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ABSTRACT

ESSAYS ON SEARCH AND MATCHING EQUILIBRIA

Garth Baughman

Kenneth Burdett

This dissertation considers three separate applications of the theory of search

and matching equilibria. The first chapter considers a partnership formation game,

where agents on two sides of a market need to find a partner before a deadline, and

search frictions make it difficult to find an acceptable partner. I characterize agents

acceptance decisions – those with whom they would be willing to match – show ex-

istence, and provide a condition for uniqueness of equilibrium. This study provides

a step towards a better understanding of matching behavior in non-stationary envi-

ronments where agents have persistent type. The second chapter in this dissertation

considers the import of adverse selection in a modern model of directed search in

labor markets. Competition in this market drives firms to offer contracts that in-

crease over time, limiting turnover. Adverse selection does not perturb contracts

for less attractive types, but leads more attractive workers to accept initially low

wages that grow faster than they would under full information. The final chapter

of this dissertation explores the import of sequential search behavior in a model

of equilibrium price setting by multi-product firms. On the one hand, the market

produces results which affirm the common empirical focus on marginal distributions
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of individual goods’ prices across firms. On the other, when some firms do not offer

every good, search behavior leads to interesting pricing patterns which would not

occur in single-product markets.
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Chapter 1

Introduction

Search and matching is the exploration of two related observations. First, before

one can engage in most any economic activity, one must first identify that activity.

One must search. Second, once an opportunity has been identified, all of the parties

to that activity must agree to the terms, and ultimately to participate. One must

match. This basic observation has spawned a large literature, with applications from

the theory of contracts, the analysis of labor markets, to international economics and

trade, or even financial markets and urban and real estate economics. Simply, in any

environment where information is diffuse, good opportunities are rare, and several

agents must come together for success, one must consider search and matching. This

dissertation considers three different applications of the modern theory of search and

matching. The first chapter explores the import of search and matching in a market

for partnership in the presence of a deadline, exploring the interaction of an evolving
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market and individual decisions. The second focuses on the role of information in

a modern model of the labor market. Finally, the third chapter considers retail

markets, exploring the interaction of consumers’ search behavior and firms’ pricing

decisions.

Deadlines and fixed end dates are pervasive in matching markets including school

choice, the market for new graduates, and even financial markets such as the market

for federal funds. Deadlines drive fundamental non-stationarity and complexity in

behavior, generating significant departures from the steady-state equilibria usually

studied in the search and matching literature. In the second chapter, I consider

a two-sided matching market with search frictions where vertically differentiated

agents attempt to form bilateral matches before a deadline. I give conditions for

existence and uniqueness of equilibria, and show that all equilibria exhibit an “an-

ticipation effect” where less attractive agents become increasingly choosy over time,

preferring to wait for the opportunity to match with attractive agents who, in turn,

become less selective as the deadline approaches. When payoffs accrue after the

deadline, or agents do not discount, a sharp characterization is available: at any

point in time, the market is segmented into a first class of matching agents and

a second class of waiting agents. This points to a different interpretation of un-

raveling observed in some markets and provides a benchmark for other studies of

non-stationary matching. A simple intervention – a small participation cost – can

dramatically improve efficiency.
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The second chapter considers a dynamic labor market where workers are pri-

vately informed about their attachment to the labor force and firms competitively

post contracts to direct workers’ search. This extends the static results on adverse

selection in competitive search markets of Guerrieri et al. (2010) to a dynamic en-

vironment with on the job search à la Shi (2009). Characterizing the dynamic

contracting problem of firms and the search problem of workers, I show that equi-

libria feature full separation, increasing wage profiles, and “job lock” for committed

(long duration) workers, reducing their frequency of transitions relative to a full

information benchmark.

Finally, almost all retailers offer multiple products, and consumers search for

low prices on a basket of goods. Kaplan and Menzio (2014) document a great deal

of price dispersion both within and across stores offering multiple products. The

third chapter extends Burdett and Judd (1983), a canonical model of equilibrium

price dispersion, to the case of multiple products. As shown in Burdett and Malueg

(1981), when sequentially searching for multiple products, consumers (a) face a

lower cost of search per good and (b) may capitalize on low prices for one good

while continuing to search for an acceptable price on the others. This leads multi-

product consumers to set one reservation price for a basket of goods, and a higher

(per good) reservation price for each good alone. This chapter characterizes firms’

pricing decisions in light of this search behavior. In a simple version of the model

where all firms offer every good, the marginal distribution of each price is unique
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and of the same form as would obtain in a simple single product model, and any

joint distribution with support contained in the acceptance set of consumers satisfies

equilibrium. This provides theoretical foundation for the common empirical focus on

marginal price distributions – as only these are determined in equilibrium. While the

structure of equilibrium is unaffected by the addition of single good demanders, the

addition of single good firms can lead to one of several pricing patterns depending on

parameters. A consistent prediction is that, if enough firms can offer only a single

good, these single product firms crowd out the bottom of the price distribution,

with the interesting equilibrium effect of also lowering the highest prices charged by

multi-product firms – an effect which would not obtain in the single product case.
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Chapter 2

Deadlines and Matching

In this paper, I analyze the impact of a deadline, a fixed end date when the market

closes, on equilibrium dynamics in a canonical model of frictional matching. In

the model, search frictions limit the rate at which vertically differentiated agents

meet potential partners. When two agents meet, they each learn the type of their

prospective partner, and hence their payoff from matching. If both agree, the pair

match and leave the market. If not, they continue searching. These exits cause the

distribution of available partners to evolve over time. At the deadline, unmatched

agents receive some outside option and the game ends. I establish existence of

equilibria, provide a condition ensuring uniqueness, and characterize behavior.

Many matching markets feature a deadline. In education, students must find a

seat before the start of the school year. In the market for entry level profession-

als, new graduates want to find a job before graduation. In the market for federal
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funds, banks must meet their reserve requirements before the monitoring dead-

line every evening. When present, deadlines and the consequent cyclical nature

of these markets allows for the implementation of centralized, static mechanisms.

Prominent examples include the medical resident matching program and the school

choice mechanisms in New York and Boston, in addition to somewhat less struc-

tured systems like the signaling mechanism provided by the American Economic

Association’s JOE program.1

The design and analysis of such systems derive from the now prominent liter-

ature on centralized matching, which studies what may obtain when agents come

together to form matches through a common marketplace or clearinghouse.2 A

dual literature, usually termed search and matching, studies incentives and equi-

libria when agents must seek out matches in a decentralized fashion, lacking ready

access to relevant partners. This study applies the decentralized paradigm to mar-

kets with deadlines, providing a positive theory of dynamic behavior in the absence

of clearinghouses – a model of the status quo ante that one can compare to the

successes of centralization.

Consider a decision maker facing a simple search decision problem with a dead-

line after which continued search is impossible. Over time, the decision maker

encounters opportunities that she can either accept, ending search, or reject, giving

1See Roth and Peranson (1999) on medical residents; Abdulkadiroğlu et al. (2005), Abdulka-
diroğlu et al. (2006), and Pathak and Sönmez (2008) on school choice; and Coles et al. (2010) on
the market for new economists.

2The authoritative introduction being Roth et al. (1992); see Sotomayor and Özak (2012) for
a more recent and very concise summary.
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up the opportunity in hopes of finding a better one in the future. As the dead-

line approaches, she has less time remaining to search, and therefore will encounter

fewer opportunities in the future. This leads her to be less selective over time. If

the distribution worsens as time goes on, making good opportunities rarer, this

should further drive her to adopt a declining reservation level, and also to accept

early opportunities. Finally, if she is impatient, with a positive discount rate, pure

preference induces her to accept early opportunities.

This intuitive strategy – where one both accepts some selection of early oppor-

tunities and becomes less choosy over time – holds exactly for the most attractive

agents in a matching market with deadline. Everyone will always accept the most

attractive type, so the most attractive agents need not concern themselves with the

possibility of being rejected by a potential partner; they exactly face the simple

decision problem outlined above. Less attractive agents, however, are not so lucky.

They may be refused by desirable partners, and so must formulate their strategies

in light of the acceptance decisions of others.

In a steady state version of the model, Burdett and Coles (1997) show that

matching sets partition agents into a finite number of classes, disjoint sets of mutu-

ally acceptable types.3 When there is a deadline, one might conjecture that some

flavor of a class system persists. Perhaps some finite number of temporary, time-

3This result was developed across a series of papers each with subtly differing assumptions
including Bloch and Ryder (2000), Burdett and Coles (1997), Chade (2001), Eeckhout (1999),
andMcNamara and Collins (1990). The framework of Burdett and Coles (1997) is the most
similar to mine.
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varying classes obtain. Indeed, a first class exists by exactly the same logic as in

steady state – once one becomes acceptable to the highest type, one is universally

acceptable, so one chooses the same strategy as the highest type. But the dynamics

in the model destroy any hope of summarizing less attractive agents so simply.

The complication derives from an “anticipation effect.” When agents join the

first class, their opportunity sets jump discretely. As different agents anticipate

that they will receive this dramatic improvement in opportunities at different times,

they each follow different strategies, destroying the class system. When impatient,

agents become increasingly choosy as they get close to joining the first class, further

complicating behavior. If there is no discounting, however, the behavior of agents

outside the first is easily described; they do not match at all, preferring to wait for

the opportunity to match with high types later. At each point in time, the market

segments into a first class of matching agents and a second class of waiting agents.

This partitioning has a number of implications. The first concerns sorting. In

the unravelling literature, agents rush the market. Early matching prevents sorting.

Here, because of search frictions, early matching improves efficiency and sorting.

The second implication is that a small flow cost of search is Pareto improving, as it

drives low types out of the market until it is their time to match. This eliminates the

search externality low types exert on high types, and all meetings result in a match.

High types obviously appreciate this, but low types do not mind as a higher match

probability compensates low types for a lower quality of partner, in expectation.

8



The next section considers some important predecessors in the literature. The

following section lays out the basic framework. Section 2.4 presents general results

and is followed by analysis and discussion of the case of patient agents in Section

2.3. Section 2.5 considers the effect of costs on search behavior for patient agents.

The paper then concludes with some discussion.

2.1 Context in the Literature

The current study is a direct extension of Burdett and Coles (1997) as I impose a

deadline on their steady state model. This simple change generates substantially

different behavior than previously analyzed in the literature; specifically, almost no

work considers non-stationary dynamics in a rich search and matching model. Early

predecessors of my paper studied search-theoretic decision problems in a changing

world. These include Van Den Berg (1990) and Smith (1999).4 These studies

hint at the anticipation effect – that one should be willing to wait for promising

opportunities in the future – but these are decision theoretic studies, and the strong

equilibrium implications of anticipation are obscured.

Two other studies are closely related to mine. The first, Afonso and Lagos

(2012), considers a model of decentralized trade before a deadline, and is applied

to the market for federal funds. In their model, all agents hold some quantity

4To the author’s knowledge, the first paper which describes the Bellman equation faced by a
decision maker in a model of non-stationary search was Mortensen (1986). But he immediately
specializes to the stationary case.
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of federal funds and search for a partner with whom to trade, after which they

continue to search for profitable trades until a deadline. They obtain the remarkable

result that, if agents share concave values over final holdings, all meetings result in

trade. In that they characterize the case of repeated trade with transferable utility,

while the current study considers nontransferable utility with only a single trade –

partnership formation – Afonso and Lagos (2012) provides a valuable counterpoint

to the results developed below. The second predecessor, Damiano et al. (2005),

considers a model of partnership formation with nontransferable utility as in the

current study, but differs in that, instead of randomly encountering partners over

time, agents encounter one another over a finite number of discrete rounds. This

leads to dramatically different results when search costs are incorporated, and so I

leave further discussion of this paper to section 2.5.5

Generally, the search literature related to this study can be broken into two

strands. One considers non-trivial matching decisions, but in steady state, and

the other explores non-stationary dynamics, but without meaningful matching de-

cisions. The non-stationary literature is concerned primarily with macroeconomic

fluctuations, and employs search frictions as a means of explaining labor market dy-

namics.6 In order to keep the state space small, heterogeneity is either completely

idiosyncratic, or absent. In steady state, there is a large literature addressing equi-

5This discrete time matching framework has also been considered in the theoretical biology
literature, see Alpern et al. (2005) for results which expand upon the Damiano et al. (2005)
framework, and summarize previous work in that other literature.

6Rogerson et al. (2005) and Rogerson and Shimer (2011) survey the literature.

10



librium matching behavior. Prominent examples include Burdett and Coles (1997)

and Shimer and Smith (2000). The restriction to steady state allows for a careful

consideration of the matching decisions of heterogeneous agents, but that restriction

precludes analysis of the effect of a changing environment on equilibrium interac-

tions at the heart of the current study.

There are but a handful of recent advances towards reconciling non-stationarity

and heterogeneity. Rudanko (2011) and Menzio and Shi (2011) assume agents can

direct their search, only meeting the partners for whom they actively search. This,

coupled with a free entry condition, dramatically simplifies the firms’ side of the

market, allowing for a clean characterization of behavior. Coles and Mortensen

(2012), Moscarini and Postel-Vinay (2013), and Robin (2011) take a different tack,

each showing that a different restriction on the contracting space can simplify the

movements of individuals across jobs, affording sharp results. Instead, the current

study makes a stark assumption on the nature of non-stationarity – the deadline

– and focuses on matching decisions exclusively, eliminating the complications of

contracting by instead assuming non-transferable utility. This allows the current

study to offer a clean description of matching behavior, highlighting the equilibrium

forces underlying non-stationary matching problems more broadly.

11



2.2 The Framework

The framework is a non-stationary extension of Burdett and Coles (1997). Two

groups of agents, say workers and firms, attempt to find a partner from the other

side. At time zero, the market is populated with equal masses of workers and firms

measuring size N0. Instead of explicitly modeling the process by which the two

sides evaluate each other, assume that individuals can be characterized by a fixed

real number which, following Burdett and Coles (1997), is termed pizazz. This is

a vertically differentiated market. Agents’ pizazz are initially distributed according

to G0(z) with support X = [x, x] ⊂ (0,∞). Time flows continuously from zero up

to T > 0. During this time, agents search for partners from the other group. Each

agent encounters a potential partner at a constant rate α > 0.7 Upon meeting,

two agents observe each other’s pizazz and simultaneously decide whether or not

to propose a match. For a match to occur, both agents in a meet must propose.

Utility is non-transferable; the value to an agent with pizazz y of matching with an

agent of pizazz x is exactly equal to x, irrespective of y.8 Once matched, agents

leave the market (there is no recall or divorce).

If, upon reaching time T , an agent remains unmatched, they receive utility from

7Which one could rationalize with a constant returns to scale meeting function.
8It is not clear whether this is a restriction above and beyond the requirement of identical

time-valued VNM preferences. Indeed the analysis goes through equally well if agents receive a
general payoff f(x, y) so long as this is multiplicatively separable, increasing, and strictly positive.
Additive separability may also be accommodated when agents are patient and do not discount.
Eeckhout (1999) and Smith (2006) allow for type-dependent preferences and show that all that is
required for a class system to obtain in a stationary framework is identical static VNM preferences
across agents, which implicitly allows different discount factors. This paper will not allow for
differences in discount rates, and so assumes identical cardinal preferences from the outset.
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an outside option, the value of which is 0. That all agents share a uniform outside

option is not without loss of generality and represents a significant simplification.

The strongest implication is that all agents prefer matching with even the least

attractive agent to taking the outside option. In addition to a declining probability

of meeting (because time is running out), agents may be impatient and discount

the future at a rate r ≥ 0.

Suppose that agents flow into the market at a rate ζ(t) ≥ 0 which is bounded

above by some ζ̄ and that the distribution of the inflowing agents is H(z, t) with

support contained in X. Let G(z, t) be the distribution of pizazz at time t (reflecting

changes due to both inflows and outflows). Further, write N(t) for the mass of

agents at time t so that N(t)G(z, t) is the mass of agents of pizazz less than z at

time t.

Since an agent x may not receive a proposal from every meeting, write α(x, t) for

the (possibly time varying) arrival rate of proposals and Gx(z, t) for the distribution

of agents who would propose to x upon meeting. Write

Ω(x, t) = {y|y is willing to propose to x}

and

A(x, t) = {y|x is willing to propose to y}

and call these the opportunity and acceptance sets, respectively.

13



With the basic elements in hand, write U(x, t) as the (Bellman) value at time t

for an agent of pizazz x. Focus on symmetric cutoff strategies where agents accept

any partner with pizazz greater than or equal to his or her current value.9 Standard

arguments then yield the following Hamilton-Jacobi-Bellman (HJB) equation for the

agent’s reservation value.10

U̇(x, t) = rU(x, t)− α(x, t)

∫ x

U(x,t)

(z − U(x, t))Gx(dz, t)

with boundary condition U(x, T ) = 0. This states that, as agents wait for a match,

the change in their reservation value is given by the asset value of their future

opportunities, less the excess value of current matches which did not materialize.

Integration by parts gives a more convenient formulation:

U̇(x, t) = rU(x, t)− α(x, t)

∫ x

U(x,t)

(1−Gx(z, t))dz. (2.2.1)

Given that agents use cutoff strategies, we have the following.

Remark 2.2.1. Since x will accept any y ≥ U(x, t) we haveA(x, t) = {y|y ≥ U(x, t)},

Ω(x, t) = {y|x ≥ U(y, t)}, α(x, t) = α
∫

Ω(x,t)
G(dz, t) and

9Cutoff strategies are the only weakly undominated ones, and restricting attention to cutoff
strategies removes pathological equilibria such as ‘everyone always rejects.’ Moreover, it is a strong
symmetry assumption – all x type firms play the same strategy as all x type workers. Symmetry
within a group is not binding. While I prove existence of equilibria with symmetry across groups,
there may exist asymmetric equilibria even with symmetric initial data, but this is left for future
work.

10This equation was first derived in search theory work by Mortensen (1986). His analysis was
later expanded to consider more general kinds of time variation by Van Den Berg (1990).
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Gx(z, t) =

∫
Ω(x,t)

1 {y ≤ z}G(dy, t)∫
Ω(x,t)

G(dy, t)
.

This allows one to write α(x, t)
∫
f(z)Gx(dz, t) = α

∫
Ω(x,t)

f(z)G(dz, t), for any

integrable f , which will be used extensively. In particular, it implies that one’s

decision problem depends only on the time path of one’s opportunity set.

With the individual’s problem defined, the last step in the setup of the model

is to derive the dynamic for G. Write θ(x, t) for the probability that a meeting will

result in a match for an agent with pizazz x,

θ(x, t) =

∫
A(x,t)∩Ω(x,t)

G(dy, t),

so that the exit rate for an agent of pizazz x is αθ(x, t). Supposing, momentarily,

that G(z, t) and H(z, t) possess densities g(z, t) and h(z, t), the number of agents

with pizazz z in the market at time t is n(z, t) = N(t)g(z, t). The number of agents

with pizazz z leaving the market is αg(z, t)θ(z, t)N(t) and the number entering

is ζ(t)h(z, t). This gives ṅ(z, t) = −αθ(z, t)g(z, t)N(t) + ζ(t)h(z, t), and, after

integrating, Ṅ(t) = −αN(t)E(θ(x, t)) + ζ(t). Writing η(t) = ζ(t)/N(t), and noting

that ġ = [ṅN − nṄ ]/N2, one observes

ġ(z, t) = αg(z, t)[E(θ(x))− θ(z)]− η(t)[g(z, t)− h(z, t)].

This can be read as saying that, if a given agent’s probability of being matched is
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greater than average, their relative numbers tend to decline (the first term) unless

the entrance of new agents more than compensates (the second term). Integrating

again gives the dynamic for G.11

Ġ(z, t) = αG(z, t)[E(θ(x))− E(θ(x)|x ≤ z)]− η(t)[G(z, t)−H(z, t)]. (2.2.2)

With the framework in hand, consider now the general properties of the model.

2.3 Patient Agents

In our motivating applications, agents receive their payoff after the market closes,

so it is appropriate to assume no discounting, r = 0. For example, an academic

economist does not start working until several months after the end of the search

process, and universities do not receive services until that time. Moreover, the

case of r = 0 strongly highlights the anticipation effect and produces a tractable

equilibrium characterization: highly attractive agents, following the intuitive strat-

egy alluded to in the introduction, become less selective as time ticks on and low

type agents prefer not to match early in the market, instead waiting until highly

attractive agents will accept them.

Since this case is relatively uncomplicated, I keep the analysis in this section

informal, leaving most formal results for the next section. The first step in the

11Which holds whether or not G and H possess densities, the above derivation being only for
the purposes of exposition.
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characterization is to notice that when there is no discounting, reservation values

can never rise over time. If there is a high value available in the future, patient

agents will simply wait for it rather than accepting less attractive options today.

Lemma 2.3.1. U(x, t) is weakly decreasing in t when r = 0.

Proof. Recall equation (2.2.1) and substitute r = 0,

U̇(x, t) = −α(x, t)

∫ x

U(x,t)

(1−Gx(z, t))dz ≤ 0.

Next, a bound on the value of the highest type obtains. Suppose x were alone in

a market exclusively populated with the most attractive agents who are all willing

to match. The value in this market is simply equal to the probability of matching

(1− exp{−α(T − t)}) times the value of matching with the highest type (x). This

rosy scenario gives a bound on the reservation value of the highest type in any

equilibrium:

U(x, t) < Û(t) ≡ x(1− exp {−α(T − t)}).

This implies that, at time zero, at least all agents with x ≥ x(1 − exp {−αT})

are acceptable to x. Further, all agents become acceptable to x at some point

(because x > 0 = U(x, T )). Define the set acceptable to x as the first class:

F(t) = {x ≥ U(x, t)}. The time when one joins the first class is important. Define
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these hitting times as τ(x) = min{t ∈ [0, T ]|U(x, t) ≤ x}, so that τ(x) is the time

when x becomes acceptable to x (and they remain acceptable because of Lemma

2.3.1).

Being acceptable to x has an important implication. If t ≥ τ(x), so that x is

acceptable to x, then U(x, t) = U(x, t): If one is acceptable to x for all future time,

one is acceptable to all other agents into the future.12 Then, since values depend

only on opportunity sets, one’s expected value from search is exactly the same as

x.

This has a strong equilibrium implication: no one outside the first class matches.

At τ(x), x gets a partner of his or her own pizazz in expectation: U(x, τ(x)) = x

because U(x, τ(x)) = U(x, τ(x)) = x. Moreover, U(x, t) ≥ x for t < τ(x) by Lemma

2.3.1. Finally, it can also be shown that U(x, t) ≤ x. That is, one is always willing

to accept a partner of equal pizazz.13 These, then, give U(x, t) = x for t < τ(x),

and all behavior is driven by the value of the highest type. This is summarized in

the following proposition and illustrated in figure 2.1.

Proposition 2.3.2. When r = 0, U(x, t) wholly determines the equilibrium as

U(x, t) =


x if t < τ(x)

U(x, t) if t ≥ τ(x).

Suppress time arguments and write Ū = U(x, t), the dynamic for G simplifies to

12Which assumes monotone reservation values, proved in by Corollary 2.4.5 below
13Which is proved formally in Corollary 2.4.6 below.
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x̄
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t = 0 t = T

U(x, t)

U(x1, t)
x1

U(x2, t)
x2

Figure 2.1: Reservation Values when r = 0

Ġ(z) =


αG(z)[1−G(Ū)]2 − η(t)(G(z)−H(z)) if z < Ū

αG(Ū)[1−G(Ū)][1−G(z)]− η(t)(G(z)−H(z)) if z ≥ Ū .

(2.3.1)

Proof. The specification of U derives from the discussion above. The relatively

explicit form for Ġ derives from the fact that θ(x, t), the probability of a meeting

resulting in a match, collapses to a step function:14

14There are other possible dynamics if G contains atoms. In this case, the agents with positive
mass are indifferent between matching with each other or not before τ(x). This dynamic assumes
that they do not. This form would dissolve otherwise. Indeed, if there were some finite set of
pizazz levels, then the anticipation result dissolves to some extent, as one equilibrium would be
for all agents to match with equal pizazz agents before joining the first class. This is resolved
by the introduction of avoidable search costs, which induce second class agents to stay home as
described below.
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θ(x) =


(1−G(Ū)) if x ≥ Ū

0 if x < Ū

To reiterate, low types wait, with reservation value equal to their own type,

until they become acceptable to the highest type, after which they share a value

function with the highest type. The notion that patient agents should only match

with their own type is perhaps not surprising. If one were to consider the limit of

the Burdett-Coles economy as the discount rate goes to zero, the classes shrink to

the point where each type is in their own class. That the introduction of a deadline

leads to growing desperation is also unsurprising. The unobvious contribution is

that that the interaction of these two considerations leads to equilibrium behavior

that admits such a straightforward summary. Straightforward, however, should not

be mistaken for simple, as the reservation value for x encodes all of the subtleties

of an evolving distribution, weighing off the value of matching today against the

possibility of remaining unmatched or facing poor opportunities in the future.

Because of the clear characterization available when agents are patient, another

important result obtains:

Proposition 2.3.3 (Uniqueness). If there is no entry (η = 0), agents are patient

(r = 0), and G0 is continuous, then the equilibrium is unique.

The proof is relegated to the appendix, but derives mostly from a careful con-
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sideration of the dynamics of the distribution in light of the equilibrium character-

ization from Proposition 2.3.2. Briefly, if one increases the initial reservation value,

high types filter out for some period before the reservation falls back to the original

level. This leads to a relatively flat path in the future. Hence, a high initial value

leads to a high terminal value – only one path can satisfy the boundary condition.

In the context of the job market, that the best candidates match earliest fits

common experience, is alluded to in Roth and Xing (1997) in the context of the

market for clinical psychologists, and is a model prediction in Damiano et al. (2005)

(when there are no costs) and Burdett and Coles (1997) (because higher agents are

in larger classes). That low pizazz agents have no strict incentive to match early in

the market reflects optimal waiting. At τ(x), the fact that many high type agents

may have left is irrelevant. U(x, t) hits x exactly when the value of being in the first

class equals x. The (possibly small) probability of matching with very attractive

agents offsets the probability of only meeting agents without much pizazz, or having

no future meetings at all.

2.4 General Results

This section provides results concerning existence and characterization of equilibria

for any discount rate r ≥ 0. In the job market for entry-level professionals, one

might think of r > 0 as pure impatience, wanting to know sooner rather than later.

Alternatively, r might represent the flow probability of a tragic event – the death
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of a relative, say – which would cause an agent to quit searching and abandon the

market. One has a preference for securing an early match because it resolves this

risk. When r > 0, the model exhibits rich behavior. But, before exploring this,

note that behavior in the presence of discounting limits to the simpler behavior

described above as r → 0.

Proposition 2.4.1. As r → 0, the discounting equilibrium converges to the no-

discounting equilibrium.

The complication when r > 0 derives from early matching among less attractive

agents. But as r → 0, this early matching dissolves, and so even if agents are

impatient, so long as the duration of the market is short and matching rates are

high, early matching has little impact on equilibrium.

Turning now to existence, given the focus on cutoff strategies, an equilibrium

is any pair U,G which simultaneously solve (2.2.1), the Bellman equation, and

(2.2.2), the differential equation for G, subject to U(x, T ) = 0 and G(z, 0) = G0(z).

No restrictions are required on the initial distribution of pizazz in order to obtain

existence. This derives from the fact that equilibrium is not required to exist in

steady state; the only requirement is that agents correctly predict the time path of

the distribution of pizazz when making matching decisions, and that these matching

decisions generate the predicted time path. All omitted proofs can be found in the

appendix.

Proposition 2.4.2 (Existence). There exists an equilibrium for any r ≥ 0.
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The proof is closely related to that in Smith (2006) with the exception that one

instead solves for a whole time path for each object. This leads to significant al-

teration of the “Fundamental Matching Lemma” which instead relies on arguments

from the theory of Banach ODE.

When agents discount, expected present values can rise or fall over time – Lemma

2.3.1 does not hold. Specifically, the reservation value of the highest type can rise

over time if the distribution improves sufficiently. This can occur either because high

types enter or because low types match and exit. Hence, an agent who is acceptable

to the highest type at a point in time need not be in the future, and so need not

share the highest type’s reservation. As in the case of r = 0, equilibrium revolves

around the existence of a first class of agents who share the same reservation. Now,

however, the first class does not consist of those acceptable to x at a point in time.

Instead, say an agent is in the first class if they are universally acceptable now and

forever. That is:

Definition 2.4.3. Let F(t) = {x|∀s ≥ t,Ω(x, s) = X}, and call this set the First

Class.

Before we can characterize the first class and the behavior of first class agents,

some intermediate results are required. The first states that higher types have more

opportunities, which follows from cutoff strategies.

Lemma 2.4.4 (Monotone Opportunity Sets). If x1 ≤ x2 then Ω(x1, t) ⊆ Ω(x2, t),

and α(x1, t) ≤ α(x2, t) for all t.
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This observation yields another intermediate result towards characterizing the

first class. Because opportunity sets are increasing in type, so are reservation values.

Corollary 2.4.5 (Monotone Values). For all t, U(x, t) is increasing in x, and

Ω(x, t) is connected.

Given monotone values, a simple upper bound obtains, yielding the intuitive

result that agents are always willing to accept their equals:

Corollary 2.4.6. U(x, t) ≤ x for all x, t.

Proof. If an agent, x, has a value higher than his own pizazz, some other agent with

higher pizazz y > x must be willing to match with him (if not today then at some

point in the future). But that would imply x ≥ U(y, t) ≥ U(x, t). Discounting this

observation backwards yields the result.

From these points one notices what is a general property of models with non-

transferable utility and common preferences.

Remark 2.4.7. The model delivers Positive Assortative Matching at each point in

time in the set-valued sense of Shimer and Smith (2000): the upper and lower

bounds on the matching set are weakly increasing everywhere.

Because of monotonicity in opportunity sets, the time when one is universally

acceptable going forward is exactly the same as the time when one is acceptable to

the highest type. This allows for the first class to be formulated in a manner similar

to the last section, but allowing for the possibility of non-monotonicity. One does
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not join the first class immediately upon becoming acceptable to the highest type.

Instead, one joins the first class when one becomes acceptable to the highest type

forever.

Remark 2.4.8. F(t) = {x|x ≥ sups≥t U(x, s)} by Lemma 2.4.4.

Not only is one always acceptable to one’s equal, the assumption that U(x, T ) =

0 implies that every agent is eventually universally acceptable. As in the no dis-

counting case, all agents eventually join the first class.

Lemma 2.4.9. For every agent, x, there exists τ(x) < T with τ(x) = inf{t|x ∈

F(t)}.

Proof. At time T , everyone is willing to match with everyone else because x > 0 =

U(x, T ). That there exists ε > 0 such that the same holds for all t > T − ε follows

from boundedness of U̇ . And, as one’s value depends only on the future path of one’s

opportunity set, if Ω(x, t) = X = Ω(x, t) for all t ≥ τ(x), then U(x, t) = U(x, t) for

all t ≥ τ(x). But τ(x) is precisely the moment when x joins Ω(x, t). Hence, it is

the precise time when x = U(x, t). Thus, U(x, τ(x)) = x.

These all together complete the description of the first class. The first class

consists exactly of those who are permanently acceptable to the highest type, and

all agents join the first class before the deadline. This leads to an analogue of

Proposition 2.3.2 for the case of discounting.
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Lemma 2.4.10 (First Class Values). All first class agents share the same value: If

t ≥ τ(x), U(x, t) = U(x, t) and, specifically, U(x, τ(x)) = x.

Proof. That U(x, t) = U(x, t) for t ≥ τ(x) follows from simple inspection of the

Bellman equation given that Gx(·, t) = G(·, t) = Gx̄(·, t) and α(x, t) = α = α(x, t).

And then, that U(x, τ(x)) = x follows from Remark 2.4.8.

The intuition is the same as in the case of no discounting. Once one has joined

the first class, one is universally acceptable going forward, by definition. One’s

problem is wholly defined by the time path of one’s opportunity set. If two agents

share the same opportunity set going forward, as they have the same preferences,

they must make the same decisions and have the same value. Since all agents

are eventually universally acceptable, they eventually all share the same value.

Moreover, agents smoothly filter into the first class as the deadline approaches and

the highest type becomes less and less selective. The fact that all agents eventually

share a value function dramatically simplifies the analysis.

Note that it is here where the joint assumptions of common preferences and a

common outside option truly bind. If one were to dispense with either of these, this

sharp result would dissolve. Indeed, even with these, equilibrium still fails to admit

any simple representation with some finite number of classes:

Remark 2.4.11. There do not exist persistent coincidences of matching sets outside

the first class. Second class agents become increasingly selective before they join

the first class: limt↗τ(x) U̇(x, t) = rx.
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Because different agents expect to be able to get their own pizazz at some point

in the future, there can be no persistent coincidence of matching sets for different

pizazz levels with τ(x) > 0. Indeed, the only class in the sense of Burdett and Coles

(1997) consists of exactly those agents with τ(x) = 0. If x has τ(x) = 0, then x

expects to be able to match with all agents at any point in the future. Hence, their

problem is identical to that of x. These agents all share the same value, U(x, t),

across the whole time path; share the same matching set; and are always willing

to match with each other. But, unless all agents fall into this class, one can not

capture equilibrium behavior with any finite set of reservation values.

One might infer from the proof of Lemma 2.4.9 that low pizazz agents join the

first class only ε-time before T . This is not the case as one can see from a bound

on the reservation value of the highest type.

Lemma 2.4.12.

U(x, t) ≤ Û(x, t) =
α

r + α
x(1− exp{−(r + α)(T − t)}),

and so

τ(x) ≤ τ̂(x) = T +

(
1

r + α

)
log
[
1− x

x

(
1 +

r

α

)]
.

Proof. The bound on U derives from considering the value obtained if x were in a

market with only other x pizazz agents: solve
˙̂
U(x, t) = (r + α)Û(x, t) − αx, with

Û(x, T ) = 0. The bound on τ(x) comes from solving Û(x, τ̂(x)) = x for τ̂(x).
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This implies that the first class consists of at least all agents with τ̂(x) = 0,

those agents with x ≥ Û(x, 0). Moreover, one can say (independent of T ) that all

agents are in the first class from time zero whenever

x

x
< 1 +

r

α
.

For matching not to be universal, the ratio between the highest and lowest pizazz

levels can not be too tight compared to the matching friction, as measured by r/α.

As mentioned in Remark 2.4.11, reservations are increasing for agents just before

they enter the first class. And, since τ(x) is continuous in x, agents who expect

to join the first class near time zero have increasing reservations from the very

beginning. Hence, lower agents have decreasing matching opportunities before they

enter the first class as more attractive agents become increasingly selective before

they join the first class. This, on the one hand, tends to drag down less attractive

agents’ reservations as their early matching opportunities dry up. On the other

hand, as time goes on, agents move closer to joining the first class, which pushes

up reservations. An integral of U makes this clear:

Remark 2.4.13. If one writes y(x, t) = sup{y ∈ Ω(x, t)}, then Ω(x, t) = [x, y(x, t)]
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and

U̇(x, t) = r

xe−r(τ(x)−t)︸ ︷︷ ︸
A

+α

∫ τ(x)

t

e−r(s−t)
∫ y(x,s)

U(x,s)

(G(y(x, s))−G(z, s))dzds︸ ︷︷ ︸
B


− α

∫ y(x,t)

U(x,t)

(G(y(x, t))−G(z, t))dz︸ ︷︷ ︸
C

(2.4.1)

The expression derives from substituting U(x, τ(x)) = x into an integral of the

Bellman equation and then substituting the result into the definition of U̇ . The

first term, A, is the discounted contribution of the expectation that x will join the

first class at time τ(x). The second, B, is the discounted contribution of future

excess value of matching opportunities to current utility. The last, C, is the current

excess match value. So, the change in reservation is given by the asset value of

not matching, r times A plus B, less the expected value of the missed opportunity

today, C. This is illustrated in Figure 2.2.

Suppose there is some agent x with τ(x) > 0 and for all agents z > x and

times t < τ(z), U̇(z, t) > 0. Then y(x, t) is strictly decreasing over time.15 Hence,

matching opportunities are declining for x. This is reflected in C being large relative

to B. So, if τ(x) is far off, A might also be small and so values would be declining.

Or, with τ(x) close, A might be large relative to C, yielding increasing values. In

general, values might be increasing or decreasing for different agents before they join

15And there exists some such x because for all z, U̇(z, τ(z)) = rz > 0.
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Figure 2.2: Value when r > 0

the first class (and then either increasing or decreasing thereafter). A condition,

however, is available which guarantees that even the least attractive agents have

increasing reservations over the whole period.

Lemma 2.4.14. Write

λ(σ) =
[
1− x

x
(1 + σ)

](− σ
1+σ )

e−rT .

If

(
1 +

r

α

)
λ
( r
α

)2

> 1

then for all x with τ(x) > 0, U̇(x, t) > 0 whenever t ≤ τ(x).

While the proof is left for the appendix, it relies on using the bound on τ(x)
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from Lemma 2.4.12 to give an upper bound for y(x, t) and evaluating the matching

opportunities if x could match with y(x, t) with rate α; hence the bound does not

depend on the distribution of agents and is relatively weak.

Note that the result holds vacuously if (x/x) < 1 + (r/α) where all agents are

always in the first class. But, there do exist parameters for which the result holds

meaningfully because, for example, limr→0(1 + (r/α))λ(r/α)2 = 1 and

lim
r→0

∂

∂r

(
1 +

r

α

)
λ
( r
α

)2

=
1

α

(
1− 2αT − log

(
1− x

x

))
> 0

for x/x large relative to T . For some parameter values, unattractive agents should

all become more choosy over time before joining the first class.

Also, note that the definition of τ(x) can not be simplified: the reservation

value of the most attractive agent need not be monotone. As the model allows for

arbitrary inflows, this is somewhat obvious. What may be less obvious is that the

highest types may become more selective even without inflows because matching

behavior of lower types can improve the aggregate distribution. If, for instance,

there is a relatively large population of low types, then they match out relatively

quickly. This improves the distribution over time. If match rates are high and

agents relatively impatient, this leads to an increasing value for the highest types.

This is closely related to non-uniqueness in the r > 0 case.

The intuition for multiplicity is as follows: If a high pizazz agent, x, expects that

other highly attractive agents will match quickly, leading to a poor distribution in
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the future, then x will lower his reservation value in the present, leading to a higher

rate of exit. Alternately, if x expects the distribution to stay relatively stable, he is

more patient, yielding a stable distribution.16 This kind of multiplicity seems closely

related to the thick markets externality described in Burdett and Coles (1997) which

dates back to Diamond (1982), but the non-stationarity of the current environment

adds a different flavor.

2.5 Unravelling and Costly Search with Patient

Agents

In the market for entry-level professionals, many studies describe unravelling – an

incentive to rush the market (e.g. Roth et al. (1992), Roth and Xing (1997), Li

and Suen (2004)). The equilibria presented above do not feature this rushing of

the market. Instead, agents wait patiently, smoothly filtering into the first class.

To some extent, this is purely technological. The matching technology prevents a

complete rushing of the market, as agents only occasionally meet a potential partner.

But it is the strategic implications of search frictions that prevent unravelling more

than the technology itself. When meetings are only occasional, everyone forecasts

that at least a few attractive agents will have failed to match today, and so will

be available to match in the future. This, then, allows for selectivity and so for

16The author has had no success in applying standard assumptions, such as log-concavity. These
kinds of conditions do not seem to bite because, as t→ T , the entire shape of the distribution is
important, so small initial changes in strategy may have large impacts in the future.
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smoothly decreasing reservation values. High types, of course, would prefer to

match with other high types, and the matching friction combined with a limited

duration prevents them from doing so. Indeed, high types have a strict incentive to

start searching earlier. What is less obvious, however, is that low types are either

indifferent or prefer a longer duration.

Lemma 2.5.1. When agents are patient, if the deadline is extended (or, equiva-

lently, the market starts earlier), the extended market time-zero Pareto dominates

the shorter market.

That high types benefit from having more time to search for each other is clear.

That low types do not mind the fact that they wait longer derives from patience.

But if high types spend more time matching with each other, then when a low

type does join the first class he or she samples from a worse distribution. They are

exactly compensated for this by the higher probability of matching given the longer

duration of the market.

To reduce the effect of search frictions, everyone would prefer that the market

started earlier. Indeed, if agents could coordinate, the market would start at time

minus infinity and would deliver perfect sorting. In the presence of search frictions,

early matching serves to improve sorting rather than diminish it.

Moreover, it is exactly the anticipation effect which allows for this result. If

meetings are too uniform and high types match out too quickly, then unravelling

obtains. To this point, Damiano et al. (2005) consider a discrete-time version of
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the model here. In each period, each agent meets a partner randomly drawn from

the set of unmatched agents. They show that, when there are participation costs

and fewer rounds than types, the unique equilibrium involves complete unravelling

– everyone accepts their first partner. This result derives from the uniformity of

meetings. When all of the agents are paired in each period, one equilibrium is that

everyone accepts their first partner, forecasting that the market will be empty next

period. That no other equilibria exist derives from avoidable, costly search.

When search is costly and avoidable, low type agents opt out until they join the

first class. That is, if one does not expect to match in a given period, one should

wait outside of the market. This implies that, at any point in time, only first class

agents participate. If meetings are uniform, if in each round every agent meets a

partner, and all participating agents are mutually acceptable, then all will match

and exit. Perforce, in the model with discrete and uniform meeting rounds, all

of the first class agents at any time match out of the market. But the first class

consists of exactly those types better than the expected type searching tomorrow

less the search cost, and all of these exit today. So the best type left tomorrow

must be worse than the average type tomorrow. No distribution has this property,

everyone must have left today. The only equilibrium is complete unravelling.

If meeting rounds are not uniform and enough first class agents fail to meet a

partner, this result breaks. Sorting can take place. Consider the continuous time

model with random meeting times and patient agents, but suppose that in order to
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receive meetings at any time t, agents must incur a flow cost of c. This yields the

following HJB equation:

U̇(x, t) = −max

{
0,−c+ α(x, t)

∫ x

U(x,t)

(z − U(x, t))Gx(dz, t)

}
.

Proposition 2.5.2. The equilibrium with c > 0 is totally determined by the reser-

vation value of the highest type as in Proposition 2.3.2. Moreover, agents outside

the first class do not participate, preferring to wait until they become acceptable to

the highest type.

Proof. Inspection of the HJB reveals non-increasing reservation values. A similar

argument as above implies that U(x, t) = x for t < τ(x). Hence, agents outside the

first class find it unprofitable to search.

As a point of clarification, the equilibrium does depend on costs. The character-

ization here is the same as in Proposition 2.3.2: all behavior can be summarized in

terms of the reservation value of the highest type. This reservation value, however,

is significantly affected both directly as it now includes costs but also indirectly be-

cause of the different population operating in the market. The important difference

relative to the market without costs is that low types stay out of the market until

they match. Since, when there are costs, all agents in at a given time are first class,

all meetings result in matches. This tends to increase reservation values. On the

other hand, costs have a direct negative effect on reservation values as they mimic

35



impatience (as previously described in a steady state framework by Adachi (2003)).

In contrast to Damiano et al. (2005), notice that agents smoothly filter into the

market no matter the magnitude of α (unless α is so small that it is not profitable to

search at all). Hence, it is not a small expected number of meetings which leads to

unravelling. Instead, the harsh strategic interaction induced by simultaneous and

costly rounds of search leads to the stark results obtained in Damiano et al. (2005).

A final distinction is interesting. Far from destroying sorting, small search costs

improve it. Even for vanishing search costs, less attractive types wait outside the

market. This removes the search externality that low types exert on high types

– without costs, the two meet although they are not do not match. With search

costs, every meeting results in a match, thus increasing efficiency of the matching

process. Costly search induces agents to “wait their turn,” greatly improving the

probability of a match for every single type, and also the sorting of types. When

search costs are small, that the highest types prefer this arrangement is obvious –

they trade a small flow cost for a discrete jump in match efficiency. That low types

are indifferent or better off follows from the same logic as Lemma 2.5.1. The very

lowest types are indifferent, receiving their own pizazz in expectation either way.

That they match with a lower type in expectation (because high types match out

faster) is exactly compensated for by an increased probability of matching. Medium

types – those who are in the first class at time zero without search costs but not

with them – are better off because, although they have to wait to join the first class,
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they receive a higher value when they do. Hence, small flow costs lead to a Pareto

improvement over the no-cost model.

2.6 Conclusion

In this paper I explored the impact of a particularly harsh form of non-stationarity –

a deadline – on a canonical matching model. I showed existence and characterized

equilibria. Attractive individuals form a first class segment of the market whose

members are all mutually acceptable. As the deadline approaches and the expected

number of future meetings declines, this class expands. The model exhibits an “an-

ticipation effect” for low types as they anticipate that their opportunity set will

jump discretely when they join the first class. This drives less attractive agents

either not to match at all before they join the first class or to become more se-

lective, with increasing reservations before they join the first class. The two cases

obtain when agents are patient or impatient, respectively. When agents are patient,

the equilibrium is unique and a small cost of search both improves efficiency and

sorting. The randomness of meeting opportunities prevents complete unravelling

of the market as in Damiano et al. (2005) but still generates an incentive for early

matching.
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2.7 Omitted Proofs

Proof of Proposition 2.3.3 (Uniqueness). Suppose there are two equilibria (UL(t),

GL(z, t)) and (UH(t), GH(z, t)) with UH(0) ≥ UL(0). The proof proceeds in three

major steps. First, a likelihood ratio across the two equilibria is evaluated. From

this one derives a mean life remaining ordering. This ordering, combined with the

first step, implies a monotone likelihood ratio property which is used to show that

the lower equilibrium is always flatter than the higher. Concluding, we find that

the two equilibria can not both satisfy the terminal condition, so not both in fact

satisfy equilibrium.

A word on notation: throughout, superscripts index the equilibrium from which

the relevant object derives so that τL(x) solves UL(τL(x)) = x. Additionally

subscripts indicate that t = τ(x) as Gi
x(z) = Gi(z, τ i(x)). Further, denote haz-

ard rates with rix(z) = gix(z)/(1 − Gi
x(z)) and mean life remaining as mi

x(z) =(∫ x
z

(1−Gi
x(y))dy

)
/(1−Gi

x(z)).

Also note that indeed we must have UH(0) > UL(0), otherwise UH(t) = UL(t)

for all t as the dynamic for U is Lipshitz. Since G0 posesses a density, so does

Gi(z, t) and we may write

ġi(z, t) =


αgi(z, t)(1−Gi(U i(t), t))2 if z < U i(t)

−αgi(z, t)Gi(U i(t), t)(1−Gi(U i(t), t)) if U i(t) ≤ z.
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Integrating this yields

gi(z, t) = g0(z) exp

α
 min{τ i(z),t}∫

0

[1−Gi(U i(s), s)]ds

−
∫ t

0

Gi(U i(s), s)[1−Gi(U i(s), s)]ds

]}
.

Hence,

gLx (z)

gHx (z)
=

exp

α


min{τL(z),τL(x)}∫
0

[1−GL(UL(s), s)]ds

−
τL(x)∫

0

GL(UL(s), s)[1−GL(UL(s), s)]ds




exp

α


min{τH(z),τH(x)}∫
0

[1−GH(UH(s), s)]ds

−
τH(x)∫

0

GH(UH(s), s)[1−GH(UH(s), s)]ds




.

This expression is continuous everywhere and differentiable except at UL(0), UH(0),

and x. Noting that dτ i(z)/dz = 1/U̇ i(τ i(z)) by the inverse function theorem, some

algebra gives

d

dz

[
gLx (z)

gHx (z)

]
=



0 if z < x,

α
(

1−GLz (z)

U̇Lz
− 1−GHz (z)

U̇Hz

)(
gLx (z)
gHx (z)

)
if x < z < UL(0),

−α
(

1−GHz (z)

U̇Hz

)(
gLx (z)
gHx (z)

)
if UL(0) < z < UH(0),

0 if z < UH(0).
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Further recalling that U̇ i
x = −α

∫ x
x

(1−Gi(z, t))dz, we see that this can be written

as

d

dz

[
gLx (z)

gHx (z)

]
=



0 if z < x,(
1

mHz (z)
− 1

mLz (z)

)(
gLx (z)
gHx (z)

)
if x < z < UL(0),(

1
mHz (z)

)(
gLx (z)
gHx (z)

)
if UL(0) < z < UH(0),

0 if UH(0) < z.

Hence, we have a monotone likelihood ratio at τ(x) if mL
z (z) ≥ mH

z (z) for z ∈

(x, UL(0)). Monotone likelihood ratios implies monotone hazard rates. And, in

particular, if we set x = UL(0), then

d

dz

[
gLx (z)

gHx (z)

]
=



0 if z < UL(0),(
1

mHz (z)

)(
gLx (z)
gHx (z)

)
if UL(0) < z < UH(0),

0 if UH(0) < z.

This implies that rHUL(0)(z) = rLUL(0)(z) for z > UH(0) and rHUL(0)(z) > rLUL(0)(z) for

z < UH(0). Also, noting that dmi/dz = rimi − 1, it straightforward to derive that

mi
x(z) =

∫ x

z

exp

{
−
∫ y

z

rix(s)ds

}
dy.
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This, combined with our inequality on ri above, yields

mL
UL(0)(U

L(0)) > mH
UL(0)(U

L(0)).

On the way to a contradiction, suppose there exists some x < UL(0) such that

mL
x (x) = mH

x (x) and let x̃ denote the largest such crossing point. Because x̃ is the

largest such x, mL
x (x) is continuous in x, and mL

UL(0)(U
L(0)) > mH

UL(0)(U
L(0)), we

must have mL
x (x) > mH

x (x) for all x > x̃. Hence, gLx (z)/gHx (z) is increasing in z,

and strictly so for z ∈ (x, UH(0)) and x ≥ x̃. This implies, for x ∈ (x̃, UL(0)],

that rHx (z) = rLx (z) for z ∈ (UH(0), x), and rHx (z) > rLx (z) for z ∈ [x, UH(0)). So,

from our equation for mi above, we must also have mL
x̃ (x̃) > mH

x̃ (x̃), our desired

contradiction. We conclude that mL
x (x) > mH

x (x) for all x ∈ [0, UL(0)], so that the

likelihood ratio gLx (z)/gHx (z) is increasing in z for all x ∈ [0, UL(0)]. This, then,

implies that 1 − GL
x (z) ≥ 1 − GH

x (z) for all x ∈ [0, UL(0)] and z ∈ X, so that∫ x
x

(1 − GL
x (z))dz >

∫ x
x

(1 − GH
x (z))dz and U̇L

x < U̇H
x . Thus, since T = τ i(0), we

have

T =

∫ 0

UL(0)

d

dz
τL(z)dz =

∫ 0

UL(0)

1

U̇L
z

dz

<

∫ 0

UL(0)

1

U̇H
z

dz =

∫ 0

UL(0)

d

dz
τL(z)dz = T − τH(UL(0)) < T, (2.7.1)

a contradiction. We conclude that the equilibrium is unique.
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Proof of Lemma 2.4.4. Suppose x1 < x2 and fix t. Suppose y ∈ Ω(x1, t) so that

x1 ≥ U(y, t). Then x2 ≥ U(y, t), so y ∈ Ω(x2, t). Hence Ω(x1, t) ⊂ Ω(x2, t). The

rest follows by Remark 2.2.1.

Proof of Corollary 2.4.5. For monotone U , note that if x1 ≤ x2, then x2 could

simply choose A(x2, t) = A(x1, t)∩Ω(x1, t) and receive the same value as x1. Hence,

U(x2, t) ≥ U(x1, t). That Ω is connected follows from x ≥ U(z, t) ⇒ x ≥ U(z′, t)

for all z′ < z.

Proof of Proposition 2.4.2 (Existence). Without loss of generality, suppose T = 1.

Further, write m̂(x, y, t) for the acceptability function: m̂(x, y, t) = 1 if y ∈ Ω(x, t)

and 0 otherwise. Next, write m(x, y, t) for the matching function: m(x, y, t) =

m̂(x, y, t)m̂(y, x, t) which equals one if (x, y) are mutually acceptable at time t and

zero otherwise. In what follows some function arguments, subscripts, etc. are

dropped to save space when it does not cause confusion.

The proof is in several steps and closely follows Smith (2006). Given value

functions U(x, t), a continuous map U → mU is defined (Lemma 2.7.1). Next, we

show that m → Gm exists and is continuous (Lemma 2.7.2). Finally, closing the

circle, define an operator, T , from the HJB equation, substituting in mU and GmU ,

prove the existence of a fixed point for U = TU – which is an equilibrium – using

Schauder’s fixed point theorem.
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First, let B ≥ max{x, αx} be some fixed number and let

Bt = B exp {(r + α)(1− t)} .

Let Vt = {f : X → R|0 ≤ f ≤ x, ‖f‖ ≤ Bt} where the norm is the total variation

norm. I.e., Vt is a subset of the functions of bounded variation on X. Equip Vt with

the weak-* topology.17 Then, by Alaoglu’s theorem, Vt is weak-* compact. And, by

Tychonoff’s theorem, V =
∏

t∈[0,1] Vt is compact in the product topology. Since Vt

is convex, V is convex under pointwise operations. V will be the space of candidate

U used in the application of Schauder’s Fixed point theorem.

Define T : V → V by

T (U)(x, t) =

∫ 1

t

(
−rU(x, s) + α

∫
ΩU (x,s)

max{0, z − U(x, s)}GU(dz, s)

)
ds

By Lemma 2.7.4, T is continuous. By Lemma 2.7.3, TV ⊂ V . Hence there exists a

fixed point U∗ = TU∗ by Schauder’s Fixed Point theorem.

Lemma 2.7.1. There exists a continuous map U → m̂U and a continuous map

U → mU both essentially unique.

17 To clarify, Let C be the set of continuous functions on X and BV be the set of functions
of bounded variation on X. Of course, BV is isometrically isomorphic to the set of measures of
bounded variation on X which is the dual of C by the Riesz Representation Theorem. The weak-*
topology on BV is, then, the weakest topology where if f ∈ C and µ ∈ BV then µ →

∫
fdµ is

a continuous function for every f (this is also sometimes called the vague topology). Then, the
weak-* topology on Vt is just the relative topology inherited from BV equipped with the weak-*
topology.
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Proof. Let Un → U in V . Smith (2006), in his Lemma 8(a), proves that, for

fixed t, there exists a continuous map U(·, t) → m̂(·, ·, t) and that this yields a

continuous map U(·, t)→ m(·, ·, t). Since V is equipped with the product topology

in t, continuity for each t implies joint continuity of U → m̂U and U → mU .

That these maps are only essentially unique follows from the fact that agents are

indifferent over measure zero differences. But, as shown in Smith (2006), there

exists but one mU such that Un → U implies mUn → mU pointwise and it is this

map which is selected.

Lemma 2.7.2 (Fundamental Matching Lemma). There exists a continuous map

m→ Gm and it is unique.

Proof. The Cauchy problem18 is to find a G solving

Ġ(z, t) = αG(z, t) (Ex[θ(x, t)]

−Ex[θ(x, t)|x ≤ z])− η(t) [G(z, t)−H(z, t)]

≡ F (t, G(·, t))(z) (2.7.2)

and G(z, 0) = G0(z) where θ(x, t) =
∫
m(x, z, t)G(dz, t) is the probability that a

meet will result in a match for x at time t. Existence and uniqueness follow from the

Cauchy-Lipshitz theorem for which we need to check that F is bounded, measurable

in t, and Lipshitz in G.

18This proof relies heavily the theory of ODE in Banach spaces. Statements and proofs of the
relevant theorems can be found, for example, in Driver (2003).
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Notice that since m(x, y, t) is bounded and measurable, then both θ(x, t) and

E(θ, x, t)) are bounded and measurable as well. If we equip G(·, t) with the weak-*

topology (i.e. Lévy metric), then θ is continuous as a function of G and so F is

continuous in G. Given that we are using the weak-* topology for G, it suffices to

show that F (t, G) has uniformly bounded variation. So, fix G and let z1, z2 ∈ X.

Then |F (t, G)(z1)− F (t, G)(z2)| =

|αG(z1, t) (Ex[θ(x, t)]− Ex[θ(x, t)|x ≤ z1])− η(t) [G(z1, t)−H(z1, t)]

− (αG(z2, t) (Ex[θ(x, t)]− Ex[θ(x, t)|x ≤ z2])− η(t) [G(z2, t)−H(z2, t)])|

= |α(G(z1, t)−G(z2, t))Ex[θ(x, t)]

− α(G(z1, t)Ex[θ(x, t)|x ≤ z1]−G(z2, t)Ex[θ(x, t)|x ≤ z2])

− η(t)(G(z1, t)−G(z2, t)− (H(z1, t)−H(z2, t)))|

≤ |2α + η(t)||G(z1, t)−G(z2, t)|+ |η(t)||H(z1, t)−H(z2, t)|.

where the last inequality follows because |G|, |θ| ≤ 1, and

|G(z1, t)E(θ|x ≤ z1)−G(z2, t)E(θ|x ≤ z2)|

=

∣∣∣∣∫
z1≥x≥z2

(∫
m(x, y, t)G(dy, t)

)
G(dx, t)

∣∣∣∣
≤
∣∣∣∣∫ z1

z2

G(dx, t)

∣∣∣∣ ≤ |G(z1, t)−G(z2, t)|.

Since G and H are probability distributions, their total variation is one. So, if
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η̄(t) = supt η(t) ≤ ζ̄N0 exp(α), then ‖F‖ ≤ 2(α + η̄). Thus, there exists a solution.

For uniqueness, consider the following: Fix two distributions, G1 and G2. Given

the calculation on θ above, we have

‖G1(·, t)E(θG1(x)|x ≤ ·)−G2(·, t)E(θG2(x)|x ≤ ·)‖ ≤ ‖G1 −G2‖

and note that θ is Lipshitz in G: ‖θg1(x) − θg2(x)‖ = ‖
∫
m(x, y, t)(G1(dy, t) −

G2(dy, t))‖ ≤ ‖G1−G2‖, hence any definite integral of θ is Lipshitz in G, and so is

any other Lipshitz function of θ. Hence,

NG(t) =

∫ t

0

exp

(
α

∫ t

s

EG θG(x, τ)dτ

)
ζ(s)ds

is Lipshitz in G and, finally, ηG(t) = ζ(t)/NG(t) is Lipshitz in G because NG(t) ≥

N0 exp(−αT ) (I.e. there are always more people in the economy than if all matches

were accepted over all time). Thus, since F is a composition of Lipshitz functions,

it is Lipshitz. Hence, the solution is unique and continuous in m.

Lemma 2.7.3 (Uniform Boundedness). If U ∈ V, then TU ∈ V.

Proof. We need 0 ≤ TU(x, t) ≤ x and TU(·, t) to have total variation less than Bt.

Simple boundedness is obvious, so focus on bounding the total variation. Let U ∈ V ,

t ∈ [0, 1], and x1 < x2 ∈ X be arbitrary but fixed. We will bound |TU(x1)−TU(x2)|

and then sum over all partitions to obtain a bound for the total variation of TU .

Write ∆x1,x2 = Ω(x1) \ Ω(x1) (recall x1 < x2 =⇒ Ω(x1) ⊆ Ω(x2)).
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Break up the second integral in TU into two pieces Q1(x1, x2) and Q2(x1, x2) as

follows.

∫
Ω(x2)

max{0, z − U(x2)}G(dz)−
∫

Ω(x1)

max {0, z − U(x1)}G(dz)

=

∫
Ω(x1)

max{0, z − U(x2)} −max{0, z − U(x1)}G(dz)︸ ︷︷ ︸
≡Q1(x1,x2)

+

∫
∆

max {0, z − U(x2)}G(dz)︸ ︷︷ ︸
≡Q2(x1,x2)

Now, because |max(a1, b1)−max(a2, b2)| ≤ |a1 − a2|+ |b1 − b2|, we have

|Q1(x1, x2)| ≤
∫

Ω(x1)

|0− 0|+ |U(x1)− U(x2)|G(dz) ≤ |U(x1)− U(x2)|

≤ Bt|x1 − x2|.

And,

|Q2(x1, x2)| ≤
∫

∆

|max {0, z − U(x2)} |G(dz) ≤ x

∫
∆

G(dz).

Continuing,

|TU(x2)− TU(x1)|

=

∣∣∣∣∫ 1

t

(
r(U(x2)− U(x1))− α

(∫
Ω(x2)

max{0, z − U(x2)}dG

−
∫

Ω(x1)

max {0, z − U(x1)} dG

))
ds

∣∣∣∣
47



≤
∫ 1

t

r|U(x2)− U(x1)|+ α (|Q1(x1, x2)|+ |Q2(x1, x2)|) ds

≤
∫ 1

t

(
rBs|x1 − x2|+ αBs|x1 − x2|+ αx

∫
∆

G(dz)

)
ds

Substituting in for Bt, one obtains

∫ 1

t

(
(r + α)Be(r+α)(1−s)|x1 − x2|+ αx

∫
∆

G(dz)

)
ds

= −B|x1 − x2|
(
1− e(r+α)(1−t))+ αx(1− t)

∫
∆

G(dz).

Hence, summing over all possible partitions of X,

‖TU‖ = sup
{xi∈X}

∑
xi

|TU(xi)−TU(xi−1)| ≤ B|x−x|
(
e(r+α)(1−t) − 1

)
+αx(1−t) ≤ Bt.

Lemma 2.7.4 (Continuity). T is continuous.

Proof. Fix U,Un ∈ V with Un → U . Recall that V has the product topology in the

t dimension and the weak-* topology in the x dimension. Hence, Un(x, t)→ U(x, t)

pointwise in t and a.e. pointwise in x. And, because 0 ≤ Un, U ≤ x, the dominated

convergence theorem gives convergence in L1 in both x and t. To show continuity,

we need TUn → TU weak-* for each t. A sufficient condition for convergence is

that, for each t,
∫
I
|TUn(x, t) − TU(x, t)|dx for every measurable I ⊂ X. But,

since 0 ≤ TU ≤ x, we need only show a.e. pointwise convergence (again by the
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dominated convergence theorem). We will divide |TUn − TU | into several pieces

and apply the triangle inequality. While there are many expressions, the division

looks at the two terms of T and decomposes the change in each into (1) a part from

the change in Ω, (2) a part from the direct change in U , and (3) a part from the

change in G. Define the following:

Q1(x, s, n) =

α ∫
ΩU (x,s)

GU(dz, s) + r

U(x, s)

−

α ∫
ΩUn (x,s)

GU(dz, s) + r

U(x, s),

Q2(x, s, n) =

α ∫
ΩUn (x,s)

GU(dz, s) + r

U(x, s)

−

α ∫
ΩUn (x,s)

GU(dz, s) + r

Un(x, s),

Q3(x, s, n) =

α ∫
ΩUn (x,s)

GU(dz, s) + r

Un(x, s)

−

α ∫
ΩUn (x,s)

GUn(dz, s) + r

Un(x, s),
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W1(x, s, n) =

∫
ΩU (x,s)

max{z, U(x, s)}GU(dz, s)

−
∫

ΩUn (x,s)

max{z, U(x, s)}GU(dz, s),

W2(x, s, n) =

∫
ΩUn (x,s)

max{z, U(x, s)}GU(dz, s)

−
∫

ΩUn (x,s)

max{z, Un(x, s)}GU(dz, s),

W3(x, s, n) =

∫
ΩUn (x,s)

max{z, Un(x, s)}GU(dz, s)

−
∫

ΩUn (x,s)

max{z, Un(x, s)}GUn(dz, s).

Note, then, that

TU(x, t)− TUn(x, t) =

∫ 1

t

(∑
i

Qi(x, s, n)− α
∑
i

Wi(x, s, n)

)
ds.

Consider each term in turn. Because m̂Un → m̂U pointwise almost everywhere,

|Q1(x, s, n)| = αU(x, s)

∣∣∣∣∫ m̂U(x, z, s)− m̂Un(x, z, s)G(dz, s)

∣∣∣∣→ 0
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for a.e. (x, s). Because Un(x, s)→ U(x, s) pointwise a.e.,

|Q2(x, s, n)| = |U(x, s)− Un(x, s)|
∣∣∣∣α ∫

ΩU (x,s)

GU(dz, s) + r

∣∣∣∣→ 0

for a.e. (x, s). Next, because GUn(z, s)→ GU(z, s) weak-* for a.e. s, we have

|Q3(x, s, n)| = αUn(x, s)

∫
ΩUn (x,s)

|GUn(dz, s)−GU(dz, s)| → 0 for a.e. (x, s).

The same arguments apply for |Wi|, i = 1, 2, 3. Hence,

∫ 1

t

∑
i

|Qi(x, s, n)|+ α
∑
i

|Wi(x, s, n)|ds→ 0

for a.e. x again by dominated convergence, so that |TU(x, t) − TUn(x, t)| → 0 for

a.e. x. This, then, gives
∫
I
|TU(x, t)− TUn(x, t)|dx→ 0 for every t.

Lemma 2.7.5. For fixed G and r = 0 the dynamic for U is Lipshitz continuous.

Proof. When r = 0, we need only consider the dynamic for x which we will write

as U̇ = L(U) = −α
∫ x
U

(1−G(z))dz. Then, fixing U1 and U2, we have

‖LU1 − LU2‖ = α

∥∥∥∥∫ U2

U1

(1−G(z))dz

∥∥∥∥ ≤ α‖U1 − U2‖.

So the dynamic has a Lipshitz constant of α.
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Proof of Proposition 2.4.1. Because U(x, τ(x)) = x, agent’s utility is bounded be-

low by xe−r(τ(x)−t) (i.e. agents can do no worse at any time than deciding not to

match, instead waiting to join the first class). Hence, for all t where an agent is not

in the first class, his utility is bounded below by x exp {−r(T − t)}. Letting r → 0,

U(x, t) ≥ x for all t when x is not in the first class. I.e. as r → 0, we obtain an

equilibrium where low agents wait to join the first class.

Proof of Lemma 2.4.14. Since, for t < τ(x), we can write

U(x, t) = xe−r(τ(x)−t) + α

∫ τ(x)

t

e−r(s−t)
∫ y(x,t)

U(x,t)

(G(y(x, t))−G(z))dzds

we have

U(x, t) ≥ xe−r(τ(x)−t)

≥ xe−r(τ̂(x)−t)

= x

[
1− x

x

(
1 +

r

α

)]− r
r+α

e−r(T−t) ≡ Û(x, t)

where the last line comes from substituting in for τ̂(x) as defined in Lemma 2.4.12.

Since U(y(x, t), t) = x, we have

y(x, t) ≤ x

[
1− y(x, t)

x

(
1 +

r

α

)] r
r+α

er(T−t) ≤ x

[
1− x

x

(
1 +

r

α

)] r
r+α

er(T−t)

≡ ŷ(x, t).
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Write P (x, t) = G(y(x, t))−G(U(x, t)) and V (x, t) = E(z|y ≥ z > U) so that

U̇(x, t) = (r + αP (x, t))U(x, t)− αP (x, t)V (x, t).

Now, V (x, t) < y(x, t) so that

U̇(x, t) ≥ (r + αP (x, t))Û(x, t)− αP (x, t)ŷ(x, t)

≥ (r + αP (x, t))x

[
1− x

x

(
1 +

r

α

)]− r
r+α

e−r(T−t)

− αP (x, t)x

[
1− x

x

(
1 +

r

α

)] r
r+α

er(T−t)

= x(rλ̂+ αP (x, t)(λ̂− λ̂−1))

if one writes

λ̂ ≡
[
1− x

x

(
1 +

r

α

)] r
r+α

e−r(T−t).

Then, since t < τ(x), λ̂ ≤ 1, and so U̇(x, t) ≥ 0 if

(r/α)λ̂2

1− λ̂2
≥ P (x, t).

And, since P (x, t) < 1, the result obtains.

Proof of Lemma 2.5.1. Suppose T ′ > T are two deadlines, and that Ū ′ and Ū are

the equilibrium reservation values of the highest type under each deadline. The
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same logic as in the proof of Proposition 2.3.3 shows that Ū ′(0) > Ū(0) (whichever

reservation value starts lower must hit 0 earlier, and so it must be Ū).

Those in the first class under the extended duration get Ū ′(0) instead of Ū(0),

an improvement. Moreover, all x < Ū(0) are indifferent between the two equilibria,

because they get their own pizazz in expectation under both. Those who were first

class in the short duration market but are not in the long duration instead get their

own pizazz. This is an improvement, as they were getting only Ū(0) with the short

duration – the definition of being in the first class at time zero.
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Chapter 3

Directed Search for Wage-Tenure

Contracts with Adverse Selection

This study considers a dynamic labor market where workers are privately informed

about their attachment to the labor force and firms competitively post contracts

to direct workers’ search. This extends the static results on adverse selection in

competitive search markets of Guerrieri et al. (2010) to a dynamic environment

with on the job search à la Shi (2009). Characterizing the dynamic contracting

problem of firms and the search problem of workers, I show that equilibria feature

full separation, increasing wage profiles, and “job lock” for committed (long dura-

tion) workers, reducing their frequency of transitions relative to a full information

benchmark.

Workers differ in their commitment to the labor market. This can stem from a
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variety of sources such as fluctuations in household income, the demands of home

life, or changing career interests. One prominent example is the difference between

those who plan to stay in the labor force after having a child and those who plan to

exit. One modeling approach, when group differences exist but individual preference

is unobserved, leans on statistical discrimination to explain differences in labor

market outcomes. If firms pay only flat wages or lack commitment power, this

is, perhaps, the only approach. But if firms can promise long term contracts,

heterogeneity in expected tenure induces heterogeneity over tenure-wage profiles.

Separation may obtain, negating the need for statistical discrimination. Moreover,

if this separation is sufficiently costly in terms of efficiency, the same empirical group

differences in wages which motivate models of statistical discrimination in the labor

market may obtain.

If firms indeed were to pursue this strategy, what sort of effects can a search

equilibrium produce with regards to relative wage levels, their trajectories, job-to-

job transitions, and the career ladder? What are the effects of anti-discrimination

policies? I provide a first attempt to address these questions in the context of

a modern model of the labor market featuring competitive, directed search for

wage-tenure contracts under adverse selection. An interesting result is that anti-

discrimination rules have no impact on women, but instead serve only to distort

the market for men. Another is that career-oriented women suffer from a form of

job-lock. The efficiency cost of offering contracts which separate long and short
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duration agents is amortized over the life of the employment contract. A job-to-job

transition, then, involves incurring the this cost again, which reduces the frequency

of turnovers.

Beyond the current application, the methods developed below are more gener-

ally applicable to competitive search for dynamic contracts with adverse selection.

First, equilibria can be found as the solution to a recursive social planner’s prob-

lem as in Guerrieri et al. (2010). Second, it maintains block-recursivity as in Shi

(2009). And, third, while differences in labor market histories induce continuous

heterogeneity, and hence a continuum of incentive compatibility conditions, I show

that, in equilibrium, only one binds for each firm. When formulating contracts,

firms need only need only consider the incentives of workers who face job queues of

equal length.

The next section outlines related literature, followed by a description of the

framework, a benchmark full information equilibrium, the equilibrium with adverse

selection, and some concluding remarks.

3.1 Some Related Models

As oceans of ink have been spilled on the subject of gender differences in the labor

market, I restrict myself here to discussing some direct antecedents of the present

model so as to highlight the implications of the various modeling choices.
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Salop and Salop (1976) develops a prototypical version of the model I consider.

Turnover is assumed costly because of up-front training costs on the part of the firm.

If prospective employees know their probability of quitting, the firm would want to

elicit this information because low-quitters are more valuable. The authors show

that if workers are risk neutral and have access to capital markets, an employment

fee is optimal, and that the efficient allocation can be recovered in a competitive

equilibrium.

Stevens (2004) models homogeneous and risk neutral agents in a labor market

with random search where firms write tenure-based contracts to limit turnover,

workers are ex-ante identical who search on the job. The equilibrium wage profile

is a step contract paying the minimum wage for a period and then jumping up to

marginal product. The result can be thought of as an extension of Salop and Salop

(1976) where worker cash flows are restricted to be non-negative – a lump sum

payment up front is infeasible.

Burdett and Coles (2003) considers the framework of Stevens (2004) but with

risk averse agents. Risk aversion induces firms to provide smooth contracts, but,

so as to reduce turnover, firms pay wages that increase steadily over time. This

result highlights the moral-hazard quality of job-to-job moving. A similar flavor is

provided by Lazear (1981), albeit a rather different environment, which shows that

firms should offer increasing wage profiles to encourage high effort over a career.

Burdett and Coles (2003) has two unfortunate properties both stemming from the
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assumption of random search. First, individual decisions depend upon the entire

distribution of offers which makes the equilibrium somewhat difficult to analyze.

More damming, as all jobs are posted in the same market, the distribution of job-

to-job transitions includes one-step jumps from near the very bottom to near the

very top of the market. This is perfectly acceptable if one understands the model

as a single, narrowly defined, corner of the labor market, but it seems unreasonable

that there exist positive probability of stepping out of McDonald’s and into the

board room.1

The basic framework for my model was developed in Shi (2009) – henceforth

Shi – who adapts the theory of Burdett and Coles (2003) to an environment with

directed search. This results in bounded job-to-job transitions, and simplifies indi-

vidual decisions.

The next most important ingredient for my analysis comes from Guerrieri et al.

(2010) – henceforth GSW – who develop a theory of competitive search in the pres-

ence of adverse selection. As first illustrated by Rothschild and Stiglitz (1976),

competitive equilibria in the presence of adverse selection may suffer from non-

existence. I adopt the notion developed by GSW who extend the notion of com-

petitive search equilibrium, first developed by Moen (1997), to the case of adverse

selection in a static model. They show that equilibria can be computed as the solu-

tion of a sequence of principal-agent problems. This program produces the directed

1Although the model I follow, Shi (2009) has something of the opposite problem: all job
transitions are a deterministic function of a worker’s current wage.
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search analogue of a least cost separating contract. Moreover, it maintains the usual

property of least-cost separating contracts, that the lowest type receives the same

allocation as he would have had there been no information friction. The analogue

with Rothschild and Stiglitz (1976) is especially strong in the current environment,

as exogenous exit in this market mimics the probability of a loss. Unfortunately, the

static notion of GSW does not generalize in a straightforward manner to dynamic

problems. The key insight developed below is that the sequence of problems derived

by GSW do not require a fully static environment, but only static preferences over

contracts on both sides of the market. And while, in the current model, preferences

over contracts depend upon individual dynamics, that dependence can be sum-

marized by the agent’s current value. Hence, the program of GSW can be used to

generate optimal individual decisions contingent upon a continuation, which is then

embedded into a fixed point problem, producing a solution to the dynamic model.

Given a current value, the worker’s search decision is static. The firm’s dynamic

problem can be decomposed into a promise keeping part and a promise making part,

where the solution of the former produces static preferences over the latter. This

last observation was first made in the context of wage-tenure contracts by Stevens

(2004), but the optimal control argument necessary in the current environment was

developed by Burdett and Coles (2003) in an environment with random search.

60



3.2 Framework

This is a model of the labor market with directed search on the job and wage-

tenure contracts. The primitives follow Shi with one exception. Workers differ in

their labor market attachment, which I model as differences in exogenous quit rates.

I reproduce the details of the model for convenience and to fix notation. A longer

discussion can be found in Shi.

3.2.1 Model Primitives

A mass of workers derive flow utility from wealth according to u(w) which is assumed

C2[0,∞], increasing, and concave with limw→0 u
′(w) = ∞. Workers may neither

borrow nor save.2 Employed workers produce flow output y for their employer and

consume their wages; unemployed workers receive b < y from home production or

some other source outside the model. Workers, whether employed or unemployed,

continuously search for better employment, as described below. Workers can not

commit to contracts. More specifically, a worker will always quit to any better job

and may at any time quit to unemployment.

There are two types of workers, men and women. Denote these M and W ; i will

index types, i ∈ {M,W}, throughout. The two types differ only in their Poisson

intensity of exogenously exiting the labor market: δW > δM . Exogenous exit leaves

a worker with continuation value normalized to 0 and exiting workers are replaced

2Although equilibrium will imply that saving would be sub-optimal, the no borrowing constraint
is significant.
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by inflows of equal mass to maintain constant population. Exogenous exit should

not be interpreted simply as death. It acts as a stand in for the arrival of any life

event that would cause a worker to abandon the market. The payoffs from such

events need not be modeled provided that they are sufficiently large that no one

would ever continue working after the arrival of a δ event. Of course, there are many

intermediate life events which would only cause some workers to exit. If a worker’s

parent becomes ill and requires elder care, high wage earners may choose to hire help

and continue to work while low wage earners might exit. This dependence would

complicate the model and since the main thrust is to explore the role of adverse

selection in a dynamic context, I maintain the simpler assumption that differences

are over exogenous exits. I discuss the possibility of enriching the environment at

greater length, along with other extensions, below.

On the other side of the market, a large mass of infinitely lived, risk neutral,

and identical prospective firms compete for workers. To obtain a worker, a firm

must advertise a job, incurring a flow cost of k. Advertisements consist of a wage-

tenure contract, a function w(t) indicating the wage to be paid at every tenure

t ∈ [0,∞) so long as the worker stays at the firm and, if discrimination is allowed,

the required gender of an applicant. Write x for a contract and wx(t) for the wage

paid by that contract at tenure t. A filled job with contract x provides flow value

y − wx(t) to the firm. Both workers and firms discount the future at a common

rate ρ > 0. Crucially, assume that firms possess perfect commitment power; that
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workers outside offers are assumed unobservable, so can not be contracted on; and

that there can be no renegotiation. Whether firms can or would discriminate is

also of central concern. I will consider both the case where firms can perfectly

discriminate – by detailing the required gender of a worker in advertisements – and

the case where such discrimination is disallowed either because the information is

unavailable (blind offers) or because it is non-contractible (no-discrimination laws).

Matching between workers and advertised jobs operates in a continuum of sub-

markets. Each market is characterized by the wage contract advertised in that

market, its tightness, and the characteristics of its applicants. Write θx for the

tightness in the market offering contract x. This is the density of searching workers

divided by the density of advertised jobs. Given a tightness, an individual worker

meets a firm with Poisson intensity p̃(θ) while firms receive meetings with Poisson

intensity q̃(θ) = θp̃(θ). It will be convenient to eliminate θ and write simply q(p) or

p(q). While we refer the reader to Shi for a detailed enumeration of assumptions on

various model primitives, it suffices for now to require p(q) be strictly decreasing and

concave, and that q is bounded above by q̄ = q(0). The grand market, the collection

of all the sub-markets, is characterized by the set of contracts, X , the job-finding

rate p(x) for each contract, and the relative proportion of M and W searching in

each market, γix. At any point in time, a worker receives offers exclusively in the

market in which they search. Each worker may only search in a single market at

any time. And firms may only advertise a job with contract x in the appropriate
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market. As I only consider equilibrium in steady state, no market or aggregate

variables depend on time.

3.2.2 Worker’s Problem

Given these preliminaries, workers choose where to direct their search, whether to

accept a contract offered to them in a meeting with a firm, and whether to quit

into unemployment if employed. Note that, no matter their employment status, a

worker’s current decisions depend only on their current value in that state. Write

V i
u for the value of unemployment, and V i

x(t) for the value of employment at tenure

t under contract x for i = M,W . Workers consider the set of available markets

in which to search and choose optimally given their current state. Given a set of

contracts X and associated job finding rate p(x), a worker with current value V i

searches to maximize the excess value of a new offer:

Si(V
i) = max

x∈X
p(x)(V i

x(0)− V i).

For now, suppose that a solution exists and write x = Fi(V
i) for the maximizing

choice. Searching for x generates meetings at a rate p(x). Given a worker searching

for x meets with a firm advertising x, the worker will accept the offer – otherwise

they would have searched for a different contract. Further, suppose that if a worker

searches in a market, firms in that market accept (which will be the case in equi-

librium). Workers would never search in a market where they expect to be rejected
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by all firms. And since firms are identical, the statement that all firms accept is

simply the statement that firms do not randomize in their acceptance decisions.3

Because it will be used extensively below, write ri = δi+ρ. Given optimal search

decisions, the value of employment under x at t is given by

riV
i
x(t) = u(w(t)) + S(V i

x(t)) + V̇ i
x(t).

The (mortality adjusted) asset-value of employment, riV
i
x , must equal the div-

idend u(w(t)) plus the flow value of changing jobs plus the change in the value.

Since w(t) need not be constant, there will indeed be non-zero change in a worker’s

value. But when unemployed, workers receive a constant benefit, so that the value

of unemployment is constant. Specifically,

riV
i
u = u(b) + S(V ).

Turn now to the firm’s primitive problem.

3.2.3 Firm’s Values

Firms who have a type i worker with tenure t under contract x have no decisions

to make going forward as they are comitted to the contract. They may not end or

3This does not preclude discrimination. Rather, it requires that firms include any discrimina-
tory policy in their advertisements. If the matching technology had increasing returns to scale, it
might be optimal to induce workers to search in a market, but then reject their application. I ig-
nore this possibility, and other related considerations, by simply assuming that the advertisement
is binding on firms.
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amend the relationship. They anticipate, however, that their worker will end the

relationship at some point, either exogenously or because of a competing offer. A

worker with current value V i
x(t) exits at a constant rate δi and quits to a competing

offer at a rate p(F (V i
x(t))). The value of the worker to the firm, Jx(t), must solve

ρJ ix(t) = y − w(t) + J̇ ix(t)− (δi + p(F (V i
x(t))))J ix(t).

This equation simply states that the asset value of an employee is equal to the flow

product, y, less wages, w(t), plus the change in the asset value less the probability

of loosing the worker times the magnitude of the loss. Write Ri(V ) = ρ + δi +

p(Fi(V )) for the interest-rate adjusted Poisson intensity of separation. Suppressing

the contract, the probability a worker survives to tenure t is given by

ψi(t) = exp

{
−
∫ t

0

Ri(V
i
x(s))ds

}
.

Conditional on survival at tenure t, the probability of surviving to t + τ is sim-

ply ψi(t + τ)/ψi(t). Assuming bounded wages, the firm’s value function can be

integrated as

J ix(t) =

∫ ∞
t

ψi(s)

ψi(t)
[y − w(s)] ds.

The profit to a firm of hiring a worker under contract x is Jx(0). But before a

worker can be hired, the contract must be advertised and a worker found. Offering

a contract x yields an applicant of type i at rate γiq(p(x)) and then payoff of J ix(0),
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together yielding a flow of
∑

i γiq(p(x))J ix(0) which must be greater than or equal

to the flow cost of advertisement, k. Competition will drive this to equality.

3.3 Equilibrium with Perfect Discrimination

When perfect discrimination is allowed, so that a worker’s type is contractible, there

is perfect separation and the presence of multiple types is somewhat irrelevant. The

equilibrium for each type is the same as if there were only one. To see that the

equilibrium can be made fully separating, note that if both types were to search in a

single market, firms must make equal profits from both. Otherwise, the firm could

announce a slightly more generous contract restricted to the more profitable type,

increasing profits. Given workers provide equal profit, and the matching technology

is assumed homogeneous, simply splitting the market in accordance with relative

populations will provide the same matching rate, but be separating.

Shi solves the model when all workers share a common δ.4 The following sum-

marizes part of his argument. The market with two types is, then, simply two

independent markets alongside each other. Suppose for the moment that firms, in-

stead of full wage contracts, promise a value to workers and then optimally choose

the wage to provide that value; this yields Vx(0) = x. Write p(x) and q(x) for the

matching rates for worker and firm in the market providing value x. Suppose that

p′(x) < 0, p′′(x) < 0 so that S(V ) = maxx p(x)(x − V ) has a unique maximizing

4As I expand on his equilibrium, I maintain his assumptions 1 and 2 which ensure existence
and regularity of equilibrium.
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value F (V ). Let [x, x] be the set of offered utilities and suppose that q̄ = q(x) – the

maximum matching rate for firms is given to the firm promising the highest utility.

Notice that if a firm promises x, he faces no voluntary exits: R(x) = ρ+ δ = r. As

is easy to see, then, the profit maximizing contract offered by the highest firm is a

flat wage, w̄ which yields the firm a value of

J ≡ Jw̄(0) =
y − w̄
r

.

Since even the most generous employer must cover their advertising costs, zero

profit implies that q̄ y−w̄
r

= k so that w̄ = y − rk/q̄. A worker employed at w̄ will

then enjoy a value x = u(w̄)/r. And as a worker can always quit to unemployment

and stay forever, a lower bound on possible utilities is x = u(b)/r.

Given these bounds, for each x ∈ [x, x] consider the firm’s problem conditional

on having just matched with a worker at a promised utility for the worker of x.

max
w(·)

∫ ∞
0

φ(s)[y − w(s)]ds s.t. x = Vw(0).

This is an optimal control problem with state variable V with dynamic defined

by the worker’s Bellman equation. Shi shows that limt→∞w(t) = w̄ in equilibrium.

This implies that for every x ∈ [x, x], there is some τx such that Vw(τx) = x. Next, by

the principal of optimality, it must be the case that if w(·) solves the firm’s problem

for some x0, then for all x ∈ [x0, x), there exists some τx such that w̃(t) = w(t+ τx)
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solves the firm’s problem given a promise of x > x0. In other words, there is a

baseline wage profile. And given any promised value, the firm provides this value

by offering the baseline wage at some starting time. This observation significantly

simplifies the structure of equilibrium. One need only solve for a single wage profile,

and then promised utilities are given by starting times along this profile.

As derived by Shi, optimality conditions for the firm yield the following differ-

ential equations which, together with the Bellman equations for the worker, yield

w, J and V .

ẇ =
[u′(w)]2

u′′(w)
J(t)

[
dp(F (V ))

dV

]
, J̇(t) = − V̇

u′(w)
(3.3.1)

with boundary J(∞) = J , V (∞) = V̄ , and w(∞) = w̄. These, along with zero

profit for the firm and optimal search by the agent define the conditions of equilib-

rium for Shi. Off equilibrium beliefs are easy to derive given the structure of firms’

optimal offers. For x ≥ x, firms make negative profit and so these are not offered

or, more specifically, workers accept an infinite tightness for those contracts. Sim-

ilarly, no worker would ever accept any x < Vu so these are not searched for. The

only question concerns contracts in [Vu, F (Vu)) as these contracts are not part of

equilibrium but can not be ruled out for promising negative value. Instead, equilib-

rium specifies (common) beliefs concerning the tightness that would obtain if those

markets were to operate. This is given by the zero profit condition for the firm.

Specifically, the system which produced the wage contract can be run backward
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giving w and hence J for any promised utility in [Vu, F (Vu)). So, if x ∈ [Vu, F (Vu)),

let q(x) = k/Jx. Competition guarantees that if a market were to operate it would

give zero profit. Hence, the ratio of workers to jobs is set such that exactly that

obtains. Existence derives from construction of a fixed point on w for this system.

Note that although I have presented the equilibrium with δi = δ, the case where

δW > δM will produce an equilibrium consisting of two parallel ladders, one for M

and one for W , which satisfy the same conditions with the small adjustment that

advertised contracts specify the type of applicants. As the relationship between

model parameters is complicated, and the equilibrium can not be exhibited con-

structively, comparative statics are challenging. Some points, however, are obvious.

First, with δW > δM , it must be that w̄W < w̄M . Simply, since M are expected to be

attached for longer, they have a higher expected lifetime product and hence a taller

wage ladder. Second, zero profit implies that, for any contract xi, q(xi)Jxi = k, so

the job filling rate exactly pins down firms’ values. But then, since M are more

productive, if q(xM) = q(xW ) then the expected present value wage bill under xM

must be greater than under xW .

As briefly mentioned before, pooling can not be a part of any equilibrium where

discrimination is allowed, because every wage profile produces strictly greater profit

for firms employing M than W . Hence, offering a wage slightly higher and specifying

M would attract every M participant in the pooling contract and produce higher

profit. When discrimination is allowed, off-equilibrium contracts are easy to rule
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out. But when the composition of agents who would search for a deviating contract,

if offered, is endogenous, the problem is more delicate. GSW provide an algorithm

which both detects equilibrium offers and specifies deviation payoffs precisely.

3.4 No Discrimination: The Case of Adverse Se-

lection

Suppose now that firms do not observe an agent’s type before entering into the

relationship. Our equilibrium definition almost exactly follows GSW. Let W =

{w : [0,∞) → [0, y]|ẇ > 0} be the set of admissible wage functions and W∗ ⊂ W

for the set of contracts offered in equilibrium with a measure H on W∗ specifying

the proportion of the population searching for each w. For each w ∈ W , write

γM(w) = 1 − γW (w) for the proportion of i types searching in the market offering

w. Let Θ : W → [0,∞] describe the tightness in each market. For any value V ,

the equilibrium specifies a search strategy Fi(V ) which is individually rational for

workers. Given Θ and Fi, firms make non-positive profit at any w and exactly zero

profit in any contract in W∗. Static adding up:
∫
W∗ γi(w)/Θ(w)dH(w) = ni where

ni is the number of workers of type i. Dynamic adding up: transitions implied by

worker turnover, exit, and entry, together with optimal search, generate H.

The last condition does not appear in GSW as theirs is a static framework. But,

as is common in directed search equilibria with free entry, the aggregate distribution
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of agents plays no role in individual decisions. Hence, once equilibrium decision

rules have been calculated, the aggregate distributions are generated mechanically.

Shi refers to this property as Block Recursivity. Moreover, the above statement

suppresses the dependence of search decisions on a worker’s current state, but this

comes in through the distribution H: a worker’s current state implies a search

decision which is reflected in H.

Here, I describe the solution method derived by GSW and proceed to apply the

idea to the current environment. To be concrete, suppose the two types are M

and W with static utilities U i(y) over a set of abstract contracts y ∈ Y with firm’s

profits v(y|i). Given a matching function q(p) as above, GSW suggest the following

program. First, solve

S̄W = max
p,y∈Y

{
pUW (y) s.t. q(p)L(y) ≥ k

}

and then

S̄M = max
p,y∈Y

{
pUM(y) s.t q(p)L(y) ≥ k, and pUW (y) ≤ S̄W

}
.

They show, given assumptions detailed in their paper, that this program will pro-

duce contracts and matching rates that satisfy free entry and optimal search. They

go on to use this solution to specify matching rates for off-equilibrium contracts

which make deviations unprofitable, so that the equilibrium is indeed profit maxi-
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mizing.

The problem solves for the optimal static value of search. In the current model,

the value of search to a worker is not static, but a flow: p(x)(x−V ). But the search

decision does not depend upon dynamic considerations beyond the current state, V .

Moreover, in the section above, while a firm’s optimal wage contract depends upon

the dynamic flow of quitters, δi + pi(Fi(V )), there exists a fixed wage contract and

the firm merely choose which segment as a function of the initial promised utility.

Hence, the firm has static preferences over promised utility: Ji(x). So long as the

function Ji(x) can be identified outside of the problem, the GSW program can be

solved for any initial utility V .

The first cornerstone of my construction rests on the observation that one can

select an equilibrium such that the low type, W , remains untouched by the intro-

duction of a higher type. This is done by construction. Given the equilibrium for

W alone, I construct markets for M which do not attract any W . Because there

were no deviations when W were alone, and the new contracts added to the market

are selected exactly to exclude W , there are still no deviations. Hence, the solution

of the first problem in GSW’s program, the problem for W , was solved in the last

section. Let pW (x), FW (x), and wWx (·) be the matching function (as a function

of promised value), optimal search decision, and wage profile derived by Shi given

δ = δW , as described above. This yields SW (V ) = pW (FW (V ))(FW (V )− V ).

Now consider the problem of finding the optimal contract and matching rate for
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M . The incentive compatibility constraint represents a significant problem. As W

and M value contracts differently, the firm can not solve for a single wage profile

independently. The difference in preferences between M and W is fundamental for

separation. Contracts intended for M can not simply be indexed by their value,

because the entire wage profile is required to satisfy incentive compatibility on the

part of W . Moreover, there is now a continuum of W at different scales in the

wage ladder, so, in principle, a continuum of conditions might need to be checked.

I resolve the issue in two steps. First, for an arbitrary wage profile, w(·), write

V W (t|w) for the value to W of the contract w at tenure t. For any (p, w) pair,

incentive compatibility requires SW (V ) ≥ p(V W (0|w) − V ) for every V ∈ XW .

Write this as

V W (0|w) ≤ min
V ∈XW

{
V +

SW (V )

p

}
≡ ŪW (p). (3.4.1)

ŪW (p) defines the maximum value any wage contract can deliver to a W and still

satisfy incentive compatibility. The equilibrium value of search for W , SW (V ), is

decreasing and convex (see Shi) hence

Lemma 3.4.1. Given p, the maximum value that can be delivered to W solves

pW (ŪW (p)) = p. Further,

∂ŪW (p)

∂p
=

1

p′W (ŪW (p))
< 0 and

∂2ŪW (p)

∂p2
= − p′′W (ŪW (p))

[p′W (ŪW (p))]3
< 0

In particular, for p = 0, ŪW (0) = u(w̄W )/rW
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Proof. Observe that

∂

∂V

[
V +

SW (V )

p

]
= 1− pW (F (V ))

p
= 0 =⇒ pW (F (V )) = p.

The derivatives are given by the Inverse Function Theorem.

Although the correct constraint has been identified, it still depends on the entire

wage contract. The intuition was that we could solve for the wage contract first,

and then solve the optimal search problem over promised values. This leads me

to include the incentive compatibility constraint in the firm’s problem directly.

Suppose that, in equilibrium, M can secure values in [xM , xM ] = XM with match

rate pM(x), and corresponding optimal search FM(V ) yielding excess value of search

SM(V ) = pM(FM(V ))(FM(V ) − V ). Consider a firm’s problem when constrained

to offer a value of x to M and no more than ŪW (p) to W .

J∗(x, p) = max
w(·)

∫ ∞
0

ψM(s)[y − w(s)]ds

s.t ψ̇M = − [rM + pM(FM(V ))]ψM (3.4.2)

V̇ M = rMV
M − u(w)− SM(V M) (3.4.3)

V̇ W = rWV
W − u(w)− SW (V W ) (3.4.4)

V M(0) = x, V W (0) ≤ ŪW (p), ψ(0) = 1. (3.4.5)
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To each state ψM , V M , V W associate co-state Λψ, ΛM , ΛW . The Hamiltonian is

H = ψM(y − w)− ΛψψM
[
rm + pm(Fm(V M))

]
+
∑
i

Λi
[
riV

i − u(w)− Si(V i)
]

(3.4.6)

Write Γi = Λi/ψM and note that Λ̇i = Γ̇iψM−[rM + pM(FM(V ))]ψMΓi. Optimality

implies

−1− u′(w)

[∑
i

Γi

]
≤ 0 and w ≥ 0 (comp. slack) (3.4.7)

Noting that S ′i(V ) = −pi(Fi(V )),

−Λ̇M = −Λψp′M(FM(V ))F ′M(V )ψM + ΛM(rM + pM(FM(V )))

which, after substitution of ΓM , gives

Γ̇M = Λψp′M(FM(V ))F ′M(V ). (3.4.8)

−Λ̇W = ΛW [rW + pW (FW (V ))]

which we can integrate and obtain

ΓW (t) = ΓW (0)
ψW (t)

ψM(t)
with ΓW (0) ≥ 0, ΓW (0)(V W (0)− ŪW (p)) = 0.

Here, ΓW (0) measures the shadow value of deterring W so that ΓW (0) > 0 if the
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incentive compatibility constraint is binding. Continuing,

−Λ̇ψ = (y − w)− Λψ[rM + pM(FM(V ))]

=⇒ (y − w)ψM = ΛψψM [rM + pM(FM)]− Λ̇ψψM = − d

dt

[
ΛψψM

]
.

Given the transversality condition limt→∞ ψ
M(t)Λψ(t) = 0, and limt→∞ J(t) = 0,

integrating both sides yields J(t) = Λψ. And since u′(0) = ∞, w > 0 so (3.4.7)

implies ΓM = −1/u′(w)− ΓW and so Γ̇M = −ẇu′′(w)/(u′(w))2 − Γ̇W . Substituting

these into (3.4.8) and recognizing that d(pM(FM(V )))/dV = −S ′′M yields

−JS ′′M = [δW − δM + pW − pM ] ΓW +
u′′(w)

(u′(w))2
ẇ. (3.4.9)

Note, this condition differs from (3.3.1) by the term involving ΓW . ΓW is the

shadow value on the incentive compatibility constraint, and the term in the bracket

is the difference in quit rates between W and M . Where it is positive, the wages

for M are steeper than optimal. In particular, by definition of ŪW (p), we have

pW = pM at tenure zero in equilibrium. So whenever incentive compatibility binds,

the wages for M are steeper than optimal, at least at tenure zero.

It can be shown that H = 0 for all t. Given this, substituting (3.4.2) into H and

then J for Λψ yields H = ψM
[∑

i

(
ΓiV̇ i

)
− J̇

]
. Together with (3.4.7), this yields

J̇ = − V̇ M

u′(w)
+ ΓW

[
V̇ W − V̇ M

]
. (3.4.10)
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Compare this with (3.3.1). When ΓW = 0, the equation carries the interpretation

that an increase in the worker’s value with tenure exactly matched the decrease in

the firm’s value, where u′ serves to adjust units. When incentive compatibility

binds, there is a wedge between the two.

Equations (3.4.10), (3.4.9), the Bellman equations for workers and firm, along

with the solution for ΓW provide a system of differential equations which, along with

boundary and transversality, determine the system. Let J∗(x, p) be the maximized

value for the firm.

The most valuable payoff to M , xM , is given by J∗(xM , 0) = k/q̄. This value

depends only on model primitives because a worker in the best job does not search.

Notice, this will not be a flat contract because it must satisfy incentive compatibility.

Further, define the lowest value as xM = u(b)/rm, and write XM = [xM , xM ].

Equilibrium requires that each x ∈ XM be assigned a wage profile and a matching

rate pM(x) that satisfy incentive compatibility and are optimal for both workers

and firms.

Having embedded the incentive compatibility constraint into the firm’s problem,

I provide first order conditions governing the optimal choice of p, x for every V ∈ XM

given a matching function pm to be used in the firm’s problem. The GSW program:

PGSW(V |pm, Fm) : SM(V ) = max
p,x
{p(x− V ) s.t. q(p)J∗(x, p) = k} .

Letting µ be the multiplier on the zero profit constraint, the first order conditions
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are

x− V = −µ
[
q′(p)J∗(x, p) + ΓW (0)q(p)(d ŪW (p)/dp)

]
,

p = µq(p)

[
ΓW (0) +

1

u′(w(0))

]
,

q(p)J∗(x, p) = k.

Where I have substituted ∂J∗/∂x = ΓM(0) and ∂J∗/∂UW = ΓW (0).

For each V and given pm and Fm, PGSW(V |pm, Fm) yields promised utility, x =

F̂ (V ) and job finding rates p̂(x). The equilibrium will then be a fixed point in this

mapping. Let p̄ solve q(p̄)(y− b)/rM = k; p̄ is upper bound on p: a firm making the

maximum feasible payoff must suffer a compensating amount of competition which

induces high job-finding.

Let

P =
{
p ∈ C[XM ]|0 ≤ p ≤ p̄, p(xM) = 0, p weakly decreasing, weakly concave

}
,

F =
{
F ∈ C[XM ]|xM ≤ F ≤ xM , F (x) ≥ x, weakly increasing

}
.

And define Ω : P×F→ P×F by (p̂, F̂ ) = Ω(p, F ) =
{

(p̂, F̂ ) solves PGSW(·|p, F )
}
.

Our equilibrium for M will be a fixed point of Ω. As of yet, however, an existence

proof eludes me. In the discrete time analogue of this model, the proof of Menzio

and Shi (2010) applies with little alteration. I am in the process of formulating

a limiting argument to obtain existence in the continuous time model where the
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convenient characterization of the wage contracts is available.

3.5 Discussion and Plans for Future Work

The analysis above remains somewhat incomplete. In this section, I provide some

discussion, conjecture, and plans to improve upon this work.

While the model at hand is possessed of some elegance and simplicity, its solu-

tion is not. Moreover, any econometric or serious calibration study would require

the model be expanded to allow for a great deal more flexibility, only increasing

its intractability. A relatively straightforward extension would allow for n different

separation rates. This kind of equilibrium could be solved iteratively in the same

way that the problem for M was solved conditional on the outcome for W in this

paper. Other extensions – such as heterogeneous productivity or values from unem-

ployment – seem like they would be more complex, but have been accommodated

in similar models such as Burdett et al. (2011).

As already mentioned, I have yet to prove existence of the equilibrium but that

hurdle seems surmountable. Somewhat more frustratingly, I have had surprising

difficulty in deriving results comparing the two wage ladders in the no-discrimination

case. I am specifically interested in the relative levels and slopes of wage profiles by

gender. The original idea for this project was that, since separation probabilities

induce a single crossing over wage-profiles, self-selection should be supported in a

directed search environment. And, hence, one should expect different contracts
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to separate types, and these separating contracts to generate heterogeneous labor

market outcomes. Specifically, one should expect steeper contracts for M . As of

yet, I have only proved this for the best contract offered.

That low turnover workers might want to self-select into steep wage contracts

is far from novel, having been discussed in Salop and Salop (1976), and in a more

general discussion of the kinds and nature of discrimination, by Stiglitz (1973).

But modern equilibrium search models provide for rich equilibrium effects even

with seemingly vanilla primitives. Re-casting old intuition in these new models has

the possibility of bringing more realistic features without resort to more contrived

examples.

While I glossed over this fact in the discussion above, the fixed point prob-

lem will only yield strategies and beliefs within equilibrium. But beliefs need to

be specified for any feasible contract, not just those acted upon in equilibrium.

Constructing these beliefs for the discriminatory economy was much easier because

agents shared preferences and deviations could be restricted to one-dimensional set.

To be well defined, equilibria in directed search environments require beliefs over

the tightness and composition not just of markets operating in equilibrium, but all

possible markets. This prevents incompleteness and coordination issues described

in Delacroix and Shi (2006) (i.e. workers do not search for a desirable contract x

because they believe no firm will offer it, and no firm offers it because every firm

believes that no worker would search for it). As pointed out by GSW, specifying
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out of equilibrium tightness serves to refine the set of equilibria. My equilibrium

construction only provides tightness for contracts offered in equilibrium. I have yet

to solve for a supporting set of off-the-path beliefs. GSW provide an algorithm, but

theirs is a finite context; I have yet to find a suitable generalization.

Finally, as I mentioned above while introducing the nature of gender hetero-

geneity, the analysis could be extended to allow for endogenous quits. Indeed, it

can. If, for example, a worker faces an α arrival of a “life event” that would yield

flow utility z drawn from some distribution G(z), but would require the worker to

quit. Then the exit rate the firm faces changes to R = r + p(F (V )) + α[1−G(V )]

and would affect worker’s value functions in an analogous way. This opens up the

interesting possibility that a group with, ex-ante, a relatively high probability of

exit, might receive steeper wage profiles than others so as to encourage staying.

And then, if the population consisted of individuals differing in the distribution of

outside options they receive, one would have a qualitatively similar adverse selec-

tion problem, but with a richer moral hazard problem attached. This would seem

to be the correct model in which to address the differences between self-selection

and statistical discrimination if some women, for example, were more or less career

oriented, as described by different distributions for the exogenous outside option.

Perhaps the most important direction for further research is an examination

of the vast empirical literature. While certain facts seem clear – the higher quit

rates for women in aggregate – there are subtleties – when sufficient controls are
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included, differential quit rates may disappear. But since my model should deliver

predictions linking labor force attachment and the trajectory of wages and careers,

testing it will require I gather stylized facts regarding those variables.

3.6 Conclusion

While the analysis remains preliminary, the model I develop seems capable of pro-

ducing a variety of predictions regarding various labor market outcomes with rel-

ative parsimony: a single parameter difference, when combined with equilibrium

search, produces rich equilibrium objects. Until I develop more concrete results

with the model, however, the most significant contribution is methodological. I

illustrate an example of how, in some situations, the purely static framework of

GSW can be extended to dynamic economies of adverse selection.
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Chapter 4

Noisy Search for Multiple

Products1

Firms offer a variety of goods and consumers search for low prices on a basket

of different goods. As a consumer visits different stores in a search for multiple

products, at any individual firm, they can chose to purchase all of their desired

goods, or just to purchase one, planning to purchase the rest elsewhere. Hence,

consumers purchasing decisions depend both on the sum of prices in a basket, but

also on the individual prices themselves. The resultant purchasing behavior differs

from simple single product search. The focus of this study is on the implications

of this behavior on equilibrium pricing decisions, and the dispersion of prices both

within and across firms.

Prices are disperse. The law of one price mostly never holds. Prima facia, one

1Kenneth Burdett is a co-author on this project.
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might suppose that this is easily explained by the fact that information is costly

and consumers do not know where the best prices are and so firms may set different

ones. Search is, however, not suffcient to deliver dispersed prices – this is the so-

called Diamond (1971) paradox. If a firm knows a consumers’ reservation value,

they can charge it, leaving consumers with no surplus. If consumers must pay to

search, they know they will simply be charged their reservation price and so do not

search in the first place. Simple, homogeneous, costly sequential search leads firms

to post equal prices, and to no sales.

This negative result can be broken in a variety of ways, but most all require

sacrificing the homogeneity that induced firms to know, and be willing to charge,

consumer’s reservation values. One plausible and tractable model requires no ex-

ante heterogeneity across consumers, but instead supposes that some consumers can

be lucky in their search, and simultaneously receive more than one price offer. This

is the noisy search model of Burdett and Judd (1983). In this model, the monopoly

power of search highlighted by Diamond is tempered by possibility that consumers

may have another offer. So long as some consumers have only one offer while some

others have more than one, firms must act as though they are in an auction with an

unknown number of bidders, and so randomize their prices. Price dispersion is an

equilibrium object, and so rationalizes consumer’s need to search. It is this search

protocol we embrace in this study.

If instead of retail markets, one considers the labor market, that a job has
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many dimensions is largely unimportant. Insofar as consumers must take all of

the characteristics at one job, only the derived utility of the bundle matters –

that one has high pay and another good benefits is inconsequential. Similarly, if

a consumer must purchase, for example, all of the elements for an audio system

from one retailer because of compatibility, only the bundle price matters, and so

single-product models are appropriate. Similarly, if each individual retailer offered

only a single good, so long as preferences are sufficiently separable there will be no

interaction between the different goods. But when firms must post prices for each

good, and consumers decide which they would like to buy, one must consider an

explicitly multi-product model.

4.1 Some Literature

The first paper to consider the multi-product search, Burdett and Judd (1983),

solved the consumer’s decision problem given a distribution of prices, in extreme

two cases – one where consumers have free recall of previous prices, and the other

where there is no recall. While Burdett and Judd (1983) solved only the two-good

case with no recall, Carlson and McAfee (1984) further characterize the N good

case and derive various comparative statics. Consumers

These early studies focused on unit demands – as we will in this paper. In the

single product setting this is something of a normalization. Whether consumers have

unit demands or non-degenerate downward sloping curves, consumer will follow a
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reservation price strategy. Anglin and Baye (1987) and Anglin (1990) shows that,

in general, in the multi-product case, this is no longer true. Gatti (1999) provides

sufficient conditions on the utility function to regain the reservation price property.

Other studies avoid this issue by constraining the consumer’s ability to sequen-

tially search. Shelegia (2012) and Zhou (2014) consider a duopoly case, so that

search histories have at most two entries. Zhou obtains results in a model of hori-

zontal differentiation in a simlar spirit to Weitzman (1979) and characterizes firms’

pricing decisions. He shows that, in this setting, there can be “joint search ef-

fect” which can induce firms to lower their prices in response to higher search costs.

Shelegia (2012) is much closer to the current study, as consumers have unit demands

and consumer engage in noisy search. Indeed the simplest case we describe here

is reproduced almost exactly there. But that study is interested in the impact of

consumers’ joint valuation of goods, i.e. the impact of substitutes and complements

on price distributions. And specifically, reservation values are taken as given. In

the current study, we derive these as the result of strategic sequential search.

4.2 The Model

This is a model of a retail market for goods A and B. Generically, write i for a good

and, when necessary, j for the other good. The market is populated by a unit mass of

firms, and some mass of consumers. A mass q ∈ [0, 1/2] of firms can produce good A

at constant marginal cost c instantaneously on demand. Similarly, a mass q of firms
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can produce only good B at a constant marginal cost c instantaneously on demand.

Call these one-good-firms (1f’s). Finally, a mass 1 − 2q of firms can produce both

A and B, each at constant marginal cost c instantaneously on demand. Call these

two-good-firms (2f’s). Firms must post prices, may not bundle, nor discriminate in

any other way.

Each good is worth z to a consumer who demands it, and consumers demand at

most one unit of each good. A mass n0
1 of consumers enter the market demanding

one unit of good A. Similarly, a mass n0
1 of consumers enter the market demanding

one unit of good B. Collectively call these one-good-buyers (1b’s). Finally, a mass

n0
2 of consumers enter the market demanding a single unit of both goods. Call these

two-good-buyers (2b’s). The search protocol of consumers is a hybrid of standard

costly sequential search without recall from, e.g., Lippman and McCall (1976) and

the noisy search protocol of Burdett and Judd (1983). Specifically, some consumers

initially have free contact with either one or two sellers (the noisy search protocol)

but may reject these initial offers and search sequentially, paying a cost k to contact

a new firm at random with out recall.

The model is essentially static, but consider the following timing for the purposes

of exposition. Each day firms and consumers are born. At the end of the day they

die, collecting payoffs. Consumers search to maximize expected utility given their

belief about the joint distribution of prices – surplus from purchases less total search

costs. Firms set prices to maximize profits over the course of the day – number of
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sales times markup over cost. Each day is divided into a countably infinite number

of rounds, numbered 0, 1, 2, . . .. No party discounts during the day. In round zero,

firms set prices which they can not change during the day. In round one, consumers

begin their search. Some proportion β0 ∈ (0, 1) of the 1b’s are freely in contact

with one firm, each drawing at random from the set of firms. A complementary

proportion of the 1b’s, 1− β0, are freely in contact with two firms and may choose

to buy from either firm – there is no cost to purchasing one good from each firm.

Similarly, a proportion α0 ∈ (0, 1) of 2b’s have free contact with one firm in round

one, and 1 − α0 of 2b’s have free contact with two firms. All consumers who have

satisfied their demand exit at the end of the period, and any consumer may also

choose to exit even if they have not satisfied their demand.2 In round two and all

subsequent rounds, if a consumer has not previously exited, they must pay k, and

then randomly contact a new firm, losing contact with previous firms (there is no

recall), and may buy any good the firm offers at its posted price, and either exit or

continue to the next round. Equilibrium, then, requires the distribution of posted

prices equal beliefs, consumers purchase optimally, and firms profit maximize given

consumers’ purchasing behavior.

2An option which would be exercised if the expected value of continued search is negative.
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4.2.1 The Consumers’ Problems

Consumers solve an optimal stopping problem given their belief about the joint

distribution of prices posted by firms, FA,B(pA, pB) with marginals FA and FB. For

convenience, treat a 1f who does not sell a good i as selling it, but at an infinite

price. As noisy search is assumed only to occur in the first round, a consumer who

is lucky enough to see two sets of prices in the first round faces the same problem

going forward as one who was not so lucky. Noisy search induces competition among

firms, but does not change reservation values relative to sequential search.3 Burdett

and Malueg (1981) provide formal solution of the sequential search problem without

recall in the case of two products. We summarize the result here for convenience.

Consumers follow an optimal stopping rule with three reservation values written

W , RA, and RB, corresponding to the three possible states in which searching

consumers may find themselves – searching for both goods (2b’s), searching only

for A (having already purchased B for the 2b’s or never having demanded B in the

first place), or searching only for B. Ri is the standard reservation value from single

product search for good i (see, e.g. Lippman and McCall (1976)). Consumers pay at

most their expected cost of continued search, or their reservation value, whichever

is lower.

3In their original work, Burdett and Judd (1983) consider the case where consumers sequentially
conduct noisy search, with the possibility of seeing one or two prices in each round of search. In the
multi-product case, this would requires integration over of the joint distribution of the minimum
of two price draws which is less tractable. This is left for future work.
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Ri = min{z, k +

∫ Ri

p
i

pidFi(pi) + (1− Fi(Ri)Ri}. (4.2.1)

If Ri = z, then search is not profitable – consumers drop out after their first (free)

search.

W is the highest amount a consumer would pay for a basket of both goods.

That is, given a menu of prices (pA, pB), the consumer chooses to buy one, both, or

neither goods, paying (in expectation, assuming continued search is profitable)

min{pA +RB, RA + pB, pA + pB,W}

If one writes QA = W − RB, QB = W − RA, then 2b’s will buy according to the

following strategy:

1. Purchase A and B if pA + pB ≤ W and pi ≤ Ri.

2. Purchase A but not B if pA ≤ QA and pB > RB.

3. Purchase B but not A if pB ≤ QB and pA > RA.

4. Otherwise, purchase neither and search again.
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Given this strategy, one derives W analogously to Ri as

W = min

2z, k +

∫
{pA+pB≤W,
pi≤Ri}

(pA + pB)dFA,B(pA, pB)

+

∫
{pA≤QA,
pB>RB}

(pA +RB)dFA,B(pA, pB) +

∫
{pB≤QB ,
pA>RA}

(pB +RA)dFA,B(pA, pB)

+

∫
{pA+pB>W,
pi>Qi}

WdFA,B(pA, pB)

 (4.2.2)

As a practical matter, solving this equation is less straightforward than in the

case of single product search. One can, however, derive most of the same compar-

ative statics. These, along with the search problem for N goods, are explored by

Carlson and McAfee (1984).

4.2.2 Firms’ Problem

In their price setting decision, firms trade off price against sales. Noisy search

induces a downward sloping demand curve – the higher a firms’ price, the greater

the probability that a noisy searcher is quoted a lower price from another firm.

Further, firms must decide whether to target 1b’s, requiring only that pi ≤ Ri, or

2b’s with the additional constraint that pA + pB ≤ W . This last is, however, not

strictly true – as noisy searchers see two firms prices, they can make a basket costing
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less than W , allowing firms to sell to 2b’s that would not buy without this other

firm.

Firms must form beliefs concerning consumers’ reservation values, and the num-

ber of consumers of each type who visit their store over the course of the day. Write

N for the number of consumer-rounds per firm over the course of the day. That

is, if, say, there were 1 consumer per firm in the first round and all consumers

exit each period with probability r, then the total number of consumer-rounds per

firm would be 1/r. Write n1 = nA = nB for the proportion of these consumer-

rounds with demand for only A and the proportion with demand for only B (which

equal one another). Consumers who originally demanded both goods may buy one

while continuing to search for the other, and so may become one-good-buyers. As

it should not cause confusion, refer to these as 1b’s. Write n2 = 1 − 2n1 for the

proportion who demand both goods. Further, write α ∈ (0, 1) for the proportion of

the N · n2 consumer-rounds of two-good-consumers in contact with only one firm,

and 1−α for the proportion who simultaneously contact two firms. Similarly, write

β ∈ (0, 1) for the proportion of the N · n1 consumer-rounds of one-good-buyers in

contact with only one firm, and 1 − β for the proportion in simultaneous contact

with two firms.4 It will be convenient to have some notation. Write

ns1 ≡ (1− β)n1, ns2 ≡ (1− α)n2, and ns ≡ ns1 + ns2

4Notice, these are not the same as α0 and β0 as these are the proportion of first round searches
with single contact. Whereas α and β are the proportion of all searches with single contact
throughout the day (which is the relevant quantity for firms’ pricing decisions).
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for the one-good-consumers with simultaneous contact, two-good-consumers with

simultaneous contact, and total proportion, respectively. Similarly, write

nc1 ≡ βn1, nc2 ≡ αn2, and nc ≡ nc1 + nc2

for the proportion of consumes with single contact. As some consumers see two sets

of prices, the total number of visitors a firm expects over the course of the day is

N(nc + 2ns).

Given consumers’ reservation values, W,RA, RB, firms sell to different subsets

of consumers as a function of their price levels. A 1f selling i with price less than

Qi can sell to both the 1b’s demanding i and also to 2b’s, but will only sell to noisy

searchers whose alternate price offer is higher.5 If this 1f prices between Qi and Ri

it will sell to any 1b desiring i, will never sell to 2b’s seeing only one set of prices,

but may sell to a 2b seeing another set of prices. This last occurs if the alternate

firm prices i high, but j low enough to make a basket with its competitor costing

less than W. That is, if a 1f offers pi on good i, and a noisy searcher is in contact

with an alternate firm pricing at (p′i, p
′
j) and pi < p′i and pi + pj ≤ W , the 1f will

sell good i to that consumer. Write XA(pA) ≡ FB(W − pA) − FA,B(pA,W − pA)

(similarly define XB(pB)), for the probability of selling in such a situation. These

observations lead to the following profit function for the 1f.

5We’ll ignore the possibility of the tie, as equilibria price distributions will be atomless.
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Remark 4.2.1. A 1f selling good A faces a profit function

π1(pA) = N [nc + 2ns(1− FA(pA))](p− c)

if p ≤ Q. If, instead, QA < pA ≤ RA, the profit function is given by

π1(pA) = N [nc1 + 2ns1(1− FA(pA))︸ ︷︷ ︸
Noisy 1b

+2ns2XA(pA)︸ ︷︷ ︸
Noisy 2b

](p− c).

Finally, profit is zero for pA > RA. A similar result holds for 1f selling good B.

A 2f firm faces a more complicated problem. They sell to all 1b’s so long as

pA ≤ RA and pB ≤ RB, and the 1b does not have a better offer. If pA + pB ≤ W ,

they additionally sell a good to all 2b without a better offer on that good. Finally,

if pA + pB ≥ W , they may sell one good to noisy searcher 2b who have an offer

making a basket, as was the case with 1f’s above. This yields the following:

Remark 4.2.2. Recalling that XA(pA) ≡ FB(W −pA)−FA,B(pA,W −pA), the profit
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function for a 2f is given by π2(pA, pB) =

∑
i∈{A,B}

N(nc + 2ns(1− Fi(pi))(pi − c) if pA + pB ≤W,pi ≤ Ri

N(nc + 2ns(1− FA(pA))(pA − c) if pA ≤ QA, pB > RB

N(nc + 2ns(1− FB(pB))(pB − c) if pB ≤ QB, pA > RA

∑
i∈{A,B}

N [nc1 + 2ns1(1− Fi(pi)) + 2ns2Xi(pi)](pi − c) if Qi < pi ≤ Ri, pA + pB > W

N [nc1 + 2ns1(1− FA(pA)) + 2ns2XA(pA)](pA − c) if QA < pA ≤ RA, pB > RB

N [nc1 + 2ns1(1− FB(pB)) + 2ns2XB(pB)](pB − c) if QB < pB ≤ RB, pA > RA

0 if pi > Ri.

(4.2.3)

Notice, that in each of the seven cases above, profit is additively separable across

goods. Also note that no firm will ever set a price greater than Ri on a good that

they offer, as this yields no sales.

Given symmetric data, we will focus on symmetric equilibria (across goods) and

define equilibrium as

Definition 4.2.3. A symmetric equilibrium is a list of reservation values (W,R),

profit for both types of firms (π̄1, π̄2), a joint distribution of prices FA,B with

marginals FA and FB and pricing strategies of firms (G1(p), G2(pA, pB)) such that

1. Consumers formulate W and R according to equations (4.2.2) and (4.2.1).

2. Firms maximize: π1(p) = π̄1 for all p in the support of G1 with π1(p) ≤ π̄1 else-

where; π2(pA, pB) = π̄2 for all (pA, pB) in the support of G2 with π2(pA, pB) ≤
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π̄2 elsewhere.

3. Consistency:6

FA,B(pA, pB) = q(1{pB =∞}G1(pA)+1{pA =∞}G1(pB))+(1−2q)G2(pA, pB).

Next, we formulate equilibrium in the simplest case.

4.3 Simplest Case

In this section we construct an equilibrium reminiscent of the single product equi-

librium of Burdett and Judd (1983). Suppose q = 0 so that all firms offer both

goods, and n0
1 = 0 so that all consumers initially demand both goods. Recall from

the consumers’ problem that 2b’s only transition to become 1b’s after encountering

a price pair (pi, pj) with pi ≤ Q and pj > R. As no firm prices above R on goods

they offer, and all firms offer both goods when q = 0, we conclude that no 2b’s ever

become 1b’s. In this simplest case, we have n1 = 0. This then implies nc = αn2

and ns = (1 − α)n2. Because of this, we can derive our first result. No firm offers

a basket costing more than W .

Lemma 4.3.1. When q = 0 and n1 = 0, then all firms’ basket price is acceptable

6Recall, this is an improper distribution if q > 0, as we follow the notational convention that
firms who can not sell a good post an infinite price for that good.
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so that

suppFA,B ⊆ {pA, pB|pi ≤ R, pA + pB ≤ W}.

Proof. As no consumer will ever pay more than R for a good, no firm will ever set

a price higher than R. Let θi be the probability a consumer purchases good i from

a firm posting (pA, pB) (outside the acceptance set) conditional on not receiving a

better offer for good i from another firm.7 That is,

θi =
Xi(pi)

1− Fi(pi)
.

Let p̂i be the expected price a consumer expects to pay for good i conditional on

receiving the offer (pA, pB). That is

p̂i = θipi + (1− θi)E[Pi|Pi ≤ pi]

where the expectation is taken over expected acceptable prices. Then we have the

7This proof almost exactly follows the proof in McAfee (1995), except that without recall θi is
defined differently.
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following:

π(pA, pB) =
∑
i

2ns(1− Fi(pi))θi(pi − c)

≤
∑
i

2ns(1− Fi(pi)) [θi(pi − c) + (1− θi)(E[Pi|Pi ≤ pi]− c)]

=
∑
i

2ns(1− Fi(pi))(p̂i − c)

<
∑
i

[nc + 2ns(1− Fi(p̂i))](p̂i − c)

= π(p̂A, p̂B).

Hence, deviating to (p̂A, p̂B) is profitable.

4.3.1 Deriving Equilibrium

Recall, if pi ≤ R and pA + pB ≤ W , then

π(pA, pB) =
∑

i∈{A,B}

N [nc + 2ns(1− Fi(pi))](pi − c). (4.3.1)

Equilibrium requires constant profits: π(pA, pB) = π̄ on the support of F and

π(pA, pB) ≤ π̄ elsewhere. As in Burdett and Judd (1983), F must be continuous,

and so at interior optima, first order conditions give
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0 = N [nc + 2ns(1− Fi(pi))]− 2Nnsfi(pi)(pi − c)

= Nn2{[α + 2(1− α)(1− Fi(pi))]− 2(1− α)fi(pi)(pi − c)}

=⇒ d

dp
[Fi(p)(p− c)] =

2− α
2(1− α)

=⇒ Fi(p) =
2 + α

2(1− α)

(
p

p− c

)
+
Cons

p− c
.

To determine the constant of integration, substitute Fi(p̄i) = 1 to get

Cons = − α

2(1− α)
p̄i − c

so

Fi(p) =
2− α

2(1− α)
− α

2(1− α)

p̄i − c
p− c

.

Solving for Fi(pi) = 0 yields

p
i

=
αp̄i + 2(1− α)c

2− α
.

Hence, given the upper bound of the support p̄i, the marginal distributions of

each price are determined. To obtain this upper bound, one simply notices that

the highest price charge, p̄i must simply be the reservation value of the consumer:

R = p̄i. By Lemma 4.3.1, we must have p̄i ≤ R. For the reverse inequality, suppose
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not, that p̄i < R. But then, a firm charging pi = R loses no customers (because it is

already pricing at the top of the distribution) and strictly increases profits. Closing

equilibrium then just requires solving for R in the consumer’s problem given this

distribution. The result is in three cases concerning the relation between costs,

values, and competition.

Proposition 4.3.2. If

z > c+
k

1 + α
2(1−α)

log
(

2−α
α

) ,
then the marginal distribution of prices in any interior equilibrium are given by

Fi(pi) =
2− α

2(1− α)
− 1

2(1−α)
α

+ log
(

2−α
α

) k

pi − c
.

Reservation values are given by

R = c+
k

1 + α
2(1−α)

log
(

2−α
α

) , Q = c− k
α

2(1−α)
log
(

2−α
α

)
1 + α

2(1−α)
log
(

2−α
α

) ,
W = 2c+ k

1− α
2(1−α)

log
(

2−α
α

)
1 + α

2(1−α)
log
(

2−α
α

) .
If, instead

c < z < c+
k

1 + α
2(1−α)

log
(

2−α
α

)
then
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Fi(p) =
2− α

2(1− α)
− α

2(1− α)

z − c
p− c

and

R = k+c+
α

2(1− α)
log

(
2− α
α

)
(z−c), Q = c+

α

2(1− α)
log

(
2− α
α

)
(z−c),

W = k + 2

(
c+

α

2(1− α)
log

(
2− α
α

)
(z − c)

)
.

Finally, if c ≤ z there is no market.

Proof. Suppose we are in the first case. Given the above, we need to find a reser-

vation value R where R = k + E[pi], or

R = k +

∫ p̄i

p
i

pdFi(p).

Substituting in, we get

R = k +

R∫
αR+2(1−α)c

2−α

p

(
α

2(1− α)

)(
R− c

(p− c)2

)
dp

= k + c+
α

2(1− α)
log

(
2− α
α

)
(R− c)

=⇒ R = c+
k

1 + α
2(1−α)

log
(

2−α
α

)
Substituting into F gives the result above. For W and Q, recall that when all firms
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price in the acceptance set, W = k + E[PA] + E[PB], and Q = W −R = E[Pi].

In the second case, the consumer’s value limits prices, and is thus the upper

bound of the distribution, but all else proceeds the same. And in the final case,

there are no gains from trade.

These statements were made conditional on all firms pricing at an interior op-

timum. That is, firms are not constrained by the acceptance set in equilibrium.

If consumers can freely recall previous offers, McAfee (1995) shows that bound-

ary equilibria, where firms are constrained by the acceptance set and price on the

boundary, may obtain. Without recall, this is not possible.

Lemma 4.3.3. All equilibria are interior, of the form in Proposition 4.3.2. Firms

are not constrained by the boundary.

Proof. Suppose there were an interval [p0
A, p

1
A] ≡ IA where firms priced on the

boundary {(pA, pB) | pA ∈ [p0
A, p

1
A], pB = W − pA} and were constrained:

∂π(pA, pB)

∂pA
=
∂π(pA, pB)

∂pB
= λ > 0.

Without loss of generality, suppose p0
A < W/2 (otherwise p0

B ≡ W − p0
A < W/2 and

so relabel).

Separability, then, implies that no other firms price below this interval, as in-

creasing towards the boundary would increase profits. That is, if pA ∈ IA and

(pA, pB) ∈ suppFA,B then pA + pB = W and similarly for pB ∈ W − IA. As mass is
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distributed along a line with slope -1, the marginal distributions must move in lock

step. Thus, FA(pA)−FA(p0
A) = FB(W−p0

A)−FB(W−pA) and fA(pA) = fB(W−pA).

Looking again at the first order condition at the boundary, we have

N [nc+2ns(1−FA(pA))−2nsfA(pA)(pA−c)] = N [nc+2ns(1−FB(pB))−2nsfB(pB)(pB−c)].

Simplifying gives

FA(pA) + fA(pA)(pA − c) = FB(pB) + fB(pB)(pB − c).

Substitutiong in pB = W − pA and distributions gives

FA(pA) + fA(pA)(pA − c)

= −FA(pA) + (FA(p0
A) + FB(W − p0

A)) + fA(pA)(W − pA − c)

104



Hence,

2FA(pA) + fA(pA)(2pA −W ) = (FA(p0
A) + FB(W − p0

A)).

∂

∂pA
(FA(pA)(2pA −W )) = (FA(p0

A) + FB(W − p0
A)).

=⇒ FA(pA)(2pA −W ) = (FA(p0
A) + FB(W − p0

A))pA + cons.

=⇒ FA(pA) =
(FA(p0

A) + FB(W − p0
A))pA + cons

2pA −W
.

This must also hold at p0
A whereby one finds the constant from

cons = FA(p0
A)(2p0

A −W )− p0
A(FB(W − p0

A) + FA(p0
A))

= FA(p0
A)p0

B − FB(p0
B)p0

A

where we have written p0
B ≡ W −p0

A. The final distribution required by equal profit

is then given by

FA(pA) =
(FA(p0

A) + FB(p0
B))pA + FA(p0

A)p0
B − FB(p0

B)p0
A

2pA −W
.

This is not a distribution function as

dF

dpA
=

[
(FA(p0

A) + FB(p0
B))(2pA −W )

− 2((FA(p0
A) + FB(p0

B))pA + FA(p0
A)p0

B − FB(p0
B)p0

A)

]
(2pA −W )2

< 0
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for p0
A < pA < W/2.

As boundary equilibria do not obtain, the marginal distribution given in propo-

sition 4.3.2 must obtain.

One should note that this is exactly the same marginal distribution derived in

Burdett and Judd (1983). This result is somewhat astounding – consumers’ ability

to economize on their search for several goods has no effect on the equilibrium price

distribution. As will prove clear below when q > 0 and n1 > 0, this derives from two

closely related artifacts of the homogeneous model: no consumer choose to search

again, and all firms price in the joint acceptance set. When some consumers must

search multiple times, their ability to economize on search costs via joint search will

alter the firm’s problem. There must, however, be some incentive driving multiple

search, an obvious example being the case where some firms sell only one good.

Proposition 4.3.2 only specifies the marginal distribution of prices, and so does

not exactly settle the question of existence, as we have yet to derive a joint distri-

bution of prices. This is easily settled. There exist a huge multiplicity of equilibria.

Indeed, any joint distribution with the given marginals and support contained in

the acceptance set will suffice. In the two good case, one easily derived example is

that of perfectly negative rank correlation in prices where firms price on the line

pB(pA) solving FA(pA) = 1− FB(pB(pA)). This yields

pB(pA) = c+ k

[
2

α
+

1

1− α
log

(
2− α
α

)
− k

pA − c

]−1

.
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In this case, the joint distribution of prices is given by

FA,B(pA, pB) = max{0, FApA + FBpB − 1}.

A continuum of other possible equilibria exist.

One that generalizes to more than two goods (which the above perfect negative

rank correlation equilibrium does not) has support

{
(pA, pB) | pi ≥ p and pB ≤ c+ k

[
2

α
+

1

1− α
log

(
2− α
α

)
− k

pA − c

]−1
}

which is just the set above the lowest price and below the line of support from the

negative rank-correlation equilibrium above. The joint distribution is given by

FA,B(pA, pB) = 2
(

1−
√
F (pA)

)(
1−

√
F (pB)

)
−
(

max
{

1−
√
F (pA)−

√
F (pA), 0

})2

. (4.3.2)

The huge multiplicity of equilibria is at once positive and negative. While the

model gives no information about the joint distribution of prices – other than a lim-

itation on its support – this provides a justification for the common empirical focus

on marginal distribution of prices despite the presence of multiple products. Firms
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may play any of a continuum of joint distributions, but cost and other information

can be determined from just marginal distributions. Indeed, in this simplest case,

all of the parameters of the model except for N can be identified from the marginal

distributions of posted prices and the marginal distribution of paid prices. Both of

which are available from scanner data. We turn now to the more general case where

some firms offer but one product and some consumers demand but one good.

4.4 General Case

Suppose now that not all firms offer both goods, that q > 0. In this case, with

some firms offering only one good, some consumers will be forced to search again

– the sequential search option will operate. Moreover, this will lead some 2b’s to

make a single-good purchase, transitioning to become 1b’s so that n1 > 0. Assume

further that n0
1 > 0 so that there are some consumers demanding one good with

noisy search. Firms now have the option of targeting only captive single-product

searchers, pricing outside the joint acceptance set. For one-good firms, this boils

down to a decision between targeting both single and joint searchers by pricing

below Q, or pricing higher and selling only to 1b’s. It turns out, whether this

option is profitable depends less on the proportion of 1b’s than on the proportion of

one-good firms. If there are sufficiently few 1f’s so that there is “enough space” at

the bottom of the price distribution from section 4.3.2 for these firms to price below

Q. It’s only as q increases that deviations become profitable. There are several
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cases to consider, and each is taken in turn.

Equilibria fall into four cases. In the first, the proportion of one-good firms

is sufficiently small that are not directly constrained by the joint acceptance set

of consumers. That is, there is “enough room” at the bottom of the equilibrium

price distribution that one-good firms can price below Q and still make the same

profit on the good they sell as two-good firms do from each good. The marginal

distribution of prices is of the same form as in section 4.3.2. Two-good firms are

affected by one-good firms only in that their presence increases the reservation value

of consumers, as consumers are no longer able to satisfy their demand in the first

round of search.

In the second case, the proportion of one-good firms is sufficiently high that

they are constrained by Q, but not so high as to justify a jump to R. That is,

there are enough one-good firms that the marginal distribution of prices below Q is

higher than in the first case, and these firms would prefer to price above Q if joint

searchers would buy from them at these prices. In this second case, however, these

firms are not so constrained that it would be profitable to forsake joint searcher and

price at R, targeting only one-searchers. The large proportion of firms pricing below

Q has the effect of decreasing the highest price charged by two-good firms. There

are two reasons. The first is the obvious one – when some firms are constrained

to set low prices, the reservation value of consumers decreases. The second, and

more important, reason is that as the one-good firms crowd-out the bottom of the
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price distribution, two-good firms must increase their minimum prices. To remain

in the joint acceptance set, however, they must then decrease their maximum price,

moving from (R,Q) on the reservation frontier down to some point (p̄,W − p̄).

In the third case, there is such a high proportion of one-good firms that not all

can price below Q, some jump up to R to target single-product searchers. This has

the effect of

4.4.1 Few One-Good-Firms.

In the equilibrium of section 4.3.2, firms make constant profits per good for any

price between p and R. This was because a 2f pricing good A at R could price good

B at p ≤ Q and so still fall in the joint acceptance set of the 2b’s. 1f’s are not so

fortunate. As they sell but one good, and so implicitly have an infinite price for the

second, 2b’s will only buy from them at prices below Q.

If the proportion of one-sellers is low, equilibrium closely resembles the case

where all firms sell both goods. One-sellers simply set prices less than Q in order

to attract both one and two searchers. Both one-sellers and two-sellers make the

same profit from each product line they offer.

Proposition 4.4.1. Suppose q < q̄1 given below. Let X ≡ (nc + 2ns)/2ns. Then
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the marginal distribution of prices is given by

F (p) =



1− q if R ≤ p

X − (X − (1− q))
(
R−c
p−c

)
if c+ X−(1−q)

X
(R− c) ≤ p < R

0 if p < c+ X−(1−q)
X

(R− c).

Notice, this is an improper distribution as q firms do not offer one good, and so are

treated as offering a price at infinity. Given this, the expected price offered is

E[P |P ≤ R] = c+
k

1− q
Z

1− Z

where

Z ≡
(

X

1− q
− 1

)
log

(
X

X − (1− q)

)
.

The reservation values of the consumer are given by

R =
k

1− q
+ E[P |P ≤ R],

W =
1 + q

1− q
k + 2E[P |P ≤ R],

and

Q = W −R =
q

1− q
k + E[P |P ≤ R].
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Finally, q̄1 solves

q = F (Q) = X − X − (1− q)
q + (1− q)Z

which has no algebraic solution, but a solution exists and is unique.

Proof. Beginning with a one-searcher’s problem, the (1− q) firms who can offer the

good at a price less than R, and q firms can not offer the good at all so

R = k + (1− q)E[P |P ≤ R] + qR

which immediately gives our expression for R. The reservation value W is similar.

(1− 2q) firms will sell both goods to a two-searcher, and q sell each good (implying

that the consumer continues to search as a one-searcher with probability q). More-

over, any firm contacted will sell at least one good, so no two-searcher continues as

a two-searcher. These considerations along with linearity of expectation imply

W = k + 2(E[P |P ≤ R](1− q) + qR)

=

(
1 + q

1− q

)
k + 2E[P |P ≤ R]

where the last line obtains by substituting in for R. Q is simply W −R.

The profit firms make on a given good when pricing in the acceptance set are

π(p) = [n1 + αn2︸ ︷︷ ︸
nc

+2 (1− α)n2︸ ︷︷ ︸
ns

(1− F (p))](p− c)
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Differentiating gives first order condition

0 = [nc + 2ns(1− F (p))]− 2nsf(p)(p− c).

Re-arranging gives

d

dp
[F (p)(p− c)] = X

so upon integrating

F (p)(p− c) = Xp+ cons.

Noting that F (R) = 1− q gives the value of the constant as

cons = −(X − (1− q))(R− c)−Xc

so that

F (p) = X − (X − (1− q))R− c
p− c

.

The bottom of the support solves F (p) = 0 so that

p = c+
X − (1− q)

X
(R− c).

Continuing, given this distribution we calculate

F [p|P ≤ R] =
X

1− q
−
(

X

1− q
− 1

)
R− c
p− c
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so that

E[P |P ≤ R] = R−
∫ R

p

X

1− q
−
(

X

1− q
− 1

)
R− c
p− c

dp

= R− X

1− q
(R− p) +

(
X

1− q
− 1

)
(R− c) log

(
R− c
p− c

)
= c+

(
X

1− q
− 1

)
(R− c) log

(
X

X − (1− q)

)

Finally, closing equilibrium, one simply substitutes the value of R into this equation

and solves for E[P |P ≤ R].

The value for q1 is the upper limit such that, given the above distribution, the

proportion of one-sellers is sufficiently small so that their population fits in the given

distribution below Q. For existence, one simply notes that at q = 0, F (Q) > 0 and

at q = 1, F (Q) < 1. For uniqueness, some time with a computer algebra system

yields

d

dq
F (Q) =

− 4(α− 1)2n2
2q(

(n2(−2αq + α + 2q) + n1) log
(

n1−(α−2)n2

n2(−2αq+α+2q)+n1

)
− 2(α− 1)n2q

)2 < 0.
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4.4.2 Case 2: q̄1 < q ≤ q̄2

If the proportion of one-sellers is higher than will “fit naturally” below Q, but not

much higher, the one-sellers crowd each other below Q so as to be able to target

both one and two searchers. This crowding reduces their profit relative to two-

sellers. The crowding among one-sellers has the effect of displacing two-sellers –

there are “too many” firms charging at or below Q, so it is no longer profitable for

two-sellers to charge Q, higher prices are more profitable. But for a two-seller to

charge a higher price than Q on one good, the other good must be priced less than

R. Two-sellers move down along the reservation frontier, pricing in a range [p2, p̄2]

with p2 + p̄2 = W , moving in equilibrium to the point where equal profits are made

from both goods.

Proposition 4.4.2. Suppose q̄1 < q < q̄2 given below. Let X ≡ (nc + 2ns)/2ns.

Then the marginal distribution of prices is given by

F (p) =



1− q if p̄2 ≤ p

X − (X − (1− q))
(
p̄2−c
p−c

)
if p2 ≤ p < p̄2

q if Q ≤ p < p2

X − (X − q)
(
Q−c
p−c

)
if p1 ≤ p < Q

0 if p < p1.

Notice, this is an improper distribution as q firms do not offer one good, and so are
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treated as offering a price at infinity. The support for the two-sellers is [p2 < p̄2]

with

p̄2 =
W (nc + 2ns(1− q)− 2cns(1− 2q)

2(nc + ns)

p2 =
W (nc + 2nsq) + 2cns(1− 2q)

2(nc + ns)
.

The support for the one-sellers [p1, Q] with

p1 = c+

(
X − q
X

)
(Q− c).

The expected cost can be written as E[P |P ≤ R] = Ωk
Λk
k + Ωc

Λc
c with

Ωk = (nc − 2ns(q − 1)) ·
(

2q(nc + ns) log

(
nc + 2ns

nc − 2nsq + 2ns

)
+(q + 1)(nc + 2nsq) log

(
nc − 2nsq + 2ns

nc + 2nsq

))

Λk = 2(q − 1)

((
(nc)2 + 2ncns − 4(ns)2(q − 1)q

)
log

(
nc − 2nsq + 2ns

nc + 2nsq

)
+2ns(q − 1)(nc + ns) + (nc + ns)(nc − 2ns(q − 1)) log

(
nc + 2ns

nc − 2nsq + 2ns

))
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Ωc =
(
(nc)2 + 2ncns − 4(ns)2(q − 1)q

)
log

(
nc − 2nsq + 2ns

nc + 2nsq

)
+ 2ns

(
−ncq + 4nsq2 − 5nsq + ns

)
+ (nc + ns)(nc − 2ns(q − 1))

· log

(
nc + 2ns

nc − 2nsq + 2ns

)

Λc =
[
(nc)2 + 2ncns − 4(ns)2(q − 1)q

]
log

(
nc − 2nsq + 2ns

nc + 2nsq

)
+ 2ns(q − 1)(nc + ns) + (nc + ns)(nc − 2ns(q − 1)) log

(
nc + 2ns

nc − 2nsq + 2ns

)

Z ≡
(

X

1− q
− 1

)
log

(
X

X − (1− q)

)
.

The reservation values of the consumer are given by

R =
k

1− q
+ E[P |P ≤ R],

W =
1 + q

1− q
k + 2E[P |P ≤ R],

and

Q = W −R =
q

1− q
k + E[P |P ≤ R].
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Finally, q̄2 solves

[nc + 2ns(1− q)](Q− c) = max{n1(R− c), [n1 + 2ns(1− q)](p2 − c)}.

The left hand side is profit for a one-seller pricing at Q. The first term in the

maximand is the profit from pricing at R and selling only to (captive) one-searchers.

The second term in the maximand is the profit from pricing at p2 and selling to one-

searchers as well as all shopping two-searchers who also contact a two-seller or a

one-seller of the other good – both of which cases yield a basket price below W

resulting in a sale. This is precisely the condition that a 1f does not wish to deviate.

Proof. The reservation values follow from exactly the same argument as in Proposi-

tion 4.4.1. The values for p̄2 and p2 solve for equal profit along the line W = p̄2 +p2

and equal profit

[nc + 2ns(q)](p̄2 − c) = [nc + 2ns(1− q)](p2 − c)

as the highest price two-seller sells to a shopper only if that shopper faces another

firm not selling the good (q) and the lowest price two-seller sells to a shopper if they

have met either a firm not selling the good or another two-seller (who must have a

higher price). To see that two-sellers do not wish to price along pA + pB = W with

pA > p̄2 recall that q < 1/2 and so the profit of the firm on the frontier (which is
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the only relevant region) is

[nc + 2nsq](p− c) + [nc + 2ns(1− q)](W − p− c)

is decreasing in p.

Given this distribution, we can find

F (p|P ≤ R) =



1 if p̄2 ≤ p

X
1−q − ( X

1−q − 1)
(
p̄2−c
p−c

)
if p2 ≤ p < p̄2

q
1−q if Q ≤ p < p2

X
1−q − ( X

1−q −
q

1−q )
(
Q−c
p−c

)
if p1 ≤ p < Q

0 if p < p1.

From this one derives

E[P |P ≤ R] = p̄2 −
(

X

1− q

)
(p̄2 − p2) +

(
X

1− q
− 1

)
(p̄2 − c)

· log

(
nc + 2ns(1− q)
nc + 2nsq

)
−
(

q

1− q

)
(p2 −Q)−

(
q

1− q

)
(Q− c)

+

(
X

1− q
− q

1− q

)
(Q− c) log

(
X

X − q

)

Where the insides of the logs derive from manipulation of the distribution function
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which gives

p̄2 − c
p2 − c

=
nc + 2ns(1− q)
nc + 2nsq

, and
Q− c
p1 − c

=
X

X − q
.

This expression for E[P |P ≤ R] is linear in R,W,Q and price limits. As these

are linear in E[P |P ≤ R] themselves, one may substitutes in the values for these

from above and solve. This produces the expression for the equilibrium value of

E[P |P ≤ R] given above in terms of parameters.

4.4.3 Case 3(a)

Which case obtains next may depend on parameters. As the proportion of one-

sellers increases above q̄2, one of two regions become profitable for the 1f. Either

pricing in a range contained in [p̄2, R] or between [Q, p2]. Which is determined from

whether pricing at R and making nc1(R − c) is greater or less than pricing at p2

and making [nc1 + 2ns(1 − q)](p2 − c). Clearly, this depends on the relative values

of nc1 and ns. In this subsection, suppose there are relatively many nc1 so it is more

profitable to deviate above p̄2. Let r be the proportion of 1f’s pricing above p̄2

(with the complementary proportion 1− r still pricing below Q). The value of r is

determined by equal profit:

[nc + 2ns(1− (1− r)q)](Q− c) = βn1(R− c). (4.4.1)
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Of course, R and Q are endogenous and so this equation alone does not yield r.

Recall, that a 1f selling A and pricing above p̄2 face a profit function of

π1(pA) = N [nc1 + 2ns1(1− FA(pA)) + 2ns2XA(pA)](p− c).

where, XA = FB(W − pA)− FA,B(pA,W − pA). In this case, a 1f pricing in [p̄2, R]

can make a basket with any 1f pricing below Q. Hence, XA = (1 − r)q and the

profit function is simply

π1(pA) = N [nc1 + 2ns1(1− FA(pA)) + 2ns2(1− r)q](p− c).

Equal profit, requires, then, that the marginal distribution of prices follow a distri-

bution of

F = Y − [Y − (1− q)]R− c
p− c

, where Y ≡ nc1 + 2ns2(1− r)q + 2ns1
2ns1

on the interval [pR, R] where pR is defined similarly to p1 with

pR = c+
Y − (1− q)

Y − (1− (1 + r)q)
(R− c).

This implies that the 1f price according to
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G1(p) =



1 if R ≤ p

1
q

[
Y − [Y − (1− q)]R−c

p−c − (1− 2q)
]

if pR ≤ p < R

1− r if Q ≤ p < pR

1
q

[
X − (X − (1− r)q)Q−c

p−c

]
if p1 ≤ p < Q

0 if p < p1

As before, two-sellers will not price at (R,Q), but instead at a higher minimum

and lower maximum price solving p̄2 + p2 = W and equal profit. The equal profit

condition is

[nc + 2ns(1 + r)q](p̄2 − c) = [nc + 2ns(1− (1− r)q)](p2 − c).

Solving gives

p̄2 =
W (nc + 2ns[1− (1− r)q])− 2nsc(1− 2q)

2[nc + ns(1 + 2rq)]
,

p2 =
W (nc + 2ns(1 + r)q)− 2nsc(1− 2q)

2[nc + ns(1 + 2rq)]
.

So, 2f’s price on the set {(pA, pB)|p2 ≤ pi ≤ p̄2 and pA + pB ≤ W} with marginal

distribution

G2(p,∞) =
1

1− 2q

[
X − [X − (1− (1 + r)q)]

p̄2 − c
p− c

− (1− r)q
]
.
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As above, any joint distribution on this set with the required marginals suffices as

an equilibrium.

Adding these two gives the marginal distribution of prices in equilibrium, re-

quired by equal profit conditions:

F (p) =



1− q if R ≤ p

Y − [Y − (1− q)]R−c
p−c if pR ≤ p < R

1− (1 + r)q if p̄2 ≤ p < pR

X − [X − (1− (1 + r)q)] p̄
2−c
p−c if p2 ≤ p < p̄2

(1− r)q if Q ≤ p < p2

X − (X − (1− r)q)Q−c
p−c if p1 ≤ p < Q

0 if p < p1

From this we calculate
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F (p|P ≤ R) =



1 if R ≤ p

Y
1−q − [ Y

1−q − 1]R−c
p−c if p1 ≤ p < R

1−(1+r)q
1−q if p̄2 ≤ p < p1

X
1−q − [ X

1−q −
1−(1+r)q

1−q ] p̄
2−c
p−c if p2 ≤ p < p̄2

(1−r)q
1−q if Q ≤ p < p2

X
1−q − ( X

1−q −
(1−r)q

1−q )Q−c
p−c if p1 ≤ p < Q

0 if p < p1

Next we calculate expected price in terms of endogenous variables:

E[P |P ≤ R] = R− Y

1− q
(R− pR)

+

[
Y

1− q
− 1

]
(R− c) log

(
Y − (1− (1 + r)q)

Y − (1− q)

)
− 1− (1 + r)q

1− q
(pR − p̄2)

− X

1− q
(p̄2 − p2) +

[
X

1− q
− 1− (1 + r)q

1− q

]
(p̄2 − c) log

(
X − (1− r)q

X − (1− (1 + r)q)

)
− (1− r)q

1− q
(p2 −Q)− X

1− q
(Q− p1)

+

(
X

1− q
− (1− r)q

1− q

)
(Q− c) log

(
X

X − (1− r)q

)
.

The reservation value of a one-searcher is as before (because 1 − q price at or

below R):
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R =
k

1− q
+ E[P |P ≤ R].

The reservation value of the 2b differs as they do not buy from the 2rq 1f’s pricing

above Q. Of firms that do sell, 1 − 2q sell both goods, and 2(1 − r)q sell but one

good, forcing the consumer to continue searching for the other. These considerations

along with linearity of expectation gives

W = k + 2(E[P |P < R] P(P < R) + (1− r)qR) + 2rqW.

Noting that

E[P |P < R] P(P < R) = E[P |P ≤ R] P(P ≤ R)−RP(P = R)

with P(P = R) = rq and P(P ≤ R) = 1− q gives

W = k + 2(E[P |P ≤ R](1− q)− rqR + (1− r)qR) + 2rqW

= k + 2

(
E[P |P ≤ R](1− q) + (1− 2r)q

(
k

1− q
+ E[P |P ≤ R]

))
+ 2rqW
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so

(1− 2rq)W =

[
1 + 2

(1− 2r)q

1− q

]
k + 2(1− 2rq)E[P |P ≤ R]

=⇒ W =

(
1 + q − 4rq

(1− q)(1− 2rq)

)
k + 2E[P |P ≤ R].

Finally,

Q = W −R =

(
(1− 2r)q

(1− q)(1− 2rq)

)
k + E[P |P ≤ R].

Substituting these into the expression for E[P |P ≤ R] and solving gives

E[P |P ≤ R] =
Ωk

Λk

k +
Ωc

Λc

c

where

Ωk = −
2(β(2q − 3)− 2q) log

(
β(3−2q(r+1))+2q(r+1)

3β

)
β − 1

− 2(β + 2)

β − 1

− 2q(r − 1)(q(4r − 1)− 1)(nc + 2nsq(r + 1))

(2qr − 1)(nc + 2nsqr + ns)
+

2q(2r − 1)(nc + 2ns)

ns(2qr − 1)

− 2(nc + 2ns)(q(4r − 1)− 1)(nc + 2nsq(r + 1))

ns(2qr − 1)(nc + 2nsqr + ns)
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+
(nc + 2ns)(q(4r − 1)− 1)(nc + 2ns(q(r − 1) + 1))

ns(2qr − 1)(nc + 2nsqr + ns)

+
2(qr + q − 1)(q(4r − 1)− 1)(nc + 2ns(q(r − 1) + 1))

(2qr − 1)(nc + 2nsqr + ns)

−
2q(2r − 1)(nc + 2ns(q(r − 1) + 1)) log

(
nc+2ns

nc+2ns(q(r−1)+1)

)
ns(2qr − 1)

−
(q(4r − 1)− 1)(nc + 2ns(r + 1))(nc + 2ns(q(r − 1) + 1)) log

(
nc+2ns(q(r−1)+1)
nc+2nsq(r+1)

)
ns(2qr − 1)(nc + 2nsqr + ns)

+
4q2(r − 1)(2r − 1)

2qr − 1
+ 4(q − 1)

Λk = 2(q − 1)

−(β(2q − 3)− 2q) log
(
β(3−2q(r+1))+2q(r+1)

3β

)
β − 1

+
β + 2

1− β

− 2(nc + 2ns)(nc + 2nsq(r + 1))

ns(nc + 2nsqr + ns)
− 2q(r − 1)(nc + 2nsq(r + 1))

nc + 2nsqr + ns

+
(nc + 2ns)(nc + 2ns(q(r − 1) + 1))

ns(nc + 2nsqr + ns)
+

2(qr + q − 1)(nc + 2ns(q(r − 1) + 1))

nc + 2nsqr + ns

−
(nc + 2ns(q(r − 1) + 1)) log

(
nc+2ns

nc+2ns(q(r−1)+1)

)
ns

−
(nc + 2ns(r + 1))(nc + 2ns(q(r − 1) + 1)) log

(
nc+2ns(q(r−1)+1)
nc+2nsq(r+1)

)
ns(nc + 2nsqr + ns)

+
nc

ns
+ 2q(r − 1) + 2

)
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Ωc =

(
β + 2

2(1− β)(1− q)
− 1

)
log

(
β+2

2(1−β)
+ q(r + 1)− 1

β+2
2(1−β)

− 1

)

− nsq(1− 2q)(1− r)
(1− q)(nc + ns(2qr + 1))

+
ns(1− 2q)(1− q(r + 1))

(1− q)(nc + ns(2qr + 1))

+
(1− 2q)(nc + 2ns)

2(1− q)(nc + ns(2qr + 1))
+

ns(1− 2q)
(

nc+2ns

2ns(1−q) + r
1−q

)
log

(
nc+2ns

2ns
−q(1−r)

nc+2ns

2ns
+q(r+1)−1

)
nc + ns(2qr + 1)

+

(
nc + 2ns

2ns(1− q)
− q(1− r)

1− q

)
log

(
nc + 2ns

2ns
(
nc+2ns

2ns
− q(1− r)

))

+

(
nc + 2ns

2ns(1− q)
+

r

1− q

)
log

( nc+2ns

2ns
− q(1− r)

nc+2ns

2ns
+ q(r + 1)− 1

)

Λc =

(
β + 2

2(1− β)(1− q)
− 1

)
log

(
β+2

2(1−β)
+ q(r + 1)− 1

β+2
2(1−β)

− 1

)
− β + 2

2(1− β)(1− q)

− (nc + 2ns)(nc + 2ns(1− q(1− r)))
2ns(1− q)(nc + ns(2qr + 1))

+
(1− q(r + 1))(nc + 2ns(1− q(1− r)))

(1− q)(nc + ns(2qr + 1))

− q(1− r)(nc + 2nsq(r + 1))

(1− q)(nc + ns(2qr + 1))
+

(nc + 2ns)(nc + 2nsq(r + 1))

ns(1− q)(nc + ns(2qr + 1))

+

(
nc + 2ns

2ns(1− q)
− q(1− r)

1− q

)
log

(
nc + 2ns

2ns
(
nc+2ns

2ns
− q(1− r)

))

+

(nc + 2ns(1− q(1− r)))
(

nc+2ns

2ns(1−q) + r
1−q

)
log

(
nc+2ns

2ns
−q(1−r)

nc+2ns

2ns
+q(r+1)−1

)
nc + ns(2qr + 1)

− nc + 2ns

2ns(1− q)
+
q(1− r)

1− q
.

Substituting this back into R, W , andQ and then these into F gives the marginal

distributions. Finally, the equal profit condition (4.4.1) gives r. Notice, there must

exist an interior (0 < r < 1) solution. By assumption, r = 0 implies the RHS is

strictly greater (which is why we consider this case). But r = 1 is not a solution,
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as then Q = R so that the LHS is strictly greater.

4.4.4 Case 3(b)

In the previous case, q > q̄2 and π1(R) > π1(p2) so that some 1f’s priced above the

2f’s. Suppose instead that π1(R) < π1(p2) so that it is profitable for 1f’s to price

just below the 2f’s. This occurs when nc1 is relatively small, so that targeting only

1b’s at R is not profitable. A 1f pricing at p2 sells to one-searchers, but also to

two-searchers in contact with a 2f or a 1f selling the other good. That is, Xi(pi) > 0

and specifically Xi = (1− q) for p ∈ [Q, p2]. This gives a profit of

π1(pA) = N [nc1 + 2ns1(1− FA(pA)) + 2ns2(1− q)](p− c).

Write l for the proportion of one-firms pricing in (Q, p2). Write

Yl =
nc1 + 2ns2(1− q) + 2ns1

2ns1
.

Equal profit for the 1f pricing in this region requires the aggregate marginal distri-

bution of prices to be

F = Yl − (Yl − q)
p2 − c
p− c

As above, one can derive the lower bound of the 1f’s prices in this region as
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pl = c+
Yl − q

Yl − (1− l)q
(p2 − c).

so that the 1f price according to

G1(p) =



1 if p2 ≤ p

1
q

[
Yl − (Yl − (1− r)q)p

2−c
p−c

]
if pl ≤ p < p2

(1− l) if Q ≤ p < pl

1
q

[
X − (X − (1− r)q)Q−c

p−c

]
if p1 ≤ p < Q

0 if p < p1

As in Case 2, the 2f’s will shade down the reservation frontier. The equal profit

condition determining p2 and p̄2 is exactly the same as in Case 2, as all 1f’s price

below p2. Further, the aggregate marginal distribution required for equal profit

among the 2f’s is the same. Hence, the marginal distribution of prices among the

2f is simply

G2(p,∞) =



1 if p̄2 ≤ p

1
1−2q

[
X − (X − (1− q)) p̄2−c

p−c − q
]

if p2 ≤ p < p

0 if p < p2.

with

130



p̄2 =
W (nc + 2ns(1− q)− 2cns(1− 2q)

2(nc + ns)

p2 =
W (nc + 2nsq) + 2cns(1− 2q)

2(nc + ns)
.

Again, any joint distribution with these marginals and support contained in

{(pA, pB)| pA + pB ≤ W and p2 ≤ pi ≤ p̄2}

will suffice.

Continuing, these add to an aggregate marginal distribution of

F (p) =



1− q if p̄2 ≤ p

X − (X − (1− q)) p̄2−c
p−c if p2 ≤ p < p̄2

Yl − (Yl − q)
p2−c
p−c if pl ≤ p < p2

(1− l)q if Q ≤ p < pl

X − (X − (1− l)q)Q−c
p−c if p1 ≤ p < Q.

.

This gives a conditional price distribution
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F (p|P ≤ R) =



1 if p̄2 ≤ p

X
1−q − ( X

1−q − 1) p̄
2−c
p−c if p2 ≤ p < p̄2

Yl
1−q − ( Yl

1−q −
q

1−q )
p2−c
p−c if pl ≤ p < p2

(1−l)q
1−q if Q ≤ p < pl

X
1−q −

(
X

1−q −
(1−l)q)

1−q

)
Q−c
p−c if p1 ≤ p < Q.

.

Integrating this gives expected acceptable prices for a 1b:

E[p|P ≤ R] = p̄2−
(

X

1− q

)
(p̄2−p2)+

(
X

1− q
− 1

)
(p̄2−c) log

(
nc + 2ns(1− q)
nc + 2nsq

)
−
(

Yl
1− q

)
(p2 − pl) +

(
Yl

1− q
− q

1− q

)
(p2 − c) log

(
Yl − (1− l)q

Yl − q

)
−
(

(1− l)q
1− q

)
(pl −Q)−

(
X

1− q

)
(Q− p1)

+

(
X

1− q
− (1− l)q

1− q

)
(Q− c) log

(
X

X − (1− l)q

)
(4.4.2)

Reservation values are calculated similarly to case 3(a). The 1b buy from all

firms offering their desired goods so that

R =
k

1− q
+ E[P |P ≤ R].

The 2b’s buy the offered good from 1f’s pricing below Q, continuing to search for
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the other good, and buy both goods from 2f’s

W = k + 2

(∫ Q

p1
pdF (p) + (1− l)qR+

∫ p̄2

p2
pdF (p)

)
+ 2lqW

= k + 2

[
Q(1− l)q −X(Q− p1) + (X − (1− l)q)(Q− c) log

(
X

X − (1− l)q

)
+ (1− l)qR+ p̄2(1− q)− p2q −X(p̄2 − p2)

+(X − (1− q))(p̄2 − c) log

(
X − q

X − (1− q)

)]
+ 2lqW.

Substituting in Q = W − R, the various prices, and the value of R gives W =

ΩW/ΛW where

ΩW =

−
2((l − 1)q +X)(c(q − 1) + E[P |P ≤ R]q − E[P |P ≤ R]− k) log

(
X

(l−1)q+X

)
q − 1

− 8cnsq2

nc + ns
−

2c(q +X − 1)(nc − 2ns(q − 1)) log
(

X−q
q+X−1

)
nc + ns

+
8cnsq

nc + ns
− 2cns

nc + ns
+ 2cq + 2E[P |P ≤ R]q − 2kq

q − 1
+ k (4.4.3)

ΛW = −2((l − 1)q +X) log

(
X

(l − 1)q +X

)
+ 2(l − 1)q − 2lq

−
(q +X − 1)(nc + 2nsq) log

(
X−q
q+X−1

)
nc + ns

+
q(nc + 2nsq)

nc + ns

+
(q − 1)(nc + 2nsq)

nc + ns
+ 2(q −X) + 2X + 1. (4.4.4)
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Taking these and substituting in to E[P |P ≤ R] and solving gives

E[P |P ≤ R] =
Ωk

Λk

k +
Ωc

Λc

c

where

Ωk = (
(q + Yl − 1)(nc + 2nsq) log

(
− lq − q + Yl

q − Yl

)
− q(nc + ns)

)
· 2((l − 1)q +X) log

(
X

(l − 1)q +X

)
+ ((2l−1)q−1)(q+X−1)(nc + 2nsq) log

(
X − q

q +X − 1

)
−ncq2 log

(
− lq − q + Yl

q − Yl

)
− 2lncq2 − ncqYl log

(
− lq − q + Yl

q − Yl

)
+ nc log

(
− lq − q + Yl

q − Yl

)
− ncYl log

(
− lq − q + Yl

q − Yl

)
+ 2lncq − 2nsq3 log

(
− lq − q + Yl

q − Yl

)
− 8lnsq3 − 2nsq2Yl log

(
− lq − q + Yl

q − Yl

)
+ 6lnsq2 + 2nsq log

(
− lq − q + Yl

q − Yl

)
− 2nsqYl log

(
− lq − q + Yl

q − Yl

)
+ 2ncq2 + ncq − nc + 4nsq3 + 2nsq2 − 2nsq
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Λk = 2(q − 1)· [
((l − 1)q +X) log

(
X

(l − 1)q +X

)
·
(

(q + Yl − 1)(nc + 2nsq) log

(
− lq − q + Yl

q − Yl

)
− nc − ns

)
+ (lq − 1)(q +X − 1)(nc + 2nsq) log

(
X − q

q +X − 1

)
− ncq2 log

(
− lq − q + Yl

q − Yl

)
+ ncq log

(
− lq − q + Yl

q − Yl

)
− ncqYl log

(
− lq − q + Yl

q − Yl

)
− 2nsq3 log

(
− lq − q + Yl

q − Yl

)
− 4lnsq3 + 2nsq2 log

(
− lq − q + Yl

q − Yl

)
−2nsq2Yl log

(
− lq − q + Yl

q − Yl

)
+ 4lnsq2 − lnsq + ncq + 4nsq2 − 3nsq + ns

]

Ωc = (q +X − 1) log

(
X − q

q +X − 1

)(
nc(lq − 1) + 2ns

(
−3lq2 + 2lq + q − 1

))
− ((l − 1)q +X) log

(
X

(l − 1)q +X

)
·
(
−(q + Yl − 1)(nc + ns(4− 6q)) log

(
− lq − q + Yl

q − Yl

)
+ nc + ns

)
− ncq2 log

(
− lq − q + Yl

q − Yl

)
+ ncq log

(
− lq − q + Yl

q − Yl

)
− ncqYl log

(
− lq − q + Yl

q − Yl

)
− 2nsq3 log

(
− lq − q + Yl

q − Yl

)
+ 12lnsq3 + 6nsq2 log

(
− lq − q + Yl

q − Yl

)
− 2nsq2Yl log

(
− lq − q + Yl

q − Yl

)
− 12lnsq2 − 6nsq log

(
− lq − q + Yl

q − Yl

)
+ 4nsqYl log

(
− lq − q + Yl

q − Yl

)
+ 2ns log

(
− lq − q + Yl

q − Yl

)
− 2nsYl log

(
− lq − q + Yl

q − Yl

)
+ 3lnsq + ncq − 4nsq2 + 5nsq − ns
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Λc = ((l − 1)q +X) log

(
X

(l − 1)q +X

)
·
(

(q + Yl − 1)(nc + 2nsq) log

(
− lq − q + Yl

q − Yl

)
− nc − ns

)
+ (lq − 1)(q +X − 1)(nc + 2nsq) log

(
X − q

q +X − 1

)
− ncq2 log

(
− lq − q + Yl

q − Yl

)
+ ncq log

(
− lq − q + Yl

q − Yl

)
− ncqYl log

(
− lq − q + Yl

q − Yl

)
− 2nsq3 log

(
− lq − q + Yl

q − Yl

)
− 4lnsq3 + 2nsq2 log

(
− lq − q + Yl

q − Yl

)
− 2nsq2Yl log

(
− lq − q + Yl

q − Yl

)
+ 4lnsq2

− lnsq + ncq + 4nsq2 − 3nsq + ns.

Substituting back E[P |P ≤ R] gives all variables in terms of exogenous variables

and l. As r did in case 3(a), l then solves the equal profit condition π1(Q) = π1(p2)

which has no algebraic solution. If there is no solution, then l = 1 so that no firm

prices below Q which may be possible.

4.4.5 Case 4

In both case 3(a) and case 3(b), some 1f’s priced above Q, either above the 2f’s or

below them. The next possibility is that both obtain. This would occur if, when

calculating equilibrium profits in case 3(a) we have π1(p2) > π1(R) or when calcu-

lating equilibrium profits in case 3(b) we have π1(R) > π1(p2). Now, a proportion

r of the 1f’s will price in a range [pr, R] with p2 < pr, a proportion l of the 1f’s will

price in a range [pl, p2] with Q < pl, and a complementary proportion 1− l− r price

below Q. Again, the 2f price in some range [p2, p̄2] with p2 + p̄2 = W and equal
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profit.

What will distinguish this case from case 5 below is that we assume that the

ranges below R and p2 are sufficiently tight that the two groups do not complete

baskets for each other. That is, we construct equilibrium under the assumption

that pr + pl > W so that a noisy searcher in contact with both an l firm and an r

firm will not buy from either.

In this case profit for the 1f in the relevant regions is given by

π1(p) =



N [nc1 + 2ns2(1− l − r)q + 2ns1(1− F (p))](p− c) if p̄2 ≤ p ≤ R

N [nc1 + 2ns1(1− F (p)) + 2ns2(1− (1 + r)q)](p− c) if Q < p ≤ p2

N [nc + 2ns(1− F (p))](p− c) if p ≤ Q

where the second line reflects the fact that a 1f pricing between Q and p2 will sell

to a 2b who is in contact with either a 2f or a 1f selling the other good and pricing

below p2.

Similar considerations as in cases 3(a) and 3(b) above imply that the marginal

distribution of prices is given by
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F (p) =



1− q if R ≤ p

Y − [Y − (1− q)]R−c
p−c if pr ≤ p < R

1− (1 + r)q if p̄2 ≤ p < pr

X − [X − (1− (1 + r)q)] p̄
2−c
p−c if p2 ≤ p < p̄2

Yl − [Yl − (1− r)q]p
2−c
p−c if pl ≤ p < p2

(1− l − r)q if Q ≤ p < pl

X − [X − (1− l − r)q]Q−c
p−c if p1 ≤ p < Q

where now

Yl = (nc1 + 2ns2(1− (1 + r)q) + 2ns1)/(2ns1)

and,

Y = (nc1 + 2ns2(1− l − r)q + 2ns1)/(2ns1).

The price bounds for the 2f are the same as in case 3(a)

p̄2 =
W (nc + 2ns[1− (1− r)q])− 2nsc(1− 2q)

2[nc + ns(1 + 2rq)]
,

p2 =
W (nc + 2ns(1 + r)q)− 2nsc(1− 2q)

2[nc + ns(1 + 2rq)]
.

2f’s price with marginal distribution:
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G2(p,∞) =



1 if p̄2 ≤ p

1
1−2q

[
X − [X − (1− (1 + r)q)] p̄

2−c
p−c − (1− r)q

]
if p2 ≤ p < p̄2

0 if p < p2

on the set {(pA, pB)|p2 ≤ pi ≤ p̄2 and pA + pB ≤ W}. As above, any joint distribu-

tion with support contained in this set with the required marginals suffices as an

equilibrium.

The distribution played by the 1f’s, is just (F − (1− 2q)G2)/q which is given by

G1(p) =



1 if R ≤ p

1
q

[
Y − [Y − (1− q)]R−c

p−c − (1− 2q)
]

if pr ≤ p < R

1− r if p2 ≤ p < pr

1
q

[
Yl − [Yl − (1− r)q]p

2−c
p−c

]
if pl ≤ p < p2

1− l − r if Q ≤ p < pl

1
q

[
X − [X − (1− l − r)q]Q−c

p−c

]
if p1 ≤ p < Q.

Where the price termini are given by

pr = c+
Y − (1− q)

Y − 1− (1 + r)q
(R− c),
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pl = c+
Yl − (1− r)q

Yl − (1− l − r)q
(p2 − c),

and

p1 = c+
X − (1− l − r)q

X
(Q− c).

Turn now to the consumers’ reservation values. As above, the reservation value

for 1b’s is straightforward.

R =
k

1− q
+ E[P |P ≤ R].

To calculate E[P |P ≤ R], first we derive the conditional price distribution:

F (p|P ≤ R) =



1 if R ≤ p

Y
1−q − [ Y

1−q − 1]R−c
p−c if pr ≤ p < R

1−(1+r)q
1−q if p̄2 ≤ p < pr

X
1−q − [ X

1−q −
(1−(1+r)q)

1−q ] p̄
2−c
p−c if p2 ≤ p < p̄2

Yl
1−q − [ Yl

1−q −
(1−r)q

1−q ]
p2−c
p−c if pl ≤ p < p2

(1−l−r)q
1−q if Q ≤ p < pl

X
1−q − [ X

1−q −
(1−l−r)q

1−q ]Q−c
p−c if p1 ≤ p < Q.

In terms of endogenous variables, the expected price is
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E[P |P ≤ R] = R− Y

1− q
(R− pR)

+

[
Y

1− q
− 1

]
(R− c) log

(
Y − (1− (1 + r)q)

Y − (1− q)

)
− 1− (1 + r)q

1− q
(pR − p̄2)− X

1− q
(p̄2 − p2)

+

[
X

1− q
− 1− (1 + r)q

1− q

]
(p̄2 − c) log

(
X − (1− r)q

X − (1− (1 + r)q)

)
−
(

Yl
1− q

)
(p2 − pl) +

(
Yl

1− q
− (1− r)q

1− q

)
(p2 − c) log

(
Yl − (1− l − r)q
Yl − (1− r)q

)
−
(

(1− l)q
1− q

)
(pl −Q)− (1− l − r)q

1− q
(pl −Q)−

(
X

1− q

)
(Q− p1)

+

(
X

1− q
− (1− l − r)q

1− q

)
(Q− c) log

(
X

X − (1− l − r)q

)
. (4.4.5)

As for W , the 2b’s still buy only from 1f’s with p ≤ Q (whom they meet with

probability (1− l− r)q) whereupon they continue as a 1b, and also from 2f’s. This

yields a similar expression to case 3(b).
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W = k + 2

(∫ Q

p1
pdF (p) + (1− l − r)qR +

∫ p̄2

p2
pdF (p)

)
+ 2(l + r)qW

= k + 2
[
Q(1− l − r)q −X(Q− p1)

+(X − (1− l − r)q)(Q− c) log

(
X

X − (1− l − r)q

)
+ (1− l − r)qR + p̄2(1− (1 + r)q)− p2(1− r)q −X(p̄2 − p2)

+(X − (1− (1 + r)q))(p̄2 − c) log

(
X − (1− r)q

X − (1− (1 + r)q)

)]
+ 2(l + r)qW.

As above, one can plug in Q = W − R and R and obtain an expression for W

in terms of parameters and E[P |P ≤ R]. Plugging the resulting value of W , prices,

etc. into E[P |P ≤ R] leads to a linear equation in E[P |P ≤ R], k, and c, ultimately

resulting in an equation for E[P |P ≤ R], W , and R which are linear functions of

k and c in terms of parameters and l and r. The exact expressions are too long to

print. Finally, as in previous cases, the values for l and r derive from equal profit:

π̄1 = π1(R), π̄1 = π1(p2), and π̄1 = π1(Q).

But these do not have algebraic solution.
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4.4.6 Case 5

The last case to consider is similar to case 4, but now some 1f’s above Q can make

baskets with one another. In this case, the 1f’s price in the same three ranges as in

case 4: [p1, Q], [pl, p2], and [pr, R]. Here, now, pr + pl < W so that Xi(p) is not a

constant. In this case, firms care not just about their rank in the distribution, but

also the proportion of firms who can make a basket with them. Write

p̂l ≡ W − pr and p̂r ≡ W − pl.

The profit function for the 1f becomes

π1(p) =



N [nc1 + 2ns1(1− F (p)) + 2ns2(1− l − r)q](p− c) if p̂r ≤ p ≤ R

N [nc1 + 2ns1(1− F (p)) + 2ns2F (W − p)](p− c) if pr ≤ p < p̂r

N [nc1 + 2ns1(1− F (p)) + 2ns2(1− (1 + r)q)](p− c) if p̂l < p ≤ p2

N [nc1 + 2ns1(1− F (p)) + 2ns2F (W − p)](p− c) if pl ≤ p < p̂l

N [nc + 2ns(1− F (p))](p− c) if p ≤ Q.

The derivation of F is the same as above for the first, third, and fifth cases. But the

second and third are interdependent and so we proceed slightly differently. Suppose

p ∈ [pr, p̂r] so that p′ ≡ W − p ∈ [pl, p̂l]. Equal profit requires
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(nc1 + 2n2
1(1− F (p)) + 2ns2F (p′))(p− c)

= (nc1 + 2n2
1(1− F (p′)) + 2ns2F (p))(p′ − c)

which gives

F (p′) = F (p)

(
ns2W − (ns2 + ns1)c+ (ns1 − ns2)p

ns1W − (ns1 + ns2)c+ (ns2 − ns1)p

)
+

(nc1 + 2ns1)(W − 2p)

2ns1W − 2(ns1 + ns2)c+ 2(ns2 − ns1)p
.

Substituting this into π1(p) = π̄1 and solving gives

F (p) =
π̄1 −N

(
nc1 + 2ns1 + 2ns2

(
(nc1+2ns1)(W−2p)

2ns1W−2(ns1+ns2)c+2(ns2−ns1)p

))
(p− c)

N
(

2ns2

(
ns2W−(ns2+ns1)c+(ns1−ns2)p

ns1W−(ns1+ns2)c+(ns2−ns1)p

)
− 2ns1

)
(p− c)

.

Notice that the expression is exactly the same for p ∈ [pl, p̂l]. Finally, π̄1 can easily

be read off from π(R) = N [nc1 +2ns2(1− l−r)q](R−c) so that for p ∈ [pl, p̂l]∪ [pr, p̂r]

F (p) = H(p) ≡

[nc1 + 2ns2(1− l − r)q](R− c)
−
(
nc1 + 2ns1 + 2ns2

(
(nc1+2ns1)(W−2p)

2ns1W−2(ns1+ns2)c+2(ns2−ns1)p

))
(p− c)(

2ns2

(
ns2W−(ns2+ns1)c+(ns1−ns2)p

ns1W−(ns1+ns2)c+(ns2−ns1)p

)
− 2ns1

)
(p− c)
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Given this, we can solve for pr and pl as

F (pr) = 1− (1 + r)q and F (pl) = (1− l − r)q.

These equations are quadratic in p and so have two roots. It is not clear whether

this delivers true multiplicity or whether one solution or another is false. I would

conjecture that only the smaller roots satisfy equilibrium, but this requires more

investigation. The other limits, p1, p̄2, and p2 are given as in case 4. Equal profit,

then, requires the following marginal distribution of prices.

F (p) =



1− q if R ≤ p

Y − [Y − (1− q)]R−c
p−c if p̂r ≤ p < R

H(p) if pr ≤ p < p̂r

1− (1 + r)q if p̄2 ≤ p < pr

X − [X − (1− r)q] p̄2−c
p−c if p2 ≤ p < p̄2

Yl − [Yl − (1− r)q]p
2−c
p−c if p̂l ≤ p < p2

H(p) if pl ≤ p < p̂l

(1− l − r)q if Q ≤ p < pl

X − [X − (1− l − r)q]Q−c
p−c if p1 ≤ p < Q

The 2f’s follow the same marginal distribution as in case 4, and the 1f’s, then,
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set G1(p) = (F (p)− (1− 2q)G2(p,∞))/q. Reservation values take exactly the same

form as in case 4, and E[P |P ≤ R] integrates just as above, but it is no longer

a linear equation in c and k because of the radicals involved in pl and pr. An

equilibrium, then, only requires solving for r and l which follows from equal profit

as above. This case is, perhaps the most interesting and also the most bedevilling.

More investigation is required.

4.5 Conclusion

This paper considered equilibrium in a model of multi-product retailing and se-

quential search. In a simple case where all firms can offer all goods, equilibrium

very closely mirrors that of single product search. This obtains in equilibrium as

a direct result of the fact that, while profit per good depends on one’s rank in the

price distribution for that good, overall profits are separable in price.

If not all firms offer both goods, but the number who do not is small, a similar

result holds. The marginal distributions are of exactly the same form as would

obtain in a single product model, except consumers reservation values are increased

to reflect the extra search cost entailed in visiting multiple stores.

As the proportion of firms who can not sate the consumers’ demand increases,

an interesting effect obtains. Single-product firms must price at the bottom of the

distribution for two-good buyers to demand from them. Bunching up at the bottom

of the distribution induces two-good firms to raise prices – but prices can not be
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raised on both goods beyond the reservation curve of consumers. These firms, then,

cut their price, reducing the highest price charged in equilibrium.

Several other cases are possible as fewer and fewer firms offer both goods. The

most interesting concerns the case where single-product firms make baskets for each

other. Two-good demanders have a maximum price they will pay for the basket of

two goods which is higher than twice the price at which they will buy individual

goods. As noisy search allows consumers to contact two firms at once, a one-good

firm can set a price at which they could not sell by themselves, but at which they

will sell if the consumer is in contact with another firm offering a sufficient low

price. That is if two firms can together make a basket. This produces a truly global

pricing problem different not just in form but also in kind from the standard model.

This case requires further investigation.
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