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Modulation of Antitumor Immunity by the Mek inhibitor Trametinib:
Implications for Targeted Therapy of Cancer

Abstract
Through rational drug design, much progress has been made to develop small molecules that specifically
inhibit the oncogenic signaling pathways driving malignant growth. However, the normal function of immune
cells depends upon many of the same pathways inhibited by such targeted cancer therapies. Because the
immune system can influence the growth of many cancers, I hypothesized that most small molecule inhibitors
would have activity on leukocytes relevant in cancer, and this activity would contribute to their antitumor
mechanisms. In order to test this hypothesis, I first screened a panel of over 40 small molecule inhibitors for
their activity on proliferating human cancer cells and human T cells. Almost every small molecule inhibitor I
tested had detrimental activity on human T cells at the concentrations required for limiting tumor cell
proliferation. However, when I focused on the FDA approved MEK inhibitor trametinib, I found that some
common γ-chain cytokines were able to rescue T-cell functions blunted by trametinib. Notably, an IL-15
agonist, ALT-803, could rescue the in vivo proliferation of tumor-antigen specific T cells in mice treated with
trametinib. I developed a p53-/-KrasG12D+Myristoylated-p110α+ murine breast cancer model to perform
tumor challenge experiments in a model only weakly sensitive to trametinib, a setting where combination with
immunotherapy may be clinically useful. In this tumor model, ALT-803 synergized with trametinib, even
leading to tumor rejection in several mice. Trametinib treatment alone was able to limit tumor growth, but this
activity actually depended upon the presence of CD8+ T cells. Upon further investigation I found that
trametinib reduced the expansion of monocytic myeloid-derived suppressor cells (MDSCs) in tumor-bearing
mice, a finding also recapitulated in vitro during the expansion of MDSCs from mouse and human bone
marrow. These results suggest the inhibitory activity of trametinib on T cells in vivo is overcome by a
corresponding reduction in immunosuppressive MDSCs and the endogenous presence of common γ-chain
cytokines, and that the function of antitumor T cells can be further enhanced by IL-15 agonists administered
during trametinib therapy. This work also demonstrates the importance of considering immune-dependent
mechanisms of targeted therapies when designing personalized cancer treatments.
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ABSTRACT 
 

MODULATION OF ANTITUMOR IMMUNITY BY THE MEK INHIBITOR TRAMETINIB: 

IMPLICATIONS FOR TARGETED THERAPY OF CANCER 

Michael J. Allegrezza 

Jose R. Conejo-Garcia 

Through rational drug design, much progress has been made to develop small 

molecules that specifically inhibit the oncogenic signaling pathways driving malignant 

growth. However, the normal function of immune cells depends upon many of the same 

pathways inhibited by such targeted cancer therapies. Because the immune system can 

influence the growth of many cancers, I hypothesized that most small molecule inhibitors 

would have activity on leukocytes relevant in cancer, and this activity would contribute to 

their antitumor mechanisms. In order to test this hypothesis, I first screened a panel of 

over 40 small molecule inhibitors for their activity on proliferating human cancer cells and 

human T cells. Almost every small molecule inhibitor I tested had detrimental activity on 

human T cells at the concentrations required for limiting tumor cell proliferation. 

However, when I focused on the FDA approved MEK inhibitor trametinib, I found that 

some common γ-chain cytokines were able to rescue T-cell functions blunted by 

trametinib. Notably, an IL-15 agonist, ALT-803, could rescue the in vivo proliferation of 

tumor-antigen specific T cells in mice treated with trametinib. I developed a p53-/-

KrasG12D+Myristoylated-p110α+ murine breast cancer model to perform tumor challenge 

experiments in a model only weakly sensitive to trametinib, a setting where combination 

with immunotherapy may be clinically useful.  In this tumor model, ALT-803 synergized 

with trametinib, even leading to tumor rejection in several mice. Trametinib treatment 

alone was able to limit tumor growth, but this activity actually depended upon the 
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presence of CD8+ T cells. Upon further investigation I found that trametinib reduced the 

expansion of monocytic myeloid-derived suppressor cells (MDSCs) in tumor-bearing 

mice, a finding also recapitulated in vitro during the expansion of MDSCs from mouse 

and human bone marrow. These results suggest the inhibitory activity of trametinib on T 

cells in vivo is overcome by a corresponding reduction in immunosuppressive MDSCs 

and the endogenous presence of common γ-chain cytokines, and that the function of 

antitumor T cells can be further enhanced by IL-15 agonists administered during 

trametinib therapy. This work also demonstrates the importance of considering immune-

dependent mechanisms of targeted therapies when designing personalized cancer 

treatments.  
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CHAPTER 1 
	

 
INTRODUCTION 
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Forty-five years ago President Nixon declared the “War on Cancer,” yet we are 

still struggling to comprehend the complexities of malignant disease in ways that allow 

us to deliver precise therapies that achieve long-term success in patients. Still every 

year approximately 580,000 people die from cancer in the US (R. L. Siegel, Miller, and 

Jemal 2016). Although surgical resection, chemotherapy, and radiation are extremely 

effective as first line treatments to send cancer into remission, many patients relapse 

months or years later with inoperable metastases that are resistant to the initial 

therapies, eventually progressing to terminal disease. One reason for the limited 

success of conventional therapies is that diverse ranges of malignancies are grouped 

into the term “cancer.” Although cancers can be categorized according to similarities in 

tissues of origin, histology, and molecular features, each patient essentially presents 

with a genetically unique disease (Ogino, Fuchs, and Giovannucci 2012).  From this 

realization, it is understandable that variable results should be expected when large 

cohorts of patients are treated with the same therapeutic regimen. Thus, interest has 

expanded in developing personalized treatments where therapies are fine tuned for 

individual patients. In order for truly personalized cancer therapy, progress is still 

required to understand the molecular activity of cancer cells and their interactions with 

the diverse environment of non-malignant host cells that contribute to the growth, 

metastasis, and pathology of cancer. The development of effective interventions will 

require better knowledge of how specific therapies influence the biology of tumor-host 

cell interactions.  

 

TARGETING ONCOGENIC PROTEINS WITH SMALL MOLECULE INHIBITORS  
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Drug discovery is currently driven by the idea that knowledge of the underlying 

causes of disease is the most effective guide in designing agents that successfully 

restore these aberrant mechanisms to homeostasis. For cancer biologists, this rationale 

leads to a seemingly simple goal: uncover the molecular causes for the ability of tumor 

cells to continuously survive, proliferate, and invade healthy tissue. In the 1960s and 

70s, pioneering researchers began uncovering the molecular mechanisms of 

tumorigenesis. The first evidence that genes could transform healthy cells into tumors 

came from the discovery of the v-src gene in the Rous Sarcoma Virus (Martin 1970). 

Oncogene became the term used to describe these genetic elements that could initiate 

cancer formation. When later a homolog of v-src was identified as a normal gene in 

mammalian cells, termed c-src (Stehelin et al. 1976), the understanding emerged that 

normal, so-called proto-oncogenes in mammalian cells could be converted into 

oncogenes through either mutations or overexpression. Numerous other oncogenes and 

their proto-oncogene precursors have been identified in human cancers in the decades 

since these first discoveries (Croce 2009).   

Because the activity of many oncogenes is carried out by their protein products, 

therapies that interfere with the functions of these proteins can abrogate the molecular 

events driving tumor growth. Collectively referred to as targeted therapies or molecularly 

targeted agents, rational design of these therapies aims to manipulate (usually inhibit) 

proteins specifically utilized by cancer cells (Stegmeier et al. 2010). One class of 

targeted therapies is small molecule inhibitors, low molecular weight organic compounds 

that block the signal transduction of their protein targets (Imai and Takaoka 2006). 

Clinical proof that small molecule inhibitors can be effective against cancer was first 

demonstrated with the success of Imatinib (Gleevec), an inhibitor of the BCR-ABL kinase 

that drives chronic myeloid leukemia (Buchdunger et al. 1996; Druker et al. 2001).  
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The number of small molecule inhibitors entering clinical trials has exploded in 

the past decade. Although several molecules have shown efficacy, there is a strong 

selective pressure within tumors to evolve resistance to targeted therapies. Many 

clinically used small molecules have documented cases of acquired resistance (Sierra, 

Cepero, and Giordano 2010). For instance, over 40% of metastatic melanomas harbor 

the mutated BRAFV600E oncogene, which encodes a constitutively active B-Raf kinase 

(Ascierto et al. 2012). The normal Raf kinases (C-Raf, B-Raf, A-Raf) initiate signaling in 

the mitogen-activated protein kinase (MAPK) cascade by phosphorylating the MEK1 and 

MEK2 proteins (Matallanas et al. 2011). MEK1/2 are also kinases, and when 

phosphorylated by Rafs, they can phosphorylate ERK1 and ERK2, which then act on 

other molecules to induce gene transcription and cellular processes such as mitosis 

(Schulze et al. 2004). B-RafV600E is constitutively active, and this chronic signaling leads 

to melanoma growth (Ascierto et al. 2012). Two clinically successful small molecules 

have been developed to specifically prevent the activity of B-RafV600E without inhibiting 

wild-type B-Raf, vemurafenib and dabrafenib, although around half of the patients 

treated with either agent individually show disease progression in six months (Sosman et 

al. 2012; Hauschild et al. 2012). To combat reactivation of the MAPK pathway that 

occurs in some B-RafV600E melanomas treated with vemurafenib or dabrafenib (Nazarian 

et al. 2010; Villanueva et al. 2013), an inhibitor of MEK1/2 (trametinib) was tested in 

combination with dabrafenib, showing superior efficacy compared to dabrafenib alone, 

leading to the FDA approval of trametinib plus dabrafenib (Flaherty et al. 2012). This 

success was only marginal, though, because 1/3 of patients receiving the combo 

progressed within six months, and MAPK pathway reactivation was observed in 9/10 

tumor relapse samples (Long et al. 2014). While efforts to prevent or target the 

resistance mechanisms in tumors with additional small molecules still persist, another 
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attractive possibility for combination therapy has emerged from an entirely separate area 

of cancer research. 

 

IMMUNOSURVEILLANCE OF CANCER  
 

 An argument can be made that evidence for the immunosurveillance of cancer 

was documented well before any of the molecular details of cancer or immunity were 

described. In 1891, William Coley published several case studies in which he observed 

the shrinkage of aggressively growing tumors after inoculating patients with live bacteria 

(Coley 1891). It wasn’t until recently however, that solid evidence emerged to 

demonstrate that the immune system plays a role in preventing malignant growth. In 

humans, it is well documented that a person’s risk of developing cancer increases if they 

develop acquired immunodeficiency (Boshoff and Weiss 2002; Kirk et al. 2007) or 

receive an organ transplant and immunosuppressive drugs (Loeffelbein, Szilinski, & 

Hölzle, 2009; Vajdic et al., 2006). Additionally, the clinical outcome of many cancers is 

positively correlated with the presence of T cells, effector leukocytes that recognize 

peptide antigens through the T-cell receptor (TCR), observed in tumor specimens (L. 

Zhang et al. 2003; Galon et al. 2006; van Houdt et al. 2008). In some instances even, an 

expansion of tumor-specific T cells in patients has been observed during spontaneous 

tumor regressions (Ferradini et al. 1993).  

 Studies in mice have also demonstrated that various types of immunodeficiency 

predispose mice to spontaneous cancer formation and increase the rate of tumor 

development after chemical or genetic induction (Vesely et al. 2011). In a series of 

elegant experiments, Shankaran et al showed that when carcinogen-induced tumors 

arising in mice lacking adaptive immunity (due to Rag2 knockout, a gene necessary for 

proper development of the T-cell and B-cell receptors) were transplanted into immune-
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competent hosts, they were rejected by a substantial proportion (40%) of the mice, while 

the same tumor cells lead to tumor formation in 100% of inoculated Rag2-/- mice 

(Shankaran et al. 2001). These results demonstrated that the adaptive immune system 

is capable of spontaneously eradicating some tumors that otherwise grow uncontrollably 

in immune-deficient mice.  

 Several types of leukocytes are able to mount cytotoxic activity against tumor 

cells. T cells can be classified into two groups based upon their expression of the co-

receptors CD4 and CD8. CD8+ T cells, sometimes called cytotoxic T cells, have the 

ability to directly kill tumor cells through recognition of peptides presented by MHC-I 

molecules on the tumor cells (Hanson et al. 2000), while CD4+ T cells, sometimes called 

helper T cells, are more indirectly involved by recognizing peptides presented by MHC-II 

molecules, whose expression is generally restricted to antigen-presenting cells (APCs) 

and B cells, although CD4+ T cells can kill MHC-II expressing tumor cells (Haabeth et al. 

2014).  CD8+ T cells have been found to limit tumor growth in many models, sometimes 

even in the absence of CD4+ T cells (Scarlett et al. 2012; Harimoto et al. 2013; Chou 

and Shu 1987; Kast et al. 1989). In some settings CD4+ T cells lead to tumor killing 

(Nesbeth et al. 2010; Greenberg, Kern, and Cheever 1985), although they can also 

promote tumor growth by suppressing CD8+ T cells, because some CD4+ T cells are 

regulatory cells (Yu et al. 2005) (described more below). Natural killer (NK) cells, an 

innate effector population that can kill virus infected and tumor cells through non-antigen 

specific ligand interactions, are also known to restrict the growth of some tumors (Smyth, 

Crowe, and Godfrey 2001).  

The requirement of effector molecules utilized by T cells and NK cells to kill 

tumors have also been demonstrated experimentally. For instance, the cytotoxic 

molecules secreted by activated CD8+ T cells, such as perforin, IFN-γ and TNF-α are 
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utilized to restrict tumor growth (Smyth et al. 2000; Barth et al. 1991). Ligand dependent 

killing of tumor cells through pathways such as TRAIL and FasL (expressed on T cells 

and NK cells) are also known to be important for immune control of tumor formation 

(Cretney et al. 2002; Davidson, Giese, and Fredrickson 1998). The specific subsets of 

cells and effector pathways critical for restricting tumor growth varies between different 

models, but there is significant evidence for the overall concept that antitumor immunity 

is a component of many mouse models of cancer. 

A critical factor in determining the quality of the tumor-directed immune response 

is the nature of antigens expressed in tumor cells. The immune system is naturally 

adapted to respond to foreign molecules while being tolerant of those originating from 

the “self.” All neoplasms are derived from “self” cells, thus the healthy parental cells are 

poorly immunogenic. Neoplastic cells become immunogenic through genetic changes 

that result in unique non-self peptides (termed neoantigens) or the overexpression of self 

proteins whose expression is normally tightly controlled (termed shared antigens), 

events which are sometimes directly related to the initial process of transformation. 

Virus-associated tumors may represent the far end of the immunogenicity spectrum 

because the foreign viral antigens are present in the tumors. On the other end of the 

spectrum are tumors where immunity contributes little to tumor progression presumably 

due to a dearth of novel antigens. For instance, soft-tissue sarcomas initiated in mice by 

genetic ablation of p53 and activation of the KrasG12D oncogene show similar growth in 

Rag2-/- compared to WT mice; however, when the foreign chicken ovalbumin antigen 

(OVA) is introduced into these tumors, growth is significantly restricted in immune-

competent mice relative to Rag2-/- (DuPage et al. 2012). While T-cell responses to 

specific tumor antigens have been described in many human cancer patients, there is 
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still active investigation into comprehensively characterizing the antigenic repertoire 

unique to each patient’s cancer. 

 

MECHANISMS OF IMMUNE EVASION AND IMMUNE SUPPRESSION IN CANCER  
 

 Considering that the immune system has the ability to restrict tumor growth, it’s 

important to understand why so many immune-competent individuals actually develop 

lethal cancers. On one hand, some tumors may never acquire enough mutations in or 

overexpression of antigens to elicit T-cell responses (DuPage et al. 2012). Yet even in 

tumors that do contain sufficient antigens, the presence of antitumor immunity exerts a 

strong selective pressure for the outgrowth of clones that either evade or actively 

suppress immunity. Immune evasion, also called immunoediting, has been 

demonstrated in many circumstances (Dunn et al. 2002). In addition to selecting for the 

loss of antigens, immune pressure can also favor the growth of tumor cells with 

decreased expression of antigen presenting molecules (such as MHC-I and TAP) 

(Seliger, Maeurer, and Ferrone 2000), death receptors (such as TRAIL receptor DR4 

and FAS) (Özören and El-Deiry 2003), or proteins involved in responding to IFN-γ (L. H. 

Wong et al. 1997). Selection may also occur for tumor cells with high surface expression 

of co-receptors that inhibit the activation of T cells (such as PD-L1) (Saudemont and 

Quesnel 2004).  

 Malignant lesions additionally utilize a second mechanism to escape immune-

mediated elimination by co-opting the normal regulatory mechanisms within the immune 

system. Tumor-derived factors drive the expansion and recruitment of regulatory T cells 

(Tregs) and regulatory myeloid cells into the tumor. Tregs are classified as CD4+ T cells 

expressing the FOXP3 transcription factor that act to suppress immune responses 
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through the production of cytokines like TGF-β and IL-10, and their presence in tumors 

has been negatively correlated with outcome in many human cancers (Mougiakakos et 

al. 2010). Regulatory myeloid cells are a more diverse subset of suppressor cells and 

the distinctions among them most likely lie in a spectrum rather than discrete 

boundaries. Nevertheless, they can be generally classified into three groups. Regulatory 

macrophages (also called tumor-associated macrophages, TAMs) and regulatory 

dendritic cells (also called tumor-associated DCs, TADCs) are the immunosuppressive 

cousins of classical macrophages and dendritic cells (DCs) that function as APCs. The 

unique factors in the microenvironment of different tumors may determine which of these 

cells is preferentially recruited, but their presence and ability to suppress immune 

responses has been described in many human and mouse cancers (Dmitry I 

Gabrilovich, Ostrand-Rosenberg, and Bronte 2012).   

The third group, known as myeloid-derived suppressor cells (MDSCs), is 

generally defined as a heterogeneous population of immature myeloid cells capable of 

suppressing immune responses. They are distinguished from macrophages and 

dendritic cells by their less differentiated phenotype and lack of antigen presenting MHC-

II expression (Dmitry I Gabrilovich, Ostrand-Rosenberg, and Bronte 2012). First 

described in mice as CD11b+GR-1+ cells, these cells were found to greatly increase in 

the spleen and bone marrow of tumor-bearing mice, and were able to potently suppress 

antitumor T-cell responses (D. I. Gabrilovich et al. 2001; Kusmartsev, Li, and Chen 

2000). The expansion of these cells in cancer is due to chronic inflammatory signals 

emanating from tumors, such as the cytokines GM-CSF, G-CSF, VEGF, IL-6, and 

S100A8/9, which act on hematopoietic stem and progenitor cells to promote the 

production of immature myeloid cells and prevent their maturation into functional APCs 

(Dmitry I Gabrilovich, Ostrand-Rosenberg, and Bronte 2012).  
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MDSCs are categorized based upon their morphology, surface molecule 

expression, and function into two populations. Monocytic MDSCs (M-MDSCs) share the 

cytological features of monocytes, including a single-lobed nucleus. In mice they are 

routinely identified by surface markers as CD11b+MHC-II-/lowLy6ChiLy6G-, but in humans 

a consensus on standardized phenotyping has not been achieved, although they are 

generally considered CD11b+CD33+HLA-DR-/lowCD14+CD15int/low (Solito et al. 2014). M-

MDSCs express high amounts of the enzymes ARG1 and NOS2, which deplete arginine 

and generate NO and reactive nitrogen species (RNS), respectively (Dmitry I 

Gabrilovich, Ostrand-Rosenberg, and Bronte 2012). Because arginine is an essential 

amino acid for proliferating T cells, depletion of it from the environment results in 

proliferative arrest (Rodríguez and Ochoa 2008). NO and RNS can lead to nitrosylation 

of the TCR and cytokine receptors, reducing the ability of tumor-specific T cells to 

respond to peptide antigen and receive supporting cytokine signals (Mazzoni et al. 2002; 

Nagaraj et al. 2007). 

 Polymorphonuclear MDSCs (PMN-MDSCs) share the multi-lobed nucleus and 

abundant granules characteristic of granulocytes and neutrophils, and for this reason 

they are sometimes referred to as granulocytic MDSCs. PMN-MDSCs are distinguished 

in mice as CD11b+MHC-II-/lowLy6CintLy6G+, and generally in humans as CD11b+HLA-DR-

/lowCD33+CD66b+CD14-CD15+, although the description of these cells in humans is more 

variable (Solito et al. 2014). PMN-MDSCs also contribute to arginine depletion and 

NO/RNS production, but they differ from M-MDSCS in their production of high amounts 

of reactive oxygen species (ROS) through the enzymatic activity of NADPH oxidase 

(Raber et al. 2014). High levels of ROS can lead to dysfunctional T-cell activity by 

disrupting proximal TCR signaling molecules such as CD3ζ and Lck (Cemerski, van 

Meerwijk, and Romagnoli 2003).  
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In addition to their ability to directly suppress T cells, MDSCs have other tumor-

promoting activities. They can induce the differentiation of Treg cells by producing TGF-

β and IL-10 (Huang et al. 2006). They can support the development of new blood 

vessels to supply growing tumors with nutrients and oxygen (Dmitry I Gabrilovich, 

Ostrand-Rosenberg, and Bronte 2012). MDSCs additionally secrete factors that promote 

survival signaling in tumor cells in response to chemotherapy (Ramachandran et al. 

2016), and they can contribute to premetastatic niche development to support metastatic 

spreading of tumor cells (Sceneay et al. 2012).  

The ability of MDSCs to suppress antitumor immunity and enhance tumor growth 

has been shown in many mouse models (Dmitry I Gabrilovich, Ostrand-Rosenberg, and 

Bronte 2012), and although it is difficult to prove the outcome of their activity in human 

patients, several lines of evidence suggest their relevance in disease progression. First, 

increased levels of MDSCs are negatively correlated with clinical outcome in several 

cancers (Solito et al. 2014), including in the response to the anti-CTLA-4 antibody, 

ipilimumab, in melanoma (Meyer et al. 2014). Second, their levels are associated with 

measures of impaired T cells, such as CD3ζ dysfunction (Sippel et al. 2011) and 

decreased CD8+ T cell frequency (C.-Y. Liu et al. 2010). Lastly, their ability to directly 

inhibit T cell activity ex vivo has been repeatedly demonstrated (Meyer et al. 2014). 

Considering the ability of MDSCs to potently suppress beneficial T cell responses, these 

cells have become prime targets for therapies in cancer. 

 
 

IMMUNOTHERAPIES FOR CANCER  
 
 
 Armed with knowledge about mechanisms of immune suppression in cancer, 

researchers have tested several types of immunotherapies for both single agent activity 
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and as combinatorial treatments. Successful outcomes have been achieved most 

notably in melanoma by delivering monoclonal antibodies to block the co-receptor 

pathways of CTLA-4 and PD-1 that restrict T-cell activation. These “checkpoint 

inhibitors” are also being tested in several other cancers (Sharon et al. 2014). Another 

type of immunotherapy involves the ex vivo expansion of tumor-reactive T cells which 

are then re-administered to the patient. This process, termed adoptive cell therapy, can 

either use T cells expanded from tumor biopsies (Rosenberg et al. 2011) or peripheral T 

cells genetically modified to recognize tumor antigens (Porter et al. 2011). Both 

strategies have shown promise in certain cancers, yet neither has reached a standard of 

approval from the FDA. An additional strategy to generate therapeutic antitumor 

immunity is vaccination, which can either be preventative, where vaccination is targeted 

at viruses like HPV and HCV that drive tumor initiation, or therapeutic, where vaccination 

occurs after the appearance of cancer. Although preventative vaccinations may be 

extremely effective, currently their use is restricted to a minority (10-20%) of cancers that 

are caused by viruses, although people have also advocated their development for non-

viral cancers (Lollini et al. 2006). Many therapeutic vaccines have been clinically tested, 

yet only one (Sipilucel-T) has been approved, and its efficacy is marginal at best (Higano 

et al. 2009).  

  Cytokines may also be administered to boost antitumor immunity. Due to their 

central role in T cell and NK cell proliferation and survival, most clinical trials have 

focused on cytokines in the common cytokine-receptor γ-chain family. This family of 

cytokines, which includes IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, is termed as such 

because each member signals through the common cytokine-receptor γ-chain (γc). The 

importance of γc is evidenced by the disease X-linked severe combined 

immunodeficiency, in which patients with functional knockouts of γc fail to produce T 
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cells and NK cells (Noguchi et al. 1993). Signaling through γc occurs when members of 

this cytokine family bind to γc along with one or two other cytokine-specific co-receptors. 

For instance, IL-7 binds to γc along with the IL-7 receptor α (IL-7Rα) (Leonard et al. 

1998), while IL-2 binds to γc along with either IL-2Rβ for intermediate affinity signaling or 

along with IL-2Rβ and IL-2Rα for high affinity signaling (Rochman, Spolski, and Leonard 

2009). IL-15 can also bind γc with IL-2Rβ, however efficient signaling requires IL-15 to 

be transpresented by another cell expressing IL-15Rα (Schluns, Klonowski, and 

Lefrançois 2004; Sandau et al. 2004). All γc family cytokines activate signaling through 

the JAK-STAT pathway, although the specific STAT proteins activated varies slightly 

among the cytokines. IL-2, IL-7, IL-9, and IL-15 mostly induce phosphorylation (and thus, 

activation) of STAT5 and STAT3, while IL-4 generally leads to phosphorylation of STAT6 

and STAT3, and IL-21 predominantly induces phosphorylation of STAT1 and STAT3 

(Johnston et al. 1995; Demoulin et al. 1996; Quelle et al. 1995; Zeng et al. 2007; Foxwell 

et al. 1995). IL-2, IL-7, and IL-15 signaling can also lead to activation of the 

phosphatidylinositol 3-kinase (PI3K) pathway and Ras/MAPK signal cascade (Sharfe, 

Dadi, and Roifman 1995; Fung, Rohwer, and McGuire 2003; Ben Ahmed et al. 2009). 

 The common γc cytokines play essential roles in the function of T and NK cells. 

IL-7 signaling is critical for the development of T cells (Leonard et al. 1998) and it also 

provides trophic survival signals to naïve (antigen-inexperienced) T cells and memory T 

cells (Rathmell et al. 2001). IL-2 is a major factor enhancing the proliferation of recently 

activated T cells (Morgan, Ruscetti, and Gallo 1976; D’Souza and Lefrançois 2003). IL-

15 also acts to enhance proliferation after activation, although it is more specific for 

CD8+ T cells than IL-2, which strongly signals in both CD4+ and CD8+ T cells (Rochman, 

Spolski, and Leonard 2009). Additional important functions for IL-15 are the homeostatic 

proliferation of memory CD8+ T cells and the activation and expansion of NK cells 
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(Rochman, Spolski, and Leonard 2009). The differentiation of CD4+ T cells into T-helper-

2 (Th2) cells depends on IL-4 (Swain et al. 1990). IL-2 is critical for the maintenance of 

Tregs, such that IL-2 deficiency actually causes lymphoproliferative and autoimmune 

diseases (Sakaguchi et al. 2008). 

 Due to their ability to promote the survival and expansion of T cells, IL-2, IL-7, 

and IL-15 have been the main common γc cytokines tested in preclinical cancer models 

and patients. In two clinical trials of IL-7 administration, dose-dependent increases in 

peripheral CD4+ and CD8+ T cells were observed, but the therapy showed no antitumor 

activity (Rosenberg et al. 2016; Sportès et al. 2008). For many years, high dose IL-2 has 

been indicated for use in melanoma and advanced renal cell carcinoma patients (Amin 

and White 2013). IL-15 could be a more favorable therapy, however, because it lacks 

the tumor-promoting activity of IL-2 signaling in Tregs. Administration of IL-15 to patients 

with metastatic disease in a Phase I trial led to increases in NK cells and memory CD8+ 

T cells, and some encouraging decreases in tumor volumes were observed (Conlon et 

al. 2015). One challenge in cytokine therapy is the short-half life of the molecules 

(Stoklasek, Schluns, and Lefrançois 2006). To overcome that limitation, Han et al 

developed an IL-15 agonist that consists of two IL-15N72D molecules conjugated to a 

dimeric IL-15Rα sushi domain and fused to the Fc region of an IgG1 (Figure 1.1) (Han 

et al. 2011). This molecule, ALT-803, showed vastly increased serum half-life in mice 

and antitumor activity in murine myeloma and glioblastoma models through the 

activation of CD8+ T cells (Han et al. 2011; Rhode et al. 2015). ALT-803 is currently 

being tested in multiple clinical trials against solid and hematological tumors either as a 

single agent or in combination with other therapies (Table 1.1).      

 Because T cells can respond to new antigens and develop memory, they have 

the potential to completely eradicate tumors and maintain surveillance against the future 
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emergence of micrometastases. For this reason, immunotherapies could be a useful 

addition to targeted therapy in order to prevent the emergence of drug-resistant clones. 

The action of small molecule inhibitors may also synergistically promote tumor 

destruction by T cells. Towards this goal, several combinations have shown success in 

preclinical models, such as the combination of B-Raf inhibitors with adoptive cell therapy 

(Hu-Lieskovan et al. 2015) and HDAC inhibitors with PD-1 blockade (Zheng et al. 2016). 

In order to develop the most effective combinations, it will first be necessary to 

understand how small molecule inhibitors impact biochemical signaling in immune cells. 

Research into this topic has lagged significantly behind that into the effects of small 

molecule inhibitors on tumor cells, which is partially the result of most preclinical studies 

of small molecules being performed with xenografts in immune-deficient mice. Although 

it may seem reasonable to assume that small molecule inhibitors primarily exert activity 

on tumor cells, cells of the immune system also utilize many of the pathways targeted in 

cancer. 

 

ONCOGENIC SIGNALING PATHWAYS AND THEIR HOMOLOGS IN LEUKOCYTES  
 

 Small molecule inhibitors target either signaling pathways specific to oncogene 

addicted tumor cells or more conserved pathways important for the proliferation and 

survival of tumor cells in general. Oncogene addiction refers to the absolute dependence 

of tumor cells on signaling through specific proteins to the point where blocking this 

signaling results in either growth arrest and death or acquired resistance via additional 

mutations that reactive the same pathway (Weinstein and Joe 2008). Two classic 

examples are BCR-ABL driven chronic myeloid leukemia (CML) cells that acquire 

resistance to imatinib through additional ABL mutations (Gorre et al. 2001) and 

BRAFV600E melanoma cells that acquire activating mutations in B-Raf’s target proteins, 
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MEK1/2, in response to B-Raf inhibitors (Villanueva et al. 2013). Small molecules may 

also target wild-type proteins driving oncogenic growth, such as those targeting 

receptors like HER2 and EGFR (Schroeder, Stevens, and Sridhar 2014). Central cellular 

signaling not specific to certain oncogenes that may be targeted include pathways for 

cell division (CDKs), transcription (HDAC), survival (Bcl-2), and autophagy (Atg3/7/10) 

(J. Zhang, Yang, and Gray 2009; Kang and Reynolds 2009; Khan and La Thangue 

2012; Cheong et al. 2012). The PI3K-AKT-mTOR pathway is an interesting target 

because in addition to some tumors being driven by direct mutations in this pathway, it 

also integrates signaling events from many other oncogenes (Engelman 2009). In this 

regard, small molecules may be used to target oncogene-addicted cells (such as PI3K-

p110α mutants), to block downstream signaling from other pathways, or to prevent the 

acquisition of drug resistance. Whatever the intended mechanism for use, the potential 

for unintended activity on leukocytes appears likely for most small molecule inhibitors 

due to the homologous presence of these pathways in immunity.  

 Following activation through TCR engagement, co-stimulatory receptor ligation, 

and cytokine stimulation, T cells can proliferate at a rate faster than most cancer cells 

(up to 5.3 hrs per cell division) (Hwang et al. 2006) and through continuous stimulation 

can be propagated for at least nine months in vitro (Boylston and Anderson 1980). 

Therefore, it is not surprising that many of the pathways driving oncogenic growth of 

tumor cells are also critical for transducing the activating signals that drive mitosis and 

survival of T cells. For instance, the binding of peptide-MHC complexes to the TCR 

causes the intracellular clustering and phosphorylation of the proximal signaling complex 

proteins, which directly leads to activation of Ras (primarily N-Ras) (Smith-Garvin, 

Koretzky, and Jordan 2009). Ras initiates the MAPK cascade by activating C-Raf, which 

activates MEK1/2, which then activates ERK1/2 (Genot and Cantrell 2000). ERK activity 
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results in the activation of several key transcription factors that orchestrate gene 

expression changes in T cells. This cascade is critical for transmitting the message of 

TCR clustering at the surface into the nucleus for the transcriptional switch necessary for 

cell growth, division, and effector activity. Ligation of co-stimulatory molecules expressed 

on the surface of T cells such as CD28 activates PI3K, leading to activation of AKT and 

mTOR (Acuto and Michel 2003). The co-stimulatory signals mediated by PI3K result in 

the production of cytokines like IL-2 and upregulation of pro-survival molecules like Bcl-xl 

(Acuto and Michel 2003). Additionally the metabolic switch to aerobic glycolysis in 

activated T cells depends upon mTORC1 (Chi 2012). PI3K can also be activated by 

common γc family cytokines like IL-2 and IL-15 (Fung, Rohwer, and McGuire 2003; 

Meresse et al. 2004). Changes in gene expression following T-cell activation are 

mediated in part through the ability of HDAC proteins to remodel chromatin (Akimova et 

al. 2012), and mitosis in T cells requires the CDK family of cell cycle checkpoint kinases 

(Wells and Morawski 2014). 

 The development and function of various innate immune cells also involves many 

of these pathways. Activation of MEK and ERK promotes the differentiation of myeloid 

cells from precursor stem cells (Hsu, Kikuchi, and Kondo 2007). Additionally, the survival 

and differentiation of DCs from monocytes relies on MEK and PI3K signaling (Xie et al. 

2005). The ability of DCs and macrophages to upregulate immune-activating genes after 

toll-like receptor (TLR) recognition of microbial products requires HDAC activity (Roger 

et al. 2011). Innate immune cells migrate towards sites of inflammation by sensing 

chemokine gradients, and the receptors for many chemokines (eg fMLP, IL-8, LTB4) 

signal through PI3K (Hawkins and Stephens 2015). Also, activation of NK cells following 

ligation of NKG2D is mediated in part through MEK and PI3K signaling (Vivier, Nunès, 

and Vély 2004).  Mention of these examples is not intended as a comprehensive 
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summary, only to illustrate that pathways targeted in cancer therapy have important 

functions in immune cells. For this reason, the development of targeted therapies that 

synergize with antitumor immunity will require dedicated research into how small 

molecule inhibitors modulate the interaction between the tumor and immune system. 
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TABLES 
 

Phase  Disease      Clinicaltrials.gov ID 
 
I/II  Relapsed hematologic malignancy    

(after allogeneic stem cell transplant)   NCT01885897 
 
I/II  Relapsed or refractory multiple myeloma  NCT02099539 
 
I  Melanoma, kidney cancer, non-small 
  cell lung cancer, head and neck cancer  NCT01946789 
 
I/II  Non-muscle invasive bladder cancer   NCT02138734 
 
I/II  Pre-treated, advanced or recurrent 
  Non-small cell lung cancer 
  (+ NivolumaB)      NCT02523469 
 
I/II  Relapse/refractory indolent B cell 
  Non-Hodgkin lymphoma 
  (+ RituximaB)      NCT02384954 
 
I  HIV infection      NCT02191098 
 
I/II  Advanced pancreatic cancer 
  (+ Gemcitabine and Nab-Paclitaxel)    NCT02559674  
      
 

Table 1.1. Ongoing ALT-803 clinical trials. 
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Figure	1.1.	ALT-803.	Illustration	showing	structure	of	the	IL-15	agonist,	ALT-803.	
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CHAPTER 2 
	

DEVELOPMENT OF GENETICALLY ENGINEERED BREAST CARCINOMA MODELS 

BY TARGETING OF THE DUCTAL EPITHELIUM WITH ADENOVIRUS-CRE 

 

 

 

 

The following chapter was adapted from a published journal article, and the work was 

performed in collaboration with Dr. Melanie Rutkowski. 

 

Rutkowski MR*, Allegrezza MJ*, Svoronos N, Tesone AJ, Stephen TL, Perales-Puchalt 

A, Nguyen J, Zhang PJ, Fiering SN, Tchou J, Conejo-Garcia JR. Initiation of 

metastatic breast carcinoma by targeting of the ductal epithelium with adenovirus-

cre: a novel transgenic mouse model of breast cancer. J Vis Exp, doi: 

10.3791/51171, 2014. 

* These authors contributed equally 
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ABSTRACT 
	

The development of personalized therapies tailored to the unique molecular 

features of cancers will require research with preclinical models where the oncogenic 

driver mutations are precisely known. Breast cancer is a heterogeneous disease 

involving complex cellular interactions between the developing tumor and immune 

system, eventually resulting in metastasis to distal tissues and the collapse of anti-tumor 

immunity. Many useful animal models exist to study breast cancer, but all have their 

individual limitations. It was my goal to develop a protocol for initiating autochthonous 

breast tumors in mice that develop after sexual maturity and are driven by consistent, 

endocrine-independent expression of oncogenes that can be easily interchanged 

through breeding. In collaboration with Dr. Melanie Rutkowski, I describe here the 

generation of an inducible transgenic mouse model of ductal carcinoma by delivery of an 

adenovirus expressing Cre-recombinase into the mammary duct of sexually mature, 

virgin female mice. Through selective breeding of mice with transgenic alleles flanked by 

loxP sequences, termed floxed, it is possible to develop different tumor models with a 

variety of genetic features. For studies in subsequent chapters I use a cell line derived 

from tumors initiated in LSL-KrasG12Dp53loxp/loxpLSL-Myristoylated-p110α-GFP+ mice, but 

here I describe the protocol to develop and characterize tumors with LSL-

KrasG12D/+p53loxp/loxp LSL-EYFP+ mice, where delivery of adenovirus-Cre leads to ablation 

of p53, expression of an oncogenic form of Kras, and activation of YFP. Tumors begin to 

appear 6 weeks after the initiation of oncogenic events. After tumors become apparent, 

they progress slowly for approximately two weeks before they begin to grow 

exponentially. After 7-8 weeks post-adenovirus injection, vasculature is observed 

connecting the tumor mass to distal lymph nodes, with eventual lymphovascular invasion 

of YFP+ tumor cells to the distal axillary lymph nodes. Infiltrating leukocyte populations 
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are similar to those found in human breast carcinomas, including the presence of αβ and 

γδ T cells, macrophages and MDSCs.  This unique model will facilitate the study of 

cellular and immunological mechanisms involved in tumor formation, metastasis, and 

dormancy in addition to being useful for designing novel immunotherapeutic 

interventions to treat invasive breast cancer.  

 

INTRODUCTION 
 

Breast cancer is the most commonly occurring malignancy in women throughout 

the world and the second leading cause of cancer-related deaths (Youlden et al. 2012; 

R. Siegel, Naishadham, and Jemal 2016). Complex genetic (Sørlie et al. 2001; Gatza et 

al. 2010), histological (Bastien et al. 2012) and clinical phenotypes (Montagna et al. 

2013) are used to characterize the various subtypes of breast cancer and often are used 

as a means to predict survival. Analysis of a large cohort of women with breast cancer 

indicated that most (approximately 80%) of the patients that died had recurred within 10 

years post removal of the primary tumor (Karrison, Ferguson, and Meier 1999).  For a 

majority of invasive breast carcinomas, lymphovascular invasion has been shown to be 

strongly correlated to a poor outcome and more aggressive clinical course of disease 

(Rakha et al. 2012).  

Because of the genetic and phenotypic complexity of breast cancer, there is no 

animal model that recapitulates the entire course of disease. Human breast tumor cell 

lines have been frequently used as xenograft or orthotopic (I. S. Kim and Baek 2010) 

models of invasive and metastatic breast cancer in immune deficient mice. Although 

informative, these models occur in the absence of immune pressure and because it is a 

cross species graft, distort the effects of the entire tumor microenvironment. Inducible 
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genetic mutations driven by mammary specific promoters such as murine mammary 

tumor virus (MMTV) and whey acidic protein (WAP) have contributed a tremendous 

amount of knowledge about the genetic nature of breast cancer. However, the tissue 

specific expression of these promoters are compromised by their responsiveness to the 

endocrine system (Vargo-Gogola and Rosen 2007; Archer et al. 1995; Cato, Henderson, 

and Ponta 1987; Schoenenberger et al. 1990; Li et al. 2001; Martelli et al. 2012; Klover 

et al. 2010), resulting in the variable expression of induced genetic mutations that do not 

mirror the expression of oncogenes typically overexpressed in human breast cancer. To 

overcome endocrine control of MMTV driven expression of oncogenes, Moody et al. 

generated a conditional, doxycycline inducible model overexpressing Neu in the breast 

epithelium (Moody et al. 2002). This model is useful for turning off Neu expression after 

tumor formation to study regression and recurrence, but requires constant doxycycline 

administration for consistent, long-term oncogene expression.  A comprehensive 

discussion of the many relevant breast tumor models available can be found in the 

review by Vargo-Gogola et al (Vargo-Gogola and Rosen 2007). 

My goal was to develop a mouse model of traceable breast cancer on a C57BL/6 

background that, after the irreversible induction of mutational events, models the 

formation of a nascent tumor in the presence of immune pressure. I introduced an 

adenovirus expressing Cre-recombinase into the mammary ducts of transgenic mice 

containing floxed alleles of Tp53, and an oncogenic form of Kras, and YFP. Cre 

expression ablates Tp53, a frequently mutated gene in many breast cancers (Banerji et 

al. 2012) and induces an oncogenic allele of Kras in addition to YFP expression 

specifically in the mammary ductal epithelium. Although mutations in Kras are infrequent 

in breast cancer, occurring in only 6.5% of breast cancer patients (Miyakis, Sourvinos, 

and Spandidos 1998; Malaney and Daly 2001), the overexpression of upstream kinases 
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such as Her2/neu and EGFR result in constitutive activation of the Ras signaling 

pathway in human breast tumors (Loboda et al. 2010; von Lintig et al. 2000; Downward 

2003). Activation of the Ras signaling pathway in many breast tumor cell lines has also 

been reported (Eckert et al. 2004; Hollestelle et al. 2007). I will describe the initiation of 

tumor formation and the technique of intraductal injection of an adenovirus expressing 

Cre-recombinase into sexually mature, virgin female mice. This model of breast cancer 

develops overt lesions that grow exponentially after about 8 weeks of slow tumor 

progression, with lymphovascular invasion and metastasis to the axillary lymph node by 

7-8 weeks. Because this mouse is on a C57BL/6 background and YFP-expressing tumor 

cells are traceable in distal lymph nodes, this model provides a relevant tool to study the 

cellular and immunological mechanisms of latent metastasis and will help to develop 

novel therapeutic approaches for the treatment of metastatic ductal breast cancer. 

PROTOCOL 
	

All animal experiments were approved by the Wistar Institute Animal Care and Use 

Committee. Materials used for this procedure are listed in Table 2.1&2.2. 

 

1.  Generation and maintenance of transgenic mice 

1.1) Breed LSL-Krastm4Tyj (Jackson et al. 2001) and Trp53tm1Brn (Jackson et al. 2001) 

(obtained from NCI mouse models of human cancer consortium on a mixed background) 

to a full C57BL/6 background (Scarlett et al. 2012) by backcrossing at least 10 

generations with C57BL/6 mice. To track tumor metastasis, breed B6.129X1-

Gt(ROSA)26Sortm1(EYFP)Cos/J (LSL-EYFP, obtained from The Jackson Laboratory on a full 

C57BL/6 background) with double transgenic LSL-KrasG12Dp53loxp/loxp mice.  
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Transgenic LSL-KrasG12Dp53loxp/loxp mice have loxp sites flanking a transcriptionally 

silenced allele of oncogenic Kras and the endogenous Tp53 locus, so that upon Cre-

mediated excision, overexpression of an oncogenic Kras mutant and ablation of Tp53 is 

achieved.  

The LSL-EYFP mouse contains a stop codon flanking a gene for enhanced yellow 

fluorescent protein (YFP) that upon Cre-mediated excision results in the expression of 

YFP in the tissues where the YFP stop cassette is excised.  

1.1.1) Breed transgenic mice to obtain LSL-KrasG12Dp53loxp/loxp mice or LSL-

KrasG12Dp53loxp/loxpLSL-EYFP mice for intraductal injections.  

Mice are bred as homozygous for p53loxp/loxp and heterozygous for LSL-KrasG12D because 

mice with a homozygous deletion of Kras die in utero. Use naïve virgin females at least 

six-weeks old for intraductal injections.   

The primers for genotyping homozygous floxed Tp53 allele are p53-T010-fwd (5′-

AAGGGGTATGAGGGACAAGG-3′) and p53-T011-rev (5′-

GAAGACAGAAAAGGGGAGGG-3′). They produce a wild type allele at 391 bp and the 

Tp53 floxed allele at 461 bp (Vooijs, Jonkers, and Berns 2001; Young, Crowley, and 

Jacks 2011).  

The primers to detect the transgenic allele of mutant Kras are oIMR8273 (5’-

CGCAGACTGTAGAGCAGCG-3’) and oIMR8274 (5’-CCATGGCTTGAGTAAGTCTGC-

3’). They produce the mutant band detected at 600bp.  

For the YFP reporter triple transgenic mice, the primers to detect the ROSA cassette (5’-

AAGACCGCGAAGAGTTTGTC-3’), the wild type allele (5’-

GGAGCGGGAGAAATGGATATG-3’), and a shared allele (5’-

AAAGTCGCTCTGAGTTGTTAT-3’) result in the amplification of bands at 320 bp for 

floxed allele and 600 bp for the wild type allele.  
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2.  Surgical preparation 

2.1) Clean surgical materials with 75% EtOH and autoclave them before and after all 

injections.  

2.2) Perform surgery on a clean uncluttered laboratory bench in a sanitized room within 

an animal facility. Wipe down all surfaces including the stage and dials of the surgical 

microscope with a broad-spectrum disinfectant solution followed by 75% EtOH.  

2.3) Weigh and anesthetize mice by intraperitoneal injection of a mix of ketamine (80-

100 mg/kg) and xylazine (8-10 mg/kg) in sterile saline.  

2.4) Gently place mice back into their cages undisturbed for five minutes while they go 

under anesthesia. During this time generate virus precipitates (see section 3).  

2.5) Verify lack of response to pain by toe pinching.  Gently cover the eyes of 

anesthetized mice with veterinary ointment to prevent excessive corneal drying.  

2.6) To prevent hypothermia, place anesthetized mice onto a heating pad set to low 

heat during the surgical procedure and until they begin to recover.  

2.7) For the management of pain, administer mice meloxicam subcutaneously at 1 

mg/kg before the surgery and 24 hours after. 

 

3.  Generation of virus precipitates 

CAUTION: Adenovirus vectors, although they have been modified and are unable to 

replicate, pose the risk of infection. Handle adenovirus with caution. All personnel should 

be appropriately trained according to the institution’s guidelines for handling BSL2 

agents After intraductal injection, dispose of adenovirus in accordance with BSL2 

guidelines.  
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3.1) Store adenovirus concentrated virus stocks at -80°C frozen in aliquots of 4 x 108 pfu 

each, sufficient for injecting 16 animals with 3 µl of 2.5 x 107 pfu of adenovirus particles.  

3.2) Store adenovirus aliquots on dry ice until approximately 15-20 minutes before 

beginning the injections.  

Avoid repeated freeze thaw cycles, as virus titer drops significantly between each cycle.  

Adenovirus precipitates are formed by modifying a protocol described previously 

(Dinulescu et al. 2005).  

3.3) Reconstitute 504 mg of MEM powder with 50 mL of sterile molecular grade water, 

supplement with 244 mg of sodium bicarbonate, sterile filter, and store at 4°C.  

3.3.1.) Prepare the calcium chloride solution by adding 1.5 g of calcium chloride to 50 ml 

of molecular grade water and filter in sterile conditions and store at 4°C.  

3.3.2) Mix aliquots containing 4 x 108 pfu adenovirus-cre with sufficient 3% sucrose in 

sterile water for a final volume of 10 µl. Add 34 µl of MEM to the virus and gently mix. 

Then add 4 µl of the CaCl2 solution, gently mix, and incubate at room temperature for 

15-20 minutes.  

3.3.3) Store adenovirus on dry ice until ready to form precipitates. Avoid thawing of the 

adenovirus and storing on ice or room temperature for extended times, unless 

precipitates are formed.  

It is also possible to mix the sucrose, MEM and CaCl2 prior to the surgeries if it is not 

possible to thaw the adenovirus aliquot and begin making precipitates immediately after 

removal from -80ºC. This aliquot of sucrose, MEM, and calcium can be saved on dry ice 

until ready to add the adenovirus.  

Virus particles are stable for approximately one hour 
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3.4) Prior to each injection, gently flick the tube to make sure virus particles are mixed. 

Draw up 3 µl (2.5 x 107 pfu) of virus particles into the 10 µl syringe and prepare the 

mouse for the intraductal injection. 

 

4.  Intraductal injection of virus particles 

4.1) Gently place the mouse on its back onto the illuminated stage of a clean dissection 

microscope. Illuminate the abdominal side with an extra light source and locate the left 

4th or right 9th inguinal mammary gland by the small white patches of fur (visible on 

C57BL/6 females) surrounding each nipple.  

4.2) Rub the nipple gently with a sterile ethanol soaked cotton tipped applicator to clear 

hair away from the nipple and to sterilize the injection site. If they are difficult to locate, 

gently apply a thick layer of a depilatory cream or use shears to expose the nipples.  

4.3) Remove the keratin plug, a layer of dense dead skin cells, which is covering the 

nipple.  

Once the nipple is exposed, the keratin plug should be easily visible under the dissection 

microscope.  

4.4) Secure the nipple with fine surgical forceps and pull up with light force to remove the 

keratin plug.  

4.5) Stabilize the nipple between the forceps. 

4.6) Gently insert the needle between the forceps, cannulating the duct canal at a 90-

degree angle. Enter the nipple slightly past the bevel of the needle (not more than two 

millimeters) to prevent penetration through the mammary tissue and into the serous 

membranes of the ventral body cavity.  
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4.6.1) Do not insert the needle too deep. To ensure proper depth of injection, gently pull 

the needle up after inserting it into the lumen of the duct, drawing the nipple up along the 

edges of the needle as it is pulled up.  

Visualization of the injection is difficult, therefore practice for this step is recommended 

using trypan blue.  

4.7) When the needle is appropriately placed into the mammary duct, release the 3 µl of 

virus precipitates (2.5 x 107 pfu of adenovirus-cre) by gently plunging the syringe with the 

thumb of the hand holding the syringe. The nipple should slightly inflate as the liquid is 

added. 

 

5.  Recovery of mice 

5.1) Place the mouse back onto the heating pad after the injection, until it begins to 

recover from the anesthesia. 

5.2) Once the mouse is recovered, place it back into a clean cage and monitor for full 

recovery and movement.  

5.3) 24 hours after the intraductal injection, subcutaneously administer meloxicam at 1 

mg/kg.  

 

6.   Monitoring tumor progression 

6.1) Palpate the injected mammary gland at day 30 for enlargement and swelling. 

6.1.1) Monitor tumor progression every 5-7 days once a swollen and enlarged mammary 

gland is observed. 

6.2) Measure tumor volumes every 3-4 days for tumor growth kinetics once palpable 

tumors appear (approximately 50-60 days post adenoviral injection).  

6.3) Euthanize mice when tumor volumes exceed 10% of the body weight of the mice.  
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RESULTS 
	

Successful targeting of the mammary ductal tree can be visualized by preparing 

whole mounts of the mammary gland as previously described (Landua, Visbal, and 

Lewis 2009) after injection of trypan blue (to verify proper injection technique (Figure 

2.1A) or an adenovirus expressing mCherry (to verify proper viral preparation and 

infection of ductal epithelial cells (Figure 2.1B)).  

When tumors are induced in LSL-KrasG12Dp53loxp/loxp transgenic mice, tumors will 

not be apparent until around day 40 when the mammary glands will become enlarged 

and swollen. It is necessary to begin palpations when this is observed, monitoring tumor 

growth every 5-7 days. In my hands, hardening of the mammary gland always precedes 

the onset of tumor development. Tumors will progress slowly for an additional 2 weeks. 

Beginning around day 56, tumors will begin to grow exponentially (Figure 2.2B). At this 

point, it is critical to measure tumor volumes every 3 days if kinetic studies are desired 

because there will be slight mouse to mouse variability in tumor progression, which is 

normal (Figure 2.2A&2.3A). Large abdominal masses will be apparent by day 80 

(Figure 2.2A-B&2.3A), after which mice should be euthanized if tumors exceed more 

than 10% of their body weight. cDNA analysis of three clones from a tumor-bearing 

mouse revealed expression of mesothelin, cytokeratin-8, Her2/neu, and estrogen 

receptor-α (Figure 2.2C).  

Similar to the cellular microenvironment in human breast cancer, I have observed 

infiltration of αβ and γδ T cells as well as myeloid derived suppressor cells and 

macrophages into the tumors (Figure 2.4). Vasculature draining to the axillary lymph 

node will begin to engorge before tumors have grown to encompass the entire mammary 
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tissue where the injection was performed (Figure 2.3A). Lymphovascular invasion and 

metastasis of tumor cells can be tracked by crossing LSL-KrasG12Dp53loxp/loxp mice with 

LSL-EYFP mice. After Cre-mediated excision, tumor cells expressing YFP (both high 

and low) are detected in the tumor and can be traced metastasizing to the draining 

axillary lymph node (Figure 2.3B). Metastasis to the distal axillary lymph node was 

confirmed by successfully culturing a tumor cell line from this site in a tumor-bearing 

LSL-KrasG12Dp53loxp/loxp mouse (data not shown). 

Due to the anatomy of the mouse and technique of intraductal injections, I find 

targeting of mammary glands 9 and 4 (Figure 2.5) yields the most consistent results and 

reliable injections. However, any gland can be targeted depending upon the preference 

of the technician performing the surgery.  

DISCUSSION 
	

The success of this procedure hinges on proper technique during intraductal 

injections, which will be difficult for untrained experimenters. Problems with the injection 

can result in significantly delayed, variable, or absent tumor development. If the needle 

is inserted too deep or at an inappropriate angle, the ductal canal may be missed. It is 

important to enter the nipple slightly past the bevel of the needle (not more than 2 mm), 

to prevent penetration through the mammary tissue and into the serous membranes of 

the ventral body cavity. Also, too shallow placement of the needle or the injection of 

greater than 3 µl of virus precipitates can result in spillage of viral prep outside the 

mammary gland and the induction of unintentional tumors. One way to overcome these 

issues is to insert the needle into the nipple slightly deeper than 3 mm, and slowly draw 

the syringe back up out of the duct until 2 mm from the tip of the bevel. This will ensure 

that mammary tissue is targeted instead of the muscle surrounding the peritoneal cavity 
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of mice. This will also stretch the nipple along the edges of the syringe so that when the 

virus is expelled into the duct, there is no spillage and loss of viral precipitates. 

Visualization of the injection is difficult and practice for this step is recommended. 

I have observed an increase in successful injections following practice, resulting in a 

higher penetrance of tumor development. Because this technique uses non-lactating 

virgin females, it is critical to remove the keratin plug covering the nipple to reveal the 

underlying duct canal. I recommend practicing this step by injecting trypan blue or some 

other sterile traceable dye inside of the duct and preparing whole mammary mounts to 

confirm targeting of the ductal tree. Additionally, other protocols describing intraductal 

injection of reagents have been published (Barham et al. 2012; Murata et al. 2006), 

which may be useful for developing proper technique. Issues with viral preparation or 

infection of the ductal lumen can also be investigated by using a mCherry expressing 

adenovirus. Non-transgenic mice can be used for each of these purposes until the 

injection technique is optimized.  

Although any mammary gland can be used to initiate tumors, I have achieved the 

most consistent growth rates by targeting mammary gland 4 or 9, which I believe is 

because it is easier to perform proper injections on these glands, resulting in more 

efficient targeting of the duct. The proximity of the left 4th or right 9th inguinal mammary 

glands to the draining inguinal lymph node is also useful to examine antitumor immune 

responses during different temporal points of tumor progression. To model and track 

latent metastasis to distal sites, transgenic mice were crossed with LSL-EYFP mice. As 

the tumor progresses, vasculature connecting the tumor to the axillary lymph node will 

become slightly engorged at approximately 5 weeks, before the tumor begins to grow 

exponentially (Figure 2.3A). Eventually, after 7-8 weeks, lymphovascular invasion will 

result in tumor growth within the axillary lymph node (Figure 2.3A-B). Using reporter 
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mice and Cre-LoxP technology, incorporation of YFP creates a platform to track tumor 

cells metastasizing to distal sites throughout tumor progression. This can facilitate 

studies aimed at elucidating the cellular and epigenetic mechanisms that promote latent 

metastasis. In my hands, breast tumor cell lines from LSL-KrasG12Dp53loxp/loxp mice 

expressed cytokeratin-8, mesothelin, estrogen receptor-α, and Her2/neu, confirming 

targeting of the ductal epithelium. However, depending upon the mutations induced and 

due to the difficulty and the variability of injections, I recommend histological 

characterization of tumors once the model is well established in the laboratory.  

Because breast cancer is such a deadly and pervasive disease (Youlden et al. 

2012; R. Siegel, Naishadham, and Jemal 2016), it is important to use animal models that 

accurately recapitulate the complex interplay between tumor and host. Here I describe a 

fully backcrossed C57BL/6 murine model of breast cancer. First, by inducing tumors 

from native cells, I allow the tumor to evolve naturally in a full immune microenvironment. 

The immune microenvironment in the advanced mouse breast tumors recapitulates the 

populations of αβ and γδ T cells, myeloid derived suppressor cells, and macrophages 

commonly observed in human breast cancer (Figure 2.4). Second, endocrine 

independent expression of oncogenes ensures that tumor cells have persistently high 

levels of target gene expression. Third, by taking advantage of latent mutations, I can 

control the timing of tumorigenesis to facilitate precise temporal tracking of tumor 

evolution. Applications of this model include research on tumor cell biology, studies on 

factors in the tumor microenvironment, anti-tumor immune responses, and even efficacy 

evaluation of new therapeutics.  Through the availability of the Cre-loxP system, this 

technique can be used as a platform for investigating a diverse array of additional 

mutations in the initiation and progression of breast tumors, which I hope will facilitate 
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the understanding of breast cancer biology and eventually lead to new therapeutics 

aimed at treating metastatic breast cancer.   
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TABLES  
	

Name Company Catalog 
Number 

Comments 

Trp53tm1Brn Transgenic mice 
K-rastm4Tyj Transgenic mice 

Obtained from NCI 
mouse models of 
human cancer 
consortium  

Mice were backcrossed ten times to a full 
C57BL/6 background 

B6.129X1-
Gt(ROSA)26Sortm1(EYFP)Cos/J 
Transgenic mice 
 

Jackson Labs 006148  

Primers p53loxP/loxP Integrated DNA 
Technologies  

5'-AAGGGGTATGAGGGACAAGG-3' 
5'-GAAGACAGAAAAGGGGAGGG-3' 

Primers LSL-K-rasG12D/+ Integrated DNA 
Technologies  

5'-CGCAGACTGTAGAGCAGCG-3' 
5'-CCATGGCTTGAGTAAGTCTGC-3' 

Primers for LSL-EYFP to detect Rosa 
promoter 

Integrated DNA 
Technologies  

5'-AAGACCGCGAAGAGTTTGTC-3' 
5'-GGAGCGGGAGAAATGGATATG-3' 
5'-AAAGTCGCTCTGAGTTGTTAT-3' 

Primers for detection of Mesothelin 
expression 

Integrated DNA 
Technologies  

5'-TTGGGTGGATACCACGTCTG-3' 
5'-CGGAGTGTAATGTTCTTCTGTC-3' 

Primers for detection of Progesterone 
Receptor expression 

Integrated DNA 
Technologies  

5'-GCAATGGAAGGGCAGCATAA-3' 
5'-TGGCGGGACCAGTTGAATTT-3' 

Primers for detection of Cytokeratin 8 
expression 

Integrated DNA 
Technologies  

5'-ATCAGCTCTTCCAGCTTTTCCC-3' 
5'-GAAGCGCACCTTGTCAATGAAGG-3' 

Primers for detection of Erbb2 
expression 

Integrated DNA 
Technologies  

5'-ACCTGCCCCTACAACTACCT-3' 
5'-AAATGCCAGGCTCCCAAAGA-3' 

Primers for detection of Estrogen 
Receptor A expression 

Integrated DNA 
Technologies  

5'-ATGAAAGGCGGCATACGGAA-3' 
5'-GCGGTTCAGCATCCAACAAG-3' 

Primers for detection of Estrogen 
Receptor B expression 

Integrated DNA 
Technologies  

5'-ACCCAATGTGCTAGTGAGCC-3' 
5'-TGAGGACCTGTCCAGAACGA-3' 

Primers for detection of B-Actin 
expression 

Integrated DNA 
Technologies  

5'-GCCTTCCTTCTTGGGTATGG-3' 
5'-CAGCTCAGTAACAGTCCGCC-3' 

 

Table 2.1. List of materials. 
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Name Company Catalog Number Comments 

Adenovirus-
Cre 

Gene Transfer Vector Core 
from the University of Iowa 

Ad5CMV 
Cre 

Store aliquots of virus (4 x 108 pfu/aliquot) at 
-80 °C to avoid repeated freeze thaw cycles. 

Adenovirus-
mCherry 

Gene Transfer Vector Core 
from the University of Iowa 

Ad5CMV 
mCherry 

Store aliquots of virus (4 x 108 pfu/aliquot) at 
-80 °C to avoid repeated freeze thaw cycles. 

Hamilton 
syringe 

Hamilton company 701RN 10 µl syringe, RN series. 
Autoclave before and after each use. Clean 
with PBS and 75% ethanol. 

Custom 
needle 

Hamilton company 7803-05 33 G 0.5 in long RN needle, with a 12° bevel. 
Autoclave before and after each use. Clean 
with PBS and 75% ethanol. 

Surgical 
forceps 

Dumont 52100-58 Dumostar No. 5 forceps. Clean with 75% 
ethanol after each use, followed by 
autoclaving 

MEM powder Cellgro 50 012 PB Store at 4 °C in powder and reconstituted 
form 

Sodium 
Bicarbonate 

Fisher S233 Add to MEM and filter sterilize 

Calcium 
Chloride 

Sigma C4901 Minimum 96%, anhydrous 

 

Table 2.2. List of materials continued. 
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FIGURES 
	

	

	

	

 

 
Figure 2.1. Intraductal targeting of mammary glands by injection with trypan blue 
or adenovirus-mCherry. (A) A whole mount, as previously reported (Landua, Visbal, 
and Lewis 2009), of the mammary gland after injection of mammary gland #4 with trypan 
blue was prepared 3 hours post injection to visualize/confirm targeting of the entire 
ductal tree. Images are 4X magnification. (B) Infection of the ductal epithelium with 
adenovirus by injecting 2 x 107 pfu of adenovirus expressing mCherry. Mice were 
injected intraductally, and 4 days post-injection, a whole mount of the mammary gland 
was prepared to confirm viral infection of the ductal tree. Image is 4x magnification. MG 
is mammary gland, LD is the lactiferous, or main duct, and TD is the terminal duct.  
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Figure 2.2. Tumor development in LSL-KrasG12Dp53loxp/loxp mice injected 
intraductally with adenovirus-Cre. (A) Two examples of tumors 80 days after injection 
with adenovirus expressing Cre. Mice were given 2.5 x 107 PFU of adenovirus 
expressing Cre and 80 days post tumor-initiation, large palpable masses can be 
visualized protruding from the abdominal side of the animal. (B) Typical tumor kinetics 
and palpation schedule for tumors induced in LSL-KrasG12Dp53loxp/loxp mice. (C) 
Characterization of three tumor cell clones derived from the same homogenized tumor of 
a LSL-KrasG12Dp53loxp/loxp mouse. RNA was extracted and cDNA synthesized for RT-PCR 
analysis using primers specific to β-actin, mesothelin, cytokeratin-8, Her2/neu, 
progesterone receptor, estrogen receptor-α, and estrogen receptor-β. 
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Figure 2.3. Formation of tumors and latent metastasis to the axillary lymph node. 
(A) Example of three advanced breast tumors with different rates of tumor progression. 
A solid mass, indicated by the arrowhead, forms and eventually grows to the size of the 
entire abdominal mammary tissue. The tumor stays confined to the mammary tissue and 
is not observed to invade or attach to the muscle covering the peritoneal cavity. There is 
evident engorgement of the superficial epigastric vein between the inguinal and axillary 
lymph nodes, denoted by white arrowheads. After 7-8 weeks, the axillary lymph node 
begins to become enlarged due to lymphovascular invasion of the tumor cells, indicated 
by arrow. (B) Metastasis of YFP positive tumor cells can be visualized in the axillary 
lymph node by flow cytometry. LSL-KrasG12Dp53loxp/loxpLSL-EYFP mice were used to 
induce tumors and activation of YFP by intraductal delivery of adenovirus-Cre. To verify 
lymphovascular invasion of tumor cells into the axillary lymph node, 80 days post 
adenoviral injection, the indicated lymph nodes and organs were harvested and stained 
for lymphocyte markers and examined for YFP expression. CL represents contralateral 
non-tumor draining lymph node. Results represent gating on CD45 negative tumor cells, 
indicating the tumor cells are invading the distal axillary lymph node.  Numbers represent 
percent YFP positive cells from total population.  
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Figure 2.4. Immune infiltrates in mouse transgenic breast tumors. Mouse breast 
tumors were homogenized and stained for CD45, CD3, γδTCR, CD11b and GR1. 
Numbers represent percent of positive leukocytes in entire tumor (63.5), total CD3+ 
(46.7), total CD3 negative (40.1), total CD3+ γδ+ (γδ T cells, 13), CD3+ γδnegative (24), 
total GR1 high CD11b (MDSC, 28.6) and total CD11b GR1 low (macrophages, 18.5).  



	 42	

 
 
 

 
 
 
 
Figure 2.5. Numbering of mammary ducts. Mammary ducts 4 and 9 are highlighted in 
red on the diagram and indicated with arrows on the mouse. In my hands, we found that 
injections were easiest to perform on these mammary ducts, however all other 
mammary tissues that we targeted developed tumors with similar kinetics.  
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CHAPTER 3 

	

IL-15 AGONISTS OVERCOME THE IMMUNOSUPPRESSIVE EFFECTS OF MEK 

INHIBITORS 
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ABSTRACT 
 

Small molecule inhibitors are being intensely investigated for specifically 

targeting the oncogenic signaling that drives the growth of tumors. However, many of 

these inhibitors target signaling pathways that are also important for the function of anti-

tumor lymphocytes. I show with a panel of 41 inhibitors targeting a variety of signaling 

pathways, that most inhibitors have strong negative effects on T-cell activation at their 

active doses on cancer cells. FDA-approved MAPK (mitogen-activated protein kinase; 

MEK) inhibitors were particularly T cell-suppressive in vitro. However, these effects are 

attenuated by multiple cytokines frequently administered to cancer patients.  Among 

them, clinically available IL-15 agonists, through PI3K activation selectively in T 

lymphocytes, synergize in vivo with MEK inhibitors to elicit potent and durable anti-tumor 

responses that include resistance to tumor re-challenge. My study identifies an 

actionable approach to overcome the T-cell-suppressive effects of clinical MEK inhibitors 

and reconciles discrepancies between the immunological effects of targeted anti-cancer 

small molecule inhibitors in vitro versus in vivo. 
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INTRODUCTION 
 

Small molecule inhibitors targeting oncogenic signaling pathways have emerged 

as a promising new class of drugs in cancer therapy. While these molecules undergo 

rigorous testing to demonstrate their efficacy in tumor models, their effects on the 

interplay between leukocytes and tumors have been largely unstudied due to the use of 

preclinical xenograft models that lack a competent immune system. T cells, crucial for 

controlling the growth of immunogenic tumors (Vesely et al. 2011), rely upon many of the 

same signaling pathways targeted by pharmaceutical inhibitors for activation of 

cytotoxicity against tumor cells. For instance, engagement of the T cell receptor (TCR) 

and co-stimulatory receptors activates the RAS-MAPK and PI3K-AKT signaling 

cascades, which are necessary for proliferation and effector function in T cells (Smith-

Garvin, Koretzky, and Jordan 2009). 

The FDA approved small molecule inhibitor of MEK, trametinib, presents an 

example of seemingly paradoxical interactions with host anti-tumor immunity. Studies 

have shown that proper T-cell activation and proliferation is impaired by pharmacological 

inhibition of MEK signaling with trametinib (Vella et al. 2014; Yamaguchi et al. 2012) and 

other compounds (Boni et al. 2010). These data seem to imply that trametinib would 

impair anti-tumor T-cell function in tumor-bearing hosts. However, it was recently found 

that while trametinib impairs T-cell function in vitro, it does not limit the effectiveness of 

either adoptive cell therapy (Hu-Lieskovan et al. 2015) or checkpoint blockade with 

antibodies against PD-1, PD-L1, and CTLA-4 (L. Liu et al. 2015) in mouse models. A 

potential explanation is that trametinib in these studies was co-administered with high 

doses of IL-2 (Hu-Lieskovan et al. 2015) and checkpoint inhibitors (L. Liu et al. 2015) 

that enhance the activation of T cells, thus allowing them to overcome small molecule 

inhibition of MEK. The possibility that cytokines can rescue some deleterious effects 
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associated with MEK inhibition on T cells has yet to be explored. Additionally, MEK 

inhibition of tumor cells can lead to increased expression of tumor-specific antigens 

(Boni et al., 2010; Kono et al., 2006) and the upregulation of surface antigen 

presentation by preventing internalization of MHC-I (Bradley et al. 2015), which may 

enhance recognition of tumors by CD8+ effector T cells, offering another explanation for 

the synergy with immunotherapies. At the moment, the mechanisms explaining the 

paradoxical effects of MEK inhibitors on T cell-mediated anti-tumor immunity remain 

elusive. 

In a rapidly changing clinical scenario, first-line PD-1 inhibitors, alone or in 

combination with CTLA4 inhibitors, may become a standard of care in the near future 

against tumors such as melanoma (Bowyer and Lorigan 2015). However, the combined 

effects and optimal sequencing of targeted therapies and immunotherapy remains 

unknown. Clarifying the immunosuppressive effects of targeted therapies in vivo is 

crucial for the design of synergistic combinatorial interventions with emerging 

immunotherapies. Trametinib was the first MEK inhibitor to be approved for clinical use 

in 2013, and it improves overall survival in combination with other targeted interventions 

(Long et al. 2015). To elucidate the effects of multiple targeted therapies on the tumor 

immunoenvironment and, subsequently, antitumor immunity, I analyzed a panel of 

molecules for their inhibitory activity on T cells. My results indicate that most small 

molecule inhibitors, and in particular trametinib, exert direct suppressive effects on 

human T cells in vitro and antitumor mouse T cells in vivo. However, the suppressive 

effects of MEK inhibitors can be overcome by various cytokines. I found that clinically 

available IL-15 agonists, through a mechanism dependent on the activation of PI3K, 

were particularly effective at rescuing T-cell function. 
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MATERIALS AND METHODS 
 

Animals, tissues and cell lines  

 WT C57BL/6 and congenic Ly5.1 female 6-8 week old mice were procured from 

the National Cancer Institute or Charles River Laboratory. OT-I C57BL/6-Tg 

(TcraTcrb)1100Mjb/J transgenic mice were obtained from The Jackson Laboratory. 

Transgenic Krastm4Tyj and Trp53tm1Brn mice (Jackson et al. 2001; Jonkers et al. 2001) 

were obtained from NCI Mouse Models of Human Cancers Consortium, brought to a full 

C57BL/6 background (Scarlett et al. 2012; Rutkowski, Stephen, et al. 2014). All animals 

were maintained in specific pathogen free barrier facilities and used in accordance with 

the Institutional Animal Care and Use Committee of the Wistar Institute.  

 The Brpkp110 primary mammary tumor cell line was generated by culturing a 

mechanically dissociated C57BL/6 LSL-KrasG12Dp53loxp/loxpLSL-Myristoylated-

p110α-GFP+ primary breast tumor mass as previously described (Rutkowski, Allegrezza, 

et al. 2014). Tumor cells were passaged a total of 10 times before deriving the Brpkp110 

clonal cell line by limiting dilution. Brpkp110 cells were confirmed to be mycoplasma-

free. Tumors were initiated by injecting 5x105 cells in 200 µl PBS into the axillary flanks. 

Tumor volume was calculated as: 0.5 x (L x W2), where L is the longer of the two 

measurements.  

Peripheral blood lymphocytes were obtained by leukapheresis/elutriation and 

Miltenyi bead–purified. A2780 cells were obtained from AddexBio Technologies. ID8 

cells (Roby et al. 2000) were provided by K. Roby (Department of Anatomy and Cell 

Biology, University of Kansas, Kansas City, KS) and retrovirally transduced to express 

Defb29 and Vegf-a (Conejo-Garcia et al. 2004) or OVA (Cubillos-Ruiz et al. 2009).  

 

T cell stimulation 
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For human T cell proliferation assays, K562 cells expressing human CD32, 

termed K32, were generated as described (Maus et al. 2002), γ-irradiated (100 Gy) and 

loaded with anti-CD3 (500 ng/ml, clone OKT3; eBioscience) plus anti-CD28 (500 ng/ml, 

clone 15E8; EMD Millipore) antibodies at room temperature for 10 min (aAPCs). PBMCs 

were labeled with Cell Trace Violet (Invitrogen) according to the manufacturer’s 

instructions and co-cultured with loaded aAPCs at a 10:1 PBMC:aAPC ratio or activated 

with ConA (2 µg/ml, Sigma). Proliferation of T cells was determined 7 days later by 

FACS and Division Index was calculated using FlowJo software.  

For mouse T-cell proliferation assays, pan-T cells were negatively purified from 

spleens with antibodies to B220 (RA3), Mac-1 (M170.13), and MHC-II (M5/114) using 

magnetic beads. T cells were labeled with Cell Trace Violet (Invitrogen) and stimulated 

with either agonistic CD3/CD28 beads (Dynabeads, Life Technologies) or tumor-pulsed 

bone marrow dendritic cells (BMDCs) and analyzed for proliferation by FACS either 3 

days (CD3/CD28 beads) or 7 days (BMDCs) later. Day 7 BMDCs were generated as 

previously described (Stephen et al. 2014) and cultured overnight with double-irradiated 

(γ-irradiated, 100 Gy; and UV, 30 min) ID8-Defb29/Vegf-a cells. BMDCs were added to 

cultures of T cells at a 10:1 (T cell:BMDC) ratio. For recall ELISpot assays, mouse T 

cells were primed with tumor-pulsed BMDCs plus IL-2 (30 U/ml) and IL-7 (5 ng/ml), and 

restimulated 7 days later with fresh tumor-pulsed BMDCs at a 10:1 ratio in an IFN-γ 

ELISpot (eBioscience). 

 

Compounds and cytokines 

ALT-803 was generously provided by Altor BioScience Corporation and was 

diluted in sterile PBS for in vitro and in vivo studies. Recombinant human IL-15 

(Novoprotein), human IL-2, human IL-21, mouse IL-7 (Peprotech), human IL-27 
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(eBioscience), and Concanavalin A (Type VI, Sigma-Aldrich) were reconstituted in sterile 

PBS and stored at -20ºC. Trametinib (GSK-1120212) was purchased from LC 

Laboratories and suspended in vehicle solution of 10% PEG-300 (Sigma Aldrich) and 

10% Cremophor EL (EMD Millipore) in sterile dH20 for in vivo oral gavage experiments. 

For in vitro assays, all inhibitors were dissolved in sterile DMSO and diluted in the 

assays 1:1000, so that the final concentration of DMSO was 0.1%.  

 

Cell proliferation assays 

Compound screening on A2780 cells was performed by adding compounds the 

morning after plating and measuring proliferation 72 hrs later. Screening on human 

PBMCs was performed by adding compounds simultaneously with ConA stimulation (2 

ug/ml) and measuring proliferation 7 days later. Normalized percent inhibition (NPI) was 

calculated by measuring resazurin fluorescence with respect to values obtained with 

DMSO negative control and doxorubicin (5 µM) positive control as NPI=100% * (DMSO–

compound) / (DMSO–doxorubicin). 

 

Western blotting 

Cells were lysed in RIPA buffer (Thermo Scientific) with Complete Protease 

Inhibitor Cocktail Tablets (Roche) and phosphatase inhibitors (Halt Phosphatase 

Inhibitor, Thermo Scientific, and Na3VO4, 1 mM) and cleared by centrifugation. Proteins 

were quantified by BCA assay (Thermo Scientific), diluted in reducing Lamelli buffer, 

denatured at 95°C, run on mini Protean TGX Ready Gels (Bio-Rad Laboratories), 

transferred to a PVDF membrane, blocked, and incubated with primary antibodies for p-

ERK1/2 (D13.14.4E), p-AKT (D9E) and β-tubulin (9F3), all from Cell Signaling; plus β-

actin (Sigma; AC-15). Immunoreactive bands were developed using horseradish 
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peroxidase–conjugated secondary antibodies (Bio-Rad) and ECL substrate (GE 

Healthcare). 

 

TCR ligation of human CD8 T cells 

CD8+ T cells were sorted from PBMCs and rested overnight in R10. T cells 

(0.5x106 per condition) were stained with OKT3-biotin (BioLegend, 10 µg/ml) for 15 mins 

on ice, and washed in cold PBS. TCR ligation was performed by adding streptavidin 

(Promega, 25 µg/ml) and anti-CD28 antibody (Millipore, clone 15E8, 1 µg/ml) in the 

presence of indicated inhibitors for 10 min at 37°C. 

 

In vivo OT-I proliferation 

Congenic Ly5.1 mice were injected with 1.5x106 ID8-OVA cells i.p. (Huarte et al. 

2008). Mice were oral-gavaged with trametinib or vehicle on days 9-13. On day 10, mice 

were injected i.p. with 1.5x106 Cell-Trace Violet labeled, unstimulated OT-I T cells. Mice 

were administered ALT-803 (0.2 mg/kg on day 10) or IL-2 (50,000 IU/mouse on days 10-

12) i.p. On day 14, peritoneal washes were analyzed for proliferating OT-I T cells.  

 

Statistics 

 Unless indicated otherwise, all data shown represent means with SEM. All 

hypothesis testing was two-sided, and unpaired t-tests were performed unless indicated 

otherwise. A significance threshold of 0.05 for P was used (*P<0.05, **P<0.01, 

***P<0.001). Analyses were carried out using GraphPad Prism software. Experiments 

were repeated at least twice unless otherwise indicated. 
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RESULTS 
 

Multiple targeted small-molecule inhibitors suppress human T-cell activation in 

vitro 

 To determine the sensitivity of human T cells to inhibition of signaling pathways 

commonly targeted by small molecules in cancer therapy (Wargo, Cooper, and Flaherty 

2014), I first designed a high-throughput assay to test a diverse panel of 41 inhibitors 

over a 6 log concentration range on Concanavalin A (ConA)-induced activation and 

expansion of human T cells from peripheral blood mononuclear cells (PBMCs). At doses 

equivalent to or below those required to limit proliferation of A2780 ovarian cancer cells 

– known to be sensitive to PI3K and MEK inhibitors (Gao et al. 2004; Hou et al. 2013) – 

a variety of inhibitor classes prevented ConA-driven T-cell expansion (Figure 3.1A). 

Small molecules targeting PI3K, mTOR, MAPK, and CDK signaling, as well as 

transcriptional regulators (HDACs) and survival molecules (Bcl-2) were deleterious for T-

cell expansion. Among these, trametinib, the MEK1/2 inhibitor approved by the FDA for 

BRAF-mutant melanoma, was particularly potent at inhibiting the in vitro proliferation of 

human T cells. Overall, the observed EC50 of every tested molecule with some activity 

on A2780 cells was lower for human T cells than for A2780 cells (Table 3.1 and Figure 

3.2&3.3), highlighting the immunosuppressive effects of most small-molecule targeted 

therapies.  

I validated my screening approach by focusing on inhibitors of the PI3K and MEK 

signaling pathways. Abrogation of T-cell activation elicited by small molecule inhibitors 

was not restricted to ConA stimulation, because pan-PI3K (BKM120) and MEK 

(GDC0973) inhibitors also restricted the proliferation of human T cells in response to 

artificial antigen presenting cells  (aAPC) coated with agonistic CD3 and CD28 

antibodies (Maus et al. 2002) (Figure 3.1B). Importantly, these effects were consistent 
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among 3 different donors (Figure 3.1C). Comparable results were obtained with the 

MEK inhibitor trametinib (Figure 3.1D). As expected, T cells were more sensitive to 

kinase inhibitors when they were activated in the absence of costimulation (aAPCs 

lacking anti-CD28), as could occur within the immunosuppressive microenvironment of 

tumor-bearing hosts (Figure 3.4A&B). I noticed only minor and non-significant 

differences in the repertoire of memory and effector T-cell subsets when cultures were 

activated without anti-CD28 and with lower amounts of anti-CD3, indicating that 

differences in sensitivity to the kinase inhibitors cannot be attributed to altered T-cell 

differentiation (Figure 3.5A-D).  

In order to determine the effects of MEK and pan-PI3K inhibitors on different T-

cell subsets, I FACS purified human CD8 T cells into naïve, memory, and effector 

populations based upon CD45RA and CD27 expression and activated them with aAPCs. 

I found that trametinib equally inhibited proliferation of naïve (CD45RA+CD27+), memory 

(CD45RA-CD27+), and effector/effector memory (CD45RA-CD27-) cells, although one 

donor showed a trend that memory and effector/effector memory cells were less 

sensitive than naïve cells to trametinib (Figure 3.6A&B). Interestingly, memory and 

effector/effector memory cells were more sensitive to PI3K inhibition with BKM120 than 

naïve cells, a result consistent among 3 donors (Figure 3.6C&D). Differentiated effector 

cells (CD45RA+CD27-) did not proliferate in response to aAPCs, so I could not conclude 

their sensitivity to kinase inhibition from this analysis (Figure 3.7). 

 We also explored the result of MEK and PI3K inhibition on physiologic activation 

of T cells with tumor antigens. MEK and PI3K inhibitors completely abrogated the initial 

priming response of murine T cells activated with tumor lysate-pulsed dendritic cells 

(DCs) (Scarlett et al. 2012; Stephen et al. 2014) (Figure 3.6E&F). More importantly, the 

direct suppressive effects of these inhibitors were not restricted to proliferative 
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responses, because the frequency of tumor-primed T cells secreting IFN-γ in response 

to re-stimulation with fresh tumor lysate-pulsed DCs was also significantly reduced when 

either PI3K or MEK were inhibited (Figure 3.6G&H).   

Overall, these data underscore the T-cell suppressive effects of most small 

molecule targeted therapies clinically approved or in the pipeline of clinical development, 

at a time when combinatorial immunotherapeutic interventions are being tested against 

multiple tumors. 

  

IL-15 rescues the suppressive effects of MEK inhibitors through PI3K activation 

 Despite the strong T cell inhibitory activity of FDA-approved trametinib on both 

initial priming and recall responses, recent reports suggest that trametinib does not limit 

the effectiveness of adoptive cell therapy in preclinical tumor models (Hu-Lieskovan et 

al. 2015). Interestingly, these studies included the administration of high doses of IL-2. I 

reasoned that cytokines signaling on immune cells could rescue the deleterious effects 

of trametinib on T-cell activity. I therefore tested a panel of cytokines known to play a 

role in T-cell survival and proliferation for their ability to recover T-cell expansion from 

MEK inhibition. Supporting my hypothesis, IL-2, IL-7, and IL-15 were able to individually 

rescue the proliferation of human T cells in the presence of trametinib (Figure 3.8A). In 

contrast, IL-21 and IL-27 had no significant rescuing effect (Figure 3.8A). Among all 

cytokines tested, I focused on IL-15 because it provides a strong stimulating signaling to 

both effector and memory CD8+ T cells without inducing the expansion of Tregs, as 

compared to IL-2 (Liao, Lin, and Leonard 2013; Waldmann 2006). Indeed, IL-15 was 

able to dramatically rescue the proliferation of purified CD8 naïve, memory, and 

effector/effector memory T cells (Figure 3.8B). 
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 We found that IL-15 can rescue early (within 10 minutes post-activation) TCR-

induced MAPK signaling from MEK inhibition, as shown by ERK1/2 phosphorylation 

(Figure 3.8C). Mechanistically, this effect depends on activation of PI3K by IL-15 

(Budagian et al. 2006), because IL-15 was not able to rescue the defect in ERK1/2 

phosphorylation in the presence of a pan-PI3K inhibitor (Figure 3.8C). Furthermore, 

activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) 

completely overcomes the suppressive effect of PI3K inhibition on ERK1/2 

phosphorylation without fully restoring PI3K activity as assayed by AKT phosphorylation 

(Figure 3.8C). This is consistent with a mechanism of ERK phosphorylation (Ueda et al. 

1996) mediated by the activation of PKC isoforms upon stimulation of the PI3K pathway, 

which is known to result in the production of phosphatidylinositol (3,4,5)-trisphosphate 

(PIP3) and, subsequently, activation of PDK1 kinase (Cantley 2002). Together, these 

results show that IL-15 can augment early signaling events downstream of TCR 

activation to enhance the amplitude of MAPK signaling to overcome MEK1/2 inhibition 

by trametinib.  

 

The IL-15 superagonist ALT-803 overcomes the suppressive effects of trametinib 

in vivo in tumor-bearing hosts 

 To define whether IL-15 signaling can overcome MEK inhibition-induced 

suppression of T-cell activation in the tumor microenvironment in vivo, I investigated the 

IL-15 agonist ALT-803 for its ability to rescue T cell functions from MEK inhibition. ALT-

803 is a new IL-15 agonist complex with IL-15N72D bound to the IL-15RαSu/Fc (Xu et al. 

2013). This IL-15N72D:IL-15RαSu/Fc has a significantly longer serum half-life and 

increased biological activity compared to native IL-15 and is undergoing extensive 

clinical testing (Table 1.1). In this study, I found that ALT-803 was more effective than 
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IL-7 (Figure 3.8D) and IL-15 (Figure 3.9A&B) in rescuing human T-cell proliferation in 

vitro. Human T-cell proliferation in the presence of ALT-803 remained unaffected by 

trametinib, even at the relatively high concentration of 5 µM (Figure 3.9B).  As was the 

case for IL-15, I found that ALT-803 activity was also dependent on PI3K signaling 

because T-cell expansion could not be fully rescued when pan-PI3K and MEK inhibitors 

were combined (Figure 3.9B). I further determined that the reduction in proliferation 

when pan-PI3K and MEK inhibitors were combined was due to a block in cell division 

rather than an increase in cell death (Figure 3.10A-E).  

ALT-803 was also able to rescue the proliferation of purified human CD8+ naïve, 

memory, and effector/effector memory T cells from trametinib, indicating broad activity 

on a range of T-cell subsets (Figure 3.11). Intriguingly, ALT-803 (and IL-15 for one 

donor) induced the proliferation of purified, differentiated effector (CD45RA+CD27-) CD8+ 

T cells that were otherwise unable to proliferate in response to CD3/CD28 activation 

(Figure 3.7). ALT-803 showed activity on mouse T cells as well, demonstrated by its 

ability to restore proliferation of bead-activated T cells (Figure 3.9C) and IFN-γ recall 

responses of tumor-primed T cells in the presence of trametinib (Figure 3.9D).  

To test the activity of ALT-803 in the tumor microenvironment, I transferred Cell 

Trace Violet-labelled (Ovalbumin (OVA)-specific) OT-I T cells into mice growing OVA-

transduced syngeneic ID8 ovarian tumors, a system that allows the recovery of tumor 

microenvironment lymphocytes through peritoneal wash (Cubillos-Ruiz et al. 2009; 

Conejo-Garcia et al. 2004; Nesbeth et al. 2010). After 4 days, I found that in mice treated 

with trametinib, the OT-I T cells proliferated significantly less than in mice gavaged with 

vehicle (Figure 3.12A&B). Importantly, when a single dose of ALT-803 was co-

administered with OT-I T cells, proliferation was dramatically enhanced and was not 

restricted by trametinib (Figure 3.12A&B). The observation that ALT-803 induces 
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proliferation of some CD44lo cells in addition to CD44hi (antigen-experienced) OT-I T 

cells suggests that ALT-803 may also result in homeostatic proliferation, as has been 

reported previously (Rhode et al. 2015). I also found that treatment of mice with a high-

dose IL-2 regimen was able to rescue OT-I T-cell proliferation (Figure 3.13B&C). These 

results indicate, first, that trametinib impairs antigen-specific T-cell responses in vivo, 

although to a lesser degree than in vitro. And secondly, that therapeutic activation of IL-

15 or IL-2 signaling can completely overcome trametinib-induced CD8+ T-cell 

suppression in the tumor microenvironment.  

 

Combination of ALT-803 and trametinib induces rejection of Kras-mutated tumors 

To investigate the therapeutic potential of combining trametinib and ALT-803 

against established Kras-mutated tumors, I utilized a syngeneic tumor model derived 

from an autochthonous breast cancer initiated in triple transgenic (LSL-

KrasG12Dp53loxp/loxpLSL-Myristoylated-p110α-GFP+) mice with adenovirus-Cre (Jackson et 

al. 2001; Jonkers et al. 2001; Rutkowski, Allegrezza, et al. 2014), as described in the 

protocol from Chapter 2. I chose this cell line, termed Breast-p53-Kras-p110α 

(Brpkp110), to model treatment against tumors that evade single molecule targeting of 

the MAPK pathway through PI3K activation, as has been commonly reported in human 

cancer cells (Wee et al. 2009; Mirzoeva et al. 2009; Turke et al. 2012). Brpkp110 cells 

have detectable signaling through MEK that can be inhibited with trametinib (Figure 

3.14A) and generate aggressive tumors when grown subcutaneously in mice.  

Oral gavage with trametinib significantly reduced the growth of Brpkp110 tumors 

as a single intervention (Figure 3.14B), although all mice eventually progressed to 

terminal disease (Figure 3.14B-D). In contrast, when ALT-803 was combined with 

trametinib treatment, Brpkp110 tumors progressed even slower, with 19% of mice 
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remaining tumor free at 50 days, and 15% exhibiting complete regression (Figure 

3.14D). No mice in either single treatment group remained tumor free after 50 days. 

Most importantly, mice that recovered from tumor challenge with trametinib/ALT-803 

combination treatment developed immunological memory against the tumor because 

these mice were resistant to subsequent re-challenge with Brpkp110 cells in the 

opposite flank over 30 days after initial tumor rejection, whereas all naïve control mice 

developed tumors (Figure 3.14E). These results indicate that a chemo-immunotherapy 

with ALT-803 and trametinib could provide potent anti-tumor activity against some 

established and aggressive tumors and elicit protective immunity for tumor recurrences. 

 

 DISCUSSION 
	

Immunotherapies are revolutionizing cancer treatments (Drake 2015). In addition, 

the effects of existing chemotherapy on immune cells and the tumor microenvironment 

have recently become better appreciated (Zitvogel et al. 2008). Here I show that many 

small molecule inhibitors used as targeted therapies have significant 

immunosuppressive effects in vitro by interfering with signaling pathways that are critical 

for priming the responses of T cells. Nevertheless, MEK inhibitor-induced suppression 

can be rescued by signaling from some common γ-chain family cytokines, of which the 

most effective is the IL-15 agonist, ALT-803.   

The FDA-approved MEK inhibitor trametinib demonstrated significant 

immunosuppressive activity on T cells in vitro. These data are in agreement with 

previous reports (Vella et al. 2014; Yamaguchi et al. 2012); however, recent studies 

indicate that trametinib does not limit the effectiveness of adoptive cell therapy in vivo 

(Hu-Lieskovan et al. 2015) and synergizes with PD-1 inhibitors (L. Liu et al. 2015). My 
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study provides a mechanistic rationale to reconcile this paradox by demonstrating that 

direct T-cell inhibition by trametinib, while still detectable in vivo in tumor-bearing hosts, 

can be effectively overcome by cytokines such as IL-2, IL-7 and IL-15. Therefore, a 

combination of these cytokines endogenously in tumor-bearing hosts may explain why I 

observed lower suppressive effects of trametinib in vivo as compared to in vitro. 

Additionally, the study showing that trametinib synergized with an adoptive transfer 

immunotherapy (ACT) in a mouse BRAF-driven tumor model included high-dose IL-2 

treatment (Hu-Lieskovan et al. 2015), a regimen that was capable of rescuing T cell 

proliferation from trametinib in my in vivo experiments. My results suggest that potential 

trametinib-driven T-cell inhibition in ACT models may be offset by IL-2 administration. 

Nevertheless, as MEK inhibitors are being clinically tested against multiple Kras-driven 

malignancies (Infante et al. 2013; Bedard et al. 2015; Blumenschein et al. 2015), my 

data provide an actionable approach to effectively overcome any direct T cell-inhibitory 

effects in future combinations of trametinib and emerging immune therapies, through the 

use of T cell-rescuing agonists.  

Our study indicates that ALT-803, an IL-15 agonist complex (Xu et al. 2013), 

could be the agent of choice for such a combination therapy. ALT-803 induces memory 

CD8+ T cells to proliferate, upregulate receptors for innate immunity, secrete IFN-γ and 

acquire the ability to kill tumor cells (Xu et al. 2013; Mathios et al. 2015; H. C. Wong, 

Jeng, and Rhode 2013).  Stimulation of NK cells by ALT-803 can also contribute to 

enhanced antitumor immunity, thus it will be important for future work to analyze the 

contribution of NK cells to efficacy in the Brpkp110 model. ALT-803 exhibits more potent 

anti-tumor activities against tumors than recombinant IL-15 in various animal models (Xu 

et al. 2013), likely due to its much stronger binding capability to IL2Rβγ displayed on T 

and NK cells, longer serum half-life, and better biological distribution to and detainment 
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in lymphoid tissues. Currently, ALT-803 is in multiple clinical trials against solid and 

hematological tumors either as a single agent or in combination with other FDA-

approved immuno-stimulators or therapeutic antibodies (Table 1.1).      

As most tumor-reactive T cells in cancer patients are unlikely to be naïve T cells, 

it is important to understand the outcome of kinase inhibition on memory and effector T 

cells. Sensitivity to MEK inhibition has been reported to correlate negatively with T-cell 

differentiation, suggesting that naïve T cells require more MEK signaling than memory 

and effector cells (Shindo et al. 2013). I observed this trend in one of three healthy 

donors, while two others showed similar sensitivities between memory, effector memory, 

and naïve cells. IL-15 agonists were remarkably successful at reversing the block in 

proliferation by trametinib on naïve, memory, and effector memory T cells. Additionally, 

murine tumor-reactive effector T cells were inhibited by trametinib, but ALT-803 was also 

able to rescue this activity.   

 Importantly, I found that IL-15 signaling rescues MEK inhibition-induced T-cell 

suppression through the activation of the PI3K pathway. The synergy between PI3K and 

MEK inhibitors on tumor cells (Engelman et al. 2008) therefore also exists for human T 

cells. These data suggest that combinatorial therapies in patients may compromise anti-

tumor immunity, especially considering that combination treatment prevents the rescue 

by IL-15 agonists in vitro. Because treatments combining PI3K and MEK inhibitors are 

being investigated clinically (Bedard et al. 2015), it is important that future studies 

determine whether this combination negatively impacts the antitumor activity of T cells in 

tumor bearing hosts and thus represents a poor option for combination 

targeted/immunotherapies.  

Overall, my finding in this study further illustrates that a greater understanding of 

targeted small molecules on the host’s immune system and tumor microenvironment 
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could lead to more effective combination therapies against cancer, and provides a novel 

intervention that should pave the way for combining small molecule inhibitors with 

immunotherapies.      
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TABLES 

 

	

 
Table 3.1. List of EC50 values of compounds analyzed. The names, targets, and 
EC50 values on T cell expansion from PBMCs and A2780 proliferation for each 
compound tested is listed. EC50 values were calculated from normalized percent 
inhibition data using non-linear curve fitting in PRISM software. N/A indicates failure to fit 
curve and >25 indicates EC50 values greater than the highest concentration tested (25 
µM).  
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FIGURES 
 

 

 

Figure 3.1. Multiple targeted small molecule inhibitors suppress T-cell responses 
in vitro. (A) A2780 cells were cultured for 3 days and human PBMCs were activated 
with Concanavalin A (ConA) for 7 days in the indicated compounds. Plots show the 
normalized percent inhibition (NPI) over a range of concentrations. (B) Human PBMCs 
were stained with Cell Trace and activated with either aAPCs or ConA in the presence of 
inhibitors. Proliferation of live CD8 cells after 7 days is shown. (C) Means of the division 
index normalized to vehicle for CD4 and CD8 cells activated with ConA or aAPCs as in 
(B) from 3 different donors. All groups are significantly less than 100% (P <0.05, one 
sample t-test) except ConA-CD8: BKM 0.25 µM and aAPC-CD4: BKM 0.25 µM and 0.80 
µM. (D) Human PBMCs were stained and activated with aAPCs as in (B) in the presence 
of trametinib. Shown are live CD8 cells.  
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Figure 3.2. Multiple targeted small molecule inhibitors suppress T-cell 
proliferation. A2780 cells (solid line) were cultured for 3 days and human PBMCs 
(dotted line) were activated with Concanavalin A for 7 days in the indicated compounds. 
Plots show the normalized percent inhibition (NPI) over a range of concentrations.  
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Figure 3.3. Multiple targeted small molecule inhibitors suppress T-cell 
proliferation continued. A2780 cells (solid line) were cultured for 3 days and human 
PBMCs (dotted line) were activated with Concanavalin A for 7 days in the indicated 
compounds. Plots show the normalized percent inhibition (NPI) over a range of 
concentrations.  
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Figure 3.4. Stimulation strength affects T-cell sensitivity to PI3K and MEK 
inhibitors. (A) and (B) Human PBMCs were stained with Cell Trace and activated with 
either aAPCs loaded with anti-CD3 and anti-CD28 or anti-CD3 alone at various 
concentrations in the presence of inhibitors. Proliferation of live CD8 and CD4 cells after 
7 days is shown for one representative donor of two (A) or three (B).   
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Figure 3.5. Human T-cell differentiation is not affected by lower activation strength 
with aAPCs. Human PBMCs were stained with Cell Trace and activated with either 
aAPCs loaded with anti-CD3 and anti-CD28 (500 ng/ml) or anti-CD3 alone at various 
concentrations (500 or 100 ng/ml) in the presence of inhibitors. After 7 days, cells were 
stained with ZombieYellow live/dead, CD4, CD8, CD27, and CD45RA. Plots of live CD4 
(A) and CD8 (B) cells for CD27 and CD45RA expression are shown for one 
representative donor of three. Means of percentages from three donors are shown for 
the indicated CD4 (C) and CD8 (D) cell subsets. 
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Figure 3.6. Small-molecule PI3K and MEK inhibitors suppress naïve, memory, and 
effector T-cell responses. Human CD8 T cells were sorted from PBMCs into 
CD45RA+CD27+ (N), CD45RA-CD27+ (CM), CD45RA-CD27- (EM) populations, stained 
with Cell Trace, and activated using aAPCs with or without trametinib (A) and (B) or 
BKM120 (C) and (D). Proliferation was measured 7 days later and quantified from the 
Division Index. Shown are plots from one representative donor (A) and (C) and 
quantifications from all three donors (B) and (D). (E) and (F) Mouse splenic T cells were 
primed with tumor antigen pulsed DCs in the presence of the inhibitors. Proliferation of 
CD8 cells after 7 days is shown. (G) and (H) Mouse splenic T cells were primed with 
tumor antigen-pulsed DCs for 7 days under normal conditions. T cells were then recalled 
with fresh tumor antigen-pulsed DCs in the presence of inhibitors. The frequency of 
IFNγ-secreting cells measured by ELISpot is shown.  
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Figure 3.7. Cytokines enhance human effector T-cell proliferation. Human CD8

 

effector cells (CD45RA+CD27-) were FACS sorted from PBMCs from three healthy 
donors, stained with Cell Trace, and activated with aAPCs in the presence of trametinib 
and indicated cytokines. Proliferation of live cells after 7 days is shown. IL-15 was not 
tested for donors 1 and 3 due to insufficient cell numbers.  
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Figure 3.8. Cytokines can rescue T-cell functions from MEK inhibitors. Human 
PBMCs were stained with Cell Trace and activated with aAPCs with or without indicated 
cytokines in the presence of vehicle or 200 nM trametinib for 7 days. (A) Means of the 
division index (FlowJo) as a percent of vehicle without cytokines are shown for live CD8 
cells from 3 donors. * P <0.05 vs control, unpaired t-test. Combined data from two 
experiments with similar results. (B) Human CD8 T cells were sorted from PBMCs into 
CD45RA+CD27+ (N), CD45RA-CD27+ (CM), CD45RA-CD27- (EM) populations, stained 
with Cell Trace, and activated using aAPCs with or without trametinib and IL-15. Shown 
are proliferation plots acquired 7 days later for one representative donor of three (N, CM) 
or two (EM). (C) Human CD8 T cells were stimulated by staining with biotinylated anti-
CD3 followed by crosslinking with streptavidin and soluble anti-CD28 in the presence of 
the indicated compounds. After 10 min at 37°C, cells were harvested for Western-
blotting against the indicated proteins. Representative of 2 independent experiments. 
(Trametinib=8 nM, BKM120=2 µM, PMA=50 ng/ml). Solid gray indicates oversaturated 
bands. (D) Human PBMCs were activated as in (A) together with indicated cytokines. 
Proliferation of live CD8 cells from one representative donor of three is shown. (IL-2=20 
U/ml, IL-7=2 ng/ml, IL-15=10 ng/ml, IL-21=100 ng/ml, IL-27=50 ng/ml, ALT-803=35.7 
ng/ml) 
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Figure 3.9. IL-15 agonist ALT-803 rescues anti-tumor T-cell activity from MEK 
inhibition in vitro. (A) Human PBMCs were stained with Cell Trace and activated with 
aAPCs with or without IL-15 (10 ng/ml) or equimolar ALT-803 (35.7 ng/ml) in the 
presence of 200 nM trametinib for 7 days. Histograms of Cell Trace dilution of live CD8 
cells are shown for one representative donor of three. (B) Human PBMCs were activated 
as in (A), except with the addition of BKM120 (2 µM) to indicated samples. Division index 
of live CD8 T cells as percent of vehicle alone is shown as means from three different 
donors. Representative of two independent experiments. *P <0.05 compared to 
trametinib 5000 nM, #P <0.05 compared to trametinib 5000 nM+IL-15, Mann-Whitney 
test. (C) Mouse T cells isolated from spleens and Cell Trace labeled were activated with 
aCD3/aCD28 beads and IL-15 (10 ng/ml) or ALT-803 (35.7 ng/ml) for 3 days with 
trametinib. Proliferation of live CD8 cells is shown. (D) Mouse splenic T cells were 
primed with tumor antigen-pulsed DCs for 7 days. T cells were then recalled with fresh 
tumor antigen-pulsed DCs in the presence of trametinib with or without ALT-803 (35.7 
ng/ml) in an ELISpot assay. The frequency of IFN-γ secreting cells is shown from one 
representative experiment of two. *P<0.05, unpaired t-test.  
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Figure 3.10. MEK and PI3K inhibitors mainly prevent cell division instead of 
inducing cell death. PBMCs from healthy human donors were stained with Cell Trace 
and activated with aAPCs in the presence of the indicated inhibitors. On day 4 and day 
7, cells were stained for CD4, CD8, and Zombie Yellow (dead cell marker). (A) 
Representative plots of CD8 cells on day 7 showing gating strategy. (B-E) Percentages 
of indicated populations were pooled from 3 donors at day 4 (B, D) and day 7 (C, E) for 
CD8 (B, C) and CD4 (D, E) cells. V = Vehicle, T = Trametinib (8, 200, and 5000 nM), 
BKM = BKM120 (2 µM)  
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Figure 3.11. ALT-803 can rescue human T-cell proliferation from MEK inhibition. 
Human CD8 T cells were sorted from PBMCs into CD45RA+CD27+, CD45RA-CD27+, 
CD45RA-CD27- populations, stained with Cell Trace, and activated using aAPCs with or 
without trametinib and ALT-803 (35.7 ng/ml). Shown are proliferation plots acquired 7 
days later for one representative donor of three.  
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Figure 3.12. IL-15 agonist ALT-803 rescues anti-tumor T-cell activity from MEK 
inhibition in vivo. (A) Ly5.1 (CD45.1+) mice were injected with ID8-OVA cells and 
gavaged once daily with trametinib (1.0 mg/kg) from day 9-13. On day 10, Cell Trace 
labelled OT-I T cells (CD45.2+) were injected i.p. and mice were treated i.p. with ALT-
803 (0.2 mg/kg) or PBS. On day 14 cells were harvested by peritoneal wash. Plots of 
live CD45.2+CD8b+ OT-I T cells recovered (A) and quantification of the percent of OT-I T 
cells that divided (B) are shown for one representative experiment of two. Each data 
point indicates individual mice. *P <0.05, unpaired t-test. 
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Figure 3.13. IL-2 rescues T-cell proliferation from MEK inhibition in vivo. (A) Ly5.1 
(CD45.1+) mice were injected with ID8-OVA cells and gavaged once daily with 
trametinib (1.0 mg/kg) from day 9-13. On day 10, Cell Trace labelled OT-I T cells 
(CD45.2+) were injected i.p. Mice were treated with IL-2 (50,000 IU/mouse) or PBS i.p 
on days 10, 11, and 12. On day 14 cells were harvested by peritoneal wash. Plots of live 
CD45.2+CD8b+ OT-I T cells recovered (A) and quantification of the percent of OT-I T 
cells that divided (B) are shown for one representative experiment of two. Each data 
point indicates individual mice. *, **, *** P <0.05, 0.01, 0.001, respectively, unpaired t-
test.  
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Figure 3.14. Combination therapy with trametinib and ALT-803 can drive rejection 
of Kras-mutated breast tumors. (A) Brpkp110 cells were treated in vitro with vehicle, 8 
nM, or 200 nM trametinib for 18 hr and analyzed by Western blot. (B) Mice were injected 
with Brpkp110 cells subcutaneously (day 0) and gavaged once daily with trametinib (1.0 
mg/kg) on days 3-13. ALT-803 (0.2 mg/kg) was administered i.p. on days 3, 8, and 13. 
Tumor growth data from one of three experiments is shown, n=4 for Vehicle and 
Vehicle+ALT-803 groups; n=12 for Trametinib and Trametinib+ALT-803 groups. *P 
<0.05, Mann-Whitney test. (C) Plots showing growth of individual tumors from all mice in 
three experiments from (B). n=12 for Vehicle and Vehicle +ALT-803 groups; n = 27 for 
Trametinib and Trametinib+ALT-803 groups. (D) Percentage of mice with tumors <100 
mm3 from (C) is plotted. *Trametinib+ALT-803 is significant from all other curves and 
Trametinib is significant from Vehicle, P <0.05, log-rank test. (E) Mice that rejected 
tumors from (C) were rechallenged >30 days later with Brpkp110 cells contralaterally 
and tumor growth was compared to cells injected into naive mice (n=4).	
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CHAPTER 4 
	

TRAMETINIB DRIVES T CELL-DEPENDENT CONTROL OF KRAS-MUTATED 

TUMORS BY INHIBITING PATHOLOGICAL MYELOPOIESIS 
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ABSTRACT 
	

Because small molecule inhibitors can also act on immune cells, their efficacy in 

vivo may involve the modulation of antitumor immunity, effects which are poorly 

understood for many small molecules, including the MEK inhibitor trametinib. Here I 

show that trametinib abrogates cytokine-driven expansion of monocytic myeloid-derived 

suppressor cells (MDSCs) from human and mouse myeloid progenitors. Furthermore, 

MEK inhibition reduces the production of MDSC-chemotactic osteopontin by tumor cells. 

Combined, these effects reduce MDSC accumulation in tumor-bearing hosts, resulting in 

impaired growth of Kras-driven breast tumors even though trametinib largely fails to 

directly inhibit tumor cell proliferation. Accordingly, trametinib impedes tumor progression 

through a mechanism that, paradoxically, requires CD8+ T cells, despite its reported 

inhibition of effector lymphocytes. My results demonstrate that the combined anti-

inflammatory activity of trametinib on different cell types in vivo is at least partially 

responsible for its effectiveness, irrespective of its activity on tumor cell division. This 

study unveils elusive mechanistic clues to understand the effect of MEK inhibitors in vivo 

and identifies trametinib as an effective inhibitor of monocytic MDSC expansion.  
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INTRODUCTION 
	

The main purpose of targeted kinase inhibitor development for cancer therapy 

has been to precisely block oncogenic signaling in tumor cells. However, many other 

cells in the tumor microenvironment, including immune cells, rely upon the same 

signaling pathways for normal activity. The attractiveness of targeting these pathways in 

tumor cells has led to concerns that an on-target side effect would disrupt beneficial anti-

tumor immunity (Vella et al. 2014; Yamaguchi et al. 2012). 

For instance, T cells require the Ras-MAPK signaling cascade following antigen 

activation for proliferation and effector function (Smith-Garvin, Koretzky, and Jordan 

2009). Indeed, proper T-cell activation and proliferation is impaired by pharmacological 

inhibition of MEK signaling by the FDA-approved drug trametinib (Vella et al. 2014; 

Yamaguchi et al. 2012). However, while trametinib impairs T-cell function in vitro, it does 

not prevent the effectiveness of adoptive cell therapy (Hu-Lieskovan et al. 2015) or 

checkpoint blockade (L. Liu et al. 2015) in mouse models and can actually synergize 

with these immunotherapies. While signaling from common γ-chain cytokines reduces 

sensitivity of T cells to trametinib in vivo (Allegrezza et al. 2016), another potential 

explanation is that trametinib acts on tumor and stromal cells in the tumor 

microenvironment that, overall, ameliorate its immune-modulatory effects.  

 The occurrence of neoplasia results in a chronic inflammatory response that 

promotes the pathologic expansion and recruitment of myeloid-derived suppressor cells 

(MDSCs) (Dmitry I Gabrilovich, Ostrand-Rosenberg, and Bronte 2012; Rutkowski et al. 

2015; Scarlett et al. 2012; Tesone et al. 2016). Immune suppression by MDSCs is a 

critical factor in the ability of tumor cells to avoid adaptive immune responses (Dmitry I 

Gabrilovich, Ostrand-Rosenberg, and Bronte 2012; Rutkowski, Stephen, et al. 2014; 
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Kumar et al. 2016; Munn and Bronte 2016; Hossain et al. 2015). Although the impact of 

trametinib on MDSC mobilization has not been studied, MEK signaling is known to 

promote the lineage commitment of myeloid cells from hematopoietic stem cells and 

multipotent-progenitor cells (Hsu, Kikuchi, and Kondo 2007). Similar findings have also 

implicated MEK’s target proteins, ERK1/2, in the development of myeloid cells (Staser et 

al. 2013). However, the requirement for MEK-ERK signaling in tumor-driven MDSC 

expansion and the susceptibility of this pathological axis to small-molecule MEK 

inhibition have yet to be studied.  

A possible outcome of therapeutic MEK-signaling inhibition is alterations in the 

secretion of inflammatory cytokines by Kras-mutated tumor cells. Among these, 

osteopontin has been implicated in the recruitment of macrophages into tumors 

(Giachelli et al. 1998) and its expression is positively correlated with CD204+ M2-like 

macrophages (Lin et al. 2015). Osteopontin secreted by tumor cells also drives the 

expansion of MDSCs in the spleens of tumor-bearing mice through activation of the 

MAPK pathway in myeloid progenitors (E.-K. Kim et al. 2014).  

To examine the effects of trametinib on the tumor immunoenvironment, I 

dissected the role of trametinib in restricting the growth of a Kras-driven breast tumor cell 

line in immune-competent mice. I find that treatment of tumor-bearing mice with 

trametinib results in a reduction in monocytic MDSCs (M-MDSCs) that allows CD8+ T 

cells to control tumor growth. The impairment of MDSC mobilization is attributable to a 

direct blockade of MDSC expansion from bone marrow precursors and a reduced 

secretion of chemotactic molecules by tumor cells. This study enhances understanding 

of trametinib’s antitumor efficacy by demonstrating a mechanism of enhanced immunity 

through a reduction in pathological MDSC mobilization. 
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MATERIALS AND METHODS 
	

Mice 

 WT C57BL/6 female 6-8 week old mice were procured from the National Cancer 

Institute or Charles River Laboratory. OT1 C57BL/6-Tg (TcraTcrb)1100Mjb/J transgenic 

mice were obtained from Jackson Labs. All mice were randomized into treatment 

groups. 

   

Cell lines and media 

The Brpkp110 primary mammary tumor cell line was generated by culturing a 

mechanically dissociated C57BL/6 LSL-KrasG12Dp53loxp/loxpLSL-Myristoylated-

p110α-GFP+ primary breast tumor mass (Rutkowski, Allegrezza, et al. 2014). Tumor 

cells were passaged a total of 10 times before deriving the Brpkp110 clonal cell line by 

limiting dilution. Brpkp110 cells were confirmed to be mycoplasma-free. Cell lines and 

lymphocytes were cultured in R10 (RPMI-1640 (CellGro, with L-glutamine), 10% FBS, 

penicillin (100 I.U./ml), streptomycin (100 µg/ml), L-glutamine (2 mM), sodium pyruvate 

(0.5 mM), b-mercaptoethanol (50 µM)). 

 

Cell proliferation assays 

Cells were plated in 96-well plates and the next morning, trametinib (dissolved in 

DMSO) was diluted into the wells 1:1000, so that the final concentration of DMSO was 

0.1%. Cell proliferation was measured 48 hrs later with the CellTiter 96 MTS assay 

(Promega) according to the manufacturer’s instructions. 

 

Tumor inoculation and treatments 
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Brpkp110 tumors were initiated by injecting 5x105 cells in 200 µl PBS into the 

subcutaneous axillary region. Mice were treated by oral gavage once daily with a dose of 

1.0 mg/kg trametinib (GSK-1120212, LC laboratories) suspended in a vehicle solution of 

10% PEG-300 (Sigma Aldrich) and 10% Cremophor EL (EMD Millipore) in sterile dH2O. 

For CD8 depletion, mice were injected with anti-CD8α (BioXcell, clone YTS 169.4) on 

day 3 (500 µg/mouse) and day 10 (250 µg/mouse) post tumor inoculation. All antibodies, 

including isotype control (BioXcell, clone LTF-2), were injected i.p. in sterile PBS. Tumor 

volume was calculated as: 0.5 x (L x W2), where L is the larger dimension.  

 

Tumor dissociation 

For flow cytometry analysis, tumors were dissected and mechanically dissociated 

through a 70 µm nylon cell strainer. For cell sorting, tumors were dissected, minced with 

a scalpel, digested in RPMI-1640 containing 1 mg/ml collagenase (Type V, Sigma-

Aldrich) for 1 hr at 37° C. Cells were dissociated through a 70 µm nylon cell strainer 

followed by passage through a 23G needle. 

 

In vitro MDSC differentiation, suppression, and chemotaxis 

Bone marrow from naïve mice was cultured for 4 days with IL-6 (40 ng/ml, 

Peprotech) and GM-CSF (40 ng/ml Peprotech) or media containing 50% tumor-

conditioned media, prepared by filtering supernatant from a confluent flask of tumor cells 

through a 0.45 µm membrane. For suppression assays, MDSCs were either added to 2 

x 105 CellTrace-labelled, WT splenocytes simultaneously activated with anti-CD3 (500 

ng/ml, clone 2C11, Tonbo) and anti-CD28 (1 µg/ml, clone 37.51, Tonbo) or 2 x 105 

CellTrace-labelled, OT-I splenocytes simultaneously activated with OVA257-264 peptide (1 

µM, GenScript) in 96-well plates. Proliferation of T cells was measured 3 days later. For 
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chemotaxis assays, MDSCs were separated into Ly6G+ and Ly6G- fractions with anti-

Ly6G MicroBeads (Miltenyi) according to the manufacturer’s protocol. Chemotaxis was 

measured toward recombinant carrier-free osteopontin (R&D Systems) after 1 hr on 3 

µm filter plates (Ly6G+ cells) or 4 hrs on 5 µm filter plates (Ly6G- cells) (NeuroProbe). 

 

Human bone marrow 

All patients with Stage I-II lung cancer, who were scheduled for surgical 

resection, were consented for tissue collection of a portion of their tumor and/or blood for 

research purposes at the Hospital of the University of Pennsylvania and The 

Philadelphia Veterans Affairs Medical Center after obtaining consents that had been 

approved by their respective Institutional Review Boards. All patients selected for entry 

into the study met the following criteria: (i) histologically confirmed pulmonary squamous 

cell carcinoma (SCC) or adenocarcinoma (AC), (ii) no prior chemotherapy or radiation 

therapy within two years, and (iii) no other active malignancy. Bone marrow cell 

suspension was obtained from the rib fragments that were removed from patients as part 

of their lung cancer surgery. The single cell suspension was obtained by vigorous 

pipetting of cells flushed from bone marrow and passing the disaggregated cells through 

a 70 µm nylon cell strainer. Total bone marrow cells were cultured in 6 well plates (2 x 

106 leukocytes/well) in 3 ml of complete-IMDM (IMDM (CellGro, with l-glutamine and 25 

mM HEPES), 15% FBS, penicillin (100 I.U./ml), streptomycin (100 µg/ml), l-glutamine (2 

mM), β-mercaptoethanol (50 µM)) supplemented with 40 ng/ml human IL-6 (Peprotech) 

and 40 ng/ml human GM-CSF (Peprotech) for 4 days. Cells were stained for surface 

marker expression, fixed in 1% para-formaldehyde, and analyzed by flow cytometry. 

 

Quantitative PCR 
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 RNA from FACS-purified cell populations was isolated using Trizol (Invitrogen) 

according to the manufacturer’s instructions. cDNA was synthesized using the High-

Capacity cDNA RT Kit (Applied Biosystems) and analyzed by qPCR with SYBR Green 

(Applied Biosystems) on a 7500 Fast machine (Applied Biosystems). Primers used were: 

Arg1-fwd, 5’-GGAATCTGCATGGGCAACCTGTGT-3’; Arg1-rev, 5’-

AGGGTCTACGTCTCGCAAGCCA-3’; Nos2-fwd, 5’- 

GTTCTCAGCCCAACAATACAAGA-3’; Nos2-rev, 5’- GTGGACGGGTCGATGTCAC-3’; 

TBP-fwd, 5’-CACCCCCTTGTACCCTTCAC-3’; TBP-rev, 5’-

CAGTTGTCCGTGGCTCTCTT-3’. 

 

Western blotting 

Cells were lysed in RIPA buffer (Thermo Scientific) with protease inhibitors 

(Complete Protease Inhibitor Cocktail Tablets, Roche) and phosphatase inhibitors (Halt 

Phosphatase Inhibitor, Thermo Scientific, and Na3VO4, 1 mM) and cleared by 

centrifugation. Proteins were quantified by BCA assay (Thermo Scientific), diluted in 

reducing Laemmli buffer, denatured by incubation at 95° C, run on mini Protean TGX 

Ready Gels (Bio-Rad Laboratories), transferred to a PVDF membrane, blocked, and 

incubated with primary antibodies for p-ERK1/2 (Cell Signaling, clone D13.14.4E) and β-

actin (Sigma, clone AC-15). Immunoreactive bands were developed using horseradish 

peroxidase–conjugated secondary antibodies (Bio-Rad Laboratories) and ECL substrate 

(GE Healthcare). 

 

Immunohistochemistry 

 Tissues were embedded in Tissue-Tek OCT and frozen. Endogenous peroxidases 

were quenched from acetone-fixed sections (8 µm) by incubating in 0.3% H2O2 for 10 
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minutes at room temperature. Following quenching, sections were blocked using 3% 

goat serum followed by staining with antibodies against Ki-67 (clone D3B5, Cell 

Signaling Technology).  Immunohistochemistry using the ABC Kit (Vector labs) was 

performed according to the manufacturer’s instructions, and sections were counter 

stained with hematoxylin. Slides were then imaged at 10X objective magnifications on a 

Nikon E600 Upright microscope with a Nikon DS-Ri1 Digital camera. Nikon NIS-

Elements software was used for image acquisition and image stitching of the entire 

tumor. Image Pro Plus 7 analysis software was used to measure the percentage of Ki67 

stained nuclei within each sample. Percentage of stained nuclei was calculated as total 

area of brown stained nuclei divided by total area of sample.  

 

LC-MS/MS 

 Brpkp110 cells were cultured in serum-free RPMI with DMSO or trametinib for 

40hrs. Supernatants were collected, centrifuged, passed through a 0.22 µm filter, and 

concentrated by centrifugation in Amicon 3000 MWCO tubes (EMD Millipore). 

Concentrated supernatants were run 0.5 cm on a NuPage 12% Gel with MES buffer, 

extracted, digested with trypsin, and subjected to LC-MS/MS analysis by the Wistar 

Proteomics Facility. 

 

Flow cytometry 

Zombie Yellow (BioLegend) was used for all live/dead staining. For mouse 

experiments, antibodies from the following companies were used: Tonbo Biosciences: 

CD45.2-PerCP/Cy5.5 (104), CD11b-APC (M1/70), F480-PerCP/Cy5.5 (BM8.1), CD45-

PE/Cy7 (30-F11) CD3-FITC (145-2C11); BioLegend: F480-PE/Cy7 (BM8), Ly6G-FITC 

(1A8), Ly6C-APC/Cy7 (HK1.4), I-A/I-E-PacBlue (M5/114.15.2), CD4-APC (RM4-5), 
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CD25-APC/Cy7 (PC61), Foxp3-PacBlue (MF-14), CD8b-PerCP/Cy5.5 (YTS156.7.7), H-

2Kb-PE (AF6-88.5). For human experiments, antibodies from the following companies 

were used: Tonbo Biosciences: CD45-PE/Cy7 (HI30); BioLegend: CD14-APC (HCD14), 

CD15-FITC (HI98), HLA-DR-APC/Cy7 (L243), CD33-PerCP/Cy5.5 (WM53), CD11b-

PacBlue (ICRF44). Samples were run on a BD LSRII cytometer and analyzed by 

FlowJo. 

 

ELISA 

 Osteopontin concentrations were measured using ELISA kits (RayBiotech) 

according to the manufacturer’s instructions. Plasma was isolated from peripheral blood 

of mice by centrifugation in lithium heparin tubes (Becton Dickinson) and stored at -80° 

C. Intratumoral fluid was isolated from advanced Brpkp110 tumors after careful excision 

and blotting on gauze tissue (to remove excess fluid) by squeezing the tumor through a 

10 ml syringe (BD, Luer-LokTM Tip) into a microcentrifuge tube followed by two 

centrifugation steps to obtain debris-free liquid, which was stored at -80° C.  

 

Statistics 

 Unless indicated otherwise, all data shown represent means with SEM. All 

hypothesis testing was two-sided, and unpaired t-tests were performed unless indicated 

otherwise. A significance threshold of 0.05 for P was used (*P<0.05, **P<0.01, 

***P<0.001). Analyses were carried out using GraphPad Prism software. Experiments 

were repeated at least twice unless otherwise indicated. 

 

Study Approval 
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 All animals were maintained in specific pathogen free barrier facilities and used 

in accordance with the Institutional Animal Care and Use Committee of the Wistar 

Institute.  

 

RESULTS 
	

Trametinib reduces M-MDSC accumulation in tumor bearing mice. 

I previously demonstrated that MEK inhibitors, including trametinib, inhibit T-cell 

responses in vitro and in vivo, which can be rescued with some common γ-chain 

cytokines (Allegrezza et al. 2016). To dissect the effects of trametinib treatment on other 

compartments of the immune-environment of solid tumors, I analyzed the effect of 

trametinib against the progression of transplantable Brpkp110 breast tumors, derived 

from a syngeneic autochthonous LSL-KrasG12Dp53loxp/loxpLSL-Myristoylated-p110α-GFP+ 

primary breast tumor (Allegrezza et al. 2016; Rutkowski, Allegrezza, et al. 2014). 

Trametinib alone dramatically delayed breast cancer growth in multiple independent 

experiments (Figure 4.1A). This was slightly unexpected because, in addition to the 

direct T cell-suppressive effects of trametinib, Brpkp110 cells were only weakly sensitive 

to trametinib (70% growth compared to vehicle) in vitro (Figure 4.1B). Accordingly, 

trametinib did not significantly reduce Ki-67 staining in Brpkp110 tumors (Figure 

4.1C&D), indicating that in vivo proliferation of tumor cells was largely unaffected by 

direct MEK inhibition. I therefore reasoned that trametinib-induced changes in the 

microenvironment might be responsible for the decrease in Brpkp110 tumor growth.  

To elucidate possible changes in the immuno-environment, I treated mice with 

established tumors for 3 days (to minimize differences in tumor burden) and analyzed 

populations of tumor-infiltrating leukocytes. Despite the sensitivity of T cells to MEK 

inhibition (Allegrezza et al. 2016), I did not observe a decrease in CD8+ or CD4+ T cells 
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at tumor beds in trametinib treated tumor-bearing mice (Figure 4.2A). The proportion of 

Foxp3+ Tregs and differentiated (MHC-II+) macrophages also did not significantly change 

after trametinib treatment (Figure 4.2B). In contrast, trametinib induced a dramatic 

reduction in the accumulation of specifically CD11b+MHC-II-Ly6ChiLy6G- monocytic 

MDSCs (M-MDSCs), while CD11b+MHC-II-Ly6ClowLy6G+ polymorphonuclear MDSCs 

(PMN-MDSCs) remained unaffected, whether analyzed as a proportion of total 

leukocytes (Figure 4.2C), or as a proportion of CD11b+MHC-II- myeloid cells (Figure 

4.2D&E). The apparent increase in PMN-MDSCs as a percentage of CD11b+MHC-II- 

cells was entirely due to a reduction in M-MDSCs because overall percentages of PMN-

MDSCs among leukocytes remained constant while the respective percentages of M-

MDSCs were reduced. Confirming their identity as immunosuppressive cells, these M-

MDSCs expressed high levels of Arginase and Nos2 (Figure 4.2F) and were capable of 

suppressing the proliferation of activated T cells ex vivo (Figure 4.2G). The selective 

reduction in M-MDSCs was also observed in the spleens of trametinib treated tumor-

bearing mice (Figure 4.2H-I), suggesting a systemic effect on M-MDSC mobilization. 

These data demonstrate that trametinib decreases the accumulation of 

immunosuppressive M-MDSCs in Brpkp110 tumor-bearing mice, resulting in significant 

delays in tumor growth independent of proliferative sensitivity of tumor cells to the drug.  

 

Trametinib abrogates M-MDSC expansion by inhibiting the Ras-MAPK pathway in 

myeloid precursors. 

To dissect the mechanism whereby trametinib treatment inhibits the mobilization 

of M-MDSCs, I stimulated myelopoiesis in bone marrow cells with a combination of GM-

CSF and IL-6 (Marigo et al. 2010). Recapitulating my in vivo observations, trametinib 

significantly impaired the expansion of M-MDSCs in a dose-dependent manner (Figure 
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4.3A&B). A reduction in the expansion of PMN-MDSCs was also observed with 

trametinib treatment, although to a much smaller degree than for M-MDSCs, further 

supporting the preferential inhibition of trametinib on the mobilization of myeloid cells of 

the monocytic lineage. Similar inhibitory effects were observed when MDSCs were 

differentiated from bone marrow using Brpkp110-conditioned media (Figure 4.3C&D), a 

system that effectively promotes expansion of MDSCs capable of suppressing T-cell 

proliferation (Figure 4.3E). I confirmed that trametinib abrogated MEK signaling at both 

early and late stages in bone marrow cultures incubated with Brpkp110-conditioned 

media (Figure 4.3F).  

To support the clinical relevance of MDSC inhibition by trametinib, I next 

obtained human bone marrow isolates from four different lung cancer patients 

undergoing partial rib resection, and induced MDSC expansion by culturing in GM-CSF 

and IL-6 (Marigo et al. 2010). Although a more diverse population of myeloid cells was 

expanded in these cultures in comparison to murine bone marrow, a CD14+CD15intHLA-

DR-/lowCD11b+CD33+ population of immature myeloid cells (corresponding to M-MDSCs 

(Condamine et al. 2015)) did reproducibly expand (Figure 4.4A&B). As in my mouse 

bone marrow and in vivo experiments, trametinib induced a dose-dependent reduction 

preferentially in CD14+CD15int cells across all patient samples (Figure 4.4A&C). Taken 

together, these results indicate that trametinib, by inhibiting the Ras-MAPK pathway in 

myeloid precursors, disproportionately decreases the mobilization of immature M-

MDSCs in mice and humans. This potentially explains the decreased accumulations of 

M-MDSCs in the periphery and in the tumor beds in vivo, and it suggests a novel 

mechanism that contributes to the antitumor activity of trametinib in human patients.  

  

CD8+ T cells are required for optimal anti-tumor activity of trametinib. 
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My results above suggest that trametinib may be effective in the Brpkp110 tumor 

model by decreasing the expansion of immunosuppressive MDSCs, thus allowing anti-

tumor T-cell responses to control tumor growth. This mechanism however requires a 

functional effector response by tumor-infiltrating T cells in the presence of trametinib 

treatment. I found that treatment of tumor-bearing mice with trametinib did not decrease 

the frequencies of CD8+ or CD4+ tumor-infiltrating T cells capable of producing IFN-γ 

when re-stimulated ex vivo (Figure 4.5A). Additionally, trametinib did not impair the 

ability of OVA-vaccinated mice to lyse adoptively transferred OVA257-264-loaded targets 

during an in vivo cytotoxicity assay, indicating that cytotoxic effectors function during 

trametinib treatment (Figure 4.5B&C). Most importantly, I examined whether T-cell 

immunity contributes to the efficacy of trametinib by depleting CD8α+ T cells during 

trametinib treatment of Brpkp110-bearing mice. Tumors grew significantly faster in 

trametinib treated mice depleted of CD8α+ T cells compared to trametinib treated mice 

injected with an irrelevant IgG (Figure 4.5D). These data demonstrate that tumor-

infiltrating effector T cells are not restricted by trametinib in vivo and are actually 

necessary for the full efficacy of trametinib.  

 

Trametinib abrogates the production of osteopontin by Kras-mutated tumor cells. 

 I finally reasoned that, by modulating the Kras-dependent secretion of 

inflammatory factors by tumor cells, trametinib could also alter the non-cellular 

composition of the tumor microenvironment. Supporting this proposition, LC-MS/MS 

analysis of culture supernatants from Brpkp110 cells revealed that several cytokines 

were dramatically altered in response to trametinib treatment. A number of factors 

known to be involved in recruitment of myeloid cells such as CSF1, CCL2, and CX3CL1 

(Figure 4.6A) were decreased after trametinib treatment. Strikingly, osteopontin (SPP1) 



	 92	

was decreased >18-fold upon trametinib treatment. I confirmed the trametinib-driven 

decrease in osteopontin secretion in separate ELISA experiments (Figure 4.6B). I 

focused on osteopontin because it has been reported to induce MDSCs expansion (E.-

K. Kim et al. 2014) and tumor recruitment of macrophages (Lin et al. 2015). Supporting 

the relevance of my proteomic analysis, the tumor-driven increase of osteopontin in 

plasma was abrogated by short-term (3 day) treatment with trametinib in Brpkp110-

bearing mice (Figure 4.6C). Importantly, when in vitro-derived Ly6G+ and Ly6G- MDSCs 

were isolated with Ly6G-MACS separation (Figure 4.6D), they were able to migrate 

towards a gradient of recombinant osteopontin (Figure 4.6E&F). This trafficking was 

genuine chemotaxis and not chemokinesis because the migration was greatly 

diminished when osteopontin was supplied on the same side of the transwell chamber 

as the cells. Although the osteopontin concentration required for chemotaxis (100 µg/ml) 

is much higher than the concentration observed in the plasma (<1 µg/ml), we found that 

the concentration of osteopontin in the intratumoral fluid obtained from Brpkp110 tumor 

samples exceeded 200 µg/ml (Figure 4.6G). These data indicate that the physiological 

range of osteopontin concentrations in tumor bearing mice should induce migration of 

MDSCs from peripheral blood into tumor tissue. Together, these results suggest that 

trametinib may also decrease MDSCs in the tumor by reducing the production of 

chemotactic cytokines by tumor cells through a direct anti-inflammatory effect that is 

independent of changes in the proliferation of tumor cells.  

 

DISCUSSION 
	

Here I show that the in vivo growth of a mouse breast tumor driven by KRAS and 

PI3K signaling is restricted by trametinib, despite tumor cell proliferation being relatively 
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resistant to MEK inhibition. Full growth inhibition by trametinib requires CD8+ T cells, 

indicating that trametinib is acting to enhance control of tumor growth by cytotoxic T 

cells. This mechanism is likely achieved through a reduction in MDSC mobilization into 

tumors, a result of trametinib directly impairing MDSC differentiation from bone marrow 

precursors and reducing tumor-secreted chemotactic molecules.  

A limitation of this study is that the reduction in M-MDSCs in trametinib treated 

mice was correlative and not directly linked to enhanced antitumor immunity and 

decreased tumor growth. Two experiments would support a causal link for trametinib 

induced MDSC reduction in tumor growth. First, non-pharmacologic depletion of M-

MDSCs during tumor progression would establish that a reduction in M-MDSCs 

independent of trametinib restricts tumor growth. Second, the adoptive transfer of M-

MDSCs to trametinib treated mice to restore M-MDSC levels would establish the relative 

importance of these cells to the net effect of trametinib in vivo. I have tried variations of 

both experiments several times, but in each case the results were inconsistent. These 

problems may arise from the challenges in depleting MDSCs in general, specifically 

depleting M-MDSCs, and adoptively transferring enough M-MDSCs to restore their 

numbers in tumors. Unfortunately, I will not have time to troubleshoot these experiments, 

so it will be important for future studies to establish these protocols.  

Nonetheless, my data offer mechanistic insight into the apparent inconsistency 

between in vitro and in vivo effects of trametinib on antitumor adaptive immunity. 

Previous reports showed that trametinib has a direct inhibitory effect on proliferation and 

effector function in both naïve and memory T cells in vitro (Vella et al. 2014; Yamaguchi 

et al. 2012; Allegrezza et al. 2016). In contrast, recent studies indicate that trametinib 

does not limit the effectiveness of adoptive T-cell therapy (Hu-Lieskovan et al. 2015) or 

checkpoint blockade with antibodies against PD-1, PD-L1, and CTLA-4 (L. Liu et al. 
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2015) in other mouse models. I previously showed that the ability of common γ-chain 

cytokines, which were administered exogenously or possibly up-regulated in response to 

immunotherapy, to rescue the immunosuppressive activity of trametinib could explain 

some of these discrepancies (Allegrezza et al. 2016). My current work offers a more 

comprehensive picture of how trametinib impacts multiple cell types in tumor-bearing 

hosts.  

I demonstrate that trametinib reduces the accumulation of a major 

immunosuppressive cell compartment in this tumor model; namely, monocytic MDSCs. 

This occurs at two levels: On the one hand, inflammation-induced MDSC expansion 

clearly depends on the MAPK pathway, which is abrogated upon MEK inhibition, in both 

human and mouse bone marrow precursors. On the other hand, trametininb reduces 

tumor-derived osteopontin secretion, which correlates with a decrease in M-MDSCs. In 

addition, my study identifies for the first time that osteopontin can chemoattract MDSCs. 

Although relatively high levels of osteopontin are required for chemoattraction of MDSCs 

in vitro, these levels are physiologically achieved in tumor beds. Together, these 

combined effects, in addition to the rescuing activity of endogenous cytokines, likely 

compensate for the direct inhibitory effects of trametinib on T cells. This ultimately 

results in CD8+ T cells being paradoxically required for the full efficacy of trametinib.  

In their seminal study, Hu-Lieskovan et al. (Hu-Lieskovan et al. 2015) also looked 

at the proportions of MDSCs in tumors and spleens of mice treated with trametinib. 

However, they did not observe a decrease in M-MDSCs and instead found a decrease in 

PMN-MDSCs in tumors of mice treated with trametinib and dabrafenib, while my study 

shows a preferential suppressive effect on the mobilization of M-MDSCs. This difference 

might be due to different treatment schemes. In their experiments trametinib was 

combined with either dabrafenib or adoptive cell therapy, and it was not tested as a 
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single agent as it was in my study. In addition, their study used a B-Raf-driven 

melanoma tumor, which is likely more sensitive to trametinib than my KRAS and PI3K-

driven breast tumor and may respond differently in the secretion of inflammatory 

mediators under MEK inhibition. My in vitro studies clearly demonstrate that MEK 

inhibition abrogates cytokine-induced MDSC expansion, with a preferential direct effect 

on M-MDSCs. In support of my findings, a murine study of allograft transplantation found 

that rapamycin treatment induced the expansion of M-MDSCs (defined as 

CD11b+GR1int), but this effect was prevented by trametinib administration (Nakamura et 

al. 2015). These combined findings show that in some systems M-MDSC expansion can 

be blunted by MEK inhibition. To understand why trametinib seems to selectively impair 

M-MDSCs, it will be important for future work to dissect the molecular activity of 

trametinib on myeloid precursors and determine whether these populations (e.g. 

common myeloid progenitors and granulocyte-monocyte progenitors) are altered during 

trametinib treatment. 

My results also highlight the importance of tumor microenvironmental and 

systemic responses to trametinib. Because the activity of trametinib appeared to be 

independent of the effects on Brpkp110 proliferation, it is likely that trametinib’s 

effectiveness depends in some tumors on whether they mobilize MDSCs to suppress 

antitumor T cells, rather than the direct cytotoxic or cytostatic effects of trametinib on 

cancer cells.  

Overall, my study offers novel mechanistic understanding to reconcile 

inconsistent effects of trametinib in vitro and in vivo, and explain how, by influencing 

multiple cells types in tumor-bearing hosts, MEK inhibition could have overall permissive 

effects on protective anti-tumor immunity. Subsequent analyses of trametinib’s 
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effectiveness as a function of MDSC burden and activity in cancer patients will further 

substantiate whether its therapeutic activity is immune-dependent. 
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FIGURES 
	

 

 

Figure 4.1. Trametinib impairs the growth of Brpkp110 tumors independent of 
tumor cell proliferation. (A) Mice with Brpkp110 subcutaneous tumors were gavaged 
daily with trametinib or vehicle on days 3-13. One representative experiment of three, 
P<0.05, unpaired t test. (B) Brpkp110 cells were cultured for 2 days with trametinib and 
proliferation was quantified by MTS assay. (C) Mice with Brpkp110 tumors were treated 
daily with trametinib or vehicle on days 7-9 and tumors were excised on day 10 and 
stained for Ki-67. Scale bars = 100 mM. (D) Positive Ki-67 as % of total tumor area is 
shown from two experiments. 
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Figure 4.2. Trametinib reduces the accumulation of Ly6Chi M-MDSCs in tumors. (A-
E) Mice with Brpkp110 subcutaneous tumors were gavaged daily with trametinib or 
vehicle on days 7-9, harvested on day 10, and analyzed by flow cytometry. (A-D) 
Percentages of cell populations found in dissociated tumors from two independent 
experiments. (E) Representative gating for Ly6Chi and Ly6G+ from CD11b+MHCII- cells 
in tumors. (F) CD11b+MHCII-Ly6Chi or CD11b+MHCII-Ly6G+ were FACS sorted from 
advanced Brpkp110 tumor-bearing or naive mice and analyzed by qPCR. Expression 
normalized to TATA binding protein is shown. (G) CD11b+MHCII-Ly6Chi cells were sorted 
from advanced Brpkp110 tumor-bearing mice and mixed at the indicated ratios with 
OVA257-264-peptide-loaded OT-I splenocytes. Proliferation was measured by CellTrace 
dilution of CD8+ cells 3 days later. Representative of two experiments. (H-I). 
Percentages or total numbers of cell populations from spleens of Brpkp110 tumor-
bearing mice from 3 independent experiments. *P<0.05, **P<0.01, ***P<0.001, unpaired 
t test.  
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Figure 4.3. Trametinib selectively reduces the differentiation of Ly6C+ MDSCs from 
bone marrow. (A-B) MDSCs were differentiated from mouse bone marrow with IL-6 and 
GM-CSF in the presence of vehicle or trametinib for 4 days. Shown are representative 
gating from all live cells (A) and total number of cells (B) from 4 experiments. *P<0.05, 
Mann-Whitney test. (C-D) MDSCs were differentiated from mouse bone marrow with 
Brpkp110 conditioned medium (50%) in the presence of vehicle or trametinib for 4 days. 
Shown are representative plots (C) and total number of cells (D) from 4 experiments. 
*P<0.05, Mann-Whitney test. (E) MDSCs differentiated with Brpkp110 conditioned 
medium were added at the indicated ratios to mouse splenocytes activated with anti-
CD3 and anti-CD28 and cultured for 3 days. (F) MDSCs were differentiated as in (C) and 
analyzed by Western blot on days 2 and 4 of culture. V=vehicle, T=trametinib 200 nM.  
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Figure 4.4. Trametinib reduces the expansion of CD14+ MDSCs from human bone 
marrow. Dissociated human bone marrow was cultured in GM-CSF and IL-6 with 
vehicle or trametinib for four days and analyzed by flow cytometry. (A) Gating analysis 
for one representative donor out of seven is shown. (B) Expression of CD11b and CD33 
is shown for indicated cell populations. (C) Proportions within HLA-DR-SSChi cells and 
total numbers for indicated cell populations normalized to vehicle are shown. Data 
combined from seven individual donors. P<0.05, one sample t-test with respect to 100%.  
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Figure 4.5. Full efficacy of trametinib requires CD8+ T cells. (A) Tumors from 
Brpkp110 tumor-bearing mice treated daily with vehicle or trametinib on days 7-9 were 
dissociated on day 10, stimulated with PMA/Ionomycin for 5 hrs, and stained for 
intracellular IFN-γ. (B) Mice were vaccinated with OVA-pulsed BMDCs 12 and 5 days 
before adoptive i.v. transfer of a 1:1 mixture of OVA257-264-pulsed (CFSEhi) and unpulsed 
(CFSElow) target splenocytes. Mice were gavaged the day before and the day of adoptive 
transfer (immediately preceding i.v. injections) with vehicle or trametinib and spleens 
were harvested 5 hrs after transfer for flow cytometry analysis (n = 4 mice/group). 
Specific lysis (B) and representative histograms (C) from one experiment of two are 
shown. Naïve indicates unvaccinated mouse. (D) Mice with Brpkp110 subcutaneous 
tumors were gavaged daily with trametinib or vehicle on days 3-13. Anti-CD8α or control 
anti-LTF was also administered. *Tumor volume different from corresponding non-CD8α 
depleted mice, P<0.05, unpaired t test. 
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Figure 4.6. Osteopontin chemoattracts MDSCs and is reduced by trametinib 
treatment of tumor cells. (A) LC-MS/MS data of cytokines found in supernatants of 
Brpkp110 cells cultured for 40 hrs in vehicle or 200 nM trametinib. Y axis=MS count 
(abundance) in vehicle supernatants. X axis=fold change. Positive 
values=(trametinib/vehicle), negative values = -(vehicle/trametinib). (B) Osteopontin 
concentration measured from supernatants of Brpkp110 cells cultured overnight in the 
indicated conditions. (C) Osteopontin concentration from plasma samples collected from 
Brpkp110-bearing mice (or naïve tumor-free mice) gavaged daily with trametinib on days 
7-9, and harvested on day 10. (D) GM-CSF and IL-6 in vitro derived MDSCs were 
separated with Ly6G-MACS microbeads into Ly6G+ and Ly6G- populations. Pre- and 
post-sort cell populations were analyzed for Ly6G and Ly6C expression by flow 
cytometry. (E-F) GM-CSF and IL-6 in vitro derived MDSCs were separated with Ly6G-
MACS microbeads into Ly6G+ and Ly6G- populations and assayed for their ability to 
migrate in a transwell assay towards osteopontin (chemotaxis) or within the presence of 
osteopontin (chemokinesis). (G) Osteopontin concentration measured from intratumoral 
fluid collected from four separate Brpkp110 tumors. *P<0.05, **P<0.01, ***P<0.001, 
unpaired t test.  
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CHAPTER 5 

	

DISCUSSION AND FUTURE RESEARCH 
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Cancers are systemic diseases that profoundly affect hematopoiesis and the 

host’s immune response. Here I show that many small molecule inhibitors actively inhibit 

human T cells, and that although the MEK inhibitor trametinib impairs T-cell functions in 

vitro, it actually facilitates control of tumor growth by CD8+ T cells likely because it also 

reduces immunosuppressive MDSCs. Considering that a similar dependence upon CD8+ 

T cells was observed in the efficacy of the B-RafV600E inhibitor vemurafenib in murine 

melanoma (Knight et al. 2013), the contribution of immunity to therapeutic mechanisms 

should not be overlooked. Additionally, a current obstacle in the treatment of cancer with 

targeted therapies is the strong selective pressure for tumors to evolve resistance, which 

has been documented clinically for many small molecules (Sierra, Cepero, and Giordano 

2010).  

 Because T cells can to respond to new antigens and develop memory, they have 

the potential to eradicate every last tumor cell and maintain surveillance against the 

future emergence of micrometastases. Combining small molecule inhibitors with 

immunotherapies could therefore synergistically combat the development of resistance 

to targeted therapy, although it will first be necessary to understand how immune cells 

are impacted by small molecule inhibitors. In the following sections, I examine how my 

work in this thesis contributes to the progress in understanding immune mechanisms in 

targeted small molecule cancer therapy and the potential for synergy with 

immunotherapies. I also highlight outstanding questions and avenues of promising 

research that will help advance the field toward better personalized cancer therapy. 

 

DIRECT EFFECTS OF SMALL MOLECULE INHIBITORS ON T-CELL ACTIVITY  
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 Research into this topic has lagged significantly behind that into the effects of 

small molecule inhibitors on tumor cells, as evidenced by the fact that most preclinical 

studies are performed with xenografts in immune-deficient mice. Additionally, because 

the presence of T cells infiltrating tumors correlates positively with clinical outcome in 

many cancers (L. Zhang et al. 2003; Galon et al. 2006; van Houdt et al. 2008), caution 

should be taken to avoid the use of small molecules that impair the functional activity of 

tumor-reactive T cells. Developing targeted therapies that synergize with antitumor 

immunity will require dedicated research into how small molecule inhibitors modulate the 

interaction between the tumor and immune system.  

 Many leukocytes use the same signaling pathways targeted by small molecule 

inhibitors in cancer cells. For instance, T cells use the RAS/MAPK, PI3K/mTOR, HDAC, 

CDK, pathways for activation, proliferation, and cytotoxic activity (Smith-Garvin, 

Koretzky, and Jordan 2009; Wells and Morawski 2014; Krangel 2007). Accordingly, 

when I tested a diverse panel of over 40 small molecule inhibitors on activated human T 

cells, I found that most of them impaired T-cell proliferation at concentrations where they 

were active against tumor cells (Allegrezza et al. 2016).  Molecules restricting T-cell 

proliferation included those targeting members of the MEK, PI3K, AKT, mTOR, Aurora, 

CDK, HDAC, and Bcl-2 protein families. Other groups have also found that 

pharmaceutical inhibition of the MEK (Boni et al. 2010; Vella et al. 2014), PI3K (So et al. 

2013; Blanco et al. 2015), HDAC (D. J. L. Wong et al. 2014; Schmudde et al. 2010), and 

CDK (Nellore et al. 2014) pathways limits the in vitro activity of human T cells.  

Studies of small molecule inhibitors in vivo are critical, though, where the 

complexity of environmental factors and pharmacokinetics can alter drug activity. Initial 

research with the MEK inhibitor trametinib (GSK1120212, named JTP-74057 at the time) 

demonstrated that it was effective at reducing rheumatoid arthritis in mice and rats, 



	 107	

activity the authors attributed to its ability to prevent the activation of auto-reactive T cells 

when assayed ex vivo (Yamaguchi et al. 2012). Although Yamaguchi et al did not 

determine whether trametinib prevented in vivo activity of T cells, I found that once daily 

oral gavage with trametinib reduced the proliferation of T cells responding to tumor 

antigen (Allegrezza et al. 2016). The combined interpretation of these results suggests 

that MEK inhibition in vivo limits the generation of T-cell driven immune responses in at 

least some disease contexts.  

Intriguingly, recent studies indicate that trametinib does not restrict the 

effectiveness of adoptive T-cell therapy (ACT) (Hu-Lieskovan et al. 2014) and in fact 

synergizes with PD-1 inhibitors in mice (L. Liu et al. 2015). A possible mechanistic 

explanation is that direct T-cell inhibition by trametinib can be effectively overcome by 

cytokines such as IL-2, IL-7, and IL-15 through PI3K activation (Allegrezza et al. 2016). 

The former study included high-dose IL-2 treatment (Hu-Lieskovan et al. 2014), a 

regimen that I found capable of rescuing T-cell proliferation from trametinib in vivo 

(Allegrezza et al. 2016), and PD-1 is known to inhibit proximal TCR signaling (Riley 

2009) and PI3K activity (Patsoukis et al. 2013). It is possible that enhanced activation of 

the PI3K and MAPK pathways through cytokine signaling and/or decreased inhibitory 

signaling from PD-1 renders T cells more resistant to MEK inhibitors in the tumor 

microenvironment. Notably, the PI3K inhibitor BKM120 has been shown to prevent the 

expansion of tumor-specific T cells in mice (Peng et al. 2016). Because the combination 

of PI3K and MEK inhibitors is being clinically investigated (Bedard et al. 2015), it will be 

important to determine if PI3K inhibition prevents the ability of cytokines and 

immunotherapies to ameliorate MEK inhibition of T-cell function in vivo. 

Not all small molecule inhibitors are detrimental to T cells, however, particularly 

when they target signaling pathways irrelevant for lymphocyte function. For instance, 
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Axitinib, an inhibitor of the VEGFR proteins, does not affect T cell activity (Du Four et al. 

2015). I observed that an inhibitor of IGF-1R, OSI-906, had negligible activity on human 

T cell activation and proliferation at concentrations relevant to limit proliferation of IGF-

1R dependent cells (Allegrezza et al. 2016). The rational use of isoform specific PI3K 

inhibitors might also avoid T-cell inhibition. The class I PI3K family has four separate 

isoforms of the catalytic p110 subunit (α, β, γ, δ) with variable expression among 

different cell types. The p110γ and p110δ  isoforms are required for effector and memory 

T-cell responses (So and Fruman 2012; A. L. Martin et al. 2008; Okkenhaug 2013), 

while activity of the p110α and p110β isoforms often contributes to tumor growth. 

Therefore, use of isoform selective inhibitors instead of pan-PI3K inhibitors (like 

BKM120) could theoretically target tumor cells while preserving immune cells. Indeed, 

although pan-PI3K inhibitors impair T cells, one study found that p110α specific 

inhibitors such as MLN1117 and A66 did not impair T-cell proliferation or cytokine 

production at concentrations able to limit the proliferation of tumor cells (So et al. 2013). 

The researchers also found that the detrimental effect of pan-PI3K inhibition on immunity 

in vivo was avoided in mice treated with MLN1117.  

In addition to molecules targeting signaling pathways not utilized by immune 

cells, molecules that target mutation-specific proteins would be expected to spare the 

activity of T cells. Indeed, B-RafV600E inhibitors do not impair T-cell function (Knight et al. 

2013; Boni et al. 2010; Comin-Anduix et al. 2010), and in fact there is evidence that B-

RafV600E inhibitors promiscuous for wild-type B-Raf can actually enhance T-cell activation 

via increased MAPK signaling (Callahan et al. 2014). Small molecules can even be 

designed to boost T-cell activation, as shown with Avasimibe, an inhibitor of the ACAT1 

cholesterol esterification enzyme (Yang et al. 2016).  
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 Certain small molecules can also influence the differentiation of various T cell 

subsets. For instance, although mTOR inhibition by rapamycin can limit the proliferation 

of activated T cells (Allegrezza et al. 2016; Dumont et al. 1990; Kay et al. 1991), it can 

also enhance the differentiation of memory T cells (Araki et al. 2009). Because memory 

T cells are ultimately more beneficial for tumor control than effector cells (Klebanoff et al. 

2005), rapamycin improves the therapeutic efficacy of tumor antigen vaccination in a 

mouse B16-OVA model when specifically administered during the effector-to-memory 

transition phase (day 10-30 post vaccination) (Diken et al. 2013).   

Several studies have demonstrated enhanced T-cell responses in tumor bearing 

mice treated with HDAC inhibitors (Vo et al. 2009; Woan et al. 2015), although it is 

difficult to conclude whether these findings were direct results of HDAC inhibition in T 

cells or from the effects of HDACs on tumor cells or APCs. Nonetheless, HDAC 

inhibition has been reported to enhance the expression of the effector molecules 

granzyme B (Agarwal et al. 2009) and IFN-γ (Agarwal et al. 2009), the expression of 

chemokines CCL5 and CXCL10 (Zheng et al. 2016) and the differentiation of CD8+ T 

cells into functional memory cells that can provide protective immunity (Northrop, Wells, 

and Shen 2008). In mice, HDAC inhibition can either accelerate or ameliorate Th1-driven 

GVHD depending on the individual inhibitor used (D. Wang et al. 2012), demonstrating 

that effects of HDAC inhibition may depend on the specificity of each inhibitor.  

 Because Treg cells can suppress anti-tumor immunity, therapies that modulate 

the numbers and function of these cells can have important consequences for tumor 

growth. For that reason, several groups have characterized the effects of kinase 

inhibition on Tregs, with conflicting results depending on the specific inhibitors or 

experimental systems used. One group found that inhibitors of PI3K and AKT impaired 

human and mouse Treg proliferation while having negligible activity on conventional 
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CD4+ T-cell proliferation at the same concentrations (Abu-Eid et al. 2014). Administration 

of these molecules prior to vaccination in mice was able to reduce Tregs and enhance 

antitumor CD8+ T-cell responses.  In contrast, other researchers found that PI3K 

inhibition suppressed the proliferation of human conventional CD4+ T cells more than the 

proliferation of Tregs (Zwang et al. 2016). Among the several different variables between 

these studies was the use of high concentrations of IL-2 in the former study, which is 

known to activate PI3K and enhance the activity of Tregs (Yates et al. 2007). Various 

murine studies have demonstrated that PI3K inhibition can either inhibit or promote 

Tregs, depending on which functions and subsets of Tregs are analyzed, but the general 

conclusion suggests that the net effect of PI3K inhibition is a reduced and less 

suppressive Treg compartment (Soond et al. 2012). The precise timing of PI3K inhibition 

could also be important, demonstrated by the ability of naïve CD4+ T cells to turn into 

Tregs when PI3K is inhibited 18hr after TCR activation, while earlier and later timepoints 

are less efficient at producing Tregs (Sauer et al. 2008). Tregs may be less susceptible 

to mTOR inhibition, however, as it was found that rapamycin, everolimus, or BEZ235 

favored the expansion of Tregs compared to conventional T cells, while PI3K inhibition 

with BKM120 showed similar inhibition of both subsets (Huijts et al. 2016).  

Fewer studies have analyzed how MEK inhibition directly influences Tregs, but 

results suggest that it may encourage their expansion. One study found that MEK 

inhibition with MEK-162 inhibited the proliferation and activation of human conventional 

T cells more than Tregs, possibly explained by the relatively lower expression of MEK 

(and thus reliance upon) in Tregs (Zwang et al. 2016). The Treg phenotype is actively 

maintained because Tregs can lose Foxp3 expression to transition into a Th1 

phenotype. One group found that Foxp3 downregulation was signaled through the MEK-

ERK pathway and that a MEK inhibitor was able to prevent Foxp3 loss, thus maintaining 
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the Treg phenotype (Guo et al. 2014). Despite these data, when I treated tumor-bearing 

mice with trametinib, I did not observe a difference in the percentages of Tregs. I did not 

assess the functional activity of these cells, however, so it remains possible that Tregs 

from trametinib treated mice have higher suppressive ability. Experiments to test this 

idea, along with experiments analyzing the relative activation and expansion of human 

Tregs during in vitro culture with trametinib, would be useful for a more complete 

characterization of trametinib’s activity on the tumor microenvironment.   

 

THE MYRIAD EFFECTS OF SMALL MOLECULE INHIBITORS ON THE 
IMMUNOENVIRONMENT OF CANCER 
 

 Chronic inflammation in cancer promotes the expansion and recruitment of a 

variety of immunosuppressive myeloid cells that contribute to tumor growth. The activity 

of small molecule inhibitors on these cells may contribute to their pharmacological 

mechanisms of action and may also be therapeutically advantageous. Cytokines such as 

IL-6, GM-CSF, and VEGF are upregulated as a result of chronic inflammation in many 

cancers and lead to the expansion of MDSCs. These cells suppress antitumor T cells 

and their numbers are correlated with disease progression in many cancers (Solito et al. 

2014). Although little is known about how small molecule inhibitors impact MDSCs, 

several findings have shown the relevance of targeting MDSCs. Continuous activation of 

STAT3 in MDSCs contributes to their suppressive activity and impaired differentiation 

into mature APCs (Kumar et al. 2016). Inhibition of JAK2/STAT3 signaling with JSI-124 

was able to reduce the numbers of immature myeloid cells by promoting their 

differentiation into macrophages and DCs, which enhanced the effectiveness of 

immunotherapy in preclinical models (Nefedova et al. 2005; Kumar et al. 2016). Several 

studies have also shown that MDSC accumulation in tumor bearing mice can be 
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attenuated by small molecule inhibition of VEGFR with Axitinib (Du Four et al. 2015; 

Yuan et al. 2014) or SAR131675 (Espagnolle et al. 2014). Additionally, inhibition of 

phosphodiesterase-5 with sildenafil or tadalafil prevents MDSCs from suppressing T 

cells (Serafini et al. 2006). 

 MAPK signaling is also important for the differentiation and function of myeloid 

cells (Hsu, Kikuchi, and Kondo 2007). Accordingly, I demonstrate that MEK inhibition 

reduces the mobilization of monocytic MDSCs (Ly6ChiLy6G-) in Kras-driven tumors, 

which likely facilitates control of tumor growth by CD8+ T cells. Trametinib also impairs 

cytokine-induced expansion of their CD14+MHC-II- counterparts from human bone 

marrow, supporting the promise of MEK inhibition against MDSC-dependent tumors in 

patients. Therefore, the immunosuppressive vs. immunostimulatory activity of MEK 

inhibitors appears to depend on their collective effects on a variety of immune and non-

immune cells, a balance that may have distinct outcomes in different malignancies. 

Epigenetic modifiers could also be used to modulate MDSC differentiation. For 

instance, Youn and colleagues found that around 40% of monocytic MDSCs differentiate 

into granulocytic PMN-MDSCs in tumor bearing mice, controlled by HDAC2 silencing of 

the Rb1 gene. Treatment of M-MDSCs ex vivo with an HDAC inhibitor upregulated Rb1 

expression and promoted their differentiation into macrophages and DCs, the usual 

terminal differentiation products of immature monocytes under non-inflammatory 

conditions (Youn et al. 2013).  

 In addition to influencing the activity of suppressive immature myeloid cells, small 

molecules can also alter the function of mature APCs. MEK inhibition can impair cross-

presentation by human monocyte-derived DCs (Vella et al. 2014), leading to ineffective 

priming of CD8+ T cells. Conversely, pan-PI3K inhibition was able to skew TLR agonist-

activated DCs towards priming polyfunctional antitumor T cells by reducing DC 
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production of TGF-β and IL-10 while maintaining favorable IL-12 and IL-1β secretion 

(Marshall et al. 2012). The HDAC inhibitor LAQ824 was found to reduce IL-10 secretion 

from macrophages and make them better at priming antigen specific T cells (H. Wang et 

al. 2011). 

 Finally, small molecules may modulate antitumor immunity indirectly through their 

effects on tumor cells. Signaling pathway inhibition of tumor cells has been reported to 

alter their expression of antigens and costimulatory molecules (Boni et al. 2010), 

secretion of chemokines (Knight et al. 2013; Zheng et al. 2016), and sensitivity to killing 

by NK and T cells (Skov et al. 2005; Armeanu et al. 2005; Schumacher et al. 2006; 

Shanker et al. 2015). Small molecules can also induce autophagy to sensitize tumor 

cells to killing by CTLs, such as through PI3Kβ inhibition in PTEN deficient melanoma 

cells (Peng et al. 2016). These various mechanisms can result in drug activity superior to 

that when only direct cytoxic/cytostatic activity on tumor cells is considered in immune-

deficient mice.  

Clearly, this broad array of mechanisms can lead to in vivo activities very 

different from that when only direct cytotoxic/cytostatic activity on tumor cells is 

considered in immune-deficient mice. While it may not be feasible to study the 

interaction of every small molecule in clinical development with all the various leukocyte 

populations, I feel that it is essential to consider the function of immune cells when 

investigating the mechanistic actions of these new therapies. 

 

STRATEGIES TO PROMOTE ANTITUMOR IMMUNITY WITH SMALL MOLECULE 
INHIBITORS  
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In order to avoid detrimental effects on antitumor immunity, better therapies can 

be contrived by designing more specific inhibitors that target protein isoforms 

predominantly expressed in cancer cells (as with PI3Kα) and mutation specific inhibitors 

with little off-target activity on wild type proteins, such as mutant IDH1/2 inhibitors (F. 

Wang et al. 2013; Rohle et al. 2013). Yet in cases where certain molecules have 

unavoidable activity on leukocytes, careful dosing titration and timing may maintain 

beneficial antitumor immunity. Proteosome inhibition by bortezomib provides a 

compelling example, where it was found that high doses led to immune suppression, 

while lower doses given less frequently were not immunosuppressive and instead 

sensitized tumors to FasL lysis by T cells (Shanker et al. 2015). PI3K inhibitors may also 

be candidates for specifically timed dosing, for instance in order to boost the activity of 

DCs during vaccination (Marshall et al. 2012) without limiting the proliferation of antigen 

specific T cells by continuous administration. Additionally, certain immunotherapies may 

be able to neutralize the negative effects of small molecule inhibitors on immune cells, 

as I show here with the ability of IL-2 and IL-15 agonists to rescue T cells from MEK 

inhibition. 

In cases where cross-reactivity of small molecules on T-cell signaling pathways 

cannot be avoided, I envision several strategies to protect T cells that should be 

investigated. Exciting progress has been made utilizing nanoparticles to target 

chemotherapeutics to tumors, a process which increases the maximum concentration 

achievable in tumor cells by reducing drug release throughout the rest of the body 

(Goodall, Jones, and Mahler 2015). It is conceivable that nanoparticle encapsulation of 

small molecule inhibitors could also be used to specifically target tumor cells. Indeed, 

this concept was very recently demonstrated with the aurora B kinase inhibitor, 

AZD2811 (Ashton et al. 2016), although it was only tested in immune-deficient 
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xenografts models. More precise targeting may be achieved by covalently conjugating 

small molecule inhibitors to tumor-targeted antibodies, thus facilitating their direct entry 

into tumor cells by endocytosis.  

T cells could also be protected through genetic engineering, for instance through 

adoptive transfer of T cells with enhanced expression of ATP-binding cassette (ABC) 

transporters. ABC transporters actively pump out xenobiotics and their activity has been 

demonstrated to increase the resistance of cancer cells to small molecule inhibitors 

(Özvegy-Laczka et al. 2005).  Endogenous expression of ABC transporters is known to 

protect memory T cells from cytotoxic chemotherapy (Turtle et al. 2009), so it is likely 

that their engineered expression in T cells could limit the activity of other small 

molecules. Lastly, signaling networks could be restored (or enhanced) in T cells through 

genetically expression of protein mutants resistant to the activity of small molecules, 

such as the MEK2-Q60 mutant for trametinib resistance (Villanueva et al. 2013). 

Experiments would need to be performed to determine that these T cells function 

normally and do not pose an unacceptable risk of malignant transformation. 

 However, it may not be optimal to simply avoid signaling inhibition in immune 

cells for all small molecules. At least several targets exist where it seems possible to 

enhance the activation of APCs or T cells, which could result in therapeutic synergy and 

the possibility to completely eradicate metastatic disease. Small molecules could also be 

useful to prevent the function of regulatory immune cells in tumors, particularly the 

accumulation of suppressive myeloid cells. While inhibitors of JAK2/STAT3 and 

MEK/ERK may selectively impair MDSCs, a targeted delivery approach could also be 

utilized. Regulatory myeloid cells with phagocytic ability, such as tumor-associated DCs, 

are very efficiently targeted by nanoparticles (Cubillos-Ruiz et al. 2012), and the 

incorporation of small molecules may be achievable. Antibody-drug conjugates (ADC) 
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could be employed to target small molecules to non-phagocytic regulatory cells. For 

instance, an ADC has been developed to selectively deliver an Lck inhibitor to T cells (R. 

E. Wang et al. 2015), thus modifications could allow delivery of other inhibitors to Tregs 

or MDSCs.  

 

INTEGRATING TARGETED AND IMMUNOTHERAPY COMBINATIONS INTO 
PERSONALIZED MEDICINE  
 

Due to the unique nature of each cancer patient’s disease, better therapeutic 

results will be achieved with more personalized therapies. It is an ongoing effort to more 

precisely classify which patients will respond to different treatments. For instance, 

patients with high numbers of tumor-infiltrating leukocytes that express PD-L1 respond 

better to an antibody targeting PD-L1 (Herbst et al. 2014), reflecting that those are the 

patients where the PD-1/PD-L1 axis is relevant to immune suppression.  

The most important variable for determining the applicability of immunotherapy is 

the quality of tumor antigens. In mouse models, the induction of potent neoantigens by 

chemical carcinogens or the genetic introduction of foreign antigens allows the adaptive 

immune system to control tumor growth (Koebel et al. 2007; DuPage et al. 2012). One 

important feature of my studies is that the Brpkp110 tumor cells express EGFP, a protein 

not present in the mouse genome. It is possible that EGFP functions as a tumor antigen 

in this model. In BALB/c mice, which express the H-2Kd MHC-I allele, it is well 

established that EGFP is a potent antigen because EGFP expressing tumors are 

rejected and EGFP-specific effector T cells can be detected from tumor-challenged mice 

(Stripecke et al. 1999). 

However, it appears that EGFP is a much weaker antigen in C57BL/6 mice, 

which express the H-2Kb MHC-I allele. Although one lab found that EL-4/EGFP+ 
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lymphoma cells had an impaired ability relative to the parental EL-4 cells to form tumors 

in C57BL6 mice, 4 of 5 mice did eventually develop EL-4/EGFP+ tumors and the authors 

were unable to detect any T cell responses against EGFP (Stripecke et al. 1999; 

Skelton, Satake, and Kohn 2001). Follow up work by a separate group actually found no 

detectable delay in EL-4/EGFP+ tumor development compared to control EL-4 cells in 

C57BL/6 mice (Denaro et al. 2001). C57BL/6 mice are capable of developing adaptive 

immune responses to EGFP, though, as was demonstrated by the appearance of EGFP-

specific CD8+ T cells and antibodies leading to the eventual clearance of transduced 

EGFP+ cells in mice given a lentiviral vector (Annoni et al. 2007). 

Thus, EGFP seems to be a weak antigen in C57BL/6 mice, such that in the 

context of tumor-driven immunosuppression it may not elicit significant T-cell responses, 

while in adjuvant settings (such as with viral vectors), both cellular and humoral 

responses can be generated. Because it is a weak antigen, EGFP may function in a 

similar manner as natural tumor antigens in advanced cancers, a context where multiple 

suppressive mechanisms prevent effector T-cell activity against tumor cells, but 

perturbation by immune stimulation can tip the balance to favor tumor clearance by 

cytotoxic effector T cells. These insights should be considered when interpreting results 

from Brpkp110 tumors because the translational relevance of my findings may only 

apply to patients with tumor antigens capable of eliciting T-cell responses. As such, it will 

be important for future work to analyze the efficacy of trametinib and IL-15 agonists in 

tumor models without foreign proteins. 

In addition to the potency of tumor antigens, it also seems that the clonality of 

antigens in tumors is important. Tumors with neoantigens present in all cells (clonal) 

tend to respond better to PD-1 and CTLA-4 blockade than those with subclonal 

neoantigens (McGranahan et al. 2016). Studies using clonal tumor cells, such as 
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presented here, may only be useful for extrapolating results to patients with clonal 

mutations. It may be possible for certain small molecules to enhance immunotherapeutic 

efficacy in subclonal tumors by activating antigen spreading, where dying tumor cells 

that contain previously unrecognized antigens elicit the expansion of naïve T cells into 

cytotoxic effectors. Small molecules that facilitate tumor cell death, enhance tumor cell 

antigen presentation, or promote the activation of APCs could potentially induce antigen 

spreading for synergy with immunotherapy. 

Novel insights into the host microbiota have led to increased appreciation for its 

influence on cancer growth and therapeutic outcome (Rutkowski, Stephen, et al. 2014; 

Viaud et al. 2013). In fact, the presence of certain bacterial species is required for the 

efficacy of CTLA-4 and PD-L1 blockade in mice (Vétizou et al. 2015; Sivan et al. 2015). 

Small molecule inhibitors may modulate the interaction between commensals and the 

immune system. Prokaryotes also signal through kinases that have homology in their 

catalytic domains to eukaryotic kinases (Pereira, Goss, and Dworkin 2011), so it would 

be interesting to know if any small molecule inhibitors demonstrate activity on 

commensal bacteria. Small molecules could also act on gut epithelial and immune cells 

to modulate the sensing of bacterial products by those cells. Because the microbiota is 

extremely important in regulating immunity, it is possible that important drug 

mechanisms will be found in the interactions between commensals and host. These 

mechanisms and their ability to determine the optimal categorization of patients for 

immunotherapy and targeted therapy combinations should be investigated.  

Developing better-quality personalized therapies also depends on the use of 

more relevant animal models for preclinical cancer studies. Although xenografts have 

the advantage of using human tumor cells, it is now evident that these models lack a 

critical biological component relevant to disease progression in many cancers. In this 
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regard, syngeneic mouse tumor cell lines are preferable because they allow the analysis 

of tumor growth in the presence of host adaptive immunity. Because of their ease of use 

and rapid, consistent tumor growth, transplantable syngeneic tumor cell lines are 

valuable in developing proof-of-concept studies. However, they fail to recapitulate the 

natural progression from transformation to malignancy and the heterogeneous nature of 

many tumors. Also, the injection of tumor cells in a bolus, which includes dead/dying 

cells, may induce an inflammatory reaction, thus priming the immune system in an 

artificial manner. For these reasons, studies should also be performed in more 

representative cancer models. 

Genetically inducible autochthonous models allow tumor initiation and 

development with knowledge of the precise molecular features driving tumorigenesis. In 

this thesis I describe a method for generating inducible, autochthonous breast cancer 

models in which the use of endocrine agonists is avoided and the precise timing of tumor 

initiation is known. The beauty of the Cre-Lox system is that any mutational combination 

can be developed, given that it is feasible to develop the desired genetic background 

through breeding. Another advantage is that adenovirus-Cre can be delivered in many 

locations to develop different cancers. Here I describe initiation of breast cancer by 

infection of mammary duct cells, but other researchers have used adenovirus-Cre to 

generate ovarian (Scarlett et al. 2012) and lung carcinomas (Jackson et al. 2001) and 

sarcomas (Rutkowski, Stephen, et al. 2014). This method of tumor initiation can be used 

to generate a variety of genetically distinct cancers to model the diversity observed 

clinically, and it will be important to determine if the mechanism of trametinib activity and 

the synergy with IL-15 agonists I observed here is similar in other tumor models. 

Most patients being treated with targeted and immunotherapies have metastatic 

disease. Thus, murine models of metastasis are more clinically relevant than primary 
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tumor models. Unfortunately, few genetically engineered mouse models recapitulate 

metastasis well (Saxena and Christofori 2013). Although the breast cancer model I 

describe here did not develop macroscopic metastases by the time that mice needed to 

be euthanized from the large primary tumor, I did observe dissemination of YFP+ tumor 

cells to the distal LN. It is possible that surgical resection of the primary tumor would 

allow time for the metastases to form tumors. This method might also allow the study of 

cancer dormancy, where tumor cells remain quiescent and undetected for long periods 

of time (sometimes many years in patients) before they switch into active tumor 

formation later. Cancer dormancy is an important aspect of cancer biology that has been 

difficult to study for obvious reasons. If surgical resection of this breast tumor model 

produced a period of dormancy, it would be fascinating to determine if trametinib and/or 

IL-15 agonists affected the length of dormancy or elimination of dormant cancer cells. 

Considering the many options provided by Cre-Lox engineered tumor models, future 

studies should be conducted to determine if the combination of trametinib and IL-15 

agonists is appropriate for clinical use, and if so, which patients are most likely to benefit 

from such therapy.  

 

CONCLUDING REMARKS 
 

In this thesis, I demonstrate that the immune system can contribute in important 

ways to the mechanisms of small molecule inhibitors. Although cancer biology and 

immunology operated as separate disciplines for many years, it is now clear from this 

work and the research of many others that the knowledge of immune mechanisms in 

cancer will be critical for designing optimal therapeutic strategies. And while tumor cells 

may still be the primary targets for inhibition by small molecules, modulation of signaling 
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pathways in leukocytes must be examined, including more comprehensive monitoring of 

immune readouts in clinical trials. In fact, it appears that there may only be a few classes 

of inhibitors that do not impact the immune system. Most inhibitors have been reported 

to affect at least some leukocytes, and several classes of inhibitors have broad activity 

on a wide range of immune cell compartments. Considering that the success of 

checkpoint inhibitors has kindled dreams of immunotherapies as first line interventions, 

research is urgently needed to identify drugs that perform well in not only 

immunocompromised mice, but also in the context of antitumor immunity. Looking 

forward, I see an optimistic future for the combination of small molecules and 

immunotherapies to usher in a new era of personalized cancer treatment. 
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