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ABSTRACT

SHAPE AND OTHER PROPERTIES OF 1324-AVOIDING PERMUTATIONS

Wei Quan Julius Poh

Robin Pemantle

Of the three Wilf classes of permutations avoiding a single pattern of length

4, the exact enumerations for two of them were found by Gessel (1990) and Bona

(1997). More recently, the Stanley-Wilf conjecture was proved by Marcus and Tar-

dos (2004) relying on work by Furedi and Hajnal (1992), and work by Klazar (2000).

Work by Arratia (1999) shows that this implies the existence of an exponential

growth rate for any of these classes of permutations. 1324-avoiding permutations

belong to the final Wilf class of permutations avoiding a single pattern of length 4.

Unlike the other two, not only is the exact enumeration yet to be found, the growth

rate is also unknown. We explore the known bounds to the growth rate of this

class as well as discuss possible approaches to improving them. There has also been

recent work done by Dokos and Pak (2014) and Miner and Pak (2014) regarding the

shape of other classes of permutations. In the second part of this thesis, we explore

the shape of 1324-avoiding permutations, and show that there are two regions that

decay to 0 exponentially, which has a size that depends on the growth rate of the

class.
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Chapter 1

Introduction

1324-avoiding permutations are a type of pattern avoiding permutation that avoids

the pattern 1324. A permutation pattern is a subpermutation.

Definition 1. A permutation σ contains the pattern π of length k if there exist

x1 < x2 < ... < xk such that σ(xi) < σ(xj) if and only if π(i) < π(j).

When written in one-line notation, this amounts to picking out some subset of

the numbers, then “collapsing” the selected numbers so that they range from 1 to k,

while preserving the order. Unless otherwise stated, permutations will be assumed

to be in one-line notation, and will behave very much like a length n word in n

letters from 1 to n.

Definition 2. A π-avoiding permutation is a permutation that does not contain

the pattern π.
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In the case of permutations avoiding the 1324 pattern, if we represent a per-

mutation of length n, σ, as a string of n integers σ(1), σ(2), ..., σ(n), and if we

were to pick any 4 of them 0 < k1 < k2 < k3 < k4 < n + 1, then write

1 for the smallest of {σ(k1), σ(k2), σ(k3), σ(k4)}, 2 for the second smallest, etc.,

σ(k1), σ(k2), σ(k3), σ(k4) would not become 1,3,2,4. In other words, we do not have

σ(k1) < σ(k3) < σ(k2) < σ(k4).

For a pattern π, let sn(π) be the number of π-avoiding permutations of length

n, and Sn(π) be the set of such permutations.

There are a couple of things that we will explore here about these permutations,

their enumeration and their “shape”. In this introduction, we will cover the basic

results known about pattern avoiding permutations, and touch on recent work done

on shape. First, we address enumeration. What is the number of such permutations

of length n? Failing that, how fast does it grow? We know from the Stanley-Wilf

conjecture, proved by Marcus and Tardos [13], that it grows at an exponential rate.

That is, limn→∞ sn(1324)1/n converges on some positive finite real, where sn(1324)

is the number of 1324-avoiding permutations of length n.

The Stanley-Wilf conjecture was formulated in the late 1980s or early 1990s,

as the guess that for any pattern π, there exists some constant Cπ such that
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limn→∞ sn(π) ≤ Cn
π for all n. Arratia [2] then showed in 1999 that this was equiva-

lent to the convergence of limn→∞ sn(π)1/n, so that there exists a constant cπ such

that limn→∞ sn(π)1/n = cπ. This was done by showing that log(sn(π)) is superaddi-

tive, via construction of an injection from pairs of π-avoiding permutations of length

n and length m to the set of π-avoiding permutations of length n+m, then apply-

ing Fekete’s lemma on subadditive sequences. cπ is the growth rate of π-avoiding

permutations.

In more detail, in order to get such an injection, we can assume without loss of

generality that for our length k pattern π, if π(i′) = 1 and π(j′) = k, then j′ < i′.

Then for two π-avoiding permutations of length n and length m, σn and σm, we can

create a unique π-avoiding permutation of length n + m simply by concatenating

them as follows. We construct σn+m such that for i ≤ n, σn+m(i) = σn(i), and

σn+m(i) = n+ σm(i− n) otherwise. Since the pattern occurs in neither σn nor σm,

if it is to occur in σn+m, π(i′) must occur in the “left” part that came from σn while

π(j′) must occur in the “right” part that came from σm. But this is not possible

since j′ < i′. Thus the new permutation avoids π as well.

In 1992, the Füredi-Hajnal conjecture was posed in [10], regarding 0-1 matri-

ces avoiding permutation matrices. 0-1 matrices are matrices whose entries are all

either 0 or 1. In this context, avoidance is a similar concept, with a permutation
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matrix P being said to be avoided by a 0-1 matrix if there does not exist a subma-

trix the same size as P which has 1s wherever P has 1s. The number of 1s in any

n by n 0-1 matrix is at most quadratic, and the conjecture was that for any given

permutation matrix P , the largest number of 1s possible while avoiding P is in fact

only O(n). That is to say, if fn(P ) is the largest number of 1s possible in an n by

n 0-1 matrix avoiding P , then fn(P ) = O(n).

This conjecture was then shown by Klazar in 2000 [12] to imply the Stanley-Wilf

conjecture. A summary of the argument is as follows. Let gn(P ) be the number of

n by n 0-1 matrices that avoid P . Consider such a matrix of size 2n by 2n. Divide

this into 2 by 2 blocks and replace each block with only 0s with a single 0, and all

others with a 1, obtaining an n by n matrix. This matrix then avoids P as well,

since any pattern here can be found in the original matrix. Now this n by n matrix

can be mapped to by such a method by at most 15t 2n by 2n matrices, where t is

the number of 1s in the n by n matrix, since each 1 entry can come from at most

15 different 2 by 2 blocks. Since t is at most fn(P ), we have g2n(P ) ≤ 15fn(P )gn(P ).

Thus the Füredi-Hajnal conjecture fn(P ) = O(n) implies that g2n(P )/gn(P ) can

be bounded by some cn, which in turn gives the Stanley-Wilf conjecture as a con-

sequence.

This conjecture was then proved by Marcus and Tardos, completing the proof
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of the Stanley-Wilf conjecture. A brief sketch of their proof is as follows. Suppose

A is an n by n 0-1 matrix avoiding P with the maximum possible number of 1

entries, fn(P ), where P is k by k. We may assume that k2 divides n, since this will

not affect the desired result that fn(P ) = O(n). A is then divided into k2 by k2

blocks, and a n/k2 by n/k2 matrix B is created by writing a 0 for an entry if the

corresponding block in A contains only 0s, and 1 otherwise. They then prove an

upper bound of k
(
k2

k

)
on the number of blocks with 1 entries in at least k different

columns in each column of blocks, via the pigeonhole principle. This also applies

to the number of blocks with 1 entries in at least k different rows, in each row of

blocks. Then by counting the number of 1s in both types of blocks, as well as blocks

that neither have 1s in at least k different rows nor in k different columns, it was

shown that fn(P ) ≤ 2k4
(
k2

k

)
n, thereby yielding the desired result.

While we know from all this that we have a growth rate cπ := limn→∞ sn(π)1/n

for every pattern π, this does not tell us what that rate is in general - there is a

great deal of looseness in the bounds used in those proofs. A brief discussion of the

work done on specific cases is left to the next chapter, and some approaches and

work on bounds on the growth rate for the 1324 pattern with some partial results

will also be discussed.

Coming to the second question, what is the “shape” of such permutations? What
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can we say about the probability of, say, σ(k) being l for a (uniform) randomly cho-

sen permutation σ? How likely is it that σ(k) falls within a certain range of values?

Similar questions have been asked and answered in considerable detail for patterns

of length 3. [14]

As a visual aid, consider an n by n grid, A. The columns run from 1 to n going

from left to right, and the rows run from 1 to n going from the bottom to the top.

Let the square in the ith column and jth row be Ai,j, as seen in Figure 1.1.

Figure 1.1: Grid for n=10

We represent a length n permutation σ by placing n points in the squares of this

grid. For each σ(i), place a point in Ai,σ(i), leaving the other squares empty. This

is really a permutation matrix rotated anticlockwise by π/2, with points instead of

1s and empty squares instead of 0s. An example is in figure 1.2. We can formally
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associate this grid with the corresponding permutation.

Figure 1.2: Grid corresponding to the permutation 562481397

Definition 3. The associated grid of σ is the matrix A(σ) with A(σ)i,σ(i) = 1 for

each i, and all other entries 0.

For ease of visualisation, we will continue to think of the matrix as a grid with

column and row ordering as stated earlier, and with the 1s as points and 0s as

empty cells. This is the visualisation that is used in the figures in section 3.1.

Suppose we took all the π-avoiding permutations of length n, and added their

grids together. Then each entry tells us the number of such permutations that has

a 1 there. Then dividing by sn(π), we get the proportion of such permutations that

have a 1 at that point. In other words, if we took a π-avoiding permutation of
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length n uniformly at random, we would find a 1 there with that probability. We

can call this our “shape”.

Definition 4. The length n shape of π is the matrix

SHπ(n) = (1/sn(π))
∑

σ∈Sn(π)

A(σ)

.

In the next chapter we start by following the progress made by a number of

researchers working on the growth rate of 1324-avoiding permutations, and sketch

certain results. In the second section, we will look at the transfer matrix, which is

a well known method that is applicable to this problem. I will then show how this

works with 213-avoiding permutations, and in the third section, how it may apply

to the upper and lower bounds in the 1324-avoiding case along with a standard “top

insertion” mechanism.

In section 2.4 I introduce the concept of “local” growth rates, deriving some re-

lations between this and the location of the top element, using top insertion in the

1324-avoiding case. I will also then show that a conjecture about the convergence

of this local growth rate implies a result on the distribution of the top element.

Finally, in section 2.5, I conclude our discussion of bounds with an approach to the

lower bound inspired by data from my simulations, which will be discussed in sec-

tion 3.1. While the bound of 8 obtained is worse than known bounds, the approach
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currently contains a lot of looseness in the bounds that might be open to refinement.

In chapter 3, we first start by discussing normalised shape, mentioning work

done by others on the shape of other classes of permutations. I then briefly explain

the method, suggested by my advisor, of estimating the shape. We will look at

why it may look the way it does and its relation to top insertion, as well as mak-

ing conjectures about the normalised shape. Finally, in section 3.2, I will prove

the main result, that we have exponential decay of entries in at least two regions

around corners of the normalised shape, as n increases. This region is dependent

on the growth rate, and increases in size as the lower bound is improved.
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Chapter 2

Growth rates

2.1 Introduction and background

We first restate the definition of the growth rate.

Definition 5. The growth rate of 1324-avoiding permutations is

c1324 := limn→∞ sn(1324)1/n.

Definition 6. For two given patterns σ and π of length k, the σ-avoiding per-

mutations and π-avoiding permutations are said to be in the same Wilf class if

sn(σ) = sn(π) for all n.

The exact enumeration of length n permutations avoiding a pattern of length 3

has been known for a long time [15] to be the Catalan numbers, and hence are all

in the same Wilf class, with a growth rate of 4. Patterns of length 4 is where it gets

more interesting.
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While there are 24 possible patterns of length 4, many of them are symmetric. If

we take their associated grid defined in the introduction, we can rotate or flip them

to form another pattern. For example, 1243 can be rotated to form 4312, 2134, and

3421. These belong in the same symmetric class, and since a similar transformation

of the corresponding pattern avoiding permutations preserves the avoidance, they

are in the same Wilf class as well. There are 7 symmetry classes. Work done by

Stankova [16] [17] and Babson and West [4] showed that the symmetry classes can

be grouped into only three Wilf classes. The Wilf class that the 1324-avoiding per-

mutations belong to has only one symmetry class, while the other two Wilf classes

contain two and four symmetry classes.

Out of these three Wilf classes of length 4, the 1324-avoiding permutations be-

longs to the only one for which the exact enumeration has not been found. The

other two were settled by Gessel [11] and Bona [5], and have growth rates of 8 and

9. For 1324, however, not even the growth rate is known. Recent work by a number

of people has been done on the upper and lower bounds, successively narrowing

them. We first look at the upper bound and summarise some of the arguments.

In 2012, Claesson, Jelinek, and Steingrimsson [8] showed that the growth rate is

at most 16. They used the idea of a merge of permutations, where a permutation
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is a merge of two smaller permutations if it can be divided into two patterns that

match those two smaller permutations. For example, 15243 can be divided into 124

and 53, corresponding to the patterns 123 and 21, so 15243 is a merge of 123 and 21.

They then defined two special types of merges. First, a direct sum, where the two

constituent permutations are concatenated with the second being assigned higher

numbers than any of the first. For example, the direct sum 123 ⊕ 21 would give

12354. Second, a skew sum, which is the same except that the first part is assigned

higher numbers than any of the second. Thus the skew sum 123	21 would become

34521.

Next, they showed that for three, possibly empty permutations σ, τ , and ρ, a

permutation that avoids σ ⊕ (τ 	 1) ⊕ ρ can be written as a merge of one per-

mutation avoiding σ ⊕ (τ 	 1), and another avoiding (τ 	 1) ⊕ ρ. This was done

by carefully dividing the original permutation into two parts that avoid the given

patterns, which they coloured red and blue. Going from left to right, they coloured

elements red unless it would complete a red σ ⊕ (τ 	 1) pattern or if there is al-

ready a blue element smaller than the one being coloured. It was then shown after

some work that the red and blue parts do indeed avoid the required patterns. At

this point, we can see that this applies to 1324 with σ, τ , and ρ all 1, with each

1324-avoiding permutation expressible as a merge of a 132-avoiding permutation,

and a 213-avoiding permutation.
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Finally, by counting the number of possible ways to merge permutations, they

found that if every permutation of a certain class of pattern avoiding permutations

can be expressed as a merge of two other classes, then the square root of its growth

rate is at most the sum of the square roots of the other two classes. Since permu-

tations avoiding patterns of length 3 have a growth rate of 4, an upper bound of 16

is obtained.

Later in 2012, Bona [6] improved this bound to 7 + 4
√

3 ≈ 13.93 by refining the

above argument. Using the same rules for colouring the elements of a 1324-avoiding

permutation, the red and blue elements are further split into two categories each,

so that the elements are labelled A, B, C, and D. The elements which are left-to-

right minima among the red entries are labelled A, while the other red entries are

labelled B. Symmetrically, the elements which are right-to-left maxima among the

blue entries are labelled D, while the other blue entries are labelled C.

This labelling can be used to produce two words in these four letters for each

1324-avoiding permutation σ. One word is just the labels of σ going from left to

right, or in other words, it has its ith letter having the same label as the element

(i, σ(i)). The other word is the labels going from bottom to top, or in other words,

it has its ith letter having the same label as the element with second coordinate

13



i. Through reconstruction of a length n 1324-avoiding permutation from the pair

of words associated with it, it was shown that each pair of such words of length

n may be produced by at most one 1324-avoiding permutation. That is, the map

from such a permutation to pairs of words is injective. This alone clearly gives an

upper bound of 16, but the improvement lay in the observation that in neither of

the two words can B immediately follow C. We see that if a B is directly to the right

of a C, it has to be lower than the C by the rules of the colouring. This implies

that there has to be an A to the lower left of both of them, and a D to the upper

right, which forms a 1324 pattern. A similar argument holds when we consider a B

directly above a C.

Now, counting the number of all possible pairs of such words that do not have a

B directly following a C, it was shown to be bounded by (7 + 4
√

3)n using standard

generating function techniques.

In 2015, Bona [7] again improved this bound to 13.73718, by further refining the

argument.

Turning to the lower bound, Albert, Elder, Rechnitzer, Westcott, and Zabrocki

[1] showed in 2006 with the aid of heavily computational methods that the growth

rate is at least 9.35. The general idea was to use a certain insertion encoding, a vari-
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ant of the simple top insertion, to build up 1324-avoiding permutations. Structures

of allowable insertions are thought of as states, and a 1324-avoiding permutation

can be described as a series of transitions between these states. The growth of the

number of such possibilities then corresponds to an eigenvalue of what is known as

a transfer matrix. As a similar idea applies with the usual top-element insertion,

this technique is discussed in the next section.

In early 2015, Bevan [3] further improved this bound to 9.81, by showing that a

subset of 1324-avoiding permutations can be built by alternating sets of points that

form trees in a “Hasse graph”, then counting these to obtain a minimum growth

rate.
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2.2 The transfer matrix

Suppose we have a class of objects that can be built up from a base state or states

through a series of transitions from one state to another, where each state has a

certain range of allowable transitions, regardless of what happened before. We can

then create a matrix T that encodes this information nicely, and allow us to count

the objects by repeated multiplication. We now look at this formally.

Consider the set of words whose letters are positive integers.

Definition 7. A transfer rule S is a set of pairs of positive integers.

Definition 8. A word is valid with respect to S if for any adjacent letters x and

y, (x, y) ∈ S.

Definition 9. A transfer matrix T (S) is a 0-1 matrix such that T (S)y,x is 1 if

(x, y) ∈ S and 0 otherwise.

More generally, we could use a multiset for S and allow positive integer entries

greater than 1 for the transfer matrix, but this is unnecessary for the insertion we

will be looking at.

Definition 10. An initial state set B is a set of positive integers.

Definition 11. b is an initial state vector corresponding to B such that bi = 1

if i ∈ B and 0 otherwise.
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Now we can perform a straightforward induction. Notice that bi is the number

of valid words of length 1 which end in the letter i, and starting with a letter from

B. If we have a vector v such that vi is the number of valid words of length n

which end in a letter of the form i, and starting with a letter from B, then T (S)v

has the same properties, for valid words of length n + 1. This is because T (S)j,ivi

corresponds to taking the words counted by vi, and appending j to them iff it is

valid. That gives us the following.

Proposition 1. The sum of the entries of T (S)n−1b is the number of valid words

of length n that start with a letter from B.

Now we discuss how this relates to pattern avoiding permutations. Consider

the easier case of 213-avoiding permutations. We may build any such permutation

through the well known process of “top insertion”, starting with 1 and successively

adding higher numbers until we obtain the desired permutation. For example, 4231

can be obtained by starting with 1, inserting 2 to the left to form 21, inserting 3 in

the middle to obtain 231, then inserting 4 to the left to form 4231. The sequence of

insertions exists and is unique for each permutation. This is more rigorously defined

in the following section.

We look at which insertions do not create a 213 pattern. Consider the first 21

pattern in such a string. The next insertion cannot occur after this, or it would

create a 213 pattern. Therefore the insertions can only happen immediately to

17



the left or right, or anywhere in between, the longest initial 21-avoiding substring.

Conveniently for this case, this is just the longest initial ascending substring, just

before the first descent, if any. If this is length k, then there are k + 1 places to

make the next top insertion. The valid places for insertion only depend on this

initial string, so we may divide possible strings into “states” based on their longest

initial 21-avoiding substring. Since there is only one possible such substring for each

positive length k, we may label the state with that number.

Definition 12. A 213-avoiding permutation is in the state k if its longest initial

21-avoiding substring is of length k.

If we insert the next element in the ith possible spot counting from the left, so

that there are i− 1 elements of the initial 21-avoiding substring to its left, the new

permutation has a longest initial 21-avoiding substring of length i, since there must

be a descent after the new top element if there are any more elements to the right.

Thus it is in state i. Associate this with the letter i. Then let S213 be the set that

include all pairs (i, j) where i is any positive integer and j is at most i+ 1. We can

associate the word 1 as the initial string of length 1, which is in state 1, and then

any word starting with 1 that is valid with respect to S213 corresponds to a series

of top insertions that results in a unique 213-avoiding permutation. This bijection

means that given the initial state vector e1, we can use the above work.

Proposition 2. The sum of the entries of T (S213)
n−1e1 is the number of 213-

avoiding permutations of length n.
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In order to illustrate how this can be used in the 1324 case, we will look at

bounds on the growth of 213-avoiding permutations. Consider the vector u where

ui = 1/2i−1. Looking at each entry, we see that T (S213)u ≤ 4u. We use the

following lemmas.

Lemma 3. If a matrix T and vectors w and v have only nonnegative entries, then

Tv ≥ cv and w ≥ v implies that T nw ≥ T nv ≥ cnv.

Again, it is straightforward from considering each entry. Likewise,

Lemma 4. If a matrix T and vectors w and v have only nonnegative entries, then

Tv ≤ cv and w ≤ v implies that T nw ≤ T nv ≤ cnv.

This gives us the following proposition almost directly.

Proposition 5. If T (S213)v ≤ cv for a vector v with positive first entry, no negative

entries, and which has a sum of entries that is finite, then the growth rate of the

213-avoiding permutations is at most c.

Proof. We may multiply v by a suitable amount so that its first entry is greater

than 1. Then T (S213)
n−1e1 ≤ T (S213)

n−1v ≤ cn−1v.

This gives us an upper bound of 4 on the growth rate. Of course, we already

knew that since they are enumerated by the Catalan numbers, but the same ap-

proach applies to 1324-avoiding permutations as we will see in the next section.
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Now we wish to search for a lower bound by finding a suitable vector u’. Consider

u′1 = 3, u′2 = 3, u′3 = 2, u′4 = 1, and u′i = 0 for i > 4. This vector has a finite

number of positive entries, and satisfies T (S213)u’ ≥ 3u’. Now we use a similar

proposition.

Proposition 6. If T (S213)v ≥ cv for a vector v with at least one positive entry, no

negative entries, and which has a finite number of positive entries, then the growth

rate of the 213-avoiding permutations is at least c.

Proof. Since every state can be reached from our initial state, there exists k such

that T (S213)
ke1 ≥ v. Then T (S213)

n+ke1 ≥ T (S213)
nv ≥ cnv. Taking limits, the

result follows.

Thus we get a lower bound of 3 on the growth rate. In fact, we will see that we

can get arbitrarily close to 4, which means that the growth rate is 4, as expected

given that it is counted by the Catalan numbers.

For any 1 > ε > 0, consider the sequence a0 = 1, a1 = 3−ε, and ak+1 = (4−ε)ak−∑
i≤k ai for k > 0. Then ak+2−ak+1 = (4− ε)ak+1− (4− ε)ak−

∑
i≤k+1 ai+

∑
i≤k ai.

This simplifies to ak+2 = (4 − ε)ak+1 − (4 − ε)ak. Solving, we obtain the complex

characteristic roots λ =
4−ε±
√
−(4−ε)ε
2

. This means that the sequence cannot be

strictly increasing, and there is a smallest positive integer m such that am ≤ am−1.

20



From the recurrence relation, we see that am is nonnegative.

Now let vi = am+1−i for 1 ≤ i ≤ m + 1, and 0 otherwise. For 0 < k ≤ m, the

(m+ 1− k)th entry of T (S213)v is of the form ak+1 +
∑

i≤k ai = (4− ε)ak, which is

(4− ε) times the corresponding entry of v. Since am ≤ am−1, the first entry is also

at least (4 − ε) times the corresponding entry of v. Likewise, this is also true for

the (m + 1)th entry. Thus we can apply Proposition 6, giving us a lower bound of

(4− ε) on the growth rate.

We then see how this adapts to the 1324-avoiding case in the section that follows.
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2.3 Top insertion for 1324-avoiding permutations

Definition 13. For a positive integer k ≤ n, the permutation Topk(σ) is formed by

deleting elements greater than k from a permutation σ of length n.

For example, Top4(534162) = 3412.

Definition 14. Given a permutation σ of length n, a new permutation σ′ of length

n + 1 is formed by top insertion in the jth slot of σ if σ′(i) = σ(i) for i < j,

σ′(i) = σ(i− 1) for i > j, and σ′(j) = n + 1. σ′ formed in this way is also written

as INS(σ, j).

For example, the 4th step in creating 534162 by top insertion is in slot 2 be-

cause Top4(534162) = 3412 has 1 element before the “4”. The idea is that given

Top3(534162) = 312, the 4 could be inserted in the space or “slot” between any of

the two elements, or to the right or left of the whole string. These slots are then

numbered from the left.

Much as in the 213-avoiding case, we are interested in the initial 132-avoiding

substring, since any top insertion after a 132 pattern creates a 1324 pattern.

Definition 15. The initial 132-avoiding part σinitial of a 1324-avoiding permuta-

tion σ is its longest possible initial string that avoids a 132 pattern. That is, either σ

is 132-avoiding, in which case σinitial = σ, or there exists k such that σinitial(i) = σ(i)

for 1 ≤ i ≤ k, and σinitial is a length k 132-avoiding string, and the length k + 1
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string σ′ contains a 132 pattern, where σ′(i) = σ(i) for 1 ≤ i ≤ k + 1.

That is, the first 132 pattern of a 1324-avoiding permutation includes the element

right after the initial segment, if it occurs at all.

Definition 16. The initial segment σI of a 1324-avoiding permutation σ is its

initial 132-avoiding part reordered so that σI is a 132-avoiding permutation. That

is, for each i, if σinitial(i) is the jth largest element among the elements of σinitial,

then σI(i) = j.

For example, 54128367 has initial 132-avoiding part 54128, and initial segment

43125. One can think of the initial segment as a string which is the “collapsed”

version of the initial 132-avoiding part, that includes elements from 1 to some k.

Now we note a few easy facts.

Lemma 7. Any permutation formed by top insertion in slot j of a 1324-avoiding

permutation σ is also 1324-avoiding, iff j ≤ k+1, where k is the length of the initial

segment of σ.

Proof. If the new permutation has a 1324 pattern, it must include the inserted

element, otherwise that pattern is also present in the old permutation, which is

1324-avoiding. Since the inserted element is also the largest, it must be the “4” of

the pattern, so there is a 132 pattern before it. But all the elements before it lie

in the initial segment of the old permutation, which is 132-avoiding. On the other

hand, if j > k + 1, then it forms a 1324 pattern.
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Lemma 8. Any 1324-avoiding permutation σ of length n ≥ 2 is formed from top

insertion of exactly one 1324-avoiding permutation of length n−1, in only one slot.

Proof. Since σ is 1324-avoiding, so is Topn−1(σ). If the element n is jth from the

left in σ, then σ can only be formed from top insertion in the jth slot of Topn−1(σ).

Putting the two together gives the following.

Proposition 9. Every 1324-avoiding permutation is formed by a unique series of

top insertions starting from the length 1 permutation.

In other words, every 1324-avoiding permutation can be written as a sequence

of which slots are inserted.

Also note that when we form a new permutation by top insertion, the new initial

segment depends only on the old initial segment with the inserted element. The

rest of the permutation does not affect whether a new 132 pattern appears that

includes the inserted element and is closer to the start of the permutation (and so

must appear within where the old initial segment was).

Proposition 10. The initial segment of INS(σ, j) is the same as that of INS(σI , j).

Definition 17. 1324-avoiding permutations with the same initial segment are said
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to be in the same insertion state. The number of 1324-avoiding permutations with

length n and initial segment σ is denoted Stn(σ).

Definition 18. A state descendant of an insertion state σ are the insertion states

corresponding to the initial segments obtained when top insertion is performed on σ.

Formally, σ′ is a state descendant of an insertion state σ of length k if there exists

a positive integer j ≤ k + 1 such that INS(σ, j)I = σ′. Likewise, a state ancestor

of an insertion state is an insertion state of which it is a state descendant.

Note that a state can be formed by top insertion in exactly one slot from each

state ancestor, since its largest element corresponds to the slot that must have taken

the insertion. Thus, each 1324-avoiding permutation in a given state is formed by

top insertion from a permutation in a state ancestor, and each such permutation

only forms one such permutation in that given state. So we have the following.

Proposition 11. Let A be the set of state ancestors of σ. Then Stn+1(σ) =∑
τ∈A Stn(τ).

If we enumerate the insertion states, which are countable, then we can have the

transfer rule S1324 consisting of pairs (x, y) where y is a state descendant of x. This

gives us the corresponding propositions to those in the previous section.

Proposition 12. If T (S1324)v ≤ cv for a vector v with positive first entry, no

negative entries, and which has a sum of entries that is finite, then the growth rate

of the 1324-avoiding permutations is at most c.
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Proposition 13. If T (S1324)v ≥ cv for a vector v with at least one positive entry,

no negative entries, and which has a finite number of positive entries, then the

growth rate of the 1324-avoiding permutations is at least c.

It is difficult to obtain any results without some clever way to group the states

into a more manageable form. For instance, suppose we could group states into

classes such that for each state the number of ancestor states from higher class

is zero except for a bounded number of classes above it, and the number of such

ancestor states for each class is bounded by a constant. Then, as in the 213 case,

we can choose a v that decays exponentially by a fixed factor, and we would be

able to find c such that T (S1324)v ≤ cv. By adjusting v and the classes of states,

c might be improved. Even if found, such bounds could be very loose, unfortunately.

For the lower bound, another approach to this could eventually yield results.

Suppose T ′(S1324) is a “truncated” version of T (S1324), with some 1s replaced by

0s. If T ′(S1324)v ≥ cv, then T (S1324)v ≥ T ′(S1324)v ≥ cv, which satisfies the above

proposition.

Corollary 14. Suppose T ′(S1324) is equal to T (S1324) except for some 1-entries

changed to 0. If T ′(S1324)v ≥ cv for a vector v with at least one positive entry, no

negative entries, and which has a finite number of positive entries, then the growth

rate of the 1324-avoiding permutations is at least c.

This suggests that we may truncate T (S1324) and search for suitable eigenvec-

26



tors. Unfortunately, while a computer may be able to obtain some results, trying

to surpass known bounds with such a proof using calculations by hand is nearly

impossible without further simplifying ideas. This truncation is actually what was

used by Albert et al [1] in the paper mentioned in the previous section. The inser-

tion encoding they used is also be truncated in a natural way, by omitting states

above a certain length.

As a small example of how this could work, consider the states of length 3 or

less. Note that the descending permutations 1, 21, and 321 can only be state de-

scendants to the descending permutations of length one less than their own, so we

remove these as well and consider the five states 12, 123, 213, 231, and 312. La-

bel these 1 to 5 in that order. We find the state descendants of each of these by

insertion into all their available slots and computing the resulting initial segments,

discarding those that are not among these five. The resultant matrix is T3 =



1 1 0 1 0

1 1 0 0 0

0 0 1 0 1

0 0 1 0 0

1 0 0 0 0


Solving for eigenvalues, we get (λ − 1)(1 − λ4 + 2λ3), which shows that the
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largest eigenvalue is slightly greater than 2. Once we have an eigenvalue c and a

corresponding eigenvector v with no negative entries, we can apply Corollary 14.

Alternatively, we may find a vector satisfying Corollary 14 through other means,

such as v = (1, 1, 0, 0, 0)T, which gives us T3v ≥ 2v, giving a lower bound of 2. This

is far lower than the known lower bound, but in principle the lower bound can be

improved arbitrarily close to the actual growth rate, depending on the efficiency of

the insertion scheme used and the amount of computational power. In practice the

amount of computational power limits how far this can go.

Taking another approach, if we look at the proportion of length n permutations

in each insertion state, it seems like this should converge as n grows.

Conjecture 1. For each σ, Stn(σ)
sn(1324)

converges as n goes to infinity.

If this is true, then 1
sn(1324)

T (S1324)
n−1e1 has entries which are all convergent,

which suggests that it has an eigenvector with the actual growth rate as an eigen-

value.

Alternatively, it would also imply that Stn+1(σ)/Stn(σ) approaches the actual

growth rate limn→∞ sn(1324)1/n.

In the next section, we will look at what I will call a “local” growth rate and its

relation with top insertion.
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2.4 Local growth rates

Definition 19. The local growth rate at step n is gn = sn+1(1324)
sn(1324)

.

As mentioned in the introduction, Arratia [2] showed that limn→∞ sn(π)1/n con-

verges, via superadditivity of log(sn(π)). Unfortunately not even this superadditiv-

ity would imply that the local growth rate converges as n increases. It seems likely

that it is true, based on actual growth rates.

Conjecture 2. gn converges to c1324 as n goes to infinity.

One may also consider the two weaker related conjectures on either side.

Conjecture 3. lim supn→∞ gn = c1324

Conjecture 4. lim infn→∞ gn = c1324

For each ε > 0 we cannot have all the gn after some point m exceed c1324 + ε,

or limn→∞ sn(1324)1/n cannot converge to c1324. Likewise they cannot all be below

c1324 − ε. Thus, immediately,

Proposition 15. lim supn→∞ gn ≥ c1324 ≥ lim infn→∞ gn

Thus the two weaker conjectures are really that there does not exist an infinite

sequence of ai and ε > 0 such that gai ≥ c1324 + ε, and similarly for gai ≤ c1324 − ε.

Even the following weaker conjecture would be helpful in obtaining some results

on the location of top elements, and hence the shape of 1324-avoiding permutations.
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Conjecture 5. {gn} is bounded.

With this weakest conjecture, one might be tempted to think that surely the

superadditivity of log(sn(1324)) must somehow imply this. However, it is not suf-

ficient. To see this, one can construct pathological sequences that satisfy this su-

peradditivity, yet have unbounded gn. Note that log(sn(1324)) is
∑n−1

i=1 log gi. If

we first set all log gi to c − 1, then their sums are superadditive. If we then pick

some positive integer a1 and then increased log gi by 1 for all i such that 2a1 divides

i, then
∑n−1

i=1 log gi is still less than nc, and the sequence is still superadditive. At

each successive step we can continue to find ak > ak−1 sufficiently large such that

if we raise log gi by 1 for all i such that 2ak divides i, then
∑n−1

i=1 log gi is still less

than nc. The sequence
∑n−1

i=1 log gi will still remain superadditive, and we will end

up with a sequence of log gi that is unbounded from above. We must therefore use

some other properties of 1324-avoiding permutations in order to show that this sort

of thing cannot happen.

Consider the relation of the top insertion to the local growth rate. The number

of 1324-avoiding permutations of length n + 1 that are created by top insertion of

a length n 1324-avoiding permutation is the number of slots of its initial segment,

which is 1 plus the length of the initial segment. So we have a straightforward

relation between the average length of the initial segment and the local growth

rate.
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Proposition 16. gn is exactly 1 more than the mean length of the initial segments

of length n 1324-avoiding permutations.

So if the previous conjecture is true, then this would also be bounded.

Proposition 17. If there exist constants b and m such that gn ≤ b for all n > m,

then the mean length of the initial segments of length n 1324-avoiding permutations

is at most b− 1.

From this, one gets an even stronger intuitive sense that that conjecture should

be true, as long initial segments should quickly spawn many more permutations

with shorter initial segments, bring down the mean length. On the other hand, the

permutations with longer initial segments are those with more descendants. Indeed,

in the sections on shape we will look at some figures including one of a typical 1324-

avoiding permutation, and one thing that we will notice is that permutations with

long initial segments do indeed tend to be ancestors of most 1324-avoiding permu-

tations of higher length, even though they are outnumbered compared to those of

the same length.

Consider where the top element is distributed. A permutation with a length k

initial segment has k + 1 descendants, with top elements in positions 1 to k + 1

counting from the left. The mean position is therefore 1 + k/2. The distribution of

the lengths of the initial segments is therefore directly connected to the distribution

of the position of the top elements.
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Finally, if gn is indeed bounded, we see that as n increases, the top element is

distributed closer and closer to the left, as a proportion of n, as follows.

Theorem 18. Suppose there exist constants b and m such that gn ≤ b for all

n > m. Then for any f(n) that approaches infinity as n approaches infinity, the

proportion of length n 1324-avoiding permutations with the top element in position

less than f(n) approaches 1 as n goes to infinity. The position of the top element

of a uniformly chosen length n 1324-avoiding permutation is tight.

Proof. Let the mean position of the top element be pn for the permutations of

length n. Let xn be the proportion of those permutations for which the top ele-

ment is at least in position f(n). Since xnf(n) is at least the contribution of those

permutations to the mean position, xnf(n) ≤ pn. The position of the top element

cannot be greater than the length of the initial segment, since there cannot be a

132 pattern before it. By the previous proposition, xnf(n) ≤ pn ≤ b − 1. Then

xn ≤ (b− 1)/f(n), so it goes to 0 as n goes to infinity.

Given any ε > 0, we can replace f(n) in the above argument by (b− 1)/ε. Then

xn ≤ ε for all n > m. Thus the position of the top element is at most (b−1)/ε for all

but ε of the 1324-avoiding permutations of length n, and there are a finite number

of n not more than m for which such a bound may be obtained individually. Then

there is some α where the position of the top element is at most (b − 1)/ε for all
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but ε of the 1324-avoiding permutations of length n, whatever n is, so it is tight.

This means that if you were to normalise the shape by plotting its points to

fit in a unit square, the points in the first row would cluster closer to the top left

corner as n increases.

Corollary 19. Suppose there exist constants b and m such that gn ≤ b for all

n > m. Then for any ε > 0, the proportion of length n 1324-avoiding permutations

with the top element in position less than εn approaches 1 as n goes to infinity.

In the next section, we will look at one more combinatorial approach to the

lower bound, before focussing on the issue of shape.

33



2.5 Another approach towards the lower bound

Most 1324-avoiding permutations seem to have their points clustered somewhat

close to the anti-diagonal as we will see in following sections regarding shape. If

we can build a large subset of such permutations, the growth of this subset would

provide a good lower bound to the growth rate. The following is one approach that

gives a lower bound of 8, which is not better than the known bounds thus far, but

has the possibility of improvement.

We first note that counting the number of permutations that avoid 1324 corre-

sponds to counting the number of such grids that do not have four points that form

a 1324 pattern: the first point counting from left to right being the lowest of the

four, the second being second-highest, the third being second-lowest and the last

being highest among the four. Such a pattern is shown in Figure 2.1. We count a

subset of such permutations in the following way.

Choose some positive integers k and m > 2, and let n = 2km. Divide the n by

n grid evenly into “boxes” of side length 2k. Formally, we have:

Definition 20. A box of the matrix A(σ) is a submatrix B[x, y] consisting of the

entries A(σ)i,j for 2k(x−1)+1 ≤ i ≤ 2kx and 2km−2ky+1 ≤ j ≤ 2km−2k(y−1),

where B[x, y]i,j = A2k(x−1)+i,2km−2ky+j.

For future ease of manipulation, I have labelled the top left box with the co-
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Figure 2.1: A 1324 pattern. The leftmost grey square is the “1” of the pattern, the

next is the “3”, etc.

ordinates [1,1], and the square directly to the right of that as [2,1], etc. so that

the box labelled [i,j] occupies the part of the grid with column numbers between

2k(i−1)+1 and 2ki, and row numbers between 2km−2kj+1 and 2km−2k(j−1).

That is, the second coordinate of our boxes go from top to bottom, rather than

bottom to top like how our rows are labelled, as shown in Figure 2.2.

Now we will generate a unique 1324-avoiding permutation from a set of choices.

Pick m− 1 132-avoiding permutations of length k, σi for i = 1 to m− 1. Also pick

2m length 2k vectors with k 0s and k 1s as its entries, and label them vi and wj

for i and j ranging from 1 to m. We will use the vectors vi and wj as our choice of

rows and columns to fill certain boxes with k points each.
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Figure 2.2: Boxes for k = 2 and m = 5. The alternating grey colours are for

visibility.

Now for each vi, let vi(j) be the position of the jth 1 and v′i(j) be the position

of the jth 0. That is to say, they are a subset of 1 to 2k and its complement. Define

wi(j) and w′i(j) likewise. We then place points in boxes using these choices.

For each box [i,i+ 1] for i from 1 to m− 1, we fill it with our choice of σi using

the vi(j) and wi(j) as our choice of rows and columns in the following way.

For each j from 1 to k, place a point in [i,i+ 1]vi(j),wi+1(σi(j)).

Now we fill each [i + 1,i] for i from 1 to m − 1 by placing a point in [i +

1,i]v′i+1(j),w
′
i(k−j+1). This means that the points in this box are all descending, and

has no ascents.
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Finally, we fill [1,1] by placing a point in [1,1]v′1(j),w1(k−j+1) for each j from 1 to

k, and [m,m] by placing a point in [m,m]vm(j),w′m(k−j+1) for each j from 1 to k.

Figure 2.3: Sample grid and permutation with boxes.

Since we have filled in n = 2km points, one for each column and row, this cor-

responds to a permutation, σ.

Figure 2.3 shows a small example of a permutation formed by this process. In

this simple case for k = 2, m = 5, our σi are 12, 21, 12, 21, respectively. Our vi

are (1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,0,1), and (1,1,0,0), and our wj are (1,0,1,0),

37



(1,0,0,1), (0,1,1,0), (0,1,0,1), and (1,0,0,1). Consider the leftmost yellow box [1,2].

Since v1 is (1,1,0,0) and w2 is (1,0,0,1), the k = 2 points in this box are placed in

the subgrid formed by the first two columns and the first and last rows. Since σ1 is

12, they are placed in that pattern within that subgrid as shown. The rest of the

yellow boxes are filled in similar fashion. The top-left white box, [1,1], is filled by

descending points within the subgrid determined by the rows indicated by w1, and

the columns left unused in [1,2]. The bottom-right corner box is filled similarly,

and the blue boxes are then filled by descending points in the subgrids formed from

rows and columns left unused by the other boxes.

We will now see that the permutation formed is 1324-avoiding.

Proposition 20. σ is 1324-avoiding.

Proof. Suppose that we have a 1324 pattern, a′ < c′ < b′ < d′, with σ(a′) < σ(b′) <

σ(c′) < σ(d′). This corresponds to the points Aa′,σ(a′), Ab′,σ(b′), Ac′,σ(c′), and Ad′,σ(d′),

which we call a, b, c, and d respectively. The a, c, b, and d correspond to the 1, 3,

2, and 4 respectively, in the 1324 pattern.

If d is in any of the boxes [i,i+ 1], the a, c, and b have to be as well, as there are

no other nonempty boxes that are to the bottom left of the d. This is impossible

since that box is 132-avoiding and a, c, and b form a 132 pattern.

38



By similar argument, the d cannot be in [1,1] or [m,m], as that restricts the a,

c, and b to a single box that avoids 132.

Thus the d must be in one of the boxes of the form [i + 1,i]. Since [i + 1,i]

contains no ascents, the a, c, and b are again restricted to those boxes of the form

[j,j + 1] that lie to the bottom left of the d. The a of the pattern must then lie in

some [l,l + 1]. But since the c and b must be to the top right of the a, they cannot

lie in another box of the form [j,j + 1]. Thus they must all be in [l,l + 1], which

forms a 132 pattern, a contradiction.

The number of 1324-avoiding permutations of length n = 2km is then at least

the number of choices of m − 1 132-avoiding permutations of length k, and 2m

length 2k vectors with k 0s and k 1s as its entries. We can then count these.

Let the kth catalan number be Ck, which is the number of 132-avoiding permu-

tations of length k. Then s2km(1324) is at least Cm−1
k

(
2k
k

)2m
.

Pick any small real 1 > ε′ > 0. From Stirling’s formula, we see that we can find

K large enough such that for any k > K, both Ck and
(
2k
k

)
are greater than (2−ε′)2k.

Now we can pick M large enough that for m > M , (2− ε′)m−1 > (2− 2ε′)m.
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Then we have that

Cm−1
k

(
2k

k

)2m

> (2− 2ε′)2km(2− ε′)4km

which means

s2km(1324) > (8− 16ε′ + 10ε′2 − 2ε′3)2km

Now, for any real ε > 0, we can pick ε′ small enough such that ε > 16ε′− 10ε′2 +

2ε′3.

This gives s2km(1324) > (8−ε)2km when k > K and m > M for some sufficiently

large K and M .

Then limn→∞
Ln

sn(1324)
is 0 for any L < 8.

Since we know that limn→∞ sn(1324)1/n exists, we have

Theorem 21. limn→∞ sn(1324)1/n ≥ 8.

In order to improve the bound given by this approach, one might try expanding

the subset of 1324-avoiding permutations counted by allowing more boxes to be

filled, or by counting more of the permutations that can fit within those boxes. For
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example, notice that the blue boxes in Figure 2.3 contain only descending points.

This omits many possible 1324-avoiding permutations. If we found a way to put

in a 213-avoiding permutation instead, in such a way as to avoid ascents causing a

1324 pattern to form, the bound might be improved.
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Chapter 3

Shape

3.1 Normalised shape

Suppose we normalised the length n shape of a pattern π to fit in a unit square.

What will the pattern of points look like? Will they converge to a limiting shape

in some sense? We will make such notions more precise later on.

Recent work has studied this for certain classes of permutations. In 2014, Dokos

and Pak [9] studied the shape of doubly alternating Baxter permutations, and Miner

and Pak [14] studied the shape of 123-avoiding permutations and 132-avoiding per-

mutations.

The methods used involve a good understanding of the enumeration of the per-
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mutations under consideration, so the techniques do not appear to transfer to the

1324-avoiding case, where we are still very far from an exact enumeration. Nonethe-

less, the questions they answered about the shape of those permutation classes are

also those that we would like to ask for 1324-avoiding permutations.

In the case of 123-avoiding permutations, for example, what Miner and Pak

showed was that the points on the shape decay exponentially as you move away

from the anti-diagonal, and can describe in some detail what happens close to the

anti-diagonal as well. Not knowing the enumeration for the 1324-avoiding case, we

will nonetheless be able to prove that there is exponential decay in a region close

to the corners.

Estimates of shapes corresponding with various lengths, obtained using a Monte

Carlo Markov Chain (MCMC) method, are very suggestive of what a limiting shape

would look like, as well as where the points would be concentrated in a typical 1324-

avoiding permutation.

The idea of the MCMC method is to start with some 1324-avoiding permutation

of length n, then pick an integer between 1 and n uniformly at random, and swap

the element at that position with another one, also chosen uniformly at random.

The new permutation is checked for 1324 patterns and reverted to the previous
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one if one is found. The process is then repeated. The probability of picking a

permutation converges to the uniform distribution. After a certain large number of

such steps, a permutation is saved, and after that permutations are saved at regular

intervals of steps.

The saved permutations are then combined to form a picture that approximates

the shape of length n 1324-avoiding permutations, with darker spots representing

greater numbers of permutations with a point at that location. Figure 3.6 shows

one such picture for n = 350.

Figure 3.1: Distribution of points for n = 350.

Figures 3.3, 3.4, 3.5, and 3.6, show the midpoints of the arcs when viewed diag-
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Figure 3.2: Distribution of points for n = 200, with a sample permutation

onally, as red lines. The green lines in those figures show the limits of the middle

80 percent of the points of the lower arc. The arcs appear that they might be con-

verging slowly as n increases. This raises a few questions. First, does this converge

to the anti-diagonal? That is to say, if we look at a point on the normalised shape,

does the density of points in that neighbourhood go to 0 as n increases? Since the

shape SH1324(n) has entries that sum to n, and area increases quadratically, we may

make this conjecture more precise as follows.

Conjecture 6. For any real x and y in (0, 1], x+ y 6= 1,

limn→∞ nSH1324(n)dxne,dyne = 0.

Even if this is not true, we may instead ask for which x and y is the above true.
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Figure 3.3: Distribution of points for n = 50, with arcs

Figure 3.4: Distribution of points for n = 100, with arcs

The main result, shown in the next section, will answer this for areas around two

corners.

If it does not converge to the anti-diagonal, does it nonetheless converge to some

limit shape?

Conjecture 7. For any real x and y in (0, 1], limn→∞ nSH1324(n)dxne,dyne exists.

If they exist, what are they? An even harder question is: How fast does
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Figure 3.5: Distribution of points for n = 200, with arcs

Figure 3.6: Distribution of points for n = 333, with arcs

nSH1324(n)dxne,dyne decay away from those points (x, y) for which the limit is nonzero,

with respect to x and y?

Looking at Figure 3.2, it appears that typical 1324-avoiding permutations are

made up of a lower 132-avoiding arc, an upper 213-avoiding arc, and a scattering of

points in between. This is not entirely surprising given the way that 1324-avoiding

permutations can be separated into a 132-avoiding part and a 213-avoiding part,
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as Claesson, Jelinek, and Steingrimsson showed [8]. The points between the arcs

are arranged in a few thin ascending lines. This makes sense, since if you had a

descending pair close to each other in the middle, it would be easy to point a point

on each of the arcs to complete a 1324 pattern.

This can also be connected to the top insertion scheme. When building up a

given permutation of length n using top insertion, the location of the kth insertion

can be seen by looking at where the element in the kth row is relative to the bottom

k − 1 rows. We notice that as the gap between the arcs grow, it means that we

have many more valid slots to insert. Then our initial segment must be growing

well beyond the growth rate.

This may seem counterintuitive at first, but this whole process is conditioned

on ending up with a 1324-avoiding permutation of length n uniformly at random.

While those permutations of length n or length about n/2 are likely to have short

initial segments if we pick them uniformly among 1324-avoiding permutations of

the same length, the permutations with long initial segments have more children.

This means that the ancestors of the typical length n permutation are more likely

to have longer initial segments.

This could present another angle of attack to this problem. If we can discover
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some relation between how small a proportion of permutations have longer initial

segments versus the children they can have, and make it precise, it may be possible

to bound the distance between the upper and lower arcs.

We now turn to the main result on shape.
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3.2 Exponential decay at the corners

In this section I will consider the normalised shape, consisting at each point (i, j)

of the proportions of the set of 1324-avoiding permutations of length n that have

π(i) = j.

Definition 21. The normalised shape of π-avoiding permutations of length n is

the function NSHπ,n on (0, 1]X(0, 1] that satisfies NSHπ,n(x, y) = SH1324(n)dxne,dyne.

I will show that at least a certain part of this normalised shape near the bottom-

left and top-right corners is “empty” in the limit, in the sense that the proportion

of permutations with a point at a particular position in that region decays to 0

exponentially. This also implies that the proportion of points over such a region

in the normalised grid decays exponentially, as the corresponding area in the un-

normalised shape increases only quadratically. This will be shown for the bottom-

left corner, with the other corner following by symmetry.

Definition 22. A corner point of a permutation is a point that does not have any

other points to its bottom-left.

That is to say, (i, π(i)) is a corner point if and only if there does not exist any

j < i s.t. π(j) < π(i). In other words, corner points are left-to-right minima.

Now we want to rigorously pin down which permutations a position in the nor-

malised shape is associated with, so that we can count them and examine what
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happens in the limit.

For positive integers a, b, let fn(a, b) be the number of length n 1324-avoiding

permutations with a corner point at (a, b), and let Fn(a, b) = fn(a, b)/sn(1324) be

the proportion of such permutations.

Let gn(a, b) be the number of length n 1324-avoiding permutations with a point

at (a, b), and likewise let Gn(a, b) = gn(a, b)/sn(1324). This is just the shape in

function form, for notational convenience for the purposes of this section.

Let F ′n(a′, b′) be the “normalised” version of Fn(a, b). That is to say, F ′n(a′, b′) =

Fn(a, b), where a′, b′ are in (0, 1] and a = da′ne and likewise for b′. Normalised

versions of the others are defined similarly. In summary,

Definition 23. For positive integers a, b, and a′, b′ in (0, 1],

fn(a, b) = |{σ ∈ Sn(1324)|(a, b) is a corner point of σ}|.

gn(a, b) = |{σ ∈ Sn(1324)|σ(a) = b}|.

Fn(a, b) = fn(a, b)/sn(1324).

Gn(a, b) = gn(a, b)/sn(1324).

F ′n(a′, b′) = Fn(da′ne, db′ne).

G′n(a′, b′) = Gn(da′ne, db′ne).

Notice that G′n is NSH1324,n. I first bound gn(a, b) in terms of functions of the
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form fn(i, j).

Lemma 22. gn(a, b) ≤ fn(a, b) +
∑

i<a,j<b fn(i, j)

Proof. Suppose a length n 1324-avoiding permutation π has a point at (a, b). Then

either (a, b) is a corner point, or there is at least one point (c, d) with c < a and

d < b. Pick the point with the smallest first coordinate, and this is a corner point

of π.

Every permutation counted by gn(a, b) is then counted by either fn(a, b), or at

least one of fn(i, j) for i < a, j < b.

Since we don’t know the exact growth rate of 1324-avoiding permutations, known

lower bounds can be used.

Lemma 23. If limn→∞ sn(1324)1/n = c, and H(n) in o(Cn) exists such that C <

c and fn(i, j) < H(n) for all i ≤ a′n + 1, j ≤ b′n + 1, then G′n(a′, b′) decays

exponentially to 0.

Proof. The number of pairs (i, j) with i < a′n + 1, j < b′n + 1 is less than n2.

Let a = da′ne and b = db′ne. Then from Lemma 22, gn(a, b) < n2H(n). Since

n2H(n) is in o((C + ε)n) for any ε > 0, there exists positive d < 1 such that

G′n(a′, b′) = gn(a, b)/sn(1324) is in o(dn).
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So the better the lower bound to the “growth rate” C is known, the higher the

bound H(n) can be. This would yield a larger area over which G′ decays exponen-

tially, using this method.

Figure 3.7: Counting fn+1(a+ 1, b+ 1)

Now we proceed to bound fn+1(a+ 1, b+ 1).

Lemma 24. fn+1(a+1, b+1) ≤ dadb
(n−b)!(n−a)!(2n−2a−2b)!
a!b!(n−a−b+1)!(n−a−b)!3 , where dk denotes sk(1324).

Proof. We divide the grid into four quadrants as shown in Figure 3.7, the part that

is to the bottom-left of (a+ 1, b+ 1), the part that is to the top-right, etc. Suppose

a permutation has a corner point at (a + 1, b + 1). Then the bottom-left quadrant
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must be empty, the top-left and bottom-right quadrants must each be 1324-avoiding,

and the top-right quadrant must be 213-avoiding, since any 213 pattern there would

form a 1324 pattern with the point at (a+ 1, b+ 1). So fn+1(a+ 1, b+ 1) is at most

the number of permutations that satisfy these conditions.

Note that since there are no points in the bottom-left quadrant, there must be

a points in the top-left, and b points in the bottom-right.

There are
(
n−b
a

)
choices for which rows in the top-left quadrant contain the a

points, and da choices of permutations restricted to those rows. Thus there are(
n−b
a

)
da possible states for the top-left quadrant. Likewise we have

(
n−a
b

)
db for the

bottom-right quadrant. The rows and columns of the top-right quadrant that have

points in them are determined entirely by the choices of rows and columns in the ad-

jacent quadrants, so there are only the Catalan number Cn−a−b = (2n−2a−2b)!
(n−a−b+1)!(n−a−b)!

of choices [15]. Each such set of choices yields a unique permutation with the above

properties, and vice versa. Multiplication yields the desired result.

This bound is likely to be loose, whereas the following bounding is relatively

sharp, at least for the purposes of the main theorem of this section.
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Given that f is 0 if a+ b ≥ n, we restrict our attention to n− a− b > 0.

We now turn this bound into a form more suited for our purposes by using

well-known bounds to convert the factorials into powers as follows.

Lemma 25. fn+1(a + 1, b + 1) ≤ n3/2
(
ca
′+b′4(1−a′−b′)

(
(1−b′)(1−b′)(1−a′)(1−a′)

a′a′b′b′ (1−a′−b′)2(1−a′−b′)

))n
,

where a′ = a/n and b′ = b/n.

Proof. From Lemma 24, using a′ = a/n and b′ = b/n we get

fn+1(a+ 1, b+ 1) ≤ dadb
((1− b′)n)!((1− a′)n)!((2− 2a′ − 2b′)n)!

(a′n)!(b′n)!((1− a′ − b′)n)!((1− a′ − b′)n)!3

Using the relation
√

2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n,

≤ e3

8π3
dadb

(1− b′)(1−b′)n+1/2(1− a′)(1−a′)n+1/2(2− 2a′ − 2b′)(2−2a
′−2b′)n+1/2

a′a′n+1/2b′b′n+1/2(1− a′ − b′)4(1−a′−b′)n+2

n3/2

n3

(en)(1−b
′)n(en)(1−a

′)n(en)(2−2a
′−2b′)n

(en)a′n(en)b′n(en)4(1−a′−b′)n

which after cancellation and using loose bounds e < 3 and π > 3 for the constant

term at the front which won’t affect sharpness of the result, becomes

≤ (1/2)dadbn
−3/2 (1− b′)(1−b′)n+1/2(1− a′)(1−a′)n+1/2(2− 2a′ − 2b′)(2−2a

′−2b′)n+1/2

a′a′n+1/2b′b′n+1/2(1− a′ − b′)4(1−a′−b′)n+2
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now taking care of the extra “+1/2” and “+2” powers which again don’t affect

sharpness, by using the relations 1 ≥ a′, b′ ≥ 1/n and 1 ≥ 1− a′ − b′ ≥ 1/n, we see

that

≤ (1/2)dadbn
−3/2 (1− b′)1/2(1− a′)1/2(2− 2a′ − 2b′)1/2

a′1/2b′1/2(1− a′ − b′)2

(1− b′)(1−b′)n(1− a′)(1−a′)n(2− 2a′ − 2b′)(2−2a
′−2b′)n

a′a′nb′b′n(1− a′ − b′)4(1−a′−b′)n

≤ (1/2)dadbn
−3/2 2

n−1/2n−1/2n−2
(1− b′)(1−b′)n(1− a′)(1−a′)n(2− 2a′ − 2b′)(2−2a

′−2b′)n

a′a′nb′b′n(1− a′ − b′)4(1−a′−b′)n

≤ dadbn
3/2

(
(1− b′)(1−b′)(1− a′)(1−a′)4(1−a′−b′)

a′a′b′b′(1− a′ − b′)2(1−a′−b′)

)n
Since da ≤ ca as also shown by Arratia [2], and with a bit of rearranging, we

have the desired result.

Now we are ready for the main result of this section.

Theorem 26. If 4(1−a′−b′)
(

(1−b′)(1−b′)(1−a′)(1−a′)

a′a′b′b′ (1−a′−b′)2(1−a′−b′)

)
< c1−a

′−b′ for all 0 < a′ < A and

0 < b′ < B, where c = limn→∞ sn(1324)1/n, then G′n(a′, b′) decays exponentially to

0 for all 0 < a′ < A and 0 < b′ < B.
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Proof. If 4(1−a′−b′)
(

(1−b′)(1−b′)(1−a′)(1−a′)

a′a′b′b′ (1−a′−b′)2(1−a′−b′)

)
is less than c1−a

′−b′ for all a′ < A and

b′ < B, then there exists C and C ′ such that

ca
′+b′4(1−a′−b′)

(
(1−b′)(1−b′)(1−a′)(1−a′)

a′a′b′b′ (1−a′−b′)2(1−a′−b′)

)
< C ′ < C < c.

fn(a + 1, b + 1) ≤ fn+1(a + 1, b + 1), since we can form an injection from 1324-

avoiding permutations of length n with a corner point at (a + 1, b + 1) to those of

length n + 1 by sending each σ to σ′ where σ′(a + 2) = b + 2, σ′(a + 1) = b + 1,

σ′(i) = σ(i) + 1 for i < a+ 1, σ′(i) = σ(i− 1) + 1 for i > a+ 2 and σ(i− 1) > a+ 1,

and σ′(i) = σ(i−1) for i > a+2 and σ(i−1) < a+1. Visually, this adds a point at

(a + 2, b + 2) and “pushes” points to the top and right accordingly by 1. The per-

mutation thus formed is unique since it can only be formed from the permutation

obtain by the reverse process, deleting the point at (a+ 2, b+ 2). The permutation

formed has a corner point at (a + 1, b + 1) and remains 1324-avoiding, as the new

point added at (a + 2, b + 2) cannot form a 1324 pattern with (a + 1, b + 1) in it,

and if it formed a 1324 pattern with three other points, it would have to form a

1324 pattern with (a+ 1, b+ 1) in the original σ.

From Lemma 25, we see that fn(a+ 1, b+ 1) ≤ fn+1(a+ 1, b+ 1) < n3/2C ′n.

If we let H(n) = n3/2C ′n in o(Cn), then fn(i, j) < H(n) for all i ≤ a′n + 1,

j ≤ b′n + 1 where a′ < A and b′ < B. Now apply Lemma 23, and all the points to
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the bottom-left of (A,B) decay exponentially to 0.

For reasonable guesses of c, this amounts to the region below a certain curve, as

shown by the black area in Figure 3.8.

Figure 3.8: c = 9.35

As a concrete example, I will prove that this does indeed enable us to prove that

some areas decay exponentially to 0.
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Lemma 27. For x, a′, b′, a′ + b′ in (0, 1),

(1) xx is decreasing on (0, 1/e) and increasing on (1/e, 1).

(2) (1− b′)(1−b′)(1− a′)(1−a′) < (1− a′ − b′)(1−a′−b′).

Proof. (1) The first derivative is (log(x) + 1)xx which is negative on (0, 1/e) and

positive on (1/e, 1).

(2) x log(x) has first derivative (log(x) + 1) and second derivative 1/x, which is

positive on (0, 1). Since it is convex, (1 log(1)−x log(x))/(1−x) is increasing. Thus

−(1− a′) log(1− a′)
a′

>
−(1− a′ − b′) log(1− a′ − b′)

a′ + b′

and hence

−(1− a′) log(1− a′) > −a
′(1− a′ − b′) log(1− a′ − b′)

a′ + b′

Doing the same for b′ and combining them yields

−(1− a′) log(1− a′)− (1− b′) log(1− b′) > −(1− a′ − b′) log(1− a′ − b′)

Now we have

(1− a′) log(1− a′) + (1− b′) log(1− b′) < (1− a′ − b′) log(1− a′ − b′)

which gives us
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(1− b′)(1−b′)(1− a′)(1−a′) < (1− a′ − b′)(1−a′−b′)

.

Corollary 28. If 0 < a′, b′ < 1/16, G′n(a′, b′) decays exponentially to 0.

Proof. We could use the loose bound of c ≥ 8 obtained in the last section, but a

better bound was found by Albert, et al., of c ≥ 9.35. We proceed with the round

value of c ≥ 9.

We wish to show that (1−b′)(1−b′)(1−a′)(1−a′)

a′a′b′b′ (1−a′−b′)2(1−a′−b′) < (9/4)1−a
′−b′ . From Lemma 27 we

see that a′a
′
> (1/16)1/16, and likewise for b′b

′
. Similarly, (1 − a′ − b′)(1−a

′−b′) >

(7/8)7/8. Then also using (2) from Lemma 27 we get

(1− b′)(1−b′)(1− a′)(1−a′)

a′a′b′b′(1− a′ − b′)2(1−a′−b′)
<

1

a′a′b′b′(1− a′ − b′)(1−a′−b′)

<
1

(1/16)1/8(7/8)7/8

Now by brute force, we find that 0.78 = 0.05764801, which is less than 1/16.

The above is then less than 1
0.7(7/8)

< 80/49 < 2.

On the other hand, (9/4)1−a
′−b′ > (9/4)7/8. Again using brute force calculation,

(28)(47) = 4194304 < 97 = 4782969, which means that (9/4)7/8 > 2. Hence

(1−b′)(1−b′)(1−a′)(1−a′)

a′a′b′b′ (1−a′−b′)2(1−a′−b′) < (9/4)1−a
′−b′ , and by the theorem, limn→∞G

′
n(a′, b′) = 0.
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If one accepts the validity of computer calculation, then this can easily be further

improved, to beyond 1/10. Such calculation yields

1

a′a′b′b′(1− a′ − b′)(1−a′−b′)
<

1

(1/10)1/5(4/5)4/5
= 1.89...

which is less than (9.35/4)1−a
′−b′ > (9.35/4)4/5 = 1.97....

If c has a higher value than now known, the area where we know G′n(a′, b′) decays

exponentially to 0 will likewise be increased. Figures 3.9 and 3.10 show the areas

for c = 10 and c = 11 respectively.

Figure 3.9: c = 10

61



Figure 3.10: c = 11
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[7] Bóna, Miklós. “A new record for 1324-avoiding permutations.” European Jour-

nal of Mathematics 1.1 (2015): 198-206.
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