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Novel Insights into Skin Bacterial and Viral Communities in Health and
Acute Wounding

Abstract
Human skin is colonized by diverse microbial communities that have broad impacts on health and disease.
Bacterial communities have been associated with dermatological diseases including Atopic Dermatitis and
Psoriasis, and while roles of virus communities (viromes) in cutaneous health are poorly characterized,
virome dysbiosis has been implicated in other human diseases and individual viruses are known to impact
cutaneous health. Here we present a comprehensive research program aimed at broadly understanding the
roles of bacteria and viruses in human dermatological health and perturbation by wounding. In the first
section, we characterize the healthy human skin virome and investigate potential interactions between virus
and bacterial communities. Samples were collected from sixteen subjects at eight body sites over one month.
Virome diversity and composition varied by natural skin occlusion and the microenvironment substrates.
Viruses were enriched for temperate replication-cycle genes, and maintained genes encoding potential
antibiotic resistance and virulence factors. We also highlighted potential interactions between the virus
(phage) and bacterial communities, including CRISPR targeting and significant ecological associations by co-
occurrence modeling. This work provides a greater ecological context for our individualized understanding of
cutaneous viruses, and provides a foundation for future studies of the skin virome upon perturbation and
disease. In the second section, we characterize the microbial communities associated with skin perturbation in
the form of acute, open fracture wounding. Thirty subjects presenting to the Hospital of the University of
Pennsylvania for acute care of open fractures were enrolled in a prospective cohort study. Microbiota were
collected from wound center and adjacent skin upon presentation to the ER and during follow up visits.
Bacterial communities were studied using 16S rRNA amplicon sequencing. Microbiome composition and
diversity colonizing open fracture wounds became increasingly similar to adjacent skin microbiota with
healing. Clinical factors were associated with various aspects of microbiota diversity and composition. We also
developed an analysis tool patPRO to facilitate analysis of this longitudinal dataset, and to aid others in
analyses of similar data. The results of this pilot study demonstrate the diversity and dynamism of the open
fracture microbiota, and their relationship to clinical variables.
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ABSTRACT 
 

NOVEL INSIGHTS INTO SKIN BACTERIAL AND VIRAL COMMUNITIES 

IN HEALTH AND ACUTE WOUNDING 

Geoffrey Daniel Hannigan 

Elizabeth A Grice, PhD 

 

Human skin is colonized by diverse microbial communities that have broad impacts on health and 

disease. Bacterial communities have been associated with dermatological diseases including 

Atopic Dermatitis and Psoriasis, and while roles of virus communities (viromes) in cutaneous 

health are poorly characterized, virome dysbiosis has been implicated in other human diseases 

and individual viruses are known to impact cutaneous health. Here we present a comprehensive 

research program aimed at broadly understanding the roles of bacteria and viruses in human 

dermatological health and perturbation by wounding. In the first section, we characterize the 

healthy human skin virome and investigate potential interactions between virus and bacterial 

communities. Samples were collected from sixteen subjects at eight body sites over one month. 

Virome diversity and composition varied by natural skin occlusion and the microenvironment 

substrates. Viruses were enriched for temperate replication-cycle genes, and maintained genes 

encoding potential antibiotic resistance and virulence factors. We also highlighted potential 

interactions between the virus (phage) and bacterial communities, including CRISPR targeting 

and significant ecological associations by co-occurrence modeling. This work provides a greater 

ecological context for our individualized understanding of cutaneous viruses, and provides a 

foundation for future studies of the skin virome upon perturbation and disease. In the second 

section, we characterize the microbial communities associated with skin perturbation in the form 

of acute, open fracture wounding. Thirty subjects presenting to the Hospital of the University of 
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Pennsylvania for acute care of open fractures were enrolled in a prospective cohort study. 

Microbiota were collected from wound center and adjacent skin upon presentation to the ER and 

during follow up visits. Bacterial communities were studied using 16S rRNA amplicon 

sequencing. Microbiome composition and diversity colonizing open fracture wounds became 

increasingly similar to adjacent skin microbiota with healing. Clinical factors were associated 

with various aspects of microbiota diversity and composition.  We also developed an analysis tool 

patPRO to facilitate analysis of this longitudinal dataset, and to aid others in analyses of similar 

data. The results of this pilot study demonstrate the diversity and dynamism of the open fracture 

microbiota, and their relationship to clinical variables. 
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CHAPTER 1 - A Primer to Pursuing Broad Studies of the Skin Microbiome and Virome 

 

1.1 Introduction 

The human body is colonized by a variety of microbes collectively referred to as the microbiome. 

These microbes play diverse roles in human health and disease across various human systems, 

including the gut, oral cavity, vagina, and the skin [1, 2]. The most studied of these microbial 

communities are bacteria, whose dysbiotic states are thought to promote a broad range of diseases 

including Clostridium difficile infections [3], atoptic dermatitis [1], and even chronic wounds [4, 

5]. Individual viruses, including bacteriophages (bacterial viruses), are also known to impact 

human health, but the impacts of human virus communities as a whole on health and disease are 

less understood. 

 

There are diverse viruses associated with the skin, and these individual viruses have broad 

impacts on human cutaneous health. Human viruses are know to directly impact human health 

through infection of the human cells. Examples of these interactions include Human 

Papillomavirus infections which can cause cutaneous warts, and the Merkel Cell Polyomavirus 

which can promote merkel cell carcinoma, a very serious and aggressive form of skin cancer [1]. 

 

Viruses can also indirectly impact human health, most often as bacteriophages that can modulate 

bacterial community composition and gene expression, resulting in an effect on the health of the 

human substrate. Phages can impact bacterial gene expression through various mechanisms 

including transduction, which is the process by which phages transport genes throughout bacterial 

communities. 
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While we know a lot about the effects of individual viruses on the skin, we know a lot less about 

the virus communities associated with the skin. Although studies of the human virome remain in 

their infancy, virus dysbiosis has been associated with human disease, including periodontal 

disease [6]. Bacteriophages are also known to promote horizontal gene transfer through 

transduction, including transfer of antibiotic resistance genes, but this has not yet been evaluated 

in a skin community setting [7]. 

 

Previous studies have begun to investigate the skin virome, but have only studied them as subsets 

of a larger whole skin metagenome (including sequences of the human host, bacteria, fungi, and 

viruses) [8, 9]. Because human, bacterial, and fungal genomes are orders of magnitude larger than 

most viruses, and because the longer genomes in the sample are more likely to be sequenced, 

these approaches result in low virome coverage. These studies are also less equipped to evaluate 

the virus dark matter (unknown and uncharacterized members) within the communities because 

the majority of these methods rely on purified virus sample sets.  

 

1.2 Advancing Our Understanding of the Microbiome in Health: The Human Skin Virome 

To address these knowledge gaps and establish a foundation on which further studies can be built, 

the first section of this work focuses on characterizing the healthy human skin virome and its 

potential interactions with their associated bacterial communities. This study is powered over 

previous studies by its use of optimized virus purification techniques that do not require us to 

study the virome as a subset of the whole metagenome. This study is also powerful because of the 

robust and sophisticated analysis methods implemented, and the depth of the analysis. 

 

1.3 Advancing Our Understanding of the Microbiome in Disease: The Open Fracture 

Wound Microbiome 
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While we furthered the field’s understanding of the healthy skin microbiome by characterizing its 

viral component, we also studied the microbial communities associated with disrupted health. 

More specifically, we investigated open fracture wounds. These wounds involve breaking of the 

bone through the skin and soft tissue, which puts the patient at an increased risk for infection-

related complications. While there is a clear need to understand the microbial communities 

associated with such a vulnerable state, contemporary microbiology methods had not been used to 

study such a system. To address this unmet need, we implemented modern, sequence-based 

microbiological techniques to gain a more robust understanding of the microbial communities 

associated with these at-risk acute wounds.  

 

This study provides initial insights into the microbial community dynamics throughout the 

healing process. We also highlight associations between the bacterial communities and important 

clinical factors. Together these highlight the importance of understanding the microbiome 

associated with acute traumatic wounds, and lays a foundation for future, more robust studies 

powered by greater sample sizes. We further present an analysis toolkit for processing and 

visualizing this longitudinal dataset, and related datasets. 

 

1.4 Summary of the Work to be Presented 

Together, this body of work represents a comprehensive contribution to the field of 

dermatological microbiology. We begin the first section with a detailed introduction to the current 

state of the skin microbiome, the historical context of the field, the current understanding of 

health and diseased states, and how microbiome studies will influence therapeutic design. We 

then present strong research contributions to the overall understanding of the skin virome in 

health, thus laying a foundation for future studies that wish to investigate the viral communities in 

diseased or otherwise perturbed states. 
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We begin the second section of this work with an introduction to our current understanding of 

open fracture wound care, current best practices for treatment, and the roles of microbes in this 

type of wound. We then present our study investigating the microbiome dynamics associated with 

the healing and clinical factors of those wounds. We conclude with a presentation of our analysis 

toolkit that facilitates visualization of longitudinal studies such as this. 

 

Together this work sheds new light on previously understudied aspects of the human microbiome, 

including the interactions between virus and bacterial communities. This lays a foundation for 

future studies of bacterial and viral communities, especially related to acute wounds.  
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CHAPTER 2 – Microbial Ecology of the Skin in the Era of Metagenomics and Molecular 

Microbiology 

 

The contents of this chapter have been published as: 

Hannigan GD, Grice EA. (2013) Microbial Ecology of the Skin in the Era of 

Metagenomics and Molecular Microbiology. Cold Spring Harb Perspect Med, Fiona Watt 

and Tony Oro, Editors. doi: 10.1101/cshperspect.a015362. 

 

2.1 Abstract 

The skin is the primary physical barrier between the body and the external environment and is 

also a substrate for the colonization of numerous microbes. Previously, dermatological 

microbiology research was dominated by culture-based techniques, but significant advances in 

genomic technologies have enabled the development of less-biased, culture-independent 

approaches to characterize skin microbial communities. These molecular microbiology 

approaches illustrate the great diversity of microbiota colonizing the skin and highlight unique 

features such as site specificity, temporal dynamics, and interpersonal variation. Disruptions in 

skin commensal microbiota are associated with the progression of many dermatological diseases. 

A greater understanding of how skin microbes interact with each other and with their host, and 

how we can therapeutically manipulate those interactions, will provide powerful tools for treating 

and preventing dermatological disease. 

 

2.2 Introduction 

The skin acts not just as a protective physical barrier between the body and the external 

environment; it is itself an environmental substrate, harboring a rich and diverse community of 

microorganisms (the microbiome). The human microbiome includes the bacteria, fungi, viruses, 
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archaea, and microeukaryotes that inhabit the various body environments, such as the gut, oral 

cavity, and skin [1]. In recent years, it has become increasingly apparent that the microbiome 

interacts extensively with the human body and plays roles in immune system development and 

function, disease etiology and pathology, cancer development, and defense against pathogens. 

 

The skin is a complex ecosystem that maintains topographically distinct microbial populations, as 

well as distinct environmental niches. Overall, the surface of the skin is cooler than the core body 

temperature, is slightly acidic, and squames are continuously shed from the skin surface as a 

result of terminal differentiation [2]. These attributes undoubtedly select for specific microbiota 

adapted to these unique conditions. The geography of the skin includes sebaceous areas 

(including face and back), moist areas (including toe/finger web space and arm pit), dry areas 

(including forearm and buttock), and sites containing varied densities of hair follicles, skin folds, 

and skin thicknesses. A critical function of the skin microbiota is “colonization resistance,” in 

which commensal microbiota occupy these distinct niches to block colonization and/or invasion 

by opportunistic or pathogenic organisms. 

 

Community composition equilibrium across the varied geography of the skin is maintained by 

nutrient and space competition among microbes, production of antimicrobial peptides (AMPs) by 

commensal microbes and host cells, and modulation of the host immune response by commensal 

microbes [3]. For example, the skin commensal Staphylococcus epidermidis has been reported to 

modulate the innate immune response by inhibiting skin inflammation through pattern-

recognition receptor-mediated cross talk [4]. Complement, an evolutionarily conserved arm of the 

innate immune system, was shown to maintain diversity of the skin microbiota in a mouse model, 

and, conversely, the skin microbiota regulated complement at the gene expression level [5]. The 

microbiome is also fundamental in adaptive immune system equilibrium at the skin, and skin T-
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cell function and the local inflammatory milieu appear to be autonomously controlled by the 

commensal skin microbiota [6]. These and other findings have contributed to the mounting 

evidence suggesting that the commensal skin microbiota is intricately involved in both innate and 

adaptive skin immunity. 

 

For these reasons, a thorough understanding of the commensal skin microbiota is required to gain 

insight into microbial involvement in skin health and disease. The beneficial role of skin 

commensals and the pathogenic role of those microbes that cause disease have long been a focus 

of studies examining the microbial ecology of the skin. Contemporary, culture-independent 

methods for identifying and characterizing microbial communities have accelerated and added 

precision to our understanding of host–microbe interactions at the skin surface. In this article, we 

provide a comprehensive discussion of the human skin microbiome in health and disease states 

and how this understanding is informing skin disease diagnosis and treatment. 

 

2.3 Dawning of the molecular biology era 

The study of the human cutaneous microbiota has a rich history that spans more than five decades 

[7]. Early methods for studying skin-associated bacteria, fungi, and viruses were limited to 

culturing the microorganism and defining its phylogeny and taxonomy through phenotypic, 

microscopic, and biochemical relationships. Dependency on generation of pure cultures 

introduces inherent biases because the procedures select for the most abundant and rapidly 

growing microorganisms of the community. Culture-based studies of viruses (including 

bacteriophage) are further limited because they require coculturing with their prokaryotic or 

eukaryotic hosts, additionally preventing the identification of viruses associated with unknown 

hosts. Viruses are also not readily visible by basic microscopic methods and thus are very 

difficult to characterize by direct morphological observation. Although great insight into 
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microbial colonization of cutaneous surfaces in health and disease was gained using culture-

dependent methods, there were significant limitations to the conclusions that could be drawn. 

 

Advances in DNA sequencing technology and culture-independent methods of microbial 

identification have greatly enabled high-throughput, detailed characterization of microbial 

communities. These methods are based on surveys of marker genes, generally conserved, 

universal genes found in all organisms within particular taxonomic levels. Bacterial communities 

are most commonly classified by the sequence of their small subunit 16S ribosomal RNA (rRNA) 

gene (Fig. 1) [8]. These genes contain both conserved regions, which allow for PCR primer 

binding and phylogenetic analysis, as well as variable regions, whose sequences allow for 

taxonomic classification. Following amplification and sequencing of 16S rRNA genes, sequence 

data can be analyzed in a variety of ways, including assignment of taxonomy, phylogenetic 

analysis, and community analyses (Fig. 1). Fungi are often classified by sequencing of the 

internal transcribed spacer (ITS) region that lies between the small and large subunit rRNA genes 

in eukaryotes [9]. In addition to offering clearer definitions for determining microbial taxonomy, 

conserved gene sequence analysis does not require the microorganism to be cultured, which 

therefore eliminates those biases associated with culturing procedures. 

 

Unlike bacteria and fungi, viruses and bacteriophage present a special difficulty because they do 

not contain a consensus gene that can be used for widespread taxonomic identification. Closely 

related groups may be phylogenetically analyzed using specific conserved genes, such as the 

human papillomavirus L1 gene, but this is far less robust than the 16S rRNA and ITS sequencing 

and identification approaches used to classify bacteria and fungi. Comparative genome analysis is 

complicated by the high frequency of gene transfer among virus and host genomes and the lack of 

comprehensive, annotated reference databases and assigned taxonomy. A solution to this problem 
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is the use of whole-genome shotgun metagenomics, which does not rely on amplification and 

sequencing of marker genes but, rather, allows for sequencing and analysis of the sample’s full 

genetic potential [10]. This type of strategy not only bypasses PCR, but also can provide insight 

into what microbial communities are doing on the skin surface. These types of approaches are 

still under development in the skin, because high amounts of host DNA and low amounts of 

microbial DNA present technical limitations for metagenomic approaches. 

 

2.4 The skin microbiome in health 

2.4.1 Bacteria 

Before the advent of molecular techniques to characterize skin microbiota, the temporal and 

topographical diversity of the skin microbiota was still considered vast. Early studies produced 

variable results in bacterial quantity and taxonomy, hypothesized at the time to be a result of 

inherent topographical and temporal diversity of skin bacterial communities [11]. In a 

comprehensive study, which cultured under both aerobic and anaerobic conditions, skin bacterial 

colonization differed between anatomical sites, and the highest bacterial load was observed in 

sebaceous sites [11]. Furthermore, skin colonization was dominated by a small group of taxa, 

including Propionibacterium acnes and Staphylococcus epidermidis. Years later, these same 

features are apparent using sophisticated sequencing-based techniques to characterize skin 

microbiota. 

 

Indeed, site-specific colonization is a key feature of the human skin microbiome. Using a 16S 

rRNA sequencing approach in healthy adults, sebaceous regions were found to be preferentially 

colonized by Propionibacterium and Staphylococcus spp.; moist sites predominantly maintained 

Corynebacterium and Staphylococcus spp.; and dry sites, which, despite general variability and 

greater diversity, displayed a significant presence of β-Proteobacteria and Flavobacteriales [12]. 
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In the same study, 19 bacterial phyla were identified, but skin was dominated by four phyla: the 

Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes (Fig. 2). Another key finding was 

that longitudinal stability was dependent on the skin site, with sebaceous sites being the most 

stable and dry sites being the most variable over time. Costello et al. (2009) similarly reported 

that topographical community variability was greater than temporal variability among 

individuals. Interestingly, greater microbial diversity characterized skin microbiota, as compared 

with gut or oral microbiota of the same individuals. Key findings of these and other studies show 

that skin bacterial communities are generally diverse between individuals [13, 14] and may be 

influenced by ethnicity, lifestyle, and/or geography, as suggested by a study comparing cutaneous 

microbiota colonizing South American Amerindians and U.S. residents [15]. Subject sex, 

handedness, and time since last hand washing also appear to affect bacterial community 

composition [16]. A subsequent study confirmed the differences in community composition 

between sexes when investigating the forearm, but found little influence of sex on forehead 

community composition, thereby supporting early observations of variability among anatomical 

regions [17]. 

 

The human skin microbiota is established immediately after birth, and delivery mode seems to 

influence the neonate’s first skin microbiota. Dominguez-Bello et al. (2010) showed that 

vaginally delivered neonates were colonized with bacteria similar to those colonizing the 

mother’s vagina (i.e., Lactobacillus, Prevotella, Sneathia spp.), and neonates delivered by 

Cesarean section were colonized with those bacteria found on the mother’s skin (i.e., 

Propionibacterium, Staphylococcus, Corynebacterium spp.). Studies in infants over the first year 

of life showed that diversity of skin microbiota increases with age, as does site specificity, and is 

overall characterized by predominance of the phylum Firmicutes [18]. Upon sexual maturation, 

the skin becomes colonized by increased amounts of Corynebacterium and Propionibacterium 
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[19]. Colonization by these lipophilic bacterial taxa is likely a result of hormone-stimulated 

sebaceous gland activity and increasing sebum production during puberty. Metabolism of the 

lipids in sebum by these bacterial taxa also decreases the pH of the skin, thus discouraging 

colonization by other taxa. 

 

The skin was an organ included in the National Institutes of Health Roadmap Human Microbiome 

Project, in which a cohort of 242 phenotyped healthy adults were subject to sampling of 

microbiota at various body sites. Their findings confirmed previous smaller-scale studies, by 

suggesting that the skin microbiota is diverse, but dominated by a small group of genera, in 

particular Staphylococcus, Propionibacterium, and Corynebacterium [20]. Interestingly, the 

metabolic and functional pathways encoded by the skin microbiota colonizing the retroauricular 

crease were more constant and diverse than the taxonomic composition, suggesting low metabolic 

diversity among a taxonomically diverse population. Furthermore, age was associated with 

differentially encoded metagenomic pathways on the skin, as well as a decrease in the phylum 

Firmicutes. 

 

2.4.2 Fungi 

Although bacteria represent a major focus of past and present microbiome studies, the fungal 

microbiota is also thought to play a significant role in skin health and disease. Cultivation-based 

studies identified the major component of the skin fungal community as Malassezia (formerly 

known as Pityrosporum) genus, consisting primarily of seven of the 14 known species [21]. These 

findings have been confirmed by molecular community analysis. Using 18S rRNA gene and ITS 

region sequencing, Paulino et al. (2006) reported that the skin forearm community is dominated 

by Malassezia, and further analysis with multiplex real-time PCR (to speciate Malassezia) 

suggested that the predominant commensal species were Malassezia globosa and Malassezia 
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restricta, with Malassezia furfur (the dominant species identified by culturing methods) 

contributing relatively little to the overall community abundance [22]. Conversely, another recent 

study of three healthy scalps found that Malassezia spp. only account for a small fraction of the 

commensal fungi on the scalp [23]. A larger-scale, extensive topographical map of the fungal skin 

microbiota, based on sequencing of the fungal ITS region, confirmed that Malassezia is dominant 

in most regions of the skin, but sites on the feet (plantar heel, toenail, and toe web) had the 

greatest fungal diversity of all body sites [24]. Databases and other resources for identifying and 

analyzing fungal sequences, similar to those used for 16S rRNA gene studies, are still under 

development, and it is expected that our knowledge of the fungal microbiome will expand as 

these tools become readily available. 

 

2.4.3 Viruses 

One of the most extensively studied human skin viruses is the human papillomavirus (HPV). 

Although it was originally thought that certain strains were found only in skin cancer lesions, 

PCR quantification of HPV marker genes revealed that healthy skin is also a habitat for a broad 

spectrum of HPV strains [25, 26]. Sequence analysis of the conserved L1 open reading frame 

(ORF) revealed a diverse community of HPV types on healthy skin, while identifying HPVs that 

were previously unknown [27]. Follow-up studies have confirmed the ubiquity and diversity of 

HPV types throughout human populations [28-30]. 

 

The other major group of commensal human skin viruses is the human polyomaviruses (HPyVs). 

Polyomaviruses were first described in mice in 1953 but have since been described in numerous 

animals, including humans [31]. Although originally studied in the context of cancer, they, like 

the papilloma viruses, have been found on healthy human skin [32]. There are many types of 

HPyVs, with many only recently discovered using molecular techniques; the most common to 
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human skin are HPyV6, HPyV7, and Merkel cell polyomavirus (MCHPyV) [31, 32]. A recent 

study using a whole metagenomic analysis of the human skin virome of healthy and cancerous 

individuals confirmed a cutaneous viral microbiota dominated by HPVs, HPyVs, and circoviruses 

[33]. These studies are still in their early stages, and as new virus species continue to be 

discovered and new analysis strategies developed, future studies will likely continue to 

characterize the viral community diversities and pathogenic/oncogenic potential. 

 

The other viral component of the microbiome is the bacteriophage, about which little is known in 

the skin. Recent studies have used culture-dependent techniques paired with genomic analyses, as 

well as analysis of prophage (bacteriophage integrated into the bacterial host genome), to 

understand and characterize the genomic diversity of subsets of the skin bacteriophage 

communities, such as the limited diversity of Propionibacterium bacteriophage and the diversity 

of Staphylococcus bacteriophage [34-36]. Whole metagenomic shotgun sequence analysis of skin 

swabs from five healthy patients and one patient with a previous Merkel cell carcinoma lesion 

indicate that two families dominate cutaneous bacteriophage communities, the Microviridae and 

Siphoviridae [33]. Further studies will be required to perform more in-depth and functionally 

informative analysis of the bacteriophage inhabiting the skin, such as characterization of bacterial 

antibiotic resistance genes maintained in bacteriophage genomes that may be horizontally 

transferred among bacteria. 

 

Bacteriophages are also known to be important, yet complicated mediators of bacterial horizontal 

gene transfer through a process known as transduction. Commensal bacteriophage metagenomes 

have been shown to maintain antibiotic-resistance genes, as well as mediate their transfer between 

bacteria, in gut and sputum samples from cystic fibrosis patients [37-39]. In the skin, 

bacteriophage communities have been suggested as mediators of resistance gene transfer between 
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bacteria [40, 41]. However, more research is required to understand these complicated 

interactions between bacteria and skin bacteriophage communities. 

 

2.5 The skin microbiome in disease 

2.5.1 Atopic Dermatitis 

Atopic dermatitis (AD) is a chronic, recurring inflammatory skin disease that occurs more 

frequently in children than in adults, and has been associated with skin colonization by 

Staphylococcus aureus. Although no clear microbial cause has been established, antibiotics, 

corticosteroids, and dilute bleach baths have been relatively effective in the treatment of AD [42]. 

Furthermore, the enormous increase in incidence over the past three decades with no clear cause 

raises the interesting possibility that the skin microbiota may modulate gene–environment 

interactions at the skin surface. 

 

Bacterial virulence factors may in part explain the long-recognized pathogenic association 

between AD flares and increased colonization by S. aureus. Severe AD development was 

reported in a mouse model with reduced skin barrier function upon exposure to Staphylococcal 

protein A (SpA) (Terada et al. 2006). The detection of SpA among 89 children with AD lesions 

was evaluated as occurring in 91.0% of patients upon presentation, decreasing to 55.6% of 

patients after antibiotic therapy [43]. Furthermore, there was a significant positive correlation 

between the levels of SpA and the clinical severity of the lesions. It has also been reported that 

AD lesions contain increased levels of lipotechoic acid, a known immune-stimulating molecule 

derived from Gram-positive bacterial cell walls, whose presence further suggests a role of 

bacterial components in disease [44]. 

 



	 16	

Although S. aureus likely in part contributes to disease pathogenesis, a role for the greater 

microbial community has recently been investigated. In a 16S-rRNA-based study that analyzed 

skin microbiota during the course of AD flares and improvement, a correlation between increased 

disease severity and decreased bacterial diversity was observed, along with altered microbial 

community structure in AD patients as compared with healthy controls (Fig. 3A) [45]. Bacterial 

community diversity was also shown to increase after standard AD treatment. Additionally, 

fungal communities have been shown to change in composition as disease severity progresses 

[46, 47]. Infants who develop AD maintained early fecal microbiota with less diversity than the 

early fecal microbiotas of patients who did not develop the disease [48]. Other studies have also 

shown that altered bacterial compositions of the infant gut microbiota precede the development of 

AD [49, 50]. 

 

Mutations in the gene-encoding filaggrin, an epidermal structural and hydration protein, have 

been associated with atopic dermatitis and other ichthyotic disorders [51]. Analysis of skin 

microbiota of a mouse model with a hypomorphic mutation in St14, encoding the serine protease 

matriptase that regulates filaggrin processing, showed a selective shift in bacterial populations, 

with increased Corynebacterium and Streptococcus and decreased Pseudomonas species [52]. 

These findings provide a link between filaggrin deficiency, a common genetic feature of AD, and 

changes in the skin microbiota. 

 

2.5.2 Psoriasis 

Multiple clinical observations support a role for dysbiosis of the skin microbiota in the 

pathogenesis of psoriasis including the clinical efficacy of topical corticosteroids in the treatment 

of psoriasis [53] and the observation that a variant of plaque psoriasis, guttate psoriasis, is 

triggered by Streptococcus infection. Xenograft models of psoriasis, in which unaffected skin 
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from psoriasis patients was grafted on immunodeficient mice, showed that stimulation with 

bacterial antigen could trigger the skin to become lesional [54]. Early culture-based studies 

examining microorganisms associated with psoriasis identified Malassezia, group A and B β-

hemolytic streptococci, S. aureus, and Enterococcus faecalis [55-57]. Culture-independent 

analysis of fungal microbiota found no conclusive evidence to link Malassezia with psoriasis [22, 

58]. Analyses of the bacterial microbiota by 16S rRNA gene-based approaches in cross-sectional 

studies suggest underrepresentation of Propionibacterium and increased representation of the 

phylum Firmicutes in psoriatic plaques as compared with healthy controls or uninvolved limb 

skin (Fig. 3B) [59, 60]. Longitudinal studies of the skin microbiota in psoriasis plaques may 

provide insight into the role of microbes in triggering, propagation, and maintenance of plaques. 

 

2.5.3 Acne Vulgaris 

Acne vulgaris is a common skin disorder characterized by abnormalities of sebum production by 

the pilosebaceous unit, bacterial proliferation, and inflammation. The etiology and pathogenesis 

of acne remain unclear, but there has been significant evidence supporting microbial roles in the 

disease. The primary microbe associated with development of acne is Propionibacterium acnes, 

also a prominent member of the commensal skin microbiota. Topical and systemic antibacterial 

drugs have long been used to treat acne, with the efficacy commonly attributed to decreased P. 

acnes colonization and/or activity [61]. Strain-level analysis of the 16S rRNA gene showed that, 

although the relative abundances of P. acnes did not significantly differ between healthy and acne 

patients, the relative abundances of different strains did differ between skin states (Fig. 3C) [62]. 

Additionally, genomic comparison of 71 different P. acnes strains shows that the acne-associated 

genomes maintained different chromosomal genomic region loci and a linear plasmid, thereby 

suggesting that there may be specific genes at these loci that contribute to acne pathology [62]. 
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These findings suggest that strain-level analysis of the skin microbiota may be instrumental in 

explaining disease pathogenesis. 

 

2.5.4 Dandruff 

Dandruff is a mild inflammatory condition that is characterized by scaling of skin on the scalp. 

Malassezia fungi were proposed as the primary cause of dandruff in 1874, and this idea is still 

prevalent today. In fact, dandruff therapeutic shampoos are made with strong antifungal 

compounds in an attempt to target fungal causes of the disease [63]. Although Malassezia is the 

dominant fungal genus cultured from the skin and has been shown to increase in abundance on 

dandruff-afflicted skin [64], recent work has suggested that the dandruff microbial communities 

are more complex. A molecular analysis of the 26S rRNA gene of the fungal communities 

associated with healthy and dandruff-afflicted scalps showed that, similar to what was shown in 

previous studies, the relative abundance of Malassezia was increased in the dandruff-afflicted 

scalp skin (Fig. 3D) [23]. The study also reported that dandruff-afflicted skin harbored increased 

relative abundances of Penicillium and Filoblasidium floriforme that correlated with increased 

severity of dandruff. Furthermore, because Malassezia is found in the commensal fungal 

microbiota, it is not a likely cause of disease on its own, and thus there may be other interactive 

mechanisms involved in etiology. 

 

2.5.5 Merkel Cell Carcinoma 

Merkel cell carcinoma (MCC) is a rare but aggressive malignant, neuroendocrine tumor that has 

been increasing in incidence in past decades [65]. In 2008, Feng et al. (2008) showed that there 

was a novel virus (Merkel cell polyomavirus [MCPyV]) associated with MCC tissue, but not 

healthy tissue. Numerous additional studies, across diverse populations, also found strong 

associations between the presence of MCPyV and MCC [66-75]. Investigation into the virus’s 
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role in health and disease have shown that MCPyVs are members of the commensal skin viral 

communities, are often asymptomatically carried, and can be shed from the skin as assembled 

virus particles [66-76]. Because this virus is a commensal microbe on healthy skin that does not 

develop MCC, there are likely other factors that interact with MCPyV to cause disease, including 

host immune function. 

 

2.6 Diagnostic and therapeutic potential of the microbiome in skin disease 

It is clear that the microbiome plays a broad, intricate, and complicated role in both human skin 

health and disease. In light of the many translational opportunities to use these findings in the 

clinic, a great amount of research has been devoted to clinical applications of microbiome 

research (Table 1). Probiotics, live microorganisms or microorganism components that confer 

health benefits, have long been administered therapeutically and prophylactically to the 

gastrointestinal tract, even before their mechanism was known. Effective and safe probiotics for 

use on the skin is an area of active investigation with great promise [77-79]. For those skin 

diseases that may be influenced by the gut microbiota, there is evidence that probiotic 

intervention may provide benefit. The efficacy of probiotics in treating AD remains somewhat 

controversial, but evidence suggests that administration of some Lactobacillus rhamnosus strains 

to mothers before and after birth reduces the occurrence and frequency of infantile AD [80-83]. 

 

Another microbiome-related approach to treating disease may be the use of prebiotics, which 

consist of substrates that promote the growth and/or metabolic activity of beneficial indigenous 

microbiota. Current prebiotics are primarily associated with ingestion and consequent 

manipulation of the gut microbiome. Different types of gut prebiotics such as galacto- and long-

chain fructo-oligosaccharides show promise in treating infants with AD [84, 85]. But imaginable 

prebiotic approaches such as treating the skin with substrates to alter the environmental 
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conditions and thus promote or discourage the growth of certain microbiota may offer promise for 

the treatment of skin disorders whose pathogenesis is clearly linked to a microbial cause. 

 

Genetic engineering of microorganisms as vectors for delivery of therapeutic genes is another 

area of active investigation. The potential utility of such approaches was shown by a study in 

which E. coli was engineered to express a quorum-sensing peptide that is naturally expressed by 

Vibrio cholera and inhibits V. cholera virulence [86]. Administration of the genetically 

engineered microbe to the gut of infant mice before challenge with V. cholera significantly 

increased survival while decreasing cholera toxin binding to the intestines. Bacteriophage can 

also be engineered and administered for therapeutic benefit. For example, bacteriophage have 

been used to deliver gene constructs to reverse antibiotic resistance in bacteria populations [87]. 

This approach provides the first steps toward applying evolutionary pressure against antibiotic 

resistance, while reversing the pressure toward antibiotic resistance from decades of antibiotic 

use. Of particular concern to the skin is multidrug resistance in skin-associated opportunistic 

pathogens, such as S. epidermidis, S. aureus, and Pseudomonas aeruginosa [88, 89]. 

Bacteriophages have also been engineered to degrade bacterial biofilms [90], a significant 

therapeutic challenge because antibiotics are often not able to physically access the bacteria 

comprising the biofilm, and are therefore not effective in treating them. 

 

An in-depth understanding of the human skin microbiota may also have important implications in 

informing synthetic biology therapeutics. For example, comparative genomic analysis of P. acnes 

bacteriophage genomes led to the discovery of a highly conserved gene-encoding endolysin, an 

enzyme with broad lytic potential for P. acnes hosts [36]. The utility of endolysin as an 

antibacterial has been shown in other phage–host systems, and bacterial resistance to the 

recombinant protein was not observed even after repeated exposure [91]. 
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2.7 Concluding remarks 

The skin acts as both a protective physical barrier between the body and the external 

environment, as well as an environmental substrate that harbors rich and diverse communities of 

microorganisms that contribute to skin health and disease. The recent advent of molecular and 

metagenomic techniques for microbial community analysis has addressed many culture-based 

limitations. As a result, a greater appreciation of the microbial diversity across different skin sites 

as well as the diversity between people, over time, has emerged. It is becoming increasingly 

apparent that certain microbes promote healthy skin equilibrium, and contemporary molecular 

approaches have also provided greater information about the role of microbial community 

disturbances in disease pathogenesis. 

 

The commensal fungal and viral communities in either health or disease remain largely 

uncharacterized, and future investigations are likely to focus on these knowledge gaps. Most 

molecular studies up to this point have focused on taxonomic characterization of microbial skin 

communities. Although this approach is valuable because taxonomy provides a functional proxy 

for patterns of the genomes present, new techniques will allow for more in-depth investigations, 

beyond taxonomic identification. In light of increasingly feasible whole metagenomic shotgun 

sequencing approaches, investigations will be able to focus directly on the genetic functional 

potential and assess the community compositions of relevant genes. We also expect that, with the 

ever-advancing technologies and bioinformatics associated with mRNA sequencing (the 

metatranscriptome) and protein community analysis (the metaproteome), significant effort will be 

directed toward the functional aspects of microbiomes associated with skin health and disease. 
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Finally, a looming challenge is applying this knowledge to develop therapeutic and diagnostic 

tools for the clinic. Enhanced understanding of the skin microbiome will continue to inform 

research toward probiotic and prebiotic development, prevention of antibiotic resistance gene 

transfer, bacteriophage-mediated treatments, and gene delivery using bacterial vectors. New 

therapeutic developments will allow for a type of “microbiome engineering” in which the 

community composition will be stimulated and/or manipulated to include beneficial components. 

Additionally, in light of increasing antibiotic resistance across medically relevant bacterial 

populations, there will likely be an increased interest in alternative approaches to treating 

infections, as well as slowing the spread of resistance. 
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2.9 Figures 

 

 

Figure 1 

The workflow of a bacterial 16S rRNA gene microbiome study. A heterogeneous mixture of 

genomic DNA is extracted from samples taken from the skin. Primers, containing barcodes that 

allow for multiplexing, are designed to the desired region of the 16S rRNA gene. 16S rRNA gene 

PCR products are amplified and sequenced. Low-quality sequences are removed, and various 
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analyses are performed. These analyses can include assignment to taxonomy, analysis of shared 

phylogeny, and analysis of microbial community membership, structure, and diversity. 
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Figure 2 

Bacterial diversity of the skin. Phylogenetic tree of the domain Bacteria with each branch 

representing a phylum. Black branches represent numerically abundant phyla on the skin, red 

branches represent rare phyla on the skin, and green branches represent phyla that are absent from 

the skin. (The data are derived from Grice et al. 2009.) 
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Figure 3 

Changes in skin microbiota are associated with disease. (A) Relative abundance of bacteria (16S 

rRNA) in 12 children with AD flares as compared with 11 healthy controls (Kong et al. 2012). 

(B) Relative abundance of bacteria (16S rRNA) in six patients with psoriasis, in the lesional area 

as compared with unaffected skin as a control (Gao et al. 2008). (C) Relative abundance of P. 
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acnes strains in 49 acne patients and 52 healthy individuals (Fitz-Gibbon et al. 2013). (D) 

Relative abundance of fungi (26S rRNA) in three healthy scalps and four dandruff-afflicted 

scalps (Park et al. 2012). 
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2.10 Tables 

 

Table 1 

Therapeutic approaches based on the microbiome. 
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CHAPTER 3 – The Human Skin dsDNA Virome: Topographical and Temporal Diversity, 
Genetic Enrichment, and Dynamic Associations with the Host Microbiome 

 

The contents of this chapter are under review for publication as: 

Hannigan GD, Meisel JS, Tyldsley AS, Zheng Q, Hodkinson BP, SanMiguel AJ, Minot 

S, Bushman FD, Grice EA. (In Review) 

 

3.1 Abstract 

Viruses comprise a major component of the human microbiota, but are poorly understood in the 

skin, our primary barrier to the external environment. Viral communities have the potential to 

modulate states of cutaneous health and disease. Bacteriophages are known to influence the 

structure and function of microbial communities through predation and genetic exchange. Human 

viruses are associated with skin cancers and a multitude of cutaneous manifestations. Despite 

these important roles, little is known regarding the human skin virome and its interactions with 

the host microbiome. Here we evaluate the human cutaneous dsDNA virome by metagenomic 

sequencing of DNA from purified virus-like particles (VLPs). In parallel we employ 

metagenomic sequencing of the total skin microbiome to assess co-variation and infer interactions 

with the virome. Samples were collected from sixteen subjects at eight body sites over one 

month. In addition to microenviroment, which is known to partition bacterial and fungal 

microbiota, natural skin occlusion was strongly associated with skin virome community 

composition. Viral contigs were enriched for genes indicative of a temperate phage replication 

style, and also maintained genes encoding potential antibiotic resistance and virulence factors. 

CRISPR spacers identified in the bacterial DNA sequences provided a record of phage predation 

and suggest a mechanism to explain spatial partitioning of skin phage communities. Finally, we 

model the structure of bacterial and phage communities together to reveal a complex microbial 
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environment with a Corynebacterium hub. These results reveal the previously underappreciated 

diversity, encoded functions, and viral-microbial dynamic unique to the human skin virome. 

 

3.2 Importance 

To date, most cutaneous microbiome studies have focused on bacterial and fungal communities. 

Skin viral communities and their relationships with their hosts remain poorly understood despite 

their potential to modulate states of cutaneous health and disease. Previous studies employing 

whole metagenome sequencing without purification for virus-like particles (VLPs) have provided 

some insight into the viral component of the skin microbiome, but have not completely 

characterized these communities or analyzed interactions with the host microbiome. Additionally, 

these studies had potentially biased community representations, shallower coverage of the viral 

community components, and an inability to assess the viral dark matter of the skin. Here we 

present the first optimized virus purification technique and analysis tools for gaining novel 

insights into the skin virome and its potential interactions with the host microbiome. 

 

3.3 Introduction 

The human skin is a barrier to the external environment and home to diverse and distinctive 

microbial communities. To date, most cutaneous microbiome studies have focused on bacterial 

and fungal communities, their modulation of cutaneous immune responses, and the association of 

these microorganisms with dermatological disorders [1]. Recent metagenomic studies confirm the 

role of skin microenvironment and interpersonal variation in shaping the microbiome [2]. Skin 

viral communities and their relationships with their hosts remain poorly understood despite their 

potential to modulate states of cutaneous health and disease. Bacteriophages (“phages”; viruses 

that infect bacteria) can affect human health by altering the composition of their host bacterial 

communities through predation [3, 4]. Evidence of such dynamism is provided by acquisition and 



	 37	

diversification of bacterial clustered regularly interspaced short palindromic repeat (CRISPR) 

elements (e.g. [5]), which target phage genomes for destruction using nucleases guided by 

sequences encoded in the CRISPR arrays. Phages may also have long-term impacts on their hosts 

via lysogeny, in which phages integrate their genome into the host and adopt a quiescent state. 

New genes encoded on lysogens can affect host metabolism, virulence, antibiotic resistance, and 

sensitivity to other phages [6-9]. Phages may also serve as a genetic reservoir for bacterial 

adaptations during stress (i.e. antibiotic treatment) [10]. Viruses that replicate on human cells are 

also present in the skin and can affect human health, including Human Papillomaviruses (HPV), 

Human Polyomaviruses (HPyV), and Human Herpesviruses (HHV), and can cause skin cancers 

and other dermatological disorders.  

 

Previous studies employing whole metagenome sequencing without purification for virus-like 

particles (VLPs) have provided some insight into the viral component of the skin microbiome, but 

have not completely characterized these communities or analyzed interactions with the host 

microbiome [2, 11, 12]. The study we present here employs gold standard techniques for the 

purification of viral DNA, thereby reducing contamination from human and bacterial cells, whose 

genomes are orders of magnitude longer than viral genomes.  This allows for deeper viral 

sequencing and the use of reference-independent analyses to capture the impact of unknown or 

uncharacterized genomes, known as viral dark matter.  We applied shotgun metagenomic analysis 

to purified VLPs, as well as unpurified whole skin microbial communities, conducting the first 

longitudinal, integrated analysis of the healthy human skin virome and the whole metagenome 

across diverse anatomical locations. The major questions we address with this novel dataset are: 

What is the biogeography and diversity of the human skin virome compared to the whole 

metagenome over time and across individuals? What genetic functions are encoded by the skin 

virome, including antibiotic resistance, virulence factors and auxiliary metabolic genes (AMGs; 
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“host” genes within phage genomes [13])? What can we infer about interactions between phages 

and their bacterial hosts, including the role of CRISPRs in maintaining virome community 

structure? 

 

3.4 Results 

3.4.1 Sampling, sequencing, and quality control 

Cutaneous skin swabs were collected from 16 healthy volunteers with no known skin conditions 

between the ages of 23 and 53 years old (Fig 1A-B). Anatomical skin sites were sampled 

bilaterally (virome sample was collected at the site contralateral to the whole metagenome 

sample) and consisted of multiple diverse microenvironments: sebaceous (retroauricular crease 

[Ra], occiput [Oc], and forehead [Fh]), moist (axilla [Ax], toe web [Tw], and umbilicus [Um]), 

and intermittently moist (antecubital fossa [Ac] and palm [Pa]) (Fig 1A). Swab samples were 

collected at two time points separated by four weeks to assess stability of the communities.  

 

After swabbing each subject’s skin, we used one sample of the contralateral pair to purify and 

extract the VLP DNA using a protocol established for human and environmental viromes [14-16]. 

We extracted the DNA from the contralateral sample to investigate the whole microbial 

community, including bacterial, fungal, and viral members. Samples were prepared for shotgun 

sequencing on the Illumina MiSeq and HiSeq2500 platforms using the Illumina NexteraXT 

library preparation kit, which is designed for dsDNA. Therefore, our analysis focuses on dsDNA 

viruses and replicative intermediates of ssDNA viruses. Sample collection, sequence processing, 

and bioinformatics analyses are outlined in Fig 1C.  

 

After quality filtering, the dsDNA virus dataset contained 260,714,906 total high quality 

sequence reads, with a median of 650,506 sequence reads per sample.  The whole metagenome 
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dataset contained 368,341,329 total high quality sequence reads, with a median of 981,031 

sequence reads per sample (See Supplemental Fig 1A-D and Table 1 for sequence count 

statistics).  Consistent with previous reports of similar human VLP preparations [15-18], a 

relaxed search against the entire NCBI non-redundant database revealed that 94.8% of VLP reads 

did not significantly match a known genome (blastn; E-value<10-3), highlighting the importance 

of investigating viral dark matter.  Similar classification identified 42.6% of the whole 

metagenome reads as unknown.  In this study, we use multiple reference-independent approaches 

to address this subset of unclassified dark matter.  The viral and whole metagenome datasets were 

independently assembled into contigs, and contigs >500 bp in length were selected for further 

analysis (See Supplemental Fig 1E-H and Table 2 for contig coverage, count, and length 

statistics). Of these phage contigs, 9.0% were taxonomically identifiable, highlighting the utility 

of using contigs in taxonomy instead of using unaligned reads. 

 

During each sampling event, we collected a blank negative control that never came into contact 

with skin.  DNA was extracted from the control and sequenced in parallel with the experimental 

samples. Using the Bray-Curtis dissimilarity metric, we found significant separation of the 

control samples from the skin samples (Supplemental Fig 2A), confirming minimal identity 

shared between the control and experimental samples and providing confidence that the viruses 

present are not the result of environmental or reagent contamination.  As an additional control, we 

sequenced an even mock community sample to ensure that our library preparation and sequencing 

techniques accurately depict microbial community composition. We found minimal differences 

between the expected community composition and the community composition obtained by our 

sequencing techniques (Supplemental Fig 2B). 
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Using methods previously outlined for quantifying virome contamination [19], we verified 

reduction in cellular contamination within viromes by showing a significant reduction in 

normalized bacterial 16S rRNA gene levels in the purified viromes compared to the unpurified 

whole metagenomes (Supplemental Fig 2C). We also supported virome purity using a 

previously described method [15] by mapping significantly more sequences from the virome to 

the whole metagenome, compared to the reverse (Supplemental Fig 2D).  Finally, we confirmed 

a significant reduction of contamination from human cells in the virome, compared to the whole 

metagenome (Supplemental Fig 2E).  These analyses suggest that viral reads are in greater 

abundance after VLP purification, and reinforce the utility of VLP purification techniques.  

Skin virome composition 

 

To examine the community membership of the skin virome, we used the viral UniProt TrEML 

reference database to annotate predicted open reading frames (ORFs) in the assembled viral 

contigs.  Annotated ORFs were then subjected to a voting system that assigned taxonomy based 

on the most abundant ORF annotation within the contig, as described previously [20]. Some 

contigs had ties in taxonomic votes, which were labeled as having “multiple hits” because they 

are not unknown, but we cannot assign a resolved viral taxonomy with confidence. The 

abundance of each taxonomically identified contig was quantified as the number of unassembled 

reads that aligned to the contig. Read counts were normalized in order to account for differences 

in contig length, sequencing efficiency, and associated run variation of that overall sample, using 

methods previously described [20]. 

 

The majority of the identified dsDNA viral contigs belonged to the Caudovirales order (tailed 

bacteriophages), suggesting a higher proportion of bacteriophages among skin dsDNA virus 

communities than previously suggested [11] (Supplemental Fig 3A). At the species level, we 
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observed bacteriophages of known skin inhabitants such as Propionibacterium phages and 

Staphylococcus phages (Fig 2A), and their relative abundances were significantly variable across 

different skin microenvironments (Supplemental Fig 3B,C; p < 0.05 Kruskal and Multiple 

Comparison Post Hoc Test) and occlusion status (Supplemental Fig 3E-F; p < 0.05 Kruskal-

Wallis and Multiple Comparison Post Hoc Test). A large fraction of each virome contained 

contigs that maintained equal similarity to multiple phages, meaning they were not assignable to a 

single species, and were therefore annotated as “multiple hits” (Fig 2A). This is likely a reflection 

of the modular nature of bacteriophage genomes, and highlights the need for more robust 

reference databases for a better understanding of phage genome architecture. There was also an 

abundant representation of environmental phages, including Pseudomonas and Bacillus phages.  

 

The most abundant eukaryotic virus was Human Papillomavirus (HPV), prominent in some 

individuals, and generally present in significantly greater relative abundance in sebaceous sites 

and exposed sites (Supplemental Fig 3D,G; p < 0.05 Kruskal and Multiple Comparison Post 

Hoc Test). Human Polyomaviruses (HPyVs) were detected in very low abundance, where only 6 

samples contained any sequence mapping to known HPyV genomes, and no sample had >100 

putative HPyV sequences. 

 

3.4.2 Skin total microbial community composition 

In addition to examining the taxonomic composition of the virome, we further characterized the 

membership of the whole microbial skin community using the corresponding sample set that was 

not subjected to VLP or microbial selection. Bacterial communities were classified from the 

unassembled sequences using MetaPhlAn [21], which annotates sequences based on clade-

specific markers from reference genomes. Additionally, bacterial, fungal, and viral species 

abundances were quantified from assembled contigs using the lowest common ancestor algorithm 



	 42	

in MEGAN [22].  Consistent with previous whole metagenome analyses of skin [2, 23], 

Propionibacterium (including P. acnes), Staphylococcus (including S. epidermidis and S. 

hominis), and Corynebacterium were the dominant bacterial genera (Fig 2B and Supplemental 

Fig 4A,B) and Malassezia was the most abundant fungal genera (Supplemental Fig 4A,C). 

Viruses were present in low abundance (average 0.4% per sample), likely due to the relatively 

small genome size of viruses compared to prokaryotes and micro-eukaryotes, and further 

highlights the utility of VLP isolation before sequencing (Supplemental Fig 4A,D). The viruses 

recovered were primarily “unclassified” and Staphylococcus phages (Supplemental Fig 4D).  

 

3.4.3 Variation of the skin virome and total metagenome among anatomic sites 

As demonstrated above, and extensively in previous literature [15-18], the majority of viruses 

were taxonomically unidentifiable due to insufficient reference database information.  In order to 

capture information from both characterized and uncharacterized genomes, we employed 

reference-independent approaches based on relative abundance of each contig in our dataset.  To 

assess the beta diversity (“between sample diversity”) among anatomical sites, we calculated the 

Bray-Curtis dissimilarities between communities at the same and different anatomical sites.  We 

identified significant differences in virome and whole metagenome community structure based on 

microenvironment and occlusion status (Fig 2C,D; Adonis test; p < 0.001). These findings 

parallel previous reports of the bacterial and fungal skin microbiomes [24, 25], and highlight an 

additional role for occlusion/exposure parameters in microbial community structure and function.  

 

We further estimated and compared alpha (“within sample”) diversity of viral communities using 

a reference-independent approach of calculating the Shannon diversity index. Here we estimated 

virome diversity, including the viral dark matter, using the PHACCS toolkit [26], which 

calculates the degree of contig assembly to generate a “contig spectrum” that is compared to 
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simulated communities of varying size and diversity until a suitable match is found.  PHACCS 

predicts the virome size and diversity as if the entire community (both known and unknown 

viruses) were sequenced and annotated.  Shannon diversity of bacterial communities among 

anatomical sites was calculated based on reference-dependent taxonomic relative abundance 

information described above. We found that the virome and bacterial metagenome of sebaceous 

sites was less diverse than moist or intermittently moist sites (Fig 2E-G; p < 0.05 Kruskal and 

Multiple Comparison Post Hoc Test). While the virome was most diverse at intermittently 

occluded sites (e.g. Ac), the bacterial metagenome was most diverse at occluded sites (e.g. Tw 

and Um; Fig 2E-G; p < 0.05 Kruskal and Multiple Comparison Post Hoc Test), further 

highlighting the differences in viral and bacterial community diversity based on anatomic sites. 

 

To assess the utility of reference-independent methods in determining differences in viral 

diversity, including that of the viral dark matter, we performed the above alpha and beta diversity 

analyses using the reference-dependent taxonomic relative abundance information from Figure 

2A.  Alpha diversity of the reference-dependent dataset (Supplemental Fig 5A-B) was strikingly 

less than that predicted by the reference independent methods employed by PHACCS (Figure 

2F). In contrast to the PHACCS-based analysis, there was no significant difference between the 

microenvironment or occlusion categories using the reference-dependent data. Beta diversity 

between sites of different microenvironment and occlusion status mirrored reference-independent 

findings (Figure 2C and Supplemental Fig 5C-D). Therefore, there is added value to using viral 

dark matter in some community analyses, but some metrics can be performed effectively with 

reference-based approaches. 

 

3.4.4 Variation of the skin virome and whole metagenome over time 



	 44	

Previous studies suggest that temporal variation of the bacterial microbiome at a given skin site is 

minimal when compared to interpersonal variability [25, 27, 28], so we examined both viral and 

whole microbial community changes over a one-month period.  There was a significant difference 

in shared diversity between the two time points of the viromes, but not the whole metagenomes, 

as measured by Bray-Curtis dissimilarity (Supplemental Fig 6 A-B; Adonis test; p < 0.001 and p 

= 0.978, respectively). These findings suggest that the whole metagenome is more stable over 

time than viral communities.  

 

Using the same metric, virome temporal variability at a given skin site was significantly lower 

than interpersonal variability (Fig 2H; t-test p = 1.26 x 10-11), similar to what we observed for the 

whole metagenome (Fig 2I; t-test; p = 3.50 x 10-30). Analogous to human fecal viromes, the 

largest source of skin virome variance appears to be interpersonal variation [15, 16]. In contrast to 

the gut, which has been suggested to share over 80% of the intrapersonal virome over time [15, 

16], we found less than 50% of the intrapersonal skin virome was shared over time 

(Supplemental Fig 6C). 

 

3.4.5 Evidence of a temperate replication style 

Bacteriophages can exist as lytic or temperate phages. Lytic phages lyse the host soon after 

infection and do not exist in a latent, lysogenic state. Conversely, temperate phages are able to 

integrate their genomes into the bacterial host genome and exist as prophages, as well as excise 

and go through the lytic cycle. To examine the replication strategies of the phages residing on the 

skin, we used an established approach [16] of searching VLP contigs for temperate phage 

replication markers, including 1) the presence of integrase genes, 2) the presence of temperate 

prophage genes, and 3) nucleotide identity to bacterial genomes indicative of integration. Of the 

6,661 contigs that were annotated as bacteriophages by our taxonomic criteria above, 5,363 had at 
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least one of these three temperate phage markers (Fig 3A). More specifically, 592 (8.8%) 

contained at least a single integrase gene as represented in the UniProt TrEMBL database, 856 

(12.9%) aligned to known bacterial genomes, including Actinobacteria, Firmicutes, and 

Proteobacteria, and 5,137 (77.1%) contained open reading frames (ORFs) similar to annotated 

prophage genes found in the ACLAME database of mobile genetic elements [29]. By these 

measures, each anatomical skin site had a median relative proportion of > 85% temperate phages, 

with different relative abundances by site (Fig 3B; p < 0.05 Kruskal and Multiple Comparison 

Post Hoc Test). This data suggests that the majority of identifiable Caudovirales bacteriophages 

on the skin are temperate, consistent with studies of the human gut virome [15, 16]. 

 

3.4.6 Virome functional potential and auxiliary metabolic genes 

Though our data support a lesser role for host lysis in skin dsDNA bacteriophage populations, 

they likely influence bacterial communities via prophage integration and genetic exchange. We 

therefore investigated the genetic functional potential of skin viral communities compared to the 

whole metagenome. Functional pathways were interrogated by comparison to the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database [30] and analyzed using the HUMAnN 

annotation and quantification program [31].  Overall, the virome was enriched in information 

processing and peptide transport, while the whole metagenome was enriched for metabolic 

processes (Supplemental Fig 7A). Gene ontology (GO) analysis revealed significant enrichment 

of viral components and processes, DNA transcription, and RNA metabolic processes in the 

virome (Supplemental Fig 7B), while the whole metagenome was enriched in cellular nitrogen 

compound and carbohydrate derivative metabolic processes. Notably, the virome was 

significantly enriched in the GO term “establishment of viral latency” (Supplemental Fig 7B), 

consistent with the observed dominance of temperate phages on the skin. 
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Some bacteriophages are known to encode auxiliary metabolic genes (AMGs; “host” genes 

within phage genomes) that promote viral infection by modulating host metabolic activity 

(reviewed in [13]). We evaluated whether there were core AMGs conserved across the entire skin 

virome, thereby belonging to the overall core gene set. To accomplish this, we clustered the 

predicted virome contig ORFs into representative OTU-like sequences called Operational Protein 

Families (OPFs) [32, 33]. Core OPFs were defined as those OPFs that were present in all samples 

from a skin site. Core OPFs were differentially distributed across skin sites, with the greatest 

amount present on the forehead (Fig 3C). Of the 15 core OPFs present in all virome samples, all 

were hypothetical or known phage genes, and none were AMG candidates (Fig 3D), suggesting a 

sparse population of core skin virome AMGs. As highlighted above, in comparison to the 

metagenome, the virome was enriched for KEGG pathways related to transport (Supplemental 

Data Fig 7B), as well as GO-terms associated with regulation of RNA metabolic processes 

(GOEast, p-value<0.05). While not strictly belonging to a “core” set of genes, this indicates that 

potential AMGs are present throughout the skin virome. We also investigated the distribution of 

OPFs with respect to skin site microenvironment and occlusion and found significant differences 

(Bray-Curtis dissimilarity; adonis test; p<0.001), suggesting differential spatial distribution of 

virome functional potential (Fig 3E). 

 

3.4.6 Antibiotic resistance and virulence factor enrichment 

Because phages may alter the phenotypes of their hosts by conferring novel virulence and 

pathogenicity functions, we investigated the potential for antibiotic resistance and bacterial 

virulence encoded within the skin virome. Using blast algorithm parameters specified in previous 

foundational human virome studies [16, 34], we assessed antibiotic resistance potential by 

comparing ORFs from the assembled virome contigs to the Comprehensive Antibiotic Resistance 
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Database (CARD) [35] (blastx; e < 10e-5). To further increase our confidence in the annotations 

beyond that of past studies, we filtered the blastx hits to keep only those with > 75% identity. 

Viromes contained 29 unique antibiotic resistance gene (ARG) groups, which were related to 

antibiotic efflux, and resistance to beta-lactamases, rifampin, tetracycline, and elfamycin (Fig 

4A). Tetracyclines are commonly used to treat dermatological conditions such as acne, and 

elfamycins are naturally occurring antibiotics with strong activity against Propionibacterium 

acnes [36]. To confirm the identified ARGs are associated with the virome and not cellular 

contamination or artifacts, we demonstrated ~50% of ARGs co-localized on contigs with other 

annotated phage genes, or are themselves known phage-associated antibiotic resistance genes 

(Fig 4B). ARGs were primarily associated with “multiple hit”, Bacillus, and Streptococcus 

phages (Fig 4B). We also identified potential virulence factors (VFs) associated with the skin 

virome using the Virulence Factor Database (VFDB) [37] with the same blastx parameters and 

filtering as described for antibiotic resistance analysis above. We identified 122 unique VF genes 

and  >1/3 of the VF contigs were either known phage-associated genes or co-localized with phage 

genes (Fig 4C). These findings together indicate that bacteriophages of the skin microbiome may 

be a significant source of transmissible genes associated with antibiotic resistance, virulence, and 

pathogenicity. 

 

3.4.7 Inference of phage-bacteria interactions: Co-occurrence network analysis 

To predict phage-bacteria interactions of the skin, we constructed a correlation network from 

relative abundances of bacteria and known phages, as previously described [38] (Fig 5A). 

Positive interactions indicate that the bacteria and phage typically co-occur, while negative 

interactions suggest a mutually exclusive relationship between the bacteria and phage relative 

abundance. The resulting network of significant phage-bacteria interactions contained 21 nodes, 7 

bacterial and 14 phage. Propionibacterium and Staphylococcus bacteria were typically co-present 
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with their phage counterparts, Propionibacterium phage and Staphylococcus phage, respectively 

(Fig 5A). The overall co-occurrence structure suggests that the network is non-random, exhibiting 

scale-free properties such as short average path lengths (characteristic path length=2.781) and a 

node degree distribution that approximately fits a power law (R2=0.781) [39]. Short average path 

lengths suggest the skin phage-bacteria community network is able to respond rapidly to 

perturbations [40]. The heterogeneity value (likelihood of uneven distribution of edges) of the 

network was 0.819, suggesting that there are fewer hubs, and indicating presence of potential 

“keystone” taxa in the network [41].   

 

Hubs may be distinguished by identifying nodes of high degree. In the skin bacteria-phage 

network, Corynebacterium, with a degree of 10, had the greatest number of interactions, while all 

other nodes had a degree ≤ 5. Corynebacterium positively associated with eight phage, 

including Corynebacterium phage and Staphylococcus phage, and negatively associated with two 

phage, including Propionibacterium phage (Fig 5A). These features of the network topology 

suggest that the skin bacteria-phage network is able to rapidly respond to perturbations, and 

Corynebacterium may act as a key hub. 

 

3.4.8 Inference of phage-bacteria interactions: CRISPRs 

CRISPRs are a form of bacterial adaptive immunity against phage predators. Spacer sequences, 

generally 26-72 nt in length, are captured from invading phages and integrated into the bacterial 

chromosome. These spacer sequences provide a genomic record of phage predators encountered 

by the bacteria. We detected a total of 477 unique spacer sequences, identified by 68 unique 

CRISPR repeats in the whole metagenomic dataset. Only 18 spacers aligned to VLP contigs (Fig 

5B). These spacers were found in 21 metagenomic contigs and mapped to 40 unique VLP 

contigs. Spacers found in the Um only aligned to Um VLP contigs. Two Staphylococcus spacers 
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detected in the Ax aligned to 16 different VLP contigs that were found at every body site except 

the Pa (Fig 5B). A Propionibacterium spacer found both in the Pa and Tw aligned to eight 

different VLP contigs from the Ax, Oc, Fh, and Ra (Fig 5B). These findings indicate that phage-

host dynamics may not be restricted by anatomical skin site, and spacers identified at one skin 

site may be restricting phage during invasions from other skin sites, which could in part explain 

spatial partitioning of the skin virome. We further characterized the genomic CRISPR targets 

within the VLP contigs and found that the majority of targets within coding regions belonged to 

phage portal proteins, which are genes involved in packaging DNA into phage particles (Fig 5C).  

Interestingly, the majority of CRISPR targets did not map to predicted ORFs, suggesting that 

there is not a targeting preference for genomic coding regions (Fig 5C). 

 

3.5 Discussion 

In summary, we present parallel analyses of the human skin virome (as determined from purified 

VLPs) and whole metagenome. Purification of VLPs provides many advantages for virome-

targeted analyses, including deeper sequencing of viruses and the ability to confidently assess 

viral dark matter using reference-dependent and –independent approaches. However, this 

technique has previously been technically prohibitive for application to skin viruses, due to low 

amounts of microbial burden in and on the skin. Advanced library preparation techniques 

utilizing ultra-low amounts (<1 ng) of DNA have facilitated this study to characterize the human 

skin dsDNA virome in parallel with the whole metagenome in order to gain insight into multi-

kingdom interactions of the skin microbiome.  

 

Our results demonstrate that the skin virome is highly site specific, and is modulated by occlusion 

and exposure, in addition to sebum and moisture. This significant effect of skin occlusion on viral 

and whole microbial communities has not yet been described in previous skin whole microbial 
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analyses, and provides new insight into the variation of these communities across anatomical 

sites. Anatomical intrapersonal and interpersonal variation play a greater role in cutaneous viral 

community composition than intrapersonal temporal variation, supporting the role for persistent 

commensal populations, rather than a dominance of new acquisition of different transient viruses 

from the environment.  Though our study provides some insight into the temporal dynamics of 

skin viral communities, a limitation is that our time series consisted of just two time points 

separated by one month. Similar to studies of the bacterial microbiome, high frequency temporal 

virome analyses are needed to further improve our understanding of skin virome dynamics and 

the degree to which temporal variability is a personalized feature [42].  

 

The persistence of phage populations on the skin, and especially dsDNA phages, is possibly due 

in part to the temperate nature of their infections. While cutaneous phages that are primarily 

temperate may not exhibit a predator-prey dynamic with their hosts, they may give rise to novel 

bacterial strains via transfer of genes including antibiotic resistance and virulence factor genes, 

which were found in our samples. The dynamics of phage predator/prey relationships within 

communities is complex, and while our study provides a first look into these community 

dynamics in the skin, further studies will be needed to more completely characterize these 

relationships.   

 

Although we noted that the majority of identifiable phages in the sampled skin virome were 

temperate, we were only able to predict the replication styles of the identifiable phages.  This 

highlights the need for robust reference databases and the utility of reference independent 

methods. Additionally, we were not able to detect ssDNA viruses or enveloped viruses. Because 

of our efforts to confirm a reduction of bacterial genomic DNA in our samples, we are confident 
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that the majority of the sequences are in fact from free phages, and provide a valuable description 

of our identifiable virome library. 

 

Bacterial hosts corresponding to some of the most abundant phages, including Pseudomonas and 

Bacillus phages, were not abundant in the skin bacterial communities. Because Pseudomonas and 

Bacillus bacteria are common environmental inhabitants, it is possible that their phage predators 

are in fact persistent, transient colonizers that immigrate onto the skin from their ubiquitous 

external sources, rather than commensal inhabitants of the skin. 

 

In addition to showing complex community dynamics within the skin viral communities, we also 

provided evidence for potential interactions between the virome and the other microbial 

communities using co-occurrence network modeling and CRISPR identification techniques. Our 

network analysis allowed us to infer an extensive and multikingdom ecosystem structure. 

Understanding these ecological interactions, and experimentally validating them, will be critical 

for further developing targeted therapeutics such as phage therapy. One potential limitation of 

these analyses is that inferences relied upon sampling from contralateral sites. While contralateral 

skin sites may not be identical in microbiome composition, they have previously been shown to 

be very similar [27, 28, 43, 44]. 

 

CRISPR analysis suggested differing degrees of ongoing phage infections at different sites, or 

simply differential abundances of CRISPR arrays in the resident bacteria. CRISPRs not only 

targeted phages found at the same skin sites, but also targeted phages at other skin sites, providing 

a record of successfully repelled attacks from phages now detected at other body sites. These 

findings suggest a potential mechanism for partitioning of the skin virome between different 

anatomical locations and warrants further investigation. Finally, we found that CRISPRs most 
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often targeted phage portal proteins when targeting a phage coding region, but there did not 

appear to be a selection for CRISPRs targeting coding phage genomic regions. While we focused 

on CRISPR mechanisms of interaction, there are other mechanisms of bacteria-phage interactions 

that are worth investigating in future studies such as restriction modifications.  

 

The viral relative abundance profiles presented in this study differ from those reported in previous 

whole metagenomic-based studies, which observed skin phage populations primarily dominated 

by Propionibacterium phages, Staphylococcus phages, Human Papillomaviruses (HPVs), and 

Human Polyomaviruses (HPyVs) [2, 11, 12]. In contrast, our study found prominent levels of 

Pseudomonas phages, with relatively lower levels of Propionibacterium phages, Staphylococcus 

phages, and HPVs, and very low levels of HPyVs. Methodological differences most likely 

account for these disparities. Foulongne et al used whole metagenomic techniques without virus 

purification and also utilized multiple displacement amplification (MDA) techniques for 

amplification. In addition to quantitative biases associated with amplification, MDA is biased 

toward ssDNA viruses (such as HPyV) and produces artifacts such as chimeras [45-47]. Whole 

metagenome preparation without virus purification is well-known to over-represent different 

phages from those identified in virome purification-based studies [48]. One reason for these 

biases is that virome purification methods only detect bacteriophages and other viruses that are 

encapsulated as VLPs. In contrast, whole metagenomic techniques detect all free DNA present in 

the sample, regardless of whether it is present as a free phage particle, or an integrated prophage.  

 

This is particularly important when considering the high relative abundance of Propionibacterium 

phages observed in previous studies. Propionibacterium phages are thought to persist in their 

bacterial hosts in a pseudolysogenic, plasmid state [49, 50], meaning that while the phage does 

not persist by integrating into its bacterial host genome, it persists as a plasmid within the 
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bacterium host. Thus, the plasmid DNA would be destroyed with the bacterial host genomic DNA 

during virome purification, leaving only free Propionibacterium phage VLPs. Without such a 

purification step, the episomal DNA would be sequenced and considered part of the virome, even 

though that DNA was latent and did not exist as a VLP in the virome community. This could lead 

to biases in detection of other phages as well. 

 

There are also biases associated with our methods that are important to take into account when 

interpreting our results. Our virome purification methods utilize chloroform/DNase treatment, 

which does not allow for the detection of enveloped viruses. Methods similar to those utilized in 

our study are also susceptible to over representation of certain phages, and can differ to various 

degrees compared to virome studies utilizing filtration instead of chloroform/DNase treatment or 

even treatment with DTT [48, 51]. Despite these caveats, we utilized viral purification techniques 

that are considered to be the gold standard of the field, allowing us to make meaningful parallels 

to studies of other human virome systems. 

 

Overall, the findings outlined here set the stage for future studies of a) acquisition of viral 

communities, b) responses to perturbations such as antibiotic therapies and hygienic routines, c) 

factors impacting temperate vs. lytic replication cycles (i.e. DNA damaging UV radiation or 

antibiotics), and d) impacts on human health and disease. Long term, this work may also inform 

potential therapeutic strategies for skin disorders based on phage therapy. 

 

3.6 Materials & Methods 

This study represents a major body of methodological work that allowed for robust virome 

sample preparation and analysis, and will provide a valuable guide for future studies. We outline 

optimized methods for VLP DNA purification from low biomass samples, and provide rigorous 
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analysis outlines and source code that can be used in future analyses, even beyond the skin. 

Please see the supplemental methods section for a detailed description of our methods, as well as 

the source code and intermediate data files related to all experiments. 

 

3.6.1 Sample collection 

In short, we recruited a cohort of 16 healthy individuals (ranging from 23 to 53 years old) in 

accordance with our protocol approved by the University of Pennsylvania Internal Review Board. 

Sample collection was performed following informed consent by the subject.  Exclusion criteria 

included self-reported antibiotic treatment (oral or systemic) six months prior to enrollment, 

observable dermatologic diseases, and significant comorbidities including HIV or other 

immunocompromised states. 

 

3.6.2 Sample sequencing and processing 

Whole metagenome DNA was prepared from cutaneous swab samples using techniques similar to 

those previously described [28]. The VLP DNA extraction protocol was optimized from a 

previously described method [14], which allowed for efficient VLP isolation and DNA 

purification from the low biomass samples. The DNA was prepared for sequencing using an 

optimized protocol for the Illumina Nextera XT library preparation kit.  Sequencing was 

performed on the Illumina MiSeq and HiSeq2500 rapid chemistry platforms.  All community 

analyses were performed using custom Bash, R, and Perl scripts, building off of established 

concepts and utilizing existing algorithms and toolkits. 

 

Quality control was performed to remove sequencing adapters, low quality sequences, and 

sequences with similarity to the human genome [52]. Mock samples were also collected to 

control for background sequencing signals. We performed follow up analyses on this control data 
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to ensure a high quality sequence set. Contigs were assembled using the high quality sequences in 

the Ray de novo assembly program [53]. 

 

3.6.3 Taxonomy and Diversity 

As has been previously described, virome taxonomy was assigned by annotating open reading 

frames using the UniProt reference database [54], and assigning contig taxonomy based on the 

most frequent ORF taxonomy present similarity [20]. Alpha diversity was estimated including 

both the known and unknown viruses using the PHACCS algorithm [55]. Beta diversity was 

assessed using the Bray-Curtis dissimilarity metric within the VEGAN R package (CRAN) [56], 

and was based on normalized sequence counts (RPKM) for each contig by sample [56]. This beta 

diversity information was also used for the intra- and inter-personal diversity calculations.  Whole 

metagenome diversity was calculated using the VEGAN R package. 

 

3.6.4 Prediction of bacteriophage replication cycle distribution 

Virome replication cycle distribution was calculated by quantifying the presence of temperate 

marker genes, including integrase, prophage elements within the ACLAME database [29], and 

bacterial reference genome elements. Sequences were mapped back to the temperate and lytic 

contigs to assess normalized relative abundance. 

 

3.6.5 Functional annotation and comparison 

Sequence functionality was predicted by mapping reads to a reduced KEGG reference database 

[30] and annotating them with the HUMAnN program [31].  Gene ontology enrichment analysis 

was performed in GOEAST [57], using open reading frames that were predicted using the 

Glimmer3 toolkit [58] and blasted against the UniProt reference database. Operational protein 

family and auxiliary metabolic gene analysis was performed similar to previous studies [32, 33]. 
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The Comprehensive Antibiotic Resistance Database (CARD) [35] and Virulence Factor Database 

(VFDB) [59] were used with predicted ORFs to estimate the potential for antibiotic resistance and 

virulence, respectively. 

 

3.6.6 Inferred interactions between phage and bacteria 

Inferred interactions between phages and bacteria were calculated using CoNet [60] within 

Cytoscape [61], as previously described [38]. Only interactions supported by two of the five 

tested metrics (Pearson and Spearman correlation metrics, the Mutual Information similarity 

metric, and Bray Curtis and Kullback-Leibler distance metrics) were retained for analysis of 

potential interactions. 

 

3.6.7 CRISPR identification and comparison to the virome 

CRISPR targeting of the bacterial hosts against the viruses was performed using the PilerCR 

program for CRISPR identification within bacterial genomes [62]. The CRISPR spacer sequences 

were mapped against the phage contigs from various locations to evaluate potential targeting. 

Phage ORFs targeted by spacers were identified using the UniProt TrEMBL database and blastx 

(e<10-10). 

 

3.7 Data Access 

Sequences are deposited in the NCBI Short Read Archive under BioProject PRJNA266117 and 

SRA accession number SRP049645.  Analysis scripts described in the Methods and intermediate 

files are archived at Figshare and available at DOI: 10.6084/m9.figshare.1281248 

(http://figshare.com/s/e368c0088f6111e4bb9a06ec4bbcf141). 
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3.11 Figures 

	
Figure 1 Study design for analyzing cutaneous viral and whole metagenomic 

communities. 

(A) Eight skin sites were sampled from 16 subjects. Colored text indicates the microenvironment 

classification and colored ball represent occlusion status of the anatomical site. (B) 

Characteristics of the sampled cohort. (C) Flowchart illustrating procedures by which DNA was 

isolated from cutaneous swabs and sequenced for downstream bioinformatics analyses. 
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Figure 2 Taxonomy and diversity of cutaneous viral and bacterial 

metagenomic communit ies  
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(A,B) Taxonomic relative abundance of the viral (A) and bacterial (B) communities by site over 

time. The viral relative abundance plots show the 10 most abundant taxa according to virus 

TrEMBL annotated contigs. The bacterial communities show the 10 most abundant taxa 

according to MetaPhlAn analysis. Each bar represents a single sample from a subject, with the 

bars separated by time point and anatomical location, as labeled near the top. (C,D) NMDS 

ordination plots of Bray-Curtis dissimilarities between virome (C) and whole metagenome (D) 

samples, show significant clustering (p < 0.001; adonis) by occlusion status and environmental 

substrate. (E) Alpha diversity (Shannon diversity metric) of the virome and bacterial metagenome 

for each anatomical site. The x-axis represents median bacterial metagenome diversity and the y-

axis represents median virome diversity. Each point is the median diversity for the two 

communities, and error bars indicate the population notch deviation (PND) of the median.  (F,G) 

Viral (F) and microbial (G) Shannon diversity is presented by site microenvironment and 

occlusion, with asterisks (*) indicating significance of p < 0.05 using the Kruskal-Wallis and 

multiple comparison post hoc test. Boxplots were calculated using the ggplot2 R package. (H,I) 

Intrapersonal variance compared to temporal variance of virome (D) and whole metagenome (E) 

as calculated by mean (± SEM) Bray-Curtis dissimilarity metric. A higher value indicates higher 

dissimilarity. Asterisk (*) indicates significance with p < 1.0 e -10. 
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Figure 3 Replication cycle and functional enrichment of bacteriophages on 

the skin  

(A) Euler diagram of the phage contigs (yellow) that also contain an integrase gene (green), at 

least one prophage element per 10kb (blue), homology to a known bacterial genome (red), or a 

combination of these markers. (B) Boxplot illustrating the percent relative abundance of predicted 

temperate phages per body site. Temperate phage contigs were defined as those contigs that 

contained both a phage gene at least every 10kb, as well as one of the other three temperate 

markers. Relative abundance was calculated as the relative RPKM of unassembled reads that 
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mapped back to the assembled contigs. Asterisk (*) indicates significance of p < 0.05 using the 

Kruskal-Wallis and multiple comparison post hoc test. (C) The distribution of exclusive 

operational protein families (OPFs) associated with each anatomical site. (D) The distribution and 

UniProt annotation of the 15 core OPFs found across the entire virome. (E) Bray-Curtis 

dissimilarity of the virome samples by OPF relative abundance. Clustering was significant (p < 

0.001) by the adonis test for both environmental substrate and occlusion. 
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Figure 4 Antibiot ic resistance and bacterial v irulence in the skin virome  

(A) Relative abundance of predicted antibiotic resistance genes (ARGs), according to the 

Comprehensive Antibiotic Resistance Database (CARD). Each bar represents a subject, with the 

bars separated by time point and anatomical location, as labeled near the top. (B) Flow diagram of 

the ARGs associated with bacteriophage contigs. First panel is proportion of ARGs that co-

localize on contigs with other phage genes, or are themselves known phage-associated genes. The 

middle panel shows the distribution of phage taxa that contain predicted ARGs. The rightmost 

panel shows two annotated examples of ARGs co-localized on phage contigs, with the CARD-

predicted ARGs in bold italics.  (C) Similar to B, a flow diagram of the virulence factors (VFs) 

associated with phages. As in B, the leftmost panel shows the distribution of predicted VFs 

associated with phages, middle panel shows the taxonomic distribution of those phages, and the 

rightmost panel shows an annotated example.  
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Figure 5 Modeled bacteriophage-host co-occurrence associat ions and 

CRISPR targets within the skin virome  

(A) Network analysis of the correlations between bacteriophages of the virome and bacteria of the 

whole metagenome. Bacteriophages are represented as yellow boxes, while the bacterial genera 

are represented by blue boxes. The intensity of the box color indicates the overall relative 

abundance of the taxa. The red edges represent a negative correlation and the green edges 

represent a positive correlation. (B) Radial table showing bacterial CRISPR spacers (grey) that 

Listeria phage

Unidentified Phage

Staphylococcus
p g

Dinoroseobacter phage

Enterococcus phage

Staphylococcus phage

Phage 21

Corynebacterium

Phage TP
Sphingomonas phage

Alteromonas phage

Acinetobacter phage
Tsukamurella phage

Micrococcus

Propionibacterium

Lactobacillus
Rothia

Corynebacterium phage

Propionibacterium phagea Streptococcus

Rhodococcus phage

High bacterial relative abundance

High phage relative abundance

Low relative abundance

B

Phage contigs
CRISPR spacers

Propionibacterium
Staphylococcus
Corynebacterium
Micrococcus
Segniliparus
Unclassified

CRISPR spacer host

Sample type

C

Phage
portal protein

ssDNA binding
protein

Uncharacterized
protein

ORFs
matching TrEMBL database

Spacers targeting predicted
coding region

Ra

Oc

Ax

Tw
Um

Fh
Ac

Um

Tw

Ax

Oc

Ra
Pa

Ac

Putative phage
portal protein

A



	 65	

target viral phage contigs (black). The line colors represent the CRISPR spacer bacterial host. (C) 

Flow chart depicting the phage genome regions targeted by skin bacterial CRISPRs. The leftmost 

panel shows the abundance of spacers that target a predicted coding region (ORF) within the 

phage genomes. The middle panel is the distribution of ORFs matching a gene in the TrEMBL 

reference database. The rightmost panel is the distribution of annotated coding region CRISPR 

targets.  
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Figure S1 Contig coverage, counts, and length  

A) Density histogram of each sample’s sequence count and B) median sequence length, grouped 

by skin site. The original, un-filtered raw sequence density is colored yellow, the sequence 

density following quality trimming is colored blue, human decontaminated sequence density 

(which followed quality trimming) is colored in red, and background control cleaned densities 

(which followed human filtering) is green. C-D) Whole metagenome sequence statistics with the 

same format as A-B, except PhiX was removed instead of the background control. E) The number 

of unassembled reads and F) genomic coverage of the assembled virome and metagenome (G-H) 

contigs plotted against contig length as a contour scatter plot. Dark blue indicates lower numbers 

of mapped sequences or coverage, while white indicates high sequence mapping or coverage. 
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Figure S2 Quality control  

A) NMDS ordination plot of Bray-Curtis dissimilarity between the background control samples 

(red) and experimental virome samples (blue).  The clustering of the background control samples 

was significantly different from the experimental virome samples (Adonis test; p < 0.001). B) 

Expected relative abundances of genera in the even bacterial mock community sample, compared 

to observed relative abundances from library preparation and sequencing of the mock community 

sample.  The similarity of the two profiles validates the accuracy of the sample preparation 

techniques used, such as the increase in PCR cycle number to overcome the low bacterial biomass 

of skin samples. C) Percent of reads mapping to 16S rRNA bacterial genes in the virome and 

whole metagenome. There were significantly fewer 16S rRNA gene reads in the virome 

compared to the whole metagenome. D) The percent of whole metagenome sequences mapping to 

the corresponding virome libraries (blastn, e-value < 1e-5), and vice versa. Significantly more 

sequences of the virome mapped back to the whole metagenome, than the whole metagenome 
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mapped to the virome. E) The average percentage of human contamination in the virome and 

whole metagenome datasets. There were significantly fewer reads matching the human reference 

genome in the virome compared to the whole metagenome. 
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Figure S3 Classif ication of VLPs  

A) Taxonomic order classification of VLPs, categorized by anatomic skin location. Relative 

abundance based on quantification of un-assembled reads mapping to annotated contigs. Only 

those taxa with a greater mean relative abundance of greater than 0.5% are shown. The multiple 

taxonomic hit classification (red) designates those reads mapping to contigs with multiple 

potential taxonomic identification, based on the voting-based classification scheme. Unclassified 

order (green) designates those reads mapping to contigs whose taxonomy has not yet been 

0.1

10

Exposed Intermittently
occluded

Occluded

Staphylococcus Phage

0.1

10

Moist Intermittently moist Sebaceous

0.01

1

100

Exposed Intermittently
occluded

Occluded

Propionibacterium Phage

0.01

1

100

Exposed Intermittently
occluded

Occluded

Human Papillomavirus

0.001

0.1

10

*
*

* * *
*

*
*

*
*

B C D

M
ed

ia
n 

pe
rc

en
t r

el
at

iv
e 

ab
un

da
nc

e 
(lo

g)

0.001

0.1

10

Moist Intermittently moist Sebaceous Moist Intermittently moist Sebaceous

E F G

0

25

50

75

100

Antecubital
fossa

Axilla Forehead Palm Retroauricular
crease

Occiput Toe web Umbilicus

Anatomical location

M
ea

n 
re

la
tiv

e 
ab

un
da

nc
e 

(P
er

ce
nt

)
Virus taxonomic order

Caudovirales
Multiple taxonomic hits
Unclassified order

A



	 71	

assigned at the order level, despite specific classification at other taxonomic levels. Relative 

abundance of Staphylococcus phages (B,E; green), Propionibacterium phages (C, F; blue) and 

Human Papillomavirus (D, G; red) by site microenvironment (B-D) and occlusion status (E-G). 

Asterisk (*) indicates significance of p < 0.05 using the Kruskal-Wallis and multiple comparison 

post hoc test. 
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Figure S4 Mult i-kingdom level classif ication of metagenomic sequence 

reads  

MEGAN was used to calculate relative abundance of (A) kingdom level microorganisms, (B) 

bacterial genera, (C) fungal genera, and (D) viral species by skin site. 
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Figure S5 Reference dependent viral diversity by skin microenvironment 

and occlusion status  

The taxonomic relative abundance information was used to calculate the diversity of the viral 

communities and measure their differences by skin microenvironment and occlusion status. 

Virome Shannon diversity was calculated using the R Vegan package, and differences were 

calculated using the Kruskal-Wallis and multiple comparison post hoc test. There was no 

significant difference between skin microenvironment (A) or skin occlusion status (B). NMDS 

ordination plots of Bray-Curtis dissimilarities between skin microenvironment (C) and occlusion 

status (D).  Clustering was significant (p < 0.001) by the adonis test for both sample sets. 
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Figure S6 Temporal Bray-Curt is dissimilar i t ies  

NMDS ordination plots of Bray-Curtis dissimilarities between virome (A) and whole 

metagenome (B) samples, labeled by time point.  Clustering was significant (p < 0.001) by the 

adonis test for the virome, but not the whole metagenome. C) Jaccard similarity index of each 

patient site paired over the one month sampling time. The Jaccard index was calculated using the 

inverse of the binary dissimilarity metric as calculated by the R base statistics package. 
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Figure S7 Functional enrichment of bacteriophages on the skin  

(A) GOEAST gene enrichment analysis in sebaceous samples indicating that, compared to the 

whole metagenome, the virome is enriched for known viral functions including viral latency 

functions. Increased yellow intensity indicates a stronger significance of enrichment. Red arrows 

indicate relationships between enriched elements, and empty black arrows indicate a relationship 

between an enriched and non-enriched element. Shown is a subset of the functionally enriched 

GO terms under the category “Biological Processes”. (B) The heatmap depicts KEGG modules 

(y-axis) significantly enriched (p < 0.05) in skin virome (red) and skin metagenome (green). Each 

sample is displayed as a column across the x-axis. Dendrogram (left axis) clusters each functional 

group by similar enrichment profiles. 
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3.12 Supplemental Methods  

Sample collection. The University of Pennsylvania Internal Review Board approved all 

human subject recruitment and sample collection. Sixteen healthy adult volunteers (ranging from 

23 to 53 years old, with a median age of 26 years), residing in Philadelphia, PA and surrounding 

areas, both male and female (female:male ratio, 1:1), were recruited to provide cutaneous swabs 

from 8 anatomical locations. Subjects were swabbed at two time points, with a month in between 

sampling.  Sample collection was performed following informed consent by the subject. 

Exclusion criteria included self-reported antibiotic treatment (oral or systemic) six months prior 

to enrollment, observable dermatologic diseases, and significant comorbidities including HIV or 

other immunocompromised states. Subjects were instructed to avoid hand sanitizers and 

antimicrobial soaps and skincare products for 1 week prior to sample collection appointment. 

Subjects were also instructed not to shower for 24 hours prior to sample collection appointment. 

Virome and whole metagenome samples were collected at the same time and at the same 

anatomical locations on contralateral sides of the body. Whole metagenome swabs were collected 

as described previously [28] and stored at -20°C immediately following collection. Virome swabs 

were collected using Catch-All Sample Collection Swabs (Epicentre) moistened with saline 

magnesium (SM) buffer (Crystalgen), and stored <12 hours at 4°C in 500µL SM Buffer. Virome 

swabs were prepared for short-term storage by first extracting all liquid from the swab using a 

DNA IQ spin basket (Promega) and centrifuging for one minute at 15,900xg. Chloroform (Fisher 

Scientific; 0.2 volumes) was added to the sample, gently shaken for 10 minutes, and briefly 

centrifuged. These samples were stored for a maximum of one month at 4°C until further 

processing.  

Whole metagenome isolation and purification. Whole metagenome swabs were 

incubated for one hour at 37°C with shaking and 0.5 µL ReadyLyse Lysozyme solution 

(Epicentre). Samples were subjected to bead beating for ten minutes at maximum speed on a 
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vortex mixer with 0.5 mm glass beads (MoBio), followed by a 30 minute incubation at 65°C with 

shaking. Downstream isolation and purification was performed as previously described [63]. 

VLP isolation and purification. The VLP DNA extraction protocol was slightly 

modified from a previously described method [14]. Samples were centrifuged at 21,130xg for 5 

minutes and the aqueous layer was transferred to a new sterile tube, with care taken to ensure no 

chloroform was transferred over. Samples were treated with DNase I (Invitrogen; 3 U per sample) 

and RNase A (Roche; 1.5 µg) for 1.5 hours at 37°C with gentle shaking to remove background 

host DNA. DNase I was inactivated by incubating the sample at 65°C for 10 min with gentle 

shaking. Virions were extracted by adding 50 µL sterile TE buffer (Fisher Scientific; pH 8.0), 5 

µL 0.5 M EDTA (Gibco; pH 8.0), 500 µL formamide (Fisher Scientific), and 10 µL glycogen (0.2 

mg per sample; Roche 20mg/mL) and then incubating for 30 min at room temperature. Two 

volumes of 100% ethanol were added and DNA was pelleted by centrifugation for 20 min at 

10,000 xg and 4°C. Supernatant was removed and the pellets were washed twice with 500 µL of 

70% ethanol. Pellets were re-suspended in 567 µL TE buffer (Fisher Scientific; pH 8.0) and 

stored at -20°C for a maximum of 1 month, until proceeding to the next step. DNA was extracted 

from VLPs by first removing proteins by treatment with 30 µL 10% SDS (Fisher Scientific) and 3 

µL proteinase K (Roche; 20 mg/mL) followed by incubation for one hour at 55°C with gentle 

shaking. 100 µL 5M NaCl (Sigma) was added, mixed thoroughly, followed by addition of 80 µL 

CTAB (Sigma) + NaCl solution [14], gentle inversion, and incubation for 10 min at 65°C with 

gentle shaking. An equal volume of chloroform:isoamyl alcohol (Sigma) was added to the 

sample, mixed by gentle inversion, centrifuged for 5 min at 8,000 xg at room temperature, and the 

aqueous layer was transferred to a new tube. This process was repeated with 

phenol:chloroform:isoamyl alcohol (Fisher Scientific), and then again with chloroform:isoamyl 

alcohol. DNA was precipitated by adding 0.7 volumes of isopropanol (Fisher Scientific), gentle 

inversion, and incubation at either -20°C for two hours or overnight at 4°C. DNA was pelleted by 
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centrifugation for 15 minutes at 13,000 xg and 4°C, and the supernatant was removed. The pellet 

was washed with 500 µL ice cold 70% ethanol followed by centrifugation for 15 minutes at 

13,000 xg and 4°C. Supernatant was gently removed, the pellets dried, resuspended in 20 µL TE 

buffer (Fisher Scientific; pH 8.0) and placed at -20°C for short-term storage and -80°C for long-

term storage. 

Virome and whole metagenome sequencing. Sequencing libraries were prepared 

using the NexteraXT (Illumina) library preparation kit according to the manufacturer’s 

instructions, with the exception that PCR cycles were increased to 18 for virome samples and 15 

for whole metagenome samples. Additionally, instead of using the manufacturer’s NexteraXT 

bead-based normalization protocol, we manually normalized and pooled based on DNA 

concentration and average fragment lengths. Sequencing was performed at the Penn Next 

Generation Sequencing Core on the Illumina MiSeq and/or HiSeq2500 rapid chemistry to obtain 

150 bp paired end reads.  

VLP and whole metagenome sequence quality control and pre-processing 

(Script P1, Script P2, Script R1, Script R2). Sequence data were obtained in fastq format. 

Adapters were removed using cutadapt (version 1.4.1) with an error rate of 0.1 and overlap of 10.  

Low quality sequences (quality score <33) were removed using the standalone FASTX toolkit 

(version 0.0.14) with default parameters. Sequences mapping to the human genome were 

removed from the quality-trimmed dataset using the standalone DeconSeq toolkit (version 0.4.3) 

with default parameters and the human reference GRCh37 [52]. Because a 1% spike-in of PhiX 

Control was added to the sequencing runs for quality control purposes, any sequences mapping to 

the PhiX174 genome (NCBI Accession: NC_001422) were also removed from the whole 

metagenome samples using DeconSeq.  

Background Correction. We collected mock swab control samples for every subject at 

each time point to assess overall background contamination from either reagents and/or collection 
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procedures. These mock controls were prepared and sequenced exactly as the experimental 

samples. No significant background was recovered in whole metagenome mock controls. VLP 

experimental samples and mock controls were compared to the NCBI non-redundant database 

(downloaded October 6, 2012) using blastn in the Blast-Plus toolkit [64] (version 2.2.0) with 

default parameters and e<10-3. All sample sequences whose GI-numbers matched a GI-number 

found in its corresponding control were removed, except for GI-numbers with only a single 

sequence hit.  Background control samples were strongly significantly different from skin 

samples following subtraction (Adonis test; p < 0.001). In order to identify the percentage of 

unknown reads in the virome and metagenome datasets, reads were subsampled to 2500, blasted 

against the NCBI nonredundant database (blastn, e<10-3) and input into MEGAN version 5.5.3 

[65] with default parameters.   

 Virome Quality Assurance. To estimate reduction of bacterial contamination in the 

VLP dataset compared to the whole metagenome dataset, the number of sequences in each 

sample set matching reference reads in the GreenGenes 16S rRNA gene database (accessed July 

22, 2014) were quantified using blastn (e<10-5). Previous studies have supported the utility of 

VLP DNA purification methods by comparing sequence homology between the whole 

metagenome and VLP samples [15]. Because the viruses should be a small population in the 

whole metagenome samples and a dominant population in the VLP samples, a valuable VLP 

DNA purification protocol would result in a significantly greater number of VLP sequences 

matching whole metagenome sequences. Blastn (e< 10-5) was used to quantify the number of 

virome sequences that match the corresponding whole metagenome sequence set, and vice versa.  

Mock Community Analysis.  To ensure that our library preparation and sequencing 

techniques were accurately depicting microbial community composition, we sequenced HM-

782D Genomic DNA from Microbial Mock Community A (Even Low Concentration) in parallel 

with our experimental samples.   
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 Contig Assembly. Any reads missing their corresponding paired end were removed and 

paired-end reads were concatenated into a single file and converted to fasta format. Contigs were 

assembled using the Ray Assembly toolkit [53] (version 2.3.1), using default parameters, with a 

minimum contig length of 500bp.  

 Open Reading Frame (ORF) Prediction. ORFs were predicted and extracted from 

contigs using the Glimmer3 toolkit (version 3.02) [58] and a minimum length threshold of 100 

amino acids. 

VLP sequence analysis. Taxonomic annotation and relative abundance (Script 

P4, Script R4). The translated amino acid sequences of predicted ORFs from the VLP contigs 

were matched against a custom subset of the entire UniProt TrEMBL database that contained 

only virus and phage reference genes, using blastx (e<10-5; database generation details in Script 

P4) [54]. Each contig was assigned taxonomy based on the most abundant taxa contained within 

that contig using a voting system as described previously for virus taxonomic assignment [20]. In 

brief, the voting system first annotated each ORF of a contig of interest with the best-hit virus 

taxonomy. It then compared all of the taxonomic assignments of the ORFs within the contig of 

interest, and annotated the contig with the majority ORF assignment. Contigs with less than one 

ORF per 10kb were not assigned taxonomy as this suggests a contig of only limited similarity 

[20]. Contigs without a majority ORF taxonomic assignment due to ties of multiple major taxa 

were assigned as having multiple possible taxonomic annotations. Because some contigs shared 

the same taxonomic identities, the contig table was collapsed by taxonomic identity, meaning the 

contig relative abundances were summed if they shared identity. Although the contigs shared 

taxonomic identity, we confirmed a lack of contig nucleotide redundancy by comparing all of the 

contigs to each other (blastn; e-value < 1e-25). No contigs mapped to any other contigs.	After 

contigs were assigned taxonomy, taxonomic relative abundances of the contigs were calculated 

by mapping back all unassembled reads to the contigs using Bowtie 2 (version 2.1.0) [66] with a 
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seed length of 25 and one mismatch allowed per seed. The numbers of reads mapping to each 

contig were quantified on a per sample basis. The mapped sequence counts, contig lengths, and 

total sequence counts were used to normalize the sequence counts and represent the RPKM (reads 

per kilobase per million) of each sample to the contigs. These values were used to generate an 

OTU relative abundance table (each unique contig represented an OTU), which was annotated 

with the taxonomy described above. For more details, please see the supplemental source code 

and archived intermediate files.  It is important to note that the definition of a bacteriophage 

species remains a point of active discussion, and thus a phage species was defined by the identity 

of a contig’s predicted ORFs to an existing reference phage genome. Because reference-

dependent methods of analyzing virus and phage communities can be somewhat controversial and 

rely on relatively small reference databases, we also use several reference-independent analyses, 

as described below. 

 Diversity analysis (Script P5, Script R5, Script R6). Virome alpha diversity was 

calculated using PHACCS (PHAge Communities from Contig Spectrum; version 1.1.3) [55]. 

Circonspect (version 0.2.6) was used with default parameters to calculate the contig spectrum of 

each sample [26]. GAAS (Genome relative abundance and Average Size; version 0.17) was used 

to predict the average virus genome size for each sample (e < 1e-3, database generation details in 

Script P5)[67]. Virome beta diversity was assessed using a Bray-Curtis dissimilarity matrix 

calculated from the un-annotated contig OTU relative abundance table. The data were visualized 

in 3D using the meta-MDS (k=3) optimal clustering functionality of VEGAN (CRAN) [56], and 

statistical significance was assessed using the adonis test. 

 Intrapersonal vs Interpersonal Diversity (Script R7). The contig relative abundance 

table used for Bray-Curtis dissimilarity calculation was used to calculate virome intrapersonal and 

interpersonal dissimilarity. Intrapersonal dissimilarity was defined as the Bray-Curtis 

dissimilarity measured between a specified subject’s anatomical site and that same site again one 
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month later. Interpersonal diversity was defined as the Bray-Curtis dissimilarity measured 

between a specified subject’s anatomical site and any other given site or subject from the same 

time point. Statistical significance was assessed using a two-tailed t-test.  The Jaccard similarity 

index was used to quantify the number of intrapersonal contigs shared between time points.    

 Detection of human polyomavirus (Script P6). Unassembled VLP and whole 

metagenome sequences, prior to DeconSeq human sequence filtering, were queried against a 

custom database of reference HPyV genomes, containing 61 complete HPyV genomes from the 

NCBI RefSeq and GenBank databases, obtained using the search terms "human polyomavirus 

AND complete genome”.  

Whole metagenome sequence analysis. Taxonomic annotation and relative 

abundance (Script P7, Script R8, Script R9). Whole metagenome sequences were 

taxonomically classified using MetaPhlAn version 1.7.7 [21, 68] and MEGAN version 5.5.3 [65]. 

Sequences <80 nucleotides long were removed from the quality trimmed, DeconSeq filtered fastq 

files and one of the paired reads (SE1) was input into MetaPhlAn using default parameters. 

Additionally, assembled contigs were queried against the NCBI non-redundant database (blastn; 

e<10-10) and output was run through MEGAN on the command-line (minSupport=5, 

minComplexity=0.3). 

 Diversity analysis (Script R5, Script R10). Alpha diversity was calculated in VEGAN 

using the biom table generated from MetaPhlAn output. Beta diversity was calculated in VEGAN 

using the whole metagenome contig OTU relative abundance table, utilizing the same methods as 

applied to virome samples. 

Intrapersonal vs Interpersonal Diversity (Script R10). This analysis was performed 

using the contig relative abundance table, similar to what was described above in the VLP 

analysis section.  
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Virome & bacteria metagenome diversity comparison (Script R5). The median 

virome and metagenome Shannon diversity of each anatomic site was calculated with the 

population notch deviations (PND). PND was calculated as PND=(1.58*IQR)/sqrt(N) where IQR 

is the interquartile range and N is the number of samples. This was done according to the boxplot 

notch calculation described in the ggplot2 R package [69], as well as in McGill et al [70]. 

Prediction of bacteriophage replication cycle distribution (Script P8, Script R11). 

Integrase protein references were collected from the UniProt TrEMBL and Swiss-Prot databases 

using the search terms “organism:phage AND integrase” (accessed data: September 02, 2014). 

The ACLAME database version 0.4 was used to annotate prophages [29]. Whole bacterial 

genomes were obtained from NCBI with the following path: 

<ftp://ftp.ncbi.nih.gov/genomes/Bacteria/all.fna.tar.gz>. The taxonomic summary reference 

information was obtained from: <ftp://ftp.ncbi.nih.gov/genomes/Bacteria/summary.txt>. Blastx (e 

< 10-5) was used to identify contigs containing at least a single integrase gene, contigs containing 

at least a single ORF with homology to a prophage ACLAME gene for every 10kb, and contigs 

containing at least a single bacteriophage gene every 10kb. Blastn (>90% query length with 

>90% nucleotide similarity) was used to query contigs against the NCBI reference bacterial 

genomes. Sequences were mapped back to the temperate and lytic contigs in the relative 

abundance table mentioned above.  

Functional annotation and comparison (Script P9, Script R12). One set of the paired 

end reads (SE1) for each sample was subsampled to 10,000 sequences, queried against a reduced 

KEGG reference database version 56 (blastx; max_target_seqs 1, e < 10-10 for metagenome 

samples, e < 10-5 for virome samples) [30], and input into HUMAnN[31]. ORFs subsampled at 

1000 were queried against the UniProt SwissProt database (blastx; max_target_seqs 1, e < 10-10 

for metagenome samples, e < 10-5 for virome samples) and contigs were mapped to gene ontology 
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IDs based on their hits. Annotated contigs were grouped by site microenvironment and input to 

the online Customized-GOEAST analysis tool [57] using default parameters.  

Operational protein family (OPF) & auxiliary metabolic gene analysis (AMGs) 

(Script P9, Script R13). Functional diversity and the virome core/flexible AMGs were defined 

using operational protein families (OPFs; also called protein clusters). OPFs were generated by 

clustering predicted ORFs by sequence similarity using the UCLUST algorithm [71] in QIIME 

(version 1.8.0) [72] and a 75% similarity value. A representative sequence was pulled from each 

OPF and an OPF relative abundance table was generated by quantifying the numbers of 

sequences mapping to each OPF with the Bowtie2 toolkit (seed length of 25, one mismatch 

allowed per seed). This relative abundance table was used to predict the core and flexible OPFs, 

AMGs, and beta-diversity of OPFs by skin microenvironment, as described in detail in the 

supplemental source code. Core OPFs were defined as those that were present in all samples at a 

given anatomical site (i.e. core OPFs of the forehead were defined as those OPFs present in every 

forehead sample). Likewise, overall core ORFs were defined as those OPFs present in every 

sample. 

Antibiotic resistance genes (ARGs) & virulence factor (VF) genes (Script P10, 

Script R14). Using blast algorithm parameters specified in previous human virome functionality 

studies [16, 34], we assessed antibiotic resistance potential by comparing predicted Open Reading 

Frames (ORFs) from the assembled virome contigs to the Comprehensive Antibiotic Resistance 

Database (CARD) [35] (accessed data: June 20, 2014; blastx; e < 10e-5). To further increase our 

confidence in the annotations, we filtered the blastx hits to keep only those with >75% identity.  

Bowtie 2 (seed length of 25, one mismatch allowed per seed) was used to map all single end 

reads (SE1) from each sample to the CARD-annotated ORFs.  The number of sequences mapping 

to each ORF, in addition to the total number of sequences per sample and the length of each ORF, 

were used to calculate RPKM values and create a relative abundance table. Numbers of contigs 
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containing both ARGs and bacteriophage genes were quantified, and taxonomy was assigned to 

the contigs containing ARGs. Contig annotation was performed using our custom scripts, and 

visualization of ORFs within contigs was performed in Geneious Basic [73] (Version 5.6.4). VF 

gene annotation, quantification, and visualization were implemented referencing the Virulence 

Factor Database (VFDB; Downloaded September 15, 2014) [59], following the same methods as 

ARG analysis. 

Inferred interactions between phage and bacteria (Script P11, Script R15). A 

network of correlations between the relative abundances of bacterial genera from MetaPhlAn 

output and UniProt TrEMBL classified phages was constructed with CoNet [60] in Cytoscape 

v3.1.1 [61].  Bacterial and phage abundances were input into CoNet as separate matrices and taxa 

that were not present in at least 84 samples (based on recommended computed matrix information 

and specified with the minimum row filter) were filtered, and the sum of filtered rows was 

retained.  We selected five different methods (Pearson and Spearman correlation metrics, the 

Mutual Information similarity metric, and Bray Curtis and Kullback-Leibler distance metrics) for 

ensemble inference of the network. Multiple measures were used to reduce false correlations and 

compositional biases.  Thresholds were set automatically so that each method contributed the 250 

top-ranking and 250 bottom-ranking edges to the network. P-values were computed from method- 

and edge-specific permutation and bootstrap score distributions, as follows. A random score 

distribution was generated using 100 permutations with the edgeScores routine, the row shuffling 

resampling method, and the renormalization option. The distribution was run with 100 bootstraps, 

p-values from the multiple metrics were combined using Simes’ method [74], and FDR correction 

was performed [75]. Unstable edges, with edge scores outside of the 2.5 and 97.5 percentiles of 

the bootstrap distribution, were removed.  Only interactions supported by two or more of the 

metrics specified above were retained. Network analysis was performed with the Cytoscape 

NetworkAnalyzer plugin [76].   
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CRISPR identification and comparison to the virome (Script P12, Script R16). 

Putative CRISPR arrays were identified using PilerCR [62]. Consensus repeat sequences were 

extracted from the PilerCR output and exact duplicate sequences, reverse complements, and 

repeats less than 20nt long were removed. When repeats only differed by 2 nucleotides on either 

end, the shorter repeat was retained. Spacers ≤100 nucleotides long were identified by flanking 

repeats and extracted from the metagenome individual sample contigs. In order to identify viral 

targets, the spacers were queried against each viral contig using blastn. Because the spacer 

sequences are short, matches of 97% identity or greater were required, and hits deviating >3 

nucleotides in length were rejected. Metagenomic reads containing CRISPR spacers were queried 

against the NCBI non-redundant database (blastn; e<10-10) for host taxonomic classification. 

Metagenome-virome CRISPR interaction plots were generated using Circos [77].  To determine 

whether the CRISPRs were targeting coding or non-coding regions in phage, CRISPR spacers 

were queried against ORFs from the viral contigs that the spacers mapped to (blastn; e<10-10, 

97% identity). ORFs targeted by spacers were queried against the UniProt TrEMBL database 

using blastx (e<10-10).     
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CHAPTER 4 – An Introduction to Current Concepts and Ongoing Research in the 
Prevention and Treatment of Open Fracture Infections 

 

The contents of this chapter have been published as: 

Hannigan GD, Pulos N, Grice EA, Mehta S. 2014. Current concepts and ongoing 

research in the prevention and treatment of open fracture infections. Advances in Wound 

Care. doi: 10.1089/ wound.2014.0531. 

 

4.1 Abstract 

4.1.1 Significance 

Open fractures are fractures in which the bone has violated the skin and soft tissue. Because of 

their severity, open fractures are associated with complications that can result in increased lengths 

of hospital stays, multiple operative interventions, and even amputation. One of the factors 

thought to influence the extent of these complications is exposure and contamination of the open 

fracture with environmental microorganisms, potentially those that are pathogenic in nature. 

4.1.2 Recent Advances 

Current open fracture care aims to prevent infection by wound classification, prophylactic 

antibiotic administration, debridement and irrigation, and stable fracture fixation. 

4.1.3 Critical Issues 

Despite these established treatment paradigms, infections and infection-related complications 

remain a significant clinical burden. To address this, improvements need to be made in our ability 

to detect bacterial infections, effectively remove wound contamination, eradicate infections, and 

treat and prevent biofilm formation associated with fracture fixation hardware. 

4.1.4 Future Directions 

Current research is addressing these critical issues. While culture methods are of limited value, 

culture-independent molecular techniques are being developed to provide informative detection 
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of bacterial contamination and infection. Other advanced contamination- and infection-detecting 

techniques are also being investigated. New hardware-coating methods are being developed to 

minimize the risk of biofilm formation in wounds, and immune stimulation techniques are being 

developed to prevent open fracture infections. 

 

4.2 Scope and Signif icance 

Open fractures occur when bone is exposed through skin as a result of bone breaking through skin 

or wound penetration with fractured bone exposure. While multiple factors may influence open 

fracture rate, a recent study reported an incidence of 30.7/105/year [1]. Open fractures have 

multiple causes, often occur in extremities, and are most severe in lower legs and feet (Fig. 1A–

C). Infection rates also vary, but have been reported as 2.3% with effective antibiotic treatment 

[2]. Because of their severity, open fractures are associated with complications, including longer 

hospital stays, multiple operative interventions, and amputations (average amputation lifetime 

healthcare costs over $500,000.) [3]. 

 

4.3 Translat ional Relevance 

Microbes are known to complicate open fracture healing through infections and biofilm 

formation, as well as potentially playing roles in nonunion/malunion cases [4]. Further, while the 

importance of microbes in open fracture healing is accepted as significant, there is still little 

known about how or what microbes affect these wounds, or how we can use microbes 

diagnostically to predict complications and better inform treatment. The goal of current research 

is to address the deficiencies in the current paradigms of open fracture care, and to improve 

prevention and treatment of open fracture infection. 

 

4.4 Clinical Relevance 
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Microbial contamination and infection are common concerns in all wound care scenarios, but 

open fractures are at a higher risk for infection and other microbe-related complications. Open 

fractures are often the result of high-energy events that result in severe bone and soft tissue 

damage, thereby leading to significant risk of infection. Open fracture care focuses on effective 

management, especially in the early stages, with the goal of minimizing complications caused by 

microbial contamination. 

 

4.5 Discussion 

4.5.1 Current concepts in open fracture care and infectious risk minimization 

Open fractures are at a high risk for infection and other complications, and the steps taken during 

initial treatment have a significant impact on the overall outcome. This impact has been 

evidenced as a decrease in infections and other complications as the result of effective fracture 

classification, prophylactic antibiotic administration, early debridement and irrigation, and proper 

fracture fixation. In this section we will further discuss the importance of initial wound 

management, highlighting the current concepts in open fracture care and the standard treatments, 

both prophylactic and therapeutic, for infections during open fracture healing. 

 

4.5.1.1 Open fracture classification and diagnosis 

The initial description and evaluation of the wound is important for informing downstream 

actions and standardizing descriptive measures among the medical professional community. 

Several classification methods have been proposed for the description and evaluation of open 

fractures. The most frequently quoted and widely used scheme was first described by Gustilo and 

Anderson [5], and later modified to its current form by Gustilo et al. (Table 1) [6]. This 

classification system involves the intraoperative scoring of open fractures from one to three in 

ascending order of severity, with a Type I injury involving a small soft tissue wound, Type II 
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involving a large wound with little soft tissue damage, and Type III involving extensive soft 

tissue damage. Examples of Type II and Type III severity are shown in Fig. 2. Type III wounds 

are further subcategorized into three subgroups, with Type IIIa fractures having extensive soft 

tissue damage with adequate soft tissue coverage, Type IIIb fractures having extensive soft tissue 

damage requiring transfer of soft tissue to cover the defect, and Type IIIc being the most severe 

due to extensive arterial damage requiring vascular repair. The severity of the open fracture, as 

scored by the Gustilo and Anderson classification system, is associated with the rate of infection 

and therefore has prognostic value [5-7]. 

 

Oestern and Tscherne proposed a classification system based on fracture type and soft tissue 

damage for both open and closed fractures (Table 2) [8]. Additionally, the Association for the 

Study of Internal Fixation (translated from the German “Arbeitsgemeinschaft für 

Osteosynthesefragen” and abbreviated as the AO Foundation) has published a classification 

system that is designed to provide information about both the soft tissue and bone damage of the 

open fracture (Table 3) [9, 10]. This scheme considers the damage done to skin, the muscle 

tissues and tendons, and neurovascular system, overall making this a comprehensive and accurate 

classification scheme [9, 10]. While both classification methods are valuable, the Gustilo and 

Anderson classification scheme remains the most widely used due to its simplicity and 

familiarity. 

 

4.5.1.2 Prophylactic antibiotic administration 

Once an open fracture has been identified and loosely classified in the resuscitation bay or 

emergency room (typing of open fractures is most accurate in the operating room), treatment with 

antibiotics is initiated to minimize the risk for infection. Obvious gross contamination is also 



	 96	

removed at this time. These treatments are performed as early as possible after the traumatic 

event in order to minimize infection and other complications. 

 

Infections and bacterially related complications are important concerns when treating open 

fractures. In fact, the Gustilo and Anderson study of 1976 reported positive initial bacterial 

cultures in 70.3% of the 158 prospectively observed open fractures.5 Because bacterial 

colonization was strongly associated with open fractures, orthopedic professionals accepted, 

without evidence, that prophylactic antibiotics would lower the risk of wound infection. Attempts 

to address the utility of prophylactic antibiotics yielded weak and conflicting results until 1974, 

when Patzakis et al. reported a reduction in open fracture wound infections from 13.9% in 

patients without antibiotic treatment, to 2.3% when patients were treated with cephalothin 

antibiotics [2]. This study strongly supported the need for prophylactic antibiotic use. The study 

also illustrated the importance of understanding the administered antibiotics because, while 

cephalothin antibiotics were significantly effective in reducing infection rate, the patients treated 

with penicillin and streptomycin did not show a significant reduction in infection rate (a 

nonsignificant reduction from 13.9% in nontreated patients to 9.7% in penicillin and streptomycin 

treated) [2]. Patzakis et al. used antibiotic resistance culture techniques to show this was at least 

partially due to penicillin and streptomycin resistance. Other studies have since highlighted other 

important considerations when deciding an antibiotic regimen. 

 

Deciding an appropriate antibiotic course requires an understanding of the bacteria most likely to 

colonize wounds. Both Patzakis et al. and Gustilo and Anderson found that, when culturing 

wound infections, staphylococci (specifically coagulase positive staphylococci such as 

Staphylococcus aureus) were the most commonly isolated organisms [2, 5]. Because these 

bacteria appeared to be the most likely causes of infections, they suggested that prophylactic 
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antibiotics should target Gram positive bacteria, and most especially staphylococci. The benefits 

of prophylactic antibiotic use against Gram positive bacteria have since been supported by other 

series [11-13]. While research supports the benefits of prophylactic antibiotics that target Gram 

positive bacteria, there is insufficient evidence to support the prophylactic use of Gram negative 

antibiotics [9, 13, 14]. As Gram negative bacteria become more prevalent in open fracture 

infections, including Acinetobacter baumannii and Pseudomonas aeruginosa, research addressing 

the prophylactic benefits of Gram negative antibiotics will become increasingly important. 

 

Another concern is the increasing threat of acquisition of antibiotic resistance by bacteria. The 

continued emergence of methicillin-resistant S. aureus (MRSA) has brought new considerations 

to prophylactic antibiotic treatment of open fractures [14]. Various rates of MRSA colonization of 

the nares have been reported, with a high rate of 7.4% in healthy university students in 2009 [15], 

and general rates being around 1–2.5%.16–20 MRSA colonization in the nares, axilla, and groin 

has been suggested to increase the risk of MRSA infection at surgical wound sites [14, 16], and 

nasal decolonization treatments, paired with antibiotic prophylaxis, have been shown to reduce 

the risk of MRSA infection in some cases [17]. Although the benefits of prophylactic antibiotic 

regimens that target MRSA have not yet been established, this will likely continue to be an 

important consideration as surgeons decide the best prophylactic antibiotic regimens to 

administer [14]. 

 

In addition to MRSA, there is also an increasing concern about other antibiotic-resistant bacteria, 

including Acinetobacter, Klebsiella, Pseudomonas, and Enterobacter, which are present in open 

fractures[18] and are known to be potentially infectious agents of open wounds [19-21]. Notably, 

pan-resistant strains of the significant hospital pathogen A. baumannii have emerged, developing 

resistance to colistin, the drug of last resort [22]. Antibiotic-susceptible and -resistant A. 



	 98	

baumannii infections have continued to increase in prevalence over the past decades, both in 

military and civilian settings [23-25]. Because the antibiotic-resistant profiles of A. baumannii 

and other potentially antibiotic-resistant bacteria can vary geographically, orthopedic clinicians 

must consider the local potentially pathogenic bacteria and the local antibiotic-resistance profiles 

associated with those bacteria, as has been suggested for treating open fracture A. baumannii 

infections [20]. 

 

While it is important to predict what prophylactic antibiotics will be most effective, it is also 

important to understand the ideal administration timeline. This timeline includes the ideal gap 

length between patient presentation and antibiotic administration, and duration of antibiotic 

administration. Most surgeons agree that prophylactic antibiotic treatment should be started as 

soon as possible [7, 9, 14]. The key study by Patzakis and Wilkins showed that the most 

important treatment in preventing open fracture infection is prophylactic antibiotic administration 

[7]. The group showed that the patients who were treated prophylactically with antibiotics within 

3 h were less likely to develop infection, and this timeframe is still used today. 

 

While ideal time to administration is straightforward, ideal duration of therapy is less clear. One 

study has suggested that antibiotic treatment should be continued for 3 days after initiation [26], 

while another study argues that 24 h is no less effective than 72 h [27]. Currently, authors advise 

that antibiotic treatment should be continued for at least 24 h, and may be continued for up to 72 h 

[9, 13, 14]. A concern with longer antibiotic administration times (i.e., 72 h) is that the increased 

exposure may promote antibiotic resistance among the bacterial populations, which has been 

shown to occur in some cases [9, 13]. Further research will be required to provide definitive 

responses to these concerns. 
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4.5.1.3 Debridement and irrigation 

In addition to prophylactic antibiotic administration, wound debridement and irrigation are 

important procedures for preventing open fracture infection. The goal of open fracture surgical 

debridement is the excision of environmental debris, devitalized soft tissue, and bone, as well as 

irrigation of the wound to reduce bacterial load. The three major considerations are ideal timing 

between injury and debridement, the extent of debridement, and the irrigation materials to be 

used. 

 

The recommended time to debridement after injury is dictated by the “6-h rule.” The 6-h rule is 

an orthopedic rule of thumb that claims that, to be effective, open fracture debridement should be 

conducted within 6 h after the injury. While this rule is widely accepted, little scientific evidence 

supports it. The 6-h rule was started by Friedrich, who utilized a guinea pig model and reported 

decreased risk of infection when contaminated soft tissue wounds were debrided <6 h after 

contamination. This suggested that debridement earlier than 6 h resulted in lower infectious risk 

[28]. Recent literature, including human studies, has not supported the Friedrich claims, and 

while further study is needed, it seems that there is no increased risk of infection in delayed 

debridement cases [9, 29]. Despite these recent findings, most surgeons recommend immediate 

debridement of highly contaminated types II and III open fractures [9]. 

 

Irrigation is an important supplement for aggressive debridement of necrotic tissue and particulate 

matter because it further removes particulate debris and bacteria from the wound. The specifics of 

what materials should be used, and to what extent irrigation should be performed, remain a topic 

of debate. These discussions focus on whether soaps, antiseptics, or antibiotics should be included 

in the irrigation saline, and whether pulsatile lavage should be used. Pulsatile lavage is a point of 



	 100	

concern because it may drive bacteria further into soft tissue and cause microscopic damage to 

the soft tissue, and thereby impede healing and increase the risk for infection. 

 

Most surgeons irrigate open fracture wounds using sterile saline alone, saline in combination with 

soap, saline in combination with antiseptic chemicals, or saline in combination with antibiotics. 

Although one might intuitively think that chemical additives would eliminate more bacteria and 

decrease the risk of infection, they are found to be ineffective. Antiseptic compounds are known 

to destroy bacteria, but studies have yielded conflicting results regarding their beneficial effect on 

wound healing and infection rate compared to saline solutions alone [30, 31]. In fact, antiseptics 

may be toxic to the human host cells, which could limit their efficacy due to host damage [30, 

31]. Like antiseptics included in saline, the beneficial effects of human wound irrigation using 

antibiotics with saline has been unconvincing [30, 32]. 

 

Unlike antiseptics and antibiotics that destroy bacteria, soaps facilitate the physical removal of 

bacteria. Studies suggest that the use of soap with saline is just as, if not more, effective compared 

to antibiotic saline solutions [32-34]. Because antibiotic and antiseptic use in saline can add 

additional cost to treatment, may promote antibiotic resistance, and may harm the human host 

tissue, orthopedic clinicians recommend the use of soap with saline when irrigating wounds [9]. 

 

The pressure used in open fracture irrigation is just as important as the solutions used. The 

benefits of low-pressure gravity irrigation or high-pressure pulsatile lavage in open fractures 

remain a point of discussion. While high-pressure pulsatile lavage seems attractive because it is 

thought to better remove entrenched bacteria and debris, the high pressure may push bacteria 

further into the tissue. High-pressure irrigation may also heighten the risk of healing 

complications because it damages the surrounding human tissue. Although bacteria and debris 
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may be more effectively removed from wounds using high-pressure pulsatile lavage [35], others 

have argued that high-pressure pulsatile lavage does in fact push bacteria further into tissue and 

increases the numbers of bacteria retained in the wound [36]. Additionally, there has been 

significant research to suggest that high-pressure pulsatile lavage damages human tissue, thereby 

increasing risks for complications, infections, and delayed healing [36, 37]. Together, the effects 

of high-pressure irrigation are seen as more destructive than helpful, and low-pressure irrigation 

is recommended [9]. 

 

Volume of irrigation solution used is also an important consideration. In 2001, Anglen proposed 

increasing volumes of irrigation for more severe wounds. Given the availability of 3-L irrigation 

bags, he proposed 3 L for Type I fractures, 6 L for Type II fractures, and 9 L for Type III fractures 

[30]. This is the method currently used by most surgeons. 

 

4.5.1.4 Internal and external fracture fixation devices 

After the initial treatment of the wound, attention turns to fracture reduction and fixation. Not 

only is fracture reduction (anatomical realignment of fracture fragments) important for proper 

bone union and healing, stabilization of the fractured bones limits soft tissue damage. Anatomic 

reduction mediates the inflammatory response, decreases hematoma volume and dead space, and 

allows for tissue revascularization. 

 

The utilization and efficacy of various fracture fixation techniques differs based on the 

anatomical location and severity of the injury. There are three general methods to fixing fractures: 

plate fixation, intramedullary (IM) nailing, and external fixation. Examples of IM nailing and 

external fixation are shown in Fig. 3. Both plate fixation and IM nailing are internal fixation 

approaches, while external fixation is external, as the name suggests. Due to the high rates of 
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complications and concerns for periosteal blood supply damage associated with plate fixation 

methods, they have been largely replaced by IM nailing and external fixation techniques for 

lower extremity diaphyseal fractures [38]. However, plates are still commonly used for 

periarticular fractures and open fractures of the radius and ulna, as it becomes more important to 

get an anatomic reduction. For example, internal plate fixation has been shown to be more 

effective than external fixation in the treatment of distal radius fractures [39]. 

 

The external fixation technique involves the insertion of threaded pins into the fractured long 

bones through the skin (Fig. 3B). These screws are attached to external hardware that provides 

stable fracture fixation. The advantages of the external fixation approach are that it allows for 

rapid fracture stabilization, avoids placement of internal hardware, and minimizes further soft 

tissue damage by placing screws outside the zone of injury. Pin-track infections, concerns about 

fracture malalignment, and poor patient compliance limit its use for definitive fixation. External 

fixation is now more commonly used for temporary fixation of fractures while the surgeon awaits 

the soft tissues to recover, eventually converting to internal fixation. 

 

IM nailing is an internal fixation approach for long-bone fractures, in which a titanium or 

stainless steel rod is placed into the reamed or unreamed medullary canal of a long bone (Fig. 

3A). This rod is secured in place and serves as an internal scaffold around which bone can heal. 

The advantage to the IM nailing technique is that it offers effective bone fixation that maintains 

length, alignment, and rotation, and also allows for earlier weight bearing. Though reamed 

femoral nailing is the gold standard for closed femoral shaft fractures [40], concerns about 

infection risk in open fractures have been raised [41]. However, two prospective randomized 

trials do not show a significant increase in infection risk when using a reamed, locked IM nail for 

treatment of open tibial shaft fractures [42, 43]. With different technical advantages to each 
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fracture fixation technique, the surgeon must take into account fracture pattern and soft tissue 

injury when deciding which method will best provide a positive functional outcome [38, 44]. 

 

4.5.1.4 Treatment of fracture and soft tissue infections 

Following initial classification, prophylactic antibiotic administration, surgical debridement and 

irrigation, and fracture stabilization, the open fracture wound may still become infected. In this 

case the patient is most often treated with intravenous antibiotics to suppress and eliminate the 

infection. Depending on the nature of the infection (the severity, location, and depth), the fracture 

fixation hardware may be left in place until the fracture heals, and will be removed after healing. 

If the infection is more severe, then the hardware may have to be removed, the wound will be 

debrided in addition to local antibiotic administration, and the hardware will be reinstalled after 

the infection has been cleared. Another common infectious concern is the formation of biofilms, 

which can occur rapidly on medical devices as well as host substrates like bone. 

 

4.5.2 Ongoing research and the future of open fracture care 

Although there are many established treatment paradigms in place for open fractures, infections 

and other complications remain a present threat. Research to improve these treatments remains 

ongoing. Now that we have discussed the more established concepts in current open fracture care, 

we are going to move our focus toward the ongoing dilemmas facing open fractures and infection 

prevention/treatment, and the research aimed at finding solutions. 

 

4.5.2.1 Detection of bacterial contamination at time of injury 

One of most comprehensive problems in management and treatment of open fractures is 

identification and quantification of microbial contamination at time of injury. Identifying 

microbial biomarkers indicative of complication risk would also better inform open fracture 
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management. Surveillance cultures at the time of presentation have little value in predicting what 

organism will cause a downstream infection. One study that illustrated this limited predictive 

value of surveillance cultures was a prospective clinical study by Valenziano et al [45]. The group 

collected swabs from open fractures upon patient presentation to the hospital (before antibiotic 

intervention), obtained aerobic and anaerobic cultures from the samples, and examined 

correlations between the cultures and the patient progressions to infection. Only 24% of the 

surveillance cultures resulted in growth. Additionally, 77% of the infected wounds yielded 

negative cultures, and none of the cultured organisms matched the infectious organisms. This 

suggested an inability of surveillance cultures to reliably predict the infectious organisms of open 

fractures. This inability of surveillance cultures to accurately predict the infectious organism has 

been supported by other studies [45-48]. 

 

While surveillance cultures have limited value in predicting downstream infectious organisms, 

some studies have suggested a value in surveillance culture bacterial load quantification. This was 

recently addressed in a retrospective study conducted by Burns et al. in a combat environment. 

The group took a similar approach to that mentioned previously, by attempting to find 

correlations between surveillance cultures taken during initial wound debridement and the later 

development of infections. Burns et al. found that the positive surveillance cultures were not able 

to accurately predict the infecting organism, as has been shown before. However, 38.7% of the 

culture-positive patients went on to infection, while only 11.5% of the culture-negative patients 

developed infection, and this correlation between a positive bacterial load culture and progression 

to infection was found to be significant. This therefore suggested that quantitative bacterial 

culturing may have limited value in predicting general infection. Other studies have also 

demonstrated the value of quantifying bacterial loads of wounds for general infection prediction, 

either through the use of quantitative Gram staining or more commonly through the use of 
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quantitative culturing [48-51]. The samples used for these bacteria quantifications were either 

wound swabs, wound effluent, or debrided tissue. 

 

The timing of sample collection for quantification, such as whether the sample is collected before 

or after debridement, may be important and this may explain some different results reported in the 

literature. In a study by Merritt, the surveillance cultures for bacterial load were shown to have 

predictive value when taken as the patient was leaving the operating room (after the wound was 

debrided, irrigated, and cleaned), but not when taken as the patient entered the operating room 

(the sample was taken during debridement) [51]. This suggested that the timing of surveillance 

culture sampling may be important. Although this study was conducted many years ago, the 

importance of sampling timing will likely remain a point for further investigation. 

 

4.5.2.2 Advances in molecular analysis of bacterial contamination at time of injury 

The advent of next-generation sequencing platforms, with increased throughput and decreased 

costs, has enabled approaches that do not rely on cultures for bacterial identification. Based on 

the DNA sequence of the prokaryote-specific 16S small subunit ribosomal RNA (rRNA) gene, 

culture-independent sequencing methods eliminate biases associated with cultures. Our group 

recently reported an ongoing pilot study that is using such approaches to understand the bacteria 

associated with open fractures [52]. This study utilized high-throughput sequencing of the 

bacterial 16S rRNA gene to characterize 30 open fractures, and was able to correlate specific 

bacterial taxa and community dynamics with time points and other clinical factors, including the 

anatomical wound location and patient progression to healing complications. The data can also be 

used to visualize the differences in bacterial communities between anatomical sites, and between 

the wound and healthy skin, at presentation of the patient to the emergency room (Fig. 4). It also 

shows that healthy skin communities are dominated by Corynebacteriaceae and 
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Staphylococcaceae bacteria, while the wound communities are not strongly dominated by any 

particular bacteria (Fig. 4). Because this was a pilot study, the prognostic value of certain 

bacterial abundances or community compositions were not addressed, but this will be an obvious 

next step as more patients are enrolled and as more follow-up information is collected until the 

end of each patient's healing process. Overall, this study is allowing for more robust, detailed 

studies of the communities associated with open fractures. 

 

Just as it is important to understand the specific bacteria that contaminate open fractures and 

cause infectious complications, it is also important to understand the ecology of open fracture 

wound bacterial communities. Up to this point, individual-cultured bacteria have been primarily 

considered either harmful or potentially pathogenic. In fact, not all bacteria are harmful, and some 

can be beneficial. Having a better understanding of these harmful and beneficial groups will 

improve further therapeutic development. 

 

Changes in the human microbiome have been associated with a multitude of inflammatory 

diseases and states, including inflammatory bowel disease, acne vulgaris, and atopic dermatitis 

[53, 54]. In these cases, disease states are associated with alterations in the bacterial community 

structure, an alteration referred to as “dysbiosis.” Together, these examples illustrate that the 

entire microbial community, not just the potentially pathogenic or opportunistic microorganisms, 

influences host–microbe homeostasis. Further, commensal bacteria are thought to promote health 

in many ways, including competitive inhibition of potentially opportunistic and/or pathogenic 

microorganisms, educating and modulating the host immune response, and through the 

production of compounds that inhibit growth of potential pathogens, such as antimicrobial 

peptides. Work toward understanding the open fracture microbiome, and the beneficial and 

harmful bacteria in that community, remains ongoing. 
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Perhaps one of the most basic culture-independent, molecular methods is the estimation of 

bacterial load using quantitative polymerase chain reaction techniques. This method involves the 

quantification of the 16S rRNA gene sequences present in a wound swab or other sample type. 

This method is also ideal as a basic starting point because it does not require any sequencing of 

the bacterial genome, as primers are designed to regions of the 16S rRNA gene that are conserved 

throughout a broad range of prokaryotic taxa. Although this method is used in research 

laboratories [4, 52], it has not yet been implemented in clinical settings. 

 

Another high-throughput approach to understanding host–microbe homeostasis in traumatic 

injury was reported in a recent study by Chromy et al., who investigated the utility of global 

protein profiling approaches for identifying host biomarkers [55]. Wound effluent was collected 

prior to, and shortly after, surgical debridement. Twenty-five proteins were significantly 

differentially expressed between uneventful healing and complicated healing groups, many with 

established roles in regulating inflammatory and immune responses. For example, increased 

expression of complement C3 protein was associated with dehisced wounds, a similar finding to a 

chronic wound model in which complement genes were upregulated [56]. Excessive complement 

activation can be damaging to the host and has been linked to myriad inflammatory and 

autoimmune conditions [57]. Although these identified host biomarkers need further validation in 

open fracture settings (only one open fracture was included in the study of 19 patients with severe 

traumatic injury), this general approach is promising as a readout of the host immune response 

and may enable identification of protein biomarkers with predictive and/or prognostic value. 

 

4.5.2.3 Techniques and methods for contamination eradication 
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While it will be important to continue to improve methods for diagnosing contaminated wounds 

and predicting their outcomes, it will also be important to improve methods for eradicating 

contamination from open fracture wounds. Open fracture infection is currently prevented through 

the minimization of contamination, often practiced as aggressive wound debridement, irrigation, 

and prophylactic antibiotic administration. The use of local antibiotic therapy for severe open 

fractures (Type IIIB and Type IIIC) has been shown to reduce the incidence of infection in a 

series of 1,085 open fractures.62 Ostermann et al. used aminoglycoside-impregnated 

polymethylmethacrylate (PMMA) beads to provide high local concentrations of antibiotics. 

Because PMMA is not bioabsorbable, the length of implantation remains controversial and 

requires retrieval. Bioabsorbable antibiotic delivery vehicles may eliminate the need for 

reoperation and removal [58]. 

 

4.5.2.4 Assessment of open fractures for infection 

Just as it is important to accurately diagnose bacterial contamination at the time of injury, it is 

also important to accurately assess wounds for infection. Although it may seem the assessment of 

infection should be obvious, this remains a difficult procedure. In fact, a series of studies that 

began in 1995 showed that, in cases of otitis media, inflammatory and bacterial cells could be 

observed by microscopy, the presence of bacteria could be confirmed by 16S rRNA gene 

quantification, and the presence of live bacteria could be confirmed by mRNA quantification, but 

the majority of bacterial cultures remained negative [59]. Due to these inaccuracies, culture 

methods alone are not sufficient to properly diagnose an infection. In fact, no single method is 

sufficient for infection diagnosis and multiple methods must be used for proper diagnosis [59-61]. 

Methods for the assessment of infections include repeated measurements of immune-related 

markers (i.e., C-reactive protein and erythrocyte sedimentation rate), culturing, histopathology, 

X-ray imaging (diffuse periosteal reaction, fracture delayed union or nonunion, or loosening of 
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pins indicates potential infection), nuclear imaging of 99mTc accumulation, and computed 

tomography, including magnetic resonance imaging and positron emission tomography methods 

[59-61]. Because of the level of specialty required, infectious disease teams will often coordinate 

with the orthopedic team, when available, to identify and provide the most appropriate treatment. 

An overview of the mentioned methods for detecting open fracture bacterial contamination and 

infection can be found in Table 4. 

 

4.5.2.5 Prevention of biofilm formation on hardware 

A specific infectious interest to orthopedic clinicians is the prevention of biofilms on fracture 

fixation hardware. Biofilms are complex communities of bacteria that create extracellular 

polymers that allow them to adhere to each other, as well as to implanted devices. Biofilms are a 

particular concern in open fractures, as well as other implant settings, because they are difficult to 

eradicate. Most antibiotics are unable to penetrate into biofilms, thereby weakening the primary 

line of attack. Biofilms also make the enclosed bacteria resistant to most effects of the host 

immune system. Additionally, the close proximity of biofilms creates an environment that 

promotes horizontal gene transfer, including transfer of antibiotic resistance and other virulence 

factor genes [62]. Culture identification of microorganisms forming a biofilm is challenging, as 

those microbes forming the biofilm rely on microbe–microbe interactions, and are thus difficult to 

isolate as individual planktonic colonies. Additionally, biofilms are usually polymicrobial, and 

are often collections of Gram positive and negative bacteria, which makes their culture 

identification and treatment particularly difficult. 

 

Biofilms are polymicrobial and maintain a “supragenome” that is necessary for the overall 

biofilm survivability [63]. This means that biofilms are complex communities of bacteria that, 

together, express the genes needed for biofilm formation and maintenance, but no single bacteria 
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has all of the required genes; the genetic burden is shared among the community [63]. Because of 

the metagenomic synergy, bacterial diversity, horizontal gene transfer, and overall genomic 

diversity associated with biofilms, almost any bacteria is capable of forming a biofilm. All of 

these factors contribute to the difficulty in treating biofilm infections. Overall, the best approach 

is to prevent biofilm formation in the first place. 

 

Open fractures are at a higher risk for biofilm infections compared with closed fractures, likely 

because they have a greater burden of contamination and deficient immune responses. Incidence 

of biofilm formation after open fracture internal fixation may exceed 30% [60]. Prevention of 

biofilm formation is important because biofilms can delay healing, propagate complications, and 

increase treatment costs. While there are multiple methods to prevent biofilm formation, 

including prophylactic antibiotics and accurate detection of potential biofilm-forming bacteria 

(both discussed previously), we will focus on hardware coatings that can deter or prevent 

bacterial adhesion and biofilm formation. 

 

Biofilm-prevention studies are conducted on many different types of devices, but recently the 

group of Williams et al. reported an effective antimicrobial coating that was tested in a type IIIB 

open fracture sheep model [64]. The coating reported in this study was an active release 

compound (meaning the coating continuously releases the antimicrobial compounds into the 

surrounding tissue) that was composed of silicone polymer and an active release antimicrobial 

agent called cationic steroid antimicrobial-13. Williams et al. found that their coated fracture 

fixation devices prevented 100% of infections when challenged with biofilm inocula in the open 

fracture sheep model, and 100% of the uncoated devices went on to infection. This particular coat 

shows promise and warrants further investigation. 
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Other coat-based approaches to preventing biofilm formation include the use of antisense 

molecules that can target and silence bacterial virulence factor genes, the use of quorum sensing 

inhibitors, and even coating with bacteriophages (viruses that only target and destroy bacteria), 

which are capable of penetrating biofilms [62]. Additionally, the use of ultrasound or electric 

currents may be effective in disrupting biofilms to allow for antibiotic or antimicrobial compound 

penetrance [62]. The use of external fixation devices as discussed previously, when possible, is 

another way to reduce the risk of biofilm formation. External fixation devices can potentially 

reduce the risk for infection because the pins are placed outside of the zone of injury, because 

they have a smaller surface area, and because they are never permanent. Because pin-site 

infections are common, these devices' values are also limited. 

 

4.5.2.6 Difficulties in elimination of infection and biofilm destruction without sacrificing 

construct stability 

When biofilm infections do occur on internal fracture fixation hardware, the treatment must 

balance the risks of fostering infection with the benefits of fracture stability. As mentioned 

earlier, treatment of biofilms is particularly difficult because the structure protects the bacteria 

from antibiotics and host immune responses. The choice to remove hardware to treat a potential 

hardware biofilm infection depends largely on the state of bone healing. If the patient's bone has 

sufficiently healed, then the hardware is removed and the patient is treated with antibiotics. The 

case becomes more difficult when the bone has not sufficiently healed. 

 

If the patient's bone has failed to heal, then the surgeon must make a decision as to whether the 

hardware should remain until the bone has healed, or to remove the hardware, treat the infection 

(often with local antibiotics actively released by a PMMA vehicle), and install new hardware to 



	 112	

stabilize the fracture after the infection has cleared. This can be a difficult choice and in many 

cases an infectious disease specialist is consulted. 

 

4.5.2.7 Increased risks of infection due to deficient immune responses in open fractures 

One of the major ways open fracture wounds are left more susceptible to infection is their 

deficient immune response. While there are multiple deficiencies in the local immune responses 

after an open fracture, one of the deficiencies is decreased function of T helper 1 (TH1) 

lymphocytes. TH1 lymphocytes are important modulators of the cellular immune response, as 

well as the production of complement-fixing antibodies [65]. This deficiency in TH1 

lymphocytes has been linked to the reduced ability of open fractures to resist infections, and 

attempts to restore TH1 function in open fractures have resulted in increased resistance to 

infection in animal models [65, 66]. This knowledge has led some groups to attempt to prevent 

open fracture infection by modulating the immune system. 

 

In 2012, a group led by Boyce et al. attempted to therapeutically modulate the immune response 

in an open fracture rat model, in which the rats' femurs were fractured using a custom apparatus 

[65]. The group used IL-12 to modulate the immune response because IL-12 is known to play a 

role in naive T lymphocyte differentiation into TH1 lymphocytes, which would therefore 

stimulate the wounds' immune response and address their deficiency in TH1 lymphocytes. After 

femur fracture, the group inoculated the wounds with clinical isolates of S. aureus and treated the 

rat wounds with percutaneous injections of placebo, IL-12, ampicillin antibiotic, or a combination 

of IL-12 and antibiotic. The group found that, although the antibiotic treatment was more 

effective than IL-12 alone in preventing infection, the combination of IL-12 and antibiotic was 

more effective than the antibiotic treatment alone. This suggests that the use of IL-12, in 

combination with antibiotic treatment of open fractures, may improve the wound's resistance to 
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infection. While this was only an animal model study, it warrants further investigation into using 

immune-modulating cytokines to improve the efficiency of prophylactic antibiotic, or other 

antibiotic treatments. 

 

The same group, led by Li et al., also investigated the efficacy of coating implant devices with IL-

12 to prevent biofilm formation and infection by stimulating the immune system as described 

previously [66]. The group used the rat femur fracture model and S. aureus bacterial challenge 

model as described previously. Metallic wires were used as IM nails at the fracture sites. Half of 

the rats received wires coated with IL-12 and the other half received uncoated wires. The results 

showed that rats who received IL-12-coated wires had significantly lower rates of infection, and 

those rats also had better bone quality and improved healing as assessed by three blinded, 

orthopedic surgeons. This report supports the benefits of IL-12 as coatings on implant devices, 

such as IM nails, and warrants further investigation. 

 

4.5.3 Conclusions and perspectives 

Due to exposure to the external environment, the extended duration of required healing, and 

suppressed immune responses, open fractures are at significant risk for infectious complications. 

A major focus of current open fracture care is minimization of this infectious risk. During initial 

treatment, infectious risk of the open fracture is reduced by properly categorizing the wound, 

treating the patient with prophylactic antibiotics, debriding and irrigating the wound, and 

stabilizing the fracture with appropriate hardware. 

 

The early detection of bacterial contaminants continues to be a focus of current research. 

Unfortunately, contemporary surveillance culture methods are unable to reliably predict the 

bacteria that will lead to infection, often because the cultured bacteria are not the same bacteria 
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present at the time of infection. There is still a need to accurately predict which patients will 

move on to develop infections of particular bacteria, and researchers will likely continue to 

investigate potential methods for making such predictions. 

 

Timing of sample collection will likely play a role in the success of biomarker discovery for 

infecting bacteria. Timing of sample collection, such as whether the sample was taken before or 

after surgical debridement, is a potentially significant factor in whether or not the detected 

bacteria will lead to downstream infections. Further, existing studies have focused on detecting 

potentially infectious organisms upon presentation, or shortly thereafter, but often fail to assess 

the potentially infectious organisms colonizing the wound at later times. This may be important 

because the bacteria present at the wound site at later times may be more significant to causing 

infection than bacteria at presentation. Improved culture-independent techniques, such as protein 

biomarker identification and 16S rRNA gene sequencing, will improve diagnostic and prognostic 

abilities and give greater power to future studies that investigate these issues. 

 

As biofilms continue to complicate open fracture care by establishing persistent infections of 

implanted hardware and host tissue substrates, researchers will likely continue to develop new 

methods to prevent and eradicate them. Promising methods include the coating of hardware 

devices with actively released antibiotics, antisense molecules, quorum sensing inhibitors, 

bacteriophages, and immune-system-stimulating cytokines. Effective alternative methods to 

antibiotic treatment for established biofilm infections, such as bacteriophage therapy, need to be 

further explored because antibiotics poorly penetrate biofilms. 

 

4.6 Summary 
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Open fracture wounds are at an increased risk for developing infections and other related 

complications. Current treatment paradigms aim to minimize infectious risks by effectively 

categorizing the wounds, treating the patients with prophylactic antibiotics, effectively debriding 

and irrigating the wounds, and appropriately fixing the fractures. While these treatment methods 

are well established in modern practice, many therapeutic details remain a point of discussion, 

such as the prophylactic benefits of Gram negative antibiotics. 

 

Despite the efficacy of contemporary treatment paradigms, current research is continuing to 

address the deficiencies in current care methods. This research includes the use of culture-

independent techniques, including bacterial DNA sequencing and protein biomarker detection, for 

assessing open fracture contamination or infection. Improved methods are also being developed 

for the removal of contamination and treatment of infection. Biofilm formation on fracture 

fixation hardware is a major concern, and techniques are being developed to prevent these 

infections, including various hardware coating techniques. One such coating technique aims to 

stimulate the antibacterial immune response, and this is also being developed as a compound to 

be administered with antibiotics to improve their overall efficacy. Additionally, treatments 

involving immune system stimulation are being developed to address the local deficient immune 

responses of open fractures. 
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4.9 Figures 

 

Figure 1 Open fracture rate, severity, and mechanistic cause statistics.  

Open fracture rates and statistics, grouped by anatomical site, from a recent report by Court-

Brown et al.1 The information represents a collection of 2386 open fracture cases recorded at the 

Royal Infirmary of Edinburgh between 1995 and 2009. The data suggest the majority of open 

fracture cases occurred on the distant extremities (A). The most severe open fractures (GA Type 

III) occurred on the lower extremities, especially the lower legs and feet (B). The distant 

extremities were characterized by major open fracture mechanisms, which have been grouped 

into four categories for easier visualization (C).  
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Figure 2 Examples of Gustilo–Anderson wound severities.  

An example of a Gustilo–Anderson Type III open fracture that exhibits extensive soft tissue 

damage with minimal coverage (A). (B) An X-ray image of the wound in (A). (C) A Type II open 

fracture with minimal soft tissue damage. 
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Figure 3 Example of fracture fixation techniques and hardware.  

An example of an intramedullary nail used to fix an open diaphyseal tibia fracture (A). The fibula 

was also fractured but it was not fixed because it is not a weight-bearing bone (A). An example of 

an external fixation device being used to fix an open tibial fracture (B). 
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Figure 4 Bacterial communities associated with open fractures at emergency room 

presentation.  

The bacterial communities of open fracture wounds (left) and their corresponding adjacent, 

unaffected skin (right), as reported by Hannigan et al [52]. The communities were grouped into 

four anatomical categories. The top 10 bacterial families, calculated as median relative abundance 

across all samples, were calculated for the wound and skin groups. The bacterial communities 

upon patient presentation to the emergency room are shown. The skin communities are primarily 

dominated by Corynebacteriaceae and Staphylococcaceae, while the wound communities are less 

dominated by these or other bacteria. The wound and skin communities differ from each other at 
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the same anatomical locations, and the different anatomically located communities also differ 

within the wound and skin categories. The bacteria labels are listed in the legend near the figure 

bottom. 
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4.10 Tables 

 
 
Table 1 

The Gustilo and Anderson classification scheme. Adapted from Melvin et al.9 and Rüedi and 
Murphy.10 
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Table 2 

Tscherne classification scheme for open fractures. Adapted from Rüedi and Murphy10 and 

Moore D (www.orthobullets.com/trauma/1002/tscherne-classification).  
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Table 3 

AO classification of open fractures. Information from Melvin et al.9 and Rüedi and Murphy.10 

AO, Arbeitsgemeinschaft für Osteosynthesefragen; IO, open integument. 
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Table 4 

Methods for detecting open fracture microbial contamination/infection. FDG, fluorine 18 

fluorodeoxyglucose; MRI, magnetic resonance imaging; PET, positron emission tomography; 

PET-CT, positron emission tomography-computed tomography; qPCR, quantitative polymerase 

chain reaction.   
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CHAPTER 5 – Culture-independent pilot study of microbiota colonizing open fractures 
and association with severity, mechanism, location, and complication from presentation 
to early outpatient follow-up 

 

The contents of this chapter have been published as: 

Hannigan GD, Hodkinson BP, McGinnis K, Tyldsley AS, Anari JB, Horan AD, Grice 

EA, Mehta S. 2014. Culture-independent pilot study of microbiota colonizing open 

fractures and association with severity, mechanism, location, and complication from 

presentation to early outpatient follow-up. J Orthop Res. 32(4):597-605. doi: 

10.1002/jor.22578. 

 

5.1 Abstract 

Precise identification of bacteria associated with post-injury infection, co-morbidities, and 

outcomes could have a tremendous impact in the management and treatment of open fractures. 

We characterized microbiota colonizing open fractures using culture-independent, high-

throughput DNA sequencing of bacterial 16S ribosomal RNA genes, and analyzed those 

communities with respect to injury mechanism, severity, anatomical site, and infectious 

complications. Thirty subjects presenting to the Hospital of the University of Pennsylvania for 

acute care of open fractures were enrolled in a prospective cohort study. Microbiota was collected 

from wound center and adjacent skin upon presentation to the emergency department, 

intraoperatively, and at two outpatient follow-up visits at approximately 25 and 50 days following 

initial presentation. Bacterial community composition and diversity colonizing open fracture 

wounds became increasingly similar to adjacent skin microbiota with healing. Mechanism of 

injury, severity, complication, and location were all associated with various aspects of microbiota 

diversity and composition. The results of this pilot study demonstrate the diversity and dynamism 

of the open fracture microbiota, and their relationship to clinical variables. Validation of these 
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preliminary findings in larger cohorts may lead to the identification of microbiome-based 

biomarkers of complication risk and/or to aid in management and treatment of open fractures. 

 

5.2 Introduction 

Open fractures are characterized by soft tissue disruption at the fracture site increasing the risk of 

complications including infection, nonunion/malunion, and amputation. Infection risk increases 

with increasing injury severity and occurs up to 50% of the time when extensive soft tissue 

damage is involved, due to compromised vascularity among other factors [1]. Predicting which 

patients will have an infection remains difficult. Surveillance cultures at the time of presentation 

(before signs and symptoms) are generally thought to have little predictive value [1-3]. Reliable 

biomarkers to guide management and treatment of open fractures are needed. We hypothesized 

that microbiota colonizing open fractures during acute phases of injury, prior to clinical signs of 

infection, may be an information-rich read-out of the wound environment providing valuable 

insight into the mechanisms of impending complication. 

 

Our bodies are colonized inside and out with myriad commensal microorganisms (the 

“microbiome”) that have important roles in human health and disease. While many infectious 

states are seemingly caused by single microorganisms satisfying Koch's postulates, the role of the 

microbiome in modulating the host immune response and resistance to pathogenic and 

opportunistic microorganisms is increasingly evident. Microorganisms are exquisitely sensitive to 

their host environment, and likewise, the host immune response is calibrated to react rapidly and 

precisely to fluctuations in the microbiota. An intimate relationship between the microbiota and 

the underlying immune and defense response has been demonstrated in skin and cutaneous 

wounds [4-7]. In the setting of an open fracture, the skin microbiome is altered as a result of the 
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dramatic change in the local environment and contamination from the injury. Local microbial 

changes may have significant impact on both local and systemic host defenses, soft tissue healing, 

and, ultimately, clinical outcome. 

 

Most reported studies characterizing bacteria colonizing and/or infecting open fractures rely on 

clinical culture-based methodology. Traditional hospital-based culture techniques, however, 

apply heavy selection pressure in favor of bacteria capable of thriving in restricted artificial 

growth conditions. The most commonly cultured bacteria in open fractures are Staphylococcus 

and Gram-negative isolates [8-10]. Advances in high-throughput DNA sequencing technology 

enable the study of the human microbiome via sequencing of the bacteria-specific 16S small 

subunit ribosomal RNA (rRNA) gene. These genomic approaches are increasingly accessible and 

provide greater resolution and precision by eliminating biases associated with culturing bacteria. 

 

In this pilot study, the microbiome colonizing the open fracture and adjacent skin during the 

course of healing was evaluated. Sequencing of bacterial 16S rRNA genes was employed to 

define the composition and diversity of the microbiota in open fractures as healing progressed. 

Further analysis was done to assess potential correlations between the open fracture microbiome 

and clinical factors (location, mechanism, severity) and clinical outcomes.  

 

5.3 Results 

5.3.1 Composition of Microbiota Colonizing the Open Fracture Site and Adjacent Skin 

The six bacterial genera present in >1% median relative abundance in the open fracture and 

adjacent skin were Staphylococcus, Corynebacterium, Streptococcus, Acinetobacter, 
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Anaerococcus, and Pseudomonas (Table 2). We also specifically examined the relative 

abundance of Propionibacterium, Escherichia, and unclassified Enterobacteriaceae (family 

containing the genera Klebsiella and Enterobacter), due to their known pathogenic potential in 

traumatic injuries [2, 11-15]. The relative abundance of Staphylococcus significantly increased 

and that of Pseudomonas significantly decreased in the wound center versus the adjacent skin 

during the time course (p = 0.043 and 0.039, respectively). Escherichia relative abundance 

significantly increased on the adjacent skin, but was unchanged in the wound (p = 0.012). At the 

ER time point, the genera Corynebacterium and Anaerococcus were significantly more abundant 

in the adjacent skin as compared to the wound, where Pseudomonas was significantly more 

abundant in the wound (p = 0.004, 0.008, and 0.036, respectively). Corynebacterium continued to 

be significantly higher in relative abundance on the skin compared to the wound even after DIC 

(p = 0.030). 

 

5.3.2 Comparison of Findings From Culture-Independent and Culture-Dependent 

Methodologies 

Wound cultures were obtained for 14 of the 30 subjects at the time of presentation to the ER. 2/14 

(13%) were culture positive for bacteria, with one being culture positive for Stenotrophomonas 

maltophilia and one was culture positive for Enterobacter cloacae. 16S rRNA profiling indicated 

the presence of Stenotrophomonas in the wound from which Stenotrophomonas maltophilia was 

cultured. We did not detect Enterobacter in the open fracture that cultured positive for 

Enterobacter cloacae, likely due to limitations of 16S rRNA sequence-based identification and 

taxonomic classification. However, we did detect unclassified Enterobacteriaceae, which is the 

family-level taxon that encompasses Enterobacter species. 
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Of the seven subjects in this study that presented with eventual complication, cultures were 

obtained as standard of care for three of the subjects at the time of complication. Two of the three 

subjects were culture positive for Staphylococcus (one coagulase-negative and one MRSA) at the 

time of surgery for nonunion and multiple debridement surgeries, respectively. We detected 

Staphylococcus by 16S rRNA sequencing in all skin and wound samples at all time points of 

sampling for these subjects. The third subject developed an infection that was culture positive for 

Staphylococcus aureus, Peptostreptococcus, and Enterococcus. At the ER time point, we detected 

Peptostreptococcus in skin and wound samples and Enterococcus on the skin. Enterococcus was 

detected on the skin at all time points and Peptostreptococcus was detected in skin and wound 

samples at 2nd OP. These findings suggest that the eventual type of bacteria implicated in 

complication by cultures may be present as early as presentation to the ER, and may result from 

contamination from skin microbiota or be present in the wound itself. 

 

5.3.3 Dynamic Microbial Diversity of Open Fracture and Convergence With Adjacent 

Skin Microbiota 

To gain an overall view of bacterial community structures changing over time, the beta diversity 

of the open fracture wound to the corresponding adjacent skin at each time point was compared. 

Beta diversity was calculated for each pair of samples using the Bray–Curtis metric, which takes 

into account the number of shared species-level OTUs and their abundance. PCoA plots were 

used to visualize the shared diversity of wound and the adjacent skin at presentation to the ER 

(Fig. 1A), at 1st OP (Fig. 1B), and at 2nd OP (Fig. 1C). Progressively, skin and wound 

communities converged, becoming increasingly similar to each other at each subsequent time 

point, as measured by Median Intersample Dissimilarity (MID), where a higher MID value 

indicates greater dissimilarity. ER, 1st OP, and 2nd OP MID values were 0.690, 0.674, and 0.445, 

respectively. Significant differences between skin and wound microbiomes only existed at the ER 
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time point (p = 0.039; R = 0.124; Fig. 1). At the latter two time points, wound and skin bacterial 

community structures are indistinguishable by the metrics employed. Given that 6/21 and 5/15 

samples analyzed at 1st and 2nd OP, respectively were considered healed at those time points, 

convergence of wound microbiota with the skin microbiota would be expected.  

 

Alpha diversity of open fracture microbiota was measured by the number of observed species-

level OTUs and Faith's Phylogenetic Diversity index (Faith's PD), a metric that takes into account 

phylogenetic branch length in addition to the number of OTUs present in a sample. These 

analyses revealed significantly decreased alpha diversity in the wound compared to the skin at 

presentation to the ER (p = 0.019 and p = 0.006 for observed OTUs and Faith's PD, respectively; 

Fig. 2A and B). There was also a significant decrease in adjacent skin alpha diversity at the first 

clinical follow-up compared to when the patient presented to the ER (p = 0.011 and p = 0.003 for 

observed OTUs and Faith's PD, respectively). We independently examined total bacterial load by 

quantitative PCR of the 16S rRNA gene. We did not observe significant differences between ER, 

OR, 1st OP, and 2nd OP time points, or between the wound center & adjacent skin (Fig. 2C).  

 

Because of the synergistic role that Gram-positive and -negative organisms have in forming 

biofilms in wounds and on orthopaedic devices [13], we compared the relative abundances of 

Gram-positive and -negative bacteria (Fig. 3). In the wound, relative abundances of each type of 

bacteria were approximately similar at presentation to the ER (Fig. 3A; p = 0.908), but Gram-

positive bacteria were significantly more abundant on the skin than Gram-negative bacteria at the 

same time point (Fig. 3B; p = 1.73 × 10−11). These differences were not detectable following 

DIC. However, at the 1st and 2nd OP time points, both the skin (p = 0.003 and p = 2.58 × 10−8, 
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respectively) and wound (p = 0.016 and p = 3.51 × 10−6, respectively) harbored greater relative 

abundance of Gram-positive bacteria, indicating a return to the original skin-like state.  

 

5.3.4 Injury Mechanism, Location, Severity, and Complication Are Associated With 

Open Fracture Microbiota 

We next analyzed open fracture and adjacent skin microbiomes with respect to clinical factors. 

We selected four variables noted at time of enrollment or in follow up: mechanism, location, 

progression to infectious complication, and Gustilo–Anderson classification. When examining 

mechanism and wound severity with respect to colonizing microbiota, alpha diversity, as 

measured by Faith's PD (Fig. 4A and B) and observed species-level OTUs (data not shown), was 

not significantly different, nor was beta diversity as measured by the Bray–Curtis metric (data not 

shown). However, when analyzing the top six genera present in >1% total abundance and those 

genera of interest (Table 3), we found that Corynebacterium relative abundance was significantly 

greater and unclassified Enterobactericeae relative abundance was significantly lesser in 

penetrating wounds compared to blunt wounds at the 1st OP time point (p = 0.006 and p = 0.038, 

respectively). At the 2nd OP time point, Pseudomonas relative abundance was significantly 

greater in penetrating wounds compared to blunt wounds (p = 0.048). Regarding severity, Type 1 

fractures had increased relative abundance of Acinetobacter and decreased relative abundance of 

Propionibacterium compared to Type 3 injuries (p = 0.015 and p = 0.038, respectively; Table 3).  

 

When analyzing microbiota with respect to development of complications, beta diversity, as 

measured by the Bray–Curtis metric, revealed significant differences in bacterial community 

structure (p = 0.019, R = 0.176) when comparing complicated to uncomplicated outcomes. We did 

not identify any significant changes in alpha diversity (Fig. 4C) nor in the specific genera we 
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selected for analysis, indicating that either rare bacteria present in <1% relative abundance or 

other undefined aspects of the microbiota are responsible for the change in community structure 

we observe when comparing the two groups. 

 

Because skin microbial communities are known to differ by body site [16], we also selected 

wound location as a variable to analyze with respect to microbiomes. We grouped together open 

fractures of the upper extremities (humerus and ulna) and the lower extremities (femur, hip, tibia, 

fibula, foot). Bacterial community structure significantly differed when comparing beta diversity 

of the two groups using the Bray–Curtis metric (p = 0.005, R = 0.300). Lower extremity open 

fractures harbored greater alpha diversity than upper extremity fractures as measured by Faith's 

PD (Fig. 4D; p = 0.036) and observed species-level OTUs (data not shown; p = 0.019). When 

analyzing all time points, the genera Anaerococcus was significantly enriched in relative 

abundance in lower extremity compared to upper extremity open fractures (Table 3; p = 0.015).  

 

5.4 Discussion 

The findings from this pilot study using culture-independent, high-throughput sequencing based 

techniques, suggest that a great diversity of microbiota is present in open fractures. Follow-up 

studies, in larger cohorts and with more frequent sampling until healing is complete may provide 

more insight into the dynamic changes in the wound and skin microbiota, the association between 

the microbiota to clinical outcomes, and the potential predictive nature of colonizing bacteria. 

Similarly, based on a broader understanding of the microbiota, studies examining the role of early 

debridement, type and timing of antibiotic administration, and irrigation methods can be better 

designed. Concurrent molecular profiling of host genomic and expression profiles could further 

clarify mechanisms of infectious complications and the response to treatment. 
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Molecular techniques are a powerful tool in detecting bacteria. For example, biofilms, such as 

those that commonly grow on orthopaedic devices, are recalcitrant to culturing [17], suggesting 

the utility of DNA-based detection methods where biofilm is suspected. Commonly isolated 

organisms from orthopaedic devices are Staphylococcus, Pseudomonas, and Klebsiella [18, 19]. 

It is thought that polymicrobial biofilms, those consisting of both Gram-positive and Gram-

negative bacteria, are more severe and recalcitrant to treatment [13]. Our findings reveal that, 

upon presentation to the ER, traumatic open fractures harbor a nearly equally abundant 

combination of commensal Gram-positive and -negative bacteria, though the skin is dominated 

by Gram-positive bacteria. The implications of this finding for biofilm formation are unclear, but 

it suggests that the substrates to nurture a polymicrobial biofilm are in place at the time of 

presentation. Early application of internal fixation may be at risk given the diversity of 

microbiome of an open fracture. 

 

A novel aspect of this study was that we examined microbiomes of both the open fracture and the 

adjacent skin. The adjacent skin may be a source of contamination for open fractures. It may also 

provide a baseline for assessing microbiota of the open fracture. Together with our analysis of 

shared diversity at each time point, our data suggests that traumatic wound bacterial communities 

are least similar to healthy skin upon presentation to the ER, and as expected become more 

similar as healing progresses. Furthermore, mechanism of injury, location, and severity are 

associated with various aspects defining the colonizing microbiota, suggesting the need for 

different management techniques depending on the injury pattern, for example the difference 

between penetrating injuries and blunt force open fractures. The finding that open fractures that 

proceed to develop complications are associated with different microbial communities than those 
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that are complication-free indicates the potential prognostic value of 16S rRNA profiling for 

identifying those open fractures at risk for complication. 

 

The limitations of our study are that we are in an urban setting with patients coming from the 

mid-Atlantic region. The local environmental microbiota may be different when comparing to 

other parts of the world, areas near open water, or wounds that occur on the battlefield across the 

world. Furthermore, we did not have a control group, which may have included a second 

individual not injured but in the vicinity of the injured patient. Hospital length of stay may also 

impact colonizing microbiota and progression to complication, and future studies in larger 

cohorts will need to take this potential nosocomial confounder into account. Lastly, some aspects 

of the analysis focused on those bacteria present in >1% relative abundance across the dataset. By 

including those species that have a known pathogenic potential and are clinically concerning, we 

attempted to address this. 

 

Ultimately, this study reveals the complexity of the open fracture wound. The ramifications of 

improved understanding of the bacterial diversity, load, and noted taxa may have significant 

relevance to initial treatment, methods of monitoring, and clinical outcomes. Predictive modeling 

and biomarker panels may be the next step in further developing tools that can be applied 

clinically to decrease infection after open fractures.  

 

5.5 Materials & Methods 

5.5.1 Human Subjects Protections 
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Prior to study initiation, this protocol was reviewed and approved by the University of 

Pennsylvania School of Medicine Institutional Review Board. A modification of the informed 

consent process was approved for this investigation to enable sample collection under emergent 

conditions. Informed consent was obtained from all subjects enrolled in this study. 

 

5.5.2 Sample Collection 

Thirty open fracture patients from the Hospital of the University of Pennsylvania Orthopaedic 

Trauma and Fracture Service were recruited into the study. Characteristics of the patient 

population are summarized in Table 1. Using a Catch-All Sample Collection Swab (Epicentre), a 

microbiota sample was collected from the wound center and adjacent skin (5 cm away from the 

wound) of each subject at emergency room presentation (ER) prior to debridement, irrigation, and 

cleansing (DIC), and intraoperatively (OR) after DIC. Additional samples were collected at the 

first outpatient follow up visit (1st OP) and the outpatient visit closest to 28 days following 1st 

OP (2nd OP). At 1st OP and 2nd OP, 6/21 and 5/15 samples collected were from open fractures 

with healed soft tissue, respectively. Sample attrition, from the cohort of 30, occurred due to 

logistical issues in sample collection and attrition during trauma patient follow-up. Also, some 

samples did not amplify bacterial DNA in sufficient quantities to include in the analysis (see 

Supplementary Methods). 

 

Negative control specimens were also collected by exposing swabs to room air and processing 

them alongside wound samples. Clinical, demographic, and behavioral information was collected 

for each participant. At initial presentation, each wound was classified according to the Gustilo–

Anderson classification system [20], anatomic site, and injury mechanism. Complications were 

assessed as bivariates with any unplanned intervention in the post-operative period considered 
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positive (i.e., readmission, need for antibiotics, repeat debridement, or irrigation, soft tissue 

procedure). 

 

5.5.3 DNA Isolation, Amplification, and Sequencing of 16S rRNA Genes 

Detailed DNA extraction methodology is provided in the Supplemental Methods and has been 

previously described [21]. Detailed information on amplification procedure is also provided in 

Supplemental Methods. Sequencing of the V4 region was performed with the Illumina MiSeq 

system using 150 bp paired-end chemistry at the University of Pennsylvania Next Generation 

Sequencing Core. A total of 7,708,124 paired-end sequencing reads were included in the analysis, 

with a mean of 43,796 and a median of 30,048 sequences per sample. 

 

5.5.4 Quantitative PCR (qPCR) of the 16S rRNA Gene 

DNA from the swab extraction described above was used for qPCR-based bacterial load 

estimation. A portion of the 16S rRNA bacterial gene was amplified using the primers 533F 

(GTGCCAGCAGCCGCGGTAA) and 902R (GTCAATTCITTTGAGTTTYARYC) [22] on a 

ViiA7 platform (Applied Biosystems, Grand Island, NY). Each 10 µl reaction included 1 µl DNA, 

5 µl 2× SYBR Green Master Mix (Invitrogen, Carlsbad, CA), and 0.1 µl of each 20 µM primer 

solution. Cycling conditions were 50°C (2 min), 95°C (10 min), and followed by 40 cycles of 

95°C (15 sec) and 60°C (1 min). A standard curve was generated by amplifying serial dilutions of 

known concentrations of E. coli genomic DNA. Estimated 16S rRNA copy number and bacterial 

load were calculated as described previously [23]. 

 

5.5.5 16S rRNA Sequence Processing and Analyses 

Details of 16S rRNA dataset processing and analyses are in the Supplemental Methods. 
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5.5.6 Statistical Analyses 

The R statistical computing package was used for statistical analyses. Principle coordinates 

analysis (PCoA) plots were produced for visualizing distances between bacterial communities. 

ANOSIM tests were run to examine the relationship between sample groupings and overall 

community composition. p-values were calculated using 999 permutations. Wilcoxon rank-sum 

tests and Benjamini Hochberg false discovery rate (FDR) correction was applied to p-values to 

assess the significance of differences in: bacterial load, alpha diversity, and to test for significant 

associations in fracture characteristics with alpha diversity. Wilcoxon rank-sum tests were also 

used to assess the differences between taxon relative abundances of wound center and adjacent 

skin samples at specific time points and Kruskal–Wallis tests were used to examine taxon relative 

abundance changes across all time points for the following genera: (a) those with median relative 

abundances >1% in the entire dataset and (b) those that do not meet the 1% threshold but are 

designated as clinically relevant taxa of interest by the Department of Defense (i.e., 

Propionibacterium, Escherichia, Enterobacter, and Klebsiella). Because of inherent limitations of 

16S rRNA-based taxonomic identification and classification, we could not resolve the genera 

Klebsiella and Enterobacter based on 16S rRNA sequence. We therefore include in these analyses 

the unclassified Enterobacteriaceae, which is the family-level taxon that includes the genera 

Klebsiella and Enterobacter. 
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5.7 Figures 

 

Figure 1 The changing relationships between open fracture wound and adjacent skin 

microbiota of 10 patients over time 

PCoA plots representing the Bray-Curtis metric comparing beta diversity of open fracture and 

skin microbiota. Each color represents a different patient, while triangles and circles represent 

wound center and adjacent skin microbiota, respectively. Shown are the first two principle 
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coordinates and the percent variation explained by each principle coordinate is indicated in 

parentheses by the axis. The two samples (open fracture wound and adjacent skin) for each 

patient at a given time point are connected by a line. An ANOSIM test was used to examine the 

association between swab location and the overall community composition; this association is 

significant (at P<0.05) only for the ER time point. 
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Figure 2 Alpha diversity and bacterial load of open fracture wound and adjacent skin 

Alpha diversity is depicted as measured by Faith’s PD (A) and observed species-level OTUs (B). 

Bacterial load (C) is represented as estimates from quantitative PCR of the 16S rRNA gene. The 

upper and lower box hinges correspond to the first and third quartiles (25% and 75%), and the 

distance between the first and third quartiles is defined as the inter quartile range (IQR). Lines 
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within the box depict median, and the whiskers extend to the highest and lowest values within 1.5 

times the IQR. Outliers of the IQR are depicted with black dots above or below the whiskers. An 

asterisk (*) inside the box indicates significance of P<0.05 (Wilcoxon rank-sum test) between the 

adjacent skin and open fracture wound at the indicated time point. An asterisk (*) outside of the 

box indicates significance of P<0.05 (Wilcoxon rank-sum test) between the indicated time points. 
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Figure 3 Gram-positive and Gram-negative bacteria in the open fracture wound and on 

the adjacent skin 

Open fracture wound relative abundance is shown in (A) and adjacent skin relative abundance is 

shown in (B). The upper and lower box hinges correspond to the first and third quartiles. Lines 

within the box depict median, and the whiskers extend to the highest and lowest values within 1.5 

times the IQR. Outliers of the IQR are depicted with black dots above or below the whiskers. 

*P<0.05 (Wilcoxon rank-sum test). 
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Figure 4 Association of alpha diversity with open fracture characteristics 

Faith’s PD comparing alpha diversity according to mechanism of injury (A), Gustilo-Anderson 

classification (B), whether or not the fracture healing process was complicated (C), and the 

anatomical location of the open fracture (D). The upper and lower box hinges correspond to the 

first and third quartiles. Lines within the box depict median, and the whiskers extend to the 

highest and lowest values within 1.5 times the IQR. Outliers of the IQR are depicted with black 

dots above or below the whiskers. *P<0.05 (Wilcoxon rank-sum test). 
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5.8 Tables 
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Table 1 Summary of cohort metadata 
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Table 2 Median relative abundance of taxa in open fracture wound center and adjacent 

skin and change over time 

*Changes between time points in wound center and adjacent skin are significant (p<0.05; 
Kruskall-Wallis test) 
†Changes between time points in adjacent skin are significant (p<0.05; Kruskall-Wallis test) 
a,b,c,dDifference between skin and wound center is significantly different (p<0.05; Wilcoxon 
rank-sum test)  
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Table 3 Taxa associated with clinical factors 

*FDR-corrected P-values  
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5.9 Supplemental Methods 

DNA Isolation 

Each sample collection swab was placed in 300 µl of Yeast Cell Lysis Solution (Epicentre 

MasterPure Yeast DNA Purification kit) and 0.5 µl of ReadyLyse Lysozyme solution (Epicentre) 

was added before incubation for 1 hour at 37°C with shaking. Samples were then processed with 

bead beating for 10 minutes at maximum speed on a vortex mixer with 0.5 mm glass beads 

(MoBio), followed by a 30 minute incubation at 65°C with shaking. Subsequent steps were 

performed as previously described [21]. 

 

16S rRNA sequence processing and analyses 

FASTQ files were generated from raw BCL files using ‘configureBclToFastq.pl’ (Illumina Inc.) 

and paired-ends were assembled using the PANDAseq Assembler [21]. QIIME 1.6.0 [24] was 

used for the initial stages of sequence analysis: potential sequencing artifacts outside of the 248-

255 base pair length window were removed, sequences were clustered into OTUs (operational 

taxonomic units, a proxy for ‘species’) using the UCLUST method [25] at 97% sequence 

similarity, sequences were taxonomically classified using the RDP classifier [26] at a confidence 

threshold of 0.8, unclassified sequences and sequences derived from plastids were removed, 

samples with less than 2500 sequences were removed from the data set, each 16S amplicon pool 

was subsampled at an even depth of 2500 sequences for downstream processing, alpha diversity 

metrics (Faith’s Phylogenetic Diversity index5 and observed species-level OTUs) and a beta 

diversity metric (Bray-Curtis index) were calculated for each sample. 
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CHAPTER 6 – patPRO: An R package for the visualization of longitudinal microbiome 
data 

 

6.1 Abstract 

6.1.1 Background 

Longitudinal profiling of human microbiomes during the course of disease or perturbation 

provides valuable insights into disease associations and potential mechanisms that are not 

possible with cross-sectional study designs. Tools to longitudinally visualize multiple 

microbiomic metrics (i.e. alpha diversity, relative abundance) are crucial for revealing temporal 

patterns and associating them with patient-level metadata including clinical outcomes.  

 

6.1.2 Results 

Here we present patPRO, an R package to quickly and easily visualize longitudinal microbiome 

profiles using standard output from the QIIME microbiome analysis toolkit. Multiple 

microbiomic metrics can be visualized simultaneously and overlaid with metadata representing 

clinically significant events (i.e. interventions, disease states). The modular nature of patPRO 

allows for easy integration into other R workflows, and the package can be applied to data from 

other microbiome analysis toolkits, including mothur. We demonstrate the general utility of 

patPRO using an example dataset of the open fracture microbiome during healing. 

 

6.1.3 Conclusions 

We show that patPRO is a user-friendly tool that allows rapid visualization of longitudinal 

microbiome data. This package can be applied to any longitudinal microbiome study to facilitate 

comprehensive summaries of single or multiple subjects, without an extensive need of R 

programming skills. PatPRO is optimized to work with established microbiome software 
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including Qiime and mothur. PatPRO will freely available on CRAN and runs on Mac OSX and 

Linux. 

 

6.2 Background 

Microbiome community profiling (i.e. 16S ribosomal RNA sequencing) is an increasingly 

accessible experimental approach, due in large part to decreasing DNA sequencing costs, 

increasing throughput, and greater accessibility to bioinformatics tools.  Longitudinal applications 

of microbiome community profiling have revealed important associations between disease states 

and the microbiome, including communities of the skin [1], oral cavity [2], vagina [3], and gut 

[4]. Temporal microbiome variation is often significant across all body sites, and should also be 

taken into account when linking health or disease states with microbial communities [5]. Current 

tools to longitudinally and simultaneously visualize multiple metrics of the microbiome (i.e. alpha 

diversity, taxonomy) overlaid with clinically significant events are lacking. 

Longitudinal visualization of microbiome data over time allows both researchers and clinicians to 

easily assess trends in a patient’s individual microbial community, including the effects of 

clinically significant events such as antibiotic administration or surgical intervention. While the 

QIIME toolkit and R packages including qiimr and vegan provide valuable microbiome analysis 

and visualization tools, they do not provide straightforward, automated profiling of longitudinal 

data overlaid with subject metadata [6-8]. To address this, we developed the patPRO microbiome 

analysis and visualization package for the R statistical language, a widely used and freely 

available statistical software environment [9]. 

 

6.3 Implementation 
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PatPRO is an R package that facilitates rapid visualization of longitudinal microbiome data. This 

package implements data munging and plotting functionality as a user-friendly toolkit that 

requires minimal R programming experience. The patPRO package was optimized for QIIME-

formatted files [8], but can also be used with other analysis toolkits, such as mothur [10]. 

PatPRO’s modular design for data formatting, calculations, and plotting allows for flexibility in 

workflow design, customizability of the output, and it can be used in combination with other 

packages or analysis workflows. 

 

6.4 Results & Discussion 

patPRO uses four input files to generate patient profiles, as outlined in Figure 1A: a QIIME-

formatted mapping file that associates the sample identifiers with their metadata, a QIIME 

taxonomic relative abundance table, a QIIME alpha diversity table, and an optional bacterial load 

data table, which is obtained by 16S quantitative PCR (qPCR) analysis.  

 

6.4.1 Initial Data Formatting 

Using	the	merge.map.meta.data	function	of	the	patPRO	package,	each	input	table	is	merged	

with	the	metadata	outlined	in	the	mapping	file.	Merging	is	required	for	further	downstream	

processing.		

	

6.4.2 Taxonomic Profiling 

Once merged, the taxonomic relative abundance table is used to determine the most abundant 

taxa within the patient of interest using the top.rel.abund.data.frame function. This function 

automatically formats the data table for visualization with the plot.top.taxa function (Figure 1B; 

bottom panel). Absolute bacterial abundance information (also called bacterial load) from qPCR 
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experiments is visualized directly using the plot.bacterial.load function (Figure 1B; middle panel), 

or used to normalize the relative abundance profiles using the top.abs.abund.data.frame function 

(Figure 1C; bottom panel). The normalized relative abundance profiles are visualized using the 

top.abs.abund.plot function. The normalization process calculates the taxonomic relative 

abundance as a percent of the overall bacterial abundance. Important events are added to both 

standard and normalized relative abundance plots using the arrow annotation functionality. 

 

6.4.3 Alpha Diversity Profiling 

The normalize.alpha.div function normalizes the desired alpha diversity metric values to a percent 

of the first value (i.e. the first time point). This normalization is necessary because different alpha 

diversity metrics have orders of magnitude differences in scale, making plotting of different un-

normalized metrics on the same graph impractical. This function also automatically formats the 

data table for visualization using the plot.normalized.alpha.div function (Figure 1B; middle 

panel). 

 

6.4.4 Average Patient Profiling 

In addition to processing and visualizing individual patient profiles, patPRO offers tools to 

analyze the averages of multiple patients. The patient.mean function, in addition to the other 

related patPRO functions, allows for easy calculations and visualizations of the mean and 

standard error of taxonomic relative abundance, diversity, and bacterial load values (Figure 1D). 

 

6.4.5 Comprehensive Patient Profile Visualization 
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Using the individual microbiome plots above, patPRO generates single, comprehensive profiles 

containing two or three microbiome plots, using the patpro.plot.two and patpro.plot.three 

functions, respectively (Figure 1B-D). 

 

6.4.6 patPRO Analysis Example 

To illustrate the use of patPRO, we provide example data from a longitudinal microbiome study 

of open fractures from patient presentation to the emergency department, through surgical 

intervention and outpatient follow up (Figure 1B-D) [11]. Using patPRO, we observed shifts in 

microbial diversity, bacterial load, and relative abundance associated with surgical interventions 

(Figure 1B-C). Following the second operation, we observed an increase in relative and absolute 

abundance of Staphylococcaceae bacteria (Figure 1C). This example dataset is included in the 

patPRO package and an analysis workflow example is included as an R notebook accompanying 

this manuscript (Additional File 1). 

 

6.5 Conclusions 

PatPRO is a user-friendly tool that allows rapid visualization of longitudinal microbiome data, 

facilitating exploratory analyses of patient-specific trends and association of microbiome with 

disease states, perturbations, and/or clinical outcomes. We believe patPRO will have an 

especially large impact for clinical studies because changes in the microbiome can be tracked for 

long time periods and associated with patient-level metadata and/or clinical outcomes. PatPRO is 

available under a GNU General Public License (GPLv3) and will soon be available for public use 

on CRAN. 
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6.7 Figures 	

 

Figure 1 PatPRO provides multiple comprehensive plotting options for longitudinal 

microbiome data 

A) Flow chart outlining the data processing and visualization steps included in the patPRO 

package. B) Example of a single patient profile including normalized alpha diversity (top panel), 

bacterial load (middle panel), and relative abundance with annotated surgical events (bottom 

panel). C) Single patient profile including taxonomic relative abundance normalized to bacterial 

load (bottom panel). D) Example of a patient profile depicting the mean values of five patients, 

compared to a single patient profile in section (B). Bars represent standard error. 
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CHAPTER 7 – Conclusions and Future Studies 

 

Together these studies represent a significant step forward in understanding the skin microbiome 

in healthy and diseased states. In healthy skin, we presented evidence that the virus communities 

are primarily diverse phage populations, their community composition depends on anatomical 

locations, and that they have a strong potential for promoting horizontal gene transfer by 

transduction, especially of antibiotic resistance genes and virulence factors. We further suggested 

that the phage communities have complex interactions with their bacterial hosts, especially in the 

context of CRISPR targeting. These findings highlight the importance of micro-environmental 

context when considering dermatological viruses. Viruses studied at one location are in a 

different community than those studied at a different location, and this may impact virus 

behavior. We also highlight the potential of the skin virome for persisting as latent prophages and 

facilitating horizontal gene transfer of clinically relevant genes, including those conferring 

antibiotic resistance. These novel insights into the virome present a foundation for future studies 

of the skin virome in diseased or perturbed states. These findings also lay a foundation for studies 

of the associations between the skin virome and the environment, especially related to 

transduction of pathogenic bacterial genes. 

 

As our primary future direction for this study, we will be using the findings as the foundation for 

understanding the genomic variability associated with the skin virome. Our high virus genomic 

coverage provides us with a unique opportunity to study the evolutionary and functional 

implications of single nucleotide polymorphisms within the natural skin virome. We will use this 

approach to provide an understanding of virus genomic variability and evolution in a natural skin 

community, which to date has not been studied. 
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While studying the healthy skin virome, we also investigated the microbial communities of the 

understudied, at-risk acute open fracture wounds. This represents a new skin disruption state 

whose microbiome has not yet been robustly evaluated. We found that the wound microbiome 

becomes more similar to the adjacent skin (healthy) microbiome as healing progresses. This 

suggests a role for microbiome healing along with tissue healing in acute wounds. We also noted 

numerous associations between the microbiome factors and important clinical factors, including 

severity and the progression to complications. We finally presented a tool that was used for 

processing and visualizing the longitudinal microbiome dataset, and will be publicly available for 

other researchers to use in a similar capacity. 

 

Because the presented study was only a pilot with half of the cohort recruited, our obvious next 

step will be evaluating the open fracture microbiome using the complete cohort. The complete 

cohort dataset will include twice as many patients with follow up data up to one year after 

presentation to the Emergency Room. Analysis of this extended follow up timeline will provide 

us with insight into the long-term dynamics of the microbiome during open fracture healing. This 

is in comparison to the relatively short timeline (~50 days) in the presented pilot study. 

 

The increased sample size will allow us to better evaluate the associations between the 

microbiome and clinical complications, including infections. The larger cohort will also offer an 

opportunity to evaluate the utility of the initial wound microbiome in predicting the outcome of 

the open fracture healing. This will be done using predictive modeling approaches that will allow 

us to predict the wound healing outcome based on microbiome signatures from when the patient 
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presents to the emergency room, including microbial relative abundance and diversity. This is an 

exciting avenue for this research program because it benefits the patient by allowing us to identify 

those wounds at risk for microbial complications, and it is a non-invasive method that can 

relatively easily be implemented in the clinic. 
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