anthropology over the last quarter 

century, the discipline’s focus has been expanded and its methods have been improved 

(Dirkmaat and Cabo 2012).  As a result, the widened scope of the field has led to new 

developments and insights which have contributed not only to questions dealing with 

forensic anthropology, but have also aided in answering broader anthropological 

questions as well. 

Scavenger Analysis 

Firstly, forensic anthropology and taphonomic research have many applications to 

anthropology, specifically as they relate to archaeological and paleoanthropological 

interpretation of sites and remains.  Dating back a half century, archaeologists have been 

interested in the effects of scavengers, such as canids, on bone debris found at sites 

(Willey and Snyder 1989).  Great examples of such research can be dated back into the 

late 1970s and 80s, found in the works of researchers such as Binford (1981) and Brain 

(1981), as they postulated as to the effects of carnivores on prey carcasses and how such 

taphonomic involvement with corpses could be detected and controlled for.  To meet 

such demands, actualistic taphonomic studies investigating the patterns and sequence of 

canid consumption, manipulation, disarticulation, and scattering of carcasses began to 

develop (Hill 1979).  The same trend was visible in paleoanthropology, as investigators 

became aware of the potential alteration of prehistoric skeletal material, forcing 

reassessments of site behaviors, cannibalism, and so forth (Trinkhaus 1985; Villa et al. 

1986).  In response, direct forensic anthropological study of carnivore disarticulation and 
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dismemberment patterns on human remains were developed, first pioneered by Haglund 

et al. (1988) in the 1980s onward.  Given the call for such studies, the parallels between 

forensic anthropology and archaeological and paleoanthropological inquiries, as well as 

the immense potential for forensic anthropology to contribute to anthropological 

problem-solving, becomes quite clear. 

DNA Analysis 

Moreover, one of the most important developments in anthropology deals with the 

rise of DNA studies and its potential to inform understandings of past peoples, both 

modern and ancient.  By analyzing skeletal samples, DNA studies have the ability to 

clarify the spatial and temporal associations between and within populations, relatedness 

of individuals, migrations and origins, and sex identification (O’Rourke et al. 2000; Stone 

2000).  Thus, these analyses are useful for both forensic and bioarchaeological 

investigations.   

However, one of the largest issues concerning the use of DNA analysis deals with 

the degradation of samples.  Given the fact that forensic taphonomy studies are interested 

in the decomposition of remains, the determination of the circumstances under which 

DNA can or cannot be extracted is of critical importance to the field (Beary and Lyman 

2012).  Thus, a number of studies have been conducted examining how differential 

preservation, different extraction techniques, and various environmental and taphonomic 

factors affect cellular integrity and the ability to recover useable DNA samples from bone 

and tooth remains (Fisher et al. 1993; Rankin et al. 1996; Damann et al. 2002; Kontanis 

2003; Latham 2003; Latham et al. 2003; Rennick et al. 2005; Fredericks and Simmons 

2008).  Although the majority of these taphonomic studies were designed with modern 
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cases in mind, they clearly have applicability to the extraction and analysis of DNA from 

fossil remains.  These particular areas of concern are of importance to understandings of 

human evolution and developing the narrative surrounding early modern human origins 

and their relationships vis á vis other hominids.  Thus, inferences can be made connecting 

these forensic studies to prehistoric cases. 

Trauma Analysis 

Another crucial effect of the widened scope of modern forensic anthropology on 

broader anthropological issues revolves around developments in trauma analysis.  Once 

again, forensic taphonomy research has provided the impetus for the development of new 

insights into trauma, given the field’s concern with differentiating events before, during, 

and after death (Dirkmaat and Cabo 2012).  Whether remains are relatively “fresh” in 

nature or hundreds of years old, an assessment of ante-, peri-, or post-mortem damage is 

of critical importance to reconstructing the events surrounding death and developing 

inferences regarding lifestyle and cultural norms (Berger and Trinkaus 1995; Neves et al. 

1999).   

Prior to its development in forensic anthropology, interpretations of human 

skeletal trauma were based on educated guesses derived from analyses originating out of 

paleopathology and vertebral faunal analysis (Dirkmaat and Cabo 2012).  However, 

through the pioneering work of Berryman and Symes (Symes and Berryman 1989; 

Berryman and Symes 1998), the foundation was laid for the development of systematic 

skeletal trauma research in forensic anthropology.  As a result, there has been an increase 

in the diversification of trauma studies as reflected in the number of publications in the 

Journal of Forensic Sciences and the rise in experimental, actualistic, and doctoral 
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student trauma research (Passalacqua and Fenton 2012).  The effects of this 

diversification have led to much better assessments of the various types of trauma and the 

development of a more accurate picture of the traumatic event (Dirkmaat 2012).  By 

examining bone biomechanics, analyzing the alteration and modification of remains, 

considering the taphonomic factors impacting skeletal tissue, and assessing acute versus 

past trauma, the identification, documentation, and interpretation of trauma has 

dramatically improved (Symes et al. 2012).   

Given the importance of trauma analysis on remains from both past and present 

peoples, the advancements in trauma research developing out of forensic anthropology 

can have important impacts not only on modern investigations, but also anthropological 

inquiries into past ways of life.  From there, inferences can be made, providing insights 

into various aspects of the social, cultural, biological, and ecological circumstances 

within which past peoples operated. 

Distinguishing Archaeological from Forensically Relevant Cases 

 Another important outcome related to the incorporation of taphonomic analysis in 

forensic anthropology, and its usefulness to the broader discipline of anthropology, has to 

deal with the ability to distinguish between cases of archaeological versus forensic value.  

These determinations are crucial to legal proceedings and adherence to federal mandates 

such as the Archaeological Resources Protection Act (1979) and the Native American 

Graves Repatriation Act (1990).  Fortunately, given the need to quantify changes in 

skeletal material in the late post-mortem period, multiple approaches can be taken in this 

regard.   
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Clearly, methods typically utilized in the early post-mortem period are not 

applicable, but analyses have been developed through forensic anthropology and 

associated scientific disciplines to assess the more advanced stages of skeletonization, 

and as a direct result, help to identify the forensic relevance of a set of remains.  To name 

a few, these methods include: histological analyses of bone cross-sections (Specht and 

Berg 1958), measures of citrate content (Schwarcz et al. 2010) and nitrogen and amino 

acid amounts (Knight and Lauder 1967), ratios of proteins and triglycerides (Castellano 

et al. 1984), and so forth.  More recently, analysis of dental materials in skeletonized 

remains have been utilized to determine the forensic relevance of remains located in a 

mass grave found in a suburb of Belgrade (Zelic et al. 2013).  Given the plethora of 

examples which exist, the critical takeaway highlights the applicability of forensic 

anthropological and taphonomic analyses, originally designed to estimate the post-

mortem interval in forensic cases, to establishing the archaeological versus forensic 

relevance of a set of remains. 

Modern Samples 

Lastly, given the impetus placed on improving the validity, reliability, and 

accuracy of forensic methods by various federal rulings (Daubert vs. Merrell Dow 

Pharmaceuticals 1993; Kumho Tire Co. vs. Carmichael 1999; Federal Rules of Evidence 

rule 702 2000), researchers were forced to evaluate the applicability of skeletal 

collections and the standards derived from them to modern populations (Dirkmaat and 

Cabo 2012).  After a careful analysis of the skeletal samples, it was discovered that many 

of the major collections were plagued by sampling issues, ranging from a lack of 

representativeness, to socio-economic biases, questionable age associations, 
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preponderance of old-age samples and outdated data (Meindl et al. 1990; Ousley and 

Jantz 1998).  In addition, as Ousley and Jantz (1998) point out, factors of immigration, 

emigration, admixture, and so forth have altered the genetic landscape, thus necessitating 

the development of modern skeletal collections in order to properly interpret remains.  As 

a result, the William D. Bass Donated Skeletal Collection was created, composed of 

modern skeletal samples, many of which derive from the “Body Farm” project developed 

out of the University of Tennessee (Wilson et al. 2010).  In addition, studies have also 

amassed records from coroner and Medical Examiner’s offices around the country to 

meet the demand for updated skeletal data (Suchey and Katz 1998; Fojas 2010). 

FORDISC 

A direct result of such efforts lies with the development of the FORDISC 

program.  By compiling collections from around the globe (including data on Hispanics 

in the U.S.), utilizing multiple standards, and incorporating measurements from tribal 

groups and modern day forensic cases, many of which are drawn from the William D. 

Bass Donated Skeletal Collection, FORDISC (Ousley and Jantz 2005) directly combats 

the sampling issues known to plague the outdated collections from which many currently 

used standards are based (Dirkmaat and Cabo 2012).  By compiling an extensive 

collection of modern day measurements, FORDISC allows the comparison of data across 

generations and even centuries, allowing for the evaluation of secular trends and changes 

and meeting the demands for the improvement of quantitative methods in the discipline. 

Secular Changes 

Given the ability to compare past and present populations in regards to various 

skeletal measurements, the identification of secular changes in growth and maturation has 
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been made possible.  As demonstrated by Jantz (2001), over a 125 year period, Black and 

White cranial metric data have shown vaults that have become markedly higher and 

narrower, with narrower faces, which is claimed to be due in large part to changes 

enacted on cranial base growth by improved environmental conditions.   

A secular change in height has also been documented, seen mainly as an increase 

in lower limb length (Weber et al. 1995; Danubio and Sanna 2008; Malina et al. 2010).  

This argument is made particularly clear by Jantz (1993), who argues for a modification 

of the female stature formula developed by Trotter and Gleser (1977) to account for 

secular trends affecting the tibia-femur ratio.  Likewise, Ross and Konigsberg (2002) 

demonstrated that stature estimation from formulas developed for American White males 

were inappropriate for European populations, as secular changes and allometry of limb 

proportions resulted in the underestimation of stature in genocide victims in the Balkans.   

In addition, as has been demonstrated around the globe, skeletal maturity and the 

onset of puberty have been shown to arrive months to years earlier than documented 

decades ago (So and Yen 1990; Hawley et al. 2008).  These critical differences are 

attributed to improved socio-economic, nutritional, and hygienic conditions (So and Yen 

1990). 

Without updated and modern comparative samples, such as those composing the 

Bass collection, these changes over time would likely go undetected.  Fortunately, the 

collection of forensic cases from around the country has provided modern data with 

which to compare to past populations, in order to get at improvements and advances in 

socio-economic, hygienic, and environmental conditions.  These insights into human 

evolutionary changes and skeletal variation are a fundamental aspect of the overarching 



14 

themes governing anthropology, and solidify the notion that forensic anthropology is 

grounded in the principles of physical anthropology (Dirkmaat and Cabo 2012).  Given 

the fact that much of which is known about human skeletal variation and the 

determination of the biological profile is derived from early examinations of remains 

from forensic contexts, studies of this nature continue the contributions made by forensic 

anthropology toward a more complete understanding of human evolution (Kerley 1978). 

In summary, the points made above are but a few examples of the many 

contributions which forensic anthropology makes to the broader questions asked in 

anthropology as a whole.  It is important to understand these contributions as they 

demonstrate that forensic anthropology has grown into more than an applied, technical 

field, instead having morphed into a legitimate scientific research discipline with the 

capability of informing specific questions related to the discipline, as well as contributing 

to larger anthropological problem solving. 
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Chapter Three: Theoretical Basis 

 In order to further frame decomposition studies within the larger discipline of 

anthropology, a review of the theoretical underpinnings governing forensic anthropology 

is warranted.  Many researchers are wary of applying theory to forensic investigations 

given the often unique and specific circumstances of individual cases.  However, Boyd 

and Boyd (2011) make a strong argument, summarized below, for the use of multiple and 

hierarchical levels of theory to address the often disparate goals in forensic anthropology. 

High Level Theory 

 The overarching theoretical umbrella governing biological anthropology is that of 

evolution grounded in the Darwinian and punctuated equilibrium models, which are also 

applicable to some extent for the purposes of forensic anthropology.  An understanding of 

the evolutionary forces which govern human variation is a critical component of 

determining the biological profile and explaining the basis behind the processes involved 

in skeletal growth, development, degeneration, and secular change.  However, given the 

fact that such processes assist in explaining population variability, while the focus in 

forensic anthropology is on the individual, an inferential extrapolation is required, 

leading some to call for the application of middle and lower-range theories to address the 

unique circumstances faced in a forensic context (Boyd and Boyd 2011). 

Middle-Range Theory 

Taphonomic Theory 

 Middle-range theories transform static observations into inferential statements 

about the dynamic processes that produced the forensic record, linking materials, context, 

and recovery into explanations of human behavior.  These connections are often made 
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through actualistic studies, under which decomposition studies fall.  Taphonomic theory 

is a critical part of time since death evaluations, used to examine the roles of human and 

non-human forces, as well as the natural and cultural processes which affect a scene, to 

aid in the reconstruction of forensic events.  Thus, observations regarding decomposition, 

animal and insect activity, plant disturbance and so forth, are used to enhance inferences 

about the effects of these processes in the past.  Context also plays a crucial role, further 

incorporating the principles of archaeology into interpretations of past events (Boyd and 

Boyd 2011). 

Non-Linear Systems Theory 

 The approach taken by non-linear systems theorists are also applicable, especially 

in regards to decomposition studies.  These theorists reject the traditional Newtonian 

model of isolating variables while controlling for others.  Instead, they emphasize 

multivariate analyses in actualistic, real-life situations, recognizing the complex 

properties and context of systems, noting the often intertwined and tight-knit relationship 

of various factors and variables involved in forensic scenes.  Given the high degree of 

interrelation amongst these critical variables, they would argue against the possibility of 

parceling out individual factors, as the result would not be representative of the actual 

processes in play.  It also uses computer simulations to provide predictive models which 

have the potential to incorporate human decompositional data to improve the accuracy of 

time since death estimations (Boyd and Boyd 2011). 

Agency and Behavioral Theory 

 Researchers also call for the use of agency and behavioral theories when 

examining forensic settings.  In essence, these theories recognize that humans have 
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agency, but at the same time are restricted by the social structure and context in which 

they are operating (Boyd and Boyd 2011).  Lovis (1992) and Mizoguchi (1993) support 

such conclusions, pointing out the roles played by social structure, memory, and 

routinized, repeated actions in constraining practices as they relate to mortuary 

anthropology.  Boyd and Boyd (2011) take it a step further, applying the principles to 

interpretations of forensic scenes as well.  As they point out, investigators must not only 

recognize the role of agents in the original event, but the role that they themselves play in 

the scene, as their presence and interpretation alters the post-event context as well.  In 

this way, both time and space are meaningful dimensions for all agents involved. 

Low-Level Theory 

 Lastly, low-level theories are also useful for guiding the questions asked in 

regards to the often unique circumstances posed by forensic cases, as well as directing 

which analyses should be used.  In terms of the relationship between method and theory, 

modern forensic anthropological thought suggests that no clear-cut distinction exists 

between the two.  As much as theoretical questions inform analyses, the methods 

available can also affect the interpretation of data.  Thus, if a method consists of tools 

applied to achieve certain goals, then a theory can function as method as well.  In this 

way, there is an underlying theoretical basis in everything a forensic anthropologist does 

(Boyd and Boyd 2011). 

Given the often specific and unique circumstances which forensic settings 

possess, Boyd and Boyd (2011) argue for the use of multiple theoretical “levels” in order 

to best understand, analyze, and process a scene.  This particular dissertation research 
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study will take heed of these suggestions, incorporating all of the aforementioned 

theoretical levels to various extents. 
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Chapter Four: Statement of the Problem 

 In order to demonstrate the need for a study of this type, the problem statements 

to be addressed by this research will be detailed below.  They are intended to serve as a 

rationale for this study and demonstrate why it warrants extensive research.  Given the 

critical importance of quantitative applied, actualistic decomposition studies, seven main 

problem areas have been identified, as follows. 

Primary Problem Statement: Need for Region-Specific Studies and Standards 

 Post-mortem interval estimates play a critical role in criminal justice and medico-

legal investigations.  These estimates are based on decomposition standards developed 

through research in select areas.  These studies developed out of a need to understand the 

process of decomposition and qualify the effects of various environmental, scene-

specific, and depositional variables on the rate of decay so as to provide estimates 

regarding PMI.  However, these standards are known to vary in effectiveness and 

applicability based on the particular environmental region in which they are being 

employed.  Unfortunately, this variability has led to a significant gap in scientific 

knowledge regarding the rate of decomposition in areas outside those regions previously 

studied. 

 Without knowledge of the environment in which decomposition is taking place, 

not much can be said regarding the time since death.  In order to understand its impact on 

the rate of decomposition and the primary problem statement to be addressed by this 

study, one must appreciate the wide-reaching effects of temperature.  In fact, the most 

important factor affecting the rate of decomposition has been determined to be 

temperature, as it guides the degree to which other variables affect decay (Gill-King 
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1997; Nawrocki 2011).  Its critical influence has been identified to impact a number of 

variables important to the decomposition process including bacterial growth, humidity, 

aridity, scavenging activity, adipocere development, and so forth.  Most importantly, 

although insect activity has been identified as a primary player in decomposition 

(Simmons et al. 2010a; 2010b), temperature provides the optimal range of conditions 

within which flies, maggots, larvae, and pupae can most effectively and efficiently 

consume tissues.  Thus, common sense dictates that the warmer the temperature, the 

quicker soft tissue will decompose, with the inverse applying to cold climates.  These 

assumptions have indeed been validated by studies examining decay rates in both hot 

(Galloway et al. 1989; Parks 2011) and cold environments (Komar 1998; Bunch 2009; 

Bygarski and LeBlanc 2013). 

Another important point to make here revolves around the relationship between 

desiccation and putrefaction.  Desiccation, whether through aridity in hot climates or 

freeze-drying in the cold, can preserve remains, oftentimes leading to mummification.  

Given the drying out of tissues which accompanies desiccation, insect activity can be 

greatly retarded, requiring moisture in order to oviposit eggs (Haskell et al. 1997).  

Putrefaction on the other hand operates in the presence of moisture and moderate 

temperatures, as it is guided by bacterial action (Micozzi 1997).  Decomposition taking 

place in an environment with temperatures between 60-95 degrees F will be rapid, as 

bacterial growth and cell division occur best under these conditions (1997).  However, 

once temperatures begin dropping below that optimal range and approach the freezing 

point, bacterial reproduction, coupled with insect activity, becomes greatly retarded, 

eventually stopping altogether.  At higher temperatures, a competition between 
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desiccation and bacterial growth occurs, with the outcome depending on the relative 

humidity (1997).  Thus, the intricacies of decay demonstrate the profound impact which 

environmental variables, especially those inextricably linked to temperature, have on 

decomposition. 

Moreover, and perhaps more importantly, differential decomposition has been 

observed when assessing factors beyond temperature in a variety of climates and 

environmental regions.  A great example revolves around the effect played by scavenging 

activity on the breakdown of a corpse.  When comparing the pattern and timing of vulture 

scavenging in Central Texas and Southern Illinois for example, differences are observed 

in the feeding patterns, rapaciousness, time to skeletonization, group size, and time 

required to find remains (Reeves 2009; Dabbs and Martin 2013).   

In another example, insect successional patterns in subtropical southeastern Texas 

were studied (Bucheli et al. 2009).  Although the usual, expected, forensically significant 

insects were seen to be present, less commonly encountered insects, such as live case-

making clothes moths were also observed (2009).  In total, the insect fauna represented a 

unique assemblage particular to that environment and time of year.  In this way, insect 

succession is precisely correlated with each geographical region (Anderson 2010).  As 

emphasized by Bygarski and LeBlanc (2013: 413), “biogeoclimatic range has a 

significant effect on insect presence and rate of decomposition, making it an important 

factor to consider when calculating a postmortem interval.”  Given the crucial role played 

by insects in regards to the breakdown and consumption of tissues, these studies are great 

examples of how differences in decomposition can result due to differing taphonomic 

factors between various environmental areas. 
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As explained by Dabbs and Martin (2013), these discrepancies highlight a critical 

point: the effects of taphonomic agents, such as scavengers and insects, vary with climate 

and region and may thus differentially affect decomposition rates and patterns.  The 

differences in the timing and pattern of scavenging activity by similar species in different 

environments, as well as the unique assemblage of insect activity observed, not only 

brings to light extreme variations in decomposition rates and patterns, but also reiterates 

the need for site-specific taphonomic data collection (2013).  As Haglund (1997: 379) 

points out, “any assessment of postmortem interval is extremely area dependent and does 

not depend on a single criterion.”  Given these dependencies, a “one size fits all” 

decomposition model is unrealistic (Parks 2011: 19), thus necessitating region-specific 

studies. 

However, despite the clear effect of environment on altering the decomposition 

process, decomposition studies evaluating the time required to progress to specific 

decompositional states have only been conducted in certain areas of North America, 

heavily focused on the southeastern and southwestern United States.  Famous among 

them are studies conducted by Allison Galloway et al. (1989) in the Arizona desert, 

Debra Komar (1998) in the cold climate of Edmonton, Alberta, and Rodriguez and Bass 

(1983; 1985), as well as Mann et al. (1990) and Vass (2011) in the humid subtropical 

climate of East Tennessee.  Since these studies were published, a string of additional 

decomposition studies were developed in various regions of the country including Central 

and southeastern Texas (Bucheli et al. 2009; Parks 2011), California (Dupuis 2005), the 

Carolinas (Alberti et al. 2006), New England (Colleran 2010), and Colorado (Allaire 

2005) to name a few.   
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Despite studies being scattered throughout the country, one glaring gap in 

decomposition research remains, the Mid-Atlantic States, particularly the Delaware River 

Valley area, comprising southeastern Pennsylvania, New Jersey, and Delaware.  This 

dearth of research has led to a significant gap in knowledge regarding the process of 

decomposition as it applies to this specific environment.  As noted through various 

studies on the rate of decay, environmental differences can have a tremendous impact on 

PMI estimates across regions (Jaggers and Rogers 2009; Parks 2011; Dabbs and Martin 

2013).  As a result, it is currently unknown whether standards from other regions of the 

country apply to this area or if time since death estimation methods specific to the region 

are needed to ensure the accuracy, validity, and reliability of time since death estimates.   

As an example, based on the location of previous decomposition studies, the 

evaluation of time since death in this area is theoretically supposed to be drawn from 

standards developed out of Tennessee.  However, a comparison of both regions 

demonstrates clear differences in a number of environmental categories including 

temperature, humidity, precipitation, and snowfall (NOAA et al. 2013).  What’s more, 

these factors have been demonstrated to greatly alter the decomposition process (Mann et 

al. 1990).  Thus, given the clear differences between both regions, time since death 

estimates derived from studies based on the particular climatic conditions in Knoxville, 

may very well be inapplicable to the Delaware River Valley area.  In fact, even 

researchers at Tennessee (1990: 110), recognizing that climatic conditions appear to have 

the greatest effect on decay, have made it clear that it is “imperative that further research 

be conducted…in many other states where temperatures and other environmental and 

ecological factors differ from those in east Tennessee.”  This point is made even clearer 
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by Jaggers and Rogers (2009: 1221) who state, “The complex relationship that exists 

between decomposition and temperature also illustrates the importance of being cautious 

when applying experimental results obtained in one region to different geographical 

areas.” 

Along the same vein, researchers have also urged that such studies be undertaken 

so as to create a country wide post-mortem interval database and formula, accounting for 

different environmental pressures affecting remains as they breakdown, further 

highlighting the need for additional input by the forensic community so that these models 

can be adjusted and corrected for varying environments and circumstances not yet 

evaluated (Vass 2011).  Therefore, the development of accurate time since death 

determination methods are not just crucial for the Delaware River Valley Region, but can 

also contribute immensely towards efforts aimed at standardizing the estimation of time 

since death throughout the World. 

Thus, given the call for decomposition studies in a variety of climates, if the 

accuracy, validity, and reliability of time since death estimates is desired, an informed 

understanding of the decomposition process as it applies to the Delaware River Valley is 

required.  As I.A. Efremov (1940: 82) stated upon beginning the field of taphonomy, 

apart from the study of fossilized objects in and of itself, the only other way to the 

knowledge of the animal world of past eras is through “a comparative study of the 

localities where the remains have been found.”  Therefore, one of the primary 

problematic areas to be attacked by this study is the crucial lack of decomposition 

research in this particular environmental region.  Given the hypothesized regional 

differences in decomposition and the dearth of applied studies in the Delaware River 
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Valley area, this study sets out to understand the process of decomposition as it applies to 

this specific region and develop a region-specific formula by which to estimate time since 

death. 

Secondary Problem Statement: Call for Improvements in Quantitative Methods 

 In addition to the glaring issue demonstrated by the lack of decomposition studies 

in the area, another important gap in scientific research can be addressed by this study.  

Given the potential for inaccurate time since death estimates in regions where no applied 

studies have been conducted, coupled with concerns regarding the reliability and validity 

of PMI estimation methods in those areas, assertions of time since death by forensic 

experts in a court of law are now open to question. 

 Beginning in 1993 with the Supreme Court ruling in the case of Daubert vs. 

Merrell Dow Pharmaceuticals, and continuing with the Kumho Tire Co. vs. Carmichael 

(1999) case, as well as the Federal Rules of Evidence rule 702 (2000), scientific 

conclusions presented by an expert in a court of law are required to be replicable, 

reliable, and valid with consistent results, scientific acceptance, and the determination of 

statistically-backed error rates (Grivas and Komar 2008; Page et al. 2011a; 2011b; 

Dirkmaat and Cabo 2012).  In fact, in a study evaluating the most effective PMI 

estimation techniques, error ranges are called for to prevent the overestimation of time 

since death (VanLaerhoven 2008).  Given the newfound focus on the expert’s methods 

rather than experience, analyses using quantitative methods are now preferred over 

qualitative ones (Dirkmaat et al. 2008).  These crucial rulings, combined with the 

findings of the National Academy of Sciences’ (2009) report on the state of the forensic 

sciences, compelled the field to improve its methods and the samples upon which its 
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standards are based, in order to demonstrate their validity, reliability, and accuracy, as 

well as provide statistical interpretations and error rates regarding its analyses. 

 However, despite the rulings laid out in these mandates, significant progress still 

needs to be made.  In a retroactive study of 548 judicial opinions from cases where 

admission of forensic identification evidence was challenged, it was discovered that 15% 

involved exclusion and limitation of identification evidence, with 65.7% failing to meet 

the reliability threshold (Page et al. 2011a).  The cited reasons for such exclusions of 

evidence highlight unfounded statistics, error rates, and certainties, failure to document 

the analytical process or follow standardized procedures, and the existence of observer 

bias (Page et al. 2011b).  As Page et al. (2011a: 1184) make clear in the first part of their 

two-part series examining forensic identification evidence, “in such cases, the reliability 

of forensic identification science evidence, encompassing the concerns regarding the 

discipline’s underlying theory, the expert’s testimony, and their methodology, accounts 

for the majority of judges’ concerns regarding its admission.”  More frightening is the 

suggestion that up to 60% of trials where defendants were initially found guilty but later 

freed via DNA testing, relied on invalid forensic science testimony (Garrett and Neufeld 

2009).  What’s more is the claim that some of the forensic sciences have been around for 

so long that judges admit evidence even if they fail to meet minimum standards (Moriarty 

and Saks 2005).  Lastly, as best summarized by Page et al. (2011b: 917), “It should be 

noted that none of the issues discussed in this paper can be successfully addressed by the 

legal community.  It is up to the practitioners and researchers in our discipline to ensure 

that forensic science is able to provide information of the standard that the judiciary 

desires and that defendants are entitled.”  Therefore, not only is it crucial that quantitative 
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methods be improved, objective standards be developed, and statistical backing be 

provided to ensure the admissibility of forensic identification evidence in court, but to 

ensure the punishment of the guilty and the freedom of the innocent. 

 As a result, a push has been made in the forensic sciences to improve its 

quantitative methods and standards, so as to meet the call for statistically-supported 

conclusions.  Given the recommendations laid out by the various court mandates, 

decomposition standards lacking a statistical foundation are susceptible to scrutiny by 

both the presiding judge and cross-examining attorney.  Thus, it would behoove the 

criminal justice community to support the development of studies which can meet those 

requirements so as to make crucial pieces of forensic evidence and testimony admissible 

in a court of law.  Unfortunately, a large number of decomposition studies lack statistical 

evaluations, instead solely reporting the general timeframe within which patterns of 

decompositional change occur.  This proposed study however, plans to go beyond such 

qualitative patterning by using a quantitative analysis.  Through multivariate regression 

analyses and the development of a regression equation by which to estimate time since 

death, this research will be able to provide more than general stages of decomposition, 

instead devising a formula by which to predict the time since death within a confidence 

interval, as well as provide statistically-backed error rates for each prediction.  In this 

way, testimony derived from estimations utilizing the time since death formula will meet 

the call for improvements in quantitative methods, abide by all mandates, and be 

admissible in a court of law. 

Therefore, by filling these significant gaps in scientific research and knowledge, 

criminal investigators and forensic practitioners will be able to ensure the accuracy, 
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reliability, and validity of time since death estimation methods, a tremendous advantage 

when conducting criminal and medico-legal investigations and supporting assertions 

made in a court.   

Tertiary Problem Statement: Development of an Effective Method by which to Quickly 

Estimate PMI to Assist Scientific Criminal Investigations 

Given the issues presented in the previous two problem statements, if 

decomposition standards which are not applicable to the region are being used, then 

estimations of time since death can be grossly under or overestimated, leading to the 

development of false leads and precluding possible identifications.  These errors in time 

since death attribution can have long-reaching effects, as they play a critical role in 

scientific criminal investigations.  Besides the obvious use of time since death 

estimations for determining the length of time an individual has been expired for, these 

estimates are also important aspects of efforts dedicated toward narrowing the list of 

missing persons and identifying unknown individuals, helping to recreate the narrative 

surrounding an individual’s death, establishing a temporal connection to a possible 

perpetrator, confirming or refuting a suspect’s alibi and/or eyewitness testimony, and 

closing a case.   

Often forgotten is the fact that investigators and police personnel handling a case 

are constantly working against the clock, tasked with assessing the scene, developing a 

narrative of events, and quickly identifying leads.  Given the short timeframe in which 

investigators have to track down potential suspects, wasted efforts can greatly reduce the 

probability of closing a case and securing justice.  If a valid and reliable time since death 

formula is available whereby a rather quick estimation of time since death can be 
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produced, investigators will have launch point from which to work from within a 

relatively short time frame after the recovery of a body, and thus, be able to begin their 

investigation sooner, potentially facilitating a quicker identification of missing persons 

and perpetrators.    

Therefore, by developing an effective method by which to quickly and accurately 

estimate time since death, this research will facilitate the identification of unknown 

remains, track down leads, evaluate eyewitness testimony, corroborate or refute suspect 

alibis, and ultimately, close cases. 

Quaternary Problem Statement: Limited Decomposition Studies Utilizing “Real-Life,” 

Actualistic Forensic Case Data 

Due to a number of complicated issues revolving around confidentiality, access to 

data, varying collection methods, and so forth, limited data regarding time since death 

determination in real-life cases are currently available.  In order to procure such data, 

relationships and agreements must be established between Medical Examiners and 

researchers, often becoming ensnared in legal hurdles.  As a result, many decomposition 

studies are conducted experimentally, in controlled conditions, not taking into account 

the variability and range of possible factors which can affect remains in real-life 

situations (Mann et al. 1990).   

In particular, these decomposition studies are conducted on “body farms,” where 

unrealistic conditions exist, such as protective fencing to prevent predator access (Jeong 

et al. 2014), installation of cameras whose subsequent clicking scares off carnivores 

(Meyers et al. 2014), and prior freezing of corpses (Roberts and Dabbs 2014).  This last 

point is of particular concern given the generally accepted method of freezing pig and 



30 

human carcasses before experimental studies on body farms.  As demonstrated by 

Micozzi (1986; 1997), freeze-thawed rats show markedly higher rates of external decay 

and disarticulation than in freshly-killed untreated controls, directly resulting from 

increased mechanical injury in the tissues of previously frozen animals.  Although pig 

cadavers are claimed to be the best human models available (Schoenly et al. 2007), given 

their similarities in integument, size of the thoracic cavity, internal organs, relative 

hairlessness, and gut fauna, and thus preferentially used in experimental decomposition 

studies, it is not a stretch by any means to believe the same processes apply to previously 

frozen pigs as well.  In fact, Roberts and Dabbs (2014) demonstrate significant 

differences in the rate of soft tissue decomposition between previously frozen and never 

frozen domestic pigs.  From there, the logical leap regarding the errors resulting from the 

use of frozen human bodies in experimental studies can be made as well.   

This is not to mention the potential development of early decompositional 

changes from the failure to quickly or adequately refrigerate remains, leading to a 

misinterpretation of the time since death (Zhou and Byard 2011).  Just as importantly, are 

the potential effects of frozen corpses on the arthropod community, as it is widely known 

that blowflies require moist tissue in order to oviposit their eggs (Haskell et al. 1997).  

Given the tremendous role played by the insect community in the decomposition process, 

potentially delaying the onset of insect activity can have a tremendous impact on the 

accuracy, validity, and reliability of time since death estimates derived from experimental 

studies using frozen carcasses.  As both Schoenly et al. (1999) and Micozzi (1986; 1997) 

suggest, all experimental studies should employ the use of fresh carcasses over 

previously-frozen bodies, or risk invalidating study results. 
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Along the same vein, given the need for experimental investigators to assess 

decomposition, count insect species and maggot mass size, measure weight loss, and so 

forth, physical disturbance of the site results.  As shown by Adlam and Simmons (2007), 

disturbance can retard the rate of decomposition by altering the activity of insects.  This 

conclusion is supported by Cross and Simmons (2010), who state that the effect of 

investigator disturbance was significant when decomposition was measured in the form 

of weight loss.   In turn, given the interruption of the natural forces at play during 

decomposition, these experimental taphonomic studies may not be accurate reflections of 

decay in real-life scenarios; therefore, once again substantiating the need for actualistic 

studies.   

Additionally, as mentioned above, although pig carcasses are believed to be the 

best analogues for human decomposition, research by Stokes et al. (2013) cautions 

against the use of animal models for specific measurements and studies.  In particular, the 

research found many differences between porcine, bovine, and ovine skeletal muscle 

tissues compared to humans in decomposition soil studies (2013).  Although they argue 

that enough similarities exist showing cause to continue considering animal models in 

taphonomic studies, ovine, not porcine, tissue was the most similar to humans in many of 

the measurements taken (2013).  Given the differences described, as well as the results in 

support of ovine models, potential concerns can be raised surrounding the use of animal 

carcasses as analogues for human decomposition in experimental studies.   

Furthermore, as detailed by Willey and Snyder (1989), most experimental studies 

control the access of scavengers to the corpse.  Commonly used techniques involve 

protective fencing and the use of cameras to monitor daily activity.  In turn, given the 
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ability of scavenging activity to hasten physical decomposition, not only does the pattern 

of scavenging change, but so does insect succession, the context of the site, and most 

importantly, the rate of decomposition (1989).  Given the alteration of the normal 

processes involved in real-life forensic scenes, these experimental studies champion their 

results as unbiased and controlled, when in reality, they lack the realistic conditions to 

which normal cases are exposed.  In total, these experimental studies, although 

attempting to control for and isolate variables, introduce new and confounding factors not 

traditionally seen in actual, real-life forensic cases, raising concerns regarding the validity 

of experimental study results.   

When these glaring issues are coupled with the fact that many researchers 

studying decomposition do not have access to outdoor research facilities to longitudinally 

quantify the process, most especially in the Delaware River Valley area, it becomes 

blatantly obvious that actualistic studies must be conducted utilizing real life forensic 

cases, so as to compile and quantify cross-sectional data from Medical Examiner sources, 

to allow reliable inferences of the post-mortem interval in different regions of the country 

(Marks et al. 2009).  Without these applied, actualistic studies, there would be no means 

of evaluating the conclusions developed from outdoor, experimental research facilities 

under real-life conditions, serving as a necessary method of checks and balances in the 

forensic science community.   

Fortunately, given the fact that this study proposes to collect data from past 

records and present cases, the need for applied, actualistic, real-life studies will clearly be 

addressed.  The data set will yield information pertaining to variables encountered in the 

field, not solely single sets of variables pre-determined to be “interesting” by 
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experimental research designers.  The variables are presented as is, with no confounding 

factors or unrealistic conditions.  It is hoped that by conducting a study of this type, time 

since death determination in the Delaware River Valley will more closely approximate 

the actual rate of decomposition and serve as an effective predictor of time since death. 

Quinary Problem Statement: Limited Decomposition Studies on “Non-Standard” 

Conditions 

Furthermore, limited data are available for the application of time since death 

determination methods to “non-standard conditions,” i.e. situations which are not 

traditionally replicated in controlled, experimental studies (Karhunen et al. 2008: e17).  

These conditions include investigations of aquatic decomposition, scavenging activity, 

indoor decay rates, and the like (Henssge and Madea 2007; Heaton et al. 2010; Ross and 

Cunningham 2011).   

Given the estimated differences in the rate of decay between various depositional 

contexts, this particular gap in research is of particular concern (Maples and Browning 

1994).  As a matter of fact, in regards to aquatic decomposition, each year, more than 

140,000 individuals die in aquatic contexts, further exacerbating the issues stemming 

from the lack of post-mortem submersion interval studies (Yorulmaz et al. 2003).  One 

glaring stat highlighting this discrepancy demonstrates an 80-20% difference between 

research conducted in terrestrial versus aquatic environments (Merritt and Wallace 2010).  

Part of the reason for this dichotomy is the belief that insects have evolved to feed on 

carrion on land, as opposed to water, and therefore a good deal of research has focused on 

the use of insects in determining time since death in terrestrial contexts (Wallace et al. 

2008).  Unfortunately, this has led investigators to often overlook the utility of aquatic 
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insects for estimating the post-mortem submersion interval and has resulted in a dearth of 

aquatic decomposition studies in general. 

Despite its importance, few studies have taken a quantitative approach to 

modeling the post-mortem submersion interval, focusing instead on qualitative 

descriptions and factors such as the effects of water depth and sediment on 

decomposition, terrestrial entomology, aquatic insect and scavenger succession, 

adipocere formation, and individual case studies (Payne and King 1972; Boyle et al. 

1997; Clark et al. 1997; Sorg et al. 1997; Kahana et al. 1999; Hobischak and Anderson 

1999; Ebbesmeyer et al. 2002; Hobischak and Anderson 2002; Anderson and Hobischak 

2004; Petrik et al. 2004; O’Brien and Kuehner 2007).  Although the breadth of 

knowledge exists, most post-mortem submersion interval studies have failed to 

incorporate the joint effects of these variables on decay and meet the call for improved 

quantitative methods. 

Likewise, it is interesting to note that scavenging has yet to be evaluated in 

conjunction with the standardization of time and temperature, measured as accumulated 

degree days (ADD).  As noted by Simmons et al. (2010a), all experimental studies 

reported in the literature have controlled for this factor.  In regards to all of the cross-

sectional studies conducted, which may have included scavenging activity in their 

research design and data analysis, none have reported temperature in the form of ADD or 

presented the degree of decomposition as a quantitative score (2010a).  Therefore, 

quantitative studies incorporating scavenging activity into the research design, as well as 

an evaluation of its impact on the rate of decomposition as measured using ADD, are 

solely needed. 
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Additionally, despite the frequent occurrence of death within the confines of a 

home, indoor studies are severely lacking in North America.  When this consideration is 

coupled with the fact that a majority of individuals in the United States live in 

metropolitan areas, indoor studies, in both urban and suburban areas, appear crucial to a 

complete understanding of decomposition.  However, despite the clear and obvious need 

for indoor studies, only a few outdoor research projects have ever been conducted in 

urban and suburban areas in North America (Baumgartner 1988; Goff 1991; LeBlanc and 

Strongman 2002; Simpson and Strongman 2002); plagued by issues surrounding foul 

odors, community approval, ethics, and the like.  In fact, no carrion research had ever 

been conducted inside houses before Anderson in 2011, primarily relying on anecdotal 

case histories for guidance regarding indoor decomposition (Goff 1991; Benecke 1998).  

As a result, little is known regarding decomposition rates and insect ecology both within 

and outside a home in these areas (Anderson 2011).  Therefore, given the potential 

differences in regards to not only insect activity, but also temperature, scavenger access, 

shade, rainfall, exposure to humidity and aridity, and so forth, between outdoor and 

indoor contexts, quantitative studies must be developed to account for all of these 

variables and foster a more informed understanding of indoor decomposition.  

Fortunately, given the accessibility of data from the Delaware Office of the Chief 

Medical Examiner, all of the aforementioned issues can be tackled and addressed. 

Firstly, due to the variability in the types of cases handled by the Medical 

Examiner’s office, “non-standard conditions,” including a range of cases from the fresh 

to completely skeletonized stages, in a variety of depositional contexts, will undoubtedly 

be dealt with.  This will surely assist investigations dealing with atypical conditions upon 
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which research is usually lacking.  Secondly, the use of retroactive studies can be 

particularly effective in the collection of data pertaining to indoor cases, especially given 

the issues mentioned above regarding odor, community sentiment, ethics, and so forth.  

Moreover, multivariate approaches to these types of “non-standard” cases can be 

extremely useful as well, not only modeling temperature or insect activity, but attempting 

to understand how additional factors, such as shade, lack of rainfall, scavenger access, 

and so forth, work in unison to impact the rate of decomposition.  Lastly, given the 

location of the state, the Delaware Office of the Chief Medical Examiner is an ideal 

setting to conduct a study of this type.  Beyond the stated fact that studies need to be 

conducted in this region in order to assess the differential effects of environment and 

climate on decomposition and time since death estimation, Delaware’s proximity to the 

ocean allows the analysis of cases deposited in marine environments.  All states are 

presented with cases involving surface, buried, and indoor contexts, but only a few deal 

directly with cases involving submerged remains in marine scenarios.  Being able to 

directly evaluate the effect of aquatic environments on decomposition, in contrast to 

terrestrial and indoor decomposition, will likely produce important insights into the most 

important factors affecting decay, as well as the impact played by depositional 

environment.  In total, this study may provide insights into previously under-studied 

research components, potentially widening the scope of future projects by tapping into 

areas previously neglected in the literature. 

Senary Problem Statement: Lack of Studies Incorporating Skeletal Decomposition 

 As a general rule, decomposition studies have tended to avoid the inclusion of the 

skeletal phase of decomposition in analysis.  In fact, the majority of studies conducted on 
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PMI focus on soft tissue deterioration (Henssge and Madea 2007; Jaggers and Rogers 

2009; Ross and Cunningham 2011), with very little information existing regarding the 

determination of PMI once remains have skeletonized (Gill-King 1997).  In those studies 

that do take skeletal deterioration into account, they tend to focus primarily on bone 

biochemistry and microstructure (Specht and Berg 1958; Castellano et al. 1984; 

Schwarcz et al. 2010).  However, given the technical expertise required, as well as the 

high costs and destructive methods utilized, these approaches have several drawbacks. 

Additionally, historically speaking, decomposition has been described as passing 

through fresh, bloat, decay and dry phases only (Rodriguez and Bass 1983).  These dry 

phases tend to include mummification and lump all aspects of skeletonization into one 

category.  Despite the clear and obvious gap in skeletal research as it relates to time since 

death estimation, for several different reasons, skeletonization has been viewed as the end 

point of decomposition and too difficult of a variable to model. 

The arguments against including skeletal breakdown as a part of analysis are 

multi-fold.  To begin, the most practical reason behind this discrepancy is the simple fact 

that remains are much more likely to be discovered in the earlier phases of 

decomposition.  Thus, studies have focused on the early post-mortem period, limiting the 

amount of information regarding the reduction of a body to its skeletal elements. 

Additionally, skeletonization has been portrayed as not being particularly useful 

in regards to prediction.  One particular example is seen in the work of Vass et al. (1992), 

which seeks to detect the post-mortem interval using chemical analysis of soil solutions.  

Studies such as this view the onset of skeletonization as the point in which volatile fatty 

acids stop being secreted; therefore losing the ability to measure their ratios in soil 
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solution.  In such studies, the differences between early phase skeletonization, in which 

grease is retained, and the dry, porous, and fragile end stage of skeletonization, are 

ignored and lumped together as ineffective predictors of time since death.  Likewise, the 

University of Tennessee’s post-mortem interval formula stops at the point of 

skeletonization, utilizing 1285 as the constant representing the empirically determined 

ADD value at which volatile fatty acid secretion from soft tissue ceases and the 

skeletonization phase commences (Vass 2011).   

Moreover, Megyesi et al. (2005), the authors of perhaps the defining study of the 

new quantitative method paradigm shift in forensic anthropology, only include cases with 

a known PMI period of less than one year, seeing as to how soft tissues are rarely present 

beyond one year post-mortem.  Fortunately however, unlike many other studies including 

skeletal breakdown, they make larger strides in regards to describing multiples stages in 

the skeletonization phase provided in their total body score scoring system.  Although it 

is not completely satisfactory, at least in regards to the pattern of decomposition seen 

specifically in the Delaware River Valley, it is a step in the right direction. 

Given the turn away from the analysis of skeletal elements as a predictor of time 

since death in forensic anthropology, multiple studies, beyond traditional evaluations of 

rigor, livor, and algor mortis, have focused on prediction in the early post-mortem period.  

Entomological standards have sought to model the successional patterns of insects, as 

well as their relative number and ratios (Rodriguez and Bass 1983; Keh 1985; 

Rulshrestha and Chandra 1987; Haskell et al. 1997).  Multiple mathematical approaches 

to pathology have been employed, seeking to model the relationship between temperature 

and time through various measures including unsteady heat transfer (Smart 2010) and 
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internal body temperature (Al-Alousi et al. 2001a; Al-Alousi et al. 2001b), subsequently 

developing nanograms to chart their relationships (Henssge and Madea 2004; Henssge 

and Madea 2007).  Biochemical research has focused on such aspects as the ratio of 

volatile fatty acids in soil solutions under decomposing bodies (Vass et al. 1992; Vass et 

al. 2002), as well as changes in blood and cerebrospinal fluid and the potassium content 

of the vitreous humor (Coe 1993).  Taken as a whole, all of these methods have had 

significant success in this regard. 

However, despite the utility of these types of studies to estimating time since 

death within days or hours, these methods are applicable only when the post-mortem 

period is relatively short.  As cases progress through the decompositional stages and 

unidentified persons become more and more difficult to match via conventional means of 

identification, these studies lose their effectiveness and applicability.  In turn, time since 

death periods of increased length fall into the laps of forensic anthropologists, who, as of 

yet, have been unable to quantify skeletal changes with more precise estimates of time 

since death and, as described above, have left this aspect of research relatively 

understudied.  This then raises the question: have forensic anthropologists shied away 

from skeletonization in decomposition studies because of the purported difficulty in 

modeling it?  Although the question remains unanswered, it is readily apparent that 

associated disciplines have identified the potential insights which analysis of 

skeletonization can provide. 

When assessing the number and types of studies conducted in surrounding fields, 

it becomes clear that skeletonization has been identified as a useful indicator and 

component of time since death estimation methods.  Bone studies ranging from analysis 
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of histological components (Specht and Berg 1958), citrate content (Schwarcz et al. 

2010), measures of nitrogen and amino acid amounts (Knight and Lauder 1967), protein 

and triglyceride ratios (Castellano et al. 1984), image analysis of luminol application 

(Introna et al. 1999), quantity of carbon 14 (Hedges et al. 2007) and strontium 90 

(MacLaughlin-Black et al. 1992) in bone material, and many more, have all been 

developed to tap into this neglected research area.  Even botanical analysis has been 

utilized on occasion to estimate the minimum post-mortem interval in cases involving an 

advanced state of skeletonization (Cardoso et al. 2010).  

Nonetheless, despite their applicability to a much neglected aspect of 

decomposition studies, several drawbacks exist.  To begin, the processes involved with 

these methods require sophisticated and expensive equipment, likely not to be practical 

for medico-legal agencies or police forces with limited budgets (Jaggers and Rogers 

2009).  Given the current financial climate, coupled with the lack of investment in the 

dead, these state of the art methods are most likely out of the reach of many investigators.  

Secondly, given the use of histological methods and micro-structure analysis, the 

sectioning process is inherently destructive (2009).  If bone remains display forensically 

important lesions or marks, it may be inadvisable to send remains for these types of 

procedures.  Also, if a limited number of bone remains were recovered, or previous DNA 

extraction attempts proved insufficient, additional destructive procedures may be looked 

unfavorably upon by Medical Examiners or forensic personnel.  Lastly, despite the direct 

application of these studies to bone remains, they are relatively imprecise.  Given the 

need to develop more specific time ranges to increase the effectiveness of time since 
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death estimates for tracking down missing persons, identifying suspects, and closing 

cases, methods better-suited to the forensic community are needed.   

Still, despite the nondestructive, repeatable, and lost-cost nature of macro-

structural analysis, very few studies have incorporated macroscopic criteria into methods 

for estimating time since death in skeletal remains (2009).  Therefore, given the absence 

of accurate, non-destructive, macro-structural methods for time since death 

determination, it appears only logical to attempt to develop a method which incorporates 

the skeletal period into forensic anthropological analyses of time since death. 

Indeed, common sense dictates that accurate time since death estimation methods 

are absolutely crucial in such advanced stages, especially when taking into account the 

fact that identifications tend to be much more difficult when remains lack soft tissues.  In 

fact, the lack of decomposition studies incorporating skeletonized remains only 

exacerbates a glaring issue involved with estimating time since death: there already exists 

an inverse relationship between the accuracy of estimates and the longer one has been 

deceased (Schoenly et al. 1999).  Thus, if unreliable data exists regarding the later stages 

of decomposition, this inverse relationship will only increase, severely damaging hopes 

of identifying remains and suspects, and closing a case.  As summarized by Swift (2006), 

when decomposition has entered the late post-mortem interval period, resulting in only 

skeletal elements, dating of the time since death becomes more difficult.   

Therefore, this particular study plans to not only include skeletonized cases into 

its quantitative analysis, but it also seeks to move away from the trend of describing the 

skeletal phase as a single step, instead identifying and more narrowly defining the 

multiple steps between the early skeletonization period and the dry end stage of 
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skeletonization.  Additionally, given the retroactive approach toward data accumulation 

to be employed by this study, the sample size of skeletonized cases from which 

conclusions will be drawn, will be much more robust than that seen in previous 

experimental studies, which typically involve only one or two corpses.  By increasing the 

amount of skeletonized cases in the dataset, a more well-informed understanding of the 

time required to progress to that stage of decay will develop; thus assisting in decreasing 

the inverse relationship between the accuracy of PMI estimates and time, and filling the 

gap in research and knowledge regarding the skeletal period. 

Septenary Problem Statement: Traditional versus Quantitative Approaches to 

Modelling Decomposition 

Quantitative versus Qualitative Analysis in Decomposition Studies 

 From the very onset of decompositional and taphonomic studies in forensic 

anthropology, researchers have sought to identify patterns in decomposition and associate 

them with time intervals to aid in estimating time since death.  Traditional approaches 

used qualitative descriptions of the stages of decomposition, which were then each 

associated with broad time intervals either through simple observation, experience, or 

experimental study.  However, as stated by Stephen Nawrocki (2011: 2), this particular 

approach is both ineffective and imprecise, while lacking the quantitative backing 

characteristic of more modern scientific approaches, 

“Traditionally, descriptions of the decomposition status of human remains have been rather 
qualitative, with the corpse being placed into one of a few broadly-defined stages or categories 
defined on the basis of the presence or absence of a few key indicators.  Stages such as “pre-bloat” 
or “advanced skeletonization” are necessarily imprecise because the investigator is forced to 
choose from a small number of available stages, and each stage will have a relatively wide time 
interval associated with it because the sum of the stages must cover the entire postmortem period.  
Estimates of time since death for unidentified cases are, as a result, broad.”   
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Unfortunately, despite the rather continuous nature of decomposition, 

anthropologists have taken a qualitative approach to describing the process, utilizing 

discrete, broad stages more out of convenience than precision.  However, given the call 

for improvements in quantitative methods by various federal mandates, new approaches 

to modelling decomposition have been developed, leading to a more precise, accurate, 

and valid set of approaches toward estimating the post-mortem interval. 

Describing Decay: Few, Broad, and Discrete versus Multiple, Specific, and Continuous 

Stages 

 Given the failure to understand the complex, multivariate system at play during 

decay, forensic anthropologists have often relied on a few, broadly-defined set of stages 

to describe the decomposition process.  Beginning with Reed (1958) and continuing with 

Rodriguez and Bass (1983), the qualitative approach to decomposition has utilized a four-

stage blueprint composed of fresh, bloated, decay, and dry phases (see Table 1).  Each 

category presents the “typical” decompositional changes that occur, and more 

importantly, are portrayed as discrete stages.  The decay process is made to appear 

categorical in nature, with the decompositional changes of a body essentially “jumping” 

from stage to stage (Nawrocki 2011: 2).  Given the fact that the plethora of changes 

which occur over a body during decay are condensed into four or five stages with wide-

time intervals, it is no mystery why estimates of time since death have been so imprecise.   

Additionally, a few caveats are typically tossed in stating that environmental 

variability can alter these changes as well, without providing any quantitative 

understanding of how or why this is so.  Essentially, the party line goes something like 

this:  “Typically, ‘X’ number of days are needed to reach the decay stage.  In the 
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presence of higher temperatures, that number is driven lower.”  The lack of 

understanding regarding exactly how a particular variable affects the rate of 

decomposition, coupled with the inability to quantify how specific decompositional 

changes are related to time, produces imprecise intervals and “best guess” estimates that 

would frustrate any seasoned forensic anthropologist.  However, when one moves away 

from a typological approach towards a semi-quantitative strategy and truly analyzes the 

decay process as it really takes place, it becomes clear that decomposition is not so 

discrete, and instead proceeds through a series of small changes which accumulate over 

time. 

 Recognizing the need for a more precise manner by which to estimate the post-

mortem interval, Megyesi et al. (2005) devised a method to calculate total body score 

based on detailed descriptions of decomposition (see Tables 2, 3, and 4).  More 

importantly, their strategy was designed to reflect the fact that decomposition is more 

continuous than discrete, and certainly better understood through a number of specifically 

defined-stages rather than a few broad categories.  In total, they argued that the widths of 

time intervals associated with an estimate are inversely proportional to the number of 

stages available, or put more simply, systems with more categories offer higher precision 

than those with fewer categories (Nawrocki 2010).  Thus, if seeking to reign in the 

imprecision of traditional PMI estimation methods, one needs to analyze the 

decomposition process as it actually occurs, as a continuous process, and provide a 

detailed set of stages by which to score the decomposition of a body. 
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Traditional Descriptions of Decomposition versus Total Body Score 

 Recognizing the disparity between traditional qualitative descriptions and the 

need for a more precise method by which to estimate time since death, Megyesi et al. 

(2005) modified the set of descriptors developed in Galloway et al. (1989), to devise a 

method to calculate total body score based on detailed descriptions of decomposition.  

Essentially, they were able to devise a system by which to allocate points to specific 

decompositional stages (see Tables 2, 3, and 4).  Based on the stage in which the body is 

found, it receives the appropriate score.  By quantifying the observed decomposition, it 

could then be divided by either post-mortem interval days or accumulated degree days to 

form a measure of the rate of decomposition. 

This approach is in stark contrast to the way that decomposition studies were 

conducted in the past.  Before the paradigm shift toward more quantitative-based studies, 

qualitative descriptions of decomposition were “correlated” to time (see Table 2).  

However, these “correlations” had no quantitative backing, as they relied mostly on 

observation, experience, and anecdotal evidence.  In order to determine the time ranges 

during which a decompositional stage typically developed, one would simply note how 

long it would take for the fastest case to enter a particular stage, as well as how long the 

slowest case would take to progress to that same point.  No quantitative analysese to 

determine the factors which produced such variation were conducted.  Due to the fact that 

the decompositional stages employed were not assigned points or quantified in some 

way, there was no way to demonstrate how a particular variable affected the rate of 

decomposition over time.   
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Fortunately, Megyesi et al. (2005) were able to devise a method by which the 

presence or absence of a variable could be measured against the total body score over 

PMI or ADD.  This measure could then be used to assess the impact of the variable on 

the rate of decay.  In the traditional approaches, the lack of a total body score precluded 

measurements regarding the rate of decay due to the fact that it was not possible to 

develop a rate by dividing a qualitative description over a quantitative figure. 

Where Megyesi et al. (2005) fell short, however, was by assuming that their total 

body score descriptions, i.e. the pattern of decomposition, were applicable across regions 

and in all environments.  Given the stated impact of multiple variables on decay, whose 

effects are reflected in the decompositional changes observed on a body, the particular 

pattern of decomposition observed in one region will likely not hold true for that 

observed in another.  Therefore, a specific qualitative analysis of the pattern of 

decomposition as it applies to the Delaware River Valley is needed, so as to derive total 

body score descriptions based on the pattern of decay seen in this region.  Additionally, 

the skeletonized phase of the total body score needs to be elaborated, with this being a 

problem highlighted by Nawrocki’s own admission that more specific decompositional 

stages are needed.  By taking this approach, the time since death estimates derived from 

an equation will be more accurate, and rely on a total body score description which fits 

the pattern of decay in the region it is being employed.  However, to achieve these goals, 

one must move away from the tendency to view decomposition as dependent on time, 

and instead realize the profound effect of temperature on decay. 
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Post-Mortem Interval Days (Time) vs. Accumulated Degree Days (Time x Temperature) 

 Traditional approaches to estimating the period over which an individual has been 

deceased have utilized qualitative descriptions of decomposition which have broken 

down into a few broad stages with wide time intervals, defined by the presence or 

absence of specific decompositional indicators (Nawrocki 2011).  However, the focus on 

“time,” reflected as a prediction of the post-mortem interval, and its supposed 

relationship to chemical and biological processes, bacterial reproduction, and insect 

growth, has caused forensic anthropologists to move away from explaining the effects of 

external forces on decay.  Despite the fact that the relationship between variables such as 

ambient temperature and insect growth have been known since the 1940s (Davidson 

1944), forensic anthropology has focused more on the end-point (PMI), rather than 

modelling the complex environmental system in which decomposition occurs (Nawrocki 

2011).  Put more simply, the field has focused more on the relationship between single 

pairs of variables than on multivariate tests and the networks of variables at play.  Instead 

of conducting holistic research, isolating variables and measuring their actual effects, 

forensic anthropologists have skipped immediately to time since death predictions, 

without acknowledging the factors that have led to that final stage.  As a result, estimates 

of PMI are wide and unnecessarily imprecise, and focus on defining the end product 

through the use of qualitative descriptions and a typological approach, rather than 

developing a nuanced and quantitative understanding of the factors at play.  Ultimately, 

decomposition studies in forensic anthropology have been mired in approaches 

characteristic of the “dark days” of anthropology, rather than stepping into the new 

quantitative paradigm of today. 
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Given forensic anthropology’s focus on description rather than real 

understanding, the known relationship between ambient temperature and chemical and 

biological processes, bacterial reproduction, and insect growth, has largely been ignored.  

In fact, the emphasis in decompositional studies has been placed in the wrong area, 

focusing too heavily on time and not enough on the wide-reaching effects of temperature.  

As ambient temperature increases, chemical and biological reactions become more rapid 

and accelerate decay, whereas decreasing temperature decelerates the decompositional 

process.  The specific link between temperature and the rate of decomposition is reflected 

in Van’t Hoff’s Law, which states that the speed of chemical reactions increases two 

times or more with each 10 degree C rise in temperature (Vass 2011).  In fact, forensic 

entomologists utilizing the successional patterns and stage of development of insects to 

estimate time since death have been aware of this principle for years, and used them to 

make relatively precise estimates of time since death during the early post-mortem period 

(Nawrocki 2011).  Their particular approach tabulates the number of heat-energy units 

available to drive chemical and biological processes, such as bacterial replication and 

larvae growth, measured as “accumulated degree days (Megyesi et al. 2005).”  To make 

this calculation, the effects of time and temperature are multiplied (in theory), being 

calculated by summing the average temperature in an area over a specified time interval.  

Thus, if a body had been exposed to one 20 degree Celsius day, followed by another 30 

degree Celsius day, the total accumulated degree day (ADD) load would be 50 ADD.  

The most important point to make regarding the use of time and temperature to 

estimate time since death is that multiple studies have clearly demonstrated that the 

relationship between accumulated degree days and insect growth is stronger than the 
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relationship between time elapsed and growth (Megyesi et al. 2005; Carter et al. 2007; 

Michaud and Moreau 2011).  The main reason for this particular distinction is the fact 

that simple time elapsed does not account for the variation in temperature that has been 

known and proven to drive the processes involved in decomposition and decay 

(Nawrocki 2011). 

To provide a more intuitive explanation of the importance of both time and 

temperature to decomposition, a simple analogy may be used:  When estimating the 

amount of sharpness of a knife, it is not important to calculate the number of days in 

which the knife has been sitting in the knife block, but rather the number of cuts to which 

the knife has been exposed.  The knife could have been sitting in the block for the 

entirety of its existence and not experienced any wear.  Thus, when applying this analogy 

to developing a formula for determining how long an individual has been deceased, it is 

not important to simply correlate observed decompositional changes (i.e. sharpness) with 

the number of days in which the body has been exposed to the environment (i.e. sitting in 

the knife block), but rather the number of degrees to which the body has been exposed to 

(i.e. the number of cuts).  Given the fact that temperature is known to drive the chemical 

and biological processes known to alter decay, capturing the total effect of temperature 

on a corpse will explain more of the variation involved in decomposition than a simple 

calculation of time elapsed. 

In practice, one would be able to use an ADD formula to produce an estimate of 

the total accumulated degree days which have passed since an individual’s death, and 

simply add the average temperatures from the day of the body’s recovery back in time 

until that ADD total is me.  This estimated would therefore identify the number of days 
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since the individual’s death.  As such, it not only incorporates the effect of heat-energy 

units on decay, but will also provide a more accurate estimate of how temperature 

influenced the post-mortem period. 

Lastly, as hypothesized by Adlam and Simmons (2007), the use of accumulated 

degree days to jointly document time and temperature in decomposition studies allows 

the comparison of studies across environments.  Prior to this advancement, the principal 

difficulty in understanding the decomposition process was the inability to directly 

compare results and observations from published research (Simmons et al. 2010a).  These 

studies not only varied with regards to their methodology, but also the environment, 

species observed, and duration of the experiment.  Some studies were longitudinal and 

laboratory-focused (Tibbett et al. 2004) and others were based on untested case studies 

(Rodriguez and Bass 1983; Mann et al. 1990), while some took on retrospective, cross-

sectional approaches (Megyesi et al. 2005).  In the end, these differences made it nearly 

impossible to draw clear conclusions from different studies (Simmons et al. 2010a).  

However, by standardizing the time/temperature relationship, experiments can be placed 

on an equal footing, at least with respect to accumulated degree days.  Furthermore, the 

results of one study can be compared to those in separate regions and judged for their 

accuracy.  Still, although advancements in estimations of ADD have been made, the 

standardized collection of the remaining variables known to alter the rate of 

decomposition has yet to emerge. 

Region-Specific versus Universal Continuities 

Given the obvious importance of capturing the effects of temperature on decay, 

the next logical consideration is whether or not additional environmental, scene-specific, 
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and depositional variables should be collected to increase the precision of post-mortem 

interval formulas.  Multiple studies have identified links between the rate of 

decomposition and variables such as insect and carnivore activity, trauma, exposure to 

the sun or shade, and clothing.  By extracting these key variables from case records in 

real-life scenarios and developing models to measure their individual effects, researchers 

can begin to truly evaluate the complex environmental factors altering decomposition.  

When the results of these studies are combined with the obvious differences in the rate of 

decay between contrasting environments (see Galloway et al. 1989 versus Komar 1998), 

it becomes clear that it is necessary to develop decomposition formulas in multiple 

climatic and environmental regions throughout the country, in order to evaluate if region 

specific time since death equations are needed. 

Conversely, some researchers argue that, instead of attempting to identify unique 

patterns of decomposition in different regions, forensic anthropologists should instead be 

searching for underlying continuities that help understand decomposition around the 

world (Simmons et al. 2010a).  As stated by Nawrocki (2011), local variations are points 

along a continuum caused by small fluctuations in a few key variables such as 

temperature, humidity, etc.  As such, these differences are not essential, and likely grade 

into one another.  Given this school of thought, region-specific standards are not 

warranted, instead calling for global or universal formulas to be developed.   

However, in Megyesi et al. (2005: 9), a study in which Stephen Nawrocki himself 

played a large role, future studies are urged to go beyond a simple evaluation of ADD 

and decomposition, and instead evaluate the effects of a number of additional factors.  
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“Each of these variables could be measured and analyzed for their effect on decomposition, being 

incorporated into the regression equation if significant…Future research should also concentrate 

on narrowly defined regions of the United States in order to produce equations that are best 

tailored to a particular environment.”   

This assertion is a common theme in decomposition studies, with multiple researchers 

urging research in a variety of environmental regions, as well as the analysis of additional 

ecological factors.  Therefore, although accumulated degree days should not have unique 

effects in different locations, bioecological variation, such as regional and seasonal 

differences in the activity of insects, carnivores, and any other factors that involving 

access to the remains, certainly may.  Given this statement, before attempts to evaluate 

the necessity of region-specific equations are abandoned, it is important that studies such 

as these are conducted to assess whether variables beyond temperature have a significant 

effect on decay.  Should this be the case, it may point to the need to move away from 

universal continuities and towards the generation of area-specific equations to better track 

local environmental and climatic conditions. 

Core versus Periphery Processes 

 According to Nawrocki and Latham (2013), total body score can only be used 

effectively when modelling “normal” decay, as deviations are believed to introduce error.  

Normal decay processes involve systemic “core” variables and processes which drive 

decomposition and are linked to and dependent on temperature, such as enzyme activity, 

cell autolysis, bacterial replication, insect growth, and other such microorganisms 

(Nawrocki and Latham 2013: 455).  On the other hand, alternate pathways such as 

adipocere formation, skeletonization, burning, and excessive carnivore activity, make up 

stochastic “periphery” variables which lead to atypical decomposition and are therefore 
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too difficult to model (Nawrocki and Latham 2013: 455).  If they are included in 

regression equations, Nawrocki and Latham (2013) argue that they will skew the 

resulting data, introducing confounding factors and error into the prediction process.  

Thus, given the purported systematic mathematical relationship between accumulated 

temperature and decay, Nawrocki and Latham (2013) state that time since death 

estimation methods must rely on those “core” processes.  In fact, in their study on the use 

of accumulated degree days to estimate the time since death, Megyesi et al. (2005) 

regarded the impact of temperature on decay so highly that they set out to evaluate its 

singular role, compared to post-mortem interval days, in explaining the largest proportion 

of variation in decomposition.  In the end, they incorporated TBS as the only independent 

variable in their time since death equation used to predict accumulated degree days.  No 

other variables were analyzed for the percentage of variation in decomposition they may 

explain. 

 However, one of the benefits of conducting a multivariate regression analysis is 

that the effects of variables can be selected for based on the value of their coefficients of 

determination.  Therefore, if there is the potential to accurately extract data regarding 

these “periphery” variables, those variables, which may contribute in a statistically 

significant manner to the explanation of a large proportion of the variation in estimates of 

time since death, can be analyzed.  By controlling for other factors, single variables can 

be assessed for their impact on the rate of decay, being identified as significant or not 

significant by simple t-tests.   

In addition, given the fact that Megyesi et al. (2005) deliberately excluded buried 

and submerged cases (assumedly due to the number of “periphery” variables involved in 
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both contexts), it may be possible to compare the percent of variation explained in a time 

since death formula incorporating multiple depositional contexts versus formulas derived 

specifically for each type of depositional environment.   

Lastly, given the significant role played by insect activity, carnivore access, and 

other factors that are known to accelerate decomposition, factors beyond total body score 

and ADD must be assessed (Simmons et al. 2010b).  In fact, Nawrocki and Latham 

(2013) themselves state that post-mortem interval estimates can be informed by 

“peripheral” processes.  Although these processes might not explain the same percent of 

variation in estimates of time since death as those driven by temperature, or be as cleanly 

modelled, they still require study.  Therefore, if the ultimate goal of decomposition 

studies is the most precise estimate of time since death, given the call for studies in a 

variety of environmental conditions and regions, coupled with the potential effect of 

bioecological variation on decomposition, it is absolutely necessary to study the effects of 

both “core” and “periphery” variables, an approach this dissertation research study has 

taken. 

Need for Quantitative Studies Employing the Use of ADD and Specific Descriptions of 

the Pattern of Decomposition in the Delaware River Valley 

Most importantly, despite the results of multiple studies demonstrating the 

relationship between time and temperature, coupled with its introduction to human 

decomposition research by Vass and colleagues in 1992, forensic anthropologists have 

still been very slow in accepting the standardization of time/temperature, reflected as 

accumulated degree days, as the x-axis event timeline for decomposition (Simmons et al. 

2010b).  In fact, despite all of the benefits described above, some of the most current 
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publications have still yet to incorporate the principle of accumulated degree days into 

their research designs or analyses (Magnanti and Williams 2008; Sharanowski et al. 

2008; Bunch 2009).  Moreover, it appears there is a general reluctance to accept the 

implications of results generated by its use (Simmons et al. 2010b).   

Overall, decomposition studies continue to be plagued by the focus on time rather 

than its relationship to temperature, with estimates of PMI, and therefore medico-legal 

investigations, suffering as a result.  Fortunately, in order to solidify the importance of 

ADD and end the debate regarding its applicability to decomposition estimates, this study 

seeks to demonstrate the effectiveness of the accumulated degree day principle for 

explaining the variation in decomposition observed in the Delaware River Valley, as 

compared to simply using the traditional summation of post-mortem interval days.  When 

this focus is combined with the assessment of the decompositional pattern as it pertains to 

this specific area, and thus the development of a total body score system appropriate to 

the Delaware River Valley, it is hoped that estimates of time since death will be more in-

tuned with the factors inherent to this particular environmental region.  
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Chapter Five: Review of Environmental, Scene-Specific, and Contextual Variables 

Believed to Alter Decomposition 

In 1990, based on observations and experience gained through years of analysis at 

the Anthropology Research Facility in Tennessee, Robert Mann and colleagues were able 

to develop a subjective criteria rating on a five-point scale of the key variables affecting 

the rate of decay of the human body (see Table 6).  With five being the most influential, 

three main factors were described as having the most bearing on progression of 

decomposition: temperature, access by insects and burial type/depth.  The next most 

important factors were ascribed values of four, which included carnivore/rodent activity, 

as well as trauma and the amount of humidity.  An additional three variables were 

determined to have a slight effect on decay, including rainfall, embalming, and body size 

and weight.  Clothing was given a value of two, while the surface the body was placed on 

was deemed the least influential of all factors.  Soil pH was identified as a potentially 

important variable as well; however, its effects were still in the process of being studied 

at the time the paper was published.  Since then, the effects of soil acidity have been 

shown to participate in the destruction of organic remains as well (Surabian 2011).   

Given the identification of these key variables, subsequent experimental and 

actualistic studies in various regions and climates have followed suit, evaluating the 

variables and criteria highlighted in Mann et al. (1990).  These studies were designed in 

an attempt to assess the roles played by these factors and determine if these variables are 

in fact inextricably linked to altering the rate of decomposition   (Rodriguez and Bass 

1983; Rodriguez and Bass 1985; Galloway et al. 1989; Komar 1998; Parks 2011; Ross 

and Cunningham 2011; Vass 2011).  Given this call, multiple factors have been identified 
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as critical to the rate of decomposition including temperature, moisture, pH, and the 

partial pressure of oxygen (Vass 2011).  Temperature itself has been inextricably linked 

to other variables such as insect and scavenger activity, seasons, altitude, latitude, burial 

depth, presence of water, air movement, vegetation, wrappings, clothing, and so forth 

(2011).  Even in the infancy of decompositional studies, the “father” of taphonomy, I.A. 

Efremov (1940: 83), recognized these relationships stating, “the passage from the 

biosphere into the lithosphere occurs as a result of many interlaced geological and 

biological phenomenon.”  Therefore, by studying the relative impact of the 

aforementioned factors on the decay process through both controlled and multivariate 

studies, these research efforts have aimed to match up those variables with observed 

decompositional changes and known time since death periods, to develop standards for 

assessing the post-mortem interval in these specific regions.   

Given the fact that ambient temperature appears to have the greatest influence 

over the decay process, guiding the degree to which other variables impact 

decomposition, and because variability in decomposition is the “rule,” Mann et al. (1990: 

110) make it clear that it is “imperative that further research be conducted…in many 

other states where temperatures and other environmental and ecological factors differ 

from those in east Tennessee.”  Therefore, by having data specific to the conditions in a 

particular region, one can also begin to assess whether region-specific standards are 

needed in order to ensure the validity and reliability of PMI estimates for application in 

actual forensic cases.  Given the lack of research in the Delaware River Valley Region, 

the need to validate previous claims and research in other climatic conditions is obvious.   
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Furthermore, by gathering information related to the relative impact of 

environmental and scene-specific variables on decomposition, research efforts can begin 

to illuminate questions regarding the most influential factors on decay and whether those 

variables can or cannot be separated apart, ultimately guiding the development of 

formulas used to estimate time since death.   

Lastly, Mann et al. (1990) make it very clear that their criteria and rating scale are 

based on subjective judgments developed through years of research and experience at the 

University of Tennessee.  Although experience has played a vital role in qualitative 

assessment of time since death in the past, if the field seeks to progress into the new 

quantitative paradigm, studies need to move away from subjective evaluations towards 

more statistically-supported conclusions.  Clearly, this gap in objective evaluation 

warrants further examination. 

Therefore, in total, by illuminating the relationships between these variables, as 

well as conducting multivariate regression analyses in climates as of yet unstudied, this 

dissertation research can develop a means by which to objectively evaluate the variables 

altering the rate of decomposition and create standards specific to the Delaware River 

Valley region. 

By gaining insights into the factors at play, one can hope to begin to piece 

together the puzzle which is time since death determination.  The following section 

attempts to do just that, highlighting multiple variables identified throughout the years as 

influencing the rate of decay in one form or another, as well as the current research and 

schools of thought regarding the roles they play in altering the rate of decomposition.  
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Temperature 

The most important factor influencing the speed of decomposition has been 

determined to be temperature (Mann et al. 1990; Gill-King 1997).  In fact, thermal load 

over time, measured as accumulated degree days, is believed by some to account for the 

greatest amount of variation seen in decay (Megyesi et al. 2005).  This particular 

phenomenon explains why the breakdown of tissues is quicker in hot climates versus cold 

environments.  Moreover, it has even been demonstrated how elevated temperatures in 

the body at the time of death, such as through fevers, placement next to heaters or under 

electric blankets, immersion in hot water, and so forth, functions to optimize bacterial 

growth and accelerate decomposition (Zhou and Byard 2011).   

Importantly, temperature has been demonstrated to be interrelated with a number 

of factors known to alter decomposition, ultimately guiding the speed at which the decay 

process progresses.  Its affects are far-reaching, influencing many of the variables known 

to impact decomposition and soft tissue breakdown including insect activity, the presence 

of carnivores and rodents, decay in specific depositional environments, and so forth.  

Although claims have been made that insect activity is the most important variable in 

regards to the rate of decomposition (Simmons et al. 2010a; 2010b), without an optimal 

range of conditions guided by temperature, insect activity can be greatly retarded or 

halted altogether.  Therefore, without knowledge of the temperatures and climatic 

environment to which a corpse has been exposed, not much can be said regarding time 

since death.  
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Temperature and Soft Tissue Breakdown 

Common sense dictates that the warmer the temperature, the quicker soft tissue 

will decompose.  The inverse applies to cold environments.  In fact, autolysis is 

temperature dependent, slowing under cool conditions (Clark et al. 1997).  Under arid 

conditions, bodies have been known to completely skeletonize within a matter of a week 

(Galloway et al. 1989).  In the same region, it was observed that reduction to skeletal 

elements during the winter was accomplished in five times the time required during the 

summer (1989).  As a matter of fact, studies have been conducted examining decay rates 

in both hot and cold climates, with research in such areas as Arizona (Galloway et al. 

1989) and Texas (Bucheli et al. 2009; Parks 2011), as well as Edmonton (Komar 1998) 

and the Yukon Territory (Bygarski and LeBlanc 2013), confirming these assumptions. 

As noted above, an important point to make here revolves around the relationship 

between desiccation and putrefaction.  Immediate post-mortem change is a competition 

between the two, with external factors such as temperature, and the related phenomena of 

humidity and aridity, largely determining the outcome (Micozzi 1997).  Desiccation, 

whether through aridity in hot climates or freeze-drying in the cold, can preserve remains.  

Given the drying out of tissues which accompanies desiccation, insect activity can be 

greatly retarded, requiring moisture in order to oviposit eggs (Haskell et al. 1997).  

Putrefaction on the other hand operates in the presence of moisture and moderate 

temperatures, as it is guided by bacterial action (Micozzi 1997).  Decomposition taking 

place in an environment with temperatures between 60-95 degrees F will be rapid, as 

bacterial growth and cell division occur best under these conditions (1997).  During such 

temperatures, desiccation of tissue must be rapid if any preservation of the soft tissue is to 
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take place (1997).  However, once temperatures begin dropping below the optimal range 

for bacteria, bacterial reproduction becomes greatly retarded, eventually stopping 

altogether (1997).  As temperatures continue to fall, the degree of desiccation required for 

preservation becomes reduced.  In fact, between 32-41 degrees F, bacterial multiplication 

ceases and insect activity becomes greatly retarded, as freeze-drying through desiccation 

becomes the best preservative technique (1997).  In temperatures below freezing, insect 

activity stops altogether (Mann et al. 1990).  At higher temperatures, boiling may kill 

bacteria but conditions do not reach that stage.  Instead both desiccation and bacterial 

growth occur more rapidly, with the outcome depending on the relative humidity 

(Micozzi 1997).  Under conditions of high aridity and low humidity, skin and internal 

organs will rapidly dehydrate, creating a natural buffer against insects, in some cases 

leading to mummification (Mann et al. 1990).  Thus, the intricacies of decomposition 

demonstrate the impact multiple variables have on each other.  Given the interrelatedness 

among all of those factors, one must be rigorous in accumulating data on all relevant 

variables, especially temperature, or else risk inaccuracies in estimating PMI. 

Temperature and Humidity/Aridity 

 Given the importance ascribed to levels of humidity and aridity by Mann and 

colleagues (1990), and its definite association to the crucial variables of temperature and 

precipitation level, it is clear that both humidity and aridity play huge roles in altering the 

decomposition process.   

Aridity rapidly dehydrates skin and internal organs, creating a natural buffer 

against insects and other organisms, in some cases leading to mummification (Mann et al. 

1990).  These tissues may show very little destruction by insects due to the need for fly 
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eggs to be deposited in areas of moisture and protected from direct solar radiation (1990).  

Even under cold and dry conditions, bodies have been known to mummify, retaining 

much of the skin for years after death.  One need only look at the effects of glacier 

entrapment on Ötzi, the Tyrolean Ice Man (Dickson et al. 2003), or Kwäday Dän Ts’ìnchí 

(Long Ago Person Found) (Dickson et al. 2004) to realize the preservational effects of 

cold and dry temperatures.  In addition, the work of Micozzi (1986; 1997) further 

highlights the effects of freeze-drying which, coupled with cycles of thawing, produces a 

faster disarticulation rate in animals compared to fresh kills due to the disruption of 

tissues. 

Of course, increased humidity on the other hand, is correlated with an acceleration 

of the rate of decay, due primarily to the increase in bacterial action and fly and maggot 

activity (Mann et al. 1990).  Besides providing more favorable conditions for insects to 

operate under, humidity also slows the drying of soft tissue, allowing for ease of 

consumption by insects.  If flies are provided with proper conditions to oviposit and 

larvae are capable of feeding, corpses will break down fairly quickly. 

Temperature and Insect Activity 

Given the importance of insects to the deterioration of the tissues of the body and 

thus assessments of post-mortem interval, the relationship of temperature to insect 

activity must be explored.  Without an understanding of temperature’s effect on the 

growth and development, as well as the feeding and successional patterns of insects, 

determinations of time since death are relatively meaningless.   

In order to fully understand the role played by insects on decomposition, the 

effects of temperature on their activities must be understood.  Flies are poikilothermic, 
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meaning they are cold-blooded, making their temperatures highly influenced by the 

conditions of the surrounding environment (Haskell et al. 1997).  Flies tend to operate 

most efficiently within a maximum and minimum temperature range, visiting a carcass 

and laying eggs in conditions as cold as the mid-40s degrees F (Mann et al. 1990).  

Temperatures dropping below this, especially past the freezing point, can kill both fly 

eggs as well as maggot larvae if left exposed to the environment.  In fact, a study 

evaluating the most effective PMI estimation techniques noted that the freezing point is 

the lowest developmental threshold for insects, with PMI estimates decreasing in 

precision when the developmental threshold was raised (VanLaerhoven 2008).  This 

explains the phenomenon of how a body left frozen on the surface can remain untouched 

for months, as the lack of blowflies, coupled with the unwillingness of insects to process 

the corpse, will allow the body to progress unaffected until thawing (Haskell et al. 1997).  

If able to gain access to the inside of body cavities however, maggots can generate their 

own heat, sustaining them as they feed on the corpse (Mann et al. 1990). 

At the other end of the spectrum, adult fly females require adequate moisture and 

protection from direct solar radiation in order to lay their eggs, so as to not create an 

inhospitable environment for the larval stages (Galloway et al. 1989; Haskell et al. 1997).  

Temperatures constantly above 85 degrees F have been observed to deeply alter the life 

cycle of blow flies, producing stunted larval forms which fail to pupate and eventually 

die (Wigglesworth 1967; Queiroz de Carvalho 1996).  Thus, if conditions are too hot and 

arid and drying out the tissues occurs, external maggot activity in early decomposition 

may not take place.  This explains the phenomenon of how skin can be left completely 

intact in the case of mummified remains.  Within the bounds of hot and cold extremes 
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however, the development of insects has been measured to proceed at a more rapid rate as 

temperature increases, with their rates of development being measured at various 

temperatures to allow a prediction of the time required to reach the observed stage 

(Haskell et al. 1997).  As long as conditions due not reach those leading to 

mummification of the skin, hot temperatures are quite favorable for insect activity.  

Therefore, it becomes quite clear that the accumulation of weather records specific to an 

area, coupled with an understanding of temperature’s effects on insect activity, is crucial 

to developing the narrative surrounding PMI estimation. 

Additionally, Reed (1958) found that although the total insect population was 

greatest during the summer, some species reached their population peaks during cooler 

times of the year.  Thus, if the remains of such insects were to be discovered 

accompanying the corpse, insights into the time of year death occurred may result.  

Clearly, the importance of temperature to insect activity continues to be made obvious. 

Furthermore, as it applies to aquatic environments, water temperature can play an 

important role in minimizing the impact which aquatic insects have on decomposition.  In 

fact, temperature and water currents are two of the main factors affecting the rate of 

breakdown of a corpse in this context (Anderson and Hobischak 2004; Haefner et al. 

2004; Zimmerman and Wallace 2008).   Given the low temperatures characteristic of 

water throughout many months of the year, maggot mass activity on a corpse can become 

greatly retarded.  With greater exposure to wave action and deeper water, oviposition 

decreases, lower levels of maggot mass activity develop, and internal carcass 

temperatures drop (Davis and Goff 2000).  As a direct result, the influence of insect 

activity on decomposition decreases.  The impact is such that Merritt and Wallace (2001) 
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and Wallace et al. (2008) caution against the use of aquatic insects in the estimation of 

the post-mortem submersion interval (PMSI). 

Lastly, an interesting argument was posed by Simmons et al. (2010b) regarding 

the role played by insect activity in decomposition.  Their study was constructed as a 

comparison of the decomposition rate of rabbits either buried after exposure to insect 

activity, buried without exposure, kept above ground behind an insect screen, or 

continuously exposed above ground (2010b).  Dipteran oviposition was only observed in 

the groups buried after exposure to insect activity and those continuously exposed above 

ground (2010b).  Decomposition rates were measured by total body score at 50 

accumulated degree day increments.  The results showed no difference between rabbits 

kept behind the screen and those buried without exposure (2010b).  This rate was 

significantly slower than those buried after exposure, which was in turn, significantly 

slower than those continuously exposed (2010b).  Given the fact that those groups with 

no insect exposure decomposed much slower than those exposed to insect activity, 

coupled with the quicker rate of decay seen in continuously exposed remains versus those 

buried after exposure, they conclude that insect presence is the primary agent affecting 

the rate of decomposition (2010b).  These results correlated with their earlier findings, 

which suggested that regardless of indoor, buried, or submerged contexts, the greatest 

effect on decomposition rate was the presence or absence of insects (Simmons et al. 

2010a). 

Their specific thought process relates to the fact that buried remains tend to 

exhibit little to no insect activity, depending on depth (Rodriguez and Bass 1985).  

Therefore, this would account for the slower decomposition observed between the surface 
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deposition and the carcass buried after exposure.  The other two contexts lacked any 

insect activity and displayed a much slower rate of decay, supporting their claims 

regarding the role played by insects.  Additionally, these results are in line with a 

previous study conducted by the same authors which concluded that no significant 

differences exist in the rate of decomposition of carcasses in water, buried, or left indoors 

(Simmons et al. 2010a).  In total, they reason that insects have the highest influence on 

the rate of decomposition compared to any other variable. 

However, several considerations should be noted in regards to their logic.  By 

demonstrating the fastest rate of decay to be represented by the carcass on the surface and 

the slowest by the carcass protected by an insect screen, they mean to point out how 

when temperature is essentially controlled for, insect activity plays the most important 

role in the rate of decomposition.  This logic is flawed in the sense that should the 

temperatures have been below the freezing point, no insect activity would have been 

observed.  In fact, in a study conducted by VanLaerhoven (2008) evaluating various PMI 

estimation techniques using accumulated degree days, the most precise techniques 

employed the use of zero degrees C as the lower developmental threshold.  As the lower 

developmental threshold increased, PMI interval estimates increased as well (2008).  

Thus, as it is applies to time since death estimates, temperature is a primary factor.  

Considering the inverse, as demonstrated by Haskell et al. (1997), should the temperature 

have been so hot and dry that all tissues rapidly desiccated, insect activity would also 

have been greatly reduced.  In these particular examples, insect activity would be 

completely dependent on temperature.  With that being the case, temperature has to play 

the most important role overall. 
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Most importantly, they justify their conclusions by utilizing a perspective which 

alters the particular role played by temperature.  In order to do so, they qualify their 

statement regarding the central role played by insect activity by saying this is only so 

when time and temperature are standardized using accumulated degree days (Simmons et 

al. 2010b).  In effect, they acknowledge the importance of sufficient thermal energy to 

progress through the stages of decomposition, but upon standardization, they essentially 

reconfigure its role in estimating time since death.  In essence, they recognize how 

temperature affects decomposition on its own, but by standardizing time and temperature 

and making accumulated degree days the variable to be predicted, insect activity is left as 

the primary agent in decomposition, whose effects are reflected in the total body score.  

This new approach removes temperature as a variable used to explain the 

decompositional changes observed in relation to time, and instead combines it with time 

to become the unit to be predicted, i.e. ADD.  Thus, overall temperature is still the 

guiding force in decomposition, but when standardized to become the dependent variable, 

insect activity is shown to play the central role in the rate of decay. 

Temperature and Carnivore/Rodent Activity 

As stated by Mann and colleagues (1990), the scavenging of remains by 

carnivores and rodents can significantly contribute to the processing of a corpse.  Much 

like insect activity however, the scavenging process is inextricably related to the effects 

of temperature.  To begin, the relative freshness of soft tissue appears to play a role in its 

desirability by animals.  Haglund (1997) provides an example of this, claiming that 

“wintered over” or saponified remains seem to be of less interest to canids.  In the same 

vein, a study conducted on gray squirrels demonstrated that the rodents only began 
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gnawing on bone after fats had leached away (Klippel and Synstelien 2007).  Given the 

ability of temperatures to dry out remains, warm or cold climates may alter the time 

required to observe evidence of rodent activity.  In addition, gray squirrels took longer to 

process remains left to decompose in shaded areas compared to those left in full sunlight 

(2007).    

Furthermore, the season of the year affects the social behavior of potential 

scavengers as the availability of food and competition for resources directs group size 

and aggressiveness, potentially lowering or eliminating evidence of damage depending 

on seasonal temperatures (Haglund et al. 1988).  Given the potential reduction in 

carnivorous activity during colder periods, especially amongst those animals which 

hibernate, remains may be preserved to a greater extent (1988).  The social behavior of 

coyotes is also affected by the season of year, due in part to the seasonal nature of food 

sources.  In summer, since coyotes are able to sustain themselves on rodents, they tend to 

be less social, compared to winter months when food source availability fosters the 

ability to sustain larger group sizes (Beckhoff and Wells 1980).  Overall, it appears that 

this trend can have a significant impact on the breakdown of a corpse, necessitating 

investigators to note the presence or absence of indicators of carnivorous activity, as well 

as the temperatures to which the individual may have been exposed. 

Moreover, the impact of temperature on canid-assisted scavenging standards, 

which employ the use of observed disarticulation patterns, must be made clear.  During 

warmer weather, carnivores need to compete for access to remains with insects.  If 

scavengers are only able to locate a set of remains late on in the decomposition process 

after insects have begun disarticulating the corpse themselves, this can significantly 
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modify the expected sequence of disarticulation by scavengers and the decompositional 

patterns seen.  Thus, the effects of temperature are once again clear and obvious, 

demonstrating the necessity to gather climatic records in order to fully comprehend and 

interpret the process of decay seen at a site. 

Carnivore/Rodent Activity 

Scavengers, such as bobcats, rodents, pigs, raccoons, opossums, bears, dogs, 

coyotes, birds, amphibians, and reptiles, all play a large role in decomposition, breaking 

down soft tissues and processing skeletal elements (Morse 1983).  In fact, at the 

University of Tennessee, 77.8% of surface cases showed gnaw marks indicative of 

scavenging (Willey and Snyder 1989).  The extent of the role played by scavengers on 

decomposition depends in large part on a variety of factors, many of which have already 

been discussed.  Temperature can affect scavenging through freezing of corpses for 

example.  Burial depth and other forms of sheltering can prevent access to remains 

(Rodriguez and Bass 1985; Haglund et al. 1988).  Human population density in the area 

also contributes to bone recovery and the extent of damage (Haglund et al. 1988).  The 

freshness of tissue can guide its attractiveness to scavengers, while the condition of bony 

elements, whether “wet” or “dry,” can attract a certain set of rodents (Klippel and 

Synstelien 2007).  Even order of access to remains can affect the placement of tooth mark 

artifacts on bone, producing differential patterns of alterations to the skeleton as specific 

species prefer particular areas of bone over others (Haynes 1983; Haglund et al. 1988). 

Most importantly for estimations of the post-mortem interval, the extent of animal 

chewing and disarticulation has been determined to be one of many factors known to play 

a role in the variation seen in the rate of decay (Mann et al. 1990).  Fortunately, 
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researchers such as Haglund, Willey, and Snyder (Haglund et al. 1988; Willey and 

Snyder 1989; Haglund 1997) have been able to document the stages of the sequential 

alteration of human bone remains by canid scavenging, associating them to an observed 

post-mortem interval range.  Even vultures have been observed processing and 

disarticulating remains in a patterned way (Reeves 2009; Dabbs and Martin 2013). 

Based on a study conducted by Willey and Synder (1989) assessing canid 

modifications of human remains and their implications for time since death estimations, it 

was observed that captive wolves feeding on road-killed deer consume flesh in a 

predictable sequence.  The sequence is as follows: 1.) The first portions of the carcass 

inspected by wolves are those areas with broken skin and wounds, 2.) Meaty sections, 

followed by the thoracic cavity, and ribs are then consumed, 3.) Next, the throat is 

opened and the nose eaten, 4.) From there, the disarticulation of the forelimbs, followed 

by the hind limbs, occurs within 24-48 hours, 5.) Following that is the reduction of the 

limb bone, vertebral column, and rib ends, 6.) Lastly, remnants of the vertebral column 

and hide are consumed within 4-7 days.  Additionally, porous long bone ends, such as the 

proximal humerus and both ends of the femur, are often destroyed, but thick compact 

bone ends, like the distal humerus and tibia, survive, with ribs and vertebrae often being 

destroyed and the bones of the hands and feet being swallowed.  In total, when granted 

full, preferential access to a corpse, scavengers take 1-7 days to move the carcass, process 

the body, and break down, separate, and scatter the skeletal elements (1989).  Based on 

this analysis, the study concluded that scavenging hastens physical decomposition (1989).  

In addition, the succession of insect species becomes more rapid, but the insect numbers 

and activity are reduced as the movement of the body forces the migration of insect 
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habitats, inhibiting the laying of eggs.  Insects, eggs, and larvae also become consumed in 

the process (1989). 

However, there are several limitations to this study.  Firstly, the wolves were held 

captive, meaning they were outside of their natural habitat and in a potentially foreign 

social structure which could have functioned to alter behavior.  Secondly, the activity 

presented by the particular wolves used in the study may not be representative of all such 

wolf species throughout the country, especially when taking into consideration 

environment/regional-specificity, seasonality, pack structure, and so forth.  Given the fact 

that they were held captive and subsequently introduced to the carcasses, this may also 

represent an unrealistic sequence of events, as they typically do not have preferential 

access to remains.  A multitude of factors may be involved in food acquisition in nature, 

including how and by what time food is found in the wild, the number of competitors 

already present on a food source, and the tissues remaining on the body.  All of these 

variables may work to alter the “typical” sequence observed.  Lastly, although wolves are 

scavengers, they are but one set of animals who feed on remains.  Thus, their activity 

cannot be generalized across the board.  Despite these issues, an important point to note 

deals with the findings of previous studies who suggest that regardless of predator size, 

dismemberment sequences are essentially the same (Haynes 1981; Blumenschine 1986).  

Therefore, the sequence observed on the deer carcasses can be applied directly to canid-

assisted human scavenging.  Nevertheless, despite the applicability of such studies to 

humans, the fact remains that these processing sequences have been demonstrated to be 

extremely variable and area dependent (Haglund 1997; Dabbs and Martin 2013).   
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This final point is made even clearer when considering the potential impact of 

population density on the presence or absence of animal scavenging.  In areas with higher 

human population densities, it has been observed that relatively fewer scavenged human 

skeletons have been found (Haglund et al. 1989).  This fact is consistent with the 

likelihood that in more inhabited areas, fewer animals exist and smaller group sizes can 

be seen (Haglund 1997).  What’s more, even if carnivorous scavengers were roaming 

about highly populated areas, remains are likely to be discovered before they are able to 

locate and process the body.  Thus, considerations of corpse breakdown and processing 

must weigh the potential impacts of carnivorous activity not solely based on the presence 

of punctures or score marks, but also against the likelihood of scavenging given the 

particular area in which the body was recovered. 

Insect Activity 

The idea behind entomological determinations of time since death involves 

collecting species from the corpse, noting its stage of development, obtaining weather 

records from the area, and calculating how much time would be required to allow the 

insect to reach the stage seen (Haskell et al. 1997).  However, the identification of insect 

stages must also be combined with an analysis of the relative amounts of various species. 

In terms of number and presence, the orders Diptera (flies) and Coleoptera 

(beetles) are by far the most frequent colonizers of decomposing remains (Haskell et al. 

1997).  Blowflies of the family Calliphoridae, which are commonly recognized by their 

metallic blue and green colors as they swarm around garbage cans or dead animals, are 

the first insects to arrive at a corpse (1997).  Interestingly, they have not only been 

observed on bodies within seconds of death, but they have also been seen to begin 
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infestation prior to death (Davis 1928; Anderson and VanLaerhoven 1996; Haskell et al. 

1997).  This process first described early on by Davis (1928) and James (1947) is known 

as myiasis, and depends on the ability of the insects to find the body and the 

environmental conditions in which it has been deposited.  Blowflies are divided into four 

major groups in North America, a few of which can be found in temperate climates 

(Haskell et al. 1997).  Bluebottle flies are found during the spring and summer in 

temperate areas, while greenbottle flies can be encountered in midsummer (Hall and 

Haskell 1995).  Black blowflies are found when moderate temperatures exist (1995).    

Continuing on, although blowflies are usually among the first to colonize a body, 

carrion beetles begin to appear during the bloated stage, roughly two to three days after 

death (Rodriguez and Bass 1983).  These beetles have been observed not only feeding on 

the decomposing flesh, but also on young fly larvae (1983).  As time goes on and the 

progression through to the end of the decay stage and the beginning of the dry stage 

occurs, the beetles begin to outnumber the flies, eventually replacing all or nearly all of 

the fly species (1983).  This particular distinction can be immensely useful for 

estimations of the post-mortem interval. 

Moreover, Campobasso et al. (2001) were able to summarize cadaver microfauna, 

breaking them up into four main groups.  The first category is composed of necrophagous 

species which feed only on decomposing tissues.  These insects include Diptera and 

Coleoptera.  The second group is made up of predators or parasites of the necrophagous 

species.  The third category contains omnivorous species such as wasps, ants, and some 

beetles.  These insects can feed on both decomposing remains and associated arthropods.  

Lastly, the fourth group is made up of opportunistic species such as Acari, spiders, and 
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Lepidoptera.  Although these species can occasionally predate on the necrophagous 

species, they mostly use the corpse as an extension of their habitat.  In regards to their 

importance to forensics, the first group is the most important while the last is the least 

important (2001). 

As mentioned above, not only do insects help breakdown a body, but they can 

also be used to help determine time since death during the first few weeks following the 

death of an individual.  When using entomological standards to determine PMI, two main 

methodologies are used to accomplish this task: a species’ known developmental patterns 

and evaluations of insect successional waves (Haskell et al. 1997), although some claim 

the ability to age blow fly pupae through internal morphological analysis of pupae cross-

sections (Davies and Harvey 2013).  In fact, by understanding the life cycle of a specific 

insect species and the successful “waves” which aggregate onto a corpse, one can 

potentially be within 12 hours or less of the actual time since death, if the remains have 

been out for more than 15 to 20 days (Haskell et al. 1997).  Although some claim its 

effectiveness up to a year after expiration, others state that entomological standards have 

been used on a corpse to calculate PMI up to 52 days since death (Amendt et al. 2004).  

Regardless, overall, compared to other PMI techniques, forensic entomology is relatively 

accurate and useful for up to several weeks after death.  However, before entomological 

standards are applied across the board, as discussed in more detail in previous sections, it 

must be noted that the effects of temperature may alter life cycles and the successional 

pattern, especially if it delays access to the corpse or the development of the eggs and 

larvae. 
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Given the nature of this variable, it obviously depends in large part on the 

circumstances in which the deposition of a body has taken place, especially when 

considering the fact that insects respond directly to their environment.  In fact, the 

number and type of insects present at a scene will vary depending on the area in which 

the remains are left to decompose (Anderson 2010).  Bucheli et al. (2009) have already 

demonstrated how insect fauna in specific regions represent unique assemblages 

particular to their environment and time of year.  In turn, although insect succession is a 

useful tool for determining the early post-mortem interval, it is precisely correlated with 

each geographical region (2010). 

Thus, entomological studies have been conducted in many diverse contexts to 

determine the effects which different environments have on insects (Kelly et al. 2009).  

These studies include analyses of insect succession on pig and human remains in a 

variety of contrasting habitats including humid, subtropical (Payne 1965), arid (Galloway 

et al. 1989), subarctic (Bygarski and LeBlanc 2013), intertidal (Early and Goff 1986; 

Davis and Goff 2000), and water (Payne and King 1972; Hobischak and Anderson 2002; 

Wallace et al. 2008), as well as inside houses (Anderson 2011), buried (Rodriguez and 

Bass 1985), and exposed and shaded contexts (Shean et al. 1993), to name a few.  In turn, 

a great deal of experimental knowledge has been gained regarding insect succession in 

these particular contexts. 

What’s also of critical importance to note here is that if the body is in an 

environment that prevents infestation, the process of decay will be greatly reduced (Mann 

et al. 1990).  This is due in large part to the overwhelming majority of soft tissue 

breakdown resulting from feeding by insect larvae (1990).  Thus, in closed environments 
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such as sealed containers, bags, trunks, tightly wrapped bodies, etc. access to insects may 

be restricted, retarding the decay of a corpse.  These specific circumstances and contexts 

not only produce variations in decay and the ability of insects to access a body, but they 

also affect scavenger activity, and the exposure of remains to climatic forces.   

Furthermore, as will be shown below, differences exist in the rate of 

decomposition depending on the type of “burial” and its depth.  For example, in aquatic 

contexts, only approximately eight of 13 orders of insects containing species which are 

minimally semi-aquatic are likely to be associated with corpses in aquatic habitats 

(Wallace et al. 2008).  Given the considerable difference in the sheer numbers of 

terrestrial insects that have evolved functionally to feed on carrion compared to those in 

water, differences in decomposition are expected.  Additionally, colonization by aquatic 

insects depends on a whole host of factors, not only including water temperature, but also 

size, texture, and position of the body, flow of water, current speed, depth, and the 

presence of aquatic flora and fauna (Sheldon 1983; Moran 1983; Tevesz 1985; Peckarshy 

1986; Siver et al. 1994).  Given the impact of tides, currents, and depth on aquatic insect 

access, as well as the variability inherent in the ability of aquatic insects to colonize a 

body, Wallace et al. (2008) warn that some precision is lost in estimating the post-

mortem submersion interval with insects.  Therefore, it becomes blatantly obvious that 

quantitative methods must be developed which not only account for the effects of insects 

on decay in aquatic contexts, but also the joint effects of a number of additional factors.    

Another critically important point to consider is the ovipositing behavior of insect 

species.  Currently, it is debated whether or not carrion flies are exclusively diurnal or 

oviposit at night (Stamper et al. 2009).  What’s more, mathematical models have been 
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derived to estimate PMI from the developmental stage of larvae assuming diurnal 

oviposition (Byrd 1998).  Given the possibility of up to 12 hours of additional activity 

about a corpse, this particular point of contention is crucial to decomposition analysis.  

However, despite the majority of studies establishing a diurnal pattern, Greenberg (1990), 

and Singh and Bharti (2001; 2008), have specifically identified flies actively flying at 

night.  In particular, Greenberg (1990) reported nocturnal ovipositioning levels of 30% 

for blow flies, while Singh and Bharti (2008) reported 20% for flesh flies.  Given the low 

sample sizes characterizing subsequent studies aiming to refute these claims, Stamper et 

al. (2009) set out to analyze the nocturnal oviposition behavior of carrion flies in 

Cincinnati, Ohio with a substantially higher total sample size.  The study found that over 

the course of two consecutive summers, in both lit and unlit conditions, no nocturnal 

ovipositioning was observed on euthanized rats (2009).  Importantly, they also failed to 

note any difference in regards to nocturnal ovipositioning between urban and rural 

locations (2009).  Therefore, despite the variability in insect activity described above, it 

appears as if nocturnal ovipositioning does not occur, regardless of area. 

Besides issues concerning variability in the diversity, composition, and activity of 

insect species, an additional four areas of controversy have been noted in regards to using 

insect developmental rates for estimating the post-mortem interval.  The first area of 

concern revolves around whether or not maggot mass temperatures should be included 

into PMI estimation equations (VanLaerhoven 2008).  As noted by Anderson and 

VanLaerhoven (1996), maggots feeding in a mass can increase temperatures on the body 

much higher than that of the ambient temperature.  As a result, this may function to 

increase the normal developmental rate of flies.  However, this claim is countered by 
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observations concerning the migration away from corpses by the oldest maggots, prior to 

the elevation of temperature by the maggot mass (Dillon and Anderson 1996). 

Secondly, despite the commonly held belief that the freezing point is the lowest 

developmental threshold in which different species of flies will develop, multiple studies 

have employed the use of higher thresholds (VanLaerhoven 2008).  As summarized by 

Higley and Haskell (2001), despite the common use of zero degrees C as the lowest 

threshold for all blow fly species, some researchers utilize thresholds between six and 10 

degrees C.  However, these thresholds have only been supported for use in regards to the 

development of Phormia regina (Byrd and Allen 2001) and Calliphora vicina (Donovan 

et al. 2006), completely lacking experimental evidence for any other species. 

Thirdly, there exists some variability in developmental data regarding a variety of 

blow fly species depending on the source used (VanLaerhoven 2008).  Once again, as 

summarized by Higley and Haskell (2001), as many as 10 published studies exist 

providing developmental information; however, they all vary slightly in their data for the 

same species.  As a result, variable PMI estimates can be produced depending on the 

source consulted. 

Lastly, although the most commonly used method to calculate accumulated 

degree days involves a simple calculation of the average minimum and maximum 

temperatures each day, other methods exists (Higley and Haskell 2001).  Once again, this 

slight difference may lead to variations in results (VanLaerhoven 2008).  Care must be 

taken to be aware of the methods used by data sources in order to prevent unnecessary 

inaccuracies. 
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Still, in lieu of the potential uses of forensic entomology for the estimation of time 

since death, the application of these principles in a medico-legal setting is oftentimes 

impractical.  Unfortunately, most forensic investigators and Medical Examiners lack 

detailed knowledge of insect species, as well as the ability to identify stages of 

development and successional patterns.  In turn, forensic entomological analysis must be 

conducted outside of the confines of Medical Examiner’s offices and forensic 

laboratories.  Given the lack of monetary support for investigations into the dead, 

monetary issues often prevent such consultation.  Therefore, despite the accuracy 

inherent in entomological analyses of PMI in the first few weeks after death, practical 

methods of determining time since death, which can be applied within medico-legal 

offices and labs, must be developed   

However, regardless of the use of entomological standards, an understanding of 

temperature’s effects on insect activity is crucial to developing the narrative surrounding 

PMI estimations, especially given their critical role in the decomposition process.  If a 

corpse is denied access by insects due to temperature constraints, or other factors to be 

discussed below, time since death estimates can be severely thrown off.  Thus, any PMI 

determination formulas to be developed must take into account insect presence, 

temperature, and the circumstances and environments to which a body has been exposed. 

Depositional Environment 

Decomposition rates depend on the extent of internal and external environmental 

factors on a decomposing body, as influenced by body disposal method (Gill-King 1997).  

Whether outdoor or indoor, buried or on the surface, submerged in water or left exposed 

to the elements, the context of body deposition is of critical importance to reconstructing 
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time since death.  Its affects are intricately linked to a number of important variables and 

can mean the difference between rapid decay or the preservation of remains.  Based on 

the understanding that surface depositions are known to lead to the fastest breakdown of 

tissues, as remains are left exposed to the forces of nature, Maples and Browning (1994) 

surmised the relationship between decomposition in these contexts, equating one week on 

the surface to two weeks in water and eight weeks in a deep burial.  This assumption has 

been used as a springboard throughout the years, as researchers have attempted to 

evaluate the validity of the statement and draw conclusions regarding the impact of 

depositional environment on decomposition. 

Surface Depositions: Exposed vs. Shaded Remains 

 Although not directly singled out by Mann et al. (1990), researchers have long 

pondered the notion of whether or not exposure to direct sunlight versus shade impacts 

the rate of decay.  These factors are of particular importance given their relationship to 

temperature, aridity, and insect activity, and the ability of these types of research 

questions to determine the applicability of decompositional standards in forested 

environments to bodies decaying in an open field.  One study in particular uses pig 

carrion to evaluate the impact of those exact variables as they apply to coastal 

Washington.   

Shean et al. (1993) placed two pig carcasses in close proximity to each other, one 

carcass was directly exposed to the sun, while the other was shaded in a woodland area.  

Carcasses at both locations attracted blowflies within 20 minutes of deposition, with 

ovipositioning occurring two to three hours later.  When insects species were analyzed, it 

was seen that similar insects populated the corpses, but in different ratios (1993).  In 
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addition, the exposed pig demonstrated maggot mass temperatures higher than the shaded 

carcass (1993).  Importantly, differences in the rate of decomposition were observed 

between both pigs, with bloating increasing more rapidly in the exposed pig, followed by 

a much quicker loss of weight (1993).  Migrations of maggots were much larger and 

quicker in the exposed pig, as the shaded carcass demonstrated a more gradual, sustained 

migration (1993).  In total, it was determined that the effect of increased temperature and 

direct sun exposure may stimulate maggot growth and activity, reflected in higher 

maggot mass temperatures and faster decay (1993).   

An important point to note however, is that blowflies require moist environments 

to lay their eggs (Haskell et al. 1997).  If carcasses face prolonged exposure to direct 

solar radiation, tissues may dry out quicker, leading to a quicker progression to the stages 

of mummification, sometimes leapfrogging the active decay phase for the dry decay 

phase.  In turn, flies are less likely to oviposit eggs, as the conditions are not suitable for 

development.  These occurrences are most dramatically seen in arid environments, where 

skin has been noted to be left virtually untouched in several instances (Galloway et al. 

1989), undoubtedly due to the drying effects of the sun and the formation of inhospitable 

conditions for developing larvae. 

Indoor Deposition 

 Indoor cases are particularly intriguing when estimating the post-mortem interval.  

Under these conditions, many considerations must be taken into account such as indoor 

versus outdoor temperature, proximity to a heating or cooling source, exposed versus 

shaded bodies, ability of insects and scavengers to access remains, and so forth.  Given 

the frequent occurrence of death within the confines of a home, natural or otherwise, it 
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would seem obvious that such studies need to be conducted in order to assess the rate of 

decomposition in comparison with alternative depositional contexts.  When these 

considerations are coupled with the fact that the majority of individuals in the United 

States live in metropolitan areas, indoor studies in both urban and suburban areas appear 

crucial to a complete understanding of decomposition. 

 However, despite the clear and obvious need for indoor studies, only a few 

outdoor research projects have been conducted in urban and suburban areas in North 

America (Baumgartner 1988; Goff 1991; LeBlanc and Strongman 2002; Simpson and 

Strongman 2002).  These types of studies are plagued by a number of issues, chief among 

them being the ability to conduct decompositional studies without stirring up the disgust 

of neighbors and the community, especially given the potential for the development of 

foul odors (Anderson 2011).  As a result, little is known regarding decomposition rates 

and insect ecology both within and outside a home in these areas (2011).  In fact, no 

carrion research had ever been conducted inside houses before 2011, primarily relying on 

anecdotal case histories for guidance regarding indoor decomposition (Goff 1991; 

Benecke 1998).   

Therefore, considering the dire need for such studies, Anderson (2011) set out to 

compare decomposition rates and faunal colonization in indoor and outdoor settings in 

Edmonton, Alberta.  In turn, the study found that indoor cases experienced a five day 

delay in colonization (2011).  Compared to the outdoor deposition, indoor cases 

demonstrated many fewer insects and much lower numbers of larvae present (2011).  

Additionally, egg laying continued for most of the time, exhibiting extended colonization 

indoors (2011).  Most importantly, decomposition was found to be slower in the indoor 
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cases (2011).  When these results are compared to studies in other areas of North 

America, important similarities and differences are observed.   

Consistent with the regional variability described above, a different composition 

and diversity of species was observed in comparison to Hawaii (Goff 1991).  However, 

both studies found much greater numbers of individual species outdoors versus indoors 

(Goff 1991; Anderson 2011).  Interestingly, Goff (1991) reported findings suggesting 

some species of insects were restricted to remains discovered indoors, while others to 

those in outdoor contexts.  This particular discovery is absolutely crucial to highlighting 

the critical need for comparative studies between depositional contexts, as they can bring 

to light factors which contribute to the differences in the rates of decay observed between 

indoor and outdoor environments.  When multiple indoor studies can be compared across 

regions, even greater understandings regarding variables impacting decay will result.  In 

total, these studies continue to support claims regarding the regional variability of insect 

activity and decomposition, as well as the differences in the rate of decay between both 

indoor and outdoor cases.   

In order to build upon the limited existing knowledge regarding indoor decay 

patterns, studies should continue to incorporate indoor cases into their analyses.  

Retroactive studies can be particularly useful in this regard, especially given the issues 

mentioned above regarding odor, community sentiment, and so forth.  Multivariate 

approaches to these types of studies can be extremely useful as well, not only modeling 

insect activity, but attempting to understand how additional factors, such as ambient 

temperature, shade, lack of rainfall, etc. work in unison to impact the rate of 

decomposition.  Regardless, the findings described above point to the need for continued 
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research in a variety of depositional contexts, so at to get at the critical differences 

influencing the rate of decay. 

Buried Remains 

For many decades now, the work conducted by Rodriguez and Bass (1985) at the 

University of Tennessee has guided the understanding of the interpretation of 

decomposition in cases of buried remains versus those left to decay on the surface.  

Therefore, when discussing the effects of burial type and depth, their seminal paper 

entitled, “Decomposition of Buried Bodies and Methods that May Aid in Their 

Location,” must be discussed.  In this critical paper, Rodriguez and Bass (1985) outline 

the results of their study on the decomposition of buried remains, where it was observed 

that the rate of decay proceeds at a much slower pace in bodies buried two or more feet 

below the surface, compared to corpses left to decompose superficially.  The most 

important factor accounting for the decompositional difference was found to be the 

decreased or absent carrion insect activity.  In bodies buried at one foot below the 

surface, some evidence of blowflies, larvae, and beetles could be seen.  On the surface 

layer above the corpses, blowflies were observed attempting to make their way to the 

bodies through small cracks in the soil, especially after a hard rain.  However, those at 

depths below a foot did not show any insect activity.  The resultant disruption in breeding 

activity, made most apparent in the blowfly community (which represents the most 

numerous carrion insect group) severely retarded the process of decay.   

This conclusion is supported by the results of Simmons et al.’s (2010b) study, 

referenced above, which examined the role played by insect activity on the rate of 

decomposition in buried contexts.  However, Simmons et al.’s (2010b) study takes on a 
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new approach, incorporating the standardization of time and temperature as accumulated 

degree days.  By making ADD the predictor variable in this scenario, the role played by 

insect activity is identified as the primary agent involved in determining the rate of 

decomposition in this scenario. 

Additionally, it was seen that only those bodies buried a foot below the surface 

were accessible to scavengers, especially carnivores.  As has been made clear, they also 

consume soft tissues and contribute to the disarticulation of remains.  However, as 

pointed out by Haglund et al. (1988), one of the two major factors which affect which 

bones are recovered and the extent of damage is the “sheltering” of remains, i.e. buried, 

indoor contexts, etc. as opposed to surface depositions, with population density in the 

area being the other major contributing factor.  At shallower depths, odors given off by 

the decomposing body are still easily detected by various insects and to a lesser degree by 

certain mammals (Rodriguez and Bass 1985).  With the inability of insects or scavengers 

to access or detect more deeply buried bodies, breakdown of tissues progresses much 

slower, leaving only autolysis and bacterial putrefaction to degrade the corpse (Rodriguez 

1997). 

Before moving on, it should also be noted that additional studies have found 

insect access to be restricted in burial environments, sometimes showing fundamentally 

different insect species compared to the ground surface (VanLaerhoven and Anderson 

1999; Campobasso et al. 2001).  In regards to blow fly activity, VanLaerhoven and 

Anderson (1999) also report colonization to be absent in burials greater than 30 cm deep.  

Interestingly, carcasses buried immediately after death demonstrated no signs of 

colonization, whereas those buried two days after death displayed Calliphoridae larvae 
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infestation two weeks after burial (1999).  Lastly, Bachmann and Simmons (2010) report 

a highly significant difference in the rate of decomposition between carcasses exposed to 

insect activity for five hours after death, versus those where insect access was prevented.  

The insect access group showed an approximately 30% enhancement in decompositional 

advancement compared to the non-insect group (2010).  These particular finds may not 

only have implications for the design of experimental research studies, but they also point 

out complications which can arise in regards to PMI estimation if bodies have been 

laying out before burial. 

Moving on, the second most important factor producing differences in 

decompositional rates in buried remains was the insulating effects of the soil (Rodriguez 

and Bass 1985).  Soil has the capability to create an efficient barrier to solar radiation, 

therefore decreasing both temperature and temperature fluctuations with soil depth 

(Rodriguez 1997).  Thus, as temperature decreases with increasing depth, so does the rate 

of decomposition.  For those remains buried more superficially, they are susceptible to 

temperatures similar to those above ground, as well as daily fluctuations (1997).  

Furthermore, the presence of ground water or clay soils which retain moisture can 

produce advanced adipocere formation, which slows decomposition by inhibiting the 

bacteria responsible for putrefaction (Rodriguez 1997; O’Brien and Kuehner 2007).  

Given the proximity of deeper burials to the water table, wet soil environments can 

commonly be found the further down one goes.  Lastly, a body buried at shallow depths 

is susceptible to increased degradation by plants and soil-dwelling insects and bacteria 

(Rodriguez 1997).  Plant roots grow towards a corpse, feeding off of its organic nutrients, 

eventually degrading clothing, skin, and skeletal remains (1997).  Soil organisms are 
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most prolific at shallow depths and therefore contribute to the rapid decay associated with 

burials in this enriched upper soil area (1997). 

However, it is important to note that the environment to which the body has been 

exposed can alter expected assumptions at times, forcing researchers and investigators to 

analyze the full picture presented.  In the case of shallow burials produced during winter 

months, corpses have been known to be associated with mummification (Rodriguez 

1997).  Due to the cold temperatures, decomposition is significantly slowed, but as 

temperatures shift with the onset of spring, a freeze-drying type of effect from desiccation 

of the tissues occurs, resulting in mummification (1997).  This general process may be 

aided by snowfall or the freezing of the ground, making it considerably more difficult for 

insects and carnivores to penetrate the surface.  Moreover, the availability of oxygen, 

producing either an aerobic or anaerobic environment, is critical to the progression of 

decomposition.  In cases in which bodies are buried in wooden versus leaden shells, the 

oxygenated environments which result from disintegration of wood coffins, increases the 

rate of decomposition (Dent et al. 2004).  Thus, despite the general pattern and rate of 

decomposition of buried cases versus those at shallower depths or deposited superficially 

on the surface, temperature and context must be taken into consideration in order to 

assess the post-mortem interval. 

Aquatic Contexts 

Contrary to the high volume of research conducted on buried and surface cases, 

the decomposition of corpses deposited in aquatic environments has been severely 

understudied.  Some estimates suggest an 80-20% difference in studies between 

terrestrial and aquatic contexts (Merritt and Wallace 2010).  Despite a recent up-tick in 
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research, quantitative studies evaluating the post-mortem submersion interval are still 

lacking.  This is a particularly important point given the fact that 77% of the earth’s 

surface is covered in water, with over 140,000 individuals perishing in aquatic contexts 

each year (Yorulmaz et al. 2003).  The result of such a dearth of research is a significant 

lack of understanding regarding the interrelationships between factors which impact the 

speed of decay in water and a failure to develop a quantitative estimation method which 

incorporates their joint effects.  Additionally, such studies are needed to evaluate the 

widely-held belief that bodies deposited in aquatic contexts decay at a slower rate than 

those on the ground surface. 

As expected, the reduced rate of decomposition is once again a result of cooler 

temperatures and reduced insect activity (Gill-King 1997; Rodriguez 1997).  The cold 

temperatures assist in delaying the resurfacing of the body, which descends after the 

expulsion of air from the lungs (Rodriguez 1997; Nawrocki et al. 1997).  Although the 

corpse is still susceptible to aquatic arthropods while submerged, blowflies will not be 

able to feed and reproduce on tissues until the body resurfaces, further slowing the rate of 

decay (Sorg et al. 1997).  This particular observation is not helped by the fact that 

approximately eight of 13 orders of insects containing species which are minimally semi-

aquatic are likely to be associated with corpses in aquatic habitats (Wallace et al. 2008).  

This is in stark contrast to the major groups of terrestrial insects known to colonize a 

body (Catts and Goff 1992). 

Given the ability of bodies to initially be deposited in water, sink, and 

subsequently re-surface at a later date, significant limitations on accurate post-mortem 

submersion interval estimation using aquatic insects exists (Wallace et al. 2008).  This 
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particular point is exacerbated by the effects of tides, waves, and water temperature on 

the arthropod community.  As demonstrated by Davis and Goff (2000), water is a key 

factor in the differences observed between intertidal and terrestrial contexts.  As stated 

above, the mere presence of water limits the access of arthropods to the carcass.  When 

this fact is coupled with the constant action of waves, tides, and currents, arthropod 

colonization becomes significantly hampered (2000).   

Moreover, given the low temperatures characteristic of water throughout many 

months of the year, maggot mass activity becomes greatly retarded.  With greater 

exposure to wave action and deeper water, oviposition decreases, lower levels of maggot 

mass activity develop, and internal carcass temperatures drop (Davis and Goff 2000).  

Considering the role played by insects on decay, by downplaying their involvement, only 

bacterial action remains as the primary method of breakdown.  With lower internal 

temperatures however, the rate of bacterial activity subsides as well.  Although 

scavenging activity can serve to hasten physical decomposition, it has been shown that 

the presence of clothing restricts the impact scavengers can have on the breakdown of 

tissues as well (Hobischak and Anderson 2002).   

In total, the result was a much slower rate of biomass removal in the intertidal 

habitats, appearing to progress at rates two times as slow as the terrestrial contexts until 

the overwhelming majority of soft tissue was lost (Davis and Goff 2000).  Given the 

sustained arthropod activity in the terrestrial contexts, coupled with a larger and more 

diverse community of insects observed (2000), it becomes apparent as to why bodies 

deposited in water decompose at slower rates.  Therefore, as Merritt and Wallace (2001) 
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point out, the determination of the post-mortem submersion interval is problematic for 

corpses found totally submerged in aquatic environments. 

Given the dearth of objective aquatic studies, coupled with the need for 

improvements in the methods surrounding post-mortem submersion interval estimation 

methods, Hobischak and Anderson (2002) sought out to develop an insect successional 

database pertaining to pond and stream habitats for use in determining the PMSI in 

British Columbia.  Their stated goal was to move away from the subjective nature of 

water death investigations and the unreliability of such estimates during use in legal 

testimony (2002).  Therefore, albeit qualitatively, they also sought to better describe the 

decompositional changes which take place in aquatic environments, noting some 

differences compared to terrestrial contexts (2002).  This particular study also built upon 

previous efforts by Hobischak and VanLaerhoven (1996) to begin a database regarding 

insect colonization, as well as qualify the decompositional and insect successional 

changes which occur through five stages.   

In particular, Hobischak and Anderson (2002) found there to be a predictable 

sequence of invertebrate colonization, as well as habitat specific species, in regards to 

ponds and streams.  However, they were unsure if the particular succession observed is 

carrion dependent or due to seasonal variation (2002).  Additionally, they reported 

significantly lower numbers of insect species than in terrestrial habits in the same 

location (Dillon and Anderson 1996).  This observation is in line with the results reported 

in Davis and Goff (2000). 

Moreover, in comparison to a study conducted on decomposition on land in the 

same season and geographic location (Dillon and Anderson 1996), decomposition 
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progressed nearly twice as slow in the aquatic habitats (Hobischak and Anderson 2002).  

This general trend is also in line with that described by Davis and Goff (2000).  

Hobischak and Anderson (2002) surmised that the slower rate of decomposition was 

intricately tied to the effect of water and temperature on aquatic insect activity.  

Specifically, they argued that if high moisture levels and low temperatures occurred 

simultaneously, larval development would not only be retarded, but an extremely high 

mortality rate for pre-pupal larvae would also occur (2002).  In the end, when these 

particular factors are combined with the effects of tide, currents, and water depth, it 

becomes clearer as to why aquatic cases lag behind the rate of decomposition seen in 

terrestrial contexts.  Given the ability of water to not only retard insect development, but 

wash away evidence of their appearance on carcasses, Hobischak and Anderson (2002) 

advise discretion in the use of evaluations of succession for determining the length of 

submergence.  With this particular point in mind, it becomes even more critical to 

develop a set of quantitative methods incorporating the effects of multiple variables on 

decay in aquatic environments or risk falling prey to the pitfalls identified by Hobischak 

and Anderson. 

Lastly, when the decompositional changes and insect succession were compared 

to freshwater cases in the area, similar early decay changes were observed (Hobischak 

and Anderson 2002).  However, the descriptions from the coroner reports detailing 

information pertaining to the freshwater investigations lacked critical information and 

details, severely limiting comparisons (2002).  In fact, only one case even mentioned the 

existence of invertebrates on the body, with four others discussing scavenging activity 

(2002). 
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Given the troubling descriptions observed in the coroner reports, Hobischak and 

Anderson (2002) offered important insights in regards to improving the medico-legal 

community’s approach towards cases found in aquatic environments.  In particular, they 

make it quite clear that the coroner’s report was so vague in regards to the description of 

changes, invertebrates observed on the body, and indications of scavenging activity, that 

any comparisons between the research results and the cases were relatively useless, 

especially in regards to estimating PMSI in those cases (2002).  Furthermore, they state 

that in order to avoid such issues in the future, better descriptions of the decompositional 

changes occurring in water must be developed, along with more specific categories of 

decomposition.  This particular point is in line with arguments presented by Nawrocki 

(2011) and Megyesi et al. (2005), which call for additional, more specific stages of 

decomposition by which to evaluate decay, claiming the upside to be more accurate 

determinations of time since death.  In regards to Hobischak and Anderson’s (2002) 

conclusions, they argue for the use of better descriptors and categories so as to 

standardize description throughout the medico-legal and research community, fostering a 

greater ability to compare cases.   

In turn, this call for improvements in description has been championed in 

subsequent quantitative studies, beginning with Megyesi et al. (2005).  In regards to its 

use in aquatic contexts, Heaton et al. (2010) have utilized descriptions adapted from 

Megyesi et al. (2005), as well as Hobischak and Anderson (2002), applying them to 

rivers in the United Kingdom.  Clearly, these crucial early studies have been embraced in 

the field of aquatic taphonomic study and applied to research aimed at utilizing 

accumulated degree days and multivariate regression analysis to estimate PMSI.  In 
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effect, Hobischak, Anderson, and VanLaerhoven’s attempts to increase the objectivity of 

PMSI estimates have paved the way for more modern, quantitative approaches to 

decomposition in aquatic contexts.  The result has been much clearer descriptions of the 

actual decompositional changes which occur, directly benefitting the medico-legal 

community.  

Beyond insect activity, air and water temperature, it is hypothesized that many 

additional factors play varying roles in aquatic decomposition including pH, salinity, 

clothing, peri-mortem trauma, access to the water surface, water movement, biodiversity, 

floor composition, body weight, partial pressure of oxygen, and the chemical components 

of the environment (Gill-King 1997; Sorg et al. 1997; Ubelaker 1997; Anderson and 

Hobischak 2004).  Given the number of factors at play, it becomes easier to understand 

how modeling aquatic decomposition can be quite difficult. 

Likewise, research into decomposition on the deep sea Bathyal floor demonstrates 

considerable variation in the rate and mode of decomposition, appearing to be mainly 

influenced by the local faunal composition and elemental/chemical make-up of the 

aquatic environment (Dumser and Turkay 2008).  Through this research, decompositional 

differences were discovered between deep sea, lacustrine, riverine, and coastal 

depositions. In the deep sea case, skeletonization and loss of cartilage was observed a 

remarkable three months after submersion (2008).  This decay rate is in sharp contrast to 

a study of decomposition in German lakes and rivers (Reh 1969), as well as case 

examples from North America (Brooks and Brooks 1997), where despite submersion for 

several months, complete skeletonization was never observed.  In regards to coastal 

contexts, in a series of cases from the Gulf of Maine, complete loss of soft tissue was 
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observed 1 month after death, although cartilage was retained (Sorg et al. 1997).  

Cartilage loss was only seen as early as 10 months post-mortem, but could still be found 

in cases until 18 months after death (1997).  These differences point to the crucial role 

played by the composition of local fauna and the accessibility of tissues. 

Similarly, in a series of studies regarding the more specific decompositional 

changes which occur in a variety of aquatic environments, Anderson and Hobischak 

compared the breakdown of submerged pig carcasses in shallow marine, deep marine, 

standing freshwater, running freshwater, and terrestrial coastal contexts (Hobischak and 

Anderson 1999; Hobischak and Anderson 2002; Anderson and Hobischak 2004; Petrik et 

al. 2004).  Much like what is seen in surface and indoor contexts, the studies showed 

aquatic decay changes to include bloating, shedding of hair, sloughing of skin, signs of 

lividity, and marbling, along with adipocere formation and the accumulation of algae, 

with bone staining.  Specifically however, freshwater cases are said to exhibit stages of 

decomposition that are only slightly modified from the stages demonstrated in terrestrial 

environments (Hobischak and Anderson 1999; Hobischak and Anderson 2002; Anderson 

and Hobischak 2004).  Marine depositions on the other hand, often demonstrate bloat, 

active, and advanced stages simultaneously, accumulating greater amounts of intestinal 

gas, leading to flotation (Anderson and Hobischak 2004).  Regardless of marine or 

freshwater deposition, both show a longer bloat stage than terrestrial cases, as blowflies 

and other members of Calliphoridae fail to penetrate the carcass (2004).  As can be 

clearly seen, not only does depositional context play a role in the rate of decay, but the 

particular type of aquatic environment does as well. 



95 

Additionally, the bacterial content and salinity of the water sources are crucial 

factors when comparing the rate of decay within various aquatic environments 

(Rodriguez 1997).  As common sense suggests, bodies in swamps or polluted bodies of 

water will degrade much quicker than a corpse in a clean lake (1997).  More importantly, 

decomposition in a salt water source is slower than in fresh water, due to the effect of salt 

on reducing bacterial action (1997).  Given the proximity of coastal states, such as 

Delaware and New Jersey, to salt water oceans, as well as the high number of suicides 

involving jumps from bridges into brackish rivers and bays, knowledge of the effects of 

salt concentration and bacterial content can be crucial when studying decomposition and 

applying results in the field. 

Adipocere 

Perhaps equally as important is the effect of water, and moist environments in 

general, on the production of adipocere.  Adipocere is produced through a process known 

as saponification or the hydrolysis of the body’s fatty acids.  The process usually occurs 

in anaerobic conditions in which fat is converted into saturated fatty acids by the presence 

of a variety of bacteria occurring in and on a decomposing body, such as Clostridium 

perfringens and Clostridium frigidicanes (Widya et al. 2012).  The process also entails an 

increase in palmitic fatty acids and a decrease in oleic fatty acids, a trait characteristically 

found in adipocere (Den Dooren De Jong 1961; O’Brien and Kuehner 2007).  In an 

adipocerous state, fat tissue expands becoming dense and thickened, causing the body to 

appear larger than its antemortem size, while water is extracted from the tissues for 

hydrolysis, giving the viscera a shrunken appearance (2007).   
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Importantly, due to the high melting point of hydroxy fatty acids, adipocere is 

stable, allowing the body to be preserved for an indefinite period of time (O’ Brien and 

Kuehner 2007).  This preservational affect is due to the need for large amounts of oxygen 

to decompose adipocere, thus preserving any corpse encased in it (Fiedler et al. 2009).  

These encasements are essentially waterproof, air tight, and insulating, protecting the 

body from fluctuations in temperature and water and microbial activity (Moses 2012).  In 

fact, as long as fatty acids are present and conditions are acceptable, adipocere formation 

will persist (2012).  This is best evidenced by reports of bodies as old as 7000 years with 

adipocere still being retained (Fiedler et al. 2009). 

According to O’Brien’s “Goldilocks Phenomenon,” conditions must be “just 

right” for adipocere to form (O’Brien 1997).  The basic requirements are a moist 

environment, warm temperatures, bacterial action, anaerobic conditions, and adipose 

tissue, with additional variables such as relative humidity and pressure playing a role as 

well (Mant and Furbank 1957; O’Brien and Kuehner 2007).  The importance of these 

factors is made clear in Yan et al.’s (2001) study examining the effects played by water 

type on adipocere formation.  The results showed that adipocere formed slower in 

chlorinated and saline water, compared to tap water, given the high concentrations of 

electrolytes in saline water and bacteria destroying chemicals in chlorinated water (2001).  

Together, the chemical composition of saline and chlorinated water inhibits bacterial 

activity and thus, adipocere formation (2001).   

Continuing on, complete immersion does not appear to be necessary for adipocere 

development and consistent temperatures are not required, as long as they do not hold at 

extreme levels (O’Brien and Kuehner 2007).  Actually, O’Brien and Kuehner (2007) 
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argue that the optimum temperature range for formation appears to be from 21-45 

degrees C.  In conditions above and below the range, bacterial action and enzymatic 

release is depressed, preventing the formation of adipocere (2007).  However, adipocere 

development has been known to develop in temperatures as cold as four and nine degrees 

Celsius (Sledzik and Micozzi 1997; O’Brien and Kuehner 2007).  Clearly, many factors 

must be taken into consideration when attempting to understand the formation and 

production of adipocere.   

However, despite the amount of research dedicated to adipocere and its 

preservational effects, estimations of time since death can still be seriously complicated 

by saponification.  Even with the discovery of the “just right” conditions for adipocere 

development (O’Brien 1997), research regarding the timeline in which it develops is still 

very much in its infancy.  Indeed, the current school of thought describes the process of 

adipocere formation to be highly variable, initiating development throughout various 

stages of decomposition and in a variety of environments (Anderson and Hobischak 

2004; Forbes et al. 2004; Forbes et al. 2005; Fiedler et al. 2009; Pakosh and Rogers 2009; 

Moses 2012; Widya et al. 2012).  In fact, despite the thought that waterlogged, anaerobic 

conditions are needed for adipocere formation, Forbes et al.’s (2005) illuminating study 

found that dry soils can also support adipocere, producing large masses of grayish white 

adipocere with no odor.  Despite appearing to be contrary to the requirements of 

formation, the study concludes that it appears as if water within the tissues of a buried 

corpse is sufficient for adipocere.  Therefore, bodies desiccating on the surface would be 

unable to hydrolyze fat.  Additionally, Forbes et al. (2005) confirm that anaerobic 

conditions are the most favorable for development, as well as mildly alkaline soil.  Given 
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the multitude of processes involved in formation and the new insights provided, coupled 

with adipocere’s ability to develop in a wide-array of settings, it is still unknown under 

what exact circumstances adipocere will form (Widya et al. 2012; Ubelaker and Zarenko 

2011).   

As presently constituted, only early stage adipocere is correlated to accumulated 

degree days, observed to be more likely to occur after 630 ADDs (Widya et al. 2012).  

Given this accumulated degree day time frame, it appears as if adipocere is a feature of 

the more advanced stages of decomposition (2012).  Additionally, during early 

decomposition, skin sloughing appears to promote adipocere formation, a result of the 

direct exposure of adipose tissue to water (2012).  Nonetheless, the lack of specificity of 

these studies leaves much to be desired in the way of understanding adipocere 

development.  Therefore, given the inherent variability described, the analysis of 

adipocere formation for the purposes of estimating the post-mortem interval is still far too 

misunderstood to be used with any degree of effectiveness.  Going forward, given the fact 

that bodies deposited on surface layers, buried in pits, or dumped in aquatic environments 

can all be affected by water and thus saponified, further research is sorely needed to come 

to terms with the entire timetable regarding the formation of adipocere. 

Trauma 

 As identified by Mann et al. (1990), traumatic sites were long-believed to be 

crucial factors influencing the rate of decay, tied in closely with the accessibility of 

insects and other organisms to the internal organs of remains.   

Trauma, defined here as minimally resulting in penetrating wounds through the 

skin, was argued to facilitate access to the internal tissues of the body, thus speeding up 
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the decay process (Mann et al. 1990).  Given the fact that flies require moist areas on 

which to deposit eggs, these wounds were said to provide a favorable habitat for eggs to 

hatch while also maintaining air contact (Galloway et al. 1989; Haskell et al. 1997).  

Along the same vein, scavenging animals were said to gain easier access to the interior 

organs through these portal areas, with the result of these traumatic injuries being faster 

decay, compared to bodies without trauma (Mann et al. 1990).   

However, first off, it should be noted that of first preference to insects are those 

openings on the face: the nose, mouth, and eyes (Haskell et al. 1997).  Blowflies appear 

less attracted to post-mortem incisions than to natural body openings, especially in the 

context of competition for air which would eventually occur in those areas (Burger 1965).  

The nose and mouth emanate odors attractive to blowflies, while the eyes afford 

protection under the lids or within small spaces in the corners of the eye (Haskell et al.  

1997).  Additional areas of preference are folds in the hair and clothing, as well as the 

ground to body interface, as they all provide a source of protection from environmental 

factors, notably sun exposure (1997).  Thus, although insects will colonize open spots on 

the body, they tend to prefer natural orifices. 

Most damning are the results of multiple studies examining the differences in 

decay between traumatized and non-traumatized samples subjected to varying forms of 

peri-mortem injury.  Cross and Simmons (2010) clearly demonstrate that trauma sites are 

not preferentially selected for oviposition in gunshot wound victims.  Actually, as stated 

above, insects prefer the natural orifices of the body, which leads to no differences 

between trauma and non-trauma bodies in the time required to reach skeletonization.  

These results align with an investigation of exhumed bodies exhibiting injury, which too 
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showed no acceleration of decomposition (Breitmeier et al. 2005).  Lastly, research 

conducted on the effect of knife wounds on decay rates in pigs demonstrated no 

preferential oviposition in trauma areas and no effects on decomposition (Kelly et al. 

2009).  Thus, the claimed ability of peri-mortem trauma to increase the rate of decay has 

been turned on its head. 

Despite this, critical information can sometimes be gleaned from areas of trauma, 

albeit not related to decomposition.  If masses of maggots are observed to be clustered in 

one particular area devoid of a natural orifice, this can point to the potential presence of a 

perimortem injury.  This particular indicator is useful in the early to early-late stages of 

decomposition, as Cross and Simmons (2010) noted the appearance of an earlier more 

rapid rate of tissue loss in the trauma pigs up to 310 accumulated degree days.  Although 

not indicative of a preferential site for oviposition, traumatic areas provide larvae with 

quicker access to underlying soft tissue.  However, the tissue loss eventually plateaus, 

reaching the same level of loss as that seen in non-traumatized pigs beyond 310 ADDs 

(2010).  Also, given the preference of blowflies for natural openings, wound areas may 

sometimes not be consumed, thus preserving indications of trauma on mummified skin 

(Galloway et al. 1989; MacAulay et al. 2009a; 2009b).  Thus, although the long-assumed 

link between trauma and the acceleration of decay has been shot down, traumatic sites 

can still prove useful to medico-legal investigations. 

Rainfall 

 Interestingly, based on Mann and colleague’s (1990) rating scale, rainfall does not 

have a considerably large effect on the rate of decay.  Given the large role humidity can 

play in the deterioration process, one would expect rainfall to accelerate decomposition 
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or at the very least, disturb it.  According to Mann et al. (1990), rainfall does not even 

retard maggot activity.  Most of the larvae are able to use the body cavities as shelter 

from the rain and continue feeding on the corpse.  Not even hard pelting rain has been 

seen to speed up destruction of the body tissues, as no connection has been observed 

between it and the sloughing of decomposed skin (1990).  However, they do point out 

that during moderate to heavy rainfall, fly activity and thus egg-laying can be reduced or 

stopped altogether (1990).  This can push time since death estimates back, allowing only 

minimum PMI determinations to be made so as to accommodate the effects of unknown 

confounding variables.   

Ubelaker (1997) provides additional information regarding the effects of 

nonbiological agents such as climatic forces, arguing that groundwater can leach through 

the body, mineralizing hard tissues such as bone.  This mineralization process can mask 

the typical appearance of “old” bone, giving it the feel, in terms of both weight and 

greasy texture, of “fresh” remains.  In addition, rainfall can assist in the disarticulation 

process.  If remains are deposited on a hillside, or swept up in a flash flood, the resulting 

spread of remains can mimic the effects of scavengers, potentially altering determinations 

of time since death. 

Although rainfall is not described as a critical factor in and of itself, as with most 

variables implicated in the decomposition process, it has the potential to impact the roles 

played by other, more important factors such as aridity, humidity, insect activity, 

adipocere formation, disarticulation, bone mineralization, and so forth.  Given its tight 

relationship with aridity and relative humidity, precipitation, in the form of rainfall, snow 

melts, and so forth, is an important variable to capture, especially if reliable sources 
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regarding daily humidity rates are not available for the particular area under study (as was 

the case with Delaware). 

Plant Activity 

 Although not specifically mentioned by Mann et al. (1990), plant activity and the 

presence of specific botanical remains may be of some value to forensic investigations.  

As described by Rodriguez and Bass (1985), and again by Rodriguez (1997) himself, 

plant activity can be of use regarding analyses of decomposing corpses, as well as in the 

detection of buried remains.  Specifically, plant roots grow towards a corpse, feeding off 

of its organic nutrients, eventually degrading clothing, skin, and skeletal remains 

(Rodriguez 1997).  Given enough time, plants roots, leaves, and branches can grow in, 

on, around, and through remains, often becoming intertwined with a corpse, leaving 

superficial indentations on bones and growing through the orbital sockets and other 

foramen of the body.  If plant growth is substantial enough, it may even produce 

disarticulation of skeletal elements, masking the results of carnivorous activity and other 

taphonomic agents.  However, these results can be interpreted to signal a prolonged post-

mortem interval, given the time required to skeletonize a corpse and subsequently grow 

in and around the skeleton.  These are all considerations which must be taken into 

account by investigators, making sure to observe plant growth and its markings on bone 

remains. 

Most importantly for estimating time since death, forensic botany can aid in 

producing a minimum PMI determination.  Based on analysis of growth rings on plant 

stems and roots, the minimum number of years required to reach that level of growth can 

be calculated (Hall 1997).  In one particular case example, the growth rate of bryophytes 
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and plant roots were analyzed to provide an accurate minimum PMI of an unidentified 

male in an advanced state of skeletonization in a wooded area in Northern Portugal 

(Cardoso et al. 2010).  In addition, given the fact that nutrients leach into the soil from 

decomposing remains resulting in enhanced plant growth, nearby plants can be compared 

to those found at the scene, so as to compare increases in root and stem thickness in the 

plants fed by the corpse, to determine a minimum time since death (Hall 1997).  

Furthermore, based on the amount of growth into and under remains, the season of death 

can be approximated (Hall 1997). 

Interestingly, the use of forensic botany is not just applicable to surface 

depositions.  Semi-quantitative approaches to estimating the post-mortem submersion 

interval utilizing algae have also been developed as of late.  Casamatta and Verb (2000) 

examined algal succession patterns in woodland streams on submerged carcasses to 

estimate the PMSI.  Later, Haefner et al. (2004) demonstrated that the production of 

chlorophyll “a” in algae could be quantified and used for similar purposes.  Lastly, 

Zimmerman and Wallace (2008) analyzed the algal/diatom diversity on a series of 

submerged carcasses and ceramic tiles in Delaware, discovering a significant relationship 

and strong correlation between progression of decomposition in pigs and decreases in the 

number of diatom species observed. 

However, there are slight drawbacks to forensic botanical analysis.  Given the fact 

that growth rings are produced in specific intervals, some of which are laid down every 

year, only a minimum PMI can be given (Hall 1997).  For example, if a plant produces 

growth rings every year and two are observed, this indicates a minimum of two years 

since its development, given the fact that the rings do not provide information regarding 
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how close or how far to its third year of growth the plant is.  In the Northern Portugal 

case study described above, only a minimum PMI of three years could be provided based 

on the growth of plant roots (Cardoso et al. 2010).  Several additional years needed to be 

added to account for the complete decomposition of the remains and the accurate 

identification of the six years which had elapsed since the individual’s death.  Also, it is 

difficult to know when the plant began its growth process in relation to the deposition of 

the body at the site.  If the body was moved and then placed at the location of recovery, 

the plant may possibly have been growing prior to this event.  Thus, when subsequent 

analyses of its age are given, if the point in time where the body accelerated plant growth 

cannot be determined, estimations of PMI may be off.  All such interpretations and 

subsequent pitfalls are exacerbated by a lack of training and knowledge regarding botany. 

As it applies to estimates of the post-mortem submersion interval, the use of algal 

diversity also contains its own pitfalls.  To begin, diatoms are the initial colonizers in 

aquatic environments, meaning their presence and diversity is likely to taper off after 

about the three week mark (Zimmerman and Wallace 2008).  In turn, their applicability 

appears limited in scope.  Most importantly however, multiple factors exist in aquatic 

environments which complicate analyses utilizing underwater plant and insect remains.  

As demonstrated in multiple studies, temperature and current are two of the main factors 

that affect the rate of decomposition (Casamatta and Verb 2000; Haefner et al. 2004; 

Zimmerman and Wallace 2008).  However, the ability to track their influence on a corpse 

over the course of the PMSI is extremely difficult and wrought with complications.   

Additionally, as stated by Zimmerman and Wallace (2008), it is difficult to 

distinguish between ecological and geographical barriers regarding the overlap in the 
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distribution of algae as multiple chemical (salinity, pH, elemental content) and physical 

(light, temperature, turbulence of water) factors exist.  These factors make it difficult to 

develop a precise understanding of the expected algal/diatom diversity in a particular 

area, especially given seasonal fluctuations.  Therefore, the use of algal diversity for 

estimating the PMSI should perhaps be used as more of a guide to direct investigations, 

as opposed to a concrete predictor. 

Forensic botanical analysis clearly requires a specific knowledge of plant remains 

which many forensic investigators and Medical Examiners lack.  Much like forensic 

entomology, an analysis of this type will require consultation with a specialist so as to 

determine growth and development, as well as the type of species collected.  Given the 

nature of the discipline, if an examination of botanical remnants is required, an expert 

will need to be consulted.  However, a general awareness of the flora of the area by 

investigators can only aid efforts to properly retrieve all relevant information from a 

scene. 

Embalming 

 As common sense dictates, the use of preservative chemicals during the process 

of embalming can greatly affect the decay rate of a body, slowing decomposition to a 

halt.  However, it was not included among the most influential factors by Mann et al. 

(1990) because of the rarity of encountering a body of forensic significance that has been 

previously embalmed.   

Compared to the normal processes of deterioration of a corpse which begin by 

first demonstrating signs in the face (purging of fluids, swelling of the tongue, bulging of 

the eyes, discoloration, skin sloughing, marbling, etc.), embalmed bodies show decay in 
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the buttocks and legs (Mann et al. 1990).  Besides this observation, the tell-tale signs of 

embalming include an embalming scar where fluids were injected, a trocar button in the 

abdominal area, a metal wire for fastening the mouth closed, and plastic eye caps (1990).   

An additional indicator of embalming or at least the chemical treatment of 

remains can be detected by noting the activity of insects.  They will avoid certain 

chemicals, such as formalin, sometimes leaving the affected area untouched for months 

(Mann et al. 1990).  If this is observed to be the case, especially around the natural 

orifices of the body or at sites of trauma or damage, investigators should look into prior 

potential chemical treatments. 

Clothing and Body Wrapping 

 Clothing and body wrappings are particularly interesting variables that can 

complicate scenes and estimations of time since death.  Although Mann et al. (1990) did 

not identify them as having a substantial bearing on decay, additional research studies 

have since indicated results to the contrary. 

Early on, research regarding the relationship between insect activity and the 

presence of clothing appeared to suggest that clothing influences the rate of deterioration 

by providing insects with favorable habitats within which to consume tissues.  After 

depositing eggs at the natural orifices of the body, once large numbers of flies colonized 

remains and thus overcrowded preferential areas, they would begin using folds in the 

clothing to lay their eggs (Haskell et al. 1997).  Clothing could protect the body from 

sunlight, thus serving as a favorable habitat for maggots to take shelter from direct solar 

radiation (Mann et al. 1990).  In theory, with a location to work comfortably, the maggots 

could process the tissues and thus speed up the rate of decay. 
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However, the results of these studies have been critiqued and turned on their head.  

As noted by Komar et al. (1998) in a review of decay cases in Alberta, Canada, clothing 

did not accelerate the decay process by protecting insects from sunlight, but rather 

appeared to protect underlying tissues from animals, wind, rain and sunlight.  Likewise, 

in a study of clothed, wrapped, unclothed, and unwrapped bodies, although clothed and 

wrapped bodies had larger maggot masses, all of the wrapped carcasses took longer to 

dry out (Kelly et al. 2009).  The unwrapped bodies were shown to lose mass quicker, 

resulting in a faster progression to the post-active decay phase or skeletonization (2009).  

In explanation, the authors hypothesized that the wrapped bodies allowed little 

evaporation, thereby keeping the body moist (2009).  As a result, in conjunction with 

high heat, not only did the wrapped carcasses remain in the advanced decay stage for a 

longer period of time, but they also were the only samples to show maggot death (2009).  

In total, the wrapped bodies showed a preservation of moist tissue due to the lack of air 

circulation about the skin. 

Interestingly, a study analyzing the effects of body coverings on preservation 

through an examination of adipocere development also supports such claims.  As 

demonstrated by Notter and Stuart (2012), natural fibers, especially wool carpet and 

cotton clothing, followed by wool clothing, lead to an acceleration of adipocere 

development.  However, even materials produced by synthetic fibers allow the formation 

process of adipocere to develop sooner than in unclothed bodies (2012).  The main 

takeaways from the study point to the importance of the absorbency ability of natural 

fibers compared to synthetic materials, removing decomposition products, retaining 

moisture, allowing the formation of adipocere, and disrupting the decomposition process 



108 

(2012).  Perhaps just as importantly however, the results also demonstrate that regardless 

of material type, clothing, wrappings, and coverings function to preserve remains more so 

than unclothed bodies. 

Along the same vein, these results are in line with a study examining the impact 

of clothing on soft tissue preservation in the form of mummification.  Given the ability of 

clothing to remove and absorb moisture from the skin’s surface, the study concludes that 

this is the single most important determinant of post-mortem soft tissue mummification in 

both mortuary and forensic contexts (Aturaliya and Lukasewycz 1999).  These results 

were seen to apply not only to surface exposed cases, but also in interred animal bodies 

(1999).  Given the permeability of the skin, making it susceptible to moisture transfer, it 

also appears as if the skin is the last of a mummified body’s tissues to desiccate (1999).  

Therefore, it appears as if clothing supports the preservation of remains, requiring the 

right conditions to develop into mummified or saponified bodies. 

As additional support of these finds, Haglund and Sorg (2002) report findings 

suggesting that bodies tightly wrapped in plastic or synthetic fibers are associated with 

high levels of tissue preservation.  Along the same vein, Gill-King (1997) found enclosed 

environments, whether natural or man-made, to slow decomposition as a result of the 

retardation of oxidative pressures.  Lastly, Pakosh and Rogers (2009) also found that non-

enclosed samples submerged in water lost soft tissue to a significantly greater extent than 

samples enclosed in plastic bags.  Citing Rodriguez and Bass (1986), they state that the 

non-enclosed samples experienced continual bacterial action, while the enclosed samples 

experienced increasingly suppressed bacterial action due to decompositional by-product 

accumulation and reduced oxygen levels (Pakosh and Rogers 2009).  Thus, given all of 
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the evidence stated above, it becomes clear that forensic investigators must be sure to not 

only be aware of the potential effect of the depositional environment on decay, but also 

the ability of clothing, fibers, wrappings, enclosures and so forth, to slow decomposition. 

Moreover, the relation of clothing to scavenging can also be of potential 

importance to reconstructing a scene and providing analysis of time since death.  Given 

the fact that standards have been developed regarding the extent of scavenging activity on 

remains and its relation to the post-mortem interval, the protection offered by heavy 

clothing may serve as a considerable barrier to scavengers, thus presenting atypical 

scavenging effects for the amount of time the body has been exposed (Haglund 1997).  

Although additional studies are required to specify the effects of various types and 

amounts of clothing on scavenger activity, these types of considerations should be 

factored into analyses of time since death. 

 Lastly, two very interesting studies performed by Morse et al. (1983) and Rowe 

(1997), sought to research the time required for clothing, various textile fibers, and paper 

money to “biodegrade” either scattered across the ground or buried in the soil.  Much like 

the results provided by Mann et al. (1990) for biological remains, they are able to show 

temperature to have the greatest effect, as it can provide an optimal working temperature 

for bacteria to deteriorate materials (Morse et al. 1983; Rowe 1997).  Moisture, access to 

sunlight, and soil type also produced effects on degradation (Morse et al. 1983; Rowe 

1997).  Even materials that are protected by simply being within a shirt pocket were seen 

to deteriorate slower (Morse et al. 1983).  If nothing else, the results provide another 

mechanism by which to determine PMI, if such materials are found in association with 
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victims.  However, it is important to keep in mind that time of year and temperature are 

huge factors here, as they guide the amount and type of clothing worn. 

Body Size and Weight 

 This variable should logically appear to be a very important factor in the rate of 

decomposition.  It would seem as if common sense would suggest that taller, more obese 

individuals would take longer to breakdown given the larger percentage of body fats or 

muscle.  However, based on studies conducted at the Anthropology Research Facility in 

Tennessee, differences in body size and weight did not show any significant dissimilarity 

in the pace of decay (Mann et al. 1990).  According to Mann et al. (1990), this lack of 

difference was due to the rapid loss of body mass in obese individuals, with a liquefaction 

of body fats.  When all variables were held equal, not only was there no difference in the 

speed of deterioration between people of varying weights, but no difference was seen 

between the sexes either (1990).   

 However, subsequent studies have contradicted such claims.  For example, in a 

study by Hewadikaram and Goff (1991), two pig carcasses weighing 8.4 and 15.1 

kilograms, respectively, showed greater thermal mass rises and a faster decomposition 

rate in the heavier body.  Although no differences were observed in regards to the 

composition and pattern of succession of associated fauna, the heavier carcass showed a 

faster loss of biomass. 

 Conversely, Simmons et al. (2010a) compared the effect of carcass size using two 

distinct groups.  One group was composed of carcasses of varying size exposed to insect 

activity, while the other group was derived from indoor, buried, or submerged cases 

where insect access was prevented (2010a).  For size classes in the group where insect 
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activity was excluded, no difference was found in the rate of decomposition (2010a); 

supporting the assertions made by Mann et al. (1990).  However, in the cases where 

insects were granted access, body size was a significant factor, with smaller carcasses 

decomposing faster (Simmons et al. 2010a).  They postulate that the slower rate of 

decomposition in larger carcasses may be due to the greater amount of tissue for the 

insects to consume (2010a).  Thus, with a greater body mass present for insects to feed 

on, time to skeletonization is prolonged (2010a).   

However, a major caveat to their conclusion is that given the lack of difference 

when insect activity was precluded, it is not body size itself which is an important factor 

in altering the rate of decay.  Rather, the presence or absence of insect activity is the 

driving force in that regard.  Therefore, when viewed from that perspective, it appears as 

if both Mann et al. (1990), as well as the subsequent studies challenging those results, are 

both correct in different ways. 

In regards to the differences in the rate of decay between the sexes, Zhou and 

Byard (2011) point out the fact that obesity can accelerate decomposition, as 

subcutaneous and abdominal fat have insulating properties that slow the rate of cooling.  

If a body takes longer to cool, bacterial growth can continue to flourish.  As for its 

relation to the sexes, they point out that males cool more rapidly than females of identical 

weight, due to the higher fat content in females (2011).  Therefore, based on the unequal 

cooling rate, differences in the onset of early decompositional changes may result. 

Surface Placed On 

 Although considerable differences in the rate of decay exist between bodies 

deposited in different types of burials, as well as between exposed versus shaded 
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carcasses, the dissimilarities noted regarding decomposition of remains placed on 

concrete compared to directly on the ground appear not to be as noteworthy (Mann et al. 

1990).  Although bodies lying on concrete are usually seen to decay slower and mummify 

faster, this is not always the case.  Mann et al. (1990) caution that until a provable 

explanation accounting for the results seen can be developed, the “common sense” 

judgment that decay occurs faster on the ground due to exposure to the natural 

environment, may not be capturing the full essence of the factors at play.  If one gleans 

no other information from this chapter or the results of this study, it should be that the 

variables involved in the decomposition process are so interrelated and dependent upon 

one another, that it may be impossible to parcel them apart.  Therefore, it may very well 

be the case that many of the long-held assumptions regarding the effects of these 

variables fail to capture the full picture of the process of decomposition. 

Body Position 

 Depending on the circumstances of the scene and the characteristics of the 

environment into which a corpse has been deposited, multiple body positions are 

possible.  Obviously the two commonly thought of positions are supine and prone, but if 

an individual is on the couch or in the car, seated bodies made be found as well.  

Moreover, individuals are oftentimes found in bed, turned onto their left or right sides.  

Additionally, a commonly encountered theme in wooded environments is cases involving 

hangings, whether completely suspended off the ground or with the feet in contact with 

the surface.  Given the multiple positions possible, it is only natural to attempt to analyze 

whether decomposition progresses differently between them. 
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 Prone and supine bodies are the most experimentally studied positions.  These are 

the “normal” positions associated with death, leading to the pooling of blood via 

gravitational pull during livor mortis.  As one would expect, studies such as Aturaliya and 

Lukasewycz (1999) have found enhanced body water loss in bodies positioned 

horizontally versus vertically.  They surmise that these differences are due to the wider 

spread of bacteria and enzyme laden abdominal fluid about the dependent areas, resulting 

from increased diaphragm and tissue digestion and liquefaction of the organs’ tissue 

structure (1999).  Clearly, based on these results, it appears warranted to conclude that 

supine and prone bodies, as well as those found lying on their sides, are likely quicker to 

decompose than seated and vertically-positioned bodies, secondary to retention of the 

diaphragm’s integrity in non-horizontally placed corpses. 

In regards to studies conducted on positions beyond horizontally-placed corpses, 

the trend in research is beginning to move away from the reliance on case examples 

towards experimental research.  For example, Shalaby et al. (2000) compared the patterns 

of decomposition between pig carcasses completely suspended off the ground and those 

hanging but in contact with the ground.  The study found that the rate of biomass removal 

from the fully suspended carcass was significantly slower than that of the control carcass 

(2000).  These results are likely due to the reduction in the number and diversity of the 

arthropod species colonizing the hanging body; therefore, preventing higher maggot mass 

temperatures (2000).  Interestingly, although there were fewer insects on the fully 

suspended carcass, significant arthropod activity was observed directly underneath the 

body in the “drip zone.”  Their particular location points to the fact that the insects either 

fed on the remnants falling from the body or that they fell off of the body themselves 
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after initial colonization, thereby being restricted to the substrate.  As a result, a smaller 

arthropod community develops on the carcass.  These particular results, patterns, and 

locations of insect activity are fully supported by previous research conducted by Early 

and Goff (1986) and Goff (1992).  Lastly, the hanging carcass was exposed to the cooling 

effects of the air, with internal temperatures more closely approximating ambient 

temperature, resulting in a delayed progression through the stages of decomposition 

(Shalaby et al. 2000).  The control carcass was less subject to cooling and therefore was 

unable to stave off the physical changes of decay.  Therefore, these results suggest a 

correlation between temperature, especially that derived from maggot masses, and body 

position, reflective of the slower decomposition observed in fully hanging carcasses. 

Overall, it appears as if supine and prone bodies are the quickest to decompose.  

Following that are bodies found lying on their sides.  In regards to vertically-positioned 

bodies, given the mix of vertical and horizontal placement of body parts, seated cases 

would logically be next in the sequence.  Lastly, vertically-positioned bodies appear to be 

the slowest to decompose, especially those found in a fully suspended state as a result of 

hanging.  

Soil Type and pH 

 In their discussion of variables affecting the rate of decay, Mann and colleagues 

(1990) state that studies are being undertaken to test the effect of soil pH on the rate of 

decomposition.  Fortunately, the effects of soil pH on decay are now relatively well 

known.  In a recent study conducted by Deborah Surabian (2011), a soil scientist from the 

Natural Resources Conservation Service, a guide was developed for understanding the 

breakdown of a cadaver and the preservation of bone in soil.   
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Although many factors involved in the decomposition of remains have been 

discussed, some believe that soil chemistry is one of the most influential extrinsic factors 

involved in the deterioration of bone, once soft tissue has been lost (Gordon and Buikstra 

1981; Haslam and Tibbett 2009).  Based on the results of her study, Surabian (2011) 

confirms the importance of soil acidity to the deterioration of osseous material as 

significant correlations between the two were found.  Preservation was favored in soils 

above a pH level of 5.3, but disadvantageous at levels below that mark (Surabian 2011).  

A study conducted by Nielsen-Marsh et al. (2007) confirms that trend, showing an 

increase in bone destruction and absence from sites the more acidic the soil becomes, 

especially under pH levels of 5.5.  The result of this reaction has to do in part with highly 

acidic soil’s ability to rapidly deteriorate bone (relatively speaking) by altering its 

inorganic hydroxylapatite, which makes up the majority of bone’s material (Nafte 2000).  

As shown in a case study described by Ubelaker (1997), neutral soils do not show such 

destruction.  Interestingly though, although acidic soils appear to be dominated by fungal 

communities, alkaline soils may also show a dominance of fungi, especially considering 

the effect on soil conditions resulting from the decomposition of a cadaver (Carter et al. 

2007).  On the other hand, neutral soils provide conditions where bacteria display a 

competitive advantage (2007). 

Along the same vein, a study by Haslam and Tibbett (2009) demonstrated results 

in line with those described above.  When comparing the decomposition of skeletal 

muscle tissue in acidic, neutral, and alkaline soils, it was found that soil type had a 

considerable effect on the decomposition of the tissue (2009).  In fact, not only were 

differences observed between the soil types, but the acidic soil demonstrated a rate of 
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decomposition up to three times as fast as that observed in the alkaline soil (2009).  

Additionally, it appears as if the rate of microbial respiration is correlated to the rate of 

soft tissue loss, highlighting the importance of the microbial community to 

decomposition (2009).  Also, much like the earlier studies mentioned above, an increase 

in the alkalinity of the immediate soil environment was noticed at first, due to the 

leaching of decompositional by-products, before eventually becoming more acidic and 

reaching pH values similar to that measured at the outset (2009).  In total, the authors 

suggest greater consideration of soil type in taphonomic analyses (2009).  However, it 

should be kept in mind that they used skeletal muscle tissues, as opposed to full corpses, 

to conduct their analysis.  Nonetheless, given the similarities between studies, it clearly 

demonstrates the need to take soil environment into account when assessing not only soft 

tissue, but also skeletal tissue deterioration. 

Furthermore, soils high in clay content, which have an increased ability to hold 

moisture, inhibit the breakdown of corpses by producing a reducing atmosphere 

insufficient to support efficient microbial decomposers (Manhein 1997; Carter et al. 

2008).  On a related note, Surabian (2011) also indicates that mildly alkaline soil 

produces favorable conditions for the formation of adipocere, especially in the context of 

moist soil textures and reducing conditions.  A specific discussion of adipocere, and its 

relationship to decay, can be found elsewhere in this paper.  On the other hand, although 

soils high in the content of sand have low moisture content, they promote the drainage of 

water and thus desiccation, also providing a favorable habitat for preservation (Micozzi 

1991). 
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However, contrary to these results, when it comes to skeletonization, some 

researchers suggest the opposite relationship between moisture and decomposition exists.  

Although the correlation between moist soil and the preservation of remains may hold 

true (Manhein 1997; Carter et al. 2007), Jaggers and Rogers (2009) suggest that bones in 

higher moisture environments exhibit a greater net weight loss than those in drier soils.  

In particular, three main conclusions are drawn: 1.) buried bones lose mass over time, 

regardless of moisture, 2.) bones in higher moisture soil environments lose more weight 

over 150 days than those in drier soils, and 3.) bones in high moisture soil environments 

do not absorb more water over 150 days than those in drier soils (2009).  In addition, in 

regards to macroscopic bone changes, color, texture, and condition of bone remains do 

not appear to change over 150 days regardless of soil environment (2009).  Although 

these macroscopic events were not observed, it has been shown that collagen is 

eliminated by bacterial collagenases, while the loss of mineral hydroxyapatite proceeds 

by inorganic mineral weathering (Dent et al. 2004).  Thus, based on the results of this 

analysis, although moisture may serve to preserve tissues under the right conditions, high 

moisture soils appear to accelerate the breakdown of skeletal elements. 

Furthermore, as summarized by Dent et al. (2004), much like the decomposition 

of soft tissue in soil, acidic soils are the most destructive to bone material, dissolving the 

organic matrix of hydroxyapatite (Goffer 1980; Henderson 1987).  Under aerobic, non-

acidic conditions, bone tends to remain in good condition, but may demonstrate surface 

coarsening and cracking in fine sands (Goffer 1980; Henderson 1987).  Nonetheless, dry 

sand assists preservation due to reduced bacterial action (Janaway 1997).  In calcareous 

sand, loam, or sandy-loam, the presence of damp conditions and more oxygen may lead 
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to a rougher bone surface, cracking, and warping (Goffer 1980; Henderson 1987).  Bone 

found in calcareous gravels will lose collagen, resembling chalk (Goffer 1980; Henderson 

1987).  Overall, bone preserves best in dry soil with neutral or slightly alkaline pH 

(Janaway 1997), aligning with those studies examining soft tissue decomposition in soil 

(Nielsen-Marsh et al. 2007; Haslam and Tibbett 2009).  Clearly, these particular soil 

environments are of importance to note and factor into estimations of time since death 

under burial conditions.  Having said that, it has yet to be determined if these factors are 

quite as important in regards to bodies left to decompose on the ground surface. 

It should be remembered that buried bodies below depths of two or more feet tend 

to decompose at a slower rate than on surface layers or at shallow depths (Rodriguez and 

Bass 1985).  In fact, Rodriguez and Bass (1985) show a significant increase in alkalinity 

in these cases, between 0.5 to 2.1 pH levels, based on values gathered before and after 

exhumation of each cadaver (1985).  This alkalinity, in conjunction with lower soil and 

cadaver temperatures, as well as increases in moisture at deeper depths, may account in 

part for the differences in the rate of decay seen between buried bodies and those 

deposited on surface layers.  These results are in line with those reported later by Haslam 

and Tibbett (2009). 

Soil tests also have additional uses to forensic investigators.  As described by 

Rodriguez and Bass (1985), by detecting changes in soil pH and cadaver temperatures 

with pH probes or temperature loggers, investigators may have a new means by which to 

locate a buried body (1985).  Moreover, Vass et al. (1992) claim that with a general 

description of a body’s weight, along with information about temperature, the post-

mortem interval can be determined by measuring the ratio of volatile fatty acids in the 
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soil below a decomposing body.  Although this study has been critiqued as of late, it 

provides an interesting use of soil beyond measurements of pH levels.   

Thus, it is obvious that if access to soil pH data at the recovery site is available, it 

can be of value to interpreting the rate of decay of a corpse.  Unfortunately, in cases of 

actualistic, retrospective studies, these values are rarely recorded.  Attempts to back-track 

and assess the soil pH in the general location in which a specific body was found can, at 

best, only provide a basic description of the soil type in the area, which corresponds to a 

less specific pH range compared to actual measurements at the time of recovery. 

Summary of Variables Believed to Alter Decomposition 

 Based on decades worth of research regarding the effects of environmental and 

contextual variables on the process of decomposition, it is clear that various factors play 

critical roles in the rate of decay of human corpses.  Although some variables such as 

temperature, insect activity, and depositional environment exert larger influences in some 

respects, all of the factors described above are inextricably linked and require attention in 

order to understand the bigger picture at play in regards to decay.  This is especially true 

when providing estimates of post-mortem interval, as no one criterion accounts for the 

decompositional changes seen, instead necessitating an understanding of all variables in 

their specific environmental contexts.   

Having stated the interrelationships demonstrated by these factors in a number of 

studies, the point must be made that applied research under actual forensic conditions 

must continue.  Given the convenience of experimental studies, in which various 

variables can be controlled for and isolated, or where research designs can be configured 

in such a way as to evaluate only one or two variables of interest, it is clear why such 
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experimental research is popular.  However, if the current school of thought regarding the 

highly intertwined nature of these variables holds true, actualistic studies under real-life 

conditions are needed, so as to confirm this theory and more fully understand how the 

effects of the various factors at play either change, or stay the same, within various 

environmental contexts around the country.  Additionally, actualistic studies can evaluate 

decomposition involving the presence of all variables involved in real-life forensic 

settings; therefore, gaining a better picture of decay as it actually occurs.  In turn, the 

standards and equations upon which post-mortem interval estimates are based can be 

refined and stand a better chance at maintaining reliability, validity, and accuracy.   

Ultimately, given the number of factors and intricate relationships among all of 

the variables presented, a study of this nature is sorely needed to centralize the effects of 

all such factors and account for their role in decomposition in a standardized, quantitative 

fashion.  If not, the field will continue to be mired in qualitative descriptions, providing 

“best guesses” of the approximate roles played by all such variables, only continuing the 

tradition of wide, unsubstantiated time since death estimates. 
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Chapter Six: Climatic and Environmental Conditions in Delaware 

 In order to rationalize the development of region-specific standards and equations 

by which to estimate the post-mortem interval, the particular area in question must be 

demonstrated to be environmentally and climatically unique from all other areas where 

such studies have been undertaken in the past.  Thus, in order to do so, a discussion of the 

particular climatic and environmental conditions to which Delaware is exposed is 

warranted. 

Climate Classification Systems 

Köppen-Geiger Classification System 

 Two main classification systems are employed throughout the world in order to 

identify the general climatic zones which exist.  These systems usually correspond to 

vegetation distribution, with each climate type dominated by one vegetation zone or eco-

region (Belda et al. 2014).  The first among them was a quantitative classification system 

developed by Wladimir Köppen in 1900 (2014).  Although various classification systems 

have since been developed, Köppen’s original approach (Köppen 1923; 1931; 1936) and 

its modifications are still the basis for many of the systems still in use today (Belda et al. 

2014).  In fact, Kottek et al. (2006) recently released the first digital Köppen-Geiger 

world map, combining Köppen’s (1936) methodological approach with that of Geiger 

(1954), in regards to observed climatic conditions in the last half of the 20th century.  

Subsequent to the release, Rubel and Kottek (2010) produced a series of digital world 

maps spanning the entire 20th century.  Given the accessibility of these digitized maps in 

today’s technological world, this particular approach to climate classification is now 

preferred. 
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Köppen-Trewartha Classification System 

 However, despite the convenience of the updated Köppen-Geiger system, many 

researchers do not agree with the climatic divisions represented by the classification 

system.  In response, Trewartha (Trewartha 1968; Trewartha and Horn 1980) released a 

modified version of the Köppen-derived system, adjusting both the original temperature 

criteria and threshold separating wet and dry climates (Belda et al. 2014).  Based on the 

new approach to climatic typing, the resulting system was deemed the Köppen-Trewartha 

Classification (2014).  Following its release, the Köppen-Trewartha system has been 

utilized by a multitude of studies recognizing the fact that it is a better descriptor of 

vegetative zones in particular areas, compared to the Köppen-Geiger system.  

Specifically, these studies have employed the Köppen-Trewartha classification system to 

research concerning shifts in climate types relating to the Pacific and North Atlantic 

climate oscillations (Fraedrich et al. 2001),  atmospheric circulation models of the last 

interglacial and glacial climates (Guetter and Kutzbach 1990), projected future climate 

areas in China (Baker et al. 2010), the impact of climate change on vegetation in the 

Arctic region (Feng et al. 2012), validation of regional climate models over Europe (de 

Castro et al. 2007), the effect of global warming on Europe (Gerstengarbe and Werner 

2009), and many more.  As can be seen, these studies are extremely recent, highlighting 

the applicability of the Trewartha modified system to today’s climatic zones.  

Köppen versus Trewartha 

When compared to the Köppen-Geiger system, the Köppen-Trewartha 

Classification makes many significant modifications.  In particular, although employing 

an approach similar to Köppen’s (1936) in regards to the determination of climate types 
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based on long-term annual and monthly averages of surface air temperature and 

precipitation, Trewartha (1968) introduces adjustments so that climate zones better 

correspond with observed boundaries of natural landscapes (de Castro et al. 2007; Belda 

et al. 2014).   By doing so, Trewartha’s data also clarifies several vague areas inherent to 

Köppen’s original formulations (Belda et al. 2014).  Specifically, the main modifications 

between Trewartha (1968) and Köppen (1936) deal directly with the definitions of 

climate zones C and D, a newly-defined E type, and different thresholds between wet and 

dry climates (Belda et al. 2014).  For the purposes of this discussion, the differences 

between climate types C and D will be explored, as they are the zones applicable to 

Delaware and the Delaware River Valley. 

To begin, the C group, as originally described by Köppen-Geiger, corresponds to 

a humid sub-tropical climate (Belda et al. 2014).  Among the areas included in this 

climate type are the southeastern Atlantic states, ranging from Florida to Virginia.  Also 

included in that group are the Gulf States ranging from Texas to Alabama, as well as 

Southern portions of Kansas, Missouri, Illinois, Indiana, and Ohio.  As if this general 

grouping of the entire southcentral, midwestern, and southeastern parts of the United 

States into one single zone were not enough, the Köppen-Geiger system also includes the 

midatlantic states including Maryland, Washington D.C., New Jersey, southeastern 

Pennsylvania, Delaware, New York City, and Long Island (see Figure 1).  This zone is 

supposedly characterized by long, hot, humid, and nearly tropical summers, with mild 

winters only occasionally reaching freezing temperatures (Belda et al. 2014). 

As any citizen of these midatlantic states can attest to, the climate in this 

particular area is nothing like that experienced in Florida, Texas, Louisiana, Georgia, and 
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so forth.  Although the summers are indeed hot and humid, the winters are certainly not 

mild and often reach temperatures below the freezing point.  Nonetheless, the Köppen-

Geiger system lumps all of the aforementioned states into one general climate zone.  To 

further emphasize the inadequacies inherent in this method of classification, it should 

also be pointed out that the Köppen-Geiger system groups Washington and Oregon into 

the same climate type as Southern California (see Figure 1).  Given the clear 

misalignment of climate zones, researchers have called for changes to the C and D zones, 

citing the humid sub-tropical group to be far too broad (Griffith 1966). 

Recognizing the inconsistencies inherent in this classification system, Trewartha 

developed new standards to address this inefficient grouping method, redefining the 

middle latitudes to more accurately reflect vegetative zoning and the actual climates in 

these areas.  In turn, Trewartha developed a new representation of climate zones both 

globally and in the United States (see Figures 2 and 3), drawing up new definitions of 

climate types and sub-types (see Table 8) (Belda et al. 2014).  In particular, contrary to 

the definitions presented by Köppen (1936) (see Table 7), Trewartha (1968; Trewartha 

and Horn 1980) reclassifies group C to include those areas with a mean temperature 

above 10 degrees C for eight or more months of the year (see Table 8).  This newly 

defined C type corresponds with humid, sub-tropical climates beginning from North 

Carolina down to Florida and over to the middle of Texas.  The upper border of this new 

climate zone runs along the Northern borders of North Carolina, Tennessee, Arkansas 

and Oklahoma.  As a result, group D is now classified as a temperate climate, consisting 

of areas demonstrating a mean temperature above 10 degrees C for four to seven months 

of the year (see Table 8).  More importantly, southeastern Pennsylvania, Delaware, and 
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New Jersey are now reclassified as temperate climates under the newly defined D climate 

type. 

Having stated the obvious concerns regarding the Köppen-Geiger system, as well 

as the changes imposed by Trewartha, it is important to compare the two.  Based on an 

analysis of both climate systems, Belda et al. (2014) report that the Trewartha system is 

more realistic in placing boundaries, provides more detailed depictions of climate types, 

is the least demanding on data (as it primarily based on precipitation and temperature), 

and has proven suitable for the creation of maps of global Ecological Zones for the Forest 

Resources Programme of the United Nations Food and Agriculture Organization (FAO).  

In fact, the FAO (2001) has come out as a chief supporter of the Trewartha system 

stating, “there is a demonstrated good correspondence between the Köppen-Trewartha 

subzones or climate types and the natural climax vegetation types and soils within them.”  

Lastly, as stated by Akin (1991), the reclassification of climate types is viewed as a more 

realistic and real world representation of the global climate.  Therefore, given the more 

realistic application of climate data in the Köppen-Trewartha Classification, coupled with 

the release of digital maps of the Köppen-Geiger system by Kottek et al. (2006) and 

Rubel and Kottek (2010), Belda et al. (2014) decided to create digital maps of the 

Köppen-Trewartha system utilizing up-to-date Climate Research Unit data.  These maps 

are now accessible via the internet through this study, hopefully leading to a rediscovery 

of the utility of the Trewartha system for climate type classification. 

Emphasizing the Need for Region-Specific Decomposition Studies 

Thus, given how much better suited the Köppen-Trewartha Classification is for 

defining the temperate climate of southeastern Pennsylvania, New Jersey, and Delaware, 



126 

coupled with the fact that no retroactive, actualistic, applied decomposition studies have 

ever been conducted in this particular climate type, this study is justified in its attempt to 

devise a PMI equation specific to the Delaware River Valley Region.  Additionally, given 

the fact that traditional estimates of time since death in this area have been derived from 

experimental studies developed out of the University of Tennessee, this confirms that 

both regions are, in fact, in separate and distinct climatic zones, once again demonstrating 

the need for a regional study.  Lastly, when these considerations are coupled with the call 

for research studies in a variety of environmental and climatic regions throughout the 

country (Mann et al. 1990; Haskell 1997; Megyesi et al. 2005; Jaggers and Rogers 2009; 

Parks 2011; Bygarski and LeBlanc 2013; Dabbs and Martin 2013), there is no doubt that 

a decomposition study in the Delaware River Valley Region is warranted. 

Temperature 

 In order to further drive home the point regarding the need for region-specific 

decomposition studies based on the particular climatic conditions in the Delaware River 

Valley Region, a discussion regarding specific environmental variables in Delaware will 

be provided.  Although decomposition studies such as Megyesi et al. (2005) incorporate 

data from a variety of regions, it is always important to understand the specific 

environmental and ecological contexts which exist in a researcher’s particular area of 

study, especially when region-specific standards are to be derived.  Lastly, given the fact 

that the University of Tennessee’s Anthropology Research Facility is the closest location 

to the Delaware River Valley where decomposition studies have been undertaken on 

human corpses, it is important to compare environmental conditions between both 

locales. 
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Having stated that, according to a 2005 study conducted by the National Oceanic 

and Atmospheric Administration’s (NOAA) National Climatic Data Center (NCDC), 

Delaware’s climate is temperate year round with the lowest average monthly 

temperatures ranging from 32.1-40 degrees F, with the highest average monthly 

temperatures ranging from 70.1-80 degrees F in Kent and Sussex Counties (see Figures 4 

and 5).  The County North of them, New Castle County, shows the same average monthly 

high temperatures, but its lowest average monthly temperatures range from 20-32 degrees 

F (see Figures 4 and 5; NOAA, NCDC 2005).  The average temperature during the 

summer months ranges from 70.1-80 degrees F for all three Counties (NOAA, NCDC 

2005).   

In addition, Delaware’s mean annual temperature differs between New Castle 

County and both Counties to the South, Kent and Sussex (NOAA, NCDC 2005).  In New 

Castle County, the mean annual temperature ranges from 50.1-55 degrees F; an average 

slightly below the mean annual temperature range of 55.1-60 degrees F seen in the 

remaining two Counties (See Figure 6; NOAA, NCDC 2005).  Given the rather small 

disparity between the Counties, not much difference should be observed in the decay 

patterns between Northern, Central and Southern Delaware. 

 Before moving on to the next variable, a word should be said regarding 

Delaware’s temperature in comparison to eastern Tennessee, where the Anthropology 

Research Facility of the University of Tennessee at Knoxville stands.  Many PMI studies 

have been conducted there, believed to have the same “humid sub-tropical” climate as 

Delaware based on the Köppen-Geiger classification system (Kottek et al. 2006).  Despite 

the urging of researchers from the University of Tennessee-Knoxville regarding the need 
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for additional studies in a variety of environmental and ecological settings, one may 

wonder if the standards developed at UT-Knoxville are applicable to Delaware’s 

environment based on comparisons of temperature.  Based off of the latest figures 

published in 2013 from the “Comparative Climate Data: For the United States Through 

2012” study conducted jointly by the NOAA, National Environmental Satellite Data and 

Information Service (NESDIS), and the National Climatic Data Center (NCDC), 

Knoxville, Tennessee and Wilmington, Delaware differ in several climatic categories.  

Once again, these differences appear to support the distinctions made by the Köppen-

Trewartha classification system. 

In regards to specific differences regarding cold temperatures, the mean number 

of days with minimum temperatures of 32 degrees F or less comes in at 98 days for 

Wilmington, compared to only 72 days for Knoxville.  In addition, the mean monthly 

temperatures differ considerably during the winter months, coming in at 40.8, 38.2, 42.4, 

and 50.3 degrees F in Knoxville for December, January, February, and March 

respectively.  These figures are in comparison to temperatures in Wilmington of 36.7, 

32.4, 35.1, and 43.0 degrees F over the same months.  During January, Wilmington 

averages temperatures at the freezing point, while Knoxville hovers over five degrees 

higher.  Additionally, the daily average minimum temperature in Wilmington is several 

degrees below the freezing point in December, January, and February, while only January 

demonstrates temperatures well below freezing in Knoxville.   Likewise, the average 

snowfall amount per year in Delaware is 22.1 inches, while Knoxville only experiences 

11.6 inches of snow annually.  Given the optimal temperature range at which bacteria 

operate, these temperature differences may have substantial effects on the preservation of 
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soft tissue, resulting in decompositional differences between both locations.  If bacterial 

growth is greatly retarded or halted altogether for longer periods of time in Delaware, 

estimations of PMI will need to be done with standards specific to the area.   

Furthermore, as mentioned above, flies will not lay eggs at temperatures below 

the freezing point, as the cold will kill both the eggs and maggot larvae (Mann et al. 

1990).  If insects are not ovipositing close to 30 days less in Knoxville compared to 

Wilmington, this can have a critical effect on the rate of decay of human remains and the 

determination of time since death, not to mention the general effects of colder 

environments and snow on decomposition, including mummification, freezing, thawing, 

etc.  As a matter of fact, in a series of studies conducted by Micozzi (1986; 1997), animal 

corpses which were frozen and then thawed disarticulated at a faster rate than fresh killed 

animals, due to the disruption of tissues as a result of freezing.  If such effects apply to 

the decay of human corpses during winter months, the added exposure to colder 

temperatures in Delaware may significantly alter the time required to reach specific 

decompositional stages, especially in comparison to the University of Tennessee studies.   

Lastly, the study reveals that Knoxville sees an average of 28 days per year in 

excess of 90 degrees F or higher, compared to just 19 in Wilmington.  Given the effects 

of increased temperature of insect activity and the desiccation of tissues, the temperature 

disparities may very well produce differences in the time needed to reach specific 

decompositional stages in both regions. 

Determinations of the post-mortem interval are already plagued by an inverse 

relationship between the accuracy of PMI estimation and the longer an individual has 

been deceased.  If standards inappropriate to the specific environmental and ecological 



130 

contexts of the area are being used, inaccuracies are sure to increase.  Seeing as to how 

correct PMI determinations are critical to forensic investigations of unknown remains, 

potentially including or excluding possible missing person matches, identifying suspects, 

and closing cases, it is crucial that specific standards be developed in each particular 

environmental context. 

Humidity/Aridity 

 Based off of figures gathered from the “Comparative Climate Data: For the 

United States Through 2012” study conducted jointly by the NOAA, NESDIS, and 

NCDC in 2013, Knoxville, Tennessee and Wilmington, Delaware are once again seen to 

differ, this time in regards to average relative humidity.  The relative humidity was 

expressed as a percentage of the measure of the amount of moisture in the air compared 

to the maximum amount of moisture the air can hold at the same temperature and 

pressure.  Values were given for both morning and afternoon observations, with the 

knowledge that maximum relative humidity is usually reached during morning hours.  

When the relative humidity percentages were compared, the results demonstrated that 

Wilmington had lower overall averages, with a yearly mean of 78 percent humidity in the 

morning and 55 percent humidity in the afternoon.  This is compared to an annual mean 

of 85 percent humidity in the morning and 58 percent humidity in the afternoon in 

Knoxville, Tennessee.  What’s more, Wilmington showed lower average humidity for 

both mornings and afternoons every single month compared to Knoxville.   

Most importantly for decay rates, both locations differed by a minimum of 5 

percent average humidity during the summer months of June, July, and August, as well as 

the last full spring month, May.  Given the fact that increases in humidity are critical to 
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the deceleration of the drying out of tissues, allowing for increased access and activity by 

insects, as well as bacteria, a difference of 5 percentage points across multiple months 

may prove to be an important factor.  This data also supports the new climatic zone 

definitions proposed by Trewartha (Trewartha 1968; Trewartha and Horn 1980).  Lastly, 

as Ross and Cunningham (2011) state best, these differences between sites highlight the 

need to better understand micro-environments and the effect they have on the 

decomposition process. 

Precipitation 

 According to a study conducted by the U.S. Department of the Interior and the 

U.S. Geological Survey, from the period of 1961-1990, Delaware averaged an annual 

precipitation total of 43.62 inches (see Figure 7).  According to the NOAA, NESDIS, 

NCDC (2013) study, Wilmington in particular, averaged an annual total of 43.0 inches of 

precipitation from 1981-2010. Given the importance of rainfall to the relative humidity 

rate, its potential impact on adipocere formation and the deceleration of decay, its 

involvement in limiting insect access under aquatic conditions, as well as the high water 

table depths known to populate the Coastal Plain soils throughout Delaware (see Figure 

9), the consistent precipitation in the area may prove to speed up the rate of decay, or 

conversely, slow it down if conditions prove right. 

In order to continue the comparison between climatic conditions in Knoxville, 

Tennessee and Wilmington, Delaware, precipitation data between the two will be 

presented here as well.  According to the data gathered from the “Comparative Climate 

Data: For the United States Through 2012” study conducted jointly by the NOAA, 

NESDIS, and NCDC in 2013, Knoxville sees 10 more days of precipitation of 0.01 
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inches or more.  In regards to the average annual precipitation total, a study conducted by 

the U.S. Department of the Interior and the U.S. Geological Survey found that from the 

period of 1961-1990, Tennessee averaged an annual precipitation total of 52.98 inches 

(see Figure 8).  Given the nearly 10 inch difference in annual precipitation totals, coupled 

with the differences noted in regards to relative humidity, it becomes clear that Tennessee 

does in fact represent more of a humid, sub-tropical climate than Delaware, reinforcing 

the need for decomposition studies specific to the environmental context displayed in the 

Delaware River Valley Region. 

Lastly, although the information presented in the sections above regarding burial 

type and depth cannot be modeled specifically to Delaware, certain environmental data 

may be of use.  As mentioned above, moist soils play a critical role in adipocere 

formation, especially the deeper one goes below the surface (Rodriguez 1997).  Figure 9 

presents water table data throughout the state of Delaware, which may prove to be of use 

if burials are found in areas with high depths to the water table, potentially leading to a 

greater preservation of body tissues (United States Department of Agriculture, National 

Resources Conservation Service 2012). 

Elevation   

In addition, Haglund et al. (1997) claim that depending on elevation, different 

carnivores may scavenge and disarticulate remains.  If this is known to be true, the same 

principle can apply to insects and plant growth as well.  Thus, in order to assess potential 

effects of differing altitudes on decomposition, a map of the varying elevations 

throughout Delaware is provided, derived from data extracted from the National 

Elevation Dataset, courtesy of the United States Department of the Interior’s United 
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States Geological Survey/Topocreator (see Figure 10).  Given that the highest point, 

Ebright Azimuth, is only about 450 feet above sea-level in Northern Delaware and seeing 

as to how the rest of the state shows elevations of 100 feet or less (United States 

Department of the Interior, United States Geological Survey/Topocreator 2014), it 

appears as if elevation will not be a dramatic factor involved in developing PMI standards 

specific to the state.  

Exposed versus Shaded Remains 

As Shean et al. (1993) have demonstrated, differences due exist between 

carcasses left to decompose in direct sunlight versus shaded areas.  In times of warm 

temperatures, exposed carcasses display a faster progression through decomposition.  In 

regards to Delaware, differences in temperature, specifically in regards to the average 

number of days above 90 degrees F, have already been discussed above.  Although it is 

impossible to define shaded areas, some data has been collected in regards to the number 

of clear, partly cloudy, and cloudy days experienced annually.  According to the joint 

NOAA, NESDIS, and the NCDC study in 2013, Delaware averages 97 clear days, 104 

partially cloudy days, and 164 cloudy days per year.  When these figures are compared to 

data collected in Knoxville, Tennessee, the report indicates 97 clear days, 107 partially 

cloudy days, and 162 cloudy days annually.  These numbers are essentially equal.  When 

compared across months, the numbers do not differ dramatically either.  Thus, it appears 

that if decompositional differences are to be seen, they will be more the result of factors 

such as temperature (hot, cold, extent of temperature extremes), humidity, aridity, 

precipitation, differences in insect types, scavengers, and so forth. 
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Soil Type 

 Given the relationship between soil type and pH in regards to the deterioration of 

osseous material, a description of soil types in Delaware is warranted.  A map of various 

formations and deposits throughout Delaware is provided in Figure 11 (Delaware 

Geological Survey 2010).  In addition, Figure 12 depicts the soils found throughout 

Delaware (United States Department of Agriculture, National Resources Conservation 

Service 2012).  This is provided in the hopes of understanding how soil moisture content 

and texture, in combination with pH levels, affects the rate of decay of bodies.  Although 

fully buried remains will not be analyzed in this study, this particular data may prove to 

be of value when attempting to assess whether bodies deposited on ground surface layers 

demonstrate a greater degree of preservation compared to those in indoor and aquatic 

contexts. 

Population Density 

 According to the United States Census Bureau (2010), Delaware is the 8th most 

densely populated state in the United States (see Figure 13).  Bordered to the northeast by 

New Jersey, to the North by Pennsylvania, and to the West and South by Maryland, 

Delaware is within close proximity to multiple major urban centers including 

Philadelphia, Baltimore, and Washington D.C.  As can be seen in Figure 10, the most 

densely populated areas in Delaware can be found in New Castle County, where 

Delaware’s most populated city, Wilmington, is located (2010).  Newark, Delaware, the 

third most populous city in the state, is also located in New Castle County (2010).  

Dover, Delaware’s capital city, and the second most populous city in the state, can be 

found in Kent County, the middle most County in Delaware (2010).  In addition, Figure 
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14 depicts the estimated population size of Delaware during the time of the last United 

States Census, totaling 897,934 (2010).  Currently, the population of Delaware is 

estimated to have risen since then, totaling 925,749 in the present day (see Figure 14; 

United States Census Bureau 2014).  A marked increase in population size every decade 

has been seen dating back to 1970. 

 Given the influence of population density on scavenger activity as mentioned 

above, it would appear that New Castle County would have the lowest likelihood of 

scavenger involvement with remains.  Kent and Sussex Counties, especially in areas near 

the shore in Kent County and to the West of Dover, are more likely to have scavengers 

given their lower population densities and increased land area compared to New Castle 

County.  However, Delaware is the 8th most densely populated state in the country, so the 

extent of the effects of scavengers can only really be determined once cases are 

examined.  This data is really only of use as a guide to assessing potential impacts of 

scavengers around the state. 



136 

Chapter Seven: Research Questions and Goals 

Through both quantitative and qualitative analyses, this research aims to address 

many questions and achieve multiple goals of varying subjects and scope.  In regards to 

quantitative analysis, this study sets out to not only develop a region-specific approach to 

estimating time since death in the Delaware River Valley Region, but to also compare the 

results of this particular study to Megyesi et al.’s (2005) landmark study conducted 

utilizing data from various regions throughout the country, including evaluations of ADD 

versus PMI, and core versus periphery processes in regression equations.  From there, the 

particular effects of variables such as environmental conditions, scene-specific factors, 

and depositional context on decay, and their usefulness in estimating time since death, 

can be evaluated.  Qualitatively, this study sets out to better understand the 

decompositional changes which occur, in order to develop a more region-specific and 

precisely-defined set of decomposition standards, applicable to both outdoor surface and 

indoor depositions, as well as aquatic contexts.  Lastly, this research also seeks to identify 

the particular pattern and progression of decomposition, as it applies to the Delaware 

River Valley Region, to develop a more accurate total body scoring system, as well as 

better inform the medico-legal community and aid in scientific forensic investigations.  In 

total, it is hoped that by refining these methods and better understanding decomposition 

in the Delaware River Valley, as well as the various factors which alter it, forensic 

investigators in the region will have a more valid and reliable set of methods by which to 

estimate time since death, affirming the need for region-specific standards. 
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Quantitative Focus 

Clearly, one of the main goals of this study is the development of a regression 

equation by which to estimate time since death in the Delaware River Valley Region.  In 

recent years, multiple studies such as those conducted by Megyesi et al. (2005) and 

Heaton et al. (2010) have attempted to utilize a quantitative approach to estimates of time 

since death.  Given the call by multiple studies, including those referenced above, to 

generate equations particular to more narrowly defined regions, this study aims to address 

this glaring need and gap in research. 

However, this study also sets out to take the need for region-specific equations a 

step further by evaluating the model derived from Megyesi et al.’s (2005) seminal paper, 

“Using Accumulated Degree-Days to Estimate the Postmortem Interval from 

Decomposed Human Remains,” and applying it directly to the data collected for this 

study.  Based on the results of a comparison of the coefficient of determination, R2, as 

well as a comparison of predicted versus actual ADD values developed utilizing the 

Megyesi et al. (2005) model and the model derived from this research, it is hoped that 

this approach will begin to illuminate answers to the question of whether or not Megyesi 

et al.’s work is applicable to the entire United States, or if more region-specific equations, 

with their own set of total body score systems, are indeed needed. 

Moreover, this study not only seeks to develop a regression equation to estimate 

time since death, but it also attempts to evaluate the effectiveness of the use of 

accumulated degree days versus post-mortem interval days.  The reason this particular 

approach is taken is to evaluate claims made by Megyesi et al. (2005) which states, 

“decomposition is best modeled as dependent on accumulated temperature, not time.”  
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Specifically, the study claims that ADD accounts for more of the variation in 

decomposition than simply counting the number of days which have passed since the 

individual’s expiration.  Therefore, this study seeks to evaluate “time since death” in two 

separate manners, the first looks at PMI as the number of days which have passed 

between the “date last seen” and the “date recovered,” while the second tallies the 

combination of elapsed time and temperature, as it is reflected in the number of 

accumulated degree days which have amassed during that same time frame.  In order to 

evaluate the use of both approaches toward the estimation of time since death, two 

separate models will be derived, one utilizing accumulated degree days and the other, 

post-mortem interval days.  This approach not only seeks to evaluate whether ADD or 

PMI best models decomposition, but also seeks to understand if this particular school of 

thought applies to the Delaware River Valley Region in particular. 

Furthermore, given the dearth of studies conducted in aquatic environments, this 

research seeks to derive a regression equation which can not only be applied in cases of 

outdoor and indoor depositions, but also to those involving water contexts.  Therefore, a 

separate regression equation will be developed for aquatic contexts in particular.  From 

there, the amount of variation which each equation accounts for, will be compared to 

each other in order to determine if a regression formula for each particular depositional 

context is warranted, or instead, if a general equation applicable to all contexts is better 

suited to the Delaware River Valley Region.   

Additionally, given the large amount of variation in decomposition, it is crucial 

that this study also seeks to determine if the variation seen can be understood by 

evaluating the effects of individual variables at play on scene, or determine if the effects 
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of those variables cannot be separated out from each other, instead reflected jointly as 

inextricably linked to the temperature component of the accumulated degree days and the 

total body score.  This particular research question derives from a theory developed by 

Stephen Nawrocki and Kristha Latham (2013), who claims that core and periphery 

variables exist in regards to decomposition.  According to Nawrocki and Latham, the 

core processes and variables, such as temperature, humidity, and insect activity, can be 

recorded on scene and tracked back through to the point of death, while the periphery 

processes such as adipocere formation, excessive scavenger activity, and so forth, are too 

difficult to model (2013).  Thus, given the interrelatedness of temperature with multiple 

periphery variables known to alter decomposition, this study seeks to determine if the 

effects of those variables can be identified separately, or instead, are inextricably tied 

together, the joint effects of which are reflected in the total body scores and the 

temperature component of the accumulated degree days. 

In addition, since Mann et al.’s (1990) paper, multiple research studies have 

attempted to assess the impacts of various variables on decomposition, with some 

offering contradictory views.  It is critically important that the effects of variables on 

decay is well known so that future studies can continue to refine quantitative approaches 

to time since death estimates using the relative impact, degree, number, and presence of 

variables to do so.  This evaluation also extends to the need to validate whether 

differences in the rate of decay exist between depositional contexts.  Therefore, this 

particular study will employ a dichotomous approach to make comparisons regarding the 

effects of variables on the rate of decay.  The particular variables in question will be as 

follows: 
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A. Dirty vs. Clean House 
B. Shaded vs. Exposed Remains 
C. Trauma vs. No Trauma 
D. Insect vs. No Insects 
E. Scavenging vs. No Scavenging 
F. Clothed vs. Not Clothed 
G. Soil pH Below 5.5 vs. Soil pH Above 5.5 
H. Supine vs. Prone 
I. Supine vs. Seated 
J. Supine vs. Hanging 
K. Prone vs. Seated 
L. Prone vs. Hanging 
M. Seated vs. Hanging 
N. Water Salinity Medium and Below vs. Water Salinity High-Medium and Above 
O. Indoor Context vs. Non-Water Outdoor Context  
P. Indoor Context vs. Water Context 
Q. Non-Water Outdoor Context vs. Water Context 
R. Sex: Female vs. Male 
S. Age: Below Age 50 vs. Above Age 50 
T. Stature: Below 6’0” vs. Above 6’0” 

 
Lastly, by developing a quantitative approach to PMI estimation, it is hoped that 

the demands set forth by Daubert (1993), Kumho (1999), and the Federal Rules of 

Evidence (2000), calling for replicable, reliable, and valid methods with consistent 

results, scientific acceptance, and the determination of statistically-backed error rates 

(Dirkmaat and Cabo 2012), will be met.  In conjunction with these federal mandates, this 

research can also address the needs outlined in the National Academy of Sciences’ (2009) 

report compelling the field to improve its methods and the samples upon which its 

standards are based, in order to demonstrate their validity, reliability, and accuracy, as 

well as provide statistical interpretations, confidence intervals, and error rates regarding 

its analyses.   
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Ultimately, it is hoped that this research will continue the strides made away from 

dated, typological approaches towards a more modernized, quantitative, and multivariate 

approach to modelling decomposition and the factors at play. 

Qualitative Focus 

 Qualitatively, it is crucial that this research study identifies the particular 

decompositional changes which occur in the Delaware River Valley Region, as they are 

critically important to determining accurate total body scores, and ultimately, accurate 

estimations of time since death. Studies have developed and employed the use of 

generalized or region-specific decomposition standards in order to tabulate total body 

scores as applicable to their particular research efforts and regions of interest.  However, 

those particular standards may not overlap completely with the decompositional changes 

seen in this region and thus may not be applicable, potentially invalidating the methods 

developed to estimate time since death in this study.  For example, in the Megyesi et al. 

(2005) study, the standards utilized are based on decompositional changes that they 

associated with cases in their dataset, which spanned multiple regions.  These 

observations of decomposition may be too general or incompatible with the changes 

observed in the particular area of interest in this study.  Additionally, in the Heaton et al. 

(2010) study, they specifically state that they adjusted the standards developed in 

Megyesi et al. (2005), as well as Hobischak and Anderson (2002), so that they identified 

decompositional changes tailored to their particular aquatic environment, which 

ultimately led to a more reliable and precise equation to estimate time since death.  

Therefore, in order to combat any issues arising from the use of invalid standards, the 

decompositional changes across all of the cases included in the dataset will be analyzed, 
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ensuring there is a complete understanding of the decay process as it occurs in this 

region.  In total, the result will be the development of a total body scoring system which 

will more accurately reflect the pattern of decomposition as it applies to the Delaware 

River Valley Region.  In this way, any time since death equation derived from data from 

this particular region, will more accurately model the specific decompositional changes 

which occur here.  Given the difference in variables factoring into decomposition 

between outdoor surface, indoor, and aquatic contexts, it will also be determined if a 

different set of total body scoring system standards are needed for each depositional 

context. 

Lastly, along the same vein, this study also seeks to identify the particular pattern 

and progression of decomposition, as it applies to the Delaware River Valley Region.  

For example: Does mummification begin first in the distal-most extremities?  Does 

skeletonization start in specific areas of the face and progress from there?  Given the 

environmental differences between this region and others throughout the country, 

identifying and recognizing these patterns may likely prove important to fine tuning the 

understanding of decomposition in the region and any standards derived from these 

observations.  In the end, these determinations may be used to better inform the medico-

legal community and aid in scientific forensic investigations.    

Informing the Medico-Legal Community 

After analyzing and refining these methods, developing a regression equation 

which incorporates an understanding of the variables at play, and arriving at a more 

informed understanding of the decompositional changes and patterns which occur in the 

Delaware River Valley Region, these results will be circulated throughout the medico-
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legal community in the area, in hopes of providing investigators with a more valid and 

reliable set of methods by which to estimate time since death.  Additionally, given the 

decompositional analysis and “tips” to be provided to help identify specific changes and 

patterns, the study will assist Medical Examiners, pathologists, and forensic investigators 

in successfully identifying traits necessary to assigning a total body score.  It is also 

anticipated that the insights developed in regards to key variables involved in decay will 

help the identification of critical factors on scene and guide investigations.   

In total, by highlighting these key observations and better understanding 

decomposition in the region, as well as the various factors which alter it, it is hoped that 

the regression equation will provide more reliable and precise estimates of time since 

death, and therefore lead to a quicker transition in regards to tracking down leads, 

identifying suspects, and closing a case. 
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Chapter Eight: Methodology/Research Design 

To begin, the study was broken down into two main components: a quantitative 

focus and a qualitative focus.  Both components informed each other, making up critical 

aspects of the development of the time since death regression equation.  The qualitative 

component focused on determining the specific pattern of decompositional changes 

which occur in order to inform the total body scoring system, while the quantitative 

aspect employed the use of a multivariate regression analysis incorporating statistically 

significant variables, total body scores, and accumulated degree days or post-mortem 

interval days, to create an equation by which to estimate time since death. 

Hypothesis 

Multiple studies conducted throughout North America have noted regional 

differences in the rate of decomposition of human remains due to the effects of various 

environmental, scene-specific, and depositional variables (Galloway et al. 1989; Mann et 

al. 1990; Komar 1998; Megyesi et al. 2005; Karhunen et al. 2008; Heaton et al. 2010; 

Parks 2011).  However, to date, no such study, whether qualitative or quantitative, has 

been conducted in the Delaware River Valley region, comprising southeastern 

Pennsylvania, New Jersey, and Delaware.  Given this dearth of studies, it is hypothesized 

that new insights regarding the progression of decomposition in this area, as well as the 

identification of key variables and the effects of depositional context on modelling decay, 

will be demonstrated.   

Specifically, in regards to qualitative analyses, based on the particular 

environmental, scene-specific, and depositional variables inherent to the area, it is 

hypothesized that a distinct progression to decomposition will be demonstrated for the 
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Delaware River Valley region.  As a result, a new total body scoring system, 

incorporating the specific decompositional changes and patterns of decay observed in this 

area, will need to be derived for the Delaware River Valley.  Additionally, given the 

postulated differences in the decomposition process between depositional contexts, 

especially in regards to decay in non-aquatic versus aquatic environments, it is 

hypothesized that two separate total body scoring systems will need to be developed, one 

derived specifically for non-water outdoor and indoor cases and another for water cases.  

Lastly, it is hypothesized that precise descriptions of the decompositional changes and 

patterns representing the process of decay particular to an area and depositional context, 

reflected in the total body score system, will be one of the most important factors 

involved in accurately modelling decomposition and estimating time since death. 

In regards to quantitative analysis, it is hypothesized that accumulated degree 

days will explain more of the variation in decomposition compared to post-mortem 

interval days, supporting similar conclusions in quantitative decomposition studies 

conducted in other regions.  Furthermore, in addition to total body score, it is 

hypothesized that multiple variables, comprising both core and periphery factors and 

processes, will be demonstrated to have a statistically significant effect on the rate of 

decay.  However, given the fact that their effects will be represented jointly in the total 

body score for each case, this particular discovery will further support the hypothesis 

regarding the critically important role played by accurate total body score descriptions in 

effectively modelling decomposition and estimating time since death.  Moreover, based 

on differences in the factors altering decay in varying depositional environments, it is 

hypothesized that stratified analyses will highlight the existence of as-yet-unknown 
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confounding factors which work to further complicate the estimation of time since death 

in aquatic environments and any models derived thereof.  As a result, these stratified 

analyses will validate the development of separate time since death estimation models for 

non-aquatic and aquatic cases.  Similarly, non-water outdoor depositions will be shown to 

produce the fastest rates of decay, followed by indoor and aquatic cases.  Along the same 

vein, these stratified analyses will also serve to further support conclusions regarding the 

utility of accumulated degree days versus post-mortem interval days in estimating time 

since death.  Lastly, and perhaps most importantly, by incorporating data into the model 

which are derived from cases in the Delaware River Valley, and utilizing a total body 

score system which is representative of the decay process observed in this area, it is 

hypothesized that this model will account for more of the variation in decomposition than 

that of the approach utilized by Megyesi et al. (2005).  This particular discovery will not 

only serve to validate the development of region-specific decomposition models, but will 

also specifically highlight the applicability of the model derived in this study to cases in 

the Delaware River Valley. 

Criteria for Inclusion 

In order to evaluate decomposition using both quantitative and qualitative 

analyses, this study took an applied, actualistic, and retroactive approach to data 

collection, focusing on real-life forensic cases handled by the Delaware Office of the 

Chief Medical Examiner.  In order to gain access to an appropriate sample size from 

which to draw meaningful conclusions and increase the statistical power of the dataset, 

past and present cases accessed from records comprising autopsy and investigator reports, 

photographs, and scene maps, were utilized.  No discrimination was made based on 
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biographical variables other than including only adult cases (with 16 being the cut-off) to 

protect against differences due to large body size discrepancies, thus allowing the 

inclusion of adult individuals of all sexes, ancestries, heights, and weights.  In order to 

protect the confidentiality of human subjects, cases were assigned unique identifiers, with 

case numbers and names being redacted.  Lastly, data accumulation efforts began at the 

Delaware Office of the Chief Medical Examiner in July of 2012 and ended in May of 

2013. 

In order to be included in the dataset, cases needed to conform to several criteria.  

First off, in order to develop as representative a sample as possible, a “fuzzy” keyword 

search was initiated for cases conforming to various stages of decomposition and 

subsequently grouped along those parameters, including all variations of the following 

terms: early, early-moderate, moderate, moderate-advanced, and advanced 

decomposition, as well as mummification and skeletonization.  These specific 

categorizations were extracted from the verbiage included in autopsy reports written by 

the Medical Examiners.  Given the “Lotus Notes” database system employed by the 

Delaware Office of the Chief Medical Examiner, these keywords could be inputted into 

the search query box and all autopsy case reports including them would be shown. 

Secondly, only cases which provided both a “date last seen” and “date recovered” 

were evaluated.  This particular criterion was strictly enforced in order to maintain as 

accurate an estimate of the post-mortem interval as possible.  If a known post-mortem 

interval was not provided, then there would be no way to determine the time required to 

produce specific decompositional changes or calculate the effects of specific variables 

and contextual factors on the rate of decay, critical components in the development of a 
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time since death equation.  Furthermore, the post-mortem interval derived from the date 

last seen and date recovered was critical to summing the total amount of accumulated 

degree days to which each particular case had been exposed. 

Moreover, after having identified cases exhibiting relevant decompositional 

changes, as well as a known post-mortem interval period, in order to evaluate the effects 

of depositional context on decomposition, cases were further broken up into three main 

groups: non-water outdoor, indoor, and aquatic contexts.  As a whole, the dataset 

consisted of cases representing a wide variety of conditions, including all stages of decay, 

various depositional contexts, and exposure to varying environmental conditions. 

Criteria for Exclusion 

After populating a list of potential candidates for inclusion into the dataset, each 

case needed to be read through in order to determine if it demonstrated any characteristics 

which would confound analysis or require extensive subjective interpretation.  Given the 

fact that this study attempted to maintain as objective an approach as possible, areas 

where subjective evaluations could be avoided, were avoided.  In particular, if the 

autopsy report or forensic investigator records on a case were not detailed or extensive 

enough to warrant inclusion in the dataset, they were excluded.  This also included those 

cases where descriptions were poor and no photographs were available to make 

determinations regarding relevant variables. 

As per the usual in studies incorporating multivariate regression analyses, outliers 

were identified by SAS 9.3, the statistical program used for analysis.  In order to remove 

the possibility of outliers influencing the dataset, the top five and bottom five percentile 

of cases (not percent of cases) seen to poorly fit the regression line, and thus deemed 
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outliers, were excluded from analysis.  In this way, the dataset used for analysis could 

counterbalance any potential effects from outliers.   

Given the fact that the dataset was working with accumulated degree days in one 

model and post-mortem interval days in another, differences in the top and bottom five 

percentile of cases were observed between both models.  It is important to note that 

percentile is different from percent as the former reflects a ranking of those cases outside 

of the normal range.  The top and bottom five percentile of accumulated degree day 

totals, which corresponded to values above 3600 ADD or below 30 ADD, only required 

the removal of five total cases, while the same percentile in regards to post-mortem 

interval days, which corresponded to values above 174 days or below 3 days, required the 

removal of 11 cases. 

Continuing on, as mentioned above, a very important factor in excluding cases 

dealt with the availability of a known “date last seen” and “date recovered.”  If this 

particular information was missing, these cases were excluded from entry into the dataset.  

In the same vein, cases which displayed very high post-mortem intervals above four years 

were excluded from consideration.  The reason for this exclusion deals with the fact that 

once the skeletonization phase has reached its dried out and fragile conclusion, no 

additional stages beyond that point exist.  Therefore, if a case was observed to be 

completely skeletonized, dried-out, and fragile, and the associated post-mortem interval 

was several years in length, that particular case would only serve to skew the dataset 

towards that higher value.  In essence, these cases functioned as outliers and warranted 

exclusion. 
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Additionally, on some occasions it was observed that the accumulated degree 

days or post-mortem interval days on a case did not correspond with what was typically 

seen in regards to the decompositional changes expected by that point, especially in 

comparison with cases displaying similar accumulated degree days.  Therefore, under 

such circumstances, those cases were removed from consideration in the data analysis as 

well. 

Similarly, given the complications regarding decelerating the rate of 

decomposition in cases exhibiting large degrees of saponification, those case records 

which displayed extensive adipocere development were excluded.  Under these 

circumstances, it appeared as if the adipocere prevented the disintegration of tissues to 

the point of skeletonization, instead presenting a fleshed appearance, covered in 

adipocere and mud.  These observations did not correspond to the model, which is 

developed from non-adipocere filled cases, and therefore required removal. 

Another point of exclusion dealt with exposure to multiple depositional contexts.  

In particular, if a case was seen to have washed ashore, given the mix of contexts to 

which it would have been exposed, it was excluded from the dataset.  Given the fact that 

one could not predict the length of time spent in the water versus the time spent on land, 

it was impossible to calculate the accumulated degree days to which the body had been 

exposed, especially considering the temperature differences between water and on land.  

This also complicated matters concerning which total body score system to utilize, as 

scores differed between water and non-water cases.  The variables at play in both 

contexts also differ, introducing another confounding aspect.  Therefore, exclusion was 

certainly warranted. 
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 Lastly, continuing on with the discussion of aquatic cases, water temperature data 

for the calculation of accumulated degree days was hard to come by.  Given the need to 

determine the exact temperatures to which the bodies had been exposed to in water, only 

those cases which could be matched up with records from a nearby weather station in the 

same body of water, were included in the dataset.  All other cases lacking accurate water 

temperature data were subsequently excluded.  If this particular step was not taken and 

the water temperature records from nearby bodies of water were utilized in place of the 

missing data, this study would have to have made undesirable assumptions regarding 

similarities in water temperature in similar regions regardless of the characteristics (salt, 

fresh, brackish, etc.) of the bodies of water being compared.  Thus, in order to avoid 

assumptions claiming, for example, that the ocean temperature recorded in an area was 

the same as that of a nearby man-made pond, these exclusions were necessary.  

Variables of Interest 

In addition, in alignment with the methods of studies in other regions, and as 

identified by Mann et al. (1990) and all subsequent research, certain environmental and 

scene-specific variables were recorded from case files based on their presumed effect on 

the rate of decay.  Those variables are discussed in detail above (see Chapter Five).  Their 

inclusion in the dataset was based largely in part on whether or not historical records 

existed recording their presence, absence, and number, or if they were noted in sufficient 

detail in autopsy and forensic investigator reports and photographs.  Some variables, such 

as the percentage of relative humidity, have not been recorded in sufficient detail by any 

reliable source, while others, such as plant activity and embalming, were not of particular 

interest to the study.  Therefore, those variables were excluded. 
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In regards to the variables of interest to this study, based on the requirements 

stated above, they were as follows: temperature (measured in accumulated degree days), 

post-mortem interval length (measured in days), total body score (based on quantified 

observed decompositional changes), precipitation (including rain, melted snow, and so 

forth), insect activity, scavenger activity, penetrating peri-mortem trauma, clothing, shade 

versus sun exposure, body position, soil type, soil pH, dirty versus clean houses, water 

salinity, as well as aspects of the biological profile, including age, sex, and stature.  Based 

on the particular depositional context, some variables were applicable in some 

circumstances, while others were not.  Tables nine through 16 summarize the variables 

recorded specific to each depositional context. 

 To demonstrate how each variable was collected and reconfigured into a 

quantifiable form in order to evaluate their effects on the rate of decay, they will be 

discussed individually below.  Before delving into specifics however, it is crucial to note 

that given the need to quantify the data collected in some format, while also recognizing 

the fact that differing degrees of each variable may play varying roles in regards to 

altering the decomposition process, point systems were devised to account for these 

aforementioned considerations.  

Temperature: Calculating Accumulated Degree Days 

As stated above, some researchers (Megyesi et al. 2005; Simmons et al. 2010a; 

2010b; Heaton et al. 2010; Nawrocki 2011) currently believe that the principle of 

accumulated degree days explains more of the variation in decomposition, compared to a 

simple measure of time quantified in the form of the post-mortem interval period.  In 
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order to evaluate such claims, two approaches were taken based on whether the cases 

were derived from non-water outdoor and indoor contexts or aquatic contexts.   

In regards to the outdoor and indoor cases, retrospective temperature data was 

accessed utilizing the National Oceanic and Atmospheric Administration’s National 

Climatic Data Center, Global Historical Climatology Network (2013).  This database of 

historical temperature records compiles daily maximum and minimum observations of 

temperature throughout a number of National Weather Service Stations situated 

throughout the country.  Dozens of such weather stations exist in the State of Delaware.  

Based on the exact location in which a corpse was found, which was recorded in forensic 

investigator reports, the closest National Weather Service Station with temperature 

records during the post-mortem period of interest, was mined for data.  Starting on the 

date in which the body was recovered, back until the date in which the individual was last 

seen, the minimum and maximum temperatures for each day were recorded and then 

averaged.  The average for each day was then summed over the post-mortem period in 

order to calculate the total accumulated degree days, in degrees Celsius, to which the 

corpse was exposed.  No corrections were performed on any of the temperature data 

based on the distance from the site to the weather station, or any other variable. 

In regards to aquatic conditions, a similar approach was utilized.  Unfortunately, 

the data was much harder to come by.  Given the results of Champaneri’s (2006) 

research, which found that the decomposition of rat carcasses in temperature-controlled 

aquatic environments was affected by temperature much like terrestrial decomposition 

demonstrates, the need developed to access water temperature records to calculate 

accumulated degree days.  Utilizing surface ambient temperatures would not suffice, as 
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those temperatures do not accurately reflect the heat-energy units to which bodies 

deposited in water were exposed to.  In turn, the resulting predictive equation would not 

explain much of the variation observed.  Thus, the decision was made to use actual water 

temperature data.   

However, given the difficulty in placing water temperature recording stations at 

the same intervals as weather stations on land, many areas lacked temperature records.  

This was especially the case in situations where bodies were found in small lakes, ponds, 

and streams.  Therefore, as described above, many of these cases were excluded from the 

dataset and analysis.  Fortunately, water temperature data was eventually procured from a 

variety of sources including the United States Department of Interior’s United States 

Geological Survey, National Water Information System (2013), the National Oceanic and 

Atmospheric Administration’s National Data Buoy Center, Chesapeake Bay Historical 

Marine Database (2013), and the National Oceanic Atmospheric Administration’s Center 

for Operational Oceanographic Products and Services, Tides and Currents Historical 

Water Temperature Records Database (2013).  Once this data was procured, the same 

approach utilized in regards to the calculation of accumulated degree days in outdoor 

surface and indoor contexts was utilized. 

However, regardless of depositional context, one caveat of note should be 

disclosed.  Given the fact that accumulated degree days represent the heat-energy units 

available to drive biological and chemical processes, such as bacterial and larvae growth 

(Megyesi et al. 2005), a “base temperature” exists representing the temperature under 

which these processes stop.  As noted above, optimal temperature ranges exist for both 

bacterial and insect activity.  Below the minimum range, this activity not only becomes 
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greatly retarded, but ceases altogether (Micozzi 1997).  Despite the use of bases of six 

and 10 degrees Celsius by a number of forensic entomological studies (Byrd and Allen 

2001; Donovan et al. 2006), Vass et al. (1992) state that due to the concentration of salt in 

the human body, decomposition occurs down to zero degrees Celsius.  In fact, Higley and 

Haskell (2001) demonstrate that the most accurate time since death equations utilize a 

base temperature of zero degrees Celsius or 32 degrees Fahrenheit, corresponding to the 

freezing point.  Therefore, in this study, accumulated degree days were calculated using 

average daily temperatures above zero degrees Celsius.  In cases where the minimum 

daily temperature was lower than zero degrees Celsius, the temperature was always 

recorded as zero rather than as a negative value.  This approach to accumulated degree 

day calculation is the same as that employed in Megyesi et al. (2005). 

In total, the dataset averaged 510.1 accumulated degree days, with a range from 

45.3 to 3546.7, and a standard deviation of 756.7 ADDs.  Table 17 depicts the frequency 

and range of accumulated degree days included in the dataset in a histogram format. 

Post-Mortem Interval Length 

 For each particular case included in the dataset, the post-mortem interval length, 

measured as the number of days between the “date last seen” and the “date recovered,” 

was known.  The PMI period was determined by forensic investigators upon 

identification of the unidentified remains.  In turn, the last known history of the 

individual was tracked up until the point they were reported missing.  As a result, one 

could simply calculate the difference between the date the individual was last seen and 

the date they were recovered, in order to determine the post-mortem interval length.  

Obviously, as described above, this determination played a factor in the summation of 



156 

accumulated degree days based on historical temperature records over the post-mortem 

interval period determined for each case. 

 In regards to the figures derived from this dataset, the mean post-mortem interval 

length was 28.1 days, with a standard deviation of 35 and a range from four days after 

death to 169 days post-mortem.  Table 18 depicts the frequency and range of post-

mortem interval days included in the dataset in a histogram format. 

Developing the Total Body Score 

The total body scoring system was derived in part from two sources: for non-

water outdoor and indoor cases, the Megyesi et al. (2005) standards were utilized, while 

the standards produced by Heaton et al. (2010) were consulted for aquatic cases.  A 

distinction was made between these two standards given the recognition that these 

varying depositional contexts present their own set of variables which alter decay in 

different ways, thus producing different decompositional changes.  Importantly however, 

these standards were then adapted and changed to better fit the specific decompositional 

changes and patterns observed in the Delaware River Valley Region.  Assuming that the 

specific environmental and ecological factors in the region would alter the decay process, 

a refined scoring system was needed to not only better represent decomposition in the 

area, but to develop a predictive equation more applicable to this region.  Based on the 

total body score descriptions created, evaluations could be made regarding whether or not 

a distinct progression to decomposition exists in the Delaware River Valley. 

In order to do so, this study employed the use of several key qualitative methods 

to build the quantitative scoring system.  Those methods included the use of first-hand 

observations of decomposition in a variety of stages and environmental settings, analyses 
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of patterns based on descriptions of decompositional changes in each decompositional 

stage as defined by autopsy and forensic investigator reports, examination of scene 

photographs, and consultation with various forensic investigators, medical examiners, 

and forensic anthropologists.   

In particular, the descriptions used in the autopsy, forensic investigator, and 

supplemental investigation reports, as well as observations made from scene photographs, 

played a significant role in shaping the descriptions developed for the total body score 

system utilized in this study.  The most valued information pertained to the extent and 

location of bloating, marbling, skin and hair slippage, degloving, skin discoloration, 

purging of fluid, autolytic and liquefaction changes to organs, wrinkling of the hands and 

feet, development of “washerwoman” changes, location and amount of soft tissue 

present, percent of bone exposed, extent of dried, leatherized, and mummified skin, 

degree of scattering of remains, and indications and scope of insect and scavenging 

activity.   

Based on these valuable descriptions, a set of standards particular to non-water 

outdoor and indoor, as well as aquatic depositional contexts, was created.  Each set of 

standards was divided up into the three main areas of the body: head/neck, trunk, and the 

limbs.  For the sake of clarity, in regards to the three subsets of the body making up the 

total body score, the genitalia, clavicles and upper ribs were defined as part of the torso.  

From there, each general stage of decomposition was identified, divided up into sub-

stages, and assigned their own specific score.  Therefore, when evaluating 

decomposition, one need only match the observed decompositional changes in each area 
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of the body to their assigned scores, and subsequently sum those figures to calculate the 

total body score. 

In turn, the Megyesi et al. (2005) and Heaton et al. (2010) standards were altered 

to more accurately reflect the decomposition process in this specific area.  When each 

specific stage and sub-stage was identified, scores were attributed to each phase of the 

process, ranging from three to 43 for non-water outdoor and indoor cases and three to 29 

for water cases.  By utilizing a qualitative analysis of the decomposition process, the 

result was a new set of standards by which to quantitatively score the decompositional 

changes observed and ultimately, predict time since death. 

As it relates to the accumulated degree day group in this dataset, the combined 

weighted total body score range spanned between eight and 39 points on a 3-42 scale.  

The average total body score attributed to the cases equaled 17.2, with a standard 

deviation of 6.9.  Table 19 depicts the frequency and range of weighted total body scores 

included in the ADD dataset in a histogram format.  In terms of subsets, aquatic cases 

ranged from eight to 19.5 on a 3-29 scale.  The average equaled 11.8, with a standard 

deviation of 2.7.  The combined outdoor and indoor case subset ranged from eight to 39 

points on a 1-42 scale.  The mean averaged at 17, with a standard deviation of 7.8. 

In regards to the post-mortem interval day group, the combined weighted total 

body score also averaged 17, but the standard deviation was calculated to be 6.8.  The 

total body scores also ranged from eight to 39 on a 3-42 point scale.  Table 20 depicts the 

frequency and range of total body scores included in the PMI dataset in a histogram 

format.  The aquatic subset ranged from eight to 18 on a 3-29 scale.  The average equaled 

11.6, with a standard deviation of 2.4.  On a scale of 3-42, the combined outdoor and 
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indoor cases ranged from eight to 39 points, averaging 17, with a standard deviation of 

7.5. 

Precipitation 

 In addition, precipitation totals over the course of the post-mortem interval period 

were collected.  This particular variable was of interest in order to determine if the effect 

of water, not only in the form of accelerating or decelerating decomposition, but also in 

regards to detracting insect oviposition, scavenger access, promoting skin sloughing and 

adipocere development, and so forth, was apparent.  Also, although the effect of rain in 

cases of deposition in water and in indoor contexts was assumed to be negligible at best, 

it was collected in such cases anyway, mostly due to the fact that the data was available.   

In order to collect data regarding precipitation totals, both rain and melted snow 

totals were summed for each day.  These particular figures were collected from the same 

source in which the historical temperature records were accessed: the National Oceanic 

and Atmospheric Administration’s National Climatic Data Center, Global Historical 

Climatology Network (2013).  In addition to historical temperature data, this database 

provides information regarding daily precipitation totals, and occasionally, evaporation 

and soil temperature records.   

As was the case for temperature data, the nearest National Weather Service 

Station was tapped for precipitation totals.  Starting on the date in which the body was 

recovered, back until the date in which the individual was last seen, the amount of rain 

and melted snow was measured in inches and summed over the course of the entire PMI 

period.  In most cases, the same weather station was utilized for both temperature and 

precipitation figures.  In cases where the same station was not used, it was due to 
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incomplete or missing precipitation numbers.  The next nearest National Weather Service 

Station was accessed to fill in when necessary. 

In total, precipitation numbers varied throughout the dataset, mostly related to the 

differences in post-mortem interval length.  The lowest sum was zero inches of rain, with 

the highest equaling 35.2 inches.  More specifically, in the accumulated degree day 

group, the average total was 4.3 inches, with a standard deviation of 6.1 inches.  In 

regards to the post-mortem interval day group, the average was 3.9 inches, with a 

standard deviation of 4.7 inches. 

Insect Activity 

 In order to judge the presence of insect activity, a number of sources were used.  

Autopsy reports were often good sources of information as they not only noted the 

physical presence of insects and casings, but also any evidence of insect activity in the 

form of tissue consumption.  Forensic investigator reports were also extensively used for 

the purpose of determining if insect activity and their artifacts were observed on scene.  

Lastly, photographic evidence from scenes was examined to determine if insect activity 

was present when autopsy or investigator reports failed to make mention of it. 

In order to quantify the presence or absence of insect activity and determine its 

effect on the rate of decay, as well as any potential correlations to the total body score, 

points were assigned based on the degree of insect activity observed.  This particular 

method was utilized to not only quantify insect presence, but to also acknowledge the 

differences between the beginning stages of insect involvement compared to infestation 

and the end stages of activity.  Thus, in order to do so, the following scores were 

developed based on autopsy and investigator reports, as well as examination of scene 
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photographs: 1). Zero points for the absence of insect activity and any signs of their 

presence, 2.) One point for insect activity, 3.) Two points for insect infestation or 

significant insect activity in the area, 4.) Three points for artifactual evidence of their 

presence in the form of casings or dead insects.  This last score was included to 

acknowledge the fact that when this particular point in time is reached, insects have 

already consumed tissues and decomposition has progressed relatively far along in the 

process.  Therefore, the score of three reflects insect activity which has already happened, 

as opposed to that which was never observed, demonstrated in cases where there is a 

complete and total absence of any signs of insect activity.  Given the potential for 

differential activity in various areas of the body, as well as differential preference for 

natural orifices, each of the three main body areas (head/neck, torso, and limbs) was 

scored.  In total, the scoring system is believed to accurately capture the degree, presence, 

or absence of insect activity throughout the body. 

Importantly, if a particular area showed both insect activity and insect artifactual 

evidence, it was scored as “present” to account for the effect of the continual breakdown 

of tissue by the insects present on the body. 

Moreover, in regards to insect activity seen on overlying clothing and not on the 

body itself, the insect activity was scored as “absent,” given the inability to directly 

confirm their influence on the breakdown of body tissues.  In this way, the breakdown of 

tissue is prevented from being incorrectly attributed to insect activity if no such direct 

evidence is present. 

Based on these criteria, for the accumulated degree day group, 36 total cases 

demonstrated no evidence of insect presence at any point in time.  Out of those 36 cases, 
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21 were from aquatic contexts.  Additionally, out of the remaining 15 cases in which no 

insect activity was seen, all but three were found in indoor contexts.  Therefore, the 

majority of non-water outdoor depositions demonstrated evidence of insect activity. 

In terms of the post-mortem interval day group, 31 cases showed no evidence of 

insect activity of any kind.  The majority of cases exhibiting no insect presence were 

found in the water, 15, and indoors, 14, once again demonstrating the presence of insects 

in non-water outdoor contexts. 

Scavenging Activity 

 Once again, evidence of scavenging activity was noted in both autopsy and 

forensic investigator reports through examination of bite and chew marks, gnawing, and 

scratches.  Indications of scavenging were relatively difficult to detect via photographic 

evidence, given the need to assess bites and scratch marks.  Nonetheless, photographs 

were consulted as needed. 

Although often synonymous with carnivore activity, the presence of scavenging 

activity was defined to include any evidence of manipulation of the body tissues or bones 

by any animal, regardless of if on land, indoors, or in water.  This particular decision was 

made to reflect the potential effects of fish, crustaceans, domesticated pets, and the like, 

and allow a direct comparison between outdoor, indoor, and water cases.   

As was seen with a number of the variables examined by this research, indications 

of scavenging activity were noted using a binary system.  When scavenging was noted, a 

score of one was attributed to the case, while no evidence of activity received a score of 

zero.  In this way, scavenging activity could be quantified and evaluated in regards to its 

effects on the rate of decay and to the total body score. 
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In terms of total numbers, compared to the degree of insect activity observed, 

indications of scavenging were no more equal across contexts.  In the accumulated degree 

day group, although 13 of the 20 non-water outdoor cases, and 13 out of 23 aquatic cases 

showed no signs of scavenging, only one indoor case out of 37 showed indications of 

scavenging.  In that particular case, domesticated pets within the home consumed parts of 

the soft tissue.  This may reflect the unwillingness of domestic pets to consume tissue 

until a number of days have gone by. 

The same general trend was seen in the post-mortem interval day group as well, 

with only one out of 39 indoor cases showing indications of scavenging.  The outdoor 

and aquatic deposition cases were split relatively evenly. 

Penetrating Peri-Mortem Trauma 

 In order to evaluate claims regarding the preference of insects for traumatic areas 

of the body and thus, quicker access to the tissues and internal organs subsequently 

accelerating decay, evidence of penetrating peri-mortem trauma was collected.  Any 

evidence of penetrating trauma occurring at or near the time of death, not related to insect 

or scavenging activity, was noted, including gunshot and sharp force wounds.  Scratch 

and superficial cut marks were not deemed to be penetrating trauma given the fact that 

their presence did not provide quicker access to the internal aspects of the body. 

Given the potential for acceleration of decomposition, penetrating peri-mortem 

damage, as evidenced in the autopsy or forensic investigator report, was recorded.  

Abrasions, contusions, or areas of hemorrhage not caused by penetrating injuries were 

not counted as penetrating peri-mortem trauma, as they are not directly related to 

facilitating insect access to the remains or accelerating decomposition, and may have 
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been caused post-mortem or as a result of insect activity.  Additionally, unless a 

penetrating peri-mortem defect was clearly noted in the bone, if the area being scored 

was mostly in a skeletonized state, penetrating peri-mortem trauma was scored as “N/A” 

to reflect the inability to make a judgment regarding the presence of trauma.   

As was the case for quantifying the degree of scavenging activity, a binary score 

was utilized, with zero indicating no trauma, and one demonstrating the presence of 

penetrating peri-mortem trauma.  Cases displaying scores of “N/A” were not assigned 

scores. 

As observed in this dataset, penetrating peri-mortem trauma was not apparent in 

most cases.  In fact, in both the accumulated degree day and post-mortem interval groups, 

only nine cases in each dataset showed any signs of penetrating injuries.  Of all contexts, 

those found in non-water outdoor contexts showed the most evidence of trauma, often 

related to suicidal gunshot wounds. 

Clothing 

 As discussed above, varying opinions exist regarding the influence of clothing on 

the rate of decay.  In order to examine that relationship, the presence of clothing on the 

body was quantified.  As usual, forensic investigator reports noted the clothing left on the 

body.  This information was also discussed in detail in the introductions provided in 

autopsy reports.  Photographic evidence was consulted when necessary.  Based on those 

descriptions, the clothing located on the body was able to be scored. 

 In order to account for different clothing types, scores were assigned based on the 

thickness and ability of the material to provide thermal insulation.  Additionally, given 

the fact that different clothes are worn on different areas of the body, clothing scores 
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were assigned for the head, torso and arms, legs, and feet.  In order to account for 

layering and thus, added protection from ambient temperature, insects, and scavenging 

activity, if multiple layers were observed, each layer was scored and a total was 

calculated for that particular area of the body.  The scores from each area were 

subsequently totaled for an overall clothing score.  The scoring system is described below 

and summarized in Table 21.   

For the head, scores were straightforward given the limited scope of coverings 

available.  In cases where hats or nightcaps were seen, one point was assigned. 

For the torso, given the variety of clothing options available, various scores had to 

be assigned.  Blouses, t-shirts, shirts, and sheet coverings were attributed scores of one.  

Given the lighter nature of nightgowns and tank tops, they were scored as 0.75, while 

bras were scored as half a point.  Given the greater area covered, insulating effects, and 

thickness of the material, long-sleeve shirts, thermal shirts, sweaters and sweatshirts, as 

well as quilts and blankets, were given scores of two.  Lastly, jackets of all types were 

scored as three. 

The legs, which were not included with the feet, were also complicated to score 

given the presence of multiple layers.  All shorts, boxer type undershorts, robes, 

nightgowns, and legs covered by sheets, were scored as one point.  Underwear and 

panties also received a half point.  Conversely, pants, jeans, sweatpants, pajama bottoms, 

thermal underwear, and bodies covered in blankets or quilts, were scored as two.     

Lastly, in regards to the feet, bodies found wearing both socks were assigned 

scores of one.  Occasionally, bodies were found covered with a sheet, which was also 

scored as one point.  Given the greater protection afforded by sneakers, boots, and shoes, 
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they were attributed two points.  Oftentimes, only one shoe would be found on the body, 

thus gaining only one point.  One sock found on the body also received half credit, or half 

a point.  Sandals received half a point as well. 

Although this particular scoring system was much more complicated than the 

binary system used for most other variables, it was designed specifically to account for 

the protection which clothing provides from the environment, temperature fluctuations, 

sun exposure, and insect and scavenging activity.  It also provided a large scale by which 

to quantitatively evaluate the effect of clothing on decomposition, as various amounts and 

degrees of coverings could be evaluated. 

When the amount and presence of clothing was scored, it was observed that the 

overwhelming majority of cases were found clothed in some manner for both the 

accumulated degree day and post-mortem interval day groups.  The accumulated degree 

day set contained 13 individuals found completely nude and four wearing only one small 

piece of clothing.  The PMI group showed 12 completely nude corpses and five bodies 

wearing one piece of clothing.  As mentioned above, some individuals were found under 

sheets, blankets, or quilts, which was factored into the assessment of clothing score.  

Although some may argue against the inclusion of such cases, as Megyesi et al. (2005: 2) 

state, “While this type of unusual treatment could introduce error into the sample, they 

represent types of cases found in the practices of forensic investigators nation-wide and 

therefore serve as realistic tests for any method of PMI estimation.”  Therefore, they were 

included in the dataset. 
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Shade versus Sun Exposure 

 In regards to the exposure of bodies to sun versus shaded conditions, forensic 

investigator reports and photographs were consulted.  In these reports, notes would be 

taken regarding the final location in which the body was recovered.  Oftentimes, 

observations were recorded as follows: “The body was found underneath a thicket of 

brambles” or “The corpse was found snagged to a wooden plank beneath the Chestnut 

Street Bridge.”  Based on these descriptions, determinations could be made rather easily 

regarding the degree of exposure of the body to sun or shade.  In order to visually 

confirm these observations, photographic evidence of the scene was utilized.  For the 

most part, the photographs were clear enough to distinguish the context and conditions to 

which the bodies were exposed.  When unavailable however, the forensic investigator 

reports were relied on solely. 

 Obviously, these particular observations were more applicable to bodies found on 

land.  Given the tendency of corpses to move along waterways depending on tides and 

currents, this particular variable was not emphasized to any great extent in water cases.  

Although the data was collected in aquatic contexts, not much was expected in the way of 

results for the reasons just mentioned. 

 Lastly, in order to transform this data into a quantifiable format to facilitate 

evaluations regarding its impact of the rate of decay, a binary code was used.  In this 

particular case, bodies exposed to the sun were marked as having a score of one, while 

those who did not receive sun exposure were marked as zero. 

 In total, the majority of outdoor corpses were located in the woods or fields.  

Given the cover provided by tree canopies, as well as the protection afforded by 
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brambles, thickets, and so forth, 16 out of 20 cases in the ADD group, and 15 out of 18 

cases in the PMI group were shaded from direct exposure to the sun.  On the flip side, 

cases found in water, regardless of the group, were normally completely exposed to the 

sun, unless snagged under a bridge or weighed down. 

Body Position 

 Extraction of data pertaining to the position of corpses upon recovery was 

relatively straightforward.  In particular, this determination was made based on 

observations taken from forensic investigator reports and scene photographs.  In these 

reports, investigators would note whether the corpses were recovered in prone, supine, 

hanging, or seated positions, as well as if they were found lying on their backs or to a 

particular side.  These observations were then extracted from the reports and included in 

the dataset.  In order to substantiate these claims, scene photographs were consulted to 

confirm the body position. 

In regards to quantifying the effects of differences in body position on the rate of 

decay, scores were attributed based on the results of previous studies analyzing 

decomposition in a variety of positions (Early and Goff 1986; Goff 1992; Aturaliya and 

Lukasewycz 1999; Shalaby et al. 2000).  Overall, it appears as if supine and prone bodies 

are the quickest to decompose.  Therefore, these cases were scored highest.  Following 

that are bodies found lying on their sides.  Seated cases were next in the sequence, given 

the mix of vertical and horizontal placement of body parts.  Lastly, vertically-positioned 

bodies appear to be the slowest to decompose, especially those found in a fully suspended 

state as a result of hanging.  Thus, they were attributed the lowest scores in the analysis.  
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As it applied to the dataset, regardless of group, more often than not bodies were 

found to be in supine positions.  Prone-positioned bodies followed next, with a handful of 

cases containing bodies lying on their sides, seated, or hanging.  In water contexts, bodies 

were most often seen in the prone position, although a number of cases were deemed 

“Unknown,” given the fact that the body had been moved prior to the arrival of the 

forensic investigator. 

Soil Type 

 Since 1899, the United States Department of Agriculture’s (USDA) Natural 

Resources Conservation Service has been publishing soil surveys from across the United 

States.  Currently, these soil surveys are not only archived as PDF files, but they are 

digitally accessible utilizing the USDA’s Web Soil Survey (2013).  The Web Soil Survey 

is an interactive tool which allows one to access current tabular and spatial data and 

create a custom soil report in the particular area of interest.   

By utilizing this service, this study was able to access the specific soil types 

located in the area in which each specific case was found.  In order to do so, each County 

in Delaware was designated as the specific area of interest in the soil survey.  This in turn 

produced a detailed soil map of each County, showing the soil types throughout.  From 

there, each case was found on the soil survey map based on the location specified in 

forensic investigator reports, thus identifying the soil type in the area in which each body 

was recovered.   

In regards to the quantification of soil types to allow the determination of their 

effect on decomposition, categories were created for each and subsequently compared to 

one another.  Obviously, given the location of soil environments, information could only 
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be collected from those outdoor cases found lying on the soil ground surface.  It should 

also be noted that occasionally, soil surface type in the particular area in which the body 

was found, was unknown.  In those situations, the soil type was marked as “Unavailable.”  

When this limiting criterion is coupled with the limited availability of soil data, 

information could only be collected on 9 cases in the ADD group, and 8 in the PMI 

group.  Of those cases, only four general soil types were noted, including: loam, sandy 

loam, silt loam, and moderately decomposed plant material.  Each of those soil types 

were assigned scores ranging from one to four, respectively.  Of those in the accumulated 

degree day set, four were found on sandy loam, three on silt loam, one on loam, and one 

on moderately decomposing plant material.  In regards to the post-mortem interval group, 

four were found on sandy loam, three on silt loam, and one on loam. 

Soil pH 

 In terms of the collection of soil pH data, the aforementioned Web Soil Survey 

tool (2013), offered by the United States Department of Agriculture’s National Resources 

Conservation Service, was employed.  Whenever information was gathered regarding soil 

type, the Web Soil Survey also provided the specific pH of the soil in that area.  In this 

way, data regarding both soil type and pH were able to be collected simultaneously.  As 

in the collection of information pertaining to soil type, occasionally data was missing in 

the particular area in which the body was found, requiring soil pH for that case to be 

listed as “Unavailable.”   

In order to evaluate the findings of Nielsen-Marsh et al. (2007), who argue that an 

increase in bone destruction is observed under pH levels of 5.5, coupled with the fact that 

no soil types were designated as basic, outdoor surface cases were grouped based on 



171 

whether or not the soil type in which they were found corresponded to pH values above 

or equal to/below that threshold.  By doing so, the cases could then be quantified in a 

binary fashion using a code of zero or one. 

Of the nine total surface depositions in the accumulated degree day group with 

available soil data, seven of those soil types had pH levels above 5.5, while only two 

were at or below that threshold.  The remaining seven cases had soil types and pH levels 

which were either unknown or unavailable.   

The PMI group contained seven cases deposited on soils with a pH level above 

5.5 and only one case found on sandy loam with a pH level of 5.5.  A total of six cases 

had soil types and pH levels which were unknown or unavailable. 

Dirty versus Clean Houses 

 In order to determine whether or not the state of cleanliness of a residence has any 

impact on the rate of decomposition, data was extracted regarding whether or not 

individuals were found in clean versus dirty houses.  Once again, this determination was 

made based on forensic investigator reports and observations made from scene 

photographs.  In cases in which houses were in a state of disarray, this was noted in 

investigator reports.  In those instances where houses were clean, investigators more 

often than not, did not note the state of cleanliness.  This insight was determined based on 

discussions with forensic investigators and examination of scene photographs.  Therefore, 

when no mention of the state of cleanliness was made in the reports, it was assumed that 

the residence was clean.  This was subsequently confirmed through visual examination 

whenever possible. 
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 Obviously, given the fact that no clear distinction exists between both categories, 

some decisions had to be made on the part of the author and investigators regarding 

exactly what constitutes a “clean” versus “dirty” residence.  Thus, a loose criterion was 

applied to those cases which would constitute as being in a “dirty” house.  In particular, if 

investigators used the word “dirty” or a similar term to describe the residence, it was 

classified as such.  Additionally, based on scene photographs, if the residence was seen to 

be in a state of disarray or covered in garbage, it was classified as “dirty.”  The author 

was hesitant to use the presence of insects as a marker of a “dirty” house for obvious 

reasons.  When no decision could be made, the state of cleanliness was marked unknown. 

 Although classification of these categories required some effort, the quantification 

of these conditions was relatively straightforward.  As has been demonstrated in all of the 

variables corresponding to the presence or absence of a specific factor, a binary code was 

utilized to quantify dirty versus clean residences. 

In terms of total numbers, indoor cases in the accumulated degree day group were 

described as “dirty” in eight out of 37 instances.  The remaining 29 were deemed not 

dirty or “clean.”  The post-mortem interval group also showed eight cases deemed 

“dirty,” with 31 cases in “clean” residences. 

Water Salinity Level 

 Given the purported ability of high salt concentrations to limit bacterial activity, 

data regarding water salinity levels was collected for aquatic cases.  In order to do so, the 

National Oceanic Atmospheric Administration’s Center for Operational Oceanographic 

Products and Services, Delaware Bay Salinity Nowcast database was accessed (2013).  

This particular federal website provides information regarding salinity levels in the 
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Delaware River, Chesapeake and Delaware Canal, Delaware Bay, and the Atlantic Ocean 

off of the coast of Delaware.  The salinity levels range from zero to over 35 practical 

salinity units (PSU), with a score over 32 PSU usually indicative of levels near or off the 

coastline.   

Given this information, several salinity categories were created, as demonstrated 

in Table 18: Freshwater (0 PSUs), Low (0-5 PSUs), Low-Medium (5-10 PSUs), Medium 

(10-15 PSUs).  High-Medium (15-20 PSUs), Low-High (20-25 PSUs), High (25 and 32), 

and Open Water (32 PSUs and above).  All cases found in man-made ponds, lakes, and 

streams were assigned “Freshwater” scores.  All cases found off of the coastline or in the 

Atlantic Ocean were deemed to be “Open Water” cases.  After having placed each case 

into its respective group, all eight groups were assigned a score ranging from freshwater 

equaling zero and open water equaling seven, respectively (see Table 22).  In this way, 

salinity levels could be examined for their potential effect on altering the rate of 

decomposition and the proportion of variation in estimates of time since death explained 

by differences in salinity. 

Based on the description provided above, water salinity levels for aquatic cases in 

the ADD group were broken down as follows: one in “freshwater,” seven in the “low” 

level, four in the “low-medium” range, eight in the “medium” category, one in the “high-

medium” stage, one in the “high” level, and one in “open water.”   

For the PMI group, the following breakdown was observed: one in “freshwater,” 

six in the “low” level, three in the “low-medium” range, five in the “medium” category, 

one in the “high” level, and one in “open water.” 
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Biological Profile: Age, Sex, and Stature 

 For the purposes of this study, only the age, sex, and stature of an individual was 

recorded and of interest.  Given the possibility of differences in the rate of decay resulting 

from differences in body mass, body fat percentage, and height, these particular aspects 

of the biological profile were collected.  Ancestry was not of interest given the fact that 

no logical link could be made between it and variations in the decomposition process.   

Lastly, weight was not evaluated due to practical reasons.  In cases where bodies 

had progressed to the “bloat” stage and beyond, measurements of weight were very 

unreliable.  As decomposition progresses, fats melt, tissue is consumed and scattered, 

organs liquefy, and fluids are purged.  Any measurements of weight passed the “fresh” 

stage of decomposition are thus meaningless, unless one is comparing pre-death weight 

to the percentage of weight loss upon recovery.  When this consideration is coupled with 

the fact that investigators did not retroactively confirm the weight of individuals once 

they were identified, collection of body weight numbers were of no value, not to mention 

unreliable.  Therefore, it was excluded from analysis.  However, it is hoped that by 

recording information pertaining to age, sex, and height, some of the potential effects of 

body weight, mass, and fat percentage may be tied to and reflected in the percent of 

variation in estimating time since death explained by these aforementioned factors. 

In regards to quantification, male and female groups were transformed using a 

binary code, with males assigned a score of one and females a score of two.  In order to 

take the same approach to quantifying age and stature, an arbitrary distinction was chosen 

to divide the samples into two groups, as no “common sense” or logical divide was 
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readily apparent.  The cut-off for grouping age was above and below 50 years of age.  In 

regards to stature, the distinction was above and below six feet tall. 

In terms of the biological profile, the accumulated degree day group demonstrated 

a mean age at death of 51.6 years old, with a standard deviation of 18.6 years.  The PMI 

day group showed an average of 53 years of age, with a standard deviation of 18.7 years.  

Throughout both data groups, the youngest age recorded was 16 and the oldest was 93.  

As stated above, no children below the age of 16 were included in the dataset so that 

differences in decomposition resulting from body size would be minimized. 

For both groups, heights range from 58 inches to 74 inches tall.  The average 

height also came in at a mean of 68 inches, or five feet, eight inches in height. 

Although not incorporated into the analysis, ancestry was recorded for record 

keeping purposes.  In total, the overwhelmingly majority of cases in both datasets 

consisted of individuals of European descent, accounting for nearly 75% of the cases.  

The next closest group was composed of African-Americans, making up almost a quarter 

of the dataset.  The remaining three cases included two individuals of Asian descent and 

one of Hispanic origin.   

As for sex, the majority of individuals in both groups were male, totaling 59 in the 

ADD set and 52 in the PMI group. 

The Study Sample 

After all the criteria were met and relevant data regarding variables were 

extracted, a total of 85 cases in various stages of decomposition were selected for the 

dataset (see Tables 9 through 16), with dates of recovery ranging from the year 2000 to 

2013.  Based on outlier removal, 80 of those cases were used for the creation of an 
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accumulated degree day model, while 74 of those cases were suitable to a model 

evaluating the utility of post-mortem interval days for estimating time since death (the 

removal of outliers was discussed above).  As has been mentioned throughout, this 

particular approach was taken so as to be able to evaluate which model explains more of 

the variation in decomposition.  From there, a time since death equation can be developed 

utilizing the best model for the area.  Of those cases in the accumulated degree day 

dataset, remains found indoors were the most common, equaling 37 cases.  Bodies found 

in aquatic contexts totaled 23, while those found outdoors in non-aquatic circumstances 

accounted for 20 cases.  In regards to the post-mortem interval day group, 39 cases were 

located indoors, 17 were deposited in aquatic circumstances, and 18 were found outdoors 

in non-aquatic environments. 

Additionally, all cases were positively or presumptively identified.  Identification 

was achieved through various means including DNA analysis, fingerprint matches, 

odontological comparison, and direct identification by family members.  This latter 

identification method included visual observation, identification of unique scars, marks, 

and tattoos, and association with circumstantial evidence.    

Furthermore, all cases were essentially complete, save for some missing bones 

due to disarticulation and scattering by scavengers or water transport.  No cases were 

included which showed the loss of body parts or skeletal elements resulting from 

dismemberment or similar human-caused damage.   Given the difficulties surrounding the 

modeling of burned, saponified, and buried remains in regards to decomposition, coupled 

with their low sample size, none of these types of cases were used in the study.  
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Statistical Analysis 

The main crux of the quantitative component of this dissertation research revolves 

around the development of a regression equation by which to estimate time since death.  

As mentioned above, one of the most important considerations under evaluation is the 

specific role of accumulated degree days versus post-mortem interval days in explaining 

the largest proportion of variation in decomposition.  Additionally, by incorporating data 

regarding the environmental and scene-specific variables described above, this research 

also seeks to determine which factors play a significant enough role in the decomposition 

process to warrant inclusion in the regression equation.  Moreover, based on an 

evaluation of the proportion of variation in decomposition explained by a model 

incorporating all cases, versus a stratified model divided into non-water outdoor, indoor, 

and aquatic cases, it is hoped that insights can be gained regarding whether or not an 

over-arching general equation for estimating time since death, applicable to all contexts, 

is warranted, or instead, if equations derived for particular depositional contexts are better 

suited for such purposes.  By stratifying analysis, one can also hope to determine if 

additional, unaccounted for factors are at play, driving down the proportion of variation 

explained by a model.  Furthermore, by evaluating all of these aforementioned 

considerations, total body score may be demonstrated as a critical component of accurate, 

valid, and reliable time since death equations.  Lastly, the single most important 

evaluation to consider revolves around whether or not the general time since death 

formula developed by Megyesi et al. (2005) is best suited to the Delaware River Valley 

region, or instead, if a region-specific equation is needed.  Thus, in order to do so, several 

regression analyses utilizing SAS 9.3 were conducted.   
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Linear Regression Analysis: Total Body Score versus ADD or PMI 

The first analytical technique utilized in this study employed the use of a linear 

regression analysis aimed at determining whether accumulated degree days or post-

mortem interval days are more effective at modeling decomposition and the variation 

inherent in it.  In order to do so, a linear regression analysis was run comparing the 

statistical significance of a model plotting total body score versus accumulated degree 

days, while the other plotted total body score versus post-mortem interval days.  In both 

models, total body scores from aquatic cases were weighted in order to conform to the 3-

42 point scale of the non-water outdoor and indoor TBS system.  By doing so, the 

inclusion of cases with different total body scoring systems into the same model could be 

made easier.  Given the interest in determining whether ADD or PMI explains the largest 

proportion of variation in decomposition in this particular analysis, total body score is the 

dependent variable to be predicted, while either ADD or PMI is the independent variable 

assessed.   

A typical linear regression analysis seeks to develop an equation which attempts 

to minimize the distance between a “line of best fit” and observed values.  A standard 

least-squares linear regression attempts to reduce the sum of the square of residuals, 

measured as the difference between observed and fitted values.  However, given the lack 

of a linear relationship in either plot in this study, a standard least-squares linear 

regression was not appropriate, instead requiring the transformation of variables.  In order 

to straighten the curve, and allow for a more direct least-squares linear regression (as well 

as the calculation of standard error and confidence intervals), it was observed that log-
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transforming both ADD and PMI, while leaving TBS untransformed, produces the most 

effective linear regression.  The linear regression equation took the following form: 

Log10(y) = Bx + constant (+ error) 

In this particular case, B is the slope of the regression line, y is ADD or PMI, and x is 

TBS.  The “constant” is a figure to be statistically derived from the analysis, added on 

following the multiplication of the slope and total body score.  The “error” represents the 

standard error which can be added on to determine the error range below and above the 

figure produced by the equation. 

Therefore, utilizing this transformation, a regression analysis was conducted in 

order to produce a regression equation for each model and determine which explains a 

larger proportion of the variation in decomposition, as represented by the coefficient of 

determination, R2.  This particular coefficient is a measure of how well or how close the 

observed data points are to a regression line best fitted to the dataset.  The closer one gets 

to a value of one, the more variability the model explains and the better it fits the data. 

Additionally, in order to meet the assumptions necessary for linear regression 

analysis, while considering the fact that the coefficient of determination cannot determine 

bias in the dataset, the normality, homogeneity of variance, and probability distributions 

of residuals were evaluated.  An analysis of variance (ANOVA) test was also run in order 

to determine the significance of both regression models.  Lastly, as a formality, parameter 

estimation was conducted to determine the standard error associated with total body score 

and demonstrate its statistical significance as a variable in both models. 
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Multivariate Regression Analysis: Determining the Significance of Additional Covariates 

for Estimating Time Since Death 

 As stated above, one of the goals of this dissertation research study was the 

determination of variables which not only play a role in influencing the rate of decay, but 

also the identification of those which produce enough of a statistically significant effect 

to warrant inclusion in a regression equation aimed at estimating time since death.  In 

order to do so, separate multivariate regression analyses were run incorporating either 

accumulated degree days or post-mortem interval days as the dependent variable, and all 

of the variables mentioned above, including weighted total body score, as the 

independent variables.  The goal was to identify the model which produces the highest 

adjusted R2 value utilizing a stepwise selection, and thus, explains the largest proportion 

of variation in estimates of time since death.  As always, those variables identified in the 

stepwise selection were assessed for their statistical significance or p values, and 

parameter estimates, including the calculation of the standard error for the appropriate 

variables, were generated. 

 This particular analysis was conducted for two main reasons.  The first revolves 

around the ability of the stepwise selection to choose the variables which improve the 

model the most based on the adjusted R2 values of each variable.  The second deals with 

the nature of adjusted R2 values in and of themselves.  Unlike R2, adjusted R2 seeks to 

take into account the ability of R2 values to increase as a result of the addition of extra 

variables.  If one were to fill a model with variable after variable, R2 values would 

invariably approach one.  However, the inclusion of a plethora of variables would not 

actually be explaining anything, instead randomly raising the R2 value due to their 



181 

presence.  Therefore, adjusted R2 was developed to adjust for the number of explanatory 

variables included in a model.  Thus, unlike R2, adjusted R2 increases only when a new 

variable is introduced that actually improves R2 more than would be expected by chance 

alone. 

Stratified Analysis: Linear Regression and Multivariate Regression Analyses of Specific 

Depositional Contexts 

 A stratified analysis of the three depositional contexts incorporated into this study 

was conducted for a number of reasons.  The first reason was to demonstrate whether 

accumulated degree days or post-mortem interval days is more effective at explaining a 

larger proportion of the variation in decomposition in each depositional context, 

supporting or refuting the results demonstrated in the analysis conducted on the entire 

dataset.  Secondly, a stratified analysis was conducted to also assess if particular 

variables in those contexts demonstrate a statistically significant effect on improving the 

coefficient of determination in the each stratified model.  This particular method was 

employed to determine which variables play the largest role in explaining the variation 

observed in estimating time since death.  Lastly, however, it was also important to 

determine if a particular depositional context demonstrates unusually low R2 values, 

indicating the potential effects of as-yet-unknown variables on the decomposition process 

in such environments. 

Therefore, in order to address these points, the same analyses conducted above 

were applied, except they used smaller subsets of the larger dataset.  In regards to the first 

and third point mentioned, a linear regression analysis was run for each depositional 

context of interest to this study: non-water outdoor, indoor, and aquatic cases.  An 
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additional analysis was also run for the combination of non-water outdoor and indoor 

cases, given their hypothesized similarities in regards to decomposition, as well as their 

shared differences in comparison to aquatic cases and any regression models derived 

from them.  Moreover, this particular approach was also taken by Megyesi et al. (2005).  

By replicating this specific methodology, comparisons between the model derived in this 

study and that of Megyesi et al. (2005) were made easier.   

Moving on, the statistical significance of models for each context plotting total 

body score versus accumulated degree days and total body score versus post-mortem 

interval days, were evaluated.  Based on the R2 values of each model, decisions could be 

made regarding whether or not accumulated degree days or post-mortem interval days 

explain a larger proportion of the variation in decomposition per depositional context.  

The linear regression equations resulting from these analyses took the same form as that 

described above: 

Log10(y) = Bx + constant (+ error) 

In this way, assessments could be made regarding the usefulness of accumulated degree 

days versus post-mortem interval days in explaining the largest proportion of variation in 

decomposition, while highlighting any particular depositional contexts which 

demonstrate very low R2 values.  In turn, this could bring to light the existence of 

unknown variables altering the decay process in that particular context, and the need to 

develop new modelling techniques in that specific depositional environment. 

 Moreover, in order to meet the assumptions of linear regression analysis, plots of 

the residuals were generated in order to assess the normality, homogeneity of variance, 

and probability distributions of the difference between the observed and predicted data 
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points.  Analysis of variance was assessed to demonstrate the statistical significance of 

each model. 

 Finally, in regards to the assessment of variables playing a statistically significant 

role in each depositional context, the same stepwise selection method, utilizing the 

highest adjusted R2 values, was employed for both the accumulated degree day and post-

mortem interval day groups.  The p values for each variable demonstrating the highest 

adjusted R2 figures were assessed for statistical significance.  Parameter estimates were 

also generated for each.  By utilizing the stepwise selection method, the model could be 

fine-tuned by bringing to the forefront those variables which explain the largest 

proportion of variation, and improve the model the most. 

Rate of Decay: Influence of Variables 

 In addition to evaluating those variables which account for the largest proportion 

of variation in estimates of time since death, this study also sought to understand the 

effects of various variables on the rate of decay.  Obviously, based on the particular 

depositional context faced by each individual case, different variables will play a role.  

For example, soil pH cannot be evaluated in aquatic cases.  In total, all of the variables 

discussed above were evaluated in this analysis.   

For those cases where the evaluation of the particular variable in question was 

applicable, the total body score was divided by the accumulated degree day total in each 

individual case, with the mean of that calculation representing the overall effect of the 

variable on the rate of decay.  The same method was employed utilizing the post-mortem 

interval day group, obviously substituting ADD for PMI in that analysis.  From there, the 

means for each variable were compared to those of their counterparts.  For example, the 
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data from clean houses was evaluated against those from dirty houses, exposed remains 

were compared against shaded remains, trauma cases were assessed against non-

traumatic cases, and so forth.  In order to evaluate each comparison, it was determined if 

a statistically significant difference existed between both variables.  Nearly significant 

differences were also recorded, in order to identify those variables which may prove 

significant when evaluated in larger sample sizes.  As a result, the study could identify 

whether the presence or absence of specific variables plays a role in accelerating or 

decelerating the rate of decay. 

Along the same vein, these methods were also employed in regards to non-water 

outdoor and indoor cases together, excluding aquatic cases.  This particular decision was 

made given the fact that aquatic cases operate on a different TBS scale.  Also, variables 

such as salinity levels are not applicable to non-water outdoor and indoor cases.  Lastly, 

given the fact that some variables analyzed, such as insect activity, were not observed in 

great numbers in aquatic cases, they were not included in the analysis to avoid distorting 

the results. 

Additionally, continuous plots were developed demonstrating the data points of 

each variable plotted against logADD.  In this way, the plots could be evaluated in order 

to determine if a relationship is apparent or if any noticeable trends between ADD and a 

particular variable can be detected.  If this was found to be the case, it could also 

highlight the need for further evaluation of that particular variable. 

Lastly, it should be noted that these methods were applied incorporating the cases 

from all depositional contexts in both the accumulated degree day and post-mortem 

interval day groups.  A separate analysis, including only the combination of non-water 
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outdoor and indoor cases from the accumulated degree day dataset, was also conducted; 

keeping in mind the similarities both depositional contexts were observed to share in 

regards to decomposition and the proportion of variation explained by accumulated 

degree days, to be discussed in the next chapter. 

Rate of Decay: Differences between Depositional Contexts 

 Given the difficulties involved in assessing the rate of decay between depositional 

contexts utilizing the methods described in the previous section, coupled with the 

drawbacks of such analyses using data extracted from retroactive studies, another 

technique was devised to assess the time required to produce specific total body score 

intervals.  In order to do so, the formulas derived for the outdoor and indoor depositional 

contexts were compared to each other.  Each equation was used to predict accumulated 

degree days in their respective contexts, utilizing the same total body scores in each 

comparison.  Estimates were derived for each total body score from three to 42 using the 

non-water outdoor and indoor formulas.  The aquatic equation was not incorporated into 

the comparison given the different total body score scale employed in the assessment of 

decomposition in water contexts, complicating any comparisons with the equations 

derived in the remaining contexts. 

 In total, by assessing the predicted ADD required to produce each total body 

score, one can theoretically evaluate which contexts are the slowest or fastest at reaching 

each one of those phases of decomposition.  In turn, this could provide insights into the 

rate of decay in each depositional context. 
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Logarithmic versus Square Transformation: Comparison to Megyesi et al.’s (2005) 

Model 

 Penultimately, given the fact that Megyesi et al.’s (2005) study laid the foundation 

for the quantitative analysis of decomposition utilizing accumulated degree days in 

forensic anthropology, the model derived from that particular analysis was compared to 

the model derived in this dissertation research study.  This particular comparison is a 

crucial aspect of the evaluation of whether or not universal time since death estimation 

equations, applied across various regions, are effective, or instead, if region-specific 

equations are necessary.  It must be kept in mind that not only is the Megyesi et al. (2005) 

data different, utilizing cases from 19 different states ranging from Washington to 

Florida, but the total body score system was developed based on the particular 

decompositional changes and patterns observed in their specific dataset.  Given these 

differences, Megyesi et al. (2005) developed a model best suited to explain the variation 

in decomposition observed in their dataset and estimate time since death based on the 

particular decompositional patterns observed in the cases derived from their region of 

interest.  As a result, Megyesi et al. (2005: 6) state that their linear regression analysis 

required not only the log transformation of both ADD and PMI, but also the squaring of 

TBS “to produce the most effective linear regression.”  This transformation is different 

from the simple logarithmic transformation utilized in this study.   

Therefore, in order to compare the equations derived from both studies, the 

overall model and the non-water outdoor and indoor model derived in this study were 

both reformulated to mimic the model developed in the Megyesi et al. (2005) study.  

Given the fact that the Megyesi et al. (2005) study incorporated only non-water outdoor 
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and indoor cases, it was felt that a comparison should be made using both the subset and 

overall model developed for the Delaware River Valley.  From there, the data points 

extracted from Delaware were applied to these “copycat” models.  Essentially, the data 

from this study was incorporated into their model and the coefficient of determination, 

R2, was compared to determine which model explains a larger proportion of the variation 

in decomposition, with comparisons utilizing both the overall model and the non-water 

outdoor and indoor model.  In this way, one can evaluate whether or not the models 

derived in this study are better suited to explain decomposition and estimate time since 

death for cases found in the Delaware River Valley region compared to the Megyesi et al. 

(2005) study, supporting or refuting assertions regarding the necessity for region-specific 

standards. 

Predicted versus Observed ADD Value Comparison: Megyesi et al. (2005) Model 

versus Delaware River Valley Overall Model and Outdoor/Indoor Model 

 Lastly, in order to drive home the points made in the previous section, the 

average, average differential, and absolute value of the average differential of predicted 

accumulated degree days were compared to actual, observed accumulated degree days 

calculated using both the Megyesi et al. (2005) and the Delaware River Valley overall 

model.  This particular comparison was made utilizing all of the cases in the dataset, 

including all depositional contexts.  A second comparison was made, structured in 

exactly the same manner, except the models used were the Megyesi et al. (2005) model 

and the Delaware River Valley non-water outdoor and indoor model.   The reason for this 

decision is directly related to the fact that the Megyesi et al. (2005) model only 
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incorporates non-water outdoor and indoor cases.  Therefore, a direct comparison of 

those specific case types was warranted. 

 In order to do so, all cases in the dataset were scored utilizing the Delaware River 

Valley total body score system.  Additionally, each of these cases was also scored 

utilizing the TBS system devised by Megyesi et al. (2005).  Given the different total body 

score totals between the non-water outdoor and indoor TBS system, and that of the 

aquatic TBS standards, a weighted conversion needed to be developed.  In order to do so, 

total body scores from aquatic cases were weighted according to the 1-42 point non-water 

outdoor and indoor TBS scale and inputted into the Delaware River Valley model in 

order to determine predicted accumulated degree days.  In regards to scoring these cases 

for the Megyesi et al. (2005) model, the weighted aquatic cases were converted once 

more to conform to the 1-35 point TBS scale developed in the Megyesi et al. (2005).  

From there, the accumulated degree days were predicted in each case for both models.  

Using those calculations, the average predicted ADD was determined and compared to 

the average observed ADD.  Furthermore, the average differential and average absolute 

value differential between the predicted and observed values were calculated and 

compared between models.  A simple two-sample t-test of unequal variances was run in 

Excel in order to determine the statistical significance of each comparison. 

Moreover, the non-water outdoor and indoor case types were evaluated as well.  

This particular step was taken so as to evaluate the Megyesi et al. (2005) model in its 

intended format versus the Delaware River Valley non-water outdoor and indoor model.  

Once again, a total body score was developed for each case utilizing the total body score 

system devised in each study.  From there, the total body scores were inputted into each 



189 

study’s respective ADD prediction formula and a set of predicted ADDs were developed 

for each case.  The remaining steps taken are identical to those described above. 

In total, the main idea behind these analytical comparisons seeks to determine 

which model more accurately predicts accumulated degree days by comparing predicted 

versus observed values.  In all, this comparison may serve to further support arguments 

for or against the development of region-specific standards. 
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Chapter Nine: Results 

Development of a Total Body Score System for Assessing Decomposition in the 

Delaware River Valley 

 In order to quantify the decompositional changes which occurred in each 

individual case and assign total body scores which accurately reflected the joint effects of 

various variables, including temperature, on the decay process, it was crucial to identify 

the particular decompositional patterns observed in the region.  Furthermore, by 

conducting an analysis of this type, assessments could be made regarding whether or not 

a distinct progression to decomposition occurs in the Delaware River Valley.  This 

particular evaluation serves to not only justify the development of total body score 

descriptions representative of the decay process in the area, but it also plays a pivotal role 

in the justification of region-specific standards. 

Fortunately, a pattern began to emerge concerning the decompositional changes 

which occur over time, facilitating the creation of a set of standards particular to non-

water outdoor and indoor, as well as aquatic depositional contexts.  The changes 

observed between corpses exposed to non-water outdoor and indoor contexts overlapped 

tremendously; therefore, justifying the development of a single set of total body scores 

applicable to both depositional environments.  In fact, this particular observation was also 

made by Megyesi et al. (2005) and demonstrated in the application of the total body score 

system developed in that study to cases in both contexts.  In regards to the 

decompositional process in aquatic environments, the specific decompositional pattern 

observed warranted the development of a total body score particular to cases exposed to 

aquatic contexts.  Additionally, general stages of decomposition were observed, 
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corresponding to fresh, early, moderate, advanced, and skeletonized phases.  Within each 

stage, the typical changes which occurred were identified and broken down into sub-

stages.   

What is crucial to note however, is that these observed decompositional changes 

and patterns did not overlap with those identified in either Megyesi et al. (2005) or 

Heaton et al. (2010).  Rather, a distinct progression to decomposition was observed in 

cases derived from Delaware.  Given the recognition that the use of inappropriate 

decompositional descriptions in an area, and thus inaccurate total body scores, can be 

disastrous to quantitative estimates of time since death, the development of a total body 

score system representative of the changes observed to occur in the Delaware River 

Valley Region became ever more important.  As a consequence of this critical discovery, 

a region-specific total body score system was developed. 

 In regards to the particular pattern of decomposition observed, tables 23 through 

28 represent the total body score system developed for each of the three main areas of the 

body, in both non-water and aquatic contexts.  Given the identification of many more 

sub-stages of decomposition on land, the non-water outdoor and indoor standards 

demonstrate more categories.  A particular discussion of the specific decompositional 

changes and patterns observed in each depositional context can be found in the next 

chapter. 

 In total, a distinct progression to decomposition was observed in cases derived 

from the Delaware River Valley, justifying the development of a set of region-specific 

total body score descriptions representative of those differences. 
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Accumulated Degree Days versus Post-Mortem Interval Days: Explaining the Largest 

Proportion of Variation in Decomposition 

 One of the most crucial factors to be evaluated by this study involved the 

assessment of the utility of accumulated degree days versus post-mortem interval days for 

explaining the largest proportion of variation in decomposition.  In order to do so, a linear 

regression analysis, incorporating the entire dataset, was run.  When the coefficient of 

determination was compared between both models, it was observed that accumulated 

degree days demonstrated a larger R2 value, equaling 0.7852 (see Figure 15), which is in 

comparison to a value of 0.6434 when utilizing post-mortem interval days (see Figure 

16).  Thus, the accumulated degree day model clearly explained more of the variation in 

decomposition compared to the use of post-mortem interval days.  Given this particular 

discovery, it obviously warrants the use of ADD over PMI in the development of a 

regression equation by which to estimate time since death; a step which was taken 

throughout the remainder of the study.  

In regards to the analysis of variance, the accumulated degree day model proved 

to be extremely statistically significant, with a p-value of less than 0.0001, or well below 

the threshold of 0.05 (see Table 29).  This particular statistic signifies that the differences 

observed are very unlikely to be the result of random sampling. 

Furthermore, in order to evaluate the validity of the p-value in the t-test and 

ensure that the assumption of the normal distribution of residuals in the linear regression 

analysis was met, the distribution of residuals was plotted and observed to be normally 

distributed.  The assumption of the homogeneity of variance of the residuals was also 

met, only demonstrating an unproblematic slight narrowing of points from left to right.  
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The probability distribution of residuals was also within the normal range.  Therefore, 

based on these results, the assumptions of linear regression analysis for the accumulated 

degree day model were satisfied (see Figure 17), validating the model. 

Lastly, in regards to the parameter estimates, total body score was observed to be 

an extremely statistically significant variable, with a p-value less than 0.0001 (see Table 

29).  The parameter estimate for total body score was 0.05703 and the standard error was 

calculated to be 0.00338.  In regards to the intercept identified in the linear regression, the 

parameter estimate was determined to be 1.52523 and the standard error was calculated 

as 0.05812.  The intercept was also deemed extremely statistically significant.  It should 

be noted that the post-mortem interval day model was also statistically significant itself; 

however, as mentioned above, the use of accumulated degree days is more effective at 

explaining more of the variation in decomposition, and thus, was favored throughout the 

study.  Total body score proved to be a statistically significant variable in both models as 

well. 

As a result of these efforts, the linear regression equation developed utilizing 

accumulated degree days and total body score is as follows: 

LogADD = 1.52523 + 0.05703(TBS) + [error] 

Based on this regression equation, in order to estimate time since death, accumulated 

degree days must be calculated.  However, in order to bolster the statistical inferences 

which can be made and provide statistical backing in support of estimates derived from 

this equation, the standard error and a 95% confidence interval must first be applied.  In 

order to calculate the confidence interval, the following equation should be expanded 

upon: 
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predicted value +/- tcrit * standard error 

The standard error is calculated as follows: 

standard error of the estimate*√1/n + (actual X – predicted X)2/SSx 

The standard error of the estimate is calculated as follows: 

√ ∑(actual Y – predicted Y)2 / N-2 

In order to calculate the prediction interval, the base equation remains the same.  

However, the standard error must be calculated as follows: 

standard error of the estimate*√1 + 1/n + (actual X – predicted X)2/SSx 

It is important to explain that by utilizing this level of confidence, one is stating that 95% 

of the time, the true population parameter (i.e. the actual ADD total) will be within the 

range provided.  The confidence interval reveals how well the mean was determined.  

Prediction intervals on the otherhand, must not only taken into account the uncertainty of 

knowing the value of the population mean, but also the distribution of values, or data 

scatter.  The prediction interval lays out where the next data point can be expected to be 

sampled.  Therefore, it is always larger than the confidence interval. 

Additionally, the standard error reflects the statistical accuracy of the estimate to 

be derived, likened to the standard deviation of a theoretical distribution of such 

estimates.   

Thus, in practice, one simply needs to determine the total body score, plug the 

value into the equation to determine the confidence and prediction interval limits, and 

determine the accumulated degree day range.  Should one simply want to calculate the 

single predicted ADD estimate, the original equation, without the standard error or 

confidence interval, should be used.   
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Clearly, based on the nature of statistical calculations, the ranges will increase in 

size the further along in the decomposition process one goes.  Thus, the narrowest time 

since death estimates will be found in the earlier stages of decomposition, expanding with 

higher total body scores. 

In total, accumulated degree days accounts for more of the observed variation in 

human decomposition when compared to post-mortem interval days.  Regardless of the 

depositional context, accumulated degree days should serve as the variable to be 

predicted in order to most reliably and accurately estimate time since death.  Given the 

development of a regression equation by which to estimate time since death with known 

standard errors and within a 95% confidence interval, the requirements set forth in 

Daubert (1993), Kumho (1999), the Federal Rules of Evidence rule 702 (2000), and the 

National Academy of Sciences’ report (2009) have been met.   

Most importantly, an overall time since death equation, incorporating the area-

specific effects of variables on the decomposition process, has also been developed, 

demonstrating the potential to derive an accurate, valid, and reliable region-specific time 

since death estimation equation. 

Modelling Decomposition and Estimating Time since Death in Specific Depositional 

Contexts 

 In order to take the evaluation of accumulated degree days versus post-mortem 

interval days a step further and develop regression equations particular to specific 

depositional contexts, as well as identify which contexts may be impacted by as-yet-

unknown variables, a stratified analysis was conducted.  The analysis consisted of the 

creation of subsets of data based on depositional context, including indoor, outdoor, and 
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aquatic cases.  Linear regression analyses were run for the cases in each subset, utilizing 

either ADD or PMI.  Based on the results of the analysis, the accumulated degree day 

model exhibited a larger R2 value in each and every subset, explaining a larger proportion 

of the variation in decomposition throughout. 

In regards to the indoor cases, the ADD model demonstrated a coefficient of 

determination of 0.6576 (see Figure 18), versus 0.6176 in the PMI group (see Figure 19).  

The non-water outdoor cases were particularly intriguing, exhibiting huge R2 values of 

0.8965 in the ADD group (see Figure 20), versus 0.8568 in the PMI model (see Figure 

21).  The explanatory value of the non-water outdoor model is impressively high. 

Moreover, the results of the linear regression analysis conducted on the aquatic 

cases were arguably among the most illuminating, not only highlighting the fact that the 

accumulated degree day model fared better with an R2 of 0.5264 (see Figure 22), versus 

0.0761 in the PMI group (see Figure 23), but it also brought to light the potential 

existence of confounding factors in the estimation of time since death in water contexts, 

especially when using post-mortem interval days as a measure of time.  In fact, of all the 

models tested, only the model including post-mortem interval days and aquatic cases was 

demonstrated to not be statistically significant, instead showing a p-value in the analysis 

of variance of 0.2839.  All other models derived from the remaining subsets showed 

statistically significant p-values below 0.0001. The significance of these discoveries will 

be discussed in more detail in the next chapter. 

Lastly, given the observed decompositional similarities among cases found in 

non-water outdoor and indoor contexts, the data from both subsets were combined in the 

accumulated degree day model.  When a linear regression analysis was run, it was 
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discovered that together, they demonstrate an R2 value of 0.8205 (see Figure 24).  This 

particular find is of importance not only due to the high proportion of variation explained, 

but also due to the fact that the R2 value is higher than the overall model including all 

cases.  This not only reveals the ability to utilize the time since death equation on both 

non-water outdoor and indoor cases, but also the difficulty in modeling aquatic cases, 

which appears to have dragged down the R2 value in the overall model.  In total, the 

linear regression equation derived from the analysis is as follows: 

LogADD= 1.5466 + 0.0557(TBS) + (error) 

Lastly, as will be discussed in more detail below, having a non-water outdoor and 

indoor model with high explanatory value is important to facilitating comparisons 

between the Delaware River Valley model derived in this region and that of the Megyesi 

et al. (2005) model. 

Statistically-Significant Covariates for Estimating Time since Death 

 The next step in the assessment of decomposition and the development of a time 

since death regression equation involved the evaluation of variables posited to impact the 

rate of decay.  In order to do so, a stepwise selection method was employed, selecting 

those variables determined to have the highest adjusted R2 values in each model.  For the 

sake of consistency, this particular determination was made utilizing both the 

accumulated degree day and post-mortem interval day models.   

In the overall accumulated degree day model, four variables were selected based 

on their adjusted R2 values.  These variables included type of depositional context, 

clothing, total body score, and body position, with the latter encompassing supine, prone, 

left leaning, right leaning, seated, and hanging bodies.  However, it was determined that 
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only total body score proved to demonstrate a statistically significant effect, with a p-

value once again less than 0.0001 (see Table 30). 

In regards to the post-mortem interval day model, six variables were selected 

based on their adjusted R2 values.  These variables included precipitation, insect activity, 

age, sex, height, and total body score.  This time, precipitation, in addition to total body 

score, demonstrated a statistically significant relationship, with p-values less than 0.0001 

(see Table 31).  Although the ADD model is favored over the PMI model, it is of 

particular importance that total body score has been identified as producing a statistically 

significant effect in both.  As will be discussed in the next chapter, developing an 

accurate total body score system representative of the decompositional changes which 

take place in an area, appears to be one of the most crucial factors involved in the 

development of a valid, reliable, and accurate time since death estimation model. 

Additionally, in order to attempt to identify even more trends in the data, the 

various subsets investigated in this study were probed utilizing a stepwise selection 

method to determine if statistically significant covariates could be discovered in cases 

exposed to the various depositional contexts investigated here.  Unfortunately, given the 

subdivided nature of these stratified analyses, sample sizes were generally too low to 

identify any meaningful trends.  Variables, which may typically have demonstrated a 

statistically significant effect, may not have been selected given the low sample sizes at 

this subdivided level of analysis.   

However, what is of importance to note is that once again, it appears as if total 

body score plays the most important role in all models.  Specifically, the indoor subset, 

for both the ADD and PMI models, identified total body score as demonstrating a 
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statistically significant effect (see Table 32).  What’s more, when examining the 

continuous plot of logADD versus total body score, it is clear that the same relationship is 

shared across all depositional contexts (see Figure 25).  In fact, these exact results are 

supported by the finds discussed in Bachmann and Simmons (2010), serving to further 

substantiate the trends observed in this study. 

Even more telling is the result of the stepwise selection method for non-water 

outdoor cases utilizing the PMI model (see Table 33).  When this particular analysis was 

run, the following message was produced: “Selection stopped because all candidate 

effects for entry are linearly dependent on effects in the model.”  Based on the statistical 

observations made thus far, as well as the understanding that that the joint effects of all 

variables are reflected in the decompositional changes noted in the total body score, the 

identification of this linear dependence points straight at the importance of the total body 

score for producing accurate estimates of time since death. 

Examining Relationships: Continuous Plots of logADD versus Environmental, Scene-

Specific, and Depositional Variables 

In order to assess any potential observable trends or relationships between 

logADD and the various number of factors examined in this study, the continuous plots 

of logADD versus each variable were analyzed.  The results brought to light some points 

to consider.  It should be noted however, that the analysis of continuous plots was not 

employed to detect concrete correlations or statistically significant relationships; instead, 

they are used to identify additional variables which may warrant further investigation in 

the future when a larger sample size can be developed to draw out their true effects.   



200 

First off, as mentioned above, when logADD was plotted versus the total body 

score, the same linear relationship was observed across all case types (see Figure 25).  

This serves to further cement the importance of the total body score to estimates of time 

since death and the development of models from which to do so.   

Next, it appears that when precipitation levels increase, logADD values increase 

as well (see Figure 26).  As would be expected, this particular trend was noticed more so 

in non-water cases.  Given the known relationship between temperature, humidity, 

aridity, and precipitation, this particular relationship may be a function of the increased 

moisture levels inherent to higher temperatures in a temperate climate such as that 

experienced in the Delaware River Valley.  Unfortunately, a larger sample size would be 

needed to extract more meaningful conclusions from this relationship.  However, 

although the post-mortem interval day overall model, in which precipitation was 

observed to display a statistically significant effect, is not particularly effective at 

explaining a large proportion of the variation in decomposition, this variable may be of 

interest to future studies when considered alongside the results of the continuous plot. 

Moreover, the presence, absence, and degree of insect activity may demonstrate a 

relationship with logADD (see Figure 27).  If the cases demonstrating no evidence of 

insect activity are removed from consideration, a trend is somewhat apparent in the 

continuous plot, with the increase in insect activity appearing to coincide in part with an 

increase in the logADD.  However, over time, it also appears as if the relationship 

switches, potentially coinciding with the end of insect activity.  This particular 

observation not only highlights an important point in regards to the presence of insects on 

a corpse, but also regarding the use of retroactive data collection, which will be discussed 
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in the next chapter.  Nonetheless, regardless of the potential relationship, more cases 

would be needed to provide more concrete conclusions.   

In regards to the remaining variables, either the relationships demonstrated no 

distinguishable pattern, or the binary nature of the distribution was not well-suited to an 

examination of trends.  In particular, no relationship was observed between logADD and 

age, height, or weight (see Figures 28, 29, and 30).  In terms of the binary variables, such 

as biological sex, evidence of trauma versus no evidence of trauma, scavenging activity 

versus no scavenging activity, and so forth, many more cases would be needed to even 

begin identifying recognizable and significant relationships.  Given the limited number of 

cases exhibiting information pertaining to these specific variables, future studies must 

seek to expand sample sizes with these particular factors in mind.   

Overall however, based on the totality of the results described in this section, the 

relationship shown in regards to total body score is very encouraging.  The effects played 

by precipitation and insect activity may be drawn out by future studies in which larger 

sample sizes increase the statistical inferences which may potentially be derived from the 

dataset. 

Environmental and Scene-Specific Variables Affecting the Rate of Decay 

 In order to attempt to identify clear relationships between the various factors 

assessed in this study and the rate of decay, the mean rate of decay per variable was 

analyzed and compared to its counterpart.  For example, the mean rate of decay was 

compared between dirty and clean houses, shaded versus exposed remains, traumatic 

versus non-traumatic cases, and so forth.  This method was applied to all cases in the 

dataset, as well as the non-water outdoor and indoor samples combined.  Given the 
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retroactive approach taken toward data accumulation, which comes with its own 

drawbacks to be discussed later, not much information was expected to be derived from 

this analysis, especially given the results of the stepwise selection mentioned above.  

Additionally, given the fact that many of the variables assessed are applicable to only one 

or two of the depositional contexts incorporated into the study, the sample sizes for each 

variable were not as robust.  Therefore, the results from this section were not expected to 

provide any major revelations, but instead were intended to serve as support for any 

trends observed, if any were detected. 

In fact, very few statistically significant environmental and scene-specific factors 

were identified, regardless of the depositional contexts included.  Of those variables 

which did demonstrate a statistically significant effect, many results were counter-

intuitive and “inverted.”  For example, in regards to no scavenging activity versus 

scavenging activity, it was observed that in cases where no evidence of scavenging 

activity was observed, the mean rate of decay was roughly two times higher than in those 

cases where evidence of scavenging was seen, reflected in the higher mean rate and 

statistically significant difference between both groups.  The same relationship was 

observed in cases where no insect activity was observed versus cases where insects were 

present.  Although these results appear counter-intuitive, they highlight a critical 

consideration in regards to cross-sectional studies and the timing and acquisition of data: 

retroactive studies cannot control when particular variables “enter” or appear into the 

study.  In other words, critical differences in the TBS and ADD between cases in the 

varying depositional contexts have directly impacted the results, producing the inverted 
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or counter-intuitive observations seen.  This particular discussion is of great theoretical 

and methodological value and will be expanded upon in the following chapter. 

Lastly, and most importantly, the results derived from this analysis serve to 

support the linear dependence statement referenced above, pointing to a much larger 

consideration. In studies evaluating the role played by variables in the decomposition 

process, the effects of said factors cannot be parceled apart, as they all contribute jointly 

to the decompositional changes represented in the total body score.  These results are 

directly aligned with the findings of Bachmann and Simmons (2010), who claim that total 

body score alone is the most significant variable involved in estimating time since death. 

Depositional Contexts and the Rate of Decay 

 In order to assess the ADD required to produce all possible total body score 

counts in the outdoor and indoor depositional contexts, and thus infer the rate of 

decomposition by type of environment, the respective formulas for these depositional 

contexts were utilized to predict accumulated degree days.  The non-water outdoor and 

indoor equations were used to predict ADD for each total body score from three to 42. 

 Based on the results of this comparison, in the early post-mortem period, cases in 

indoor contexts required the lowest ADD total to produce the specified total body score, 

with outdoor cases taking the longest (see Table 34).  Similar to the counter-intuitive 

results described above, these particular finds contrasted with the relationship proposed 

by Maples and Browning (1994), which stated that outdoor bodies decompose faster than 

bodies deposited in indoor contexts.  

 However, upon analysis of the entire set of results, it was observed that as the 

TBS approached the latter half of the early stage of decomposition, the trend reversed 
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(see Table 34).  In fact, from estimates predicted with total body scores of 12 and higher, 

outdoor cases were seen to require less and less accumulated degree days to produce each 

total body score, demonstrating a faster rate of decay compared to indoor cases.  In total, 

the differences between the results of the indoor versus non-water outdoor formula were 

found to be statistically significant (see Table 35). 

What’s more, when the non-water outdoor and indoor subsets were combined, 

and the equation derived for both contexts was utilized, the same trend was observed.  

Although the combined model was slightly delayed, it still showed a faster decay rate 

when using total body scores passed the latter half of the early stage of decomposition, in 

comparison to indoor cases alone.  In fact, the difference between the results of the non-

water outdoor and indoor case formula, in comparison to those derived utilizing the 

indoor formula alone, was once again statistically different (see Table 36).  

Although the reasons for these differences will be discussed in the following 

chapter, these results support the findings of Maples and Browning (1994), demonstrating 

outdoor cases to theoretically decompose at a faster rate than indoor cases.  Additionally, 

these results continue to support the use of the combined non-water outdoor and indoor 

model, as a faster rate of decay was observed in comparison to the indoor subset. 

Lastly, an additional, tangential discovery was made upon examination of these 

results.  Across each and every formula utilized, the higher the total body score, the more 

spread out the predicted accumulated degree days became.  In particular, this signals a 

larger error range the further one gets from the actual point of death.  This find coincides 

with the inverted relationship between the preciseness of estimates of time since death 

and the length of time an individual has been deceased for. 
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Comparison of Time since Death Estimation Models: Megyesi et al. versus Delaware 

River Valley Model 

 The single most important analyses in this study involve the comparison of the 

models derived specifically for the Delaware River Valley and that developed by 

Megyesi et al. (2005).  Given the need to evaluate the necessity of region-specific 

decomposition standards and total body score descriptions versus a more general, 

universal decomposition model, this specific comparison of models is crucial to such 

evaluations. 

In order to do so, the model developed by Megyesi et al. (2005) was evaluated in 

conjunction with the data extracted from the Delaware River Valley area.  This involved 

applying Megyesi et al.’s (2005) logADD versus TBS squared regression model to all of 

the data points in the overall accumulated degree day group collected for this study.  The 

result was an R2 value of 0.7202 (see Figure 31).  When these results are compared to the 

R2 values derived from the overall ADD model developed here, the region-specific 

Delaware River Valley model fares better, with an R2 of 0.7852 (see Figure 15).  Analysis 

of variance indicates that both models are statistically significant (p < 0.0001). 

In order to further drive home this point, the same analysis was conducted 

comparing PMI models.  Utilizing the Megyesi et al. (2005) model on all of the data 

collected in the Delaware River Valley, an R2 value of 0.5894 was achieved (see Figure 

32).  However, when this is compared to the PMI model developed in this study, an R2 

value of 0.6434 is observed (see Figure 16).  Analysis of variance indicates that both 

models are statistically significant (p < 0.0001).  Once again, the model derived 

specifically for the Delaware River Valley area, utilizing the specific total body score 
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descriptions derived from the analysis of decompositional patterns and changes in 

corpses found in Delaware, proves to explain a greater proportion of variation in 

decomposition. 

Moreover, it is important to note that in the Megyesi et al. (2005) study, both non-

water outdoor and indoor cases were combined and evaluated jointly.  Thus, the 

regression equation developed in the study did not take into account any aquatic cases.  

This particular step was taken to not only simplify the estimation of time since death 

across non-water cases, but it was also done with the understanding that outdoor and 

indoor cases do not differ significantly in regards to the decompositional changes and 

patterns observed.  Therefore, in order to protect against concerns regarding the inclusion 

of cases from both aquatic and non-aquatic contexts in this study’s general regression 

model, a regression model for non-water outdoor and indoor cases was specifically 

designed in this study.  In fact, given the differences in the total body score system 

between aquatic and non-aquatic cases observed here, this subdivision may actually make 

more sense.   

Regardless, the model developed by Megyesi et al. (2005) was once again applied 

to the accumulated degree day group in this study, except this time, only non-water 

outdoor and indoor cases were included in the analysis.  The resulting R2 value was 

0.7596 (see Figure 33).  When this figure was compared to the non-water outdoor and 

indoor regression equation and analysis developed in this study, once again, the R2 value 

proved to be greater, equaling 0.8205 (see Figure 24).   

Additionally, as was done with the general model, the PMI group was compared 

utilizing only non-water outdoor and indoor cases.  In regards to the R2 value using the 
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Megyesi et al. (2005) model, the figure equaled 0.6809 (see Figure 34); this is in 

comparison to the R2 value of 0.7560 in the non-water outdoor and indoor model derived 

in the Delaware River Valley study (see Figure 35).  Analysis of variance of all the 

models described indicates they are all statistically significant (p < 0.0001).  Clearly, the 

results from both the ADD and PMI models speak for themselves. 

Lastly, given the larger explanatory potential of the Delaware River Valley 

model, a final set of analyses were conducted in order to further emphasize the greater 

applicability and accuracy of the Delaware River Valley model to cases found in this 

area.  In particular, the average predicted accumulated degree days, as well as the average 

differential and absolute value of the average differential of predicted accumulated 

degree days, were compared to actual accumulated degree days observed in each case, 

using both the Megyesi et al. (2005) and the Delaware River Valley overall models.  In 

order to evaluate the effectiveness of the Megyesi et al. (2005) model and the non-water 

outdoor and indoor Delaware River Valley model at predicting accumulated degree days, 

a comparison was also made between predicted and observed values in these particular 

case types.  As mentioned earlier, this decision was based on the fact that the Megyesi et 

al. (2005) study only utilized non-water outdoor and indoor cases.  Thus, given the 

evaluation of like cases, a more direct comparison of models is possible. 

In regards to the first comparison of observed versus predicted values utilizing all 

cases, the average observed ADD value equaled 470.892.  This figure is in comparison to 

a mean ADD value of 528.899 in the overall Delaware River Valley model, and 535.215 

in the Megyesi et al. (2005) model.  The standard deviation of the predicted values using 

the Delaware River Valley formula, 865.640, was also closer to the actual standard 
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deviation of 674.066, compared to 1131.718 in the Megyesi et al. (2005) model (see 

Table 37). 

In terms of the average differential and average absolute value differential 

between observed and predicted ADD values, the Delaware River Valley equation 

demonstrated more accurate results, with means of 58.007 and 195.203, respectively (see 

Tables 38 and 39).  The Megyesi et al. (2005) formula averaged a differential of 64.323 

and an absolute value differential of 236.782.  In total, although these differences were 

not statistically significant, it is believed that in a larger sample size, the differential 

would prove to be significant, as the statistical power increases.  More importantly, these 

results support the finds detailed above in terms of R2 value comparison.  Overall, the 

general Delaware River Valley model proved more accurate at predicting accumulated 

degree days. 

In regards to the comparison of observed versus predicted values utilizing only 

non-water outdoor and indoor cases, the Delaware River Valley non-water outdoor and 

indoor model proved to be even more accurate at predicting ADD than the general model, 

and most importantly, than the Megyesi et al. (2005) model.  In terms of the average 

observed ADD values seen throughout these cases, the mean equaled 570.268.  This 

figure is in comparison to a remarkably accurate mean predicted ADD value of 572.915 

in the Delaware River Valley non-water outdoor and indoor model, and 669.791 in the 

Megyesi et al. (2005) model.  The standard deviation of the predicted values using the 

Delaware River Valley formula, 941.907, was also closer to the actual standard deviation 

of 761.934, compared to 1316.002 in the Megyesi et al. (2005) model (see Table 40). 
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In terms of the average differential and average absolute value differential 

between observed and predicted ADD values, the Delaware River Valley non-water 

outdoor and indoor equation demonstrated remarkably accurate results, with a mean 

differential of only 2.647, and a mean absolute value differential of 199.912 (see Tables 

41 and 42).  The Megyesi et al. (2005) formula averaged a differential of 99.523 and an 

absolute value differential of 300.677.  As stated above, none of these differences were 

demonstrated to be statistically significant given the sample size, but should the number 

of data points increase, it is believed these differences would demonstrate significant 

results. 

In total, when applied to data derived from this region, across each and every 

comparison made between the Megyesi et al. (2005) model and the Delaware River 

Valley model, the Delaware River Valley equation fared better every single time, 

regardless of if comparisons were being made between the coefficient of determination or 

predicted versus observed values.  Given these results, not only are region-specific 

standards warranted, but when applied to cases found in the Delaware River Valley, the 

time since death equation developed here will allow for more precise, accurate, valid, and 

reliable estimates of time since death. 

Summary of Results 

Based on the plethora of qualitative and quantitative analyses conducted, a 

number of important research results have been found.  When these results are evaluated 

jointly, they reveal the creation of a time since death equation well-suited to assessing 

decomposition in the Delaware River Valley Region and validate the development of 

region-specific time since death equations. 
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As will be discussed in the following sections, total body score plays a critical 

role in developing a decomposition model from which to provide estimates of time since 

death.  Given the fact that a distinct progression to decomposition has been detected in 

the Delaware River Valley, coupled with the fact that the joint effects of multiple 

variables are reflected in the decompositional changes noted in the total body score for 

each individual case, it quickly becomes apparent that accurate total body score 

descriptions will make up a fundamental aspect of the development of a decomposition 

model which accounts for the largest proportion of variation in the decay process.  Its 

statistically significant effect across the models developed in this study further 

substantiates its central position and cements its importance as a key aspect of time since 

death equations. 

With regard to the assessment of accumulated degree days versus post-mortem 

interval days, ADD dominates the comparisons, demonstrating a larger coefficient of 

determination in each and every model considered.  Whether evaluating the overall 

model including all depositional contexts or each stratified subset, accumulated degree 

days explains a larger proportion of the variation in decomposition in all cases.  Without 

a doubt, the incorporation of both time and temperature in the form of accumulated 

degree days is of more value in modeling decomposition and estimating time since death. 

Along with the development of a time since death estimation equation applicable 

across all cases, stratified analyses also demonstrated impressive results.  Both non-water 

outdoor and indoor contexts explain a great deal of the observed variation, especially 

when combined jointly into one model.  However, the same cannot be said with regard to 

cases deposited in aquatic contexts.  As a matter of fact, the low R2 values seen, 
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especially in the aquatic PMI model, signifies the existence of confounding variables 

which are either as-yet-unknown or relatively impossible to track.  Although the overall 

model explains a large proportion of the variation, the similarities in decomposition 

shared between cases in non-water outdoor and indoor contexts and the high R2 values 

seen in their joint model, coupled with the low coefficient of determination demonstrated 

in the subset containing only aquatic cases, suggests that the joint non-water outdoor and 

indoor model will be of potential use in the medico-legal community. 

Besides the continued confirmation of the important role played by total body 

score, no other variables demonstrated a sustained statistically significant effect across 

decomposition models, regardless of the analytical level assessed.  Although this 

particular discovery may appear to suggest that no additional variables were observed to 

play a role in the decay process, this is far from the case.  Given the linear dependence 

identified in the non-water outdoor PMI model, an important statement can be drawn 

from that discovery: a variable exists in the dataset which incorporates the joint effects of 

the various factors involved in the decomposition process.  As can be surmised, the linear 

dependence points directly towards the total body score.  A specific discussion of these 

results, and the impact they have on the development of time since death equations, will 

be provided in the discussion section. 

Moreover, when assessing the speed at which each depositional environment 

produces specific total body scores, outdoor contexts were observed to require the least 

amount of time to do so.  Although an initial delay was observed, when cases entered into 

the latter half of the early decomposition stage, outdoor environments were demonstrated 
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to produce a faster rate of decay than indoor cases.  The combined non-water outdoor and 

indoor model also supported the trend shown by the outdoor context. 

Finally, after developing a general decomposition model by which to estimate 

time since death in the Delaware River Valley, a comparison was made with the model 

derived by Megyesi et al. (2005).  When applying the data derived from cases found in 

Delaware to the Megyesi et al. (2005) model, it was found that the Delaware River 

Valley model developed in this study explains a larger proportion of the observed 

variation.  In fact, this particular discovery holds true not only at the level incorporating 

all depositional contexts, but also to the model developed for non-water outdoor and 

indoor cases.   

What’s more, when both models were used to predict the accumulated degree 

days by assessing total body scores in each individual case included in the dataset, and 

the results subsequently compared to actual observed ADD values derived from the each 

case, the Delaware River Valley equation more accurately approximated the actual ADD 

total.  In fact, when comparing the mean differential and the average of the absolute value 

of the differential between predicted and observed values, the Delaware River Valley 

model proved once again to be more accurate. 

More importantly, are the results of the comparison between the non-water 

outdoor and indoor Delaware River Valley model and the Megyesi et al. (2005) model.  

The DRV model derived in this study not only outperforms the Megyesi et al. (2005) 

model, but it does so with remarkable accuracy, with the predicted ADD average being 

only two points away from the actual observed ADD average.  Therefore, it is clear that 
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the model derived in this study is much better-suited to estimating time since death in 

cases found in the Delaware River Valley region. 

When the totality of the results are considered, it becomes clear that not only has a 

model been developed which is more applicable to the cases in this area, but also that 

universal time since death models are not warranted.  Instead, these results validate the 

creation of a time since death equation particular to the Delaware River Valley (or a 

specific region) and confirm the necessity of region-specific formulas.  For the very first 

time, a time since death equation directly applicable to decomposition cases in the 

Delaware River Valley has been developed. 
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Chapter Ten: Discussion 

Qualitative Observations 

Accurate Representation of Decompositional Changes and Patterns in a Region: 

Development of the Total Body Score 

Perhaps the single most important factor in accurately estimating the post-mortem 

interval is the use of decompositional standards that are specific, particular, and 

appropriate to the environment in which they are being employed.  If the total body 

scoring system being employed does not accurately represent the specific 

decompositional changes and patterns which occur in that environment, then estimates of 

time since death will suffer.   

This particular consideration has been indirectly identified in a number of studies.  

Megyesi et al. (2005) deliberately altered the decompositional descriptions developed by 

Galloway et al. (1989) to better fit the decomposition observed in their cases and, thus, 

made them more applicable to the total body scoring system which they had developed.  

Heaton et al. (2010) also took a similar approach toward the development of their total 

body scoring system with regard to aquatic cases, altering the decompositional 

descriptions and patterns described in Megyesi et al.’s (2005) land-based study and the 

aquatic decomposition research conducted by Hobischak and Anderson (2002).  In fact, 

Megyesi et al. (2005: 2) themselves state that the categories developed by Galloway et al. 

(1989) “were intended to describe the decomposition process as it occurs in southern 

Arizona…and so the stages were altered to reflect the process as it occurs in non-desert 

regions of the United States.”  This specific statement alone perfectly highlights the 
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critical importance of and need to develop a total body score system designed to reflect 

the pattern of decomposition for each particular environment. 

In order to provide a more intuitive explanation of this point, consider the 

following example:  If a total body scoring system was developed based on the 

decompositional changes which occur in the Sahara desert, the pattern of decay would 

reflect a rapid onset of bloating, discoloration, and mummification, little to no evidence 

of moist desiccation, decreased insect activity resulting in minimal consumption and a 

high degree of preservation of tissues, and reduced bone exposure.  If that particular 

system was applied to the Delaware River Valley area and used to represent the 

decompositional changes observed in this particular temperate climate, not only would 

there be significant gaps in the stages which represent moist decomposition, skeletal 

exposure, insect activity, and so forth, but it would also require observations of 

decomposition to be force-fitted into the closest “applicable” category, with that 

particular categorization not being entirely reflective of the decompositional changes 

observed.   

What’s more, if the decompositional changes in an area are accurately described, 

it decreases the subjective evaluations which can be derived from observations, and 

reduces the variation in total body score attribution between evaluators.  Precise total 

body score descriptions function to avoid having to account for the poor representation of 

decomposition, as well as the loose fit between observed decompositional changes and 

those descriptions provided in the TBS.  In this way, accurate total body score 

descriptions can serve to decrease inter-observer error, and standardize the total body 

score attribution process. 
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It is also crucial to keep in mind the fact that different depositional contexts affect 

remains in different ways.  As described in great detail above, although various factors 

overlap in regards to their presence across contexts, many variables particular to a 

depositional environment exist as well.  Even though these covariates were not identified 

as having a statistically significant effect in the model, that does not mean they do not 

produce an effect on the decay process.  In reality, these differences function to alter the 

decompositional changes and patterns observed between depositional contexts, 

demonstrated most clearly in the differences described in the total body scoring systems 

developed for non-water versus water cases.  Given the difference in variables factoring 

into decomposition between aquatic and non-aquatic cases, and, most especially, the 

difference in the specific decompositional changes and patterns which occur in both sets 

of environments, separate total body scoring systems accounting for these differences are 

clearly warranted. 

Therefore, when taking these considerations into account, it becomes obvious that 

one of the most crucial aspects of developing an equation by which to accurately estimate 

the time since death, is the development of a total body scoring system which precisely 

reflects the particular decompositional changes and patterns specific to a region and 

depositional environment.  Based on a detailed analysis of the progression of 

decompositional changes in varying contexts throughout the Delaware River Valley, it 

was observed that total body scoring systems developed in previous studies from various 

environments throughout the United States and abroad (see Megyesi et al. 2005; Heaton 

et al. 2010), as well as the descriptions of decomposition which accompany them, are not 

directly applicable to the patterns observed in this region.   
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Thus, two total body scoring systems (see Tables 23 through 28), reflecting the 

specific characteristics of decomposition as they occur in the Delaware River Valley, 

were developed, one applicable to non-water outdoor and indoor cases, and another to 

aquatic contexts.  Additionally, descriptions of decomposition were reworded and re-

described, to more precisely illustrate the specific changes which occur in the various 

contexts.  Lastly, additional categories, reflecting the multiple phases of the 

skeletonization stage, were added, furthering the call for the development of more 

specific categories of decomposition.  By doing so, the time since death equations 

derived in this study are built upon models of decomposition more accurately describing 

the specific decay changes which occur in the Delaware River Valley.  

In conclusion, if total body score descriptions are being used which do not 

accurately represent the process of decay occurring in the region of interest, then the 

entire model will be thrown off.  Taking this into consideration, given the development of 

a new total body score system in this study, with additional descriptions, categories, and 

phases, the Delaware River Valley model is better suited to estimating time since death in 

this area.  Based on these results, it should be used in place of the Megyesi et al. (2005) 

model.  Just as importantly, these results also demonstrate the need for region-specific 

standards and validate the development of total body score descriptions specific to 

particular climatic and environmental areas. 

Decomposition Characteristics in the Delaware River Valley Region 

 Given how critically important the accurate analysis of total body score is to 

estimations of time since death, several key observations have been made regarding the 

decompositional changes and patterns observed in the Delaware River Valley region.  
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These observations were compiled throughout this dissertation research study, building 

upon the experiences gained through the daily determination of the total body score in 80 

different cases.  In total, they reflect the knowledge developed through analysis of in-

person assessments of decomposition, autopsy reports, forensic investigator “on-scene” 

reports, as well as photographs and additional supplements.  These general observations, 

to be discussed below, are meant to facilitate the assignment of total body score and 

clarify any issues in the interpretation of decompositional changes, especially in those 

unfamiliar with the scoring system.  They can be characterized as helpful hints to 

improve the examination of decompositional changes and the evaluation of TBS.  

Ultimately, they are designed to reduce the subjectivity surrounding total body score 

assessments and increase the objective nature of these analyses, with the results hopefully 

bearing out on more accurate predictions of time since death. 

General Comments Regarding Total Body Score Assessments 

Variation 

The most important point to remember when assessing total body score revolves 

around the fact that decomposition is a variable process.  The descriptions provided for 

each stage in this study are based on “typical” decompositional patterns and are by no 

means expected to cover every possible decompositional scenario.  Sometimes, traits may 

develop earlier than expected.  However, when taken together with the entire picture of 

decomposition presented, they will be clearly indicative of premature development rather 

than advanced decomposition.  Given this important distinction, in cases where the 

descriptions listed for each decompositional stage do not perfectly match the observations 

made regarding the body, the attributed score should be based on the “best fit” and entire 
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picture of decomposition presented, based on the totality of the decompositional changes 

seen.  In such cases, discussion among investigators is encouraged to provide educated 

assessments of total body score. 

Total Body Score Assessments Made on Day of Recovery 

As a general rule, when at all possible, assessments of total body score should be 

based on observations of decomposition made the day of recovery, as the ADD formula 

accounts for the period between the “date last seen” and “date recovered.”  When 

counting accumulated degree days, all temperatures above the freezing point have the 

potential to impact decomposition.  Thus, if bodies cannot be evaluated for the total body 

score the day of recovery, corpses should be stored in freezers to prevent throwing off 

estimates of time since death.   

Causes of Death 

It is important to note that particular causes of death may alter the rate of 

decomposition.  Before delving into this specific topic, the reader should be reminded 

that, with regard to preference, insects first choose to colonize natural orifices, as 

opposed to post-mortem incisions, thereby relatively preserving indications of trauma 

(Haskell et al. 1997).  Secondly, with regard to projectile damage, changes due to 

decomposition do not affect the collection and interpretation of gunshot wound evidence, 

regardless of moderate or cold temperatures, until the skin is degraded or covered in ice 

and snow, once again preserving evidence of trauma until the very later stages of the 

breakdown of a corpse (MacAulay et al. 2009a; MacAulay et al. 2009b).  However, this 

study did not identify any particular results of note regarding incisive or penetrating 
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gunshot wounds to warrant discussion.  Rather, this section deals with causes of death 

related to asphyxiation, heart failure, and the like. 

The particular link between these causes of death and the rate of decomposition 

was noticed early on in the decomposition process when a few cases demonstrated a rapid 

onset of reddening and marbling of the upper body and face, despite the rest of the corpse 

exhibiting little to no changes.  When the cases were examined and the conditions they 

faced were identified, a trend was noted between the rapid onset of early decompositional 

changes in the upper body and cases where the cause of death was listed as asphyxia, 

heart-related deaths, and the like.  Given this connection, it appears as if the pooling and 

congestion of blood in the head and upper torso results in the specific changes observed.  

Additionally, as these changes develop early on in the upper body, the lower limbs tend 

to retain a rather fresh looking appearance.   

Moreover, it should be pointed out that a useful indicator of the true 

decompositional state of the body can be found through an examination of the condition 

of the hands, i.e. the washerwoman effect, skin slippage, and degloving, because the 

hands are less likely to be affected by the reddening and marbling developing in the rest 

of the arm.  If the hands do not correspond to the changes observed elsewhere, then 

consideration should be given to the potential impact of the cause of death on 

decomposition. 

Therefore, in such cases where this may be apparent, the evaluator’s best 

judgment and experience should be used to determine the total body score, as it will 

likely reflect lower scores despite the changes to the upper body.  In this way, the scores 

will correspond to the decompositional state of the lower body and prevent over-
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estimation of time since death.  Thus, it appears warranted that cause of death is 

determined prior to estimating time since death in these cases.  Given the potential 

importance of cause of death, this example further demonstrates the need for 

collaboration and communication between Medical Examiners, forensic investigators, 

and police personnel to effectively estimate the post-mortem interval. 

Clavicles, Upper Ribs, and Genitalia 

For the sake of clarity, with regard to the three subsets of the body making up the 

total body score, the clavicles and upper ribs were defined as part of the trunk or torso.  

Given the classification of the pelvis as part of the torso, coupled with the location of the 

sex organs, the genitalia were also considered together with analyses of the trunk.  This 

distinction is also designed to reflect the fact that these areas tend to align with the 

decompositional changes observed on the torso and are influenced by the presence of 

bacteria present in the gut and bloating in the abdominal cavity.  All other areas of the 

body correspond to either the head and neck, the trunk, or the limbs. 

Focal Bone Exposure 

Focal exposure is defined as being related to a point of focus, usually small in 

nature.  When applied to the total body score, focal bone exposure relates directly to 

small amounts of exposed bone, with the surrounding area overwhelming retaining soft 

tissue.  Specifically, focal bone exposure was quantified in this study as demonstrating 1-

10% exposure of the bone in the area being scored.  Given the fact that in order to fall 

into the “advanced decomposition” stage, greater than 10% of bone exposure is required, 

for the purposes of this study, focal exposure is characterized as falling into either the 

early or moderate decomposition stage. 
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Decompositional Patterns in Outdoor and Indoor Contexts 

 The following discussion will describe the particular decompositional changes 

and patterns observed in cases exposed to non-water outdoor and indoor contexts.  Based 

on similar decay changes between both types of cases, a joint total body score description 

was developed for both.  A summary of these changes can be found in Tables 23 to 25.  

The discussion will be broken down by area of the body and decompositional stage. 

 In comparison to the Megyesi et al. (2005) total body score description, the 

decompositional changes and patterns described here have been re-interpreted and 

expanded upon with greater details.  The hope is that by providing more information and 

rearranging key observations among stages and phases, the actual decompositional 

changes and patterns in the Delaware River Valley area will be better represented.  

Across each area of the body, the greatest differences between these total body score 

descriptions and those developed by Megyesi et al. (2005), can be found in the 

skeletonization stage, where additional categories have been added and expanded upon. 

Head and Neck 

 In comparison to the other areas of the body, the first region to demonstrate 

evidence of decompositional changes is the head and neck.  Although the 

decompositional changes in the lower abdominal area quickly follow, bloating of the 

face, along with the purging of fluids, drying out of the nose and lips, marbling, 

development of a red to green discoloration, and protrusion of the tongue, all appear to 

occur relatively quickly. 

To begin, the fresh stage in the head and neck is characterized by no discoloration 

and a normal, living look.  Once the beginning phases of early decomposition take place, 
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the epidermis begins to demonstrate some slippage, with the skin taking on a pinkish tint.  

At this point in time, some slight hair loss may be observed.  As the early decomposition 

stage progresses, the skin begins taking on a gray to green discoloration, although some 

areas may retain a relatively fresh looking appearance.  Eventually, a greenish, and 

sometimes purplish, discoloration predominates over the entire head and neck, with 

brownish shades developing as the nose, ears, lips, and edges of the face begin to dry.  

The next phase involves purging of the decompositional fluids out of the eyes, ears, nose 

and mouth.  Given the start of the protrusion of the tongue from the oral cavity, some 

bloating of the neck and face may also be apparent.  A green and/or purple discoloration 

is likely still visible, possibly having darkened since the previous phase.  By this point, no 

exposure of bone is seen, with about the same amount of drying of the skin as previously 

described.  In the last phase of the early decomposition stage, the flesh takes on a brown 

to black discoloration.  Given the discoloration, some drying over large areas of the face 

and neck are possible, not to be confused with leatherized or mummified skin.  Should 

the skin not be dry, moist decay will be seen.  Some very slight focal bone exposure may 

be visible.  Bloating may also still be present or in the process of waning. 

 The moderate stage of decomposition in the head and neck is characterized by the 

development of brown leathery skin.  This change in skin texture is more advanced than 

the simple drying of tissues previously described.  In fact, large areas of the face may 

demonstrate changes consistent with a leathery texture or mummification.  These 

observations of leathery and/or mummified skin often correspond with the simultaneous 

development of leathery skin in other areas of the body.  No bloating is usually present, 
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as the post-bloat phase is typically underway.  Some very slight focal bone exposure may 

be evident as well. 

 The advanced decomposition stage is marked first by moist decomposition of the 

tissues.  This is in stark contrast to the mummified tissue seen in the next phase.  Both 

phases demonstrate bone exposure no greater than half of the head and neck. 

 The final stage of decomposition in the head and neck is characterized by 

skeletonization.  In the early phases, bone exposure of more than half the head and neck 

is seen, with decomposed, moist, and greasy tissues and substances observable.  The next 

phase is also characterized by bone exposure of more than half the head and neck, but the 

tissue is either desiccated or mummified.  Given the presence of some remaining tissue, 

hair may still be adherent to the head in remote locations.  The following step is marked 

by either only slight tissue adherences or bones completely devoid of soft tissue.  Due to 

the potential adherence of very small areas of remaining tissue, the bones still retain 

grease and a greasy appearance.  Next, following the removal of all or nearly all tissue, 

bones tend to be found scattered away from the main cluster of the body due to animal 

activity in this phase.  Subsequently, in the ensuing phase, any bones found are largely 

dry, although some grease remains.  No soft tissue adherences are observed at all.  The 

final phase of the decomposition process in the head and neck demonstrates dry bone in 

varying states of deterioration. 

Torso 

 With regard to the decompositional changes and patterns in the trunk, the fresh 

stage is characterized by no discoloration and the normal appearance of tissue.  The early 

decomposition stage begins with the development of a pinkish tinge to the skin, with 
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marbling and some skin slippage possibly also occuring.  As the next phase begins, a 

gray to green discoloration takes hold, usually restricted to the lower abdominal area.  

Some flesh retains a relatively fresh appearance.  In the last phase of the early stage, 

bloating is clearly visible, with green discoloration observed throughout the body.  This 

particular phase tends to correspond with the purging of fluids from the anus, mouth, 

ears, and nose.  The body may also take on a darker purple or purple-red color.  

Occasionally, black, and sometimes brown discoloration is observed, along with the 

requisite areas of drying skin. 

 The moderate decomposition stage is characterized by a post-bloat appearance 

following the release of abdominal gases.  If not yet observed, discoloration has changed 

from green to black by the first phase.  During the latter portion of the opening phase, 

decomposition may produce the sagging of tissue and the caving in of the abdominal 

cavity.  In the next phase, the skin takes on a leathery and parchment-like appearance.  

Given the deflated look, in combination with the skin texture observed, a wrinkled 

appearance of the skin is often seen.  By this phase, larger areas of skin may be at the 

point of mummification.  However, very slight to no focal bone exposure is observed. 

 The advanced decomposition stage in the trunk is characterized by the same 

changes observed in the head and neck.  Moist decomposition is first seen, with bone 

exposure of less than half the torso.  This phase is followed by the appearance of 

mummified tissue in conjunction with less than half the trunk demonstrating bone 

exposure.  However, compared to the previous stage, both advanced decomposition 

phases show greater than 10% bone exposure. 
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 Lastly, the skeletonization stage begins with the loss of significant amounts of 

soft tissue, with bone exposure making up more than half of the torso.  The next step 

involves the presence of mummified or desiccated tissue totaling less than half the trunk, 

predominantly demonstrating bone exposure.  The following phase shows little to no soft 

tissue adherence, given the complete collapse and consumption of soft tissue and 

muscles.  Occasionally, a sludge-like glob is seen encompassing the bone with this 

having a sticky and putty-like texture.  This moisture, coupled with the continued 

presence of marrow, cause the bones to retain grease.  The ensuing phase features the 

scattering of bones away from the main cluster of the body due to animal activity.  Next, 

bones are found in a mostly dry state, with some traces of grease remaining and no 

evidence of soft tissue present.  Lastly, only dry bone remains, found in various stages of 

breakdown. 

Limbs 

 As discussed above, the head and neck region tends to be the first area of the body 

to demonstrate decompositional changes.  However, the limbs are normally the last to 

produce changes consistent with decay.  This may be due in large part to the differential 

diffusion of gases between the head, torso, and limbs, as well as the inability of bacteria 

to spread as quickly into the arms and legs.  Unlike the trunk, head, and neck, the limbs 

lack passageways for the spread of gas and bacteria, ultimately resulting in a slower rate 

of decay. 

The stages of decomposition involving the arms, legs, hands, and feet, are not as 

numerous compared to the other two areas of the body.  As in every region, the fresh 

stage is characterized by normal looking skin and no discoloration.  Upon the beginning 
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of the early decomposition stage, a pinkish appearance develops, with skin slippage 

observed in the hands and/or feet.  Some slight drying of the fingertips and toes may be 

possible at this point, but overall, the skin retains a nearly fresh appearance.  The next 

phase demonstrates gray to green discoloration and evidence of marbling.  The potential 

exists for the presence of dried skin on the fingertips and toes, although this observation 

is seen most often in indoor cases.  At this point, some areas of skin may still retain a 

relatively fresh appearance.  The last phase of early decomposition in the limbs shows 

greenish and/or purplish or purplish-red discoloration.  Dry brown shades, predominantly 

clustered at the edges of the hand and feet are observed, along with drying of the fingers 

and hands, toes and feet, heels, and knuckles.  These areas of dry skin may extend to 

somewhat larger areas on occasion.  Gloving of the skin of the hands and feet is possible 

in this phase. 

 The moderate decomposition stage is marked by the observation of brown or 

yellow-brown leathery or mummified skin.  Little to no focal bone exposure is seen.  

Given the typical leathery appearance of the skin, brown to black discoloration 

predominates.  A dry, wrinkled appearance is sometimes observed.  The hands and/or feet 

may be mummified, with the potential for large areas of skin to be at the point of 

mummification.  This particular stage is distinguished from the previous phase by the 

state of the lower legs.  If the lower legs have yet to mummify and still exhibit traits 

characteristic of early decomposition, such as purple and green discoloration and skin 

slippage, the earlier phase should be used. 

 The advanced decomposition stage of the limbs is the same as that described for 

the head, neck, and trunk.  It begins with moist decomposition and more than half the soft 
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tissue remaining, and concludes with mummified tissue and more than half the tissue 

remaining. 

 The final stage in the decomposition of the limbs begins with the exposure of 

more than half of the bones of the limbs, with decomposed tissue remaining.  The next 

phase also shows exposure of more than half of the bones of the limbs; however, 

desiccated or mummified tissue remains.  The following phase is defined by the presence 

of slight to no soft tissue adherences, although the bone retains grease.  The subsequent 

phase is characterized by the scattering of bones away from the main cluster by animals.  

The penultimate phase is marked by largely dry bone, although some traces of grease 

remain.  However, no soft tissue adherences remain on the bone.  Lastly, dry bones 

remain in various stages of deterioration. 

General Comments Regarding Decomposition in Outdoor and Indoor Contexts 

 This specific section is dedicated to a few points of consideration in regards to 

issues to keep in mind, specific patterns of note, information pertaining to particular 

variables, and so forth. 

Multiple Stages 

Given the overlap between decompositional stages, it should be noted that in 

some cases, artifacts of previous stages may be retained.  For example, dried purge fluid 

may remain despite the body progressing through to stages characterized by extensive 

bloating.  If traits of the next stage are developed, even with artifacts of previous stages 

remaining, it should be scored as such, so as to reflect the progression through to more 

advanced stages of decomposition. 
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Unequal Decomposition 

Oftentimes, unequal decomposition can be observed between the anterior and 

posterior surfaces of a body.  In fact, the side of the body touching the ground often 

shows putrefactive changes, while the opposite side may show drying, induration, or 

mummification.  This observation may be due in part to the gravitational pooling of 

blood, especially during the early stages of decomposition, as increased reddening and 

purpling in dependent areas is more often than not reflective of livor mortis. 

Along the same vein, when a body is found lying face down, the skin of the face 

often looks collapsed and pushed in.  This should not be confused with trauma.  

Likewise, care should be taken not to characterize this pseudo-collapse of facial tissue as 

evident of post-bloat stages, if accompanying traits in the rest of the body do not support 

such a characterization. 

Putrefactive Changes 

In regards to observable decompositional changes, although the abdomen would 

show green discoloration in the lower quadrants, noticeable putrefactive changes 

appeared to progress quicker in the face.  These changes included visible discoloration, 

purging, and bloating, which appeared to develop quicker than in other areas of the body. 

As was observed in regards to the progression to skeletonization, the arms were 

quicker to progress through decomposition than the legs, especially in regards to 

developing a green discoloration, as well as the development of leathery and mummified 

skin. 
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Dried versus Leatherized versus Mummified Skin 

Care should be taken to distinguish between dried, leatherized, and mummified 

skin. On a number of occasions, forensic investigator and autopsy reports appeared to 

over-estimate or exaggerate the degree of desiccation, when in fact, the skin was simply 

demonstrating dry patches or leathery skin as opposed to complete mummification.   

Dried skin typically develops earlier on during the decomposition process and in 

addition to being brown, can be accompanied by black and dark purple discoloration, 

bloating and sometimes purge fluid.   

Leathery skin occurs during the more moderate stages, oftentimes retaining a 

parchment-like look and feel, as well as a wrinkled appearance.  It can often be found 

during post-bloat periods.  Mummified skin is completely dried and brown in color.   

When uncertain whether skin is in a leatherized or mummified state, if 

skeletonization beyond focal exposure of bone is apparent, the case tends to minimally 

fall into the advanced decomposition stage characterized by “mummification with bone 

exposure less than one half that of the area being scored.”  Obviously, if greater than half 

of the area being scored is skeletonized, it will fall into the “skeletonization” stage. 

However, an exception to this general rule was discovered in cases involving 

hangings in the woods during the summer months.  During this period, the body quickly 

mummifies, often precluding insect activity (as flies require moist tissue to oviposit their 

eggs).  Additionally, given the hanging of the body, it is sometimes inaccessible to 

scavengers.  In these cases, despite the lack of skeletal bone exposure, given the high 

degree of mummification, complete loss and dehydration of internal organs, and so forth, 

the case is typically scored minimally as “mummification with bone exposure less than 
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one half that of the area being scored.”  If this is not done, and the body is scored into an 

earlier stage of decomposition, an underestimation of time since death will result.   

Given the retroactive nature of this study, this research had the added benefit of 

knowing the PMI period before assessing total body score.  Typically, those cases not 

demonstrating bone exposure were seen to be exposed to shorter PMI periods.  However, 

in the handful of cases in which individuals were found to be hanging in the woods, a 

longer time since death interval was seen.  Thus, by scoring the body into a later stage of 

decomposition, the total body score is not hampered by the atypical lack of 

skeletonization seen in these cases.   

Body Weight, Age, and Mummification 

In support of studies suggesting differences in the rate of decomposition in 

regards to variations in body weight and composition, oftentimes it was observed that in 

older individuals with lower body mass indices, progression to mummification was 

quicker than those with more bulk.  The reduced body mass appears to speed up the 

dehydration of tissues and support preservation, seen especially in indoor cases.  In this 

study, direct observation supports the notion that individuals with little body fat and light 

weight, seen most often in the elderly, may progress to the dry decay phase more quickly 

than heavier individuals.  The result of this process is a corpse with dry, leathery, and 

oftentimes mummified skin, especially in indoor environments.   

However, much like all of the variables discussed in this study, the progression 

through the stages of decomposition can be heavily altered by the effects of temperature, 

humidity, and aridity.  For example, a low weight, low body fat individual decomposing 

next to a portable heater, will most likely present a rapid progression to mummification.  
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On the other hand, if the same individual was left to decompose in a bathtub full of water, 

the low weight and fat would be counteracted by the moisture present around the body.  

Thus, noting the circumstances under which a set of remains is found is crucial to 

determinations of time since death. 

Progression to Skeletonization 

Skeletonization was most often seen first in the cranial bones, beginning in the 

area of the forehead and orbits, and progressing downwards.  The back of the head and 

zygomatic areas typically took longer to be exposed.  This may be due in part to the 

protection afforded by hair, in the case of the back of the skull, and the fatty tissues 

encompassing the cheeks, in regards to the exposure of the zygomatic bones.  After the 

exposure of the cranial bones, the trunk followed suit, beginning with the clavicles, 

vertebrae, and then ribs.  In the limbs, the upper arms seemed to show skeletonization 

first, typically involving the bicep/tricep/deltoid area or the proximal aspect of the 

humerus.  The hands were often exposed during this time as well, especially the distal 

phalanges and the junction surrounding the metacarpals and proximal phalanges.  Lastly, 

the ends of the bones, including the elbow area were exposed.  The lower limbs appeared 

delayed in regards to skeletonization, while the gut was rarely described given the lack of 

skeletal elements in the area. 

Insect Activity 

Firstly, since bodies were scored based on information presented in the Medical 

Examiner’s autopsy reports, only the insect activity noted during autopsy was used for 

scoring.  This particular distinction was made given the observation that forensic 

investigator reports describing insect activity on scene were not consistent across all 
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investigators regarding insect presence, infestation, artifact, and absence.  At times, vague 

or inconsistent terminology was used, making it difficult to develop a clear understanding 

of insect activity on the body.  Therefore, only the information presented in the autopsy 

report was used for this assessment.  This issue points at the need to standardize the 

reporting of information on scene, not specific to just insect activity, but across the entire 

spectrum of variables including temperature, clothing, scatter, shade/exposure, and so 

forth.  This will be discussed in more detail in subsequent sections.  However, a question 

remains regarding if assessment of insect activity by Medical Examiners in autopsy 

reports is biased by observations of where the most decomposition has occurred. 

In regards to the presence and location of insect activity, oftentimes maggot 

activity is observed on the head and neck area, and sometimes upper torso, resulting in 

the exposure of the cranial bones of the face, clavicles, upper ribs, and possibly some of 

the shoulder girdle.  Insects were not often seen to colonize the limbs, especially the 

lower extremities.  If present, insect activity was usually found first on the head and neck, 

then upper torso, followed jointly by the upper extremities/torso/pelvic girdle.  Lastly, as 

a general observation, traumatic areas tend to be accompanied by insect activity as well. 

Scattering 

In regards to the scatter pattern of the skeleton, the cranium appeared to be among 

the first skeletal elements to be subject to scatter, as it is usually disarticulated from the 

mandible (which will scatter as well).  Given the circular shape of the cranium, it is 

subject to both rolling and transportation by scavengers, who can easily grab hold of the 

cranial bones by the orbital sockets.  Following the cranial skeleton, the postcranial 

elements which tended to scatter next were the ribs, bones of the hands and feet, and 
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bones of the lower arm (radius and ulna).  Often times the lower extremities remained 

intact, likely due to the influence of cartilage, tendons, ligaments, and so forth. 

In cases where significant tissue is still adhered to the bone, but the bone is 

scattered away from the main cluster, it should be scored as still retaining slight tissues 

adherences, so as to not over-score an area if not warranted.  Additionally, bones tended 

to be scattered before they developed a largely dry appearance.  For the sake of 

consistency in scoring, if the reverse is seen, the area should still be scored as “bones 

scattered away from main cluster of body due to animal activity.” 

Trauma 

In cases of trauma in a particular location, the immediately surrounding area may 

appear to be in a more advanced stage of decomposition than the rest of the body region.  

However, it should not be classified according to that advanced decomposition, but 

instead should reflect the stage of decomposition represented by the rest of the area, as 

the trauma may have contributed to increasing the rate of decay about the wound.  If this 

not done, it will lead to over-scoring and will not appropriately describe the time since 

death.  For example: Should an individual have died via a gunshot wound to the head, the 

immediate area surrounding the wound may display increased insect activity, drying, 

skeletonization and so forth.  However, one must consider the state of the rest of the head 

and neck, such as if the eyes are collapsed, hair is still attached, and skeletonization is 

present elsewhere, so as to properly score the state of decay.  

Decompositional Patterns in Aquatic Environments 

 Compared to the non-water outdoor and indoor total body score descriptions 

described above, the decompositional changes and patterns observed in aquatic 
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environments correspond to fewer stages and phases.  What’s more, these changes were 

observed to be more difficult to generalize, as more variation appeared to characterize 

aquatic cases.  As a result, significant overlap exists in regards to some of the 

descriptions provided.  A summary of these changes can be found in Tables 26 to 28.  

The discussion will be broken down by area of the body and decompositional stage. 

 Much like the method utilized in regards to the total body score descriptions 

described by Megyesi et al. (2005), the decompositional changes and patterns discussed 

in Heaton et al. (2010) were re-interpreted and expanded upon in order to be more 

representative of the decay process as it occurs in aquatic cases in the Delaware River 

Valley.  As a result, additional phases were included in regards to skeletonization and 

discussed in detail. 

 Continuing the conversation regarding variation, it is important to note that unlike 

the patterns and changes observed in the non-water outdoor and indoor cases, much 

greater variation in the decomposition process is seen in cases deposited in aquatic 

contexts.  Multiple regions of the body may be in different stages of decomposition at 

once in one case, but show equal decay in another.  In terms of the beginning of decay, 

although the head and neck, followed by the trunk, often show the first signs of 

decomposition, the hands are quick to wrinkle and take on a white coloration.  They do 

not appear to lag as far behind in developing decompositional changes compared to the 

limbs in non-aquatic cases. 

 Moreover, a greater range of colors observed on the body is seen in aquatic cases.  

In addition to the traditional reddening and green discoloration, changes from purple to 

black to brown, and even to blue, are often seen.  These colors do not necessarily 
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correspond to specific phases, oftentimes lingering later on in the process or 

demonstrating multiple colors in the same region of the body at once. 

 In total, based on the inconsistencies observed in the decomposition of bodies 

deposited in aquatic cases, it is certainly safe to conclude that variation is the rule in 

aquatic decay. 

Head and Neck 

 Across each of the three regions of the body, the fresh stage is characterized by no 

visible decay changes.  In the first phase of the early decomposition stage in the head and 

neck, a slight pink tinge develops on the skin, corresponding with darkened lips, usually 

blue in color, and goose pimpling.  As the next phase develops, reddening, which can 

sometimes be dark, begins to be observed on the face and neck.  Initial skin slippage and 

marbling also develop in this phase.  Additionally, the potential for early signs of animal 

activity and predation are possible, concentrated mainly on the ears, nose, and lips.  Early 

evidence of bloating, especially in the tissues of the lips, may be seen at this point.  Head 

hair may also begin to slough off, seen mostly at the front in this phase.  Occasionally, 

some purging of fluid may be observed.  Internally, the brain begins to soften, with 

potential liquefaction in a small number of cases.  The next phase is marked by clear 

evidence of bloating in the face and neck.  Discoloration, ranging from yellow-brown to 

light brown to green, is seen.  At times, some evidence of reddening remains.  At this 

point, skin sloughing is in full effect, along with the sloughing of head hair, and 

sometimes, the complete sloughing off of hair.  Evidence of animal activity may have 

become more prevalent on the ears, nose, and lips, with the potential exposure of some 

underlying tissues of the face, neck, and orbits.  Purge fluid may continue emanating 
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from the orifices or be in the process of waning.  Internally, the brain is completely 

softened and nearing, or completely at the point of, liquefaction. 

 The moderate stage of decomposition in the head and neck is characterized by the 

post-bloat phase.  At this point in time, the face has taken on the look of more advanced 

decomposition, including dark green and black discoloration, but with no significant bone 

exposure.  Instead, tissue can be exposed on the face and neck, with the potential collapse 

of the anterior aspect of the face, especially the nose.  In terms of head hair, it is often 

seen to have completely sloughed off by this time.  Internally, the brain is usually fully 

liquefied, with no remaining structure. 

 The advanced decomposition stage is denoted by less than half of the bone being 

exposed.  Those areas demonstrating bone exposure tend to concentrate over the orbital, 

frontal, and parietal regions of the skull.  Some bone exposure is occasionally seen on the 

mandible and maxilla.  The next phase involves more extensive skeletonization of the 

cranium, exposing greater than half of the bone.  Given the breakdown of tissue and 

accompanying connective fibers, the disarticulation of the mandible is observed at this 

point. 

 Lastly, the first phase of the skeletonization stage in the head and neck is marked 

by the disarticulation of the skull from the trunk.  Some slight adherences of soft tissue 

may remain adhered to the bone.  Given the fairly recent exposure of extensive areas of 

the bone, an off-white or light brown color is retained.  The last phase demonstrates the 

bones of the skull completely devoid of any and all soft tissue.  The bones are typically 

white in color, almost as if they were bleached, although some areas of light brown 
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colorations or staining from mud may be evident.  As time progresses, evidence of 

erosion and weathering may be seen. 

Trunk 

 Immediately following death, the fresh stage of decomposition produces no 

visible changes.  At the beginning of the early decomposition stage in the torso, slight 

pink discoloration, as well as goose pimpling of the skin, is observed.  This phase is 

followed by the development of yellow-green and light-green discoloration of the 

abdomen and reddening of the upper chest.  Depending on the position of the body, 

reddening is occasionally seen on the sides of the trunk.  At this point, marbling is also 

observed to be beginning, along with initial slippage of the skin.  In regards to the 

scrotum in males, bloating may be observed in this region.  Early signs of predation are 

possible in this phase, not concentrated over any particular area.  Internally, the organs 

are beginning to soften.  Despite all of these changes, some areas of skin may retain a 

relatively fresh appearance.  Moving on, the next phase is marked by mild to full-on 

bloating of the abdomen and scrotal sac in males.  The scrotal sac may have begun 

bloating earlier than the abdomen, so it may be more advanced in that respect.  

Additionally, yellow and light to dark green discoloration, which may sometimes appear 

blue, is seen.  Possible reddening and marbling may remain as artifacts of the previous 

phase.  Skin slippage is clearly observed.  Internally, organs show evidence of autolysis, 

complete with marked softening. 

 In the moderate stage, dark green or purple discoloration is observed.  No 

reddening or yellowing is seen.  Bloating of the abdomen remains at this point.  Based on 
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the position of the body during flotation, which is usually face down, the skin on the side 

facing the sun may appear brown and dried or even leathery. 

 The advanced decomposition stage begins with black discoloration and the 

softening of the abdomen following the gradual loss of bloating.  The internal organs may 

be exposed in areas, along with slight focal exposure of bones such as the ribs, sternum, 

and so forth.  Given the potential breakdown of the torso, the organs are typically in an 

autolytic and liquefied state.  Should the body have been floating for an extensive period 

of time, the side facing the sun, which is typically the back, may show the development 

of leathery or mummified skin.  Conversely, the black discoloration typical of this phase 

may also make way to the presence of a white-cheesy substance, characteristic of 

adipocere.  Should the quantity of adipocere not be in large amounts, the total body score 

can be assessed.  In cases of large degrees of saponification, caution should be utilized 

when applying the standards, given adipocere’s preservational qualities.  A discussion 

regarding the application of the time since death estimation formula to bodies exposed to 

atypical conditions or contexts can be found in subsequent sections.  Continuing on, the 

next phase of advanced decomposition in the torso shows further loss of tissues and 

organs.  Bone exposure is more extensive than that seen in the previous phase.  However, 

the total amount of exposure is less than half. 

 In the skeletonization stage, the first phase begins with greater than half of the 

bone being exposed.  Soft tissue is still adherent to the bones, and little to no traces of 

organs remains.  The following phase shows complete skeletonization and disarticulation 

of skeletal elements, with only slight, if any, tissue adherences.  At this point, the bone 

still retains an off-white or light brown color.  Lastly, the final phase is marked by the 
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presence of nearly, or completely, bleached bone, devoid of any soft tissue.  Based on the 

length of the post-mortem interval, evidence of erosion and weathering may be visible. 

Limbs 

 Exactly as described in the other regions of the body, the fresh stage of 

decomposition does not produce any visible changes.  However, the remaining stages 

focus extensively on the decay changes observed in the hands and feet.  These changes 

begin in the first phase of the early decomposition stage, characterized by mild wrinkling 

of the skin of the hands and feet, along with possible goose pimpling.  The next phase is 

marked by the development of a white, wrinkled, and thickened appearance of the skin of 

the palms of the hands and the soles of the feet.  These changes are known as the 

“washerwoman effect.”  Additionally, slight pink discoloration of the arms and legs is 

visible, along with possible early signs of marbling and slight focal skin slippage in select 

areas.  The fingertips and toe, along with muscles of the arms and legs, may show 

possible early signs of animal activity and predation.  Despite all of these changes, some 

areas of skin may still appear relatively fresh, especially in the lower legs.  The final 

phase of early decomposition demonstrates soggy and loose skin on the palms of the 

hands and soles of the feet, with the potential sloughing off of some of the skin of the 

hands.  However, what separates this phase from moderate decomposition is the state of 

the feet.  In this phase, the feet tend to be in a less advanced stage of decomposition when 

compared to the hands.  Continuing on, marbling or dark reddening, which occasionally 

appears purple, is clearly visible in the limbs, predominantly concentrated on the upper 

arms and at times, the upper legs.  Initial skin slippage may also be observed throughout 
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the limbs.  Discoloration of the arms and/or legs is often seen, taking on a yellow-brown, 

light green, and occasionally blue color.  Signs of predation may be apparent. 

 In terms of the moderate decomposition stage, the skin of both the hands and feet 

are sloughing off or has completely degloved.  Skin slippage is also seen throughout the 

arms and legs.  A yellow-brown, green, greenish purple, or black discoloration is 

observed on the arms and legs.  Clear evidence of predation may be visible.  Moreover, 

much like what was seen in regards to the torso, the skin of the arms and legs on the side 

facing the sun may appear brown and dry or leathery. 

 The advanced decomposition stage begins with focal exposure of the bones of the 

hands and/or feet.  Given the small nature of these bones, some may be lost by this point.  

Underlying muscles, tendons, and focal areas of bone may be exposed in the lower arms 

and/or legs.  Based on the position of the body, the posterior aspects of the skin may 

appear leathery or mummified.  The following phase shows definite disarticulation of the 

bones of the hands and/or feet, with some soft tissue potentially remaining adherent.  At 

this point, more than half of the soft tissue remains on the bones of the upper arms and/or 

legs.  The next phase demonstrates the same characteristics, except less than half of the 

soft tissue remains on the bones of the upper arms and/or legs, displaying significant 

bone exposure. 

 The skeletonization stage begins with the complete skeletonization and 

disarticulation of the limbs, with only slight, if any, soft tissue adherences remaining.  

The bone retains its off-white or light brown color.  Lastly, the final phase in the 

decomposition process is marked by bones completely, or nearly completely, bleached 



242 

white.  The bones are devoid of any and all soft tissue.  Based on the length of the post-

mortem interval, the effects of erosion may be visible. 

General Comments Regarding Decomposition in Aquatic Environments 

This specific section is dedicated to a few points of consideration in regards to 

issues to keep in mind, specific patterns of note, information pertaining to particular 

variables, and so forth. 

Variation 

To begin, as discussed above, variation in decomposition is the rule, not the 

exception.  This point is exacerbated in aquatic environments where it appears 

decomposition is even more variable than changes seen on land in both outdoor and 

indoor contexts.  This point is highlighted by the small amount of variation in 

decomposition explained by the models developed for this specific depositional context, 

especially when using post-mortem interval days.  Even more so, the low coefficient of 

determination highlights the existence of a multitude of additional factors which not only 

alter the decomposition process, but are very difficult to retroactively track back in time.  

Variables such as current, tide, location in the water column, changes in salinity and pH 

level, and so forth, may all impact decay and thus contribute to the variation observed.   

What’s more, this variation is exacerbated by differences in the salt content of the 

water source.  Specifically, freshwater cases are said to exhibit stages of decomposition 

that are only slightly modified from the stages demonstrated in terrestrial environments 

(Hobischak and Anderson 1999; Hobischak and Anderson 2002; Anderson and 

Hobischak 2004).  Marine depositions on the other hand, often demonstrate bloat, active, 

and advanced stages simultaneously, accumulating greater amounts of intestinal gas, 
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leading to flotation (Anderson and Hobischak 2004).  Fortunately, marine depositions 

dominated this study, tied in to the inability to obtain accurate temperature data from 

freshwater ponds, lakes, and so forth.  However, the pattern of decomposition observed 

holds true, corresponding with Anderson and Hobischak’s (2004) claims.   

Oftentimes, different parts of bodies appeared to be in various stages of decay at 

once.  Given the difficulty in assessing total body score under such circumstances, 

decisions needed to be made regarding the stage demonstrating the majority of the 

changes observed.  Thus, especially in the case of aquatic depositions, decompositional 

descriptions and the associated scoring system need to be approached with a “best fit” 

mindset, taking into account the state of the entire body and known conditions. 

Internal versus External Decompositional Changes 

Additionally, the scoring system accounts for both internal and external 

decompositional changes.  However, given the highly variable nature of internal 

decomposition, such as the timing of the softening versus liquefaction of brain tissue, the 

description of the decomposition of the organs should serve more as a guide to 

corroborate observations made regarding external changes, rather than a clear-cut, and 

definitive description of decomposition in all cases. 

Bloating 

 In terms of the pattern of bloating seen in aquatic contexts, the weight of the 

individual in question is a very important factor to consider.  Individuals with a large fat 

content prior to death will present issues concerning the evaluation of bloating and 

extreme bloating versus their normal appearance during life.  Oftentimes, it was difficult 

to discern large stomachs from bloating, especially heavy bloating.  Clearly, given the 
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need to identify the presence and degree of bloating for the purposes of determining the 

total body score, this issue must be looked at closely. 

However, a useful indicator to resolve this particular problem deals with the 

tension felt in the abdomen and torso.  Typically, the buildup of gas will present a tense 

abdominal surface, while an abdomen with a large concentration of fat will be softer to 

the touch.  Once again however, caution should be taken not to confuse the softened feel 

of peri-mortem fat buildup with the deflation of the abdomen following the release of 

decompositional gases, although by that point in the decompositional process, additional 

characteristics such as dark discoloration, extreme slippage of the skin, and bloating of 

the genitalia will have occurred.  In particular, the scrotum appears to often bloat before 

the abdomen, another useful indicator when observing bloating. 

Assessing Decomposition in Mud-Covered Bodies 

Moreover, given the nature of aquatic depositions and the sinking of a body 

before the development of gases, the corpse is oftentimes found to be covered in mud 

from interaction with the ground surface.  Before assessments are undertaken, efforts 

should be made to view the actual skin surface to allow the proper observation of 

decompositional changes.  However, extreme caution should be taken to avoid the 

removal of skin, as this is possible when skin slippage commences.  In such situations, it 

may be more effective to wash or wipe clean only select areas in each of the three regions 

of the body. 

Blunt Force Trauma 

In regards to the earlier stages of decomposition, much like the decay process 

described for outdoor and indoor bodies, a corpse typically demonstrates a reddened 
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discoloration, followed by purpling of the skin.  The reddening is nearly always seen, tied 

to livor mortis development and the pooling of blood in dependent areas.  The purpling 

however, may not only be the result of livor mortis and increased discoloration, moving 

from red to purple, but may be indicative of blunt impact as well, as this characteristic 

was often seen in cases of bridge jumpers impacting the water surface at high rates of 

speed, from high altitudes.  Once again, this particular observation points to the 

importance of the evaluation of cause of death when evaluating decompositional changes. 

Marine Animal Activity 

  On a number of occasions, bodies were found with clear evidence of marine 

animal scavenging activity.  Given the diversity of marks observed, a variety of 

organisms appeared to directly interact with corpses beginning in the earliest stages of 

decay.  In addition to the more obvious culprits, fish and crabs, barnacles and shrimp 

were sometimes seen adhered to corpses as well.   

In regards to the particular pattern of involvement with bodies, evidence of 

marine animal scavenging activity was typically first seen in the area of the ears, nose, 

and lips, manifested as bite marks and pieces or chunks of missing flesh.  As the early 

phases of decomposition progressed, evidence of animal activity became more 

widespread, with exposure of some of the underlying tissues in the face, neck, and orbits.  

These changes tended to appear before marine animal modifications of the limbs and 

especially the torso, although animal activity in the arms and legs were sometimes seen in 

conjunction with that of the face.  In terms of marine activity on the limbs, missing tissue 

was sometimes seen on the fingertips, knuckles, and fleshier areas of the arm, such as the 

bicep/tricep/deltoid region.  The torso was not particularly remarkable in regards to 
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marine activity, but occasionally would show small bite marks scattered about.  Although 

subject to variability, these aforementioned changes were clustered in the early stages of 

decomposition and were not noteworthy enough, or readily apparent beyond the moderate 

stages, to warrant additional description. 

Single bone recovery 

Oftentimes, given the nature of aquatic deposition, fluvial transport of body parts 

and bones is a common complication in the recovery of remains.  At times, only a single 

bone or a handful of bones are recovered.  Given this fact, strong caution should be taken 

in regards to estimates of time since death on single bone recoveries, utilizing the 

standards and formulas developed in this study.  This statement is supported by the fact 

that police personnel will undoubtedly use any time since death parameters defined by 

forensic investigators to exclude individuals as contributing the unidentified remains and 

help push along a case.  Given the wide variability which exists in the later stages of 

decomposition, this tactic may unjustly exclude individuals and preclude investigations.  

Therefore, if an estimate of time since death under such circumstances must be produced 

using the information presented here, a wide error estimate should be employed to 

prevent such issues. 

In practice, during cases where only single bones or a handful of bones are 

recovered, given the inability to determine the state of the remaining bones of the body 

(such as if they are bleached white, devoid of soft tissue, and so forth), the other areas of 

the body should be scored based on complete skeletonization and disarticulation only.  In 

this way, an assumption is made that the remains are at the same stage of decomposition 

as the bone found, but not further along in the process. 
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Adipocere 

The development of adipocere is a highly complicated process requiring the 

alignment of multiple factors.  As illustrated first by Mant and Furbank (1957), and 

coined later by O’Brien (1997) and O’Brien and Kuehner (2007), conditions must be 

“just right” for adipocere to form.  These conditions include a moist environment, warm 

temperatures (21-45 degrees C), bacterial action, anaerobic conditions, and adipose 

tissue, with additional variables such as relative humidity and pressure playing a role as 

well.  However, although adipocere can form in conditions such as full submersion, 

complete immersion in water is not necessary for development (O’Brien and Kuehner 

2007).  Likewise, although an optimal temperature range exists, consistent temperatures 

are not required (2007).  Therefore, despite the understanding of a number of variables 

known to alter the development process, a high degree of variability, as well as the need 

to identify as-yet-unknown factors involved in formation, exists.  When this fact is 

coupled with the inability to track all conditions impacting a set of remains through the 

entirety of the post-mortem period, a high degree of unpredictability in the process of 

adipocere development becomes clear.  What’s more, sometimes white mold formation 

may be mistaken for adipocere, further confusing matters.   As a result, it becomes 

relatively difficult to pinpoint the stages during which adipocere formation begins and 

fully develops.   

In this particular study, the high degree of variability inherent in the development 

process was blatantly obvious.  Adipocere formation was sometimes observed to have 

developed by the advanced decomposition stage, but also as early as the late 

early/moderate stage or even later on in the process as more exposure of the skeleton was 
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observed.  Most often however, adipocere was not observed at all.  This variation in the 

onset and full development of adipocere corresponded with the variability described by 

Anderson and Hobischak (2004), Forbes et al. (2004), Pakosh and Rogers (2009), and 

many more.  Moses (2012) even demonstrated the ability of adipocere to form on 

defleshed bones, as residual adipose and lipids are sufficient for production.  Importantly, 

the stage of adipocere development could not be attributed to the duration of burial 

(2012).   

In Forbes et al.’s (2004) study, one sample exhibited advanced adipocere 

development, even when compared to another sample with a similar submersion interval.  

Another sample had a prolonged submersion interval, yet demonstrated a similar 

adipocere chemical composition as samples exposed to shorter submersion timeframes.  

Based on these results, Forbes et al. (2004: 8) conclude, “adipocere composition cannot 

be directly linked to decomposition interval…and hence it appeared that factors present 

in the decomposition environment must have influenced the rate and degree of 

formation.” Thus, the variability in the adipocere formation process observed in this 

study, as well as several others, lends credence to claims suggesting that adipocere 

development is still not yet completely understood. 

Therefore, given the highly unreliable nature of adipocere formation and the 

inability to pinpoint the stages during which such indications develop, descriptions of 

adipocere were removed from the scoring system.  By doing so, it is also hoped that 

individuals scoring the decomposition on a body are not using the presence or absence of 

adipocere as a defining characteristic of a particular stage, as such indications may not 

even develop at all.  Lastly, given the ability of adipocere to preserve remains in an 
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adipocerous state, coupled with an extreme lack of understanding concerning its impact 

on the accuracy of time since death estimates, fully saponified bodies were removed from 

the study to avoid including potentially confounding factors.  This particular decision is 

supported by Heaton et al. (2010), who argue that given the ability of adipocere to delay 

or even halt decomposition past a certain point, despite ADD increasing, the result will be 

a much wider variation of decomposition scores for cases with higher ADD values.  Most 

importantly, they state, “Extreme care should therefore be taken when applying this 

model to cases where adipocere is present.”  The same conclusion holds true for this 

study. 

Body Position 

One last important point to note concerns the fact that decomposition in marine 

environments is often associated with bodies found to be floating in the prone position.  

This particular tendency to float face down is related to the buildup of gaseous materials 

in the trunk, combined with the density and bloating of the face.  As a result, given the 

fact that the anterior aspect of the body is typically the surface which interacts with the 

water, these standards are based on and designed for assessment of the anterior plane.  

However, they can theoretically be applied to the posterior surface should the corpse be 

found floating face up.  The only drawback with applying these decompositional 

descriptions to the posterior surface is that most of the changes described in the scoring 

system relate to aspects of the body located only on the anterior plane (such as bulging of 

the lips, bloating of the abdomen, face, and scrotum, and so forth). This consideration 

should be kept in mind when attempting to identify the correct decompositional stage in 

supine facing bodies. 
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General Comments Regarding Decomposition in All Contexts 

Incorrect Attributions of Discoloration 

One very interesting point to note involves the interpretation of decomposition in 

darker skinned individuals.  Based on descriptions of skin color changes in autopsy 

reports versus those demonstrated in photographs, it was noted that Medical Examiners 

consistently mistook darker skin color for green and purple discoloration of the body and 

vice versa.  In reality, it appeared as if the individual was in the very early stages of 

decomposition, not yet having progressed through to full green or purple discoloration.  

The exact opposite, in which discolored skin was developed but mistaken for darker 

pigmentation, appeared to have occurred as well.  Moreover, in general, it appears as if 

descriptions in autopsy reports show greater variation in terminology and the 

interpretation of changes in individuals of darker skin.    

Given the darker hue of the skin, this particular distinction can be difficult to 

distinguish and appears, oftentimes, mischaracterized.  As a matter of fact, the author 

occasionally had difficulty discerning discoloration in darker skinned individuals as well, 

especially given the retroactive use of photographs to discern decomposition as employed 

in this study.   

Regardless, this point is of particular importance because it can lead to the over-

estimation of the post-mortem interval by incorrectly attributing discoloration or failing 

to notice it, thus skewing the total body score.  Therefore, having stated such, it is of 

critical importance that Medical Examiners and forensic investigators take caution in 

identifying true discoloration versus that which may be feigned by the nature of the skin 

color. 
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Incorrect Attributions of Degloving 

In addition to the points stated above, Medical Examiners and forensic 

investigators were also often noted to frequently confuse skin slippage or sloughing of 

the hands/feet, for degloving.  As it applies to the hand, complete degloving should 

constitute the complete separation of the epidermal layer from the underlying dermis, 

rather than the patchy flaking off of skin characterizing slippage and sloughing.  This 

error is made worse in cases where the hands demonstrate the “washerwoman” effect, a 

condition in which the hands become rough, white, and wrinkled from prolonged 

immersion in water.  Given that washerwoman hands occur before skin slippage and 

degloving, these terms, and their identification, should not be confused.   

Although there is room for debate regarding the definition of these conditions, for 

the sake of clarity and accuracy, complete degloving should be universally understood as 

the removal of the epidermal skin of the hands, not the patchy flaking characterizing 

slippage.  Obviously, gradations and overlaps exist between extensive skin slippage and 

partial degloving, so caution must be taken.  Ultimately, care should be taken to 

accurately define the condition of the hands and feet not only to prevent 

mischaracterizations of time since death, but to also standardize these descriptions across 

autopsies and facilitate the use of commonly understood terminology between all 

medico-legal death investigators. 

Development of Decompositional Changes in the Arms versus Legs 

As mentioned briefly above, the arms and legs demonstrated differential 

decomposition regardless of whether describing the early, moderate, or late stages of 



252 

decomposition.  Importantly, this particular observation was noted across depositional 

contexts, regardless of environment. 

In the early stages, the arms were quicker to progress through decomposition than 

the legs, especially in regards to developing green discoloration, marbling, skin slippage, 

and so forth.  The same point held true when assessing the development of dried, 

leathery, and mummified skin.  In regards to skeletonization, exposure of the upper arm 

and hands tended to develop before any such changes were observed in the legs. 

Unfortunately, a clear reason for these differences is still unknown.  It is possible 

that such changes are related to a faster progression to decomposition in the upper half of 

the body, perhaps linked to the spread of bacterial activity and bloating upwards through 

to the torso, thoracic area, neck, and head.  However, the question remains as to why such 

a progression is not as rapidly observed in the upper legs.   

Additionally, the presence of clothing on the lower legs and feet may account for 

these differences, as the arms and hands tend to be relatively uncovered in many cases.  

However, the link between clothing and alterations in the rate of decomposition are still 

up for debate, potentially showing reduced tissue breakdown in clothed corpses, due to 

the difficulty of accessing remains by scavengers.  Regardless, the difference between 

these two areas of the body may warrant further study. 

Internal Decomposition Changes 

 In regards to the development of decompositional changes in the organs, variation 

was observed throughout the decay process.  Although the transition from to softening to 

autolysis to liquefaction was relatively stables in some cases, in many others, liquefaction 

appeared to develop earlier than normal.  This process was specifically difficult to 
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pinpoint with accuracy in the non-water outdoor and indoor cases, so much so that it was 

excluded from the descriptions in that total body scoring system.  In terms of the aquatic 

cases, liquefaction of the brain was sometimes observed to develop as early as a TBS of 

three and as late as a TBS of five.  Given these observations, internal decomposition was 

not particularly effective in describing the decompositional changes in each phase.  As a 

result, observable external changes, although subject to their own degree of variation, 

were more heavily relied upon. 

Quantitative Observations 

Need for Region-Specific Standards 

The Role Played by Accurate Total Body Scores as a Key Variable in Time Since Death 

Estimation Models 

 In addition to the importance of total body scores which are representative of the 

decompositional patterns and changes observed in a region, this study has also identified 

the total body score as a key variable involved in the development of regression equations 

aimed at estimating time since death.  Importantly, the results of the stepwise selection 

method employed in this study, at both the overall and subset level, correspond with 

observations made in similar studies such as Bachmann and Simmons (2010).  In fact, 

when discussing the identification of key variables critical to modeling decomposition 

and estimating time since death, Bachmann and Simmons (2010: 893) found that “TBS 

was the most valid tool in postmortem interval estimation.  All other variables showed 

weak relationships to decompositional stages, adding little value to PMI estimation.”   

Remembering back on the results demonstrated in this study, only TBS proved 

significant across models.  All other variables identified as having a large adjusted R2 
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value, were shown to not possess a statistically significant effect.  Moreover, only TBS 

was demonstrated to show a similar relationship amongst all depositional contexts when 

plotted against logADD.  Precipitation and insect activity demonstrated the beginnings of 

a potential relationship, but significant increases in the sample size would be needed to 

draw out the extent of such trends.   

Most importantly, in the analysis of the non-water outdoor PMI subset, a linear 

dependence was noted by SAS stating, “Selection stopped because all candidate effects 

for entry are linearly dependent on effects in the model.”  If one is to think about the root 

causes of the linear dependence, it becomes clear that total body score plays the most 

central role.  If one thinks about what total body score represents, its importance becomes 

obvious.   

The essence of the total body score is a representation of the observed 

decompositional changes which have occurred on a body.  These changes do not occur in 

a vacuum.  As detailed in great length in previous chapters, multiple variables are 

involved in accelerating or decelerating the rate of decay.  Given the presence of these 

variables, their effects are played out in the decompositional changes summarized in the 

total body score.  Therefore, TBS captures the joint effects of each variable on decay.  

Given the tight interrelationships observed between the factors involved in the decay 

process, the effects of these variables cannot be parceled out, inextricably tied to one 

another.  In total, total body score is a snapshot of the combined roles played by all 

relevant variables in producing the decompositional changes observed.  Thus, by 

accurately representing the totality of these effects, total body score is the single most 

important variable involved in modeling decay and estimating time since death. 
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The critical role played by TBS can be demonstrated even further.  If one is to 

consider the R2 values between both the overall and non-water outdoor and indoor 

Delaware River Valley models in comparison to the Megyesi et al. (2005) model when 

applied to data extracted from this region, a simple process of elimination identifies the 

key difference.  As described above, the Delaware River Valley models explain more of 

the variation in decomposition, the key question being “why?”  All models mentioned 

above utilize accumulated degree days and total body score descriptions.  Accumulated 

degree days reflect a representation of the effects of both time and temperature, summed 

as the total of the average temperature per day across a post-mortem period.  However, 

the effects of both time and temperature are standardized in the accumulated degree day 

total, meaning they play the exact same role and have the exact same effect regardless of 

the climatic region in which the ADD total is being calculated.  As an example, a total of 

100 ADD in Delaware is theoretically the exact same as 100 ADD in the North Pole.  The 

body exposed to 100 accumulated degree days in the North Pole has faced the exact same 

heat-energy units as the corpse deposited in Delaware, as ADD standardizes the effects of 

both time and temperature. 

If accumulated degree days are equal across regions, only one component of the 

model is left: total body score.  Given the fact that when comparing between regions, 

variables such as temperature, insect activity, carnivore activity, soil type, soil pH, 

humidity, precipitation, snowfall, cloud covered days, population density, and many 

more, differ, these effects play out on the decompositional patterns observed.  Different 

variables produce different effects on decomposition across different regions, with the 

result being a different progression through decomposition.    Based on the understanding 
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that total body score represents the joint effects of said variables on the decompositional 

changes observed, total body score standards representative of the region of interest are 

the differentiating factor between models.   

Unlike the data collection efforts in this study, Megyesi et al. (2005) combine data 

from 19 different states, spanning multiple regions and climatic environments.  In order 

to score the decomposition in each of those cases, a general total body scoring system 

was developed.  However, the particular patterns and changes included in that system 

were derived from the study developed by Allison Galloway et al. (1989) to describe the 

decomposition process in the arid Arizona desert.  Although these standards were altered 

to suit their particular regions of study, it becomes clear where the sources of variation 

between the Megyesi et al. (2005) model and the Delaware River Valley models occur.  

Given the higher R2 values observed in both the overall and non-water outdoor and 

indoor Delaware River Valley models in comparison to the Megyesi et al. (2005) model, 

it can be concluded that the total body scoring system developed for the Delaware River 

Valley is better suited to the region.  Taken alone, this particular understanding says it all, 

essentially highlighting the critical importance of, and need to develop, a total body score 

system designed to reflect the pattern of decomposition for each particular environment. 

Should one need even more evidence of the critical role played by total body 

scores representative of the region, one need only consider the fact that across each and 

every comparison made between predicted values utilizing the Delaware River Valley 

models and the Megyesi et al. (2005) model, the models derived for this area more 

accurately predicted accumulated degree days in every scenario.  Once again, 

accumulated degree days were standardized between all comparisons, the only difference 
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was the total body scores attributed to each case.  Based on the extremely low average 

differential between predicted and observed ADD values, it can be said that the Delaware 

River Valley models, especially the non-water outdoor and indoor model, more closely 

approximates actual accumulated degree days, with the critical difference hinging of the 

total body score differences between both formulas. 

Lastly, as stated by Megyesi et al. (2005: 9) themselves, “Practitioners in other 

parts of the country are encouraged to use the scoring method outlined here to test our 

equations with their own data or to generate their own equations in order to better track 

local environmental and climatic conditions.”  This study did just that, heeding the call 

for comparisons and making up a critical component of the analyses conducted.  In all, 

this comparison demonstrated that the Megyesi et al. (2005) formula and total body 

scoring system were not as applicable to the Delaware River Valley region, as the set of 

equations and TBS descriptions designed specifically for this area. 

In total, based on the greater explanatory potential of the Delaware River Valley 

models, coupled with the greater accuracy observed, these results demonstrate the utility 

of models derived for specific areas, and validate the development of region-specific 

standards.  Additionally, these results highlight the fundamental role played by 

representative total body score descriptions in effectively modeling decomposition and 

accurately estimating time since death in specific regions. 

Against the Development of Universal Decomposition Models 

 What’s more, in case the results of this study, including the development of a set 

of models which more accurately predicts ADD in the Delaware River Valley, and the 

subsequent discussion describing the decompositional patterns specific to this area, are 
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not enough to convince the reader regarding the need for decomposition models 

particular to the region in which decay is taking place, consider the findings of similar 

studies in other regions of the country. 

As summarized perfectly by Sorg and Haglund (2013), during the last quarter 

century, forensic anthropologists have been seeking to develop universals in regards to 

modeling decomposition and estimating time since death.  However, given the dearth of 

research in each of the various regions and climates of the United States, investigators 

have turned to standards and formulas developed in areas outside their own (2013).  As a 

result, time since death estimates have suffered, being applied beyond the scope of the 

research.  In order to address these issues, Sorg and Haglund (2013) specifically call for 

the development of region-specific decomposition research.   

The key problems in the application of formulas as “universal” time since death 

models are the specific micro-environmental and ecological differences observed 

between regions.  In fact, Wescott et al. (2013: 460) suggest this very point, stating, “The 

process of decomposition is highly dependent on micro-environmental and regional-

ecological conditions, making it difficult to apply time-since death estimations across 

regions.”  These particular differences, which manifest themselves in the form of 

variables displaying differential effects depending on the area, alter the pattern of 

decomposition.  Thus, they do not lend themselves to application across wide 

geographical expanses. 

Additionally, Wescott et al. (2013: 460) go on to further point out that,  

“Ideally, forensic scientists would like to develop a universal model of human decomposition that 
can be used to estimate time-since-death.  However, regional ecological conditions that affect the 
rate (and possibly stages) of decomposition appear to make this an unrealistic goal.  Until forensic 
scientists truly understand the rates and stages of decomposition, and how they vary from region 
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to region, it is unlikely that they will develop accurate universal…models for estimating time-
since-death.”   

In essence, this statement summarizes the critical importance of this study, and 

emphasizes how sorely decomposition research is needed in the Delaware River Valley 

region. 

Lastly, although this study has consistently compared its results to the Megyesi et 

al. (2005: 9) research, which has been championed as the gold-standard in the field, 

Megyesi et al. themselves, demonstrate the importance of regional standards clearly and 

concisely, stating, “Future research should also concentrate on narrowly defined regions 

of the United States in order to produce equations that are best tailored to a particular 

environments.”  This study did just that, developing a time since death estimation 

formula, taking into account the presence and interaction of environmental, scene-

specific, and depositional factors particular to the Delaware River Valley region.  Based 

on the results demonstrated in this study, as well as the insights derived from 

decomposition research in varying regions throughout the country, it is hoped that the 

focus is shifted from the development of universal models to the much more critical need 

for region-specific formulas.  

Model Development  

Modernized, Quantitative Approaches to the Development of Decomposition Models: 

Accumulated Degree Days over Post-Mortem Interval Days 

 
Without a doubt, based on the results demonstrated in this study, any hesitation 

between the use of accumulated degree days over post-mortem interval days in modeling 

decay and developing time since death estimation equations should be put to rest.  

Accumulated degree days proved to explain more of the variation in decomposition 
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across each and every model studied, regardless of depositional context, combined 

subsets, or overall models.  These results are supported by the finds of Megyesi et al. 

(2005), Heaton et al. (2010), Simmons et al. (2010a; 2010b), Michaud and Gaeten 

(2011), and Nawrocki and Latham (2013), to name just a few.  Given the critical need to 

address the dearth of quantitative studies in the field, forensic anthropology, taphonomy, 

and decompositional studies can no longer afford to continue to ignore the utility of 

accumulated degree days for modelling decomposition. 

Unfortunately, despite the fact that the relationship between accumulated degree 

days and various biological and chemical processes has been known since the 1940s 

(Davidson 1944), introduced into human decompositional research and forensic 

anthropology by Vass et al. in 1992, forensic anthropologists have still been very slow in 

accepting accumulated degree days as the variable to be predicted when estimating time 

since death (Simmons et al. 2010b).  In fact, despite the clear and obvious signs that 

ADD significantly improves the prediction of time since death, some of the most current 

publications have still yet to incorporate the principle of accumulated degree days into 

their research designs or analyses (Magnanti and Williams 2008; Sharanowski et al. 

2008; Bunch 2009).  Whether the reason for this is based on general reluctance to accept 

the implications of results generated by its use (Simmons et al. 2010b), or simple 

ignorance, the time has come where excuses are no longer valid. 

As the forensic sciences push to improve their quantitative methods and federal 

mandates call for statistical backing of estimates of time since death, forensic 

anthropologists can no longer afford to operate in the past.  Suppose a forensic expert 

testifies in court regarding the estimated post-mortem interval of a case.  When the cross-
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examining attorney questions how such a conclusion was reached, experience and 

anecdotal evidence alone are no longer valid responses.  The principle of accumulated 

degree days is known and understood in the literature and serious concerns can be 

reached regarding conclusions which do not incorporate its use.  As a result, predictions 

of time since death must move away from the wide and unnecessarily imprecise estimates 

resulting from the focus on time and typological approaches, instead concentrating on 

quantitative reasoning based on the understanding of the key variables and processes at 

play.   

Forensic anthropologists can no longer afford to look these modern methods in 

the face, while still holding on to the outdated paradigms and modes of operation of the 

past.  It is hoped that by demonstrating the utility of accumulated degree days to the 

development of decomposition models in a variety of environments, including that of the 

Delaware River Valley, the discipline will begin to accept this modernized approach to 

estimating time since death. 

Decomposition Model Development: Use of Core over Periphery Processes and Factors 

 Based on the results of the multitude of analyses conducted, it is clear that both 

ADD and TBS are the most crucial components of the decomposition model and equation 

developed in this area.  Obviously, accumulated degree days are inextricably tied to the 

effects of temperature, which is at the heart of the “core” variables championed by 

Nawrocki and Latham (2013).  Total body score on the other hand, combines the joints 

effects of multiple variables on the decomposition process, including temperature, 

precipitation, insect activity, and the like, but, also included, are known “periphery” 

processes and factors such as scavenging, clothing, trauma, and so forth.  Therefore, 
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considering these variables and the determination of statistically significant effects on the 

model produced, one is left to wonder if periphery processes are just as important as core 

processes in the development of decomposition models and time since death estimation 

equations. 

 Based on the experiences drawn from this study, it is certainly much easier to 

develop models of decay using variables and processes tied to temperature.  Temperature 

data is relatively easy to access, does not require much interpretation, and reduces error.  

When this is compared to the collection of data regarding periphery variables, it is clear 

that much more room for subjectivity exists, requiring determinations of the presence or 

absence of these variables, and in some cases, the degree to which they exist.  These 

determinations are made with very little data, lack of clear-cut evidence, and/or arbitrary 

indicators. 

For example, in the case of the inclusion of insect activity over scavenging 

activity, insect activity is much easier to model based on the known relationship between 

insect development and temperature.  Forensic entomologists can track the predicted 

growth rates of insect species based on the collection of historical temperature data in an 

area.  In turn, the effects of insect activity can be correlated to the decompositional 

changes observed over time.  In fact, insect growth has been observed to demonstrate a 

tighter relationship with the combination of both time and temperature in the form of 

accumulated degree days, than simple time alone (Carter et al. 2007; Michaud and 

Moreau 2011). 

On the other hand however, scavenging activity has not been determined to be as 

stringently dependent on any one factor, including ADD.  Although temperature and 
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seasonality can play a role in regards to the activity of scavengers, other factors such as 

population density, attractiveness of remains, accessibility, and so forth, all play a role 

(Beckhoff and Wells 1980; Haynes 1983; Haglund et al. 1988; Haglund 1997; Klippel 

and Synstelien 2007).  In terms of assessing scavenging over a body, gnaw marks, 

scoring, pitting, and scratching are the traditional markers of carnivorous activity on bone 

(Haglund 1997).  Bite marks can also be observed on soft tissue.  Based on the presence 

of these indicators, one can conclude the presence and influence of scavenging activity on 

remains.  However, one must also consider cases in which soft tissue has been consumed 

by insects, hiding evidence of animal manipulation.  Moreover, the impact of scavengers 

on a site is often assessed by the degree of scattering of remains.  In many instances, 

carnivores will not only consume remains, but move them about a site, potentially 

dragging them great distances during the consumption process.  Conversely though, the 

typical indicators of scattering via scavenging can be mimicked.  Consider the loss of 

skeletal elements through taphonomic processes such as water transport, human activity, 

extreme weather patterns, and so forth.  In turn, usual evidence of scavenging is feigned 

by these processes, potentially incorrectly noted and included into a dataset. 

 Along the same vein, consider the assessment of the presence of clothing.  In the 

early post-mortem period, clothing tends to remain on a body.  However, after 

manipulation of the corpse by insects and scavenging, clothing tends to become lost or 

separated from.  Even plant roots have been known to grow in, on, and through remains, 

removing clothing or altering its position on the body (Rodriguez 1997).  What’s more, 

consider the effects of aquatic deposition on remains.  The effects of tides, currents, and 

wave action are known to facilitate the loss of clothing.  In total, it is relatively 
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impossible to determine with any degree of certainty at what point the garments were 

lost, making the development of models utilizing the presence, absence, and degree of 

clothing cover extremely difficult to piece together. 

 If one wished to assess the impact of adipocere on decomposition, matters would 

be complicated even further.  Although the “just right” conditions required for adipocere 

formation are known, the development process is extremely variable and difficult to 

predict (O’Brien 1997).  Furthermore, given the current inability to track the exact water 

temperatures to which a body has been exposed, how would one be able to model the 

precise point in time when adipocere formed and began altering the decomposition 

process?  When introduced into the model, this unpredictability would serve to 

undermine the accuracy of results. 

 Even the modeling of aquatic decomposition is extremely complicated to map out.  

Although specifics regarding aquatic contexts will be discussed in subsequent sections, it 

is important to point out that given the variability observed in aquatic environments, 

along with the presence of confounding factors and as-yet-unknown variables, as well as 

the inability to directly determine the extent of the effect of temperature, salinity, and so 

forth, these issues make the modeling of aquatic decomposition extremely difficult and 

highly susceptible to variation.  This is borne out in the low R2 values associated with the 

stratified aquatic models, seen especially when using post-mortem interval days. 

 Clearly, many periphery variables are too difficult to model with any degree of 

certainty.  However, some processes do exist which not only can be factored into 

analyses, but must be taken into account should one seek to refine models and more 

accurately predict time since death.  One of those considerations is the development of 
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changes corresponding to mummification.  According to Nawrocki and Latham (2013), 

processes such as freezing, mummification, and so forth are considered peripheral 

processes.  Nonetheless, its development can be captured with relative precision based on 

a qualitative analysis of decomposition in the region of interest.  As it relates specifically 

to the Delaware River Valley, the effects of mummification were first observed in the 

advanced decomposition state, with the development of dry and leathery regions 

corresponding to the late early and moderate stages.  By accurately accounting for the 

presence of mummification, the total body score developed in this region more closely 

approximates the actual decompositional changes which take place.   

The exact same point can be made in regards to skeletonization.  Megyesi et al. 

(2005) seem to almost dismiss the value of the skeletonization stage for providing any 

insights regarding decomposition.  Admittedly, a greater time range is associated with 

this stage, but this can be said with all stages progressing from the initial point of death 

outwards.  Given the intricacies observed between the first indications of focal exposure 

of bone, until the development of dry, porous skeletal elements, these subtle differences 

can be of use to not only determining total body scores, but also more accurately 

modeling decay. 

Thus, although Nawrocki and Latham (2013) are correct in their suggestion that 

core processes are more amenable and suitable to being modeled, not all periphery 

variables should be summarily excluded from consideration.  Instead, great caution 

should be taken when considering the accuracy of data collection in regards to any 

variable included into a model, taking care to ensure their inclusion is based on reliable 

information. 
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Time Required to Produce Specific Decompositional Changes by Depositional Context 

In the analysis conducted on the total accumulated degree days theoretically 

required to produce specific total body scores, interesting results were observed between 

depositional contexts.  Initially, outdoor cases were seen to require more accumulated 

degree days to produce each total body score when compared to indoor cases.  In the 

early phases of decomposition, indoor cases started out requiring the least amount of time 

to produce each TBS.  However, as decomposition progressed into the latter half of the 

early decomposition period, the relationship between depositional context and the time 

required to produce higher total body scores, changed.  Outdoor cases were shown to 

require less time to produce these effects compared to indoor cases.  This relationship 

was deemed statistically significant.  When considering the root causes behind these 

differences in the hypothetical “rate of decay” derived in this analysis, the effects of 

environmental and scene-specific variables are seen to play critical roles. 

In regards to cases decomposing in indoor contexts, the relationship observed may 

be due in part to the joint effects of reduced scavenging activity and a delayed onset of 

insect access.  In fact, when assessing the number of cases observed to show 

manipulation by scavengers in indoor contexts, only one case demonstrated evidence of 

scavenging activity.  This is in sharp contrast to the 35% of cases exhibiting scavenging 

activity in outdoor contexts.   

Additionally, given the potential difficulty experienced by some insect species in 

terms of accessing bodies located in enclosed structures, the different composition of the 

arthropod community may play a role in the decomposition process.  Indeed, both Goff 

(1991) and Anderson (2011) found much greater numbers of individual species outdoors 
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versus indoors.  More importantly, Goff (1991) reported findings suggesting some 

species of insects were restricted to remains discovered indoors, while others were 

confined to outdoor contexts.  Based on the particular pattern observed in the Delaware 

River Valley, it may very well be the case that initial colonizers in indoor settings, faced 

with optimal working temperatures, may function to accelerate decomposition at first, but 

given the decreased species variability and lower overall numbers, eventually lag behind 

their counterparts in outdoor settings.  Overall, these insights not only provide clues as to 

the differences in the rate of decay between depositional environments, but also highlight 

the critical need for continued comparative studies between depositional contexts in a 

number of regions throughout the country. 

Therefore, given the greater exposure to insect access, scavenging activity, direct 

sunlight, and humidity experienced by corpses left to decompose in outdoor contexts, 

these processes may function to accelerate the decay process in these cases after the 

initial phases of decomposition.  Importantly, given the utility of the joint non-water 

outdoor and indoor model, the same trend is observed in this model compared to indoor 

and outdoor cases alone.  In fact, the relationship between the results of the non-water 

outdoor and indoor formula versus those of the indoor formula is also statistically 

significant.  Based on these results, the non-water outdoor and indoor model appears to 

be a good middle ground between outdoor and indoor contexts, allowing the application 

of the formula to cases in both environments. 

Modeling Decomposition in Non-Water Outdoor Environments 

Perhaps of all of the depositional contexts investigated in this study, the non-

water outdoor environment typifies the overall message to be derived from this research.  
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Not only did it explain an extremely high proportion of variation in decomposition, but it 

made abundantly clear the role played by accumulated degree days and the total body 

score in modeling decay.  One of the most prominent factors involved in producing these 

results is the critical role of temperature in modeling decomposition, and its interactions 

with the number of variables known to impact total body score estimates. 

Firstly, when considering why these components of the model lined up so well 

with cases found in non-water outdoor contexts, one need only consider the role played 

by temperature in the decay process.  Clearly, one of the most crucial aspects of data 

collection, and the formulation of the decomposition model in this study, was the 

accurate recording of historical temperature data.  The National Weather Service Station 

temperature loggers are designed to precisely record outdoor temperature.  However, 

when it came to determining accumulated degree days in indoor and water contexts, those 

temperature estimates were invariably imperfect.   

Obviously, in regards to indoor environments, the insulating effects of enclosures 

tend to keep temperatures above that of the outside ambient temperature in cases of cold, 

and below that in cases of heat.  In times of extreme heat, given the failure to produce air 

circulation, temperatures can even exceed those on the outside, essentially mimicking 

conditions typically seen in cases of mummification.  Given this discrepancy between 

indoor and outdoor temperatures, it is easy to imagine scenarios in which the bodies 

deposited in indoor contexts were not exposed to exactly the same accumulated degree 

days as those left to decompose outside.  Perhaps the most accurate readings of actual 

temperature in indoor environments came from cases in which the heat or air-

conditioning was set to a specified temperature.  Based on that, rather precise estimates of 
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accumulated degree days could be produced.  Unfortunately, these cases were either 

extremely rare or investigators failed to note the exact temperatures to which the heating 

or cooling systems were set, instead simply noting that they were on.  Therefore, given 

the inability to capture the exact indoor temperatures, the indoor models were thrown 

slightly off.  Based off of the coefficient of determination in the indoor subset, the values 

were still relatively high, but it is believed that they would explain an even greater 

proportion of variation should the exact temperature be known. 

In regards to aquatic contexts, as will be discussed in much greater detail below, it 

was extremely difficult to track down data sources which provided accurate historical 

temperature data.  Once these sources were identified, additional issues surfaced 

revolving around the transportation of bodies in water, exposing the corpse to various 

temperature profiles, salinity ranges, and so forth.  Given the inability to precisely 

pinpoint the exact location of a body over time, temperature recordings were surely 

thrown off.  Therefore, when this particular consideration is coupled with additional 

issues to be discussed below, it is believed that these concerns contributed to the results 

seen. 

Having stated these difficulties, it is important to frame the discussion in regards 

to temperature’s effect on the multitude of variables known to play a role in the 

decomposition process.  As stated above, sufficient heat energy units are needed to drive 

the biological, chemical, and environmental processes involved in breaking down a 

corpse.  These energy units, represented by accumulated degree days, impact the effects 

of the various factors which function to alter decomposition.  Ultimately, the joint effects 

of these variables are represented in the total body scores attributed to each case, as it 
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summarizes the decompositional changes which have occurred over a body due to the 

factors to which it has been exposed.  However, if inaccurate accumulated degree day 

totals are employed, the effects of temperature on those variables will not be accurately 

represented in the model.  Fortunately, in the case of the non-water outdoor subset, it is 

believed that temperature was more accurately recorded compared to the other contexts 

analyzed.  Given the use of National Weather Service Station data designed specifically 

to record outdoor temperature, it is believed that outdoor ADD totals more closely 

approximated the actual temperatures observed on scene.  More importantly, the 

significance of accurate temperature totals is highlighted by the higher proportion of 

variation explained in the non-water outdoor contexts, compared to the indoor and 

aquatic environments. 

Lastly, the non-water outdoor subset provided one additional revelation.  As 

observed in the PMI day non-water outdoor case analysis, the linear dependence 

statement produced by SAS based on data points from this subset, helped reveal a very 

important consideration in regards to modeling decomposition.  The variables 

investigated in this subset are so inextricably related, they cannot be parceled apart.  

Instead, their effects are represented jointly in the total body score.  Given the presence of 

both TBS and the effects of these variables in the same model, the linear dependence was 

observed.  Based on these results, the central role played by the total body score in 

modeling decomposition became obvious. 

Although the non-water outdoor dataset can certainly be improved, such as by 

incorporating historical humidity data, subsets of bodies found on varying surfaces, and 

the like, this particular depositional context has gone a long way towards highlighting the 
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key variables and components necessary in a decompositional model and accurate time 

since death equation. 

Modeling Decomposition in Indoor Environments 

In regards to modeling decomposition in indoor environments, the indoor 

accumulated degree day model did not produce R2 values as high as those observed in 

either the overall or non-water outdoor subset.  Unlike cases found in aquatic 

environments, this particular discovery is likely not reflective of the presence of as-yet-

unknown variables or confounding factors.  Instead, the results from the indoor model are 

likely related to an inability to determine the exact accumulated degree days to which a 

corpse has been exposed, especially compared to non-water outdoor cases.   

As stated above, given the insulating effects of enclosed structures, corpses found 

indoors are shielded from direct sun exposure and heat during times of high temperatures, 

while being protected from the cold during times of low temperatures.  In turn, ADD 

estimates derived from outdoor weather stations are not as precisely applicable to indoor 

cases as they are outdoors. 

Furthermore, given the fact that oftentimes air-conditioners or heating systems are 

found running during many months of the year, these alterations of outdoor ambient 

temperature serve to further increase the discrepancies between accumulated degree days 

calculated from weather station data and the actual temperatures to which a corpse is 

exposed. 

In order to account for these differences between outdoor and indoor temperature, 

investigators must make more concerted efforts to record actual temperatures within the 

structures themselves.  If heating or cooling systems are observed to have been running 
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during the post-mortem period, the temperature setting should be recorded.  Additionally, 

temperature loggers can be brought to each indoor site in order to accurately capture the 

actual ADDs to which a body has been exposed.   

When a sufficient number of cases have been accurately recorded, they can be re-

included into the dataset developed for this study, so as to refine the time since death 

estimation model and formula derived for cases in these contexts.  In this way, the model 

can continue to be improved with the incorporation of data more closely modeling actual 

conditions in indoor environments. 

Modeling Decomposition in Aquatic Environments 

When assessing the stratified analysis conducted on cases left to decompose in 

aquatic contexts, it was abundantly clear that there was much more to the picture than 

could be seen.  Besides the low R2 values, especially in regards to the extremely small 

proportion of variation explained when using post-mortem interval days, and the clear 

influence of aquatic cases in regards to dragging down the R2 value in the overall model 

compared to the non-water outdoor model, the analysis revealed the existence of 

variables which are either as-yet-unknown or currently too difficult to track back in time 

with any degree of certainty.  When considering potential factors which may play a role 

in accelerating or decelerating the rate of decay and contributing to the decompositional 

changes and patterns observed in cases in aquatic contexts, several variables come to 

mind which lack simple and intuitive methods by which to be collected, instead being 

wrought with difficulties, especially in regards to retroactive data collection efforts.    

Among those difficulties is the inability to track historical data regarding tides, 

currents, water depth, body transport, variations in temperature and salinity level, time of 
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complete submergence, insect presence, exposure of the body to varying conditions, 

adipocere development, and much more.  When considering these variables, it quickly 

becomes clear that in order to develop time since death equations specifically designed 

for aquatic cases, very specialized models, incorporating a number of factors not 

encountered on land or in indoor environments, are needed. 

Unfortunately, even if one was to devise a method by which to collect such data, 

another more complicated problem arises: how can an investigator determine which of 

those variables a body was exposed to?  For example, there is no mechanism by which to 

determine the water depth at which a body was suspended, the length of time the corpse 

spent submerged, or the distance which the body traveled, exposed to various salinity 

ranges, water pH profiles, and temperature fluctuations.  These issues are compounded 

even further when considering the fact that precise readings of water temperature are 

difficult to ascertain, especially given the extremely high likelihood of body transport 

resulting from tides and currents.  Given the fact that skeletal elements, such as the skull, 

have been observed to have travelled both short and long distances, upstream and 

downstream, it is nearly impossible to pinpoint the exact temperatures to which the 

corpse, and eventually the skeleton, was exposed.  Based on these issues, the claims made 

by Milligan et al. (2013), who argue that technological methods have not yet been 

developed which can properly record key aquatic variables, may be true. 

To complicate matters even further, evaluations regarding the influence of insect 

activity on decomposition in aquatic contexts are hampered by the effects of tides, 

currents, and wave action on corpses.  In fact, of the 23 aquatic decomposition cases 

included in the ADD dataset, only two showed any evidence of insect presence.  By 
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simple chance alone it is assumed that this number must be far from the truth, as many 

more cases should show insect activity at some point during flotation, or else the 

consumption and break down of tissues would take an extraordinarily long time to occur.  

Given the fact that the accumulated degree days and total body scores associated with 

aquatic cases were not observed to differ extensively in comparison to non-water cases, 

insect must have played a role in the decomposition process.  Unfortunately, the true 

effect of insects on decomposition cannot be captured in aquatic cases, not only throwing 

off analyses concerning the role played by insects, but directly influencing the 

development of time since death models and estimates derived from them. 

Although many concerns have been proposed in regards to modeling 

decomposition in aquatic environments, not many solutions exist to address these issues. 

In regards to determining insect activity, not much can be done besides carefully 

analyzing a body.  Tissues can be examined for evidence of modification, being careful to 

distinguish between insect and scavenging activity.  Additionally, if no evidence of 

marine animal involvement is observed, but soft tissues have been consumed, one can 

evaluate the other regions of the body to determine if the corpse is in the earlier or later 

stages of decomposition.  If the body is in an earlier stage of decay, but still shows 

evidence of tissue consumption, perhaps this can be an indicator of insect activity.   

Furthermore, in regards to more accurately determining the temperature, salinity, 

pH, tides, currents, and wave action to which a body has been exposed, one lone area of 

hope lies in studies evaluating the transportation of bodies in water contexts.  These types 

of studies can evaluate the average distance traveled by a body over pre-determined 

accumulated degree days or post-mortem intervals.  Based on those results, the path and 
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average travel distance of a body can be predicted.  Once a case is discovered, this model 

can be applied, estimating the path of the corpses back through time.  In fact, preliminary 

research conducted by D’Alonzo and Bartelink (2013), found that the post-mortem 

interval was a relatively poor predictor of transport distance, especially in regards to 

PMIs less than five days in length.  The majority of cases were found in the same general 

area in which deposition took place, although some variation was observed in cases 

exposed to longer time intervals.  If this holds true, this may bode well for aquatic 

models, as the variables to which a corpse has been exposed to can be tracked and 

relevant data can be collected.  Following this logic, the appropriate historical 

temperature records, salinity profiles, and pH levels can be applied, leading to a better 

understanding of the effects played by these variables, and ultimately, a more accurate 

estimation of time since death. 

Cross-Sectional, Retroactive Studies: Comments and Points of Consideration 

Cross-sectional, retroactive studies have many benefits.  They allow the use of 

real forensic data, under real forensic conditions.  They take into account the 

interrelationships between factors as they naturally occur, without being manipulated by 

preventing specific variables to take effect.  They permit the use of larger sample sizes 

and data points,, as cases are easier to obtain when compiling records spanning years into 

the past.  They even allow for more practical research designs, especially in regards to 

conducting studies on cases in urbanized, densely-populated areas.  However, having 

stated all of these positives, some drawbacks do exist which impact the inferences which 

can be made from analyses and the examination of relationships and trends amongst 

variables. 
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In particular, during the analysis of the effects of variables on the rate of decay, 

calculated as the average of the total body score divided by either ADD or PMI in each 

case for each variable examined, some factors showed inverted relationships, counter-

intuitive to what one might expect.  For example, insect and scavenging activity are well-

documented to play important roles in increasing the rate of breakdown of a corpse 

(Rodriguez and Bass 1985; Haglund et al. 1988; Willey and Snyder 1989; Mann et al. 

1990; Haglund 1997; Simmons et al. 2010a; 2010b).  However, in the comparison of the 

average rate of decay between cases showing insect activity versus no insect activity, 

those cases without insect activity were shown to have a higher mean rate of decay, with 

this observation also being demonstrated in regards to scavenging.  In fact, that difference 

was determined to be statistically significant.  Given the known relationship between 

insect or scavenging activity and decay, these results are completely contrary to what has 

been demonstrated in experimental research studies.  This of course then raises the 

question of, “why?”  The answer is tied directly to the very nature of cross-sectional, 

retroactive research. 

In studies such as the one conducted here, past cases are compiled and relevant 

variables are extracted.  Evidence of insect activity, scavenging, and so forth are noted 

and factored into analyses.  However, one is never sure of when these particular events 

took place in relation to the calculated ADD or PMI.  Using insect activity as an example, 

in the non-insect activity group, multiple bodies may have been recovered before insect 

activity was allowed to develop.  Maybe insect activity was precluded in some cases.  

Even more importantly, perhaps evidence of insect presence was not noted or completely 

erased by the effects of such variables as tides and currents.   
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For the insect activity group, the cases could have been “entered” into the study 

after a longer post-mortem period.  Based solely on the principle of chance, corpses 

showing insect activity could have taken longer to be found.  This consideration is made 

more important when considering the fact that as bodies enter into the later stages of 

decomposition, more time is required to progress to the next stage.  Although cases in the 

non-insect group may have shown the exact same stage of decomposition as some of 

those in the insect group, perhaps they were found earlier on in the post-mortem interval, 

with the insect group failing to progress to a more advanced stage given the amount of 

time required to do so in the later phases of decomposition.  The insect group then 

appears as if it does not accelerate decomposition to the same degree as the non-insect 

group because it has remained in that particular stage for longer.   

It may even be the case that some bodies were not attractive to insects due to 

mummification and drying out of the tissues.  Given the fact that moist decomposition, 

which is attractive to insects, occurs earlier on in the process, it may appear as if the 

presence of insects does not allow the progression to these more advanced mummified 

stages, in reality tied to temperature, humidity, and aridity levels. 

The effects of water on insect activity, especially in regards to tides and currents, 

have already been discussed.  Given the fact that 21 out of 23 aquatic cases showed no 

evidence of insect activity, this may very well have played a critical role in the results 

seen.  Those cases which did show insect activity could have been in the earlier stages of 

decomposition by simple chance, while the remaining 21 cases with no evidence of insect 

presence averaged longer accumulated degree days or post-mortem intervals.   
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Another critical consideration revolves around the post-mortem interval attributed 

to each case.  As stated above, the known “date last seen” and “date recovered” 

representing the post-mortem period, may be incorrect in some of these cases.  Given the 

disparity between cases showing insect activity and those not showing any insect 

presence, these differences may be exacerbated.  As a result of these issues, due to the 

inability to control for when a body is found during the post-mortem period, the mean 

ADD or PMI for both groups gets pulled in opposite, counter-intuitive directions. 

Lastly, and most importantly, it may very well be the case that the further along a 

body progresses through the decomposition process, the greater chance for the 

elimination of evidence of insect activity.  As bodies breakdown and move into the 

skeletonization phase, insect presence not only dwindles, given the loss of a food source, 

but larvae may be consumed by advantageous species, carnivores may consume insects 

as they scour over the bone remains, and the normal processes of taphonomy and 

weathering may move evidence of insect activity away from a body or eliminate it 

altogether.  The result of these processes is what appears to be a body in the furthest 

reaches of decomposition with no evidence of insect activity, when in reality it was the 

presence of insects which helped move the body to that point in the decomposition 

process. 

Before ending this particular discussion, it is also critically important to point out 

the reasons behind the results observed in regards to the differences in the rate of decay 

by depositional context.  When analyzing the dataset itself, crucial differences are 

observed.  In particular, when comparing the non-water outdoor cases to indoor cases, the 

average total body score in the outdoor cases was seen to be nearly twice as large as the 
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mean TBS in the indoor cases.  Additionally, the average ADD in the outdoor cases was 

over three times as large as in the indoor cases, corresponding to the higher TBS values 

observed in the outdoor samples.  Given these critical differences, they essentially 

handicapped the outdoor dataset, accounting for the slower rate of decay observed.  This 

is not to mention the difficulties which would have arisen in a comparison of outdoor or 

indoor cases to aquatic cases, given the different total body scoring systems employed 

between both groups.  In all actuality, the only reliable method in which to compare the 

rate of decay between depositional contexts, would require cases which demonstrated 

similar total body scores, not only with similar total body scoring systems, but with 

similar total decomposition.  By doing so, an equal comparison would be possible.  

Unfortunately, based on the inability to control the total body scores in actualistic, 

retroactive studies, this analysis was handicapped from the start. 

Therefore, based on all of these areas of consideration and the plethora of 

potential scenarios which can serve to misrepresent results, analyses of statistically 

significant differences in the rate of decay between variables in a study of this type are 

not particularly informative.  Instead, they should merely serve to point out potential 

relationships or trends which may, or may not, warrant further consideration. 

Loss of Statistical Power with Atypical Transformations 

 Lastly, before moving on to the “Considerations” section of this chapter, one final 

point should be made regarding the transformations applied to the data in this study 

compared to the Megyesi et al. (2005) model.  In this study, in order to satisfy the 

normality assumptions required by linear regression analyses, the logarithm of 

accumulated degree days was taken.  This is particularly important to meeting the 
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assumption that the relationship between two variables is linear.  Given the non-linear 

plot initially observed, the logarithm was used to straighten the curve and allow the use of 

linear regression.   

The use of the logarithm is very often seen in the statistical world, serving as one 

of the most commonly used transformations of data.  Indeed, it is often employed given 

the fact that it is extremely easy to interpret.  The main essence behind the transformation 

is that when increasing log10X by 1, it is the same as multiplying X by 10.  More 

importantly, transforming data by applying the log is not only simple and straightforward, 

but it does not function to dramatically alter data points or significantly impact the 

proportion, p.    

However, when the model derived in this study is compared to that developed in 

Megyesi et al. (2005), the latter utilizes not only the logarithm of ADD to straighten the 

curve, but also the square of TBS.  In statistics, squaring data can have a large effect and 

is not used as frequently as the logarithm.  The difference between the use of the 

logarithm and square is best understood in the context of the ladder of powers or 

transformations.   

In the ladder of transformations, the logarithm is the simplest transformation 

possible, with a parameter of 0 applied to the data.  It sits squarely in the middle of the 

ladder of powers.  As one ascends and descends the ladder, the effect of the 

transformations on data changes.  In terms of square transformations, they stand at the 

very edge of the spectrum.  This has a great deal to do with the effect played by square 

transformations on data.  When applied, large values of X become compressed, while 
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small values of X tend to spread out.  This changes the relationship amongst the data 

points, potentially misrepresenting the relationships which exist.   

Moreover, square transformations can function to not only transform the data, but 

also change its order if applied to negative values.  This would obviously significantly 

misrepresent the actual values of the data points.  For example, if a range of values from 

negative 2 to positive 1 to positive 2 was observed, and the square was applied, the values 

would be transformed to 1, 4, and 4.  Given the fact that a negative value was originally 

included among the data points, the newly transformed data does not accurately represent 

the actual relationships in the dataset.   

Having considered all of these points, it is important to note that Megyesi et al. 

(2005) state that the square was applied to the total body score because it normalized the 

data distribution.  However, if it functioned to compress large values and spread out 

smaller values, one wonders what effect this had on the data and resultant model, 

impacting its statistical power and the inferences which can be derived from it.  One also 

wonders what role it played in the comparison of models detailed earlier, as the Delaware 

River Valley model explained a larger proportion of variation.  Although TBS is posited 

to have normalized the dataset, this is one area of consideration to keep in mind when 

applying the Megyesi et al. (2005) model in regions outside the realm of those 

investigated in their study. 

Considerations 

Given the nature of retroactive studies, as well as the focus on particular 

depositional contexts, some considerations should be taken into account when applying 

the results demonstrated in this study.  Some of those considerations are accepted flaws 
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of studies of this type, while others are merely points to keep in mind when assessing the 

applicability of the research.  In the future, it is hoped that by highlighting these 

particular issues, these considerations can be studied in greater detail or validated in 

experimental research studies.  Given the impracticality of expecting a study to cover the 

entire realm of potential issues and account for every flaw in design, as is the nature of 

scientific inquiry, continuous attempts must be made to refine, improve, and fill in gaps 

where necessary. 

Accumulated Degree Day Prediction Utilizing the Delaware River Valley Formula 

Before moving on to a discussion of the main points to take into consideration, a 

brief mention of the use of the time since death formulas developed for the Delaware 

River Valley is warranted. 

As mentioned above, after determining the total body score, one need only plug 

the score into the appropriate formula and derive an estimate of accumulated degree days.  

However, it should be noted that when using the overall time since death estimation 

model, for those cases recovered from aquatic environments, the total body score must be 

weighted onto a 42 point scale.  From there, in such cases, the nearest National Data 

Buoy Center to the recovery site should be accessed in order to collect historical 

temperature data.  In regards to non-water outdoor and indoor cases, the nearest National 

Weather Service Station to the recovery site should be accessed for historical temperature 

records.  The average temperature per day, calculated by taking the minimum and 

maximum temperatures each day and dividing by two, should be determined.  This 

process should be repeated for each day from the date of recovery of the body, back until 
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the estimated accumulated degree day threshold is met.  Based on the number of days 

required to meet that threshold, one is provided with the time since death interval in days.   

Lastly, in order to facilitate the attribution of 95% confidence and prediction 

intervals, they were forecasted for both the overall and the joint outdoor and indoor 

equations utilizing all possible total body scores (see Tables 43 through 46).  Therefore, 

after calculating the predicted accumulated degree days, the confidence and prediction 

intervals can be attributed as appropriate.  

Delaware River Valley Model Selection 

Based on the totality of the results described in the previous chapter, several time 

since death estimation equations were able to be developed for use in cases found in the 

Delaware River Valley region.  A specific discussion of the conditions to which these 

models are applicable can be found in subsequent sections.  The foundation of these 

models is built on the standardization of both time and temperature in the form of 

accumulated degree days, and the accurate representation of decomposition in the area in 

the form of a total body scoring system.  TBS is utilized as the key variable involved in 

not only quantifying the observed decompositional changes, but summing the effects of 

the various factors involved in the decomposition process. 

 As a result, two key time since death equations have been able to be developed 

from the data: an overall model including cases from all three depositional contexts 

examined, and a non-water outdoor and indoor model.  In terms of raw numbers, the non-

water outdoor and indoor model explains more of the variation in decomposition and 

more closely approximates actual observed ADD values when used for prediction.  Thus, 

it is more mathematically accurate.  It also corresponds with the total body score system 
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developed specifically for non-water outdoor and indoor contexts, not requiring the 

weighting of aquatic cases incorporated into the model.  Given these considerations, it 

would make sense to apply this specific model to cases found in these environments.   

However, one important point to keep in mind concerns the sample size from 

which this model is derived.  As mentioned above, non-water outdoor and indoor cases 

accounted for 57 cases in this dataset.  If one is weary about using a model derived from 

a dataset of this size, the overall model can be used which includes 80 total cases, one 

need only remember to accurately weigh aquatic cases onto the same total body score 

scale used for the non-water outdoor and indoor subsets. 

 Despite these points, it is also important to note that aquatic cases in and of 

themselves may be too difficult to model.  They may introduce error into the overall 

sample, as well as the existence of confounding factors and as-yet-unknown variables, 

thereby lowering the explanatory value of the model.  Given the low R2 values attributed 

to the aquatic subsets in this study, especially when utilizing post-mortem interval days, 

the use of the aquatic subset alone is discouraged.   

For these reasons, as well as those stated above, it is recommended that the non-

water outdoor and indoor model be used for cases which fall into these categories.  The 

overall model can be used for aquatic cases, but the drawbacks should be understood.  In 

the future, the overall model can serve as a springboard from which to model more cases.  

By adding data to bolster the distribution of cases in each of the depositional contexts 

included, this will foster a more representative model. 
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Model Application 

Application of the Delaware River Valley Model to Uncommon Situations or Contexts 

 As described above, the equation derived from this study was developed utilizing 

cases stemming from non-water outdoor, indoor, and aquatic contexts.  The cases in these 

contexts were not exposed to unusual circumstances or unique situations.  Aquatic cases 

were found in rivers, bays, canals, and the ocean.  Non-water outdoor cases were found 

either on the soil surface, hanging, or on concrete.  Indoor cases were found in enclosed 

environments such as houses, trailers, and apartments.  Given the “normal” circumstances 

to which these bodies were exposed, coupled with the fact that they were used to develop 

a decomposition model, it is unknown how the equation will fair in uncommon or 

unusual contexts.  Therefore, caution should be used when the model is applied to cases 

outside the range of those contexts studied. 

As mentioned earlier, no saponified, charred, dismembered, buried, or mixed-

context cases were included in the analysis.  In regards to saponification, it has been well-

established that adipocere slows decomposition and preserves remains.  In such cases, 

bodies can become encased in saponified tissue, preventing aerobic respiration, insect 

activity, and the breakdown of tissues.  This is in stark contrast to the typical processes 

observed under normal situations.  Should the equation be applied to such cases, it is 

highly likely that an underestimation of the actual time of death will result. 

In another example of the potential dangers concerning the application of 

decompositional standards to cases in non-typical conditions, consider the results of 

Gruenthal et al.’s (2012) study on charred remains.  While the decomposition rate was 

not statistically different between charred versus non-charred groups, the charred bodies 
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initially showed a more advanced pattern of decomposition.  Additionally, differences 

were observed in the rate of decomposition between different regions of the body 

depending on the level of charring.  In those areas exposed to higher charring, 

decomposition progressed faster.  In fact, the researchers posit that arthropods may be 

more attracted to charred remains, given the possibility that more fluids and scents are 

given off in those bodies.   

Moreover, in non-charred cases, the traditional pattern of decomposition was 

observed, beginning first in the head, progressing to the neck and torso, and finishing 

with the limbs.  However, in the charred group, the torsos of all the cases began to 

decompose first, followed by the neck, and then head.  When this fact is coupled with the 

significantly different decomposition rates in different regions of the body, and the initial 

rapid progression of decomposition in charred remains, charred bodies may demonstrate 

decompositional changes typically seen at specific times in the decomposition process, 

but actually not be as far along in the process as expected.  Given these considerations, 

Gruenthal et al. (2012) conclude that investigators should be cautious in the use of 

predictive equations in these situations, instead advocating for the use of their Charred 

Body Scale, if circumstantial evidence at the scene indicates fire modification. 

What’s more, it is important to note that no dismembered bodies were considered 

in this analysis.  During dismemberment, body parts may be exposed to varying 

conditions, the typical bloating process may be altered, and the spread of bacteria and gas 

may be disturbed.  When this consideration is coupled with the inability to confirm the 

state of the remaining regions of the body in these situations, this study advises against 
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applying the time since death estimation models developed here to those cases in which 

only a handful of remains have been recovered. 

Additionally, although cases deposited on soil surfaces were examined in this 

study, no cases in buried contexts were observed.  Given the hypothesized differences in 

the rate of decomposition, said to be eight times slower in buried bodies (Maples and 

Browning 1994), the time since death equation may not be of much use.  More 

specifically, given the insulation and protection of remains from temperature fluctuations 

in burial environments (Rodriguez and Bass 1985), the calculation of accumulated degree 

days from ambient temperature may not be applicable.  Furthermore, due to the inability 

of insects or scavengers to access remains buried more than a foot below the surface 

(1985), the pattern of decompositional changes may not mirror those reflected in the total 

body score descriptions developed for non-water outdoor and indoor depositions.  When 

taken together, these sources of error should be considered strongly. 

Furthermore, it should be noted that mixed-context cases should be approached 

with caution.  When considering the decompositional changes observed on a body found 

on the shoreline, it cannot be said with 100% certainty, that the individual spent the entire 

post-mortem period on land.  More than likely in that scenario, the corpse washed ashore.  

Given the exposure to multiple depositional contexts, and thus varying temperatures and 

exposure to insect activity, decomposition may not have progressed to the extent 

expected in a case deposited on land.  One can even argue that cases found in the water in 

tidal systems cannot be said with 100% certainty to have been submerged for the entire 

post-mortem submersion interval, as during times of high tide or flooding, the corpse 

may have been left to decompose in the open air, before being re-suspended in water 
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(Heaton et al. 2010).  In those situations however, it is safer to assume typical aquatic 

decomposition than in those cases found along the shoreline.  Regardless, if it is 

suspected that a corpse has been exposed to both contexts for a prolonged period of time, 

time since death estimates must be taken with a grain of salt. 

Before ending the discussion, one last important point of consideration exists.  

Both the cause of death and/or conditions at the time of death can contribute to 

differential rates of decomposition and atypical decompositional patterns.  In particular, it 

has been observed that accelerated decomposition can result from a variety of conditions 

present at death.  Specifically, high air temperatures, hyperglycemia, and infections such 

as sepsis, are all situations which promote rapid bacterial growth (Zhou and Byard 2011).  

Given the ability of warm environments to increase internal core temperatures such as in 

cases where bodies are found lying next to heaters, under electrical blankets, or in 

individuals with fevers, in saunas, or under heated water, bacterial growth becomes 

accelerated, resulting in an increase in the rate of decomposition (2011).   

Similarly, it has been observed that regional putrefaction can result from the 

exposure of bodies to different microenvironments.  This particular observation was seen 

in Fernando et al.’s (2013) case study of an unusual pattern of decomposition associated 

with suicidal electrocution in a bath.  Due to the electrical impulses emanating from two 

hairdryers placed in the tub, the bath water became heated, leading to marked 

putrefaction and softening of those body parts immersed under water (2013).  Those 

aspects of the body not under water, the back and feet, remained preserved.   

In total, conditions leading to increased heat exposure at the time of death can 

serve to produce decompositional changes misaligned with their typical time of 
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appearance.  Under these circumstances, careful decisions must be made to avoid 

incorrectly estimating time since death. 

Therefore, based on the particular examples provided, as well as the infinite 

number of atypical situations possible, caution must be taken in the application of the 

Delaware River Valley model to atypical contexts. 

Application of the Delaware River Valley Model to Cases between the Lowest and 

Highest Total Body Scores 

 Building on the previous section, the use of the Delaware River Valley model 

should be approached with caution when applied to cases between the lowest and highest 

three total body scores. 

In the early post-mortem period, more accurate methods exist with which to 

estimate time since death.  Given the error range associated with time since death 

estimates utilizing regression equations, the 95% confidence interval limits will likely be 

below zero, or too low, to be of real value in these early stages.  If one can confidently 

employ the use of entomological standards, temperature nanograms, or any other method 

which incorporates the joint effects of both time and temperature into its model, those 

methods should be used when total body scores are assessed to be low.  In cases at or 

below a total body score of 10, the lower confidence interval limit may even be set at 0 

ADD.  In this way, the time since death estimate can be sufficiently narrow to be of use 

to medico-legal investigations.   

Caution should also be taken in regards to the use of the model in cases above a 

total body score of 39.  These cases make-up the most extreme limits of the total body 

score.  In fact, they are included in the scoring system so that investigators are aware that 



290 

the corpse is in the furthest stage possible, alerting them to be cautious in the application 

of the model to that specific case.  The particular reasoning behind this warning revolves 

around two main reasons.   

The first concerns the fact that no cases with a total body score above 39 were 

included in the dataset, as these cases were identified as outliers, skewing the data and the 

average derived from it.  Therefore, there is no direct understanding of the relationship 

between total body score and accumulated degree days in those upper limits.   

The second reason is more intuitive in nature.  Given the fact that scores above 39 

represent cases in the furthest reaches of decomposition, there technically is no upper 

limit on the time since death estimate which can be derived from the equation.  A body in 

that state can be one year post-mortem, 100 years post-mortem, or any number of years 

post-mortem, up to infinity.  When this fact is coupled with the lack of cases in this range 

included in the dataset, extreme caution should be taken with this upper bound.  Should 

the equation be employed under such circumstances, the average should be stated, along 

with the confidence interval and an appropriate disclaimer. 

Lastly, given the nature of aquatic deposition, fluvial transport of body parts and 

bones is a common complication in the recovery of remains.  At times, only a single bone 

or a handful of bones are recovered, completely devoid of soft tissue.  Unfortunately, one 

does not know how long the bone has been separated from the main cluster of skeletal 

elements, how long it has been in the final phase of decomposition, or what the state is of 

the remaining parts of the body.  Given this fact, strong caution should be taken in 

assuming all other elements of the corpse are in the final stages of decay, and estimates of 



291 

time since death on single bone recoveries, utilizing the standards and formulas 

developed in this study, should not be heavily relied upon. 

Calculation of Accumulated Degree Days 

Collecting Historical Temperature Records 

 As mentioned in the methods section, accumulated degree days are calculated by 

summing the average minimum and maximum temperatures per day across a post-

mortem interval period.  In order to do so, historical data from the nearest National 

Weather Service Station was accessed for each case.  However, this does not mean that 

the nearest station always had data available.  In some instances, the next closest station 

needed to be consulted.  Moreover, just because the nearest weather station is being used, 

it doesn’t necessarily mean that the temperature in that location is the same as that 

observed on scene.  As first pointed out by Catts (1992), there may be significant 

differences between temperatures on site and those recorded at the weather station, 

especially if the site is in an unusual location.  Given the potential discrepancies, this may 

have implications for the accuracy of ADD totals.  Unfortunately, given the lack of 

access to a decompositional research facility in the Delaware River Valley area, 

temperature loggers could not be employed to accurately track temperatures on site.  

Given the inability to control the collection of temperature data or the proximity of 

National Weather Service Stations to scenes, this was an accepted part of the study. 

However, it is important to state that some potential solutions have been 

proposed.  In a study conducted by Archer (2004), it is reported that correction factors are 

needed in order to improve the accuracy of temperature records derived from weather 

stations and applied to sites.  In particular, Archer (2004) argues for the use of a 
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temperature logger on site where the body was found, in order to derive a regression 

equation that describes the relationship between measurements taken at both locations.  

In turn, the equation could then be used to “correct” temperature records as they apply to 

the site.   

Although this particular idea has its benefits, some drawbacks do exist.  In 

particular, it is important to note that this “correction” was not effective 100% of the 

time, actually having the opposite effect on a few occasions.  In addition, given the ability 

of the circumstances of the case to impact temperatures and estimates, such as location, 

seasonality, dramatic fluctuations, and so forth, “generous” error margins are called for to 

account for this “highly variable” relationship (2004).  Lastly, given the ability of 

maggots to partially regulate their temperatures by forming masses to increase 

temperature and disbanding to decrease temperature, it is extremely difficult to precisely 

estimate the exact conditions to which the body was exposed.  This will be discussed in 

more detail in the next section. 

Nevertheless, regardless of method, there are clearly a number of issues involved 

in applying weather station data to a site.  However, developing a “correction” factor for 

each individual case is unrealistic, at least as it pertains to this study.  For the purposes of 

this research in particular, it would have been impossible to develop a regression equation 

describing the relationship for each site and nearest weather station, especially 

considering the sample size, need to buy multiple temperature loggers, and the immense 

amount of time required to accomplish this task.  This particular method is much better 

suited to experimental research studies with one or two cases in varying locations in an 

area, which was the primary focus of Archer’s (2004) study.   
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Most importantly however, are the results of a study by Dourel et al. (2010) which 

argue that there is an “uncertain benefit” in regards to the use of corrected weather station 

data.  In fact Dourel et al. (2010: 1) explicitly state, “The forensic entomologist should be 

cautious when using this correction model.”  When this warning is coupled with the fact 

that correction factors are subject to their own errors and flaws, the risk/benefit 

relationship between the use and non-use of correction factors starts to tilt in the favor of 

leaving data as is.  Therefore, although the potential concerns regarding this particular 

methodological approach are understood, this study accepted them as an unavoidable 

aspect of this type of research project.  Perhaps upon application of the time since death 

formula derived from this research to medico-legal investigations, individual cases can 

develop correction factors on their own. 

 Before ending the discussion, it is important to note that the particular concerns in 

regards to historical temperature data are exacerbated in cases involving aquatic 

decomposition, especially based on the experiences of the author in this study.  Under 

these circumstances, not only was historical water temperature data harder to come by, 

but it was impossible to track the location of bodies from the point of submersion until 

recovery, unless the point of entry was known.  Given the fact that bodies could have 

been floating in areas with different temperatures compared to the location in which the 

body was ultimately recovered, this is another source of difficulty involved in modeling 

decomposition in aquatic contexts and, as a result, accurately estimating time since death 

under these circumstances.  Estimates of time since death in outdoor and indoor contexts 

are aided by knowing the exact location of initial deposition in most situations, aquatic 

cases are not provided with such a convenience.  In fact, the lower R2 values observed in 
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the aquatic subset, compared to the non-water outdoor and indoor subsets, may be a 

direct reflection of this uncertainty.  Unfortunately, no obvious solution to this issue is 

apparent in regards to data accumulation in retroactive research studies.  Even correction 

factors would be relatively useless as the travel path of the body cannot be pinpointed 

with any accuracy.  In these situations, the only option available is to access historical 

temperature data in the area in which the body is recovered. 

 In total, it is important that when applied under actual forensic circumstances, 

investigators do their due diligence in scoping out the closest station, as well as the exact 

site location in relation to such stations.  Should historical temperature records not be 

available, all efforts should be made to ensure the next-closest station is consulted.  

Although this may require a little extra effort, the increased accuracy of accumulated 

degree day totals is more than worth the trouble. 

Accumulated Degrees Days and the Maggot Mass Effect 

 One very interesting point to consider in regards to the calculation of the total 

accumulated degree days to which a corpse has been exposed, stems from an observation 

made by Simmons et al. (2010b: 891) stating,  

“Although the calculation of postmortem interval (PMI) using ADD of ambient temperature has 
been the norm, the results of this experiment call that practice into question, as the intra-abdominal 
maggot mass temperatures are minimally 5 degrees C above that of ambient.  It has certainly been 
shown both experimentally and anecdotally that maggot masses of a certain size can survive 
refrigeration and more importantly not become delayed in their development because of the fact 
that the maggot mass has its own higher temperature.  However, this knowledge has yet to be 
applied to decomposition rate calculations.  More research on maggot mass thermodynamics is 
needed to fully appreciate their influence on decomposition with respect to ambient temperature.” 

Considering the fact that lower development thresholds have been developed based on 

the assumption that insect activity is halted below the freezing point, which has then been 

translated over to the development of time since death equations by recording all 

temperatures below the freezing point as zero degrees Celsius, the maggot mass effect 
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may be an important consideration in regards to fine-tuning estimates and models.  The 

most obvious solution would involve developing a correction factor for ambient 

temperature, taking into account the effect of maggot masses on accumulated degree 

days. 

However, there is a complication involved in this regard.  One cannot simply 

lower the developmental threshold by five degrees Celsius and end the discussion there.  

Unfortunately, the question arises regarding how the application of such a correction 

factor in cases where insect activity was reduced, impacts the accuracy of ADD totals.  

Given the fact that not all corpses are exposed to the same degree of insect activity or the 

same size of maggot masses, careful consideration must be given to accurately 

calculating their effect on temperature across cases.  Furthermore, another source of 

concern arises: in cases where the body has been deposited in an environment displaying 

temperatures below the freezing point, before insects have had the opportunity to 

colonize a body and develop a mass, the same maggot mass effect cannot be attributed to 

it compared to cases where the mass was already present before temperatures dropped 

below freezing. 

Despite these concerns, not many answers are available to combat these issues.  

Many more studies need to be conducted in order to address these questions and develop 

solutions applicable to the variety of conceivable possibilities at a site.  A good starting 

point involves developing a correction factor accounting for the average effect of a 

maggot mass and applying it in situations in which definite insect activity is known.  In 

regards to the realm of possibilities outside of those scenarios, further research is needed. 
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Use of Retroactive, Actualistic Studies 

Finally, in addition to the discussion raised in regards to cross-sectional research 

studies, as stated by Komar (1998), one of the accepted flaws of a retroactive, actualistic 

study using Medical Examiner records is the fact that often the only data available in 

regards to the post-mortem interval is the “date last seen” and the “date recovered.”  The 

actual date of death is very difficult to ascertain.  If medico-legal investigators are not 

rigorous in their post-identification efforts aimed at determining the actual date of death 

of an individual, or if the individual was not in regular contact with people, the “date 

recovered” and the actual date of death may differ.  This particular point is often 

exacerbated in cases involving advanced decomposition and skeletonization, especially 

considering the fact that often times individuals will be found earlier on in the post-

mortem interval when they are reported missing.  For those individuals whose 

disappearance does not raise any red flags or is not reported to law enforcement, the “date 

last seen” is often unreliable as a marker of “date of death.”  Since it is very rare that a 

person passes away immediately after being last seen, overestimations of PMI are 

therefore likely.  Given the retroactive nature of this research study, this is a potential 

flaw to consider.   

However, much like the flaws of experimental studies highlighted in previous 

chapters, this particular inability to track the exact post-mortem interval is understood to 

be an accepted part of studies of this nature.  Given the fact that decomposition research 

facilities in the area are lacking, coupled with attempts to utilize cases exposed to real-life 

conditions, there is no better option by which to approach this type of research.  Trade-

offs are an unfortunate reality in studies of this type and this particular trade-off is 
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difficult to avoid.  However, as will be discussed below, it is hoped that the actualistic 

results derived from this study can be validated and refined by future experimental 

studies, limiting the impact of flaws in both types of research designs. 

Future Studies 

Developing Temperature Correction Factors 

 As stated above, issues exist regarding accurately calculating accumulated degree 

days based on historical temperature data derived from the nearest National Weather 

Service Station.  Although the recommendations laid out by Archer (2004) were 

impractical for the purposes of this study, they may be factored into future iterations of 

the Delaware River Valley time since death estimation model if correction factors are 

able to be experimentally derived from the area.  Of course, that would be a research 

study in and of itself, complete with its own experimentally validated evaluation of 

temperature differences in multiple locations throughout the region, utilizing all, or 

nearly all, of the weather service stations available.  A determination would need to be 

made if a general correction factor needs to be developed, based primarily on the distance 

away from a weather station, or if correction factors would be needed for each specific 

weather station, given differences in temperature and climate between various areas.  In 

the latter case, factors could be developed for coastal, urban, mountainous, open-land 

regions, and so forth. 

 Additionally, based on the claims pointed out by researchers such as Dourel et al. 

(2010) the benefits of using such a correction factor would need to be spelled out.  The 

high degree of variability inherent to correction factors, as well as their associated errors 

and potential for miscalculation would need to be accounted for and diminished.  Given 
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the current lack of research in the Delaware River Valley area, significant strides would 

need to be made before they were included in the model. 

 However, although the development of correction factors for the number of cases 

in this dataset was impractical, they would be welcomed in future versions of the 

Delaware River Valley time since death estimation model if they were experimentally 

validated in this region and could be supported statistically. 

Incorporation of an Accumulated Humidity Day Model 

 The development of the principle of accumulated degree days, and its application 

to decomposition research has had a tremendous impact in regards to standardizing the 

effects of time and temperature, and allowing the comparison of studies across regions.  

However, in addition to the critical role played by temperature in modeling 

decomposition, the closely related phenomena of humidity should also be evaluated in 

regards to its relationship to decay. 

In fact, humidity has already been demonstrated to play a central role in 

facilitating decomposition and providing a favorable habitat for microbial decomposers 

and arthropods to breakdown tissues.  Humidity is correlated with an acceleration of the 

rate of decay, due primarily to the increase in bacterial action and fly and maggot activity 

(Mann et al. 1990).  Besides providing more favorable conditions for insects to operate 

under, humidity also slows the drying of soft tissue, allowing for ease of consumption by 

insects.  If flies are provided with proper conditions to oviposit and larvae are capable of 

feeding, corpses will break down fairly quickly.  This is in sharp contrast to the effects 

played by aridity on remains, which rapidly dehydrates skin and internal organs, creating 

a natural buffer against insects and other organisms (1990).  Given the drying out of 
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tissues under these conditions, these cases may show very little destruction by insects due 

to the need for fly eggs to be deposited in areas of moisture and protected from direct 

solar radiation (1990). 

Therefore, based on the obvious importance of humidity to driving the 

decomposition process, several researchers have argued for its inclusion into 

decomposition models and formulas estimating time since death.  In fact, at the 2013 

American Academy of Forensic Sciences Annual Meeting alone, David Carter, Marcella 

Sorg, and William Haglund, all called for the incorporation of accumulated humidity 

days, or AHD, into decomposition research.   

Given the clear relationship between decomposition and humidity, it would 

appear as if the inclusion of humidity levels over a specified time interval would already 

have been factored into quantitative decomposition models.  However, at least in regards 

to the experience of this author, historical humidity data is hard to come by.  Based on a 

search of the various federal government databases related to the collection of weather 

records, including those of the National Oceanic and Atmospheric Administration, no 

data records regarding relative humidity levels could be located.  If they were available, 

they would have been factored into this study in some capacity, most likely by combining 

its effects with accumulated degree days in some manner.  Unfortunately, this was not the 

case, potentially accounting for the failure to incorporate measures of AHD in 

quantitative research studies. 

However, should a method be devised to collect this data in actualistic studies, or 

should the federal government provide easier access to historical humidity records, 

without a doubt, AHD will begin being incorporated into decomposition studies.  Given 
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the critical role played by humidity on decomposition, its inclusion is certainly warranted, 

functioning to only increase the accuracy of time since death estimation models, 

regardless of region. 

Increasing the Statistical Power of Analysis through Larger Sample Sizes 

 Although this study sought out to develop as representative of a sample size as 

possible, including all cases which met the criteria laid out in the research design, larger 

sample sizes are always of benefit to models and regression analyses.  Larger sample 

sizes hold greater statistical power, allowing stronger inferences and more confident 

conclusions regarding a model’s potential to accurately represent occurrences under 

actual conditions.  Given the value of larger sample sets, this study will continue to 

attempt to incorporate new cases into the fold, whether through continued data collection 

efforts at the Delaware Office of the Chief Medical Examiner, or through the inclusion of 

cases from additional Medical Examiner offices in the region. 

 By increasing the sample size from which to draw conclusions, more 

determinations can be made regarding potential relationships which exist amongst 

various factors.  For example, given the small sample sizes in the subsets in this analysis, 

some variables, which may actually demonstrate a statistically significant relationship 

with decomposition, may have gone unnoticed because their effects were not able to be 

drawn out.  With a larger sample size, the effects of such factors as soil type, soil pH, 

dirty versus clean houses, and so forth, may be better represented.  The same principle 

applies to the trends demonstrated in the continuous plots.  Relationships may exist 

between logADD and precipitation, insect activity, and so forth, but more samples are 

needed to come up with more definitive conclusions. 
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 Additionally, it is always helpful to increase the sample size of a dataset with 

cases which are harder to come by.  Skeletonized cases are not frequently encountered, 

given the fact that corpses are more likely to have been discovered before that stage of 

decomposition is reached.  By continuing to incorporate more examples of such cases in 

the dataset, the standard error in regards to these types of cases will be decreased, 

allowing for more confident determinations of time since death under these 

circumstances.  The models derived from such analyses will also be more representative 

across all stages, strengthening the ability of the model to accurately predict time since 

death. 

 Lastly, should more and more cases be incorporated into the dataset as time goes 

on, the differences between the Megyesi et al. (2005) and the Delaware River Valley 

models will likely be demonstrated to be statistically significant.  Although the current 

analysis demonstrates the Delaware River Valley model to be more accurate, it is always 

better to have strong statistical backing to support such statements.  If more cases can be 

inputted into the dataset as time goes on, or if additional Medical Examiner offices in the 

area are able to contribute their cases to the cause, these differences can be pulled further 

apart. 

Obviously, retroactive studies are hampered by the fact that they are at the mercy 

of the cases available, but as new cases come in, the dataset can continue to grow, 

refining the time since death estimation model as time goes on. 

Confirming the Observations Made in Actualistic Studies with Experimental Research 

 Although the results presented here are believed to truly represent the patterns and 

relationships observed under actual forensic conditions, experimental research studies 
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should be developed which serve to test these results.  Experimental studies exhibit 

greater control over factors when compared to retroactive and actualistic studies, zeroing 

in on those variables of interest to the research.  It can control for confounding factors 

and get at the heart of the main variables involved in the decomposition process.  

Unfortunately for the Delaware River Valley, no experimental research sites exist.  

Universities do not have separate forensic anthropology programs, and decomposition 

research is not a priority.   

Clearly, given the importance of time since death estimates to both unknown and 

missing persons cases, as well as the development of a list of suspects and a general 

understanding of the events surrounding a case, greater importance should be placed on 

understanding the decomposition process in the region.  Should efforts be made to do so, 

both experimental research studies and the results of this actualistic analysis, can serve to 

inform each other, improving models and addressing issues with both types of research.  

In the end, the result will be a more refined and accurate time since death estimation 

model by which to solve cases and identify remains. 

Standardizing Data Collection Efforts in the Medico-Legal and Research Communities 

One of the observations made during the collection of data dealt with the 

information contained in medico-legal investigation reports.  The intended purpose of 

such reports is to detail the location of the find, background on the case, particulars about 

the scene, description of the body and observed variables in and around the corpse, 

identification efforts, results of supplemental examinations, and so forth.  However, it 

was often found that inconsistencies were observed between reports.  Some investigators 

recorded information pertaining to particular variables.  Others provided greater details 
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than others.  Occasionally, some cases were left without updates or conclusions.  

Unfortunately, this made data collection efforts even more difficult, lowering the sample 

size by forcing the exclusion of case records with missing information or poor 

descriptions. 

One particular area of concern revolved around the description of cases found in 

aquatic environments.  Given the difficulties already apparent in regards to modeling 

decomposition in water contexts, further complications, especially those which can be 

avoided, are certainly not needed.  Unfortunately, these observations appear to not be 

specific to Delaware or even to medico-legal reports.  As per Hobischak and Anderson 

(2002), better descriptions are needed on the part of not just forensic investigators, but 

also pathologists and coroners, in regards to water death investigations.  In fact, they 

stated that descriptions were so poor that comparisons of research studies to actual 

medico-legal forensic cases were limited to just 23% of the 65 possible freshwater cases 

in their dataset.  Of that percentage, only one single case mentioned the presence of 

invertebrates found on the body, with four mentioning scavenging activity.   

Furthermore, although similarities were seen in many of the early 

decompositional characteristics, the classifications in the coroner’s reports were so vague 

they were of little value to estimating the post-mortem submersion interval.  They go on 

to note that given the vagueness of the descriptions, it almost appeared as if the longer a 

corpse was submerged, the vaguer the description in the coroner’s files were.  Given the 

inverse relationship between the longer one has been deceased for and the accuracy of 

time since death estimates, these descriptions should be the most detailed of all.  This 

consideration is also coupled with the fact that given the need to develop more specific, 
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and detailed descriptions of decomposition for the development of total body scores, 

broad and non-specific descriptions are of no value to either research studies or medico-

legal investigations.  

As it applies to this study, in several instances, cases needed to be excluded from 

consideration in the dataset given a general lack of information, failure to capture data on 

key variables, or poor descriptions.  Scavenging activity was not described in particular 

detail.  Never was there a mention of the salinity profile of the body of water in which the 

corpse was found.  In only very few instances were tides or currents described.  Most 

importantly however, water temperature data was never collected. 

Unfortunately, the issues regarding data collection did not stop with aquatic 

contexts.  In nearly every case, indoor temperature information was lacking.  Not only 

was there no data provided in regards to the ambient indoor temperature, but in those 

cases where the heat or air-conditioning was on, only some investigator reports stated the 

temperature to which these systems were set.  Given the critical role played by 

accumulated degree days in regards to providing the heat energy units which drive 

biological and chemical processes, this particular omission was of the upmost 

importance.  What’s more concerning is the fact that recording data in regards to indoor 

temperature is not particularly difficult, especially when digitized on a heating or cooling 

panel. 

Lastly, despite the known correlation between temperature and decomposition, 

temperature was rarely noted in outdoor contexts.  Occasionally, the overall weather 

trend over the last few weeks was mentioned, but no specifics were given.  Nevertheless, 

closely related variables such as humidity, cloud cover, and precipitation were rarely, if 
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ever, discussed, unless having directly impacted the scattering of remains or movement of 

the body.  Information pertaining to canopy cover and shade was also frequently missing, 

requiring consultation of scene photographs to make judgments regarding the degree of 

sun exposure.  The degree of scavenging activity was also documented to differing 

degrees.  Some investigators stated the exact GPS coordinates of bones recovered after 

scattering, while others simply stated that they were not recovered with the body.  For 

those cases recovered on the soil surface, the soil type and pH was never revealed, simply 

mentioning the fact that they were found in forested environments or open fields. 

Fortunately, all of these concerns are fixable.  Besides putting forth a greater 

effort in regards to more detailed descriptions of the body and the forensic scene, as well 

as emphasizing the need for the collection of as much information as possible, the 

standardization of data collection in regards to medico-legal and autopsy reports can go a 

long way to resolving these issues.  In fact, during the author’s time at the Delaware 

Office of the Chief Medical Examiner, a list of key variables to collect was created, 

including a description of why these factors were important.  The list was received well 

as investigators understood the particular focus of the study.  By improving the collection 

of data in Medical Examiner offices around the country, standardization will also 

function to improve total body score determinations for each case, as investigators are 

made aware of the particular descriptions needed to form a better understanding of the 

decompositional stage which a body is in. 

What’s more, this focus on the standardization of data collection across the 

medico-legal community is also of importance to decomposition research efforts.  In a 

broader sense, if, as proposed by Sorg and Haglund (2013), a systematic set of methods 
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are proposed which foster comparison across regions, the collection of data not only in 

the medico-legal community, but for the purposes of research, may be improved as well.  

Given the recent growth of “body farms” and experimental decompositional research 

facilities across the country, in order to evaluate the research discoveries found from 

region to region, parameters must be established to try and piece together information 

pertaining to ecological variables and datasets (2013).  Minimally, this includes 

calculations of ADD, AHD, and TBS in all such decomposition studies across regions 

(2013). 

As it relates to scene investigation on the part of medico-legal investigators, Sorg 

and Haglund (2013) call for the standardized collection of data including: 1) recording 

heat at the scene, 2) calibrating scene data with weather station data, 3) collecting data 

pertaining to solar access, such as canopy cover, 4) noting local scavenger patterns and 

markers of activity, 5) describing seasonal patterns, 6) noting differences in the timing of 

metamorphosis of local terrestrial arthropod species and marine amphipods, and 7) noting 

variation in local plant distribution and biology.  These recommendations are surely a 

good start, beginning the conversation regarding the standardization of data across 

regions and research studies.  As stated by Page et al. (2011a; 2011b), the standardization 

of methods is not only important to ensuring the equal and consistent collection of data 

for use in medico-legal cases, but to also demonstrate the validity of conclusions derived 

from research conducted utilizing a standard set of methods in the discipline.   

Thus, by standardizing data collection efforts across studies, and encouraging the 

evaluation of data pertaining to certain key variables, such standardization efforts will 

foster a greater understanding of the variables which impact decay across regions and 
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allow for the development of more refined decomposition models.  It will also facilitate 

the comparison of research data between studies, potentially leading to the discovery of 

important relationships and trends.  All in all, these issues of standardization are more 

than capable of being addressed, and can go a long way towards further improving the 

medico-legal and research community’s understanding of decomposition. 

Disseminating Results to the Medico-Legal Community 

This study is only as good as its application in the field.  Should the medico-legal 

community not be aware of its existence or should they employ it incorrectly, it is not 

only relatively useless, but it can have far-reaching implications in terms of criminal 

investigations.  Therefore, in order to disseminate the results of this study to all relevant 

persons, ensure the appropriate use of the equation, and spell out the limits of the study, 

several steps will be taken.   

Firstly, in order to make all relevant investigators, forensic pathologists, Medical 

Examiners, and medico-legal personnel aware of the findings of this study and the 

availability of a time since death estimation formula specifically derived for the region, 

the equation will be circulated to the various investigative and forensic agencies in 

southeastern PA, NJ, and DE.   

Next, a lecture series, involving training in regards to the use of the formula at 

scenes and the limits of its application, will be established to facilitate the use of the 

equation in medico-legal settings.  Given the author’s strong ties to the New Jersey State 

Police, Delaware Office of the Chief Medical Examiner, as well as various local police 

departments and Medical Examiner’s offices throughout the region, this should greatly 

facilitate the process. 
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 Lastly, the results of the study will be made available to all interested parties, 

serving as a model for future studies assessing regional decomposition and to aid in the 

continual development of improved quantitative methods for determining time since 

death.  Should there be enough interest, it will also be combined with experimental 

research studies in the area.  By joining the data resulting from this study to additional 

regional research studies, the formula will be able to increase its accuracy, statistical 

inference, and applicability, serving as a representation of the need for region-specific 

standards and a reminder that a universal time since death estimate is still not applicable 

in all areas.   

Most importantly, the models derived in this area are directly applicable to the 

medico-legal community, offering an accurate method by which to estimate time since 

death in a variety of depositional contexts. 

Summary of Discussion 

Based on the multitude of qualitative and quantitative analyses conducted, a 

number of important points have been discussed, functioning to piece together the puzzle 

regarding decomposition.  When these considerations are evaluated jointly in conjunction 

with the results derived from this study, they combine to form a rather substantial 

understanding of the processes involved in decay, resulting in the production of a time 

since death equation well-suited to assessing decomposition in the Delaware River Valley 

Region. 

To begin, total body score has been identified as playing a fundamental role in 

decomposition models designed to quantitatively estimate time since death.  Not only has 

it been demonstrated that a distinct progression to decomposition exists in the Delaware 
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River Valley Region, compared to total body score descriptions developed in other 

environments, but total body score has been identified as providing a statistically 

significant effect across decomposition models.  In fact, given the linear dependence 

identified between the various factors analyzed in this study, it becomes readily apparent 

that a representative and accurate depiction of the decompositional patterns particular to 

an area, summarized in the total body score descriptions, is the most important 

component of an accurate time since death estimation equation. 

Secondly, without a doubt, accumulated degree days explain more of the variation 

in decomposition compared to a simple measure of time, demonstrated in the form of 

post-mortem interval days.  Across each and every model developed in this study, 

regardless of the stratification of depositional contexts or the inclusion of all cases into 

one general dataset, this find holds true.  This particular discovery is crucial to forming 

the basis for the development of a time since death equation.  What’s more, by 

standardizing time and temperature in the form of accumulated degree days, region-

specific standards can be developed across the United States and the World, utilizing the 

same general methodology employed in this study. 

Next, the development of context specific time since death equations is certainly 

valid.  However, given the low proportion of variation explained in models derived from 

aquatic environments, it is clear that as-yet-unknown variables exist which render the 

modeling of decomposition in water rather difficult.  Given the inability to track such 

transient variables as tides, currents, variations in temperature, salinity level differences, 

adipocere development, and much more, it quickly becomes clear that in order to develop 

time since death equations specifically designed for aquatic cases, very specialized 
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models, incorporating a number of factors not encountered on land or in indoor 

environments, are needed.   

In regards to non-water outdoor and indoor cases, similarities are observed 

between decomposition in both contexts.  Firstly, save for very few variables, cases 

exposed to either depositional environment tend to be subjected to similar factors.  As a 

result, the pattern of decompositional changes and stages tend to overlap, justifying the 

use of total body score descriptions applicable to cases found in either context.  Most 

importantly, when taken together, a model can be designed which explains a great deal of 

the variation in decomposition and produces accurate estimates of the time since death. 

Furthermore, in terms of the identification of covariates which play statistically 

significant roles in the decomposition process, it once again becomes clear that total body 

score plays the most prominent role.  Despite the potential relationships observed 

between both precipitation and insect activity on the log of ADD, no other variable 

comes to the forefront as demonstrating a statistically significant effect across models, 

with the effects of precipitation and insect activity requiring a larger sample size to be 

drawn out.  This lack of consensus however, is not a sign of the inability to identify the 

important variables involved in decay.  Instead, what this discovery indicates is that the 

roles played by each individual variable are so inextricably linked to each other, that they 

are unable to be parceled apart.  Along the same vein, the consistent theme observed 

throughout the analysis is that their joint effects are represented in one critical variable, 

the total body score.  Given the fact that each variable has the potential to speed up or 

slow down the rate of decay and contribute to the decompositional process, their effects 
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are demonstrated jointly in the decomposition changes demonstrated in the total body 

score for each case. 

Moreover, when the formulas derived for the various depositional contexts 

analyzed in this study were applied to range of total body scores possible, the resulting 

predicted ADD values demonstrated important insights regarding the rate of decay in 

each subset.  Initially, the indoor cases demonstrated a more rapid progression to early 

decompositional changes, followed by outdoor cases.  However, when applied to total 

body scores past the first half of the early decomposition stage, the rate changed, with 

outdoor cases demonstrating the fastest rate of decay.  What’s more, the outdoor and 

indoor model also proved to show rate of decay in between that of the outdoor and indoor 

rates previously described.  In this way, it demonstrates the utility of the combined model 

to cases in both contexts. 

Lastly, and most importantly, when compared to the Delaware River Valley 

model developed in this study, the decompositional model and time since death 

regression equation developed in the Megyesi et al. (2005) study explains a smaller 

proportion of the variation in decomposition when applied to data derived from the 

Delaware area.  In fact, this particular discovery not only holds true in regards to the 

model incorporating all depositional contexts, but also in the model designed for non-

water outdoor and indoor cases.  Given the apparent need for a specific model developed 

solely for aquatic cases, this find takes on significant importance as the model derived 

from this study will likely be applied to non-water outdoor and indoor cases. 

What’s more, when both models were used to derive predicted accumulated 

degree days based on total body score assessments of non-water outdoor and indoor 
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cases, as well as the entire dataset, the Delaware River Valley models more accurately 

approximated the actual observed ADD values each time, with a remarkable accuracy of 

only a two point differential between predicted and observed values when using the non-

water outdoor and indoor Delaware River Valley model.  Without a doubt, the Delaware 

River Valley model, especially the formula derived specifically for non-water outdoor 

and indoor cases, appears to be a more accurate, valid, and reliable means by which to 

estimate time since death in this area.   

In total, the combination of results described above have not only led to the 

formulation of the very first decomposition models and time since death equations 

designed specifically for the Delaware River Valley Region, but they also serve to 

validate the development of region-specific standards. 

Conclusion 

 In conclusion, this quantitative, retroactive study has served to address several 

critical needs in the criminal justice community while filling a significant gap in 

scientific knowledge regarding the process of decomposition as it applies to southeastern 

Pennsylvania, New Jersey, and Delaware.  It has helped increase the accuracy, reliability, 

and validity of time since death estimates in decomposition cases and met the need for 

improved quantitative methods with statistically-backed error rates and confidence 

intervals.  It has identified accumulated degree days and the total body score as playing 

key roles in the estimation of time since death and serving as central components in time 

since death estimation formulas.   It has addressed the call for real-life, applied studies, 

under non-standard conditions, allowing for the application of the research directly to 

indoor, outdoor, and aquatic cases in the field.  It has helped further the understanding of 
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the environment’s effects on decomposition in the United States and around the World.  

It has also provided law enforcement personnel with a quicker mechanism by which to 

track down leads, evaluate alibis and eyewitness accounts, identify matches to missing 

persons, and aid in the identification of unknown remains.  Additionally, it has improved 

the practice of criminal justice by providing Medical Examiners, forensic experts, and 

criminal investigators with a foundation upon which they can lay claims regarding time 

since death estimations in a court of law and in criminal justice settings.  Lastly, this 

study has not only validated the development of region-specific standards, but it has also 

created the first ever time since death estimation formula particular to the Delaware River 

Valley region. 
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Appendices 

Appendix A: Tables 

Early Approaches to Decompositional Stage Delineation 

Table 1. Depiction of “Typical” Four Discrete Decompositional Stages: Fresh, Bloat, 
Decay, and Dry (Adapted from Rodriguez and Bass 1983) 
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Quantitative Descriptions of Decomposition “Correlated” with Time 

Table 2. Stages of Decomposition by Time in Open Air and Closed Structures 
(Adapted from Galloway et al. 1989) 
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Total Body Score System as per Megyesi et al. 2005 

Head and Neck 

Table 3. Categories and Stages of Decomposition for the Head and Neck (Adapted 
from Megyesi et al. 2005) 
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Trunk 

Table 4. Categories and Stages of Decomposition for the Trunk (Adapted from 
Megyesi et al. 2005) 
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Limbs 

Table 5. Stages and Categories of Decomposition for the Limbs (Adapted from 
Megyesi et al. 2005) 
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Variables Affecting the Rate of Decay 

Table 6. Variables Affecting Decay Rate of Human Body (Adapted from Mann et al. 
1990) 
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Köppen-Geiger Definitions of Climate Types and Sub-Types 

Table 7. Climate Types and Sub-Types Defined by Köppen-Geiger Classification 
System (Adapted from Belda et al. 2014) 
 
T: mean annual temperature in Celsius; Tmo: mean montly temperature in Celsius; Pmean: 
mean annual rainfall in centimeters; Pdry: monthly rainfall of the driest summer month; 
Pmax: maximum annual precipitation rainfall; Pmo: monthly precipitation; Tcold(warm): 
monthly mean air temperature of the coldest (warmest) month 
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Köppen-Trewartha Definitions of Climate Types and Sub-Types 

Table 8. Climate Types and Sub-Types Defined by Köppen-Trewartha 
Classification System (Adapted from Belda et al. 2014) 
 
T: mean annual temperature in Celsius; Tmo: mean montly temperature in Celsius; Pmean: 
mean annual rainfall in centimeters; Pdry: monthly rainfall of the driest summer month; R: 
Patton’s precipitation threshold; Tcold(warm): monthly mean air temperature of the coldest 
(warmest) month 
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Accumulated Degree Day Group Dataset 

Non-Water Outdoor Surface 

Table 9.  Non-Water, Outdoor, Surface Layer Case Information Summary Broken 
Up by County 
 

 

Case # PMI ADD Celsius TBS Precipitation Soil Type/p.H. Sun/Shade Body 
Position

Insect 
Score

Penetrating 
Trauma

Scavenging 
Activity

Clothing 
Score

Sex Age Ancestry Height Weight

New 
Castle

1 M 47 White N/A N/A 62 650.277778 21 2.71 in Unavailable/ 
Unavailable

Sun Supine 4 No No 9

4 M 72 White N/A N/A 277 3546.66667 36 35.2 in Unavailable/ 
Unavailable

Sun Unknown 0 Unknown Yes 4

5 M 27 White N/A N/A 107 2333.05556 34 12.61 in Silt Loam/6 Shade Unknown 3 Yes No 6

6 F 66 White 61 in. N/A 142 2555 35 22.09 in Unavailable/ 
Unavailable

Sun Unknown 3 Unknown Yes 4.25

9 M 43 White N/A 106 lbs. 49 1245.83333 28 13.03 in Sandy 
Loam/5.6

Shade Supine 3 No Yes 4

10 M 62 White 74 in. 145 lbs. 7 120 10 0.06 in Unavailable/ 
Unavailable

Sun Supine 5 No No 2

11 M 25 White 69 in. 170 lbs. 10 174.722222 13 6.1 in Silt Loam/6 Shade Prone 4 No No 7

12 F 37 Black 65 in. 137 lbs. 24 848.888889 17 5.52 in Unavailable/ 
Unavailable

Shade Supine 5 Yes No 1

13 M 44 White N/A N/A 72 1079.44444 24 11.97 in Loam/6 Shade Prone 4 No No 4
14 F 19 Black N/A N/A 120 2838.88889 39 10.79 in Silt Loam/5.9 Shade Unknown 0 Unknown Yes 0

15 F 46 White 68 in. 165 lbs. 4 116.111111 13 0 in Sandy 
Loam/5.5

Shade Supine 2 No Unknown 6

Kent 
17 M 37 White N/A N/A 169 3532.77778 34 22.66 in Sandy 

Loam/6.2
Shade Unknown 9 Yes Yes 3

18 M 34 White N/A N/A 88 2215.55556 33 14.01 in Unavailable/ 
Unavailable

Shade Supine 3 Unknown Yes 4

Sussex
20 M 21 White 72 in. 252 lbs. 3 76.9444444 13 0.00 in Moderately 

decomposed 
plant 

material/5.5

Shade Supine 5 Yes No 7

21 M 61 White 71 in. 164 lbs. 4 103.333333 10 0.07 in Sandy 
Loam/6

Shade Prone 6 Yes No 3

22 M 49 White N/A 280 lbs. 53 965.833333 31 5.72 in Unavailable/ 
Unavailable

Shade Prone 3 Unknown No 8

Biological Profile
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Non-Water Non-Surface Outdoor 

Table 10. Non-Water, Non-Surface, Outdoor Case Information Summary Broken 
Up by County 
 

 
 

Case # PMI ADD Celsius TBS Precipitation Sun/Shade Body 
Position

Insect 
Score

Penetrating 
Trauma

Scavenging 
Activity

Clothing 
Score

Sex Age Ancestry Height Weight

New 

Castle

23 M 27 Asian 63 in. 80 lbs. 72 1690.83333 24 7.72 in Shade Hanging 0 No No 3.5

Sussex

26 M 21 Hispanic 69 in. 134 

lbs.

9 223.333333 13 0.03 in Shade Supine 3 No No 4

27 M 52 White 67 in. 165 

lbs.

9 223.333333 14 3.26 in Shade Seated 6 No No 7

28 M 40 White 73 in. 175 

lbs.

59 941.666667 24 8.5 in Shade Hanging 8 No No 0

Biological Profile
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Indoor 

Table 11. Indoor Case Information Summary Broken Up by County 

 

Case # PMI ADD Celsius TBS Precipitation Body 
Position

Dirty Insect 
Score

Penetrating 
Trauma

Scavenging 
Activity

Clothing 
Score

Sex Age Ancestry Height Weight
New 

Castle
29 M 82 White 69.5 

in.
155 lbs. 5 96.3888889 13 0.0 in Supine Yes 4 No No 11

34 F 48 Black 68.5 
in.

195 lbs. 19 347.5 17 2.87 in Prone No 2 No No 0.5

35 M 62 White 72 in. 250 lbs. 14 276.111111 14 1.86 in Right side Yes 4 No No 0

36 F 59 Black 66 in. 95 lbs. 15 285 11 3.99 in Supine No 5 No No 4
37 M 43 Black 70 in. 101 lbs. 7 152.5 9 5.5 in Prone No 6 No No 1
42 F 81 White 65 in. 143 lbs. 6 146.111111 9 1.03 in Seated No 4 No No 7
44 M 71 Black 71 in. 105 lbs. 4 97.7777778 8 0.44 in Supine No 0 No No 10
45 M 53 Black 64 in. 130 lbs. 15 175 14 2.1 in Prone No 3 No No 1
47 M 85 White 67 in. 108 lbs. 8 138.333333 14 0.10 in Supine No 6 No No 3
48 M 59 White 69 in. 205 lbs. 16 224.722222 11 4.51 in Prone No 0 No No 0
49 M 49 White 67.5 

in.
118 lbs. 15 77.2222222 9 3.39 in Supine Yes 0 No No 7

50 M 63 White 70.5 
in.

180 lbs. 16 405.833333 13 2.4 in Supine No 3 No No 2

51 M 58 White 67.5 
in.

155 lbs. 9 217.222222 14 0.84 in Supine No 3 No No 0

52 F 77 White 65.5 
in.

150 lbs. 12 271.388889 14 0.35 in Supine No 2 No No 6.5

53 M 50 White 70 in. 184 lbs. 17 110.277778 13 7.42 in Supine No 0 No No 2
55 F 63 White 66 in. 175 lbs. 32 683.611111 19 9.19 in Prone Yes 4 No Yes 1.75
56 F 73 White 64 in. 91 lbs. 12 292.777778 12 3.87 in Unknown Yes 0 No No 3.25
57 F 88 White 64.5 

in.
142 lbs. 19 107.222222 13 2.15 in Unknown No 0 No No 4

58 M 53 Black 67.5 
in.

180 lbs. 9 198.055556 13 0.17 in Supine No 0 Yes No 7

60 M 56 White 72.5 
in.

153 lbs. 21 464.722222 16 3.52 in Prone No 4 No No 3

61 M 71 White 65 in. 93 lbs. 11 92.2222222 11 0.55 in Supine No 0 No No 2
62 M 77 White 65.5 

in.
162 lbs. 90 278.888889 20 9.45 in Prone No 9 No No 0

63 M 41 Black 72 in. 190 lbs. 12 271.666667 12 1.9 in Supine No 4 No No 5
64 F 54 White 58 in. 100 lbs. 53 427.777778 18 7.23 in Prone No 3 No No 0
65 F 32 White 67 in. 115 lbs. 8 176.388889 13 0.93 in Prone No 2 No No 3.5
66 F 87 White 62 in. 94 lbs. 15 226.944444 14 1.02 in Supine No 6 No No 1.75
68 F 77 White 62 in. 125 lbs. 21 282.5 14 0.49 in Supine No 4 No No 4.75

Kent 
69 M 74 White 70 in. 120 lbs. 16 391.666667 15 1.77 in Supine No 3 No No 0
71 M 56 Black 70 in. 110 lbs. 4 103.611111 13 0.4 in Prone No 4 No No 3
72 F 62 White 63 in. 125 lbs. 5 116.111111 10 0.01 in Right side No 4 No No 4

73 M 70 White 73 in. 312 lbs. 5 57.2222222 11 0.00 in Left side Yes 0 No No 0
74 M 78 White 69 in. 101 lbs. 32 250 16 3.06 in Supine No 0 No No 6
76 F 61 White N/A 125 lbs. 50 1327.77778 22 4.36 in Supine Yes 0 No No 0
77 F 62 White 65 in. 125 lbs. 9 222.5 16 0.17 in Supine No 4 No No 1.25
78 F 45 White 68 in. 105 lbs. 17 45.2777778 12 1.37 in Right side No 0 No No 3

Sussex
79 M 35 Black 70 in. 31 lbs. 24 578.611111 22 4.72 in Left side Yes 5 Yes No 3
80 M 93 White 66 in. 55 lbs. 22 541.388889 20 5.08 in Prone No 3 No No 3.75

Biological Profile
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Aquatic 

Table 12. Aquatic Case Information Summary Broken Up by County 

 

Case # PMI ADD Celsius TBS Precipitation Body 
Position

Water 
Salinity       

Insect 
Score

Penetrating 
Trauma

Scavenging Clothing 
Score

Sex Age Ancestry Height Weight

New 
Castle

81 M 21 Black Unknown Unknown 9 239.05 15 2.45 in. Prone Fresh-
water

4 No No 1

83 F 36 White 63.5 in. 130 lbs. 8 191.805556 12 0.64 in Supine Low 0 No No 5
84 M 42 White 70 in. 200 lbs. 8 191.805556 12 0.64 in Seated Low 0 No No 3
86 M 66 White 72 in. 310 lbs. 14 162.2 8 2.49 in Unknown Medium 0 Yes No 4

88 M 49 Black 69 in. 265 lbs. 127 462.5 13 9.9 in Unknown Low 0 No Yes 9

89 M 75 Black 66.5 in. 105 lbs. 28 789.5 18 4.97 in Unknown Medium 3 No Yes 2

90 M 34 White 71 in. 200 lbs. 7 120.9 11 0.96 in Unknown Medium 0 No Yes 6.75

91 M 39 Black 67 in. 200 lbs. 30 251.6 12 2.19 in Unknown Low 0 No No 9.5

92 M 57 Black 66 in. 265 lbs. 3 78.2129444 12 0.00 in Prone Low-
Medium

0 No No 6

93 M 49 Black 68 in. 220 lbs. 3 82.57 9 0.24 in Unknown Low 0 No Yes 6

94 M 30 White 73 in. 282 lbs. 2 47.9022222 11 0.07 in Prone Medium 0 No No 7
96 M 48 White 70.5 in. 275 lbs. 14 146.041222 9 1.66 in Prone Low-

Medium
0 No Yes 5

97 M 50 Black 70 in. 245 lbs. 18 173.310167 12 1.66 in Unknown Low 0 No Yes 8

98 M 42 White 70 in. 150 lbs. 4 109.884889 11 0.00 in UnknownLow-
Medium

0 No No 0

99 M 54 Black 67.5 in. 168 lbs. 3 84.1021667 11 0.98 in Unknown Medium 0 No No 7

101 M 40 White 69 in. 143 lbs. 174 1138.85 20 20.53 in Unknown Medium 0 No Yes 3

104 M 33 White 68 in. 215 lbs. 6 108.402667 10 0.02 in Unknown Medium 0 No No 3

105 F 46 White 64.5 in. 160 lbs. 20 208.9 11 2.22 in Unknown Low-
Medium

0 No No 9

110 M 16 White 69 in. 153 lbs. 6 122.728889 10 2.86 in Unknown Medium 0 No Yes 6

Kent 
114 M 19 White 71 in. 173 lbs. 17 189.8 9 2.11 in Unknown Low 0 No Yes 10.25

115 M 40 White 69 in. 190 lbs. 9 112.5 11 1.34 in Unknown High 0 No No 8

117 M 26 White 70 in. 197 lbs. 2 54.5332778 11 0.43 in Unknown High 
Medium

0 No No 6

Sussex
124 M 35 Asian 67 in. 150 lbs. 8 99 13 2.86 in Supine Open 

Water
0 Yes Yes 0

Biological Profile
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Post-Mortem Interval Group Dataset 

Non-Water Outdoor Surface 

Table 13. Non-Water, Outdoor, Surface Layer Case Information Summary Broken 
Up by County 
 

 

Case # PMI ADD Celsius TBS Precipitation Soil Type/p.H. Sun/Shade Body 
Position

Insect 
Score

Penetrating 
Trauma

Scavenging 
Activity

Clothing 
Score

Sex Age Ancestry Height Weight

New 
Castle

1 M 47 White N/A N/A 62 650.277778 21 2.71 in Unavailable/ 
Unavailable

Sun Supine 4 No No 9

5 M 27 White N/A N/A 107 2333.05556 34 12.61 in Silt Loam/6 Shade Unknown 3 Yes No 6

6 F 66 White 61 in. N/A 142 2555 35 22.09 in Unavailable/ 
Unavailable

Sun Unknown 3 Unknown Yes 4.25

9 M 43 White N/A 106 lbs. 49 1245.83333 28 13.03 in Sandy 
Loam/5.6

Shade Supine 3 No Yes 4

10 M 62 White 74 in. 145 lbs. 7 120 10 0.06 in Unavailable/ 
Unavailable

Sun Supine 5 No No 2

11 M 25 White 69 in. 170 lbs. 10 174.722222 13 6.1 in Silt Loam/6 Shade Prone 4 No No 7

12 F 37 Black 65 in. 137 lbs. 24 848.888889 17 5.52 in Unavailable/ 
Unavailable

Shade Supine 5 Yes No 1

13 M 44 White N/A N/A 72 1079.44444 24 11.97 in Loam/6 Shade Prone 4 No No 4
14 F 19 Black N/A N/A 120 2838.88889 39 10.79 in Silt Loam/5.9 Shade Unknown 0 Unknown Yes 0

15 F 46 White 68 in. 165 lbs. 4 116.111111 13 0 in Sandy 
Loam/5.5

Shade Supine 2 No Unknown 6

Kent 
17 M 37 White N/A N/A 169 3532.77778 34 22.66 in Sandy 

Loam/6.2
Shade Unknown 9 Yes Yes 3

18 M 34 White N/A N/A 88 2215.55556 33 14.01 in Unavailable/ 
Unavailable

Shade Supine 3 Unknown Yes 4

Sussex
21 M 61 White 71 in. 164 lbs. 4 103.333333 10 0.07 in Sandy 

Loam/6
Shade Prone 6 Yes No 3

22 M 49 White N/A 280 lbs. 53 965.833333 31 5.72 in Unavailable/ 
Unavailable

Shade Prone 3 Unknown No 8

Biological Profile
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Non-Water Non-Surface Outdoor 

Table 14. Non-Water, Non-Surface, Outdoor Case Information Summary Broken 
Up by County 
 

 

Case # PMI ADD Celsius TBS Precipitation Sun/Shade Body 
Position

Insect 
Score

Penetrating 
Trauma

Scavenging 
Activity

Clothing 
Score

Sex Age Ancestry Height Weight

New 

Castle

23 M 27 Asian 63 in. 80 lbs. 72 1690.83333 24 7.72 in Shade Hanging 0 No No 3.5

Sussex

26 M 21 Hispanic 69 in. 134 

lbs.

9 223.333333 13 0.03 in Shade Supine 3 No No 4

27 M 52 White 67 in. 165 

lbs.

9 223.333333 14 3.26 in Shade Seated 6 No No 7

28 M 40 White 73 in. 175 

lbs.

59 941.666667 24 8.5 in Shade Hanging 8 No No 0

Biological Profile
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Indoor 

Table 15. Indoor Case Information Summary Broken Up by County 
 

 

Case # PMI ADD Celsius TBS Precipitation Body 
Position

Dirty Insect 
Score

Penetrating 
Trauma

Scavenging 
Activity

Clothing 
Score

Sex Age Ancestry Height Weight
New 

Castle
29 M 82 White 69.5 

in.
155 lbs. 5 96.3888889 13 0.0 in Supine Yes 4 No No 11

34 F 48 Black 68.5 
in.

195 lbs. 19 347.5 17 2.87 in Prone No 2 No No 0.5

35 M 62 White 72 in. 250 lbs. 14 276.111111 14 1.86 in Right side Yes 4 No No 0

36 F 59 Black 66 in. 95 lbs. 15 285 11 3.99 in Supine No 5 No No 4
37 M 43 Black 70 in. 101 lbs. 7 152.5 9 5.5 in Prone No 6 No No 1
42 F 81 White 65 in. 143 lbs. 6 146.111111 9 1.03 in Seated No 4 No No 7
43 M 73 Black 65 in. 220 lbs. 14 19.7222222 13 1.35 in Supine No 0 Yes No 13.5
44 M 71 Black 71 in. 105 lbs. 4 97.7777778 8 0.44 in Supine No 0 No No 10
45 M 53 Black 64 in. 130 lbs. 15 175 14 2.1 in Prone No 3 No No 1
46 F 70 White 67 in. 155 lbs. 8 14.4444444 13 0.52 in Supine No 0 No No 3.75
47 M 85 White 67 in. 108 lbs. 8 138.333333 14 0.10 in Supine No 6 No No 3
48 M 59 White 69 in. 205 lbs. 16 224.722222 11 4.51 in Prone No 0 No No 0
49 M 49 White 67.5 

in.
118 lbs. 15 77.2222222 9 3.39 in Supine Yes 0 No No 7

50 M 63 White 70.5 
in.

180 lbs. 16 405.833333 13 2.4 in Supine No 3 No No 2

51 M 58 White 67.5 
in.

155 lbs. 9 217.222222 14 0.84 in Supine No 3 No No 0

52 F 77 White 65.5 
in.

150 lbs. 12 271.388889 14 0.35 in Supine No 2 No No 6.5

53 M 50 White 70 in. 184 lbs. 17 110.277778 13 7.42 in Supine No 0 No No 2
55 F 63 White 66 in. 175 lbs. 32 683.611111 19 9.19 in Prone Yes 4 No Yes 1.75
56 F 73 White 64 in. 91 lbs. 12 292.777778 12 3.87 in Unknown Yes 0 No No 3.25
57 F 88 White 64.5 

in.
142 lbs. 19 107.222222 13 2.15 in Unknown No 0 No No 4

58 M 53 Black 67.5 
in.

180 lbs. 9 198.055556 13 0.17 in Supine No 0 Yes No 7

60 M 56 White 72.5 
in.

153 lbs. 21 464.722222 16 3.52 in Prone No 4 No No 3

61 M 71 White 65 in. 93 lbs. 11 92.2222222 11 0.55 in Supine No 0 No No 2
62 M 77 White 65.5 

in.
162 lbs. 90 278.888889 20 9.45 in Prone No 9 No No 0

63 M 41 Black 72 in. 190 lbs. 12 271.666667 12 1.9 in Supine No 4 No No 5
64 F 54 White 58 in. 100 lbs. 53 427.777778 18 7.23 in Prone No 3 No No 0
65 F 32 White 67 in. 115 lbs. 8 176.388889 13 0.93 in Prone No 2 No No 3.5
66 F 87 White 62 in. 94 lbs. 15 226.944444 14 1.02 in Supine No 6 No No 1.75
68 F 77 White 62 in. 125 lbs. 21 282.5 14 0.49 in Supine No 4 No No 4.75

Kent 
69 M 74 White 70 in. 120 lbs. 16 391.666667 15 1.77 in Supine No 3 No No 0
71 M 56 Black 70 in. 110 lbs. 4 103.611111 13 0.4 in Prone No 4 No No 3
72 F 62 White 63 in. 125 lbs. 5 116.111111 10 0.01 in Right side No 4 No No 4

73 M 70 White 73 in. 312 lbs. 5 57.2222222 11 0.00 in Left side Yes 0 No No 0
74 M 78 White 69 in. 101 lbs. 32 250 16 3.06 in Supine No 0 No No 6
76 F 61 White N/A 125 lbs. 50 1327.77778 22 4.36 in Supine Yes 0 No No 0
77 F 62 White 65 in. 125 lbs. 9 222.5 16 0.17 in Supine No 4 No No 1.25
78 F 45 White 68 in. 105 lbs. 17 45.2777778 12 1.37 in Right side No 0 No No 3

Sussex
79 M 35 Black 70 in. 31 lbs. 24 578.611111 22 4.72 in Left side Yes 5 Yes No 3
80 M 93 White 66 in. 55 lbs. 22 541.388889 20 5.08 in Prone No 3 No No 3.75

Biological Profile
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Aquatic 

Table 16. Aquatic Case Information Summary Broken Up by County 
 

 
 

Case # PMI ADD Celsius TBS Precipitation Body 
Position

Water 
Salinity       

Insect 
Score

Penetrating 
Trauma

Scavenging Clothing 
Score

Sex Age Ancestry Height Weight

New 
Castle

81 M 21 Black Unknown Unknown 9 239.05 15 2.45 in. Prone Fresh-
water

4 No No 1

83 F 36 White 63.5 in. 130 lbs. 8 191.805556 12 0.64 in Supine Low 0 No No 5
84 M 42 White 70 in. 200 lbs. 8 191.805556 12 0.64 in Seated Low 0 No No 3
86 M 66 White 72 in. 310 lbs. 14 162.2 8 2.49 in Unknown Medium 0 Yes No 4

88 M 49 Black 69 in. 265 lbs. 127 462.5 13 9.9 in Unknown Low 0 No Yes 9

89 M 75 Black 66.5 in. 105 lbs. 28 789.5 18 4.97 in Unknown Medium 3 No Yes 2

90 M 34 White 71 in. 200 lbs. 7 120.9 11 0.96 in Unknown Medium 0 No Yes 6.75

91 M 39 Black 67 in. 200 lbs. 30 251.6 12 2.19 in Unknown Low 0 No No 9.5

96 M 48 White 70.5 in. 275 lbs. 14 146.041222 9 1.66 in Prone Low-
Medium

0 No Yes 5

97 M 50 Black 70 in. 245 lbs. 18 173.310167 12 1.66 in Unknown Low 0 No Yes 8

98 M 42 White 70 in. 150 lbs. 4 109.884889 11 0.00 in UnknownLow-
Medium

0 No No 0

104 M 33 White 68 in. 215 lbs. 6 108.402667 10 0.02 in Unknown Medium 0 No No 3

105 F 46 White 64.5 in. 160 lbs. 20 208.9 11 2.22 in Unknown Low-
Medium

0 No No 9

110 M 16 White 69 in. 153 lbs. 6 122.728889 10 2.86 in Unknown Medium 0 No Yes 6

Kent 
114 M 19 White 71 in. 173 lbs. 17 189.8 9 2.11 in Unknown Low 0 No Yes 10.25

115 M 40 White 69 in. 190 lbs. 9 112.5 11 1.34 in Unknown High 0 No No 8

Sussex
124 M 35 Asian 67 in. 150 lbs. 8 99 13 2.86 in Supine Open 

Water
0 Yes Yes 0

Biological Profile
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Frequency and Range Histograms 

Accumulated Degree Day Frequency and Range 

Table 17.  Frequency and Range of Accumulated Degree Days (in degrees Celsius) 
included in the ADD dataset.  Each bin includes the frequency of cases ranging from 
the start of the bin number down to the next lowest bin.  The 50 ADD bin includes 
cases from 0-50 ADD. 
 

 
 

0

2

4

6

8

10

12

14

16

F
re

q
u

e
n

cy

ADD Celsius Range

All Cases-ADD



331 

Post-Mortem Interval Days Frequency and Range 

Table 18.  Frequency and Range of Post-Mortem Interval Days included in the PMI 
dataset.  Each bin includes the frequency of cases ranging from the start of the bin 
number down to the next lowest bin.  The 4 PMI day bin includes cases from 0-4 
PMI days. 
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Total Body Score Frequency and Range: ADD 

Table 19.  Frequency and Range of Total Body Score included in the ADD dataset. 
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Total Body Score Frequency and Range: PMI 

Table 20.  Frequency and Range of Total Body Scores included in the PMI dataset. 
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Clothing Score System 

Table 21. Scores Attributed to Clothing on the Head, Torso/Arms, Legs, and Feet 
 
Area of the Body/Clothing Types Score 
Head 

a. Hat, Nightcap 1 point 
Torso/Arms 

a. Bra 0.5 points 
b. Tank Top, Nightgown 0.75 points 
c. Blouse, T-Shirt, Shirt, Sheet 1 point 
d. Robe, Long-Sleeve Shirt, Thermal 

Shirt, Sweater, Sweatshirt, Pajama 
Top, Blanket, Quilt 

2 points 

e. Jacket 3 points 
Legs 

a. Underwear, Panties 0.5 points 
b. Shorts, Boxershorts, Undershorts, 

Robe, Nightgown, Sheet 
1 point 

c. Pants, Jeans, Sweatpants, Pajama 
Bottoms, Thermals, Blanket, Quilt 

2 points 

Feet 
a. Sandals, One Sock 0.5 point 
b. Two Socks, One Sneaker, Sheet 1 point 
c. Two Sneakers, Two Boots, Two 

Shoes, Blanket 
2 points 
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Water Salinity Score System 

Table 22.  Scores Attributed to Cases Based on Water Salinity Level 
 
Water Salinity Level Practical Salinity Units Water Salinity Score 
Freshwater 0 0 
Low 0-5 1 
Low-Medium 5-10 2 
Medium 10-15 3 
High-Medium 15-20 4 
Low-High 20-25 5 
High 25-30 6 
Open Water 32 and Above 7 
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Non-Water Outdoor and Indoor Total Body Score System 

Head and Neck 

Table 23. Stages, Scores, and Descriptions of Decomposition for the Head and Neck 
 
Stage/Score Description of Decompositional Changes 
A. Fresh 
1 point Fresh, no discoloration 
B. Early Decomposition 
2 points Pink-white appearance with skin slippage and some hair loss. 
3 points Gray to green discoloration: some flesh still relatively fresh. 
4 points In addition to greenish and/or purplish discoloration, brownish shades 

particularly at edges, drying of nose, ears and lips. 
5 points Purging of decompositional fluids out of eyes, ears, nose, and mouth.  

Bloating of neck and face may be present with possible dark green/purple 
coloration.  No exposure of bone.  Not much more drying of tissues 
beyond the description provided in the previous stage. 

6 points Brown to black discoloration of flesh. Some slight (focal) exposure of 
bone possible.  Possible drying over large areas or evidence of moist 
decay.  Significant drying of skin not to be confused with 
leathery/mummified skin.  Bloating may still be present or in process of 
waning. 

C. Moderate Decomposition 
7 points Brown leathery skin with no significant bone exposure (slight focal 

exposure possible) in area being scored.  Mummification over large areas 
of the face may be present.  Often accompanied by leathery skin in other 
areas of the body.  No bloating usually present. 

D. Advanced Decomposition 
8 points Moist decomposition with bone exposure less than one half that of the 

area being scored (10-50%). 
9 points Mummification with bone exposure less than one half that of the area 

being scored (10-50%). 
E. Skeletonization 
10 points Bone exposure of more than half of the area being scored with greasy 

substances and decomposed tissue. 
11 points Bone exposure of more than half the area being scored with desiccated or 

mummified tissue.  Hair may still be adherent to remaining tissue. 
12 points Bones completely devoid of soft tissue, or with slight adherences, with 

bone retaining grease. 
13 points Bones scattered away from main cluster of body due to animal activity. 
14 points Bones largely dry, but retaining some grease.  No soft tissue adherences 

seen. 
15 points Dry bone. 

 



337 

Trunk 

Table 24. Stages, Scores, and Descriptions of Decomposition for the Trunk 
 
Stage/Score Description of Decompositional Changes 
A. Fresh 
1 point Fresh, no discoloration 
B. Early Decomposition 
2 points Pink-white appearance with skin slippage and marbling present. 
3 points Gray to green discoloration, usually restricted to lower abdominal area: 

some flesh relatively fresh. 
4 points Bloating with green discoloration and purging of decompositional fluids.  

Body may also exhibit purple (may appear purple-red), black and/or 
sometimes brown discoloration and drying. 

C. Moderate Decomposition 
5 points Postbloating following release of the abdominal gases, with discoloration 

changing from green to black.  In late stage, decomposition may produce 
sagging of tissue and caving in of the abdominal cavity. 

6 points Skin appears leathery/parchment-like, wrinkled, and deflated with very 
slight (focal) to no bone exposure in area being scored.  Large areas of 
skin may be at point of mummification. 

D. Advanced Decomposition 
7 points Moist decomposition with bone exposure less than one half that of the 

area being scored (10-50%). 
8 points Mummification with bone exposure of less than one half that of the area 

being scored (10-50%). 
E. Skeletonization 
9 points Bones with decomposed tissue covering less than one half of the area 

being scored. 
10 points Bones with desiccated or mummified tissue covering less than one half of 

the area being scored. 
11 points Bones completely devoid of soft tissue, or with slight adherences as 

structure of soft tissue/muscles, etc. has collapsed (sometimes moist or 
desiccated sludge/putty/sticky tissue adherent to bone), with bone 
retaining grease. 

12 points Bones scattered away from main cluster of body due to animal activity. 
13 points Bones largely dry, but retaining some grease.  No soft tissue adherences 

seen. 
14 points Dry bone. 
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Limbs 

Table 25. Stages, Scores, and Descriptions of Decomposition for the Limbs 
 
Stage/Score Description of Decompositional Changes 
A. Fresh 
1 point Fresh, no discoloration 
B. Early Decomposition 
2 points Nearly completely fresh with pink-white appearance and skin slippage of 

hands and/or feet.  Drying of tips of fingers/toes may be possible. 
3 points Gray to green discoloration; marbling; some flesh still relatively fresh.  

In indoor cases, fingers/fingertips and toes/toetips may be dried. 
4 points In addition to greenish and/or purplish and/or purple-red discoloration, 

dry brown shades predominantly at edges, drying of fingers/hands, 
toes/feet, heels and other projecting extremities, but can extend somewhat 
to larger areas. Gloving of skin of hands and feet possible. 

C. Moderate Decomposition 
5 points This stage reserved for brown/yellow-brown leathery/mummified skin 

showing little (focal) to no bone exposure.  Brown to black discoloration, 
with skin typically having a leathery and sometimes dry wrinkled 
appearance.  Hands and/or feet may be mummified and large areas of skin 
may be at point of mummification.  It is distinguished from previous 
category by state of lower legs.  If not mummified and exhibiting earlier 
stage traits, such as purplish, light brown, or greenish discoloration and 
skin slippage, then previous category should be used.   

D. Advanced Decomposition 
6 points Moist decomposition with bone exposure less than one half that of the 

area being scored (10-50%). 
7 points Mummification with bone exposure of less than one half that of the area 

being scored (10-50%). 
E. Skeletonization 
8 points Bones with decomposed tissue covering less than one half of the area 

being scored. 
9 points Bones with desiccated or mummified tissue covering less than one half of 

the area being scored. 
10 points Bones completely devoid of soft tissue, or with slight adherences only, 

with bone retaining grease. 
11 points Bones scattered away from main cluster of body due to animal activity. 
12 points Bones largely dry, but retaining some grease.  No soft tissue adherences 

seen. 
13 points Dry bone. 
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Water Total Body Score System 

Head and Neck 

Table 26. Stages, Scores, and Descriptions of Decomposition for the Head and Neck 
 
Stage/Score Description of Decompositional Changes 
A. Fresh 
1 point No visible changes. 
B. Early Decomposition 
2 points Slight pink discoloration, darkened lips (blue), goose pimpling. 
3 points Reddening, sometimes dark, of face and neck with initial skin slippage.  

Marbling visible on face. Possible early signs of animal activity ⁄ 
predation—concentrated on the ears, nose, and lips.  Early evidence of 
bloating, especially in the lips, may be seen.  Brain softening and may be 
liquefied in small number of cases.  Head hair beginning to slough off, 
mostly at front.  Purge fluid may begin emanating. 

4 points Bloating of the entire face.  Discoloration ranging from yellow/light 
brown to green with reddening remaining at times.  Skin sloughing off.  
Head hair in process of sloughing off, or sometimes sloughed off.  Brain 
is softened and nearing or at the point of liquefaction.  Evidence of animal 
activity on ears, nose, and lips may remain or have become more 
prevalent exposing some underlying tissues in face, neck, and orbits.  
Purge fluid may be emanating or in process of waning. 

C. Moderate Decomposition 
5 points Face passed the point of bloating, taking on the look of more advanced 

decomposition of tissue.  Anterior aspect of the face may have a slightly 
collapsed appearance, especially the nose.  Head hair sloughed off. Brain 
liquefied. Tissue exposed on face and neck. Dark green ⁄black 
discoloration. 

D. Advanced Decomposition 
6 points Less than half of bone exposed (10-50%)—concentrated over the orbital, 

frontal, and parietal regions. Some on the mandible and maxilla.   
7 points More extensive skeletonization on the cranium, with greater than half of 

bone exposed. Disarticulation of the mandible. 
E. Skeletonization 
8 points Complete disarticulation of the skull from torso. Some slight adherences 

of tissue remain.  Bone retains off-white/light brown color. 
9 points Skull devoid of any soft tissue and bleached white in color, although 

some areas of light brown coloration or environmental staining may be 
evident.  Evidence of erosion/weathering possible. 
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Trunk 

Table 27. Stages, Scores, and Descriptions of Decomposition for the Trunk 
 
Stage/Score Description of Decompositional Changes 
A. Fresh 
1 point No visible changes. 
B. Early Decomposition 
2 points Slight pink discoloration, goose pimpling. 
3 points Yellow/light green discoloration of abdomen and reddening of upper 

chest (or occasionally a side). Marbling beginning. Internal organs 
beginning to soften.  Slight scrotal bloating may be observed.   Initial skin 
slippage.  Possible early signs of predation. Some areas of skin may retain 
a relatively fresh appearance. 

4 points Light to dark green (sometimes blue) and yellow discoloration of 
abdomen, with possible reddening remaining.  Stage defined by mild to 
full bloating of abdomen with mild to full bloating of scrotal sac in males.  
Marbling may still be present. Skin slippage.  Organs show evidence of 
autolysis and marked softening. 

C. Moderate Decomposition 
5 points Dark green ⁄ purple discoloration, with no reddening or yellowing. 

Bloating remains.  Side facing the sun may show brown dry/leathery skin. 
D. Advanced Decomposition 
6 points Black discoloration (may be white and black based on presence of 

adipocere), bloating becoming softer, initial exposure of internal organs 
with slight focal exposure of bones.  Side facing the sun may show 
leathery/mummified skin. 

7 points Further loss of tissues and organs.  Bone exposure is more extensive but 
less than half is exposed (10-50%). 

E. Skeletonization 
8 points Greater than half of bone is exposed.  Soft tissue is still adherent and little 

to no organs remain. 
9 points Complete skeletonization and disarticulation with only slight soft tissue 

adherences remaining.  Bone retains off-white/light brown color. 
10 points Bones nearly or completely bleached white and devoid of any soft tissue.  

Evidence of erosion possible. 
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Limbs 

Table 28. Stages, Scores, and Descriptions of Decomposition for the Limbs 
 
Stage/Score Description of Decompositional Changes 
A. Fresh 
1 point No visible changes. 
B. Early Decomposition 
2 points Mild wrinkling of skin on hands and ⁄ or feet. Possible goose pimpling. 
3 points Skin on palms of hands and ⁄ or soles of feet becoming white, wrinkled, 

and thickened (washerwoman’s hands/feet). Slight pink discoloration of 
arms and legs with possible early marbling.  Slight focal skin slippage 
may be observed in select areas.  Possible early signs of animal activity ⁄ 
predation.  Some skin relatively fresh, especially in lower legs. 

4 points Skin on palms of hands and ⁄ or soles of feet becoming soggy and loose 
with some sloughing of hands.  Stage defined by feet being in a less 
advanced stage of decomposition than the hands (but more advanced than 
previous stage). Initial skin slippage throughout limbs.  Marbling or dark 
reddening (possibly purpling) of the limbs—predominantly on upper arms 
and possibly upper legs.  Yellow-brown/light green (occasionally blue) 
discoloration of arms and/or legs.  Signs of predation may be apparent. 

C. Moderate Decomposition 
5 points Skin on both the hands and feet sloughing off or completely degloved. 

Yellow-brown ⁄ green to green ⁄ purple/black discoloration on arms and 
legs. Skin slippage seen throughout arms and legs.  Clear evidence of 
predation may be visible.  Posterior aspects may show dry brown/leathery 
skin. 

D. Advanced Decomposition 
6 points Focal exposure of bones of hands and ⁄ or feet; a few bones of the 

hands/feet may be lost. Muscles, tendons, and small areas of bone 
exposed in lower arms and ⁄ or legs. Posterior aspects may show 
leathery/mummified skin. 

7 points Bones of hands and ⁄ or feet beginning to disarticulate with some soft 
tissue potentially adherent in some areas. Less than half of bones of upper 
arms and ⁄ or legs exposed (10-50%). 

8 points Bones of hands and ⁄ or feet beginning to disarticulate with some soft 
tissue potentially adherent in some areas. Greater than half of bones of 
upper arms and ⁄ or legs exposed. 

E. Skeletonization 
9 points Complete skeletonization and disarticulation of limbs with only slight soft 

tissue adherences remaining.  Bone retains off-white/light brown color. 
10 points Bones nearly or completely bleached white and devoid of any soft tissue.  

Evidence of erosion possible. 
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Overall Case Model 

ADD Model: ANOVA and Parameter Estimates 

Table 29.  Analysis of Variance and Parameter Estimates for the Accumulated 
Degree Day Model.  The p-values for statistical significance are displayed. 
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ADD Model: Covariate Selection 

Table 30.  Stepwise Selection Summary of Covariates with the Highest Adjusted R2 
values in the Accumulated Degree Day Model.  The p-values for statistical 
significance are displayed in red. 
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PMI Model: Covariate Selection 

Table 31.  Stepwise Selection Summary of Covariates with the Highest Adjusted R2 
values in the Post-Mortem Interval Day Model.  The p-values for statistical 
significance are displayed in red. 
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Stratified Analysis 

Indoor ADD Model: Covariate Selection 

Table 32.  Stepwise Selection Summary of Covariates with the Highest Adjusted R2 
values in the Indoor subset of the Accumulated Degree Day Model.  The p-values for 
statistical significance are displayed in red. 
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Non-Water Outdoor PMI Model: Covariate Selection 

Table 33.  Stepwise Selection Summary of Covariates with the Highest Adjusted R2 
values in the Non-Water Outdoor subset of the Post-Mortem Interval Day Model. 
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Rate of Decay 

Rate of Decay per Depositional Context 

Table 34.  The Predicted Accumulated Degree Days per Total Body Score.  From 
the TBS of 3 until 11, the indoor subset demonstrates the least amount of ADD 
required to produce each TBS.  The outdoor subset is the slowest.  However, past 
this point, the relationship switches, with the outdoor case demonstrating the fastest 
rate.  The joint non-water outdoor and indoor subset demonstrates predicted ADD 
values between the outdoor and indoor estimates. 
 

Total Body 
Score 

Outdoor Indoor Outdoor and 
Indoor 

3 49.11339996 37.53185 51.72494053 

4 55.70574669 44.0352 58.80306995 

5 63.18296467 51.66542 66.84978272 

6 71.66382755 60.61778 75.99762144 

7 81.28305162 71.12135 86.39726607 

8 92.19343575 83.44494 98.22001588 

9 104.5682885 97.9039 111.660611 

10 118.6041813 114.8682 126.9404402 

11 134.5240705 134.7721 144.3111874 

12 152.5808395 158.1248 164.0589773 

13 173.0613153 185.524 186.5090887 

14 196.2908248 217.6707 212.0313117 

15 222.638363 255.3877 241.0460394 

16 252.5224533 299.6401 274.0311921 

17 286.417797 351.5604 311.5300896 

18 324.8628126 412.4772 354.1604004 

19 368.4681891 483.9494 402.624316 

20 417.9265867 567.806 457.7201167 

21 474.023639 666.1929 520.3553211 

22 537.6504331 781.6278 591.5616342 

23 609.817664 917.0647 672.511941 

24 691.6716893 1075.97 764.5396264 

25 784.5127388 1262.409 869.1605379 

26 889.8155684 1481.153 988.0979539 

27 1009.252886 1737.801 1123.31097 

28 1144.721922 2038.919 1277.026766 

29 1298.374568 2392.214 1451.777295 

30 1472.651554 2806.726 1650.440986 

31 1670.321226 3293.063 1876.290156 
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32 1894.523514 3863.67 2133.044913 

33 2148.819814 4533.149 2424.934431 

34 2437.249556 5318.633 2756.76661 

35 2764.394371 6240.221 3134.007273 

36 3135.450869 7321.499 3562.870194 

37 3556.313186 8590.135 4050.419451 

38 4033.666609 10078.6 4604.685784 

39 4575.093773 11824.97 5234.79887 

40 5189.195108 13873.95 5951.13771 

41 5885.725453 16277.96 6765.501583 

42 6675.74901 19098.53 7691.304403 
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t-Test for Statistical Significance: Indoor vs. Non-Water Outdoor 

Table 35.  Two Sample t-Test Assuming Unequal Variances between Indoor and 
Non-Water Outdoor Cases.  The t Stat value is higher than the t Crit values; 
indicating a statistically significant difference. 
 
t-Test: Two-Sample Assuming Unequal Variances: Indoor vs 
Outdoor ALL 

  

   

  Indoor Outdoor 
Mean 3227.563778 1401.115083 

Variance 23504398.16 3117946.994 

Observations 40 40 

Hypothesized Mean Difference 0  

Df 49  

t Stat 2.238794949  

P(T<=t) one-tail 0.014871835  

t Critical one-tail 1.676550893  

P(T<=t) two-tail 0.02974367  

t Critical two-tail 2.009575237   
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t-Test for Statistical Significance: Indoor vs. Non-Water Outdoor and Indoor 

Table 36.  Two Sample t-Test Assuming Unequal Variances between Indoor and 
Non-Water Outdoor and Indoor Cases.  The t Stat value is higher than the t Crit 
values, indicating a statistically significant difference. 
 
   

t-Test: Two-Sample Assuming Unequal Variances   

   

  Indoor Outdoor and 
Indoor 

Mean 3227.563778 1587.979022 

Variance 23504398.16 4117592.255 

Observations 40 40 

Hypothesized Mean Difference 0  

df 52  

t Stat 1.973042237  

P(T<=t) one-tail 0.02690859  

t Critical one-tail 1.674689154  

P(T<=t) two-tail 0.05381718  

t Critical two-tail 2.006646805   
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Model Comparison: Megyesi versus Delaware River Valley 

All Cases: Mean Predicted ADD Average and Standard Deviation versus Observed ADD 

Values 

Table 37. The Average ADD and Standard Deviation for Observed Values, versus 
Average ADD and Standard Deviation for Predicted Values in All Cases using the 
Megyesi et al. (2005) and overall Delaware River Valley Equation.  The averages 
and standard deviations are listed at the bottom of the table. 
 
 

Case # Actual ADD DRV Predicted 
ADD 

Megyesi Predicted 
ADD 

1 650.278 494.704 447.198 

6 2555 3321.085 3104.56 

11 174.722 184.765 140.605 

15 116.111 184.765 140.605 

21 103.333 124.603 102.329 

34 347.5 312.421 244.343 

35 276.111 210.693 159.221 

42 146.111 109.27 93.756 

66 226.944 210.693 159.221 

69 391.667 240.259 181.97 

29 96.389 184.765 140.605 

36 285 142.089 112.72 

37 152.5 109.27 93.756 

44 97.778 95.823 86.696 

45 175 210.693 159.221 

47 138.333 210.693 159.221 

48 224.722 142.089 112.72 

49 77.222 109.27 93.756 

50 405.833 184.765 140.605 

51 217.222 210.693 159.221 

52 271.389 210.693 159.221 

53 110.278 184.765 140.605 

55 683.611 406.256 340.408 

56 292.778 162.028 125.314 

57 107.222 184.765 140.605 

58 198.056 184.765 140.605 

60 464.722 273.974 209.894 

61 92.222 142.089 112.72 
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62 278.889 463.266 407.38 

63 271.667 162.028 125.314 

64 427.778 356.262 287.078 

65 176.389 184.765 140.605 

68 282.5 210.693 159.221 

69 391.667 240.259 181.97 

71 103.611 184.765 140.605 

72 116.111 124.603 102.329 

73 57.222 142.089 112.72 

74 250 273.974 209.894 

76 1327.778 602.407 599.791 

77 222.5 273.974 209.894 

78 45.278 162.028 125.314 

79 578.611 602.407 599.791 

80 541.389 463.266 407.38 

5 2333.056 2912.393 3104.56 

9 1245.833 1324.555 1853.532 

10 120 124.603 102.329 

12 848.889 312.421 244.343 

13 1079.444 783.339 916.22 

14 2838.889 5615.65 7221.074 

17 3532.778 2912.393 4073.803 

18 2215.556 2553.994 4073.803 

22 965.833 1964.084 3104.56 

23 1690.833 783.339 916.22 

26 223.333 184.765 140.605 

27 223.333 210.693 159.221 

28 941.667 783.339 916.22 

29 96.389 184.765 140.605 

81 239.05 580.9751894 292.0583847 

83 191.8055556 328.3764995 169.6291924 

84 191.8055556 328.3764995 169.6291924 

86 162.2 153.4586521 99.18470562 

88 462.5 397.1615906 200.5998292 

89 789.5 1027.881627 567.3830241 

90 120.9 271.5044153 145.3774435 

91 251.6 328.3764995 169.6291924 

92 78.21294444 328.3764995 169.6291924 

93 82.57 185.6036667 111.1652591 

94 47.90222222 271.5044153 145.3774435 
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96 146.0412222 185.6036667 111.1652591 

97 173.3101667 328.3764995 169.6291924 

98 109.8848889 271.5044153 145.3774435 

99 84.10216667 271.5044153 145.3774435 

101 1138.85 1367.212002 827.4538051 

104 108.4026667 224.482104 126.2757211 

105 208.9 271.5044153 145.3774435 

110 122.7288889 224.482104 126.2757211 

114 189.8 185.6036667 111.1652591 

115 112.5 271.5044153 145.3774435 

117 54.53327778 271.5044153 145.3774435 

124 99 397.1615906 200.5998292 

    

Average: 470.8922069 528.8987658 535.2149608 
Standard 
Deviation: 

674.0655285 865.6399457 1131.718112 
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All Cases: Average Predicted versus Observed Value Differential 

Table 38.  The Average ADD Differential of Predicted versus Observed Values in 
All Cases using the Megyesi et al. (2005) and overall Delaware River Valley 
Equation.  The averages are listed at the bottom of the table. 
 
 

Case # DRV Predicted 
ADD Differential 

Megyesi Predicted ADD 
Differential 

1 -155.574 -203.08 

6 766.085 549.56 

11 10.043 -34.117 

15 68.654 24.494 

21 21.27 -1.004 

34 -35.079 -103.157 

35 -65.418 -116.89 

42 -36.841 -52.355 

66 -16.251 -67.723 

69 -151.408 -209.697 

29 88.376 44.216 

36 -142.911 -172.28 

37 -43.23 -58.744 

44 -1.955 -11.082 

45 35.693 -15.779 

47 72.36 20.888 

48 -82.633 -112.002 

49 32.048 16.534 

50 -221.068 -265.228 

51 -6.529 -58.001 

52 -60.696 -112.168 

53 74.487 30.327 

55 -277.355 -343.203 

56 -130.75 -167.464 

57 77.543 33.383 

58 -13.291 -57.451 

60 -190.748 -254.828 

61 49.867 20.498 

62 184.377 128.491 

63 -109.639 -146.353 

64 -71.516 -140.7 

65 8.376 -35.784 

68 -71.807 -123.279 



355 

69 -151.408 -209.697 

71 81.154 36.994 

72 8.492 -13.782 

73 84.867 55.498 

74 23.974 -40.106 

76 -725.371 -727.987 

77 51.474 -12.606 

78 116.75 80.036 

79 23.796 21.18 

80 -78.123 -134.009 

5 579.337 771.504 

9 78.722 607.699 

10 4.603 -17.671 

12 -536.468 -604.546 

13 -296.105 -163.224 

14 2776.761 4382.185 

17 -620.385 541.025 

18 338.438 1858.247 

22 998.251 2138.727 

23 -907.494 -774.613 

26 -38.568 -82.728 

27 -12.64 -64.112 

28 -158.328 -25.447 

29 88.376 44.216 

81 341.9251894 53.00838473 

83 136.5709439 -22.17636312 

84 136.5709439 -22.17636312 

86 -8.741347885 -63.01529438 

88 -65.33840937 -261.9001708 

89 238.3816274 -222.1169759 

90 150.6044153 24.47744348 

91 76.7764995 -81.97080756 

92 250.1635551 91.416248 

93 103.0336667 28.59525906 

94 223.602193 97.47522126 

96 39.56244452 -34.87596314 

97 155.0663328 -3.680974259 

98 161.6195264 35.49255458 

99 187.4022486 61.27527681 

101 228.3620017 -311.3961949 
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104 116.0794373 17.87305442 

105 62.60441525 -63.52255652 

110 101.7532151 3.546832222 

114 -4.196333285 -78.63474094 

115 159.0044153 32.87744348 

117 216.9711375 90.8441657 

124 298.1615906 101.5998292 

   

Average: 58.00655886 64.32275385 
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All Cases: Average Predicted versus Observed Absolute Value Differential 

Table 39.  The Average ADD Absolute Value Differential of Predicted versus 
Observed Values in All Cases using the Megyesi et al. (2005) and overall Delaware 
River Valley Equation.  The averages are listed at the bottom of the table. 
 
 

Case # DRV Average Predicted 
Absolute Value Differential 

Megyesi Average Predicted 
Absolute Value Differential 

1 155.574 203.08 

6 766.085 549.56 

11 10.043 34.117 

15 68.654 24.494 

21 21.27 1.004 

34 35.079 103.157 

35 65.418 116.89 

42 36.841 52.355 

66 16.251 67.723 

69 151.408 209.697 

29 88.376 44.216 

36 142.911 172.28 

37 43.23 58.744 

44 1.955 11.082 

45 35.693 15.779 

47 72.36 20.888 

48 82.633 112.002 

49 32.048 16.534 

50 221.068 265.228 

51 6.529 58.001 

52 60.696 112.168 

53 74.487 30.327 

55 277.355 343.203 

56 130.75 167.464 

57 77.543 33.383 

58 13.291 57.451 

60 190.748 254.828 

61 49.867 20.498 

62 184.377 128.491 

63 109.639 146.353 

64 71.516 140.7 

65 8.376 35.784 

68 71.807 123.279 
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69 151.408 209.697 

71 81.154 36.994 

72 8.492 13.782 

73 84.867 55.498 

74 23.974 40.106 

76 725.371 727.987 

77 51.474 12.606 

78 116.75 80.036 

79 23.796 21.18 

80 78.123 134.009 

5 579.337 771.504 

9 78.722 607.699 

10 4.603 17.671 

12 536.468 604.546 

13 296.105 163.224 

14 2776.761 4382.185 

17 620.385 541.025 

18 338.438 1858.247 

22 998.251 2138.727 

23 907.494 774.613 

26 38.568 82.728 

27 12.64 64.112 

28 158.328 25.447 

29 88.376 44.216 

81 341.9251894 53.00838473 

83 136.5709439 22.17636312 

84 136.5709439 22.17636312 

86 8.741347885 63.01529438 

88 65.33840937 261.9001708 

89 238.3816274 222.1169759 

90 150.6044153 24.47744348 

91 76.7764995 81.97080756 

92 250.1635551 91.416248 

93 103.0336667 28.59525906 

94 223.602193 97.47522126 

96 39.56244452 34.87596314 

97 155.0663328 3.680974259 

98 161.6195264 35.49255458 

99 187.4022486 61.27527681 

101 228.3620017 311.3961949 
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104 116.0794373 17.87305442 

105 62.60441525 63.52255652 

110 101.7532151 3.546832222 

114 4.196333285 78.63474094 

115 159.0044153 32.87744348 

117 216.9711375 90.8441657 

124 298.1615906 101.5998292 

   

Average: 195.2031861 236.781839 
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Outdoor/Indoor: Mean Predicted ADD Average and Standard Deviation versus Observed 

ADD Values 

Table 40.  The Average ADD and Standard Deviation for Observed Values, versus 
Average ADD and Standard Deviation for Predicted Values in Non-Water Outdoor 
and Indoor Cases using the Megyesi et al. (2005) and the non-water outdoor and 
indoor Delaware River Valley Equations.  The averages and standard deviations are 
listed at the bottom of the table. 
 
 

Case Actual ADD 
(Celsius) 

DRV Predicted 
ADD 

Megyesi Predicted 
ADD 

1 650.278 488.033911 447.198 

6 2555 3134.007273 3104.56 

11 174.722 186.5090887 140.605 

15 116.111 186.5090887 140.605 

21 103.333 126.9404402 102.329 

34 347.5 311.5300896 244.343 

35 276.111 212.0313117 159.221 

42 146.111 111.660611 93.756 

66 226.944 212.0313117 159.221 

69 391.667 241.0460394 181.97 

29 96.389 186.5090887 140.605 

36 285 144.3111874 112.72 

37 152.5 111.660611 93.756 

44 97.778 98.22001588 86.696 

45 175 212.0313117 159.221 

47 138.333 212.0313117 159.221 

48 224.722 144.3111874 112.72 

49 77.222 111.660611 93.756 

50 405.833 186.5090887 140.605 

51 217.222 212.0313117 159.221 

52 271.389 212.0313117 159.221 

53 110.278 186.5090887 140.605 

55 683.611 402.624316 340.408 

56 292.778 164.0589773 125.314 

57 107.222 186.5090887 140.605 

58 198.056 186.5090887 140.605 

60 464.722 274.0311921 209.894 

61 92.222 144.3111874 112.72 

62 278.889 457.7201167 407.38 
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63 271.667 164.0589773 125.314 

64 427.778 354.1604004 287.078 

65 176.389 186.5090887 140.605 

68 282.5 212.0313117 159.221 

69 391.667 241.0460394 181.97 

71 103.611 186.5090887 140.605 

72 116.111 126.9404402 102.329 

73 57.222 144.3111874 112.72 

74 250 274.0311921 209.894 

76 1327.778 591.5616342 599.791 

77 222.5 274.0311921 209.894 

78 45.278 164.0589773 125.314 

79 578.611 591.5616342 599.791 

80 541.389 457.7201167 407.38 

5 2333.056 2756.76661 3104.56 

9 1245.833 1277.026766 1853.532 

10 120 126.9404402 102.329 

12 848.889 311.5300896 244.343 

13 1079.444 764.5396264 916.22 

14 2838.889 5234.79887 7221.074 

17 3532.778 2756.76661 4073.803 

18 2215.556 2424.934431 4073.803 

22 965.833 1876.290156 3104.56 

23 1690.833 764.5396264 916.22 

26 223.333 186.5090887 140.605 

27 223.333 212.0313117 159.221 

28 941.667 764.5396264 916.22 

29 96.389 186.5090887 140.605 

Average 
ADD 

570.2680175 572.9146119 669.7909123 

Std Dev 761.9338975 941.9067828 1316.001524 
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Outdoor/Indoor: Average Predicted versus Observed Value Differential 

Table 41. The Average ADD Differential of Predicted versus Observed Values in 
Non-Water Outdoor and Indoor Cases using the Megyesi et al. (2005) and the non-
water outdoor and indoor Delaware River Valley Equations.  The averages are 
listed at the bottom of the table. 
 

Case DRV Predicted 
Differential 

Megyesi Predicted 
Differential 

1 -162.244089 -203.08 

6 579.0072731 549.56 

11 11.78708866 -34.117 

15 70.39808866 24.494 

21 23.6074402 -1.004 

34 -35.9699104 -103.157 

35 -64.07968833 -116.89 

42 -34.45038899 -52.355 

66 -14.91268833 -67.723 

69 -150.6209606 -209.697 

29 90.12008866 44.216 

36 -140.6888126 -172.28 

37 -40.83938899 -58.744 

44 0.442015877 -11.082 

45 37.03131167 -15.779 

47 73.69831167 20.888 

48 -80.41081263 -112.002 

49 34.43861101 16.534 

50 -219.3239113 -265.228 

51 -5.190688326 -58.001 

52 -59.35768833 -112.168 

53 76.23108866 30.327 

55 -280.986684 -343.203 

56 -128.7190227 -167.464 

57 79.28708866 33.383 

58 -11.54691134 -57.451 

60 -190.6908079 -254.828 

61 52.08918737 20.498 

62 178.8311167 128.491 

63 -107.6080227 -146.353 

64 -73.61759957 -140.7 

65 10.12008866 -35.784 

68 -70.46868833 -123.279 
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69 -150.6209606 -209.697 

71 82.89808866 36.994 

72 10.8294402 -13.782 

73 87.08918737 55.498 

74 24.0311921 -40.106 

76 -736.2163658 -727.987 

77 51.5311921 -12.606 

78 118.7809773 80.036 

79 12.95063418 21.18 

80 -83.66888329 -134.009 

5 423.7106103 771.504 

9 31.19376598 607.699 

10 6.940440196 -17.671 

12 -537.3589104 -604.546 

13 -314.9043736 -163.224 

14 2395.90987 4382.185 

17 -776.0113897 541.025 

18 209.378431 1858.247 

22 910.4571558 2138.727 

23 -926.2933736 -774.613 

26 -36.82391134 -82.728 

27 -11.30168833 -64.112 

28 -177.1273736 -25.447 

29 90.12008866 44.216 

Average 
Differential 

2.646594367 99.52289474 

Std Dev 422.1436409 736.5576306 
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Outdoor/Indoor: Average Predicted versus Observed Absolute Value Differential 

Table 42. The Average ADD Absolute Value Differential of Predicted versus 
Observed Values in Non-Water Outdoor and Indoor Cases using the Megyesi et al. 
(2005) and the non-water outdoor and indoor Delaware River Valley Equations.  
The averages are listed at the bottom of the table. 
 
 

Case DRV Average Predicted 
Absolute Value Differential 

Megyesi Average Predicted 
Absolute Value Differential 

1 162.244089 203.08 

6 579.0072731 549.56 

11 11.78708866 34.117 

15 70.39808866 24.494 

21 23.6074402 1.004 

34 35.9699104 103.157 

35 64.07968833 116.89 

42 34.45038899 52.355 

66 14.91268833 67.723 

69 150.6209606 209.697 

29 90.12008866 44.216 

36 140.6888126 172.28 

37 40.83938899 58.744 

44 0.442015877 11.082 

45 37.03131167 15.779 

47 73.69831167 20.888 

48 80.41081263 112.002 

49 34.43861101 16.534 

50 219.3239113 265.228 

51 5.190688326 58.001 

52 59.35768833 112.168 

53 76.23108866 30.327 

55 280.986684 343.203 

56 128.7190227 167.464 

57 79.28708866 33.383 

58 11.54691134 57.451 

60 190.6908079 254.828 

61 52.08918737 20.498 

62 178.8311167 128.491 

63 107.6080227 146.353 

64 73.61759957 140.7 

65 10.12008866 35.784 
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68 70.46868833 123.279 

69 150.6209606 209.697 

71 82.89808866 36.994 

72 10.8294402 13.782 

73 87.08918737 55.498 

74 24.0311921 40.106 

76 736.2163658 727.987 

77 51.5311921 12.606 

78 118.7809773 80.036 

79 12.95063418 21.18 

80 83.66888329 134.009 

5 423.7106103 771.504 

9 31.19376598 607.699 

10 6.940440196 17.671 

12 537.3589104 604.546 

13 314.9043736 163.224 

14 2395.90987 4382.185 

17 776.0113897 541.025 

18 209.378431 1858.247 

22 910.4571558 2138.727 

23 926.2933736 774.613 

26 36.82391134 82.728 

27 11.30168833 64.112 

28 177.1273736 25.447 

29 90.12008866 44.216 

Average Abs. Val. 
Differential 

199.9116468 300.6771754 

Std Dev 370.8558504 678.6587147 
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Confidence Interval Forecasting 

Overall Equation 

Table 43. 95% Confidence Interval Forecasting Using Each Total Body Score for 
the Overall Equation. 

TBS Lower Limit Overall Model Upper Limit 

3 -106.904095 49.6958359 206.295767 

4 -94.6527122 56.66958079 207.9918738 

5 -81.5247864 64.62194123 210.7686688 

6 -67.3942238 73.69024493 214.7747136 

7 -52.1170652 84.03109058 220.1792463 

8 -35.5289368 95.82305218 227.1750412 

9 -17.4421207 109.2697627 235.9816461 

10 2.357819537 124.6034307 246.8490419 

11 24.11593295 142.0888502 260.0617675 

12 48.11238776 162.0279734 275.943559 

13 74.66769634 184.7651249 294.8625535 

14 104.1487854 210.6929481 317.2371108 

15 136.9760545 240.2591853 343.542316 

16 173.631581 273.9744098 374.3172386 

17 214.6686402 312.4208431 410.1730459 

18 260.7227064 356.2624088 451.8021112 

19 312.5240906 406.2561982 499.9883057 

20 370.9123472 463.2655438 555.6187404 
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21 436.8525596 528.2749286 619.6972976 

22 511.4536036 602.4069865 693.3603694 

23 595.9885061 686.941889 777.8952719 

24 691.9170833 783.3394523 874.7618213 

25 800.9111498 893.2643464 985.617543 

26 924.8827347 1018.614842 1112.34695 

27 1066.01589 1161.555592 1257.095295 

28 1226.802808 1324.555011 1422.307214 

29 1410.085074 1510.427903 1610.770732 

30 1619.100939 1722.384069 1825.6672 

31 1857.539576 1964.083739 2070.627901 

32 2129.603345 2239.700774 2349.798202 

33 2440.079163 2553.994749 2667.910335 

34 2794.420227 2912.393144 3030.366061 

35 3198.839457 3321.085068 3443.330679 

36 3660.416257 3787.12814 3913.840023 

37 4187.218374 4318.570363 4449.922352 

38 4788.44095 4924.589106 5060.737261 

39 5474.565115 5615.649584 5756.734052 

40 6257.538853 6403.68558 6549.832308 

41 7150.983238 7302.305531 7453.627824 

42 8170.42759 8327.027521 8483.627452 
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Outdoor/Indoor Equation 

Table 44. 95% Confidence Interval Forecasting Using Each Total Body Score for 
the Outdoor and Indoor Equation. 

TBS Lower Limit Out/In Model Upper Limit 

3 -141.035 51.72494 244.4846 

4 -127.532 58.80307 245.138 

5 -113.187 66.84978 246.8868 

6 -97.882 75.99762 249.8773 

7 -81.481 86.39727 254.2755 

8 -63.8303 98.22002 260.2703 

9 -44.7544 111.6606 268.0756 

10 -24.0536 126.9404 277.9345 

11 -1.50017 144.3112 290.1225 

12 23.16583 164.059 304.9521 

13 50.24098 186.5091 322.7772 

14 80.06426 212.0313 343.9984 

15 113.0234 241.046 369.0687 

16 149.5624 274.0312 398.5 

17 190.1903 311.5301 432.8699 

18 235.4911 354.1604 472.8297 

19 286.1355 402.6243 519.1132 

20 342.8938 457.7201 572.5465 

21 406.6508 520.3553 634.0598 
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22 478.4222 591.5616 704.701 

23 559.3725 672.5119 785.6513 

24 650.8351 764.5396 878.2441 

25 754.3342 869.1605 983.9869 

26 871.6091 988.098 1104.587 

27 1004.642 1123.311 1241.98 

28 1155.687 1277.027 1398.367 

29 1327.309 1451.777 1576.246 

30 1522.418 1650.441 1778.464 

31 1744.323 1876.29 2008.257 

32 1996.777 2133.045 2269.313 

33 2284.041 2424.934 2565.828 

34 2610.955 2756.767 2902.578 

35 2983.013 3134.007 3285.001 

36 3406.455 3562.87 3719.285 

37 3888.369 4050.419 4212.47 

38 4436.808 4604.686 4772.564 

39 5060.919 5234.799 5408.679 

40 5771.101 5951.138 6131.175 

41 6579.167 6765.502 6951.837 
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42 7498.545 7691.304 7884.064 
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Prediction Interval Forecasting 

Overall Equation 

Table 45. Prediction Interval Forecasting Using Each Total Body Score for the 
Overall Equation. 

TBS Lower Limit Overall Upper Limit 

3 -778.2351096 49.6958359 877.6267814 

4 -770.2793586 56.66958079 883.6185202 

5 -761.3955998 64.62194123 890.6394823 

6 -751.4466767 73.69024493 898.8271665 

7 -740.2761533 84.03109058 908.3383345 

8 -727.7056098 95.82305218 919.3517142 

9 -713.5315581 109.2697627 932.0710835 

10 -697.5219256 124.6034307 946.7287871 

11 -679.4120453 142.0888502 963.5897457 

12 -658.9000824 162.0279734 982.9560292 

13 -635.6418204 184.7651249 1005.17207 

14 -609.2447146 210.6929481 1030.630611 

15 -579.2611117 240.2591853 1059.779482 

16 -545.1805178 273.9744098 1093.129337 

17 -506.420781 312.4208431 1131.262467 

18 -462.3180373 356.2624088 1174.842855 

19 -412.1152456 406.2561982 1224.627642 

20 -354.9491132 463.2655438 1281.480201 
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21 -289.8351872 528.2749286 1346.385044 

22 -215.6508537 602.4069865 1420.464827 

23 -131.1159512 686.941889 1504.999729 

24 -34.77066355 783.3394523 1601.449568 

25 75.04968939 893.2643464 1711.479003 

26 200.2433984 1018.614842 1836.986286 

27 342.975146 1161.555592 1980.136038 

28 505.713387 1324.555011 2143.396635 

29 691.2729754 1510.427903 2329.582831 

30 902.8637725 1722.384069 2541.904366 

31 1144.146076 1964.083739 2784.021401 

32 1419.293828 2239.700774 3060.107719 

33 1733.066693 2553.994749 3374.922805 

34 2090.892248 2912.393144 3733.894039 

35 2498.959712 3321.085068 4143.210424 

36 2964.326819 3787.12814 4609.929461 

37 3495.041701 4318.570363 5142.099025 

38 4100.281862 4924.589106 5748.89635 

39 4790.512662 5615.649584 6440.786505 

40 5577.668039 6403.68558 7229.703121 

41 6475.356591 7302.305531 8129.25447 

42 7499.096575 8327.027521 9154.958466 
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Outdoor/Indoor Equation 

Table 46. Prediction Interval Forecasting Using Each Total Body Score for the 
Outdoor/Indoor Equation. 

TBS Lower Prediction Limit  Out/In Model Upper Prediction 
Limit 

3 -823.4166903 51.72494053 926.8665714 

4 -814.9459197 58.80306995 932.5520596 

5 -805.577812 66.84978272 939.2773775 

6 -795.1801489 75.99762144 947.1753918 

7 -783.6025587 86.39726607 956.3970909 

8 -770.6740347 98.22001588 967.1140665 

9 -756.2001125 111.660611 979.5213345 

10 -739.9596624 126.9404402 993.8405428 

11 -721.7012425 144.3111874 1010.323617 

12 -701.1389524 164.0589773 1029.256907 

13 -677.9477205 186.5090887 1050.965898 

14 -651.7579453 212.0313117 1075.820569 

15 -622.1494045 241.0460394 1104.241483 

16 -588.64433 274.0311921 1136.706714 

17 -550.6995358 311.5300896 1173.759715 

18 -507.6974681 354.1604004 1216.018269 

19 -458.9360316 402.624316 1264.184664 

20 -403.6170227 457.7201167 1319.057256 

21 -340.8329806 520.3553211 1381.543623 
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22 -269.5522392 591.5616342 1452.675508 

23 -188.6019323 672.511941 1533.625814 

24 -96.64867536 764.5396264 1625.727928 

25 7.823398491 869.1605379 1730.497677 

26 126.5376064 988.0979539 1849.658301 

27 261.4531012 1123.31097 1985.168838 

28 414.7971406 1277.026766 2139.256391 

29 589.1017729 1451.777295 2314.452817 

30 787.2455417 1650.440986 2513.63643 

31 1012.500899 1876.290156 2740.079413 

32 1268.588104 2133.044913 2997.501722 

33 1559.736501 2424.934431 3290.132361 

34 1890.75418 2756.76661 3622.77904 

35 2267.10717 3134.007273 4000.907376 

36 2695.009471 3562.870194 4430.730918 

37 3181.525401 4050.419451 4919.313502 

38 3734.685959 4604.685784 5474.685609 

39 4363.6211 5234.79887 6105.97664 

40 5078.710115 5951.13771 6823.565305 

41 5891.752593 6765.501583 7639.250573 

42 6816.162772 7691.304403 8566.446034 
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Appendix B: Figures 
Köppen-Geiger Classification System 

Figure 1. Climate Map of the United States based on Köppen-Geiger Classification 
System (Adapted from Kottek et al. 2006) 
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Köppen-Trewartha Classification System 

Global Climate Map 

Figure 2. Global Climate Map based on Köppen-Trewartha Classification System 
(Adapted from the Food Resources Assessment Programme of the United Nations 
Food and Agriculture Organization) 
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United States Climate Map 

Figure 3.  Climate Map of the United States Based on the Köppen-Trewartha 
Classification System (Adapted from the Food Resources Assessment Programme of 
the United Nations Food and Agriculture Organization) 
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Mean Daily Temperatures by Month 

Mean Daily Temperatures in January in the United States 

Figure 4.  Mean Daily Temperatures in January for the continental United States, 
measured in degrees F.  New Castle County falls within the mean daily temperature 
range of 20-32 degrees F, represented in pink.  Kent and Sussex Counties fall within 
the mean daily temperature range of 32.1-40 degrees F, represented in purple 
(Adapted from the National Oceanic and Atmospheric Administration’s National 
Climatic Data Center). 
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Mean Daily Temperatures in July in the United States 

Figure 5. Mean Daily Temperatures in July for the continental United States, 
measured in degrees F.  All three Counties fall within the mean daily temperature 
range of 70.1-80 degrees F, represented in orange (Adapted from the National 
Oceanic and Atmospheric Administration’s National Climatic Data Center). 
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Mean Daily Temperatures Annually in the United States 

Figure 6.  Mean Daily Temperatures Annually for the continental United States, 
measured in degrees F.  New Castle County falls within the mean daily temperature 
range of 50.1-55 degrees F, represented in light green.  Kent and Sussex Counties 
fall within the mean daily temperature range of 55.1-60 degrees F, represented in 
yellow (Adapted from the National Oceanic and Atmospheric Administration’s 
National Climatic Data Center). 
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Average Annual Precipitation 

Average Annual Precipitation in Delaware 

Figure 7. Average annual precipitation in Delaware measured in inches and 
recorded from 1961-1990.  The average annual precipitation for Delaware is 43.62 
inches, with an average range between 40.1-50 inches per year (Adapted from the 
U.S. Department of the Interior/U.S. Geological Survey). 
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Average Annual Precipitation in Tennessee 

Figure 8.  Average annual precipitation in Tennessee measured in inches and 
recorded from 1961-1990.  The average annual precipitation for Tennessee is 52.98 
inches, with an average range between 50.1-60 inches per year (Adapted from the 
U.S. Department of the Interior/U.S. Geological Survey). 
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Depth to Water Table in Delaware 

Figure 9. Depth to Water Table in Delaware from January to December, measured 
in centimeters.  The depth of the water table is a significant feature of many of the 
Coastal Plain soils and can have significance in regards to the decay rate, especially 
in regards to adipocere formation (Adapted from the United States Department of 
Agriculture/National Resources Conservation Service). 
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Map of Elevation in Delaware 

Figure 10.  Map depicting the elevation variation throughout Delaware.  The highest 
point, Ebright Azimuth, which can be found at the Northern most edge of the state, 
stands at 448 feet above sea-level.  Besides that point, the map depicts the low 
elevations seen throughout the rest of the state (Adapted from the United States 
Geological Survey/Topocreator). 
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Deposits and Formations in Delaware 

Figure 11. The various deposits and formations throughout Delaware are presented 
in the map.  They may be of potential value in assessing preservation of buried 
remains (Adapted from the Delaware Geological Survey). 
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Soil Types in Delaware 

Figure 12. This map depicts the various soil surface textures in Delaware, which 
may be of use in determining effects of soil on the rate of decay (Adapted from the 
United States Department of Agriculture/National Resources Conservation Service). 
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Delaware Population per Square Mile 

Figure 13.  Delaware population density per square mile in 2010.  The most densely 
populated areas of Delaware can be found in New Castle County, the most Northern 
County on the map (Adapted from the United States Census Bureau). 
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Delaware Population Total Population Count 

Figure 14. Delaware population density per square mile and total population 
numbers.  An increase in population size has been seen every decade since 1970 
(Adapted from the United States Census Bureau). 
 

 



Overall Case Model  

ADD Model: Plot LogADD versus TBS

Figure 15.  The logarithm of Accumulated Degree Days plotted versus the Total 
Body Score.  The calculated 
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ADD Model: Plot LogADD versus TBS 

Figure 15.  The logarithm of Accumulated Degree Days plotted versus the Total 
Body Score.  The calculated R2 value and linear regression equation are displayed.
Figure 15.  The logarithm of Accumulated Degree Days plotted versus the Total 

value and linear regression equation are displayed. 

 



PMI Model: Plot LogPMI versus TBS

Figure 16.  The logarithm of Post
Body Score.  The calculated 
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PMI Model: Plot LogPMI versus TBS 

Figure 16.  The logarithm of Post-Mortem Interval Days plotted versus the Total 
Body Score.  The calculated R2 value and linear regression equation are displayed.

Mortem Interval Days plotted versus the Total 
value and linear regression equation are displayed. 
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ADD Model: Linear Regression Analysis Normality Assumption Tests 

Figure 17.  Depiction of the Normal Distribution of Residuals, Plot of Studentized 
Residuals versus Predicted Values, and the Probability Distribution of Residuals in 
the Accumulated Degree Day Model in order to satisfy the normality assumptions of 
linear regression analysis. 
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Stratified Analysis 

Indoor ADD Model: Plot LogADD versus TBS 

Figure 18.  The logarithm of Accumulated Degree Days plotted versus the Total 
Body Score utilizing the indoor case subset.  The calculated R2 value, linear 
regression equation, and ANOVA results are displayed. 
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Indoor PMI Model: Plot LogPMI versus TBS 

Figure 19.  The logarithm of Post-Mortem Interval days plotted versus the Total 
Body Score utilizing the indoor case subset.  The calculated R2 value, linear 
regression equation, and ANOVA results are displayed. 
 

 



394 

Non-Water Outdoor ADD Model: Plot LogADD versus TBS 

Figure 20.  The logarithm of Accumulated Degree Days plotted versus the Total 
Body Score utilizing the non-water outdoor case subset.  The calculated R2 value, 
linear regression equation, and ANOVA results are displayed. 
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Non-Water Outdoor PMI Model: Plot LogPMI versus TBS 

Figure 21.  The logarithm of Post-Mortem Interval days plotted versus the Total 
Body Score utilizing the non-water outdoor case subset.  The calculated R2 value, 
linear regression equation, and ANOVA results are displayed. 
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Aquatic ADD Model: Plot LogADD versus TBS 

Figure 22.  The logarithm of Accumulated Degree Days plotted versus the Total 
Body Score utilizing the aquatic case subset.  The calculated R2 value, linear 
regression equation, and ANOVA results are displayed. 
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Aquatic PMI Model: Plot LogPMI versus TBS 

Figure 23.  The logarithm of Post-Mortem Interval days plotted versus the Total 
Body Score utilizing the aquatic case subset.  The calculated R2 value, linear 
regression equation, and ANOVA results are displayed. 
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Non-Water Outdoor and Indoor ADD Model: Plot LogADD versus TBS 

Figure 24.  The logarithm of Accumulated Degree Days plotted versus the Total 
Body Score utilizing the non-water outdoor and indoor case subsets.  The calculated 
R2 value, linear regression equation, and ANOVA results are displayed. 
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Continuous Plots 

Plot LogADD versus TBS 

Figure 25.  The logarithm of Accumulated Degree Days plotted versus the Total 
Body Score utilizing all cases in the model.  The same relationship is demonstrated 
across all depositional contexts. 
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Plot LogADD versus Precipitation 

Figure 26.  The logarithm of Accumulated Degree Days plotted versus Precipitation 
utilizing all cases in the model.  As precipitation levels increase, logADD appears to 
increase as well. 
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Plot LogADD versus Insect Activity 

Figure 27.  The logarithm of Accumulated Degree Days plotted versus Insect 
Activity utilizing all cases in the model.  As insect presence begins to increase, 
logADD appears to increase as well.  However, instead of leveling out, the 
relationship switches, potentially corresponding to the tail end of tissue consumption 
and migration. 
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Plot LogADD versus Age 

Figure 28.  The logarithm of Accumulated Degree Days plotted versus Age utilizing 
all cases in the model.  No relationship was observed. 
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Plot LogADD versus Height 

Figure 29.  The logarithm of Accumulated Degree Days plotted versus Height 
utilizing all cases in the model.  No relationship was observed. 
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Plot LogADD versus Weight 

Figure 30.  The logarithm of Accumulated Degree Days plotted versus Weight 
utilizing all cases in the model.  No relationship was observed. 
 

 



Model Comparison: Delaware River Valley versus Megyesi et al. (2005)

Megyesi et al. (2005) ADD Model with Delaware River Valley Data

Figure 31.  The application of the Megyesi et al. (2005) Accumulated Degree Day 
Model, logADD versus TBS squared, to the entire ADD dataset extracted from the 
Delaware River Valley Region.  The calculated 
equation are displayed. 
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Model Comparison: Delaware River Valley versus Megyesi et al. (2005) 

Megyesi et al. (2005) ADD Model with Delaware River Valley Data 

Figure 31.  The application of the Megyesi et al. (2005) Accumulated Degree Day 
Model, logADD versus TBS squared, to the entire ADD dataset extracted from the 
Delaware River Valley Region.  The calculated R2 value and linear regression 

 

 

 

Figure 31.  The application of the Megyesi et al. (2005) Accumulated Degree Day 
Model, logADD versus TBS squared, to the entire ADD dataset extracted from the 

value and linear regression 

 



Megyesi et al. (2005) PMI Model with Delaware River Valley Data

Figure 32.  The application of the Megyesi et al. (2005) Post
logPMI versus TBS squared, to the entire PMI dataset extracted from the Delaware 
River Valley Region.  The calculated 
displayed. 
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Megyesi et al. (2005) PMI Model with Delaware River Valley Data 

Figure 32.  The application of the Megyesi et al. (2005) Post-Mortem Interval Model, 
logPMI versus TBS squared, to the entire PMI dataset extracted from the Delaware 
River Valley Region.  The calculated R2 value and linear regression equation are 

Mortem Interval Model, 
logPMI versus TBS squared, to the entire PMI dataset extracted from the Delaware 

value and linear regression equation are 
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Megyesi et al. (2005) ADD Model with Delaware River Valley Outdoor and Indoor Data 

Figure 33.  The application of the Megyesi et al. (2005) Accumulated Degree Day 
Model, logADD versus TBS squared, to the combined outdoor and indoor ADD 
datasets extracted from the Delaware River Valley Region.  The calculated R2 value, 
linear regression equation, and ANOVA results are displayed. 
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Megyesi et al. (2005) PMI Model with Delaware River Valley Outdoor and Indoor Data 

Figure 34.  The application of the Megyesi et al. (2005) Post-Mortem Interval Day 
Model, logPMI versus TBS squared, to the combined outdoor and indoor PMI 
datasets extracted from the Delaware River Valley Region.  The calculated R2 value, 
linear regression equation, and ANOVA results are displayed. 
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Non-Water Outdoor and Indoor PMI Model: Plot LogPMI versus TBS 

Figure 35.  The logarithm of Post-Mortem Interval days plotted versus the Total 
Body Score utilizing the non-water outdoor and indoor case subsets.  The calculated 
R2 value, linear regression equation, and ANOVA results are displayed. 
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Appendix C: Technical Report 

Introduction 

In order to reach the final form of the model, several steps had to be taken to 

produce a model which included all relevant explanatory variables, eliminated 

unnecessary or troublesome factors, transformed the data when appropriate, and most 

accurately estimated time since death.  This required a careful balance between 

attempting to explain as much of the variation in decomposition as possible, while 

including only those variables which make enough of an effect to warrant inclusion in the 

final models.  Step by step explanations for the decisions made to produce the final 

models, starting with the original models calculated, are provided below.  Additionally, 

the code utilized in SAS for both the accumulated degree day and post-mortem interval 

day analyses is attached.  Complete transparency of all statistical steps taken is provided 

for a better understanding of the data and decompositional models produced.   

 As detailed throughout the chapters of this dissertation, one of the main questions 

to be addressed by this study pertained to whether accumulated degree days (ADD) or 

post-mortem interval (PMI) days explains the highest proportion of variation in 

decomposition.  In order to do so, ADD and TBS, as well as PMI and TBS, were plotted 

against eachother.  Upon analysis of the plots, as well as the normality, homogeneity of 

variance, and probability distributions of the residuals, it was observed that a logarithmic 

transformation would be needed to correct the non-linear distribution observed.  Upon 

log transforming the data and achieving a linear relationship, it was demonstrated that 

ADD explains the highest proportion of variation in decomposition compared to PMI 

days.  Total body score was also demonstrated to be a statistically significant variable 
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across models and the most important aspect of accurately representing the 

decomposition process in a particular area.   Given this discovery, a regression equation 

was developed incorporating the logarithm of ADD and the total body score.  The model 

produced was deemed statistically significant.   

Additionally, several stratified models were developed in order to assess if 

dividing each depositional context into subsets would explain a higher proportion of 

variation.  It was also hoped that by doing so, the analysis would identify which subsets 

may be affected by confounding factors or conditions not yet considered.  Based on 

shared decompositional traits, indoor and non-water outdoor cases were also combined 

into a single model and statistically analyzed.  Although the overall model, including all 

ADD cases, was demonstrated to explain a high proportion of variation, the joint indoor 

and non-water outdoor formula also fared particularly well.  In fact, given the similarities 

shared by non-water outdoor and indoor cases, this particular joint subset appears best-

suited to modeling decomposition in those contexts, given the appearance of confounding 

factors and as-yet-unknown variables in aquatic environments.   However, the use of each 

stratified model by itself, requires a larger sample size in order to be employed with any 

confidence.   

Furthermore, statistically significant co-variates were searched for in both the 

overall and stratified models to determine if additional explanatory variables could be 

discovered.  This also included assessing each variables impact on the rate of decay, as 

well as the impact of each depositional context on the rate of decay.   Besides total body 

score, no additional co-variates were identified as producing statistically signficant 

effects across each model, thus not warranting inclusion.  In regards to the rate of 
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decomposition, when assessing the ADD required to produce scores from the entire total 

body score range, bodies deposited in non-water outdoor contexts appear to decompose at 

a faster rate than those in indoor contexts.   

Lastly, the models developed for the Delaware River Valley region were 

compared to those formulated in the Megyesi et al. (2005) study.  In total, the model 

developed for this particular region was deemed to be more accurate at estimating time 

since death than the Megyesi et al. (2005) model, validating the development of region-

specific standards and providing a time since death estimation formula which is best-

suited to this area. 

Logarithmic Transformation to Achieve Normality 

 Before removing outliers and extracting cases from the dataset, an assessment was 

made regarding the normality and linearity of the relationship between accumulated 

degree days versus total body score, as well as post-mortem interval days versus total 

body score, thus demonstrating if a transformation of the data was necessary.  In order to 

do so, the plot of both groups was analyzed, along with the normality, homogeneity of 

variance, and probability distributions of the residuals.  Upon examination of these plots, 

it was observed that the data did not demonstrate a linear relationship or normal 

distribution in either the ADD or PMI models (see Figures 1, 2, 3, and 4).  The analysis 

of variance indicated that both models are statistically significant, while the parameter 

estimates for both models deemed the intercept and total body score to be statistically 

significant (see Tables 1 and 2). 
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Figure 1. Accumulated Degree Days plotted versus the Total Body Score.  The 
calculated R2 value and linear regression equation are displayed. 

 

 
Figure 2. Depiction of the Non-Normal Distribution of Residuals, Plot of 
Studentized Residuals versus Predicted Values, and the Probability Distribution of 
Residuals in the Accumulated Degree Day Model in order to satisfy the normality 
assumptions of linear regression analysis. 
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Table 1.  Analysis of Variance and Parameter Estimates for the Accumulated 
Degree Day Model.  The p-values for statistical significance are displayed. 

 

 
Figure 3.  Post-Mortem Interval Days plotted versus the Total Body Score.  The 
calculated R2 value and linear regression equation are displayed. 
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Figure 4.  Depiction of the Non-Normal Distribution of Residuals, Plot of 
Studentized Residuals versus Predicted Values, and the Probability Distribution of 
Residuals in the Post-Mortem Interval Day Model in order to satisfy the normality 
assumptions of linear regression analysis. 

 

 
Table 2.  Analysis of Variance and Parameter Estimates for the Post-Mortem 
Interval Day Model.  The p-values for statistical significance are displayed. 

 



Before discussing the transformation of the data, it should be noted that a typical 

linear regression analysis seeks to develop an equation which attempts to minimize the 

distance between a “line of best fit” and observed values.  A standard least

regression attempts to reduce the sum of the squa

difference between observed and fitted values.  However, given the lack of a linea

relationship in either the ADD or PMI plots, a standard least

was not appropriate, instead requiring the transformation of variables.  Thus, in order to 

straighten the curve, and allow for a more direct least

determined that log-transforming both ADD and PMI, while leaving TBS untransformed, 

produces the most effective linear regression and normal distribution (see Figures 5, 6, 7, 

and 8).  Upon doing so, the analysis of variance indicated that b

statistically significant, 

intercept and total body score to be statistically significant (see Tables 3 and 4).

Figure 5.  The logarithm of Accumulated Degree Days plotted versus the T
Score.  The calculated R
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Before discussing the transformation of the data, it should be noted that a typical 

linear regression analysis seeks to develop an equation which attempts to minimize the 

distance between a “line of best fit” and observed values.  A standard least

regression attempts to reduce the sum of the square of residuals, measured as the 

difference between observed and fitted values.  However, given the lack of a linea

relationship in either the ADD or PMI plots, a standard least-squares linear

instead requiring the transformation of variables.  Thus, in order to 

straighten the curve, and allow for a more direct least-squares linear regr

transforming both ADD and PMI, while leaving TBS untransformed, 

produces the most effective linear regression and normal distribution (see Figures 5, 6, 7, 

and 8).  Upon doing so, the analysis of variance indicated that b

 while the parameter estimates for both models deemed the 

intercept and total body score to be statistically significant (see Tables 3 and 4).

Figure 5.  The logarithm of Accumulated Degree Days plotted versus the T
R2 value and linear regression equation are displayed.

Before discussing the transformation of the data, it should be noted that a typical 

linear regression analysis seeks to develop an equation which attempts to minimize the 

distance between a “line of best fit” and observed values.  A standard least-squares linear 

measured as the 

difference between observed and fitted values.  However, given the lack of a linear 

squares linear regression 

instead requiring the transformation of variables.  Thus, in order to 

squares linear regression, it was 

transforming both ADD and PMI, while leaving TBS untransformed, 

produces the most effective linear regression and normal distribution (see Figures 5, 6, 7, 

and 8).  Upon doing so, the analysis of variance indicated that both models are 

while the parameter estimates for both models deemed the 

intercept and total body score to be statistically significant (see Tables 3 and 4). 

Figure 5.  The logarithm of Accumulated Degree Days plotted versus the Total Body 
value and linear regression equation are displayed. 
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Figure 6.  Depiction of the Normal Distribution of Residuals, Plot of Studentized 
Residuals versus Predicted Values, and the Probability Distribution of Residuals in 
the Accumulated Degree Day Model in order to satisfy the normality assumptions of 
linear regression analysis. 

 
 
Table 3.  Analysis of Variance and Parameter Estimates for the Accumulated 
Degree Day Model.  The p-values for statistical significance are displayed. 

 
 



Figure 7. The logarithm of Post
Body Score.  The calculated 

 
Figure 8. Depiction of the Normal Distribution of Residuals, Plot of Studentized
Residuals versus Predicted Values, and the Probability Distribution of Residuals in 
the Post-Mortem Interval Day Model in order to satisfy the normality assumptions 
of linear regression analysis.
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The logarithm of Post-Mortem Interval Days plotted versus the Total 
Body Score.  The calculated R2 value and linear regression equation are displayed.

Figure 8. Depiction of the Normal Distribution of Residuals, Plot of Studentized
Residuals versus Predicted Values, and the Probability Distribution of Residuals in 

Mortem Interval Day Model in order to satisfy the normality assumptions 
of linear regression analysis. 

Mortem Interval Days plotted versus the Total 
value and linear regression equation are displayed. 

 

Figure 8. Depiction of the Normal Distribution of Residuals, Plot of Studentized 
Residuals versus Predicted Values, and the Probability Distribution of Residuals in 

Mortem Interval Day Model in order to satisfy the normality assumptions 
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Table 4. Analysis of Variance and Parameter Estimates for the Post-Mortem 
Interval Day Model.  The p-values for statistical significance are displayed. 

 

Accumulated Degree Days versus Post-Mortem Interval Days 

 After transforming the data, the framework for a useable model was produced.  

From there, in order to determine if time and temperature or time alone explains more of 

the variation in decomposition, the transformed accumulated degree day models were 

compared to the transformed post-mortem interval day models generated.  This 

comparision included a linear regression analysis and calculation of the correlation of 

determination for the dataset including all cases, as well as the stratified samples broken 

up by depositional context and the joint non-water outdoor and indoor data points.  In 

regards to the overall, stratified, and joint model comparisons, accumulated degree days 

demonstrated larger R2 values in each and every analysis (see Figures 9 through 18).  

Additionally, after an analysis of variance, each of the models was deemed statistically 

significant except for the PMI water subset model (see Tables 5 through 14).  Without 



question, ADD explains more of the variation in decomposition compared to PMI, a

better-suited to modeling decay and developing time since death estimation formulas.  

Therefore, based on this realization, ADD was chosen as the central component of the 

models developed. 

Figure 9. Delaware River Valley Overall ADD Model Plot and Re

 

Table 5. Delaware River Valley Overall ADD Model Analysis of Variance

 

 
420 

question, ADD explains more of the variation in decomposition compared to PMI, a

suited to modeling decay and developing time since death estimation formulas.  

Therefore, based on this realization, ADD was chosen as the central component of the 

Figure 9. Delaware River Valley Overall ADD Model Plot and Regression Equation

Table 5. Delaware River Valley Overall ADD Model Analysis of Variance

 

question, ADD explains more of the variation in decomposition compared to PMI, and is 

suited to modeling decay and developing time since death estimation formulas.  

Therefore, based on this realization, ADD was chosen as the central component of the 

gression Equation 

 

Table 5. Delaware River Valley Overall ADD Model Analysis of Variance 



Figure 10. Delaware River Valley Overall PMI Model Plot and Regression Equation

 

Table 6. Delaware River Valley Overall PMI Model Analysis of Variance
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Figure 10. Delaware River Valley Overall PMI Model Plot and Regression Equation

Table 6. Delaware River Valley Overall PMI Model Analysis of Variance

Figure 10. Delaware River Valley Overall PMI Model Plot and Regression Equation 

 

Table 6. Delaware River Valley Overall PMI Model Analysis of Variance 

 



Figure 11. Delaware River Valley Indoor ADD Model Plot and Regression Equation

 

Table 7. Delaware River Valley Indoor ADD Model Analysis of Variance
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Figure 11. Delaware River Valley Indoor ADD Model Plot and Regression Equation

Table 7. Delaware River Valley Indoor ADD Model Analysis of Variance

 

Figure 11. Delaware River Valley Indoor ADD Model Plot and Regression Equation 

 

Table 7. Delaware River Valley Indoor ADD Model Analysis of Variance 

 



Figure 12. Delaware River Valley Indoor PMI Model Plot and Regression Equation

 

Table 8. Delaware River Valley Indoor PMI Model Analysis of Variance
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Figure 12. Delaware River Valley Indoor PMI Model Plot and Regression Equation

River Valley Indoor PMI Model Analysis of Variance

 

Figure 12. Delaware River Valley Indoor PMI Model Plot and Regression Equation 

 

River Valley Indoor PMI Model Analysis of Variance 

 



Figure 13. Delaware River Valley Non
Regression Equation 

 
Table 9. Delaware River Valley Non
Variance 
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Figure 13. Delaware River Valley Non-Water Outdoor ADD Model Plot and 

Table 9. Delaware River Valley Non-Water Outdoor ADD Model Analysis of 

Water Outdoor ADD Model Plot and 

 

Water Outdoor ADD Model Analysis of 

 



Figure 14. Delaware River Valley Non
Regression Equation 

 
Table 10. Delaware River Valley Non
Variance 
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River Valley Non-Water Outdoor PMI Model Plot and 

Table 10. Delaware River Valley Non-Water Outdoor PMI Model Analysis of 

 

Water Outdoor PMI Model Plot and 

 

Water Outdoor PMI Model Analysis of 

 



Figure 15. Delaware River Valley Water ADD Model Plot and Regression Equation

 

Table 11. Delaware River Valley Water ADD Model Analysis of Variance
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Figure 15. Delaware River Valley Water ADD Model Plot and Regression Equation

Delaware River Valley Water ADD Model Analysis of Variance

Figure 15. Delaware River Valley Water ADD Model Plot and Regression Equation 

 

Delaware River Valley Water ADD Model Analysis of Variance 

 



Figure 16. Delaware River Valley Water PMI Model Plot and Regression Equation

 

Table 12. Delaware River Valley Water PMI Model Analysis of Variance
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Figure 16. Delaware River Valley Water PMI Model Plot and Regression Equation

Table 12. Delaware River Valley Water PMI Model Analysis of Variance

 

Figure 16. Delaware River Valley Water PMI Model Plot and Regression Equation 

 

Table 12. Delaware River Valley Water PMI Model Analysis of Variance 

 



Figure 17. Delaware River Valley Non
and Regression Equation

 
Table 13. Delaware River Valley Non
Analysis of Variance 
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Figure 17. Delaware River Valley Non-Water Outdoor and Indoor ADD Model Plot 
and Regression Equation 

Table 13. Delaware River Valley Non-Water Outdoor and Indoor ADD Model 

er Outdoor and Indoor ADD Model Plot 

 

Water Outdoor and Indoor ADD Model 

 



Figure 18. Delaware River Valley Non
and Regression Equation

 
Table 14. Delaware River Valley Non
Analysis of Variance 
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Figure 18. Delaware River Valley Non-Water Outdoor and Indoor PMI Model Plot 
on 

Table 14. Delaware River Valley Non-Water Outdoor and Indoor PMI Model 

 

Water Outdoor and Indoor PMI Model Plot 

 

Water Outdoor and Indoor PMI Model 
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ADD Model Comparison 

 Based on the results of the overall and stratified analyses, it became clear that the 

overall ADD model does not explain as large a proportion of the variation in 

decomposition compared to the non-water outdoor and indoor ADD model (see Figures 9 

and 17).  This was especially true in comparison to the non-water outdoor ADD subset 

model alone (see Figure 13).  However, given the low sample size in the non-water 

outdoor subset, extreme caution is advised in the use of the regression equation 

developed from those cases.  The joint non-water outdoor and indoor model contains a 

much greater number of data points and thus can be used more confidently.  Although the 

overall ADD model contains the greatest number of cases, it is hampered by the inclusion 

of aquatic cases.  The water ADD model, due to the low proportion of variation explained 

in that particular depositional context, appears to be affected by confounding factors and 

variables which are either too difficult to track historically or are as-yet-unknown (see 

Figure 15).  Therefore, the joint non-water outdoor and indoor model may be a better 

option when estimating time since death for those particular types of cases, as opposed to 

the overall ADD model. 

Identification of Additional Covariates for Inclusion in the ADD Model 

Although total body score has been demonstrated to play the single most 

important role in modeling decomposition by representing the decay changes which 

occur in an area, additional covariates were searched for in order to determine if their 

inclusion would increase the explanatory potential of the decomposition models derived 

in this study.  Thus, a multivariate linear regression analysis, utilizing a stepwise 

selection method, was conducted on both the overall and stratified data groups. 



In the overall accumulated degree day model, four variables were selected based 

on their adjusted R2 values.  These variables included type of depositional context, 

clothing, total body score, and body position,

left leaning, right leaning, seated, and hanging bodies.  However, it was determined that 

only total body score proved to demonstrate a statistically signific

value less than 0.0001 (see Tables 15 and 16

Table 15. Delaware River 

Table 16. Delaware River Valley Overall ADD Model Covariate Parameter 
Estimates 

In the joint non-

determined to produce a statistically signi

environments was also selected due to the high proportion of variation it explains, its 

effect was not statistically significant (see Table 1
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Table 17. Delaware River Valley Non-Water Outdoor and Indoor ADD Model 
Covariate Parameter Estimates and Analysis of Variance 

 

In regards to the indoor subset, total body score was once again identified as 

producing a statistically significant effect.  Although insect activity and the cleanliness of 

the indoor environments were also selected based on their adjusted R2 values, their effects 

were not deemed to be statistically significant (see Tables 18 and 19).  

 

 

 

 

 



Table 18. Delaware River Valley Indoor ADD Model Covariate Stepwise Selection

Table 19. Delaware River 
Estimates 

 Interestingly, in the non

statistically significant variable (see Tables 20

water subset as well (see Tables 
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. Delaware River Valley Indoor ADD Model Covariate Stepwise Selection

. Delaware River Valley Indoor ADD Model Covariate Parameter 

Interestingly, in the non-water outdoor subset, total body score dropped out as a 

gnificant variable (see Tables 20 and 21).  The same was observed in the 

water subset as well (see Tables 22 and 23).   

. Delaware River Valley Indoor ADD Model Covariate Stepwise Selection 

 

Valley Indoor ADD Model Covariate Parameter 

 

water outdoor subset, total body score dropped out as a 

).  The same was observed in the 
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Table 21. Delaware River Valley Non
Estimates 

Table 22. Delaware River Valley Water ADD Model Covariate Stepwise Selection
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. Delaware River Valley Non-Water Outdoor ADD Model Covariate 

. Delaware River Valley Non-Water Outdoor ADD Model Parameter 

. Delaware River Valley Water ADD Model Covariate Stepwise Selection

Water Outdoor ADD Model Covariate 

 

Water Outdoor ADD Model Parameter 

 

. Delaware River Valley Water ADD Model Covariate Stepwise Selection 

 



Table 23. Delaware River Valley Water ADD Model Covariate Parameter Estimates

However, one should not be alarmed by these finds.  Given the known role played 

by total body score, as well as its identification as a statistically significant variable in the 

larger sample sets, its effect is known and understood.  In fact, the continuous plot of the 

logADD versus TBS affirms the relationship between total body sc

degree days, demonstrating the same relationship across each and every depositional 

context (see Figure 19). 

Figure 19. Continuous Plot of Log ADD vs. TBS

 On the otherhand however, very few of the remaining variables demonstrate any 

distinguishable relationships with accumulated degree days.  Although precipitation 
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shows a noticeable trend, its impact may already be accounted for, in part, in the 

accumulated degree days themselves,

precipitation, humidity, and temperature.  Insect activ

however many more cases would be needed to extract information regarding that 

relationship.  The remaining variables either show no relationship at all, or are plagued by 

sample size and the binary nature of the data collection efforts (see Figures 

29). 

Figure 20. Continuous Plot of Log ADD vs. Soil pH
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Figure 21. Continuous Plot of

 

Figure 22. Continuous Plot of Log ADD vs. Precipitation
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. Continuous Plot of Log ADD vs. Salinity Level 

. Continuous Plot of Log ADD vs. Precipitation 
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Figure 23. Continuous Plot of Log ADD vs. Age 

 

 

Figure 24. Continuous Plot of Log ADD vs. Height 

 

 



Figure 25. Continuous Plot of Log ADD vs. Weight

 

Figure 26. Continuous Plot of Log ADD vs. Clothing Total
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. Continuous Plot of Log ADD vs. Weight 

Continuous Plot of Log ADD vs. Clothing Total 

 

 



Figure 27. Continuous Plot of Log ADD vs. Insect Activity

 

Figure 28. Continuous Plot of Log ADD vs. Trauma
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. Continuous Plot of Log ADD vs. Insect Activity 

. Continuous Plot of Log ADD vs. Trauma 

 

 



Figure 29. Continuous Plot of Log ADD vs. Scavenging

Furthermore, in the case of the 

results produced has much less to do with the effects of variables and more to do with the 

sample size utilized in the analysis.  Unfortunately, given the subdivided nature of these 

stratified analyses, sample s

Variables, which may typically have demonstrated a statistically significant effect, may 

not have been selected given the low sample sizes at this subdivided level of analysis.  

This was especially true of the non

comprised the subset. 

Moreover, in terms of the aquatic subset, it appears as if the trends and 

relationships observed are complicated by the presence of confounding factors and 

variables which could not be included in the analysis due to practical reasons.  Many 

variables known to alter decay in aquatic contexts, such as tides, currents, water depth, 
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and so forth, are not susceptible to inclusion in retroactive studies.  As a result, variables 

which may typically not have demonstrated a statistically significant effect were selected, 

while others were not. 

Most importantly, as stated above, given the fact that the most useful of all the 

models developed are the overall and joint non-water outdoor and indoor models, and 

that the total body score was determined to be the only statistically significant variable in 

the multivariate regression analyses conducted on both datasets, the role played by TBS 

in the regression formulas was affirmed.  Therefore, based on this determination, it was 

decided that TBS and ADD alone would make up the two central components of the time 

since death estimation equations developed. 

Role Played by Variables on the Rate of Decay (TBS/ADD) 

 Much like the observations made in regards to the statistically significant 

covariates identified in the stepwise selection detailed above, the analysis of the role 

played by various factors on the rate of decay was hampered by sample size and the 

nature of cross-sectional studies, once again failing to identify additional covariates 

beyond total body score to include in the model. 

In order to determine the effects of various factors on the rate of decay, the total 

body score was divided by the accumulated degree days in each case demonstrating the 

variable in question.  The average rate of decay was then taken for each variable and 

compared to its dichotomous counter-part.  However, counter-intuitive finds were made 

in regards to the effects of scavenging activity, insect presence, and soil pH.  All other 

variables were deemed to not affect the rate of decay in a statistically significant manner 

(see Table 24).   
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Table 24. Rate of Decay (TBS/ADD) Demonstrated by Each Variable 

1. Dirty vs. Clean House 
a. ADD rate (TBS/ADD) 

 Mean  95% CL Mean p-value 
Clean  0.0744  0.0570 0.0918 

 

0.22 

Dirty  0.0772 0.0246 0.1299 
 

 

 
2. Shaded vs. Exposed Remains 

a. ADD 
 Mean  95% CL Mean p-value 
Exposed 0.0836 0.0536 0.1136 

 

0.0995 

Shaded 0.0536 0.0315 0.0756 
 

 

 
3. Trauma vs. No Trauma 

a. ADD 
 Mean  95% CL Mean p-value 
No Trauma 0.0792 0.0666 0.0919 

 

0.9118 

Trauma 0.0814 0.0317 0.1311 
 

 

 
4. Insect vs. No Insects 

a. ADD 
 Mean  95% CL Mean p-value 
No insects 0.0890 0.0683 0.1098 

 

0.0035 

Insects 0.0562 0.0457 0.0668 
 

 

 
5. Clothed vs. Not Clothed 

a. ADD 
 Mean  95% CL Mean p-value 
No Clothes 0.0663 0.0331 0.0995 

 

0.7315 

Clothes 0.0718 0.0595 0.0842 
 

 

 
6. Soil pH Below 5.5 vs. Soil pH Above 5.5 

a. ADD 
 Mean  95% CL Mean p-value 
≤5.5 0.0291 0.000014 0.0581 

 

0.0351 

>5.5 0.0744 0.0626 0.0862 
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7. Scavenging vs. No Scavenging 
a. ADD 

 Mean  95% CL Mean p-value 
No Scavenging 0.0784 0.0651 0.0917 

 

0.0104 

Scavenging  0.0437 0.0248 0.0625 
 

 

 
8. Supine (0) vs. Prone  

a. ADD 
 Mean  95% CL Mean p-value 
Supine 0.0706 0.0548 0.0864 

 

0.8724 

Prone 0.0727 0.0484 0.0971 
 

 

 
9. Supine (0) vs. Seated 

a. ADD 
 Mean  95% CL Mean p-value 
Supine 0.0706 0.0548, 0.0864 0.2922 
Seated 0.0623 0.0608 0.0638 

 

 

 
10. Supine (0) vs. Hanging 

a. ADD 
 Mean  95% CL Mean p-value 
Supine 0.0706 0.0548, 0.0864 0.0949 
Hanging 0.0198 -0.0519 0.0916 

 

 

 
11. Prone (0) vs. Seated 

a. ADD 
 Mean  95% CL Mean p-value 
Prone  0.0727 0.0484 0.0971 

 

0.3795 
 

Seated  0.0623 0.0608 0.0638 
 

 

 
12. Prone (0) vs. Hanging 

a. ADD 
 Mean  95% CL Mean p-value 
Prone 0.0727 0.0484 0.0971 

 

0.1647 

Hanging 0.0198 -0.0519 0.0916 
 

 

 
13. Seated (0) vs. Hanging 

a. ADD 
 Mean  95% CL Mean p-value 
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Seated 0.0623 0.0608 0.0638 
 

0.0832 

Hanging 0.0198 -0.0519 0.0916 
 

 

 
14. Water Salinity Medium and Below vs. Water Salinity High-Medium and Above 

a. ADD 
 Mean  95% CL Mean p-value 
Medium and below 0.0682 0.0570 0.0793 

 

0.1284 

High-medium and 
above 

0.1436 0.0118 0.2754 
 

 

 
15. Female (2) vs. Male (1) 

a. ADD 
 Mean  95% CL Mean p-value 
Male 0.0726 0.0599 0.0852 

 

0.62 

Female  0.0659 0.0385 0.0934 
 

 

 
16. Below Age 50 (0) vs. Above Age 50 (1) 

a. ADD 
 Mean  95% CL Mean p-value 
<50 0.0714 0.0524 0.0905 

 

0.9378 

50+ 0.0705 0.0574 0.0837 
 

 

 
17. Below 6’0” (0) vs. Above 6’0” (1) 

a. ADD 
 Mean  95% CL Mean p-value 
<6’0” 0.0676 0.0567 0.0786 

 

0.2877 

6’0” + 0.0976 0.0379 0.1573 
 

 

 

Despite these results, these particular finds are directly tied to the low sample 

sizes observed within these groups, as well as the inability to control for when the various 

factors “entered” into the study and the time required to recover each body.  Additionally, 

given the fact that the time between the “date last seen” and the “date recovered” is not 

always going to accurately reflect the exact post-mortem interval during which a body 

was left exposed to the elements, this particular consideration may also have served to 
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produce these counter-intuitive relationships.  Lastly, the presence of particular variables 

may have been masked by the environments in which the bodies were left to decompose.  

For example, in regards to insect activity, their presence may have been obliterated by 

severe weather, carnivore consumption, tides, currents, and so forth.  What’s more, 

insects may have contributed to the breakdown of soft tissues, but once all tissues were 

consumed, they may have migrated away from the corpse.  As a result, it appeared as if 

insects did not contribute to advancing the body to the skeletonization stage.   

In total, based on all of these factors, not much could be said of the results 

observed, therefore precluding the inclusion of additional variables into the models.  

Much larger sample sizes, with variables demonstrating similar or equal total body scores 

and accumulated degree day ranges are needed to facilitate such comparisons.  When 

these results are coupled with the finds of the multivariate regression analyses conducted 

and the examination of the continuous plots produced, it is clear that only TBS warrants 

inclusion as a variable in the models.  

Role Played by Depositional Contexts on the Rate of Decay (TBS/ADD) 

Continuing on with the analysis of the rate of decay, the results of the 

comparisons of the depositional contexts also produced counter-intuitive finds.  The exact 

same methods were employed to conduct the analyses, including the comparison of the 

average TBS over ADD in each environment, yielding similar concerns. 

 Based on the work of Maples and Browning (1994), it has long been believed that 

outdoor decomposition progresses at a much faster rate than water decomposition.  

Indoor decay is believed to fall somewhere in the middle, demonstrating a slightly slower 

rate of decay than outdoor decomposition.  However, when the rates were compared 
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between contexts, bodies exposed to outdoor environments appeared to demonstrate a 

mean rate close to two times as slow as water environments.  This difference was deemed 

statistically significant.  Additionally, in the comparison between indoor and outdoor 

contexts, the outdoor context once again showed a slower rate of decay, although the 

relationship was significant only at the 0.10 level (see Table 25). 

Table 25. Rate of Decay (TBS/ADD) Demonstrated by Each Depositional Context 

1. Indoor (0) vs. Outdoor (Surface) 
a. ADD 

 Mean  95% CL Mean p-value 
Outdoor 0.0463 0.0213 0.0713 

 

0.0783 

Indoor 0.0716 0.0564 0.0868 
 

 

 
2. Indoor vs. Water � Indoor (surface) vs ALL water cases 

a. ADD 
 Mean  95% CL Mean p-value 
Indoor 0.0716 0.0564 0.0868 

 

0.2409 

Water 0.0871 0.0638 0.1103 
 

 

 
3. Outdoor vs. Water� Outdoor (surface) vs ALL water cases 

a. ADD 
 Mean  95% CL Mean p-value 
Outdoor 0.0463 0.0213 0.0713 

 

0.0191 

Water 0.0871 0.0638 0.1103 
 

 

 

 However, despite the obvious counter-intuitive results found, much of it can be 

explained away by the nature of the dataset in each depositional context.  Significant 

differences were found in the range of total body scores and accumulated degree days in 

each subset.  In particular, when comparing the non-water outdoor cases to indoor cases, 

the average total body score in the outdoor cases was seen to be nearly twice as large as 

the mean TBS in the indoor cases.  The average ADD in the outdoor cases was over three 
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times as large as in the indoor cases.  Given these critical differences, they essentially 

handicapped the outdoor dataset, accounting for the slower rate of decay observed.  

Additionally, given the different total body score systems utilized between non-water and 

aquatic cases, this also contributed to the counter-intuitive results produced.  Therefore, 

the only reliable method in which to compare the rate of decay between depositional 

contexts, would require cases which demonstrated similar total body scores, not only with 

similar total body scoring systems, but with similar total decomposition. 

Unfortunately, based on the inability to control the total body scores in this study 

and the glaring differences between cases in each context, not much could be said in 

regards to the effects of the various depositional contexts on the rate of decay utilizing 

this particular analytical method.  However, an additional method was developed which 

utilized the formulas developed in the regression analyses applied to the non-water 

outdoor and indoor subsets, and produced a set of predicted ADDs per each total body 

score possible.  Based on the comparison of the predicted accumulated degree days, one 

can theoretically determine which context displays the slowest or fastest time to produce 

each decompositional stage. 

Contrary to what was observed in the previous analysis, this particular method 

produced results much more in-line with what one would expect.  Although in the early 

stages of decomposition, the rate of decay was slower in outdoor cases and fastest in 

indoor cases, passed a total body score of 11, non-water outdoor cases were shown to 

decompose the fastest (see Table 26).  The joint non-water outdoor and indoor model 

produced results in-line with what one would expect, demonstrating a rate of decay in 

between that of outdoor and indoor cases. 
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Table 26. Predicted ADD Values per TBS using each Stratified Formula 

Total Body 
Score 

Outdoor Indoor Outdoor and 
Indoor 

3 49.11339996 37.53185 51.72494053 

4 55.70574669 44.0352 58.80306995 

5 63.18296467 51.66542 66.84978272 

6 71.66382755 60.61778 75.99762144 

7 81.28305162 71.12135 86.39726607 

8 92.19343575 83.44494 98.22001588 

9 104.5682885 97.9039 111.660611 

10 118.6041813 114.8682 126.9404402 

11 134.5240705 134.7721 144.3111874 

12 152.5808395 158.1248 164.0589773 

13 173.0613153 185.524 186.5090887 

14 196.2908248 217.6707 212.0313117 

15 222.638363 255.3877 241.0460394 

16 252.5224533 299.6401 274.0311921 

17 286.417797 351.5604 311.5300896 

18 324.8628126 412.4772 354.1604004 

19 368.4681891 483.9494 402.624316 

20 417.9265867 567.806 457.7201167 

21 474.023639 666.1929 520.3553211 

22 537.6504331 781.6278 591.5616342 

23 609.817664 917.0647 672.511941 

24 691.6716893 1075.97 764.5396264 
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25 784.5127388 1262.409 869.1605379 

26 889.8155684 1481.153 988.0979539 

27 1009.252886 1737.801 1123.31097 

28 1144.721922 2038.919 1277.026766 

29 1298.374568 2392.214 1451.777295 

30 1472.651554 2806.726 1650.440986 

31 1670.321226 3293.063 1876.290156 

32 1894.523514 3863.67 2133.044913 

33 2148.819814 4533.149 2424.934431 

34 2437.249556 5318.633 2756.76661 

35 2764.394371 6240.221 3134.007273 

36 3135.450869 7321.499 3562.870194 

37 3556.313186 8590.135 4050.419451 

38 4033.666609 10078.6 4604.685784 

39 4575.093773 11824.97 5234.79887 

40 5189.195108 13873.95 5951.13771 

41 5885.725453 16277.96 6765.501583 

42 6675.74901 19098.53 7691.304403 

  

Upon comparison of the results observed between the non-water outdoor and 

indoor formulas, a statistically significant difference was determined (see Tables 27 and 

28).  Therefore, one can conclude that these particular results are indicative of the rate of 

decay in each depositional context, fastest in outdoor cases and slowest in indoor 

environments. 
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Table 27. Predicted ADD Values per TBS using Indoor vs. Outdoor Formulas: Two 
Sample t-Test Assuming Unequal Variance 

t-Test: Two-Sample Assuming Unequal Variances: Indoor vs 

Outdoor 

  

   

  Indoor Outdoor 

Mean 3227.563778 1401.115083 

Variance 23504398.16 3117946.994 

Observations 40 40 

Hypothesized Mean Difference 0  

df 49  

t Stat 2.238794949  

P(T<=t) one-tail 0.014871835  

t Critical one-tail 1.676550893  

P(T<=t) two-tail 0.02974367  

t Critical two-tail 2.009575237   

 

Table 28. Predicted ADD Values per TBS using Indoor vs. Non-Water Outdoor and 
Indoor Formulas: Two Sample t-Test Assuming Unequal Variance 

t-Test: Two-Sample Assuming Unequal 

Variances: Indoor vs Non-Water Outdoor and 

Indoor 

  

   

  Indoor Outdoor and 

Indoor 

Mean 3227.563778 1587.979022 

Variance 23504398.16 4117592.255 
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Delaware River Valley Model versus Megyesi et al. (2005) Model 

 Lastly, a comparison was made between the Megyesi et al. (2005) model and both 

the overall and non-water outdoor and indoor Delaware River Valley models.  This was 

done in an attempt to assess which model is more applicable to the area and more 

accurate in determining time since death.   

In order to do so, two different analyses were utilized.  The first applied the 

Megyesi et al. (2005) model to the subset and overall data gathered in this study.  Based 

on a comparison of the R2 values, the Delaware River Valley models explained a larger 

proportion of the variation in decomposition, regardless of if all cases or just the non-

water outdoor and indoor cases were utilized.  Figures 9 and 17, in comparison to Figures 

30 and 31, demonstrate this difference. 

 
 
 
 
 
 
 

Observations 40 40 

Hypothesized Mean Difference 0  

Df 52  

t Stat 1.973042237  

P(T<=t) one-tail 0.02690859  

t Critical one-tail 1.674689154  

P(T<=t) two-tail 0.05381718  

t Critical two-tail 2.006646805   



Figure 30. Megyesi et al. (2005) ADD Model with Delaware River Valley Overall 
ADD Data Plot and Regression Equation

 
Figure 31. Megyesi et al. (2005) ADD Model with Delaware River Valley Non
Outdoor and Indoor ADD 
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. Megyesi et al. (2005) ADD Model with Delaware River Valley Overall 
ADD Data Plot and Regression Equation 

. Megyesi et al. (2005) ADD Model with Delaware River Valley Non
Outdoor and Indoor ADD Data Plot and Regression Equation 

. Megyesi et al. (2005) ADD Model with Delaware River Valley Overall 

 

. Megyesi et al. (2005) ADD Model with Delaware River Valley Non-Water 
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 The second method applied each regression equation developed from both studies 

to the actual total body scores determined in each case, producing a set of predicted ADD 

values.  In turn, these were compared to the actual ADD values observed in each case.  

Specifically, the average ADD, average differential, and average absolute value 

differential between predicted and actual values, were compared.  Across each and every 

comparision, utilizing all cases, as well as the non-water outdoor and indoor subset, the 

Delaware River Valley model was more accurate in estimating accumulated degree days 

(see Tables 29 through 34).  Although these differences were not deemed statistically 

significant, with a larger sample size, statistical significance is likely to be achieved (see 

Tables 35 through 40). 

Table 29. Megyesi et al. (2005) ADD Model with Delaware River Valley Overall 
ADD Data: Actual vs. Predicted ADD Values 

Case # Actual ADD DRV Predicted 

ADD 

Megyesi Predicted 

ADD 

1 650.278 494.704 447.198 

6 2555 3321.085 3104.56 

11 174.722 184.765 140.605 

15 116.111 184.765 140.605 

21 103.333 124.603 102.329 

34 347.5 312.421 244.343 

35 276.111 210.693 159.221 

42 146.111 109.27 93.756 

66 226.944 210.693 159.221 

69 391.667 240.259 181.97 
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29 96.389 184.765 140.605 

36 285 142.089 112.72 

37 152.5 109.27 93.756 

44 97.778 95.823 86.696 

45 175 210.693 159.221 

47 138.333 210.693 159.221 

48 224.722 142.089 112.72 

49 77.222 109.27 93.756 

50 405.833 184.765 140.605 

51 217.222 210.693 159.221 

52 271.389 210.693 159.221 

53 110.278 184.765 140.605 

55 683.611 406.256 340.408 

56 292.778 162.028 125.314 

57 107.222 184.765 140.605 

58 198.056 184.765 140.605 

60 464.722 273.974 209.894 

61 92.222 142.089 112.72 

62 278.889 463.266 407.38 

63 271.667 162.028 125.314 

64 427.778 356.262 287.078 

65 176.389 184.765 140.605 

68 282.5 210.693 159.221 

69 391.667 240.259 181.97 
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71 103.611 184.765 140.605 

72 116.111 124.603 102.329 

73 57.222 142.089 112.72 

74 250 273.974 209.894 

76 1327.778 602.407 599.791 

77 222.5 273.974 209.894 

78 45.278 162.028 125.314 

79 578.611 602.407 599.791 

80 541.389 463.266 407.38 

5 2333.056 2912.393 3104.56 

9 1245.833 1324.555 1853.532 

10 120 124.603 102.329 

12 848.889 312.421 244.343 

13 1079.444 783.339 916.22 

14 2838.889 5615.65 7221.074 

17 3532.778 2912.393 4073.803 

18 2215.556 2553.994 4073.803 

22 965.833 1964.084 3104.56 

23 1690.833 783.339 916.22 

26 223.333 184.765 140.605 

27 223.333 210.693 159.221 

28 941.667 783.339 916.22 

29 96.389 184.765 140.605 

81 239.05 580.9751894 292.0583847 
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83 191.8055556 328.3764995 169.6291924 

84 191.8055556 328.3764995 169.6291924 

86 162.2 153.4586521 99.18470562 

88 462.5 397.1615906 200.5998292 

89 789.5 1027.881627 567.3830241 

90 120.9 271.5044153 145.3774435 

91 251.6 328.3764995 169.6291924 

92 78.21294444 328.3764995 169.6291924 

93 82.57 185.6036667 111.1652591 

94 47.90222222 271.5044153 145.3774435 

96 146.0412222 185.6036667 111.1652591 

97 173.3101667 328.3764995 169.6291924 

98 109.8848889 271.5044153 145.3774435 

99 84.10216667 271.5044153 145.3774435 

101 1138.85 1367.212002 827.4538051 

104 108.4026667 224.482104 126.2757211 

105 208.9 271.5044153 145.3774435 

110 122.7288889 224.482104 126.2757211 

114 189.8 185.6036667 111.1652591 

115 112.5 271.5044153 145.3774435 

117 54.53327778 271.5044153 145.3774435 

124 99 397.1615906 200.5998292 

    

Average: 470.8922069 528.8987658 535.2149608 
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Standard 

Deviation: 

674.0655285 865.6399457 1131.718112 

 

Table 30. Megyesi et al. (2005) ADD Model with Delaware River Valley Overall 
ADD Data: Average Actual vs. Predicted ADD Value Differential 

Case # DRV ADD 

Differential 

Megyesi ADD 

Differential 

1 -155.574 -203.08 

6 766.085 549.56 

11 10.043 -34.117 

15 68.654 24.494 

21 21.27 -1.004 

34 -35.079 -103.157 

35 -65.418 -116.89 

42 -36.841 -52.355 

66 -16.251 -67.723 

69 -151.408 -209.697 

29 88.376 44.216 

36 -142.911 -172.28 

37 -43.23 -58.744 

44 -1.955 -11.082 

45 35.693 -15.779 

47 72.36 20.888 

48 -82.633 -112.002 

49 32.048 16.534 
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50 -221.068 -265.228 

51 -6.529 -58.001 

52 -60.696 -112.168 

53 74.487 30.327 

55 -277.355 -343.203 

56 -130.75 -167.464 

57 77.543 33.383 

58 -13.291 -57.451 

60 -190.748 -254.828 

61 49.867 20.498 

62 184.377 128.491 

63 -109.639 -146.353 

64 -71.516 -140.7 

65 8.376 -35.784 

68 -71.807 -123.279 

69 -151.408 -209.697 

71 81.154 36.994 

72 8.492 -13.782 

73 84.867 55.498 

74 23.974 -40.106 

76 -725.371 -727.987 

77 51.474 -12.606 

78 116.75 80.036 

79 23.796 21.18 
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80 -78.123 -134.009 

5 579.337 771.504 

9 78.722 607.699 

10 4.603 -17.671 

12 -536.468 -604.546 

13 -296.105 -163.224 

14 2776.761 4382.185 

17 -620.385 541.025 

18 338.438 1858.247 

22 998.251 2138.727 

23 -907.494 -774.613 

26 -38.568 -82.728 

27 -12.64 -64.112 

28 -158.328 -25.447 

29 88.376 44.216 

81 341.9251894 53.00838473 

83 136.5709439 -22.17636312 

84 136.5709439 -22.17636312 

86 -8.741347885 -63.01529438 

88 -65.33840937 -261.9001708 

89 238.3816274 -222.1169759 

90 150.6044153 24.47744348 

91 76.7764995 -81.97080756 

92 250.1635551 91.416248 
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93 103.0336667 28.59525906 

94 223.602193 97.47522126 

96 39.56244452 -34.87596314 

97 155.0663328 -3.680974259 

98 161.6195264 35.49255458 

99 187.4022486 61.27527681 

101 228.3620017 -311.3961949 

104 116.0794373 17.87305442 

105 62.60441525 -63.52255652 

110 101.7532151 3.546832222 

114 -4.196333285 -78.63474094 

115 159.0044153 32.87744348 

117 216.9711375 90.8441657 

124 298.1615906 101.5998292 

   

Average: 58.00655886 64.32275385 

 

Table 31. Megyesi et al. (2005) ADD Model with Delaware River Valley Overall 
ADD Data: Average Actual vs. Predicted ADD Absolute Value Differential 

Case # DRV Absolute Value 

Differential 

Megyesi Absolute Value 

Differential 

1 155.574 203.08 

6 766.085 549.56 

11 10.043 34.117 

15 68.654 24.494 
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21 21.27 1.004 

34 35.079 103.157 

35 65.418 116.89 

42 36.841 52.355 

66 16.251 67.723 

69 151.408 209.697 

29 88.376 44.216 

36 142.911 172.28 

37 43.23 58.744 

44 1.955 11.082 

45 35.693 15.779 

47 72.36 20.888 

48 82.633 112.002 

49 32.048 16.534 

50 221.068 265.228 

51 6.529 58.001 

52 60.696 112.168 

53 74.487 30.327 

55 277.355 343.203 

56 130.75 167.464 

57 77.543 33.383 

58 13.291 57.451 

60 190.748 254.828 

61 49.867 20.498 
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62 184.377 128.491 

63 109.639 146.353 

64 71.516 140.7 

65 8.376 35.784 

68 71.807 123.279 

69 151.408 209.697 

71 81.154 36.994 

72 8.492 13.782 

73 84.867 55.498 

74 23.974 40.106 

76 725.371 727.987 

77 51.474 12.606 

78 116.75 80.036 

79 23.796 21.18 

80 78.123 134.009 

5 579.337 771.504 

9 78.722 607.699 

10 4.603 17.671 

12 536.468 604.546 

13 296.105 163.224 

14 2776.761 4382.185 

17 620.385 541.025 

18 338.438 1858.247 

22 998.251 2138.727 
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23 907.494 774.613 

26 38.568 82.728 

27 12.64 64.112 

28 158.328 25.447 

29 88.376 44.216 

81 341.9251894 53.00838473 

83 136.5709439 22.17636312 

84 136.5709439 22.17636312 

86 8.741347885 63.01529438 

88 65.33840937 261.9001708 

89 238.3816274 222.1169759 

90 150.6044153 24.47744348 

91 76.7764995 81.97080756 

92 250.1635551 91.416248 

93 103.0336667 28.59525906 

94 223.602193 97.47522126 

96 39.56244452 34.87596314 

97 155.0663328 3.680974259 

98 161.6195264 35.49255458 

99 187.4022486 61.27527681 

101 228.3620017 311.3961949 

104 116.0794373 17.87305442 

105 62.60441525 63.52255652 

110 101.7532151 3.546832222 
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114 4.196333285 78.63474094 

115 159.0044153 32.87744348 

117 216.9711375 90.8441657 

124 298.1615906 101.5998292 

   

Average: 195.2031861 236.781839 

 

Table 32. Megyesi et al. (2005) ADD Model with Delaware River Valley Non-Water 
Outdoor and Indoor ADD Data: Actual vs. Predicted ADD Values 

Case Actual ADD 

(Celsius) 

DRV Predicted 

ADD 

Megyesi Predicted 

ADD 

1 650.278 488.033911 447.198 

6 2555 3134.007273 3104.56 

11 174.722 186.5090887 140.605 

15 116.111 186.5090887 140.605 

21 103.333 126.9404402 102.329 

34 347.5 311.5300896 244.343 

35 276.111 212.0313117 159.221 

42 146.111 111.660611 93.756 

66 226.944 212.0313117 159.221 

69 391.667 241.0460394 181.97 

29 96.389 186.5090887 140.605 

36 285 144.3111874 112.72 

37 152.5 111.660611 93.756 

44 97.778 98.22001588 86.696 
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45 175 212.0313117 159.221 

47 138.333 212.0313117 159.221 

48 224.722 144.3111874 112.72 

49 77.222 111.660611 93.756 

50 405.833 186.5090887 140.605 

51 217.222 212.0313117 159.221 

52 271.389 212.0313117 159.221 

53 110.278 186.5090887 140.605 

55 683.611 402.624316 340.408 

56 292.778 164.0589773 125.314 

57 107.222 186.5090887 140.605 

58 198.056 186.5090887 140.605 

60 464.722 274.0311921 209.894 

61 92.222 144.3111874 112.72 

62 278.889 457.7201167 407.38 

63 271.667 164.0589773 125.314 

64 427.778 354.1604004 287.078 

65 176.389 186.5090887 140.605 

68 282.5 212.0313117 159.221 

69 391.667 241.0460394 181.97 

71 103.611 186.5090887 140.605 

72 116.111 126.9404402 102.329 

73 57.222 144.3111874 112.72 

74 250 274.0311921 209.894 
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76 1327.778 591.5616342 599.791 

77 222.5 274.0311921 209.894 

78 45.278 164.0589773 125.314 

79 578.611 591.5616342 599.791 

80 541.389 457.7201167 407.38 

5 2333.056 2756.76661 3104.56 

9 1245.833 1277.026766 1853.532 

10 120 126.9404402 102.329 

12 848.889 311.5300896 244.343 

13 1079.444 764.5396264 916.22 

14 2838.889 5234.79887 7221.074 

17 3532.778 2756.76661 4073.803 

18 2215.556 2424.934431 4073.803 

22 965.833 1876.290156 3104.56 

23 1690.833 764.5396264 916.22 

26 223.333 186.5090887 140.605 

27 223.333 212.0313117 159.221 

28 941.667 764.5396264 916.22 

29 96.389 186.5090887 140.605 

Average 

ADD 

570.2680175 572.9146119 669.7909123 

Std Dev 761.9338975 941.9067828 1316.001524 

 



468 

Table 33. Megyesi et al. (2005) ADD Model with Delaware River Valley Non-Water 
Outdoor and Indoor ADD Data: Average Actual vs. Predicted ADD Value 
Differential 

Case DRV Predicted 

Differential 

Megyesi Predicted 

Differential 

1 -162.244089 -203.08 

6 579.0072731 549.56 

11 11.78708866 -34.117 

15 70.39808866 24.494 

21 23.6074402 -1.004 

34 -35.9699104 -103.157 

35 -64.07968833 -116.89 

42 -34.45038899 -52.355 

66 -14.91268833 -67.723 

69 -150.6209606 -209.697 

29 90.12008866 44.216 

36 -140.6888126 -172.28 

37 -40.83938899 -58.744 

44 0.442015877 -11.082 

45 37.03131167 -15.779 

47 73.69831167 20.888 

48 -80.41081263 -112.002 

49 34.43861101 16.534 

50 -219.3239113 -265.228 

51 -5.190688326 -58.001 
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52 -59.35768833 -112.168 

53 76.23108866 30.327 

55 -280.986684 -343.203 

56 -128.7190227 -167.464 

57 79.28708866 33.383 

58 -11.54691134 -57.451 

60 -190.6908079 -254.828 

61 52.08918737 20.498 

62 178.8311167 128.491 

63 -107.6080227 -146.353 

64 -73.61759957 -140.7 

65 10.12008866 -35.784 

68 -70.46868833 -123.279 

69 -150.6209606 -209.697 

71 82.89808866 36.994 

72 10.8294402 -13.782 

73 87.08918737 55.498 

74 24.0311921 -40.106 

76 -736.2163658 -727.987 

77 51.5311921 -12.606 

78 118.7809773 80.036 

79 12.95063418 21.18 

80 -83.66888329 -134.009 

5 423.7106103 771.504 
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9 31.19376598 607.699 

10 6.940440196 -17.671 

12 -537.3589104 -604.546 

13 -314.9043736 -163.224 

14 2395.90987 4382.185 

17 -776.0113897 541.025 

18 209.378431 1858.247 

22 910.4571558 2138.727 

23 -926.2933736 -774.613 

26 -36.82391134 -82.728 

27 -11.30168833 -64.112 

28 -177.1273736 -25.447 

29 90.12008866 44.216 

Average 

Differential 

2.646594367 99.52289474 

Std Dev 422.1436409 736.5576306 

 

Table 34. Megyesi et al. (2005) ADD Model with Delaware River Valley Non-Water 
Outdoor and Indoor ADD Data: Average Actual vs. Predicted ADD Value Absolute 
Value Differential 

Case DRV Absolute Value 

Differential 

Megyesi Absolute Value 

Differential 

1 162.244089 203.08 

6 579.0072731 549.56 

11 11.78708866 34.117 
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15 70.39808866 24.494 

21 23.6074402 1.004 

34 35.9699104 103.157 

35 64.07968833 116.89 

42 34.45038899 52.355 

66 14.91268833 67.723 

69 150.6209606 209.697 

29 90.12008866 44.216 

36 140.6888126 172.28 

37 40.83938899 58.744 

44 0.442015877 11.082 

45 37.03131167 15.779 

47 73.69831167 20.888 

48 80.41081263 112.002 

49 34.43861101 16.534 

50 219.3239113 265.228 

51 5.190688326 58.001 

52 59.35768833 112.168 

53 76.23108866 30.327 

55 280.986684 343.203 

56 128.7190227 167.464 

57 79.28708866 33.383 

58 11.54691134 57.451 

60 190.6908079 254.828 
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61 52.08918737 20.498 

62 178.8311167 128.491 

63 107.6080227 146.353 

64 73.61759957 140.7 

65 10.12008866 35.784 

68 70.46868833 123.279 

69 150.6209606 209.697 

71 82.89808866 36.994 

72 10.8294402 13.782 

73 87.08918737 55.498 

74 24.0311921 40.106 

76 736.2163658 727.987 

77 51.5311921 12.606 

78 118.7809773 80.036 

79 12.95063418 21.18 

80 83.66888329 134.009 

5 423.7106103 771.504 

9 31.19376598 607.699 

10 6.940440196 17.671 

12 537.3589104 604.546 

13 314.9043736 163.224 

14 2395.90987 4382.185 

17 776.0113897 541.025 

18 209.378431 1858.247 
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22 910.4571558 2138.727 

23 926.2933736 774.613 

26 36.82391134 82.728 

27 11.30168833 64.112 

28 177.1273736 25.447 

29 90.12008866 44.216 

Average Abs. Val. 

Differential 

199.9116468 300.6771754 

Std Dev 370.8558504 678.6587147 

 

Table 35. Megyesi et al. (2005) ADD Model with Delaware River Valley Overall 
ADD Data: Actual vs. Predicted ADD Values Two Sample t-Test Assuming Unequal 
Variances 

t-Test: Two-Sample Assuming Unequal Variances (All-M 

ADD vs DRV ADD) 

  

   

 M ADD DRV ADD 

Mean 535.2149608 528.8987658 

Variance 1280785.886 749332.5156 

Observations 80 80 

Hypothesized Mean Difference 0  

df 148  

t Stat 0.039649694  

P(T<=t) one-tail 0.484212922  

t Critical one-tail 1.655214506  

P(T<=t) two-tail 0.968425844  
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t Critical two-tail 1.976122494  

 

Table 36. Megyesi et al. (2005) ADD Model with Delaware River Valley Overall 
ADD Data: Average Actual vs. Predicted ADD Value Differential Two Sample t-
Test Assuming Unequal Variances 

t-Test: Two-Sample Assuming Unequal Variances (All-M 

diff vs DRV diff) 

  

   

 M diff DRV diff 

Mean 64.32275385 58.00655886 

Variance 391134.7549 161248.9273 

Observations 80 80 

Hypothesized Mean Difference 0  

df 135  

t Stat 0.07601164  

P(T<=t) one-tail 0.469761184  

t Critical one-tail 1.656219133  

P(T<=t) two-tail 0.939522367  

t Critical two-tail 1.977692277  

 

Table 37. Megyesi et al. (2005) ADD Model with Delaware River Valley Overall 
ADD Data: Average Actual vs. Predicted ADD Absolute Value Differential Two 
Sample t-Test Assuming Unequal Variances 

t-Test: Two-Sample Assuming Unequal Variances (All-M Ab Val vs DRV Ab Val) 

   

 M Ab Val DRV Ab Val  

Mean 236.781839 195.2031861 

Variance 338549.2131 126069.6635 
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Observations 80 80 

Hypothesized Mean Difference 0  

df 131  

t Stat 0.54559073  

P(T<=t) one-tail 0.293137558  

t Critical one-tail 1.656568649  

P(T<=t) two-tail 0.586275117  

t Critical two-tail 1.978238539  

 

Table 38. Megyesi et al. (2005) ADD Model with Delaware River Valley Non-Water 
Outdoor and Indoor ADD Data: Actual vs. Predicted ADD Values Two Sample t-
Test Assuming Unequal Variances 

t-Test: Two-Sample Assuming Unequal Variances: Megyesi vs. DRV ADD 

   

  Megyesi DRV 

Mean 669.7909123 572.9146119 

Variance 1731860.01 887188.3875 

Observations 57 57 

Hypothesized Mean Difference 0  

df 101  

t Stat 0.451942528  

P(T<=t) one-tail 0.326139736  

t Critical one-tail 1.66008063  

P(T<=t) two-tail 0.652279472  

t Critical two-tail 1.983731003   
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Table 39. Megyesi et al. (2005) ADD Model with Delaware River Valley Non-Water 
Outdoor and Indoor ADD Data: Average Actual vs. Predicted ADD Value 
Differential Two Sample t-Test Assuming Unequal Variances 

t-Test: Two-Sample Assuming Unequal Variances: Megyesi vs. DRV ADD Differential 

   

   Megyesi DRV 

Mean 99.52289474 2.646594367 

Variance 542517.1432 178205.2535 

Observations 57 57 

Hypothesized Mean Difference 0  

df 89  

t Stat 0.861531109  

P(T<=t) one-tail 0.195630424  

t Critical one-tail 1.662155326  

P(T<=t) two-tail 0.391260848  

t Critical two-tail 1.9869787   

 

Table 40. Megyesi et al. (2005) ADD Model with Delaware River Valley Non-Water 
Outdoor and Indoor ADD Data: Average Actual vs. Predicted ADD Value Absolute 
Value Differential Two Sample t-Test Assuming Unequal Variances 

t-Test: Two-Sample Assuming Unequal Variances: Megyesi vs. DRV ADD Absolute Value 

Differential 

  Megyesi DRV 

Mean 300.6771754 199.9116468 

Variance 460577.651 137534.0618 

Observations 57 57 

Hypothesized Mean Difference 0  
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df 87  

t Stat 0.983690012  

P(T<=t) one-tail 0.163997856  

t Critical one-tail 1.662557349  

P(T<=t) two-tail 0.327995711  

t Critical two-tail 1.987608282   

  

Thus, in regards to estimating time since death in the Delaware River Valley, 

given the larger proportion of variation explained by the models developed in this study, 

as well as their greater precision and accuracy in estimating ADD, it is obvious why the 

regression equations derived from this research are favored over those from Megyesi et 

al. (2005).  Not only did this study develop decompositional models better-suited to the 

area, but these results also validate the development of region-specific standards. 

SAS Statistical Program Code 

 Lastly, in order to facilitate the development of future studies aimed at developing 

region-specific standards which employ similar methodology, and to provide greater 

transparency in regards to the statistical analyses utilized in this study, the SAS code used 

for each analysis is provided below.  Given the assessment of accumulated degree days 

versus post-mortem interval days, the SAS code is divided by ADD and PMI (see Tables 

41 and 42). 

Table 41.  Accumulated Degree Day SAS Code 

/*** TITLE: ADD  
**** DATA: SERGIOFINALDATA 
**** AUTHOR: PAM PHOJANAKONG 
**** DATE: 20-OCT-2013 
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20-Oct: Salinitynum and indoor_dirtnum created to account for format issues. 
16-NOV: Added in soil pH to datasets and models. 
20-Nov: Changed ADD to Celsius 
2-Dec: Modified ADD Celsius and excluded outliers 
2-Jan-14: Removed Ancestry and body weight per agreement on 19-Dec; additional 
comparisons (T-tests); 
    Added in plots with TBS-squared. 
13-Jan-14: Changed additional comparisons (T-tests) from ADD to rate=TBS/ADD 
Apr-14: Surface Level only analyses 
***/  
 
 
LIBNAME  sergio 'G:\CURRENT WORK\Sergio' ; 
 
PROC IMPORT  OUT= sergio.final 
            DATAFILE= "G:\CURRENT WORK\Sergio\finaldata3pH.csv" 
            DBMS=CSV REPLACE; 
     GETNAMES=YES; 
     DATAROW=2;  
RUN; 
 
PROC SQL ; 
 DELETE  
  FROM sergio.final  
  WHERE id_code eq . ; 
 
 
proc contents data=sergio.final varnum ; 
run  ; 
 
PROC FORMAT  ; 
 VALUE town 
  1='Kent' 
  2='New Castle' 
  3='Sussex' ; 
 VALUE sex 
  1='Male' 
  2='Female' ; 
 VALUE body_position 
  1='Hanging' 
  2='Left side' 
  3='Prone' 
  4='Right side' 
  5='Seated' 
  6='Supine' 
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  .='Unknown' ; 
 VALUE Insect  
  0='Absent' 
  1='Present' 
  2='Present - Extensive' 
  3='Artifact' ; 
 VALUE Decomp  
  0='Surface' 
  1='Water' ; 
 VALUE Salinity  
  0='Freshwater = 0' 
  1='Low = < 5' 
  2='Low Medium = 5-10' 
  3='Medium = 10-15' 
  4='High Medium = 15-20' 
  5='Low High = 20-25' 
  6='High = 25-32' 
  7='Open Water = >32' 
  . ='n/a' ; 
 VALUE Soil  
  1='Loam' 
  2='Sandy Loam' 
  3='Silt Loam' 
  4='Moderately decomposed plant material' 
  .='Unavailable or n/a' ; 
 VALUE pH  
  99='n/a' ; 
 VALUE YesNo 
  0='No' 
  1='Yes' 
  . ='N/A' ; 
RUN ; 
 
DATA  sergio.final ; 
 SET sergio.final ; 
 Salinitynum=salinity*1 ; 
 Insect_total=Insects_Head_Neck + Insects_Torso + Insects_Limbs ; 
 Trauma_total=Trauma_Head_Neck + Trauma_Torso + Trauma_Limbs ; 
 Scav_total=Scav_Head + Scav_Torso + Scav_Limbs ; 
 Indoor_dirtnum=1*Indoor_Dirty ; 
 LABEL ID_Code='ID Code' 
  Town='Town' 
  Decomp_case='Decomposition Case' 
  Indoor='Indoor' 
  Outdoor='Outdoor' 
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  Soil_Type='Surface: Soil Type' 
  Soil_pH='Soil pH' 
  salinitynum='Water: Salinity' 
  Surface_And_Water='Surface and Water' 
  NonSurface_NonWater_Outdoor='Non-Surface/ Non-Water Outdoor' 
  Outside_Sun='Outside: Sun' 
  Outside_Shade='Outside: Shade' 
  Surface_Indoor='Surface Indoor' 
  Water_Indoor='Water Indoor' 
  Indoor_Dirty='Indoor: Dirty' 
  Indoor_dirtnum='Indoor: Dirty (number)' 
  ADD_num='ADD score' 
  ADD='ADD' 
  Precip='Precipitation (Rain, Melted Snow in inches)' 
  Sex='Sex' 
  Age='Age' 
  Ancestry='Ancestry' 
  Height='Height (cm)' 
  Weight='Weight (lbs)' 
  Body_Position='Body Position' 
  Head_Neck='TBS: Head/ Neck' 
  Trunk='TBS: Trunk' 
  Limbs='TBS: Limbs' 
  TBS='TBS' 
  Insects_Head_Neck='Insects: Head/Neck' 
  Insects_Torso='Insects: Torso' 
  Insects_Limbs='Insects: Limbs' 
  Trauma_Head_Neck='Trauma: Head/Neck' 
  Trauma_Torso='Trauma: Torso' 
  Trauma_Limbs='Trauma: Limbs' 
  Scav_head='Scavengers: Head/Neck' 
  Scav_torso='Scavengers: Torso' 
  Scav_Limbs='Scavengers: Limbs' 
  Clothing_Head='Clothing:Head' 
  Clothing_Torso_Arms='Clothing:Torso_Arms' 
  Clothing_Hands_Feet='Clothing:Hands_Feet' 
  Clothing_Legs='Clothing:Legs' 
  Clothing_Total='Clothing Total'  
  Insect_total='Total insect activity'  
  Trauma_total='Total trauma to body' 
  Scav_total='Total scavenger activity' ; 
 FORMAT town town. 
   sex sex.  
   body_position body_position. 
   Insects_Head_Neck Insects_Torso Insects_Limbs Insect.  
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   Decomp_case Decomp. 
   salinitynum Salinity. 
   Soil_type soil.  
   Soil_pH pH.  
   Indoor Outdoor Surface_and Water 
NonSurface_NonWater_Outdoor Outside_Sun Outside_Shade Surface_Indoor 
Water_Indoor Indoor_Dirtnum  
   Trauma_Head_Neck Trauma_Torso Trauma_Limbs YesNo. ; 
 
RUN ; 
/*** CHECK DATA FOR OUTLIERS ***/  
proc univariate data=sergio.final ; 
 var tbs add_num ; 
 title 'CHECK FOR OUTLIERS' ; 
run  ; 
 
data sergio.final_clean ; 
 set sergio.final ; 
 if  30 gt add_num then delete ; 
 else if  add_num gt 3600 then delete ; 
run  ;  
 
 
/*** CHECK MODEL ASSUMPTIONS ***/  
proc reg data=sergio.final_clean ;   
 model ADD_num = TBS ; 
 output out=pp p=pred r=resid lclm=lclmpred uclm=uclmpred ; 
 title 'ADD and TBS - all' ; 
run  ; 
 
proc capability data=pp ; 
 var resid ; 
 histogram resid/ normal ; 
 probplot resid ; 
 qqplot resid ; 
run  ; 
 
proc reg data=sergio.final_clean ;   
 model ADD_num = TBS ; 
 plot student. *p. ; 
run  ; 
 
/*** CHECK MODEL ASSUMPTIONS FOR LOG-TRANSFORMED DATA ***/  
DATA  SERGIO_ADD ; 
 SET sergio.final_clean ; 
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 LOGADD=LOG10 (ADD_NUM) ; 
 LABEL LOGADD='LOG10 ADD' ; 
RUN;  
 
PROC REG DATA=SERGIO_ADD ; 
 MODEL LOGADD=TBS ; 
 PLOT LOGADD*TBS ; 
 TITLE 'Log ADD vs TBS' ; 
RUN ; 
 
PROC GPLOT  DATA=SERGIO_ADD ; 
 PLOT LOGADD*TBS=decomp_case ; 
 SYMBOL1 V=circle C=black I=none; 
 SYMBOL2 V=square   C=red   I=none; 
 TITLE 'Plot Log ADD vs TBS' ; 
RUN ; 
 
PROC GPLOT  DATA=SERGIO_ADD ; 
 PLOT LOGADD*Soil_pH ; 
 TITLE 'Plot Log ADD vs. soil ph' ; 
RUN ; 
 
PROC GPLOT  DATA=SERGIO_ADD ; 
 PLOT LOGADD*Salinity ; 
 SYMBOL1 V=square   C=red   I=none; 
 TITLE 'Plot Log ADD vs. Salinity' ; 
RUN ; 
 
PROC GPLOT  DATA=SERGIO_ADD ; 
 PLOT LOGADD*Precip=decomp_case ; 
 SYMBOL1 V=circle C=black I=none; 
 SYMBOL2 V=square   C=red   I=none; 
 TITLE 'Plot Log ADD vs. Precip' ; 
RUN ; 
 
PROC GPLOT  DATA=SERGIO_ADD ; 
 PLOT LOGADD*Age=decomp_case ; 
 SYMBOL1 V=circle C=black I=none; 
 SYMBOL2 V=square   C=red   I=none; 
 TITLE 'Plot Log ADD vs. Age' ; 
RUN ; 
 
PROC GPLOT  DATA=SERGIO_ADD ; 
 PLOT LOGADD*Height=decomp_case ; 
 SYMBOL1 V=circle C=black I=none; 
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 SYMBOL2 V=square   C=red   I=none; 
 TITLE 'Plot Log ADD vs. Height' ; 
RUN ; 
 
PROC GPLOT  DATA=SERGIO_ADD ; 
 PLOT LOGADD*weight=decomp_case ; 
 SYMBOL1 V=circle C=black I=none; 
 SYMBOL2 V=square   C=red   I=none; 
 TITLE 'Plot Log ADD vs. Weight' ; 
RUN ; 
 
 
PROC GPLOT  DATA=SERGIO_ADD ; 
 PLOT LOGADD*Clothing_Total=decomp_case ; 
 SYMBOL1 V=circle C=black I=none; 
 SYMBOL2 V=square   C=red   I=none; 
 TITLE 'Plot Log ADD vs. Clothing_Total' ; 
RUN ; 
 
PROC GPLOT  DATA=SERGIO_ADD ; 
 PLOT LOGADD*Insect_total=decomp_case ; 
 SYMBOL1 V=circle C=black I=none; 
 SYMBOL2 V=square   C=red   I=none; 
 TITLE 'Plot Log ADD vs. Insect_total ' ; 
RUN ; 
 
PROC GPLOT  DATA=SERGIO_ADD ; 
 PLOT LOGADD*Trauma_total=decomp_case ; 
 SYMBOL1 V=circle C=black I=none; 
 SYMBOL2 V=square   C=red   I=none; 
 TITLE 'Plot Log ADD vs. Trauma_total ' ; 
RUN ; 
 
PROC GPLOT  DATA=SERGIO_ADD ; 
 PLOT LOGADD*Scav_total=decomp_case ; 
 SYMBOL1 V=circle C=black I=none; 
 SYMBOL2 V=square   C=red   I=none; 
 TITLE 'Plot Log ADD vs. Scav_total ' ; 
RUN ; 
 
/*** MODEL SELECION ***/  
PROC GLMSELECT  DATA=sergio_ADD ; 
 CLASS Body_Position Ancestry Sex Decomp_case Outdoor ; 
 MODEL LOGADD=Decomp_case Outdoor Precip Sex Age Height 
Body_Position TBS Clothing_Total Insect_total  
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    Trauma_total Scav_total 
/SELECTION=STEPWISE(SELECT=ADJRSQ) STATS=ALL ; 
 TITLE 'MODEL SELECTION - ALL' ; 
RUN ; 
 
PROC REG DATA=sergio_ADD ; 
 MODEL LOGADD=Precip TBS ; 
 TITLE 'ADD (log) REGRESSION MODEL DIAGNOSTICS' ; 
RUN ; 
 
 
/*** SUBSET DATA BY SURFACE AND WATER ***/ 
DATA  surface ; 
 SET sergio_ADD ; 
 WHERE decomp_case eq 0 ; 
RUN ; 
 
PROC REG DATA=surface ; 
 MODEL LOGADD=TBS ; 
 PLOT LOGADD*TBS ; 
 TITLE 'Plot Log ADD vs. TBS - SURFACE' ; 
RUN ; 
  
DATA  surface_indoor ; 
 SET sergio_ADD ; 
 WHERE decomp_case eq 0 AND indoor eq 1 ; 
RUN ; 
 
PROC REG DATA=surface_indoor ; 
 MODEL LOGADD=TBS ; 
 PLOT LOGADD*TBS ; 
 TITLE 'Plot Log ADD vs. TBS - SURFACE(INDOOR)' ; 
RUN ; 
 
DATA  surface_outdoor ; 
 SET sergio_ADD ; 
 WHERE decomp_case eq 0 AND outdoor eq 1 ; 
RUN ; 
 
PROC REG DATA=surface_outdoor ; 
 MODEL LOGADD=TBS ; 
 PLOT LOGADD*TBS ; 
 TITLE 'Plot Log ADD vs. TBS - SURFACE(OUTDOOR)' ; 
RUN ; 
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DATA  water ; 
 SET sergio_ADD ; 
 WHERE decomp_case eq 1 ; 
RUN ; 
 
PROC REG DATA=water ; 
 MODEL LOGADD=TBS ; 
 PLOT LOGADD*TBS ; 
 TITLE 'Plot Log ADD vs. TBS - WATER' ; 
RUN ; 
 
/*** MODEL SELECION: SUBSETS ***/ 
PROC GLMSELECT  DATA=surface ; 
 CLASS Body_Position Sex ; 
 MODEL LOGADD=TBS Indoor_dirtnum Precip Sex Age Height Body_Position 
Clothing_Total Insect_total  
    Trauma_total Scav_total /SELECTION=STEPWISE(SELECT=SL) 
STATS=ALL ; 
 TITLE 'ADD MODEL SELECTION - SURFACE' ; 
RUN ; 
 
PROC GLMSELECT  DATA=surface_indoor ; 
 CLASS Body_Position Sex ; 
 MODEL LOGADD=TBS Indoor_dirtnum Precip Sex Age Height Body_Position 
Clothing_Total Insect_total  
    Trauma_total Scav_total /SELECTION=STEPWISE(SELECT=SL) 
STATS=ALL ; 
 TITLE 'ADD MODEL SELECTION - SURFACE-INDOOR' ; 
RUN ; 
 
PROC GLMSELECT  DATA=surface_outdoor ; 
 CLASS Body_Position Sex ; 
 MODEL LOGADD=TBS Soil_type Soil_pH Outside_sun Precip Sex Age Height 
Body_Position Clothing_Total Insect_total  
    Trauma_total Scav_total /SELECTION=STEPWISE(SELECT=SL) 
STATS=ALL ; 
 TITLE 'ADD MODEL SELECTION - SURFACE-OUTDOOR' ; 
RUN ; 
 
PROC GLMSELECT  DATA=water ; 
 CLASS Body_Position Sex ; 
 MODEL LOGADD=TBS salinitynum Outside_sun Water_indoor Precip Sex Age 
Height Body_Position Clothing_Total Insect_total  
    Trauma_total Scav_total /SELECTION=STEPWISE(SELECT=SL) 
STATS=ALL ; 
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 TITLE 'ADD MODEL SELECTION - WATER' ; 
RUN ; 
 
/*** SUBSET MODELS - USE ADJ R-SQUARED ***/ 
 
PROC GLMSELECT  DATA=surface_indoor ; 
 CLASS Body_Position Sex ; 
 MODEL LOGADD=TBS Indoor_dirtnum Precip Sex Age Height Body_Position 
Clothing_Total Insect_total  
    Trauma_total Scav_total 
/SELECTION=STEPWISE(SELECT=ADJRSQ) STATS=ALL ; 
 TITLE 'ADD MODEL SELECTION - SURFACE-INDOOR' ; 
RUN ; 
 
PROC GLMSELECT  DATA=surface_outdoor ; 
 CLASS Body_Position Sex ; 
 MODEL LOGADD=TBS Soil_type Soil_pH Outside_sun Sex Age Precip 
Body_Position Clothing_Total Insect_total  
 Trauma_total Scav_total /SELECTION=STEPWISE(SELECT=ADJRSQ) 
STATS=ALL ; 
 TITLE 'ADD MODEL SELECTION - SURFACE-OUTDOOR' ; 
RUN ; 
 
PROC GLMSELECT  DATA=water ; 
 CLASS Body_Position Sex ; 
 MODEL LOGADD=TBS salinitynum Outside_sun Water_indoor Precip Sex Age 
Height Body_Position Clothing_Total Insect_total  
    Trauma_total Scav_total 
/SELECTION=STEPWISE(SELECT=ADJRSQ) STATS=ALL ; 
 TITLE 'ADD MODEL SELECTION - WATER' ; 
RUN ; 
 
/*Variables to Compare In Regards to their Influence of Decomposition and Decay Rate 
1. Dirty vs. Clean House 
2. Shaded vs. Exposed Remains 
3. Trauma vs. No Trauma 
4. Insect vs. No Insects 
5. Scavenging vs. No Scavenging 
6. Clothed vs. Not Clothed 
7. Soil pH Below 5.5 vs. Soil pH Above 5.5 
a. Arbitrary based on the pHs seen in the dataset 
8. Supine vs. Prone 
9. Supine vs. Seated 
10. Supine vs. Hanging 
11. Prone vs. Seated 
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12. Prone vs. Hanging 
13. Seated vs. Hanging 
14. Water Salinity Medium and Below vs. Water Salinity High-Medium and Above 
a. Arbitrary to capture High vs. Low with Medium as Cut-Off 
15. Coastal vs. River 
a. I will have to compile a list of cases numbers belonging to each group 
16. Indoor vs. Outdoor (Surface) 
17. Indoor vs. Water 
18. Outdoor vs. Water 
19. Female vs. Male 
20. Below Age 50 vs. Above Age 50 
a. Arbitrary cut-off 
21. Below 6’0” vs. Above 6’0” 
a. Arbitrary cut-off 
*/  
 
 
  
/*CREATE NEW CATEGORIES FOR COMPARISONS*/ 
DATA  sergio_ADD ; 
 SET sergio_ADD ; 
 if  insect_total=0 then insect=0 ; 
  else if  insect_total gt 0 then insect=1 ; 
 if  trauma_total=0 then trauma=0 ; 
  else if  trauma_total gt 0 then trauma=1 ; 
 if  scav_total=0 then scav=0 ; 
  else if  scav_total gt 0 then scav=1 ; 
 if  soil_ph lt 5.5 then ph_score=0 ; 
  else if  soil_ph ge 5.5 then ph_score=1 ; 
 if  salinity le 3 then salinity_score=0 ; 
  else if  salinity gt 3 then salinity_score=1 ; 
 if  age lt 50 then age_score=0; 
  else if  age ge 50 then age_score=1 ; 
 if  height lt 72 then height_score=0 ; 
  else if  height ge 72 then height_score=1 ; 
 if  clothing_total=0 then clothing=0 ; 
  else if  clothing_total gt 0 then clothing=1 ; 
 /*supine vs hanging*/ 
 if  body_position=1 then hanging_sup=1 ; 
  else if  body_position=6 then hanging_sup=0; 
  else hanging_sup=. ; 
 /*supine vs. prone*/ 
 if  body_position=3 then prone_s=1 ; 
  else if  body_position=6 then prone_s=0; 
  else prone_s=. ; 
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 /*supine vs. seated*/ 
 if  body_position=5 then seated_s=1 ; 
  else if  body_position=6 then seated_s=0; 
  else seated_s=. ; 
 /*prone vs seated*/ 
 if  body_position=5 then seated_p=1 ; 
  else if  body_position=3 then seated_p=0; 
  else seated_p=. ; 
 /*prone vs hanging*/ 
 if  body_position=1 then hanging_p=1 ; 
  else if  body_position=3 then hanging_p=0; 
  else hanging_p=. ; 
 /*seated vs hanging*/ 
 if  body_position=1 then hanging_sit=1 ; 
  else if  body_position=5 then hanging_sit=0; 
  else hanging_sit=. ; 
 /*new decomp rate variable*/ 
 rate_add = tbs/add_num ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY indoor_dirty ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
 VAR rate_add ; 
 CLASS indoor_dirty ; 
 TITLE 'Dirty vs. Clean House' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY outside_shade ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
 VAR rate_add ; 
 CLASS outside_shade ; 
 TITLE 'Shaded vs. Exposed Remains' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY trauma ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
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 VAR rate_add ; 
 CLASS Trauma ; 
 TITLE 'Trauma vs. No Trauma' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY insect ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
 VAR rate_add ; 
 CLASS insect ; 
 TITLE 'Insect vs. No Insects' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY clothing ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
 VAR rate_add ; 
 CLASS clothing ; 
 TITLE 'Clothed vs. Not Clothed' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY ph_score ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
 VAR rate_add ; 
 CLASS ph_score ; 
 TITLE 'Soil pH Below 5.5 vs. Soil pH Above 5.5' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY scav ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
 VAR rate_add ; 
 CLASS scav ; 
 TITLE 'Scavenging vs. No Scavenging' ; 
RUN ; 
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PROC SORT DATA=sergio_ADD ; 
 BY prone_s ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
 VAR rate_add ; 
 CLASS prone_s ; 
 TITLE 'Supine (0) vs. Prone ' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY seated_s ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
 VAR rate_add ; 
 CLASS seated_s ; 
 TITLE 'Supine (0) vs. Seated ' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY hanging_sup ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
 VAR rate_add ; 
 CLASS hanging_sup ; 
 TITLE 'Supine (0) vs. Hanging' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY seated_p ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
 VAR rate_add ; 
 CLASS seated_p ; 
 TITLE 'Prone (0) vs. Seated ' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY hanging_p ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
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 VAR rate_add ; 
 CLASS hanging_p ; 
 TITLE 'Prone (0) vs. Hanging' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY hanging_sit ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
 VAR rate_add ; 
 CLASS hanging_sit ; 
 TITLE 'Seated (0) vs. Hanging' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY salinity_score ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
 VAR rate_add ; 
 CLASS salinity_score ; 
 TITLE 'Water Salinity Medium and Below vs. Water Salinity High-Medium and 
Above' ; 
RUN ; 
 
DATA  sergio_ADD_surface ; 
 SET sergio_ADD ; 
 WHERE decomp_case=0 ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD_surface ; 
 BY indoor ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD_surface ; 
 VAR rate_add ; 
 CLASS indoor ; 
 TITLE 'Indoor (0) vs. Outdoor (Surface)' ; 
RUN ; 
 
DATA  sergio_ADD_indoor_water ; 
 SET sergio_ADD ; 
 IF indoor eq 0 and decomp_case eq 0 then DELETE ; 
RUN ; 
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PROC SORT DATA=sergio_ADD_indoor_water ; 
 BY decomp_case ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD_indoor_water ; 
 VAR rate_add ; 
 CLASS decomp_case ; 
 TITLE 'Indoor vs ALL water' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY decomp_case ; 
RUN ; 
 
DATA  sergio_ADD_outdoor_water ; 
 SET sergio_ADD ; 
 IF outdoor eq 0 and decomp_case eq 0 then DELETE ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD_outdoor_water ; 
 BY decomp_case ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD_outdoor_water ; 
 VAR rate_add ; 
 CLASS decomp_case ; 
 TITLE 'Outdoor vs ALL water' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY decomp_case ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD_surface ; 
 VAR rate_add ; 
 CLASS indoor ; 
 TITLE 'Indoor (0) vs. Outdoor (Surface)' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY sex ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
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 VAR rate_add ; 
 CLASS sex ; 
 TITLE 'Female (2) vs. Male (1)' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY age_score ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
 VAR rate_add ; 
 CLASS age_score ; 
 TITLE 'Below Age 50 (0) vs. Above Age 50 (1)' ; 
RUN ; 
 
PROC SORT DATA=sergio_ADD ; 
 BY height_score ; 
RUN ; 
 
PROC TTEST DATA=sergio_ADD ; 
 VAR rate_add ; 
 CLASS height_score ; 
 TITLE 'Below 6’0” (0) vs. Above 6’0” (1)' ; 
RUN ; 
 
/*** T-TESTS with JUST SURFACE DATA ***/ 
/*CREATE NEW CATEGORIES FOR COMPARISONS*/ 
DATA  surface_t ; 
 SET surface ; 
 if  insect_total=0 then insect=0 ; 
  else if  insect_total gt 0 then insect=1 ; 
 if  trauma_total=0 then trauma=0 ; 
  else if  trauma_total gt 0 then trauma=1 ; 
 if  scav_total=0 then scav=0 ; 
  else if  scav_total gt 0 then scav=1 ; 
 if  soil_ph lt 5.5 then ph_score=0 ; 
  else if  soil_ph ge 5.5 then ph_score=1 ; 
 if  salinity le 3 then salinity_score=0 ; 
  else if  salinity gt 3 then salinity_score=1 ; 
 if  age lt 50 then age_score=0; 
  else if  age ge 50 then age_score=1 ; 
 if  height lt 72 then height_score=0 ; 
  else if  height ge 72 then height_score=1 ; 
 if  clothing_total=0 then clothing=0 ; 
  else if  clothing_total gt 0 then clothing=1 ; 
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 /*supine vs hanging*/ 
 if  body_position=1 then hanging_sup=1 ; 
  else if  body_position=6 then hanging_sup=0; 
  else hanging_sup=. ; 
 /*supine vs. prone*/ 
 if  body_position=3 then prone_s=1 ; 
  else if  body_position=6 then prone_s=0; 
  else prone_s=. ; 
 /*supine vs. seated*/ 
 if  body_position=5 then seated_s=1 ; 
  else if  body_position=6 then seated_s=0; 
  else seated_s=. ; 
 /*prone vs seated*/ 
 if  body_position=5 then seated_p=1 ; 
  else if  body_position=3 then seated_p=0; 
  else seated_p=. ; 
 /*prone vs hanging*/ 
 if  body_position=1 then hanging_p=1 ; 
  else if  body_position=3 then hanging_p=0; 
  else hanging_p=. ; 
 /*seated vs hanging*/ 
 if  body_position=1 then hanging_sit=1 ; 
  else if  body_position=5 then hanging_sit=0; 
  else hanging_sit=. ; 
 /*new decomp rate variable*/ 
 rate_add = tbs/add_num ; 
RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY indoor_dirty ; 
RUN ; 
 
PROC TTEST DATA=surface_t ; 
 VAR rate_add ; 
 CLASS indoor_dirty ; 
 TITLE 'Dirty vs. Clean House' ; 
RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY outside_shade ; 
RUN ; 
 
PROC TTEST DATA=surface_t ; 
 VAR rate_add ; 
 CLASS outside_shade ; 
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 TITLE 'Shaded vs. Exposed Remains' ; 
RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY trauma ; 
RUN ; 
 
PROC TTEST DATA=surface_t ; 
 VAR rate_add ; 
 CLASS Trauma ; 
 TITLE 'Trauma vs. No Trauma' ; 
RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY insect ; 
RUN ; 
 
PROC TTEST DATA=surface_t ; 
 VAR rate_add ; 
 CLASS insect ; 
 TITLE 'Insect vs. No Insects' ; 
RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY clothing ; 
RUN ; 
 
PROC TTEST DATA=surface_t ; 
 VAR rate_add ; 
 CLASS clothing ; 
 TITLE 'Clothed vs. Not Clothed' ; 
RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY ph_score ; 
RUN ; 
 
PROC TTEST DATA=surface_t ; 
 VAR rate_add ; 
 CLASS ph_score ; 
 TITLE 'Soil pH Below 5.5 vs. Soil pH Above 5.5' ; 
RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY scav ; 
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RUN ; 
 
PROC TTEST DATA=surface_t ; 
 VAR rate_add ; 
 CLASS scav ; 
 TITLE 'Scavenging vs. No Scavenging' ; 
RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY prone_s ; 
RUN ; 
 
PROC TTEST DATA=surface_t ; 
 VAR rate_add ; 
 CLASS prone_s ; 
 TITLE 'Supine (0) vs. Prone ' ; 
RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY seated_s ; 
RUN ; 
 
PROC TTEST DATA=surface_t ; 
 VAR rate_add ; 
 CLASS seated_s ; 
 TITLE 'Supine (0) vs. Seated ' ; 
RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY hanging_sup ; 
RUN ; 
 
PROC TTEST DATA=surface_t ; 
 VAR rate_add ; 
 CLASS hanging_sup ; 
 TITLE 'Supine (0) vs. Hanging' ; 
RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY seated_p ; 
RUN ; 
 
PROC TTEST DATA=surface_t ; 
 VAR rate_add ; 
 CLASS seated_p ; 
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 TITLE 'Prone (0) vs. Seated ' ; 
RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY hanging_p ; 
RUN ; 
 
PROC TTEST DATA=surface_t ; 
 VAR rate_add ; 
 CLASS hanging_p ; 
 TITLE 'Prone (0) vs. Hanging' ; 
RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY hanging_sit ; 
RUN ; 
 
PROC TTEST DATA=surface_t ; 
 VAR rate_add ; 
 CLASS hanging_sit ; 
 TITLE 'Seated (0) vs. Hanging' ; 
RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY salinity_score ; 
RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY sex ; 
RUN ; 
 
PROC TTEST DATA=surface_t ; 
 VAR rate_add ; 
 CLASS sex ; 
 TITLE 'Female (2) vs. Male (1)' ; 
RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY age_score ; 
RUN ; 
 
PROC TTEST DATA=surface_t ; 
 VAR rate_add ; 
 CLASS age_score ; 
 TITLE 'Below Age 50 (0) vs. Above Age 50 (1)' ; 
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RUN ; 
 
PROC SORT DATA=surface_t ; 
 BY height_score ; 
RUN ; 
 
PROC TTEST DATA=surface_t ; 
 VAR rate_add ; 
 CLASS height_score ; 
 TITLE 'Below 6’0” (0) vs. Above 6’0” (1)' ; 
RUN ; 
 
/*** TBS SQUARED PLOTS COMPARE TO MEGYESI - SURFACE ONLY ***/  
DATA  SERGIO_ADD_SURFACE; 
 SET SERGIO_ADD ; 
 IF decomp_case ne 0 THEN DELETE ; 
 TBS2=TBS*TBS ; 
RUN;  
 
PROC REG DATA=SERGIO_ADD_SURFACE LINEPRINTER; 
 MODEL LOGADD=TBS2 ; 
 PAINT INDOOR=1 / symbol='*' ; 
 PAINT INDOOR=0 /symbol='o' ; 
 PLOT LOGADD*TBS2 ; 
 TITLE 'Surface only - Log ADD vs. TBS Sq' ; 
RUN ; 
 
 
PROC REG DATA=SERGIO_ADD_SURFACE LINEPRINTER; 
 MODEL LOGADD=TBS ; 
 PAINT INDOOR=1 /symbol='*' ; 
 PAINT INDOOR=0 /symbol='o' ; 
 PLOT LOGADD*TBS / ; 
 TITLE 'Surface only - Log ADD vs. TBS' ; 
RUN ; 
 
 
PROC GPLOT  DATA=SERGIO_ADD_SURFACE ; 
 WHERE decomp_case eq 0 ; 
 PLOT LOGADD*TBS2=OUTDOOR ; 
 SYMBOL1 V=Triangle C=black I=none ; 
 SYMBOL2 V=star C=black I=none ; 
 TITLE 'Surface only - Log ADD vs. TBS Sq' ; 
RUN ; 
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PROC GPLOT  DATA=SERGIO_ADD_SURFACE ; 
 WHERE decomp_case eq 0 ; 
 PLOT LOGADD*TBS=OUTDOOR ; 
 SYMBOL1 V=Triangle C=black I=none ; 
 SYMBOL2 V=star C=black I=none ; 
 TITLE 'Surface only - Log ADD vs. TBS' ; 
RUN ; 

Table 42. Post-Mortem Interval Day SAS Code 

/*** TITLE: PMI  
**** DATA: SERGIOFINALDATA 
**** AUTHOR: PAM PHOJANAKONG 
**** DATE: 20-OCT-2013 
20-Oct: Salinitynum and indoor_dirtnum created to account for format issues. 
16-NOV: Added in soil pH to datasets and models. 
2-Dec: look for outliers 
2-Jan-14: Removed Ancestry and body weight per agreement on 19-Dec; additional 
comparisons (T-tests); 
    Added in plots with TBS-squared. 
13-Jan-14: Changed additional comparisons (T-tests) from PMI to rate=TBS/PMI 
Apr-14: Added surface-only plots/analysis to compare to Megyesi et al 
***/  
 
LIBNAME  sergio 'G:\CURRENT WORK\Sergio' ; 
 
PROC IMPORT  OUT= sergio.final 
            DATAFILE= "F:\CURRENT WORK\Sergio\finaldata3pH.csv" 
            DBMS=CSV REPLACE; 
     GETNAMES=YES; 
     DATAROW=2;  
RUN; 
 
PROC SQL ; 
 DELETE  
  FROM sergio.final  
  WHERE id_code eq . ; 
 
 
proc contents data=sergio.final varnum ; 
run  ; 
 
PROC FORMAT  ; 
 VALUE town 
  1='Kent' 
  2='New Castle' 
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  3='Sussex' ; 
 VALUE sex 
  1='Male' 
  2='Female' ; 
 VALUE body_position 
  1='Hanging' 
  2='Left side' 
  3='Prone' 
  4='Right side' 
  5='Seated' 
  6='Supine' 
  .='Unknown' ; 
 VALUE Insect  
  0='Absent' 
  1='Present' 
  2='Present - Extensive' 
  3='Artifact' ; 
 VALUE Decomp  
  0='Surface' 
  1='Water' ; 
 VALUE Salinity  
  0='Freshwater = 0' 
  1='Low = < 5' 
  2='Low Medium = 5-10' 
  3='Medium = 10-15' 
  4='High Medium = 15-20' 
  5='Low High = 20-25' 
  6='High = 25-32' 
  7='Open Water = >32' 
  . ='n/a' ; 
 VALUE Soil  
  1='Loam' 
  2='Sandy Loam' 
  3='Silt Loam' 
  4='Moderately decomposed plant material' 
  .='Unavailable or n/a' ; 
 VALUE pH  
  99='n/a' ; 
 VALUE YesNo 
  1='Yes' 
  0='No' 
  . ='N/A' ; 
RUN ; 
 
DATA  sergio.final ; 
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 SET sergio.final ; 
 Salinitynum=salinity*1 ; 
 Insect_total=Insects_Head_Neck + Insects_Torso + Insects_Limbs ; 
 Trauma_total=Trauma_Head_Neck + Trauma_Torso + Trauma_Limbs ; 
 Scav_total=Scav_Head + Scav_Torso + Scav_Limbs ; 
 Indoor_dirtnum=1*Indoor_Dirty ; 
 LABEL ID_Code='ID Code' 
  Town='Town' 
  Decomp_case='Decomposition Case' 
  Indoor='Indoor' 
  Outdoor'Outdoor' 
  Soil_Type='Surface: Soil Type' 
  Soil_pH='Soil pH' 
  salinitynum='Water: Salinity' 
  Surface_And_Water='Surface and Water' 
  NonSurface_NonWater_Outdoor='Non-Surface/ Non-Water Outdoor' 
  Outside_Sun='Outside: Sun' 
  Outside_Shade='Outside: Shade' 
  Surface_Indoor='Surface Indoor' 
  Water_Indoor='Water Indoor' 
  Indoor_Dirty='Indoor: Dirty' 
  Indoor_dirtnum='Indoor: Dirty (number)' 
  ADD_num='ADD score' 
  ADD='ADD' 
  Precip='Precipitation (Rain, Melted Snow, in inches)' 
  Sex='Sex' 
  Age='Age' 
  Ancestry='Ancestry' 
  Height='Height (cm)' 
  Weight='Weight (lbs)' 
  Body_Position='Body Position' 
  Head_Neck='TBS: Head/ Neck' 
  Trunk='TBS: Trunk' 
  Limbs='TBS: Limbs' 
  TBS='TBS' 
  Insects_Head_Neck='Insects: Head/Neck' 
  Insects_Torso='Insects: Torso' 
  Insects_Limbs='Insects: Limbs' 
  Trauma_Head_Neck='Trauma: Head/Neck' 
  Trauma_Torso='Trauma: Torso' 
  Trauma_Limbs='Trauma: Limbs' 
  Scav_head='Scavengers: Head/Neck' 
  Scav_torso='Scavengers: Torso' 
  Scav_Limbs='Scavengers: Limbs' 
  Clothing_Head='Clothing:Head' 
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  Clothing_Torso_Arms='Clothing:Torso_Arms' 
  Clothing_Hands_Feet='Clothing:Hands_Feet' 
  Clothing_Legs='Clothing:Legs' 
  Clothing_Total='Clothing Total'  
  Insect_total='Total insect activity'  
  Trauma_total='Total trauma to body' 
  Scav_total='Total scavenger activity' ; 
 FORMAT town town. 
   sex sex.  
   body_position body_position. 
   Insects_Head_Neck Insects_Torso Insects_Limbs Insect.  
   Decomp_case Decomp. 
   salinitynum Salinity. 
   Soil_type soil.  
   Soil_pH pH.  
   Indoor Outdoor Surface_and Water 
NonSurface_NonWater_Outdoor Outside_Sun Outside_Shade Surface_Indoor 
Water_Indoor Indoor_Dirtnum  
   Trauma_Head_Neck Trauma_Torso Trauma_Limbs YesNo. ; 
 
RUN ; 
 
/*** CHECK DATA FOR OUTLIERS ***/  
proc univariate data=sergio.final ; 
 var tbs pmi ; 
 title 'CHECK FOR OUTLIERS' ; 
run  ; 
 
/*** CHECK MODEL ASSUMPTIONS ***/  
proc reg data=sergio.final_clean_pmi ;   
 model PMI = TBS ; 
 output out=pp p=pred r=resid lclm=lclmpred uclm=uclmpred ; 
 title 'PMI and TBS - all' ; 
run  ; 
 
proc capability data=pp ; 
 var resid ; 
 histogram resid/ normal ; 
 probplot resid ; 
 qqplot resid ; 
run  ; 
 
proc reg data=sergio.final_clean_pmi ;   
 model PMI = TBS ; 
 plot student. *p. ; 
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run  ; 
 
 
/** RAW PLOTS**/  
 
proc reg data=sergio.final_clean_pmi ;   
 model PMI = TBS ; 
 PLOT PMI*TBS ; 
 title 'PLOT PMI VS.TBS - all' ; 
run  ; 
 
 
/*** CHECK MODEL ASSUMPTIONS FOR LOG-TRANSFORMED DATA ***/  
DATA  SERGIO_PMI ; 
 SET sergio.final_clean_pmi ; 
 LOGPMI=LOG10(PMI) ; 
 LABEL LOGPMI='LOG10 PMI' ; 
RUN;  
 
PROC REG DATA=SERGIO_PMI ; 
 MODEL LOGPMI=TBS ; 
 PLOT LOGPMI*TBS ; 
 TITLE 'Plot Log PMI vs. TBS - ALL' ; 
RUN ; 
 
/*** MODEL SELECION ***/  
PROC GLMSELECT  DATA=sergio_PMI ; 
 CLASS Body_Position Sex Decomp_case Outdoor ; 
 MODEL LOGPMI=Decomp_case Outdoor Precip Sex Age Height 
Body_Position TBS Clothing_Total Insect_total  
    Trauma_total Scav_total 
/SELECTION=STEPWISE(SELECT=ADJRSQ) STATS=ALL ; 
 TITLE 'MODEL SELECTION - ALL' ; 
RUN ; 
 
 
/*** CHECK NOMALITY FOR SELECTED MODEL COVARIATES (SCAVENGERS 
OUTDOOR) ***/  
 
PROC REG DATA=sergio_PMI ; 
 MODEL LOGPMI=Outdoor Precip Sex TBS Scav_total ; 
 TITLE 'PMI (log) REGRESSION MODEL' ; 
RUN ; 
 
PROC REG DATA=sergio_PMI ; 
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 MODEL LOGPMI=Decomp_case Outdoor Precip Sex Height Body_Position 
TBS Clothing_Total ; 
 TITLE 'PMI (log) REGRESSION MODEL DIAGNOSTICS' ; 
RUN ; 
 
/*** SUBSET DATA BY SURFACE AND WATER ***/ 
DATA  surface ; 
 SET sergio_PMI ; 
 WHERE decomp_case eq 0 ; 
RUN ; 
 
PROC REG DATA=surface ; 
 MODEL LOGPMI=TBS ; 
 PLOT LOGPMI*TBS ; 
 TITLE 'Plot Log PMI vs. TBS - SURFACE' ; 
RUN ; 
 
DATA  surface_indoor ; 
 SET sergio_PMI ; 
 WHERE decomp_case eq 0 AND indoor eq 1 ; 
RUN ; 
 
PROC REG DATA=surface_indoor ; 
 MODEL LOGPMI=TBS ; 
 PLOT LOGPMI*TBS ; 
 TITLE 'Plot Log PMI vs. TBS - SURFACE(INDOOR)' ; 
RUN ; 
 
DATA  surface_outdoor ; 
 SET sergio_PMI ; 
 WHERE decomp_case eq 0 AND outdoor eq 1 ; 
RUN ; 
 
PROC REG DATA=surface_outdoor ; 
 MODEL LOGPMI=TBS ; 
 PLOT LOGPMI*TBS ; 
 TITLE 'Plot Log PMI vs. TBS - SURFACE(OUTDOOR)' ; 
RUN ; 
 
DATA  water ; 
 SET sergio_PMI ; 
 WHERE decomp_case eq 1 ; 
RUN ; 
 
PROC REG DATA=water ; 
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 MODEL LOGPMI=TBS ; 
 PLOT LOGPMI*TBS ; 
 TITLE 'Plot Log PMI vs. TBS - WATER' ; 
RUN ; 
 
/*** MODEL SELECION: SUBSETS ***/ 
PROC GLMSELECT  DATA=surface ; 
 CLASS Body_Position Sex ; 
 MODEL LOGPMI=TBS Indoor_dirtnum Precip Sex Age Height Body_Position 
Clothing_Total Insect_total  
    Trauma_total Scav_total 
/SELECTION=STEPWISE(SELECT=ADJRSQ) STATS=ALL ; 
 TITLE 'PMI MODEL SELECTION - SURFACE' ; 
RUN ; 
 
PROC GLMSELECT  DATA=surface_indoor ; 
 CLASS Body_Position Sex ; 
 MODEL LOGPMI=Indoor_dirtnum Precip Sex Age Height Body_Position TBS 
Clothing_Total Insect_total  
    Trauma_total Scav_total 
/SELECTION=STEPWISE(SELECT=ADJRSQ) STATS=ALL ; 
 TITLE 'PMI MODEL SELECTION - SURFACE-INDOOR' ; 
RUN ; 
 
PROC GLMSELECT  DATA=surface_outdoor ; 
 CLASS Body_Position Sex ; 
 MODEL LOGPMI=Soil_type Soil_pH Outside_sun Precip Sex Age Height 
Body_Position TBS Clothing_Total Insect_total  
    Trauma_total Scav_total 
/SELECTION=STEPWISE(SELECT=ADJRSQ) STATS=ALL ; 
 TITLE 'PMI MODEL SELECTION - SURFACE-OUTDOOR' ; 
RUN ; 
 
PROC GLMSELECT  DATA=water ; 
 CLASS Body_Position Sex ; 
 MODEL LOGPMI=Salinitynum Outside_sun Water_indoor Precip Sex Age 
Height Body_Position TBS Clothing_Total Insect_total  
    Trauma_total Scav_total 
/SELECTION=STEPWISE(SELECT=ADJRSQ) STATS=ALL ; 
 TITLE 'PMI MODEL SELECTION - WATER' ; 
RUN ; 
 
/*Variables to Compare In Regards to their Influence of Decomposition and Decay Rate 
1. Dirty vs. Clean House 
2. Shaded vs. Exposed Remains 
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3. Trauma vs. No Trauma 
4. Insect vs. No Insects 
5. Scavenging vs. No Scavenging 
6. Clothed vs. Not Clothed 
7. Soil pH Below 5.5 vs. Soil pH Above 5.5 
a. Arbitrary based on the pHs seen in the dataset 
8. Supine vs. Prone 
9. Supine vs. Seated 
10. Supine vs. Hanging 
11. Prone vs. Seated 
12. Prone vs. Hanging 
13. Seated vs. Hanging 
14. Water Salinity Medium and Below vs. Water Salinity High-Medium and Above 
a. Arbitrary to capture High vs. Low with Medium as Cut-Off 
15. Coastal vs. River 
a. I will have to compile a list of cases numbers belonging to each group 
16. Indoor vs. Outdoor (Surface) 
17. Indoor vs. Water 
18. Outdoor vs. Water 
19. Female vs. Male 
20. Below Age 50 vs. Above Age 50 
a. Arbitrary cut-off 
21. Below 6’0” vs. Above 6’0” 
a. Arbitrary cut-off 
*/  
 
  
/*CREATE NEW CATEGORIES FOR COMPARISONS*/ 
DATA  sergio_PMI ; 
 SET sergio_PMI ; 
 if  insect_total=0 then insect=0 ; 
  else if  insect_total gt 0 then insect=1 ; 
 if  trauma_total=0 then trauma=0 ; 
  else if  trauma_total gt 0 then trauma=1 ; 
 if  scav_total=0 then scav=0 ; 
  else if  scav_total gt 0 then scav=1 ; 
 if  soil_ph lt 5.5 then ph_score=0 ; 
  else if  soil_ph ge 5.5 then ph_score=1 ; 
 if  salinity le 3 then salinity_score=0 ; 
  else if  salinity gt 3 then salinity_score=1 ; 
 if  age lt 50 then age_score=0; 
  else if  age ge 50 then age_score=1 ; 
 if  height lt 72 then height_score=0 ; 
  else if  height ge 72 then height_score=1 ; 
 if  clothing_total=0 then clothing=0 ; 
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  else if  clothing_total gt 0 then clothing=1 ; 
 /*supine vs hanging*/ 
 if  body_position=1 then hanging_sup=1 ; 
  else if  body_position=6 then hanging_sup=0; 
  else hanging_sup=. ; 
 /*supine vs. prone*/ 
 if  body_position=3 then prone_s=1 ; 
  else if  body_position=6 then prone_s=0; 
  else prone_s=. ; 
 /*supine vs. seated*/ 
 if  body_position=5 then seated_s=1 ; 
  else if  body_position=6 then seated_s=0; 
  else seated_s=. ; 
 /*prone vs seated*/ 
 if  body_position=5 then seated_p=1 ; 
  else if  body_position=3 then seated_p=0; 
  else seated_p=. ; 
 /*prone vs hanging*/ 
 if  body_position=1 then hanging_p=1 ; 
  else if  body_position=3 then hanging_p=0; 
  else hanging_p=. ; 
 /*seated vs hanging*/ 
 if  body_position=1 then hanging_sit=1 ; 
  else if  body_position=5 then hanging_sit=0; 
  else hanging_sit=. ; 
 /*new decomp rate variable*/ 
 rate_pmi = tbs/pmi ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI ; 
 BY indoor_dirty ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
 CLASS indoor_dirty ; 
 TITLE 'Dirty vs. Clean House' ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI ; 
 BY outside_shade ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
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 CLASS outside_shade ; 
 TITLE 'Shaded vs. Exposed Remains' ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI ; 
 BY trauma ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
 CLASS Trauma ; 
 TITLE 'Trauma vs. No Trauma' ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI ; 
 BY insect ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
 CLASS insect ; 
 TITLE 'Insect vs. No Insects' ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI ; 
 BY clothing ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
 CLASS clothing ; 
 TITLE 'Clothed vs. Not Clothed' ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI ; 
 BY ph_score ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
 CLASS ph_score ; 
 TITLE 'Soil pH Below 5.5 vs. Soil pH Above 5.5' ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI ; 
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 BY scav ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
 CLASS scav ; 
 TITLE 'Scavenging vs. No Scavenging' ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI ; 
 BY prone_s ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
 CLASS prone_s ; 
 TITLE 'Supine (0) vs. Prone ' ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI ; 
 BY seated_s ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
 CLASS seated_s ; 
 TITLE 'Supine (0) vs. Seated ' ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI ; 
 BY hanging_sup ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
 CLASS hanging_sup ; 
 TITLE 'Supine (0) vs. Hanging' ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI ; 
 BY seated_p ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
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 CLASS seated_p ; 
 TITLE 'Prone (0) vs. Seated ' ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI ; 
 BY hanging_p ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
 CLASS hanging_p ; 
 TITLE 'Prone (0) vs. Hanging' ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI ; 
 BY hanging_sit ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
 CLASS hanging_sit ; 
 TITLE 'Seated (0) vs. Hanging' ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI ; 
 BY salinity_score ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
 CLASS salinity_score ; 
 TITLE 'Water Salinity Medium and Below vs. Water Salinity High-Medium and 
Above' ; 
RUN ; 
 
DATA  sergio_PMI_indoor_water ; 
 SET sergio_PMI ; 
 IF indoor eq 0 and decomp_case eq 0 then DELETE ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI_indoor_water ; 
 BY decomp_case ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI_indoor_water ; 
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 VAR rate_pmi ; 
 CLASS decomp_case ; 
 TITLE 'Indoor vs ALL water' ; 
RUN ; 
 
DATA  sergio_PMI_outdoor_water ; 
 SET sergio_PMI ; 
 IF outdoor eq 0 and decomp_case eq 0 then DELETE ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI_outdoor_water ; 
 BY decomp_case ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI_outdoor_water ; 
 VAR rate_pmi ; 
 CLASS decomp_case ; 
 TITLE 'Outdoor vs ALL water' ; 
RUN ; 
 
DATA  sergio_PMI_surface ; 
 SET sergio_PMI ; 
 WHERE decomp_case=0 ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI_surface ; 
 BY indoor ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI_surface ; 
 VAR rate_pmi ; 
 CLASS indoor ; 
 TITLE 'Indoor (0) vs. Outdoor (Surface)' ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI ; 
 BY sex ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
 CLASS sex ; 
 TITLE 'Female (2) vs. Male (1)' ; 
RUN ; 
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PROC SORT DATA=sergio_PMI ; 
 BY age_score ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
 CLASS age_score ; 
 TITLE 'Below Age 50 (0) vs. Above Age 50 (1)' ; 
RUN ; 
 
PROC SORT DATA=sergio_PMI ; 
 BY height_score ; 
RUN ; 
 
PROC TTEST DATA=sergio_PMI ; 
 VAR rate_pmi ; 
 CLASS height_score ; 
 TITLE 'Below 6’0” (0) vs. Above 6’0” (1)' ; 
RUN ; 
 
/*** TBS SQUARED PLOTS COMPARE TO MEGYESI - SURFACE ONLY ***/  
DATA  SERGIO_PMI ; 
 SET SERGIO_PMI ; 
 TBS2=TBS*TBS ; 
RUN;  
 
PROC REG DATA=SERGIO_PMI ; 
 WHERE decomp_case eq 0 ; 
 MODEL LOGPMI=TBS2 ; 
 PLOT LOGPMI*TBS2 ; 
 TITLE 'Plot Log PMI vs. TBS Sq' ; 
 
RUN ;PROC REG DATA=SERGIO_PMI ; 
 WHERE decomp_case eq 0 ; 
 MODEL LOGPMI=TBS ; 
 PLOT LOGPMI*TBS ; 
 TITLE 'Plot Log PMI vs. TBS' ; 
RUN ; 
 
PROC GPLOT  DATA=SERGIO_PMI ; 
 WHERE decomp_case eq 0 ; 
 PLOT LOGPMI*TBS2=OUTDOOR ; 
 SYMBOL1 V=Triangle C=black I=none ; 
 SYMBOL2 V=star C=black I=none ; 
 TITLE 'Surface only - Log PMI vs. TBS Sq' ; 
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RUN ; 
 
PROC GPLOT  DATA=SERGIO_PMI; 
 WHERE decomp_case eq 0 ; 
 PLOT LOGPMI*TBS=OUTDOOR ; 
 SYMBOL1 V=Triangle C=black I=none ; 
 SYMBOL2 V=star C=black I=none ; 
 TITLE 'Surface only - Log PMI vs. TBS' ; 
RUN ; 
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