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Molecular and Cellular Approaches Toward Understanding Dynein-
Driven Motility

Abstract
Active transport is integral to organelle localization and their distribution within the cell. Kinesins, myosins
and dynein are the molecular motors that drive this long range transport on the actin and microtubule
cytoskeleton. Although several families of kinesins and myosins have evolved, there is only one form of
cytoplasmic dynein driving active retrograde transport in cells. While dynactin is an essential co-factor for
most cellular functions of dynein, the mechanistic basis for this evolutionarily well conserved interaction
remains unclear. Here, I use single molecule approaches with purified dynein to reconstitute processes in vitro,
and implement an optogenetic tool in neurons to further dissect regulatory mechanisms of dynein-driven
transport in cells. I demonstrate for the first time, at the single molecule level, that dynactin functions as a
tether to enhance the initial recruitment of dynein onto microtubules but also acts as a brake to slow the
motor. I then extend this work in neurons to understand regulation of the dynein motor at the cellular level.
Neurons are particulary dependent on long-range transport as organelles and macromolecules must be
efficiently moved over the extended length of the axon and further, have mechanisms in place for the
compartment-specific regulation of trafficking in axons and dendrites. I use a light-inducible dimerization tool
to recruit motor proteins or motor adaptors to organelles in real time to examine downstream effects of
organelle motility and compartment-specific regulation of motors. I find that while dynein works efficiently in
both axons and dendrites, kinesins are differentially regulated in a compartment-specific manner. I further
demonstrate that dynein-driven motility in neurons is largely governed by microtubule orientation and
requires microtubule dynamics for efficient navigation in axons and dendrites. Together, this work sheds light
on the molecular and cellular mechanisms of dynein function both in vitro and in vivo using a combination of
approaches. My findings converge to a model wherein dynactin enhances the recruitment of dynein onto
microtubule plus ends, leading to efficient minus-end directed motility of dynein. This becomes especially
critical in neuronal growth cones and dendrites owing to the large number of highly dynamic microtubules in
these compartments.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Biology

First Advisor
Erika L. Holzbaur

Subject Categories
Biophysics | Cell Biology | Molecular Biology

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1595

http://repository.upenn.edu/edissertations/1595?utm_source=repository.upenn.edu%2Fedissertations%2F1595&utm_medium=PDF&utm_campaign=PDFCoverPages


 

MOLECULAR AND CELLULAR APPROACHES TOWARD 

UNDERSTANDING DYNEIN-DRIVEN MOTILITY 

 

Swathi Ayloo 

 

A DISSERTATION 

in 

Biology 

Presented to the Faculties of the University of Pennsylvania 

In Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

2016 

 

Supervisor of Dissertation  

_______________________________ 

Erika L.F. Holzbaur, PhD, Professor of Physiology 

 
Graduate Group Chairperson 

_______________________________ 

Michael A. Lampson, PhD, Associate Professor of Biology 

 

 

Dissertation Committee 

Erfei Bi, PhD, Professor of Cell and Developmental Biology 

E. Michael Ostap, PhD, Professor of Physiology 

Tatyana Svitkina, PhD, Professor of Biology 

Michael A. Lampson, PhD, Associate Professor of Biology 



 
 
 

 

 

 

 

 

 

MOLECULAR AND CELLULAR APPROACHES TOWARD UNDERSTANDING 

               DYNEIN-DRIVEN MOTILITY 

 

COPYRIGHT 

2016 

Swathi Ayloo



iii 
 

ACKNOWLEDGMENT 

 

This work would not have been possible without the support and help from several 

people. I would first like to acknowledge my advisor, Erika Holzbaur for her wonderful 

mentorship. She has always held me to high standards and constantly challenged me to 

think deeply about my science. She has always encouraged me and I greatly appreciate all 

the opportunities she provided me with, ensuring my success. Thank you, Erika, for your 

faith in me and teaching me several things throughout my graduate training. I would also like 

to thank my thesis committee members: Erfei Bi, Mike Ostap, Tanya Svitkina and Mike 

Lampson for their insights and advice. Special thanks to Mike Ostap and Mike Lampson for 

terrific collaborations on both my projects. Both of them were instrumental in providing key 

reagents and scientific advice which made this thesis work possible.   

I would especially like to thank all the past and current members of the Holzbaur lab: 

Mariko Tokito for making DNA constructs and for all the endless conversations she had with 

me about protein purification and several other biochemical assays; Karen Wallace for her 

assistance with mouse work; Adam Hendricks who first introduced me to single molecule 

assays and was my go-to person for all things biophysics; Meredith Wilson, Betsy McIntosh, 

Alison Twelvetrees, Amy Ghiretti, Mara Olenick and Eva Klinman for their friendship and for 

putting up with several of my random bouts of craziness.  

Special thanks to Sandra Maday who has been a great friend and has made this 

journey a lot more fun. I have learned so much from Sandy about data analysis, giving talks 

and scientific writing. Besides the scientific stuff, I thoroughly enjoyed our late-night working 

sessions motivating each other, hour-long conversations about random things, sometimes 

even as late as 3 am and more recently our tea breaks. Thank you Sandy for being there for 

me through everything and I will truly miss you. 



iv 
 

I would also like to thank Aditya Dodda and Ed Ballister for their fantastic 

collaborations. Aditya spent several hours and days looking at my data to develop new ways 

to analyze it. What started out with Aditya fixing errors in the basic code I wrote, turned into 

him developing new algorithms and simulations for my data. Ed Ballister developed the light-

inducible dimerization system and was the first one to think about applying it to motors. 

Working with him was a lot of fun and without him, my second project would never exist.  

I would also like to acknowledge the Pennsylvania Muscle Institute (PMI) at Penn, 

especially Mike Ostap, Yale Goldman, Katya Grishchuck and their lab members. Being part 

of the PMI gave me access to several key resources and opportunities. I always enjoyed our 

journal clubs and learned how to think about science through these meetings. The PMI 

community made me feel at home and inculcated a sense of belonging in me.  

Big thanks to all my friends in Boston who was my family away from home. Needless 

to say, I am quite excited to be surrounded by them the next few years. Their friendship 

through the years, since my undergrad days has been invaluable. I had a lot of fun with you 

guys! 

I am grateful to all my family members – parents, uncle and aunt, my siblings and my 

cousins. They were always there for me and made everything possible for me. I would not be 

where I am today without them. Thank you for believing in me and giving me the freedom to 

pursue what I wanted.  

Finally, I would like to thank Rama, my strength and my pillar of support.  

 



v 
 

ABSTRACT 

 

MOLECULAR AND CELLULAR APPROACHES TOWARD UNDERSTANDING 

DYNEIN-DRIVEN MOTILITY 

Swathi Ayloo 

Erika L.F. Holzbaur 

 

Active transport is integral to organelle localization and their distribution within the 

cell. Kinesins, myosins and dynein are the molecular motors that drive this long range 

transport on the actin and microtubule cytoskeleton. Although several families of kinesins 

and myosins have evolved, there is only one form of cytoplasmic dynein driving active 

retrograde transport in cells. While dynactin is an essential co-factor for most cellular 

functions of dynein, the mechanistic basis for this evolutionarily well conserved interaction 

remains unclear. Here, I use single molecule approaches with purified dynein to reconstitute 

processes in vitro, and implement an optogenetic tool in neurons to further dissect regulatory 

mechanisms of dynein-driven transport in cells. I demonstrate for the first time, at the single 

molecule level, that dynactin functions as a tether to enhance the initial recruitment of dynein 

onto microtubules but also acts as a brake to slow the motor. I then extend this work in 

neurons to understand regulation of the dynein motor at the cellular level. Neurons are 

particulary dependent on long-range transport as organelles and macromolecules must be 

efficiently moved over the extended length of the axon and further, have mechanisms in 

place for the compartment-specific regulation of trafficking in axons and dendrites. I use a 

light-inducible dimerization tool to recruit motor proteins or motor adaptors to organelles in 

real time to examine downstream effects of organelle motility and compartment-specific 

regulation of motors. I find that while dynein works efficiently in both axons and dendrites, 
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kinesins are differentially regulated in a compartment-specific manner. I further demonstrate 

that dynein-driven motility in neurons is largely governed by microtubule orientation and 

requires microtubule dynamics for efficient navigation in axons and dendrites.  Together, this 

work sheds light on the molecular and cellular mechanisms of dynein function both in vitro 

and in vivo using a combination of approaches. My findings converge to a model wherein 

dynactin enhances the recruitment of dynein onto microtubule plus ends, leading to efficient 

minus-end directed motility of dynein. This becomes especially critical in neuronal growth 

cones and dendrites owing to the large number of highly dynamic microtubules in these 

compartments. 
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CHAPTER 1:  Introduction 

 

I.  Intracellular Transport – An Introduction 

 

Cellular organization of macromolecules and organelles in space and time is critical 

for cellular function. Accurate localization of organelles is often achieved by the process of 

intracellular transport. Initial experiments by George Palade and colleagues in pancreatic 

exocrine cells, professional secretory cells, laid the foundation for intracellular transport. This 

work included pulse-chase experiments in vivo (Caro and Palade, 1964) followed by pulse-

chase in in vitro tissue slices (Jamieson and Palade, 1967a, 1967b) which demonstrated that 

proteins shuttled from one compartment to another. These experiments also showed that 

intracellular transport requires energy, as absence of ATP synthesis caused proteins to 

remain in the endoplasmic reticulum (Jamieson and Palade, 1968), an intriguing finding at 

the time. Evidence from electron microscopy and other studies in the next few years 

suggested that the protein transport occurred via vesicular trafficking (Palade, 1975). The 

discovery of clathrin (Pearse, 1976) followed by elegant work with cell-free systems (Freis 

and Rothman, 1980) and yeast genetics quickly established the players involved in the 

secretory trafficking pathway (reviewed in Rothman, 1994).  

Although initial work using anti-mitotic agents like colchicine indicated a role for 

microtubules in intracellular transport (Williams and Wolff, 1972; LeMerchand et al., 1973), it 

was not until the 1980s, that the evidence for this was fully established (reviewed in section II 

of this chapter). Following this, molecular motors were discovered (reviewed in section III 

and IV) which explained the previous results of intracellular trafficking requiring energy. 
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We now know that molecular motors kinesins and cytoplasmic dynein drive long 

range transport of vesicles along microtubules. Most kinesins move toward the microtubule 

plus ends and dynein moves towards the minus ends of microtubules. Further, while several 

families of kinesins have evolved for specialized functions, there is only form of cytoplasmic 

dynein driving retrograde transport.  

Dynactin (reviewed in section III) is a co-factor that has been shown to be involved in 

almost every cellular function involving dynein. Although the importance of dynactin is well 

established, the mechanistic basis for dynein-dynactin interaction has remained 

controversial. In this thesis, I first focus on dissecting the role of dynactin in dynein-based 

motility using single molecule approaches (Chapter 2). I then extend this work by studying 

dynein-based transport in neurons using a recently developed light-inducible dimerization 

tool (Chapters 3 and 4). Neurons are a great model system to study transport (reviewed in 

section V) owing to the (i) the large length scale over which transport has to be executed 

which makes it an attractive system to dissect out regulatory pathways and (ii) compartment-

specific mechanisms to regulate trafficking into and within axons and dendrites. Together, 

using a combination of approaches, this body of work highlights regulatory mechanisms of 

the dynein motor both in vitro and in vivo.   
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II.  The Microtubule Cytoskeleton  

 

The cytoskeleton is a dynamic network of cytoplasmic filaments that maintains cell 

shape, enables cellular motion and plays important roles in intracellular transport and cell 

division. The cytoskeleton provides a mechanical framework and structural integrity to the 

cell. The diverse activities of the cytoskeleton depend on three types of protein filaments - 

actin filaments, microtubules and intermediate filaments. Each type of filament is formed 

from a different protein subunit: actin for actin filaments, tubulin for microtubules and a family 

of related fibrous proteins for intermediate filaments. Actin and tubulin have been especially 

highly conserved throughout the evolution of eukaryotes. Each of these cytoskeletal proteins 

assemble into distinct linear filaments which serve as tracks for intracellular transport. As the 

focus of my project is microtubule-based transport, the next set of sections will discuss this in 

greater detail.  

 Early work on microtubule structures came from transmission EM studies and 

aldehyde fixation methods (Fawcett and Porter, 1954; Sabatini et al., 1963). The first 

physical evidence of these structures was shown by Inoue and co-workers in sea urchin 

eggs using polarization microscopy (Inoue and Dan, 1951). They also established through a 

series of experimental perturbations (Inoue and Sato, 1967) that the microtubule structure 

seen during mitosis was not an artifact of fixation. It was these set of experiments that 

provided convincing evidence that microtubule polymerization dynamics can indeed pull 

chromosomes apart, a model which still holds.  

Around the same time, pioneering work from Ed Taylor and his students identified 

the target of colchicine. Colchicine literature at the time was confusing as addition of 

colchicine not only inhibited mitosis but also prevented intracellular transport (Freed, 1965) 
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and disrupted the formation of myotubes in chick muscle (Okazaki and Holtzer, 1965). A 

concern at the time was colchicine had off-target effects. However, elegant biochemistry 

work established tubulin as the target of colchicine and it was found abundantly in dividing 

cells, cilia and brain tissue (Borisy and Taylor, 1967a, 1967b). The abundance of this protein 

made it easy to purify and subsequent biochemical work from various labs identified several 

properties of these cytoskeletal structures.  

 Microtubules are composed of heterodimers of - and -tubulin.  Tubulin 

heterodimers form linear protofilaments that associate laterally and form 25 nm diameter 

hollow tubes composed of 10-15 protofilaments (usually 13) arranged in a lattice (Tilney et 

al., 1973).  These individual protofilaments have longitudinal as well as lateral contacts 

making them rigid structures necessary for their cellular function. Microtubules are polarized 

filaments with the -tubulin being the stable minus-end and the -tubulin end is the dynamic 

plus-end (Mitchison, 1993). Although ‘treadmilling’ was proposed as a model to explain 

microtubule polymerization (Margolis and Wilson, 1978), in vitro work described a novel 

phenomenon of dynamic instability - where microtubules frequently switch between periods 

of slow growth, called rescue and phases of rapid depolymerization, termed catastrophe 

(Mitchison and Kirschner, 1984). This was subsequently confirmed in real time by other 

groups (Horio and Hotani, 1986; Walker et al., 1988). 

 Dynamic instability is fundamental to the biological functions of microtubules. It is this 

phenomenon that allows microtubules to rapidly organize its cytoskeletal network both 

spatially and temporally in response to cellular cues and allows microtubule to search 

effectively for target sites.  Dynamic instability is possible because of the enzymatic activities 

of the tubulin monomers. Microtubule assembly involves two steps – nucleation and 

elongation. In vitro, tubulin concentration above a certain threshold will promote 

polymerization via spontaneous nucleation. The elongation of the polymer is dependent on 
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the nucleotide state of the tubulin subunits. Tubulin heterodimers co-purify with guanine 

nucleotide (Weisenberg et al., 1968). Both - and -tubulin monomers bind guanosine 

triphosphate (GTP) in solution. Upon incorporation into the polymer, the GTP in the -tubulin 

is hydrolyzed to guanosine diphosphate (GDP) while the GTP in the -tubulin is not 

(Spiegelman et al., 1977). Soluble tubulin has a very slow rate of GTP hydrolysis. However, 

upon incorporation into the polymer, this rate is very high which likely leads to disassembly of 

the polymer (David-Pfeuty et al., 1977). Thus, the hydrolysis of GTP to GDP at the plus-end 

of microtubule is thought to promote depolymerization of the filament while the subunits 

when in GTP state resist depolymerization. Pioneering work from Walker et al., 1988 

established that polymerization was dependent on tubulin concentration while 

depolymerization was independent of tubulin concentration. Although this work laid the 

foundation for several other experiments and models to explain each step in dynamic 

instability, we lack a unified understanding of this process (reviewed in Gardner et al., 2008).  

 

Figure 1.1 Schematic illustrating dynamic instability of microtubules 

 
 Interestingly, rates of microtubule dynamics for individual microtubules can be 

significantly different (O’Brien et al., 1990; Drechsel et al., 1992) and cells have no slow 

nucleation phases owing to the specialized structures evolved in animal cells called 

centrosomes. Centrosomes or the microtubule organizing center (MTOC) which is generally 

located near the nucleus is the site of microtubule nucleation. In most cells, microtubules 

emanate from the MTOC in a radial fashion with the plus-ends oriented toward the cell 
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periphery. The MTOC is composed of several proteins including -tubulin, pericentrin and 

ninein (reviewed in Kollman et al., 2011).  

 A growing body of work has now identified and investigated the roles of several 

proteins (motor proteins, microtubule associated proteins, severing proteins, nucleating 

proteins, reviewed in next sections) that regulate the properties of microtubules in vivo. 

Microtubules are constantly remodeled in the cell by the action of several proteins and this is 

necessary for the diverse cellular functions they are involved in. Some of these concepts will 

be reviewed in the next set of sections.  
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III.  Kinesin Motors 

 

 Studies in early 1980s using extruded axoplasm of giant squid axons established that 

microtubules provided the tracks for bidirectional vesicle movement along the axon between 

the neuronal cell body and synaptic termini (Allen et al., 1982; Brady et al., 1982). Shortly 

thereafter, kinesin-1 was identified as an ATPase that moves along the microtubule plus-

ends (Vale et al., 1985a, 1985b, 1985c). Since this initial discovery, the kinesin family now 

has expanded to include 45 different kinesins (Hirokawa et al., 2009) classified into 14 

different classes with commonly agreed nomenclature (Lawrence et al., 2004).   

Structurally, kinesins have a motor domain that binds to microtubules and also 

hydrolyzes ATP (adenosine triphosphate), neck-linker which co-ordinates the two motor 

heads and a tail which binds to cargos and adaptors (Hirokawa, et al., 1989). Based on their 

structure, kinesins are generally classified into three types: N-terminal kinesins which have 

the motor domain at the N-terminus and are generally plus-end directed; C-terminal kinesins 

which move toward the microtubule minus-end and function in mitosis and M-kinesins which 

have the motor domain in the middle as in kinesin-13 family which are known to 

depolymerize microtubules. Functionally, kinesins can be categorized into three broad 

classes: kinesin that power organelle transport, mitotic kinesins and kinesins that alter 

microtubule dynamics. 

Kinesin-1 motors are heterodimers consisting of two kinesin heavy chains (KHC) and 

two kinesin light chains (KLC). The KHC of kinesin-1 exists in three forms, KIF5A, KIF5B and 

KIF5C. While KIF5B is ubiquitous, KIF5A and KIF5C are unique to neurons (Kanai et al., 

2000). The motor domain across kinesins is generally conserved and differences in cellular 

function are largely due to structure outside of the motor domain. Some kinesin-2 motors can 
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form heterotrimers composed of KIF3A, KIF3B and a kinesin-associated protein, Kap3 (Cole 

et al., 1993). Kinesin-3 family motors do not dimerize efficiently (Okada et al., 1995) but 

when dimerized artificially in vitro, are processive motors (Okada and Hirokawa, 1999; 

Tomishige et al., 2003) and it is now thought that they undergo cargo-mediated dimerization 

in vivo (Soppina et al., 2014). Kinesin-5 family motors are homotetrameric (Kashina et al., 

1996) that can cross-link and slide anti-parallel microtubules (Kapitein et al., 2005).  MCAK 

and other kinesin-13 familiy proteins do not move processivley on microtubules. Rather, they 

diffuse along the length of the microtubule and remove tubulin subunits from the ends acting 

as depolymerases (Hunter et al., 2003). In contrast, Ncd which is a kinesin-14 family 

member, diffuses along microtubules in a tail-dependent manner and slides anti-parallel 

microtubules (Fink et al., 2009).  

Much of our understanding of the mechanochemical properties of kinesins comes 

from the conventional kinesin, kinesin-1. Kinesin-1 has been shown to walk in a hand-over-

hand motion along the length of the microtubule protofilament in 8 nm steps (which is the 

length of the tubulin heterodimer), going through one hydrolysis cycle per step (Svoboda et 

al., 1993; Schnitzer and Block; 1997; Yildiz et al., 2004). This stepping mechanism indicates 

regulated co-ordination of the biochemical cycles of both motor heads which allows the front 

head to remain bound to the microtubule while the rear head detaches. Single molecule 

studies have demonstrated that kinesin-1 has high velocities ranging from 0.5-1.0 µm/s and 

high stall forces of about 5-7 pN (Visscher et al., 1999), properties which make it an efficient 

motor for long-range transport. Consistent with this, recent studies have shown that cellular 

cargo are driven by relatively small teams of kinesin motors (Hendricks et al., 2012; Rai et 

al., 2013). 

The acitivity of kinesins is tightly regulated in cells via an autoinhibition mechanism. 

Initial in vitro experiments with full length KHC showed little to no motility. However, 
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truncated versions of the KHC with deleted tail exhibited robust motility (Freidman and Vale, 

1999). This hinted at an autoinhibitory mechanism which in fact was consistent with the initial 

micrographs of kinesin structure where in some cases, the tail folded back onto the motor 

domain (Hirokawa et al., 1989). A short basic motif, IAK in the KHC tail is sufficient to bind to 

the motor domain (Stock et al., 1999) and subsequently it was shown that full length KHC 

had several fold lower ATPase activity than the truncated KHC lacking the IAK motif 

(Hackney and Stock, 2009). This led to the suggestion that the tail of KHC could be folding 

back onto the ATPase site of the motor, preventing its binding to microtubules (Dietrich et al., 

2008). Crystal structures of the kinesin-1 motor domain with and without the tail domain 

indicated that the tail cross-links the motor domain which potentially inhibits ADP release, 

thus preventing movement of the motor heads (Kaan et al., 2011). K560, constituting the first 

560 amino acids of the kinesin heavy chain is now routinely used as a constitutively active 

form of the kinesin-1 motor. It is now thought that several kinesins are autoinhibited which 

serves as a general regulatory mechanism for kinesins (reviewed in Verhey and Hammond, 

2009).  

In cells, a simple mechanism which relieves autoinhibition is binding of the motor to 

cargos via adaptors and scaffolding proteins. Several adaptors have now been shown to 

bind to the tail of kinesin-1 which confers cargo-selectivity (reviewed in Fu and Holzbaur, 

2014). Another form of regulation of motors is tubulin modifications (which will be reviewed in 

section IV) which alter the binding capacities and processivity of kinesin motors. Thus, the 

fundamental structural differences between the different kinesin families as described above 

in conjunction with these regulatory mechanisms provide the cell with the specificity required 

for kinesin-driven transport.   
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IV.  Cytoplasmic dynein 

 

 Long before the discovery of kinesins, dynein was first discovered in the cilia of 

Tetrahymena (Gibbons, 1963). It was quickly shown that dynein is an ATPase that drives 

microtubule sliding in the cilia (Gibbons and Rowe, 1965). Very quickly, sixteen genes were 

identified encoding the dynein heavy chain with fourteen of them functioning in the axoneme 

driving cilia beating, one of them is involved in the intraflagellar transport and another one 

that encodes for the cytoplasmic dynein that drives retrograde transport in cells (Wickstead 

and Gull, 2007). 

 Cytoplasmic dynein (referred to as dynein from now on) was initially identified as 

MAP1C, a microtubule-ATPase which translocated microtubules in the direction opposite to 

that of kinesin (Paschal et al., 1987; Paschal and Vallee, 1987). Following these initial 

observations, it was quickly established that MAP1C was infact, the cytoplasmic analogue of 

axonemal dynein (Vallee et al., 1988). Although kinesins and myosins are structurally similar, 

dynein has a much more complicated structure (Vale and Milligan, 2000). Dynein is a ~1.6 

MDa protein complex with several subunits. The dynein heavy chain constitutes the motor 

domain, linker, tail and microtubule binding stalk. The tail is required for dimerization and 

acts as a scaffold for the other subunits of dynein – intermediate chains, light intermediate 

chains.  

 Dynein is a AAA protein which are proteins with large hexamers of ATPase domains 

(Neuwald et al., 1999). Only AAA1-4 of the motor domain have been shown to bind 

nucleotide with AAA1 being the predominant site for functional hydrolysis (Kon et al., 2004). 

AAA5 and AAA6 are thought to serve a structural role in the motor domain (Cho et al., 2008; 

Schmidt et al., 2012). Dynein’s microtubule binding site is a 15 nm stalk projecting from the 
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AAA4 (Gee et al., 1997). Recently, it has been shown that nucleotide binding to AAA1 and 

microtubule binding by the stalk are allosterically coupled explaining how hydrolysis at AAA1 

affects the binding and unbinding of the stalk to microtubules (Carter et al., 2008; Kon et al., 

2009). 

 Single molecule studies in the last decade have begun to elucidate the biophysical 

properties of dynein. Studies with recombinant yeast dynein showed that dimerization is 

necessary for processive movement (Reck-Peterson et al., 2006). Further, unlike kinesin, 

dynein can take variable step sizes of 8-32 nm with sideways stepping on adjacent 

protofilaments as well as steps toward the microtubule plus-end (Mallik et al., 2004; Ross et 

al., 2006; DeWitt et al., 2012; Qiu et al., 2012). While the heads of kinesins and myosins are 

usually tightly co-ordinated, these studies indicate that dynein stepping is not as co-ordinated 

between its heads. It is likely that this un-coordinated stepping mechanism makes dynein 

efficient in navigating obstacles such as microtubule associated proteins (MAPs) on the 

microtubule tracks (Dixit et al., 2008).  

 Mammalian dynein has a stall force of 1 pN (Mallik et al., 2004; Schroeder et al., 

2010) and moves on average at 500-1000 nm/s with a run length of about 1 µm (Mallik et al., 

2005; Ross et al., 2006; Ayloo et al., 2014). On the other hand, yeast dynein is a slower and 

a stronger motor producing stall forces as high as 7 pN (Gennerich et al., 2007). The large 

forces of yeast dynein are not surprising given that cortical dynein interacts with microtubules 

to orient the nucleus and promote nuclear migration (Carminati and Stearns, 1997; Moore et 

al., 2009). Structure studies indicate that the C-terminal domain following AAA6 is smaller in 

size in the yeast dynein (Carter et al., 2011; Kon et al., 2011). Interestingly, it is now reported 

that truncation of this C-terminal domain in the mammalian dynein converts it to a motor that 

can produce large forces (Nicholas et al., 2015) suggesting a mechanism that explains the 

differences in the yeast dynein and mammalian dynein.  
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In contrast to single molecule motion of dynein, studies have shown that beads 

coated with dynein are processive indicating dynein works efficiently in teams (King and 

Schroer, 2000; Mallik et al., 2005; Ross et al., 2006). More recently, optical trapping of 

endogenous cargos has demonstrated that dynein molecules work in teams generating large 

forces that increase linearly with motor number (Hendricks et al., 2012; Rai et al., 2013). This 

capacity of dynein to work effectively in teams likely enables it to perform the diverse cellular 

functions it has been implicated in (reviewed in Mallik et al., 2013). 

As the major minus-end directed motor in cells, dynein has been shown to transport 

several organelles including endosomes, lysosomes, mitochondria, lipid droplets. (reviewed 

in Allan, 2011). Other functions include neuronal migration (reviewed in Vallee et al., 2009), 

mRNA localization (reviewed in Holt and Bullock, 2009), Golgi positioning (reviewed in 

Yadav and Lindstedt, 2011) and also in orientation of the mitotic spindle and cell division 

(reviewed in Siller and Doe, 2009). To perform these various tasks and to achieve specificity, 

dynein relies on several adaptors that regulate its motility and function. One such ubiquitous 

adaptor is the dynactin complex highlighted in the next section.  

 

Dynactin 

Dynactin was first discovered as a soluble factor that co-purified with dynein by 

velocity sedimentation but could be separated from dynein by ion exchange (Schroer and 

Sheetz, 1991). The addition of this soluble factor to dynein enhanced dynein-driven vesicle 

motility and was suggested to be an activator of dynein motility, hence the name dynactin 

(Gill et al., 1991). Following these initial observations, several studies quickly established the 

structural details of this complex.  
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Dynactin is a 1.2 MDa complex with 11 subunits and based on its structure can be 

divided into two parts, the projecting side-arm and the Arp1 rod. The Arp1 rod is a 40 nm 

polymer made of Arp1 subunits and is flanked by CapZ on one end and p62 on the other 

(Schafer et al., 1994). The Arp1 filament was subsequently shown to be the domain of 

dynactin that interacted with most cargoes (Holleran et al., 1996; Holleran et al., 2001). The 

rest of the components making up the Arp1 rod were identified in the next few years 

(reviewed in Schroer, 2004). The flexible, projecting side-arm constitutes the largest subunit 

of the dynactin complex, p150
Glued

 which is also the site of dynein interaction (Karki and 

Holzbaur, 1995; Vaughan and Vallee, 1995). Although p150
Glued

 is the protein that binds 

dynein, the entire dynactin complex is required for dynein function as over-expression of p50, 

dynamitin which disrupts the two structural parts of dynactin results in impaired dynein 

function in cells (Echeverri et al., 1996; Burkhardt et al., 1997). 

p150
Glued

 can be divided into 3 broad functional domains – the N-terminal domain 

that binds to microtubules, independent of dynein (Waterman-Storer et al., 1995); the coiled-

coil domain in the middle which is the dynein binding site (King et al., 2003); and the C-

terminus which binds to Arp1 of the dynactin complex (Waterman-Storer et al., 1995). The N-

terminus is the CAP-Gly domain which is a canonical microtubule binding domain followed 

by a short region of basic residues. In vitro studies have shown that dynactin increases the 

processivity of dynein via this N-terminal domain (King and Schroer, 2000; Culver-Hanlon et 

al., 2006). Various studies have now shown that the N-terminal domain of p150
Glued

 enables 

the loading of the dynactin complex onto microtubule plus-ends. With the initial observation 

of p150
Glued

 co-localizing with CLIP-170 (Dujardin et al., 1998; Vaughan et al., 1999), several 

labs quickly showed that CLIP-170 localizes dynactin to microtubule plus ends via its 

interaction with EB1, microtubule plus-end binding protein (Goodson et al., 2003; 

Lansbergen et al., 2004; Watson and Stephens, 2006).  
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Figure 1.2 Schematic illustrating the dynein and dynactin complexes 

 
Studies in small, non-polarized cell types has indicated that the localization of 

dynactin at microtubule plus ends is dispensable for dynein-mediated trafficking of organelles 

(Watson and Stephens, 2006; Kim et al., 2007). This was an intriguing result given that in 

vitro studies indicated that p150
Glued

 increased the processivity of dynein via its N-terminal 

domain (Culver-Hanlon et al., 2006). On the other hand, mutations in the CAP-Gly domain of 

dynactin have been shown to cause neurodegenerative disease (Puls et al., 2003; Farrer et 

al., 2009). Further, studies in mammalian neurons and fly neurons showed that the CAP-Gly 

domain of dynactin was critical in dynein-mediated trafficking. These studies established that 

the N-terminus of p150
Glued 

is necessary for enrichment of the dynactin complex at the distal 

end of axon and this enrichment is essential for efficient initiation of dynein-driven retrograde 

transport (Moughamian and Holzbaur, 2012; Lloyd et al., 2012). In light of these conflicting 

results observed in different systems, we set out to elucidate the mechanistic basis of the 

interaction of dynein with dynactin. This is described in Chapter 2 of this thesis describing 

results that help put these previous findings in context.  
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p150
Glued

 has 32 exons (Tokito and Holzbaur, 1998). Several alternatively spliced 

isoforms of p150
Glued 

with differential exons exist in many tissues (Dixit et al., 2008). An 

isoform that is unique to the brain tissue is p135 which lacks the N-terminal CAP-Gly and 

basic domains (Tokito et al., 1996). Although this isoform cannot bind microtubules, it can 

still bind dynein and distinct dynactin complexes with either p150
Glued

 or p135 exist in the 

brain tissue. (Tokito et al., 1996). We know very little about this isoform and an attractive 

hypothesis is that p135 has a specialized function that p150
Glued

 cannot accomplish. The 

intriguing question of why neurons need this unique isoform still remains an open question.  

The first coiled-coil (CC1) domain of p150
Glued

 is the site where the dynein motor 

binds dynactin (Karki and Holzbaur, 1995; Vaughan and Vallee, 1995; King et al., 2003). 

CC1 binds the dynein intermediate chain (DIC) and over-expression of this fragment in cells 

acts as a dominant negative. CC1 competes with endogenous pools of dynactin to bind to 

endogenous dynein, thus disrupting dynein function in cells (Quintyne et al., 1999). Although 

CC1 is sufficient to bind the dynein motor, it is not sufficient to increase the processivity of 

dynein (Culver-Hanlon et al., 2006; Ayloo et al., 2014). More recently, it has been proposed 

that CC1 could exist as two helices (CC1A and CC1B) instead of one single helix as 

structure prediction algorithms indicated a break in CC1 between residues 349 through 380 

(Siglin et al., 2013; Tripathy et al., 2014). Dynein motility analysis with these individual 

helices showed that while CC1A had no effect on dynein motility, CC1B stimulated dynein 

processivity suggesting that when these fragments work together, CC1A inhibits the activity 

of CC1B (Tripathy et al., 2014). Together, these studies highlight that we still do not fully 

understand the molecular interactions of dynein with dynactin and only recent structural work 

has begun to elucidate these interactions at the molecular level (Chowdhury et al., 2015; 

Urnavicius et al., 2015). 
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The second coiled-coil (CC2) domain of the C-terminus of p150
Glued

 is the domain 

that incorporates p150
Glued 

into the rest of the dynactin complex (Waterman-Storer et al., 

1995). The rest of the C-terminus acts as a binding site for several cargo adaptors and 

scaffolding proteins. Few examples include RILP which mediates endosome motility 

(Jordens et al., 2001), Huntingtin and HAP1 (Engelender, 1997; Li et al., 1998); JIP3 (Cavalli 

et al., 2005) and JIP1 (Fu and Holzbaur; 2013). All of these proteins have been implicated in 

regulating motility of various organelles (reviewed in Fu and Holzbaur, 2014). Thus, the C-

terminus of p150
Glued

 acts as a hub for several adaptor/scaffolding protein interactions and 

this is likely a key determinant of cargo specificity for dynein-mediated organelle transport. 

 

Adaptors Regulating Motility of Dynein-Dynactin Complexes 

Recent work has shown that addition of certain adaptors to dynein-dynactin 

complexes converts the weakly processive motor to a highly processive one (McKenney et 

al., 2014; Schlager et al., 2014). One such adaptor is the Bicaudal D protein (called BICD 

from here on). BICD was initially identified in Drosophila, where mutations in this gene 

caused defective embryos (Mohler and Wieschaus, 1986). It was quickly established that 

BICD was essential for fly oogenesis and played an important role in mRNA localization 

(Claussen and Suter, 2005). Two orthologs of BICD, BICD1 and BICD2 exist in mammalian 

cells. Biochemical characterization of BICD2 revealed that it interacted with dynein-dynactin 

complexes and localized to the Golgi (Hoogenraad et al., 2001). Subsequent work 

demonstrated that the two N-terminal coiled-coil domains of BICD2 was sufficient to bind to 

both dynein and dynactin. Recruitment of this N-terminal fragment to organelles in cells 

induced dynein-mediated transport toward the centrosome (Hoogenraad et al., 2003) and 

further promoted stable interaction between dynein and dynactin complexes both in vitro and 

in vivo (Splinter et al., 2012). 
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The C-terminal portion of BICD2 has been shown to bind to various proteins that 

dictate cargo selectivity. Some examples include with Rab6 (Matanis et al., 2002) and 

Egalatarian which promotes mRNA localization (Mach and Lehmann, 1997). In addition, the 

C-terminus has also been shown to bind to the N-terminus (Hoogenraad et al., 2003; Splinter 

et al., 2012) which in turn competes with binding to dynein-dynactin complexes. This 

suggests a potential autoinhibitory mechanism in cells and indicates that BICD binds to 

dynein-dynactin only when the C-terminus is bound to cargo adaptors relieving the 

autoinhibition.  

These findings formed the basis of two recent studies which demonstrated that the 

addition of N-terminal BICD2 to single molecules of dynein-dynactin complexes makes the 

motor superprocessive in vitro, with run lengths as long as seen in vivo (McKenney et al., 

2014; Schlager et al., 2014). These results are the first to demonstrate superprocessive runs 

for mammalian dynein at the single molecule level. Few other cargo adaptors have also been 

been shown to induce superprocessive motility of dynein (McKenney et al., 2014). These 

include Hook proteins found on edosomes (Bielska et al., 2014; Zhang et al., 2014), spindly 

found on kinetochores (Griffis et al., 2007) and Rab11-FIP3 found on recycling endosomes 

(Ullrich et al., 1996; Horgan et al., 2010). The fact that multiple adaptors of dynein induce this 

robust motility of dynein-dynactin complexes indiactes that this could be a general 

mechanism for the regulation of dynein in cells and that these adaptors are likely key factors 

modulating dynein function in a cargo-specific or organelle-dependent manner. Although 

there is no conserved sequence homology among these various adaptors, a commonality is 

several coiled-coil domains present in all of them. Thus, an intriguing possibility is that a 

coiled-coil domain large enough to interact with both dynein and dynactin is sufficient to 

induce robust motility of the motor. This hypothesis has not been tested yet. Nevertheless, 

these findings with dynein indicate regulatory mechanisms previously unknown.  



18 
 

Structural Understanding of the Dynein-Dynactin Complexes 

 The large size and complexity of both dynein and dynactin made structural 

investigations of these complexes challenging. Although initial structure work provided a 

framework for our understanding of the dynein motor and dynactin (reviewed earlier in this 

chapter), it is only now that we are beginning to explore the structural aspects of these 

protein complexes in part due to technical advancements in electron microscopy (EM).   

 Two recent studies have now solved structures of dynactin using cryo-EM and both 

these studies also obtained structures of dynein bound to dynactin and the adaptor protein 

BICD2 (Chowdhury et al., 2015; Urnavicius et al., 2015). These studies provide some 

insights into how an adaptor protein can induce such robust motility of the dynein motor 

when bound to dynactin. Both these reports showed that dynactin and BICD2 bind to the tail 

of the dynein motor and have overlapping binding sites. Further, this interaction of dynein tail 

with dynactin seems to be mediated by the N-terminus of BICD2. This explains the need for 

an adapotor protein facilitating the interaction between dynein and dynactin, thus forming a 

stable complex.  

 Chowdhury et al. obtained structures of the dynein tail in complex with BICD2 and 

dynactin on microtubules and these reveal the two motor domains of dynein aligned in the 

same direction toward the microtubule minus end. The class averages of EM images 

obtained by these authors indicate that the dynein motor is poised for unidirectional motility 

when in a complex with BICD and dynactin. Urnavicius et al. structures indicate that the 

binding of BICD and dynactin to dynein induces asymmetry in the motor domains of dynein, 

which could be a mechanism to activate dynein. The authors propose that the binding of 

adaptor to dynein-dynactin complexes could relieve an auto-inhibited state of the dynein 

complex consistent with previous report indicating the auto-inhibited state of dynein 

(Torisawa et al., 2014).  
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 These two studies are the first to demonstrate structural aspects of dynein-dynactin-

adaptor complexes both on microtubules (Chowdhury et al., 2015) and off microtubules 

(Urnavicius et al., 2015). Future studies with higher resolutions structures of dynein-dynactin 

complexes with other adaptors in conjunction with single molecule motility assays will inform 

us about the differential modulation of the dynein-dynactin complexes via cargo adaptors.  

 

Dynein-Dynactin in Disease 

Mouse mutants generated by chemical mutagenesis experiments were the first 

dynein mutants that gave us insight into the role of dynein in neuronal development. The 

initial mouse mutants were Legs at odd angles (Loa), Cramping and Sprawling mice 

(Duchen, 1974; Hafezparast et al., 2003; Chen et al., 2007), all of them being mutations 

(point mutations in Loa and Cramping, deletion in Sprawling) in the tail of the dynein heavy 

chain (Dync1h1).  

The first dynein mutation to be discovered in humans was in 2010 and the phenotype 

was developmental delay and intellectual disability (Vissers et al., 2010). A subsequent study 

identified several mutations in the stalk and microtubule binding domain of dynein in patients 

with malformations of cortical development (MCD) (Poirier et al., 2013). In the last few years, 

several mutations have been identified in patients associated with sensory and motor 

neuropathy (reviewed in Schiavo et al., 2013). While some mutations are located in the 

motor domain and the stalk, several others are located in the tail highlighting the importance 

of the several interactions of the dynein tail with adaptors and co-factors.  

Mutations in the dynactin complex have also been associated with 

neurodegenerative diseases. Point mutations in p150
Glued

 of the dynactin complex have been 

shown to cause hereditary motor neuropathy and Perry syndrome, a form of Parkinsonism 
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(Puls et al., 2003; Farrer et al., 2009). These mutations are clustered in the CAP-Gly domain 

of p150
Glued

. Comprehensive characterization of these mutants with biochemical and cellular 

assays have played an important role in extending our understanding of the dynein complex 

(Levy et al., 2006; Ori-Mckenney and Vallee, 2011; Moughamian and Holzbaur; 2012). 

Another important goal would be to understand how a given mutation causes motor deficits 

but not sensory deficits and vice versa. Further studies are required to explore the selective 

vulnerability of specific neurons to these mutants, leading to neurodegenerative diseases.  
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V.  Microtubule Modifications and Microtubule Associated Proteins 

  

Microtubules are involved in several cellular processes including intracellular 

transport, cellular morphogenesis, organelle localization and cell division. Although the 

fundamental components of microtubules, the heterodimers - and -tubulin are the same 

across all eukaryotic species, microtubules in cells are extensively modified and modulated 

by various biochemical modifications and interacting proteins respectively. The modifications 

are post-translation modifications (PTMs) and the interacting proteins are called microtubule 

associated proteins (MAPs). In the previous sections I reviewed two such MAPs – kinesins 

and dynein. In this section, I will highlight the various biochemical modifications that 

microtubules undergo followed by a review of MAPs highlighting the roles PTMs and non-

motor MAPs play in establishing and marking the identity of microtubules in cells.  

 

Tubulin Tyrosination 

The first observation of tubulin tyrosination came from initial studies that incubated 

radioactive amino acids with soluble preparations from rat brains (Barra et al., 1973). The 

incorporation of tyrosine into proteins in the brain extract was several fold higher than other 

amino acids tested. This process was ATP-dependent and ribosome- and tRNA-

independent. These authors quickly found that the factor incorporating tyrosine behaved 

similar to colchicine binding tubulin in various biochemical assays (Barra et al., 1974). 

Subsequently, it was shown that the protein incorporating tyrosine was -tubulin (Arce et al., 

1975) and the tyrosine was added at the C-terminus. It is now known that -tubulin is 

generally tyrosinated by the enzyme, tubulin tyrosine ligase (TTL) (Schroder et al., 1985; 

Ersfeld et al., 1993) and acts only on - and -tubulin heterodimers (Raybin and Flavin, 
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1977). Detyrosinating enzymes act predominantly on polymerized microtubules and elegant 

experiments in cells examining microtubules right after depolymerization indicated that newly 

made microtubules are generally tyrosinated (Gundersen et al., 1987). Detyrosinated tubulin 

can be further modified to Δ2-tubulin by the removal of the glutamic acid residue which 

cannot go back to the tyrosinated form (Paturle-Lafanechere et al., 1991).  

Some initial studies that examined the correlation between various microtubule 

modifications and microtubule stability, suggested that detyrosination of microtubules 

promoted their stability (Gundersen et al., 1987; Schulze et al., 1987). However, this was not 

true in all cell types (Schulze et al., 1987) and more recently, it was shown that 

depolymerizing kinesins MCAK and KIF2, belonging to kinesin-13 family have a preference 

for tyrosinated microtubules (Peris et al., 2009; Sirajuddin et al., 2014). Thus, detyrosination 

of microtubules protects them from depolymerizing kinesins which could explain the stability 

of these microtubules.  

Like kinesin-13 motors, KIF5 or the conventional kinesin, kinesin-1 has also been 

shown to have differential preferences for tyrosinated vs detyrosinated microtubules. 

Kinesin-1 selectively binds to detyrosinated microtubules (Liao and Gundersen, 1998; Dunn 

et al., 2008) and this makes the kinesin motor domain preferentially enter the axon enriched 

with detrysoinated microtubules and hence excluded from the dendrites (Konishi and Setou, 

2009). In contrast to kinesin-1, non-motor MAPs such as CLIP-170 and p150
Glued

 that 

interact with microtubules via their CAP-Gly domain have a preference for tyrosinated 

microtubules (Peris et al., 2006). These results indicate that tyrosinated microtubules can 

efficiently recruit microtubule plus-end binding proteins. This result is also consistent with 

recent studies showing the accumulation of these CAP-Gly proteins at growth cones of 

axons that are enriched with tyrosinated microtubules (Moughamian and Holzbaur, 2012).  
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Figure 1.3 Schematic illustrating tubulin post-translational modifications (Adapted 
from Janke, 2014) 

 

A mouse knockout of the tubulin tyrosine ligase, Ttl, was lethal and mice die shortly 

after birth (Erck et al., 2005). Neurons cultured from these mice have gross alterations in the 

timeline of axon differentiation and neuronal development in vitro highlighting the importance 

of the detyrosination/tyrosination cycles of tubulin. These findings indicate that these 

abnormalities could be likely due to the dampened effect of depolymerizing motors and 

higher affinity of kinesin-1 on detyrosinated microtubules promoting axon extensions longer 

than the wild-type mice.  
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Tubulin Acetylation 

 Acetylation was the second PTM on tubulin to be discovered, first identified in the -

tubulin of Chlamydomonas on lysine40 residue (L'Hernault and Rosenbaum, 1985). Lys40 is 

located in the lumen of the microtubule polymer (Nogales et al., 1998) and hence it is 

intriguing that acteylation of microtubules can affect the interaction of any motor protein or 

MAP as these interact with microtubules on the cytoplasmic face of the polymer. Initial 

functional studies identified HDAC6 (Hubbert et al., 2002) and Sirt2 (North et al., 2003) as 

microtubule deacetylase enzymes. However, both these enzymes have several substrates 

besides microtubules alone and hence it is possible that effects downstream of altering these 

enzymes is not a direct consequence of altered microtubule modification. More recently, 

tubulin acetyltransferase (TAT) has been discovered as an enzyme that specifically acts on 

-tubulin (Akella et al., 2010). Recent work using X-ray crystallography and single molecule 

assays demonstrated that TAT does indeed enter the microtubule lumen and acetylates from 

the inside. Further, acetylation marking stable microtubules can be explained by the slow 

catalytic rate of the enzyme compared to its diffusion rate (Szyk et al., 2014).  

Similar to detyrosinated microtubules, tubulin acetylation is predominant on stable 

microtubules (Schulze et al., 1987). Neuronal studies have indicated that kinesin-1 has a 

higher affinity for acetylated microtubules (Reed et al., 2006). However, in vitro studies with 

purified components did not observe this preference for kinesin-1 (Walter et al., 2012; Kaul et 

al., 2014) suggesting that the intracellular trafficking of kinesin-1 to acetylated microtubules is 

via other interactions. Moreover, increasing the overal acetyation levels of tubulin in neurons 

did not alter the selectivity of kinesin-1 (Hammond et al., 2010). In contrast to 

detyrosination/tyrosination of tubulin, it has been harder to establish concrete cellular 

functions for tubulin acetylation.  
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Tubulin Polyglutamylation and Polyglycylation 

Another modification of tubulin discovered in the early 90s was the covalent addition 

of chains of glutamate and glycine residues added to the C-terminal tails of tubulin termed as 

polyglutamylation (Edde et al., 1990) and polyglycylation (Redeker et al., 1994) respectively. 

In contrast to the other modifications, these modifications are the addition of several amino 

acids and can occur on both - and -tubulin. While glutamylation is found everywhere, 

glycylation seems restricted to cilia and flagella (Fouquet et al., 1994).  

The high levels of polyglutamylation in neurons made possible the discovery of the 

first polyglutamylase enzyme (Janke et al., 2005). This is a multi-subunit protein complex 

with its catalytic subunit similar to the tubulin tyrosine ligase enzyme (Janke et al., 2005). 

Subsequently several other glutamylating and glycylating enzymes have been identified and 

more recently a deglutamylase enzyme has been discovered which removes the Glu side 

chains from tubulin (Rogowski et al., 2010). Although several enzymes responsible for 

glutamylation and glycylation have been identified in recent years, the spatial and temporal 

localization and function of these enzymes is still unclear.  

Biochemical studies have indicated preferential binding of Tau, a microtubule MAP 

and the kinesin-1 motor domain to polyglutamylated tubulin (Boucher et al., 1994; Larcher et 

al., 1996). Alteration of synaptic activity in neurons increased overall levels of microtubule 

polyglutamylation and affected the trafficking of kinesin-1 to neurites (Maas et al., 2009). 

Polyglutamylation has also been shown to promote microtubule severing by katanin and 

spastin, microtubule severing enzymes (Sharma et al., 2007; Lacroix et al., 2010). 

Interestingly, microtubules with long glutamyl side chains were more prone to spastin-

mediated severing in vitro (Lacroix et al., 2010) and it is possible that cells have mechanisms 

to prevent such severing of polyglutamylated microtubules. Consistent with this, the 
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preferential binding of Tau to polyglutamylated tubulin (Boucher et al., 1994) could be one 

such mechanism as Tau has been shown to protect microtubules from severing (Qiang et al., 

2006). It is clear that polyglutamylation and polyglycylation can generate microtubules with 

varying complexity levels as these are the only modifications that can occur on any residue 

of either - or -tubulin and also the length of the glutamine and glycine chains can be 

modulated. However, we do not fully understand the cellular cues that dictate these changes 

and if there are specific tubulin residues that are targeted more often than others.  

 

Other Tubulin PTMs 

Several other modifications of tubulin have been reported like arginylation, 

methylation (reviewed in Janke 2014) and more recently polyamination (Song et al., 2013). It 

is clear that we are only beginning to understand the several modifications that tubulin can 

undergo and further studies are needed to gain insights into their functional importance.  

Besides these several PTMs of microtubules, there are several other proteins that 

interact with microtubules and modulate them in cells called MAPs (microtubule associated 

proteins). Broadly speaking, these include all proteins that bind to microtubules and diverse 

classes of MAPs have been identified in eukaryotic cells – structural MAPs such as MAP1, 

MAP2 and tau; microtubule plus-end binding proteins or +TIPs such as EB1, CLIP-170, 

CLASP; microtubule minus-end binding proteins such as CAMSAPs, microtubule 

destabilizing enzymes such as spastin, katanin; MAPs that alter microtubule dynamics such 

as doublecortin (nucleation factor), XMAP215 (polymerase), TPX2 and finally motor MAPs 

which was reviewed in the earlier sections. This classification is by no means exhaustive 

(see Lyle et al., 2009 for a complete list) and here, I focus only on structural MAPs and 

+TIPs which become relevant in Chapter 4 on neuronal transport.  
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Structural MAPs 

MAPs were initially identified as proteins that were enriched in microtubule fractions 

through repeated cycles of tubulin assembly and disassembly (Shelanski et al., 1973; Borisy 

et al., 1975). Some of the initial MAPs identified were MAP1, MAP2 (Sloboda et al., 1975) 

and Tau (Weingarten et al., 1975; Cleveland et al., 1977). While MAP1 consists of 

polypeptides MAP1A, 1B, 1C; MAP2 consists of 2A and 2B and Tau is the most 

heterogenous among them ranging from 3-6 polypeptides (reviewed in Olmsted, 1986) 

A common feature of all these proteins was the ability to stabilize microtubules and 

promote tubulin polymerization even at concentrations lower than needed for tubulin alone. 

These initial studies on MAPs suggested that MAPs could alter microtubule properties in 

cells. To test this, in vitro assays to examine dynamic instability of microtubules were carried 

out in the presence of purified MAPs. MAPs increase polymerization rates and frequency of 

rescue, suppress catastrophe rate and frequency of catastrophe (Pryer et al., 1992; Drechsel 

et al., 1992). 

MAPs have traditionally been studied in the brain tissue as the abundance of tubulin 

in brain extracts facilitated tubulin isolation (Weisenberg, 1972). Antibody staining of adult 

brain tissue has revealed interesting differences between these MAPs and also striking 

compartmentalization. MAP1 is present through the neurons and is enriched in white matter 

relative to grey matter (Vallee, 1982). MAP1 is also 5-fold higher than MAP2 in brain tissue 

(Vallee, 1982). Immunostaining of MAP2 has revealed that MAP2 is generally found only in 

dendrites and post-synaptic densities (Matus et al., 1981; Caceres et al., 1984). Tau 

localization complements that of MAP2 and is found only in axons, excluded from soma and 

dendrites (Binder et al., 1985). Interestingly, subsequent work demonstrated that the 

compartmentalization observed with some MAPs is at the messenger RNA level (Garner et 

al., 1988; Litman et al., 1993).  
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An attractive hypothesis is that MAPs bound to the microtubule polymer add another 

layer of regulation to motor proteins. Although this has been explored for Tau with kinesin-1 

and dynein (Dixit et al., 2008), we know very little about this regulation with other MAPs and 

the various ways in which they modulate motor proteins.  Besides the role of Tau in 

microtubule stability and motor transport, Tau is a major protein that is aggregated and 

modified in several ways in patients with Alzeheimer’s disease. This has generated 

considerable interest in Tau, and Tau dysfunction has now been proposed to be an early 

marker for neurodegenerative diseases (reviewed in Frost et al., 2015). Future studies 

focusing on structure-function correlation of these MAPs and the biological implications in 

neuronal development are needed to further our understanding of their cellular function.  

 

Microtubule Plus-end Binding Proteins 

Microtubule plus-end binding proteins or +TIPS are a distinct class of proteins that 

specifically localize to the plus-ends of growing microtubules. Since the discovery of CLIP-

170 (Perez et al., 1999), the first protein shown to localize to microtubule plus-ends, different 

families of +TIPS have been identified.  

EBs or end-binding proteins are one such class initially identified in a yeast two-

hybrid screen that interacted with the C-terminus of adenomatous polyposis coli (APC), 

hence named end-binding (Su et al., 1995). EB proteins are dimers that bind to microtubules 

via their N-terminal calponin homology (CH) domain and this domain is sufficient for their 

binding to microtubule plus-ends (Hayashi and Ikura, 2003; Komorova et al., 2009). The C-

terminus includes a coiled-coil domain which is essential for dimerization and the rest of the 

C-terminus is a site for interaction with several other +TIP proteins. Two modes of interaction 

have been identified so far: (i) through the binding of an SxIP motif with the hydropobic cavity 

of EBs (Honappa et al., 2009) (ii) CAP-Gly containing proteins that bind to the EEY/F motif in 
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the C-terminus of EB proteins, CLIP-170 and tubulin itself (Weisbrich et al., 2007). The first 

class includes proteins like APC, STIM1 and MCAK and the second class includes proteins 

like CLIP-170 and p150
Glued

 of dynactin. Thus, through these interactions EBs form the core 

of the +TIP network of proteins. 

In vitro studies with EB1 has demonstrated that EB1 does not bind tubulin dimers 

and its tip tracking behavior on growing microtubules is independent of tubulin 

concentrations suggesting that EBs do not co-polymerize with tubulin (Bieling et al., 2007). 

This indicated that EB proteins were recognizing structural features at the microtubule plus-

end that was different from the rest of the microtubule lattice. Consistent with this, a recent 

cryo-EM study showed that the calponin homology domain of EB1 binds to four tubulin 

subunits in way that it bridges protofilaments except at the seam (Maurer et al., 2012). This 

suggests that EB1 binds to microtubules in a strategic manner that allows it to sense GTP-

hydrolysis induced conformational changes in the microtubule plus-end (Maurer et al., 2012).  

Several +TIP proteins undergo auto-inhibition via intramolecular interactions. CLIP-

170 which binds to the EEY/F motif of EB1 also has an EEY/F motif at its C-terminus. This 

allows the CAP-Gly domain of CLIP-170 to interact with its C-terminus (Lansbergen et al., 

2004). The autoinhibition can be relieved by proteins containing EEY/F motif like EBs and 

tubulin which allows the C-terminus of CLIP-170 to bind to p150
Glued

 or Lis1 (Lansbergen et 

al., 2004; Weisbrich et al., 2007). Further, EB1 itself can be autoinhibited which can be 

relieved by its binding to tubulin or other +TIPs that bind to its C-terminus (Hayashi et al., 

2007).  

Another layer of regulation is the tyrosination/detyrosintion cycle that the EEY/F motif 

of tubulin undergoes in which the tyrosine residue can be removed and added back in cells 

(reviewed in previous section). Previous work has shown that CAP-Gly containing proteins 

like CLIP-170 and p150
Glued

 exhibit enhanced binding with tyrosinated microtubules (Peris et 
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al., 2009). This finding is consistent with structural findings implicating the binding of +TIPs to 

EEY/F motifs (Weisbrich et al., 2007).  

MAPs function in almost all cellular processes where microtubules are involved. It is 

likely that these proteins are either competing for binding sites or co-operating with each 

other to regulate binding to microtubule lattice and microtubule plus-ends. Thus, the next 

challenge is to understand the regulation of these proteins working together. Another aspect 

of this regulation is to understand how tubulin modification or the ‘tubulin code’ influences 

these MAPs as these are the readers of the tubulin code. Further studies are needed to 

identify broad themes in the regulatory mechanisms cells employ to modulate the activity of 

the various classes of MAPs.  
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VI.  Neuronal Transport 

 

Ever since Cajal drew out the anatomy of cells in the central nervous system, 

scientists have always been fascinated with neurons. The polarized and extended 

morphology of each neuron and the contacts between neurons is integral for propagation of 

neuronal signals. A key aspect in proper neuronal function is the efficient supply of material 

synthesized in the cell body to the individual neurites and clearance of misfolded and 

aggregated proteins from neurites to the soma for their degradation.  Thus, neurons employ 

mechanisms of active transport to constantly supply and clear material to and from neurites, 

which sometimes can be over a meter away from the cell body.  

The first evidence for movement of material in the axon came from observing the 

effects of nerve constriction of peripheral neurons (Weiss and Hiscoe, 1948). The authors 

observed disruption in cytoplasmic flow upon nerve constriction which resumed upon 

relieving the constriction, moving on average at 1 mm per day. This was convincingly 

demonstrated by subsequent studies using radioactive labeling (Miani, 1960; Droz and 

Leblond, 1962; Grafstein, 1967). However, besides the slow rate of 1 mm per day, these 

studies also reported some very fast movements. Quantitative studies reported movements 

as fast as 100-fold higher than the slow movement initially described by Weiss and Hiscoe 

(Niemierko and Lubinska, 1967). Around the same time similar experiments with colchicine 

abolished this movement implicating microtubules playing an important role in axonal 

transport (Kreutzberg, 1969). Following the development of differential intereference 

microscopy, fast organelle motility was observed in the extruded axoplasm of giant squid 

(Allen et al., 1982; Brady et al., 1982). This faster movement in the axon was called fast 

axonal transport and the slower movement was termed slow axonal transport. The proteins 

driving the fast movement were quickly identified (reviewed in previous sections) and this 
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section I will only focus on the fast axonal transport driven by microtubule motors. I will first 

introduce features of the neuronal cytoskeleton followed by polarized sorting and trafficking 

highlighting compartment specific differences between axons and dendrites.  

 

Microtubule Organization in Neurons 

Initial studies on microtubule organization in axons were done in the early 80s by 

independent groups showing that microtubules in axons were uniformly polarized 

(Heidemann et al., 1981; Burton and Paige, 1981). A few years later, examination of 

mammalian neuronal cultures in vitro revealed that dendrites have mixed polarity 

microtubules while axons have uniformly oriented microtubules (Baas et al., 1988; Burton, 

1988). Around the same time, the developmental timing of neuronal growth in vitro was 

documented (Dotti et al., 1988). Neuronal development followed a stereotypical sequence of 

events – the cells first establish small, immature processes and once one of them becomes 

the axon, the other processes begin to elongate to become dendrites (Dotti et al., 1988). 

Initially, microtubules start out uniform in all the processes with their plus-ends out and once 

processes mature into dendrites, minus-end out microtubules get added, establishing mixed 

polarity microtubules in dendrites (Baas et al., 1989). These initial findings were 

subsequently confirmed using live-cell imaging of EB3-GFP which tracks microtubule plus-

tips (Stepanova et al., 2003).  

A fundamental question in neuronal polarity is what are the cues that dictate the 

initial specification of the axon and the consequent establishment of the microtubule 

organization in dendrites. Although a recent study indicated that selective stabilization of 

microtubules in a given neurite is sufficient to convert it to an axon (Witte et al., 2008), the 

stabilizing factors are still unclear. As far as the microtubule organization in dendrites is 

concerned, motors are thought to actively translocate microtubules into dendrites to establish 
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a mixed polarity pattern. Dynein and certain mitotic kinesins have been implicated in setting 

up this organization in dendrites (reviewed in Baas and Lin, 2011).   

Besides the orientation, axons and dendrites also differ in their microtubule stability, 

post-translational modifications and the complement of MAPs associated with them in these 

compartments. Microtubules in axons are known to be enriched in the more stable acetylated 

and detyrosinated tubulin whereas dendrites and growth cones are enriched in tyrosinated 

microtubules (Konishi and Setou, 2009; Hammond et al., 2010). Further, structural MAPs 

localize differentially to axons and dendrites with Tau being axonal only (Binder et al., 1985) 

and MAP2 marking dendrites (Caceres et al., 1984; see section V for review on tubulin 

modifications and MAPs). In the section, I will introduce polarized trafficking in neurons and 

highlight how the underlying microtubule cytoskeleton contributes to the navigation of motor 

proteins.  

 

Polarized Trafficking in Neurons 

Polarized trafficking in neurons was observed as early as in the 1980s and 90s with 

several proteins shown to have differential localization including mRNA (Davis et al., 1987), 

ribosomes (Barlett and Banker, 1984), glutamate receptors (Craig et al., 1993), Tau and 

MAP2 (Dotti et al., 1987). While initial work was using in situ hybridization, later studies were 

done in cultured neurons in vitro revealing the localization of several proteins (reviewed in 

Craig and Banker, 1994). The polarized distribution itself is not surprising given the extended 

and polarized morphology of neurons with a distinct axon and dendrites. However, what has 

been elusive is the mechanisms driving polarized trafficking in neurons.  
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Sorting Signals 

Early work dissecting selective transport of membrane proteins in neurons focused 

on identifying sorting signals that conferred compartment-specificity. The sorting 

mechanisms well established in epithelial cell biology (reviewed in Matter and Mellman, 

1994; Mellman and Nelson, 2008) provided a foundation for these initial studies. Initial work 

observed the localization of basolateral marker membrane proteins and apical proteins and 

demonstrated that basolateral proteins are targeted to dendrites; mutations in the sequences 

disrupted the dendritic localization (Jareb and Banker, 1998). Interestingly, the apical 

proteins were targeted uniformly indicating that the sorting signal in apical proteins was not 

enough to make them axon-specific in neurons (Jareb and Banker, 1998). Although an 

exciting result at the time, it became apparent very quickly that neurons employ more 

complicated mechanisms for polarized sorting than just basolateral being equivalent to 

dendritic targeting. Key examples include identification of somatodendritic targeting signal in 

the cytoplasmic domain of transferrin receptor which was distinct from the basolateral 

targeting sequence (West et al., 1997), previously unknown targeting sequences identified in 

metabotropic glutamate receptors (mGluRs) (Stowell and Craig, 1999).  

An earlier study also showed that NgCAM (Neuron-glia Cell Adhesion Molecule), an 

axonal membrane protein was restricted to the cell surface of axons but the vesicular 

organelles within the neuron were present throughout the neuron. On the other hand, TfR 

(Transferrin Receptor), a dendritic protein was restricted to dendritic cell surface and the 

vesicular organelles also localized only to dendrites (Burack et al., 2000). This study 

indicated that at least two mechanisms of sorting exist in neurons: one is within the cell 

which is microtubule-based that establishes selectivity of organelles in neurons via motor 

proteins (cytoplasmic) and the other is at the plasma membrane level.  Further, the 

commonality among all these studies was that dendritic proteins in vesicular organelles were 
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excluded from axons but this was not the case for axonal proteins (Jareb and Banker, 1998; 

Stowell and Craig, 1999; Burack et al., 2000). This suggested that dendritic transport was 

selective, achieved by motor proteins that selectively entered dendrites while axonal proteins 

were targeted non-selectively and a downstream step following this initial transport, likely 

exocytosis made them axon-specific. In the years following these initial studies, selective 

trafficking of motor proteins in neurons was extensively studied. Several models for how 

motors drive selective trafficking have been proposed and there seems to be evidence for all 

of these models. All these models were based on investigations of various kinesins and very 

little is known about selective transport of dynein-driven cargos. In this section, I will review 

the models for selective transport with specific examples in each case and conclude with 

findings from my own work on dynein-driven trafficking in neurons. 

 

(i) Motor-cargo interactions 

Kinesin-1 has been shown to be involved in organelle transport in both axons and 

dendrites (reviewed in Hirokawa et al., 2009). How is a plus-end directed motor able to drive 

transport in dendrites that have mixed polarity microtubules? One model that explains the 

polarized trafficking is the ‘cargo-steering’ model. Several lines of evidence have shown that 

the cargo bound to kinesins determines if the motor-cargo complex is targeted to axons or 

dendrites. One initial study that supports this model demonstrated that AMPA receptor 

subunit, GluR2-interacting protein (GRIP1) directly binds to and steers the kinesin heavy 

chain of kinesin-1 to dendrites (Setou et al., 2002). Over expression of GRIP1 in neurons 

also caused to localize the KHC predominantly to the somatodendritic compartment, 

consistent with GRIP1 localization (Setou et al., 2002). On the other hand, JIP1 which is an 

adaptor for kinesin-1 mediated transport, trafficks kinesin-1 to axons (Verhey et al., 2001). 

This has also been the case with KIF17, a kinesin-2 motor protein which localizes NMDA 
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receptor 2B subunit (NR2B) to postsynaptic sites; KIF17 accomplishes this by binding to a 

PDZ domain of one of the proteins in complex with NR2B (Setou et al., 2000).  

More recently, the C-terminus coiled-coil domains and the C-terminal PX domain of 

KIF16B, kinesin-3 motor have been shown to be important in the accurate localization of 

KIF16B to somatodendrites (Farkhondeh et al., 2015), implicating the cargo-binding region 

as domains containing targeting information. Adaptors bound to cargo have also been shown 

to play a role in targeting the motor-cargo complex to the final destination (van Spronsen et 

al., 2013). In this study, the authors showed that TRAK/Milton adaptor proteins establish 

uniform distribution of the mitochondria in neurons with TRAK1 binding to kinesin-1 and 

dynein which trafficks mitochondria to axons, while TRAK2 binds to dynein-dynactin alone 

steering these mitochondria to dendrites (van Spronsen et al., 2013).  

In all the above examples, the cargo or adaptor protein bound to cargo determine the 

targeting of the motor-cargo complex. However, there is also evidence that motor-

microtubule interactions determine the targeting of the motor, indicating that targeting of 

motor-cargo complex is intrinsic to the motor-microtubule interactions as reviewed in the 

examples below.  

 

(ii) Motor-microtubule interactions 

 Another model explaining differential trafficking of proteins in neuronal transport is 

the ‘smart-motor’ hypothesis which suggests that motors are capable of navigating to the 

axon or dendrites solely based on their interactions with axonal and dendritic microtubules. 

These interactions are modulated by microtubule polarity, post-translational modifications 

and MAPs associated with microtubules.  

 One of the initial observations in support of this hypothesis came from studies using 
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K560, the constitutively active motor domain of kinesin-1. K560 in neurons preferentially 

accumulated at axon tips (Nakata and Hirokawa, 2003). Further, this preferential 

accumulation of K560 in axons acts as an early marker for axon specification (Jacobson et 

al., 2006). Consistent with these initial observations, subsequent work indicated the 

increased affinity of kinesin with detyrosinated (Konishi and Setou, 2009) and acetylated 

microtubules (Reed et al., 2006), both of which are enriched in axons. However, it is 

important to note that correlating motor affinity to tubulin modifications has not been very 

straightforward due to other conflicting data: study reporting that K560 has no preference for 

acetylated microtubules in vitro (Walter et al., 2012); specifically increasing acetylation levels 

in neurons did not change the axon-selectivity of kinesin (Hammond et al., 2010). Hence, it is 

likely that a combination of biochemical cues between motors and microtubules determine 

the targeting of the motor.  

Localization studies with constitutively active motor domains of a subset of kinesin-3 

and kinesin-4 motors also lend support to this model – KIF13A and KIF13B, kinesin-3 motors 

and KIF21A and KIF21B, kinesin-4 motors localize differentially with KIF13A, KIF21A 

localizing to only axons while KIF13B and KIF21B localize to both axons and dendrites 

(Huang and Banker, 2012). This study also identified sequences in the loop12 of the motor 

domain that confer axon selectivity, which when mutated, abolish the selectivity (Huang and 

Banker, 2012). It is likely that the non-selective kinesins, KIF13B and KIF21B are likely 

dendritic kinesins as unlike the other kinesins tested these were the only ones that could 

navigate the dendritic microtubule cytoskeleton and since the motors are constitutively 

active, axonal accumulation could be a default for all plus-end directed kinesins. Consistent 

with this idea, full length KIF21B has shown to be enriched in dendrites only (Jenkins et al., 

2012) implicating it as a ‘smart-motor’ that can preferentially enter dendrites.   

Another model proposed was that the axon initial segment (AIS), a specialized 
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membrane region in the axon, enriched in Ankyrin G, is the filter that determines which 

motors are axon-specific (Song et al., 2009). This study used chimeras of KIF5 and KIF17 

with the corresponding cargos in different combinations and concluded that the efficacy of 

the cargo-motor complex determines their ability to navigate through the AIS, thus being 

targeted to the axon. However, a caveat with this model is that the AIS is set up later in 

neuronal development and a recent study demonstrated that polarized transport is 

established early on in neurons, even before the establishment of the AIS (Petersen et al., 

2014). The AIS model also does not explain how the same KIF5 motor is axonal when bound 

to JIP1 for instance (Verhey et al., 2001) and is dendritic when bound to GRIP1 (Setou et al., 

2002).  

 

Figure 1.4 Illustration of mechanisms regulating polarized neuronal trafficking 

 
Although a lot of work has been done with kinesins, less is known about dynein-

mediated trafficking in dendrites. Although some studies have proposed that dynein could be 

the major dendritic motor owing to its capacity to move efficiently on mixed microtubules in 
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dendrites (Black and Baas, 1989; Kapitein et al., 2010), this model does not explain the 

localization of cargoes that are predominantly dendritic but have kinesins on them (Setou et 

al., 2000; Setou et al., 2002; Jenkins et al., 2012). In conclusion, it is becoming increasingly 

clear that polarized trafficking in neurons is regulated at many levels and it is likely that this is 

controlled via co-ordinated regulation of motor-cargo and motor-microtubule interactions.  

In the second half of this thesis, I will present my work on manipulating trafficking in 

neurons by recruiting various motor proteins to test their ability to navigate axonal and 

dendritic microtubules. This is one of the few studies exploring dynein-mediated trafficking in 

dendrites and my work highlights the factors that regulate dynein trafficking in neurons. 

Together, with my single molecule work of dynein and dynactin in vitro, this thesis dissects 

the functions and regulatory mechanisms of the dynein motor complex using a combination 

of approaches.  
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CHAPTER 2:  DYNACTIN FUNCTIONS AS BOTH A DYNAMIC TETHER AND BRAKE 

DURING DYNEIN-DRIVEN MOTILITY 

 

 

 

 

 

 

This chapter is adapted from:    

Ayloo, S., Lazarus, J.E., Dodda, A., Tokito, M., Ostap, E.M., Holzbaur, E.L.F (2014). 

Dynactin functions as both a dynamic tether and brake during dynein-driven motility.  

Nature Communications 5:4807  

 

 

Contributions: I performed all the experiments, analyzed data and wrote the chapter. Aditya 

Dodda designed the analysis and performed simulations. Jake Lazarus, Mariko Tokito and 

Mike Ostap contributed new tools and reagents. 
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I.  Summary 

 

 Dynactin is an essential cofactor for most cellular functions of the microtubule motor 

cytoplasmic dynein, but the mechanism by which dynactin activates dynein remains unclear. 

Here we use single molecule approaches to investigate dynein regulation by the dynactin 

subunit p150
Glued

. We investigate the formation and motility motility of a dynein-p150
Glued

 

co-complex using dual-color total internal reflection fluorescence microscopy. p150
Glued

 

recruits and tethers dynein to the microtubule in a concentration-dependent manner. Single 

molecule imaging of motility in cell extracts demonstrates that the CAP-Gly domain of 

p150
Glued

 decreases the detachment rate of the dynein–dynactin complex from the 

microtubule and also acts as a brake to slow the dynein motor. Consistent with this important 

role, two neurodegenerative disease-causing mutations in the CAP-Gly domain abrogate 

these functions in our assays. Together, these observations support a model in which 

dynactin enhances the initial recruitment of dynein onto microtubules and promotes the 

sustained engagement of dynein with its cytoskeletal track. 
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II.  Introduction 

 

Cytoplasmic dynein is the major microtubule minus-end directed motor in higher 

eukaryotes. Dynactin, a large multi-subunit protein complex, interacts with dynein and is 

essential for a broad range of cellular functions including organelle transport and mitotic 

spindle assembly (reviewed in Schroer, 2004). Dynactin was first identified as an activator of 

dynein that increased the ability of dynein to transport organelles (Gill et al., 1991) but the 

mechanisms involved in dynein activation are not yet understood.  

Structurally, dynactin can be divided into two parts—an actin-like Arp1 rod that along 

with associated subunits forms the base of the complex and a projecting side arm formed 

from the dimerization of the largest subunit in the complex, p150
Glued

 (Holzbaur et al., 1991; 

Schafer et al., 1994). p150
Glued

 interacts directly with the dynein intermediate chain (DIC) of 

the dynein motor (Karki et al., 1995; Vaughan et al., 1995). p150
Glued

 also interacts with 

microtubules via its Cytoskeletal Associated Protein, Glycine-rich (CAP-Gly) domain at the N 

terminus (Waterman et al., 1995) which is followed by a highly basic region that has a lower 

affinity interaction with microtubules (Culver-Hanlon et al., 2004; Lazarus et al., 2013). In 

vitro motility studies using beads coated with purified proteins demonstrated that the 

microtubule-binding capacity of dynactin increases the processivity of mammalian dynein 

(King and Schroer, 2000; Culver-Hanlon et al., 2004). 

Despite these initial studies, the mechanisms by which dynactin enhances dynein-

driven motility have remained controversial. For example, dynactin has been shown to 

enhance the processivity of yeast dynein, which differs from the mammalian motor in key 

biophysical properties including velocity and the frequency of backward stepping (Mallik et 

al., 2013). Surprisingly, however, the dynactin-dependent enhancement of the run lengths of 

yeast dynein in single molecule assays does not appear to require the CAP-Gly domain 



43 
 

(Kardon et al., 2009), although at the cellular level this highly conserved domain contributes 

to the initiation and persistence of dynein-dependent nuclear movement (Moore et al., 2009). 

Studies in higher eukaryotes also suggest that the CAP-Gly domain may be dispensable for 

some cellular functions, including the trafficking and localization of organelles in S2 and 

HeLa cells (Kim et al., 2007; Dixit et al., 2008). 

In contrast, both cellular and in vivo studies have demonstrated that the CAP-Gly 

domain of dynactin is essential for dynein function in neurons. In Drosophila and mammalian 

neurons, the CAP-Gly domain enhances the retrograde flux of cargoes from the distal axon 

(Lloyd et al., 2012; Moughamian and Holzbaur, 2012). An ordered recruitment pathway has 

been proposed, in which binding of dynactin to dynamic microtubules enriched in the distal 

axon leads to the enhanced recruitment of dynein, permitting the efficient initiation of 

retrograde transport (Moughamian et al., 2013). Importantly, mutations in the CAP-Gly 

domain of p150
Glued

 cause human disease, including the motor neuron degenerative disease 

HMN7B and a lethal and rapidly progressive variant of parkinsonism known as Perry 

syndrome (Puls et al., 2003; Farrer et al., 2009). While the HMN7B-associated G59S 

mutation induces misfolding and aggregation (Levy et al., 2006), the Perry syndrome 

mutations cause a loss of CAP-Gly function in cellular assays (Moughamian and Holzbaur, 

2012). Together, these genetic findings indicate a key role for the CAP-Gly domain of 

dynactin in neurons in vivo. 

In light of these observations, we sought to develop a minimal in vitro system to more 

fully test the mechanisms by which dynactin activates dynein. Our data provide direct 

evidence that the CAP-Gly domain of dynactin recruits dynein onto microtubules and 

maintains association of the motor with its track. Our findings demonstrate that dynactin 

accomplishes this by increasing the landing frequency of dynein and decreasing the 

likelihood of detachment by functioning as a dynamic tether. Surprisingly, the CAP-Gly 
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domain also acts as a brake to slow the dynein motor. We propose that these functions of 

dynactin become essential under specific cellular regimes, such as initiation of organelle 

transport in regions of the cell with low microtubule density, or maintenance of processive 

motility for cargos with few dynein motors bound, functions of particular importance in long 

distance cargo transport in neurons. 
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III.  Results 

 

Dynein-GFP switches between processive and diffusive motion 

 To study the regulation of dynein by dynactin, we employed single molecule 

approaches, using a recently established knock-in mouse line (Zhang et al., 2013) to isolate 

green fluorescent protein (GFP)-tagged dynein. The neuron-specific isoform of dynein 

intermediate chain, DIC1 is replaced with a DIC1–GFP–3xFLAG transgene under the control 

of the endogenous promoter (Fig. 2.1A). We purified GFP-labelled dynein from the brain 

tissue of these mice using microtubule affinity and ATP release followed by sucrose gradient 

centrifugation. DIC1–GFP incorporates efficiently into the dynein complex and interacts with 

copurifying dynactin (Fig. 2.1B). Photobleaching analysis indicates the expected 

stoichiometry of two DIC1–GFP per dynein complex (Fig. 2.1C, D). 
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Figure 2.1  DIC1-GFP is efficiently incorporated into the dynein complex. 

(A) Schematic of the DIC1–eGFP–FLAG gene knocked into the DIC1 locus. High speed 

supernatant (HSS) of homogenized mouse brain tissue was probed for DIC, GFP and FLAG. 

(B) Immunoblot analysis of sucrose gradient purified dynein. DIC1–GFP–FLAG is efficiently 

incorporated into the dynein complex as indicated by co-sedimentation with dynein heavy 

chain (DHC) at 20 S. (C) A representative time course of photobleaching showing two steps 

of decay. Grey lines indicate the steps. (D) Frequency distribution of the photobleaching 

steps for n=40 particles fit with a binomial distribution. 

We performed gliding assays (Fig. 2.2A) and single molecule motility assays (Fig. 

2.2B) to confirm that isolated dynein–dynactin complexes are functional. We observed 

processive, bi-directional ATP-dependent runs along the length of microtubules (Fig. 2.2C). 

These runs are punctuated by frequent directional switches as well as periods of apparent 

diffusion. While single dynein motors often diffuse along microtubules, two to three dyneins 

working together exhibit robust minus-end directed motility (Mallik et al., 2005; Ross et al., 

2006) as supported by our gliding assays with isolated dynein–dynactin complexes (Fig. 

2.2A). This behaviour may be a functional consequence of the flexible structure of the dynein 

motor, and may permit multiple dynein motors bound to a single cargo to function effectively 

in cells (Hendricks et al., 2012; Rai et al., 2013). 

To examine the single molecule behaviour of dynein in more detail, we developed an 

algorithm (Gradient Analysis for Node Detection (GrAND)) to parse out these different states 

(see Methods). A given trajectory is first split into constant-velocity segments by gradient 

analysis and then mean-squared displacement (MSD) analysis is performed to classify each 

segment as processive or diffusive/confined. An example trajectory is shown in Fig. 2.2C. 

This trajectory was segmented using the GrAND method followed by MSD analysis, which 

indicated that the particle exhibited uniform processive motion in the first few seconds and 
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then switched to diffusion for the last few seconds of the track (Fig. 2.2C) We performed this 

analysis on all the particles tracked and obtained velocities and run lengths from all 

processive segments. The resulting data are well fit by a Gaussian distribution and a single 

exponential decay curve (Fig. 2.2D, E).  

We also generated a frequency distribution for the fraction of time spent in 

processive state for all particles tracked (Fig. 2.3A). We observed that ~20% of the particles 

exhibited processive movement throughout their time bound to the microtubule. For the 

remainder of the particles, ~60% of their time bound to the microtubule was spent in a 

processive state; we did not observe a correlation between track duration and fraction of time 

spent in processive motion. To validate our method of analysis, we simulated particle motion 

using parameters from our experimental data (see Methods in this chapter) and tested our 

algorithm in three scenarios - purely diffusive motion, purely processive motion and a mix of 

diffusive and processive motion with a 50% probability for either type, using concatenated 

track segments to fully model the stochastic switching observed for dynein (Fig. 2.3B). 

Analysis of the simulated data indicated that our method was robust for fully processive 

motion. We observed a false-positive detection rate of ~20% for purely diffusive motion (Fig. 

2.3C), that reduced to ~10% if we modeled continuous rather than segmented tracks. 

However, to more closely represent the motility of dynein, we focused on simulations with 

track segments (see Methods). Importantly, the intermediate condition of mixed motility was 

determined to be processive ~70% of the time, which is in close agreement with our 

experimental data. 
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Figure 2.2  Dynein-GFP switches stochastically from processive to diffusive states 
of motion. 

(A) Leading edges of two microtubules marked in a gliding assay with purified dynein. Scale 

bar, 5 μm. (B) Time series and corresponding kymograph showing projection of the 

movement of the particle over time for a single dynein–GFP molecule at 1mM Mg-ATP and 

in the presence of hexokinase and glucose (ATP depletion system). Horizontal bar, 2 μm.  
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Vertical bar, 5 s. All the images are contrast inverted to represent the signal as black on a 

white background. (C) A representative trajectory of a dynein–GFP molecule. Following 

gradient analysis for node detection (see Methods), mean-squared displacement (MSD) 

analysis shows that the motion switches from processive (MSD=v
2
t
2
) to a diffusive state 

(MSD=2Dt). Error bars indicate SEM. (D, E) Distributions of velocities and run lengths of 

particles tracked (n=112, three independent experiments). Curves represent a Gaussian 

distribution and an exponential decay curve respectively. 

 

 

Figure 2.3  Simulations to validate our analysis. 

(A) Frequency distribution for the amount of time the particles (n=40, two independent 

experiments) spent in a processive state. On average, about 60% of the time, the motion is 

processive. (B) 50 simulated tracks shown for 3 different conditions – purely diffusive motion 

(Pp=0, Pd=1), a mix of diffusion and processive motion (Pp=0.5, Pd=0.5) and fully processive 
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motion (Pp=1, Pd=0). (C) Quantitation of the per cent time spent in processive state for 

simulated tracks alongside the average for experimental data obtained from Fig. 2.3A. Mean 

± SEM. n=50 for the simulations and n=40 for the experimental data.  

 

p150
Glued

 enhances dynein recruitment onto microtubules 

To dissect the role of dynactin in dynein-driven motility, we generated a recombinant 

human p150
Glued

 1-CC1 construct fused to C-terminal Halo and FLAG tags, expressed and 

purified from insect cells. This construct includes the N-terminal tandem CAP-Gly and basic 

microtubule-binding domains followed by the first coiled-coil (CC1) domain that binds dynein 

(Fig. 2.4A, B). The 1-CC1 construct lacks the C-terminal domains of p150
Glued

 that mediate 

association with the Arp1 filament (Waterman et al., 1995) and which are not soluble when 

expressed recombinantly (Siglin et al., 2013 and our unpublished observations). We purified 

the construct using FLAG affinity chromatography followed by labelling with a 

tetramethylrhodamine (TMR) dye that binds irreversibly to the Halo tag (Fig. 2.4C). Single 

molecule assays on immobilized microtubules demonstrate microtubule-binding activity, with 

p150
Glued

 1-CC1-TMR exhibiting lattice diffusion along the length of the microtubule (Fig. 

2.4D). The 1-CC1 fragment of p150
Glued

 is sufficient to bind dynein (Fig. 2.4F).  
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Figure 2.4  Generation of purified recombinant p150Glued constructs. 

(A) Schematic illustrating the interaction of dynein with dynactin. (B) Schematic of the 

recombinant constructs p150
Glued

 1-CC1 and p150
Glued

 CC1 engineered with a Halo tag and 

affinity tags at the C terminus. (C) Coomassie-stained gel showing the lysate and the protein 

p150
Glued

 1-CC1 after the final purification step. The unstained gel shows the labelling of the 

protein with TMR. (D) Contrast inverted kymograph of p150
Glued

 1-CC1 diffusing on 

microtubules. Horizontal bar, 2 µm. Vertical bar, 5 s. (E) Coomassie stained gel showing the 

lysate and the protein p150
Glued

 CC1 after the final purification step. (F) Recombinant 

p150
Glued

 1-CC1 binds to purified bovine dynein as shown by the immunoblot. The unstained 
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gel shows the labeling of the protein with TMR. (G) Recombinant p150
Glued

 CC1 binds to 

purified bovine dynein as shown by the immunoblot. 

We next performed dual-colour imaging of dynein–GFP and p150
Glued

 1-CC1-TMR 

on microtubules. Although isolated dynein–GFP co-purifies with dynactin (Fig. 2.1B), 

recombinant exogenously added p150
Glued

 1-CC1-TMR was added in excess and effectively 

displaced endogenous dynactin as we observed colocalization (Fig. 2.5A) and co-migration 

of the co-complex (Fig 2.5B). The double-labelled dynein-GFP and 1-CC1-TMR complex 

exhibited both processive and diffusive motility along the microtubule, with a mean run length 

of 2.5 ± 0.13 mm (n=35), consistent with previous reports (Culver-Hanlon et al., 2006; 

Kardon et al., 2009). Importantly, in the presence of exogenous p150
Glued

 1-CC1-TMR the 

recruitment of dynein molecules onto the microtubule was significantly enhanced (Fig. 2.5C), 

with a greater than 4-fold increase in binding events (p<0.001, Fig. 2.5C, D). To test whether 

the microtubule-binding activity of p150Glued was necessary for this increased recruitment, 

we generated a recombinant coiled-coil fragment (CC1-TMR) of p150
Glued

 that robustly binds 

to dynein (Fig. 2.4E, G) but lacks the N-terminal residues encoding both the CAP-Gly and 

basic domains (Fig. 2.4B). Addition of CC1-TMR did not affect dynein recruitment to the 

microtubule (Fig. 2.5C, D), indicating that the microtubule-binding domains of p150
Glued

 are 

required for the enhanced binding observed. 
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Figure 2.5 p150Glued co-migrates with dynein and enhances its recruitment onto 
microtubules 

(A) Co-localization of dynein and p150
Glued

 1-CC1 on microtubules and corresponding line 

scan intensity profile. (B) Representative kymographs of co-migration of dynein with 

p150
Glued

 1-CC1. Horizontal bar, 2 µm. Vertical bar, 10 s. (C) Addition of p150
Glued

 1-CC1 

increases the landing events of dynein while p150
Glued

 CC1 has no effect on the recruitment 
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of dynein. Horizontal bar, 2 µm. (D) Quantitation of the landing events of dynein in each 

condition shows that p150
Glued

 1-CC1 increases the landing events greater than fourfold. 

Mean ± SEM, n=25, two independent experiments, ***p<0.001, one-way analysis of variance 

with Tukey’s post-hoc test. Concentration of the recombinant protein used in each case is 

4.5 nM. N.S., not significant. 

 

p150
Glued

 regulates the dynein-microtubule interaction 

p150
Glued

 1-CC1 displayed a concentration-dependent effect on dynein. This is 

shown in the maximum-intensity projections over time of dynein–GFP motility along the 

microtubules (Fig. 2.6A). We quantified the per cent length of microtubules decorated by 

dynein–GFP in these projections and saw a progressive increase with increasing 

concentrations of p150
Glued

 1-CC1 (Fig. 2.6B). This effect of p150
Glued

 1-CC1 could be due to 

an increase in the landing frequency of dynein or a decrease in the rate of detachment of 

dynein from microtubules, or both effects could potentially contribute. To address this, we 

measured the landing frequencies of dynein–GFP in the absence and presence of 1-CC1, 

and observed a 2.5-fold increase induced by the p150
Glued

 construct (p<0.001, Fig. 2.6C). To 

test for an effect on detachment, we rigor bound dynein–GFP to microtubules in the absence 

of ATP, and then flowed 5 mM Mg-ATP into the chamber to release the motors (Huang et al., 

2012). In the absence of 1-CC1, we observed rapid detachment of dynein induced by ATP. 

However, in the presence of p150
Glued

 1-CC1, the dynein molecules remained bound to the 

microtubule for longer periods of time, suggesting that the motor is effectively tethered onto 

the microtubule via the microtubule-binding domains of dynactin at saturating ATP 

concentrations (Fig. 3D-F). Thus, we conclude that p150
Glued

 effectively recruits and retains 

dynein motors on microtubules by functioning as a dynamic tether. 
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Figure 2.6 p150Glued regulates the association and dissociation of dynein from 
microtubules. 

(A) Maximum-intensity projection over time of dynein motility (movies recorded for 2 min) in 

the presence of p150
Glued

 1-CC1. Horizontal bar, 2 µm. (B) Quantitation of the percent 

occupancy of microtubules using line-scan intensity analysis. Mean ± SEM, n=20, two 

independent experiments, ***p<0.001, one-way analysis of variance with Tukey’s post-hoc 

test. (C) Addition of p150
Glued

 1-CC1 increases the landing frequency of dynein. Mean ± 

SEM, n=20, two independent experiments, ***p<0.001, Student’s t-test. (D) Representative 

images of dynein bound to microtubules in the absence of ATP and kymographs following 5 

mM Mg-ATP wash. Horizontal bar, 2 µm. Vertical bar, 10 s. (E) Quantitation of the percent 

occupancy of microtubules before and after the ATP wash. The corresponding data points 

for the same microtubules before and after the ATP wash are connected by a line, n=15 for 

each condition, two independent experiments. (F) Average of the data shown in E. The 

control had a 10-fold change post ATP wash while the addition of p150
Glued

 1-CC1 reduced 

the change to ~1.5-fold. ***P<0.001, Student’s t-test. 
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Motility of p150
Glued

 in cell extracts is dynein-dependent 

To further dissect the domains of p150
Glued

 that are critical for the regulation of 

dynein motility, we sought to develop a more versatile single molecule assay. We performed 

motility assays using Halo-tagged constructs expressed in cell extracts (Fig. 2.7A). Similar 

assays have been used extensively to study kinesin motors and their regulation (Blasius et 

al., 2007; Sun et al., 2011; Fu and Holzbaur; 2013) but have not yet been applied to the 

dynein motor to test the function of its adaptors and cofactors like dynactin. 

 We expressed p150
Glued

-Halo in COS7 cells and co-precipitated extracts with 

HaloLink resin. p150
Glued

-Halo was incorporated into dynactin, as assessed by co-

precipitation of the endogenously expressed dynactin subunit, dynamitin (p50; Fig. 2.7B). 

Importantly, Halo-tagged p150
Glued

 co-precipitated both the heavy chain and intermediate 

chain of cytoplasmic dynein, indicating a robust interaction with endogenous dynein (Fig. 

2.7B). Photobleaching analysis of the bound TMR ligand shows two decay steps and is well 

fit by a binomial distribution, consistent with the efficient dimerization of p150
Glued

 (Fig. 2.7C, 

D). We generated clarified cell extracts from COS7 cells expressing Halo-tagged p150
Glued

 

constructs and performed single molecule assays tracking the motility of dynactin along 

microtubules (Fig. 2.7E). The observed motility closely resembled that observed for purified 

dynein–dynactin complexes characterized by frequent switches from processive to diffusive 

motion. The observed motility is ATP- and dynein-dependent, as it was arrested by depletion 

of ATP from the flow chamber by hexokinase and glucose (Fig. 2.7E) and significantly 

reduced by depletion of dynein heavy chain from the cells by siRNA (Fig. 2.7F, G). 
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Figure 2.7 The motility of p150Glued in cell extracts is dynein-driven and ATP 
dependent. 

(A) Schematic of the experimental design with an illustration of p150
Glued

 constructs. (B) 

COS7 cell extracts were precipitated with a HaloLink resin that binds specifically to the Halo 

tag. Protein complexes bound to the resin were analyzed by immunoblotting. The dynein 

complex co-precipitates with p150
Glued

-Halo and the addition of the Halo tag at the C-

terminus does not interfere with the incorporation of p150
Glued

 into the dynactin complex (as 

shown by p50). (C) A representative time course of photobleaching of TMR-labelled 

p150
Glued

 shows two decay steps. Grey lines indicate the steps. (D) Frequency distribution of 

the photobleaching steps for n=42 particles fit with a binomial distribution.  (E) 

Representative time series and corresponding kymographs of the motility of p150
Glued

-Halo in 

10mM Mg-ATP and in the presence of hexokinase and glucose (an ATP depletion system). 

Horizontal bar, 2 µm. Vertical bar, 5 s. All images are contrast inverted. (F) Representative 

immunoblot of cell extracts from COS7 cells treated with Mock or DHC siRNA followed by 

transient transfection of p150
Glued

-Halo. (G) Quantitation of the number of active, motile 

events of p150
Glued

-Halo in the mock and dynein knock-down conditions. The number of 

events was normalized to the length of the microtubules and the expression levels of 

p150
Glued

-Halo in extracts (densitometry analysis using ImageJ). DHC knockdown resulted in 

a reduction in the number of motile events. Mean ± SEM, n=3 experiments, **p<0.01, 

Student’s t-test.  

A representative trajectory parsed into segments using GrAND analysis along with 

the corresponding MSD analysis (Fig. 2.8A) shows that the motion switches from a 

confined/diffusive state to a processive state. We obtained velocities and run lengths for the 

processive segments of all particles tracked (Fig. 2.8B, C). The velocities obtained are 

comparable to those measured for isolated dynein–dynactin complexes (Fig. 2.8B compared 

to Fig. 2.2D). For particles that had at least one processive segment, we generated a 
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frequency distribution for the fraction of time spent in a processive state (Fig. 2.8D). In close 

agreement with the motility characteristics observed for isolated dynein–dynactin complexes 

(Fig. 2.3A), about ~20% of the p150
Glued

-Halo-TMR particles tracked were processive 

throughout their motion along the microtubule while the remainder exhibited stochastic 

switching between processive and diffusive states. The average diffusion coefficient obtained 

from the diffusive phases was 0.055 µm
2
/s, consistent with previous reports (Mallik et al., 

2005; Culver-Hanlon et al., 2006; Ross et al., 2006) Together, these results indicate that we 

have established a robust assay to study the properties of the dynein motor in complex with 

its adaptor dynactin; this assay will be useful in exploring the effects of other dynein adaptors 

in future. 

 

 

Figure 2.8 The motility of dynactin in cell extracts is similar to in vitro motility of 
purified dynein-GFP.  

(A) A representative trajectory of p150
Glued

-Halo with its corresponding MSD analysis. Error 

bars indicate SEM. (B, C) Velocity and run length distribution of the tracked p150
Glued

 

particles. Tracks (n=60, three independent experiments) were parsed into processive and 

diffusive states of motion using GrAND and velocities were calculated for the processive 
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segments only. Curved lines indicate Gaussian and exponential decay fit, respectively. (D) 

Frequency distribution for the amount of time p150
Glued

-Halo spent in a processive state. Two 

populations can be observed—about 20% that are processive throughout the motion along 

the microtubule and the remaining that display both processive and diffusive phases. A 

Gaussian fit (shown in grey) excluding the last data point improves the R
2
 from 0.45 to 0.81, 

suggesting there could be two populations. 

 

Using the cell extract assay, we asked whether the entire dynactin complex was 

required to increase the processivity of mammalian cytoplasmic dynein, as suggested by 

studies in a yeast strain lacking the Arp1 subunit of dynactin (Kardon et al., 2009), or 

whether the 1-CC1 construct of p150
Glued

 is sufficient to mediate these effects as suggested 

by our work with the purified recombinant fragment. p150
Glued

 1-CC1-Halo expressed in 

COS7 cells extracts is sufficient to bind to dynein, but does not incorporate into the dynactin 

complex (Fig. 2.9A). However, the motility we observed with p150
Glued

 1-CC1-Halo was 

indistinguishable from that observed with full-length p150
Glued

, as shown in a representative 

trajectory in Fig. 2.9B. We observed no significant differences in the velocity or run length 

distribution (2.6 ± 0.15 µm for p150
Glued

 versus 2.1 ± 0.12 µm for p150
Glued

 1-CC1) of the two 

constructs, or in the fraction of time spent in a processive state (Fig. 2.9C-E). These 

observations suggest that incorporation of p150
Glued

 into the dynactin complex does not 

affect velocity or further enhance run lengths of the motor complex. Thus, we focused on the 

specific functions of the microtubule-binding domains of p150
Glued

 in activating dynein using 

our cell extract assay. 
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Figure 2.9 p150Glued 1-CC1 shows motility characteristics similar to full length 
p150Glued.  

(A) COS7 extracts expressing p150
Glued

 1-CC1-Halo were precipitated by the HaloLink resin. 

Immunoblot analysis shows the truncation does not affect the binding to dynein but inhibits 

incorporation into the dynactin complex (shown by p50). (B) An example trajectory of this 

construct and its MSD analysis. Error bars indicate SEM. The particle switches from 
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processive to diffusive state and switches back to processive again. (C and D) Velocity and 

run length distributions show no significant differences (Mann-Whitney U-test) between the 

p150
Glued

 1-CC1 and p150
Glued

. (n=91 and 87 processive segments respectively obtained 

from 60 tracked particles each, 3 independent experiments). (E) A slight decrease was 

observed in the percent time spent in processive state for p150
Glued

 1-CC1 when compared 

to the full-length. Mean ± SEM, n.s., not significant, Student’s t-test. (F) A similar trend was 

observed in the microtubule distance explored by the two constructs. Mean ± SEM, n.s., not 

significant, Student’s t-test. 

 

The CAP-Gly domain of dynactin enhances dynein engagement 

Both the tandem CAP-Gly and basic domains in the N terminus of p150
Glued 

interact 

with microtubules (Culver-Hanlon et al., 2006). To independently study the contribution of 

each of these domains to the motility of dynein, we compared the effects of two constructs—

ΔCAP-Gly and Δ5-7. Δ5-7 is a naturally existing isoform of p150
Glued

, which lacks three short 

exons (5, 6 and 7) and thus has a shorter basic domain compared with full-length p150
Glued

 

(Fig. 2.10A). Representative kymographs comparing the motility of the ΔCAP-Gly and Δ5-7 

constructs with full-length p150
Glued

 are shown in Fig. 2.10B. We observed no significant 

differences in the runs of the Δ5-7 isoform as compared with the full-length p150
Glued 

(Fig. 

2.10C, D, 2.1 ± 0.14 µm versus 2.6 ± 0.15 µm). In contrast, runs observed with the ΔCAP-

Gly construct were significantly faster, approximately 2-fold the rates were observed with the 

other two constructs (p<0.001, Fig. 2.10C, E). Strikingly, binding times for the ΔCAP-Gly 

construct were extremely short. Histograms of time bound on microtubules for all particles 

tracked revealed that 70% of the ΔCAP-Gly particles were bound to microtubules for <10 s 

(Fig. 2.10G). Exponential decay fits to the cumulative frequency distribution curves for 

binding time of the full length, and ΔCAP-Gly constructs reveal a 3-fold higher detachment 
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rate in the absence of the CAP-Gly domain (Fig. 2.10F). Together, these data indicate that 

the CAP-Gly domain may function as an ATP-independent brake, as previously suggested 

from studies in which the CAP-Gly domain was non-specifically adsorbed to beads (Culver-

Hanlon et al., 2006), and that this activity both prolongs the microtubule interaction time of 

the dynein–dynactin complex and slows the motor during processive motility. 

 

Figure 2.10 The CAP-Gly domain of dynactin enhances the engagement of dynein 
onto microtubules.  

(A) Schematic of the Δ5-7 and Δ CAP-Gly constructs of p150
Glued

. While the Δ5-7 lacks much 

of the basic domain, ΔCAP-Gly is a deletion of the CAP-Gly domain. (B) Representative 

kymographs of the motility of p150
Glued

, Δ5-7 and ΔCAP-Gly constructs in complex with 

dynein along microtubules. Horizontal bar, 2 µm. Vertical bar, 5 s. Kymographs are contrast 
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inverted. (c) Mean velocities of all the particles tracked for p150
Glued

, Δ5-7 and ΔCAP-Gly. 

Mean ± SEM, n=60 for p150
Glued

 and Δ5-7, n=40 for ΔCAP-Gly, three independent 

experiments, ***p<0.001, one-way analysis of variance with Tukey’s post-hoc test. (D) 

Velocity distribution of the all the Δ5-7 particles tracked (n=60, 3 independent experiments) 

(E) Velocity distributions of the ΔCAP-Gly (n=40, 3 independent experiments) in comparison 

to p150
Glued

 (n=60, 3 independent experiments, same data as in Fig. 2.8B replotted for 

p150
Glued

). (F) Cumulative frequency plots of the binding time of the 3 constructs. Data points 

are fit by a one-phase exponential decay (red) with a decay constant of k=0.035 ± 0.003 s-1 

for p150
Glued

, k=0.049 ± 0.002 s 1 for Δ5-7 and k=0.11 ± 0.021 s-1 for ΔCAP-Gly. This 

indicates that the the loss of CAP-Gly increases the detachment rate 3-fold. (G) Frequency 

distribution of the binding times of Δ5-7 and ΔCAP-Gly in comparison to p150
Glued

 (same 

data as shown in Fig. 2.10F). Greater than 70% of the ΔCAP-Gly particles have a binding 

time of less than 10 s (n=60 for each, three independent experiments). (H) Quantitation of 

the number of active, motile events of the ΔCAP-Gly and the two mutants G71R and Q74P in 

comparison to the full-length p150
Glued

. The number of events was normalized to the length 

of the microtubules and the expression levels of constructs in cell extracts (densitometry 

analysis using ImageJ). Mean ± SEM, n=3 independent experiments, ***p<0.001, one-way 

analysis of variance with Tukey’s post-hoc test. 

Multiple mutations in the CAP-Gly domain of p150
Glued

 are causative for 

neurodegenerative diseases. A G59S mutation that lies at the core of the folded CAP-Gly 

domain induces misfolding and aggregation, leading to motor neuron-degeneration (Puls et 

al., 2003; Farrer et al., 2009). A series of nearby mutations that are surface-exposed within 

the microtubule-binding domain cause a distinct disease -  a lethal variant of parkinsonism 

known as Perry syndrome. We examined two Perry-associated mutations, G71R and Q74P 

in our assay, and found that both mutations phenocopy the ΔCAP-Gly construct. All 
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constructs were expressed to a similar degree in our cell extracts but the G71R, Q74P and 

ΔCAP-Gly constructs all showed significantly decreased motile events as compared with full-

length p150
Glued

 (Fig. 2.10H). Together, these results indicate that the CAP-Gly domain has a 

dual effect. It promotes the sustained engagement of the motor on microtubules by acting as 

a tether, an activity abrogated by the Perry mutations. However, through its tethering activity, 

the CAP-Gly domain can induce a drag on dynein, acting as a brake to slow the motor during 

motility along the microtubule and this function could potentially be regulated in the cell. 
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IV.  Discussion 

 

Dynactin is a key adaptor for the cytoplasmic dynein motor and every organism that 

has cytoplasmic dynein has dynactin as well (Hammesfahr and Kollmar, 2012). Although a 

role for dynactin in increasing the processivity of dynein has been previously proposed, the 

functional significance of the microtubule-binding capacity of dynactin has remained 

controversial (King and Schroer, 2000; Ross et al., 2006; Kim et al., 2007; Dixit et al., 2008; 

Moore et al., 2009; Llyod et al., 2012; Moughamian and Holzbaur, 2012). 

Here we used single molecule approaches and dual-colour total internal reflection 

fluorescence microscopy (TIRF) to definitively dissect the functional role that dynactin plays 

in dynein-driven motility. We isolated GFP tagged dynein from a knock-in mouse line and 

used purified recombinant p150
Glued

 constructs to examine this problem. We found that 

dynactin significantly enhances the recruitment of dynein onto microtubules and the 

microtubule-binding capacity of dynactin is required for this recruitment. Dynactin increases 

the landing frequency and decreases the detachment rate of dynein from microtubules. We 

also demonstrate that in contrast to data from yeast (Kardon et al., 2009), the p150
Glued

 C 

terminus is not required for this activity. Further dissection of the N terminus of p150
Glued 

indicates that the CAP-Gly domain is key in promoting the sustained interaction of the dynein 

motor with microtubules. Importantly, point mutations in the CAP-Gly domain associated with 

Perry syndrome phenocopythe deletion of CAP-Gly in our assays. These in vitro 

observations are in strong agreement with recent studies in Drosophila and mammalian 

neurons, which demonstrated that the CAP-Gly domain of dynactin is important for the 

initiation of dynein-driven transport of cargos from the distal end of the axon and suggest that 

this function is perturbed in neurodegenerative disease (Llyod et al., 2012; Moughamian and 

Holzbaur, 2012). 



67 
 

Our results are strikingly different from the yeast dynein– dynactin system in that the 

microtubule-binding capacity of Nip100 (yeast homologue for p150
Glued

 of dynactin) is 

dispensable in increasing the processivity of dynein (Kardon et al., 2009). There is also 

evidence for the lack of interaction of Nip100 with microtubules (Kardon et al., 2009), which 

is in contrast to the robust interaction of p150
Glued

 with microtubules (Lazarus et al., 2013). 

Further, there is growing evidence that yeast dynein is fundamentally different from the 

mammalian dynein. Yeast dynein is a slower and stronger motor that takes occasional 

backward steps, while mammalian dynein is a weaker and faster motor with frequent 

backward runs and interspersed periods of diffusion (Mallik et al., 2004; Mallik et al., 2005; 

Reck-Peterson et al., 2006; Ross et al., 2006). Given these important differences, we 

suggest that the molecular mechanisms of dynactin described here have specifically evolved 

in higher eukaryotes. 

Motor-driven transport involves three key steps—initial recruitment of the motor–

cargo complex, transport along cytoskeleton tracks and the off-loading of the cargo at its 

destination. Thus, the question remains: what is the specific function of dynactin in dynein-

driven transport? And is the function of dynactin regime-specific: single motor versus multiple 

motors; low load versus high load? 

In small cells with bundled microtubules, the trafficking defects caused by p150
Glued

 

knockdown can be rescued with a construct lacking the microtubule-binding domain (Kim et 

al., 2007; Dixit et al., 2008). Trafficking of organelles along the stable and densely packed 

microtubules of the axon shaft also does not require the CAP-Gly domain (Moughamian and 

Holzbaur, 2012). However, for other cellular functions, the CAP-Gly domain is required (Kim 

et al., 2007; Moore et al., 2009). Thus, we propose that the CAP-Gly domain of dynactin 

becomes essential in specific instances of dynein-driven transport (Fig. 2.11). We propose 

three specific cases where the microtubule-binding capacity of dynactin is necessary to 
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enhance dynein function: (1) For small cargoes with very few dynein motors, dynactin can 

actively maintain an interaction with the microtubule during detachment of both dynein heads 

leading to sustained motility. (2) For large cargoes which generate a high load for the motors, 

the CAP-Gly domain enhances the ability of dynein to produce movement. (3) Transport of 

cargos along individual, dynamic microtubules (Lomakin et al., 2009) such as those in the 

axon terminal as opposed to stable, densely packed or bundled microtubules. Importantly, 

initial recruitment of dynein motor– cargo complex often occurs near the cell periphery where 

highly dynamic microtubule plus ends are enriched. 

Given the dynamic and crowded cellular environment, all of these are regimes in 

which the dynein motor must work effectively. Thus, our results converge to a model wherein 

dynactin is required for the recruitment of the dynein motor onto microtubules for efficient 

initiation of transport and further, the CAP-Gly domain of dynactin functions as both tether 

and brake to promote the engagement of dynein on the microtubule. 
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Figure 2.11  Model depicting the roles of dynactin in dynein-driven transport.   

Model for the regulation of dynein by dynactin depicting two functions of dynactin—initial 

recruitment at the start of retrograde transport and sustained engagement of the dynein 

motor with the cytoskeletal tracks.  
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V.  Material and Methods 

 

Reagents  

Cytoplasmic dynein was purified from mice (Mus musculus) that are homozygous 

knock-in for DIC1 replaced with DIC1–eGFP–3X FLAG. All animal protocols were approved 

by the Institutional Animal Care and Use Committee (IACUC) at the University of 

Pennsylvania. Both male and female young adult mice (4–8 months old) were used. 

All p150
Glued

 constructs were generated from the human DCTN1 sequence 

(GenBank accession number NM_004082). The Halo tag from the pHTC Halo tag CMV-neo 

vector (Promega) was fused in-frame to the C terminus of the p150
Glued

 constructs and 

cloned into pcDNA3 vector. DNA constructs encoding the Perry syndrome point mutations 

were obtained from M. Farrer. p150
Glued

 1-CC1 includes amino acid residues up to Q547 and 

the ΔCAP-Gly construct starts from K115. 

Monoclonal antibodies to p150 (610474, 1:5,000), p50 (611003, 1:1,000) and β-

catenin (610153, 1:5,000) were from BD Transduction Laboratories, monoclonal antibodies 

to actin (1501R, 1:10,000); and DIC (MAB1618, 1:1,000) were from Millipore; and 

monoclonal antibody to Halo tag (G9211, 1:1,000) was from Promega. A polyclonal antibody 

to dynein heavy chain (R-325, 1:250) was from Santa Cruz. For binding experiments, 

monoclonal antibody to FLAG (clone M2, 1:10) from Sigma and monoclonal tetra-His 

antibody from Qiagen (34670, 1:10) were used. For RNA interference (RNAi) knockdown of 

dynein, 50nM of the short interfering RNA (siRNA) duplex (Dharmacon) against human 

dynein heavy chain (GenBank accession number NM_001376; 50-

GAGAGGAGGUUAUGUUUAAUU-30) was used.  
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Protein purification and binding assays 

Cytoplasmic dynein was purified from brain tissue from adult mice by microtubule 

affinity and ATP release, followed by sucrose density gradient centrifugation as described. 

Briefly, adult mouse brain tissue was homogenized at 1:1 weight/volume in chilled motility 

assay buffer (10 mM PIPES, 50 mM potassium acetate, 4 mM MgCl2, 1 mM EGTA, pH 7.0 

with KOH) with 1 mM dithiothreitol (DTT), 0.5 mM Mg-ATP and protease inhibitors (2 mM 

phenylmethylsulfonyl fluoride, 0.02 mg/ml Tosyl arginine methyl ester (TAME), 0.02 mg/ml 

leupeptin, 0.002 mg/ml pepistatin-A). Hexokinase (1Uml/1) and 1mg/ml glucose were used 

for microtubule affinity and 20 mM Mg-ATP was used for microtubule release. The 

supernatant from the microtubule release was fractionated on a 5–25% continuous sucrose 

density gradient and 1ml fractions were collected and analyzed by SDS–PAGE and Western 

blotting. 

p150
Glued

 1-CC1-Halo-Flag (amino acids 1–547 of DCTN1, NM_004082) was 

expressed in Sf9 cells using baculovirus following standard methods. After harvest, cells 

were lysed in Buffer A (Tris-buffered saline supplemented with 200 mM NaCl, 10% glycerol, 

0.5% igepal, 0.01 mg/ml TAME, 0.01 mg/ml leupeptin and 1 mM PMSF) in a Dounce 

homogenizer. After clarification, protein was captured on an M2 agarose column (Sigma), 

and further purified on a MonoS column (GE Healthcare) with buffer A as above and buffer B 

as Tris-buffered saline supplemented with 10% glycerol and 1M KCl. Peak fractions were 

incubated with Halo tag TMR Ligand (Promega) overnight at 4
o
C, then separated from 

unreacted dye on a Superdex column (GE Healthcare) in BRB80 (80 mM PIPES, 1 mM 

MgCl2, 1 mM EGTA, pH 6.8 with KOH) supplemented with 200 mM KCl and 10% glycerol. 

Peak fractions were combined, aliquoted and flash frozen and stored in liquid nitrogen. 

p150
Glued

 CC1-Halo-6xHis (amino acids 216–547 of DCTN1, NM_004082) was 

inserted into pET-29b (Novagen). For expression, transformed Rosetta E.coli (Novagen) 
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were grown in LB at 37
o
C at 325 r.p.m. under standard kanamycin selection. At OD600 ~0.7, 

cultures were transferred to 25
o
C and induced with 0.5 mM isopropyl-b-D-thiogalactoside. 

After 16 h, cells were harvested and resuspended in His-binding buffer (500 mM NaCl, 20 

mM Tris-HCl, pH 7.8, 15 mM imidazole, 1 mM Tris (2-carboxyethyl) phosphine hydrochloride 

(TCEP), 0.01 mg/ ml TAME, 0.01 mg/ml leupeptin, and 1mM PMSF). Cells were then lysed 

by French press (Thermo) at 18,000 psi followed by DNAse I and RNAse H treatment 

(Roche). The lysate was clarified at 45,000 g for 20 min at 4
o
C. The supernatant was filtered 

and loaded onto a 1 ml HisTrap column (GE Healthcare) by fast protein liquid 

chromatography. The column was washed with binding buffer and then eluted with binding 

buffer supplemented with 0.5 M imidazole. The peak fraction was incubated overnight a 4
o
C 

with 5 mM TMR ligand. The protein was run on a Superdex column (GE Healthcare) pre-

equilibrated with BRB80 supplemented with 200 mM KCl and 10% glycerol. Peak fractions 

were combined, aliquoted, flash frozen and stored in liquid nitrogen. 

Binding assays of purified proteins (p150
Glued

 1-CC1 and p150
Glued

 CC1) with dynein 

was performed by first incubating the proteins with protein G dynabeads (Life Technologies) 

coated with either anti-FLAG antibody or anti-His antibody, followed by the addition of dynein 

purified from bovine brain supplemented with 1 mg/ml bovine serum albumin. The proteins 

were eluted off the beads in denaturing buffer and the presence of dynein in the eluate was 

assayed by Western blot. 

Cell culture, transfections and pull downs 

COS7 cells (ATCC, CRL-1651) were cultured in DMEM with glutamax and 10% 

foetal bovine serum. Cells were transiently transfected with Fugene 6 (Roche) according to 

manufacturer’s instructions; cells were harvested 18–24 h post transfection. For RNAi 

knockdown, cells were transfected with siRNA duplexes using Lipofectamine RNAiMax 

(Invitrogen) with optimal knockdown obtained between 40 and 48 h. Immunoblots for knock-
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down experiments were analyzed by densitometry using ImageJ (NIH). For pull down assays 

using HaloLink resin (Promega), cells were lysed in 50 mM HEPES, 25 mM NaCl, 1 mM 

EDTA, 1 mM MgCl2, pH 7.0 with 1 mM DTT, 0.5% triton X-100 and protease inhibitors (1 mM 

PMSF, 0.01 mg/ml TAME, 0.01 mg/ml leupeptin and 0.001 mg/ml pepistatin-A). Lysates 

were incubated with the resin for 2 h at 4
o
C and washed according to the manufacturer’s 

instructions. Precipitated proteins were analyzed by SDS–PAGE and Western Blotting. 

Single molecule motility assays 

Motility assays were performed in flow chambers made with glass slides and 

silanized (PlusOne Repel Silane, GE Healthcare) coverslips attached together using 

adhesive tape, forming a chamber with a volume of 10 ml. There was a 5 min incubation time 

between each solution that was flowed into the chamber. The chamber was first incubated 

with 10 ml of 1:50 dilution of the monoclonal anti-tubulin antibody (Sigma), then blocked with 

two chamber volumes of 5% pluronic F-127 (sigma). Labelled (either Rhodamine or Alexa 

488) taxol-stabilized microtubules were flowed into the chamber and allowed to bind to the 

anti-tubulin antibody. Finally, purified protein or cell extract was flowed in with Mg-ATP (1 

mM for purified proteins and 10mM for cell extract), 1mg/ml bovine serum albumin, 1 mg/ ml 

casein, 20 mM taxol, 1 mM DTT and an oxygen scavenging system (Schroeder et al., 2012). 

For photobleaching experiments ATP was depleted with 1U/ml hexokinase and 1mg/ml 

glucose and the oxygen scavenging system was omitted to allow for complete 

photobleaching. For motility assays with dynein–GFP and purified p150
Glued

 1-CC1-TMR, 

dynein was incubated with p150
Glued

 1-CC1 for 5min at room temperature for co-complex 

formation before flowing into the chamber. For all co-migration experiments, 7-amino-4-

methyl coumarin-3-acetic acid (AMCA)-labelled tubulin (cytoskeleton) was used to prepare 

taxol-stabilized microtubules.  
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For motility assays with cell extracts, COS7 cells 18–24 h post transfection were 

incubated with Halo ligand TMR (Promega) following manufacturer’s instructions. The cells 

were then lysed in 40 mM HEPES, 1 mM EDTA, 120 mM NaCl, 0.1% Triton X-100, 1 mM 

Mg-ATP supplemented with protease inhibitors (same as above). The lysate was clarified by 

centrifugation at 1,000 g first and then 100,000 g. The extract was diluted in P12 buffer (12 

mM PIPES, 1 mM EGTA, 2 mM MgCl2, pH 6.8) right before perfusion into the flow chamber. 

For a 70–80% confluent 6 cm plate, cells were lysed in 50 ml lysis buffer, which was then 

diluted 1:100 for single molecule imaging. 

All movies were acquired at room temperature at 3 or 10 frames per second as 

noted, except for dual-colour co-migration experiments that was imaged at 1 frame per 

second, using a Nikon TIRF system (Perkin Elmer) on an inverted Ti microscope with the 

100X objective and an ImagEM C9100-13 camera (Hamamatsu Photonics) controlled by 

Volocity software. 

Particle tracking and data analysis 

Particle tracking was performed using the TrackMate plugin in Fiji (Schindelin et al., 

2012). Particles that ran into other adjacent particles, hit the microtubule ends repeatedly or 

were on microtubule bundles, were excluded from analysis. Only particles with trajectories 

that could be clearly visualized were tracked and analyzed, and each track detected by 

TrackMate was confirmed by visual inspection. The tracking resolution was determined to be 

36 nm, obtained from the standard deviation of the tracking of stationary particles on 

microtubules. 

As the motility of dynein frequently switches from processive to diffusive states, we 

developed a new algorithm, GrAND to parse these states within a given track. Each track 

was split into stationary and non-stationary segments using approximately three times the 

tracking error (100 nm) as a threshold. The non-stationary segments were then smoothed 
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using the locally weighted scatterplot smoothing (‘lowess’) function in MATLAB with the span 

(smoothing window) set to 20% of the track length. Twenty per cent was determined to be 

optimum for our acquisition rates and track lengths. The slope at each point of the smoothed 

track was obtained (gradient analysis) and points of zero slope were identified as nodes. 

These nodes are points dividing a given trajectory into smaller segments of constant velocity. 

Smoothing is done only to identify the nodes for a given track and all further analysis is done 

on raw data. Once the nodes were identified, MSD analysis was performed on the individual 

segments to classify them as processive or diffusive. Velocity and run length measurements 

were obtained for the processive segments only. 

Simulations 

To validate our GrAND method, we simulated tracks using parameters from our 

experimental data. These parameters include temporal resolution (3 frames per second), 

track duration (30 s - average track length of the dynein-GFP particles tracked), velocity (550 

nm/s), diffusion coefficient (0.055 µm
2
/s) and noise (Gaussian distribution with mean µ=0, 

standard deviation σ=100 nm (3x tracking error)). 

The inputs to the simulation include probability of diffusion (Pd) and processive (Pp) 

motions such that Pd + Pp = 1. These probabilities indicate the fraction of time spent in 

diffusive and processive motion, respectively. For example, a particle in a track with a 

duration of 30 s (90 frames) having Pd = 2/3 and Pp = 1/3 would spend 20 s (60 frames) and 

10 s (30 frames) in diffusive and processive motions, respectively. Since the motion of 

dynein frequently involves segments of processive motion interspersed with segments of 

diffusion, we first generated either diffusive or processive segments, which are then 

concatenated randomly to generate the whole track. In each case, the number of segments 

was set to five. For processive segments, the particle displacement is given by x = v x Δt. 
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For diffusive segments, the displacements were obtained from a normal distribution with µ = 

0, σ = square root (2 x D x Δt) nm. 

Photobleaching analysis 

To prevent dissociation of the particles from microtubules, data from motility assays 

in the presence of hexokinase and glucose were used to analyze photobleaching. Only 

particles bound to microtubules were analyzed. A 5x5 pixel region of interest was drawn 

around the particle and the intensity was recorded from each frame using the Plot Profile in 

FIJI. Another 5x5 pixel region of interest was drawn in the vicinity of the particle to record the 

background intensity. For each frame, the background was subtracted and the intensity was 

plotted with time to determine the number of bleaching steps. 

Landing events 

The dynein concentration was kept constant across experiments comparing different 

conditions (Figs 2.5 and 2.6). To measure the number of landing events for dynein in the 

presence of p150
Glued

 1-CC1, microtubules were randomly chosen from the centre of TIRF 

field and particles on the microtubules were scored by line-scan intensity analysis. Distinct 

and clear particles on the microtubules showed up as peaks in the intensity profile corrected 

for background (background intensity was obtained by drawing a line in the vicinity of the 

microtubule and recording the intensity). Each peak was visually inspected for the presence 

of a particle. The length of microtubules occupied was determined from the 

maximumintensity projection over time of dynein in a similar way. Only intensities at least 

10% above background were scored as occupied. In each case, the data was normalized to 

the length of the microtubule. For dynein landing frequency measurements in Fig. 2.6, 

microtubules in the TIRF field were scored for motile events by kymograph analysis using 

Multiple Kymograph plugin in FIJI. For Fig. 2.6E, microtubules were randomly chosen in 
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each condition and for each microtubule the dynein–GFP intensity was recorded before and 

after the ATP wash. The intensities were recorded by the line-scan intensity analysis in FIJI. 

Extracts from cells showing >85% dynein knockdown, as determined by densitometry 

analysis with ImageJ, were analyzed to test the dependence of p150
Glued

 motility on dynein. 

To measure landing events (Figs 2.7G and 2.10H), microtubules in the TIRF field were 

scored for motile events by kymograph analysis using Multiple Kymograph plugin in FIJI. The 

number of events was normalized to the length of the microtubules and the expression levels 

of p150
Glued

-Halo were quantified by densitometry analysis using ImageJ (NIH). 

Statistical methods 

All statistics were performed in GraphPad Prism. Student’s t-test was used when 

comparing two data sets while one-way analysis of variance with Tukey’s post-hoc test was 

used with multiple data sets. 
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CHAPTER 3:  OPTOGENETIC CONTROL OF ORGANELLE TRANSPORT USING A 

PHOTOCAGED CHEMICAL INDUCER OF DIMERIZATION 

 

 

 

 

 

 

This chapter is adapted from:    

Ballister, E.R., Ayloo, S., Chenoweth, D.M., Lampson, M.A., Holzbaur, E.L.F (2015). 

Optogenetic control of organelle transport using a photocaged chemical inducer of 

dimerization 

Current Biology 25:R407-R408 

 

 

Contributions: I performed all the neuronal experiments, Ed Ballister performed all the HeLa 

cell experiments. Dave Chenoweth provided new reagents. Ed and I analyzed data and 

wrote the chapter. 
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I.  Summary 

 
 
 Dynamic protein interactions and protein localization are fundamental to several 

cellular processes. Chemically induced dimerization is a powerful technique to control protein 

localization. However, chemically induced dimerization does not provide the ability to 

spatially control protein interactions. More recently, light-induced dimerization systems have 

been developed which allow cellular perturbations with spatiotemporal precision. In this 

chapter, we apply a recently developed light-induced dimerization system to recruit motor 

proteins to specific organelles within the cell to examine effects on motility. We focus on 

kinesin-1 and dynein and demonstrate that recruitment of either motor induces robust motility 

of the organelle. In neurons, recruitment of motors to axonal peroxisomes induced robust 

anterograde motion with kinesin-1 and retrograde motion with dynein. In contrast, 

recruitment of motors to mitochondria had differential effects from peroxisomes indicating 

organelle-dependent regulation of motors. Our work highlights the different ways in which we 

can apply the light-inducible dimerization system to probe biological processes.  
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II.  Introduction 

 

Cell polarity, growth and signaling require organelle transport by cytoskeletal motor 

proteins that are precisely regulated in time and space. Probing these complex, dynamic 

processes requires experimental techniques with comparable temporal and spatial precision. 

Inducible dimerization offers the ability to recruit motor proteins to organelles in living cells. 

Approaches include rapamycin-induced dimerization of motors and cargo-bound binding 

partners (Kapitein et al., 2010) or the recent application of the TULIP light-inducible 

dimerization system (Strickland et al., 2012; van Bergeijk et al., 2015). In the latter system, 

motor recruitment is activated by blue light, and relaxes to an OFF state in the dark within 

seconds. While rapid relaxation is desirable for some applications, many experiments require 

sustained motor recruitment. Here, we use a photocaged chemical dimerizer to achieve 

sustained, spatially-defined motor recruitment to individual organelles with a single pulse of 

light. We demonstrate the general applicability of the system by recruiting microtubule plus 

end-directed kinesin-1 and minus end-directed dynein motors to peroxisomes and 

mitochondria in HeLa cells and primary neurons, leading to alterations in organelle transport 

on timescales from <10 seconds to >10 minutes after photoactivation. 
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III.  Results 

 

 We recently developed a photoactivatable chemical dimerizer, cTMP–Htag, a 

synthetic small molecule comprising a Halotag ligand linked to photocaged trimethoprim 

(TMP). This molecule is designed to heterodimerize Halotag (Halo) and Escherichia coli 

DHFR (eDHFR) fusion proteins (Ballister et al., 2014). Here we use light to recruit eDHFR-

tagged molecular motors or motor effectors to specific organelles. cTMP–Htag is cell 

permeable and covalently binds the Halotag protein, which we localized to the cytosolic 

surface of either peroxisomes or mitochondria (Kapitein et al., 2010; Ballister et al., 2014). 

While photocaged, TMP does not bind eDHFR. Uncaging with a pulse of ~400 nm light 

recruits eDHFR-fusions to the organelle surface (Fig. 3.1A). Photoactivation is spatially 

restricted to the illuminated organelle since uncaged TMP remains covalently tethered to the 

Halotag anchor. TMP–eDHFR binding is noncovalent, so individual motor–eDHFR proteins 

may bind and release, but at steady state the interaction sustains robust motor recruitment. 

Dimerization can be reversed within minutes by addition of free TMP (Ballister et al., 2014). 

We tested three constructs: the constitutively active motor domain of kinesin-1 

(amino acids 1–560, K560); an amino-terminal fragment of kinesin light chain 1 (KLC1), 

which binds and recruits kinesin heavy chain; and an amino-terminal fragment of Bicaudal 

D2 (BICD), a motor effector that binds and recruits dynein. To localize Halotag protein, we 

used the peroxisometargeting sequence from human PEX3 or the mitochondrial outer 

membrane targeting sequence (Mito) from Listeria monocytogenes ActA (Fig. 3.1B) 
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Figure 3.1 Illustration of optogenetic control of organelle transport.  

(A) Schematic of experimental approach of light-induced dimerization of motor proteins to 

organelles. (B) Protein constructs used for this assay.  

 

HeLa cells expressing PEX3-GFP-Halo, together with either KLC1-mCherry-eDHFR 

or BICD-mCherry-eDHFR, were treated with cTMP-Htag. Before uncaging, peroxisomes 

localized uniformly (Fig. 3.2A), with motor or effector constructs diffuse throughout the 

cytosol. In response to a 500 ms widefield pulse of 387 ± 5 nm light, the motor and effector 

constructs relocalized to peroxisomes within 30 seconds and transported them to the 

periphery or to the center of the cell, respectively, as predicted for kinesin- or dynein-driven 

motility Fig. 3.2A). The power of optogenetics is its potential for localized control on 

subcellular length scales. Using 405 nm light, we photoactivated defined regions within HeLa 

cells (Fig. 3.2B) Motor or effector recruitment in these cells led to transport of peroxisomes in 

the predicted directions which is reflected in our quantitation of fluorescence changes in GFP 

fused to peroxisomes (Fig. 3.2C), while unilluminated organelles in the same cells were 

unaffected (Fig. 3.2D). 
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Figure 3.2 Photoactivation of peroxisomes recruits motors and induces motility of 
peroxisomes.  

(A) GFP images show peroxisomes before and after widefield motor recruitment; dashed 

lines show cell outlines. Peroxisomes accumulated (arrowheads) in the periphery (KLC1), or 

center (BICD) in 100% of activated cells (n > 15 cells for each, 2 independent experiments). 

Horizontal bar, 5 µm. (B) KLC1 was recruited to peroxisomes in a defined region (yellow box) 

at t = 0. Whole-cell images (left) show GFP; insets show area in white square in GFP and 

mCherry. (C) GFP quantification of regions (1–4) marked in (B) shows peroxisome depletion 

from the interior of the photoactivated region (1, blue) and accumulation at the nearest edge 

of the cell (2, red), while unilluminated regions (3, 4, green and purple) are unaffected. 

Horizontal bar, 5 µm. (D) Following targeted KLC1 or BICD recruitment to peroxisomes (as in 

panel B), the fold change in average GFP intensity (as a proxy for peroxisome density) was 

calculated for a photoactivated region (filled symbols) and a comparable unactivated region 
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(open symbols) in each cell (n ≥ 10 cells each, similar results from 2 independent 

experiments). **p < 0.002, Student’s t-test. 

We next performed this assay in axons of hippocampal neurons which have 

uniformaly polarized microtubules with their plus ends out. In axons, within 5 min of 

photoactivation, >90% of illuminated peroxisomes moved >5 µm toward microtubule plus 

ends for K560 (anterograde) or toward microtubule minus ends for BICD (retrograde) (Fig. 

3.3A), whereas unilluminated peroxisomes exhibited low-frequency, mixed motility (Fig. 

3.3B). K560 recruitment induced peroxisome motility 10 ± 2 s (mean ± SEM) after 

photoactivation, before a detectable increase in mCherry fluorescence. In contrast, BICD 

recruitment induced motility 32 ± 6 s (mean ± SEM) after illumination, following a clear 

increase in mCherry fluorescence (Fig. 3.3C). These observations are consistent with 

previous findings that intracellular cargo transport requires fewer kinesin than dynein motors, 

which function in larger teams (Hendricks et al., 2012; Rai et al., 2013). 
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Figure 3.3 Recruitment of motors to peroxisomes in axons induces robust 
motility.  

 (A) Peroxisome movement in axons after photoactivation in a defined region (white box) at t 

= 0. Filled and open arrowheads mark photoactivated and unactivated peroxisomes, 

respectively. Horizontal bar, 5 µm. (B) Quantification of the percentage of peroxisomes 

exhibiting anterograde or retrograde movement (mean ± SEM, n = 10 neurons from 3 

independent experiments). **p < 0.002, Student’s t-test. (C) Representative images of K560 

and BICD recruitment to peroxisomes in neurons before photoactivation and immediately 

prior to motility. Horizontal bar, 500 nm. 

We next examined the recruitment of motors to mitochondria in axons of 

hippocampal neurons. Consistent with our data with peroxisomes, recruitment of either 

kinesin or dynein induced motility in the predicted direction (Fig. 3.4A). Further, dynein-
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induced motion was delayed just like we observed with peroxisomes (Fig. 3.4B). However, 

while K560 recruitment induced motion in >90% of photoactivated mitochondria, recruitment 

of dynein induced motility in only ~40% indicating organelle-dependent regulation of motors 

(Fig. 3.4C).  

 

Figure 3.4 Recruitment of motors to mitochondria in axons of neurons.  

(A) Time series of mitochondria movement before and after photoactivation. White box 

indicates the photoactivated region. Filled arrowheads mark positions of photoactivated 

mitochondria; open yellow arrowheads mark unilluminated mitochondria. Horizontal bar, 5 

μm. Note that unlike peroxisomes, not all mitochondria become motile within 5 min after 

photoactivation. (B) Representative images of recruitment of motor proteins or adaptors 
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(K560 or BICD) to mitochondria before and after photoactivation. Horizontal bar, 500 nm. (C) 

Quantitation of the percent of mitochondria exhibiting anterograde or retrograde movement 

with or without photoactivation in K560 and BICD recruitment experiments in neurons (mean 

± SEM, n=10 neurons from 3 independent experiments). **p<0.05 Student’s t-test.  
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IV.  Discussion 

 

Our results demonstrate the utility of cTMP-Htag for manipulating organelle transport 

within living cells with spatial and temporal control. Motor recruitment after uncaging is 

stable, leading to sustained transport of individual organelles over several minutes after a 

single pulse of light. Because continuous illumination is not required, we can observe 

phenomena such as activated organelles bypassing unactivated organelles (Fig. 3.3A, 3.4A). 

Moreover, cTMP–Htag is insensitive to 488 nm light, allowing GFP imaging without inducing 

uncaging, and Halotag protein is compatible with both amino- and carboxy-terminal fusion 

partners. In contrast, the TULIP system, also used for optogenetic control of organelle 

transport, requires repeated illumination for sustained transport and is sensitive to 488 nm 

light (Strickland et al., 2012; van Bergeijk et al., 2015). These complementary systems offer 

the choice of transient (van Bergeijk et al., 2015) or sustained (this study) motor recruitment. 

In cells, endogenous motors are tightly regulated by mechanisms including auto-

inhibition, effector binding and scaffolding proteins (Fu and Holzbaur, 2014; Hancock, 2014). 

To better understand intracellular dynamics, multiple approaches must be employed. The 

use of optogenetics to recruit motors to organelles with temporal and spatial specificity is an 

exciting addition to the toolkit to dissect motor function within the cell, and to test 

downstream effects of localized perturbations of organelle transport on cellular physiology. 



89 
 

V.  Material and Methods 

 

Reagents 

All plasmids in this study are derived from pEM705, which contains a CAG promoter 

for constitutive expression, obtained from E. V. Makeyev (Khandelia et al., 2011). Halo-GFP-

Mito is previously described (Ballister et al., 2014), and includes the C-terminal 47 amino 

acids of the the Listeria monocytogenes ActA gene, which confer mitochondrial outer 

membrane targeting. PEX3-GFP-Halo includes the N-terminal 42 amino acids of the human 

Pex3 gene, which confer peroxisome targeting (Kapitein et al., 2010). The mCherry-eDHFR 

constructs in this study were derived from a previously described mCherry-eDHFR plasmid 

(Ballister et al., 2014), augmented with motor and motor effector domains described in 

(Kapitein et al., 2010). BICD-mCherry-eDHFR includes residues 1-572 of mouse BICD2, 

KLC1-mCherry-eDHFR includes residues 1-175 of rat Kinesin-1 light chain, and K560-

mCherry-eDHFR includes residues 1-560 of human Kinesin-1 heavy chain. 

HeLa cell culture and transfection  

Hela cells (obtained from E. V. Makeyev, Nanyang Technological University) were 

cultured in growth medium (DME with 10% FBS and penicillin-streptomycin) at 37 °C in a 

humidified atmosphere with 5% CO2. Peroxisome recruitment experiments in HeLa cells 

were performed by transiently cotransfecting plasmids expressing PEX3-GFP-Halo and 

either BICD-mCherry-eDHFR or KLC1-mCherry-eDHFR. Mitochondrial recruitment 

experiments in HeLa cells were performed by transiently transfecting BICD-mCherry-eDHFR, 

KLC1-mCherry-eDHFR or K560-mCherry-eDHFR into a stable cell line constitutively 

expressing Halo-GFP-Mito. The Halo-GFP-Mito stable cell line was created using the 

Recombinase Mediated Cassette Exchange technique described by Makeyev and coworkers 

(Khandelia et al., 2011). For single-plasmid transient transfections, cells at ~60% confluency 
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in a single well of a 6-well plate were transfected with 1 µg of plasmid using 3 µL of Fugene 6 

(Promega). Double-plasmid cotransfections were performed similarly, but with 1 μg of each 

plasmid and 6 μL of Fugene 6. Transient transfections were performed 40 hours prior to 

experiment. 

Neuronal cell culture and transfection  

Rat hippocampal neurons obtained from the Neuron Culture Service Center at the 

University of Pennsylvania were dissected from the hippocampus of rat embryos at 

embryonic day 18-20 as previously described (Wilcox et al., 1994). Cells were plated at a 

density of 1,00,000 cells/ml on glass coverslips coated with 0.5 mg/ml poly-L-lysine in 2 ml 

Neurobasal medium (Gibco) supplemented with 2% B27 (Invitrogen), 1% GlutaMax (Gibco) 

and cultured at 37°C in a 5% CO2 incubator.  

Neuronal experiments were performed after either 8 or 9 DIV (days in vitro) with DNA 

plasmids transfected on 7 or 8 DIV respectively. Halo-GFP-mito and PEX3-GFP-Halo were 

co-transfected with either K560-mcherry-eDHFR or BICD-mcherry-eDHFR using 

Lipofectamine 2000 reagent (Invitrogen). Cells were imaged 12-18 hours post transfection.  

Dimerizer treatment  

cTMP-Htag was dissolved in DMSO at 10 mM and stored in amber plastic 

microcentrifuge tubes at -80 °C, then diluted in medium to a final working concentration of 10 

μM. Care was taken to minimize incidental exposure of cTMP-Htag or treated cells to light 

prior to experiment. We found that working quickly in low levels of normal room lighting did 

not cause any detectable premature uncaging. The low levels of white light necessary for 

differential interference contrast microscopy also did not cause any detectable cTMP-Htag 

uncaging. Cells were incubated with 10 μM cTMP-Htag for 5-60 minutes in culture medium, 

then washed with culture medium for 5-15 minutes prior to experiment. In our hands, 5 

minute incubations were as effective as 60 minute incubations.  
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Image acquisition and photoactivation  

For live imaging, HeLa cells were plated on 22 x 22 mm glass coverslips (no. 1.5; 

Fisher Scientific) coated with poly-D-lysine (Sigma-Aldrich). Coverslips were mounted in 

magnetic chambers (Chamlide CM-S22-1, LCI). During imaging, cells were maintained in L-

15 medium without phenol red (Invitrogen) supplemented with 10% FBS and 

penicillin/streptomycin. Temperature was maintained at ~35 °C using an environmental 

chamber (Incubator BL; PeCon GmbH).  

For HeLa cell experiments, images were acquired with a spinning disk confocal 

microscope (DM4000; Leica) with a 100x 1.4 NA objective, an XY Piezo-Z stage (Applied 

Scientific Instrumentation), a spinning disk (Yokogawa), an electron multiplier charge-

coupled device camera (ImageEM; Hamamatsu Photonics), and a laser merge module 

equipped with 488- and 593-nm lasers (LMM5; Spectral Applied Research) controlled by 

MetaMorph software (Molecular Devices). Images in Figure 3.2A are maximum-intensity 

projections of 5 confocal Z-sections, 1 μm spacing.  

For whole-cell UV exposure experiments in Figure 1B and Figure S1 A-E, light from a 

mercury arc lamp (Osram HXP R 120W/45c Vis) was filtered through a 387/11 nm bandpass 

filter (Semrock part #FF01-387/11 as a component in a DAPI filter cube) and focused 

through the objective. 5 x 100 ms exposures were used for widefield UV activation. Targeted 

laser experiments in Figure 3.2B employed an iLas2 illuminator system (Roper Scientific), 

equipped with a 405 nm laser (CrystaLaser LC model # DL405-050-O, output of 27 mW after 

fiber coupling) operated at 10% intensity, controlled using the iLas2 software module within 

Metamorph. Defined areas (2-10 µm
2
) were rasterized 2 times over ~100 ms. 

Neurons were imaged in low-fluorescence nutrient media (Hibernate E, Brain Bits) 

supplemented with 2% B27 and 1% GlutaMax. For neuron experiments, all images were 

acquired on a spinning-disk confocal UltraView VOX (Perkin Elmer) with a 405 nm Ultraview 
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Photokinesis (Perkin Elmer) unit on an inverted Nikon Ti microscope with apochromat 100X 

1.49 NA oil-immersion objective and a C9100-50 EMCCD camera (Hamamatsu) controlled 

by Volocity software (Perkin Elmer). The Photokinesis module at 25% laser power (0.6 

W/cm
2
) for 25 cycles was used for localized photoactivation. Only neurons expressing both 

GFP and mCherry (co-transfected) were imaged and the axons were selected based on 

morphologic criteria as previously described (Kaech and Banker, 2006). Sequential dual 

colored images (GFP and mCherry) were acquired for 20 s at 2 s per frame prior to 

photoactivation and for 5 min at 2 s per frame post photoactivation. There was no evidence 

of cellular phototoxicity with the photoactivation conditions described here, and we note that 

these doses of light are less intense than those required for standard FRAP experiments. 

Image Processing  

All image processing and analysis was performed using ImageJ. For quantification of 

peroxisome density vs time in Figure 3.2C, average GFP intensity in the indicated regions 

was measured at each timepoint (cells were imaged every 5 seconds). Background signal 

was estimated as average intensity in large areas outside the cells and subtracted. To 

normalize between different regions, the background-subtracted measurements for each 

region at each timepoint were divided by the maximum intensity observed for each region 

over the course of the experiment. For the endpoint analysis in Figure 3.2D, 10 cells were 

analyzed for KLC1 recruitment and 11 cells were analyzed for BICD recruitment. Two 

regions were defined for each cell: 1 peripheral region contained in the area targeted by the 

activating 405 nm laser pulse, and one unilluminated peripheral region (on the other side of 

the cell). Average GFP intensity within these regions was measured before photoactivation 

(“start”) and at the final timepoint (275 seconds after photoactivation, “end”). Measured 

values were corrected for background signal and observational photobleaching. The final 

calculated values are the ratio of end intensity/start intensity for each region.  
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For analysis of peroxisome (Fig. 3.3B) and mitochondria (Fig. 3.4C) transport in 

neurons , photoactivated and non-photoactivated organelles within an axon were classified 

as exhibiting anterograde movement, retrograde movement or no movement. Organelles 

were considered motile if they moved greater than 5 µm distance in a given direction within a 

time window of 5 min.  
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I.  Summary 

 

The polarized distribution of proteins in axonal and dendritic compartments is critical 

for neuronal function. While we have a basic understanding of cargo transport in neurons, 

much less is known about the differential regulation of transport in axons versus dendrites.  

We recently developed an optogenetic tool to recruit motors to cellular cargo in real-time. We 

showed that light-induced recruitment of dynein or kinesin to axonal organelles induced 

robust retrograde or anterograde motion respectively. Here, we extend this study to report 

distinct patterns of motor behavior in dendrites. We demonstrate that dynein efficiently 

navigates the mixed microtubule arrays of dendrites, displaying a retrograde bias consistent 

with the underlying microtubule polarity. Thus dynein can efficiently drive cargo back to the 

cell soma. Further, dynein-driven motility depends on microtubule dynamics, suggesting that 

dynein requires the dynamic plus-ends of microtubules for efficient recruitment onto 

microtubule tracks. In contrast, while kinesin-1 is a robust motor in the axon, it is not as 

efficient in dendrites. We further tested this observation by directly comparing the activities of 

two kinesin-3 family motors, KIF13A and KIF13B that differentially localize to axons and 

dendrites respectively. Light-induced recruitment of either motor effectively induced motility 

of axonal organelles, but produced striking differences in dendrites. KIF13B induced robust 

motion whereas KIF13A failed to move. Collectively, our data highlight the different 

regulatory mechanisms dynein and kinesins employ in polarized neuronal trafficking.  While 

dynein function is governed by microtubule orientation and dynamics, kinesins show 

compartment-specific differences likely reflecting preferential tuning to localized cytoskeletal 

determinants. 
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II.  Introduction 

 

The transport of organelles and proteins within axonal and dendritic compartments is 

fundamental to neuronal development and is essential to maintain neuronal homeostasis. 

Accurate trafficking of polarized proteins is important for the formation and maintenance of 

synapses that are vital for neuronal activity. Previous studies have demonstrated that most 

dendritic vesicles do not enter the axon (Burack et al., 2000; Silverman et al., 2001) 

suggesting that microtubule-based transport is selective. More recently, it has been shown 

that the dendritic vesicles that do enter the axon are typically rerouted back to the cell body 

(Al-Bassam et al., 2012; Peterson et al., 2014). Thus, an important question in neuronal 

trafficking involves understanding the mechanisms responsible for polarized transport.  

Long-range transport in neurons is a highly regulated process and is primarily 

mediated by kinesins and dynein moving along the microtubule cytoskeleton. While there are 

several families of kinesins driving transport towards the microtubule plus-end, dynein is the 

major minus-end directed motor in cells (Maday et al., 2014). The distinct microtubule 

cytoskeleton in axons and dendrites of mammalian neurons adds another layer of complexity 

to this process: whereas axons have uniformly plus-end out microtubules, dendrites have 

mixed polarity microtubules (Baas et al., 1988; Conde and Caceres, 2009). 

How are motor proteins regulated to achieve selective microtubule-based transport in 

neurons? Several models have been proposed to explain kinesin selectivity in polarized 

neuronal trafficking. The ‘smart motor’ hypothesis suggests that motors inherently are 

capable of distinguishing axons from dendrites (Nakata and Hirokawa, 2003; Jacobson et al., 

2006; Huang and Banker, 2012). These studies implicate regulation at the motor-microtubule 

level suggesting that structural elements within motor proteins determine their targeting to 
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the axon or dendrite. There is also a ‘cargo-steering’ model that postulates that the cargo the 

motors bind to determines whether the motor-cargo complex is axonal or dendritic (Setou et 

al., 2002; Song et al., 2009; van Spronsen et al., 2013). These reports suggest that cargo-

associated sorting or adaptors influence the targeting of the motor. Collectively, these 

studies suggest a multi-layered regulation of selective kinesin transport.  

Dynein likely employs regulatory mechanisms that are different from kinesins, as a 

single form of dynein has to perform efficiently in both axons and dendrites. A previous study 

proposed that dynein establishes the initial sorting of cargo to dendrites (Kapitein et al., 

2010) but the factors regulating dynein-driven motility within the dendrite are not known.  

In this study, we specifically focused on understanding how motors contribute to 

differential trafficking in neurons. We applied a novel optogenetic tool (Ballister et al., 2014) 

to recruit motors to specific organelles and examine their dynamics immediately post 

recruitment. We demonstrate that recruitment of dynein induces long, bidirectional runs and 

causes organelles to take more frequent and longer retrograde runs. This retrograde bias 

reflects the underlying microtubule organization in dendrites and hence dynein can efficiently 

drive cargo back to the cell soma. Dynein-driven motility also depends on microtubule 

dynamics suggesting dynein requires the growing ends of microtubules for efficient initiation 

of minus-end directed transport along microtubules. In contrast, we find that kinesin-1 is not 

as efficient in dendrites as in axons and is not sensitive to microtubule dynamics. To further 

explore kinesin motility in dendrites, we investigated two kinesin-3 family motors, KIF13A and 

KIF13B, and found that both function effectively in axons but only KIF13B induced organelle 

motility in dendrites. Taken together, our data support a model in which dynein is regulated 

by microtubule orientation and dynamics while kinesins may be tuned to compartment-

specific modifications of the microtubule cytoskeleton.  
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III.  Results 

 

Recruitment of dynein or kinesin to peroxisomes in dendrites induces robust 

bidirectional motility 

In order to recruit motor proteins to organelles, we employed a recently developed 

light-inducible dimerization tool (Ballister et al., 2014, described in chapter 3). Briefly, in this 

system the two proteins of interest are tagged with Halo and eDHFR respectively; cTMP-

HaloLigand is a caged, membrane permeable dimerizer that dimerizes the Halo and eDHFR 

tagged proteins following a single pulse of 400 nm (Fig. 1A). In contrast to the recent use of 

rapalog, an analog of rapamycin used to chemically induce dimerization in the whole cell 

(Kapitein et al., 2010; Jenkins et al., 2012; Bentley et al., 2015), our light-inducible 

dimerization system enables us to dimerize proteins locally via photoactivation, recruiting 

motor proteins to specific organelles (Fig. 4.1A). The ability to spatially control motor 

recruitment allows us to examine compartment-specific and organelle-dependent regulation 

of motility. In addition, with this system, we can directly visualize motor recruitment and 

follow organelle dynamics in real-time.  

In initial experiments, this optogenetic tool was used to recruit specific motors to 

organelles in the axons of hippocampal neurons (Ballister et al., 2015). We used a 

constitutively active form of the kinesin-1 motor, K560, which includes the first 560 residues 

of the kinesin heavy chain encoding both the N-terminal motor domain and coiled coil 

sequences required for dimerization. For dynein recruitment, we used an N-terminal 

fragment of the adaptor protein Bicaudal D2, which effectively recruits dynein and its 

activator dynactin (Splinter et al., 2012). In axons, recruitment of either kinesin-1 or dynein 

motors to peroxisomes induced robust anterograde or retrograde motion, respectively 

(Ballister et al., 2015). Here, we extend this study to compare and contrast the downstream 
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effects of motor recruitment to axonal and dendritic organelles. We focused on peroxisomes 

as these are mostly stationary organelles with a baseline motility of only about ~20% 

(Ballister et al., 2015) and are enriched in the soma and dendrites of neurons (Kapitein et al., 

2010). 

While axons have uniformly plus-end out microtubules, dendrites of mature 

hippocampal neurons have microtubules of mixed polarity (Baas et al., 1988); we verified this 

organization by examining the directionality of EB3 comets in our cultures (Fig. 4.1B). 

Quantitation of EB3 comets indicated that microtubules are 64 ± 3.6% plus-end out and 36 ± 

3.6% minus-end out (mean ± SEM; n=10 neurons from 2 experiments) in proximal dendrites 

of our neuronal cultures, similar to previous reports (Baas et al., 1988; Stepanova et al., 

2003; Kleele et al., 2014). Consistent with this mixed polarity, recruitment of either K560 or 

BICD to peroxisomes in dendrites induced long, bidirectional runs as shown in Fig. 4.1C. 

Dual color imaging enabled us to visualize the specific recruitment of motor proteins or motor 

adaptors to the photoactivated organelle by an increase in the intensity of mCherry 

fluorescence as indicated by arrowheads in the time series (Fig. 4.1C). In the corresponding 

kymographs (Fig. 4.1C), peroxisomes that are initially green-only become yellow post-

photoactivation, showing the co-migration of the organelles with the recruited K560 (left) or 

BICD (right). This induced recruitment is better seen in the stills of peroxisomes pre and 

post-photoactivation (Fig. 4.1D). Quantitation of the intensity change in mCherry 

fluorescence pre- and post-photoactivation revealed a ~4 ± 0.4 and ~6 ± 1.2 fold increase 

(mean ± SEM; n=12 neurons from 3 experiments) with K560 and BICD respectively, 

indicating successful recruitment of the motors. 
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Figure 4.1 Recruitment of dynein or kinesin to peroxisomes in dendrites induces 
robust bidirectional motility. 

(A) Schematic and parts list of the light-inducible dimerization system implemented in mature 

neurons which have uniformly polarized microtubule arrays in the axon and mixed arrays in 

dendrites. We previously showed that recruitment of kinesin or dynein motors to 

peroxisomes in axons induced robust anterograde or retrograde motion, respectively 

(Ballister et al., 2015). (B) Representative kymographs of EB3 comets in the axon and 

dendrites of mature hippocampal neurons, 8-10 DIV. Horizontal bar, 5 µm. Vertical bar, 30 s. 

(C) Time series and corresponding kymographs showing the bidirectional movement of 
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locally photoactivated peroxisomes (white box). Horizontal bar, 5 µm. Vertical bar, 1 min. (D) 

Images of motor recruitment to peroxisomes pre and post-photoactivation. Horizontal bar, 1 

µm. 

Recruitment of dynein induced motility in >90% of the photoactivated organelles (Fig. 

4.2A). In contrast, recruitment of K560 induced motility in only ~60% of photoactivated 

organelles (Fig. 4.2A). Importantly, the lack of motility observed for the remaining ~40% of 

photoactivated organelles was not due to a lack of recruitment of the K560 motor. This is 

shown in a representative example of a non-motile peroxisome where there is a clear 

increase in the fluorescence intensity of mCherry indicating successful K560 recruitment 

(Fig. 4.2B). With both kinesin and dynein, ~70% of the motile organelles exhibited 

bidirectional motility with only ~30% moving unidirectionally in either the anterograde or 

retrograde direction (Fig. 4.2C). These data suggest that dynein efficiently navigates the 

dendritic cytoskeleton. In contrast, kinesin-1, which functions as a robust motor in axons 

(Ballister et al., 2015), does not perform as efficiently in dendrites.  

 

Figure 4.2 Kinesin is not as efficient as dynein in inducing motility in dendrites. 

(A) Quantitation of percentange of peroxisomes that are motile. Mean ± SEM, 25 

peroxisomes from n=12 neurons and N=3 independent experiments for both K560 and BICD, 

**p<0.01, ***p<0.001, Student’s t-test. (B) Representative stills showing recruitment of K560 

even in the case peroxisomes that are immotile post photoactivation. Horizontal bar, 500 nm. 
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(C) Photoactivated peroxisomes that exhibited movement were further parsed into 

bidirectional, anterograde or retrograde. Mean ± SEM. 

 

Dynein-driven motility in dendrites has a retrograde bias 

Recruitment of dynein to dendritic organelles induced long runs in either direction. 

However, we noticed that ~50% of these motile organelles eventually entered the cell soma 

(Fig. 4.3A). Once they enter the soma, these organelles do not re-enter the dendrite during 

our imaging window. This led us to examine the motor-induced bidirectional movement of the 

organelles more closely. We first measured velocities of the individual runs of the motile 

peroxisomes. Photoactivated peroxisomes moved at a speed of 0.49 ± 0.03 µm/s (mean ± 

SEM) and we observed no significant differences in the velocities induced by either kinesin 

or dynein recruitment (Fig. 4.3B).  

We then measured the run lengths of the motile organelles and found that dynein 

recruitment caused organelles to take more frequent and longer retrograde runs indicative of 

a significant retrograde bias (40% anterograde vs 60% retrograde, Fig. 4.3C). Of note, the 

observation that dynein induced motion of 60% retrograde runs reflects the underlying 

microtubule organization in dendrites (~65% plus end out microtubules). Similar to the 

observed run lengths, the run times of dynein-induced motion also exhibited a retrograde 

bias (Fig. 4.3D). In contrast, K560 did not show any bias when recruited to organelles in 

dendrites (47% anterograde vs 53% retrograde, difference not-significant, Fig. 4.3E, F). 

These findings demonstrate that dynein-induced motility has a retrograde bias consistent 

with the underlying microtubule polarity. These data suggest that microtubule orientation is 

likely a key determinant of dynein-driven motility in dendrites.   
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Figure 4.3 Dynein-driven motility in dendrites has a retrograde bias. 

(A) Quantitation of percent of peroxiomes going back to the cell body post photoactivation. 

Mean ± SEM, **p<0.01, Student’s t-test. (B) Average velocities of individual runs of 

peroxisomes that are motile post photoactivation. Mean ± SD, n.s., not significant, Student’s 

t-test. (C-F) Histograms of run length and run time of the individual runs of motile 
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peroxisomes. Data from 25 peroxisomes from n=12 neurons and N=3 independent 

experiments. 

 

Dynein requires dynamic microtubules for efficient initiation of transport 

Previous work from our lab has established a model wherein dynein is recruited to 

the dynamic plus-ends of microtubules by dynactin, CLIP-170 and EB1 and this is required 

for efficient initiation of retrograde transport from the distal axon (Moughamian et al., 2013; 

Ayloo et al., 2014, Nirschl et al., 2016). We now wanted to ask whether the dynein-induced 

motility of peroxisomes in neurons would show a similar dependence on dynamic 

microtubule plus ends. To test this possibility, we performed our photoactivation assay in 

neurons treated with low dose nocodazole (100 ng/ml), which dampens microtubule 

dynamics. We incubated neurons with either DMSO or nocodazole for 1.5 hours before 

imaging; under these conditions, microtubule dynamics are eliminated as shown in the EB3 

kymographs from axons and dendrites (Fig. 4.4A).  

We first examined kinesin and dynein-driven motility of photoactivated peroxisomes 

in axons. Dampening microtubule dynamics with nocodazole had no effect on K560-driven 

motility in axons (Fig. 4.4B, C). Recruitment of kinesin induced robust anterograde motion of 

the peroxisomes just as in the control case as shown in the kymographs (Fig. 4.4B). In 

contrast, we observed a significant reduction in dynein-induced motility of peroxisomes in 

axons (Fig. 4.4B, D). While >90% of the photoactivated peroxisomes moved robustly 

retrograde upon dynein recruitment in the control case, this went down to ~60% in neurons 

treated with nocodazole (Fig. 4.4D) with the remaining ~40% of photoactivated peroxisomes 

showing non-processive motion with frequent pauses and occasional anterograde 

movements as shown in representative kymographs (Fig. 4.4B). This non-processive 

movement of peroxisomes is further reflected in the decreased average velocities (Fig. 4.4E) 
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and the significantly higher number of pauses (Fig. 4.4F) compared to the control 

peroxisomes. The frequent pauses we observe with dynein motion in the absence of 

microtubule dynamics may indicate a defect in dynein loading onto plus-ends of microtubules 

following detachment of the motor from its track. 
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Figure 4.4 Dynein requires dynamic microtubules for efficient initiation of 
transport. 

(A) Representative kymographs of EB3 comets in axons and dendrites of hippocampal 

neurons treated with DMSO or 100 ng/ml Nocodazole for 1.5 hours at 37
o
C. Horizontal bar, 5 

µm. Vertical bar, 30 s. (B) Representative kymographs showing movement of photoactivated 

peroxisomes in axons. Horizontal bar, 5 µm. Vertical bar, 1 min. (C) Quantitation of 

percentage of peroxisomes that are motile in axons of neurons expressing K560, treated with 

DMSO or Nocodazole. Mean ± SEM. (D) Quantitation of percentage of peroxisomes that are 

motile in axons of neurons expressing BICD, Mean ± SEM, their average velocities in (E), 

Mean ± SD and (F) number of pauses per photoactivated peroxisome, Mean ± SEM. (G and 

H) Quantitation of percentage of peroxisomes that are motile in dendrites of neurons 

expressing K560 or BICD. Mean ± SEM. (I) With reduced transport in dendrites, there is a 

concomitant decrease in percentage of peroxisomes going back to the cell body in the case 

of BICD. Data from 15-20 peroxisomes, n=14 neurons for axons and 25-30 peroxisomes, 

n=16 neurons for dendrites from N=3 independent experiments, n.s., not significant, *p<0.05, 

**p<0.01, Student’s t-test in E and H, one-way ANOVA with Tukey’s post-hoc test in the rest. 

We next examined motor-induced motility in the dendrites of neurons treated with 

nocodazole. Consistent with our observations in axons, kinesin-induced motility was 

unaffected by nocodazole treatment.  In contrast, dynein-induced motility was significantly 

reduced in nocodazole-treated neurons (Fig. 3G, H). With reduced transport in dendrites, 

there was also a concomitant decrease in the percentage of peroxisomes going back to the 

cell soma (Fig. 3I). However, approximately half of the motile organelles eventually reach the 

cell soma in both control and nocodazole-treated neurons, suggesting that the overall 

retrograde bias in dynein-induced motility is not affected by the loss of microtubule dynamics.  
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Collectively, our results indicate that dynein motility is predominantly determined by 

microtubule polarity, while microtubule dynamics promote efficient dynein-driven transport. In 

contrast, kinesin-1 shows compartment-specific function, moving organelles robustly in 

axons but less efficiently when recruited to organelles in dendrites.  

 

Differential regulation of KIF13A and KIF13B in axons and dendrites 

To follow up on our observations on the compartment-specific regulation observed 

for kinesin-1 but not for dynein, we chose to focus on a pair of motors from the kinesin-3 

family. Kinesin-3 motors KIF13A and KIF13B show distinct localization preferences in 

neurons with KIF13A enriched in axons and KIF13B in dendrites (Jenkins et al., 2012; Huang 

and Banker, 2012). We used our optogenetic assay to ask how these motors perform when 

specifically recruited to axonal or dendritic organelles.  We used motor domain constructs of 

KIF13A and KIF13B (KIF13A 1-411 ΔP390 and KIF13B 1-412 ΔP391) that have been shown 

to dimerize efficiently and to function as processive motors in cells and in vitro (Soppina et 

al., 2014); we tagged these constructs with mCherry-eDHFR for our photoactivation assay.  
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Figure 4.5 Both KIF13A and KIF13B, kinesin-3 family motors are equally efficient 
in axons 

(A) Time series and corresponding kymograph showing movement of photoactivated (white 

box) peroxisomes in axons. Horizontal bar, 5 µm. Vertical bar, 30 s. (B) Quantitation of 

percentage of peroxisomes that are motile. Mean ± SEM. ***p<0.001, Student’s t-test. (C) 

Average velocities of peroxisomes that are motile post photoactiavtion. Mean ± SD. n.s., not 

significant, Student’s t-test. Data from 20 peroxisomes from n=14 neurons and N=3 

independent experiments. 

We first photoactivated peroxisomes in axons and observed that recruitment of either 

KIF13A or KIF13B induced processive anterograde motion as shown in the time stills and 

kymographs (Fig. 4.5A). In both cases, >90% of photoactivated peroxisomes moved in the 

anterograde direction (Fig. 4.5B). Further, velocities of the peroxisomes following 

photoactivation (Fig 4.5C) were not significantly different between the two motors, indicating 

that both KIF13A and KIF13B are equally efficient in driving anterograde motion in axons. 
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This suggests that although KIF13B is a dendritic kinesin, when recruited to axonal 

organelles, this motor works just as well as an axonally-targeted motor.  

In contrast, we observed striking differences between the two motors in dendrites. 

While KIF13B induced robust bidirectional motility, KIF13A failed to move peroxisomes 

efficiently (Fig. 4.6A). It is important to note that lack of motion is not due to lack of 

recruitment of the motor, which was effectively recruited to organelles following 

photoactivation (see arrow heads in the time stills in Fig. 4.6A). In the corresponding 

kymographs, peroxisomes that are initially green-only become yellow post-photoactivation, 

indicative of effective motor recruitment (Fig. 4.6A).  In almost all cases, we observed clear 

recruitment of the motor, as indicated by the increased intensity of mCherry fluorescence at 

the site of the photoactivated peroxisome.  KIF13B induced motion in >85% of 

photoactivated peroxisomes, whereas KIF13A induced motion in only ~25% of 

photoactivated organelles (Fig. 4.6B). We also noticed that the few organelles that do move 

upon recruitment of KIF13A take >200 seconds to begin movement on dendritic microtubules 

whereas KIF13B recruited organelles generally initiate movement within 30 seconds on 

average (Fig. 4.6C). This suggests that KIF13A does not interact efficiently with dendritic 

microtubules. Further analysis of the motile organelles revealed that although the average 

velocities of KIF13A- and KIF13B-induced motion were similar, KIF13B is predominantly a 

retrograde motor (Fig. 4.6D-F). On average, the run length of KIF13B-induced motility is 10.8 

± 1.3 µm in the anterograde direction and 21.5 ± 3.8 µm in the retrograde direction (mean ± 

SEM, n=16 neurons from 3 experiments).  

Collectively, these findings indicate that although both KIF13A and KIF13B are 

equally efficient motors when recruited to axonal organelles, the activities of these motors 

are differentially regulated in dendrites. While KIF13B induces efficient motility in dendrites in 

our assays, KIF13A fails to move organelles along dendritic microtubules. Together with our 
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kinesin-1 data, our results suggest that kinesins may be specifically tuned to function 

efficiently within their native environments. We propose that this serves as a mechanism to 

establish compartment-specific regulation of kinesins, contributing to selectivity of trafficking 

in neurons.  

 

Figure 4.6 Differential regulation of KIF13A and KIF13B in dendrites. 

(A) Time series and corresponding kymographs showing movement of photoactivated (white 

box) peroxisomes upon recruitment of KIF13A and KIF13B in dendrites. Horizontal bar, 5 

µm. Vertical bar, 1 min. (B) Quantitation of percentage of dendritic peroxisomes that are 

motile. Mean ± SEM. **p<0.01, one-way ANOVA with Tukey’s post-hoc test. (C) Time taken 

by peroxisomes to begin movement post photoactivation. Mean ± SD. ***p<0.001, Student’s 

t-test. (D and E) Average run lengths of photoactivated peroxisomes for the two motors in the 

anterograde and retrograde directions. n.s., not significant, **p<0.01, Student’s t-test. (F) 
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Average velocities of individual runs of peroxisomes that are motile post photoactivation. 

Mean ± SD, n.s., not significant, Student’s t-test. Data from 25 peroxisomes from n=16 

neurons and N=3 independent experiments. 
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IV.  Discussion 

 

Using a newly developed optogenetic tool in combination with live-cell imaging, we 

investigated how selective dendritic transport is regulated in mature neurons. With this 

approach, we can assess how each motor examined can function in a specific cellular 

environment. Our findings shed light on the different regulatory mechanisms that cytoplasmic 

dynein and kinesins employ in neuronal trafficking.  

We find that dynein functions as effectively in dendrites as we previously observed in 

axons (Ballister et al., 2015), with >90% of peroxisomes moving bidirectionally post 

photoactivation. Dynein motility in dendrites had a retrograde bias that correlated with the 

bias of ~65% plus-end out microtubules in dendrites, suggesting that dynein motility is 

predominantly governed by microtubule orientation. While dynein-induced motility caused no 

observable accumulation of peroxisomes at dendritic tips, ~50% of photoactivated 

peroxisomes eventually entered the cell soma. This observation is again consistent with the 

underlying organization of the microtubule cytoskeleton in dendrites, with mixed microtubules 

in the proximal two-thirds of dendrites and predominantly plus-end out microtubules in distal 

dendrites (Stepanova et al., 2003; Kleele et al., 2014).  Thus, the net bias of dynein-

mediated transport in dendrites will be toward the soma, as observed (Fig. 2A). 

The microtubule cytoskeleton of mature neurons is organized in a way that prevents 

dynein-driven cargos in the soma from entering axons, but allows them to enter dendrites. A 

previous study using a chemical inducible dimerization system showed that bulk recruitment 

of dynein to peroxisomes in neurons led to a polarized redistribution of these organelles into 

dendrites (Kapitein et al., 2010). In our assay we find that dynein specifically recruited to 

dendritic peroxisomes can efficiently navigate these organelles back to the cell soma. Thus, 
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our results in conjunction with the observations of Kapitein et al. (2010), demonstrate the 

ability of dynein to transport cargo both into and out of dendrites. Hence dynein is important 

for not only establishing the distribution of cargo to post-synaptic sites in dendrites (Kapitein 

et al., 2010; van Spronsen et al., 2013), but also promotes the efficient retrograde trafficking 

of cargo within the dendrite (Liot et al., 2013), and from the dendrite back to the cell soma, as 

shown here. 

Regulation of the dynein motor is achieved by interactions with various adaptors 

(King and Schroer, 2000; Huang et al., 2012; Mckenney et al., 2014; Ayloo et al., 2014). One 

such ubiquitous adaptor functioning closely with dynein is the dynactin complex. We 

previously demonstrated that dynactin enriched at the distal end of axons is essential to 

initiate retrograde transport (Moughamian and Holzbaur, 2012). This observation led us to 

ask whether dynein motility in dendrites required microtubules to be dynamic. To test this, we 

performed our photoactivation assay in neurons treated with low dose nocodazole, which 

eliminates microtubule dynamics without inducing microtubule depolymerization. Consistent 

with our hypothesis, we observed a significant reduction in dynein-induced motility in both 

axons and dendrites when microtubule dynamics were inhibited. In particular, we noted a 

significant increase in the pausing of organelles during active runs.  We propose that the 

decreased transport observed upon nocodazole treatment is a direct consequence of 

decreased loading of dynein onto the dynamic plus-end of microtubules following 

detachment of the motor from its track, for example, at a gap between adjacent microtubules. 

The role of microtubule plus ends in facilitating motor binding may be especially important in 

dendrites, which have more dynamic microtubules than the mid-axon (Stepanova et al., 

2003; Kleele et al., 2014).  Collectively, our findings suggest that dynein predominantly 

responds to microtubule orientation and depends on microtubule dynamics for efficient 

motility during long distance organelle transport.  
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Given that cytoplasmic dynein is the major minus end-directed motor in neurons, it is 

not surprising that dynein works efficiently in both axons and dendrites. In contrast, multiple 

kinesin motors are expressed in neurons, allowing for specificity, but how is this specificity 

achieved during polarized trafficking in neurons? Several models have been proposed. 

Previous work has shown that vesicles containing axonal proteins are trafficked to the axon 

and those containing dendritic proteins are trafficked to the dendrite (Burack et al., 2000; 

Setou et al., 2002). This led to the proposal that motor-cargo interactions determine cargo 

destination, the ‘cargo steering’ model. There is also work demonstrating that the motors 

themselves can distinguish between axonal and dendritic microtubules (Nakata and 

Hirokawa, 2003; Huang and Banker 2012), leading to the ‘smart motor’ hypothesis. Thus, 

there are at least two layers of regulation: motor-cargo and motor-microtubule that together 

determine selective transport in neurons.  

Using an optogenetic approach, we can specifically target motor proteins to either 

axonal or dendritic cargos, allowing us to focus on motor-microtubule interactions. With our 

assay, we can now examine if the preferential localization of motor domains in a 

compartment correlates with function – the ability of the motor to actively transport cargos 

within that compartment.  For kinesin-1, previous reports have shown that the constitutively 

active K560 construct preferentially accumulates in axon tips (Nakata and Hirokawa, 2003).  

Somewhat surprisingly, we find that although the motility induced by the photoactivated 

recruitment of K560 to dendritic peroxisomes is not as robust as that observed in axons 

(~60% in dendrites vs. ~90% in axons), those organelles that do respond exhibit robust 

motility characterized by long, bidirectional runs.  Thus, the kinesin-1 motor is capable of 

navigating the dendritic microtubule cytoskeleton.  This activity is likely to be physiologically 

relevant, as full length kinesin-1 has been shown to be steered to dendrites by GRIP1, which 

is predominantly found in the somatodendritic compartment (Setou et al., 2002). 
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We also examined two KIF13 motor proteins, members of the kinesin-3 family, in our 

optogenetic assay. Previous work demonstrated that in steady state assays, the motor 

domain of KIF13A preferentially localizes to axons while KIF13B is dendritic (Huang and 

Banker, 2012; Jenkins et al., 2012). In our assays, both KIF13A and KIF13B worked robustly 

in axons, but only KIF13B was effective at moving cargo in dendrites. While recruitment of 

KIF13B to dendritic peroxisomes resulted in long, bidirectional runs, KIF13A-bound 

organelles barely moved, suggesting that this motor cannot efficiently interact with dendritic 

microtubules. Together, these results suggest that the dendritic cytoskeleton is more 

restrictive for kinesin-driven motility than the axon.  

It is likely that the compartment-specific regulation of kinesins observed here and in 

previous studies is a response to distinct biochemical signatures found on axonal and 

dendritic microtubules. For example, the decreased efficiency observed for kinesin-1 in 

dendrites is consistent with the preferential binding of kinesin-1 to acetylated microtubules 

enriched in axons (Reed et al., 2006). It has also been suggested that the enrichment of 

detyrosinated tubulin in the axon preferentially steers kinesin-1 to this compartment (Konishi 

and Setou, 2009). However, the underlying mechanisms are unclear, as increasing tubulin 

acetylation levels throughout the neuron was not sufficient to alter the selectivity of kinesin-1 

mediated trafficking (Hammond et al., 2010).  Further, in vitro studies indicate that kinesin-1 

binds equally well to tyrosinated and detyrosinated microtubules (Nirschl et al., 2016), and 

detyrosination of tubulin is reported to decrease kinesin-1 processivity (Sirajuddin et al., 

2014).   

One possibility is that a single signal is not sufficient to mediate specificity, and 

instead, motor-microtubule interactions are likely to be specified by multiple biochemical 

cues on microtubules (Hammond et al., 2010). Microtubule-associated proteins, or MAPs, 

may also contribute to the specificity of localization, as recent work has shown that 
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doublecortin-like kinase1 (DCLK1) guides KIF1-dependent trafficking of dendritic cargo 

(Lipka et al., 2016). Further, the microtubule cytoskeleton in neurons undergoes many 

changes during development, accruing additional post-translational modifications along with 

changes in the complement of MAPs bound to the cytoskeleton (Janke and Kneussel, 2010). 

Consistent with this, KIF13A is enriched at axon tips in mature neurons, but fails to 

accumulate preferentially in immature neurons (Huang and Banker, 2012).  

It remains unclear what elements of kinesin motors are responding to compartment-

specific differences in the microtubule cytoskeleton. Sequence comparisons of the motor-

domains of KIF13A and KIF13B do not reveal any obvious differences that would explain the 

differential ability of these motors to navigate dendritic microtubules. Konishi and Setou 

(2009) have previously identified a conserved TERF motif within the motor domain of 

kinesin-1; when this motif is mutated to the SKLA motif found within the corresponding region 

of the kinesin-3 motors KIF1A and KIF1B, they report that kinesin-1 is converted to a bi-

destination motor with both axonal and dendritic localization. KIF13B shares the SKLA motif 

found in both KIF1A and KIF1B, while the corresponding motif in KIF13A is SQLA. While it is 

possible that a single amino acid change could induce specificity of localization, this is 

unlikely to be sufficient, as engineering the TERF motif from kinesin-1 into KIF1 was not 

sufficient to restrict the motor to the axonal compartment (Konishi and Setou, 2009).  

Other work has focused on the microtubule-binding element loop 12, a lysine-rich K-

loop (Okada and Hirokawa, 1999) present in kinesin-3 family motors.  Incorporation of this 

loop into kinesin-1 was sufficient to disrupt axon selectivity (Huang and Banker, 2012), but 

the converse experiment of engineering the kinesin-1 loop 12 into the kinesin-3 motor KIF1A 

was not sufficient to induce axonal selectivity.  And as noted here, compartment-specific 

targeting is distinct from the ability of a motor to function within a given compartment. Thus, 
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further work will be required to dissect the mechanisms providing subcellular specificity of 

both localization and function. 

Polarized sorting in neurons is regulated at multiple levels; here, we focused on one 

aspect of this regulation, the interaction of motors with their microtubule tracks. Our data 

converge to a model wherein kinesins achieve specificity via differential interactions with 

microtubules in axons versus dendrites, while dynein responds to global parameters of 

microtubules, which are polarity and dynamics (Fig. 4.7). Together, the orchestrated 

trafficking of organelles by these motors provides the necessary specificity to move 

organelles to their proper cellular locations. 
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Figure 4.7 Working model for the axo-dendritic regulation of motor proteins. 

Axons and dendrites harbor distinct microtubule architecture (shown in shades of green). 

While both dynein and KIF13B have longer run lengths in the retrograde direction in 

dendrites, K560 has no bias (as indicated by length of arrows) and KIF13A has very little 

motility. We propose that kinesins and dynein use distinct mechanisms to navigate the 

neuronal cytoskeleton. Dynein works efficiently in both axons and dendrites, with motility 

determined by microtubule orientation and microtubule dynamics. Kinesins are differentially 

tuned for different compartments and specificity may be achieved by recognizing biochemical 

modifications and MAPs associated with axonal and dendritic microtubules.  
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V.  Material and Methods 

 

Reagents 

DNA constructs for the motor recruitment assay were expressed under the CAG 

promoter, derived from pEM705, obtained from E.V. Makeyev (Nanyang Technological 

University). For peroxisome targeting, 1-42 amino acid (aa) residues of the human Pex3 

gene were C-terminally fused to GFP-Halo. All the mCherry-eDHFR constructs are derived 

from the mCherry-eDHFR plasmid previously described in Ballister et al., 2014. BICD-

mCherry-eDHFR constitutes residues 1-572 of mouse BICD2 (referred to herein as BICD 

according to Kapitein et al., 2010) and K560-mCherry-eDHFR includes residues 1-560 of 

human kinesin-1 heavy chain (Ballister et al., 2015; Kapitein et al., 2010). KIF13A (1-411 

ΔP390) and KIF13B (1-412 ΔP391) were obtained from Kristen Verhey (University of 

Michigan). EB3-GFP under the CMV promoter was recloned from a plasmid provided by Irina 

Kaverina (Vanderbilt University). 

Neuronal cell culture, transfections and drug treatment 

Rat hippocampal neurons were dissected from embryos at days 18-20 as described 

(Wilcox et al., 1984) and obtained in suspension from the Neuron Culture Service Center at 

the University of Pennsylvania. 1,00,000 cells/ml were plated on 35 mm glass bottomed 

dishes coated with 0.5 mg/ml poly-L-lysine. Neurons were grown in 2 ml maintenance media 

(Neurobasal medium supplemented with 2% B-27, 33 mM glucose, 2 mM GlutaMax, 100 

units/ml penicillin and 100 µg/ml streptomycin) at 37°C in a 5% CO2 incubator.  Every 3-4 

days, 25% of the media was replaced with fresh maintenance media supplemented with 1 

µM AraC.  
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Imaging was done on 8-10 DIV (days in vitro) with DNA plasmids transfected 12-18 

hours before imaging. PEX3-GFP-Halo was co-transfected with motor protein construct 

(either K560-mCherry-eDHFR or BICD-mCherry-eDHFR or KIF13A-mCherry-eDHFR or 

KIF13B-mCherry-eDHFR) using Lipofectamine 2000 reagent (Invitrogen).  

In all experiments, neurons were incubated with 10 µM of the caged dimerizer cTMP-

Halo (Ballister et al., 2014) for 30 minutes. The excess ligand was washed away with 

imaging media prior to imaging. For low dose nocodazole experiments, neurons were treated 

with 100 ng/ml nocodazole (Sigma) or DMSO control for 1.5 hours at 37°C in a 5% CO2 

incubator. Nocodazole or DMSO was also added to the imaging media.  

Image acquisition and photoactivation 

Neurons were imaged in low-fluorescence nutrient media (Hibernate E, Brain Bits) 

supplemented with 2% B27 and 1% GlutaMax. Data were acquired on a spinning-disk 

confocal UltraView VOX (Perkin Elmer) with a 405 nm Ultraview Photokinesis (Perkin Elmer) 

unit on an inverted Nikon Ti microscope with apochromat 100X 1.49 NA oil-immersion 

objective and a C9100-50 EMCCD camera (Hamamatsu) controlled by Volocity software 

(Perkin Elmer). Only neurons expressing both of the co-transfected GFP and mCherry 

markers were imaged. Axons and dendrites were identified based on morphologic criteria as 

outlined (Kaech and Banker, 2006). Localized photoactivation along axons was performed as 

described (Ballister et al., 2015). At 8-10 DIV, dendrite lengths in our cultures were about 

~50-200 µm. Peroxisomes localized approximately to the middle one-third of dendrites were 

selected for photoactivation. Two-color images (GFP and mCherry) were acquired for 20 s at 

2 s per frame prior to photoactivation and for 5 min at 2 s per frame post photoactivation. The 

green and red signals in the representative two-color movies shown here may appear slightly 

offset due to delay in acquiring consecutive images. EB3-GFP imaging was recorded at 1 

frame per second.  
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Motility analysis 

Photoactivated organelles were classified as motile if they moved greater than a 5 

µm distance in our 5 minute imaging window. For axonal data, all velocities reported are 

average velocities. In dendrites, the motion was considered bidirectional if the organelle 

moved greater than 5 µm in both the anterograde and retrograde directions at least once 

during motion. All run length and velocity measurements were made from kymographs drawn 

using the Kymograph plugin in Fiji (Schindelin et al., 2012). For dendrite data, run length and 

velocities were obtained for every constant velocity segment in a given trajectory of an 

organelle. Owing to the depth of the dendrites, only organelles that could clearly be tracked 

for the entire length of the movie were considered for run length and velocity analysis. Each 

kymograph was generated in both the GFP and mCherry channels to correlate organelle 

movement with that of recruited motor.  

Fluorescence measurements for recruitment 

All intensity measurements for the recruitment analysis were recorded using Fiji. A region of 

interest (ROI) was drawn enclosing the organelle. Mean intensity of mCherry fluorescence in 

this ROI was measured one frame prior to photoactivation and one frame before the 

organelle started to move. In both cases, cytoplasmic background was subtracted. Post-

photoactivation intensity was then divided by pre-photoactivation intensity to obtain fold 

change indicating recruitment of the motor protein or motor adaptor.  

Statistical methods 

All statistics were performed in GraphPad Prism. Student’s t-test was used when 

comparing two data sets while one-way analysis of variance with Tukey’s post-hoc test was 

used with multiple data sets. 
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CHAPTER 5:  Conclusions and Future Directions 

 

In this thesis, I have examined the regulatory mechanisms of dynein using both 

single-molecule imaging and live-cell imaging of neurons. I used bottom-up approaches 

reconstituting processes in vitro, to dissect dynein function with its co-factor dynactin and I 

then extended this work using a top-down approach by implementing a dimerization tool to 

study dynein-mediated transport in polarized neuronal trafficking. 

Dynactin was identified in the early 90s but its role in dynein function has been 

controversial with several conflicting studies, both in vitro and in vivo (King and Schorer, 

2000; Culver-Hanlon et al., 2006; Kim et al., 2007; Kardon et al., 2009; Lloyd et al., 2012; 

Moughamian and Holzbaur, 2012). Most of the previous in vitro studies were done using 

beads coated with non-specific adsorption of proteins which did not allow for accurate 

quantification of the stoichiometry of proteins in complex, thus making interpretation at the 

single molecule level difficult. Part of the reason why this was an attractive method was, it 

had been difficult to generate recombinant mammalian dynein complex with a fluorescent tag 

which allowed direct visualization of the protein. Thus, a critical tool which enabled us to 

undertake this project was the generation of a knock-in mouse line with one of the subunits 

of dynein fused to GFP (Zhang et al., 2013). Using recombinant p150
Glued

, the subunit of 

dynactin that interacts with dynein, I was able to examine the co-localization and co-

migration of the co-complex for the first time and my experiments reveal that dynactin is 

sufficient to recruit dynein onto microtubules, increasing the recruitment of dynein greater 

than 4-fold. My results also indicate that p150
Glued

 both increases the on-rate and decreases 

the off-rate of dynein from microtubules.  
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How do adaptor proteins modulate the functioning of dynein-dynactin complexes? 

Recent work from other labs has now shown that cargo adaptors like Bicaudal D and 

Hook proteins increase the processivity of single dynein-dynactin complex several fold 

(McKenney et al., 2014; Schlager et al., 2014). While previous studies indicated that teams 

of dynein move robustly in vitro, these two studies showed that single molecules of dynein-

dynactin move super processively in the presence of adaptor proteins. Thus, these findings 

highlight a previously unknown regulation of dynein-dynactin complexes; however the 

mechanistic details of this regulation remain unclear. A fundamental question that arises 

from these findings is what are the changes the adaptor proteins confer on dynein-dynactin 

complexes that make them super processive. A hypothesis that has been suggested is that 

dynein without cargo bound to it exists in an autoinhibited state (Torisawa et al., 2014). 

Given this, it is likely that adaptor protein binding to dynein, in the presence of dynactin, 

relieves autoinhibition. High resolution structure studies should provide insight into the 

structural aspects of how adaptors modulate dynein binding to dynactin.  

Another important question these studies raise is the differential modulation of the 

motility of the dynein-dynactin complexes by the various adaptors. Besides several coiled-

coil domains in these proteins, there are no specific common features among these 

adaptors. Hence the next challenge is to understand adaptor-specific modulation of dynein-

dynactin complexes which will inform us about organelle-dependent regulation of dynein 

motility. An interesting next step in this direction would be to compare and contrast teams of 

dynein-dynactin molecules with and without the adaptor proteins as organelles in cells have 

several dynein motors on them (reviewed in Mallik et al., 2013). It is possible that the single 

molecule behavior of dynein-dynactin-adaptor complexes is the same but when working in 

teams; dynein could operate in a different regime, shedding light on the differential regulation 

of dynein-dynactin via adaptors.  
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Can the CAP-Gly domain function as a switch in vivo, controlled by phosphorylation? 

My results from single-molecule imaging of various constructs of p150
Glued

 indicate 

that the CAP-Gly domain functions to recruit dynein onto microtubules and also acts as an 

ATP-independent brake to slow down the motor. Based on data from previous reports and 

my in vitro results, we put forth a working model wherein dynactin binding to microtubules 

becomes important in specific instances of dynein-driven transport, particularly in the efficient 

initiation of retrograde transport. It is likely that the CAP-Gly domain becomes dispensable 

once retrograde transport is initiated (consistent with Kim et al., 2007) and given that CAP-

Gly domain also slows down the dynein motor, binding of dynactin to microtubules during 

transport would be inefficient. Hence a key aspect of the regulation of dynactin is a switch 

that controls the binding of dynactin to microtubules and I hypothesize that phosphorylation 

is one potential mechanism to achieve this.  

Initial metabolic labeling studies identified p150
Glued

 as a phosphoprotein with serine 

residues being the exclusive phosphorylation sites (Farshori and Holzbaur, 1997). The 

increased phosphorylation of p150
Glued

 in the presence of activators of protein kinases 

correlated with increased intracellular transport (Farshori and Holzbaur, 1997). In the context 

of my working model, this would suggest that phosphorylation of p150
Glued

 prevents its 

microtubule binding, hence p150
Glued

 can no longer act as a brake to slow down organelle 

motility. Subsequent work identified S19 in the N-terminus CAP-Gly domain of p150
Glued

 as a 

phosphorylation site for protein kinase A (Vaughan et al., 2002). This work demonstrated that 

phosphomimetic version of p150
Glued

, S19E, diminished its microtubule binding both in vitro 

and in cells. A more recent study also identified p150
Glued

 as a substrate for Aurora A (Rome 

et al., 2010). Dynactin accumulates on microtubules during prophase and disappears from 

microtubules during nuclear envelope breakdown (Kim et al., 2007). Interestingly, p150
Glued

 

that cannot be phosphorylated by Aurora A exhibited high microtubule binding during mitosis 
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and failed to rescue mitotic defects in cells with knock down of WT p150
Glued

 (Rome et al., 

2010). All of these studies are consistent with the idea that phosphorylation of p150
Glued

 in 

the CAP-Gly domain abolishes its microtubule binding capacity. Hence, it is likely that post 

initiation of retrograde transport by dynein,  phosphorylation of the CAP-Gly of dynactin can 

indeed act as a switch that gets activated in dynein-driven motility.  

A direct follow-up of my in vitro data would be to perform single molecule motility 

assays with phospho-mimetic and phospho-deficient forms of p150
Glued

 and examine the 

motility aspects and also the capacity of p150
Glued

 to act as a brake which has not been done 

before. An extension of this work in neurons would be to investigate localization of 

phosphorylated and non-phosphorylated forms of p150
Glued

 in axons with phosphorylation-

specific antibodies (used previously in Vaughan et al., 2002). Observation of gradients of 

these forms of p150
Glued

 and particularly an enrichment of the non-phosphorylated form of 

p150
Glued

 at the distal end of the axon will directly test my hypothesis that the microtubule 

binding function of CAP-Gly becomes important in specific instances of transport, initiation 

being one such instance.  

 

Why do neurons need a unique isoform of dynactin lacking the CAP-Gly domain? 

p135 is an isoform of p150
Glued

 that lacks the CAP-Gly domain and is found only in 

the brain tissue. This unique isoform was discovered almost 20 years ago (Tokito et al., 

1996), yet we know very little about why neurons need this specialized version of dynactin. 

The recent findings elucidating the importance of CAP-Gly domain in neuronal transport 

(Moughamian and Holzbaur, 2012; Lloyd et al., 2012) make the presence of this isoform in 

neurons intriguing. It is known that p150
Glued

 and p135 form distinct dynactin complexes 

(Tokito et al., 1996) and a key question is when does dynein work with dynactin complexes 

that have p135 as opposed to p150
Glued

. Since the CAP-Gly domain slows down the dynein 



126 
 

motor, is p135 containing dynactin preferred under stress conditions or injury when signaling 

molecules have to be transported over long distances, very quickly for repair? Is p135 

containing dynactin enriched in mid-axon while p150 containing dynactin is enriched in the 

distal axon?  

A big challenge in trying to answer some or all of these questions and hypotheses for 

p135 are the limited tools and reagents that will enable the distinguishing of p135 from 

p150
Glued

. Currently, there are no siRNAs or antibodies that recognize p135 specifically; the 

two isoforms have only 4 amino acid residues different with the rest of the protein being the 

same. Over-expression of either p150
Glued

 or p135 in neurons localizes throughout the 

neuron with p150
Glued

 enriched at the distal end of axons owing to the CAP-Gly domain 

binding to microtubules. FRAP analysis of fluorescently tagged p150
Glued

 and p135 revealed 

no significant differences between the recovery dynamics of the two pools in axons.  

One idea to test the functional differences between p150
Glued

 and p135 was to recruit 

either protein to organelles in neurons and examine the downstream effects on motility of the 

organelle. Unlike recruitment of adaptor proteins like Bicaudal D, recruitment of p150
Glued

 

failed to induce any motility of the organelle. This was the case with both neurons and HeLa 

cells and similar to this result, recruitment of p135 to organelles also failed to induce motility. 

An experiment to follow up on this is the ‘anchor-away’ approach that some studies have 

used to identify the function for proteins that have been implicated in cellular processes but 

the exact role of the given protein is not known (Robinson et al., 2010; Wong and Munro, 

2014). The approach is to deplete proteins from their cellular location by targeting them to 

other locations (nucleus or mitochondria, for instance) using the inducible dimerization 

system and examine the processes in which the protein is predicted to play a role. In this 

case, p135 or p150
Glued 

could be anchored away to the nucleus and motility of endosomes in 

the axons and dendrites and their flux can be compared in the two cases. 
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One possibility that remains to be tested is whether p135 is specifically required for 

dynein-mediated trafficking in dendrites as in all of the experiments mentioned above, only 

the axons were examined. Interestingly, very little is known about dynein trafficking in 

dendrites. Neuronal work in Drosophila melanogaster has shown that dynein is required for 

polarized trafficking in dendrites and for the distribution of golgi outposts in dendrites (Zheng 

et al., 2008). However, a key difference between fly neurons and mammalian neurons is the 

microtubule orientation in dendrites – mixed polarity in mammalian neurons and all minus-

end out organization in flies. Hence it is likely that dendrite trafficking in these two types of 

neurons differ in several aspects. To this end, I applied the light-inducible dimerization tool in 

neurons to recruit kinesin and dynein motors to organelles in axons and dendrites to 

examine effects on organelle motility.  

 

How is organelle-dependent regulation of dynein achieved? 

Comparison of the recruitment of motors to peroxisomes and mitochondria in 

neurons indicated organelle-dependent regulation of the dynein motors. While recruitment of 

dynein induced robust retrograde motion in >90% of the peroxisomes, this was the case with 

only about ~40% of mitochondria indicating. One explanation for this difference is that 

peroxisomes are smaller organelles about 100-200 nm in size while mitochondria are long 

tubular structures ranging from 0.5–1.0 µm and the forces exerted by dynein are not enough 

to translocate mitochondria. However, we now know that diverse cellular functions are 

carried out by teams of dynein that work very efficiently together (reviewed in Mallik et al., 

2013); hence it is possible that there are other factors responsiblefor the inability of dynein to 

move mitochondria in this assay. One such factor could be syntaphilin which has recently 

been shown to actively dock axonal mitochondria, thus restricting the mobility of these 

organelles (Kang et al., 2008). It is plausible that syntaphilin docking prevents the motor 



128 
 

activity of dynein that is recruited to mitochondria as has previously been shown with 

kinesins (Chen and Sheng, 2013). To directly test this hypothesis, syntaphilin could be 

knocked down and the same recruitment assay can be performed on mitochondria to 

examine if the absence of syntaphilin can now induce mitochondrial motility when dynein 

motors are recruited.  

Another study examined the motility dynamics of mitochondria in axons and 

dendrites and identified TRAK1 and TRAK2, adaptors of mitochondrial motility to be 

differentially distributed in neurons – with TRAK1 enriched in axons and TRAK2 in dendrites 

(van Spronsen et al., 2013). The authors used in vitro biochemical assays to demonstrate 

that while TRAK1 binds to both kinesin and dynein, TRAK2 predominantly binds to dynein 

and this can explain the differential localization of the TRAKs as dynein can efficiently 

navigate the dendrites. However, there also seem to be compensatory effects when either of 

the TRAK proteins is knocked-down (van Spronsen et al., 2013). A direct way to test the 

effects of the TRAKs on mitochondria would be to use the light-inducible dimerization assay 

to specifically recruit either TRAK1 or TRAK2 to mitochondria in the cell soma and examine if 

they are targeted to the axon or dendrites. This experiment would directly demonstrate that 

TRAKs acts as steering factors for mitochondria. 

 

Does dynein play a role in conferring a retrograde bias to kinesin motors in dendrites? 

Several studies have identified multiple kinesins involved in trafficking in dendrites 

(reviewed in Hirokawa et al., 2009). Localization studies in mature neurons with constitutively 

active recombinant proteins revealed that KIF13B, a kinesin-3 motor protein localized to both 

axonal and dendritic tips while the related proteins, KIF13A localized to only axonal tips 

(Huang and Banker, 2012). I examined motility of KIF13A and KIF13B by recruiting them to 

organelles in both axons and dendrites. My results demonstrate that while both KIF13A and 
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KIF13B function well in axons, KIF13A failed to move in dendrites while KIF13B worked 

robustly. Interestingly, the motility of KIF13B in dendrites had a retrograde bias with 

significantly longer run lengths in the retrograde direction.  

Given the underlying microtubule polarity in dendrites (~65% plus-end out in proximal 

dendrites and ~85% plus-end out in distal dendrites) and that KIF13s are plus-end directed 

motors, this result is surprising. The accumulation at dendritic tips (as seen in Huang and 

Banker, 2012) is not surprising as the motors that make it through the mixed arrays of 

microtubules in proximal dendrites, will go only toward the dendritic tips as the microtubules 

in distal dendrites are mostly plus-end out. However, the retrograde bias seen with KIF13B in 

dendrites is inconsistent with the underlying microtubule cytoskeleton. An attractive 

hypothesis is that KIF13B works closely with dynein in dendrites which can confer a 

retrograde bias to organelles that have KIF13B. The retrograde bias I find with dynein-

induced motility of dendritic organelles strengthens this hypothesis. Consistent with this, 

recent work demonstrated that dynein associates with TrkB positive signaling endosomes 

and promotes their efficient retrograde trafficking within the dendrites of striatal neurons (Liot 

et al., 2013). Pull down assays and live-cell imaging of dynein and KIF13B in neurons should 

reveal if these motor proteins are found together on dendritic organelles. Imaging fluorescent 

KIF13B in hippocampal neurons dissected from the dynein-GFP knock-in mouse line to 

examine co-localization and co-migration of these two motors could be the first step toward 

testing this hypothesis. Interestingly, the retrograde bias seen with KIF13B in dendrites has 

also been observed with KIF21B (Ghiretti et al, under preparation) which is a kinesin-4 

dendritic motor. It is likely that dynein is also involved in KIF21B-mediated trafficking in 

dendrites indicating that this could be a general principle for dendritic kinesins.  
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What factors contribute to the differential regulation of KIF13A and KIF13B in neurons 

Using the light-inducible dimerization system, I observed striking differences between 

the motility of KIF13A and KIF13B in dendrites. While KIF13B produced robust motion in 

both directions, KIF13A failed to move in dendrites. One likely tubulin modification to 

examine in this context would be tubulin tyrosination. The proximal and mid-axon is generally 

enriched in detyrosinated tubulin while dendrites and growth cones of axons are enriched in 

tyrosinated microtubules (Konishi and Setou, 2009; Hammond et al., 2010). One way to test 

this would be to knock-down the tubulin tyrosine ligase (TTL) enzyme in neurons and 

perform the same motor recruitment assay to examine if this makes KIF13A a motile motor in 

dendrites. A more direct way to test this would be to compare the motility of purified KIF13A 

and KIF13B on tyrosinated and detyrosinated microtubules using single molecule assays (as 

previously done in Sirajuddin et al., 2014) and tubulin binding assays. An important aspect of 

tubulin modifications is that it may not necessarily be one modification that is contributing to 

the specific effects of KIF13A versus KIF13B but a manifestation of a combination of cellular 

cues and these experiments would be one way to begin to test this.  

Previous work identified both KIF13A and KIF13B as kinesins binding to dendritically 

polarized vesicles containing transferrin (TfR) receptor (Jenkins et al., 2012). Dual color 

imaging of full length KIF13A or KIF13B with TfR would allow comparing the motility 

characteristics of these two different populations. Given my observations with the motor 

domains of KIF13A and KIF13B, I predict that KIF13A associated puncta would be largely 

stationary. However, it is possible that full length motors could function differently from 

constitutively active truncated forms as previously observed with the localization of full length 

and truncated forms of KIF16B (Farkohndeh et al., 2015), in which case the tails of these 

kinesins and the potential adaptor proteins the tails bind to have to be investigated (as 

previously done in Jenkins et al., 2012).  
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Concluding Remarks 

In summary, in this thesis, I focused on the regulation of cytoplasmic dynein both in 

vitro and in neurons using a combination of approaches. My work has dissected the role of 

dynactin in dynein-mediated transport and further regulation of dynein in polarized neuronal 

transport. Several mutations have been identified in dynein, dynactin and dynein adaptors 

contributing to diseases associated with trafficking. Important goals for the future include 

understanding adaptor-specific regulation of dynein, dynein dysfunction in 

neurodegenerative diseases, selective vulnerability of certain neurons in these diseases and 

finally cargo-specific regulatory mechanisms in neuronal transport. Research in each one of 

these areas is required to provide a holistic understanding of our knowledge about dynein-

mediated transport.  
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