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Evolution and Dynamics of the Human Gut Virome

Abstract
Advisor: Frederic D. Bushman, PhD.

The human body contains large numbers of viral particles (over 1012 per person), largely bacteriophage, but
little is known of how these viral communities influence human health and disease. To study the viruses of the
human gut (the so-called gut `virome') during a known environmental perturbation we collected stool
samples from healthy individuals participating in a controlled diet study. Viral DNA was purified and deep-
sequenced using 454 and Illumina technologies, yielding over 48 billion bases of viral sequence spread across
28 samples from 12 healthy individuals. Computational analysis of this unprecedentedly large database of viral
sequences allowed us to characterize these communities on a genomic level. We found that the vast majority
of viruses from the human gut were novel species of bacteriophage, and that only 1 of these 12 individuals
contained a known eukaryotic DNA virus. Temporal changes in these viral communities were correlated with
experimental manipulation of diet, and parallel deep sequencing of gut bacteria revealed co-variation between
bacterial and viral communities, supporting the hypothesis of linked reproduction between these two groups.
A large proportion of viral contigs have markers of temperate lifestyle, indicating that there is a significant role
of lysogeny in the gut microbiome. Analysis of genetically variable elements within these viral genomes
revealed novel classes of diversity-generating retroelements targeting immunoglobulin-superfamily proteins,
suggesting a surprising example of convergent evolution with the vertebrate immune system. Optimization of
assembly algorithms for these samples improved the recovery of complete and partial genome sequences.
While the assembled genomes were highly dissimilar on the nucleotide level, analysis of syntenic protein-
coding sequences revealed conserved gene cassettes that display an inferred structural and functional
conservation despite a high degree of nucleotide substitution. Through high-throughput shotgun sequencing
of viral DNA, we found that the healthy human gut contains a wide variety of extremely diverse
bacteriophages encoding novel and unexpected functions. This work sets the stage for thorough genomic
analysis of complex viral communities, and presents the intriguing problem of how this immense pool of
genetic diversity has evolved and persisted.
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ABSTRACT 

 

EVOLUTION AND DYNAMICS OF THE HUMAN GUT VIROME 

Samuel Schwartz Minot 

Frederic D. Bushman, PhD. 

The human body contains large numbers of viral particles (over 10
12

 per person), largely 

bacteriophage, but little is known of how these viral communities influence human health and disease. To 

study the viruses of the human gut (the so-called gut ‘virome’) during a known environmental perturbation 

we collected stool samples from healthy individuals participating in a controlled diet study. Viral DNA was 

purified and deep-sequenced using 454 and Illumina technologies, yielding over 48 billion bases of viral 

sequence spread across 28 samples from 12 healthy individuals. Computational analysis of this 

unprecedentedly large database of viral sequences allowed us to characterize these communities on a 

genomic level. We found that the vast majority of viruses from the human gut were novel species of 

bacteriophage, and that only 1 of these 12 individuals contained a known eukaryotic DNA virus. Temporal 

changes in these viral communities were correlated with experimental manipulation of diet, and parallel 

deep sequencing of gut bacteria revealed co-variation between bacterial and viral communities, supporting 

the hypothesis of linked reproduction between these two groups. A large proportion of viral contigs have 

markers of temperate lifestyle, indicating that there is a significant role of lysogeny in the gut microbiome. 

Analysis of genetically variable elements within these viral genomes revealed novel classes of diversity-

generating retroelements targeting immunoglobulin-superfamily proteins, suggesting a surprising example 

of convergent evolution with the vertebrate immune system. Optimization of assembly algorithms for these 

samples improved the recovery of complete and partial genome sequences. While the assembled genomes 

were highly dissimilar on the nucleotide level, analysis of syntenic protein-coding sequences revealed 

conserved gene cassettes that display an inferred structural and functional conservation despite a high 

degree of nucleotide substitution. Through high-throughput shotgun sequencing of viral DNA, we found 

that the healthy human gut contains a wide variety of extremely diverse bacteriophages encoding novel and 
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unexpected functions. This work sets the stage for thorough genomic analysis of complex viral 

communities, and presents the intriguing problem of how this immense pool of genetic diversity has 

evolved and persisted.  
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CHAPTER 1 – Introduction 

In microbial communities from the oceans to the human gut, there are at least as many 

virus-like particles as microbial cells [1,2]. However, little is known of how these viruses impact 

microbial communities and human health.  This dissertation interrogates the composition, 

dynamics, and evolution of the viral communities of the human gut – the human gut ‘virome’ – in 

order to gain insight into how they affect human health and disease. First the salient technological 

and biological systems are described in the introductory chapter, and then later chapters explore 

these issues in greater detail.  

The microbiota of the human gut are of particular interest to human health, not only due 

to their role in harvesting energy from food [3], but also through their strong interaction with the 

human immune system [4]. While human disease states such as obesity and inflammatory bowel 

disease are accompanied by changes in the gut microbiome [3,5,6], the field is still developing its 

knowledge of how those microbial changes are initiated, are perpetuated, and lead to disease. For 

example, studies have shown that gut bacterial composition is influenced by diet [7], geography 

[8], and method of delivery at birth [9], and there are likely many more important factors that are 

as yet unknown. Given the large role of the gut microbiome in human diseases of metabolism and 

inflammation, a goal of this field is to eventually design therapeutics that treat diseases of 

metabolism and inflammation through direct manipulation of the human microbiome.  

1.1 Sampling the human gut virome 

Prior to the advent of high-throughput sequencing, the composition of viral communities 

of the human body could only be surveyed by physical methods (such as electron microscopy), 

which suggested that the major types resembled tailed bacteriophages [2]. This was confirmed by 
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sequencing approaches, which found that DNA viruses were generally novel bacteriophage 

species and that RNA viruses were predominantly plant viruses [10,11].  

Many analytical techniques take the approach of purifying viral nucleic acids away from 

human and bacterial DNA and RNA [12]. The methods used to purify viral particles vary 

according to the characteristics of viral particles in the sample. In seawater, with a relatively low 

density of particulates, tangential flow filtration has been used to concentrate viral particles, 

following an initial filtering step at 0.2µm or 0.4µm to remove cells. The samples used in this 

work are human stool, which has a high concentration of both viral particles and other 

contaminating particulates. For this application, isopycnic cesium chloride density ultra-

centrifugation is used on samples that have been suspended in buffer and filtered at 0.2µm to 

remove cells. Such a purification technique has been shown previously to isolate viral particles 

and exclude bacterial cells and free DNA [10,12,13]. These methods have added the power of 

metagenomic analysis to the study of viral ecology and pathogenesis. 

1.2 Eukaryotic viruses in the human microbiome 

One of the primary questions about the composition of the human gut virome is the 

presence and abundance of eukaryotic viruses. The first sequence-based studies of DNA viruses 

purified from healthy human stool found no convincing evidence of eukaryotic viruses, with a 

small proportion of reads containing a limited similarity to known eukaryotic viruses [10,14]. 

Moreover, while studies that focused on people with idiopathic diarrheal symptoms have found a 

wide variety of pathogenic RNA viruses, they only found a single (adenoviral) representative of 

eukaryotic DNA viruses [15,16]. One of the challenges of these studies is that a small number of 

sequence reads with only weak database hits that do not reach statistical significance may truly 

result from a novel pathogenic virus at low abundance [17]. Moreover, it is possible that a novel 
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virus may not be captured by physical sampling techniques or comparison of short sequence reads 

to reference databases. If the goal of viral sequencing is to diagnose idiopathic disease and 

influence medical treatment, such a conclusion is unsatisfying. With the continued development 

of sequencing technology, an acceptable diagnostic standard for identification of human viruses 

may become the complete assembly of a recognizable pathogen, which would help to 

differentiate between spurious hits and novel viruses [17]. Complete assembly of possible novel 

DNA viruses from stool samples has not been achieved in studies prior to this dissertation, which 

have been limited to pyrosequencing technology. One important development in the identification 

of novel DNA viruses has been use of Rolling-Circle Amplification (RCA), which enriches small 

circular genomes and has resulted in the finding that multiple novel polyomaviruses are 

chronically shed from healthy human skin [18,19]. The instances where shotgun sequencing has 

yielded novel eukaryotic viruses appear to currently be limited to viruses isolated from animals in 

disease states, including human children [17,20], salmon [21], bats [22], harbor seals [23], dogs 

[24], and possum [25]. In contrast, the question of whether healthy humans harbor potentially 

pathogenic viruses is of considerable interest to the study of human disease, and will be addressed 

by this thesis by using ultra-deep Illumina sequencing technology.  

1.3 Kill-the-winner models of microbial dynamics 

There are two major mechanisms by which bacteriophages are thought to influence 

bacterial communities. The first is through predatory pressure. There is a body of speculation that 

bacteriophages control bacterial abundance through so-called “kill-the-winner” dynamics, where 

the growth of any single bacterial species results in the subsequent growth of its phage (following 

Lotka-Volterra dynamics), which then lowers the bacterial abundance to its original level [26-28]. 

This hypothesis is based in part on a theoretical model of microbial community dynamics [26,29]. 
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One of the basic assumptions of this model is that most bacteriophages are obligately lytic – they 

reproduce through replication inside host cells that quickly results in lysis. Another central 

assumption is that bacteriophages are highly host specific, such that a given phage or phage strain 

can only infect a subset of the bacteria that belong to a single species. The predicted community 

dynamics that result from this type of predation are different from those of a community that 

lacks bacteriophages in a few key ways: a greater number of bacterial genotypes or ‘species’ are 

able to coexist, and those species exist in a more even set of proportions, such that small numbers 

of strains cannot dominate [28]. One argument supporting “kill-the-winner” dynamics in the 

environment is that the level of bacterial diversity observed in nature is greater than could be 

expected in its absence [30]. It should be noted that this type of diversity is both at the level of the 

number of distinct bacterial genotypes as well as the even distribution of those genotypes in an 

environment. However, there are a number of complexities inherent to microbial communities 

that have been demonstrated to be important to this system, including lysogeny [31], spatial 

structure [32], and the fitness cost of resistance [33], and have yet to be incorporated into these 

models. Another argument for “kill-the-winner” has to do with the composition of bacterial 

genomes. It has been observed that regions of bacterial genomes that are strain-specific 

(sometimes called the ‘dispensable’ component of the pan-genome[34]) are disproportionately 

enriched in functions of resistance to phage infection [30]. One difficulty of this analysis is that 

many bacterial genes are unannotated, and that existing annotations are not always accurate. 

However the conclusions are consistent with the hypothesis that bacteria experience considerable 

selective pressure from a set of strain-specific bacteriophages. In addition to explaining an 

unexpectedly even distribution of bacterial genotypes, this model also explains the high level of 

genomic diversity within bacterial species, proposing that the bacterial pan-genome exists to 

combat phage predation [30]. While both of these lines of argument are suggestive, they fall short 
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of directly testing the “kill-the-winner” model. In order to rigorously test this hypothesis, both 

bacterial and bacteriophage communities would need to be characterized with a temporal 

resolution close to that of the generation time, which may be as short at 30 minutes [35]. 

Moreover, these strains would need to be monitored at the level of genomic composition as well 

as absolute abundance. As challenging as it may appear to test the “kill-the-winner”, the needed 

techniques may soon be within reach, due to rapid advances in high-throughput sequencing, 

computational analysis, and mathematical modeling that will be developed in part by this 

dissertation.  

1.4 Bacteriophage-mediated horizontal gene transfer  

The second mechanism by which bacteriophages may influence bacterial communities is 

the horizontal transfer of genetic material. The lifecycle of lysogenic bacteriophages can include 

periods where they exist as prophages, replicating as either an integrated part of the host 

chromosome [31] or as a plasmid [36]. For these lysogens the phage genome itself can be 

classified as horizontally transferred DNA. Moreover, genomic diversity within bacterial species 

often includes integrated prophages that are specific to one strain or another [37-39]. This type of 

horizontal transfer has been demonstrated to impact human health, as there are multiple instances 

of bacterial toxins causing human disease that are carried on and mobilized by lysogenic 

bacteriophages, including cholera and diphtheria toxin [40]. Even in the absence of known 

resistance genes, various prophages of E. coli have been demonstrated to confer resistance to 

antibiotics [41].  A study of viruses from the human gut found an enrichment of genes encoding 

glycan metabolism on well-assembled bacteriophage contigs, which may be used in host bacterial 

carbohydrate metabolism [13]. In the ocean, bacteriophages are observed to contain a variety of 

metabolic genes that may carry out carbon and phosphate metabolism as well as photosynthesis 
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[42,43]. Moreover, generalized transduction – the non-specific packaging of host DNA into 

phage particles and subsequent transfer between cells – has been demonstrated to mobilize 

antibiotic resistance in gut bacteria [44]. Because bacteria are observed to have undergone a high 

degree of horizontal gene transfer that is apparently independent of known plasmids, transposons, 

or lysogenic phages [45], the role of novel phage in horizontal gene transfer is of great interest. It 

is worth mentioning that the evolutionary pressures and models of population dynamics that are 

implied by the “kill-the-winner” model of phage predation are significantly different from those 

implied by a temperate lifestyle, and little is known of how those conflicting pressures are 

balanced in the environment of the microbiome. This thesis will specifically address the degree of 

lysogeny within bacteriophages of the human gut, adding to our understanding of the role of 

horizontal gene transfer within the human microbiome.  

1.5 Diversity-generating retroelements 

Many studies of the human microbiome focus on the representation of bacterial taxa or 

gene families across different environments and samples. However, the decreasing cost of high-

throughput sequencing will enable researchers to additionally characterize the nucleotide 

polymorphisms present within metagenomic samples, which can yield insight into functional 

changes and selective pressures acting on genomes. While investigating highly variable elements 

of viral genomes, we explore a bacteriophage-encoded system of directed mutagenesis carried out 

by a diversity-generating retroelement (DGR). This element was discovered in the Bordetella 

phage BPP-1 as the determinant of rapid host-switching [46]. Species of Bordetella undergo 

phase variation, where the proteins on the outer cell surface are rapidly exchanged. Bordetella 

exists in either a positive phase or minus phase, corresponding to which set of proteins is 

displayed on its surface [47]. The phage BPP-1 is able to infect the positive phase variant of 
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Bordetella, but not the minus phase variant [48]. However, BPP-1 has a high rate of switching 

between variants that can infect either the negative phase, the positive phase, or both phases. It 

was discovered that this host-tropism switching depends on what has been termed a “diversity-

generating retroelement,” consisting of an error-prone reverse transcriptase, template repeat, and 

variable repeat (each repeat is ~100bp in length). The variable repeat is located within a gene that 

encodes the major tropism determinant (mtd) protein, which forms part of the phage tail. Through 

the action of this reverse transcriptase (which is not the replicative polymerase), the template 

repeat is transcribed and reverse-transcribed such that each adenine is mutated to a random base. 

The mutagenized copy is then used to copy over the variable repeat locus. In this manner, a small 

number of codons are mutagenized while the rest of the protein remains constant. This model of 

copy-and-paste DNA mutagenesis through an RNA intermediate is supported by experiments in 

which a self-splicing intron was inserted into the template repeat, but was not found in the 

resulting variable repeat sequence [49]. The mutagenized amino acids are found in the binding 

pocket of the mtd protein, and are responsible for the binding of the phage to its host [50]. 

Because this system directly modifies the bacteriophage genome, the nucleotide changes in the 

mtd gene are inherited normally by its progeny. It is not known what the rate of variation is in 

vivo, or how many genomes are altered per generation. Through the activity of its DGR, the 

phage BPP-1 is able to quickly change the host surface molecule that it binds to, and thereby 

rapidly switch tropism. DGRs have not been mechanistically described in any organism other 

than BPP-1--in this thesis we report that they are present and active in the human microbiome. 

1.6 Clustered, regularly interspaced, short palindromic repeats (CRISPRs) 

The strong selective pressure of phage predation in the environment can be seen in the 

wide array of genetic systems that bacteria have evolved to resist infection. One of the resistance 
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mechanisms described in this thesis is that of clustered, regularly interspaced, short palindromic 

repeats (CRISPRs). CRISPRs are adaptive and sequence-specific, and their activity leaves a 

heritable genomic record of past infections. CRISPRs are widespread throughout both Bacteria 

and Archaea and can be encoded by different guilds of effector proteins (the CRISPR associated, 

or ‘cas’ proteins), which each carry out the same series of actions: 1) Non-self DNA (from an 

invading bacteriophage or plasmid) is recognized and cleaved into short (26-72bp) segments. 2) 

Those segments are incorporated into the CRISPR locus, which consists of alternating direct 

repeats (21-48bp) and spacers. Spacers correspond to the short, cleaved segments of foreign 

DNA, and a single CRISPR locus may contain up to hundreds of spacers [51]. 3) The CRISPR 

array is transcribed and processed into short crRNAs that are made up of a single spacer and a 

small amount of adjacent repeat sequence. 4) Those crRNAs form a complex with cas proteins 

such that complimentary DNA sequences (other than the source CRISPR array) are recognized 

and subsequently targeted for degradation. In this manner foreign DNAs with homology to 

CRISPR spacers are recognized and degraded. CRISPR arrays evolve rapidly in a wide variety of 

organisms, apparently in response to infection by bacteriophages and plasmids. While CRISPRs 

have only been identified within a single bacteriophage genome (a prophage of Clostridium [52]), 

it remains to be seen whether the system has been effectively adopted by free-living 

bacteriophages, possibly as a means of superinfection immunity. Bacteriophages have clearly 

evolved multiple mechanisms to restrict superinfection by other phage species [31,53,54], and the 

CRISPR system would yield all the same benefits of adaptive immunity to a bacteriophage as to 

its host. However, the fitness cost of a CRISPR locus may be higher for bacteriophages 

(compared to bacteria) due to either a constraint on genome size, or a low rate of superinfection. 

Nevertheless, by interrogating viral communities of the human gut virome, this work reports that 
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CRISPR loci are found in free-living bacteriophages, providing important insight into the 

evolutionary range and novelty of this new and fascinating form of prokaryotic immunity.  

1.7 Summary 

In order to characterize the human gut virome broadly, this work will focus on three 

different scales of evolutionary time.  Chapter 2 investigates the differences between viral 

communities within different individuals, how these communities change over days, and how 

they respond to environmental perturbation. As an early survey of viral communities using high-

throughput sequencing, this section also explores the role of CRISPRs and lysogeny. Chapter 3 

focuses on polymorphisms that can be found within genes of individual viral species, using 

hypervariable regions to infer biological function. This section uncovers an unexpectedly rich 

collection of diversity-generating retroelements in the human gut virome that target a set of novel 

and intriguing protein folds.  Chapter 4 develops a computational pipeline of de novo sequence 

assembly designed for viral communities and uses those long, high-quality genomes to explore 

long-term evolution in bacteriophage genomes. While these genomes have little similarity on the 

nucleotide level, they contain open reading frames that are conserved at the level of encoded 

protein sequence, gene order, and gene orientation. This thesis will broadly explore the 

composition, dynamics, and evolution of the human gut virome, providing novel insight into 

diverse genetic systems and selective pressures in this important environment. 
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CHAPTER 2 –INTER-INDIVIDUAL VARIATION AND DYNAMIC RESPONSE 

TO DIET 

 

The contents of this chapter have been published as: 

Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu G, Lewis J, Bushman FD. (2011) The 

human gut virome: inter-individual variation and dynamic response to diet. Genome 

Research. 21: 1616-1625.  

2.1 Abstract 

Immense populations of viruses are present in the human gut and other body sites.  

Understanding the role of these populations (the human "virome") in health and disease requires 

much deeper understanding of their composition and dynamics in the face of environmental 

perturbation. Here we investigate viromes from human subjects on a controlled feeding regimen.  

Longitudinal fecal samples were analyzed by metagenomic sequencing of DNA from virus-like 

particles (VLP) and total microbial communities.  Assembly of 336 Mb of VLP sequence yielded 

7,175 contigs, many identifiable as complete or partial bacteriophage genomes.  Contigs were 

rich in viral functions required in lytic and lysogenic growth, as well as unexpected functions 

such as viral CRISPR arrays and genes for antibiotic resistance.  The largest source of variance 

among virome samples was inter-personal variation.  Parallel deep sequencing analysis of 

bacterial populations showed covaration of the virome with the larger microbiome.  The dietary 

intervention was associated with a change in the virome community to a new state, in which 

individuals on the same diet converged.  Thus these data provide an overview of the composition 

of the human gut virome and associate virome structure with diet.  
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All sequence reads have been deposited in NCBI’s Sequence Read Archive with the 

following accession numbers: SRX020379, SRX020378, SRX020505, SRX020504, and 

SRX020587. 

2.2 Introduction 

Bacteriophages are the most abundant biological entities on Earth, with an estimated 

population of ~10
31

 total particles [1,2], but their roles in human health are only beginning to be 

studied [3-5].  Phage model systems were pivotal in the early development of molecular biology 

[6,7].  Today much of phage research is focused on phage in their natural environments, including 

the viral component of the human microbiome [5,8-10].  The new emphasis on studies of whole 

populations has been made possible in part by the development of "next generation" sequencing 

methods, which allow quantification of the types and proportions of phages in complex mixtures 

by deep sequencing of environmental samples [11]. 

Lysogenic or temperate phages are able to integrate their chromosomes into the bacterial 

genome [12,13], and so can alter the phenotype of the host bacterium by lysogenic conversion 

[14].  Transduction of genes for toxins by phage is well known, as in the case of cholera [15] and 

Shiga toxin [14]. Additional functionality, identified more recently, may promote bacterial 

adaptation to the host environment--genes for functions involved in energy harvest [5] and 

platelet adhesion [10] have been identified in viral metagenomic data, and cryptic prophages of E. 

coli have been shown to encode genes for resistance to antibiotics and other environmental 

stresses [16].  The contributions of these and other phage genes to microbiome function are just 

beginning to be studied. 
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Diet is expected to alter the composition of the human microbiome, and specific 

microbiome assemblages in turn are expected to affect the welfare of the human host, but 

interactions between phage and diet in the human microbiome are mostly unexplored.  One recent 

study used next generation sequencing to characterize human gut viruses from four twin pairs and 

their mothers [5] and found similarity of communities between twins and their mothers, and 

stability of viral communities over time.  Dynamics in this study did not show cyclic changes in 

phage and bacterial abundance as would be expected for Lotka-Volterra predator-prey 

relationships [17], or episodes of outgrowth of particular bacterial species followed by blooms of 

their phage as in "kill-the-winner" dynamics [18].  The factors responsible for the observed 

longitudinal stability have not been fully clarified. 

Here we present a study of the dynamics of the human gut virome during a deliberate 

perturbation by a dietary intervention.  We compared shotgun metagenomic sequences from 

virome samples, as well as metagenomic sequences from bacterial populations.  We found that 

the predominant source of variation was differences among individuals, but that significant 

changes in viral populations were detectable associated with switching to a defined diet and that 

convergence of viral populations was seen for individuals on similar diets.   

2.3 Results and Discussion 

Sampling and sequencing  

We purified virus-like particles (VLPs) from stool samples collected longitudinally from 

6 healthy volunteers between the ages of 18 and 40 years who had normal bowel frequency, 

normal body mass index, no history of chronic intestinal disease, diabetes, or immune deficiency, 

and who had not been treated with antibiotics for a minimum of 6 months prior to entering the 
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study. Two individuals were fed a high-fat/low-fiber diet, three were fed a low-fat/high-fiber diet, 

and one was on an ad-lib diet. Samples were collected at up to four time points (days 1, 2, 7, and 

8), with the controlled diet starting after sample collection on day 1.  VLPs were purified (Fig. 2-

1) by filtration and CsCl density gradient fractionation.  In what follows, we use "VLP" to refer to 

these preparations.  Although we are able to isolate multiple phage types from these preparations, 

and EM analysis confirms the presence of virus-like particles, the fraction of particles that are 

replication-competent virions is unknown, so we avoid referring to the full population as 

"viruses".  VLPs were treated exhaustively with DNase, then deproteinized and total VLP DNA 

was purified [11]. The VLP-associated DNA was randomly amplified by Phi29 polymerase and 

shotgun sequenced using the Roche/454 GS FLX Titanium platform.  Amplification with Phi29 

polymerase can distort the ratios of different members of the community [19] but all samples 

studied here were processed similarly, allowing consistent comparisons between samples.  After 

filtering, the VLP data set yielded 936,213 high-quality sequences with a mean length of 359nt 

(336Mb total).  Initial analysis of individual reads showed that 98% of these sequences had no 

significant match to an identified sequence in the non-redundant database (E-value < 10
-5

) when 

analyzed individually, consistent with previous studies of similar preparations [4,5,20].   

To track bacterial populations, total DNA was isolated from the same stool samples and 

analyzed using deep sequencing of 16S rDNA amplicons and shotgun sequencing of total DNA 

[21]. The 16S rDNA sequence tag data set contained 63,405 reads, with a mean length of 268nt.  

Sequences were filtered using QIIME [22] and assigned to bacterial lineages using RDP [23].  

Bacterial communities were compared using UniFrac [24].  Shotgun sequencing of total stool 

DNA (mostly from bacteria) yielded 1,007,534 reads with a mean length of 344nt.  
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 To quantify the purity of our VLP preparations, we checked bacterial 16S 

sequences in the VLP DNA.  VLP DNA preps were confirmed to be at least 10,000X reduced in 

bacterial 16S DNA by Q-PCR (data not shown), and VLP DNA samples contained only 21 reads 

with similarity to bacterial 16S, a 35-fold reduction compared to bacterial shotgun sequencing 

(p<10
-15

, chi-square test).  Bacterial sequences could be present in the VLP preparations as 

contamination, or as a result of generalized transduction, specialized transduction, or 

incorporation in Gene Transfer Agents (GTAs) [25,26].  Thus the origin of the low level bacterial 

sequences in our data set is uncertain.  

Assembly and initial analysis 

The average read length in our VLP data set was longer than in most previous 

metagenomic studies of viral DNA, allowing extensive assembly of individual reads into contigs. 

We assembled VLP sequences using the Newbler assembler [27] (40bp overlap, 90% identity), 

which yielded 7,175 contigs at least 500bp in length.  Fully 86.6% of the sequence reads were 

recruited into these contigs (Fig. 2-2A). The longest contig was 46kb, 73 contigs were longer than 

10kb, 279 contigs were longer than 5kb, and 3,028 contigs were longer than 1kb.   

The approximate size of the VLP community can be estimated by PHACCS (PHAge 

Communities from Contig Spectrum) [28], which calculates the degree to which a group of 

sequences co-assemble into contigs, and compares them to simulated communities of different 

sizes. Similar to what has been seen recently in the human gut virome [5], the median richness 

(number of species) of the 16 samples was 44 (range = 19-785), and the average Shannon 

Diversity was 3.46 (s.d. = 0.59).  The most abundant genotype was predicted to account for 
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16.20% of the total (s.d. = 2.09%), predicting the complete assembly of the most abundant VLP 

genomes in our study.  

Analysis of gene content 

To characterize these VLP contigs, we compared both nucleotide sequences and open 

reading frames (ORFs) to 1) the NCBI non-redundant database, 2) the Pfam database of 

conserved amino acid motifs [29], 3) the Clusters of Orthologous Groups (COG) database of 

annotated bacterial protein families [30], 4) A CLAssification of Mobile genetic Elements 

(ACLAME) [31], 5) the Antibiotic Resistance Genes Database (ARDB) [32], and 6) the 

Virulence Factors Database (VFDB) [33].  All VLP contigs and associated annotation can be 

viewed using a web-based interface at http://microb215.med.upenn.edu/cgi-

bin/gbrowse/phage_metagenomics/.  A total of 22% of ORFs contained recognizable Pfam 

motifs.  Essential bacteriophage functions were well represented, including functions required for 

both lytic and lysogenic growth (Fig. 2-2B).   

VLP contigs were classified according to their similarity to ICTV-defined bacteriophage 

families (Fig. 2-2C). There were 1,268 contigs with amino acid similarity to members of the 

Siphoviridae family (18% of the total), 686 (10%) to Myoviridae, 344 (4.8%) to Podoviridae, 68 

(0.9%) to Microviridae, and 0.4% to other families. Of the remaining contigs, 813 (11%) had 

amino acid similarity to multiple bacteriophage families, and 3,969 (55%) did not have 

significant similarity to any bacteriophage families. Membership in these families was similar 

among the subjects studied (Fig. 2-2C). No strong candidates for eukaryotic viruses were detected 

either through nucleotide comparison to known eukaryotic viral genome sequences, or through 

similarity to conserved eukaryotic protein domains.  In a few cases a gene was annotated as 
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similar to a eukaryotic virus, but for each of these genes contigs could be identified that also 

encoded multiple phage genes, suggesting that these proteins contain motifs common to both 

bacterial and eukaryotic viruses.  Thus this classification indicates that the viruses studied here 

were comprised primarily of tailed bacteriophage, with some representation of additional DNA 

phage families.   

Analysis showed that nine VLP contigs formed closed circles, 4.5 – 6kb in length, 

suggestive of completion of these genome sequences.  None of the nine had significant nucleotide 

similarity to any sequence in the NCBI non-redundant database (E-value < 10
-3

). However, eight 

of the nine contigs contain an ORF that aligns to the capsid F protein sequence from Microphages 

[34], the family of 4.5 – 6kb circular ssDNA phage containing the proto-type bacteriophage 

X174. Three of the eight contigs were closely related to the chp1-like Microphage. Those eight 

genomes also contain proteins similar to phage proteins involved in replication (n=4), proteolysis 

(n=2), and scaffolding assembly (n=2). Only two of these genomes have significant sequence 

similarity to each other--contigs c03390 and c04421 are 93% identical, but were too diverse to 

co-assemble. The ninth genome (contig c04570) contains proteins that resemble those found on 

plasmids from a wide range of bacteria, primarily Firmicutes, and may represent a temperate 

phage that maintains itself as a plasmid [35].  

Comparison of total community and VLP metagenomes 

We next investigated the proportion of phage DNA in our total (bacterial) metagenomic 

data set.  We calculated the proportion of VLP sequences that have a significant match in the total 

shotgun data set (E-value < 10
-5

), and vice versa (Fig. 2-3A). As expected [5], the VLP sequences 

represent a minority of the total DNA from stool, in the range of 4-17%, although this value is 
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dependent on sampling depth, because the VLP community is a subset of the total community. 

We also assembled and annotated the total community shotgun sequence data set (347Mb) using 

COG [30], then compared it to the VLP dataset.  The proportions of COG classes present in the 

total community (mostly bacteria) and VLPs were quite different, as expected (Fig. 2-3B). 

Bacteria were significantly enriched in genes for synthesis of amino acid and carbohydrate 

precursors, ion transport and metabolism, translational machinery, and cell wall/membrane 

biogenesis, while VLP contigs were enriched in genes for replication, recombination and repair, 

and unknown functions (p<0.05, t-test). Thus the profile indicates that viruses recruit host cell 

machinery for translation, energy production and synthesis of macromolecular precursors, while 

using their own coding capacity to encode functions for replication. 

Prophage abundance 

A key question in investigating the gut virome centers on what fraction of phages are 

temperate, since this group can install new genes in bacteria and alter phenotype via lysogenic 

conversion [5,14]. We used three indications of a temperate lifestyle to annotate the VLP contigs: 

1) nucleotide identity to sequenced bacterial genomes, which is indicative of prophage formation 

(90% of bases aligned at 90% identity), 2) presence of integrase genes (according to Pfam [29] 

and COG [30] annotations), and 3) significant similarity of multiple proteins to prophages 

annotated in the ACLAME [31] database of mobile genetic elements (E-value < 10
-5

).  This 

strategy provides a minimal estimate of the number of temperate phages in our dataset, since 

authentic temperate phages may not be positive by any of these criteria. Of the 3,029 VLP contigs 

of at least 1kb in length, 428 (14%) had multiple proteins that significantly resembled an 

annotated prophage, 73 (2.4%) contained an integrase gene, and 37 (1.2%) aligned to a sequenced 

bacterial genome (Fig. 2-4A). Of the 505 contigs that fit at least one of these three criteria, 442 



 

21 

 

(88%) also contained an annotated bacteriophage gene.  When individual VLP reads were 

mapped to known bacterial genomes, only 1.5% (13,808) aligned at 90% identity or higher. Of 

those reads, 74% map to just 5 genomes, Bacteroides vulgatus ATCC 8482 (n=4,555), 

Eubacterium eligens ATCC 27750 (n=2,147), Faecalibacterium prausnitzii L2/6 (n=2,081), 

Parabacteroides distasonis ATCC 8503 (n=785), and Bacteroides thetaiotaomicron VPI-5482 

(n=583). These reads aligned to short, mostly contiguous regions of each genome and assembled 

into contigs that encode bacteriophage proteins (Fig. 2-4B,C), as expected for prophages. All of 

the reads matching Eubacterium eligens (n=2,147) mapped to its plasmid, which also contains 

annotated phage proteins, suggesting that this plasmid may contain an integrated prophage or 

itself be a non-integrating prophage, potentially analogous to phage P1 [35]. Of our 3,029 VLP 

contigs over 1kb, a minimum of 505 (or 17%), can be tentatively classified as temperate phages 

by at least one of the above criteria.  

Variation among animals in prophage induction has been previously shown in mouse 

models [5], leading us to investigate induction here. We probed the level of induction of the 

above five prophages indirectly by comparing shotgun sequences from total community DNA 

(mostly bacterial), with VLP sequences (Fig. 2-S2). In only one case (F. prausnitzii) did the 

abundance of the bacterial host correlate with the abundance of its corresponding prophage. The 

lack of correlation or the other four prophages suggests the possibility that the degree of induction 

varied among the individuals studied.   

We were able to infer the groups of bacteria infected by these putative temperate phage 

by comparing the VLP contigs to prophage sequences in the ACLAME database. Of the 2,814 

contigs that had significant amino acid similarity (E-value < 10
-5

) to an ACLAME prophage 

sequence, the contigs that were assigned exclusively to the Firmicutes accounted for fully 41% of 
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the total (n=1,148) (Fig. 2-4D). Surprisingly, similarity to prophage from the other common gut 

resident, Bacteroidetes, accounted for less than 0.9% of the assigned contigs (n=24). While 

Proteobacteria account for only a modest fraction of the total gut bacteria, contigs with similarity 

to Proteobacteria accounted for 16% (n=447) of the total.  This pattern also extended to contigs 

that were similar to multiple bacterial phyla (‘Multiple’ in Fig. 2-4D). Of the 1,176 VLP contigs 

that were similar to more than one bacterial Phylum, 34% had a match to Firmicutes, 0.8% had a 

match to Bacteroides, and 13% had a match to Proteobacteria.  This suggests that the prevalence 

of temperate bacteriophage in the gut may differ among bacterial phyla, though the conclusions 

depend on representation of phage sequences in the databases used for analysis, and so 

conclusions may evolve as further sequence data accumulates. 

Functionality in the gut virome:  CRISPRs 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) are mediators of 

a recently described form of bacterial adaptive immunity.  Short DNA sequences (26-72nt in 

length) are captured from invading DNA elements and installed as CRISPR spacer sequences in 

bacterial chromosomes.  Multiple spacer sequences are separated by partially-palindromic repeats 

within CRISPR arrays.  After transcription of CRISPR arrays, RNA copies of the CRISPR spacer 

sequences act as recognition modules in nucleoprotein complexes, which bind to targeted nucleic 

acid from genomic invaders such as phage or plasmids and program their degradation [36,37].  

Thus CRISPR spacers provide a record of the genomic parasites that bacteria have encountered.  

Analysis of CRISPRs in our assembled data provided a detailed record of phage-host and 

phage-phage competition.  A total of 38 CRISPR arrays were found in shotgun metagenomic 

assemblies for our total community data set.  The 38 contigs containing these CRISPRs aligned 
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primarily to genomes of gut Bacteriodetes (n=16, E-value < 10
-5

).  Of the 45 spacer sequences 

found within those 38 CRISPR arrays, fully 80% (n=36) showed no matches to any known 

sequence, but one spacer perfectly matched a VLP contig sequence (contig c05189; 100% 

identity over 43 bases).  Both the bacterially-encoded CRISPR spacer and VLP target were found 

within a single individual, suggesting that the CRISPR spacer sequence may have restricted 

phage replication within that subject.   

Unexpectedly, we also found 22 CRISPR arrays in our VLP contigs.  CRISPRs have not 

previously been reported from free phage particles, but one report did identify CRISPR sequences 

in potential prophages of Clostridium difficile [38].  A related CRISPR array was found in our 

virome samples (with >95% identity in repeat regions to the annotated C. difficile CRISPR5). 

Analysis of novel CRISPR spacer sequences showed one high stringency match between a VLP 

spacer (on contig c05834) and a separate VLP contig (c02690) (95% identity over 39 bases).  The 

CRISPR spacer-target pair were isolated from the same individual and both were detected at the 

same two time points.  Phage are well known to encode an extensive set of functions for 

competing with other phage [39,40]--these data indicate that CRISPRs may mediate phage-phage 

competition as well.  It will be valuable to assess CRISPR evolution and targeting in further 

phage metagenomic data sets. 

 

Functionality in the gut virome:  antibiotic resistance 

To interrogate antibiotic resistance in the VLP metagenomic data set, the ORFs found on 

contigs and unassembled reads were compared to known antibiotic resistance genes (BLASTp 

against the ARDB database [32]; E-value < 10
-5

), yielding 614 matches to antibiotic resistance 
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genes.  These included multidrug efflux transporters (n=355), vancomycin resistance genes 

(n=129), tetracycline resistance genes (n=18), and beta-lactamases (n=16).  The 33 highest 

quality matches to assembled contigs were examined further.  Some of these encoded clear 

antibiotic resistance genes (e.g. beta-lactamase, drug efflux pumps, streptogramin 

acetyltransferase), while others encoded relatives of antibiotic resistance proteins that are of 

uncertain importance to resistance (e. g. ABC transporters and the VanRS two-component 

signaling system).  Five of the contigs also contained identifiable phage genes.  Transmissible 

antibiotic resistance is believed to involve primarily mobilization by plasmids and transposons 

[41,42]--our results indicate that the role of mobilization by phage may deserve further 

investigation.  

Variation of the gut virome among individuals and during dietary intervention 

We next asked how viromes varied among individuals, and how the dietary intervention 

affected virome structure.  We characterized each virome sample by enumerating the proportion 

of sequence reads recruited into each VLP contig over the full contig data set.  In Fig. 2-5A the 

proportional abundance of each VLP contig is shown by the color code.  The Euclidean distance 

was then computed between all pairs of virome samples and used for statistical analysis.  

Comparison of the collection of within-subject distances among time points to between-subject 

distances showed that between-subject distances were significantly greater (Fig. 2-5B; p<0.001, 

significance assessed by permutation of sample labels).  Thus each individual contained a unique 

virome that was globally stable over the 8 day time course.  A previous study showed individual 

distinctiveness and stability of the human virome over a year [5]. 
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In order to test the effect of diet on the composition of the gut virome, we compared the 

distance between VLP communities in individuals both before and after they started their 

controlled diet (Fig. 2-5C). The distance between the gut viromes of individuals on the same diet 

(Fig. 2-5C, left side) was significantly smaller at the end of their dietary treatment than it was at 

the start (p=0.05, significance assessed by permutation of diet labels). There was no increase over 

time in virome similarity for individuals on different diets (Fig. 2-5C, right side). A group of 39 

VLP contigs were identified that changed in association with the dietary intervention. In 

comparison to the full data set of 7,175 contigs, this subset showed a trend toward enrichment in 

Siphoviridae (p<0.06) and depletion of Myoviridae (p<0.08), which is suggestive of a 

phylogenetically distinct diet-responsive bacteriophage population.   

This dietary effect was also seen in a subject-by-subject analysis. For each subject, the 

distances between samples taken before the defined diet were compared, and distances between 

samples taken after defined diet were compared (Fig. 2-5D).  As a contrast, distances between 

samples where one was before-diet and the other was after-diet were also compared.  The 

distances were greatest for comparisons between before-diet and after-diet samples (Fig. 2-5D; 

p<0.05, significance assessed by permutation of day labels).  Thus over the period of the dietary 

intervention, the viral community changed detectably to a new state. 

The gut virome is dominated by prokaryotic viruses which prey on gut bacteria, raising 

the question of how changes in bacterial and viral communities are linked. We tested covariation 

by comparing 16S rDNA amplicon data from the gut DNA samples, which measured bacterial 

diversity, with the VLP shotgun metagenomic data, which measured viral diversity (Fig. 2-5E). 

Variation was significantly correlated between bacterial and VLP communities (Mantel test, 
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R=0.40, p<0.001). This correlation was significant when tested by subject label permutation 

(p<0.001), indicating that inter-personal variation is correlated between these communities.   

Conclusions 

In summary, the VLP sequence data presented here could be assembled into contigs that 

recruited fully 86.6% of sequence reads, providing a resource of over 7,000 complete and partial 

phage genomes and making possible extensive interpretation of ORF function.  A substantial 

portion of the phages in our samples are likely temperate, so that genes contained within phage 

may alter phenotype of the bacterial host by lysogenic conversion.  Novel functionalities 

emphasized here include phage-encoded CRISPR arrays and antibiotic resistance genes.  Also 

seen were the expected diversity of lysins [43], holins [44], bacteriocins [45], 

restriction/modification systems [46] and virulence factors [47-49]. 

The major determinants of microbiome community composition and dynamics remain to 

be fully clarified.  Bacteriophage and bacterial abundances did not oscillate detectably over the 

time period studied, as would be predicted by Lotka-Volterra predator-prey dynamics, nor did we 

detect boom and bust outgrowth of phage-host pairs, indicative of kill-the-winner dynamics, 

consistent with previous work [5,50].  A number of factors may confound the detection of 

competition in natural populations. The rate at which ‘winning’ bacterial clones [18] arise and are 

preyed upon may be too fast or too slow to be apparent in this set of samples. The sample set may 

not be dense enough to detect rapid changes.  In addition, phage types that infect different 

bacterial hosts may be indistinguishable at the current depth of sequencing and with available 

annotation [50].  Viromes were relatively stable within each individual, and interpersonal 

variation was the largest source of variance observed even when individuals were on the same 
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diet.  This allows us to rule out the idea that phage populations are predominantly acquired on a 

daily time scale as transients in food, because individuals eating the same food did not come to 

harbor identical viromes.  However, the gut virome changed significantly during the change in 

diet by alteration of the proportions of pre-existing populations, so that subjects on the same diet 

showed more similar, though not identical, virome composition.  Whether the changes in phage 

abundance are simply a result of changes in abundance of their hosts, or whether additional 

mechanisms are involved will require further work to clarify, though initial data suggests a 

possible contribution of lysogenic induction.  It will be valuable going forward to develop 

improved methods for quantifying phage induction in vivo.  Considerable further study will be 

required to understand the acquisition of gut viral communities and the factors mediating the 

balance between long term stability and dynamic response to the environment. 

2.4 Methods 

Sample collection 

Six healthy adult volunteers (at least 18 years old) were recruited to provide stool 

samples within the Center for Clinical and Translational Research at the Hospital of the 

University of Pennsylvania.  Exclusion criteria included having had diarrhea within one week 

prior to the sample collection, abnormal bowel movement frequency (at least once every 2 days 

and no more than 3 times a day), consumption of any antibiotics within six months prior to 

sample collection, or any prior diagnosis with inflammatory bowel disease, irritable bowel 

syndrome, celiac sprue, or other chronic inflammatory diseases of the intestines, or BMI outside 

the range of 18.5 and 35.  All collection was carried out after subjects provided informed consent 

under an approved IRB protocol.  
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DNA isolation, PCR amplification, and purification   

VLP DNA was isolated in the following manner (Fig. 2-1). Approximately 0.5g of stool 

was homogenized in 40mL SM buffer [51]. Particulate matter was spun down at 4700g for 30min 

and supernatant was filtered at 0.22µm (PES filter, Nalgene, Rochester, NY). The filtrate was 

centrifuged on a CsCl step gradient (described in detail [11,51]), and the 1.35-1.5g/mL fraction 

was extracted from the column.  We note that some viruses are known to have densities outside 

this range (e. g. Tectiviridae, Poxviridae, Herpesviridae), and so would be lost during purification 

[11]; no attempt was made to isolate RNA viruses.  Samples were treated with chloroform for 

10min, treated with DNase (Invitrogen, Calsebad, CA) for 10min at 37C, and then extracted with 

the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA). VLP DNA was amplified with 

Genomiphi V2 polymerase (GE Healthcare, Piscataway, NJ). 

Total stool DNA was isolated using the QIAamp DNA Stool Mini Kit (Qiagen, Valencia, 

CA), as described previously [52].  

454/Roche sequencing methods 

Both total DNA and amplified VLP DNA were randomly sheared and ligated to adapters 

using the 454 GS Titanium Rapid Library Preparation Kit with MID adaptors (454, Branford, 

CT). Bacterial 16S amplicons were amplified with primers BSR 357-A (barcoded) and BSF8-B 

(not barcoded), which anneal to the V1-V2 region of the bacterial 16S rRNA gene, and include 

454 sequencing adaptors [52]. Samples were pooled and sequenced using GS FLX Titanium 

chemistry on a 454 Genome Sequencer  [53].    

16S sequence analysis 
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Bacterial 16S sequences were analyzed using Pyronoise, assigned by comparison to the 

RDP database [23], and communities compared to each other using UniFrac [24] scores, all 

within the Qiime software package [22]. Sequences were filtered according to size (between 

200nt and 800nt), ambiguous bases were removed (max=2), homopolymer runs were truncated 

(max=20), and primer mismatches removed (max=0). 

VLP contig sequence analysis  

Quality Control:  454 Pyrosequencing yielded a total of 1,052,246 VLP sequences. These 

reads were filtered for quality using an in-house pipeline. This pipeline removed sequences 

sequentially due to 1) incorrect barcodes (n=23,290), 2) length less than 50nt (n=16,939), and 3) 

multiple ambiguous bases (n=19,708).  For removing the human reads from the data, the 

sequences were aligned to the human genome using BLAT [54]. A total of 476 reads 

(approximately .05% of the data) had greater than 70% similarity to the human genome and were 

removed.  QIIME [22] was used to remove duplicate reads from the data set in the following 

manner. First, 5 bases were trimmed off from 3’ end of each of the sequences. The trimmed reads 

were then used to form OTUs using the TRIE algorithm at 97% identity. A total of 55,620 

duplicate reads were discarded and the final data set of 936,213 sequences (with the final 5 bases 

preserved) was used for further analysis. The size distribution and quality scores of these high-

quality reads are shown in Figure 2-S1. 

Assembly: The 454 Newbler Assembler [27] was used to de novo assemble VLP 

sequences. Default parameters were used to obtain contigs, with minimum overlap length of 40bp 

and minimum overlap identity of 90%. One sequence was only allowed to be assigned to one 

contig. The Newbler assembler uses overlap-layout-consensus method to assemble sequences 
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where overlaps are computed by pair-wise sequence alignments and then multiple sequence 

alignment is used to derive the consensus sequence. Similarity between VLP contigs was assessed 

using YASS [55], a DNA local alignment tool. 

Analysis of VLP genomes and visualization: The contigs generated from assembly were 

compared (using BLASTn) to the NCBI non-redundant nucleotide database, ACLAME (A 

CLAssification of Mobile genetic Elements) [31] and VFDB (Virulence Factors Database) [33]. 

In-house scripts were used to derive ORFs from contigs by translating the reads in all 6 reading 

frames using NCBI’s Bacterial, Archaeal and Plant Plastid Code. Only ORFs at least 100aa were 

considered in further analysis.  The ORFs were compared (BLASTp) to the NCBI non-redundant 

amino acid sequence database, Pfam [29], COG [30], Antibiotic Resistance Genes Database 

(ARDB) [32], ACLAME protein and VFDB protein databases.  

The Generic Genome Browser (GBrowse) [56] was configured on the local server 

(http://microb215.med.upenn.edu/cgi-bin/gbrowse/phage_metagenomics/) to visualize assembled 

VLP contigs and singletons. MySql adaptor was used to set up the databases. The “Phage 

metagenomics” database contains the contigs, ORFs and hits obtained by querying the reads 

using BLAST. Another database, “Phage Circular Genomes” was created to view the 9 complete 

circular phage genomes, the ORFs from the genomes and BLASTn/BLASTp/BLAST-rps hits 

from the databases listed above. The contigs, ORFs and the BLAST results information were 

converted to the (GBrowse-compatible) gff3 file format using in-house scripts which were then 

configured as MySql tables to view in GBrowse. 

Taxonomic classification: Contigs were assigned to different bacteriophage families 

according to their amino acid similarity to the genomes of ICTV-defined groups. To be placed in 
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a certain group, a contig must have amino acid similarity (E-value < 10
-3

) to a protein from the 

genome of a member of that group. Contigs were excluded that had a single ORF that was similar 

to members of multiple families (cutoff at 90% of the top score), or had multiple ORFs that were 

similar to different families. Samples were characterized according to their membership in these 

taxonomic families by counting the number of reads from each sample that were assembled into a 

contig with a given classification. 

CRISPR identification and spacer similarity:  CRISPR arrays were identified in both the 

VLP contig and total DNA contig data sets using the CRISPRfinder utility [57]. Both direct 

repeat and spacer sequences were compared to previously sequenced CRISPR spacers and direct 

repeats (from CRISPRdb [58]) using blat (90% aligned at 90% identity), and to the non-

redundant database (from NCBI) using BLASTn (90% aligned at 90% identity). Spacers from 

CRISPRdb [58] were also compared to the VLP contig data set using blat (90% aligned at 90% 

identity). 

Functional comparison of VLP DNA and total DNA 

Biochemical functionality was predicted according to similarity of ORFs to proteins 

within the COG database [30]. Membership in a given COG category was determined by the 

proportion of reads (out of a given data set) that fell within ORFs that had significant similarity 

(E-value < 10
-5

) to a protein in the COG database in that category. Differences between VLP and 

total DNA were calculated via two-sample t test. 

PHACCS Analysis 

Community structure was estimated by using PHACCS (v1.1.2) [28], implemented with 

the Octave (v3.2) environment, using contig spectra as input that were generated by Circonspect 
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(v0.2.4). The contig spectra were generated by randomly sampling 10,000 sequences truncated to 

100bp in length, assembling at 98% identity and 35bp overlap, and counting the number of 

contigs with 1 member, 2 members, etc. PHACCS was run on those spectra using a genome size 

of 50kb, under a power law scenario. 

Statistical methods 

Euclidean distances were calculated by the R function dist. This function takes vectors as 

inputs, where each element was the number of sequences from a given sample that assembled into 

a given contig. 

To assess the significance of diet effect and association between two distance matrices, 

day labels were permuted for samples from the same subject, the test statistic (t-statistic and 

Pearson correlation, respectively) was recalculated using the permuted distance matrix and 

compared to the observed test statistic to yield P-values. To visualize this covariation, we used 

Procrustes (part of the Qiime software package [22]), which rotates two distance matrices to 

maximize superimposition, and then plotted using KiNG 2.16.  Significance was called at a p 

value of 0.05 or below, though we note it would be helpful to have more samples and use a lower 

cut value.  To assess the difference in taxonomic categorization within the contigs that were 

accountable for the effect of diet (above), we took a permutation approach. The complete set of 

contigs was randomly sampled 10,000 times, and that was compared to the observed distribution 

of the diet-associated contigs. The probability of obtaining the observed proportions was 

estimated by the number of permutations that had a proportion that was no less extreme.  
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2.5 Figures 

 

 Figure 2-1.  Purification of 

VLP DNA. Purification scheme 

was adapted from [11]. Stool was 

homogenized in SM Buffer; 

particulate matter was spun 

down; supernatant was filtered at 

0.22µm to remove cells; VLPs 

were purified on a CsCl density 

gradient and treated with 

nuclease to eliminate unprotected 

DNA. The absence of bacterial 

cells was confirmed by staining 

VLP preparations for nucleic 

acids. VLP DNA was quantified, 

amplified, and pyrosequenced.   
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Figure 2-2.  Assembly and functional annotation of shotgun metagenomic sequences 

from the human gut virome. (A) Analysis of recruitment of VLP sequence reads into contigs.  

The y-axis shows the number of sequence reads, the x-axis shows contig length.  Pyrosequencing 

data from the human virome were assembled into 7,147 contigs up to 47.8kb in length.  Linear 

contigs are shown in yellow, circular contigs are shown in blue. (B) Analysis of protein functions 

in VLP contigs.  The functions encoded in VLP contigs were predicted using the Pfam database, 

then grouped using a custom database relating Pfam domain identifiers to phage functions (Table 

S4).  The relative proportions of pyrosequencing reads falling within ORFs of different 

annotations were plotted according to their sample of origin (y-axis).  Each bar is indicated by the 

sample code, where L or H indicates low or high fat diet, the adjacent number indicates the 

subject number, and the number after the hyphen indicates the day of the study.  "X-1" indicates 

ad-lib diet.  C)  Taxonomic classification of VLP communities is consistent across samples. 

Samples (in columns, labeled as in Figs 1 and 5) are characterized according to the number of 

sequences from each sample that are assembled into a contig that is classified by taxonomic 

family. Phage families are indicated by the color code to the right. ’Unknown’ (black) indicates 

contigs that cannot be classified in any way. ‘Multiple hits’ (white) indicates contigs that have 

proteins that are similar to multiple families. 



 

35 

 

 

 

 

Figure 2-3.  Comparison of gene content in total microbial communities and VLP 

communities.  (A)  The proportions of total genes identified in shotgun metagenomic analysis of 

total stool DNA (left) is compared to genes in VLP communities (right).  (B)  VLP DNA encodes 

biochemical functionality that is markedly different from the total microbiome. Function 

annotation was performed according to comparison to the COG database [30]. The proportion of 

reads from each assembled data set that fall within an ORF of the indicated annotation are plotted 

on the x-axis (mean±standard error). Asterisks indicate significant differences between VLP and 

microbial communities by two-sample t-test (one for p<0.05, two for p<0.01, and three for 

p<0.001). 
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Figure 2-4.  Analysis of temperate bacteriophages in the human gut virome. (A) 

Venn diagram indicating frequency of functions associated with temperate phages.  VLP contigs 

were annotated according to the presence of integrase-like sequences (orange), BLAST alignment 

to sequenced bacterial genomes, suggestive of prophage formation (90% length at 90% identity; 

green), and presence of multiple genes with significant similarity to a prophage element within 

the ACLAME database (red).  Map of VLP pyrosequencing reads aligning to the genomes of (B) 

Faecalibacterium prausnitzii L2/6 and (C) Parabacteroides distasonis ATCC 8503 (90% length 

at 90% identity). Inset are the contigs that correspond to each peak, the reads that make up each 

contig, and their annotated genes.  Top strand reads are indicated by blue, bottom strand reads by 

grey, and mismatches are indicated by vertical red lines.  (D)  Prevalence of prophage sequences 

according to bacterial phylum of origin. Contigs with amino acid similarity (E-value < 10
-5

) to 

prophage sequences within the ACLAME databases are shown according to which bacterial 

phylum they match. Any contig with similarity to more than one phylum is classified as 

‘Multiple.’ Roughly 39% of VLP contigs (n=2,814) did not have significant similarity to any 

prophage sequence in this database.   
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Figure 2-5:  Alterations in VLP contig abundance associated with diet.  (A) 

Proportions of VLP sequence reads in contigs from different subjects and time points.  Vertical 

bars indicate the proportion of reads within each contig.  The contigs are shown in columns, and 

subject/time point combinations in rows. Hierarchical clustering was performed on both rows and 

columns according to Euclidean distance and complete distance agglomeration. Samples are 

labeled by subject according to diet: high-fat (H1, H2), low-fat (L1, L2, L3), and ad-lib (X), as 

well as day of dietary intervention (days 1, 2, 7, or 8).  The proportion of all VLP reads in each 

contig are shown by the scale at the bottom.  (B, C, D) The Euclidean distance between samples 

is shown according to median (line), quartile (box), and range (whisker). (B) Between-subject 

variation is significantly greater than within-subject variation (p<10
-4

, subject label permutation). 

(C) The distance between the gut viromes of individuals on the same diet (left) was significantly 

smaller at the end of their dietary treatment than it was at the start (p=0.05, permutation of diet 

labels), while there was no increase in similarity for individuals on different diets (right). (D) The 

distances within subjects that was measured between samples taken on the first two days of the 

timecourse (left) and the last two days of the timecourse (right) were significantly lower than the 

distances between those two sets of days (middle; p=0.04, permutation of day labels).  (E)  

Covariation of bacterial and VLP community diversity.  Distances between pairs of bacterial and 

VLP communities were calculated as described in Materials and Methods.  The similarity of 

bacterial and VLP communities is shown through PCoA analysis, where each data set was rotated 

and scaled for maximum superimposition. Each circle represents a sample, either bacterial or 
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VLP. The bacterial and VLP communities from the same sample are connected by a line, where 

the red half of the line touches the VLP community, and the black half touches the bacterial 

community. The percent of total variation accounted for by each axis is shown in the axis label. 

The alignment of bacterial and VLP communities was highly significant (p = 0.004). 

 

Figure 2-S1: Quality scores of VLP DNA sequence reads used in shotgun 

metagenomic analysis. (A) Histogram of read length by 10nt bin. The majority of sequences fall 

within the 300-500nt range. (B) Heatmap of sequence quality scores binned by sequence length 

(y-axis) and sequence position (x-axis). The average quality score (454 Q20 score) at a certain 

position is given by color (indicated in legend). The bins on the vertical axis from (A) are the 

same as in (B). 
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Figure 2-S2: Comparison of reads from five common bacterial genomes among 

complete metagenomic and VLP data sets. The proportion of reads are shown from total DNA 

shotgun sequences (x-axis) and VLP sequences (y-axis) that have significant  similarity (E-value 

< 10
-5

) to the indicated genomes. Reads are pooled by subject (as in Figure 3), shown in color. 
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CHAPTER 3 – HYPERVARIABLE LOCI IN THE HUMAN GUT VIROME 

The contents of this chapter have been published as: 

Minot S, Grunberg S, Wu G, Lewis J, Bushman FD. Hypervariable loci in the human gut 

virome. PNAS (2012) 109 (10): 3962-3966 

 

3.1 Abstract   

Genetic variation is critical in microbial immune evasion and drug resistance, but 

variation has rarely been studied in complex heterogeneous communities such as the human 

microbiome.  To begin to study natural variation, we analyzed DNA viruses present in the lower 

gastrointestinal tract of 12 human volunteers by determining 48 billion bases of viral DNA 

sequence.  Viral genomes mostly showed low variation, but 51 loci of ~100 bp showed extremely 

high variation, so that up to 96% of the viral genomes encoded unique amino acid sequences.  

Some hotspots of hypervariation were in genes homologous to the bacteriophage BPP-1 viral tail 

fiber gene, which is known to be hypermutagenized by a unique reverse-transcriptase (RT)-based 

mechanism.  Unexpectedly, other hypervariable loci in our data were in novel gene types, 

including genes encoding predicted Ig-superfamily proteins.  Most of the hypervariable loci were 

linked to genes encoding RTs of a single clade, which we find is the most abundant clade among 

gut viruses but only a minor component of bacterial RT populations.  Hypervariation was targeted 

to 5'-AAY-3' asparagine codons, which allows maximal chemical diversification of the encoded 

amino acids while avoiding formation of stop codons.  These findings document widespread 

targeted hypervariation in the human gut virome, identify new types of genes targeted for 

hypervariation, clarify association with RT gene clades, and motivate studies of hypervariation in 

the full human microbiome.  



 

44 

 

3.2 Introduction  

Key aspects of host-parasite interactions are mediated by targeted changes in DNA.  The 

vertebrate adaptive immune system is based on covalent DNA rearrangements that diversify 

genes encoding Ig-domain antigen binding proteins.  In response, viral and cellular pathogens 

encode genetic systems that vary antigens bound by host antigen receptors [1,2].   

In this study we begin to characterize patterns of sequence variation in heterogeneous 

natural communities, using the human microbiome as a model.  We chose to study viral samples 

because they represent a medically important microbiome component, but contain a smaller 

aggregate genome size than the full microbiome, allowing sequencing to a depth that permits 

empirical assessment of variation. 

A newly discovered mechanism of targeted hypermutation, particularly pertinent here, 

involves the Bordetella bacteriophage BPP-1, which has been shown to vary the sequence of the 

gene encoding its phage tail fiber to bind divergent cell surface receptors [3-6].  The phage-

encoded major tropism determinant (MTD) gene, which encodes the tip of the tail fiber, is 

subjected to targeted hypermutation by a reverse transcriptase (RT)-dependent mechanism [7,8].   

The 3' part of the tail fiber gene is duplicated in the phage genome, and the duplicated template 

repeat (TR) is transcribed and reverse transcribed in an error-prone fashion.  The mutated copy is 

then incorporated into the MTD gene variable repeat (VR), leading to very high mutation rates.  

Diversity generating systems involving related RTs and genes encoding C-type lectin folds have 

been inferred from prokaryotic genome sequences [3,4], but only the BPP-1 system has been 

characterized functionally. 
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Here we have used the Solexa/Illumina HiSeq method to interrogate 48 billion bases of 

DNA sequence from populations of gut DNA viruses, which allowed us to identify regions of 

targeted hypervariation in the primary sequence data.  We found that RT-associated 

hypervariation systems were present in 11 out of 12 subjects examined, and act on a much wider 

range of gene types than was known previously.  Analysis of the sequence information further 

specifies the chemical logic of the mutational targeting, and suggests that the most common role 

of RTs in the gut virome is targeted hypervariation. 

3.3 Results 

Sequence and assembly of 48Gb of gut viral DNA 

To study diversity in natural populations of the human virome, we collected stool 

samples from 12 healthy individuals (3 per subject) over up to 2 months, then purified viral 

particles by sequential filtration, banding in CsCl density gradients, and treatment with nuclease 

as described [9].  DNA was isolated from viral particles, amplified, and then sequenced using the 

Solexa/Illumina HiSeq paired-end sequencing platform.  A total of 495,053,311 reads were 

generated, averaging 97.2bp in length. As an empirical error control, 153 million reads were 

determined for DNA from phage ΦX174, showing an accuracy of 99.94%.  A total of 48Gb of 

data were collected, the largest survey of viral sequences yet reported.  

The raw sequences were assembled into contigs using the deBruijn graph-based 

assembler SOAPdenovo [10].  The depth of sequencing for the gut viral contigs averaged 49X 

and ranged up to 3,000X (Fig 3-1A).  There were 78 contigs longer than 1kb that assembled as 

complete circles, indicating probable completion of the viral genome sequence.  Circular 

assemblies could arise either by completing the sequence of a circular genome or by sequencing 
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concatemers, which are intermediates in the replication of many DNA viruses.  The mean number 

of contigs per subject longer than 1kb was 1390, ranging from 573 to 3390.   

Protein functions were inferred by comparing the conceptual translation of predicted 

open reading frames to a curated database of protein families.  A broad range of viral functions 

were identified in the encoded proteins (Fig. 3-1B), as observed previously [9,11]. On average, 

72% of the ORFs did not resemble any recognizable protein family, emphasizing the immense 

diversity of novel genes in gut viral populations. 

To assess the relationship to known viral genome sequences, contigs were compared to 

the NCBI RefSeq collection of viral genomes.  The five database sequences with the most 

extensive similarity are shown in Figure 3-1C.  Most of the recognizable viral sequences showed 

matches to prokaryotic viruses (DNA bacteriophages).  Regions of similarity were typically short 

patches (median alignment length 202bp at E-value <= 10
-5

), supporting the idea that 

bacteriophage functions are commonly organized in genetic cassettes [12,13].  Only one well 

characterized virus known to replicate on human cells was detected--Human Papillomavirus type 

6b (Fig. 3-1C), which was only found within a single subject and sequenced to a depth of 23-fold.  

The next best hit to a eukaryotic virus was unconvincing, indicating that this viral fraction in 

healthy subjects is overwhelmingly composed of bacterial viruses.   

Hypervariable loci in gut DNA viruses 

To investigate sequence variation within each contig, we aligned the raw reads back to 

contigs and quantified variation at each base.   Initial analysis showed that multiple small regions 

showed extremely high variation against a background of low variation.  Comparison of filtering 

criteria led us to focus on regions of at least 90bp that were sequenced to a depth of at least 5X, 
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contained a proportion of unique sequences of at least 40%, and contained a proportion of 

polymorphic bases of at least 5%, yielding 36 regions of the highest variability.   

Analysis of these regions revealed that 12 resembled the diversity generating 

retroelement of phage BPP-1 described above [6,8]. This system is comprised of ~100bp repeat 

regions--the donor template repeat (TR), the targeted variable repeat (VR), and an RT, which is 

required to mutagenize the VR at positions where the TR contains an adenine [6]. Because of the 

central role of RT in this process, we identified all of the genes encoding RT-like sequences 

within the full collection of contigs, revealing 185 genes.  Duplicated sequences can potentially 

break contig assemblies, so we manually inspected all of the RT-containing contigs to identify 

broken assemblies near the RT sequences suggestive of TR/VR pairs.  We repaired 33 contigs 

through a combination of directed resequencing and manual re-alignment of shotgun 

Solexa/Illumina reads.  This increased the number of variable regions to 51, those variable 

regions falling within a TR/VR pair to 36, and those with both an RT and a TR/VR pair to 29.  In 

every case where a variable region was near an RT, it also contained a TR/VR pair.  Such 

elements were found in 11 out of 12 subjects studied.  Based on the resemblance to BPP-1, we 

refer to these systems as diversity generating retroelements below.  Eighteen out of twenty-nine 

were found in contigs that could be tentatively assigned to a specific bacteriophage family.  

Short hairpins near the VR are essential for activity in the BPP-1 system [14]. Similar 

hairpin sequences were found in only 13 of the above 29 elements. Of those 13 hairpins, 6 were 

found in ORFs, raising the interesting question of how this structure may constrain amino acid 

evolution in the host gene.  This also suggests that some of the novel diversity generating 

retroelements described here may use initiation mechanisms that do not involve hairpin 

structures.  
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All of the 29 variable regions adjoining both an RT and a TR/VR pair were within an 

intact ORF longer than 500bp, allowing the targeted genes to be analyzed.  We used BLASTp 

alignments and the homology-based structural prediction pipeline Phyre2 to analyze each ORF  

[15].  Fourteen ORFs had the hypervariable region near the 3' end of the coding region and 

showed a predicted C-type lectin fold (Phyre2 confidence score 90-100%), resembling the well-

studied MTD of BPP-1 (% identity 15-33%; Fig 3-2A; the arrow indicates the direction of 

information transfer inferred from the BPP-1 model).       

Novel gene types at hypervariable loci 

Surprisingly, six hypervariable ORFs encoded proteins that aligned to cadherins, 

invasins, and fibronectins, which contain Ig-superfamily beta-sandwich domains.  Proteins 

aligned with modest percent identity (11% to 15%), but structure predictions suggested multiple 

beta-sandwich domains with high confidence (Phyre2 confidence scores of 97-99%).  Several of 

these proteins were also homologous to each other (80-90% identity), despite being isolated from 

different individuals.  Ig-superfamily proteins are common in bacteriophage [16-18], but genes 

encoding Ig-superfamily proteins were not previously known to be subject to hypervariation by 

an RT-associated mechanism.  The VRs for Ig-superfamily proteins were in the middle of the 

target ORF, so that the TR and VR were separated by an average of 1,938bp. In comparison, the 

MTD-like TR and VR are separated by an average of only 356bp.  The greater distance between 

repeats in Ig-superfamily genes may have hindered their detection in previous studies based on 

DNA sequence comparisons [3,6].   

Three hypervariable ORFs also encoded predicted leucine-rich repeat (LRR) proteins N-

terminal to the hypervariable region (Phyre2 confidence score of 95-97%).  These were all 
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embedded in large ORFs, ranging from 1716-2181 predicted amino acids.  One of these also had 

a C-type lectin fold in the hypervariable region.  The remaining eight ORFs containing 

hypervariable regions did not have convincing similarity to known proteins, and may represent 

still further types of proteins subject to targeted hypermutagenesis.  

Hypervariation at 5’-AAY-3’ adenine residues 

Adenine residues were targeted in all the hypervariable regions identified here (Fig. 3-

3A).  5'-AAY-3' sequences were particularly strongly affected (e. g. Fig. 3-2, bottom).  This 

substitution pattern in 5'-AAY-3', which encodes asparagine, allows access to many different 

chemistries in the encoded amino acid side chains while suppressing creation of stop codons, as 

was originally pointed out for the MTD system [3].  The size of the dataset reported here allowed 

us to carry out statistical analysis of the placement of the 5'-AAY-3' relative to the three possible 

reading frames, which showed that the 5'-AAY-3' sequences were overwhelmingly in the 

asparagine-encoding frame (Fig. 3-3B, P<10
-163

).  Thus, variable region sequences have evolved 

to take advantage of asparagine-codon diversification while suppressing other types of changes. 

RT gene populations in gut DNA viruses and bacteria 

We next took advantage of the above data to annotate functions of gut virome RT genes.  

All of the RT sequences previously associated with hypervariable regions [3,6,19,20] cluster in a 

monophyletic clade containing the BPP-1 RT (Fig. 3-4A, cluster marked "DGR" for diversity 

generating retroelements).  In our data set, we found that most of the new RTs clustered in this 

group (n=99), including all the RTs found to be associated with hypervariable regions (Figure 3-

4A, green symbols). There was no obvious correlation between RT phylogeny and targeted gene 

type. Far fewer gut virome RTs clustered with group II intron RTs (n=8), and retron RTs (n=6). 
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We observed two novel groups of RT sequences. Five sequences fall into “Novel 1” (Fig. 3-4A), 

which is most similar to the Unk2 family [19]. Seven sequences fall into “Novel 2” (Fig. 3-4A), 

which is a sister clade to the retron RTs. The average pairwise distance of the pooled RTs 

associated with diversity generating systems described here is 1.14, which greatly increases the 

diversity of this group (previously 0.90), and rivals the diversity of the large retroviral/LTR 

retrotransposon RT clade (1.20).   

We compared the distribution of RT clades in gut DNA viruses described here to that of 

their bacterial hosts.  The bacterial genomes were dominated by the RT clades associated with 

group II introns and retrons, and thus differed from the DNA viruses, where RTs associated with 

diversity generating retroelements dominated (Fig. 3-4B).  

 

3.4 Discussion 

We report that DNA viruses of the human gut are rich in hypervariable regions, and that 

these are associated with template repeat/variable repeat pairs and characteristic RTs.  The 

frequency of substitutions was so high that up to 96% of alleles in hypervariable regions encoded 

unique protein sequences.  Most of the RT genes in the virome data set were in the clade linked to 

diversity generating retroelements--thus targeted hypervariation appears to be the major role of 

RTs in DNA viruses of the human gut.   

Surprisingly, several of the genes subject to hypervariation were predicted to encode Ig-

superfamily proteins--thus both gut viruses and vertebrate antigen receptors have evolved to use 

Ig domains as scaffolds for displaying highly diversified polypeptides.  Evolution may have 

converged on these beta-sheet-rich domains because they are relatively rigid and so can maintain 
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their folds despite primary sequence diversification, as has also been suggested for the C-type 

lectin fold [3].  The placement of diversified regions on Ig domains appears to differ between 

vertebrates and phage.  Although more complete structural characterization is needed, modeling 

suggests that the phage Ig-superfamily domains may be diversified along one surface and into the 

adjoining linker between domains, while the vertebrate antigen receptors are diversified in loops 

between beta sheets within an Ig domain.  The mechanism of diversification in phage clearly 

differs from that in the vertebrate immune system--the phage genes are diversified by error-prone 

reverse transcription [8], while the Gnathostomata immune system is diversified by V(D)J 

recombination, which involves DNA double strand breaks [21], and targeted deamination by AID 

[22].   

The functions of the new viral hypervariable genes found here are not fully clarified.  

Hypervariable genes may encode viral structural proteins targeted by human IgA, which is 

secreted into the gut in large amounts, so that diversification of viral structural proteins may allow 

immune evasion.  A role in ligand binding may be more likely, however, because only specific 

short regions are targeted for hypermutagenesis, so nonvariable regions would still be exposed to 

the immune system, possibly making immune evasion ineffective.  Some of the hypervariable Ig 

proteins may be homologs of T4 hoc (highly immunogenic outer capsid) protein, which encodes 

an Ig protein related in sequence to those studied here.  Hoc decorates T4 heads by binding to six-

fold symmetric vertices in hexameric capsomeres, thereby providing a polyvalent binding moiety 

on the outside of phage heads.  Hoc is proposed to mediate binding of T4 to surfaces such as the 

E. coli host cell [23], and has also been used for phage display to create new binding specificities 

for biotechnology applications [24].  If the Ig-superfamily proteins studied here are also accessory 

head proteins, they may mediate binding of viral particles to candidate host cells or 
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environmental materials, allowing selection to enrich for those binding specificities that optimize 

reproductive success.  The most useful binding specificities may differ widely during replication 

in the human gut or after shedding in feces, but hypervariation allows optimization in each new 

environment.  Further research will be needed to clarify the full biological roles of these viral 

diversity generating systems.    

3.4 Methods 

Sample collection 

Stool samples were collected from twelve healthy adult volunteers that were enrolled in a 

controlled feeding study, as described in [25] and [9]. Subjects were at least 18 years old, had a 

BMI between 18.5 and 35, were free of gastrointestinal disorders, and had not consumed 

antibiotics within six months prior to sample collection. Collections proceeded according to 

protocols approved by the institutional IRB. Six of the twelve subjects were the same as sampled 

previously [9] and all twelve were studied in [25]. In [9], multiple separate samples were 

sequenced for each subject, while in this study we pooled DNA from three samples per subject 

for sequencing. 

Isolation and sequencing of viral DNA 

Viral DNA was isolated from these stool samples as previously described [9]. 

Approximately 0.5g of stool was resuspended through homogenization in 40mL SM buffer [26]. 

Centrifugation at 4700g was carried out for 30min to remove large solids, and the resulting 

supernatant was passed through a 0.22µm PES filter (Nalgene, Rochester, NY). The 0.22µm 

filtrate was loaded onto a CsCl density step gradient (described further [26,27]), finally extracting 

the middle (1.35-1.5g/mL) fraction from the column using a sterile syringe. This study made no 
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attempt to isolate RNA viruses or DNA viruses with densities outside this range.  Chloroform was 

incubated with these samples for 10min prior to DNase (Invitrogen, Carlsbad, CA) treatment for 

10min at 37C. Finally, viral DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen, 

Valencia, CA). This viral DNA was amplified with phi29 polymerase using random hexamer 

primers prior to pooling and sequencing (Genomiphi V2, GE Healthcare, Piscataway, NJ). 

Viral DNA purity was assessed by quantifying the abundance of bacterial 16S rDNA, 

which is never encoded in viral genomes, via qPCR. Ten separate viral extractions were 

quantified in triplicate, using a plasmid standard curve to determine the number of 16S copies/ng 

DNA.  First, the number of 16S copies/ng in bacterial DNA was estimated using an average 

genome size of 5Mb and an average of five 16S copies per genome.  Analysis of total stool DNA 

shows, ~10
6
 16S copies/ng, consistent with the majority of DNA originating from bacterial 

genomes [25]. The number of 16S copies/ng in the isolated viral DNA was 825 (standard 

deviation=805). The relative proportion of bacterial DNA in these viral preparations (compared to 

the total) was therefore estimated to be 9.0*10
-4

 (standard deviation=8.7*10
-4

). 

Three separate samples were pooled for each subject in this study, following isolation and 

amplification. Those pooled samples were randomly sheared by sonication (Covaris, Woburn, 

MA), and barcoded sequencing adapters were ligated using the Illumina TruSeq DNA Sample 

Prep Kit (Illumina, San Diego, CA). The same set of pooled samples was also prepared for 

Illumina sequencing using the Nextera DNA Sample Prep Kit (Epicentre, Madison, WI). The 

Illumina-prepared and Nextera-prepared samples were each pooled independently and sequenced 

on their own single lane of a HiSeq 2000 flow cell (Illumina, San Diego, CA). One lane of that 

same flow cell was set aside for Illumina control DNA isolated from the bacteriophage ΦX174.  
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Assembly and mapping of viral sequences 

Viral sequences were trimmed by quality score (cutoff at Q35 using FASTX v0.0.13), 

and then assembled using SOAPdenovo (v1.05) [10] (kmer size = 63, additional flags “-p 20 –M 

3 –u –G 200 –R”). We found that optimal assembly occurred when the reads from each sample 

were assembled separately, and when the largest possible kmer size was used. An insert size of 

300bp was chosen based on the fragment size that was selected for sequencing. Reads were 

mapped back to those contigs using the Burrows-Wheeler Aligner (BWA v0.5.9-r16) [28] and the 

resulting alignments were visualized using the Integrative Genomics Viewer (IGV v2.0) [29].  

Open reading frames were predicted using Glimmer (v3.02) [30], and functions were predicted 

using RPSBLAST [31] (v2.2.20) against the Pfam and NCBI Conserved Domain Database [32] 

(accessed 3/28/2011).  

The contigs generated above were compared to the RefSeq collection of viral sequences 

using BLASTn [31]. The five genomes with the largest amount of sequence that was similar to at 

least one contig were selected, and raw reads were mapped to those contigs using BWA, as 

above. The pileup figures were generated using IGV. 

Identification of variable regions 

Variable regions were identified using a custom R script (available upon request) that 

uses Rsamtools to parse the BAM alignment files output by BWA (above). We estimated the 

basal error rate of Illumina sequencing by mapping control reads to the ΦX174 genome (gi 

9626372). After excluding positions with >0.1 polymorphism (suggesting heterogeneity in the 

starting population), the error rate was calculated as the proportion of bases that did not match the 

reference. The script scans along every contig in a 50bp window (step size = 5bp) and extracts the 
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sequences that cover that region completely. For each window we calculated the number of 

sequences, the proportion of those sequences that were unique (complementary to the proportion 

of sequences that were a duplicate of another), and the proportion of bases that did not match the 

consensus sequence. The criteria we chose to identify the most variable elements in this dataset 

were a minimum of 5 sequences, 0.4 unique alleles, and 0.05 polymorphic bases. Importantly, we 

required that 9 adjacent windows (a total of 90 contiguous basepairs) fulfilled these criteria.  

Manual re-sequencing of contigs 

Primers were selected that flanked the target gap using Primer3 (v0.4.0) [33]. The region 

of interest was amplified using AccuPrime Taq (Invitrogen, Carlsbad, CA), and the following 

thermocycler program: 94C for 15sec, 30 cycles of 94C for 15s and 68C for 3min, and finally 

68C for 10min and cool to 4C. The resulting PCR products were purified using a QIAquick PCR 

Purification Kit (QIAGEN, Valencia, CA) and either sequenced directly, or cloned into a TOPO-

TA vector (Invitrogen, Carlsbad, CA) for Sanger sequencing. The resulting Sanger reads were 

used in combination with shotgun reads to manually repair contigs, closing gaps with the new 

sequences. Those repaired contigs were then put through the analysis pipeline above, including 

read mapping, functional prediction, polymorphism scanning, etc.  

Taxonomic classification of variable contigs 

Each variable contig was compared to the viral proteins in RefSeq using BLASTx with a 

cutoff of e<=10
-40

. The taxonomic classification of each RefSeq genome was retrieved from the 

NCBI website. When hits overlapped, the hit with the lowest evalue was retained. When one 

contig resembled reference genomes from multiple viral families, all of the matching families 

were recorded (e.g. “S/M”).  
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Sequence structure adjacent to VR 

Recent work has identified short hairpins (8bp stem, 4bp loop, 20bp total) located in the 

IMH (‘initiation of mutagenic homing’ region) at the 3’ end of the VR as essential for DGR 

function [14]. We identified short hairpins in this dataset using a custom R script which scanned 

in 26bp windows looking for hairpins with either even or odd numbers of bases in the loop, and at 

least 7bp in the stem. An additional characteristic of the IMH is a 14bp GC-only sequence. We 

identified GC-only sequences using a custom R script that scanned each contig in 12bp windows, 

identifying each GC-only window, and then merging overlapping windows.  The R script 

correctly called the experimentally verified signals in BPP-1 [14]. 

Structural prediction of variable ORFs 

The amino acid sequence of ORFs covering hypervariable regions was generated using 

custom scripts. The structure of those amino acid sequences was predicted using Phyre2 [15] 

which uses homology of the input to sequences with known structures in order to generate the 

output. A threshold of 95% confidence was used to evaluate the output models.  

Phylogenetic analysis of reverse transcriptase sequences 

Reverse transcriptase (RT) sequences were identified using homology to the Pfam 

PF00078 (RPSBLAST; evalue < 0.00001), and the amino acid sequences were found using a 

custom script. Reference RT sequences were selected from two previous analyses of RTs 

associated with diversity generating systems [6,19], as well as representatives from each family 

of retroviruses (LTR-group RTs). The RT sequences from this dataset were aligned along with 

the reference sequences by individual alignment against the HMM contained in PF00078. A 

master alignment that preserved the position of each sequence relative to that HMM was 
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generated by hmmalign (HMMER v3.0) [34]. This method does not involve any comparisons 

between the selected sequences, but rather relies on their similarity to conserved elements within 

the curated position-specific scoring matrix that constitutes the Pfam PF00078. An approximately 

maximum-likelihood tree was generated by FastTree [35]. The figure was generated using 

FigTree (http://tree.bio.ed.ac.uk/software/figtree/), coloring internal branches according to the 

confidence estimates generated by FastTree. Branch tips were adjusted and circles were added to 

indicate tips corresponding to novel RT sequences from this dataset. Overlapping circles were 

merged to avoid overplotting. A distance matrix was also calculated by MEGA using the Poisson-

corrected distance, using only the subset of sequences described in [6].  

In order to compare the relative abundance of different clades of RT sequences, we used 

the sequences (above) that fell into the Hypervariation, Group II Intron, Retron, and putatively 

Novel clades to compare against a variety of nucleotide databases using BLASTx [31]. The three 

genome databases that we used were 1) the collection of complete and partial viral genomes 

generated in this study, 2) all of the phage RefSeq genomes, and 3) all of the bacterial RefSeq 

genomes. For each of the genomes in those databases we recorded the clade that most closely 

resembled their RT sequences. 

  

http://tree.bio.ed.ac.uk/software/figtree/
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3.5 Tables and Figures 

 

Figure 3-1. Assembly, functional assessment, and identification of viral sequences. 

(A) Summary of contigs assembled from viral sequences.  Each contig is shown as a point, the 

length is shown on the x-axis, and the depth of reads mapped to each contig on the y-axis. 

Circular contigs are shown in red.  B) Assignment of gene functions from viral contigs using the 

Pfam database of protein families; assignment of Pfam domains to viral functions is described in 

[9]. The proportion of sequences that were assigned for each function is indicated on the y-axis. 

On average, 21% of each sample was assigned to a Pfam protein family.  C)  The five viral 

RefSeq genomes with the most similarity to sequences generated in this study. Vertical lines 

indicate the depth of sequencing at that position, and colored lines indicate mismatches with the 

reference sequence. The range of coverage is noted to the left of each plot.  Blue boxes below 

each genome indicate annotated genes.  
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Figure 3-2.  RT-associated hypervariable regions from the human gut virome. A) 

Hypervariation in a gene predicted to encode a protein with an MTD-like C-type lectin fold.  B)  

Hypervariation in a gene predicted to encode an Ig-superfamily fold.  In each panel, the top 

shows the contig of origin, with grey vertical lines showing sequencing depth and boxes showing 

annotated proteins. The indicated area is expanded below to show the template repeat (TR), the 

corresponding variable repeat (VR), reverse transcriptase, and the ORF that contains the targeted 

VR. The inferred direction of information transfer between the TR and VR is shown with arrow. 

The bottom of each plot shows an alignment of the sequences spanning the TR and VR for each 

element (white space indicates gaps between reads). Above the VR sequence is a barplot 

indicating the proportion of bases in the VR that differ from the consensus base in the TR.  DNA 

bases are indicated by colors as indicated on the sides of the panels. 
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Figure 3-3. Characteristics of RT-associated 

hypervariation in the gut virome.  A) Heatmap 

showing the relationship of positions in the template 

repeat (TR) (y-axis) to the resulting nucleotides in the 

variable repeat (VR) (x-axis). Out of 15,447 mutated 

bases, 14,930 (97%) are located at adenine-positions 

relative to the TR.  B) Amino acid substitution heatmap 

showing the relationship of codons in the TR (y-axis) to 

the resulting codons in the VR (x-axis). Out of 11,462 

mutated codons, 9,212 (80%) are located at asparagine 

(N) codons in the TR. 
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Figure 3-4. Reverse transcriptase (RT) sequences found in DNA viruses of the 

human gut.  A) Phylogentic tree of RT sequences.  Each sequence was aligned to a position-

specific scoring matrix to construct a multiple sequence alignment. The tree was constructed 

using the maximum likelihood method.  Green circles indicate RT sequences on viral contigs 

from this dataset that contain hypervariable regions and TR/VR pairs. Purple circles indicate 

other RT sequences from this data set, the remaining leaves indicate reference sequences from 

NCBI.  RT clades were adapted from [6,19], and are indicated by grey lines. The bootstrap 

support of internal nodes is indicated by the color of internal branches as described in the key.  

Clades are marked according to [6,19]:  "DGR"--diversity generating retroelements, "G2L" -

group II intron-like families, "PLE"-Penelope-like elements, "NLTR"-non-LTR retrotransposons, 

“Hpdn”-hepadnaviruses, “LTR”-LTR retrotransposons and retroviruses, "Telo"-telomerase, 

“Unk”-unknown families [19], "Rpls"-retroplasmid, and “Abi” -abortive-phage-infection. Scale 

bar indicates the log-corrected distance metric used by FastTree, adapted from BLOSUM45.  

Distances range from 0, indicating  a perfect match, to 3, indicating no overlap (scale bar 

indicates distance 1.0).  B) Relative proportions of RTs in viruses studied here, the RefSeq phage 

genome database, and the RefSeq bacterial genome database.  
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CHAPTER 4 – CONSERVATION OF GENE CASSETTES AMONG DIVERSE 

VIRUSES OF THE HUMAN GUT  

The contents of this chapter have been submitted as: 

Minot S, Wu G, Lewis J, Bushman FD.  Conservation of gene cassettes among diverse 

viruses of the human gut. PLoS One. Submitted 

 

4.1 Abstract 

Viruses are a crucial component of the human microbiome, but large population sizes, 

high sequence diversity, and high frequencies of novel genes has hindered genomic analysis by 

high-throughput sequencing.  Here we investigate approaches to metagenomic assembly to probe 

genome structure in a sample of 5.6Gb of gut viral DNA sequence from six individuals.  Tests 

showed that a new pipeline based on DeBruijn graph assembly yielded longer contigs that were 

able to recruit more reads than the equivalent non-optimized, single-pass approach. To 

characterize gene content, the database of viral RefSeq proteins was compared to the assembled 

viral contigs, generating a bipartite graph with functional cassettes linking together viral contigs, 

which revealed a high degree of connectivity between diverse genomes involving multiple genes 

of the same functional class. In a second step, open reading frames were grouped by their co-

occurrence on contigs in a database-independent manner, revealing conserved cassettes of co-

oriented ORFs. These methods reveal that free-living bacteriophages, while usually dissimilar at 

the nucleotide level, often have significant similarity at the level of encoded amino acid motifs, 

gene order, and gene orientation.  These findings thus connect contemporary metagenomic 

analysis with classical studies of bacteriophage genomic cassettes.  Software is available at 

https://sourceforge.net/projects/optitdba/. 
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3.2 Introduction 

Advances in DNA sequencing technology have made it possible to characterize microbial 

communities using extremely large numbers of short sequence reads [1-3]. This offers a powerful 

tool for interrogating complex communities of uncultured organisms, but analyzing the shotgun 

sequence data from mixtures of organisms poses considerable computational challenges [4-7]. 

Here we address the problem of assembling genomes from complex viral communities to 

investigate conserved features of gene content and order.  

Viral communities critically influence environmental microbial populations and human 

health, but their study is hampered by a large degree of uncharacterized sequence diversity. It has 

been estimated that 0.0002% of the global viral gene pool has been sequenced [8] and deep 

sequencing of viruses purified from the environment typically yields a large majority of 

unidentified sequences [2,3,9-11]. Therefore the effective study of these viruses depends on the 

efficient computational assembly of individual reads into large genome fragments without 

reference to known genomes.   

The assembly of mixed viral reads presents a number of challenges.  Viral genomes are 

small but range widely in size, from 5kb to >1Mb [12-14], so size cannot easily be used to assess 

genome completion. Different viral genomes can be present in widely differing proportions 

[15,16], complicating the use of coverage to judge correct assembly. Viral genomes can also 

evolve quickly, including frequent recombinational exchange of protein-coding cassettes [17-19] 

and high rates of nucleotide substitution [11], further confusing assembly. 

However, many viral genomes are either circular, such as φX174 [20], or are circularly 

permuted, such as T4, which includes 1.02 genome copies in each viral head [21].  Thus assembly 
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into circles indicates probable completion of the sequence, but circularity not yet been used 

widely to improve viral sequence assembly. 

The problem of de novo assembly of high-throughput sequencing datasets has been 

greatly aided by the development of de Bruijn graph assemblers [22-27]. In the de Bruijn graph 

method, extremely large sets of short sequences (such as those generated by Illumina HiSeq 

technology) can be assembled into complete and partial genomes by mapping them onto a de 

Bruijn graph (Fig 4-1A) [24,28].  Each read is computationally fragmented into sequences of 

length k (the so-called ‘kmer’), then each kmer is used to form an edge between nodes 

corresponding to sequences of length k-1. By drawing such edges for every read in the dataset, 

one constructs a de Bruijn graph, which contains the information necessary to reconstruct the 

genome sequences that gave rise to the graph.  In a subsequent step, a consensus contig sequence 

is constructed from the de Bruijn graph, which involves popping bubbles, trimming branches, 

resolving repeats, and more complex operations to generate a linear graph [4]. Assembly by this 

method scales linearly with increasing sequence number, while the more familiar overlap method 

of assembly scales exponentially, explaining why the de Bruijn graph method is used for very 

large data sets [22].  

However, complexities within the sequence population, such as nucleotide 

polymorphisms or short sequence repeats, can introduce misleading connections in the de Bruijn 

graph [5,29]. In Figure 4-1 we demonstrate how the optimal kmer -- i. e. one that minimizes 

misleading connections -- depends on the nature of the underlying sequence. A set of genomes 

with three independent SNPs separated by 25bp (Figure 4-1B) will produce a de Bruijn graph 

with three isolated bubbles at a kmer of 23, while it will produce a much more complex structure 

at a kmer of 27. In contrast, two unrelated genomes with 25bp of identical sequence (Figure 4-
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1C) will be joined together at a kmer of 23bp, but not at one of 27bp. These examples 

demonstrate how the difficulty of parsing a de Bruijn graph depends both on the nature of the 

underlying polymorphism and the kmer value used.  

Thus in a mixture of multiple microbial genomes, it is likely that the optimal kmer value 

for assembly will vary [5,30]. One group [5] found that combining the assemblies constructed 

across a range of kmer values yielded a large number of long contigs, but that these contigs did 

not faithfully represent the underlying genomes. Another group developed IDBA, which performs 

sequential assemblies while stepping through kmers of increasing lengths [30]. At each kmer 

value, IDBA removes the best contigs and the reads used to make those contigs.  A metagenomic 

version of this program, MetaIDBA, has been developed [29].   

In this paper our goal is to find patterns of genome conservation in the highly diverse 

collection of viruses found in the human gut [2,3,11,31,32]. We implement an optimized iterative 

de Bruijn graph assembly approach, significantly increasing the length and depth of the 

assembled contigs compared with previous virome studies.  We present results for 5.6 Gb of 

Illumina paired-end sequence data from six human gut virome samples (a subset of samples 

reported initially in [11]).  While only a minority of the assembled ORFs in the sample could be 

annotated – emphasizing the vast diversity of gut viral populations – the annotated ORFs tended 

to group by predicted function. Moreover, a large fraction of the complete collection of ORFs 

could be clustered into inferred cassettes with conserved gene order and orientation.  Analysis of 

the contigs produced emphasizes the extreme variation in gut bacteriophage populations across 

individuals, while at the same time suggesting that viral genomes are organized in conserved 

functional gene cassettes.  
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3.3 Results 

Assembly of viral contigs 

In order to analyze protein conservation among viruses derived from mixed 

environmental samples, it is necessary to generate contigs that most closely approximate 

complete viral genomes. To generate long contigs that faithfully represent the underlying genome 

structure, we developed and employed an optimized iterative de Bruijn graph assembly approach 

(OPTITDBA). We compared this assembly method to two previously published methods 

(SOAPdenovo and MetaIDBA) using 5.6 Gb of Illumina HiSeq data (100 bp paired end reads) 

derived from stool virome samples from six healthy human subjects [11].  An example of 

assembly for samples from one of the six subjects is shown in Fig. 4-5. We found that assembly 

using our interative method (OPTITDBA) resulted in fewer reads mapped to contigs less than 1kb 

in length, and more reads mapped to contigs in each of the three longer size classes (1-3kb, 3-

10kb, and >10kb) (Fig 4-2), performing better than either SOAPdenovo or MetaIDBA (p<0.05; 

Wilcox signed-rank test).  

In order to measure the accuracy of this method, we used synthetic viral communities 

composed from previously sequenced communities. Of the 6 subjects in this dataset, one 

contained sequences that align closely to Human Papilloma Virus type 6b (as reported previously 

in [11]). These reads were added in varying amounts to a collection of reads from a subject 

completely lacking HPV reads, and the resulting synthetic datasets were used to assess quality of 

assembly. We assembled these synthetic viral communities using OPTITDBA, MetaIDBA, or 

SOAPdenovo and compared the efficiency of HPV recovery (measured in this case as the length 
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of the longest HPV contig as a proportion of the whole HPV genome). For every level of 

sequencing (6, 13, 19, and 23X coverage), the HPV genome was better assembled using this 

pipeline than using the single pass SOAPdenovo assembly (p<0.0005; Wilcox signed-rank test) 

(Fig. 4-6). On average, this pipeline performed 61% better than the corresponding single 

assembly using SOAPdenovo. There was no significant difference in HPV genome recovery 

between MetaIDBA and OPTITDBA, though our pipeline was better than MetaIDBA in 

producing contigs that recruited the maximum number of reads. In summary, OPTITDBA 

assembled viral reads into longer contigs at no cost to accuracy in the reconstruction of control 

genomes. 

Network analysis of bacteriophage proteins 

In order to characterize the assembled viral genomes, we predicted open reading frames 

(ORFs) using Glimmer, yielding 29,017 ORFs longer than 100bp from the 6 datasets.  Of these, 

only 3,066 had similarity at a cutoff of E<10
-10

 to the RefSeq collection of viral proteins (10.6%). 

At a more stringent cutoff of E<10
-50

, only 690 ORFs were similar (2.4%). Searching for 

conserved amino acid motifs contained within the Conserved Domain Databases (CDD) yielded  

3,374 ORFs with a match in the CDD at E<10
-10

 (11.6%), but only 777 with a match at E<10
-

50
(2.7%).   

In order to investigate which of these RefSeq annotations were shared among contig-

encoded ORFs, we carried out a network analysis (Fig. 4-3). The nodes in this network represent 

either contigs (orange circles) or RefSeq viral proteins (smaller black circles). Edges 

(connections) are drawn between contigs and RefSeq proteins when an ORF (encoded by a 

contig) is highly similar to a RefSeq protein (E<10
-50

). Groups of RefSeq proteins that are similar 
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to multiple contigs are highlighted by light blue ovals. While in some cases these groups of 

reference proteins encode only a single function (in which case they are likely all similar to a 

single ORF on each of the indicated contigs), in others there are multiple predicted functions (in 

which case there is a similar collection of genes found on all of the indicated contigs). For 

example, multiple contigs are linked by genes encoding both capsid and terminase proteins, while 

others are linked by genes encoding transcription and DNA packaging functions.  These examples 

parallel previous work which showed that bacteriophage genomes are often organized into 

cassettes of functionally related genes [33-35]  

Bacteriophage genomes contain conserved cassettes encoded by divergent nucleic 

acid sequences 

After finding only a low frequency of similarities between ORFs in viral contigs and 

database sequences, we searched for conserved gene cassettes in a database-independent manner. 

ORFs were compared within the assembled sequences to find encoded amino acids sequences 

that were repeated among multiple contigs, which we refer to as protein-coding families. Of the 

29,007 predicted ORFs, 16,944 (58%) were found to be members of families, that is, ORFs on 

different contigs showed alignments with at least 30% identity.  A total of 2,961 families 

contained 2 ORFs each. The largest family contained 25 ORFs.  Of these 5,135 protein-coding 

families, only 1,287 (25%) had any similarity to the Conserved Domain Database, emphasizing 

the amount of unexplored diversity in genes of the gut virome.  

Relationships among these protein-encoding families were interrogated by grouping 

families into cassettes, consisting of different families that were found on the same group of 

contigs. We found 28 types of cassettes that contained from 2 to 8 protein-coding families. On 
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average, the amount of each contig that was covered by each cassette was 1.6kb, ranging from 

105bp to 11.5kb. The mean proportion of each contig that was covered by a cassette was 27%, 

ranging from 1% to 90%. The most common cassette was found on 20 contigs generated from all 

six subjects studied. Of the 16,944 ORFs found in families, 651 (4%) were found in cassettes 

(Table 4-1). While a small proportion of the total number of predicted ORFs were grouped into 

cassettes, this accounted for a disproportionately large amount of the input sequence reads. The 

contigs containing at least one ORF accounted for 3.1*10
7
 reads. The contigs containing a 

cassette accounted for 5.9*10
6
 reads, or 18% of all contigs (Table 4-2). Therefore while the 

proportion of contigs that harbor cassettes is relatively small, contigs with cassettes represent 

highly abundant lineages.  

Bacteriophage cassettes commonly show conserved gene orientation as well as conserved 

gene type, so we investigated orientation as well.  The degree of co-orientation among protein-

coding regions in cassettes was found to be high, with an average co-orientation score of 99% 

(compared to 25% co-orientation expected by chance), providing strong support for cassette 

structure.  

In a few cases, the proteins encoded within a cassette showed potentially related 

annotations, such as N-6 DNA methylase and DEAD-like helicase (Fig 4-7) or phage portal and 

terminase (Fig. 4-4A).  In many cases, specific unannotated ORFs were repeatedly found near 

ORFs annotated as phage proteins. In one case, proteins with less than 30% amino acid identity 

between them (resulting in their being grouped in different families) were assigned the same 

functional annotation (Phage Mu F: morphogenesis-related protein) and located in the same 

functional cassette (Fig. 4-4B), suggesting preservation of protein function and genetic 

organization despite nucleotide and amino acid divergence  (Fig. 4-4B). 
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3.4 Discussion 

One difficulty of studying viruses in the environment is that high-throughput sequencing 

data is difficult to interpret when high proportions of reads are unknown or unrecognizable. One  

way to address this problem is through de novo assembly, generating complete and partial 

genome sequences. For environmental bacteriophage this is usually necessary because previously 

sequenced and closely related genomes are usually not available. We demonstrated that 

optimizing the assembly process according to the characteristics of viral genomes dramatically 

improves the degree of assembly at no cost to accuracy.  Using our assemblies, we found that the 

viral open reading frames often cluster in related cassettes, but that the cassettes show 

considerable sequence divergence among genomes.     

In our assembly pipeline we have improved on iterative kmer based de Bruijn graph 

assembly for use with viral samples in three ways. 1) We picked the optimal kmer value to use at 

each iteration, rather than cycling once through kmers of increasing length. 2) We removed at 

each iteration the set of reads that aligned to the best contigs, not those reads that were used to 

construct those contigs, because due to the nature of the de Bruijn graph assembly process, the set 

of reads used to construct a contig may not fully contain the set of reads that align well to that 

contig.  3) We reasoned that circular sequences would represent complete viral genomes, either as 

circular genomes or circularly permuted genomes, and so used this also as a criterion for calling 

finished contigs. 

As a measure of the quality of assembly, we monitored correct assembly of Human 

Papillomavirus Type 6b (HPV), the one known virus in our data set. We found that our pipeline 
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was better able to assemble a single contig matching HPV across a range of sequencing depths 

than was SOAPdenovo (the underlying assembly algorithm used in our pipeline). Both our 

pipeline and MetaIDBA reconstructed HPV about equally well (however, as described below, our 

method yielded contigs explaining a larger proportion of the reads). The ability to reconstruct 

viral genomes present at low abundance is particularly important when trying to detect pathogens 

in sequence mixtures, such as in efforts to identify novel pathogens in samples from outbreaks of 

infectious diseases.  

 A more complicated challenge is assessing the quality of assembly of unknown 

viral genomes.  One common metric for assessing assembly quality is the length of contigs 

produced (N50).  However, a recent study [5] found that for one implementation of De Bruijn 

graph assembly of short sequences from known genomes, the method that yielded the highest 

N50 yielded the lowest similarity to the known genomes.  Therefore we chose to measure how 

well the contigs explain the input data by mapping reads back to contigs, and counting the 

number of reads that mapped to contigs of different size classes, thereby generating an estimate of 

how well the assembly process reconstructed the primary data. We found that our pipeline 

performed better than MetaIDBA or SOAPdenovo. 

Analysis of protein conservation emphasized the cassette structure of the viral genomes 

in our samples. We annotate the viral contigs by aligning new ORFs to available databases, and 

by identifying ORFs of unknown function that aligned with other ORFs in our data set.  We 

found that viral ORF families often clustered in cassettes, where genes with similar sequences 

were almost always in the same orientations.  Cassette structure has been well documented in 

many bacteriophage families [13,33-37]--here we show that these structural patterns are 

accessible after assembly of metagenomic data.  
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A conjecture to explain the observed phage genome structure invokes pressure for 

sequence diversification from the CRISPR system.  Many bacterial genomes harbor a series of 

repeated sequences spaced by short sequences derived from phage or plasmids, called CRISPR 

arrays. The CRISPR arrays are transcribed, then the spacer sequence RNAs are used as 

recognition elements to program degradation of incoming sequence-complimentary DNA.  Thus 

bacteriophages that infect CRISPR-containing hosts are regularly under pressure to alter their 

DNA sequences to evade attack.  Assisting this, bacteriophage replication cycles can be as short 

as 20 minutes and burst sizes large, allowing rapid evolution.  Constraining the allowable DNA 

substitutions, of course, is the requirement for proper function of the encoded proteins.  In a few 

cases three dimensional structures have been determined for multiple phage proteins encoded in 

syntenic regions from functionally interchangeable cassettes, and the structures can be 

surprisingly similar given the low DNA and protein similarity.  For example, the repressor and 

Cro proteins of Lambda, 434, and P22 show little similarity at the nucleic acid level (median 

identity 34%) or amino acid level (median identity 17%) [38], but share common alpha-helical 

structures and helix-turn-helix motifs [39,40]. Thus the modules emerging from the metagenomic 

assembly may represent functionally similar gene sets that have diversified to elude attack by the 

CRISPR system, perhaps helping to explain why bacteriophage populations show such extreme 

variation. 

3.5 Methods 

Iterative assembly pipeline 

Here we first describe the basic steps of the optimized iterative de Bruijn graph assembly 

pipeline (available at https://sourceforge.net/projects/optitdba/), and then describe the 

implementation of each step in more detail. For each iteration, OPTITDBA 1) selects the optimal 

http://microb230.med.upenn.edu/papers/OptItDBA
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kmer, 2) generates a de Bruijn graph for the optimal kmer length, 3) removes the reads that map 

to the most highly abundant contigs from the dataset or reads that map to circular contigs, and 4) 

starts another iteration using all of the reads that do not map to those contigs. The loop ends when 

there are no highly abundant contigs meeting the criteria outlined below. At that point, all of the 

remaining reads will be assembled and mapped using the optimal values from the final iteration.  

Selecting the optimal kmer 

OPTITDBA assembles over a range of kmer values (63, 59, 55, 51, 47, 43, 39, 35, 31, 27, 

23, and 19) using SOAPdenovo v1.05 [25] (flags: -p 10 -d 1 -M 3 -u -G 200 -R). All the steps 

taken to simplify the de Bruin graph, clipping tips, removing low-coverage links, resolving tiny 

repeats, and merging bubbles, were implemented as described in [25]. Each assembly is queried 

for whether any circular contigs longer than 2kb were generated, suggesting complete assembly. 

If multiple kmer values resulted in circular genomes, than the largest such kmer value is selected. 

If no such circles are generated, then the kmer values are scored by the length and depth 

of sequencing of its most abundant members. For each assembly, the contigs are sorted by the 

number of reads used to construct them and the cumulative length of the top 20 contigs is 

recorded. All contigs <1kb in length are excluded. The kmer value with the longest cumulative 

length of its 20 most abundant is selected as the most optimal for that loop. The number of 

contigs selected (20) is arbitrary, can be specified by the user, and is used to balance 

computational resources against thorough assembly.  

If more than 10
6
 reads are used as input, OPTITDBA randomly selects 10

6
 reads to use 

for the assembly trials. Preliminary tests indicated that this strategy reduced computation time at 

no detriment to optimal kmer determination. 
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Removing reads that map to the most highly abundant contigs 

If no circular contigs are found, then the top 20 contigs from the assembly with the 

optimal kmer value are retained. If circular contig(s) is/are found, then the circular contig(s) and 

the top 20 contigs are retained. In pilot tests it was found that reducing the number of contigs that 

are retained at each step increases the final number of iterations as well as computational time, 

while the proportion of reads that were mapped was not impacted significantly.  

The reads are then mapped to those retained contigs using BWA v0.5.8c [41]. The full set 

of reads is used to map, not the random subset described above (if used). All reads not mapping to 

these contigs are then used to start another iteration. The training set consisted entirely of paired 

reads, and both members of the pair were removed, even if only one mapped to a contig. We 

observed that when only one read in a pair mapped, the other often covered the junction of 

circular contigs, or gaps in the assembly. The cycle ends when either zero reads map, or there are 

zero contigs >=1kb in length.  

While the iterative assembly pipeline developed here implements SOAPdenovo to 

perform assembly and BWA to perform mapping, the concept is independent of both programs. 

Benchmark sequences 

The data used to benchmark this pipeline are those described in [3,11]. Viral DNA was 

isolated from human fecal samples using sequential filtration and CsCl density ultra-

centrifugation, then unprotected DNA was digested using DNaseI [42].  Viral DNA was 

subsequently recovered from particles, yielding a sample that was depleted in bacterial DNA by 

>100-fold (as measured by 16S rDNA qPCR [11]. Three samples each from six human subjects 

were extracted, pooled, and submitted for sequencing using the Illumina HiSeq 2000 platform 
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(100bp paired-end sequencing). Ten million reads were randomly selected from each dataset 

(except for Subject 6, which only had 5,754,268 reads) while preserving all read pairings, and 

assembled using either OPTITDBA, MetaIDBA v0.19 [29], or using SOAPdenovo with a kmer 

value of 63 and all of the same flags as in the iterative assembly pipeline. The kmer value of 63 

for SOAPdenovo was found in previous tests to produce the highest N50 score using this dataset. 

MetaIDBA was run using default settings. See Table 4-3 for a summary of each dataset. 

Detection of Human Papillomavirus Virus 

A previous analysis of these sequences found evidence of a single eukaryotic virus: 

Human Papilloma Virus type 6b [11]. Reads mapping to the HPV genome (NCBI gi: 9626053) 

were extracted and used to mix back in various quantities to a dataset that did not previously have 

any detected HPV sequences. The mixing was done by randomly selecting a total of 4*10
6
 reads 

for each test. The number of HPV reads varied across a range (500, 1000, 1500, or 1798 reads, 

corresponding to 6X, 13X, 19X, or 23X coverage), with three replicates of each. Each set of 

mixed reads was assembled using OPTITDBA, MetaIDBA, or SOAPdenovo as described above.  

Network analysis of viral proteins 

In order to classify the assembled viral contigs according to their similarity with known 

proteins, we compared the predicted open reading frames (ORFs) on these contigs with 1) the 

RefSeq [43] collection of viral proteins, or 2) the Conserved Domain Database (CDD) [44] of 

conserved amino acid motifs. ORFs were predicted using Glimmer v3.02 [45], compared to Viral 

RefSeq (downloaded on 12/16/11) using blastp [46] (v2.2.25+, build 1/3/12), and compared to 

CDD [44] (downloaded on 10/18/11) using rpsblast (v2.2.25) [46]. Because of the difficulty of 

manually identifying patterns of similarity among contigs, we converted the protein similarity 
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data into a format that could be viewed in the interactive network visualization tool Cytoscape 

[47]. In this bipartite network scheme, there are two classes of nodes: contigs and RefSeq 

proteins. When a RefSeq viral protein has a highly significant match (E<10
-50

) to an ORF 

encoded by a contig, a connection is made between those two nodes. For ease of visualization, we 

excluded all contigs that were either shorter than 3kb, or had fewer than 5 hits to RefSeq proteins. 

The nodes and connections for all six datasets were combined and loaded into Cytoscape. The 

network was arranged using the spring-embedded layout (data available upon request).  

Protein family organization 

In order to search for conserved protein families in a database-independent manner, we 

clustered the ORFs described above using UCLUST v1.2.22q [48]. Each of those protein families 

was compared to the Conserved Domain Database using rpsblast. Those protein families were 

next grouped into cassettes, meaning multiple protein families that can be found together on our 

contigs. Cassette discovery proceeded in the following manner. Each protein family was 

classified according to the list of contigs that encoded it. Next, all of the protein families were 

compared, seeing how many of those occurred on common contigs.  A given pair of protein 

coding families was grouped into a cassette when the smaller of the two families was found on a 

shared contig at least 80% of the time. This process was performed iteratively, recalculating the 

overlap scores after each pair of protein families was merged together. In subsequent iterations, 

protein families could also merge in the same way with cassettes that formed earlier.  

If a pair of proteins formed a cassette found on multiple contigs, we expect shared ORFs 

to be in the same relative orientations. To calculate the consistency of orientation across contigs, 

we used a simple co-orientation score, calculated in the following way. Any two genes have four 
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possible relative orientations. For every pair of protein clusters in a module, we calculate the 

proportion of contigs that contain the orientation found most commonly. Discovery and analysis 

of protein modules was implemented in an R script that is available along with the iterative 

assembly pipeline, at https://sourceforge.net/projects/optitdba/. 

Computation   

Computation was carried out on a home-built computer with 192 Gb of RAM and 12 

cores (24 hyperthreaded).  The computer was assembled from parts costing $16,060 (USD) (a full 

parts list is available at http://microb230.med.upenn.edu/protocols/comput_resources.html).  

Computation times for assembly of single viral communities (5.7*10
6
 – 10

7
 reads) using this 

pipeline were 20.7 to 132.1 wall clock hours, with a median of 39.0 hours. The computation time 

may vary with the community complexity and number of reads, as the dataset with the longest 

compute time (#1: 132.1 hours), also had the largest number of predicted species by PHACCS 

(data not shown), the dataset with the shortest compute time (#6: 20.7 hours) was the only one to 

have less than 10
7
 sequences, and all of the other datasets ranged between 38 and 56 hours.  
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3.6 Figures 

Figure 4-1.  The de Bruijn 

graph assembly method and the 

influence of genomic variation on de 

Bruijn graph complexity. A) Shotgun 

sequences are produced from two 

different genomes (shown in blue and red 

at the top). Those sequences are used to 

construct a de Bruijn graph, where nodes 

are formed by all possible sequences of 

length k-1 (in this case 4 bases), which 

are connected by edges of length k (5 

bases). Since there are no 4mers shared 

between these two example genomes, the 

resulting de Bruijn subgraphs are 

separate. B) Nucleotide polymorphisms 

are better resolved by short kmers. We 

consider a mixture of four genomes, each 

with three polymorphic positions 

separated by 25bp. The identity at each 

polymorphic position is represented by 

either blue or red to indicate different 

nucleotides. At all other positions the 

genomes are identical. The de Bruijn 

graph that is constructed from this 

mixture of genomes using a kmer of 23 is 

shown on the left, where three 

independent bubbles form around each 

polymorphic position. The equivalent 

graph at k=27 is shown on the right, 

where three independent sets of bubbles 

overlap, forming a more complex and 

suboptimal graph structure. C) Short 

regions of similarity are better resolved 

by long kmers. We consider a mixture of 

two genomes which are entirely different 

except for a 25bp region of sequence 

identity (shown in black). The de Bruijn 

graph that is constructed from this 

mixture at k=23 is shown on the left, 

where the two resulting subgraphs intersect at the 23mer of similarity. The de Bruijn graph at 

k=27 is shown on the right, where the two resulting subgraphs (corresponding to the two 

genomes) do not intersect, since they have no 26mer in common.  The examples in B and C 

together illustrate how different kmers can be optimal for assembling graphs with different types 

of polymorphisms.  
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Figure 4-2. Comparison of assembly methods by read alignment. The vertical axis 

indicates the number of reads from each dataset that align to contigs of different size classes 

(either less than 1kb, between 1kb and 3kb, between 3 and 10kb, or longer than 10kb). The 

horizontal axis separates assembly method.  Each dataset is indicated by color (see key on right; 

numbers indicate gut virome communities from different human subjects). * indicates p<0.05 by 

Wilcoxon signed-rank test for the indicated pair of assembly methods.  
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Figure 4-3.  Network based annotation of viral contigs. Orange circles represent viral 

contigs no shorter than 3kb. Black circles represent proteins in the RefSeq viral database. RefSeq 

proteins are connected to viral contigs when an ORF encoded by that contig resembles that 

protein at E<10
-50

 (blastp). Blue outlines indicate groups of RefSeq proteins and ORFs from 

contigs that share the function indicated by the adjacent label.   
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Figure 4-4. Two examples of phage cassettes (A and B). Contigs are shown as 

horizontal black lines, ORFs on those contigs are shown by black arrows above and below those 

lines, and the organization of those ORFs into protein-coding families is shown with colored 

boxes. The subject that each contig was assembled from is shown on the left of each panel. When 

a protein-coding family was functionally annotated according to its similarity with the CDD, that 

annotation is listed in the legend. Otherwise a unique identification number is shown (e. g. Family 

591).  
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Figure 4-5. Optimized iterative de Bruijn graph assembly of 107 viral metagenomic 

sequences. A) Summary of run statistics for each iteration of the assembly, in which reads 

mapping to newly assembled contigs were removed at each iteration. The horizontal axis 

indicates the iteration number. For each of those iterations, the vertical axes indicate the number 

of reads remaining at the end of the iteration, the number of reads mapped during that iteration, 

the number of contigs made, the number of circular contigs made, and the optimal kmer chosen 

for that iteration. B) Characteristics of contigs by iteration of assembly. Each point is a contig 

with a length shown on the horizontal axis, depth of the assembly is shown on the vertical axis, 

and the iteration at which it was assembled indicated by color. The contigs that were assembled at 

earlier cycles (shown with bluer points) are generally longer and more deeply sequenced.  
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Figure 4-6  Comparison of assembly methods by known genome reconstruction. Shotgun 

sequences from HPV Type 6b were extracted from one dataset and added back to another dataset 

lacking HPV in varying amounts, as indicated in the grey boxes above each plot. The success of 

HPV reconstruction was measured as the length of the longest HPV-matching contig as a 

proportion of the total HPV length (vertical axis). The horizontal axis indicates the three 

assembly methods used. Three independent random samples were created for each level of 

coverage, and the assemblies using the same dataset are connected with a line. 
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Figure 4-7. One additional example of phage cassette. Contigs are shown as horizontal 

black lines, ORFs on those contigs are shown by black arrows above and below those lines, and 

the organization of those ORFs into protein-coding families is shown with colored boxes. The 

subject that each contig was assembled from is shown on the left of each panel. When a protein-

coding family was functionally annotated according to its similarity with the CDD, that 

annotation is listed in the legend.  
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4.6 Tables 

Table 4-1. ORFs in families and cassettes. 

 Dataset  

 1 2 3 4 5 6 Total 

Contigs 8403 13258 4755 6067 4375 2415 39273 

ORFs 9507 4508 3143 5618 4009 2232 29007 

ORFs in families 5980 3056 2139 3648 2825 1527 16944 

ORFs in cassettes 118 135 106 116 107 74 651 

The number and proportion of ORFs predicted in each dataset that belong to protein-coding 

families (i.e. are not unique), and/or belong to cassettes (groups of protein-coding families that 

are found on the same set of contigs. 

Table 4-2. Contigs and reads that form cassettes. 

Contig Criteria Contigs 

Reads that align to 

those contigs 

With at least 1 ORF 10032 31883951 

With at least 1 ORF family 7024 29697888 

With at least 1 cassette 326 5886117 
 

The number of contigs, and the number of reads that align to those contigs, that contain at least 1 

ORF, more than 1 ORF, at least 1 ORF family, and/or at least 1 cassette. The percentage of the 

total number of reads that align to contigs with at least 1 ORF is shown in parentheses.  

Table 4-3. Assembly statistics. 
  Optimized iterative assembly pipeline 

(OPTITDBA) 

SOAPdenovo 

Subject Number of reads Number 

of contigs 

Longest 

Contig 

(bp) 

N50 

(bp) 

Circular Number 

of 

contigs 

Longest 

Contig (bp) 

N50 

(bp) 

Circular 

1 10000000 3516 58746 2981 22 1565 108497 5649 3 

2 10000000 1400 42939 3415 10 960 93814 7605 2 

3 10000000 977 60257 3986 8 487 45986 5289 1 

4 10000000 1617 44975 3661 16 805 40190 6165 2 

5 10000000 1150 47449 4561 16 463 117255 13073 2 

6 5754268 588 77186 5772 10 340 47138 9053 2 

Note: All contigs shorted than 1,000bp are omitted from the above table. 
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CHAPTER 5 – CONCLUSION AND FUTURE STUDIES 

One of the most striking findings of this dissertation work is that the viruses of the human 

gut are extremely diverse at the nucleotide level. In Chapter 3 [1]  twelve humans’ viromes were 

sequenced deeply, and the only virus that had been previously identified was the Human 

Papillomavirus. While the remaining bacteriophage genomes were novel, I show in Chapter 4 [2] 

that they contain recognizable homology at the levels of protein sequence and gene organization. 

Moreover, when viromes are compared between humans, there is little overlap of these novel 

species; however, temporal sampling reveals that an individual’s gut virome is relatively stable, 

such that a majority of the genotypes are predicted to be shared by samples collected days, weeks, 

or months apart [3,4]. However, these quantitative predictions of overlap between viral 

communities have only been achieved through a simulation approach [5] in which shotgun reads 

are compared to each other, but not a common reference genome, so the identity of the 

constituent viruses is unknown. The observation that each human’s gut virome is composed of 

previously unsequenced phages is consistent with the high rate at which bacteriophages isolated 

from the environment appear to be novel [6]. This remarkably large degree of genomic novelty 

could be explained by two non-exclusive models: a large global gene pool and/or a high rate of 

nucleotide evolution. It may be that the total number of viral species worldwide vastly exceeds 

the current extent of sequencing efforts, and it could also be that those viral species change 

rapidly, such that they are not recognizable at the nucleotide level after a relatively short period of 

time. Either of these explanations, or some combination of the two, would result in the observed 

high rate of genomic novelty among newly isolated bacteriophages. 

It is not known whether the co-evolution of bacteria and phage in the environment can be 

expected a priori to result in a high rate of nucleotide substitution. While co-evolutionary “arms 
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race” dynamics have been observed in culture [7], they may be attenuated by complex population 

structure [8] and spatial heterogeneity [9] in the environment. One possible mechanism of 

nucleotide substitution is selection by CRISPR arrays, which acquire novel spacers quickly but 

can be evaded by single nucleotide substitutions [10]. It is not known how any of these proposed 

mechanisms impact the evolution of bacteriophages. In order to address the question of how 

bacteriophages evolve with their hosts, it is essential to monitor natural communities as they 

change over time. I demonstrate in Chapter 4 that Illumina sequencing can be optimized for viral 

communities, yielding large contigs that explain a large fraction of the data (the raw reads).  

Using this approach, it would be possible to condense sequences generated from a single 

environment over multiple timepoints into a single set of consensus genomes. By comparing the 

similarity of reads at different timepoints to those consensus genomes, one could directly measure 

the substitution rate of viruses in the environment, gaining insight into the nature of 

bacteriophage evolution.  

The question that drives our study of the human virome is that of how these viruses 

contribute to the overall function of the human microbiome and ultimately impact human health. 

The field has generated a number of intriguing hypotheses that deserve to be tested: that phage 

alter bacterial functionality by horizontal transfer of DNA, that phage limit bacterial abundance 

and promote bacterial diversity through “kill-the-winner” dynamics, and that phage drive the 

evolution of the bacterial ‘accessory’ pan-genome as a reservoir for resistance genes. Due to the 

complex nature of this community, a wide variety of experimental techniques may be required to 

address these questions, some of them only recently developed. For example, the colonization of 

germ-free animals with known collections of bacteria has been a useful way to test specific 

predictions regarding the mammalian microbiome [11]. Reyes, Rohwer, Gordon, and colleagues 
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used the same technique to show that lysogens are induced by a variety of environmental signals 

in the mouse intestine [4]. By colonizing mice with pure and genetically characterized collections 

of bacteria and phage, one could study in vivo dynamics with the knowledge of which specific 

pairs were interacting, with the added ability to test mechanistic hypotheses via genetic 

manipulation of those strains. Another technique that has been used to link phage to their host is 

single-cell isolation [12,13], which can be combined with high-throughput sequencing to yield 

complete genome sequences [14]. Not surprisingly, this method can also capture viral genomes 

that are also associated with those cells [15]. One caveat of this technique is that physical 

separation of single cells may yield viral particles that are not capable of carrying out a complete 

cycle of infection, but when carried out in a large scale a consistent pattern of association may 

provide sufficient evidence for an infective relationship. Moreover, these data may provide 

evidence to test whether infection by phage is relatively common or rare in the human 

microbiome, which has strong implications for all of the models of population dynamics and 

evolution developed thus far.  

Even with a complete genome sequence in hand, a great deal about can remain unknown 

about the genetic functionality it encodes. This fact was demonstrated by an expression cloning 

screen for antibiotic resistance genes using DNA generated from the human microbiome, which 

identified a large proportion of genes that had not been previously identified as such [16]. A 

similar approach could help to identify a large number of bacteriophage functions whose presence 

is inferred, but not known, by cloning and expressing viral DNA. For example, bacteriophage 

must encode a mechanism for cell lysis and exit, and the genes responsible could be identified 

through a screen for clones that cause cell death. In addition, it would be reasonable to propose 

that bacteriophage encode a wide variety of genes that exist to counteract bacterial immunity 
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(such as restriction-modification systems or CRISPRs). For any immunity system that can be 

stably reconstructed in a culture setting, phage resistance genes could be found in the same 

manner. In addition to helping us better annotate phage genomes, identifying these negative 

regulators of immunity may provide useful reagents for the mechanistic study of such systems. In 

every case, by screening for genes among DNA from the human virome, we would gain a better 

understanding of the selective determinants of that system.  

In this dissertation I examined a broad range of questions concerning the human gut 

virome.  This study took advantage of high-throughput sequencing technology, which has 

allowed unprecedentedly large communities of microbes to be characterized on a genomic level. 

However, it is clear that increasingly powerful sequencing techniques will only do so much to 

help us understand this community. Further exploration will require a wide variety of 

experimental techniques, including (and likely not limited to) controlled colonization of 

mammals, single-cell sequencing, functional genetic screens, and genetic manipulation in culture. 

We now have some idea of mechanisms that could be important about the viruses in the gut: 

horizontal gene transfer, “kill-the-winner,” lysogeny, a molecular “arms race,” rapid nucleotide 

evolution, etc. The next task is to determine which of those are most important, playing a 

significant role in establishing and maintaining the human microbiome. It is my hope that this 

dissertation has laid a foundation for the study of the human gut virome and will enable further 

discoveries that advance our knowledge of human health and microbial ecology. 

References 

1. Minot S, Grunberg S, Wu GD, Lewis JD, Bushman FD (2012) Hypervariable loci in the human 

gut virome. Proc Natl Acad Sci U S A 109: 3962-3966. 

2. Minot S, Wu GD, Lewis JD, Bushman FD Conservation of gene cassettes among diverse 

viruses of the human gut.  Submitted. 



 

95 

 

3. Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, et al. (2011) The human gut virome: inter-

individual variation and dynamic response to diet. Genome Res 21: 1616-1625. 

4. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, et al. (2010) Viruses in the faecal 

microbiota of monozygotic twins and their mothers. Nature 466: 334-338. 

5. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, et al. (2006) The marine viromes of 

four oceanic regions. PLoS Biol 4: e368. 

6. Hatfull GF, Hendrix RW (2011) Bacteriophages and their genomes. Curr Opin Virol 1: 298-

303. 

7. Wichman HA, Millstein J, Bull JJ (2005) Adaptive molecular evolution for 13,000 phage 

generations: a possible arms race. Genetics 170: 19-31. 

8. Hall AR, Scanlan PD, Morgan AD, Buckling A (2011) Host-parasite coevolutionary arms 

races give way to fluctuating selection. Ecol Lett 14: 635-642. 

9. Forde SE, Thompson JN, Bohannan BJ (2004) Adaptation varies through space and time in a 

coevolving host-parasitoid interaction. Nature 431: 841-844. 

10. Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas Systems in Bacteria and Archaea: 

Versatile Small RNAs for Adaptive Defense and Regulation. Annual Review Genetics, 

Vol 45 45: 273-297. 

11. Faith JJ, McNulty NP, Rey FE, Gordon JI (2011) Predicting a human gut microbiota's 

response to diet in gnotobiotic mice. Science 333: 101-104. 

12. Lasken RS (2007) Single-cell genomic sequencing using Multiple Displacement 

Amplification. Curr Opin Microbiol 10: 510-516. 

13. Kvist T, Ahring BK, Lasken RS, Westermann P (2007) Specific single-cell isolation and 

genomic amplification of uncultured microorganisms. Appl Microbiol Biotechnol 74: 

926-935. 

14. Chitsaz H, Yee-Greenbaum JL, Tesler G, Lombardo MJ, Dupont CL, et al. (2011) Efficient 

de novo assembly of single-cell bacterial genomes from short-read data sets. Nat 

Biotechnol 29: 915-921. 

15. Yoon HS, Price DC, Stepanauskas R, Rajah VD, Sieracki ME, et al. (2011) Single-cell 

genomics reveals organismal interactions in uncultivated marine protists. Science 332: 

714-717. 

16. Sommer MO, Dantas G, Church GM (2009) Functional characterization of the antibiotic 

resistance reservoir in the human microflora. Science 325: 1128-1131. 

 

 


	University of Pennsylvania
	ScholarlyCommons
	1-1-2012

	Evolution and Dynamics of the Human Gut Virome
	Samuel Schwartz Minot
	Recommended Citation

	Evolution and Dynamics of the Human Gut Virome
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Keywords
	Subject Categories


	tmp.1408473015.pdf.tyo48

