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Evolutionary Dynamics of Neoplastic Cell Populations in Barrett's
Esophagus

Abstract
Cancer is a disease that develops over decades as result of acquisition of abnormalities in the genomes of
otherwise normal cells. Acquired genomic heterogeneity in populations of cells within tissues allows cell-level
Darwinian evolution that selects abnormal cellular genotypes encoding neoplastic (new benign growth), and
in some cases cancerous (invasion within tissues and metastasis across tissues) cellular phenotypes. I studied
neoplastic evolution over time in vivo in the pre-malignant condition Barrett's esophagus to address the
puzzling clinical phenomenon that 90-95% of individuals with Barrett's stay benign over decades compared to
the remaining 5-10% who progress to esophageal adenocarcinoma. Some individuals with Barrett's use aspirin
and other non-steroidal anti-inflammatory drugs (NSAIDs) that have been shown to reduce mortality from
esophageal adenocarcinoma. I collaborated with the Seattle Barrett's Esophagus Research Program group to
test the hypothesis that NSAIDs modulate genome evolution of neoplastic cells by reducing the acquisition
rate of somatic genomic abnormalities (SGA). We used single nucleotide polymorphism (SNP) arrays to
detect SGA, such as copy number abnormalities and loss of heterozygosity, in 161 biopsies from 13
individuals with Barrett's, obtained over 5-8 time points during 6-19 years of follow-up care. Over the follow-
up period, each individual had a single change in NSAID use, allowing us to compare acquisition of SGA
during periods on NSAIDs versus periods off NSAIDs within individuals. We found that the rate of
accumulation of SGA was significantly lower (typically ten-fold lower) during periods on NSAIDs versus
periods off NSAIDs. We also found that typically 1-3% of the genome had acquired SGA at baseline and that
this percentage did not increase significantly over decades. In one individual who progressed to esophageal
adenocarcinoma we detected a clonally expanded subpopulation of cells within the Barrett's tissue, which had
massive SGA affecting 19% of the genome in the last 3 of 11 years of follow-up. In summary, these findings
suggest that NSAID use may reduce SGA acquisition rate and that neoplastic cell populations in Barrett's can
maintain evolutionary stasis over decades potentially explaining why 90-95% of individuals with Barrett's
remain benign and never progress to esophageal adenocarcinoma.
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ABSTRACT 

EVOLUTIONARY DYNAMICS OF NEOPLASTIC CELL POPULATIONS 

IN BARRETT’S ESOPHAGUS 

Rumen Kostadinov 

Carlo Maley 

Cancer is a disease that develops over decades as result of acquisition of abnormalities in the 

genomes of otherwise normal cells. Acquired genomic heterogeneity in populations of cells 

within tissues allows cell-level Darwinian evolution that selects abnormal cellular genotypes 

encoding neoplastic (new benign growth), and in some cases cancerous (invasion within 

tissues and metastasis across tissues) cellular phenotypes. I studied neoplastic evolution over 

time in vivo in the pre-malignant condition Barrett’s esophagus to address the puzzling 

clinical phenomenon that 90-95% of individuals with Barrett’s stay benign over decades 

compared to the remaining 5-10% who progress to esophageal adenocarcinoma. Some 

individuals with Barrett’s use aspirin and other non-steroidal anti-inflammatory drugs 

(NSAIDs) that have been shown to reduce mortality from esophageal adenocarcinoma. I 

collaborated with the Seattle Barrett’s Esophagus Research Program group to test the 

hypothesis that NSAIDs modulate genome evolution of neoplastic cells by reducing the 

acquisition rate of somatic genomic abnormalities (SGA). We used single nucleotide 

polymorphism (SNP) arrays to detect SGA, such as copy number abnormalities and loss of 

heterozygosity, in 161 biopsies from 13 individuals with Barrett’s, obtained over 5-8 time 

points during 6-19 years of follow-up care. Over the follow-up period, each individual had a 

single change in NSAID use, allowing us to compare acquisition of SGA during periods on 
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NSAIDs versus periods off NSAIDs within individuals. We found that the rate of 

accumulation of SGA was significantly lower (typically ten-fold lower) during periods on 

NSAIDs versus periods off NSAIDs. We also found that typically 1-3% of the genome had 

acquired SGA at baseline and that this percentage did not increase significantly over decades. 

In one individual who progressed to esophageal adenocarcinoma we detected a clonally 

expanded subpopulation of cells within the Barrett’s tissue, which had massive SGA 

affecting 19% of the genome in the last 3 of 11 years of follow-up. In summary, these 

findings suggest that NSAID use may reduce SGA acquisition rate and that neoplastic cell 

populations in Barrett’s can maintain evolutionary stasis over decades potentially explaining 

why 90-95% of individuals w ith Barrett’s remain benign and never progress to esophageal 

adenocarcinoma.   



vii 

TABLE OF CONTENTS 

Chapter 1. Introduction .............................................................................................1 

1.1. Progression of Barrett’s esophagus to esophageal adenocarcinoma ...............1 

1.2. Barrett’s esophagus biology........................................................................... 3 

1.3. The application of evolutionary theory to cancer........................................... 7 

1.4. The theory of clonal evolution, or the theory of the genetics of neoplastic 
development............................................................................................................ 8 

1.5. Application of phylogenetic tree estimation or cell lineage reconstruction in 
cancer data ............................................................................................................. 10 

1.6. Modeling studies of genetic diversity and clonal evolution .......................... 12 

1.7. Advancements in backward-in-time estimation of the genetic history of a 
population .............................................................................................................. 14 

1.8. Chemoprevention in Barrett’s esophagus to prevent progression to 
esophageal adenocarcinoma .................................................................................. 14 

1.9. Conclusion.................................................................................................... 15 

Chapter 2. Pilot studies evaluating genomic DNA of Barrett’s esophagus biopsies 
for somatic genomic abnormalities............................................................................ 16 

2.1. Chapter Introduction .................................................................................... 16 

2.2. Pilot experiment evaluating Illumina 109K SNP platform ............................ 18 

2.3. Pilot experiment evaluating Illumina 317K SNP platform: clonal evolution in 
one individual with Barrett’s esophagus over 16 years of follow-up .......................22 

2.4. Cross-sectional meta-analysis of copy loss and loss of heterozygosity in 
Barrett’s esophagus ................................................................................................34 

2.5. Pilot experiment evaluating Affymetrix SNP6.0 and Illumina OmniQuad 1M 
SNP platforms........................................................................................................37 

2.6. Chapter summary .........................................................................................44 

Chapter 3. Agent-based model of evolutionary dynamics in Barrett’s Esophagus ...46 

3.1. Abstract ........................................................................................................47 

3.2. Introduction..................................................................................................48 

3.3. Methods........................................................................................................52 

3.4. Results ..........................................................................................................60 

3.5. Discussion ....................................................................................................64 

3.6. Conclusion....................................................................................................66 

Chapter 4. NSAIDs modulate clonal evolution in Barrett’s Esophagus...................68 



viii 

4.1. Abstract ........................................................................................................69 

4.2. Introduction..................................................................................................70 

4.3. Results ..........................................................................................................74 

4.4. Discussion ....................................................................................................78 

4.5. Methods........................................................................................................83 

4.6. Figures..........................................................................................................89 

4.7. Supporting information ................................................................................96 

4.8. Chapter conclusion ..................................................................................... 116 

Chapter 5. Pilot in vitro experiment evaluating the genotoxic effect of deoxycholic 
acid on the evolutionary dynamics of SGA............................................................... 117 

5.1. Introduction................................................................................................ 117 

5.2. Methods...................................................................................................... 118 

Chapter 6. Conclusions .......................................................................................... 128 

6.1. Thesis ......................................................................................................... 128 

6.2. Future directions for research in evolution in cancer .................................. 128 

Appendix 134 

List of Figures.......................................................................................................... 134 

List of Tables ........................................................................................................... 143 

References 145 

  



1 

Chapter 1. Introduction 

1.1. Progression of Barrett’s esophagus to esophageal adenocarcinoma 

This doctoral dissertation relates to a pressing human need – to cure cancer. Cancer is a 

disease that can end a human life prematurely. A research study by the American Cancer 

Society estimates that, in the year 2012, 1,638,910 people would be diagnosed with cancer 

and 577,190 people would die from cancer in the U.S., or stated simply, nearly one of every 

four deaths in the U.S. is associated with cancer [1]. In this work, I investigate the 

phenomenon of within-individual change in the genome of neoplastic cell 

populations over time and I investigate and suggest ways to control somatic genomic 

change over time to prevent cancer and extend human health span. I hypothesize that 

the genomes of normal and neoplastic cells acquire somatic genomic abnormalities gradually 

over time resulting in progressive transformation to invasiveness and malignancy. 

Throughout this work, I examine the somatic genomic change over time in neoplastic cell 

populations through evolutionary lens by adhering to clonal evolutionary theory [2] 

according to which neoplastic cell populations evolve by acquisition of somatic genomic 

change permitting Darwinian natural selection of variant cell lineages. I hypothesize that 

measuring somatic genomic evolutionary dynamics of neoplastic cell populations within 

individuals with Barrett’s esophagus would help distinguish individuals at low and high risk 

of progression to esophageal adenocarcinoma that would help prevent overdiagnosis and 

overtreatment in low-risk individuals and underdiagnosis and undertreatment in high-risk 

individuals.  
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Does carcinogenesis have clearly defined stages? Berenblum first described quantitatively in 

mouse that the process by which cells become hyperplastic, that is, acquiring overgrowth 

compared to neighboring normal cells, can be divided into two stages, “initiation” and 

“promotion”, where cells can be initiated by application of a carcinogen, but they may lay 

latent or dormant within the tissue, unless a distinct promoting agent triggers clonal 

expansion manifesting hyperplasia [3]. Moreover, Berenblum demonstrated that distinct 

chemical carcinogens vary in their ability initiating and promoting abilities [3]. Individuals 

with Barrett’s esophagus enter clinical management after being symptomatic, and biopsies 

are collected only if a Barrett’s segment is already present, thus we can never observe the in 

vivo initiation of Barrett’s neoplasia and can only infer the elapsed time since initiation 

indirectly based on initiation hypotheses and modeling assumptions. Foulds first described 

the term “progression”, in the context of chemical carcinogenesis in model organisms, where 

progression can be thought of as a distinct stage in neoplastic development marked by 

karyotypic alterations in cell genotype and increased cellular growth rate, invasiveness, and 

metastasis in cell phenotype [4]. My studies are limited to observing the genomic changes of 

already hyperplastic and neoplastic cells over time, or the promotion, and in only one case 

the promotion and progression phases in neoplastic evolution in Barrett’s esophagus and its 

progression to esophageal adenocarcinoma.  

My doctoral thesis seeks to shift the target of interventions from targeting individual genes 

to targeting the dynamics of the whole genome. By characterizing the whole genome I aim 

towards a holistic approach to the problem by measuring evolutionary biology parameters, 

such as mutation rate, clonal expansion rate, magnitude of genetic diversity over time, 

phylogenetic tree imbalance, etc., and associating such measures with clinical variables as 
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opposed to aiming towards a reductionist approach by associating abnormalities in individual 

genes with clinical variables. Can we prevent some cancers by lowering the rate of genomic 

changes or the clonal expansion rate of genetically unstable clones? The field is ripe for such 

a change because, although somatic evolution is widely accepted as the theory of cancer, the 

tools from evolutionary biology for studying that process have not yet been widely adapted 

to study and prevent cancer. In my view, a theory of cancer would not be complete without 

pairing theoretical models of genome dynamics over time with experimental in vivo 

observations of genome dynamics over time in human biopsy specimens. 

1.2. Barrett’s esophagus biology 

Barrett’s esophagus (BE) is a condition of the distal esophagus in which the normal stratified 

squamous epithelium is replaced by columnar epithelium with intestinal metaplasia [5]. BE is 

thought to develop as complication of chronic gastroesophageal reflux disease (GERD) and 

individuals with BE are at increased risk of progression to esophageal adenocarcinoma (EA): 

1-7 persons with BE progress to EA per 1000 person-years [6,7]. Scientific progress is 

providing new understanding of previously puzzling phenomena. The puzzling 

phenomenon in Barrett’s esophagus is why 90-95% of individuals with BE follow a 

benign course and never develop EA, and accordingly why the remaining 5-10% of 

individuals do progress to EA. I investigate this phenomenon by investigating the whole 

genome of Barrett’s neoplastic cells from biopsies collected from 13 individuals over 6-19 

years, with the hypothesis that the change in the number of acquired somatic genomic 

alterations over time may provide an insight into the phenomena of retaining a benign 

course over decades versus developing malignancy. 
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Reid, Kostadinov, and Maley suggested new strategies for clinical management of Barrett’s 

esophagus by integrating clonal evolutionary theory into clinical diagnosis and practice [8]. 

The current and novel paradigms in the biology of Barrett’s metaplasia are summarized in 

Figure. 

 

Figure 1.1. Barrett's specialized intestinal metaplasia and mucosal defense. Barrett's 
metaplasia arises in an environment of chronic reflux in which the distal esophagus is 
exposed to high levels of local and systemic damage from acid, bile, and tobacco products, 
as well as inflammatory responses to the injury [5,9–14]. All are mutagenic. Barrett's 
metaplasia has a number of defenses against this mutagenic environment that are not found 
in esophageal squamous epithelium [5,15]. A, Barrett's metaplasia secretes anions, including 
bicarbonate, that participate in buffering acid reflux [16]. B, Barrett's metaplasia is a well 
differentiated epithelium with crypt architecture in which putative stem cells residing at the 
base give rise to proliferating transient amplifying cells and differentiated cells that are 
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sloughed into the lumen. This architecture has been proposed to be tumor-suppressive 
because mutations in transient amplifying or differentiated non-stem cells will be shed from 
the body before they can accumulate the serial mutations that lead to cancer [17]. C, Barrett's 
metaplasia secretes a thick adherent mucus that is not present in squamous esophageal 
epithelium for defense against acid and bile reflux [18–21]. D, Barrett's esophageal cells 
maintain physiological intracellular pH after prolonged and repeated reflux exposure [22]. E, 
The tight junctions of Barrett's metaplasia overexpress claudin 18 and several other claudins 
(including claudins 1, 4, 12, and 23) that provide protection against acid permeation [23]. F, 
A combined expression and proteomics study of Barrett's metaplasia reported 
overexpression of genes involved in mucosal defense and repair [24]. Figure and figure 
legend adapted from Reid et.al. [8]. 
 

The British oncologist Willis defined the essence of a neoplasm as “A neoplasm … the 

growth of which persists in the same excessive manner after cessation of the stimuli which 

evoked the change” [25]. The persistence of Barrett’s metaplasia in the esophagi of BE 

individuals fits this description of a neoplasm, where whichever stimuli first evoked the 

replacement of multi-layer squamous epithelium to single-layer columnar epithelium 

(metaplasia) the cessation of such stimuli, by acid suppression medications or anti-reflux 

surgery do not appear to result in regression of the Barrett’s segment. I hypothesize that the 

persistence of Barrett’s metaplasia can be explained by irreversible genomic changes, where a 

genome that has lost genomic information by deletion and loss of heterozygosity, cannot 

regain such information back to revert back to expressing normal function. I evaluated the 

length of the Barrett’s segment length over decades of follow -up time in 248 individuals with 

Barrett’s participating in the Seattle Barrett’s Esophagus Research Program. I found that the 

segment length remains 5.7 ± 3.6cm (mean ± standard deviation) long over decades (Figure 

1.2) that shows both the persistence of this tissue despite acid suppressive medications, and 

the relative constancy in the neoplastic cell population size of a Barrett’s segment.  
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Figure 1.2. Typical Barrett’s segment length remains about 5cm during endoscopic 
surveillance. Segment length data over time represents 248 individuals with BE from the 
Seattle Barrett’s Esophagus Program cohort. Each point  represents an estimate of the 
distance between measured lower esophageal sphincter (LES) and ora serrata (OS) that are 
recorded at an endoscopy (out of 489 total) and that are proxies for the extent of the 
Barrett’s segment. Over all 489 endoscopies, the typical Barrett’s segment length measures 
5.7 ± 3.6cm (mean ± s.d) and linear (blue line) and local weighted linear regressions (red 
curve) show that segment lengths stay relatively constant over time. 

 

The following chapters explore the genomic changes and evolutionary dynamics of 

neoplastic cells occurring within BE tissues having this apparent constancy in length over 

time. The word neoplasm is concisely defined as “tumor; any new and abnormal growth, 

specifically one in which cell multiplication is uncontrolled and progressive” and the word 

cancer is concisely defined as “a neoplastic disease the natural course of which is fatal” [26]. 

These two definitions capture the fundamental biology of cancer as a disease, namely the 

phenomenon of uncontrolled and progressive overgrowth of cell populations that may have 

a fatal outcome. These two definitions also present the crux of what I define as the cancer 

diagnosis problem: Can we diagnose neoplasms (tumors) and predict which ones 
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would develop into malignant cancers that have a fatal natural course and which 

ones would instead stay benign and not be fatal? 

1.3. The application of evolutionary theory to cancer  

While the Dorland medical dictionary refers to the cancer disease as having a “natural 

course”, I conceptualize the cancer disease as having an “evolution”, that is, a somatic cell 

level theory of Darwinian evolution, or viewing the cancer disease development as an 

evolutionary and ecological process [27]. Charles Darwin put forward that the mechanism of 

evolution is natural selection, which has three requirements: 1) variation in a population of 

individuals 2) such variation must be heritable, and 3) such heritable variation must confer 

differential fitness, i.e. a heritable trait that confers better reproductive or survival advantage 

to individuals would increase in frequency in the population over several generations. 

However, Darwin avoided the term evolution and instead preferred to use the term “descent 

with modification” possibly because evolution implied a pre-charted trajectory or a 

premeditated point to be reached by an evolving biological species. Instead of defining 

neoplastic evolution as “a process of change in a certain direction”, I limit neoplastic 

evolution to also mean “descent with modification” implying that the process itself is 

inherently random and no premeditated endpoint exists and no trajectory of evolution’s 

course can be predicted. In other words, neoplastic evolution in Barrett’s esophagus does 

not necessarily have to have a premeditated adenocarcinoma endpoint. In cancer, “descent 

with modification” describes the process by which somatic cell populations evolve or 

descend with modification by the mechanism of natural selection. Natural selection applies 

to somatic cell populations since they can: 1) acquire somatic genomic abnormalities (SGAs), 
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such as DNA point mutations, copy number alterations, and structural chromosomal 

rearrangements, 2) such SGAs are heritable over generations since cells divide asexually by 

mitosis that copies SGAs from a parent cell’s DNA to a daughter cell’s DNA, and 3) such 

heritable SGAs can confer differential fitness to cells that bear them, i.e. survival or 

reproductive advantages manifested by abnormal overproliferative somatic cell phenotypes. 

Acquisition of SGAs alters the genomes of normal somatic cells within somatic tissues and 

by the mechanism of natural selection normal somatic cell populations can evolve 

hyperplasia, neoplasia, and malignancy by selfishly increasing in numbers, or increasing 

fitness relative to neighboring normal cells. Neoplastic cell populations that acquire SGA 

begin exhibiting one or more of the cell phenotypes (“hallmarks”) of cancer by altering the 

molecular pathway networks of somatic cell homeostatic cell growth, cell death, and cell 

designated tissue function [28]. 

1.4. The theory of clonal evolution, or the theory of the genetics of neoplastic 

development 

To begin with, I will define some terms from my point of view. The neo-Darwinian 

synthesis brings together Darwin’s theory of descent with modification and Mendelian 

genetics. Population genetics is a field of study that rapidly advanced since the neo-

Darwinian synthesis and shifted focus from individual thinking to population thinking. 

Mathematical population genetics provides a theoretical framework for describing the 

changes in the genetic constitution of populations over time, most notably, changes in allele 

frequencies over time. Phylogenetics can be categorized as a subfield of population genetics, 

which is primarily concerned with estimating the morphologic (phenotypic) or genetic 
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(genotypic) relatedness among species in a population of species or among individuals in a 

population of individuals. Evolutionary dynamics is the process of change over time in a 

population of individual entities that can evolve, i.e. the change in certain characteristics of 

the population as result of the processes of mutation, natural selection, and migration 

(expansion in space) over time within the population. 

Several scientific advancements put forward evolutionary thinking as it relates to neoplastic 

development. Theodor Boveri first theorized that SGA may underlie neoplastic growth by 

observing in frog embryos multipolar mitoses that caused improper segregation of DNA to 

daughter cells and resulted in the generation of genetic variation and phenotypic 

abnormalities [29]. Later, in early cytogenetic studies Peter Nowell discovered the 

Philadelphia chromosome, a common chromosomal rearrangement in chronic myeloid 

leukemias and suggested in 1976 that “the acquired genetic variability permits stepwise 

selection of variant cell lineages that underlies tumor progression”, which became known as 

the clonal evolution theory of neoplastic progression [2]. In 2006, Merlo et al. reviewed 

multiple studies to support the notion that neoplastic progression is an evolutionary and an 

ecological process [27] suggesting that clonal evolution theory has survived challenges for 

more than 40 years and can be thought of as the underlying theory of cancer.  

Tumor genetic heterogeneity and aberrant karyotype (aneuploidy) is a ubiquitous observation 

in primary tumors and metastatic cancers. Maley et al. showed that increased genetic 

diversity in BE is associated with increased risk of progression to EA [30]. Merlo reviewed 

the role of measuring genetic diversity in cancer [31]. Two studies by Park et al. showed that 

increased genetic heterogeneity in breast cancer was associated with poor clinical outcomes 

[32,33]. Leedham et al. showed individual crypt heterogeneity within Barrett’s segments by 
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using LOH markers and p16 and p53 sequence data [34]. A recent study by Beroukhim et al. 

of 3131 cancer specimens from 26 histologic types showed widespread somatic genomic 

alterations (SGA) involving both focal and chromosome-wide regions of the genome: 75,700 

copy number gains and 55,101 copy number losses were identified, covering an average of 

17% and 16% of the genomes, respectively, in cancer samples, compared to an average of 

0.35% and 0.1% in normal samples [35]. Vogelstein and colleagues advanced a chromosomal 

instability theory underlying cancer development [36–40]. Despite the recent massive 

accumulation of data on genetic alterations in cancers, the process of somatic genomic 

evolution that leads to cancer is severely understudied, even though it is the driving force for 

neoplastic progression. The challenge for cancer prevention is to halt or delay the genome 

instability that leads to somatic genomic evolution and progression to cancer. 

1.5. Application of phylogenetic tree estimation or cell lineage reconstruction in 

cancer data 

Since mitotic cell division results in one cell replicating in two, assuming no horizontal gene 

transfer, the cell lineage history of a mitotically dividing cell population must have a 

phylogenetic tree structure. Navin et al. recently reviewed the potential of tracing individual 

cell lineages in tumors [41]. Also, Navin et al. emphasize the utility of sectioning a primary 

tumor into sectors thereby preserving spatial locations of individual sectors, and evaluating 

sectors by flow cytometry or by array-CGH for genomic abnormalities in order to infer the 

natural history of tumor progression [42]. Salipante and Horwitz review the utility of 

capturing genomic variation at genomic sites that have high enough somatic mutation rate in 

order to infer the phylogenetic fate of cell lineage [43]. Frumkin et al. and Wasserstrom et al. 
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also show that parallel measurements of microsatellites can be used for inferring cell lineages 

of cells in various tissues within human or mouse [44,45]. Frumkin e. al. also showed the 

feasibility of such approach by typing microsatellites of a mouse tumor and its associated 

metastases to reconstruct the temporal order of tumor progression [46]. Both Horwitz and 

Shapiro groups develop their own technologies for typing multiple distinct sets of 

microsatellites, usually using capillary electrophoresis and robotics for parallelization 

throughput. However, those technologies quickly become outdated by SNP genotyping and 

next-gen sequencing of entire genomes at ever smaller scales: from micrograms of DNA to 

DNA of single cells. A 2012 review from Carlson et al. from Horwitz’s group confirms the 

utility of deep sequencing technologies for achieving ever more accurate cell fate maps [47]. 

One of the first demonstrations of tree estimation was in Louhelainen et al. who typed LOH 

at 87 loci of multiple biopsies from multifocal bladder cancers and found that multiple 

biopsies appeared to share similar LOH abnormalities thereby suggesting monoclonal origin 

as opposed to independent multiclonal origins of those cancers [48]. Ruiz et al. used flow 

cytometry, FISH, and PCR to show clonal evolution in a single individual with prostate 

adenocarcinoma by analyzing serially sampled (longitudinal) biopsies [49]. Clonal analysis 

from 40 pancreatic adenocarcinoma in the same study mapped genomic alterations in 

primary and metastatic sites within individuals. The authors concluded that variant clonal 

populations can exist within and between biopsies of the same primary tumor and 

characterization of the genome and clonal analysis can help manage treatment options and 

evaluate the evolutionary response of treatments. However, they did not estimate clonal 

relationships using evolutionary methods, such as phylogenetic tree estimation, based on the 

shared patterns of DNA content abnormalities and the shared patterns of FISH probe 
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presence and absence. Salk et al. showed that poly-guanine tract (a mononucleotide repeat 

microsatellite locus, i.e. a string of “G”s) loci can be useful neutral markers to identify fields 

of clonal expansion in patients with ulcerative colitis [50]. Salk et al. used PCR of poly-G 

tracts to show that detection of increased clonal expansion increased risk of progression to 

colorectal cancer [51]. Tsao et al. sampled mismatch repair deficient (MMR-) colorectal 

tumors and measured the length of microsatellite loci with PCR to estimate the mitotic age 

of tumors based on a mathematical model of neoplastic progression, based on the 

expectation of increased variation in microsatellite length as the tumor undergoes successive 

mitoses over time [52]. Campbell et al. detected multiple co-existing subclonal cell 

populations within individual patients (n=22 patients total) with B-cell chronic lymphocytic 

leukemia using ultra-deep pyrosequencing of the immunoglobulin locus, since rearrangement 

at that locus occurs at high frequency, i.e. the somatic mutation rate at that locus is high 

making it a useful neutral marker of clonal evolution [53]. In that study, an unrooted 

parsimony in PHYLIP was used on sequences that were multiply aligned with 

CLUSTALW2. Yachida et al. inferred a pathway series of sequence alterations in pancreatic 

adenocarcinoma [54]. All the above studies exemplify the application of evolutionary 

approaches to cancer data, i.e. estimation of phylogenetic relatedness among neoplastic 

and/or cancer cells. 

1.6. Modeling studies of genetic diversity and clonal evolution 

The acquisition of somatic genomic abnormalities results in heterogeneous neoplasms and 

computer modeling of genomic diversity in neoplasms can help understand plausible 

scenarios of how the rates of clonal lineages growth, spread, and mutation affect the overall 



13 

spatial genetic structure of the entire cell population. Chao et al. used agent-based modeling 

and experimental skin lesion experimental data and found that the speed of clonal expansion 

is driven by death of neighboring cells and appears to follow quadratic rather than 

exponential growth [55]. Martens et al., in collaboration with Carlo Maley and myself, used a 

2D spatial stochastic Moran model and analytical formulations to show that most parameter 

conditions may result in clonal expansions that arise independently at distinct locations 

within a neoplasm and come into contact, or interfere, with each other’s expansion, which 

results in increased waiting time to cancer [56]. This effect is also termed Hill-Robertson 

(clonal) interference. Only small neoplasm size and strong selection will favor periodic 

selection over clonal interference. Graham et al. hypothesized three plausible scenarios that 

generate the high genetic diversity that is commonly observed in Barrett’s esophagus: high 

mutation rate coupled with strong selection, synergizing mutually beneficial interactions 

between heterogeneous clones, and an unidentified landscaping alteration driving an initial 

clonal expansion on the back of which neutral mutations can hitchhike generating diversity 

[57]. Sottoriva et al. developed an agent-based model to explore the generation of epigenetic 

methylation patterns during clonal expansions of a growing neoplasm [58]. Nicolas et al. 

used crypt methylation patterns, generated by bisulfite treatment and sequencing the BGN 

locus on chromosome X, to infer population parameters, such as stem cell number per 

crypt, in colorectal cancer [59]. This pioneered the use of approximate Bayesian computation 

for inference of parameters by matching summary statistics from observed experimental data 

to summary statistics obtained from simulated data. While the above recent advancements in 

modeling have illuminated aspects of genetic diversity dynamics, more modeling is needed in 

matching models to observations in specific systems, such as Barrett’s esophagus, in order to 
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bound some of the parameter space for explanatory power and for specific predictions for 

currently unobservable underlying dynamics. 

1.7. Advancements in backward-in-time estimation of the genetic history of a 

population 

Recent advancements in computing power allowed the application of Kingman’s coalescent 

theory (for history of coalescent theory refer to [60]) to genetic data, for estimation of 

population genetic parameters. Kuhner et al. developed Bayesian Markov Chain Monte 

Carlo (MCMC) methods for estimating population genetic parameters from SNP data [61]. 

Drummond et al. developed the software BEAST, which is a flexible Bayesian inference 

framework for population-genetic parameter inference from serially sampled data [62]. 

Excoffier et al. developed the software SerialSimCoal, which provides a forward simulation 

of population demographics and mutation under various scenarios and parameters, 

importantly producing temporally spaced samples [63]. Both BEAST and SerialSimCoal 

software programs were, and have been to date, open-source that allowed me to modify 

their code and add on novel evolutionary models for novel types of genetic data, such as 

data for copy number and LOH abnormalities from SNP array data.  

1.8. Chemoprevention in Barrett’s esophagus to prevent progression to esophageal 

adenocarcinoma  

NSAIDs have a strong and significant effect on reducing the incidence and mortality of 

many cancers, including esophageal, colorectal,  lung,  and other malignancies, [Hazard ratio 

was 0.66 (95% CI 0.50-0.87) for all malignancies], however their effect manifests significantly 

after more than 5 years of regular use [64]. The majority of epidemiological evidence 
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suggests that NSAID use in individuals with BE reduces risk of developing EA [65–68]. 

Vaughan et al. evaluated 350 individuals followed up for a median of 5.4 years (range 0.2-8.9) 

and showed that the 5-year cumulative incidence of EA was 14.3% (95% CI 9.3-21.6 ) for 

never users and 6.6% (3.1-13.6) for current NSAID users [67]. The hazard ratio for EA for 

NSAID users was 0.20 (95% CI 0.10-0.41) compared with NSAID non-users [67]. Galipeau 

et al. showed that NSAID use modulates the risk of developing DNA content abnormalities 

(tetraploidy and/or aneuploidy), assayed by flow cytometry, and genetic abnormalities, such 

as loss of heterozygosity (LOH) on chromosomes 9p and 17p, assayed by PCR of small 

tandem repeat (STR) loci [68]. The benefits of NSAID use for chemoprevention are 

attractive due to their widespread use and low toxicity; however the molecular mechanisms 

underlying their preventive effect are not fully understood. I evaluate 13 individuals with 

Barrett’s in Chapter 4 to show that NSAIDs modulate acquisition of SGA in neoplastic cell 

populations.  

1.9. Conclusion 

In summary, in the next chapters, the population genomic transformation of neoplastic cells 

in Barrett’s esophagus would be evaluated in vivo in human over decades of follow-up. 

Hopefully, the reader would gain novel insights into the simple central question: “How does 

the somatic genome evolve over time in the context of neoplastic evolution and progression 

to cancer?”, as I have attempted to best describe qualitatively and quantitatively using novel 

technologies for genomic characterization and novel application of methods from 

evolutionary biology. 
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Chapter 2. Pilot studies evaluating genomic DNA of Barrett’s 

esophagus biopsies for somatic genomic abnormalities 

2.1. Chapter Introduction 

Ever since the sequencing of the human genome [69,70], rapidly emerging commercial 

platforms and technologies allowed evaluating the DNA of human tissue specimens for copy 

number and loss of heterozygosity abnormalities. At this time, 200 nanograms of DNA 

extracted from a human biopsy sample can be evaluated with several commercially available 

technologies that have probes to evaluate about 1 to 2 million locations of the 3.2 billion 

base pair human genome for about four hundred dollars per sample. Full sequencing of 

entire genomes is also available, though the cost is about five thousand dollars per sample 

(about a microgram of DNA). Throughout my studies I worked with data from six 

platforms for genome-wide DNA assessment: Illumina 33K, Illumina 109K, Illumina 317K, 

Illumina 550K, Illumina 1M, and Affymetrix 1M (SNP6.0), single nucleotide polymorphism 

(SNP) arrays. I analyzed data from several pilot studies that were designed to evaluate the 

capabilities of various technologies to detect accurately and reproducibly DNA copy number 

changes and loss of heterozygosity changes in genomic DNA from human tissue specimens. 

I collaborated with the Seattle Barrett’s Esophagus Program (SBEP) group to design and 

execute several pilot studies to evaluate the Illumina platform, which provided preliminary 

evidence for larger scale (case control and case cohort) studies of SGA in biopsies from 

individuals with Barrett’s in the SBEP cohort.  
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The Illumina SNP platform is based on magnetic bead chips designed to detect single 

nucleotide polymorphisms (SNPs) in a human sample. The main application of SNP array 

technology has been to call out the major or minor allele (nucleotide variants at a single base 

pair position on a chromosome) at each of 33,000 (Illumina Infinium 33K array)  to 1 

million (Illumina OmniQuad 1M array) positions in the human genome. The design and 

manufacturing of a SNP array can influence significantly the quality of results, usually 

summarized with two metrics: the signal to noise ratio and the SNP call rate. Gunderson et 

al. showed that the advantage of Illumina’s SNP arrays in terms of reducing spatial biases 

across arrays is the barcoding of magnetic beads and the random spread of beads on a glass 

slide hexagonal lattice during manufacturing and scanning of the barcodes and SNP calling 

during single-base pair extension reaction emitting a fluorophore [71]. Peiffer et al. showed 

the utility of Illumina SNP arrays for detecting regions of DNA copy number alterations and 

loss of heterozygosity [72]. The developments of the Illumina SNP platform increased 

density of the probes over time allowing an increased genomic coverage to detect break 

points of genomic abnormalities at a higher resolution and to detect small indels.  

The SBEP group had evaluated Illumina 33K arrays prior to 2006 and I started a 

collaboration with them to evaluate Illumina 109K arrays in 2006, Illumina 317K arrays in 

2006-2009, and Affymetrix SNP6.0 and Illumina OmniQuad 1M arrays in 2009-2012. We 

performed several pilot experiments, four of which I describe below, to assess somatic 

genomic abnormalities (SGA) in Barrett’s biopsies. 
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2.2. Pilot experiment evaluating Illumina 109K SNP platform 

2.2.1. Introduction and Methods 

One of the first pilot experiments we performed was evaluating the signal to noise ratio in 

Illumina 109K-SNP arrays. We selected two biopsy samples, two gastric samples, and one 

lymphocyte sample from the same BE individual. The lymphocyte sample contains 

leukocytes (white blood cells) that contain DNA that represent the germline genotype of the 

individual, that is, the DNA lacks any somatic genomic abnormalities. Usually, the DNA 

from a gastric biopsy also lacks somatic genomic abnormalities. The aim of the experiment 

was to test signal quality difference between two halves of the same biopsy and between two 

biopsies from the same patient. The biopsy samples were processed at FHCRC (for full 

method description of sample processing refer to Methods in Chapter 4). The final sample 

sheet and raw array data were provided to me. 

Sample ID Sample type Input DNA (ng) 

2 Gastric 60 

3 Gastric 30 

4 BE1 30 

5 BE1r (BE1 replicate) 45 

6 BE2 30 

7 Lymphocyte 150 

8 BE2r (BE2 replicate) 75 

Table 2.1. Pilot study design for evaluating SGA with Illumina 109K SNP array technology. 
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I processed raw SNP array data with Illumina’s BeadStudio software, and wrote Perl 

algorithms to detect loss of heterozygosity (LOH) based on genotype calls output from 

BeadStudio. I defined a SNP as “LOH-informative” if a SNP is heterozygous (“AB”) in 

leukocyte or gastric sample, representing the germline state of the SNP, since such SNPs 

would be informative for detecting loss of heterozygosity when such SNPs get an “AA” or 

“BB” genotype call in Barrett’s epithelium samples. I developed a Perl algorithm to iterate 

trough every SNP along a chromosome and define contiguous regions of LOH (blocks of 

LOH), such that contiguous regions contained more than one LOH-informative SNPs. 

Also, the algorithm was parameterized to trust the call of a single LOH-informative SNP 

(version A) or to trust the call of two contiguous LOH-informative SNPs (version B). In 

other words, in version B, if any one of two neighboring LOH-informative SNPs is not 

called LOH, then both SNPs get a non-LOH call, which effectively eliminates incorrectly 

called singlet SNPs, and increases LOH region calls stringency. In both versions A and B, 

two neighboring LOH loci could be separated by LOH-uninformative loci, which are 

discarded from consideration. Genotype call concordance was defined as the proportion of 

SNPs sharing the same genotype call between two samples, out of a total of 109,365 SNPs. 

2.2.2. Results and Discussion 

The total number of SNP probes on the 109K SNP platform was 109,365 and when 

comparing the genotype calls between samples 2, 3, and 7, there was 99.27% genotype call 

agreement among all of the three samples, or only 791 SNPs had discordant calls between 

any of the three control samples. This suggests both that it is unlikely that any of these 

samples contain a DNA abnormality and that 99.27% of the SNP probes gave out signal 
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intensity that after normalization and processing resulted in accurate genotype calls. Also, in 

this individual, 35,788 SNPs had a heterozygous “AB” call, thereby labeling 35,788 SNPs as 

“LOH-informative” SNPs, and 72,786 SNPs had a homozygous “AA” or “BB” call, thereby 

discarding them from LOH analysis. As opposed to apparently normal genotype in samples 

2,3, and 7, hereafter referred to as the control samples, multiple somatic genomic 

abnormalities were detected in the BE samples.  

A total of 719 LOH-informative SNPs showed LOH in any of the samples 4, 5, 6, and 8 

when using version A of the LOH detection algorithm. The concordance when comparing 

the same biopsy split in half and run on two separate arrays (within biopsy concordance) was 

72.11% and 78.28%. The concordance when comparing two biopsies collected from two 

different levels from the same endoscopy from the same individual (between biopsy 

concordance) ranged from 60.49% to 63.57%. 
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n=719 BE1r  BE2  BE2r  

BE1  72.11% 63.21%  63.57% 

BE1r   60.49% 62.82%  

BE2    78.28%  

Table 2.2. Genotype call concordance within and between biopsies by trusting genotype calls 
of each LOH-informative SNP when detecting contiguous LOH regions. Samples labeled 
with “r” are the same biopsy split in half, whereas samples labeled with “1” and “2” are 
biopsies collected from two different levels in the Barrett’s segment. 

 

n=272 BE1r  BE2  BE2r  

BE1  98.75% 82.89% 82.15% 

BE1r   82.65% 81.25% 

BE2    96.88% 

Table 2.3. Genotype call concordance within and between biopsies by trusting genotype calls 
of two neighboring LOH-informative SNPs when detecting LOH regions. 

 

Because of apparently low concordance in SNP calls (Table 2.2) we used version B to call 

regions of LOH by trusting the genotype call of two neighboring LOH-informative SNPs 

when evaluating LOH event break points. A total of 272 LOH-informative SNPs showed 
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LOH in any of the samples 4, 5, 6, and 8 (Table 2.3). The concordance when comparing the 

same biopsy split in half and run on two separate arrays (within biopsy concordance) was 

98.75% and 96.88% (Table 2.3). The concordance when comparing two biopsies collected 

from two different levels from the same endoscopy from the same individual (between 

biopsy concordances) ranged from 81.25% to 82.89% (Table 2.3). 

2.2.3. Conclusion 

The Illumina 109K SNP platform performed well for identifying regions of LOH from 

isolated DNA from BE biopsies. The results showed that DNA isolated from lymphocyte 

samples and gastric tissue specimens appear normal, that is, lacking any DNA LOH 

abnormalities. When biopsies were split in half and evaluated with two separate SNP arrays, 

SNPs in regions of LOH showed 72-78% concordance in genotype calls, suggesting very 

low between-array variation in signal quality. However, we noticed that the genotype call of a 

single SNP cannot be trusted and when we increased stringency by trusting the combined 

call of two neighboring LOH-informative SNPs, the concordance in genotype calls increased 

to 97-99%, suggesting that bioinformatic methods can improve stringency and accuracy of 

LOH calls. 

2.3. Pilot experiment evaluating Illumina 317K SNP platform: clonal evolution in one 

individual with Barrett’s esophagus over 16 years of follow-up 

2.3.1. Introduction and Methods 

We designed a longitudinal study of a single individual with Barrett’s esophagus to test 

performance of the Illumina 317k platform and to continue developing computational 

methods for processing Illumina SNP data. We selected an individual who had been in 
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endoscopic surveillance for over 16 years and the morphology diagnosis had been metaplasia 

throughout follow-up endoscopic surveillance. We had no specific prior expectation of the 

dynamics of somatic genomic abnormalities (SGA) and we only hypothesized that we would 

observe accumulation of SGA over time. The aim of this study was to develop 

computational methods for handing longitudinal data from BE biopsies from the Illumina 

platform and develop methods for estimating phylogenies and estimating population-genetic 

metrics, such as rate of acquisition of SGA. 

id # date biopsy Level sample type ng 

1 1989 33 BE 49 

2 1989 29 BE 205 

3 1989 29 BE 70 

4 1993 32 BE 112 

5 1993 30 BE 34 

6 1993 26 BE 71 

7 2001 36 BE 120 

8 2001 32 BE 182 

9 2001 30 BE 94 

10 2006 30 BE 118 

11 2006 28 BE 191 

12 2006 26 BE 202 

13 2006 N/A blood 104 

14 2006 N/A blood 35 

15 2006 43 gastric 200 

16 2006 50 gastric 200 
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Table 2.4. Sixteen longitudinal samples from the same individual were analyzed with Illumina 
317K-SNP arrays. DNA from Barrett’s samples was extracted using epithelial isolation 
technique [73] (for detailed sample preparation information see Methods in Chapter 4). 
DNA from blood and gastric samples were extracted without the epithelial isolation step. 
Biopsies were taken from various time points and various levels from the Barrett’s segment. 
Various final amounts of DNA were used on the arrays to compare signal-to-noise ratio 
correlation with input DNA amount. 

All raw intensity files were loaded in Illumina’s BeadStudio, normalized and clustered using 

the SNP manifest and canonical genotype cluster files, provided by Illumina, for build36 of 

the human genome. In the following analyses we used the normalized, total signal intensity 

“R” for each SNP, which is the sum of the normalized X (“A” allele, Cy5 red) and Y (“B” 

allele, Cy3 green) intensities. We also used the B allele frequency (BAF), which is a modified 

version of the allelic intensity ratio theta (θ = 2/p*arctan(Y/X)), to reduce SNP-to-SNP 

variation in theta using the canonical genotype clusters. 

I used Camin-Sokal maximum parsimony reconstruction implemented in PHYLIP [74] to 

infer the phylogenetic tree of SGA evolution at loci that showed variation in copy number or 

LOH between samples (informative loci). 

2.3.2. Results and Discussion 

DNA extracted from leukocytes or from a gastric sample represents an unaltered 

state of the genome 

To detect SGA, a sample representing the normal, unaltered state of the somatic genome is 

needed. During an endoscopy, typically a blood sample and a biopsy from the upper part of 

the stomach are collected. The gastric biopsy is taken at around ~43-50cm endoscopic depth 

from the incisors of the patient, past the gastroesophageal junction (GEJ). I compared all 

four samples, samples #13, #14, #15, and #16, against each other and found concordance 
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between the signal intensity genome-wide, and no apparent somatic alterations by taking log 

ratios between any two samples (data not shown). Ultimately, blood samples are comprised 

of red and white blood cells, where only white blood cells (leukocytes) contain DNA. And, 

DNA from leukocytes and DNA from gastric epithelium showed no somatic alterations 

suggesting that they can be used as control samples when evaluating DNA from epithelium 

isolated from biopsies sampled from the Barrett’s segment. 

 

Figure 2.1. Ratio between R of two blood samples and one gastric sample used as reference 
samples and the same Barrett’s sample. The signal profiles look similar and fragile site 
FRA3B is deleted in the Barrett’s sample and intact in all 3 reference samples. The only 
difference between the reference samples is DNA concentration, where samples “blood 1”, 
“blood 2”, and “gastric” had 35ng, 104ng, and 200ng of DNA extracted and analyzed with 
Illumina 317K SNP arrays. The variation in the amount of DNA used for the genotyping 
assay induces a genomic waviness artifact similar to that described in Diskin et al. [75]. 

I showed that when taking the log ratio between the same BE biopsy and three different 

control samples, the same region of copy loss is detected, indicated by a negative log ratio. If 

any of the control samples were to have an alteration at the same location, a ratio close to 

zero would have been observed instead. Despite variability in signal intensity due to amount 

of input DNA was noted, this analysis determined that blood or gastric samples can be used 

as normal constitutive genotype control. 
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Correlation among GC-content of SNP probes, total signal intensity R from Illumina 

SNP arrays, and input DNA amount 

As part of initial data quality assessment, I asked whether the %GC-content of SNP probes 

(the proportion of the bases G and C in the ~50-mer probe sequence) would affect the 

amount of signal intensity they produce. My expectation was that high GC content of a 

probe would allow better hybridization between the SNP probe and the sample DNA target 

due to three hydrogen bonds between GC as opposed to two between AT. As expected, I 

observed a strong correlation between probe GC-content and total normalized signal 

intensity R, which is the sum of the red and the green channel for both alleles of a given 

SNP (Figure 2.2). Luckily, the actual sequences of SNP probes were not proprietary and 

Illumina provided them free of charge, in a manifest file, which allowed this analysis.  
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Figure 2.2. Total normalized signal intensity R increases if the SNP probes have higher GC-
content. Shown are all SNPs on chromosome 1 from BE sample #1. The Pearson 
correlation between probe %GC and R was 0.57 for these data. 

Having tested various input amounts of DNA, I observed that the correlation between 

probe %GC-content and total normalized signal intensity R decreased as input DNA 

amount increased (Figure 2.3). This suggested that as long as enough DNA is used to 

hybridize to the probes, the effect of how many Gs or Cs a probe contains to give a high 

signal diminishes. Illumina recommended using 750 ng of DNA for all analyses that use 

317K SNP arrays; however, we aimed to minimize the amount of DNA we use per array as 

long as it gives enough SGA information in order to save as much biopsy material for 

further studies, as technologies advance. These analyses were performed in May 2008 and in 

Chapter 4 we used 200ng consistently across all arrays to minimize these effects, although 
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200ng would still potentially induce a 0.5 Pearson correlation between probe GC content 

and final total normalized signal intensity R. 

 

Figure 2.3. As input DNA amount increases, the correlation between probe GC content and 
total signal intensity R decreases. All 12 BE samples had various amounts of input DNA and 
at low amounts of input DNA (50ng or below) the signal from the arrays appears noisier and 
the effect of probe GC content was stronger. The Pearson correlation was -0.89 for these 
data. Note that the Pearson correlation for sample #1 that had 49ng of input DNA is 0.57 as 
shown in Figure 2.2. 

Analyses of the DNA of samples #1-#12 revealed acquisition of somatic genomic 

abnormalities, where the most progressive copy number loss over time occurred at fragile 

site FRA3B that contains the gene FHIT (Figure 2.4,  

Figure 2.5, and Figure 2.6) and at the genomic location of the tumor suppressor gene 

CDKN2A (Figure 2.6, Figure 2.7). 
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Figure 2.4. HumanHap300 (317k) array analysis of BE biopsies at the same level (±1cm) 
from one patient over 4 endoscopies from 1989 to 2006. In 1989 the BE consensus FRA3B 
region showed a region of 1-copy loss (b) flanked by 2-copy loss (a), with an adjacent region 
of 1-copy loss (c). In 1993 (a and b) merged into a region of uniform 2-copy loss (f), flanked 
by new regions of 2-copy (d) and 1-copy (e) loss. In 2006 the region of 1-copy loss at (c) lost 
its second copy (g). Adapted from Lai, Kostadinov, et al. [76]. 
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Figure 2.5. The same genomic region extended to 61.2 Mb, with a different set of samples 

from the same individual show progressive copy loss at various locations within the site. 

Adapted from (Brian J Reid, Kostadinov, and Maley 2011). 
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Figure 2.6. Benign clonal evolution in 1 patient with Barrett's esophagus studied 
longitudinally over 16 years. Purified Barrett's epithelium from endoscopic biopsies was 
assayed with Illumina 317K SNP arrays and compared with a blood sample control. A, Copy 
number analysis, normalized by SNP intensities from blood, reveals a single copy loss at 
CDKN2A in samples 2 (data not shown) and 3 in 1989, but homozygous deletion in 
CDKN2A in sample 1 and all samples from subsequent years. At first endoscopy in 1989, 2 
clones were detected (1 with a small deletion of 1 allele at the CDKN2A locus, and the other 
with copy neutral LOH of the entire 9p arm with the CDKN2A deleted allele, generating 
biallelic deletion at CDKN2A). B, the SNP allele frequencies reveal a focal deletion in the 
CDKN2A locus in samples 2 and 3 in 1989, but sample 1 included a mixture of the clone 
from samples 2 and 3 with a new clone with copy neutral LOH of 9p and biallelic deletion 
of CDKN2A. All samples from 1993 and later show that the clone with biallelic deletion of 
CDKN2A went to fixation, leading to random noise in the allele frequencies for the SNPs in 
that region, as seen in the vertical ("waterfall") band in the bottom panel of B. The fact that 
the rest of the 9p arm remains diploid can be seen in the copy number data (A). C, The 
clone with deletion of the single allele of CDKN2A, which extends past 22.5 Mb on 
chromosome 9p, also had a single deletion in fragile site FRA3B at 60.42 Mb that 
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distinguishes it from the other clones. This and other lesions of the clone in samples 2 and 3 
were not observed again after 1989, suggesting that this clone was driven to extinction by the 
clone from sample 1, with biallelic deletion of CDKN2A. D, A Camin-Sokal maximum 
parsimony reconstruction of the genealogy of clones based on the polymorphic copy 
number of lesions in 283 loci across the entire genome in the Barrett's biopsies shows that 
only one large clonal expansion occurred between 1989 and 1993. After 1993, the Barrett's 
segment remained stable, with accumulation of small interstitial lesions but no clonal 
expansions, no aneuploidy, and no progression to cancer. Figure adapted from Reid et al. [8]. 
  

 

Figure 2.7. Output from Illumina’s BeadStudio LOHPlus module showing allele frequencies 
in 3 samples. A normal sample (top) shows no LOH at p16 (red rectangle). In 1989 a small 
deletion of a single allele at p16 has appeared in all samples (middle). By 1993, all samples 
have lost both alleles of p16, with the original localized deletion (now apparent by a band of 
background readings with random allele frequencies) and loss of the entire arm of 9p in for 
other allele. 

What is the best statistical measure of a SNP array technology’s performance? The main 

purpose of SNP calling has been to associate genetic variants, or SNPs, with disease 

covariates, or in other words to detect which SNPs are at high linkage disequilibrium with an 

unknown disease marker. To this end, SNP arrays are mainly concerned with accurate calling 

of the genotype (the correct base pair) at a given SNP location, and the proportion of SNPs 

that have been assigned genotype calls (the “call rate”) has been used as a metric for quality 
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control and overall performance of the platform. However, for detecting copy number 

abnormalities, the call rate is not as relevant, since the primary aim is to detect regions of 

high or low probe fluorescence intensity in test samples in comparison to intensity of control 

samples. Therefore, instead of using call rates as metrics of platform performance, I focused 

on evaluating the capability of the platform to detect regions of DNA abnormalities and 

evaluating the effect of %GC content and input DNA amount on signal quality. 

2.3.3. Conclusion 

This single case of clonal evolution from longitudinal SGA data provided evidence that 

supports the following conclusions: 1) a second clonal expansion had occurred, associated 

with a double deletion in CDKN2A, after an initial single clonal expansion, associated with a 

single deletion in CDKN2A as well as copy number losses at FHIT; 2) for over ~12 years 

since the second clonal expansion, we did not observe a gradual accumulation of appreciable 

number of SGAs, except for small scale progressive losses at fragile sites, such as FRA3B; 3) 

DNA from leukocyte and gastric samples both showed no SGAs thereby proving being both 

useful as paired controls when evaluating SGAs in DNA of BE biopsies; and 4) using the 

similar amounts of input amount of DNA on a SNP array can minimize genomic waviness 

artifacts. 
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2.4. Cross-sectional meta-analysis of copy loss and loss of heterozygosity in Barrett’s 

esophagus 

Authors: Rumen Kostadinov, Xiaohong Li, Thomas G. Paulson, Patricia C. Galipeau, Brian 

J. Reid, Carlo C. Maley 

2.4.1. Introduction  

Barrett’s Esophagus (BE) is a pre-malignant neoplasm that increases the risk of developing 

esophageal adenocarcinoma (EA) [77]. To identify groups of BE patients at high risk of 

cancer progression, we sought to identify common chromosomal aberrations across the full 

risk spectrum of the condition. I implemented a meta-analysis of three studies from the 

Seattle Barrett’s Esophagus Project. The goal of this analysis was to combine SNP and array-

CGH datasets of chromosomal loss from BE and EA samples to pinpoint regions of 

common loss across patients.  

2.4.2. Methods  

The three datasets included Illumina 33k SNP arrays on whole biopsies (34 patients) and 

surgical resections specimens (8 patients) from Li et al. [78], an Illumina 317K SNP array on 

12 flow purified biopsies (1 patient) from [8] and a 4,500 spot bacterial artificial 

chromosome (BAC) hybridization array on 157 flow purified samples (72 patients) from 

Paulson et al. [79]. When there were multiple samples from a patient, I included the union of 

all detected lesions across those samples but only counted a lesion once per patient for the 

purposes of analysis. All SNP arrays were run on both BE and normal (gastric or 

lymphocyte) samples from the same patients for comparison. All BAC arrays were run on 

BE samples and compared against a common reference sample. 
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Illumina’s BeadStudio software was used to call genotypes and produce signal intensity data 

in log2 (Rsub/Rref) format that represents the difference in copy number of BE versus normal 

samples, where we assume normal samples have no aberrations. I then processed the SNP 

data to call regions of copy number loss using GLAD [80] setting logR ratio thresholds of -

0.2 for single and -1.5 for double copy loss. BAC data was processed by a wavelet method 

[81] to call copy loss, copy gain or no aberration for every BAC. BAC data was analyzed by 

Xiaohong Li and the SBEP team and the final copy alteration and LOH data were provided 

to me. Regions of copy number loss, for the combination of both SNP and BAC datasets, 

were analyzed using STAC [82] to identify statistically significant areas of loss across 

samples. The STAC analysis was performed at 0.5Mb resolution using 500 permutations. 

2.4.3. Results and Discussion  

The combined STAC analysis identified 78 regions that were significant at the 95% 

confidence level, after multiple testing correction, including some previously known losses at 

chr. 3: 59-61MB (FHIT, FRA3B), chr.16: 77-77.5Mb (WWOX, FRA16D), chr. 9p: 21-32Mb 

(p16/CDKN2A/INK4a), and some newly discovered losses at chr. X: 31.5-32Mb (DMD), 

chr. 22: 22.5-23Mb (SMARCB1, DERL3, SLC2A11, MIF, GSTT1, GSTT2, DDT, CABIN1, 

SUSD2, GGT5) and chr. 18: 57-57.5Mb (CDH20) (Table 2.5, Figure 2.8). 
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Table 2.5. Summary of 78 genomic regions that show copy number loss and copy neutral 
LOH significantly in common across studies. 

 

Figure 2.8. Example output from STAC from a subset of the 42 individuals that showed 
chromosome 9p alterations and analyzed with 33K-SNP arrays and the union of all 
alterations from 12 biopsies from one BE individual analyzed with 317K-SNP array. Gray 
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bars represent genomic regions on chromosome 9p that are significantly altered across 
samples. This plot excludes the BAC array data from 72 patients.    

2.4.4. Conclusion 

Combining copy number alteration and LOH data across studies in STAC increases sample 

size that increases power to detect statistically significant regions of copy number alteration 

and LOH across samples. We identified numerous commonly altered regions across 

individuals with Barrett’s that could be further investigated for whether individual genes 

within those regions are implicated in promotion leading to clonal expansion or progression 

leading to esophageal adenocarcinoma.  

2.5. Pilot experiment evaluating Affymetrix SNP6.0 and Illumina OmniQuad 1M 

SNP platforms 

2.5.1. Introduction 

The Illumina OmniQuad 1 Million SNPs array technology became available in late 2009 

allowing evaluation of 1 million loci of the human genome from approximately 200ng of 

human DNA sample at a relatively low cost per array. 

2.5.2. Methods 

We (SBEP team members, CCM, RK) evaluated both Illumina OmniQuad 1Million-SNPs 

and Affymetrix SNP6.0 platforms in preliminary, pilot studies. About 42 DNA samples from 

epithelial-isolated BE biopsies were evaluated with Affymetrix SNP6.0 arrays that were run 

at the Vanderbilt Microarray Shared Resource (VMSR). A smaller set of DNA samples from 

epithelial-isolated BE biopsies were evaluated with Illumina OmniQuad 1M arrays at the 

Fred Hutchinson Genomics Facility. 
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During an endoscopy, the collected whole biopsies are frequently a mixture of epithelium 

and stroma, that is, a mixture of Barrett’s epithelial cells, fibroblast cells, inflammatory cells, 

and occasionally normal squamous epithelial cells. The easiest assay to translate to the clinic 

is an assay that requires the minimum number of steps from biopsy collection to a readout 

of the somatic genomic abnormalities in the biopsy. Therefore, evaluating DNA from whole 

biopsies would be easier to translate to the clinic than evaluating DNA from epithelial-

isolated biopsies. However, only the Barrett’s epithelium typically contains somatic 

alterations and other cells present in the biopsy typically have a normal genotype and 

evaluating a whole biopsy mixture can reduce detection of SGA in BE cells. We designed a 

pilot experiment to compare the SGA detection between whole biopsies and epithelial-

isolated biopsies. We adapted epithelial isolation method and technique from [73] and 

detailed protocol is given in the Methods section of Chapter 5. 

SBEP collaborators processed biopsies from 8 BE individuals such that individual biopsies 

were split in half and DNA was isolated from whole half-biopsies and from epithelial-

isolated half-biopsies. Also, DNA from paired blood and gastric samples was also evaluated 

for each BE individual to serve as constitutive genotype control. All biopsies were evaluated 

with Illumina OmniQuad 1M SNP platform. I compared signal quality and detection of 

SGA between 13 “epithelial-isolated versus whole” biopsy pairs. 

During this pilot experiment, I developed a MySQL database to store all SNP data and 

associated sample information, and developed a pipeline of analysis using the R statistical 

language [83] and a browser-based visualization application using 

Linux/Apache/MySQL/Perl/PHP/Ajax and Perl-based Circos program by [84]. This set of 
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software tools facilitated the development of SGA calling algorithms as well as storage and 

visualization of raw and processed SNP data. 

2.5.3. Results and discussion 

 

Figure 2.9. dChip-generated raw signal intensity images from two BE samples evaluated with 
Affymetrix SNP6.0 at the VMSR facility. 

The cross separating the image into four quadrants is composed of copy number variation 

(CNV) probes and each quadrant is composed of SNP probes. Every quadrant shows 

consistent horizontal light and dark banding patterns. The first image also shows vertical 

dark stripes that run through the entire height of the image and that are approximately at 

even intervals horizontally. The second image shows a spatial artifact spanning the upper left 

and lower left quadrants that could be a manufacturing defect. The first image shows one 

dark scratch and one dark point in the lower right quadrant that are also spatial artifacts.   

I observed horizontal light or dark banding patterns that were consistent across arrays 

(Figure 2.9). Occasionally, there were also horizontal dark lines crossing the extent of the 

array vertically (Figure 2.9). I suggested that this consistent variability is due somehow to the 
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manufacturing process of the arrays, since Affymetrix arrays are printed using a sequence of 

masks, and each SNP probes would always have a predetermined spatial location on the 

array. VMSR collaborators suggested that this observed phenomenon would not affect SNP 

call rates and that probe redundancy and bioinformatic normalization methods would take 

care of the vast majority of the probe intensity variability. However, to the best of my 

knowledge, I could find only one study by Wan et al. that addressed these horizontal 

banding patterns and designed a normalization method to account for them [85]. Also, SNP 

array assays are primarily used for genome-wide association studies, where the call rate (the 

proportion of SNP probes on the array that give out a reliable genotype call) is a useful 

quality control metric. However, for calling SGAs, call rate is useful only for calling loss of 

heterozygosity accurately and the primary quality control metric for calling SGAs is accurate 

measurement of total signal intensity across probes.     
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Figure 2.10. dChip-generated raw signal intensity image (from the green fluorescence 
channel) from four BE samples evaluated with Illumina OmniQuad 1M at the FHCRC 
genomic facility. 

The image to the left is the actual 100% image that shows the hexagonal nature of the array. 

The Illumina arrays also show some spatial artifacts, however due to the random placement 

of probes into hexagons on the chip during manufacturing [71], the signal from individual 

SNP probes would be random, as opposed to being consitently low or high corresponding 

to dark and light horizontal banding patterns from Affy SNP6. 
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Figure 2.11. Double copy loss can be detected in an epithelial-isolated half-biopsy and can be 
miscalled as single copy loss in its paired whole half-biopsy. Every point represents a single 
SNP probe from 20-24 Mb on chromosome 9. On chromosome 9, the tumor suppressor 
gene CDKN2A lies between 21.96 and 21.99 Mb and both the epithelial-isolated half-biopsy 
(upper panel) and the whole half-biopsy (lower panel) show somatic loss in that 
chromosomal region. The log ratio between the epithelial-isolated sample and the blood 
control sample was -2.0 or lower, whereas the log ratio between the whole biopsy and the 
blood control sample was about -0.5. A two-fold lower signal intensity (log ratio of -2.0 or 
lower) in the epithelial-isolated sample would easily be called a double copy (homozygous) 
loss by an SGA calling algorithm, however a log ratio of -0.5 in the whole sample would be 
easily miscalled as a single copy loss. 
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Figure 2.12. Copy neutral LOH can be detected in both epithelial-isolated half-biopsy and its 
paired whole half-biopsy. The B allele frequency of both half-biopsies show that the entire 
region 20-24 Mb of chromosome 9 has LOH, and since the signal intensity log ratio in  
 
Figure 2.11 hovers around 0, this is indicative of copy neutral LOH. Notably, the epithelial-
isolated half-biopsy shows a “waterfall” right in the CDKN2A region indicative that the 
signal from SNP probes within that region is so low that the scaled difference between the A 
allele intensity and the B allele intensity randomly fluctuates between 0 and 1.0. 

Evaluation of whole versus epithelial-isolated biopsies using Illumina OmniQuad 1M 

showed that probe intensity from whole biopsies was affected because of the mixture with 

normal genotype cells and as result some SGAs would be missed ( 

 

Figure 2.11 and Figure 2.12). The detection of a “waterfall” pattern in B allele frequency 

(Figure 2.12) suggests that the BE epithelial-isolated sample is primarily composed of BE 



44 

epithelial cells and lacking any contaminating normal cells. If there was a significant 

contamination from cells or DNA having normal constitutive genotype a three cluster 

pattern, representing the AA, BB, and AB normal genotypes, would be observed instead of a 

“waterfall” pattern. This three cluster pattern is faintly visible in the whole half-biopsy in the 

CDKN2A region on chromosome 9 (lower panel of Figure 2.12).  

2.5.4. Conclusion 

Overall, same samples run on both platforms showed concordance in final SGA calls, which 

is also supported by a study by Curtis et.al. [86]. However, my assessment suggests that Affy 

arrays may suffer from consistent spatial biases in signal intensity requiring additional 

bioinformatic normalization steps, whereas Illumina may provide better initial signal 

intensity potentially requiring fewer bioinformatic normalization steps. Also, we had existing 

pipelines and expertise in handling and processing data with custom algorithms and software 

from the Illumina platform, which also influenced the choice of platform. The final choice 

of platform and facility was Illumina and FHCRC genomic facility, which had the advantage 

of having comparable cost for sample processing and the advantage of closer collaboration 

on DNA quantitation issues. Consequently, Illumina OmniQuad 1M was used for the large-

scale experiment in Chapter 4. The final choice of biopsy processing method was to use 

epithelial isolation since using whole biopsies attenuated signal and resulted in missing or 

incorrect SGA calls. 

2.6. Chapter summary 

These four pilot experiments using Illumina and Affymetrix SNP array platforms helped 

provide enough preliminary evidence for accurate evaluation of SGA in BE biopsies and 



45 

preliminary evidence for having a robust set of software tools to process SNP data and 

visualize results. The pilot experiment with 317K arrays on a single individual showed an 

initial clonal expansion, and a second clonal expansion, but an apparent evolutionary stasis 

of SGA after the second clonal expansion over the last 12 of a total of 16 years of clonal 

evolution. The pilot experiments comparing Affymetrix and Illumina 1M-SNP arrays 

suggested that both platforms performed approximately equally. The experiments also 

suggested that using epithelial isolation yields better signal compared to using a whole 

biopsy, which contains stroma in addition to Barrett’s epithelium. All of the results served as 

preliminary evidence in winning a grant from the American Cancer Society that allowed us 

to perform a larger study of clonal evolution in 13 individuals and 161 biopsies using the 

Illumina 1M-SNP platform (Chapter 4). 
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3.1. Abstract 

Background 

Esophageal adenocarcinoma (EA) is a disease of the somatic genome, the etiology of which 

relies on evolution by natural selection of somatic cells. In EA’s precursor condition 

Barrett’s esophagus (BE), increased genetic diversity at baseline detection is associated with 

increased risk of progression to EA. Clonal expansions have been observed in BE and have 

been thought to play a role in neoplastic progression. However, little is known whether and 

how clonal expansions affect genetic diversity dynamics, where dynamics is the change in the 

level of genetic diversity in a Barrett’s cell population over time. Specifically, under what 

conditions can clonal expansions induce decreases in genetic diversity over time? 

Methods & Findings 

We assessed plausible scenarios for genetic diversity dynamics in BE with forward-in-time 

simulations of the change in genetic constitution of BE crypt populations over time. Initially, 

a BE segment was initialized with a genetically homogeneous population of crypts that fill 

out a hexagonal 2D lattice. During each simulation crypts mutate, replicate, die, and expand 

in neighboring hexes according to mutation rate, replication rate, death rate, and neighbor 

interaction parameters, respectively, based on their initially normal but subsequently mutated 

genotypes. Additionally, a duration of 20 years from initiation to EA and five rate-limiting 

mutations to EA were assumed per simulation run. We found that in less than 6% of 

parameter value combinations, genetic diversity decreased by more than 1% at any time 

during simulation runs. Decreases in genetic diversity are also magnified when we make the 

assumption that crypt mutation rate is independent of crypt replication rate as opposed to 
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proportional to it. We also found that neighbor interaction was one of the most important 

parameters for determining the speed of progression, i.e. whether or not a crypt must wait 

for a neighbor crypt to die before it can divide into the emptied space.  

Conclusions 

These modeling findings suggest that genetic diversity most likely increases monotonically 

over time despite clonal expansions. Therefore, we predict that monotonic increases in 

genetic diversity over time would be observed in vivo in most individuals with BE. 

3.2. Introduction 

Esophageal adenocarcinoma is a disease of the somatic genome, the etiology of which relies 

on evolution by natural selection of somatic cells. Although heterogeneity in premalignant 

conditions and cancer has been recognized, genetic diversity as measured in the fields of  

ecology and evolutionary biology has not been widely applied to cancer diagnosis and 

treatment. Little is known how genetic diversity within neoplasms changes over time, where 

competing hypotheses suggest that genetic diversity may either increase monotonically over 

time or decrease periodically during clonal expansions (see Figure 2 in [27]). Computational 

modeling can be used to understand genetic diversity as one fundamental aspect of  

progression to cancer in hope of  advancing a conceptual understanding of  progression, 

which may guide the design of  future therapies to interrupt progression. 

Although genetic heterogeneity is increasingly recognized as being a useful metric of  

neoplastic progression [31,87], to date, only a limited set of  studies have highlighted an 

association of  genetic diversity with clinical features of  neoplasms. Barrett’s esophagus is a 

unique pre-malignant human condition, in which the dynamics of  genetic diversity can be 
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studied over time in vivo. This is possible since current clinical practices recommend 

enrollment of  individuals with BE in endoscopic surveillance programs, which collect and 

store biopsies from Barrett’s tissue over time [5]. Maley et al. and Merlo et al. found that 

multiple measures of  clonal genetic diversity in biopsies, collected at initial (baseline) 

detection of  Barrett’s, predict progression to EA [88,89]. Genetic diversity has also been 

measured in other cancer types. Park et al. characterized diversity in 15 human breast tumors, 

which were diverse mixtures of  ductal carcinoma in situ and invasive regions, and found that 

genetic diversity, measured using Shannon’s index, was associated with clinically relevant 

variables, such as tumor grade [33]. If  genetic diversity in neoplasms is associated with 

clinically relevant variables, understanding how the level of  genetic diversity changes over 

time may help in estimating the timing of  manifestation of  clinically relevant features, or in 

other words, in measuring the onset of  clinical stages of  carcinogenesis.   

Clonal expansions characterize the growth of  clonal cell populations, yet few studies have 

shown that measurements of  clonal expansions can predict progression of  a pre-malignant 

condition to cancer. Galipeau et al. observed clonal expansions in 61 individuals with BE by 

measuring loss of  heterozygosity at microsatellite loci on chromosomes 9p and 17p, where 

some expansions had covered the entire BE segment [90]. Based on these data, Galipeau et 

al. hypothesized that clones bearing genomic abnormalities such as LOH can arise 

independently or bifurcate over time, which generates observed clonal heterogeneity within 

BE segments [90]. Leedham et al. found heterogeneity at individual crypt level where crypts 

within microdissected blocks showed similar LOH and point mutation patterns, and crypts 

from spatially distant blocks showed distinct LOH and point mutation patterns, suggesting 

local clonal expansions and a degree of  clonal intermingling [34]. Graham et al. 
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hypothesized that the generation and maintenance of  genetic diversity in Barrett’s is 

explained by 1) strong mutation and strong selection, 2) group selection, where diverse 

clones as a group are selected, and 3) an hidden initial landscaping genetic abnormality 

triggering clonal expansion on which neutral mutations occur and generate diversity [57]. 

Clonal expansions have been measured in pre-malignant ulcerative colitis, which can 

progress to colorectal cancer. Salk et al. measured the lengths of  polyguanine microsatellites 

in biopsies collected from 2D patches of  pre-malignant tissue in patients with ulcerative 

colitis and found that clonal expansions inferred by shared microsatellite length patterns 

were associated with progression to colorectal cancer [51]. Salk et al. further hypothesized 

that clonal expansions measured with any neutral markers could be useful for predicting 

neoplastic progression [50]. 

The interplay of  genetic diversity and clonal expansions is complex. Genetic diversity is an 

outcome of  the underlying evolutionary parameters of  neoplastic cell populations, including 

mutation, selection, clonal expansion, and spatial structure. Martens et al. explored the effect 

of  spatial structure on the waiting time to cancer and found that under most biologically 

realistic parameter values clones tend to arise independently and come in contact as they 

expand, slowing dynamics and reducing the time to cancer, as opposed to arising sequentially 

after clonal fixation, which leads to  quicker progression to cancer [56]. Mutation rates have 

only been indirectly estimated from cancer age-incidence data in a few cancers, such as 

colorectal cancer [91], (never in Barrett’s esophagus) and the number of  clonal expansions 

involved in neoplastic progression have been estimated from 2 in lung cancer [92] to 20 in 

colorectal cancer [93] (there are no formal estimates in Barrett’s esophagus). Here we explore 

how mutation rate and spatial structure parameters affect clonal expansion and genetic 
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diversity by assuming a fixed fitness landscape with 5 fitness-increasing rate-limiting 

mutations that underlie at least 5 clonal expansions. 

Also, we model “selective” (driver) and “neutral” (passenger) genetic abnormalities that 

represent any category of  mutation, such as point mutations, copy number alterations, loss 

of  heterozygosity, and structural rearrangements. Abnormalities at selective loci result in 

advancing tumor progression through the stages of  carcinogenesis, and have a fitness 

increasing effect. Abnormalities at neutral loci confer no fitness benefit; however it is neutral 

loci that define the observed mutation states when sampling tumors, or in other words, 

neutral loci are observed variables that are dependent on the hidden (latent) variables of  the 

underlying evolutionary parameters, such as mutation rates and fitness landscape defined by 

the fitness-modulating selective loci. 

What are the dynamics, or change in magnitude, of genetic diversity over time? Our prior 

hypothesis is that in the absence of clonal expansions genetic diversity is a monotonically 

increasing function of time as new somatic genomic abnormalities (SGA) accumulate in the 

neoplastic cell population. However, we aim to explore the plausibility of decreases in 

genetic diversity during periods of clonal expansions that may homogenize the genetic 

constitution of the population. The population genetic diversity may be a monotonically 

increasing function of time, which can be modeled with linear, exponential, logarithmic, and 

other mathematical growth functions. However, the population genetic diversity may instead 

oscillate over time, for instance, it may increase as SGA accumulate but decrease during 

periods of clonal expansions, making genetic diversity harder to model, as Merlo et al. 

proposed [27]. 
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Figure 3.1. Plausible scenarios for genetic diversity dynamics. Genetic diversity can decrease 
periodically due to clonal expansions; for instance, if five necessary, sufficient, and rate-
limiting steps (mutations) are acquired sequentially in the neoplastic cell population and 
boost fitness enough to cause five clonal expansions, they may homogenize the neoplasm 
and produce five troughs in genetic diversity (solid line). Such oscillating dynamics can be 
captured only with longitudinal data so that troughs in genetic diversity can be detected. 
Alternatively, genetic diversity can increase monotonically over time and modeled as a linear 
function of time (dashed line). Alternative hypotheses, such as a single genetic catastrophe or 
a critical phase transition point, can also be plausible, in this example, reduced to a simple 
sigmoid curve (dotted line). Importantly, at time of detection of a new tumor, measurement 
of genetic diversity and prior knowledge of the typical dynamics of genetic diversity taken 
together can estimate the time elapsed since tumor initiation and predict the waiting time for 
tumor progression to cancer. Elapsed time since initiation and waiting time to cancer are 
clinically relevant variables for diagnostic purposes and for weighing treatment options. 

3.3. Methods 

We fix a set of parameters  at the beginning of each simulation 

. The Barrett’s segment is represented as a two 

dimensional  (height  width) hexagonal lattice, wrapped around along the  

dimension to form a cylinder. At the beginning of the simulation, all  hexes are 

occupied by crypts having no mutations. Crypts have an initial birth rate  (number of crypt 
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fission events per day), and when dividing, one of its daughter crypts remains in its original 

hex (self-renews) and the other daughter crypt either expands into an empty neighboring hex 

or, if none exist, kills off a neighboring crypt and occupies its hex space with probability . 

Intuitively,  describes the stochastic neighbor contact process, where for , replicating 

crypts crowd out and replace their neighbor crypts, instead of waiting for an empty hex as 

when . Crypts have an initial death rate  (number of death events per day), where 

upon dying, the crypt’s hex is emptied. 

The mutation states of crypts are stored in matrix , that has  rows (crypts) and  

columns, where  is the number of selective loci (modulating crypt reproduction and 

survival) and  is the number of neutral loci (having no effect on crypt reproduction or 

survival).  Taking both neutral and selective mutations together, there are l = m+n total 

possible loci at which mutations may occur. 

  

At the beginning of each simulation, all , and during the run, every mutation hitting a 

neutral locus  sets , to count multiple hits at 

neutral loci, whereas every mutation hitting a selective locus  sets , which 

makes selective loci irreversible, that is, when mutated they stay mutated for the duration of 

the run, whereas neutral loci can record the number of changes, which can be useful for 

representing microsatellite shifts, or single base pair substitutions. 

Selective loci are stored in vectors  and , and each locus 

 must have either reproductive selection coefficient satisfying 

 or survival selection coefficient satisfying , 
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otherwise  and  make the locus neutral. Thus, loci having  or  are 

selectively advantageous (increase birth rate and decrease death rate, respectively) and loci 

having  or  are selectively deleterious (decrease birth rate and increase death rate, 

respectively). 

As crypts acquire mutations in selective and neutral loci over time, their birth, death, and 

mutation rates are calculated as follows:  

Equation 1:     

The birth rate  of crypt  is the initial crypt birth rate  multiplied by the reproductive 

advantage  conferred from any mutated  selective locus . 

Equation 2:     

Similarly, the death rate  of crypt  is the initial rate of crypt death  multiplied by the 

survival advantage  conferred from any mutated  selective locus . Note that a 

positive value for  lowers the death rate, whereas a positive value for   increases birth 

rate.  

We allow neutral loci and selective loci to have distinct rates of mutation , since, 

depending on the assay modeled, neutral loci  could represent somatic copy number 

polymorphisms, microsatellite or methylation sites, that have higher mutation rates  

. Other genetic alterations, such as point mutations and structural 

rearrangements could also be modeled with different mutation rates, but we have focused on 

alterations with relatively high mutation rates that are more likely to be used for quantifying 
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within neoplasm diversity. However, those alterations are modeled in the selective loci  

which represent the loci that will acquire the ~3-5 rate-limiting mutations necessary for 

initiation and promotion of epithelial cancers. Those rate-limiting steps (driver mutations) 

are thought to have relatively low mutation rates . 

Equation 3:     

Equation 4:     

Equations 3 and 4 give the mutation rate at selective loci  and neutral loci  for crypt . 

One of two mutation models is fixed at the beginning of each simulation: time-dependent 

 or replication-dependent . In the time-dependent model, the crypt mutation 

rate is not affected by changes in crypt division rate: setting the term  

in Eqs. 3 and 4, whereas in the replication-dependent model, mutations modulating the crypt 

division rate, also modulate mutation rate using the term . Intuitively, the 

replication-dependent model means that crypts that divide faster will also mutate faster, 

reflecting more (cell-intrinsic error-prone DNA) replication of stem cells in dividing crypts, 

whereas the time-dependent model means that regardless of faster or slower crypt division, 

mutations are time homogeneous, as might occur with on-going stem cell replication in non-

dividing crypts, as well as chronic DNA damage from acid reflux, inflammation, or other 

cell-extrinsic causes.      

Thus far, equations 1-4 describe the four actions that a crypt executes with four distinct 

rates: division, death, mutation of a selective locus chosen at random, and mutation of a 

neutral locus chosen at random. Having a population of  crypts, each having four rates 
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and distinct mutation states, presents a computational challenge for efficient forward-in-time 

stochastic simulation. We address that by using a Gillespie algorithm that can be summarized 

in three steps: choosing the first action to execute from an exponential distribution with rate 

equal to the sum of all action rates of the population of crypts, advancing time according to 

that action, and choosing the appropriate individual crypt that performs the action. When a 

crypt divides in space, its genotype must be copied to the new location, which is 

computationally intensive for a single simulation of ~0.1-1 billion crypt divisions. We 

address that by having hex locations point to crypts stored in a large phylogenetic tree in 

memory that records exact divergence times and mutation differences among clonal 

populations of crypts, resulting in average run times of ~5 minutes per run on Core i7-975 

3.3 GHz, using ~3 GB of RAM. 

Equation 5:     

We ran 360 simulations that represent all combinations of initial parameters in the fixed 

initial value column of Table 3.1. We also ran an additional 120 simulations (All parameter 

sweeps in Table 3.1, except that neutral mutation rate was fixed to 10-4) to evaluate genetic 

diversity dynamics in a fully-mixed crypt population scenario, in which crypts divide into six 

randomly chosen hex locations in the grid according to the same rules as dividing into six 

neighbor hex locations: first, if any of  the six locations are empty, divide into a randomly 

chosen empty hex, and second, if all of the six locations are occupied, replace a crypt with 

probability p. The state of the hexagonal 2D lattice was output at half-year intervals during 

each simulation run. The estimate of genetic diversity  (kappa) was computed by sampling  
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crypts (  = 100) from random hex locations without replacement from the  segment 

and summing the hamming distance between mutation states over all neutral loci 

 for all  pairwise crypt comparisons (Equation 5). We ran a 

peak and trough detection algorithm to find local minima and maxima of the resulting curve 

of genetic diversity over time. 

In this simulation, individual crypts occupy positions in a hexagonal grid. They have base 

rates of birth and death which can be modified by mutations at selected loci. Two key 

parameters of this system are whether crypts can kill their neighbors in order to reproduce or 

must wait for an empty space, and whether the rate of mutation is proportional to time or to 

crypts divisions (so that faster-dividing crypts, assumed to be driven by faster dividing stem 

cells, accumulate more mutations). Non-selected (neutral) loci are also modeled so that the 

simulation can be compared to genome-wide samples from Barrett’s Esophagus. 

Parameter Description Units Fixed initial 
value 

Does 
parameter 
value 
change 
during 
simulation 
run? 

Range during 
simulation run 

h grid height number of 
hex cells 

300 no N/A 

w grid width number of 
hex cells 

300 no N/A 

p neighbor hex 
cell 
replacement 
probability 

[0,1] {0,.25,.5,.75,1} no N/A 

t simulation days 0 yes [0,7300] 
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run time 

b crypt birth 
rate 

number of 
crypt 
fission 
events per 
day 

0.02 yes [0.005,1] 

d crypt death 
rate 

number of 
crypt death 
events per 
day 

0.016 yes [0.005,0.1] 

a time-
dependent 
mutation 
model (a=0) 

replication-
dependent 
mutation 
model (a=1) 

{0,1} {0,1} no N/A 

n number of 
neutral loci 

number of 
neutral loci 

100 no N/A 

m number of 
selective loci 

number of 
selective 
loci 

10 no N/A 

μ crypt 
mutation rate 
of selective 
loci 

number of 
mutations 
per locus 
per crypt 
birth 

{10-6, 10-7,  
10-8} 

no N/A 

v crypt 
mutation rate 
of neutral loci 

number of 
mutations 
per locus 
per crypt 
birth 

{10-4, 10-5,  
10-6, 10-7} 

no N/A 

r vector of 
reproduction 
selective 
advantage 

{[0,∞),…, 
[0,∞)} 

{.6,.8,1,1.2,1.4, 
0,0,0,0,0} 

no N/A 
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multipliers  

s vector of 
survival 
selective 
advantage 
multipliers 

{[0,∞),…, 
[0,∞)} 

{0,0,0,0,0, 
.6,.8,1,1.2,1.4} 

no N/A 

X Matrix of 
mutation 
states at 
neutral and 
selective loci  
(columns) of 
all crypts 
(rows) 

For each 
selective 
locus 1..m 
the state is 
{0,1} 
For each 
neutral 
locus 
m+1..m+n 
the state is 
[0..∞) 

0 yes X[*,1..m] 
ranges {0,1} 

 

X[*,m+1..m+n] 
ranges [0..∞) 

Table 3.1. Parameter configurations for forward-in-time simulation of evolutionary dynamics 

in Barrett’s Esophagus. 
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3.4. Results 

 

 
 
Figure 3.2. A spatially-structured crypt population induces monotonic increase in genetic 
diversity. Genetic diversity is computed by taking a random sample of 100 individual crypts 
from the grid. The neutral mutation for the displayed parameter sweeps is 10-4. Black lines 
represent crypt division-dependent mutation (a=1) and red lines represent time-dependent 
mutation (a=0). Each parameter sweep was run in triplicate. 
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Figure 3.3. A fully-mixed crypt population induces periodic decreases in genetic diversity. 
Genetic diversity is computed by taking a random sample of 100 individual crypts from the 
grid. The neutral mutation for the displayed parameter sweeps is 10-4. Black lines represent 
crypt division-dependent mutation (a=1) and red lines represent time-dependent mutation 
(a=0). Each parameter sweep was run in triplicate. 
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Figure 3.4. Biopsy sampling (n=12) for a fully-mixed crypt population, where biopsy size 
was 10x10 crypts and mutation detection threshold was 0%. 
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Figure 3.5. Biopsy sampling (n=12) for  a fully-mixed crypt population, where biopsy size is 
10x10 crypts and mutation detection threshold is 5%. The neutral mutation for the displayed 
parameter sweeps is 10-4. Black lines represent crypt division-dependent mutation (a=1) and 
red lines represent time-dependent mutation (a=0). Each parameter sweep is run in 
triplicate. 

 

Figure 3.6. Example grid spatial dynamics from year 5-20 (7 panels left to right), when 
selective mutation rate is 10-6 and neutral mutation rate is 10-4. A fully-mixed crypt 
population has quicker genetic diversity dynamics than a spatially-structured crypt 
population. The grid state over time is displayed in colors, where crypts are colored by the 
genetic similarity based on neutral mutation patterns (principal components analysis reducing 



64 

100 neutral loci to three red, green, and blue dimensions, first row) and by the number of 
selective mutations they have acquired (magenta to red, second row). Clones expand locally 
driven by acquisition of fitness-increasing SGAs and neutral SGA hitchhike on the clonal 
expansions forming complex patterns according to crypts’ phylogenetic histories. 

We found that genetic diversity increased monotonically in 339 out of 360 simulation runs 

and decreased by ≥ 1% at any time during the remaining 21 simulation runs. We estimated 

“biopsy-based” genetic diversity over time by sampling 12 biopsies at random locations 

without replacement and successfully detecting mutations at neutral loci that are at ≥ 0% or 

≥ 5% frequency in the population of 100 crypts comprising a biopsy in Figure 3.4 and 

Figure 3.5, respectively. We estimated  “individual-crypt-based” genetic diversity over time 

by sampling 100 individual crypts without replacement at random locations within the grid in 

simulations with spatially-structured crypt population (Figure 3.2) and in simulations with 

fully-mixed crypt population (Figure 3.3). 

3.5. Discussion 

We assumed that neoplastic cell population in Barrett's esophagus is organized into a 

hexagonal 2D lattice and clones bearing acquired somatic genomic abnormalities (SGA) 

expand by crypt fission. The crypt cycle model was originally proposed by Totafurno et al. 

[94] and expansion of mutations by crypt fission was experimentally confirmed by Greaves 

et al. [95,96]. We hypothesized that BE crypts are not in a steady state, but are continuously 

cycling, given the observation of branching crypts in histopathology slides of biopsies 

sampled throughout segments [97]. In addition, we hypothesized that SGAs that occur in the 

self-renewing stem cell population at the bottom of crypts can expand spatially through 

successive cycles of crypt replication. This hypothesis is supported by evidence that the same 

mitochondrial DNA point mutations were found present in both arms of colon crypts 
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undergoing fission, as well as in patches of neighboring crypts, thus establishing crypt fission 

as the mechanism for the spread of mutations in crypt-structured human colonic epithelium 

[95]. We assumed a population of 90,000 crypts in a typical Barrett's segment, which is not 

dramatically different from a mean 72,480 crypts per segment estimated from 13 individuals 

in Barrett’s (Chapter 4, Supplementary table S1). Empirical evidence suggests that over the 

duration of endoscopic surveillance the Barrett's segment length remains constant over time 

(see Figure 1.2 in Chapter 1), therefore we held constant the width and height of the 

Barrett’s segment during a simulation run. 

In BE, typically a maximum of twelve biopsies are collected per endoscopic procedure, or 

time point during follow-up visit. We found that the underlying genetic diversity, which we 

estimated by comparing 100 individual crypts from random locations, was underestimated by 

this standard biopsy sampling protocol. This could be overcome if individual crypts are 

sampled from available biopsies. 

Neoplastic cell populations can acquire SGAs, which can be produced by single catastrophic 

events, chromothripsis [98], or genomic firestorms [99], as well as a variety of other 

mechanisms including repair of double strand breaks by homologous recombination [100]. 

Some SGAs may increase neoplastic cell fitness resulting in clonal expansion that changes 

the frequencies of neutral and selective SGAs within and outside of the expanding clone 

(Figure 3.6). These changes in frequency modulate the level of genetic diversity and periodic 

measurements of genetic diversity provide a snapshot of evolutionary dynamics in the 

neoplasm.  
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The agent-based model we developed can be used to simulate a vast number of evolutionary 

scenarios and to calculate a vast number of summary statistics, such as number and sizes of 

clonal expansions and genetic diversity dynamics. The model allows the input of a user-

defined fitness landscape by specifying the exact number of fitness-modulating loci and their 

associated fitness-modulating values. The model has a quick run-time and records a 

phylogenetic tree of the evolution of clonal crypt lineages and outputs complete information 

of the mutational state of the grid with associated statistics of clone sizes, parent 

relationships among clones, and fitnesses (replication rate and death rate) of clones. All of 

those capabilities allow the comparison of summary statistics of simulated data to 

experimentally-obtained data from individual Barrett’s segments in future studies. 

Approximate Bayesian computation methods can assess distance between summary statistics 

of simulated and real data to estimate the underlying set of evolutionary dynamics parameter 

values, such as mutation rates, crypt expansion parameters, and number of fitness-

modulating loci and their associated fitness modulating effects. Our model is an 

advancement in modeling evolutionary dynamics in its increased complexity by 

parameterizing genomic states of driver and passenger loci, fitness landscapes of driver loci, 

and by recording individual run phylogenies. 

3.6. Conclusion 

In summary, our findings suggest that genetic diversity most likely increases monotonically 

over time despite clonal expansions; and we predict that monotonic increases in genetic 

diversity over time would be observed in vivo in most individuals with BE. In such 

monotonic increase scenarios, measurements of genetic diversity at regular intervals can be 
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used to estimate the elapsed time since initiation of Barrett’s esophagus and to estimate the 

waiting time to progression to esophageal adenocarcinoma. The underlying genetic diversity 

is likely to be better estimated when genotyping individual crypts from biopsies as opposed 

to evaluating a mixture of crypts under most population parameter settings. 
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4.1. Abstract 

Background 

Cancer is considered an outcome of decades-long clonal evolution fueled by acquisition of 

somatic genomic abnormalities (SGAs). Non-steroidal anti-inflammatory drugs (NSAIDs) 

have been shown to reduce cancer risk, including risk of progression from Barrett’s 

esophagus (BE) to esophageal adenocarcinoma (EA). However, the cancer chemopreventive 

mechanisms of NSAIDs are not fully understood. We hypothesized that NSAIDs modulate 

clonal evolution by reducing SGA acquisition rate. 

Methods and Findings 
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We evaluated 13 individuals with BE. Eleven had not used NSAIDs for 6.2±3.5 

(mean±standard deviation) years and then began using NSAIDs for 5.6±2.7 years, whereas 

two had used NSAIDs for 3.3±1.4 years and then discontinued use for 7.9±0.7 years. 161 

BE biopsies , collected at 5-8 time points over 6.4-19 years, were analyzed using 1Million-

SNP arrays to detect SGAs.  

We observed a significant increase in the acquisition of new SGAs off-NSAIDs compared to 

on-NSAIDs (60±166 vs. 28±48 per biopsy, p=0.013) and in pre-existing SGAs that dropped 

out of detection on-NSAIDs as compared to off-NSAIDs (92±143 vs. 19±21 per biopsy, 

p<0.01). The estimated SGA rate was 7.8 per genome per year (95% support interval [SI], 

7.1–8.6) off-NSAIDs and 0.6 (95% SI 0.3–1.5) on-NSAIDs. Twelve individuals did not 

progress to EA. In 10 we detected 279±86 SGAs affecting 53±30 Mb of the genome per 

biopsy per time point and in two we detected 1,463±375 SGAs affecting 180±100 Mb. In 

one individual who progressed to EA we detected a clone having 2,291±78 SGAs affecting 

588±18 Mb of the genome at three time points in the last 3 of 11.4 years of follow -up. 

Conclusions 

NSAIDs were associated with reduced rate of acquisition of SGAs. The BE cell population 

maintained relative evolutionary stasis over prolonged periods in most individuals but 

occasionally stasis was punctuated by expansion of clones having massive amount of SGAs. 

4.2. Introduction 

Clonal evolution is a theory that explains the phenomenon of the progressive morphological 

and genetic change of somatic cell populations from normal homeostatic cell division and 

death within tissues to abnormal neoplastic growth and cancerous spatial expansion within 
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and across tissues [2,27,101]. Clonal evolution is the Darwinian evolution by natural 

selection of asexually (mitotically) dividing somatic cells. Somatic genomic abnormalities 

(SGA), such as copy number alterations and loss of heterozygosity (LOH), can be used as 

polymorphic DNA markers for identifying evolving clones. Strictly defined, a clone is a 

genetically identical subpopulation of cells within the cell population of a tissue, that 

descends from a most recent common ancestor (MRCA) cell and therefore all of the clone’s 

cells inherit the SGAs that were originally present in the MRCA cell. However, a commonly 

used, relaxed definition of a clone is descent with modification from a MRCA cell, which 

allows for accumulation of additional SGA heterogeneity among the cells of the clone. In 

other words, a clone ideally represents the shared cell lineage history of a subpopulation of 

cells. The acquisition of SGA variability (SGA polymorphism) over the course of cell 

division allows for classification of cell subpopulations into clones. In the remainder of this 

study, we use clone in its relaxed definition and we estimate phylogenetic trees from acquired 

SGA variability to qualitatively describe relatedness among evolving clones. The generation 

of new clones is stochastic and the change in clones’ frequencies in the population is 

determined by clones’ relative fitnesses. New adaptive and new neutral clones can arise 

stochastically over time [102] with every newly acquired SGA that does or does not affect 

fitness, respectively (Figure 1A,B). In order to prevent progression to cancer, mechanisms 

that modulate clonal evolution by either preventing SGA acquisition or preventing the 

spread of SGA-containing clones need to be elucidated. 

Barrett’s esophagus (BE) is a condition of the distal esophagus in which the normal stratified 

squamous epithelium is replaced by columnar epithelium with intestinal metaplasia [5]. BE is 

thought to develop as a complication of chronic gastroesophageal reflux disease (GERD), 
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and individuals with BE are at increased risk of progression to esophageal adenocarcinoma 

(EA): 1-7 persons with BE progress to EA per 1000 person-years [6,7]. Strategies for early 

detection and prevention of esophageal adenocarcinoma have focused on all aspects of the 

GERD-BE-EA sequence: acid suppression medications, anti-reflux surgery, esophagectomy, 

ablation of premalignant Barrett’s esophagus, endoscopic biopsy surveillance of Barrett’s 

esophagus, and chemoprevention using aspirin or other non-steroidal anti-inflammatory 

drugs (NSAIDs) [5,103]. Barrett’s esophagus is a pre-malignant condition in which clonal 

evolution can be studied in vivo, since a standard of care is periodic endoscopic surveillance 

with concomitant biopsy, providing a tissue bank that facilitates studies of clonal 

evolutionary dynamics over time. 

Genomic instability is a common feature of solid cancers [2,29,36,38,104]. In a recent study, 

Beroukhim et al. evaluated 3131 cancer specimens from 26 histologic types and 1480 normal 

tissue specimens and found that copy number gains and losses affected 17% and 16% of the 

genome in a typical cancer specimen and only 0.35% and 0.1% of the genome in a typical 

normal tissue specimen [35]. Despite the recent massive accumulation of data on genomic 

alterations in cancers from the Cancer Genome Atlas and the International Cancer Genome 

Consortium initiatives, theoretical modeling of the generative process (clonal evolution) 

producing the observed SGA patterns and underlying neoplastic progression has remained 

limited [27,101]. BE is associated with genomic instability and acquired SGA [76,78,79,105] 

allowing analysis of the acquisition of SGA over time. This provides data for estimating SGA 

acquisition rate that is a key parameter of clonal evolution. 

NSAID use significantly reduces the incidence and mortality rates of many types of cancer, 

including esophageal adenocarcinoma [64–68,106]. Rothwell et al. showed that the hazard 
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ratio for cancer incidence of NSAID users vs. NSAID non-users was 0.66 (95% CI 0.50-

0.87); however a robust NSAID cancer preventive effect manifests significantly only after 

≥5 years of regular use [64]. The majority of epidemiological studies in BE suggest that 

NSAID use in individuals with BE reduces risk of developing EA [65–67,106]. Specifically, 

Vaughan et al. evaluated 350 individuals followed up for a median of 5.4 years (range 0.2-8.9) 

and showed that the 5-year cumulative incidence of EA was 14.3% (95% CI 9.3-21.6 ) for 

NSAID never users compared to 6.6% (3.1-13.6) for current NSAID users and that the 

hazard ratio for EA incidence of NSAID users vs. NSAID non-users was 0.20 (95% CI 

0.10-0.41) [67]. Galipeau et al. showed that NSAID use reduced the 10-year cumulative 

incidence of esophageal adenocarcinoma from 79% to 30% in individuals with Barrett’s 

esophagus who had one or more somatic genomic abnormalities detected at baseline 

endoscopy, which included DNA content tetraploidy and/or aneuploidy, assayed by DNA 

content flow cytometry, or genetic abnormalities, such as loss of heterozygosity (LOH) on 

chromosomes 9p and 17p, assayed by PCR of small tandem repeat (STR) loci [68]. NSAID 

use for chemoprevention is attractive due to the widespread use and low toxicity and side 

effects of that class of drugs; however the molecular mechanisms underlying the NSAID 

cancer preventive effect are not fully understood. In this study, our aim was to evaluate the 

effect of NSAIDs on the accumulation of somatic genomic abnormalities by evaluating the 

entire genome (1 Million SNP loci) for SGA. We hypothesized that NSAID use modulates 

clonal evolution by reducing the prevalence of SGA by either reducing the incidence of SGA 

over time (SGA rate: number of SGAs acquired per genome per year) or interfering with the 

expansion of clones bearing newly acquired SGAs over time (Figure 1A,B). 
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To test this hypothesis, we used a prospective observational crossover study design: a 

longitudinal study in which the sequence of NSAID use was recorded for each individual 

during the follow-up period. We selected thirteen individuals with BE from our cohort, who 

had endoscopic follow-up of mean 11.8 ± 3 years (range: 6.4–19) and who began or 

discontinued NSAID use exactly once during follow-up. All thirteen individuals had to have 

at least two consecutive time points (≥6 biopsies) off NSAIDs and at least two consecutive 

time points (an additional ≥6 biopsies) on NSAIDs. To estimate SGA prevalence in biopsies 

on and off NSAIDs we used summary statistics of observed patterns of SGA; to estimate 

SGA rates on and off NSAIDs we used an evolutionary analysis of observed SGA patterns 

to take into account SGA phylogenetic identity by descent. Drummond et al. showed that 

mutation rates can be estimated from longitudinal samples in virus populations using 

coalescent and phylogenetic methods within a Bayesian Markov Chain Monte Carlo 

framework for sampling model parameter space (BEAST package, Bayesian Evolutionary 

Analysis Sampling Trees) [62,107]. We adapted BEAST to estimate SGA acquisition rates on 

and off NSAIDs. Thus, the crossover study design provided 13 independent tests of the 

hypothesis of NSAID-associated reduction in SGA acquisition rate since every individual 

had both on and off NSAID periods and SGA acquisition during those periods.   

4.3. Results 

We evaluated the dynamics of detected SGAs over time. The mean number of SGAs and the 

proportion of the genome they affected remained approximately constant over time, for as 

many as 19 years (e.g., Figure 4.2, individual a). Individuals b, f, and j, shown in red in Figure 

4.2A and Figure 4.2B, showed much greater variation in detected SGA over time, compared 
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to the rest of the individuals, shown in black. Progression to EA was not part of our study 

inclusion criteria, and individual j was the only individual who progressed. Individual f did 

not progress to EA, but rather opted for esophagectomy for high-grade dysplasia after 6.4 

years of follow-up and subsequently died of a different cancer 11.9 years later. In individuals 

b,f, and j, the mean (± standard deviation) number of SGAs per genome per time point was 

1,082 ± 177 , 1,844 ± 573, and 1,154 ± 746 respectively, and the amount of genome affected 

by SGAs was 119 ± 79 Mb, 242 ± 121 Mb, and 227 ± 222 Mb,  respectively. In the rest of 

the individuals, the mean number of SGAs per genome per time point was 279 ± 86 and the 

amount of genome affected was 53 ± 30 Mb. Assuming a human genome length of 3,164 

Mb (Human genome GCRh37.p5 assembly), individuals b, f, and j had 3.8 ± 2.5%, 7.6 ± 

3.8%, and 7.2 ± 7% altered somatic genome per time point, compared to 1.7 ± 0.9% altered 

somatic genome in the rest of the individuals. Figure 4.2 suggests an overall evolutionary 

stasis in this sample of persons with BE, i.e., in most individuals, contrary to expectations, 

we did not observe a gradual increase of SGA over time.    

The unexpected result of long-term evolutionary stasis suggested that the effect of NSAIDs 

on reducing SGA rate would be challenging to detect. We evaluated newly-appearing SGAs 

during periods of NSAID use and NSAID non-use by excluding all SGAs that were detected 

at baseline. Baseline SGAs were excluded since they had occurred and increased in frequency 

for an unknown amount of time prior to detection at baseline and since we have self-

reported NSAID use information reaching back only 6 months prior to baseline. Across all 

individuals, we detected 28 ± 48 newly appearing SGAs per biopsy during on-NSAID 

periods (n=73 biopsies) compared to 60 ± 166 newly appearing SGAs per biopsy during off-

NSAID periods (n=57 biopsies), which was a significant difference (Wilcoxon test, 
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p=0.013). We also evaluated whether NSAID use is associated with regression of pre-

existing SGAs (dropping out of detection), by evaluating only SGAs that are detected at 

baseline, or during NSAID use or non-use periods, but not detected in the last endoscopy. A 

significantly greater number of existing SGA events dropped out of detection on-NSAIDs, 

as compared to off-NSAIDs (92 ± 143 [n=55] vs. 19 ± 21 [n=79], Wilcoxon test, p<0.01). 

In summary, NSAID use was associated with a reduced number of newly appearing SGAs of 

any size (Figure 4.3A) and with higher number of pre-existing SGAs of any size dropping 

out of detection (Figure 4.3B). 

While the natural history of clonal evolution was different in each individual, some common 

patterns can be discerned. The majority of SGAs are present in the first time point, with 

little accumulation of SGAs afterwards (Figure 4.6). This can also be seen in the radial 

spokes apparent in the Circos plots that summarize SGAs across the whole genome at each 

time point (Figure 4.4B, Figure 4.4C, Figure 4.5B, Figure 4.5C, and Supplementary Figure 

4.7), that represent the most common lesions in BE [76,78], on chromosomes 9p 

(CDKN2A), 3p (FHIT) and 16p (WWOX). We found no evidence of selective sweeps of 

clones throughout the Barrett’s segment in any of our 13 patients over at total of 153 

patient-years. This can be seen in the consensus trees generated by BEAST (Figures Figure 

4.4D, Figure 4.4G, Figure 4.5D, Figure 4.5G, and Supplementary Figure 4.8). These 

genealogies show that multiple clones appear to co-exist over the entire period of follow-up. 

Even in the one patient who progressed to EA, individual j, the clone with massive SGAs 

(2,291 ± 78 SGAs affecting 588 ± 18  Mb or 19% of the genome in biopsies 8,10,11, and 13) 

remained localized (Figure 4.4). Interestingly, a precursor of that clone had been detected 9 

years prior to its emergence (biopsy 2 in Figure 4.4G,H,I). We show clonal evolution in 
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individuals b, j, and f in higher detail in figures 4 and 5 since these individuals had a higher 

than average number of SGA events and amount of genome altered (Figure 4.2). We show 

clonal evolution in individual l (Figure 4.5) in higher detail to show clonal evolution during 

an on-off NSAID use pattern. In addition, the SGA amount in individual l is close to the 

mean SGA amount in all individuals, except b,f, and j, while SGA amount in individual f is 

higher than the mean (Figure 4.2) and using Circos plots side-by-side contrasts qualitatively 

SGA amount and SGA chromosomal location between individuals l and f (Figure 4.5 B,C). 

In summary, the majority of patients showed little gradual accumulation of new SGAs 

consistent with long-term evolutionary stasis during follow-up (Circos plots in Figure 4.4, 

Figure 4.5 and Supplementary Figure 4.7), and the one progressor to EA, individual j, 

showed that evolutionary stasis can be punctuated by the expansion of a clone with massive 

amount of SGAs (Figure 4.4 C,G,H,I).  

The maximum-parsimony phylogenetic analysis revealed the shared common ancestry of 

biopsies within an individual based on SGA homology. Inferred PAUP* phylogenetic trees, 

which had branches scaled by the estimated number of shared SGA events in Figure 4.4E,H, 

Figure 4.5E,H, and Supplementary Figure 4.9, showed significantly imbalanced tree shapes 

(Supplementary Table 4.3) for all individuals, except individual f and j. When we rescaled the 

branch lengths of the same phylogenetic trees by the amount of genome affected in Figure 

4.4F,I,  Figure 4.5F,I, and Supplementary Figure 4.9, the trees showed that within an 

individual the majority of biopsies cluster together and only few biopsies or lineages shoot 

out of the majority cluster, which is indicative of SGA bursts.   

We tested our hypothesis that NSAID use reduces SGA acquisition rate in Barrett’s 

esophagus by estimating SGA acquisition rate during off-NSAID and on-NSAID periods 
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using a custom modified version of BEAST. We added a new evolutionary model of SGA 

into BEAST in order to estimate SGA rate using Bayesian MCMC sampling (see Methods 

and Equations S3,4). We excluded SGAs detected in the first time point and only measured 

SGAs that were detected during follow-up, in order to reduce the influence of clonal 

evolution that occurred prior to surveillance. For the two individuals who were already on 

NSAIDs when we started surveying them, and later went off NSAIDs, individual l showed a 

lower SGA rate on NSAIDs than off NSAIDs, but the 95% support intervals for the two 

rates overlap (Figure 4.6). In contrast, individual m showed a higher SGA rate on NSAIDs 

than off NSAIDs. In individuals a-k, the SGA rate on NSAIDs was approximately an order 

of magnitude lower than the SGA rate off NSAIDs, with non-overlapping 95% support 

intervals (Figure 4.6), which is consistent with the hypothesis that NSAID use reduces SGA 

acquisition rate (on average 7.8 SGAs per genome per year off-NSAID vs. on average 0.6 

SGAs per genome per year on-NSAID in individuals a-k). 

4.4. Discussion 

Somatic genomic abnormalities inevitably occur in a population of asexually (mitotically) 

dividing somatic cells, and if such SGA affect cell fitness, the cell population will evolve by 

natural selection and may evolve neoplastic and cancerous overgrowth. It is virtually 

unknown how clonal evolution unfolds in a human neoplasm over time since long-term 

observation is not feasible in the majority of benign and malignant conditions. However, in 

this longitudinal study of the premalignant condition Barrett’s esophagus, we were able to 

evaluate the evolutionary dynamics of SGA in neoplasms of 13 individuals over more than a 
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decade of follow-up, in 5-8 time points, and estimate the effect of NSAID use on 

modulating SGA dynamics.  

We observed long-term evolutionary stasis, detecting an approximately unchanging mean 

number of SGAs across multiple biopsies and across multiple time points over an average of 

11.6 years of follow-up (Figure 4.2). The estimated SGA rate on-NSAID and off-NSAID 

was 0.6 and 7.8 SGAs per genome per year, respectively (Figure 4.6). Few newly-appearing 

SGAs were observed during follow-up, either off-NSAID or on-NSAID periods (Figure 

4.3A, Supplementary Figure 4.12). The maximum-parsimony phylogenetic analyses show 

tree topologies consistent with gradual accumulation of SGA events on the leading-edge of a 

clone, possibly during initiation that results in an imbalanced tree shape (Figure 4.4E, H, 

Figure 4.5E, H, and Supplementary Figure 4.9 and Supplementary Table 4.3). However, 

when inferred SGA events were converted to amount of genome they affected, the branch 

lengths (x-axis) of trees show little gradual accumulation of SGA amount (Figure 4.4F,I, 

Figure 4.5F,I, and Supplementary Figure 4.10) consistent with relative evolutionary stasis. 

These two results suggest that the accumulation of SGA events only affected a tiny fraction 

of the genome. The observation of long-term evolutionary stasis is consistent with a 

hypothesis that BE can function as a benign and perhaps protective evolutionary adaptation 

of epithelial tissue to duodenal gastroesophageal reflux [8]. According to that hypothesis, the 

multilayer squamous population of cells at the distal end of the esophagus encounters a new, 

acidic microenvironment when the development of a hiatal hernia, often associated with BE, 

permits chronic exposure to reflux. Constitutive germline variants (evolution at the 

population level) can synergize with acquired somatic genomic abnormalities (evolution at 

the somatic tissue level) to modulate the propensity for developing BE that appears to be a 
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successful adaptation of the tissue in response to exposure to reflux [8]. In addition, the BE 

epithelium may have a survival advantage over the native multilayer squamous because it is a 

columnar secretory epithelium that expresses mucosal defense functions, such as bicarbonate 

secretion [16], mucus secretion by goblet and other columnar cells [18], expression of 

claudin-18 tight junctions [23], and overexpression of genes involved in defense and repair 

[15,24,108,109]. The observation of evolutionary long-term stasis at the genome level is also 

consistent with the hypothesis that the BE is a benign condition that rarely progresses to 

EA, corroborated by epidemiological evidence that only 1-7 persons with BE progress to 

EA per 1000 person-years [6,7]. 

However, apparent evolutionary stasis at the level of analyses of biopsies may miss ongoing 

accumulation of SGAs within single crypts. If those clones never grow larger than a few 

crypts, they would not be detected by our assays. Further work will be necessary to 

determine if the stasis seen at the biopsy level is a result of the lack of accumulation of SGAs 

in crypts or the lack of clonal expansions of those SGAs to detectable sizes. Our selection 

criteria, both for patients that have used NSAIDs, and for at least 5 time points over at least 

6.4 years of follow-up may have led to selection bias for individuals with relative 

evolutionary stasis in their Barrett’s epithelium. 

While evolutionary stasis dominated the dynamics of SGA over time, NSAID use was 

associated with detectable reduction in the rate of acquisition of SGA. NSAID use reduced 

SGA rate from an average of 7.8 SGAs per genome per year off-NSAID to 0.6 SGAs per 

genome per year on-NSAID (Figure 4.6). NSAID use was also associated with reduction in 

the number of newly appearing SGAs and increase in the number of pre-existing SGAs 

dropping out of detection (Figure 4.3, Supplementary Figure 4.12). These results suggest that 
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a possible underlying mechanism of the NSAID effect on reducing cancer risk may be 

modulating SGA evolution by reducing the acquisition of new SGA, inhibition of spread of 

SGA-containing clones, preventing massive bursts of SGA, and possibly induction of 

apoptosis in clones having high numbers of pre-existing SGAs.   

Evolutionary stasis can be punctuated by a massive catastrophic burst of SGA. Individual j 

was the only individual who progressed to EA and the only one that showed the sudden 

appearance of a clone with massive SGA affecting 19% of the genome, yet that clone 

remained stable for ~3 years prior to EA occurrence (Figure 4.4 A,C,G,H,I). Interestingly, 

biopsy 2, taken at the baseline endoscopy 8.5 years prior to detecting the clone with 

massively altered genome, shared a subset of the SGAs with that clone (chromosomes 10, 

12, 17 and 18), and thus biopsy 2 is likely to be an early, ancestral progenitor of the massively 

altered clone. This one observation illustrates the need for larger studies to identify altered 

states of the genome, early in progression, that may prime the genome for future bursts of 

massive alterations. We hypothesize four possible mechanisms for a long-term dynamic of 

stasis interrupted by a massive burst and followed again by stasis: 1) small SGAs or point 

mutations that we miss by our assay may accumulate and hit key genes involved in DNA 

maintenance and repair, leading to a massive catastrophic event that disrupts the genome, 2) 

massive bursts of SGA occur often, but in most cases bursts have deleterious consequences 

on cell fitness and those clones do not survive, 3) epistatic interactions among multiple loci 

in the genome exist in such configuration that makes acquisition of SGAs at any one of the 

loci deleterious, but simultaneous acquisition of SGAs at multiple loci beneficial and 4) 

SGAs gradually accumulate within a small region of the Barrett’s segment, potentially as 

small as a single crypt, that we miss in biopsy sampling until they eventually expand. The first 
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hypothesis might be supported or ruled out with more detailed data using next-generation 

sequencing. However, it may not be likely since we did not detect apparent continued 

accumulation of SGAs over time in individual j; if DNA maintenance or repair mechanisms 

were inactivated we would expect a linear or exponential increase in the amount of SGA 

after the burst. It is also possible that SGA continued to accumulate in cells descended from 

the original burst, but these subclones did not expand to detectability, so these mutations 

were not visible in our assay. The second hypothesis may be likely given the rare observation 

of biopsies having a burst in SGA, for example biopsy 5 in individual b (Figure 4.4 A,B,D,F). 

The third hypothesis can only be supported or ruled out by a cross-sectional study with 

hundreds of between- and within- individual samples that might reveal a signature of co-

occurring SGAs. The fourth hypothesis can be evaluated by analyses of the SGA 

heterogeneity among individual crypts within a biopsy and analyses of the relationship 

between spatial distance and genetic distance among biopsies and crypts within the Barrett’s 

segment. These four hypotheses are not mutually exclusive and may instead synergize to 

generate the observed stasis-punctuation-stasis evolutionary dynamic. Interestingly, the 

relative stasis observed after the massive SGA punctuation event is consistent with the 

observation of a relatively stable aneuploid population of cells detected in a primary breast 

tumor and its associated liver metastasis [110]. Moreover, the pattern of massive SGA 

(Figure 4.4C) may have been generated by a multipolar mitosis [29] or a sequence of bridge-

fusion-breakage cycles and could be classified as chromosomal instability, “chromothripsis”,  

“complex genomic firestorm”, or genetic catastrophe types of SGA patterns that have been 

observed in other solid tumors [35,36,38,98,99,110]. 
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4.5. Methods 

Human Subjects 

Participants were selected from the Seattle Barrett’s Esophagus Study, a research cohort 

founded in 1983. Surveillance endoscopies were performed and biopsies were taken using a 

standardized four quadrant sampling protocol [111]. At endoscopy, anatomical landmarks 

including the gastroesophageal junction (GEJ) and ora serrata (OS) were noted, which define 

the lower (distal) and upper (proximal) boundaries, respectively, of the Barrett’s segment. 

During an endoscopy, biopsies were taken every one or two cm along the length of the 

Barrett’s segment. At each level, four biopsies were taken approximately at 0°, 90°, 180°, and 

270° around the circumference of the esophagus for histologic evaluation. Endoscopic 

biopsies for molecular studies were collected in Minimal Essential Media (MEM) with 10% 

DMSO (Sigma #D-5879), 5% heat inactivated fetal calf serum, 5mM Hepes buffer on ice 

and frozen at -70°C. In 1995 the research protocol added an epidemiologic interview in 

which individuals were questioned about NSAID use, as previously described [67]. In 

addition, the protocol added blood collection at the time of endoscopy for use as a control, 

since blood DNA represents putatively unaltered germline genotype. 

Study design 

Individuals were selected in the cohort who had at least a 3cm-long BE segment at baseline. 

Individuals were further selected based on NSAID use status changing exactly once during 

prospective follow-up and based on having at least two endoscopic procedures while using 

NSAIDs and at least two while not using NSAIDs. At least five years of follow -up was also 

required in order to observe evolution over time. Thirteen individuals met these inclusion 
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criteria (Figure 4.1C). The history of NSAID use at each endoscopy was evaluated with a 

questionnaire that was also used in a US collaborative case-control study of esophageal 

adenocarcinoma [112]. As part of the questionnaire, individuals are shown cards (i.e., typed 

lists of drugs with trade names and generic names) to facilitate recall. Individuals were also 

asked about indications for taking NSAIDs, and reasons for stopping in those who were no 

longer regular users. The criterion for regular NSAID use at an endoscopy was taking an 

NSAID at least once per week for the last 6 months. Regular NSAID use over multiple 

endoscopies defines a time interval on-NSAIDs and absence of NSAID use over multiple 

endoscopies defines a time interval off-NSAIDs. We approximated the transition point 

between NSAID use and non-use by taking the middle time point equidistant between the 

two endoscopies when the NSAID use changed (Figure 4.1C, white-gray boundary). Eleven 

individuals (a-k) were not on NSAIDs at the start of surveillance and then went on NSAIDs 

(had an “off–on NSAIDs” pattern during surveillance), and two individuals (l,m) had the 

opposite, starting surveillance on NSAIDs and then stopping their use (an “on–off 

NSAIDs” pattern). The median follow -up surveillance time per individual was 11.6 years 

(range 6.3-19). A total of 74 endoscopies and 161 biopsies were selected as well as one blood 

sample for each of the thirteen individuals to serve as normal constitutive genotype control.  

Sample preparation 

The 161 frozen biopsies were thawed and rinsed in Hanks buffered salt solution without 

divalent cations (HBSS, Gibco/BRL). Biopsies were incubated 60 minutes at room 

temperature in 30mM EDTA in HBSS preheated to 37°C. Barrett's epithelium was isolated 

by gently peeling it away from the stroma with microdissection needles under a dissecting 

microscope [73]. The 13 frozen blood samples were processed the same way as the biopsies, 



85 

except for the epithelial isolation step. DNA was extracted using Puregene DNA Isolation 

Kit as recommended by the manufacturer (Gentra Systems, Inc. Minneapolis, MN). Samples 

were quantitated using the Picogreen method (Quant-iT dsDNA Assay, Invitrogen).  A total 

of 200ng of DNA at 50ng/ul concentration was analyzed using Illumina Omni-Quad 1M 

SNP arrays according to manufacturer’s protocol. All samples were evaluated at the Fred 

Hutchinson Cancer Research Center Genomics Core Laboratory. 

GenomeStudio processing 

All raw intensity files were loaded in Illumina’s GenomeStudio v3, normalized and clustered 

using the SNP manifest and cluster files for build37 of the human genome. In all our 

analyses we used the total signal intensity R for each SNP, which is the sum of the 

normalized X (“A” allele, Cy5 red) and Y(“B” allele, Cy3 green) intensities. We also used the 

B allele frequency (BAF), which is a modified version of the allelic intensity ratio theta (θ = 

2/p*arctan(Y/X)), to reduce SNP-to-SNP variation in theta using the canonical clusters. 

GLAD segmentation 

Each individual’s BE DNA samples were paired to the individual’s control sample (DNA 

from blood from the same individual), which always appeared normal, i.e. lacking any 

chromosomal alterations (none of the control samples had any split in BAF over the entire 

genome, data not shown). For each individual, we first excluded the 0.2% of SNPs with the 

lowest R values in the control sample, to remove SNP probes that either perform poorly or 

fall within germline copy number variant (CNV) regions. We corrected for dye bias (higher 

fluorescence of the B allele, Cy3 green) by re-centering the BAF of heterozygous and 

homozygous SNPs of all samples from observing that the median BAF of heterozygous 



86 

SNPs was ~0.53, instead of 0.5. Then, for each individual, we identified the set of 

heterozygous SNPs; i.e., SNPs having a BAF in control sample between 0.33 and 0.66. 

Finally, we separated the data into three signal profiles: log2 (R of BE sample / R of control 

sample) for heterozygous SNPs only, log2 (R of BE sample / R of reference) for 

homozygous SNPs only, and reflected and scaled BAF of BE sample, (mBAF= abs(BAF of 

BE sample – 0.5)*2) for heterozygous (informative for LOH) SNPs only. We performed 

separate wavelet-based segmentation on these three signal profiles using the HaarSeg 

algorithm [113] from the GLAD [80] package (using parameters haarStart=3, haarEnd=9, 

fdrQ=0.0001, onlySmoothing=T). 

SGA detection 

For each biopsy sample, we combined all break points of the segmented three signal profiles 

to create a new set of segments that is the union of the segments from the three signal 

profiles unique to each individual’s biopsy. For every new segment, we used thresholds to 

call allelic imbalance based on the smoothed mBAF profile, and to call single or double copy 

gain or loss, based on the homozygous and heterozygous log2R profiles. Thus every new 

segment meeting the thresholds received one of eight molecular state calls: AB (normal), AA 

(copy neutral LOH), A (single copy loss), 0 (double copy loss), AAB (single copy gain), AAA 

(LOH plus subsequent single copy gain), AAAA (LOH plus subsequent double copy gain), 

AABB (double copy gain). In summary, Supplementary Table 4.2 shows all calling 

thresholds used and supplementary figures showing raw data segmentation and SGA calls 

for all 161 biopsies of individuals a-m. 
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 The GLAD segmentation detects break points of SGA for each sample individually. For 

each individual, we combined all break points across the individual’s samples and ran a 

segment merging procedure that merged two adjacent, neighboring segments if they had the 

same molecular state call across all samples of that participant. Thus, the number of 

segments per individual can vary. IMPUTE2 [114] and a reference dataset of 566 CEU 

haplotypes, part of the 1000 Genomes Project [115], was used to phase each individual’s 

blood control sample. Having haplotype assignments for the A and B alleles of every SNP, 

we developed an algorithm to assign a haplotype state for every segment of allelic imbalance. 

This results in conversion of AA, A, AAB, AAA, AAAA calls to BB, B, BBA, BBB, BBBB 

calls for segments having lost or gained the opposite allele. For simplicity of all subsequent 

analyses, all segments having AB molecular states were assigned an “absence of SGA” call, 

and all segments having other molecular states were assigned a “presence of SGA” call. The 

final results are individual-specific phylogenetic matrices having samples as taxa, 

chromosomal segments as characters, and binary molecular states (SGA absence/presence, 

or 0/1) as character states. 

Phylogenetic analyses 

To measure mutation rate change associated with NSAID use, we used a two epoch model 

in BEAST [107], where the transition time between the first and second sampling periods is 

the time of change in NSAID use. We ran BEAST for 10 million Bayesian MCMC iterations 

that sample the space of genealogies and population parameters to obtain posterior 

distributions for model parameters that best fit the data. We used uniform prior distributions 

for SGA rate with lower and upper bounds of 10-5 and 104 SGAs per biopsy genome per 

year, respectively, for the duration of any of the on-NSAID and off-NSAID periods and 
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estimated SGA rate separately for the first and second sampling periods, where each SGA 

rate adheres to the molecular clock hypothesis (SGA occur at constant rate for all evolving 

lineages) for the period duration. We added a 0/1 mutation model in BEAST for the SGA 

absence/presence character states (see Equations S3-4) and this model assumed that SGAs 

do not revert to the normal type, i.e., 1→0 transition is impossible. We also modified 

BEAST’s likelihood calculation algorithm to consider a last universal common ancestor 

(LUCA) that has an unaltered genomic state (zeros for all sites), and that connects to the 

most recent common ancestor (MRCA), at the root of the tree, creating an extra LUCA-

MRCA branch. Thus, the final likelihood of the tree is the product of the likelihood of the 

tree at the root, calculated with Felsenstein’s pruning algorithm [116], multiplied by the 

probability of the LUCA-MRCA branch length. Maximum parsimony trees were estimated 

using Wagner parsimony with delayed transformation (DELTRAN) on the individual-

specific phylogenetic matrix with 0/1 SGA states using the PAUP* program [117]. For 

PAUP* analyses, we also used a character transition matrix that assumes infinite cost for 

1→0 transitions, i.e. SGAs do not revert to normal type. 
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4.6. Figures 

 

Figure 4.1. Hypothesis and study design for evaluating the NSAID effect on clonal evolution 
in Barrett’s esophagus (BE). (Panels A, B) BE is a condition in which the normal stratified 
squamous epithelium (white) of the distal esophagus is replaced by specialized intestinal 
metaplasia (colors). During endoscopic surveillance (0-20 years, x-axis), the anatomical 
landmarks gastroesophageal junction (GEJ) and “ora serrata” (OS) define the lower (distal) 
and upper (proximal) boundaries of the Barrett’s segment (y-axis), respectively. The mean 
distance between GEJ and OS is 5 cm in our cohort, and typically remains constant in size 
throughout 0-20 years of follow-up time. While the origin and initiation of BE is debated, we 
followed the model of Wang et al. where BE is thought to arise at GEJ from a residual 
embryonic population [118]. This initiation model is also consistent with observations of a 
columnar, secretory epithelium that forms superficial esophageal glands before being 
displaced by stratified squamous epithelium during embryonic development [119]. We 
estimated that the mean length of the initiation period in BE is 5.81 years by measuring crypt 
density and fraction of branching crypts and assuming a single progenitor crypt and logistic 
population growth of crypts by crypt fission (Supplementary Table 4.1). Somatic genomic 
abnormalities (SGA) that confer a selective advantage give rise to clones that increase in 
frequency in the neoplasm over time (adaptive SGAs, yellow to blue colors). SGA that are 
selectively neutral give rise to clones that fluctuate in frequency in the neoplasm over time by 
genetic drift (neutral SGAs, gray). (Panel A) In the absence of NSAID use, clonal evolution 
is fueled by acquisition of SGA. Chromosomal instability (red unstable clone) can lead to 
increased clonal genetic diversity and progression to cancer. (Panel B) We hypothesized that 
long-term NSAID use lowers the rate of SGA acquisition. (Panel C) To test this hypothesis, 
we evaluated 13 individuals with BE, eleven of whom were not using NSAIDs (off-
NSAIDs) for 6.2 ± 3.5 years (mean ± standard deviation) and then began using NSAIDs for 
5.6 ± 2.7 years, and two of whom were using NSAIDs for 3.3 ± 1.4 years and then 
discontinued use for 7.9 ± 0.7 years. Frozen biopsies were assayed from 5–8 endoscopies 
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from each individual, marked with x’s. The DNA from 161 BE biopsies and 13 blood 
samples was analyzed using 1M SNP arrays to detect SGA. 

 

 

Figure 4.2. The mean number of detected somatic genomic abnormalities (SGA) and the 
amount of the genome they affect remain approximately constant over time in Barrett’s 
esophagus. (Panel A) Solid lines connect the means at each time point for all individuals (a-
m), where the symbols a-m are plotted at the end of the lines. The mean number of SGAs 
per biopsy-genome per time point was 1,082 ± 177, 1,844 ± 573, and 1,154 ± 746 (mean ± 
standard deviation) in individuals b, f, and j, respectively, compared to 279 ± 86 in the rest 
of the individuals. In this instance, number of SGAs is an individual-specific estimate of the 
total number of  independently acquired SGA events and is computed by counting the 
number of abnormal genomic segments identified by the union set of all detected SGA 
break points across samples of a given individual (See GLAD segmentation and SGA detection in 
Methods). (Panel B) The mean amount of genome affected by SGA per time point was 119 
± 79 Mb, 242 ± 121 Mb, and 227 ± 222 Mb for individuals b, f, and j, and 53 ± 30 Mb for 
the rest of the individuals. 
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Figure 4.3. The effect of NSAIDs on appearance and regression of SGA events. (Panel A) 
NSAID use is associated with appearance of fewer new SGA events. For this analysis, we 
excluded all SGAs present at baseline because they had occurred and increased in frequency 
for an unknown amount of time prior to detection at baseline and since we have self-
reported NSAID use information reaching back only 6 months prior to baseline. We 
counted only new SGAs that appeared within the off-NSAID or on-NSAID periods. (Panel 
B) NSAID use is associated with a decrease in detectable cell populations with pre-existing 
SGAs. For this analysis, we restricted the analysis to only the SGAs not detected in the final 
endoscopy in order to count their regression during either the on-NSAIDs or off-NSAIDs 
periods. (Panels A, B) We binned newly appearing or regressed pre-existing SGA according 
to lesion size (0 bp–100Mb, x-axis), but detected no apparent effect of NSAID use on 
selection for or against lesions of a specific size category; rather, NSAID use affected all size 
categories of SGAs equally. (Wilcoxon rank-sum test, 2-sided p-values, *** p<0.01, ** 
p<0.05, * p<0.1, solid bars and associated error bars represent mean and standard deviation 
of newly appearing and regressing SGAs per biopsy). 
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Figure 4.4. Clonal evolution in individuals b and j. (Panel A) Solid lines connect the mean 
amount of SGA detected across biopsies at each time point. Dots correspond to biopsies 
taken during follow-up (x-axis) that have total SGA detected by SNP arrays (y-axis). In 
individual b (black line), we observed evolutionary stasis, where the mean amount of SGA 
was 119 ± 79 Mb over more than a decade of follow-up. In individual j (red line), we 
observed evolutionary stasis up to year 7, which was disrupted by a massive burst of SGA 
detected in year 8.5. Three years after the appearance of this massively altered clone, 
individual j progressed to esophageal adenocarcinoma. Individual b started NSAIDs after 
year 5, while individual j started regular NSAIDs use only after year 10. (Panels B and C)  
Genome-wide view of SGA over time in individuals b and j. Each ring, labeled with a biopsy 
number, represents whole-genome SGA data from a different biopsy. Thin black line rings 
separate endoscopies (time points), white background shows time periods off-NSAIDs and 
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gray background shows time periods on-NSAIDs. Within the rings, black segments 
designate homozygous deletion, red single copy loss, orange copy-neutral LOH, and green 
shows copy gain. (Panel B) Circos plot of SGA in individual b. Note the appearance of 
“new” whole chromosome LOH at chromosome 6 and 11 in biopsy 5, taken during the off-
NSAIDs period, and the detection of a clone lacking alterations on chromosomes 4, 12, 17 
and 20, in biopsies 9 and 7, taken during the on-NSAIDs period. (Panel C) Circos plot of 
SGA in individual j. A massive burst of SGAs was detected first in biopsy 8, in year 8.5, 
before the individual began regular NSAID use. Biopsy 2 (second inner ring), taken at the 
baseline endoscopy 8.5 years prior to the burst, shared a subset of the SGAs seen in the 
massively altered clone (chromosomes 10, 12, 17 and 18), and thus is likely to be an early, 
ancestral progenitor of the massively altered clone. (Panels D and G) Consensus 
phylogenetic trees estimated by BEAST reveal long-term co-existence of clones. Branch 
lengths are scaled according to time, the tips of the phylogeny are biopsies aligned on the x-
axis according to their sampling time, and all internal nodes are estimated coalescence times 
assuming a logistic population growth model (see Methods and Text S1). Dashed gray line 
represents the onset of NSAID use. In participant j, we detected 1,215 SGAs affecting 211 
Mb of the genome in biopsy 2, the likely progenitor clone that presaged the appearance of 
2,357 SGAs affecting 578 Mb of the genome in biopsy 8, 8.5 years later. In participant b, 
biopsies 7–10 have few SGAs and only a small amount of genome affected by SGA. (Panels 
E, F, H, I) Maximum parsimony trees estimated by PAUP reveal the ancestral relationships 
among biopsies based on shared SGA characters. Branch lengths are scaled according to 
estimated number of SGAs (Panels E, H) or the amount of genome affected by SGA (Panels 
F, I). 



94 

 

Figure 4.5. Clonal evolution in participants l and f. (Panel A) In individual l (black), the mean 
amount of SGA was 54 ± 29 Mb over time, whereas in individual f (red) the mean amount 
of SGA was 242 ± 121 Mb over time. (Panels B and C) Genome-wide view of SGA over 
time in individuals l and f. (Panel B) During the off-NSAID period in individual l, we 
detected a whole-chromosome gain of chromosome 8 in biopsy 12 (green band) and some 
copy-neutral LOH events on chromosome 1 in biopsies 9 and 11 (orange bands). (Panel C) 
We detected 1,844 ± 573 of SGAs in individual f, who did not progress to EA, but rather 
opted for esophagectomy for high-grade dysplasia after 6.4 years of follow-up and 
subsequently died of mesothelioma 11.9 years later. (Panels D, G) Consensus phylogenetic 
trees estimated by BEAST reveal long-term co-existence of multiple clones. (Panels E, H, F, 
I) Maximum parsimony trees reveal an underlying progressive evolution of SGA events 
irrespective of time. Note in individual f that the clade defined by biopsies 1, 7, and 9 seem 
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the most advanced in progression. Consensus phylogenetic trees generated as indicated in 
the legend to Figure 4. 

 

Figure 4.6. BEAST analysis of the SGA patterns across longitudinal biopsies within 
individuals suggests that NSAID use reduces the SGA rate (number of SGA events per 
genome, per year). For all individuals (a-m), the mean off-NSAID SGA rate was 7.8 (95% 
support interval [SI]: 7.1–8.6) and the mean on-NSIAD SGA rate was 0.6 (95% SI: 0.3–1.5). 
For participants a-k, the mean off-NSAID SGA rate was 8.8 (95% SI: 8.1–9.5,), whereas the 
mean on-NSAID SGA rate was 0.2 (95% SI: 0.03–1.0). For the two participants l and m that 
started surveillance on NSAIDs and then went off NSAIDs, there are mixed results. The 
mean on-NSAID SGA rate for individual l was 3.1 (95% SI: 2.2–4.7) and the mean off-
NSAID SGA rate was 4.4 (95% SI: 3.1–5.9). However, for individual m the mean on-
NSAID SGA rate was 2.5 (95% SI: 2.1–3.0) and the mean off-NSAID SGA rate was 0.1 
(95% SI: 0.01–0.6). 
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4.7. Supporting information 

 

Supplementary Figure 4.7. Circos plots of individuals a,c,d,e,g,h,i,k, and m. Each ring 
represents whole-genome SGA data from a different biopsy. Thin black line rings separate 
endoscopies (time points), white background shows time periods off-NSAIDs and gray 
background shows time periods on-NSAIDs. Within the rings, black segments designate 
homozygous deletion, red single copy loss, orange copy-neutral LOH, and green shows copy 
gain. 
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Supplementary Figure 4.8. Estimated trees by BEAST for individuals a-m. Branch lengths 
are scaled according to time, the tips of the phylogeny are biopsies aligned on the x-axis 
according to their sampling time, and all internal nodes are estimated coalescence times 
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assuming a logistic population growth model (see Methods). Dashed gray line represents the 
time point of change in NSAID use. All these trees show long-term co-existence of clones 
and no evidence of a clonal expansion taking over the Barrett’s segment. 

 

 

Supplementary Figure 4.9. Estimated trees by PAUP trees where branch lengths represent 
estimated number of SGA events for individuals a,c,d,e,g,h,i,k and m. The topology of these 
trees suggest progressive accumulation of SGAs. 
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Supplementary Figure 4.10. Estimated trees by PAUP trees where branch lengths represent 
the total amount of SGA (Mb) of the estimated 0->1 SGA events from Supplementary 
Figure 3 for individuals a,c,d,e,g,h,i,k and m. 
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Supplementary Figure 4.11. Linear chromosome plot of SGAs that are common across all 
biopsies within an individual. The most likely regions affected by SGA are fragile sites FHIT 
and WWOX on chromosomes 3 and 16, respectively, as well as the p-arm of chromosome 9 
that often includes the tumor suppressor gene CDKN2A. These are lesions that were 
present by the time of the first endoscopy and so may have been established with the 
hypothesized initial expansion of Barrett’s epithelium in competition with squamous 
epithelium. 
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Supplementary Figure 4.12. Linear chromosome plot of detected somatic genomic 
abnormalities (SGAs) in biopsies from the baseline endoscopy (top panel), the first sampling 
period (off-NSAIDs for a-k and on-NSAIDs for l, m; middle panel), and the second 
sampling period (on-NSAIDs for a-k and off-NSAIDs for l, m; bottom panel).This plot 
shows the genomic location and size of newly detected SGAs during off-NSAID (red) and 
on-NSAID (green) periods that are summarized in Figure 3A. Black bars represent SGAs 
observed in a prior sampling period or at baseline; top panel – black represents SGAs 
detected in any biopsy from the baseline endoscopy; middle panel – black represents SGAs 
detected in any biopsy from baseline endoscopy that is also detected in at least one biopsy in 
the first sampling period; bottom panel – black represents SGAs detected in any biopsy from 
baseline or first sampling period, or both, that is also detected in at least one biopsy in the 
second sampling period. In the middle panel, red and green bars represent newly acquired 
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SGAs that are detected in at least one biopsy in the first sampling period, but not detected at 
baseline. In the bottom panel, red and green bars represent newly acquired SGAs that are 
detected in at least one biopsy in the second sampling period, but not detected in any biopsy 
from baseline or first sampling period. 

 

 To SGA absence (0) To SGA presence (1) 

From SGA absence (0) 1-α α 

From SGA presence (1) 0 1 

Supplementary Equation S3. Substitution matrix (transition rate matrix) describing the 
transition probabilities (rates) between SGA absence/presence (0/1) states that was 
incorporated into BEAST. The probability α is the probability of acquiring SGA in a 
segment in one division (at the biopsy level), which is estimated by the BEAST software. 
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Supplementary Equation S4. Continuous-time solutions for the probability of all four 
possible state transitions of a character on a branch of a phylogeny that has branch length of 
t years. 
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Individual Sex Age 
L 

(cm) 

A 

(cm2) 
X K Nt Ib 

Tr 

(days) 

Tinit 

(years) 

BEAST 
Tinit 

upper 

bound 

(years) 

a M 44 6 45 3 100,008 58,554 0.14 106 4.96 5.96 

b M 67 8 60 4 11,956 11,519 0.14 103 5.17 6.17 

c M 53 5 37.5 3 47,830 17,220 0.21 73 2.93 3.93 

d M 79 16 120 9 372,496 132,384 0.13 113 5.48 6.48 

e M 53 6 45 4 62,082 28,662 0.21 73 3.13 4.13 

f M 67 12 90 5 31,212 25,213 0.14 103 4.81 5.81 

g M 51 5 37.5 N/A N / A N / A N /A  N/A 4.74* 5.74* 

h M 62 5 37.5 3 33,750 15,000 0.16 93 3.77 4.77 

i M 55 5 37.5 5 44,080 16,840 0.09 161 6.49 7.49 

j M 47 7 52.5 5 90,104 69,671 0.11 133 6.63 7.63 

k M 45 4 30 2 34,147 13,978 0.14 103 4.11 5.11 

l M 53 14 105 3 55,985 33,523 0.14 103 4.62 5.62 

m M 50 5 37.5 3 22,115 11,020 0 . 1 145 5.75 6.75 

Mean  55.8 7.5 56.5 4 72,480 36,132 0.14 109 4.81 5.81 

Supplementary Table 4.1. Crypt density results. Age is the age of the individual at the first 
endoscopy. L is the BE segment length measured as the distance in centimeters from the 
GEJ to the OS anatomical landmarks; A is an estimate of the total area of the BE segment 
by assuming a circumference of 7.5cm of the esophagus (estimated from [120]); X is the 
number of levels that were biopsied and had slides from which various numbers of biopsies 
were evaluated for counting the number of crypts and the number of branching crypts per 
slide; K is an estimate of the maximum crypt count in BE segments extrapolated from the 
maximum number of observed crypts in every scored level; N t is an estimate of the total 
crypt count in BE segments at baseline endoscopy; Ib is the fraction of crypts that appear to 
be branching in a sample of crypts; Tr is the estimated crypt doubling time in days (see 
Equation S1); Tinit is the estimated time from initiation of the BE segment to baseline 
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endoscopy in years, assuming a logistic growth starting with 1 crypt that grows to a 
population of Nt crypts at baseline, and assuming a carrying capacity of K crypts for the BE 
segment (see Equation S2); BEAST Tinit was bounded to 1 year earlier than the Tinit to allow 
some flexibility in the estimate of the exact initiation date during the BEAST MCMC runs. 
(*) We did not have crypt count information for individual g, so we estimated T init and 
BEAST Tinit by taking the average from individuals c,h,i, and m since they had the same 
segment length (5cm) as individual g. 

 

State 
Heterozygous SNPs profile 

Log2R 

Homozygous SNPs profile 

Log2R 

Allelic imbalance profile 

mBAF 

AB (-0.2,0.2) (-0.15,0.2) (0,0.15) 

0 (-3,-0.5) (-3,-0.5) (0,0.5) 

A (-3,-0.2) (-3,-0.15) (0.15,1) 

AA (-1,0.15) (-1,0.15) (0.15,1) 

AAA (1,2) (1,2) (0.6,1) 

AAB (0.15,1) (0.15,1) (0.15,1) 

AABB (1,3) (1,3) (0,0.2) 

AAAA (1,3) (1,3) (0.6,1) 

Supplementary Table 4.2. Calling thresholds (lower and upper bounds given in parentheses) 
used for identifying segments with single copy loss, double copy loss, copy gain, and copy 
neutral LOH. 

Individual 
Colless Test Sackin Test 

Yule null model PDA null model Yule null model PDA null model 

P-values for tree shape imbalance of PAUP* phylogenetic trees 

a 0.004 0.144 0 0.102 

b 0.022 0.294 0.004 0.316 

c 0.032 0.442 0.012 0.454 

d 0 0.068 0 0.112 

e 0.006 0.22 0 0.264 

f 0.078 0.732 0 0.664 

g 0 0 0 0 

h 0 0.028 0 0.036 

i 0.004 0.228 0 0.16 

j 0.058 0.6 0.004 0.548 

k 0.018 0.326 0 0.318 

l 0 0.022 0 0.022 

m 0 0.07 0 0.062 

P-values for tree shape imbalance of BEAST phylogenetic trees 
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a 0.03 0.442 0.006 0.376 
b 0.124 0.552 0.018 0.498 
c 0.772 0.968 0.13 0.93 
d 0.95 0.996 0.258 0.998 
e 0.492 0.918 0.08 0.868 

f 0.664 0.992 0.154 0.978 
g 0.448 0.882 0.096 0.904 
h 0.016 0.26 0.002 0.3 

i 0.034 0.49 0 0.444 
j 0.176 0.714 0.042 0.79 
k 0.98 1 0.294 1 
l 0.01 0.27 0.002 0.316 
m 0.158 0.696 0.044 0.658 

Supplementary Table 4.3. Tree shape imbalance statistics for individuals a–k estimated for 
PAUP* and BEAST trees calculated from generating 500 random trees having the same 
number of taxa under Yule and PDA null models [121] using the R package “apTreeshape” 
[122]. Significant p-values reject the null hypothesis that the observed tree shape is as 
balanced as the 500 random tree shapes, where the test statistics are the Colless and Sackin 
formulas [121] for calculating tree shape imbalance. 
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Supplementary Figure 4.13. Raw data segmentation and SGA calls for all 161 biopsies of 
individuals a–m. Every page shows an individual biopsy and has 5 panels (top to bottom): 
first panel, raw Log2R ratio between biopsy and leukocyte control, where gray SNPs are 
homozygous SNPs and black SNPs are heterozygous SNPs; second panel, GLAD 
segmentation of homozygous SNPs (blue line) and heterozygous SNPs (red line); third 
panel, raw mBAF (reflected and scaled B Allele Frequency of the BE sample) where 
homozygous SNPs are shown in gray, and heterozygous SNPs are shown in black; fourth 
panel, GLAD segmentation of the mBAF data of heterozygous SNPs, which are informative 
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for allelic imbalance; fifth panel, final SGA calls for chromosomal regions: GN (copy gain, 
green), CNLOH (copy neutral LOH, orange), SD (single deletion, or single copy number 
loss, red), HD (homozygous deletion, or double copy number loss, black). Only one example 
biopsy is displayed here, which is biopsy #8 from individual j, which shows massive SGA. 

4.7.1. Cell organization into crypts in Barrett’s Esophagus and Analytical modeling of 

crypt production in Barrett’s esophagus (Supplementary Text S1) 

To understand how evolution at the genome level unfolds, we need to first consider how 

cells are spatially organized in the BE tissue. The BE epithelium is a single layer of 

specialized intestinal metaplasia that typically covers 38 cm2 and contains between 10,000-

400,000 crypts (Supplementary Table 4.1). Crypts hold a reservoir of stem cells at their base 

that are self-renewing cells capable of generating and propagating genomic alterations over 

long timespans. Cell proliferation and differentiation occurs at the base of the crypts 

producing a flux of differentiated cells that move up the crypt and slough off into the lumen. 

Because of this constant shedding of cells, cell fitness in a crypt-structured epithelium is a 

complex combination of stem cell self-renewal, survival, and lateral spread, taking over 

neighboring crypts. Acquired SGAs that boost any of these three cell phenotypes will persist 

and increase in frequency in the BE cell population. The organization of cells into crypts in 

itself is an evolved mechanism to protect against cancer since acquired SGAs in 

differentiated cells can be lost by cells sloughing off and only acquired SGAs in stem cells 

can persist and increase in frequency over time; and also, in a strictly single-layer columnar 

epithelium, lateral invasion of mutant cells into neighboring crypts is physically difficult since 

invading from the lumen side requires going against the flux of cells [17]. A subset of SGAs 

were detected in all biopsies of an individual over decades (Supplementary Figure 4.11) 

which is evidence that these SGAs must be acquired in long-living self-renewing (stem) cells 
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that have not differentiated, been sloughed into the lumen, and have survived toxic 

microenvironmental exposures. Other SGAs had various lifespans in the segment (Figures 

Figure 4.2, Figure 4.4B,C, Figure 4.5B,C, Supplementary Figure 4.12) but only a fraction of 

them were turning over, either appearing or regressing (Figure 4.3).  In summary, the spatial 

organization of cells into a single-layer crypt-structured BE epithelium constrains the 

evolutionary dynamics and spatial dispersal of acquired SGAs over time. 
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Supplementary Equation S1. Estimating the crypt doubling time where the duration of 
branching (Tb) is set to 20 days; see Appendix I from [97]. Ib is the fraction of crypts that 
appear to be branching in standard pathology slides of BE biopsies. 

The duration of the crypt replication cycle Tr can also be defined as a crypt doubling time, in 

both definitions Tr is the time it takes, in days, for a single crypt to replicate and produce tw o 

daughter crypts. This equation assumes exponential growth, where the number of crypts at 

time t is [123]: 

t
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2log

)0()(   

Often, population growth is expressed using a growth rate parameter, or Malthusian growth 

parameter, m, which is: 

rt
m

2log
  

Although simple mathematically, exponential growth is not realistic for biological systems, 

where when populations grow in size and density, the competition for space and resources 
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increases, which causes growth to slow down. Such behavior can be modeled with a logistic 

growth equation, which is one type of sigmoid functions, which introduces the concept of 

carrying capacity, or maximal population size. As the population size reaches its carrying 

capacity, its growth rate decreases. 

In Barrett esophagus, the date of the most recent common ancestor (MRCA) of all biopsies 

(or time from initiation to baseline endoscopy) can be identified if logistic growth is 

assumed. For the logistic growth, the Barrett segment is initiated with a single crypt, i.e. at 

time Tinit, the crypt population size is N0=1. At time t of baseline endoscopy, the crypt 

population size is Nt, and for the duration of evolution, the maximal crypt population size is 

K. The following logistic equation describes the duration of the initiation phase Tinit which is 

in units of days, since Tr is also in units of days: 
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Supplementary Equation S2. Estimating the initiation phase duration, where N0=1 is the 

starting population size that is fixed to 1 crypt. K is the estimated maximum number of 

crypts (“carrying capacity”) in a BE segment , Nt is the estimated total number of crypts in a 

BE segment, and Tr is the crypt doubling time defined in Supplementary Equation S1. 

Where Ib is the fraction of branching crypts, calculated by taking the average number of 

branching crypts for each level and dividing by the average number of crypts for that level 

(for each level, 1-4 pathology slides were counted), choosing the level with maximum 

number of branching crypts. L is the segment length (cm), or the distance between the low er 
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esophageal sphincter (LES) and ora serrate (OS) landmarks. A is the surface area, calculated 

by multiplying L and the circumference of the esophagus, which is fixed at 7.5 cm 

(approximately the diameter of a US quarter coin). K is the carrying capacity, calculated by 

taking the maximum number of crypts detected in any one of the slides within a level, and 

summing those counts across levels to get the maximum possible crypt count per segment. 

Nt is the average crypt count per level, calculated by taking the crypt count for each slide and 

dividing by the number of slides, and extrapolating to the level surface area. X is the number 

of levels that were scored by pathology out of L possible levels.  

Comparison of % branching crypts in normal and diseased epithelium 

Ib is the observed fraction of crypts that appear to be budding or branching in a sample of 

crypts, isolated from a crypt-structured epithelium (Barrett’s epithelium, small intestinal or 

colonic epithelium). Often, Ib is measured by incubating the tissue in EDTA and peeling off 

the epithelium from stroma, after which, crypts could be scored as budding or branching by 

visual examination under a dissecting microscope. Alternatively, Ib can be estimated from 

H&E stained histopathology slides, however, only crypts that show the majority of the crypt 

lumen, ideally both the crypt bottom and the crypt mouth, can be safely counted as budding 

or branching. For simplicity, the term “branching” would mean crypts that are either 

budding or branching, since both appearances are part of the branching process, therefore Ib 

counts both budding and branching crypts.   

My estimates of Ib from Srivastava and Odze’s pathology slide measurements ranged  9%-

21% (mean 14%) and fall within the ranges of two previously reported crypt branching rate 

estimates in the literature. Cheng et al. reported an average of 0.44%, 30.4%, 15.1%, and 
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13.2% branching crypts in 11 normal adults, and 4 Ulcerative colitis, 4 Crohn’s disease, 4 

Multiple polyposis patients [97]. The average ages and age ranges of the four groups were 69 

(48-83), 47(31-56), 33 (27-45), and 42 (34-56) [97]. Cummins et al. reported an average of 

7.8%, 15%, 4.9%, 1.7% branching crypts in small intestine in 3 neonates, 16 infants, 14 

children, and 39 adults [124]. The average ages and age ranges of the four groups were 2.4 

weeks (0.9-4 weeks), 0.7 years (0.3-1.7 years), 7.9 years (2.4-16.2 years), and 46 years (20-80 

years) [124]. Therefore, it is likely that in hyperproliferative Barrett tissues crypts attain a rate 

of branching similar during pregnancy and infancy, surpasses the branching rate in adult 

normal intestinal epithelium, and compares to rate of branching in diseased colonic 

epithelium.          

4.7.2. Detecting mutation rate change in Barrett’s esophagus after treatment with 

NSAIDs: computational power analysis 

Authors: Rumen Kostadinov, Mary Kuhner, Carlo Maley 

4.7.2.1. Introduction and Methods 

I performed in-silico analysis in 2007 prior to conducting the large study in this Chapter to 

calculate the power to detect mutation rate changes, which was critical for selecting the 

number of time points and the number of biopsies per time point to assay per individual 

patient, given the high cost of whole-genome SNP assays. I modified SerialSimCoal [63] to 

simulate an evolving tumor cell population with the following parameters: 
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24 samples over 10 years 

4 samples every 2 years (=6 time points) 

300 cell generations per year 

8,000 neutral loci (no natural selection) 

1.1, 2, 5, 10 and 100-fold decrease in mutation rate after year 5 

AR – ancient mutation rate (off NSAIDs) (5 year duration) 

RR – recent mutation rate (on NSAIDs) (5 year duration) 

Effective population size, Ne = 100, 1000, 10000 

Constant population size over time 

Population-scaled mutation rate (theta) θ = 0.000082, 0.00082, 
0.0082 

Table 4.4. Parameter table for the in-silico power analysis. 

I used BEAST [62,107] to estimate population sizes and mutation rates before and after year 

5, given 24 samples. I adapted SimCoal and BEAST to use sequences of 0s and 1s 

representing absence and presence of LOH, and used a novel two-state LOH substitution 

model. I adapted the BEAST software for coalescent-based backward estimation of 

population genetic parameters given SGA data. I made three major changes to BEAST: 

addition of a 0/1 binary evolutionary model, addition of a sequence error, and addition of an 

extra MRCA-LUCA branch.  

First, I included a 0/1 binary evolutionary model that instead of having four DNA states 

A,C,G, and T, which are modeled with DNA evolutionary models such as Jukes-Cantor or 

F84, has only 2 possible states, 0 and 1, and allows 0->1 and 1->0 transitions. If the 
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probability of 0->1 transition is alpha and the probability of 1->0 transition is beta for one 

step of the Markov chain then a continuous approximation can be derived for the state of 

the chain after t steps, where t can be a decimal (Dr. Joseph Felsenstein, personal 

communication). I implemented this 0/1 model into BEAST allowing the user to specify 

alpha and beta as parameters. Notably, if we would like to make an irreversible model by 

disallowing 1->0 transition, we simply set the 1->0 probability beta to 0. The 0/1 model, as 

any other evolutionary model, simply calculates the likelihood of starting at a given state at a 

parent node in a phylogeny and ending at any other state at a child node in a phylogeny 

given a certain branch length or distance between the parent and child nodes.  

Second, I implemented a sequence error in BEAST. An observed state in a sequence could 

be incorrect prone for example  due to instrument technical errors. Typically in DNA 

evolutionary models a sequence error is modeled by replacing the likelihoods of A, C, G, T 

at a site (terminal node, or tip) that is called "A" by the assay from 1, 0, 0, 0 to 1-e, e, e, e, 

where e is the sequence error [125]. 

I adapted SerialSimCoal software [63] for coalescent-based forward simulation of SGA data 

given population genetic parameters. SerialSimCoal is a forward simulation of population 

dynamics and various evolutionary models can be used to simulate serial samples given a 

specified demographic history. I made changes in SerialSimCoal to produce 0/1 data where a 

change from 0->1 is irreversible, and where the ancestral state of the population is always 0. 

The modified versions of BEAST and SerialSimCoal are available upon request.  
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4.7.2.2. Results and Discussion 

For 91% (41/45) of the parameter combinations, we had >80% power to detect a 1.1- to 

100- fold decrease in mutation rate (paired Wilcoxon test, p<0.05) (Table 4.5). As the fold 

difference in mutation rate increased between ancient and recent periods, the number of 

parameter sweeps that accurately estimated the simulated mutation rates increased (third and 

last column of Table 4.5). Overall, BEAST recovered mutation rates accurately from 

simulated data, which verified that the implementation of the novel 0/1 evolutionary model 

was accurate and error-free. 
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True 
Ne 

Theta 
Fold 
Diff. 

Ne 95% 
CI lower 

Ne 95% 
CI 

upper 
True AR 

AR 95% 
CI 

lower 

AR 95% 
CI 

upper 

True 
RR 

RR 95% 
CI lower 

RR 95% 
CI 

upper 

No. 
sweeps 
cover. 

Ne 

No. 
sweeps 
cover. 

AR 

No. 
sweeps 
cover. 

RR 

No. 
sweeps 
AR>RR 
p<.05 
n=100 

100 8.25E-05 1.1x 45 277 4.3E-07 2.2E-07 9.1E-07 3.9E-07 1.9E-07 8.7E-07 93 97 93 91 

100 8.25E-05 2x 48 297 5.8E-07 2.9E-07 1.0E-06 2.9E-07 1.3E-07 7.2E-07 93 93 96 90 

100 8.25E-05 5x 49 271 9.2E-07 5.1E-07 1.5E-06 1.8E-07 7.1E-08 5.6E-07 93 93 95 99 

100 8.25E-05 10x 44 237 1.3E-06 8.4E-07 2.1E-06 1.3E-07 4.3E-08 4.6E-07 96 94 97 100 

100 8.25E-05 100x 52 208 4.1E-06 3.1E-06 5.3E-06 4.1E-08 1.3E-08 3.2E-07 95 89 92 100 

100 8.25E-04 1.1x 64 183 4.3E-06 3.3E-06 5.6E-06 3.9E-06 2.9E-06 5.0E-06 94 98 93 83 

100 8.25E-04 2x 62 178 5.8E-06 4.7E-06 7.4E-06 2.9E-06 2.1E-06 3.9E-06 91 96 97 100 

100 8.25E-04 5x 63 204 9.2E-06 7.6E-06 1.1E-05 1.8E-06 1.2E-06 2.7E-06 91 97 97 100 

100 8.25E-04 10x 62 178 1.3E-05 1.1E-05 1.5E-05 1.3E-06 8.1E-07 2.1E-06 93 94 96 100 

100 8.25E-04 100x 205 1033 4.1E-05 3.4E-05 4.2E-05 4.1E-07 1.8E-07 8.5E-07 89 90 94 100 

100 8.25E-03 1.1x 322 1544 4.3E-05 3.3E-05 4.3E-05 3.9E-05 3.6E-05 4.4E-05 81 87 86 97 

100 8.25E-03 2x 307 1615 5.8E-05 4.4E-05 5.5E-05 2.9E-05 2.7E-05 3.3E-05 83 86 86 100 

100 8.25E-03 5x 584 4449 9.2E-05 5.6E-05 8.1E-05 1.8E-05 1.7E-05 2.3E-05 79 77 82 98 

100 8.25E-03 10x 1064 7055 1.3E-04 7.6E-05 1.1E-04 1.3E-05 1.2E-05 1.6E-05 78 75 91 100 

100 8.25E-03 100x 2814 25807 4.1E-04 5.4E-05 2.1E-04 4.1E-06 2.9E-06 5.4E-06 46 26 94 99 

1000 8.25E-05 1.1x 407 18016 4.3E-08 8.9E-09 1.6E-07 3.9E-08 9.7E-09 1.7E-07 96 98 96 82 

1000 8.25E-05 2x 401 12370 5.8E-08 1.8E-08 2.0E-07 2.9E-08 8.0E-09 1.7E-07 95 96 95 82 

1000 8.25E-05 5x 467 7413 9.2E-08 3.5E-08 2.5E-07 1.8E-08 6.0E-09 1.6E-07 96 92 93 95 

1000 8.25E-05 10x 448 3675 1.3E-07 6.0E-08 3.3E-07 1.3E-08 3.3E-09 1.4E-07 97 94 96 98 

1000 8.25E-05 100x 564 2095 4.1E-07 2.4E-07 7.0E-07 4.1E-09 2.6E-09 1.3E-07 98 95 77 100 

1000 8.25E-04 1.1x 615 2082 4.3E-07 2.5E-07 7.0E-07 3.9E-07 2.1E-07 6.8E-07 97 93 93 88 

1000 8.25E-04 2x 653 2079 5.8E-07 3.6E-07 8.8E-07 2.9E-07 1.5E-07 5.6E-07 92 92 96 98 

1000 8.25E-04 5x 614 1867 9.2E-07 6.3E-07 1.3E-06 1.8E-07 8.9E-08 4.3E-07 94 95 93 100 

1000 8.25E-04 10x 635 1834 1.3E-06 9.2E-07 1.8E-06 1.3E-07 5.4E-08 3.5E-07 97 93 98 100 

1000 8.25E-04 100x 695 1832 4.1E-06 3.4E-06 5.0E-06 4.1E-08 1.5E-08 2.1E-07 88 96 95 100 

1000 8.25E-03 1.1x 699 1729 4.3E-06 3.6E-06 5.3E-06 3.9E-06 3.2E-06 4.8E-06 91 94 98 91 

1000 8.25E-03 2x 726 1778 5.8E-06 4.9E-06 6.8E-06 2.9E-06 2.3E-06 3.7E-06 93 98 95 100 

1000 8.25E-03 5x 690 1685 9.2E-06 8.0E-06 1.0E-05 1.8E-06 1.4E-06 2.5E-06 97 95 98 100 

1000 8.25E-03 10x 703 1714 1.3E-05 1.2E-05 1.5E-05 1.3E-06 9.1E-07 1.9E-06 96 93 97 100 

1000 8.25E-03 100x 695 2108 4.1E-05 3.7E-05 4.4E-05 4.1E-07 2.3E-07 7.5E-07 95 95 96 100 

10000 8.25E-05 1.1x 1588 67909 4.3E-09 8.7E-10 6.9E-08 3.9E-09 1.8E-09 9.0E-08 96 99 95 80 

10000 8.25E-05 2x 1868 74827 5.8E-09 1.1E-09 6.6E-08 2.9E-09 1.4E-09 8.4E-08 97 99 87 75 

10000 8.25E-05 5x 2646 74952 9.2E-09 1.8E-09 6.1E-08 1.8E-09 1.1E-09 7.1E-08 98 98 85 75 

10000 8.25E-05 10x 3261 73887 1.3E-08 2.5E-09 6.7E-08 1.3E-09 9.5E-10 7.1E-08 98 96 85 73 

10000 8.25E-05 100x 4738 65189 4.1E-08 1.0E-08 1.1E-07 4.1E-10 1.6E-09 8.8E-08 93 92 10 81 

10000 8.25E-04 1.1x 5175 63593 4.3E-08 1.1E-08 1.1E-07 3.9E-08 1.2E-08 1.4E-07 94 93 95 82 

10000 8.25E-04 2x 4659 54874 5.8E-08 1.6E-08 1.3E-07 2.9E-08 7.0E-09 1.3E-07 97 98 95 83 

10000 8.25E-04 5x 5350 51011 9.2E-08 2.7E-08 1.8E-07 1.8E-08 5.4E-09 1.3E-07 92 94 92 92 

10000 8.25E-04 10x 5731 41713 1.3E-07 5.2E-08 2.5E-07 1.3E-08 4.5E-09 1.4E-07 92 90 91 90 

10000 8.25E-04 100x 6425 26243 4.1E-07 2.2E-07 6.0E-07 4.1E-09 3.1E-09 1.6E-07 89 92 78 99 

10000 8.25E-03 1.1x 6557 28239 4.3E-07 2.1E-07 6.4E-07 3.9E-07 2.2E-07 6.7E-07 96 94 92 85 

10000 8.25E-03 2x 6750 24801 5.8E-07 3.3E-07 8.4E-07 2.9E-07 1.3E-07 5.5E-07 96 92 97 96 

10000 8.25E-03 5x 6769 21222 9.2E-07 5.7E-07 1.2E-06 1.8E-07 7.5E-08 4.6E-07 95 95 93 100 

10000 8.25E-03 10x 6771 19895 1.3E-06 8.7E-07 1.6E-06 1.3E-07 4.5E-08 4.2E-07 94 95 93 100 

10000 8.25E-03 100x 7057 17568 4.1E-06 3.4E-06 4.8E-06 4.1E-08 1.3E-08 3.3E-07 94 94 94 100 

 
 

Table 4.5 BEAST inference of mutation rates on and off NSAIDs and of constant 
population size from samples generated from a SerialSimCoal forward simulation using a 
fixed set of mutation rates on and off NSAIDs and a fixed constant population size. 

4.7.2.3. Conclusion  

This power analysis helped in getting grant funding and in study design of the larger 

experiment that tested the hypothesis that an association between mutation rate change and 

NSAIDs use exists. This power analysis was presented at the AACR Frontiers in Cancer 

Prevention conference in Philadelphia in 2007. 
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4.8. Chapter conclusion 

In summary, our results suggest that in most individuals in long-term endoscopic 

surveillance with BE, clonal evolution within the BE segment has occurred prior to baseline 

detection in the clinic, but from baseline detection to more than a decade of follow -up the 

population remains in relative evolutionary stasis at the genome level. Only rarely is 

evolutionary stasis punctuated by a massive burst of SGA that may lead to progression to 

cancer. The current picture supports an evolutionary scenario in which mutation-selection 

balance of spontaneous SGAs and purifying selection against deleterious effects maintain a 

relative stasis of the genome until a chance occurrence of adaptive (for the clone) SGA, 

perhaps with epistatic effects, or changes in the selective environment, results in a new 

proliferating clone that may progress to EA. In addition to the observation of evolutionary 

stasis, NSAID use in Barrett’s esophagus is associated with a reduction in the rate of 

acquisition of SGA suggesting that the pathway whereby NSAIDs exert their protective 

effect involves the reduction in number of SGAs or the inhibition of spread of SGA-

containing clones. Finally, detection of evolutionary stasis might be used in the clinic to 

reduce overdiagnosis and unwarranted treatment and detection of massive bursts of SGA 

might be used to better identify patients needing more aggressive surveillance and therapy. 
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Chapter 5. Pilot in vitro experiment evaluating the genotoxic 

effect of deoxycholic acid on the evolutionary dynamics of SGA 

Author: Rumen Kostadinov 

5.1. Introduction 

Studying the evolutionary dynamics of SGA in vivo in humans has many limitations due to 

the infeasibility for performing a fully controlled experiment. Ideally, we aim to study the 

evolution of cell lineages carrying acquired SGA under the presence or absence of genotoxic 

constituents of duodenal gastroesophageal reflux. However, in vivo, administering genotoxic 

compounds in a controlled experiment is unethical and unfeasible. Therefore, we designed 

an experimental evolution study to evaluate the in vitro SGA evolutionary dynamics in a 

Barrett’s esophagus cell line, where we controlled the dose and duration of genotoxic stress 

and observed the acquisition of SGA in evolving cell lineages over time. Ultimately, 

modulating the dose and duration of genotoxic stress corresponds to modulating the 

mutation rate, or the rate of acquisition of SGA, which is a key population-genetic parameter 

providing a quantity of the raw material that allows for evolution by natural selection to 

occur. Moreover, we aimed to develop computational and statistical methods for estimating 

SGA rate in order to test whether the inferred SGA rate from observed patterns of SGA in 

vitro correlates positively to the level of genotoxic exposure to which we subject the cell line. 

In summary, the experimental evolution study allowed us to evaluate the relationship 

between the level of DCA genotoxicity, the level of detected SGAs, and the evolution of 

SGAs that we define as the change in the frequency of SGA over an approximately similar 
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number of cell generations under presence of various levels of DCA or absence of DCA 

exposure.     

Jenkins et al. showed that the bile acid deoxycholic acid (DCA) is genotoxic and may be 

associated with the acquisition of SGA and carcinogenesis in BE [10,126]. Therefore, we 

selected DCA as the source of mutational input to the cell lines. Jenkins et al. tested various 

concentrations of DCA, ranging from 0-400μM in an approximately fixed concentration of 

esophageal cells (105 cells/mL) (See Fig. 1 in Ref.[126]). I also tested the effect of various 

concentrations of DCA on relative cell viability, since we aimed to achieve low and high 

mutation rates that both retain cell viability so that we can assay the cells’ genomic state over 

time. 

5.2. Methods 

 

Figure 5.1. Study design of single cell experimental evolution. Single cells from an ancestral 
cell population from a CP-D Barrett’s cell line were grown in 96 well plates, where cells were 
plated at a concentration of 1/3 of cells per well. Cells were passaged into larger 6-well plates 
and T25 and T75 plates as they grew in number. After two rounds of single cell cloning, 
DNA was extracted from 8 samples (samples #1-#8) and DNA was evaluated with Illumina 
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550K arrays at the Penn Hospital of the University of Pennsylvania (HUP) genomics facility. 
The two rounds of single cell cloning ensure that any difference in genomic state between 
samples #5 and #6, #7 and #8, #2 and #1, and #3 and #4 occurred during the course of 
the experiment (under the various deoxycholic acid (DCA) concentrations).   

BE cell line ID CP-D 

BE cell line name CP-18821 

Method of Initiation of Primary Cultures Enzymatic 

Biopsy extracted from region of: High-grade dysplasia 

Serum-Free adapted, Keratinocyte serum-free media 
(Invitrogen catalog no. 17005-042) 

Yes 

Doubling Time (hrs) 32.26 

DNA content 2.43 (4.56 subpopn) 

% 4N DNA 28.5 

Tetraploid (%) 15.8 

17p LOH Yes (in vitro) No (in vivo) 

P53 mutation Frameshift 302 

P53 mutation Not detected in vivo 

9p LOH 
Homozygous deletion (4N, 

8N) 

CDKN2/p16 
Deletion of C5.1 STS marker 

(4N, 8N) 

5q LOH No 

Fluorescently tagged populations GFP, DsRed 

Table 5.1. CP-D Barrett’s esophagus cell line description 

I used a Barrett’s esophagus cell line named “CP-D” or “CP-18821”, which was described in 

Palanca-Wessels et al. (Table 5.1) (M. C. Palanca-Wessels et al. 1998; M. C. A. Palanca-

Wessels et al. 2003). 
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CP-D cells were cultured in KSFM media (Invitrogen) supplemented with 25mg of bovine 

pituitary extract, 2.5ug recombinant epidermal growth factor (Invitrogen), 50 units of 

Penicillin, and 50ug Streptomycin, per 500mL of media. Cells were initially diluted and 

distributed into wells of a 96 well plate at a dilution of 1/3 of a cell per well. Assuming a 

Poisson distribution, (formula in R: “dpois(# of expected cells per well,1/3)*96”), this 

results that on average ~23 wells would be expected to contain a single cell, and on average 

~4 wells would be expected to contain two cells, and on average ~69 wells would be 

expected to contain no cells. After ~1-24 hours, once the cells attached to the surface of the 

plate, the wells were examined under a phase and under a fluorescent microscope to record 

wells that were initiated with a single cell. Conditioned, filtered media from CP-D cell 

cultures was used to facilitate clonal expansion when the clones are at low density. After cell 

growth reached near confluency within the wells of a 96-well plate, cells from the wells are 

trypsinized and transferred to a 6-well plate. Clones were passaged to larger plates as they 

grow so that they are never allowed to become confluent. 

Cells are initially diluted and distributed into wells of a 96 well plate such that on average less 

than 35 wells contain cells and on average 10 out of the 35 wells contain a single cell. After 

24 hours, once the cells have attached, the wells are examined under a light microscope using 

the objective lens set at 4X and 10X magnification to count the number of cells in each well 

of the 96 well plate. Conditioned, filtered media from CP-D cell cultures is used to facilitate 

clonal expansion when the clones are at low density. While the cells grow in a 96 well plate, 

they receive media change once per week. After 23 days, cells from the wells that were 

initiated with a single cell are trypsinized and transferred to a 6-well plate. At the 6-well plate 
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stage, fresh KSFM media is used only and media is changed every 3-5 days. Clones are 

passaged to larger plates as they grow so that they are never allowed to become confluent. 

I designed and followed the following protocol for preparing a DCA+KSFM solution: 

1. A solution was made that contains both KSFM media and 250μM DCA. The final 

volume of this solution is 40mL. The molar mass of DCA is 392.6 g/mol, therefore 

to make 250μM DCA solution in 40mL, 3.926mg of DCA was measured (grams 

DCA= 0.04 L * 0.00025 mol/L * 392.6 g/mol). To measure such a tiny amount, I 

tared the scale instrument with an empty eppendorf tube, and then dispensed 

miniscule amounts of DCA powder into the tube to bring it to approximately 3.9mg. 

The final weight typically ranged between 3 and 5 mg due to the precision of 

dispensing such tiny amount of powder by hand into an eppendorf tube. At the 3-

5mg extremes, the final solution would range between 191μM and 318μM, which 

was not far off the desired 250μM concentration. 

2.The DCA powder was poured from the eppendorf tube into a beaker containing 40mL 

of KSFM. A magnetic stir bar and a hot plate (with the heat off) were used to 

dissolve the DCA into the solution, which typically took 40-50 mins of stirring. After 

dissolving, a filtered syringe was used to transfer the contents of the beaker to a 

50mL plastic centrifuge tube. From that final 40mL 250μM DCA+KSFM solution, I 

prepared 0.1μM, 1μM, and 10μM  solutions by dilution with fresh KSFM media, 

whenever cells needed fresh media, or whenever cells needed to be passaged from 

96-well plates into 6-well plates and into larger plates.  
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5.2.1. Results and Discussion 

When I tested concentrations of 50μM, 100μM, 250μM, and 500μM DCA on the single cell 

96-well plates, all cells died within a few days, or, no cell growth occurred in that any single 

well can reach confluency.       

 

Figure 5.2. An example composite image from phase contrast and GFP fluorescence images 
under a 10x magnification of CP-D cells in a 6-well plate after several weeks of growth from 
a single starting cell.   

CP-D cells have elongated sickle-like or ball-like shape and express high levels of green 

fluorescent protein (GFP). These images are taken several weeks after single cell cloning, i.e. 

all of the cells descent from a recent common ancestor cell that was seeded several weeks 

prior to the time of imaging. 

DCA had a dose-related effect on inducing SGA in CP-D cells. The log2-transformed signal 

intensity R ratio between cloning round 2 versus cloning round 1 revealed differences 

between the rounds indicative of acquired SGAs. For example, taking the log2 ratio between 
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round 1 and round 2 of the same clone under 1μM DCA revealed a SGA that was ~20Mb in 

size on chromosome 22 (Figure 5.3).   

DCA appeared to induce microdeletions throughout the genome however rarely it seemed 

to be able to induce a large-scale SGA (Figure 5.3) similar to large scale SGAs seen in 

individuals a-m (Supplementary Figure 4.12) and in chromosome 9p of the single individual 

(Figure 2.6). 

 

Figure 5.3. Comparing two rounds of single cell cloning revealed an acquired SGA that was 
approximately 20Mb in size on chromosome 22 in the clone that was grown under 1μM 
DCA (Panel C). In comparison, the clones grown under 0μM (control, panel A), 0.1μM 
(panel B), and 10μM DCA (panel D) show no apparent SGA at the same location. This 
result suggests that the bile acid DCA is capable of inducing large-scale SGA, as much as 
20Mb in size, in a BE cell line in vitro. Importantly, the physiological doses of DCA in 
humans in vivo can be as much as 50-100μM [126]. 

 



124 

 

Figure 5.4. B allele frequency plots of all 8 samples from round 1 and round 2 of single cell 
cloning under 0μM (control, panels A,B), 0.1μM, 1μM and 10μM DCA exposure. Note that 
the 1μM DCA clone in round 2 acquired the ~20Mb single copy loss (Panel F) since no 
heterozygous SNPs are observed and the total signal intensity R is lower than the same clone 
froum round 1. (Figure 5.3, Panel C). 
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Figure 5.5. Histograms of the number and size of copy number alterations detected in 
evolving CP-D clones in vitro due to 0μM (control), 0.1μM, 1μM and 10μM DCA exposure 
to DCA, a genotoxic component of duodenal gastroesophageal reflux in individuals with 
Barrett’s esophagus. Higher concentrations of DCA induce more and/or larger lesions. 

I tested CP-D cells to determine if we could generate genetic lesions in culture. I used two 

rounds of single cell cloning to ensure that any differences between samples after the first 

and second round of cloning would be due to lesions that occurred during the course of the 

experiment, rather than due to sampling of different genotypes from a heterogeneous 

parental cell culture. I analyzed the results of Illumina 550K SNP arrays with the GLAD 

algorithm to identify regions of copy number differences between the first and second 

rounds of cloning. I tested exposures to a range of concentrations (0, 0.1, 1 and 10uM) of 
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deoxycholic acid (DCA), a genotoxic component of gastroduodenal reflux in patients with 

BE. Figure 5.5 shows that the number and size of lesions we detected. Without a normal 

sample for comparison, LOH cannot be distinguished from constitutive homozygosity, so 

we have focused on copy number changes here. 

 

Sample ID Condition 96-well ID Round 

1 1uM DCA B9 2 

2 1uM DCA F10 1 

3 10uM DCA C2 1 

4 10uM DCA B5 2 

5 control D12 1 

6 control F3 2 

7 0.1 uM DCA B7 1 

8 0.1 uM DCA D7 2 

Table 5.2. Illumina 550k-SNP arrays were used to evaluate 8 samples for somatic 

abnormalities. 

5.2.2. Conclusion 

I showed that increasing dose of DCA incurred somatic genomic abnormalities in DNA of 

CP-D cells. This work contributed to successfully getting the American Cancer Society grant 

for measuring somatic mutation rate associated with NSAID exposure. NSAIDs exposure 

and DCA exposure may manifest in the same way in modulating the acquisition of somatic 

genomic abnormalities over time. Studying the modulating effect of NSAID exposure in vitro 
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is difficult because it warrants constructing an immune response and inflammation in cell 

culture. Future studies in experimental cell culture evolution may further the development of 

computational methods of estimating the types and rates of somatic genomic abnormalities 

acquisition.   
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Chapter 6. Conclusions 

6.1. Thesis 

Epithelial esophageal adenocarcinoma is a disease of the somatic genome, the etiology of 

which is dependent on evolution by natural selection of somatic cells. I hypothesize that 

neoplastic cell populations in Barrett’s esophagus maintain evolutionary stasis over decades 

despite having a genome, 1-3% of which is riddled with acquired somatic genomic 

abnormalities; and occasionally when massive amount (20% or more) of genomic 

abnormalities are detected in association with a local clonal expansion, the neoplastic cell 

populations can evolve and manifest malignancy. I also hypothesize that the puzzling 

phenomenon that 90-95% of individuals with Barrett’s esophagus retain a benign course 

over time and never progress to esophageal adenocarcinoma is explained by the observations 

that evolutionary genomic stasis is maintained over decades in Barrett’s neoplastic cell 

populations, which I have shown in one individual in Chapter 2 and in 12 individuals in 

Chapter 4. It has not escaped my attention that the same may hold true for other epithelial 

pre-malignant neoplastic conditions and their associated malignancies. 

6.2. Future directions for research in evolution in cancer 

My doctoral research is an example of applying methods in evolutionary biology to cancer 

data. While the title of this dissertation reads “evolutionary dynamics” I conclude with 

exposition of relative evolutionary stasis in Barrett’s neoplastic cell populations. How does 

neoplastic evolution play out in Barrett’s esophagus individuals over decades? While the 

predominant conceptual framework for neoplastic evolution is stepwise accumulation of 

genetic abnormalities [127], or gradualism model, our longitudinal observations in Barrett’s 
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individuals suggest stochastic bursts of acquisition of abnormalities and maintenance of the 

status quo in the majority of the genome, more consistent with a “punctuated equilibrium” 

model put forward for species-level evolution [128] . While our in silico modeling of genetic 

diversity predicts a monotonic increase over two decades, at the resolution of profiling the 

genomic state of biopsies and at the resolution of our sampling, our in vivo observations 

support maintenance of SGA amount which also translates to maintenance of genetic 

diversity with little relative change over time.  

 

Massive somatic genomic abnormalities can be acquired in neoplastic cell populations, 

however, the in vivo evidence presented in Chapter 4 cannot distinguish conclusively whether 

a single cell mitosis or multiple cell mitoses induce massive amount of genomic 

abnormalities. There is an ongoing trial and error process during carcinogenesis, generating 

some cell lineages that persistently survive in neoplasms, and other cell lineages that only 

transiently survive and eventually die out outcompeted in the evolutionary race for survival. 

While conceptually, stages of carcinogenesis can be divided into initiation, promotion, and 

progression, the evolutionary process in neoplasm need not necessarily proceed in discreet 

steps, but rather manifest a continuum that is punctured by stochastic acquisition of SGAs. 

The in vivo evidence presented in Chapter 4, in my view, suggests a rugged fitness landscape 

where a massive SGA can elevate a cell to a stable fitness plateau sufficient to induce 

increase in numbers so that the cell transforms into a clonal population of cells. Any steps 

away from such plateaus or adaptive peaks tend to generate cells lineages having 

evolutionary dead ends, or not enough time is available for successful crossovers to other 

adaptive peaks in the genotype landscape. This is one plausible explanation of the apparent 
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evolutionary stasis. Even in the massive SGA clone in individual j (Chapter 4, Figure 4.4) 

that clone had a mean SGA genotype of 588±18 Mb altered of the genome for a time 

interval of 3 years and being detected in 4 biopsies. That could be interpreted that the 588 

Mb of SGAs that are approximately in common across the 4 biopsies form the genotypic 

configuration representing the adaptive peak of that clone within the fitness landscape. And 

the 18 Mb of standard deviation of SGA amount represents a tolerable deviation of ongoing 

trial and error in genotype space around that stable adaptive peak. Similarly, for most 

individuals, except b,j, and f, the detection of 53±30 Mb SGA amount could be interpreted 

as a stable adaptive peak of 53 Mb SGA, comprising mostly losses on chromosome 9 and 

fragile sites, and a 30 Mb of SGA trial and error around that adaptive peak, representing 

stochastic acquisition, retention, and purging of persistently or transiently surviving SGAs. 

Is there an optimality criterion for a changed genome for manifesting persistent survival and 

clonal expansion? Certainly, baseline SGAs that are common across all 13 individuals (SGAs 

shown in black, Chapter 4, Supplementary Figure 4.12) are associated with the initial clonal 

expansion, whether or not they induced this initial clonal expansion that establishes the 

extent of the Barrett’s segment. What is the minimal set of acquired SGAs that are required 

for an initial or a subsequent clonal expansion? Individual k had the minimum total amount 

of SGA with a maximum of 31 Mb SGA per biopsy. This is a relatively low amount of SGAs 

(0.97 % of 3,164 Mb-long human genome) associated with a Barrett’s metaplasia. Could a set 

of genomically altered genes present within this 0.97% account for initiation of Barrett’s 

metaplasia or is the initial clonal expansion driven by epigenetic modifications of the genome 

and/or the changed gastroesophageal reflux microenvironment? These questions warrant 

further larger-scale genomic studies that can resolve the etiology of Barrett’s metaplasia and 
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potentially advance understanding of disease genesis in other pre-malignant conditions in the 

gastrointestinal tract. 

Do NSAIDs play a significant role in reducing SGA acquisition rate? While the effect of 

NSAIDs is difficult to investigate conditioned on the presence of evolutionary stasis, I 

hypothesize that NSAIDs interfere with promotion of clonal expansion of SGA-containing 

neoplastic cells. A mechanism of NSAID action may remain elusive of identification, 

because the NSAID effect manifests only over 5 or more years of use. It may be the long-

term decrease of inflammation that potentially decreases secretion of growth factors of 

inflammatory cells present within Barrett’s tissues that stimulate, or promote, clonal 

expansion of SGA-containing neoplastic stem cells triggering clonal growth driven by crypt 

fission. 

All of the studies throughout the studies were based on DNA extracted from biopsies, in 

most cases processed by separating BE epithelial cells from stromal cells by an epithelial 

isolation technique. Assuming 6.5 picograms of DNA per diploid cell, 200ng of DNA 

corresponds to evaluating a mixture of the DNA of approximately 30,769 cells and for 

samples having lots of SGAs 200ng of DNA would alter the 30,769 estimate depending on 

the SGA loss to gain ratio. Therefore, since single cell genomics has not been feasible, all of 

my results and analyses are at the level of a biopsy, or a mean genotype of 30,000 cells. 

Further advancements in single cell genomics would allow the in-depth characterization of 

genetic diversity within a biopsy. 

Future work could utilize approximate Bayesian computation approaches to match model-

generated genetic diversity to the experimentally-observed genetic diversity to estimate the 
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parameter values able to produce the observed dynamics. I hypothesize that a very low 

mutation rate of loci conferring higher crypt reproduction and that a very high reproduction 

rate-increasing effect of mutating such loci can produce a punctuated pattern of relative 

evolutionary stasis and rare bursts of massive SGAs that are also associated with local clonal 

expansions. I hypothesize that selective effects are probably very high, but it is very rare to 

achieve an aneuploid, massive SGA, clone that is stable and able to locally expand within the 

tissue. 

In summary, the results in Chapter 4 will be of general interest to the scientific and medical 

community for the following reasons. Never before has neoplastic progression been studied 

in such detail, with 12+ biopsies over 5-8 time points and up to 19 years of follow-up within 

the same patients, using a whole genome assay. I found that aspirin and other NSAIDs, 

which are commonly available and cost effective medications, may exert their cancer 

preventive effect through lowering SGA rate. I found that the Barrett’s segment in Barrett’s 

esophagus individuals can remain in relative evolutionary stasis over decades of follow-up 

where only 0.6 and 7.8 SGAs may occur per biopsy,  per genome, per year while on-NSAIDs 

and off-NSAIDs, respectively, suggesting an explanation for the low rate of progression for 

most Barrett’s esophagus individuals. I demonstrated a new method for estimating somatic 

mutation (SGA) rates in vivo, in humans, which can be applied to any neoplasm with 

longitudinal samples (showing how evolutionary biologists can make fundamental 

contributions to cancer biology). I demonstrated a new, and fundamentally different, type of 

biomarker that measures the evolutionary dynamics of progression (SGA rate) not just the 

presence or absence of an abnormality. With longitudinal data spanning 6.4-19 years, I 
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showed the genome-wide distribution patterns of SGAs over the evolutionary (natural) 

course of cancer development. 

Finally, rapidly advancing sequencing technologies allow the measurement of the state of the 

entire genome. In the clinic, I would recommend that the detection of stable versus unstable 

genomes can help manage treatment options in individuals with Barrett’s esophagus and 

other pre-malignant conditions. I would also recommend that NSAIDs may be used for 

reducing the rate of SGA acquisition in individuals with Barrett’s esophagus. I believe it is 

feasible that future randomized controlled trials for cancer chemoprevention or prevention 

based on changes in diet and lifestyle could use measurements of evolutionary dynamics, for 

instance, changes in the level of somatic genomic abnormalities and phylogenetic tree shape 

imbalance both indicating emergence of malignant cell lineages, as intermediate endpoints of 

effectiveness. 
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Appendix 

List of Figures 

Figure 1.1. Barrett's specialized intestinal metaplasia and mucosal defense. Barrett's 
metaplasia arises in an environment of chronic reflux in which the distal esophagus is 
exposed to high levels of local and systemic damage from acid, bile, and tobacco 
products, as well as inflammatory responses to the injury [5,9–14]. All are mutagenic. 
Barrett's metaplasia has a number of defenses against this mutagenic environment that 
are not found in esophageal squamous epithelium [5,15]. A, Barrett's metaplasia 
secretes anions, including bicarbonate, that participate in buffering acid reflux [16]. B, 
Barrett's metaplasia is a well differentiated epithelium with crypt architecture in which 
putative stem cells residing at the base give rise to proliferating transient amplifying 
cells and differentiated cells that are sloughed into the lumen. This architecture has 
been proposed to be tumor-suppressive because mutations in transient amplifying or 
differentiated non-stem cells will be shed from the body before they can accumulate the 
serial mutations that lead to cancer [17]. C, Barrett's metaplasia secretes a thick adherent 
mucus that is not present in squamous esophageal epithelium for defense against acid 
and bile reflux [18–21]. D, Barrett's esophageal cells maintain physiological intracellular 
pH after prolonged and repeated reflux exposure [22]. E, The tight junctions of 
Barrett's metaplasia overexpress claudin 18 and several other claudins (including 
claudins 1, 4, 12, and 23) that provide protection against acid permeation [23]. F, A 
combined expression and proteomics study of Barrett's metaplasia reported 
overexpression of genes involved in mucosal defense and repair [24]. Figure and figure 
legend adapted from Reid et.al. [8]. ................................................................................................... 4 

Figure 1.2. Typical Barrett’s segment length remains about 5cm during endoscopic 
surveillance. Segment length data over time represents 248 individuals with BE from 
the Seattle Barrett’s Esophagus Program cohort. Each point  represents an estimate of 
the distance between measured lower esophageal sphincter (LES) and ora serrata (OS) 
that are recorded at an endoscopy (out of 489 total) and that are proxies for the extent 
of the Barrett’s segment. Over all 489 endoscopies, the typical Barrett’s segment length 
measures 5.7 ± 3.6cm (mean ± s.d) and linear (blue line) and local weighted linear 
regressions (red curve) show that segment lengths stay relatively constant over time...... 6 

Figure 2.1. Ratio between R of two blood samples and one gastric sample used as reference 
samples and the same Barrett’s sample. The signal profiles look similar and fragile site 
FRA3B is deleted in the Barrett’s sample and intact in all 3 reference samples. The only 
difference between the reference samples is DNA concentration, where samples “blood 
1”, “blood 2”, and “gastric” had 35ng, 104ng, and 200ng of DNA extracted and 
analyzed with Illumina 317K SNP arrays. The variation in the amount of DNA used for 
the genotyping assay induces a genomic waviness artifact similar to that described in 
Diskin et al. [75].....................................................................................................................................25 
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Figure 2.2. Total normalized signal intensity R increases if the SNP probes have higher GC-
content. Shown are all SNPs on chromosome 1 from BE sample #1. The Pearson 
correlation between probe %GC and R was 0.57 for these data.  ..........................................27 

Figure 2.3. As input DNA amount increases, the correlation between probe GC content and 
total signal intensity R decreases. All 12 BE samples had various amounts of input 
DNA and at low amounts of input DNA (50ng or below) the signal from the arrays 
appears noisier and the effect of probe GC content was stronger. The Pearson 
correlation was -0.89 for these data. Note that the Pearson correlation for sample #1 
that had 49ng of input DNA is 0.57 as shown in Figure 2.2. .................................................28 

Figure 2.4. HumanHap300 (317k) array analysis of BE biopsies at the same level (±1cm) 
from one patient over 4 endoscopies from 1989 to 2006. In 1989 the BE consensus 
FRA3B region showed a region of 1-copy loss (b) flanked by 2-copy loss (a), with an 
adjacent region of 1-copy loss (c). In 1993 (a and b) merged into a region of uniform 2-
copy loss (f), flanked by new regions of 2-copy (d) and 1-copy (e) loss. In 2006 the 
region of 1-copy loss at (c) lost its second copy (g). Adapted from Lai, Kostadinov, et 
al. [76]........................................................................................................................................................29 

Figure 2.5. The same genomic region extended to 61.2 Mb, with a different set of samples 
from the same individual show progressive copy loss at various locations within the 
site. Adapted from (Brian J Reid, Kostadinov, and Maley 2011). ..........................................30 

Figure 2.6. Benign clonal evolution in 1 patient with Barrett's esophagus studied 
longitudinally over 16 years. Purified Barrett's epithelium from endoscopic biopsies was 
assayed with Illumina 317K SNP arrays and compared with a blood sample control. A, 
Copy number analysis, normalized by SNP intensities from blood, reveals a single copy 
loss at CDKN2A in samples 2 (data not shown) and 3 in 1989, but homozygous 
deletion in CDKN2A in sample 1 and all samples from subsequent years. At first 
endoscopy in 1989, 2 clones were detected (1 with a small deletion of 1 allele at the 
CDKN2A locus, and the other with copy neutral LOH of the entire 9p arm with the 
CDKN2A deleted allele, generating biallelic deletion at CDKN2A). B, the SNP allele 
frequencies reveal a focal deletion in the CDKN2A locus in samples 2 and 3 in 1989, 
but sample 1 included a mixture of the clone from samples 2 and 3 with a new clone 
with copy neutral LOH of 9p and biallelic deletion of CDKN2A. All samples from 
1993 and later show that the clone with biallelic deletion of CDKN2A went to fixation, 
leading to random noise in the allele frequencies for the SNPs in that region, as seen in 
the vertical ("waterfall") band in the bottom panel of B. The fact that the rest of the 9p 
arm remains diploid can be seen in the copy number data (A). C, The clone with 
deletion of the single allele of CDKN2A, which extends past 22.5 Mb on chromosome 
9p, also had a single deletion in fragile site FRA3B at 60.42 Mb that distinguishes it 
from the other clones. This and other lesions of the clone in samples 2 and 3 were not 
observed again after 1989, suggesting that this clone was driven to extinction by the 
clone from sample 1, with biallelic deletion of CDKN2A. D, A Camin-Sokal maximum 
parsimony reconstruction of the genealogy of clones based on the polymorphic copy 
number of lesions in 283 loci across the entire genome in the Barrett's biopsies shows 
that only one large clonal expansion occurred between 1989 and 1993. After 1993, the 
Barrett's segment remained stable, with accumulation of small interstitial lesions but no 
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clonal expansions, no aneuploidy, and no progression to cancer. Figure adapted from 
Reid et al. [8]. ..........................................................................................................................................31 

Figure 2.7. Output from Illumina’s BeadStudio LOHPlus module showing allele frequencies 
in 3 samples. A normal sample (top) shows no LOH at p16 (red rectangle). In 1989 a 
small deletion of a single allele at p16 has appeared in all samples (middle). By 1993, all 
samples have lost both alleles of p16, with the original localized deletion (now apparent 
by a band of background readings with random allele frequencies) and loss of the entire 
arm of 9p in for other allele. ..............................................................................................................32 

Figure 2.8. Example output from STAC from a subset of the 42 individuals that showed 
chromosome 9p alterations and analyzed with 33K-SNP arrays and the union of all 
alterations from 12 biopsies from one BE individual analyzed with 317K-SNP array. 
Gray bars represent genomic regions on chromosome 9p that are significantly altered 
across samples. This plot excludes the BAC array data from 72 patients.  ..........................36 

Figure 2.9. dChip-generated raw signal intensity images from two BE samples evaluated with 
Affymetrix SNP6.0 at the VMSR facility. ......................................................................................39 

Figure 2.10. dChip-generated raw signal intensity image (from the green fluorescence 
channel) from four BE samples evaluated with Illumina OmniQuad 1M at the FHCRC 
genomic facility. .....................................................................................................................................41 

Figure 2.11. Double copy loss can be detected in an epithelial-isolated half-biopsy and can be 
miscalled as single copy loss in its paired whole half-biopsy. Every point represents a 
single SNP probe from 20-24 Mb on chromosome 9. On chromosome 9, the tumor 
suppressor gene CDKN2A lies between 21.96 and 21.99 Mb and both the epithelial-
isolated half-biopsy (upper panel) and the whole half-biopsy (lower panel) show 
somatic loss in that chromosomal region. The log ratio between the epithelial-isolated 
sample and the blood control sample was -2.0 or lower, whereas the log ratio between 
the whole biopsy and the blood control sample was about -0.5. A two-fold lower signal 
intensity (log ratio of -2.0 or lower) in the epithelial-isolated sample would easily be 
called a double copy (homozygous) loss by an SGA calling algorithm, however a log 
ratio of -0.5 in the whole sample would be easily miscalled as a single copy loss. ...........42 

Figure 2.12. Copy neutral LOH can be detected in both epithelial-isolated half-biopsy and its 
paired whole half-biopsy. The B allele frequency of both half-biopsies show that the 
entire region 20-24 Mb of chromosome 9 has LOH, and since the signal intensity log 
ratio in .......................................................................................................................................................43 

Figure 3.1. Plausible scenarios for genetic diversity dynamics. Genetic diversity can decrease 
periodically due to clonal expansions; for instance, if five necessary, sufficient, and rate-
limiting steps (mutations) are acquired sequentially in the neoplastic cell population and 
boost fitness enough to cause five clonal expansions, they may homogenize the 
neoplasm and produce five troughs in genetic diversity (solid line). Such oscillating 
dynamics can be captured only with longitudinal data so that troughs in genetic 
diversity can be detected. Alternatively, genetic diversity can increase monotonically 
over time and modeled as a linear function of time (dashed line). Alternative 
hypotheses, such as a single genetic catastrophe or a critical phase transition point, can 
also be plausible, in this example, reduced to a simple sigmoid curve (dotted line). 
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Importantly, at time of detection of a new tumor, measurement of genetic diversity and 
prior knowledge of the typical dynamics of genetic diversity taken together can estimate 
the time elapsed since tumor initiation and predict the waiting time for tumor 
progression to cancer. Elapsed time since initiation and waiting time to cancer are 
clinically relevant variables for diagnostic purposes and for weighing treatment options.
.....................................................................................................................................................................52 

Figure 3.2. A spatially-structured crypt population induces monotonic increase in genetic 
diversity. Genetic diversity is computed by taking a random sample of 100 individual 
crypts from the grid. The neutral mutation for the displayed parameter sweeps is 10 -4. 
Black lines represent crypt division-dependent mutation (a=1) and red lines represent 
time-dependent mutation (a=0). Each parameter sweep was run in triplicate.  .................60 

Figure 3.3. A fully-mixed crypt population induces periodic decreases in genetic diversity. 
Genetic diversity is computed by taking a random sample of 100 individual crypts from 
the grid. The neutral mutation for the displayed parameter sweeps is 10-4. Black lines 
represent crypt division-dependent mutation (a=1) and red lines represent time-
dependent mutation (a=0). Each parameter sweep was run in triplicate.  ...........................61 

Figure 3.4. Biopsy sampling (n=12) for a fully-mixed crypt population, where biopsy size 
was 10x10 crypts and mutation detection threshold was 0%..................................................62 

Figure 3.5. Biopsy sampling (n=12) for  a fully-mixed crypt population, where biopsy size is 
10x10 crypts and mutation detection threshold is 5%. The neutral mutation for the 
displayed parameter sweeps is 10-4. Black lines represent crypt division-dependent 
mutation (a=1) and red lines represent time-dependent mutation (a=0). Each parameter 
sweep is run in triplicate......................................................................................................................63 

Figure 3.6. Example grid spatial dynamics from year 5-20 (7 panels left to right), when 
selective mutation rate is 10-6 and neutral mutation rate is 10-4. A fully-mixed crypt 
population has quicker genetic diversity dynamics than a spatially-structured crypt 
population. The grid state over time is displayed in colors, where crypts are colored by 
the genetic similarity based on neutral mutation patterns (principal components analysis 
reducing 100 neutral loci to three red, green, and blue dimensions, first row) and by the 
number of selective mutations they have acquired (magenta to red, second row). Clones 
expand locally driven by acquisition of fitness-increasing SGAs and neutral SGA 
hitchhike on the clonal expansions forming complex patterns according to crypts’ 
phylogenetic histories...........................................................................................................................63 

Figure 4.1. Hypothesis and study design for evaluating the NSAID effect on clonal evolution 
in Barrett’s esophagus (BE). (Panels A, B) BE is a condition in which the normal 
stratified squamous epithelium (white) of the distal esophagus is replaced by specialized 
intestinal metaplasia (colors). During endoscopic surveillance (0-20 years, x-axis), the 
anatomical landmarks gastroesophageal junction (GEJ) and “ora serrata” (OS) define 
the lower (distal) and upper (proximal) boundaries of the Barrett’s segment (y-axis), 
respectively. The mean distance between GEJ and OS is 5 cm in our cohort, and 
typically remains constant in size throughout 0-20 years of follow-up time. While the 
origin and initiation of BE is debated, we followed the model of Wang et al. where BE 
is thought to arise at GEJ from a residual embryonic population [118]. This initiation 
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model is also consistent with observations of a columnar, secretory epithelium that 
forms superficial esophageal glands before being displaced by stratified squamous 
epithelium during embryonic development [119]. We estimated that the mean length of 
the initiation period in BE is 5.81 years by measuring crypt density and fraction of 
branching crypts and assuming a single progenitor crypt and logistic population growth 
of crypts by crypt fission (Supplementary Table 4.1). Somatic genomic abnormalities 
(SGA) that confer a selective advantage give rise to clones that increase in frequency in 
the neoplasm over time (adaptive SGAs, yellow to blue colors). SGA that are selectively 
neutral give rise to clones that fluctuate in frequency in the neoplasm over time by 
genetic drift (neutral SGAs, gray). (Panel A) In the absence of NSAID use, clonal 
evolution is fueled by acquisition of SGA. Chromosomal instability (red unstable clone) 
can lead to increased clonal genetic diversity and progression to cancer. (Panel B) We 
hypothesized that long-term NSAID use lowers the rate of SGA acquisition. (Panel C) 
To test this hypothesis, we evaluated 13 individuals with BE, eleven of whom were not 
using NSAIDs (off-NSAIDs) for 6.2 ± 3.5 years (mean ± standard deviation) and then 
began using NSAIDs for 5.6 ± 2.7 years, and two of whom were using NSAIDs for 3.3 
± 1.4 years and then discontinued use for 7.9 ± 0.7 years. Frozen biopsies were assayed 
from 5–8 endoscopies from each individual, marked with x’s. The DNA from 161 BE 
biopsies and 13 blood samples was analyzed using 1M SNP arrays to detect SGA.  .......89 

Figure 4.2. The mean number of detected somatic genomic abnormalities (SGA) and the 
amount of the genome they affect remain approximately constant over time in Barrett’s 
esophagus. (Panel A) Solid lines connect the means at each time point for all individuals 
(a-m), where the symbols a-m are plotted at the end of the lines. The mean number of 
SGAs per biopsy-genome per time point was 1,082 ± 177, 1,844 ± 573, and 1,154 ± 
746 (mean ± standard deviation) in individuals b, f, and j, respectively, compared to 279 
± 86 in the rest of the individuals. In this instance, number of SGAs is an individual-
specific estimate of the total number of  independently acquired SGA events and is 
computed by counting the number of abnormal genomic segments identified by the 
union set of all detected SGA break points across samples of a given individual (See 
GLAD segmentation and SGA detection in Methods). (Panel B) The mean amount of 
genome affected by SGA per time point was 119 ± 79 Mb, 242 ± 121 Mb, and 227 ± 
222 Mb for individuals b, f, and j, and 53 ± 30 Mb for the rest of the individuals. .........90 

Figure 4.3. The effect of NSAIDs on appearance and regression of SGA events. (Panel A) 
NSAID use is associated with appearance of fewer new SGA events. For this analysis, 
we excluded all SGAs present at baseline because they had occurred and increased in 
frequency for an unknown amount of time prior to detection at baseline and since we 
have self-reported NSAID use information reaching back only 6 months prior to 
baseline. We counted only new SGAs that appeared within the off-NSAID or on-
NSAID periods. (Panel B) NSAID use is associated with a decrease in detectable cell 
populations with pre-existing SGAs. For this analysis, we restricted the analysis to only 
the SGAs not detected in the final endoscopy in order to count their regression during 
either the on-NSAIDs or off-NSAIDs periods. (Panels A, B) We binned newly 
appearing or regressed pre-existing SGA according to lesion size (0 bp–100Mb, x-axis), 
but detected no apparent effect of NSAID use on selection for or against lesions of a 
specific size category; rather, NSAID use affected all size categories of SGAs equally. 
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(Wilcoxon rank-sum test, 2-sided p-values, *** p<0.01, ** p<0.05, * p<0.1, solid bars 
and associated error bars represent mean and standard deviation of newly appearing 
and regressing SGAs per biopsy). ....................................................................................................91 

Figure 4.4. Clonal evolution in individuals b and j. (Panel A) Solid lines connect the mean 
amount of SGA detected across biopsies at each time point. Dots correspond to 
biopsies taken during follow-up (x-axis) that have total SGA detected by SNP arrays (y-
axis). In individual b (black line), we observed evolutionary stasis, where the mean 
amount of SGA was 119 ± 79 Mb over more than a decade of follow -up. In individual 
j (red line), we observed evolutionary stasis up to year 7, which was disrupted by a 
massive burst of SGA detected in year 8.5. Three years after the appearance of this 
massively altered clone, individual j progressed to esophageal adenocarcinoma. 
Individual b started NSAIDs after year 5, while individual j started regular NSAIDs use 
only after year 10. (Panels B and C)  Genome-wide view of SGA over time in 
individuals b and j. Each ring, labeled with a biopsy number, represents whole-genome 
SGA data from a different biopsy. Thin black line rings separate endoscopies (time 
points), white background shows time periods off-NSAIDs and gray background 
shows time periods on-NSAIDs. Within the rings, black segments designate 
homozygous deletion, red single copy loss, orange copy-neutral LOH, and green shows 
copy gain. (Panel B) Circos plot of SGA in individual b. Note the appearance of “new” 
whole chromosome LOH at chromosome 6 and 11 in biopsy 5, taken during the off-
NSAIDs period, and the detection of a clone lacking alterations on chromosomes 4, 12, 
17 and 20, in biopsies 9 and 7, taken during the on-NSAIDs period. (Panel C) Circos 
plot of SGA in individual j. A massive burst of SGAs was detected first in biopsy 8, in 
year 8.5, before the individual began regular NSAID use. Biopsy 2 (second inner ring), 
taken at the baseline endoscopy 8.5 years prior to the burst, shared a subset of the 
SGAs seen in the massively altered clone (chromosomes 10, 12, 17 and 18), and thus is 
likely to be an early, ancestral progenitor of the massively altered clone. (Panels D and 
G) Consensus phylogenetic trees estimated by BEAST reveal long-term co-existence of 
clones. Branch lengths are scaled according to time, the tips of the phylogeny are 
biopsies aligned on the x-axis according to their sampling time, and all internal nodes 
are estimated coalescence times assuming a logistic population growth model (see 
Methods and Text S1). Dashed gray line represents the onset of NSAID use. In 
participant j, we detected 1,215 SGAs affecting 211 Mb of the genome in biopsy 2, the 
likely progenitor clone that presaged the appearance of 2,357 SGAs affecting 578 Mb 
of the genome in biopsy 8, 8.5 years later. In participant b, biopsies 7–10 have few 
SGAs and only a small amount of genome affected by SGA. (Panels E, F, H, I) 
Maximum parsimony trees estimated by PAUP reveal the ancestral relationships among 
biopsies based on shared SGA characters. Branch lengths are scaled according to 
estimated number of SGAs (Panels E, H) or the amount of genome affected by SGA 
(Panels F, I). ............................................................................................................................................92 

Figure 4.5. Clonal evolution in participants l and f. (Panel A) In individual l (black), the mean 
amount of SGA was 54 ± 29 Mb over time, whereas in individual f (red) the mean 
amount of SGA was 242 ± 121 Mb over time. (Panels B and C) Genome-wide view of 
SGA over time in individuals l and f. (Panel B) During the off-NSAID period in 
individual l, we detected a whole-chromosome gain of chromosome 8 in biopsy 12 
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(green band) and some copy-neutral LOH events on chromosome 1 in biopsies 9 and 
11 (orange bands). (Panel C) We detected 1,844 ± 573 of SGAs in individual f, who did 
not progress to EA, but rather opted for esophagectomy for high-grade dysplasia after 
6.4 years of follow-up and subsequently died of mesothelioma 11.9 years later. (Panels 
D, G) Consensus phylogenetic trees estimated by BEAST reveal long-term co-existence 
of multiple clones. (Panels E, H, F, I) Maximum parsimony trees reveal an underlying 
progressive evolution of SGA events irrespective of time. Note in individual f that the 
clade defined by biopsies 1, 7, and 9 seem the most advanced in progression. 
Consensus phylogenetic trees generated as indicated in the legend to Figure 4.  ..............94 

Figure 4.6. BEAST analysis of the SGA patterns across longitudinal biopsies within 
individuals suggests that NSAID use reduces the SGA rate (number of SGA events per 
genome, per year). For all individuals (a-m), the mean off-NSAID SGA rate was 7.8 
(95% support interval [SI]: 7.1–8.6) and the mean on-NSIAD SGA rate was 0.6 (95% 
SI: 0.3–1.5). For participants a-k, the mean off-NSAID SGA rate was 8.8 (95% SI: 8.1–
9.5,), whereas the mean on-NSAID SGA rate was 0.2 (95% SI: 0.03–1.0). For the two 
participants l and m that started surveillance on NSAIDs and then went off NSAIDs, 
there are mixed results. The mean on-NSAID SGA rate for individual l was 3.1 (95% 
SI: 2.2–4.7) and the mean off-NSAID SGA rate was 4.4 (95% SI: 3.1–5.9). However, 
for individual m the mean on-NSAID SGA rate was 2.5 (95% SI: 2.1–3.0) and the 
mean off-NSAID SGA rate was 0.1 (95% SI: 0.01–0.6). .........................................................95 

Supplementary Figure 4.7. Circos plots of individuals a,c,d,e,g,h,i,k, and m. Each ring 
represents whole-genome SGA data from a different biopsy. Thin black line rings 
separate endoscopies (time points), white background shows time periods off-NSAIDs 
and gray background shows time periods on-NSAIDs. Within the rings, black segments 
designate homozygous deletion, red single copy loss, orange copy-neutral LOH, and 
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Supplementary Figure 4.8. Estimated trees by BEAST for individuals a-m. Branch lengths 
are scaled according to time, the tips of the phylogeny are biopsies aligned on the x-axis 
according to their sampling time, and all internal nodes are estimated coalescence times 
assuming a logistic population growth model (see Methods). Dashed gray line 
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segment. ...................................................................................................................................................97 
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lesions that were present by the time of the first endoscopy and so may have been 
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