
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2014

Computational Modeling of Nanocrystal
Superlattices
Mehdi Bakhshi Zanjani
University of Pennsylvania, mehdibakhshi1987@gmail.com

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Mechanical Engineering Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1201
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Bakhshi Zanjani, Mehdi, "Computational Modeling of Nanocrystal Superlattices" (2014). Publicly Accessible Penn Dissertations. 1201.
http://repository.upenn.edu/edissertations/1201

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F1201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=repository.upenn.edu%2Fedissertations%2F1201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1201?utm_source=repository.upenn.edu%2Fedissertations%2F1201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1201
mailto:libraryrepository@pobox.upenn.edu


Computational Modeling of Nanocrystal Superlattices

Abstract
Nanocrystal superlattices (NCSLs) are materials formed by assembly of monodisperse nanocrystal building
blocks that are tunable in composition, size, shape, and surface functionalization. Such materials offer the
potential to realize unprecedented combinations of physical properties, however, theoretical prediction of
such properties remains a challenge. Because of the different length scales involved in these structures,
modeling techniques at different scales, from ab-initio methods up to continuum models, can be used to study
their behavior. This presents a challenge of understanding when and for which properties we can use
computationally inexpensive continuum or mesoscopic models and when we will have to use microscopic
models. Our goal here is to develop models that can predict phononic and thermal properties of different
NCSLs. This includes (1) predicting bulk mechanical properties of NCSLs such as Young's and bulk modulus
which are related to the behavior of low frequency acoustic phonons (2) predicting phononic band gaps
through finding phonon dispersion curves of NCSL (3) predicting thermal conductivity of NCSLs. We also
study the topic of one-way phononic devices that can possibly be implemented with acoustic metamaterials
such as NCSLs or phononic crystals in general. This idea of one-way phonon isolation is investigated in a
theoretical framework by considering systems such as acoustic waveguides and low dimensional materials.
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ABSTRACT

COMPUTATIONAL MODELING OF NANOCRYSTAL SUPERLATTICES

Mehdi Bakhshi Zanjani

Dr. Jennifer R. Lukes

Nanocrystal superlattices (NCSLs) are materials formed by assembly of monodisperse

nanocrystal building blocks that are tunable in composition, size, shape, and surface func-

tionalization. Such materials offer the potential to realize unprecedented combinations of

physical properties, however, theoretical prediction of such properties remains a challenge.

Because of the different length scales involved in these structures, modeling techniques

at different scales, from ab-initio methods up to continuum models, can be used to study

their behavior. This presents a challenge of understanding when and for which properties

we can use computationally inexpensive continuum or mesoscopic models and when we

will have to use microscopic models. Our goal here is to develop models that can predict

phononic and thermal properties of different NCSLs. This includes (1) predicting bulk

mechanical properties of NCSLs such as Young’s and bulk modulus which are related

to the behavior of low frequency acoustic phonons (2) predicting phononic band gaps

through finding phonon dispersion curves of NCSL (3) predicting thermal conductivity of

NCSLs. We also study the topic of one-way phononic devices that can possibly be imple-

mented with acoustic metamaterials such as NCSLs or phononic crystals in general. This

idea of one-way phonon isolation is investigated in a theoretical framework by considering

systems such as acoustic waveguides and low dimensional materials.

iv



Contents

1 Introduction 1

1.1 Experimental and Theoretical Background . . . . . . . . . . . . . . . . . . 1

1.2 Motivating Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Project Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Computational Models of NCSLs at Different Scales 6

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 First Principles Based Models . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Atomistic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Coarse Grained Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Continuum Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Mechanical and Thermal Properties of Nanocrystal Superlattices 15

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Mechanical Property Calculations . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

v



3.2.2 Atomistic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.3 Coarse Grained Model . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Thermal Conductivity Calculations . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Thermal Conductivity Calculation Using EquilibriumMolecular Dy-

namics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Thermal Conductivity of Lead Selenide NCSLs . . . . . . . . . . . 37

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Phononic Band Structure of Nanocrystal Superlattices 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Phononic Band Structure of NCSLs . . . . . . . . . . . . . . . . . . . . . 52

4.4 High Frequency Phonons in NCSLs: Atomistic Model Case Study . . . . . 61

4.4.1 Lattice Dynamics Model for Gold Nanocrystal Superlattice . . . . 62

4.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 One-way Phonon Isolation 67

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 One-way Phonon Isolation in Acoustic Waveguides . . . . . . . . . . . . . 68

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

vi



5.2.2 Governing Equations and Results . . . . . . . . . . . . . . . . . . . 70

5.3 NEMS With Broken T Symmetry: Graphene Based Unidirectional Acous-

tic Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Project Conclusions 89

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A Analytical Solution of SH Wave Equation In Presence of Spatio-Temporal

Modulation 93

B Analytical Solution of Graphene Nanoribbon Wave Equations 97

vii



Chapter 1

Introduction

1.1 Experimental and Theoretical Background

One of the exciting features of nanostructures is that matter organized at the nanoscale

may have properties significantly different from the common bulk materials. These inter-

esting size-dependent properties are related to a variety of physical phenomena such as

high surface to volume ratio and thermal effects [1, 2]. Nanocrystal superlattices (NCSLs)

constitute a novel type of nanoscale artificial solids whose properties are determined both

by individual nanocrystal building blocks and by their collective interactions [3]. Self-

assembly of monodisperse nanocrystals yields an enormously rich variety of superlattice

structures [3]. These superlattices are typically formed from assembly of building blocks

in the 1-10 nm size range, which then organize into larger domains with sizes around

hundreds of nanometer or even few microns. Figure 1.1 shows a schematic demonstra-

tion of NCSLs. The nanocrystals themselves consist of hundreds to thousands of core

atoms of one or two types, such as Au, Pb, Se, and Cd that are spaced angstroms apart
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and surrounded by long hydrocarbon chains of capping ligands such as oleic acid and

hexylthiol.

The unique properties of these materials may be fine-tuned to be used for specific

purposes. In order to be able to synthesize and manipulate matter at the nanoscale,

however, high precision tools and complicated synthesis methods are required in order

to measure and modify the physical and chemical characteristics of these nanostructures.

Several previous studies have successfully investigated the synthesis and experimental

characterization of nanocrystal superlattices of different shapes, sizes, and compositions

[4, 5, 3, 6, 7, 8, 9]. In these studies, TEM images show ordered structures of nanocrystals

extended over fairly large domains. Structural characterization of these superlattices show

a large variety of metamaterials with precisely controlled composition and tight placement

of components. Structural properties of nanocrystal superlattices have also been studied

theoretically through predicting energetically and entropically favorable arrangement of

nanocrystals based on models at different scales [10, 11, 9, 5]. However, other physical

properties such as mechanical, phononic, and thermal properties of these materials have

just been considered in limited previous studies [12, 13].

1.2 Motivating Applications

Colloidal semiconductor nanocrystals have attracted broad interest due to their compo-

sition, size, and shape tunability. They possess many interesting electronic and optical

properties [14, 15, 16] and have been used for applications such as transistors and cir-

cuits, light-emitting devices, photodetectors and solar cells [17, 18, 19, 20, 21]. Another
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Figure 1.1: A typical nanocrystal superlattice structure
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interesting and potentially immediate application for nanocrystals is in the area of ther-

moelectric materials [22, 23] to convert temperature differences to electric voltage and

vice-versa. The performance of a thermoelectric material is determined by the thermo-

electric figure of merit [24]

ZT =
S2σT

k
(1.2.1)

where S is the Seebeck coefficient, σ is the electrical conductivity, T is the tempera-

ture, and k is the thermal conductivity. In order to obtain better thermoelectric materials,

one strategy is to use nanostructures that reduce thermal conductivity without adversely

affecting the electrical conductivity. The ability to increase the electron mobility in thin

film nanocrystal superlattices which increases the electrical conductivity makes them suit-

able candidates for thermoelectric applications [8]. Additionally, nanocrystal superlattices

provide new directions in designing phononic interdimensional materials where the varia-

tions of matter density and sound velocity provides opportunities for introducing phononic

analogs of photonic behaviors such as waveguiding and bandgaps.

1.3 Project Overview

The goal of this dissertation is to develop models at different length scales to help predict

many interesting properties of nanocrystal superlattices. Computer models provide an

effective and flexible tool for discovery and optimization of new materials through com-

putational materials by design. As an alternative to conventional methods, computational

approaches can significantly reduce the development time and lead to materials of higher

performance and cheaper innovative products. With computer resources also becoming
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less expensive, numerical models, more than ever, provide an invaluable tool to investi-

gate and design new materials with better functionality. Predictive computer models are

therefore a useful tool for understanding the mechanisms and the physics behind different

phenomena involving NCSLs. With the limited previous efforts invested in studying ther-

mal and phononic properties of NCSLs [12, 13, 25], this work will focus on understanding

theoretical aspects of phonon transport in NCSLs using computational models. Chapter

2 discusses models at different scales that are useful for understanding the behavior of

nanocrystals. First principles calculations based on ab-initio models are introduced cor-

responding to the smallest length scales present in these structures. Atomistic models are

the next level where individual or groups of atoms are considered as the building blocks

of the system with the atomic interactions described based on empirical or ab-initio based

force fields. The fully coarse grained and continuum models are described next, where

neglecting faster degrees of freedom helps us study systems with much larger number

of atoms. In chapter 3, mechanical and thermal properties of nanocrystal superlattices

are studied using these different modeling techniques. Chapter 4 focuses on phononic

properties of nanocrystal superlattices. Nanocrystals of different shapes and superlattices

with different structures are shown to provide interesting phononic properties for appli-

cations such as waveguiding and bandgaps that involve manipulating phonons. Finally,

in chapter 5 the concept of one-way phonon transport is discussed. Motivated by optical

equivalents, the design of a one-way phonon isolator and its implementation in systems

such as acoustic waveguides and graphene nanoribbons is presented.

5



Chapter 2

Computational Models of NCSLs

at Different Scales

2.1 Overview

As discussed in Chapter 1, in order to study the behavior of NCSLs, we need to pay

attention to various phenomena at different length/time scales. If the internal struc-

ture of nanocrystal building blocks is being considered, atomic scale or ab-initio models

are required to study individual atoms. Moving to larger scales, the superlattice can

also be considered as an assembly of coarse grained particles that represent individual

nanocrystals. NCSLs can also be studied by considering continuum level approximation

for the superlattice film. In this chapter, we discuss models for NCSLs at different scales.

First principles based and atomistic demonstration of these materials are introduced first.

Next, coarse grained models are explained. Finally, continuum models that can be used

to study different properties of the superlattices are discussed.
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2.2 First Principles Based Models

Ab-initio methods have been established and used frequently to study systems with small

number of atoms [26]. Such methods calculate material properties from first principles

by solving quantum-mechanical Schrödinger or Dirac equations numerically. Ab-initio

methods are capable of producing information on electronic, structural, mechanical, and

thermal behavior of different materials[26]. They can also predict different properties

accurately without the need to any input or empirical data fitting. These methods are

nonetheless computationally expensive and can only be used for small number of atoms,

i.e. for applications where the desirable behavior can be approximated with a small sized

unit cell.

One of the efficient methods to solve the required quantum mechanical equations

is density functional theory (DFT). DFT has evolved into a practical method to study

properties of many-electron systems from the original work of Hohenberg and Kohn [27].

The theoretical basis of their work is based on two fundamental theorems[27]: first, for

any system of interacting particles in an external potential, the potential is determined

uniquely, except for a constant, by the ground state particle density. Second, a universal

functional for the energy expressed in terms of particle density can be defined which is

valid for any external potential. The global minimum value of this functional is the exact

ground state energy of the system and the corresponding particle density is the exact

ground state density.

In the Kohn-Sham [28] formulation of DFT, the total energy of an electronic system
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is given by

E[n] =
∑
α

ϵα − 1

2

∫
n(r)n(r′)

|r − r′|
drdr′ + Exc[n]−

∫
δExc

δn(r)
n(r)dr (2.2.1)

where n(r) is the electron density, Exc is the exchange and correlation energy [29], ϵα

are the eigenvalues of the Kohn-Sham equation, H|ψα⟩ = ϵα|ψα⟩. The self consistent

Hamiltonian in an external field vext, is given by

H = −1

2
▽2 + vext +

1

2

∫
n(r)n(r′)

|r − r′|
drdr′ + Exc[n] (2.2.2)

The ground state density of the system is n(r) =
∑
α
ψ∗
α(r)ψα(r).

Later on, in order to improve the efficiency of DFT calculations and to find more

effective ways to calculate the first-order and second-order corrections to the wavefunction

and energy respectively, Baroni et al. introduced the use of perturbation theory in DFT

[30]. In this work, we use the Density-Functional Perturbation Theory (DFPT) framework

as implemented in the Quantum-ESPRESSO package [31] to calculate interatomic force

constants, the second order derivatives of energy with respect to atomic displacements,

which are then directly used to calculating phonon dispersion relations. This involves

performing self-consistent electronic structure calculations followed by the calculation of

the dynamical matrix on a grid of k-vectors [31].

2.3 Atomistic Models

Atomistic models typically use empirical or ab-initio based force fields together with

statistical mechanics to determine thermodynamics and transport properties [32]. Such

methods can be used to understand the microscopic structure of more complex systems

8



with up to millions of atoms. They also facilitate the study of dynamical processes on

longer timescales up to microseconds. The results are however dependent on the quality

of the force fields used to represent the systems.

Molecular dynamics (MD) is a popular technique used in atomistic simulations [32]. In

MD simulations, the forces between the particles are obtained from interatomic potentials

and then equations of motion based on Newton’s second law are solved numerically to

determine the positions and velocities of the particles at different times by assuming

appropriate initial positions and velocities for the particles inside the simulation box.

The timesteps suitable for the numerical integration in such simulations are typically

around few femto seconds for typical solids.

More specifically, the governing equations are written in the form of Newton’s second

law of motion,

Fi = mi
d2ri
dt2

(2.3.1)

Where mi is the mass of particle i, ri is the particle position, and Fi is the total force

acting on the particle. The assumption of conservative radial forces between the particles,

leads us to a potential function and a simplified equation

Fi = − du

dri
(2.3.2)

where u is the potential energy function. A popular choice for the interaction energy

is the Lenard-Jones potential function, also referred to as the L-J potential, or the 6-12

potential. This is a mathematically simple model that describes the interaction between

a pair of neutral atoms or molecules as

9



u(r) = 4ϵ{(σ
r
)12 − (

σ

r
)6} (2.3.3)

Using this equation we can compute the corresponding forces,

F(r) = 48
ϵ

σ
{(σ
r
)13 − 0.5(

σ

r
)7} (2.3.4)

where ϵ is the depth of the potential well, σ is the (finite) distance at which the inter-

particle potential is zero, and r is the distance between the particles.

After calculating the forces using the specific potential energy, we should integrate

the equations of motion in order to find the trajectory and velocity of different particles.

There are many different numerical techniques available to perform this integration. one

standard method is the Verlet algorithm [32] where the calculations are based on position

and acceleration at time t (r(t) and a(t)) and the position at time t + dt (r(t + dt)).

Modifying this method, using the leap frog scheme, will result in a better method, with

lower round-off errors, called the velocity Verlet method. This algorithm takes the form

ri(t+ dt) = ri(t) + dtvi(t) +
1

2
dt2ai(t) (2.3.5)

vi(t+ dt) = vi(t) +
1

2
dt[ai(t) + ai(t+ dt)] (2.3.6)

The algorithm involves two stages. First, using the previous equation, we calculate

the new positions and the velocities at mid step

vi(t+
1

2
dt) = vi(t) +

1

2
dtai(t) (2.3.7)

Then the accelerations(forces) at time t + dt are calculated based on the new positions

10



Figure 2.1: Atomistic model of a functionalized nanocrystal

and then the velocities at time t+ dt are computed by means of

vi(t+ dt) = vi(t+
1

2
dt) +

1

2
dtai(t+ dt) (2.3.8)

At this point the correct velocity (also the correct kinetic energy or temperature) at time

t + dt is in hand. By using similar techniques we can numerically solve the equations of

motion for a system of atoms and calculate different properties of the system accordingly.

For studying the behavior of nanocrystal superlattices, such models will include the

individual core and ligand atoms as separate units. An example atomistic model for a

spherical nanoparticle covered with ligands is shown in Figure 2.1.

2.4 Coarse Grained Models

In coarse grained models, groups of atoms are considered as one entity and therefore the

number of degrees of freedom are reduced. In other words, coarse grained models provide

simplified versions of atomistic models by removing the faster degrees of freedom. Such

models can be used to study systems with up to a billion atoms for timescales up to a few

seconds. The most important and challenging aspect of coarse grained models is finding

11



Figure 2.2: Coarse graining a nanocrystal

effective interaction potentials that describe the forces between the groups of atoms that

form the coarse grained particles.

For modeling nanocrystal superlattices, different levels of coarse graining may be im-

plemented. The core atoms could be considered as solid units while ligand atoms are

considered individually [33]. Ligand atoms themselves can also be coarse grained in dif-

ferent manners [34]. However, all these partial coarse grained models will still require

some level of atomic detail and can be computationally expensive. On the other hand,

fully coarse grained models of NCSLs consider each nanocrystal as one individual unit

as shown in Figure 2.2. Such models are computationally much cheaper and prove to be

useful if the interactions between nanoparticles are described accurately.

2.5 Continuum Models

Continuum models assume that matter is continuous and treat the properties of the

system as field quantities. We can then numerically solve balance equations coupled with

phenomenological equations to predict the properties of the system. Such methods can in

principle handle systems of any size and dynamic processes on long time scales. However,

12



Medium 1

Medium 2

Figure 2.3: Representation of NCSLs with continuum models where medium 1 and

medium 2 respresent the core and ligands respectively.

they require inputs from experiments or from lower scale methods and cannot explain

phenomena that depend on electronic, atomic or molecular levels of detail.

In dealing with NCSLs, as sketched in Figure 2.3, one can approximate the superlattice

domain as the combination of two different types of material representing the core and the

surrounding ligands. By using appropriate properties for the different domains and solving

the continuum equations either analytically or numerically, problems such as acoustic or

electromagnetic wave propagation in such materials can be studied.

2.6 Summary

In summary, different modeling techniques can be used to study NCSLs, from ab-initio

models all the way up to continuum models. Such models have different accuracy in

predicting the properties of NCSLs as well as their different computational costs. Because

of the complicated nature of NCSLs, it is very important to understand when each of these

modeling techniques can be used. In the following chapters, therefore, we determine and

13



use the most appropriate modeling technique based on the specific property being studied.

We also discuss the conditions under which the use of each specific modeling technique is

reasonable.

14



Chapter 3

Mechanical and Thermal

Properties of Nanocrystal

Superlattices

3.1 Overview

Computational models at different scales provide a useful tool to study different properties

of nanocrystal superlattices. In this chapter, mechanical and thermal properties of NCSLs

are studied. First, we study mechanical properties by calculating elastic moduli of NCSLs

using atomistic and coarse grained models. The elastic moduli incorporate properties of

low frequency acoustic phonons which are important in thermal transport. Evaluation

of the accuracy of different computational models in predicting mechanical properties

of NCSLs will provide valuable insight in using suitable models for calculating thermal
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properties. Thermal conductivity of NCSLs is then studied using appropriate atomistic

and first principles based computational models.

3.2 Mechanical Property Calculations

3.2.1 Introduction

While many studies have focused on the structural properties of NCSLs, limited studies

have been performed to determine their mechanical properties. A few groups probed such

properties experimentally. Podsiadlo et al. reported elastic moduli for different kinds

of 2D and 3D NCSLs [35]. Yin et al. used nanoindentation to measure elastic moduli

of a monolayer of colloidal hollow silica nanoparticles [36]. Tam et al. reported elas-

tic properties of PbS nanocrytals [37]. Marquardt et al. measured elastic properties of

MgO nanocrystals at high pressures [38]. Computer simulations provide another route

to obtain mechanical properties of NCSLs [39] with the advantage that a wide variety

of nanocrystal sizes, shapes and capping ligands can be explored to identify NCSL with

desired mechanical properties. A key ingredient of such simulations is the model used

to represent the interactions between the NCSLs. In the only theoretical study of NCSL

mechanical properties to date, Landman and Luedtke [39] used molecular dynamics sim-

ulations [32] to calculate elastic moduli of gold NCSLs by considering an atomistic model

for the ligands and a single rigid core of gold. The disadvantage of using fully atom-

istic methods for modeling NCSLs is that it is computationally very expensive to model

these systems directly. For example, a superlattice of 108 nanocrystals of 4nm diameter

CdSe capped with hexylthiol contains more than 100,000 atoms. For these reasons, most
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previous theoretical studies of NCSLs have been based on simpler coarse grained models

in the form of an effective potential energy for the nanocrystal-nanocrystal interaction

[10, 3, 40, 41]. Such a model neglects the internal details of the nanocrystals but enables

treatment of a larger number of nanocrystals.

The use of modeling to calculate physical properties of NCSL systems is still in its

early stages. Modeling can provide a valuable complement to experimental methods for

predicting bulk and local properties of NCSLs, provided that the models are validated

against known material properties. In this section, we investigate the accuracy of previ-

ously proposed atomistic and coarse grained models for CdSe nanocrystals by comparing

properties calculated from these models for CdSe NCSLs to those measured experimen-

tally. Specifically Young’s and bulk moduli are computed. We also investigate the depen-

dence of NCSL elastic properties on size: both the size of nanocrystal and the size of the

entire NCSL array. Finally, we use continuum effective medium theory to study the size

dependence of the moduli and compare the observed trends to those predicted from the

atomistic model.

3.2.2 Atomistic Model

Model details and computation of mechanical properties

Molecular dynamics simulations are performed to calculate elastic moduli of CdSe NCSLs

structures as a function of CdSe core size. CdSe nanocrystals functionalized with organic

capping ligands are the building blocks of the superlattice [42, 43]. The interactions

between the core atoms (Cd and Se) are best described by a combination of Lennard-
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Jones and Coulomb forces developed by Rabani [44]

Uij(rij) = ULJ + UCoulomb (3.2.1)

where

ULJ = 4ϵ

[
(
σ

rij
)12 − (

σ

rij
)6
]

(3.2.2)

and

UCoulomb = C
qiqj
rij

(3.2.3)

where rij is the distance between atoms i and j, qi and qj are the charges on atoms i and

j, C is a constant depending on the units used and σ and ϵ are Lennard-Jones potential

parameters [32]. The LJ parameters for Cd and Se are obtained from Reference [44] . A

cut off radius of 10Å was used for the LJ potential.

In this study, we consider nanocrystals with hexylthiol (C6SH) capping ligands. For

ligand molecules, CH2 and CH3 groups are considered as pseudoatoms and treated as one

point particles in MD simulations [45, 43]. Also, hydrogen atoms in the SH group are mod-

eled as point charges. These point particles interact via intermolecular and intramolecular

forces. Intermolecular interactions are modeled as the sum of LJ and Coulomb terms. LJ

cross terms are obtained from arithmetic and geometric averages for σ and ϵ, respectively

[43]. The partial charges for different (pseudo)atoms are listed in the literature [42, 43].

Within the ligand molecules, the atoms interact via bond stretch, bond angle and tor-

sional forces. The appropriate expressions and parameters for these intramolecular forces

are described in the TraPPE [45] force field. Additionally, atoms that are separated by

more than three bonds interact via intermolecular Coulomb and LJ interactions [45].

In a molecular dynamics simulation the elastic properties of the system can be studied
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by applying appropriate strains to the system and calculating the resulting stresses. The

Young’s modulus (E) of a nanocrystal superlattice describes the slope of the stress-strain

curve in the linear regime. We calculated the Young’s modulus by applying a uniaxial

strain (ϵxx) to the superlattice and calculating the resulting axial stress (Txx) [46, 47].

The stress tensor at the atomic level is calculated by [47]

T = − 1

V

 ∑
atom i

mivi ⊗ vi +
1

2

∑
atom i

∑
atom j ̸=i

Fij ⊗ rij

 (3.2.4)

where T is the stress tensor, V is the volume of the system and r, v and F are the

position, velocity and force vectors. To calculate the stress-strain curve, we applied a

small strain in the x direction and then let the system relax while keeping the stress in y

and z directions fixed at zero. The resulting axial stress Txx was then calculated. We also

calculated the bulk modulus (B). Bulk modulus B = − ∆p
∆V/V is calculated by applying

gradually increasing strain uniformly in x,y, and z directions and calculating the resulting

pressure p which is equal to the negative diagonal elements of the stress tensor.

Initialization of individual nanocrystals and nanocrystal superlattices

CdSe nanocrystals were prepared by cutting out a sphere with a given radius from a bulk

CdSe wurtzite lattice [42, 43]. We then imported these initial structures into LAMMPS

[48] and let the structure relax using a steepest descent minimization algorithm. Next,

we created single capping ligand molecules of C6SH. To do so, we used Chimera [49] to

obtain an initial configuration of the atoms for each ligand molecule and then optimized

the geometry by performing energy minimization. The ligand molecules were then added

to the core one by one and energy minimization was performed each time to relax the

system [42]. Passivated nanocrystals were then used to create superlattices by placing
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Figure 3.1: Superlattice structure of CdSe nanocrystals. (a) CdSe core. (b) CdSe

nanocrystal with hexylthiol ligands. (c) FCC nanocrystal superlattice structure.

them at the positions of the desired superlattice unit cell. Here we placed passivated

CdSe nanocrystals at positions of a face-centered cubic structure (Figure 3.1). The lattice

constant chosen initially is large enough so that there is no interaction between different

cores. Next, constant pressure simulations of the superlattice system are performed by

applying a gradually decreasing external pressure to allow the nanocrystals to form a

close packed structure [39]. Periodic boundary conditions were used in these simulations.

Finally the system is equilibrated at zero pressure. The temperature is kept constant (300

K) using the Nose-Hoover thermostat [32]. A time step of 2 fs is used in the simulation and

the equilibration takes about 5ns. After this final equilibration the superlattice system is

ready for further studies to calculate elastic properties.
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3.2.3 Coarse Grained Model

In the coarse grained model of NCSLs each nanocrystal plus the capping ligands is con-

sidered as a single spherical unit interacting with other nanocrystals (Figure 2.2). The

pairwise interaction energy for nanocrystals in a superlattice has been described previ-

ously as summation of repulsive, van der Waals and electrostatic interactions [10, 6].

U(r) = UvdW (r) + Uelectrostatic(r) + Urepulsive(r) (3.2.5)

where r is the center to center distance of the nanocrystals.

The van der Waals forces are attractive forces between nanocrystals described by [50]

UvdW (r) = −A
6
[

2a1a2
r2 − (a1 + a2)2

+
2a1a2

r2 − (a1 − a2)2
(3.2.6)

+ ln

(
r2 − (a1 + a2)

2

r2 − (a1 − a2)2

)
]

A is the Hamaker constant and a1 and a2 are the radii of the two nanocrystals. The

electrostatic forces arise from the interaction between charges and permanent and induced

dipoles [51]

Ucharge−charge =
q1q2

4πϵ0ϵr r
(3.2.7)

Ucharge−dipole =
1

4πϵ0ϵrr2
(p1 · r̂q2 − p2 · r̂q1) (3.2.8)

Ucharge−induceddipole = − q21α2 + q22α1

2(4πϵ0ϵr)2r4
(3.2.9)

Udipole−dipole =
1

4πϵ0ϵrr3
[p1 · p2 − 3(p1 · r̂)(p2 · r̂)] (3.2.10)

Udipole−induceddipole =
−[p22α1(1 + 3(p̂2 · r̂)2) + p21α2(1 + 3(p̂1 · r̂)2)]

2(4πϵ0ϵr)2r6
(3.2.11)

Here r is the vector connecting nanocrystals 1 and 2, q1 and q2 are the net charges,

p1 and p2 are the dipole moments, and α1 and α2 are the dipole polarizabilities of
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nanocrystals 1 and 2. The short range repulsive forces between nanocrystals are usually

estimated by the equation proposed by de Gennes [52, 53]

U steric
R =

100Sδ2

(r − 2S)πσ2l
k T exp

(
−π(r − 2S)

δ

)
(3.2.12)

where S = 2a1a2
a1+a2

is a factor related to the nanoparticle radii, δ is the apparent thickness of

the ligand shell around the nanocrystal core, and σl is the diameter of the area occupied

by the ligand on the particle surface.

The coarse grained nanocrystals were set up in an FCC lattice. The Hamaker constant

A, the dipole moments and the electronic polarizability of CdSe nanocrystals are obtained

from previously reported data [54, 10, 42]. ϵr ≃ 2 was used based on reported values in the

literature [10]. Here the charge-charge and charge-(induced)dipole terms vanish because

the nanocrystals do not carry a net charge. In order to avoid dealing with quantities that

are too big or too small, we scaled all of the parameters according to Table 3.1 using

the Hamaker constant (A) as the energy unit, the diameter of the nanocrystals (d) as

the length unit, and the mass of the nanocrystal (m) as the mass unit. Since we only

have one type of nanocrystal in each superlattice, a1 = a2 = d
2 or a∗1 = a∗2 = 1

2 in the

nondimensional form for the UvdW term.

To calculate Young’s and bulk moduli of CdSe NCSL from the coarse grained model,

a simple approach based on the deformation of the NCSL can be used. Applying varying

amounts of deformation to the NCSL leads to a quadratic variation of energy. The

curvature of the energy-strain curve yields the elastic moduli [46].
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Table 3.1: Dimensionless Quantities

Quantity Dimensionless Form

Length L∗ = L/d

Energy U∗ = U/A

Force F ∗ = Fd/A

Stress S∗
ij = Sijd

3/A

Time t∗ = t
d

√
A
m

Charge q∗ = q√
4πϵ0dA

Polarizability α∗ = α
4πϵ0d3

Electric Dipole p∗ = p√
4πϵ0d3A

3.2.4 Results

Figure 3.2 shows the values of Young’s and bulk moduli calculated from atomistic models.

As simulation box size is known to affect MD results when the box is too small, we

investigate this effect on Young’s and bulk moduli for cubic arrays of NCSL with 32,

108, and 256 nanocrystals (Figure 3.3) that have equal box size in all dimensions. There

is negligible dependence on NCSL array size, with a maximum error of less than 4%

observed for the 32 nanocrystal case as compared to 256 nanocrystal case. As the 108

nanocrystal results are substantially the same as those for 256 nanocrystals with much

smaller computational cost, all reported results here are for the array size of 108.

Young’s and bulk moduli were also calculated from coarse grained models for different

sizes of nanocrystals and the results are shown in Figure 3.4.
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Figure 3.2: Young’s and bulk moduli of CdSe NCSLs with different core sizes calculated

from atomistic models
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Figure 3.3: Young’s (left) and bulk (right) moduli calculated from atomistic models for

NCSL arrays of different sizes
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model

3.2.5 Discussion

The elastic moduli calculated using the atomistic model ranged from 3 to 5 GPa for CdSe

core sizes between 2.5 and 5 nm. These values agree well with experimental measurements

on nanocrystal assemblies [35, 36, 37] and with previous calculations of elastic properties

of gold nanocrytals [39]. Podsiadlo et al. reported elastic moduli of a few GPa for 4.6 nm

CdSe NCSLs[35]. Yin et al. reported values between 2 and 8 GPa for elastic moduli of

a monolayer of colloidal hollow silica nanoparticles [36] . Tam et al. reported a Young’s

modulus of 1.7GPa for PbS nanocrytals [37]. Landman and Luedtke [39] reported elastic

moduli values between 1 to 8 GPa for gold NCSLs.

Notably, the Young’s and bulk moduli both demonstrate a clear increase with CdSe

core size. A similar size dependence has been observed by Podsiadlo et al. [35]. To

understand such a trend, we compare these results to those computed using effective

medium theory [55]. Effective medium theory is a macroscopic approach used to estimate

the effective elastic moduli of a composite system in terms of the properties and volume
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fractions of its constituents. Considering the NCSL as a combination of core and ligand

atoms, we calculated upper and lower bound estimates of Young’s and bulk moduli from

the Voigt-Reuss effective medium model (Figure 3.5). The Voigt-Reuss model is a simple

model that gives wide upper and lower bounds for possible values of elastic moduli. The

upper bound (Voigt) is found by assuming that the strain is everywhere uniform and the

lower bound (Reuss) is found by assuming that the stress is everywhere uniform

MV oigt =
∑

fiMi (3.2.13)

M−1
Reuss =

∑ fi
Mi

(3.2.14)

Here fi and Mi are the volume fraction and modulus of constituent i. For CdSe NCSLs

the two constituents of the system are the CdSe core and the hexylthiol ligands. We used

average values of 50 GPa and 49 GPa for Young’s and bulk moduli of bulk CdSe [44].

Young’s and bulk moduli of the ligands constituents are not reported in the literature,

so we estimate them as 3 GPa and 2.9 GPa respectively, from the elastic properties

of bulk polymer chains [56]. It is evident that the effective medium model overpredicts

elastic moduli, with the upper and lower bounds both exceeding the MD-calculated values.

More accurate models such as that by Hashin and Shtrikman [57] or those incorporating

geometrical information [58, 59, 60] yield narrower bounds within those of Voigt-Reuss.

The differences between effective medium and MD predictions indicate that atomistic

features neglected in the effective medium models, such as the dependence of the moduli

of individual nanocrystals on size and the details of the interface, may play an important

role in determining the moduli of NCSL. In general the elastic moduli of nanostructures

can either increase or decrease when the size of the nanostructures is reduced[61, 62, 63].
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Figure 3.5: Effective medium theory prediction of elastic moduli of CdSe NCSLs.

No clear evidence of size dependence on individual nanocrystal moduli is found in the

present results for aggregate NCSL moduli, as the NCSL moduli increase with core size.

However, the core volume fraction also increases with core size, so it is possible that

reduction of individual nanocrystal moduli is occurring but that this effect is more than

compensated by the increased volume fraction of higher-modulus (relative to the ligands)

nanocrystals. A more likely reason for the differences between effective medium and MD

model predictions is that the details of the ligand-nanocrystal interface are important for

determining the elastic properties of NCSLs. This is consistent with recent findings about

thermal properties of NCSLs, which indicate that the interface, rather than the core is

dominant [12].

Coarse grained calculations of elastic moduli, similarly to atomistic calculations, show

a clear increase with core size. The increase is slightly more pronounced: it is roughly 30%

for an increase of core size in the range 2.5 - 5 nm for compared to about 14-20% calculated

with the atomistic model. However, the absolute values, for example E = 0.02 GPa and B

= 0.01GPa for 4.6nm core sizes, are two orders of magnitude lower than both our atomistic
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results and previously reported results from other groups. This indicates that the typical

coarse grained models used in studying structural characteristics of nanocrystals[6, 10]

are not effective in predicting elastic properties of NCSLs. One reason for this may

be that higher order electrostatic interaction terms such as quadrupole moments, which

become increasingly important at small nanocrystal spacing, are neglected in such models.

Another reason may be that the ligand-ligand and ligand-core interactions are incorrectly

represented in the coarse grained models, which assume only repulsive interactions and

neglect attractions between ligands that could significantly increase the cohesion between

nanocrystals and thus increase the moduli of the NCSL. One of the main advantages of

coarse grained models is the rather simple form of interactions, but finding pair potentials

that appropriately represent higher order electrostatics and ligand-ligand interactions is

difficult [64]. Thus, for accurate computations of NCSL elastic properties, it is necessary

at this time to use computationally expensive atomistic models rather than simpler coarse

grained models.

3.3 Thermal Conductivity Calculations

3.3.1 Introduction

Thermal management is an important task in realizing practical applications of NCSLs

in areas such as electronics and optics [14, 15, 16] since high operating temperatures

could degrade device performance and lifetime. Thermal conductivity describes the abil-

ity of a material to dissipate heat; for this reason, understanding and predicting thermal

conductivity of NCSLs is an integral part of understanding their practical applications.
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Additionally, for evaluating NCSLs as high performance thermoelectrics [22, 24], thermal

conductivity calculations are required. Computer simulations offer significant promise for

predicting thermal properties because they enable rapid exploration of a wide parameter

space of nanocrystal sizes, shapes, materials, and capping ligands. Regarding thermal

conductivity calculations, quantum dot superlattices have been previously studied theo-

retically and experimentally [65, 66, 67]. Ong et al. [12] reported the first experimental

and theoretical studies of the thermal conductivity of NCSL, using frequency-domain

thermoreflectance measurements and nonequilibrium method thermal conductivity cal-

culations on one-dimensional chains of nanocrystals. While their thermal conductivity

model predicted results qualitatively similar to the experimental results, no quantitative

predictions for 3D bulk NCSL thermal conductivity can be made from such a model due

to its simplified 1D nature. Hence there is a need to develop more realistic models that

capture the full 3D geometrical configuration of the NCSL.

Here two different types of NCSLs are studied for thermal conductivity calculations.

First, we study thermal conductivity of NCSLs that are fully covered with ligands which

are in general important thermal materials but due to the low electron mobility are not

particularly appropriate for thermoelectic applications. Since we showed that the coarse

grained models underpredict NCSL elastic moduli, it is expected that atomistic rather

than coarse grained models will be required to calculate accurate phononic and ther-

mal properties. A key ingredient of such simulations is the model used to represent the

interactions between the nanocrystals, which needs to describe core-core, ligand-ligand,

and core-ligand atomic interactions [42, 68]. Using suitable interaction potentials, atom-

istic simulations can be very helpful in predicting different properties of nanocrystal su-
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perlattices. Here, we use three dimensional fully atomistic models to calculate thermal

conductivity of nanocrystal superlattices. We use molecular dynamics (MD) simulations

with the Green-Kubo method to calculate thermal conductivity of spherical NCSLs of

different size and surface ligand density. Next, we consider NCSLs with different shapes

and compositions and compare empirical potential and first principles based predictions

of thermal conductivity. The second category of NCSLs that are considered in thermal

conductivity calculations are those with higher electron mobility [8] which are suitable for

thermoelectrics. We use a parallel thermal resistance model and compare empirical po-

tential calculations with first principles based models for predicting thermal conductivity

of octahedral lead selenide NCSLs.

3.3.2 Thermal Conductivity Calculation Using Equilibrium Molecular

Dynamics

Details of Atomistic model

In this study we consider gold nanocrystals with hexylthiol (C6SH) capping ligands. First,

a single nanocrystal is constructed. The gold core of this nanocrystal is built by cutting

a spherical domain out of face-centered cubic gold crystal. The ligand chains are added

by placing them close to the surface of the core. The pair potential functions for the

interactions between different core and ligand atoms in a nanocrystal were obtained from

Ref. [68]. For the ligand chains, bond stretch (Us), bond bending (Uθ), and torsion (Uτ )

interactions are considered as the following terms
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Us =
1

2
ks(r − ro)

2 (3.3.1)

Uθ =
1

2
kθ(θ − θo)

2 (3.3.2)

Uτ =

5∑
i=0

ai cos
i(ϕ) (3.3.3)

where r is the bond length, θ is the bending angle, and ϕ is the dihedral angle. For

the nonbonded interactions, a combination of Lennard-Jones (ULJ) potential with the

Lorentz-Berthelot mixing rule used [32] and Morse (UM ) potential is used.

ULJ = 4ϵ

[
(
σ

rij
)12 − (

σ

rij
)6
]

(3.3.4)

UM = De[(1− exp(−a(rij − rmo)))
2 − 1] (3.3.5)

The constant parameters used for different bonded and nonbonded interaction potentials

are listed in Table 3.2.

The structure of the nanocrystal is relaxed for 1 ns at 300 K using MD simulations

in LAMMPS [48] with a time step of 5 fs. The final relaxed structure is shown in Fig

3.6 (a). Each nanocrystal consists of 688 Au atoms and is passivated by 72 hexylthiol

capping ligand chains.

The thermal conductivity, k, is determined using the Green-Kubo approach, which

predicts k for an isotropic material by relating the dissipation of thermal fluctuations in

an equilibrium system to its thermal conductivity [69, 70]

k =
1

3kbV T 2

∞∫
0

⟨J(t) · J(0)⟩ dt (3.3.6)
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Table 3.2: Potential function parameters used in MD simulation of gold NCSLs

Quantity value

ks (for both S-C and C-C bonds) 14.00 eV/Å2

ro (S-C bond) 1.815 Å

ro (C-C bond) 1.523 Å

kθ (for both S-C-C and C-C-C angles) 5.388 eV/rad2

θo (S-C-C angle) 114.4

θo (C-C-C angle) 109.5

Torsion parameter a0 0.09617 eV

Torsion parameter a1 0.125988 eV

Torsion parameter a2 -0.13598 eV

Torsion parameter a3 -0.0317 eV

Torsion parameter a4 0.27196 eV

Torsion parameter a5 -0.32642 eV

ϵLJ/σLJ : C-C 0.00513 eV / 3.914 Å

ϵLJ/σLJ : S-S 0.01724 eV / 4.250 Å

ϵLJ/σLJ : Au-Au 0.001691 eV / 2.934 Å

De: Au-Au 0.475 eV

De: Au-S 0.380 eV

a/rmo: Au-Au 1.583 Å−1 / 3.0242 Å

a/rmo: Au-S 1.470 Å−1/ 2.650 Å

32



where kb is the Boltzmann constant, J is the heat current, V is the volume of the simulation

cell, T is temperature, t is time, and ⟨J(t) · J(0)⟩ is the heat current autocorrelation

function(HCACF). To calculate thermal conductivity using this method, we first construct

the superlattice. This is done using the procedure of Landman and Luedtke [39], in which

a single relaxed nanocrystal (Fig. 3.6 (a)) is replicated in a face-centered cubic lattice.

The superlattice structure is equilibrated using the NPT ensemble in MD for 5 ns at 300

K to form the final structure shown in Fig. 3.6 (b).

Large oscillations in the heat current autocorrelation function are observed as a result

of the relative motion of bonded atoms and the high frequency of such oscillations is

indicative of optical phonons [71, 72, 73]. The time integral of the HCACF converges

to yield the value of thermal conductivity k (Eq. 3.3.6). Eight independent simulations

using different initial velocities for atoms inside the system were performed for a 3×3×3

superlattice in order to get a good sampling of the phase space. The HCACFs were

integrated up to 6 ns resulting in an average value of k = 0.25W/m-K with a standard

error of 0.03W/m-K. This value falls within the 0.1-0.4 W/m-K range experimentally

measured for various types of NCSLs [12]. It is also close to the thermal conductivity

of the passivating hexylthiol ligands, which is reported to be around 0.15 W/m-K. [74]

More specifically a value of k ≃ 0.18 W/m-K with an error bar of about 0.04 W/m-K

was reported for gold nanocrystal with n-dodecanethiol ligands which are almost two

times longer than the ligands used in our simulations. The slightly lower reported values

compared to our results is expected since longer passivating ligands will further increase

the dominance of the thermally insulating components and, therefore, result in NCSLs

with lower thermal conductivity. Reported values of quantum dot superlattice thermal
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(a) (b)

Figure 3.6: (a) Single 2.8 nm gold nanocrystal capped with 72 hexylthiol ligands. Orange

particles are the core gold atoms, blue particles represent CH2 and CH3 groups, and green

particles are the sulfur atoms of the capping ligands. (b) A 4× 4× 4 face-centered cubic

configuration of 2.8nm diameter gold nanocrystals with hexylthiol ligands used in MD

simulations. The black box shows the top view of a conventional unit cell of the FCC

superlattice.
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Figure 3.7: Dependence of thermal conductivity on the simulation box size for 2.8nm gold

nanocrystal superlattice.

conductivities [65], on the other hand, are orders of magnitude higher (8-12 W/m-K)

which is due to the absence of passivating organic ligands.

We also investigated the dependence of thermal conductivity on the simulation box

size for sizes ranging from 2 × 2 × 2 to 4 × 4 × 4 FCC unit cells. Finite size effects can

artificially reduce the computed values of thermal conductivity by disallowing phonons

with wavelengths larger than the simulation box size [75, 76]. A simulation is considered

converged at and above the size when the computed thermal conductivity shows no size

dependence. As shown in Fig. 3.7, even the smallest 2 × 2 × 2 box sizes are converged.

Within error, there is no dependence of thermal conductivity on box size. This result is

compatible with previous studies of elastic properties of nanocrystal superlattices [77, 39]

which also show no box size dependence.
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Effect of core size and surface coverage on thermal conductivity

We followed the same steps discussed earlier to calculate thermal conductivity of NCSLs

with the same number (72) of capping ligands per each nanocrystal but different core

sizes (equivalently, different number of gold atoms in the core). The results are presented

in Fig. 3.8 (a). MD simulations show an increase in thermal conductivity with increasing

core size. This result was also expected intuitively, due to the larger volume fraction of

high thermal conductivity core particles compared to the ligands.

Also, as shown in Fig. 3.8 (b), increasing surface ligand density of the nanocrystals

results in a decrease in thermal conductivity. Two potential explanations for this trend

are as follows. First, the side length of the FCC unit cell increases from 23 to 27 nm as

the ligand surface coverage increases from 50 to 80 %. The increase in spacing between

thermally conductive cores is expected to reduce the effective thermal transport in the

NCSLs. Second, at lower surface ligand densities, the ligands tend to arrange as individual

chains in between core atoms. Isolated ligand chains are expected to exhibit larger thermal

conductivities than bulk-like entangled ligands [78].

Another interesting observation is related to the contribution of free electrons to the

thermal conductivity of NCSLs. Using the approximate value of 0.027 Ω−1cm−1 taken

from the measured electrical conductivity of thiol-capped gold nanoparticle films at 300

K [79], we estimate from the Wiedemann-Franz law a value of 2 × 10−5 W/m-k for the

electronic contribution of the thermal conductivity. This value is negligible compared to

the phononic contributions obtained from MD calculations, which shows the applicability

of MD simulations for NCSL thermal conductivity predictions.
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Figure 3.8: (a) Thermal conductivity dependence on the core size with 72 capping ligands

covering the surface. (b) Thermal conductivity dependence on surface coverage for 2.8nm

gold nanocrystals.

3.3.3 Thermal Conductivity of Lead Selenide NCSLs

As mentioned earlier, in order to develop materials with better thermoelectric perfor-

mance, one of the major parameters that needs to be increased is the electrical conduc-

tivity or electron mobility. If the nanocrystals are fully covered with ligands, as was the

case in the previous sections, the electron mobility is very small and thus ZT will be

small. Recently, lead chalcogenide nanocrystals have been synthesized that show higher

electrical mobility and are therefore promising for thermoelectric applications [8]. Here we

use computational models to calculate thermal conductivity of these nanocrystals which

is another important parameter in determining their thermoelectric performance.

We consider a lead selenide (PbSe) nanocrystal superlattice formed from 5.9 nm

nanocrystals with truncated octahedron shape assembled in a close-packed simple cu-

bic structure (Figure 3.9). Typical MD methods using empirical pair potentials have

been proposed to study structural properties of PbSe nanocrystals [80]. However, the ac-
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Figure 3.9: Simple cubic PbSe nanocrystal superlattice.

curacy of such empirical potentials in predicting thermal properties should be examined.

Additionally, the relaxed structure of the nanocrystals in an acceptable MD simulations

should resemble its specific shape; however, for nonspherical shapes, the empirical poten-

tials may not necessarily recreate the specific shape of the nanocrystal. For these reasons,

typical MD methods are not used in the following section, rather the accuracy of empir-

ical potential in predicting thermal conductivity of PbSe NCSLs are examined using a

simplified parallel resistance model.

Thermal Conductivity: Parallel Resistance Model

In order to calculate the thermal conductivity of PbSe NCSLs we adopt a parallel resis-

tance model. The superlattice is formed from a close-packed bed of nanocrystals with air

in between them. There are three main contributions to the total thermal resistance of

the NCSL, as shown in Figure 3.10. The first contribution comes from the constriction
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resistance, which is denoted by Rnc. Another contribution comes from the combined air-

solid interface resistance and air resistance denoted by Rair, and the final contribution is

due to radiation resistance denoted by Rrad. In Fig. 3.10, luc = 6.2nm is the unit cell

length. We define Auc = 34.3nm2 as the unit cell area, and Aair = 27.5nm2 is the unit cell

area minus the contact area of the nanocrystals. Typically, in order to increase electron

mobility in these NCSLs, the concentration of ligands are decreased significantly to the

point that there are hardly any ligands present in between the nanocrystals [8]. For this

reason we neglect the effect of ligands. We also neglect surface disorders that might exist

and contribute to diffuse thermal transport and consider a primarily ballistic thermal

transport. The total thermal resistance, Rtot, is then calculated from these contributions

1

Rtotal
=

1

Rnc
+

1

Rair
+

1

Rrad
(3.3.7)

The air and radiation resistances can be approximated based on material properties

and temperature [81, 82]. For the air-solid interface (R1 in Fig. 3.10 (c)) , expressed in

terms of conductance per unit area G1, we have [82]

1

G1
= 2[(2− β)/β][2/(ψ + 1)][1/(µCν)]lair (3.3.8)

where β is the accommodation coefficient, lair is the mean free path of air molecules, ψ

is the ratio of specific heats, µ is the viscosity of air, and Cν is the specific heat of air at

constant volume. β for air [82] is typically around 0.9, µ is 1.98 × 10−5Pa · s, ψ = 1.4,

Cν = 0.718KJ/Kg K, lair = 68nm at room temperature [83]. The air resistance (R2 in

Fig. 3.10 (c)) can be approximated based on the thermal conductivity of air, G2 =
kairluc
Aair

where kair = 0.05W/m−K. This equation yields a value of Gair ≈ 1.12×107W/m2−K for

the conductance corresponding to air-solid interfaces and the air in between nanocrystals.

39



q
nc

q
air

,q
rad

q
air

,q
rad

R
1

R
2

R
1

R
3

R
4

R
1
: air/solid

R
2
: air

R
3
: radiation

R
4
: constriction

R
air

=(2R
1
+R

2
)

R
rad

=R
3

R
nc

=R
4

(a) (b)

(c)

3
.7

 n
m

1
.2

 n
m

l
uc

=6.2 nm
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the unit cell. (c) Representation of the parallel thermal resistance model.
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The radiation effect can be approximated based on the near-field thermal radiation

theory [84]. Due to closeness of the nanocrystals in the superlattice structure, the wave-

length of the photons can be comparable to the gap size between the nanocrystals, making

the near-field effects important. The radiation conductance can be defined based on [85]

Grad = lim
TA→TB

q′′(TA, TB)

TA − TB

where q′′(TA, TB) is the radiative heat flux between two surfaces at temperatures TA and

TB. It is possible to derive an expression for this radiative heat conductance between

two nanocrystals separated by a very small gap from the well known results of radiative

heat transfer between semi-infinite objects [85, 86]. Based on the approximation for the

maximum near-field heat flux between two semi-infinite media [84, 87], the radiation

conductance for nanocrystals at temperature T is given by Grad =
k2bβ

2
c

24ℏ T . Here we

have βc = π
auc

where auc is the periodicity of the superlattice. Consequently, Grad ≈

2×104T [W/m2−K]. The contribution of radiation will therefore be around 107W/m2−K

for typical temperatures.

Rnc can be calculated from phonon transport properties at the nanocrystal constriction

[88]

1

Rnc
=

1

2
[
∑∫ ∫

∂fBE

∂T
ℏωDωvωτ(ω, θ) sin θdθdω]A (3.3.9)

Here fBE = 1
exp(ℏω/kbT )−1 is the Bose-Einstein distribution, ω is the phonon frequency, Dω

and vω are phonon density of states and phonon group velocity, θ is the phonon incidence

angle, and τ is the transmissivity of phonons. In general, one method to calculate τ is to

solve the acoustic wave equations through the constriction assuming stress free boundary

conditions. When the constriction diameter, denoted by a, is much bigger than the
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dominant wavelength of the thermal phonons, λD, τ can be approximated [81] as the

ratio of the projected area of the constriction in the direction of the incident wave and

the area of the constriction, i.e. as cos θ. λD can be approximated from 2πℏv/λD = kbT ,

where v is the phonon group velocity. Phonon group velocities for bulk PbSe [89] are

below 4000 m/s. This results in λD < 1.3 nm for temperatures above 150 K, while here

a ≃ 3nm. Thus, τ = cos θ is a reasonable assumption. The only missing information for

calculating Rnc is the phonon density of states and group velocities for which we need to

calculate the phonon dispersion curves. The group velocity vω = ∂ω
∂k is calculated from

the slope of the dispersion curve and density of states is calculated from Dω = k2

2π2
1
vω
. For

the size of nanocrystals here, we can approximate the phonon dispersion curve with the

bulk dispersion relation of PbSe. To calculate the phonon dispersion we use the lattice

dynamics method as described in the following section.

Phonon Dispersion Curve Calculation Using Lattice Dynamics

In the harmonic lattice dynamics theory, after establishing the equilibrium position of

atoms in a unit cell, the displacement from equilibrium of any atom in the unit cell is

expressed as a summation over all normal modes of vibration of the atoms [90]:

u(lj, t) =
∑
k,ν

Ak,νU(j, k, ν) exp(i(k · r

j
l

− ωt)) (3.3.10)

Here j is the index of an atom in a unit cell and l is the index of each unit cell. Ak,ν is the

mode amplitude, r is the equilibrium position of the atom in the unit cell, k represents

the wavevector, and ν denotes a mode type. U(j, k, ν) is the polarization vector of atom

j in the unit cell 0 associated with the normal mode (k, ν). The displacement of any atom
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j in any unit cell l is determined by Ak,νU(j, k, ν) multiplied by an exponential factor.

In the standard lattice dynamics method, Eq. 3.3.10 is substituted into Newton’s second

law resulting in

mjü(jl, t) = −
∑
j′l′

Φ

jj′
ll′

u(j′l′, t) (3.3.11)

Here j′ runs through all the atoms in the unit cell and l′ runs through all the unit cells.

mj is the mass of atom j and Φ is the interatomic force constant matrix. This matrix is

a 3n × 3n matrix with n being the number of atoms per unit cell. Φ is comprised of n

3× 3 submatrices:

Φαα′(jl, j′l′) =
∂2W

∂rα

j
0

 ∂rα′

j′
l′


(3.3.12)

α and α′ are the Cartesian components x, y, and z andW is the total lattice potential

energy. Using the vector

e(k, ν) = m
1/2
j [Ux(1, k, ν)Uy(1, k, ν)Uz(1, k, ν)....Uz(n, k, ν)]

T (3.3.13)

Eq. 3.3.11 simplifies to the following eigenvalue problem:

ω2(k, ν)e(k, ν) = D(k)e(k, ν) (3.3.14)
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where the dynamical matrix, D, is defined as

D3(j−1)+α,3(j′−1)+α′(k) =
1

√
mjmj′

∑
l′

∂2W

∂rα

j
0

 ∂rα′

j′
l′


|o exp(ik · [r

j′
l′

− r

j
0

])

(3.3.15)

The phonon dispersion relation, the relationship between k and ω, is calculated from the

eigenvalues of D as the wavenumber is changed. In calculating the dynamical matrix,

the interatomic force constants are an integral part which depend on the interatomic

potential functions. We compare two different approaches to calculate the interatomic

force constants: The first approach is based on empirical pair potentials used to describe

the interaction between Pb and Se atoms. The second method is based on the more

computationally involved and more accurate first principles calculations.

Phonon Dispersion Results

The empirical potential is based on a combination of Lennard-Jones and Coulomb poten-

tials

ULJ = 4ϵ

[
(
σ

rij
)12 − (

σ

rij
)6
]

(3.3.16)

UCoulomb = C
qiqj
rij

(3.3.17)

The parameters for this potential are listed in Table 3.3. The cross terms are obtained

from the Lorentz-Berthelot mixing rule. The resulting phonon dispersion curve based on

the empirical potentials is shown in Figure 3.11.

The first principles calculations were performed in the framework of density functional

perturbation theory (DFPT) using the Quantum ESPRESSO package [31]. In the ground
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Table 3.3: Empirical Potential Parameters

Parameter Pb Se

q [e] 1.29 -1.29

σLJ [nm] 0.329 0.436

ϵLJ/kb [K] 30.0 45.3
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Figure 3.11: Phonon dispersion relation of bulk PbSe in the main symmetry directions of

the first Brillouin zone based on the empirical potentials.

45



0

1

2

3

4

5

6

f 
(T

H
z)

Г X LГ

Figure 3.12: Phonon dispersion relation of bulk PbSe in the main symmetry directions of

the first Brillouin zone based on first principles calculations.

state calculations, we used relativistic pseudopotentials Pb.rel-pz-dn-kjpaw psl.1.0.0.UPF

and Se.rel-pz-dn-kjpaw psl.1.0.0.UPF from the PSlibrary of QEforge distribution. The

resulting phonon dispersion curve is shown in Figure 3.12.

Thermal Conductivity Calculations

Based on the dispersion curve calculations, the constriction resistance can be calculated

from Eq. 3.3.9. The resulting constriction conductance is between 2.9 × 108W/m2 − K

and 3.1× 108W/m2−K for temperatures between 150 K and 400 K, about 7 times larger

than the combined air and radiation conductance. The effective thermal resistance is then

given by

1

Rtotal
=

1

Rnc
+AairGair +AairGrad (3.3.18)

and the thermal conductivity is given by k = luc
RtotAuc

. The total thermal conductivities

calculated from both the empirical potentials and first principles are shown in Figure 3.13.
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Figure 3.13: Comparison of thermal conductivity of PbSe NCSLs obtained from empirical

potentials and first principles.

We observe that first principles calculations predict thermal conductivity values between

0.40W/m-K and 0.44W/m-K for temperatures between 150 K and 400 K, while empirical

potentials predict values in the range 0.35 − 0.41W/m-K. Therefore, approximately a

15% difference between the empirical potential and the first principles calculations of

thermal conductivity is observed. These predictions are also similar to the available

experimental results [12] which reported values between 0.10W/m-K and 0.20W/m-K for

7.5 nm spherical PbSe NCSLs for temperatures between 150 K and 400 K. Additionally,

these values for the thermal conductivity are smaller than that of bulk PbSe which agrees

with the presence of interface resistances and phonon confinement effects in nanocrystal

superlattices compared to the bulk.
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3.4 Summary

In this chapter we first studied mechanical properties of NCSLs which also represent low

frequency acoustic phonons. The elastic properties of CdSe nanocrystal superlattices were

calculated using molecular dynamics, existing coarse grained nanocrystal-nanocrystal in-

teraction models, and effective medium theory. In the molecular dynamics simulations,

detailed atomic interactions for CdSe nanocrystals and the capping ligand atoms are con-

sidered. In the coarse grained model, the ligand-capped nanocrystal cores are treated

as point particles interacting via pair potentials. In the effective medium theory, cal-

culations include only the moduli and volume fractions of CdSe cores and ligands. Al-

though computationally expensive, the atomistic simulations predict elastic properties

that agree well with available experimental and theoretical results for similar systems. In

contrast, more efficient approaches yield less accurate results. Based on this observation

that relates to low frequency phonons and also to take into account the whole phonon

spectrum, atomistic models were used to proceed with thermal conductivity calculations.

From equilibrium molecular dynamics, the thermal conductivities of spherical nanocrystal

superlattices were successfully predicted in reasonable agreement with experimental re-

sults. Thermal conductivity of PbSe NCSLs with octahedral shape nanocrystals was also

calculated by providing a comparison between empirical potentials and first principles

calculations. In addition to providing an alternative to experiments, these models can be

useful to investigate the effect of shape, size, and composition on phononic and thermal

properties of nanocrystal superlattices.
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Chapter 4

Phononic Band Structure of

Nanocrystal Superlattices

4.1 Introduction

Phonon engineering, which involves controlling phonon transport via tuning phonon dis-

persion relation, is increasingly important for basic science and also for many applica-

tions that require manipulation of the flow of vibrational energy, i.e. sound and heat

[91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103]. As a primary example, periodic

composite materials, also known as phononic crystals, have been shown to exhibit a strong

modification of the phononic band structure and introduce complete bandgaps due to the

scattering of mechanical waves at the interface between materials with different mechani-

cal properties[104, 105, 106, 107]. Such composite materials have important applications

in acoustic filtering [108], waveguiding [109, 110, 111], focusing [112], noise control [113],

and vibrational control for mechanical systems [114].
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Recent advances in material processing techniques at the micro- and nanoscale have

created enormous opportunities for phononics areas such as RF communication technolo-

gies and optomechanics [115, 116]. Nanocrystal superlattices (NCSLs) [4, 3, 5, 7], as dis-

cussed earlier, are periodically ordered nanoscale materials in which complex interactions

between low-dimensional building blocks of the superlattice give rise to many interesting

and unusual properties such as their photonic band structure and the introduction of pho-

tonic bandgaps [117, 118, 119, 120]. It has been shown that shape and structure of building

blocks play an important role in tuning the photonic bandgaps in the context of photonic

crystals [121, 122, 123]. Similar phononic effects are also expected in NCSLs. The vibra-

tional dissimilarities of the inorganic core atoms and their capping hydrocarbon ligands

introduces the phononic mismatch required to create phononic bandgaps. Additionally,

the ability to vary the core size, shape, and material provides possibilities for tuning the

phononic band structures. Prior to this work, phonon dispersion studies have been lim-

ited to spherical nanocrystals [124] and arrays of embedded orthorhombic quantum dots

[25, 125]. However, the effect of nanocrystal shape, size, and structural arrangement on

the phononic band structure as well as their applications for tuning phononic bandgaps

have not been studied.

In this chapter, we calculate the phononic band structure of a variety of nanocrystal

superlattices with different shapes and structures. Among these are included binary

nanocrystal superlatties, whose unit cells are constructed from two different types of

nanocrystals rather than a single nanocrystal type. We discuss different possibilities for

tuning the phononic bandgaps through changing nanocrystal size, shape, core volume

fraction, and superlattice structure.
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4.2 Methods

Both continuum level [25, 125] and atomistic level [124] methods have been previously used

to study phonon dispersion in NCSLs. Atomistic methods are in general computationally

expensive and mainly advantageous for studying phonon dispersion in systems with a

small number of atoms per unit cell. They also face major limitations with regard to the

lack of properly posed pair-potential functions that can describe the particle interactions

accurately for different material types and structures. Continuum models on the other

hand are applicable to a wide variety of materials with different structures while also being

computationally a lot less expensive [100]. It has also been shown that phonon dispersion

calculations based on continuum models agree well with atomistic models for frequencies

below about 1 THz [126, 127]. In this study we are focused on dispersion branches with low

frequencies, where deviations of continuum models from atomistic models are expected

to be minimal.

In this study, we use continuum models to calculate phonon dispersion curves with

frequencies up to about three hundred GHz for different NCSLs as listed in Table 4.1. This

was done by using the finite element method to numerically solve the three dimensional

acoustic wave equations

−ρω2u =
E

2(1 + ν)
∇2u+

E

2(1 + ν)(1− 2ν)
∇(∇ · u) (4.2.1)

where u is the displacement vector and ω is the frequency. Here E and ν are the

Young’s modulus and the Poisson’s ratio, and ρ is the density of the material. Bloch’s

periodic boundary conditions are considered in all three Cartesian directions for the

boundaries of the unit cells. The unit cells consist of the core domains with prop-
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erties, (Ecore, νcore, ρcore), and the surrounding ligand domains with with properties,

(Elig, νlig, ρlig). For the ligands we use average properties of (3 GPa, 0.4, 1050 Kg/m3) as

the Young’s modulus, Poisson’s ratio, and the density respectively [56]. For the platinum

cubic cores, gold nanocrystals in BNSLs and nanorods, the silver, palladium, and iron

oxide nanocrystals in BNSLs, we used bulk properties [56], i.e. (168 GPa, 0.38, 21450

Kg/m3) for Pt, (79 GPa, 0.44, 19300 Kg/m3) for Au, (83 GPa, 0.37, 10490 Kg/m3) for

Ag, (121 GPa, 0.39, 12023 Kg/m3) for Pd, and (180 GPa, 0.3, 5242 Kg/m3) for Fe2O3.

For PbSe nanocrystals in BNSLs and octahedral nanocrystals we used bulk properties of

(65 GPa, 0.24, 8100 Kg/m3) [128], and for PbS nanocrystals in AlB2 BNSLs we used the

values (75 GPa, 0.3, 7600 Kg/m3) [128].

Bandgap width calculations for different core volume fractions, ϕ, were performed by

changing the unit cell dimensions while keeping the core dimensions constant. The band

structure calculations were then performed for each unit cell separately and the bandgap

width was obtained from the phonon dispersion curves. For SC and FCC cubic NCSLs, we

used nanocrystals of 5.5 nm and 4.7 nm size respectively [9]. The SC superlattice contains

one nanocrystal per unit cell and the FCC superlattice contains four nanocrystals per unit

cell.

4.3 Phononic Band Structure of NCSLs

We studied phononic band structure for a variety of NCSLs using the computational

framework outlined in the Methods section. In Figure 4.1 (a) shows a typical simple

cubic three dimensional superlattice with cubic nanocrystals as the building block, and
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Table 4.1: NCSLs studied in phononic band structure calculations

Material Shape Superlattice Structure

Pt Cubic SC

PbSe Octahedron SC

Au Nanorod Hexagonal

PbSe and Au Spherical CuAu (Binary)

PbSe and Ag Spherical Cu3Au (Binary)

PbSe and Pd Spherical CaB6 (Binary)

γ − Fe2O3 and Au Spherical NaCl (Binary)

PbS and Pd Spherical AlB2 (Binary)

Fig. 4.1 (b) shows the corresponding unit cell used in phonon dispersion calculations.

The unit cell consists of a platinum cubic core surrounded by octylamine ligands [9]. The

calculated phonon dispersion curve in the main symmetry directions is shown in Fig. 4.1

(c) . Complete phononic bandgaps (PBGs) can be observed from the dispersion curve.

The largest PBG for the cubic nanocrystal is centered at a frequency about 99 GHz with

a width of 81 GHz. A smaller bandgap of 27 GHz width centered around 166 GHz is

also observed. The phononic band structure also shows interesting features in different

symmetry directions; the first bandgap is largest in the ΓX direction, while the second

bandgap is slightly larger in the MH symmetry direction than in other directions.

We calculated the phononic band structure for cubic NCSLs of different core sizes

to investigate the effect on bandgap width and central frequency fC . Ligand length was

53



(b)(a)

(c)

Г X M H

Г

X

M

H

0

50

100

150

200

250

300

f(
G

H
z)

First Phononic Bandgap

Second Phononic Bandgap

Figure 4.1: (a) Simple cubic 3D superlattice with cubic nanocrystal building blocks.

(b) A representative unit cell used in band struture calculations (top figure) and the

corresponding first Brillouin Zone in k-space (bottom figure) . The unit cell edge length

is 7.5 nm with a cubic core edge length of 5.5 nm. (c) Phonon dispersion curve of the cubic

NCSL. The red and orange regions indicate the first and the second complete phononic

bandgaps.
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Figure 4.2: (a) First Bandgap central frequency as a function of unit cell size for cubic

NCSLs. (b) Bandgap width as a function of unit cell size.

kept constant in these calculations. In Fig. 4.2 (a) and Fig. 4.2 (b), the variations of

fC and the larger bandgap width versus the unit cell size are shown. We observe that

the central frequency and bandgap width decrease with increasing unit cell size which is

consistent with previously observed trends for phononic crystals [92]. Doubling the core

size decreases the bandgap widths and central frequencies are decreased by about 50%

which suggests an approximate inverse proportionality between the unit cell size and the

bandgap central frequency and width. This plot also shows that NCSLs with nanocrystals

of different core size can provide an effective way to tune bandgaps and thus filter waves

with specific wavelengths and frequencies.

We also studied the effect of the core volume fraction (ϕ) on the bandgaps of the

NCSLs. ϕ is defined as the ratio of the core volume to the unit cell volume of the

nanocrystals. We performed band structure calculations for simple cubic NCSLs with

cubic building blocks of different core volume fractions by changing the ligand length for

the same core to obtain different volume fractions. To study the trend more carefully we
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considered two different sizes for the building blocks of the superlattice with cube edges of

5.5 nm and 10 nm. In Fig. 4.3 (a), the width of the phononic bandgap (corresponding the

to larger bandgap) is plotted as a function of the core volume fraction for both NCSLs. The

bandgap width does not change monotonically with the volume fraction; rather it shows

a maximum bandgap corresponding to a volume fraction around ϕ = 0.4. This value of ϕ,

as shown in Fig. 4.3 (a), was obtained independently for both superlattices with different

core sizes. It corresponds to a volumetric combination of the core and the surrounding

ligands that maximizes the effect of material property difference in introducing bandgaps;

for the two ends of the spectrum, ϕ = 0 and ϕ = 1, no acoustic mismatch and thus no

bandgaps would be present in the system. The fact that this value is the same for different

core sizes in Fig. 4.3 (a) also implies that the value of ϕ corresponding to this peak is

essentially dependent on the shape of the nanocrystal and the material properties. We

also performed bandgap calculations for similar systems by considering the same cubic

shape for the core with elastic moduli half of that in platinum cubic cores and we observed

a peak in PBG width at ϕ = 0.32. Similarly, keeping the material the same and changing

the core shape from a cube to a sphere resulted in ϕ = 0.5 for the peak. This shows that

the interplay between nanocrystal shape and material determines the volume fraction that

maximizes bandgap width.

Next, we consider bandgap variations resulting from nanocrystals organizing into dif-

ferent types of superlattice structures. Fig. 4.3 (b) shows the larger bandgap width of

cubic nanocrystals forming simple-cubic (SC) and face-centered cubic (FCC) superlat-

tices. Both structures have been observed experimentally [9]. The SC structure shows

around 33 % larger bandgap compared to the FCC structure. The FCC superlattice has a
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Figure 4.3: (a) Phononic bandgap width of simple cubic NCSLs with cubic building

blocks as a function of core volume fraction. (b) Bandgap width for NCSL of cubic

building blocks with simple cubic and face-centered cubic structures.

larger unit cell size which is consistent with having a smaller bandgap. This result shows

that through changing the superlattice structure, significant variations are introduced to

phononic bandgaps with bandgap widths changed by as much as about 30% .

Nanocrystal shape provides another way to tune NCSL band gaps. In addition to

cubic NCSLs, we also studied the band structure of simple cubic superlattices with PbSe

octahedron [8] and gold nanorod [129] building blocks, as shown in Fig. 4.4. The oc-

tahedron and nanorod superlattices present smaller bandgap widths than the Pt cube

superlattices studied previously: around 24 GHz and 50 GHz, respectively. In general,

the width of the bandgap is expected to increase with the difference between the den-

sities and elastic properties of the components that introduce the phononic mismatch.

Consistent with this fact, in our case the difference between properties of the core and

57



(ii)

P
B

G
 W

id
th

(G
H

z)

(i) (iii)

(ii)(i) (iii)
0

20

40

60

80

100

Figure 4.4: Bandgap width for NCSL with building blocks of different shapes. The cubic

core is 5.5 nm is size, the octahedron is a 6 nm nanocrystals, and the nanorod is 11 nm
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the ligands is the largest for the cubic nanocrystals, and the smallest for the octahedron

nanocrystals (see Methods).

We have also calculated the phonon band structure of the different BNSLs described

in Ref. [3]. A schematic drawing of these BNSLs is shown in Fig. 4.5 (a). Each BNSL

consists of two different types of nanocrystals organized in a specific crystal structure.

Sample dispersion curves for cubic Cu3Au and hexagonal AlB2 type structures are shown

in Fig. 4.5 (b), and (c). One interesting observation is that the first bandgap is the larger

bandgap for the cubic superlattice while it is the opposite for the hexagonal structure.

The smaller of the two bandgap widths in both BNSLs are about a few GHz, which

is much narrower than the corresponding smaller bandgap in NCSLs with one type of

nanocrystal. The larger bandgap width for different BNSLs is shown in Fig. 4.5 (d).
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AlB2 and CuAu type structures show the largest bandgaps width of 61 GHz and 77

GHz respectively. The CaB6 structure on the other hand, present very small bandgap

width of 1.1 GHz. This wide range of achievable bandgaps demonstrates that BNSLs

in general provide more flexibility in tuning bandgaps compared to NCSLs with only

one type of nanocrystal. This is due to a combination of a larger variety of available

nanoparticle types as well as the different structures that BNSLs can assume compared

to simple or face-centered cubic structures that are often observed for NCSLs with one

type of nanocrystal. The photonic bandgaps and the photonic band structure of binary

photonic crystals have also shown similar behavior. Previous studies of photonic crystals

[130, 131, 132], have shown existence of one or two bandgaps as well as the existence of

very small and large bandgaps in binary systems. Our results show that BNSLs provide

equivalent tunable phononic bandgaps.

NCSLs and BNSLs studied here provide great opportunities for engineering and ma-

nipulating phononic band structure. For superlattices with only one type of nanocrystal

as the building block, changing core size, volume fraction, superlattice structure, and core

shape can help tune the bandgap width and central frequency. Using these parameters,

we can design superlattice structures that filter out frequencies between 30 GHz and 100

GHz. Choosing a core volume fraction of about ϕ = 0.4 will help design a superlattice

with maximum bandgap width. Using nanocrystals of different shape such as octahedrons

and nanorods, we can reduce the bandgap width by as much as 75% and 40% respectively

compared to the cubic nanocrystals. The structural variety of BNSLs provides even bet-

ter opportunities for tuning and controlling phononic bandgaps. The CaB6 structure is

useful for designing pass bands since they present a very small bandgap. NaCl and Cu3Au
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Figure 4.5: (a) Schematic picture of the crystal structure of different binary nanocrystal

superlattices described in Ref. [3]. CuAu structure with 7.6 nm PbSe and 5.0 nm Au

nanocrystals; Cu3Au structure with 7.2 nm PbSe and 4.2 nm Ag nanocrystals; CaB6

structure with 5.8 nm PbSe and 3.0 nm Pd nanocrystals; NaCl structure with 13.4 nm

γ − Fe2O3 and 5.0 nm Au nanocrystals; AlB2 structure with 6.7 nm PbS and 3.0 nm Pd

nanocrystals. (b) and (c) Phononic band structure of cubic Cu3Au and hexagonal AlB2

structures. (d) Bandgap width for the larger bandgaps of the BNSLs described in (a).
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BNSLs present larger bandgaps. CuAu and AlB2 structures increase the bandgap width

by almost a factor of two and are thus more suitable for designing acoustic filters.

Finally it is worth mentioning that the elastic moduli of the nanocrystals may deviate

from those of the bulk, especially for smaller sizes [133, 134]. To study this effect, we also

calculated the bandgap width of Pt cubic crystals by increasing or decreasing the core

Young’s modulus by as high as 50%. As a result, we observed as high as 5% change in the

bandgap width. However, the general trends and tunable effects observed in this work will

still hold independent of the specific choice of the properties. In order to take into account

the effect of local size-dependents properties one can also consider Raman spectroscopy

data for different nanoparticles [135] which helps adjust dispersion curve calculations by

comparing specific optical phonon frequencies to experimental measurements. For future

studies, such Raman measurements or better experimental evaluation of elastic moduli of

the nanocrystals can provide more realistic inputs to computational studies.

4.4 High Frequency Phonons in NCSLs: Atomistic Model

Case Study

In this section we investigate phonon dispersion calculations for NCSLs using atomistic

models. As mentioned earlier, the finite element calculations are usually accurate for

frequencies below 1 THz and atomistic models are needed to represent higher frequen-

cies. However, atomistic models suffer from high computational cost as well as the lack

of suitable force fields that effectively describe particle interactions for many of the ex-

perimentally synthesized NCSLs. In fact, for the BNSLs and NCSLs of different shapes
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studied in previous sections, there are no established atomistic potentials that can describe

the interatomic forces accurately and at the same time preserve the specific shape of the

building blocks. For this reason, we turn our attention to the spherical gold nanoparticles

studied in section 3.3.2. Using the relaxed structure of gold nanocrystals, lattice dynamics

calculation is performed to capture the full phonon spectrum of the superlattice.

4.4.1 Lattice Dynamics Model for Gold Nanocrystal Superlattice

Revisiting the basics of the lattice dynamics method, the dynamical matrix D is a 3ncell×

3ncell matrix where ncell is the number of atoms per unit cell. The unit cell can be

chosen as either the primitive unit cell or the conventional unit cell [136]. For a FCC

nanocrystal superlattice the primitive unit cell can be considered as a single nanocrystal

with nnc atoms per basis where nnc is the total number of core and ligand atoms for one

nanocrystal. The dispersion curve will therefore have 3nnc branches. In order to calculate

the components of the dynamical matrix we need to consider the nearest neighbors of the

unit cell [90] which for FCC superlattice structures includes 12 neighboring nanocrystals.

In order to calculate the dynamical matrix, the initial configuration of each nanocrys-

tal is prepared according to the interatomic interactions and the procedure described in

section 3.3.2. Then this initial configuration is cooled down to an arbitrarily low tem-

perature of T = 0.001K using the NVT ensemble with the Nose-Hoover thermostat [32].

Next, the nanocrystals are placed at FCC unit cell positions with a fairly large initial

lattice parameter [39]. Finally, the superlattice structure is relaxed using NPT ensemble

at zero pressure with periodic boundaries [39]. The interatomic force constants are then

calculated by moving atom j of the reference nanocrystal (0) and calculating the forces
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on atom j′ of nanocrystal l′. Each nanocrystal consists of 100 atoms (44 core gold atoms

plus 56 capping ligand atoms) resulting in a supercell with 100 atoms. Due to the small

number of atoms, the core is not exactly spherical but rather octahedral or tetrahedral in

shape.

4.4.2 Results and Discussion

The phonon dispersion curves calculated for the FCC gold superlattice are presented in

Figs. 4.6 (a) and 4.6 (b). Fig. 4.6(a) shows the full dispersion. Fig. 4.6 (b) shows the low

frequency region of the dispersion curve, where the three acoustic modes (in red) are shown

with several low frequency optical modes. As far as the contribution of core and ligand

atoms, the core atoms will contribute to frequencies below the highest allowable frequency

observed in bulk gold which is around 5 THz [137]. Higher frequency optical modes arise

from faster vibrations in ligand atoms. Similar to phononic crystals [107, 138], phonon

band gaps can be studied from the dispersion curves. For this structure, we observe

small band gaps in the 8 to 13 THz range and also in the 20 to 26 THz range. A larger

band gap is observed in the 13 to 20 THz range. The dispersion curve also shows the

maximum allowed frequency for phonons in the superlattice to be about 26.6 THz. Most

of the optical branches are observed to be nearly flat curves with small group velocities

suggesting that their contribution to thermal transport is insignificant. Similar behavior

has been observed for optical branches of structures with large numbers of particles per

unit cell [139].

The acoustic modes of the dispersion curve are related to elastic properties of the

superlattice. Elastic stiffness constants can be derived from the slope of acoustic branches
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in the long wave length limit. We can calculate C11 = ρ(
dω[100]

dk )2 as k → 0, using the slope

of the longitudinal acoustic mode in the [1 0 0] direction [90]. We obtain a value of C11 =

15.7 GPa. This value can be compared to results from direct MD calculations. Using

Young’s (E) and bulk (B) modulus of gold superlattices obtained in Ref. [39], the value of

C11 =
3EB+9B2

9B−E is about 10.4 GPa which shows reasonable agreement with the prediction

from the dispersion curves. Here the exact values of the two calculations are not expected

to match as the size (3.5 nm) and ligand type (alkylthiol) for reported MD calculations

[39] is different from the system that we used for LD calculations in our system. The

smaller ligand chains bonded to the core atoms in our calculations form a stiffer structure

compared to the longer, more freely moving ligands in Ref. [39] which explains the higher

value of elastic stiffness constant obtained here. Importantly, the dispersion curves in Fig.

4.6 (a) show the existence of full phonon band gaps in all directions. We also observe

a strong similarity among dispersion curves belonging to different superlattice symmetry

directions, particularly at high frequencies. This may arise from the fact that ligands,

which provide the only contribution to high frequency vibrations, have a spatially isotropic

distribution in the relaxed nanocrystal (Fig. 3.6(a)). To further investigate, we estimate

the anisotropy from the parameter A = 2c44
c11−c12

, where A = 1 represents an isotropic

material [140]. c44 and c12 were calculated from the transverse [1 0 0] and slow transverse

[1 1 0] acoustic wave velocities [141]. Here the resulting values of c44 = 8.01 GPa and

c12 = 4.39 GPa result in anisotropy of about 1.4. This estimate reveals a small degree

of anisotropy in the low frequency, low wavevector continuum limit which is consistent

with slight differences in the acoustic branches shown in Fig. 4.6 (b). For comparison

it is observed that the anisotropy lies between that of bulk argon (1.3)[141] and bulk
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silicon (1.6)[140]. It is important to note here that the elastic stiffness calculations are

approximate, as the equations used for such calculations are originally derived for bulk

atomic crystals [140]. Their generalization to NCSL, in which the unit cells are very large

with complex atomic arrangements that can vary slightly depending on initialization, may

introduce small errors.

4.5 Conclusion

In this chapter, we calculated the phononic band structure of a variety of NCSLs with dif-

ferent shapes and structures. We showed that through changing the core volume fraction,

nanocrystal size, shape, and the superlattice structure phononic bandgaps can be tuned

and manipulated for different design purposes. Binary structures were also studied which

show an even wider range of tunable phononic band structures useful for manipulating

pass bands or stop bands. Such tuning presents new opportunities for phononic effects

similar to well-known photonic behavior such as waveguiding and signal filtering. This

work also motivates future experimental studies for measuring phononic band structure

of NCSLs and BNSLs with different shapes, sizes and structures as well as using them for

designing effective sound and heat manipulation devices.
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Chapter 5

One-way Phonon Isolation

5.1 Overview

In the previous chapters we have studied phonons in nanocrystal superlattices. The

interesting phononic properties of NCSLs and phononic crystals in general are promising

for many interesting applications that involve engineering and manipulating phonons.

For example thermal diodes and rectifiers have attracted great interest [142]. In such

problems, the focus is to achieve different heat current flow in forward and backward

directions passing through a device. Another interesting problem is to pay attention

to individual phonons and manipulate their transmission in different directions. In this

chapter, the idea of one-way isolation of individual phonons is proposed. We adopt a more

fundamental type of analysis by considering individual phonons in acoustic waveguides

and graphene nanoribbons. We show that one-way isolation is possible by introducing

a spatio-temporal modulation of mechanical properties. This idea is quite general and

can be used beyond these sample systems. At the same time, similar to the comparison
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between phononic versus photonic crystals discussed in the previous chapter, this chapter

reflects on the similarities between phonon and photon isolation within the framework of

acoustic-electromagnetic analogy.

5.2 One-way Phonon Isolation in Acoustic Waveguides

5.2.1 Introduction

Recent progress in microfabrication and microelectromechanical systems (MEMS) has

highlighted the potential of compact and miniaturized devices for on-chip acoustic sig-

nal generation, detection, manipulation and processing [143, 144]. In particular, many

important MEMS-based applications have been suggested lately, including acousto-optic

modulators [145], acoustic MEMS filters [146], and biosensors [147]. A typical device con-

sists of several key components, which include resonant transmitters and receivers that

generate and receive mechanical vibrations, and a signal transmission line, i.e. waveguide

network, along which phonon waves are guided between the signal processing modules

[148]. Common examples of such transmission lines include surface acoustic wave (SAW)

delay lines [149, 150] and flexural plate waveguides [151].

An important challenge facing on-chip acoustics is the design of modularized compo-

nents placed on the same integrated platform that manipulate an acoustic signal inde-

pendently of each other [152, 153]. To reach such functionality it is critically important

to develop one-way interconnects that isolate different components from specific vibra-

tional modes. Such interconnects, being somewhat similar to electronic diodes, transmit

a desired signal in one direction only, and provide the potential to build one-way commu-
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nication channels for acoustic waves.

Recently, the concept of acoustic rectification has attracted great interest [154, 155,

156, 157, 158]. Based on a nonlinear frequency conversion mechanism, the idea of an

acoustic diode was proposed theoretically and demonstrated experimentally [157, 159].

In these systems a direction- dependent nonlinear frequency conversion is achieved due to

the structural asymmetry of the geometry [157, 159]. However, the low frequency conver-

sion efficiency implies low transmission properties of such isolators [159, 160]. Further-

more, such devices are often quite bulky and would be difficult to implement as isolating

interconnects for on-chip acoustics applications. A similar mechanism of nonlinear isola-

tion has also been employed in optical systems, using a combination of nonlinearity and

structural asymmetry [161, 162].

In Refs. [163, 164] another conceptually different mechanism for highly efficient opti-

cal isolation in a waveguide was proposed by Yu and Fan. There, it was shown that the

symmetry of wave propagation in an optical waveguide in forward and backward direc-

tions can be broken with spatio-temporal modulations of the waveguide properties. Such

symmetry breaking is achieved due to a one-way conversion between the guided modes.

Inspired by this work, we apply this principle for the analogous design of an acoustic

waveguide isolator.

In this section we study phonon wave propagation in an acoustic waveguide and

demonstrate that the symmetry of wave propagation may be broken by introducing spatio-

temporal modulation of waveguide properties such as density or elastic stiffness. We show

that in one of the propagation directions coupling and conversion between the waveguid-

ing modes occurs, whereas in the other direction the signal is transmitted without any
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perturbations, analogous to the optical case. Using analytical techniques and numerical

simulations, we also show that such a mode conversion may be employed for the design

of miniaturized acoustic isolators. Furthermore, we discuss possibilities for experimental

realization and other potential applications of such a device.

5.2.2 Governing Equations and Results

Figure 5.1(a) shows the geometry of our problem. In particular, we consider an unbounded

plate acoustic waveguide with thickness b. Such a waveguide supports shear horizontal

(SH) waves, i.e. waves of transverse displacement, as well as Lamb waves which are

longitudinal waves traveling along the waveguide [165]. These waves propagate in the

waveguide independently of each another; therefore they can be studied separately. For

the sake of simplicity, we will consider propagation of SH waves in a two-dimensional

cubic crystal waveguide, where there is no field variation in the z direction. The principles

developed in this work can be easily extended to the case of Lamb waves. We write the

Helmholtz type wave equation for SH waves as follows [165]:

ρ
∂2uz
∂t2

=
∂Txz
∂x

+
∂Tyz
∂y

(5.2.1)

where ρ is the density of the material, Txz = c44
∂uz
∂x and Tyz = c44

∂uz
∂y are components of

the stress tensor and c44 is a component of the elastic stiffness tensor for a cubic crystal.

For a planar waveguide with constant density and stiffness, the dispersion relation for

the SH waves is k2 = ( ω
Vs
)2 − (nπb )2, where Vs = (c44/ρ)

1
2 is the shear wave velocity in a

bulk medium, and n = 0, 1, 2, 3, 4, ... denotes the mode number. In Fig.5.1(b) we plot the

first two phonon dispersion branches, i.e. symmetric mode with n=0, henceforth denoted
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mode 1, and antisymmetric mode with n=1, henceforth denoted mode 2. We note that

below the cut-off frequency, ωc =
Vsπ
b , only the symmetric branch exists.

Clearly, the dispersion curves plotted in Fig.5.1 (b) are symmetric with respect to wave

number k. This implies that the wave propagation in such a waveguide is reciprocal: i.e.

waves traveling in forward and backward directions have the same properties. In order to

break this symmetry in the wave propagation we follow the technique suggested in Refs.

[163, 164]. In particular, we consider wave propagation in a spatio-temporally modulated

waveguide. In this case we expect that for an appropriately chosen modulation, one-way

conversion of one guided mode to another may be induced in one of the propagation

directions only.

Here we assume a simple harmonic modulation of the form P = P0+δP cos(Ωt−K x),

where P0 stands for either the elastic stiffness constant c44 or the density ρ, and δP is

the modulation depth. Without loss of generality, we will explain the method for density

modulation first. The general solution for Eq. 5.2.1 can be written as a superposition

of the guided modes: uz = a1(x)u
(1)
z exp i(ω1t − k1x) + a2(x)u

(2)
z exp i(ω2t − k2x), where

k1,2 and ω1,2 are the wavevectors and frequencies of mode 1 and mode 2, u
(1)
z and u

(2)
z

are their profiles (see Fig. 5.1 (a)), and a1(x) and a2(x) are their slowly varying spatial

amplitudes. Exponentials are used here for mathematical convenience; the real part of

the general solution represents the actual physical displacement. Using the standard

techniques of perturbation theory, we derive a system of first-order ordinary differential

equations for slowly varying amplitudes (detailed derivation can be found in appendix A):
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d2

dx2

a1
a2

 =

−A12A21 exp i(k
′x) 0

0 −A21A12 exp i(k
′x)


a1
a2

 (5.2.2)

where k′ = k2 − k1 − K and Apq =
δρω2

q

∫
M u

(q)
z u

(p)
z

∗
dy

4c44kp
∫
W u

(p)
z u

(p)
z

∗
dy
. Here {p, q} represents either of

{1, 2} or {2, 1} combinations, and u
(p)
z

∗
is the complex conjugate of u

(p)
z .

∫
W is performed

over the whole waveguide thickness along the y axis and
∫
M is performed only over the

modulation domain. Based on the incoming signal angular frequency ω1 and the available

modulation frequency Ω, a full mode conversion from mode 1 to mode 2 occurs for waves

propagating in the positive x direction when ω2 = ω1+Ω and when the K of the modulation

is chosen such that K = k2−k1 = [(ω2
Vs
)2−(πb )

2]
1
2 − ω1

Vs
. In order to maximize the coupling

between the modes, or equivalently maximize the mode overlap integral for constants A12

and A21, only half of the waveguide is modulated. Fig. 5.1 (b) shows the one-way isolation

in this system. Waves of mode 1 propagating in the positive x direction, corresponding

to (+k1, ω1) on the dispersion curve, are converted to mode 2 at (+k2, ω2). However,

waves of the same wavelength and frequency that propagate in the negative x direction,

corresponding to (−k1, ω1), cannot undergo mode conversion because the end point of

the intended transition via the modulation P = P0 + δP cos(Ωt − K x) does not lie on

mode 2 or on any other branches of the dispersion curve. Analogous to the optical case in

Refs [163, 164], this behavior arises because the spatio-temporal modulation breaks both

time-reversal and spatial-inversion symmetry.

The real part of the general solution of Eq. 5.2.2 is uz = cos(ξx)u
(1)
z cos(ω1t− k1x) +

sin(ξx)u
(2)
z cos(ω2t − k2x) where ξ = (A12A21)

1
2 is the conversion wavevector with the

corresponding conversion length of lc = π
2ξ . Using u1 = 1 and u2 = sin(πyb ) as the
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mode profiles [165], we obtain ξ = δρω1ω2

πc44

√
1

8k1k2
and lc =

ρπ2V 2
s

√
8k1k2

2δρω1ω2
. As expected, the

convergence length is inversely proportional to the modulation depth. The conversion

length will also be smaller for smaller values of shear wave velocity Vs. To analyze the

conversion length, we investigate its dependence on the modulation parameters. We attain

one-way mode conversion of an incoming signal by introducing a modulation domain with

modulation frequency Ω and tunable modulation wavenumber K. As discussed earlier,

signal at frequency ω1 and wavenumber k1 will be transformed to another mode with

frequency ω2 = Ω + ω1 and wavenumber k2, where k2 is simply determined from ω2 and

the corresponding dispersion relation for mode 2. Therefore, we have two independent

design parameters, k1 (or ω1) and Ω. In terms of these design parameters we have lc =

(
√
2ρπ2Vs

δρ )
((k1+

Ω
Vs

)2−(π
b
)2)

1
4

√
k1(k1Vs+Ω)

. A plot of this conversion length for different values of Ω is

shown in Fig. 5.2 (a). As we can observe in this plot, there is a minimum allowable value

k1 = π
b − Ω

Vs
that corresponds to lc = 0, for which ω2 = ωc = Ω + ω1 and k2 = 0. In this

case the second mode is not a propagating wave which means we cannot have a conversion

of mode 1 to a propagating wave of mode 2. Below this value of k1, ω2 = ω1 + Ω does

not exist and mode conversion is not possible. For k1 above this minimum, we will have

physically meaningful values for conversion length and mode conversion is observed. The

conversion length increases with k1 to reach a maximum that corresponds to minimum

coupling between the modes. lc will then decrease as it varies proportional to 1
k1

for large

values of k1. This type of plot is helpful in choosing the appropriate modulation length for

acoustic waveguide design based on available values of Ω and other system parameters.

Moving further, we consider a slab waveguide similar to surface acoustic wave [150]

and flexural plate wave [151] devices widely used in MEMS applications. To be more
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specific, we assume that the waveguide is 10µm thick silicon, with c44 = 80GPa and

ρ0 = 2000 kg
m3 .[165] The modulation depth δρ is chosen to be 0.1ρ0. It is worth mentioning

that smaller values of the modulation depth will also provide the same one-way isolation

effect. However, the required conversion length in this case will be larger. Furthermore, we

consider the propagation of the mode 1 phonon with frequency ω1 = 0.8ωc, i.e below cut-

off frequency ωc which guarantees that at frequency ω1 the acoustic waveguide supports

only a single fundamental symmetric mode. Choosing the modulation frequency Ω =

0.4ωc = 0.8GHz, we expect a full conversion into mode 2 after lc = 13.5λ1 where λ1 =

2π
k1

= 25µm, which is about 33 times the thickness of the waveguide.

While spatial density modulations of order 10% are difficult to achieve in bulk mate-

rial, modulations up to about 99% have already been achieved in silicon-based phononic

crystals with spatial periodicities of order 500 − 800nm [166] and 10µm − 10mm. [167]

Such phononic crystals have the potential to improve the quality factor and yield of high-

frequency Lamb-wave devices including waveguides, resonators, and filters [167]. Tem-

poral property variation is also possible in practice, although more difficult to achieve.

Dong et al. [168] realized a time-varying phononic crystal [169] by periodically varying

the fluid medium between an acoustic wave source and detector via a rotating drum ex-

periment. Modulation depths of 53% and 10%, respectively, were achieved for density

and bulk modulus.

Other groups have experimentally demonstrated dynamically tunable material prop-

erties in solid state systems. Jang et al. [170] applied mechanical strain to PDMS/air

phononic crystals to modify the phononic band structure. Casadei et al. [171] used an

electrically driven array of piezoelectric resonators to tune phononic band structure and

75



Young’s modulus in an aluminum phononic crystal plate. Cullen et al. [172] varied the

magnitude and direction of a magnetic field applied to the rare earth iron compound

Tb0.3Dy0.7Fe2 and obtained a 50% change in the c44 elastic constant. Varga et al. [173]

observed a similar change in the elastic modulus with magnetic field for an anisotropic

composite of PDMS and chained carbonyl iron particles. While the above examples have

not involved periodic modulation, it is feasible to apply mechanical strain, voltage, and

magnetic fields to solid materials in a periodic fashion to obtain such modulation.

Furthermore, for mode 1 propagating in the waveguide, we have a1(0) = 1 and a2(0) =

0 since before encountering the modulation domain, the symmetric mode is the only

mode present in the waveguide. Based on these conditions, the solution to Eq. 5.2.2

that describes the combination of the modes inside the modulation domain is written as

a1(x) = cos(ξx) and a2(x) = sin(ξx), as plotted in Fig. 5.2 (b). Complete transition from

mode 1 to mode 2 occurs after the wave propagates a distance lc.

Next, we investigate numerically the wave propagation in such a waveguide with the

help of the finite element method. In this case we consider that a small section of the

waveguide with length lc is modulated. The results of the numerical simulations are

shown in Fig. 5.3. We observe a good agreement between analytical predictions and

numerical simulations. When mode 1 propagates in the forward direction, we observe full

conversion to mode 2 induced by spatio-temporal modulation. On the other hand, when

mode 1 propagates in the opposite direction, the modulation has no effect on the traveling

wave and the waveguide does not allow the conversion to happen. Therefore, time reversal

symmetry is broken, analogous to observations for optical waveguides [163, 164].

We have also considered the case of elastic stiffness constant modulation such that
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Figure 5.3: Numerical simulation of the wave propagation in forward and backward di-

rection in a spatio-temporally modulated acoustic waveguide.
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c44 = c044 + δc cos(Ωt−K z), where c044 is the original elastic stiffness constant and δc is

the modulation depth. This type of modulation will result in the same form of solution

for a1(x) and a2(x). The resulting convergence length is driven as lc =
π2c044

δc

√
2

(π
b
)2+k1k2

.

Once again a larger modulation depth results in a smaller required conversion length.

Also, for a forward propagating SH wave we observe full conversion of mode 1 to mode

2, while the SH wave traveling in the opposite direction passes thorough the waveguide

unchanged (similar to Fig. 5.3, not shown here).

5.3 NEMS With Broken T Symmetry: Graphene Based

Unidirectional Acoustic Transmission Lines

5.3.1 Introduction

Low dimensional materials such as graphene [174, 175, 176, 177], carbon nanotubes [178],

boron nitride nanomaterials [179, 180, 181, 182], and atomically thin MoS2 [183] have

attracted great interest in recent years. The extraordinary electrical [184, 185], opti-

cal [186, 187], thermal [188, 189], and mechanical [190, 191] properties of graphene and

analogous low-dimensional materials [192] make them promising candidates for practical

applications in electronics, sensing, and energy storage devices.

Owing to their outstanding mechanical and electrical properties, these materials have

been utilized as electromechanical oscillators in nanoscale memory cells and nanoelec-

tromechanical switches [193, 194, 195, 196] and resonators [197, 198, 199]. The study

of mechanical waves [200] and the ability to manipulate, control, and detect vibrational

motion in such nanoelectromechanical systems (NEMS) [201, 202, 203, 204] provides un-
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precedented opportunities to employ them in fluidic [205], electronic [206], and optical

networks [207]. NEMS based oscillators as mechanical sensors and actuators are also used

in applications such as ultrasensitive force [208] and displacement detection [209, 210],

scanning probe microscopy [211] and resonant mass sensing of chemical and biological

species [212, 213] where an important functionality is to have one-way communication

channels that transmit desired signals only in one direction.

Acoustic rectifiers and diodes [154, 155, 156, 157, 158] as well as one-way acoustic

isolators [214] have been recently studied. The acoustic diode concept is based on a

nonlinear frequency conversion mechanism [157, 159, 160]. Other studies have focused

on nonreciprocity in acoustic circulators and acoustic metamaterials [215, 216]. More

recently, the idea of one-way phonon isolation[214], motivated by optical equivalents [163,

164], was studied based on creating spatio-temporal modulation of mechanical properties.

This leads to a one-way conversion between the guided modes, therefore, breaking the

symmetry of wave propagation in a waveguide in forward and backward directions.

Here we study the idea of one-way signal isolation in low dimensional nanoelectrome-

chanical oscillators where the symmetry of the system under time reversal transformation,

also known as the T-symmetry, is broken. To explain the method, we consider a system of

graphene nanoribbons (GNRs) on an elastic substrate and demonstrate that the symme-

try of wave propagation may be broken by introducing spatial and temporal modulation

of elastic properties of the system. We show, both analytically and numerically, that

in one of the propagation directions conversion between the modes occurs, whereas in

the other direction the signal is transmitted without any perturbations. We also dis-

cuss the extension of this method beyond graphene nanoribbons and mention its possible
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implementation for designing a phonon isolator in nanoelectromechanical oscillators.

5.3.2 Results

In Fig. 5.4(a), a double-layer graphene nanoribbon is shown. The system consists of

two graphene nanoribbons with width b, each of which is perfectly adhered to an elastic

substrate. We use the nonlocal elasticity theory to study wave propagation along the

nanoribbons [217, 218]. In this model, shown in Fig. 5.5, each substrate is treated as

a linear elastic medium with stiffness kw [218], and the nanoribbons themselves interact

via van der Waals forces that are also modeled as linear springs with stiffness c [218].

The governing equation for wave propagation in this system is driven from the nonlocal

Euler-Bernoulli beam model [219, 220],

E I
∂4w1

∂x4
+ ρA

∂2

∂t2
(w1 − (e0a)

2∂
2w1

∂x2
) = c(w2 − w1)− kww1 (5.3.1)

E I
∂4w2

∂x4
+ ρA

∂2

∂t2
(w2 − (e0a)

2∂
2w2

∂x2
) = c(w1 − w2)− kww2 (5.3.2)

Here w1 and w2 are flexural displacements of nanoribbons 1 and 2 in the y direction,

A is the cross sectional area of each GNR, ρ is the density, I is the moment of inertia,

E is the Young’s modulus, a is the C-C bond length and e0 is a parameter representing

nonlocal elastic effects in the GNR [218, 219]. Without loss of generality, we consider a

simplified case with e0a = 0 and kw = c [218], and use the parameters obtained in Ref.

[218]. The two governing equations (Eqs. 5.3.1 and 5.3.2) can then be written in the form

L−→u = 0 where −→u =

w1

w2

, and L is a linear operator.
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Figure 5.4: (a) A double-layer graphene nanoribbon on an elastic matrix. (b) Dispersion

curve of the double-layer GNR obtained from Euler-Bernoulli beam model. The red
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Schematic of in-phase to anti-phase mode conversion in a double-layer GNR system
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Solutions of the form −→u =

Dw1

Dw2

 exp i(βx− ωt) are assumed, where Dw1 and Dw2

are the corresponding magnitudes of w1 and w2, and β and ω are the wavenumber and

the angular frequency of the propagating wave. The corresponding solution results in two

vibrational modes as shown in Fig. 5.4 (b). Mode 1 corresponds to the in-phase mode

with D
(1)
w1 = D

(1)
w2 and mode 2 corresponds to the anti-phase mode with D

(2)
w1 = −D(2)

w2 .

We note that below the cut-off frequency, fc, only the in-phase branch exists, see Fig

5.4 (b). The value of the cut-off frequency depends on the nanoribbon and elastic matrix

properties [218], fc =
1
2π

√
kw+2c
ρA , which in this system is around 20.5 THz for nanoribbons

of 4nm width. [218].

Clearly, the dispersion curves plotted in the Fig.5.4 (b) are symmetric with respect to

wavenumber β, implying that the wave propagation in such a waveguide is reciprocal, i.e.

waves traveling in forward and backward directions have the same properties. In order

to break this symmetry in the wave propagation phenomenon we follow the technique

suggested in Refs. [214, 163]. In particular, we consider wave propagation with a spatio-

temporally modulated elastic matrix. In this case we expect that for an appropriately

chosen modulation, one-way conversion between the guided modes may be induced, i.e.

interaction between the guided waves is possible in one propagation direction only.

We assume spatial-temporal modulation of the elastic matrix constant so that kw =

kw0 + δkw cos(Ωt−B x) where kw0 is the original stiffness constant and δkw is the mod-

ulation depth. In order to maximize the coupling between modes, we modulate only the

upper elastic matrix, as shown in Fig. 5.5. To solve the governing equations for the mod-

ulated system, we assume a general solution as the superposition of the guided modes:
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−→u ′ = a1(x)

D
(1)
w1

D
(1)
w1

 exp i(β1 x− ω1t) + a2(x)

 D
(2)
w1

−D(2)
w1

 exp i(β2 x− ω2t), where β1,2 and

ω1,2 are the wavevectors and frequencies of in-phase and anti-phase modes, and a1(x)

and a2(x) are their slowly varying spatial amplitudes. Next, using the standard tech-

niques of the perturbation theory (see Appendix B), two ordinary differential equations

are obtained.

d2

dx2

a1
a2

 =

−A11 0

0 −A22


a1
a2

 (5.3.3)

where A11 = A22 = δk2w
256(E I)2β3

1β
3
2
exp i(β′x), and β′ = β2 − β1 − B. Based on the

incoming signal frequency ω1 and the available modulation frequency Ω, a full mode

conversion from mode 1 to mode 2 occurs when ω2 = ω1 +Ω and when the B parameter

of the modulation is chosen such that B = β2 − β1 or β′ = 0. The system shows one-way

behavior because the modulation kw = kw0+δkw cos(Ωt−B x) does not convert the mode

at (−β1, ω1) to any other modes. The resulting end point of the intended transition in

the negative β region does not lie on the anti-phase branch of the dispersion curve (Fig.

5.4 (b)). This one-way behavior arises because the modulation breaks both time-reversal

and spatial-inversion symmetry.

If we consider the propagation of the in-phase mode in the system, the initial conditions

will be a1(0) = 1 and a2(0) = 0. The solution to equation 5.3.3 is then written as

a1(x) = cos(ξx) and a2(x) = sin(ξx), where ξ is the conversion wavevector. As described

in Fig. 5.6 (a), complete transition from in-phase to anti-phase mode is observed for the

wave propagating in one direction (solid lines), while in the opposite direction the in-

phase mode will not be influenced (dashed lines). The general solution of the governing
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Figure 5.5: Schematic of continuum beam model for double-layer GNR on an elastic

substrate with stiffness kw. The shaded area represents the modulation domain.

equations is then cos(ξx)

D
(1)
w1

D
(1)
w1

 exp i(β1 x − ω1t) + sin(ξx)

 D
(2)
w1

−D(2)
w1

 exp i(β2 x − ω2t)

with ξ = δkw
16E I

√
β3
1β

3
2

, and the corresponding conversion length of lc =
π
2ξ =

8πE I
√

β3
1β

3
2

δkw
. As

expected, the conversion length is inversely proportional to the modulation depth which

means with a stronger modulation, the mode conversion requires a smaller modulation

domain. To analyze the conversion length further, we investigate dependence on the

modulation parameters. The intent of adding a modulation domain is to convert an

incoming in-phase mode signal with frequency ω1 and wavenumber β1 to the anti-phase

mode using the available modulation frequency Ω and tunable modulation wavenumber B.

Therefore, we plot the dependence of the conversion length on wavenumber β1 for different

values of Ω. As shown in Fig. 5.6 (b), the required conversion length is larger for higher

wavenumbers, as lc varies proportional to (β1β2)
3
2 with β2 = [(ρA(Ω +

√
E Iβ4

1−kw
ρA )2 +

kw + 2c)/(E I)]
1
4 . It is worth mentioning that the choice of Ω and β1 is not arbitrary

and should satisfy two criteria. First, the corresponding mode 1 frequency, ω1, needs to
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Figure 5.6: (a) Variation of mode amplitudes along the modulation domain. As shown

by the arrows, the solid lines correspond to forward propagation with full conversion

and the dashed lines correspond to backward propagation with no mode conversion. (b)

Conversion length for different values of Ω as a function of wave number of in-phase mode.

be below the cut-off frequency. Second, the resulting frequency value Ω + ω1 needs to lie

on the dispersion curve of mode 2 in the forward propagation direction (positive β side)

and lie on a band gap region in the backward propagation direction (negative β side)

consistent with Fig. 5.4 (b) .

As an example, we choose a value slightly below the cut-off frequency to guarantee that

at frequency ω1 the system only supports the in-phase mode. For ω1 = 0.95ωc, Ω = 0.1ωc

and δkw = 0.1kw, lc = 34.6λ1 where λ1 =
2π
β1

is the wavelength of the corresponding mode

1 signal. Here we use normalized quantities in both the analytical and the numerical

calculations. The corresponding frequency of mode 2 based on the dispersion curves will

be ω2 = 1.11ω1. It is important to emphasize that the parameter values chosen are

arbitrary and longer wavelength signals corresponding to smaller choices of ω1 can also
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be used to observe the same isolation effect as long as the required conditions explained

earlier are satisfied. Additionally, lower values of the modulation depth also result in a

mode conversion, but require a longer modulation domain.

In order to confirm the analytical model, we used numerical simulations of the wave

propagation and mode conversion in double-layer GNRs using finite difference time-

domain (FDTD) method to solve the governing equations in the presence of spatio-

temporal modulation. For this purpose, we choose a modulation domain with length

lc as predicted from the analytical model. The numerical simulation results are shown in

Fig. 5.7. An incoming in-phase wave of wavelength λ1 will be converted to an anti-phase

wave of wavelength λ2 after passing through the modulation domain. The Fourier spectra

of both the incoming and outgoing signals are shown in Fig. 5.7 (b). From the FDTD

simulations, the peak corresponding to the frequency of the outgoing signal (red curve) is

around ω2 = 1.08ω1 which shows good agreement with the analytical method. The design

of the system provides conversion of a signal of mode 1 to a signal of mode 2 in only one

of the propagation directions. Therefore, in the opposite direction where no conversion

between the two modes happens, we essentially observe a transmission ratio of 1 for the

signal. In the other direction the signal of mode 1 is converted to mode 2 which implies

a transmission ratio of close to zero. In fact, qualitatively, this type of isolation results

in the following scattering matrix for the two ports:

0 0

1 0

. More specifically, if we con-

sider the Fourier spectrum of the outgoing signal in Fig. 5.7 (b), a transmission ratio of

slightly above zero is observed for the forward propagation direction. However, this value

of transmission ratio is influenced by the numerical errors within the framework of the
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Figure 5.7: (a) FDTD simulation of in-phase to anti-phase mode conversion in double-

layer graphene nanoribbons. x is scaled with respect to λ1 = 2π
β1
. (b) Fourier spectrum

of the signal before and after the modulation domain. The horizontal axis is normalized

with respect to the frequency of mode 1. The blue curve shows the Fourier transform of

mode 1 which is peaked at a value of 1 corresponding to ω1. The red curve is the Fourier

transform of the signal after the modulation domain which shows a peak at ω2 = 1.08.

FDTD method and it is important to keep in mind that the analytical method suggests

a transmission ratio of zero for this scenario.

Experimental realization of spatio-temporal modulation of elastic properties has been

investigated recently. Spatial property modulation is possible through periodic arrange-

ment of elastic material similar to the case of phononic crystals [166]. Temporal property

modulation, although more difficult, is also possible in practice through applying electric

or magnetic fields or mechanical strains in a periodic fashion [171, 172, 170]. In gen-

eral, spatial modulations with nanometer scale periodicity provide suitable conditions for

conversion between the two vibrational modes of double-layer GNRs. Furthermore, THz

87



range frequencies are appropriate for temporal modulations to guarantee the unidirec-

tional nature of such systems. Beyond double-layer GNRs, the aforementioned technique

is also applicable to other systems. The key here is to have a system with two different

branches of dispersion curve separated by a cut-off frequency. Using the same method,

one-way mode conversion is achievable in systems such as single layer GNRs or double-

wall carbon nanotubes where similar types of governing equations describe their behavior

[221, 218, 222, 223, 224]. It is also important to mention that for very low wavelength

limits the physics of the problem may differ from the predictions of continuum models

and therefore atomistic level techniques such as molecular dynamics simulations [32] may

be required for the analysis.

5.4 Conclusions

In conclusion, we have theoretically demonstrated that in a spatio-temporally modulated

acoustic waveguide, the symmetry of mode conversion in forward and backward direc-

tions may be broken. We showed that similar to optical and electronic systems, and in

the context of the acoustic-electromagnetic analogy [225, 226], phonon isolation may be

achieved over a short distance. Such a principle may be implemented for on-chip acous-

tic devices. We also explored one-way acoustic signal isolation in graphene nanoribbons

which can be extended to other low dimensional oscillators. The realization of a NEMS

based signal isolators raises intriguing possibilities for a wide range of applications in

scanning probe microscopes, force and displacement detection devices and chemical and

biological sensors.
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Chapter 6

Project Conclusions

6.1 Contributions

The following is a summary of the most important contributions made by this dissertation.

Nanocrystal superlattices are artificial solids formed by assembly of monodisperse

building blocks that present surprising and transformable properties. A fundamental un-

derstanding of mechanical, phononic, and thermal properties of these materials is essential

for optimizing and tuning their properties. The different length scales involved in the su-

perlattice structures adds to the complexity of these systems which makes it challenging

to use computational models to study such materials.

This dissertation investigated modeling techniques at different length scales for study-

ing NCSLs. Coarse grained and atomistic models as well as effective medium theory were

used to calculate the elastic moduli of NCSLs. It was concluded that existing coarse

grained models require modification to account for strong attractive interactions between

the ligands and a more detailed presentation of electrostatic forces. The atomistic models,
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on the other hand, present an accurate description of such interactions and predict the

elastic moduli reasonably well.

Thermal properties of spherical gold NCSLs where calculated using equilibrium MD

simulations based on validated empirical potentials. The resulting thermal conductivities

show good agreements with the limited available experimental data. The MD simulations

were also used to predict thermal conductivity of NCSLs with nanoparticles of different

core sizes and surface ligand coverage. We also studied PbSe NCSLs which are promis-

ing materials for thermoelectric applications. Thermal conductivity of these octahedral

nanocrystals were calculated using both empirical potentials and first principles calcula-

tions, and the resulting values based on empirical potentials were different from the first

principles calculations by about 15%.

Phononic properties of NCSLs was also studied. Phononic band structure calculations

showed that shape, size, and superlattice structures can be effectively used to tune the

phononic band structure of NCSLs which is helpful in designing pass bands and stop

bands for phonons.

Finally, the concept of one-way phonon isolation was presented and studied in acous-

tic waveguides and low dimensional materials. Using spatio-temporal modulation of me-

chanical properties, we showed that a one-way mode conversion for individual phonons is

possible which can potentially be used to filter out specific phonon frequencies or acoustic

waves for applications such as on-chip acoustic signal isolation or unidirectional acoustic

transmission lines in NEMS devices.
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6.2 Future Directions

Nanocrystal superlattices provide great opportunities for realizing and engineering inter-

esting thermal and phononic behavior. One important extension of this work could include

exploring the first principles based calculations for developing more accurate molecular

simulations. Thermal properties of many interesting NCSLs of different shapes cannot

be accurately modeled with typical empirical potentials. By calculating the accurate in-

teratomic forces from first principles and quantum chemistry (which is useful for treating

nanocrystal surface atoms), one can build a framework where the interactions between

neighboring atoms of a nanocrystals are described by such accurate models. Subsequently,

the use of molecular dynamics simulations with such accurate force fields will provide a

powerful tool for studying thermal properties of a variety of NCSLs.

In a similar manner, the phonon dispersion curves of different NCSLs can be predicted

more accurately and for higher frequencies using atomistic models with first principles

based force fields. The main challenge for this purpose is the high computational cost of

lattice dynamics calculations since the nanocrystal building blocks consist of few thou-

sand or even tens of thousands of atoms which results in a complicated dispersion curve

with tens of thousands of dispersion branches. Also from a fundamental scientific view

point, such calculations could help answer the questions about range of validity and the

applicability of continuum models more rigorously. The importance of experimental mea-

surements of phonon dispersion curves of NCSLs should also be emphasized here since, at

the current stage of research, no such experimental data exists for any type of nanocrystal

superlattices.
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Another interesting future direction is to study local elastic properties of NCSLs with

a focus on the organic-inorganic interfaces. Theoretical calculations and experimental

measurements of discrete and continuum elastic properties of NCSLs will provide more

accurate data as inputs to atomistic and continuum models. Furthermore, the interface

effects studied via atomistic models can provide important insight into the behavior of

phonons at the interface which plays a significant role in phononic band structure and

thermal property calculations for NCSLs.

One other potential future direction is to use NCSLs as the building blocks for cre-

ating phononic analogs of photonic behavior. The periodic structure of NCSLs and the

combination of core and ligand components with different material properties makes them

great candidates for realizing one-way phononic devices. The spatial property modulation

that already exist in NCSL films is suitable for achieving phonon mode conversion. The

more challenging task is the introduction of temporal modulations that will guarantee the

one-way nature of phonon isolation.
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Appendix A

Analytical Solution of SH Wave

Equation In Presence of

Spatio-Temporal Modulation

In this work, the analytical derivation of the solution to wave equation and the conversion

length mentioned in section 5.2.2 is discussed. We begin by considering the SH wave

equation in an unbounded plate waveguide:

ρ0
∂2uz
∂t2

= c44[
∂2uz
∂x2

+
∂2uz
∂y2

] (A.0.1)

The eigenfunctions corresponding to symmetric and antisymmetric guided modes of the

waveguid can be written as u
(1)
z exp i(ω1t− k1x) and u

(2)
z exp i(ω2t− k2x) where u

(1)
z = 1

and u
(2)
z = sin(πy2b ) are the mode profiles and b is the width of the waveguide. If we apply

a density modulation of the form ρ = ρ0 + δρ cos(Ωt − K x), the wave equation can be
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written as the following

[ρ0 + 0.5δρ(exp(i(Ωt−K x)) + exp(−i(Ωt−K x)))]
∂2uz
∂t2

= c44[
∂2uz
∂x2

+
∂2uz
∂y2

] (A.0.2)

The general solution for Eq. A.0.2 can be written as a superposition of the guided modes:

uz = 0.5a1(x)u
(1)
z exp(i(ω1t−k1x))+0.5a1(x)u

(1)
z exp(−i(ω1t−k1x))+0.5a2(x)u

(2)
z exp(i(ω2t−

k2x))+0.5a2(x)u
(2)
z exp(−i(ω2t−k2x)) where a1(x) and a2(x) are the slowly varying spatial

amplitudes of the two modes. From this point on, we will use the following abbreviations:

I ≡ i(ω1t − k1x), II ≡ i(ω2t − k2x), and ∆ ≡ i(Ωt − K x). Substituting the general

solution into Eq. A.0.2, we will have

[ρ0+0.5δρ exp(∆)+0.5δρ exp(−∆)](−0.5ω2
1a1u

(1)
z exp(I)−0.5ω2

1a1u
(1)
z exp(−I)−0.5ω2

2a2u
(2)
z

exp(II)− 0.5ω2
2a2u

(2)
z exp(−II)) = c44[0.5a1

∂2u
(1)
z

∂y2
exp(I) + 0.5a1

∂2u
(1)
z

∂y2
exp(−I)

+0.5a2
∂2u

(2)
z

∂y2
exp(II)+0.5a2

∂2u
(2)
z

∂y2
exp(−II)+0.5

∂2a1
∂x2

u(1)z exp(I)+0.5
∂2a1
∂x2

u(1)z exp(−I)

−i k1
∂a1
∂x

u(1)z exp(I) + i k1
∂a1
∂x

u(1)z exp(−I)− 0.5k21a1u
(1)
z exp(I)− 0.5k21a1u

(1)
z exp(−I)

+0.5
∂2a2
∂x2

u(2)z exp(−II)−i k2
∂a2
∂x

u(2)z exp(II)+i k2
∂a2
∂x

u(2)z exp(−II)−0.5k22a2u
(2)
z exp(II)

−0.5k22a2u
(2)
z exp(−II)] (A.0.3)

Since u
(1)
z exp(I), u

(1)
z exp(−I), u(2)z exp(II), and u

(2)
z exp(−II) are all solutions of the

wave equation with density ρ0, the above equation will be simplified to

0.25δρ(exp(∆) + exp(−∆))[−ω2
1a1u

(1)
z exp(I)− ω2

1a1u
(1)
z exp(−I)− ω2

2a2u
(2)
z exp(II)

−ω2
2a2u

(2)
z exp(−II)] = c44[0.5

∂2a1
∂x2

u(1)z exp(I) + 0.5
∂2a1
∂x2

u(1)z exp(−I)

−i k1
∂a1
∂x

u(1)z exp(I) + i k1
∂a1
∂x

u(1)z exp(−I) + 0.5
∂2a2
∂x2

u(2)z exp(II) + 0.5
∂2a2
∂x2

u(2)z exp(−II)
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−i k2
∂a2
∂x

u(2)z exp(II) + i k2
∂a2
∂x

u(2)z exp(−II)] (A.0.4)

By neglecting second order derivatives of slowly varying amplitudes a1 and a2 in the

framework of perturbation theory, and by multiplying both sides of the above equation by

u
(1)
z

∗
exp(−I) (which is the complex conjugate of the first solution to the wave equation),

we will have

0.25δρ(exp(∆)+exp(−∆))[−ω2
1a1u

(1)
z u(1)z

∗−ω2
1a1u

(1)
z u(1)z

∗
exp(−2I)−ω2

2a2u
(2)
z u(1)z

∗
exp(II−I)

−ω2
2a2u

(2)
z u(1)z

∗
exp(−II − I)] = c44[−i k1

∂a1
∂x

u(1)z u(1)z

∗
+ i k1

∂a1
∂x

u(1)z u(1)z

∗
exp(−2I)

−i k2
∂a2
∂x

u(2)z u(1)z

∗
exp(II − I) + i k2

∂a2
∂x

u(2)z u(1)z

∗
exp(−II − I)] (A.0.5)

Now if we integrate both sides of the above equation with respect to time over a long

time period ( 0 to ∞), all the terms with nonzero exponents will vanish. If we have

−∆ − I + II = 0, which is equivalent to K = k2 − k1 and Ω = ω2 − ω1, only one term

from each side of the above equation will survive. By integrating this equation over the

width of the waveguide, we will have

0.25δρ(−ω2
2a2)

0∫
− b

2

u(2)z u(1)z

∗
dy = c44[−i k1

∂a1
∂x

b
2∫

− b
2

u(1)z u(1)z

∗
dy] (A.0.6)

In this equation the left hand side integral is performed only over the modulation domain

which is half of the waveguide width. Simplifying the above equation will result in the

following ODE

∂a1
∂x

= −

0.25δρω2
2a2

0∫
− b

2

u
(2)
z u

(1)
z

∗
dy

i k1c44

b
2∫

− b
2

u
(1)
z u

(1)
z

∗
dy

(A.0.7)
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Repeating the same steps and multiplying Eq. A.0.4 by by u
(2)
z

∗
exp(−II) , we will get

the following ODE

∂a2
∂x

= −

0.25δρω2
1a1

0∫
− b

2

u
(1)
z u

(2)
z

∗
dy

i k2c44

b
2∫

− b
2

u
(2)
z u

(2)
z

∗
dy

(A.0.8)

The last two ODE’s could be written as
∂ap
∂x =

Apq

i aq where {p, q} represents either {1, 2}

or {2, 1}, and

Apq =

δρω2
q

0∫
− b

2

u
(q)
z u

(p)
z

∗
dy

4c44kp

b
2∫

− b
2

u
(p)
z u

(p)
z

∗
dy

(A.0.9)

Differentiating the two resulting ODE’s one more time will result in the following second

order ODE’s

d2

dx2

a1
a2

 =

−A12A21 0

0 −A21A12


a1
a2

 (A.0.10)

These equations will subsequently result in periodic solutions with a conversion length

equal to lc = π
2
√
A12A21

which is equivalent to the resulting conversion length shown in

section 5.2.2.
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Appendix B

Analytical Solution of Graphene

Nanoribbon Wave Equations

In the case of graphene nanoribbons, a similar method can be used to solve the Euler-

Bernoulli equations. Eqs. 5.3.1 and 5.3.2 can be rewritten as L−→u = 0 where −→u =

w1

w2

,

and L is a linear operator,

L =

E I ∂4

∂x4 + ρA ∂2

∂t2
− c− kw0 c

c E I ∂4

∂x4 + ρA ∂2

∂t2
− c− kw0

 (B.0.1)

Assuming a solution of the form −→u =

Dw1

Dw2

 exp i(βx− ωt) will result in the following

equation for Dw1 and Dw2
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E Iβ4 − ρAω2 − c− kw0 c

c E Iβ4 − ρAω2 − c− kw0


Dw1

Dw2

 =

0

0

 (B.0.2)

The nontrivial solution of the above equation happens when the 2 by 2 matrix is singular

which results in the following dispersion relations

ω2
1 =

E Iβ4
1 − kw0

ρA
(B.0.3)

ω2
2 =

E Iβ4
2 − kw0 − 2c

ρA
(B.0.4)

Where mode 1 corresponds to the in-phase mode withD
(1)
w1 = D

(1)
w2 and mode 2 corresponds

to the anti-phase mode with D
(2)
w1 = −D(2)

w2 .

In the presence of the spatial-temporal modulation kw = kw0 + δkw cos(Ωt − B x), a

general solution as the superposition of the guided modes is assumed:

−→u ′ = a1(x)

D
(1)
w1

D
(1)
w1

 exp i(β1 x− ω1t) + a2(x)

 D
(2)
w1

−D(2)
w1

 exp i(β2 x− ω2t) (B.0.5)

Using this general solution and plugging it in the Euler-Bernoulli equations with mod-

ulated kw, we can follow the same steps discussed in Appendix A to get to the following

ordinary differential equations

∂a1
∂x

=
iδkw

16E Iβ31
a2 (B.0.6)

∂a2
∂x

=
iδkw

16E Iβ32
a1 (B.0.7)

Differentiating the above equations one more time will result in Eq. 5.3.3.
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