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Discrete Methods in Statistics: Feature Selection and Fairness-Aware Data
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Abstract
This dissertation is a detailed investigation of issues that arise in models

that change discretely. Models are often constructed by either including or

excluding features based on some criteria. These discrete changes are

challenging to analyze due to correlation between features. Feature selection

is the problem of identifying an appropriate set of features to include in a

model, while fairness-aware data mining is the problem of needing to remove

the \emph{influence} of protected features from a model. This dissertation

provides frameworks for understanding each problem and algorithms for

accomplishing the desired goal.

The feature selection problem is addressed through the framework of sequential

hypothesis testing. We elucidate the statistical challenges in repeatedly using

inference in this domain and demonstrate how current methods fail to address

them. Our algorithms build on classically motivated, multiple testing procedures

to control measures of false rejections when using hypothesis testing during

forward stepwise regression. Furthermore, these methods have much higher power

than recent proposals from the conditional inference literature.

The fairness-aware data mining community is grappling with fundamental

questions concerning fairness in statistical modeling. Tension exists between

identifying explainable differences between groups and discriminatory ones. We

provide a framework for understanding the connections between fairness and

the use of protected information in modeling. With this discussion in hand,

generating fair estimates is straight-forward.
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ABSTRACT

DISCRETE METHODS IN STATISTICS: FEATURE SELECTION AND

FAIRNESS-AWARE DATA MINING

Kory D. Johnson

Robert A. Stine

This dissertation is a detailed investigation of issues that arise in models that change dis-

cretely. Models are often constructed by either including or excluding features based on

some criteria. These discrete changes are challenging to analyze due to correlation between

features. Feature selection is the problem of identifying an appropriate set of features to

include in a model, while fairness-aware data mining is the problem of needing to remove

the influence of protected features from a model. This dissertation provides frameworks for

understanding each problem and algorithms for accomplishing the desired goal.

The feature selection problem is addressed through the framework of sequential hypothesis

testing. We elucidate the statistical challenges in repeatedly using inference in this domain

and demonstrate how current methods fail to address them. Our algorithms build on clas-

sically motivated, multiple testing procedures to control measures of false rejections when

using hypothesis testing during forward stepwise regression. Furthermore, these methods

have much higher power than recent proposals from the conditional inference literature.

The fairness-aware data mining community is grappling with fundamental questions con-

cerning fairness in statistical modeling. Tension exists between identifying explainable dif-

ferences between groups and discriminatory ones. We provide a framework for understand-

ing the connections between fairness and the use of protected information in modeling.

With this discussion in hand, generating fair estimates is straight-forward.
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CHAPTER 1 : INTRODUCTION

This dissertation discusses a variety of methods in seemingly disparate domains. Broadly

speaking, we address issues in model selection, sequential testing, inference after model

selection, and fairness-aware data mining. The last of these may seem disconnected from

the first three; however, it is fundamentally the same problem. All of these topics analyze

the effect of either adding or removing features from a model. This discrete change between

models is complex due to correlation between features.

Chapters 2-4 analyze the problem of selecting predictive features from a large feature space.

Our data consists of n observations of (response, feature) sets, (yi, xi1, . . . , xim), where each

observation has m associated features. Observations are collected into matrices and the

following model is assumed for our data

Y = Xβ + ε ε ∼ Nn(0, σ2In) (1.1)

where X is an n × m matrix and Y is an n × 1 response vector. Typically, most of the

elements of β are 0. Hence, generating good predictions requires identifying the small subset

of predictive features. The model (1.1) proliferates the statistics and machine learning

literature. In modern applications, m is often large, potentially with m� n, which makes

the selection of an appropriate subset of these features essential for prediction.

The model selection problem is to minimize the error sum of squares

ESS(Ŷ ) = ‖Y − Ŷ ‖22 =

n∑
i=1

(Yi − Ŷi)2

while restricting the number of nonzero coefficients:

min
β

ESS(Xβ) s.t. ‖β‖l0 =

m∑
i=1

I{βi 6=0} ≤ k, (1.2)

where the number of nonzero coefficients, k, is the desired sparsity. Note that we are
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not assuming a sparse representation exists, merely asking for a sparse approximation. In

the statistics literature, the model selection problem (1.2) is more commonly posed as a

penalized regression:

β̂0,λ = argminβ {ESS(Xβ) + λ‖β‖l0} (1.3)

where λ ≥ 0 is a constant. The classical hard thresholding algorithms Cp (Mallows, 1973),

AIC (Akaike, 1974), BIC (Schwarz, 1978), and RIC (Foster and George, 1994) vary λ.

The solution to (1.3) is the least-squares estimator on an optimal subset of features. Let

M ⊂ {1, . . . ,m} indicate the coordinates of a given model so that XM is the corresponding

submatrix of the data. If M∗λ is the optimal set of features for a given λ then β̂∗0,λ =

(XT
M∗XM∗)

−1XM∗Y .

Given the combinatorial nature of the constraint, solving (1.2) quickly becomes infeasible

as m increases and is NP-hard in general (Natarajan, 1995). Forward stepwise is the greedy

approximation to the solution of (1.2). Let Mi be the features in the forward stepwise model

after step i and note that the size of the model is |Mi| = i. The algorithm is initialized with

M0 = ∅ and iteratively adds the variable which yields the largest reduction in ESS. Hence,

Mi+1 = {Mi ∪ j} where

j = arg max
l∈{1,...,m}\Mi

ESS(XMi∪lβ̂
LS
Mi∪l).

After the first feature is selected, subsequent models are built having fixed that feature

in the model. M1 is the optimal size-1 model, but Mi for i ≥ 2 is not guaranteed to be

optimal, because Mi is forced to include the features identified at previous steps.

Conducting valid inference after selecting a model using an algorithm such as forward

stepwise has become a topic of increasing concern. Recently, significant research has been

focused on how to compute appropriate p-values for inference post model selection. Chapter

2 introduces a slightly different problem: how can hypothesis testing be validly used to select

2



a model? We want to use hypothesis testing to select one of the models identified by

forward stepwise regression. This is a challenging task because the hypotheses being tested

are suggested by the data and subsequent tests are only made if previous tests are rejected.

Addressing the differences between these two challenges requires increased precision about

the quantity of interest when using hypothesis testing for model selection. Our solution uses

a sequential testing framework and demonstrates that multiple comparison methods can be

adapted to this task. We provide three different procedures to control either the marginal

false discovery rate or the family wise error rate. Furthermore, the resulting methods have

much higher power than those from the conditional inference literature. This extends the

critique of new p-value computations introduced in Brown and Johnson (2016).

Chapter 3 improves upon the methods of Chapter 2, providing several practical improve-

ments which yield an algorithm, Revisiting Alpha-Investing (RAI), which is a fast approx-

imation to forward stepwise. RAI performs model selection in O(np log(n)) time while

controlling both type-I and type-II errors. As an alpha-investing procedure, it controls

mFDR and is proven to select a model that is a (1 − 1/e) + ε approximation to the best

model of the same size. The algorithm is successful under the assumption of approximate

submodularity, which is quite general and allows for highly correlated explanatory variables.

We demonstrate the adaptability of RAI by using it to search complex interaction spaces

in both simulated and real data.

Submodularity plays an important role in the theorems of Chapters 2 and 3 as it char-

acterizes of the difficulty of the search problem of feature selection. The search problem

is the ability of a procedure to identify an informative set of features as opposed to the

performance of the optimal set of features. This is highly important because merely as-

suming that there is a true model which performs well does not entail that a modeler can

find it. Chapter 4 provides a full discussion of submodularity in statistics. Submodular

functions an important function class in optimization which are closely connected to greedy

algorithms such as forward stepwise. In statistics, submodularity isolates cases in which

3



collinearity makes the choice of model features difficult from those in which this task is rou-

tine. Researchers often report the signal-to-noise ratio to measure the difficulty of simulated

data examples. A measure of submodularity should also be provided as it characterizes an

independent component of difficulty. Furthermore, it is closely related to other statistical

assumptions used in the development of the lasso, Dantzig selector, and sure information

screening.

The feature selection problem is fundamentally concerned with how features can interact

in unexpected ways due to correlation. Here, “unexpected” means that the behavior of a

feature in a model can be completely different depending on the other features included.

One novel domain in which such interactions are highly important is fairness-aware data

mining. This can be viewed as a reverse problem to feature selection in which the modeler

wishes to remove the influence of a feature. Due to correlation between features, merely

excluding the protected feature may leave discriminatory effects which permeate the data.

A simple example clarifies the issue of fairness. Consider a bank that wants to estimate

the risk in giving an applicant a loan. The applicant has “legitimate covariates” such as

education and credit history, that can be used to determine their risk. They also have

“sensitive” or “protected” covariates such as race and gender that society does not want to

be used to determine their risk. The bank’s task is to model the credit risk or credit score

C. To do so, they use historical data, estimate the credit worthiness of the candidate, then

determine the interest rate of the loan. The question asked by FADM is whether or not the

model the bank constructed is fair. This is different than asking if the data are fair or if

the historical practice of giving loans was fair. It is a question pertaining to the estimates

produced by the bank’s model. This generates several questions. First, what does fairness

even mean in this statistical model? Second, what is the role of the sensitive covariates in

this estimate? Lastly, how do we constrain the use of the sensitive covariates in black-box

algorithms?

The literature has come to an impasse as to what constitutes explainable variability as

4



opposed to discrimination. This stems from imprecise definitions of fairness in statistics.

Chapter 5 provides a detailed account of fairness in statistics by accounting for different

perspectives on the data generating process. This results in a tractable framework for

understanding fairness in modeling as well as algorithms which are guaranteed to provide

fair estimates. These algorithms can be tailored to post-process estimates from arbitrary

models to achieve fairness. This effectively separates prediction and fairness goals, allowing

the modeler to focus on generating highly predictive models without incorporating the

constraint of fairness.

We conclude by discussing the host of new questions raised by this dissertation. As the

sequential testing framework is not part of the statistical cannon, there are many lingering

questions about its ability to solve broader problems. Similarly, fairness-aware data mining

is still in its infancy, and our framework can be extended to many modeling paradigms.

5



CHAPTER 2 : VALID STEPWISE REGRESSION

Forward stepwise models can be selected in many ways. To illustrate the use of hypothesis

testing for model selection, consider the prostate cancer data used to motivate the inference

methods of (Taylor et al., 2014). The data set has 67 observations of 8 explanatory variables

which will be used to predict the log PSA level of men who had surgery for prostate cancer.

The traditional use of stepwise regression is summarized in Table 1. Each step of the

procedure adds a feature to the model and assigns a p-value measuring the reduction in

ESS using an F-test. Further information on the construction of the stepwise p-values is

given in the Appendix. The second column of p-values in Table 1 are from Taylor et al.

(2014) and adjust for selecting features using forward stepwise. These adjusted p-values are

introduced in Section 2.1.2 and discussed at length in Section 2.3.

Our goal is to use the stepwise p-values in Table 1 to determine when to stop forward

stepwise. For example, if it is claimed that the first 4 steps are significant but the 5th is

not, the selected model will include lcavol, lweight, svi, and lbph. Such claims should be

made solely on the basis of the p-values. That being said, attempting to test the addition

of new features uses non-standard and complex distributions (Draper et al., 1971; Pope and

Webster, 1972). Our goal is to provide a valid hypothesis testing framework in order to

select a forward stepwise model.

Table 1: Stepwise Regression: Prostate Cancer Data

Step Parameter Stepwise p-value Adjusted p-value

1 lcavol 0.0000 0.000
2 lweight 0.0003 0.006
3 svi 0.0424 0.425
4 lbph 0.0468 0.168
5 ppg45 0.2304 0.423
6 lcp 0.0878 0.273
7 age 0.1459 0.059
8 gleason 0.8839 0.156
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2.0.1. Notation

We use notation from the multiple comparisons literature given its connection to our solu-

tion. Consider m null hypotheses, H[m]: H1, . . . ,Hm, and their associated p-values, p[m]:

p1, . . . , pm. The hypotheses can be considered as Hi: βi = 0. Define the statistic Ri = 1

if Hi is rejected and Ri = 0 if not. Similarly, let V β
i = 1 if Ri = 1 is a false rejection (Hi

is true) and V β
i = 0 if not. The dependence of V β

i on β indicates that it is an unknown

quantity which depends on the parameter of interest. For simplicity, the definition below

suppresses this notation. Define

R(m) =
m∑
i=1

Ri, and

V (m) =
m∑
i=1

V β
i

as the total number of rejections and false rejections in the m tests, respectively.

One object of concern when testing multiple hypotheses is the family wise error rate

(FWER), which is the probability of making more than one false rejection regardless of

the number of hypotheses tested:

FWER = P(V (m) ≥ 1).

If many hypotheses are tested, controlling the FWER may be too strict. Instead, it is often

more instructive to control the proportion of false discoveries. Our method controls the

marginal false discovery rate (mFDR) which is similar to the more common false discovery

rate (FDR):

Definition 1 (Measures of the Proportion of False Discoveries).

mFDR(m) =
E(V (m))

E(R(m)) + 1

FDR(m) = E
(
V (m)

R(m)

)
, where

0

0
= 0.

7



In some respects, FDR is preferable to mFDR because it controls a property of a realized

distribution. While not observed, the ratio V (m)/R(m) is the realized proportion of false

rejections in a given use of a procedure. FDR controls the expectation of this quantity.

In contrast, E(V (m))/E(R(m)) is not a property of the distribution of V (m)/R(m). That

being said, FDR and mFDR behave similarly in practice, and mFDR yields a powerful and

flexible martingale (Foster and Stine, 2008). This martingale provides the basis for proofs

of type-I error control in a variety of situations.

2.0.2. Contributions

Our first contribution is an elucidation of the effects that must be considered when using

hypothesis testing for model selection. Standard inference tools are invalidated due to two

selection effects: the ranking effect and the testing effect. The ranking effect is the result of

testing hypotheses that are suggested by the data and the testing effect is the result of only

conducting future tests if previous tests have been rejected. The impacts of these effects

are explained via example in Section 2.1.

In Section 2.2.1, we demonstrate that the sequential testing approach to multiple com-

parisons yields an approximate forward stepwise algorithm that controls for the selection

effects. Our procedure, Revisiting-Holm (RH), is a threshold approximation to stepwise

regression (Badanidiyuru and Vondrák, 2014). At each step, forward stepwise sorts the

p-values of the m′ remaining features, p(1) < . . . < p(m′), and selects the feature with the

minimum p-value, p(1). Instead of performing a full sort, threshold approximations use a

set of increasing rejection thresholds, and hypotheses are rejected when their p-value falls

below a threshold. A feature merely needs to be significant enough, and not necessarily the

most significant. The initial rejection threshold conducts a strict test for which only highly

significant features are added to the model. Subsequent thresholds perform less stringent

tests. As such, the final model is built from a series of approximately greedy choices.

Proofs for the type-I error control of our procedures are conservative under an assumption
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of submodularity. While not often discussed in the statistics literature, submodularity has

important statistical implications and is closely related to more commonly used assumptions

(Johnson et al., 2015c). Submodularity requires that features do not become more significant

when included in a multiple regression than in a simple regression. More generally, consider

a feature Xi orthogonal to those in a model, XM . This is referred to as adjusting Xi for XM .

The projection operator (hat matrix), HM = XM (XT
MXM )−1XT

M , computes the orthogonal

projection of a vector onto the span of the columns of XM . Therefore, Xi adjusted for XM

is denoted Xi.M⊥ = (I −HXM
)Xi. A suppressor variable is one which, once adjusted for,

increases the observed significance of another feature. Submodularity is equivalent to the

absence of conditional suppressor variables, implying that ∀M ⊂ {1, . . . ,m} and i, j /∈M

|Corr(Y,Xi.(M∪j)⊥)| ≤ |Corr(Y,Xi.M⊥)|.

When this holds, stepwise p-values are non-decreasing as p-values are smaller when features

are considered in smaller models. Clearly the prostate cancer data does not satisfy this;

however, the first several steps have p-values which are non-decreasing. The assumption

of submodularity can be relaxed as discussed in Johnson et al. (2015c), but doing so here

unnecessarily complicates our discussion.

Our first result is proven in Section 2.2.3 by demonstrating that RH is an alpha-investing

procedure (Foster and Stine, 2008). RH is presented independently of alpha-investing so

that the algorithm and proof method are not conflated.

Theorem 1. If the data (Y ,X) are submodular and M∗ is the model chosen by Revisiting-

Holm with user defined parameter α, then

E(V (m))

E(R(m)) + 1
≤ α

In some cases, the approximation of RH may be unsatisfactory. Section 2.2.2 provides two

relaxations of RH that can be used to stop forward stepwise. The first relaxation uses
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the rejection thresholds used by RH as rejection levels for the true stepwise path. This

procedure, “Approximate Revisiting-Holm” (aRH), is conjectured to control FDR under

submodularity. While the martingale proofs of Foster and Stine (2008) are distorted, the

simulations of Section 2.3.2 support this claim.

Conjecture 1. If the data (Y ,X) are submodular and M∗ is the model chosen by Approx-

imate Revisiting-Holm with user defined parameter α, then

E(V (m))

E(R(m)) + 1
≤ α

Our construction of RH motivates one final relaxation: using the Holm significance levels

as the rejection thresholds. This is introduced in Section 2.1.2. The resulting procedure,

Stepwise-Holm (SH), is closely related to the Max-|t| procedure of Buja and Brown (2014)

and controls the FWER under submodularity.

Theorem 2. If the data (Y ,X) are submodular and M∗ is the model chosen by Stepwise-

Holm with user defined parameter α, then

P(V (m) ≥ 1)) ≤ α

As noted in Taylor et al. (2014), the Max-|t| procedure can be highly conservative, which

is expected as it controls the FWER. That being said, it performs extremely well in the

simulations of Section 2.3.2.

Our framework clearly shows the shortcoming of other procedures recently recommended

in the literature (Taylor et al., 2014). This is discussed at length in Section 2.3, where we

demonstrate that classically motivated methods such as RH are preferred. Further evidence

is provided in Section 2.3.2, where RH and its relaxations are shown to have much higher

power than competing methods. This extends the discussion of Brown and Johnson (2016).
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2.1. Inference for Model Selection

Attempting to use inference for model selection poses significantly different challenges than

merely performing inference after a model is selected. Inference will be conducted multiple

times based on the result of previous inferential claims. Section 2.1.1 describes two separate

issues raised by such procedures, while Section 2.1.2 demonstrates that current solutions do

not address both issues.

2.1.1. Selection Effects

We use a simple simulation to demonstrate that it is difficult to provide a valid stepwise

procedure even in the orthogonal case. This separates questions about the statistical validity

of forward stepwise from its ability to approximate the sparse regression problem (1.2). The

model identified at the kth step of forward stepwise exactly solves (1.2) under orthogonality.

The assumption of submodularity guarantees that forward stepwise is both a reasonable

approximation to (1.2) (Nemhauser et al., 1978) and that our methods provide statistical

guarantees. This is discussed in Section 2.2.

Suppose the data contain 10 orthogonal explanatory features, β1 = . . . = β10 = 0, and σ2 is

known. In this case, the test statistics are iid N(0, 1) variables but will be called t-statistics

for consistency with data applications. The t-statistics for H1, . . . ,H10 are t1, . . . , t10 with

corresponding p-values p1, . . . , p10. The feature selection problem is equivalent to deter-

mining an order for testing H[m] while controlling false rejections at level α. Since our

goal is model selection, a feature is “included” or “added” to the model when the corre-

sponding null hypothesis is rejected. Sort the hypotheses by their absolute t-statistics as

|t(1)| > . . . > |t(10)| (equivalently p(1) < . . . < p(10)). At step i, forward stepwise tests

H(i). In the orthogonal setting, test statistics and p-values do not change depending on the

order in which hypotheses are tested, because coefficients do not change due to the model

in which they are estimated.

As expected, the distributions of the absolute order statistics are significantly different than
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Figure 1: Illustration of selection and sequential effects under the global null hypothesis.

the naive |N(0, 1)|. Figure 1a and 1b show the distributions of |t(1)| and |t(3)|. Informally,

the difference between these distributions and the distribution of |N(0, 1)| is the ranking

effect. This name is motivated as the difference between the test of a rank statistic and a

randomly chosen one. A more precise definition follows shortly.

Since our goal is not to estimate the correct distribution but to perform a valid test, we

desire a critical value yielding a level-α test. The nominal α = .1 critical value is t = 1.645,

whereas the simulated threshold is t = 2.58. This value can be easily computed using the

Bonferroni correction, and the expected size of further rank statistics can be computed in the

orthogonal case (George and Foster, 2000). The .1-critical value for |t(3)| is approximately

1.57, which is lower than the naive level-.1 significance threshold. This is intuitive as |t(3)|

is constrained to be less than |t(2)| by definition.

To be consistent with the standard use of hypothesis testing during forward stepwise, we

propose the procedure “Exact Stepwise (traditional)” (ES-t), that terminates on the first

step in which a hypothesis fails to be rejected using traditional stepwise p-values.1 Such

a perspective is often necessary to allow early termination of an algorithm in large feature

spaces. ES-t only tests H(i) if H(1), . . . ,H(i−1) were rejected. On the subset of cases in

which this occurs, |t(i)| is much less constrained, because all of |t(1)|, . . . , |t(i−1)| were large

1A similar procedure is discussed in Section 2.3 that uses the methodology of Taylor et al. (2014) which
corrects p-values for ranking.
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enough to be rejected. The distribution of |t(3)| considered by ES-t is only realized on the

subset of cases in which H(3) is actually tested. Figure 1c shows the distribution of |t(3)|

on the subset of cases in which H(1) and H(2) were rejected using α = .1 under the Holm

method. The Holm method is explained in Section 2.1.2 and entails that p(1) < α/m and

p(2) < α/(m− 1). Informally, the difference between the distributions in Figures 1b and 1c

is the testing effect. The testing effect increases the simulated critical value from 1.57 to

2.32.

In order to provide precise definitions of the ranking and testing effects, it is necessary

to define different distributions of statistical interest. Classical inference procedures are

interested in controlling the nominal type-I error from a test specified prior to seeing the

data:

PM,H0(reject H0) ≤ α. (2.1)

Both the model M and null hypothesis H0 are specified ex-ante and the test is conducted

assuming that the data originate from the model M . If M is misspecified, inference is still

possible though the object of inquiry is the best approximation of the true mean of Y in

the model M (Buja et al., 2014). Orthogonality breaks the dependence of H0 on M , as the

presence of other variables does not change coefficient estimates. Most situations are similar

to forward stepwise, in which M and H0 are chosen together, reintroducing dependence.

Therefore, the orthogonal case is still non-trivial.

Often both M and H0 are the result of exploratory data analysis which invalidates the

assumption of pre-specified inference goals. In this case, a reasonable alternative is to

control the selective type-I error (Fithian et al., 2015):

PM,H0(reject H0|(M,H0) selected) ≤ α. (2.2)

Given the use of algorithms to identify models, we will separate two different types of

selective type-I errors. The first arises when M is selected by a fixed algorithm A. M is
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still random as it depends on the data, but the algorithm A does not contain a random

component such as statistical tests. For example, one could test the hypothesis selected on

the third step of forward stepwise. The resulting error is the fixed-selective type-I error :

PFM,H0
(reject H0|(M,H0) selected by A) ≤ α. (2.3)

The parameters M and H0 are understood to be dependent on the algorithm, A, used in

their identification: M = M(A) and H0 = H0(A). For brevity, this dependence is included

as a superscript in the probability notation.

The testing effect and the discussion in Brown and Johnson (2016) lead us to be more

pedantic in the definition of the selective type-I error rate. We explicitly note the dependence

of the algorithm A on test statistics T in the definition of the total-selective type-I error :

PTM,H0
(reject H0|(M,H0) selected by (A, T )) ≤ α. (2.4)

As before, the parameters M and H0 are understood to be dependent on both the fixed

algorithm, A, and the hypothesis tests, T , used in their identification: M = M(A, T ) and

H0 = H0(A, T ). For brevity, this notation is included as a superscript in the probability

notation. Acknowledging that test statistics are used to select M does not change the

concept of selective type-I error as the set (A, T ) merely produces a meta-algorithm for

performing selection. The difficulty in requiring a completely specified algorithm motivates

the post-selection inference methods of Berk et al. (2013).

Using the nominal, fixed-selective, and total-selective type-I errors, we can clearly define

the two selection effects which arise when using hypothesis testing for model selection. The

ranking effect is defined as the lack of equivalence between the nominal and fixed-selective

type-I error, and the testing effect is defined as the lack of equivalence between the fixed-

selective and total-selective type-I error:
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Definition 2 (Selection Effects).

Ranking Effect:

PM,H0(reject H0) 6= PFM,H0
(reject H0|(M,H0) selected by A)

Testing Effect:

PFM,H0
(reject H0|(M,H0) selected by A)

6= PTM,H0
(reject H0|(M,H0) selected selected by (A, T ))

Both selection effects are the result of a selection procedure but are given different names

to separate important distinctions in types of selection. The distinction can be seen by

considering two separate methods to identify a forward stepwise model. The fixed algo-

rithm perspective runs forward stepwise a specified number of steps, then tests the feature

being added. If a stopping condition is used such as selecting the model with minimum

cross-validated error, this must be specified and included in the conditioning. Loftus (2015)

represents such a procedure as a set of constraints on Y in order to condition on the se-

lection event. Therefore, PFM,H0
(reject H0|(M,H0) selected by A) is the appropriate object

of inquiry and coefficients in the final model can be tested via their methods. Alterna-

tively, ES-t can select the forward stepwise model using the p-values in Table 1. The model

chosen via this method is the result of repeated hypothesis testing and the correct object

of inquiry is PTM,H0
(reject H0|(M,H0) selected by (A, T )). ES-t requires hypotheses to be

tested sequentially and future tests are influenced by the results of past tests.

2.1.2. Problems with Previous Solutions

Broadly speaking, there are two perspectives on how to account for the selection effects. The

first computes a p-value that corrects for selection. This is a challenging task and is impossi-

ble in some cases. If M is identified through a model selection procedure, PM,H0(reject H0)

cannot be estimated (Leeb and Pötscher, 2006). The hypothesis H0 may be specified prior

to data analysis, but M is often selected from a large set of candidate models based on per-
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formance measures such as AIC. While this is a common practice, the inability to estimate

PM,H0(reject H0) renders control of the nominal type-I error impossible.

Estimation is made possible by conditioning on the selection event. Taylor et al. (2014)

control the fixed-selective type I error rate, PFM,H0
(reject H0|(M,H0) selected), by specifying

the choice of M via algorithm A as constraints on the response Y . For example, if X1 is

chosen on the first step of forward stepwise, then the t-statistic of β̂1 is larger than that

of β̂i, for i 6= 1. This implies a set of linear restrictions on Y . The algorithm A is fixed

and is purely used for optimization as no decisions depend on the result of statistical tests.

Their calculations result in statistics with a uniform distribution under H0, and hence are

called “exact p-values.” The second column of p-values in Table 1 are the “exact p-values”

computed using their procedure when forward stepwise is run on the prostate data.

While Taylor et al. (2014) do not explicitly advocate using the p-values as a way to select

models, both the tacit discussion of modeling and the corresponding R package encourage

such a use. One might think that improved p-values would lead to improved model selection,

at least in some circumstances; however, the formulation in Taylor et al. (2014) involves a

serious paradox. One needs to begin with a well-specified model selection algorithm and

construct a model independent of the exact p-values described in the paper. The exact

p-values can be constructed only after the model has been chosen; they cannot validly be

used to select the model. If one tries to use them in this way, they become invalid, because

such tests are not incorporated into the constraints on Y . While this does not invalidate the

methodology, it both changes their p-values and significantly hinders computation. This

paradox is also raised in Brown and Johnson (2016) and will be described fully in Section

2.3.

Furthermore, the corresponding package, selectiveInference, suggests selecting models using

procedures from G’Sell et al. (2015). The independence between between p-values assumed

by G’Sell et al. (2015) is of less concern than the fact that the p-values produced by se-

lectiveInference do not account for the testing effect. To have valid conditional p-values,
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selectiveInference must account for the influence of the G’Sell et al. (2015) selection pro-

cedure; however, these procedures are not valid stopping rules, and thus the conditioning

event M(A, T ) must encode the entire selection path. The adjusted p-value at step i de-

pends on the result of calculations from step 1 to the maximum step m′. We provide more

details and a conservative procedure in Section 2.3.2 which allows for early stopping. The

computational cost of incorporating even the simpler constraints implied by the conservative

procedure likely renders it impractical.

The second potential solution to inference for model selection uses traditional, stepwise p-

values but changes the rejection threshold. Multiple comparison procedures such as Holm

(Holm, 1979) and Benjamini-Hochberg (Benjamini and Hochberg, 1995) are of this form.

Bonferroni is a classical, conservative method for controlling for multiple comparisons by

bounding the FWER. Bonferroni changes the rejection threshold from α to α/m, so that

Hi is only rejected if pi ≤ α/m. This controls the FWER by Boole’s inequality. The second

relevant procedure is the Holm step-down method, which proceeds as:

1. Sort the p-values: p(1) < . . . < p(m) and corresponding hypotheses H(1), . . . ,H(m).

2. Identify k = mini p(i) >
α

m−i+1 .

3. Reject H(1), . . . ,H(k−1).

Holm rejects H(1) if p(1) falls below the Bonferroni level with m hypotheses: α/m. If H(1)

is rejected, only m − 1 hypotheses are still being considered; hence, p(2) is compared to

the Bonferroni threshold using m − 1 hypotheses: α/(m − 1). This increases the power

of subsequent tests, particularly if many hypotheses are rejected. The final test of H(m)

can even be carried out at the nominal level α. The FWER is controlled according to the

closure principle.

Instead of controlling the probability of making any false rejections, consider controlling

the proportion of false rejections. This provides higher power and may be more appropriate

if many hypotheses are being tested. The Benjamini-Hochberg step-down procedure (BH)
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Table 2: Comparison of Holm and BH p-value rejection thresholds.

1 2 3 4 5 6 7 8 9 10

Holm 0.010 0.011 0.013 0.014 0.017 0.020 0.025 0.033 0.050 0.100
BH 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100

controls FDR (Benjamini and Hochberg, 1995). BH proceeds similarly to Holm:

1. Sort the p-values: p(1) < . . . < p(m) and corresponding hypotheses H(1), . . . ,H(m).

2. Identify k = mini p(i) > i αm .

3. Reject H(1), . . . ,H(k−1)

As in Holm, sorted p-values are compared to a rejection threshold and the algorithm ter-

minates when the threshold is exceeded. Both procedures test p(1) using the Bonferroni

threshold α/m and test p(m) at the nominal level α. BH increases linearly between these

endpoints, providing significantly higher power. Table 2 compares the rejection thresholds

of the two methods when m = 10 and α = .1.

Both the Holm and BH procedures can be improved in the sense that more hypothesis can

be rejected while maintaining control of their respective error criteria. Instead of setting

k as the first time p(k) exceeds the required threshold, set k − 1 to be the last time that

p(k−1) is less than the required threshold. We focus on step-down procedures as opposed

to these step-up procedures, because they are similar to sequential methods in that they

provide valid stopping rules. Step-up procedures require all p-values to be computed before

a set of hypotheses can be rejected. This is often unsatisfactory for model selection if there

are many features. For example, the full stepwise path, or at least a predefined maximum

number of steps, must be computed before a model can be identified.

We measure the ranking and testing effects by the difference in critical values for a level-α

test from the different error distributions. In the following display, the notation is simplified

by excluding M . At step i, the relevant model is Mi = {H(1)∪ . . .∪H(i)}. For each i, define
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the following critical values:

Nominal threshold: t∗N (i) s.t. PH(i)
(|ti| > t∗N (i)) = α

Fixed-sequential threshold: t∗F (i) s.t. PFH(i)
(|ti| > t∗F (i)|H(i)(A) selected) = α

Total-sequential threshold: t∗T (i) s.t. PTH(i)
(|ti| > t∗T (i)|H(i)(A, T ) selected) = α

The nominal threshold t∗N (i) ignores the selection effects and hence treats all observed statis-

tics as N(0, 1). Thus the ranking effect caused by testing hypothesis which are suggested by

the data is measured by t∗N (i)− t∗F (i). For example, |t(1)| is the maximum of 10 t-statistics

and is not distributed as |N(0, 1)|. The first step does not demonstrate the testing effect as

no tests have occurred: t∗F (1) = t∗T (1). On subsequent steps, the testing effect is measured

by t∗T (i)− t∗F (i), where the latter accounts for the previous hypothesis tests and the former

does not.

Table 3 compares simulated critical values to those generated by Holm and BH for α = .1.

The true fixed-selective critical value, t∗F (i), is merely the .9-quantile of the distribution

of |t(i)|. The true total-selective critical value, t∗T (i), is the .9-quantile of the distribution

of |t(i)| on the subset of cases in which H(1), . . . ,H(i−1) were rejected according to some

procedure. Therefore, t∗T (i) depends on the hypothesis testing rule. As identifying the

appropriate rule is the a goal of this paper, we present a couple of different options. The

“true” total-selective t∗T (i) is the critical value if all previous tests are conducted at the

“true” total-selective threshold, where the initial test does not contain the testing effect.

We also show t∗T (i) when hypotheses are tested using Holm, BH, and our proposal, Revisiting

Holm.

First, it is clear that the nominal threshold does not account for the selection effects and

is misleading. The critical value t∗N (i) is initially much smaller than the corrected values,

but quickly becomes larger than t∗F (i) and larger than t∗T (i) for large i. Second, by the

fifth step, t∗F (i) and “true” t∗T (i) differ by almost 1 or approximately a factor of 2. The
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Table 3: Simulated critical values under global null.

Step 1 2 3 4 5

Nominal t∗N (i) 1.65 1.65 1.65 1.65 1.65
Fixed-Selective t∗F (i) 2.58 1.92 1.57 1.32 1.11

“True” Total-Selective t∗T (i) 2.58 2.39 2.26 2.15 2.12

Holm Total-Selective t∗T (i) 2.58 2.40 2.32 2.29 -
Holm 2.58 2.54 2.50 2.45 2.39

BH Total-Selective t∗T (i) 2.58 2.40 2.24 2.08 1.99
BH 2.58 2.33 2.17 2.05 1.96

RH Total-Selective t∗T (i) 2.58 2.30 2.12 1.97 1.87
RH 2.58 2.31 2.13 1.99 1.86

difference is the testing effect and it quickly dominates the rank effect. The intuition for

the magnitude of the testing effect was provided previously: on the subset of cases in which

H(i) is tested by ES-t, |t(i−1)| does not place a strong constraint on |t(i)|. The relative sizes

of the selection effects is troubling as the conditional methods of Taylor et al. (2014) ignore

the testing effect.

Third, there are large differences between the simulated critical values and those produced

using the corresponding multiple comparison methods. While the procedures control very

different error measures, it is instructive that neither method estimates the corresponding

total-selective critical value correctly. This demonstrates the need for a new method ac-

counting for the ranking and testing effects. Lastly, the bottom two rows show the critical

values produced by our approximate stepwise procedure Revisiting Holm. The computed

values match the simulated critical values t∗T (i).

As we demonstrate in Section 2.2, sequential testing fits somewhere between the two po-

tential solutions discussed in this section. We use stepwise p-values such as those from

Table 1 to craft an algorithm which looks like a multiple comparison procedure; however,

an important update occurs between tests which changes the “effective” testing level. This

update also accounts for the differences between the RH total-selective t∗T (i) and the “true”

total-selective t∗T (i) seen in Table 3.
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2.2. Sequential Testing

The Revisiting Holm procedure (RH) is motivated by controlling multiple comparisons in

a sequential testing framework. Sequential testing assumes the hypotheses H[m] arrive

sequentially. As such, the current hypothesis must be tested before observing subsequent

hypotheses. This leads to a new mindset for multiple comparison control as well as corrected

rejection thresholds for inference for model selection. While the corrections are only exact

in the orthogonal case, we demonstrate that they are robust to certain deviations from

orthogonality. Furthermore, the simulations in Section 2.3.2 demonstrate that RH controls

FDR in nonorthogonal cases and has much higher power than competitors.

2.2.1. Approximating Stepwise Regression

At each iteration, forward stepwise sorts the stepwise p-values of all remaining features in

order to select the feature with the minimum p-value p(1). Instead of performing a full sort,

consider using increasing rejection thresholds, where hypotheses are rejected when their

p-value falls below a threshold. For now, set aside the concern about type-I error control to

focus on the order in which covariates are selected by RH. Consider thresholds determined

by the Holm step-down procedure. The approximate stepwise algorithm is:

1. Test H(1), . . . ,H(m) at level α/m.

2. If p(1) > α/m, stop with no rejections, else reject H(1). This was the first “pass” through

the features or “round” of testing. For now, assume that only one rejection is made on

this pass, ie, p(2) > α/m.

3. TestH(2), . . . ,H(m) at level α/(m−1), following the rejection procedure as before. Again,

assume only one rejection.

4. Continue making testing passes using the Holm thresholds until all remaining hypotheses

fail to be rejected in a round, then terminate. The selected model includes the variables

corresponding to the rejected hypotheses.
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While this looks identical to the original Holm procedure, there is an important distinction:

hypotheses are formally tested multiple times. Therefore, the procedure must condition on

the results of previous tests.

To introduce the implications of this conditioning, consider a level-α test with rejection

threshold p∗. In general, α and p∗ are not discussed of as two separate parameters, be-

cause they are equal when the p-value is uniformly distributed and unconstrained. When

conditioning on the result of previous tests, however, they are different.

Definition 3 (Level-α test, rejection threshold p∗).

PH0(p ≤ p∗) = α ⇒ Standard case: p∗ = α

When testing a hypotheses on the second round, one must account for the failed test in the

first round. In our simulation example with m = 10 and α = .1, the second pass performs

a level-.01/9 test conditional on the p-value being greater than the first pass threshold of

.1/10. Under the null hypotheses, the sequential p-value is uniformly distributed; hence the

threshold p∗ can be computed as

.1/9 = Pnull(p2 ≤ p∗|p2 > .1/10) (2.5)

=
p∗ − .1/10

1− .1/10

⇒ p∗ = 0.021.

Intuitively, the Holm testing level is an allocation of error probability. The rejection thresh-

old with error probability .1/9 is not .1/9 given the failed test on the first pass. Revisiting

Holm uses rejection thresholds which account for testing hypotheses multiple times. It

formally revisits hypotheses and is named for this characteristic. (Foster and Stine, 2008)

note that this procedure produces thresholds similar to BH, while this paper extends their

discussion to model selection and points to additional benefits. The practical benefits of

this approximation algorithm and subsequent improvements are discussed in Johnson et al.
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Figure 2: Example of “Revisiting” Holm procedure.

(2015b).

For clarity, Figure 2 shows a few steps of RH. Our hypothetical data follows the simple

simulation example with 10 orthogonal explanatory variables and α = .1. The rejection

thresholds during the first four passes are the horizontal, dashed lines. The first step of

the procedure tests all p-values at level .1/10. As one p-value falls below this threshold, its

hypothesis is rejected and the procedure continues. Step 2 tests the remaining hypotheses at

level-.1/9 which leads to a rejection threshold of .021. One p-value is below this threshold, so

its hypothesis is rejected and the procedure continues. Step 3 tests the remaining hypotheses

at level-.1/8 and rejection threshold .033, which leads to a third rejection. Step 4, however,

fails to make any rejections using a rejection threshold of .047. Therefore the algorithm

terminates, resulting in the model selected during the first 3 steps: features 2, 4, and 6.

If only one hypothesis is rejected per round, then RH exactly replicates the forward stepwise

selection path. To relax this assumption, suppose that both p(1) < α/m and p(2) < α/m

such that both hypotheses would be rejected on the first pass. Since H(1) was rejected,

H(2) could be tested at level-α/(m− 1). Such a test has higher power, but was ultimately

unnecessary; the conservative test made in the first round successfully rejected H(2).
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This early rejection results in two effects. First, the early rejection changes the reference

distribution for the second testing pass. RH is not attempting to test all possible H(2) on

the second pass, but merely those that were not rejected on the first pass. Therefore, the

simulated total-selective critical value for RH should only be computed from the subset of

cases in which H(i) was not already rejected in a previous pass. This excludes those cases

where p(i) < t∗T (i − 1). The result of this change is seen in Table 3. RH produces critical

values that are effectively identical to the simulated total-selective values t∗T (i).

Second, if multiple hypotheses are rejected in a round, RH is not guaranteed to have selected

the most significant feature first. Since the features were not truly sorted, it is unknown

which of the two hypotheses rejected in the first pass actually had a smaller p-value. Both

p-values were merely smaller than α/m. In this case, the order in which the hypotheses

are tested is influential. If H(2) is tested before H(1), then RH includes the corresponding

features X(1) and X(2) in the wrong order.

Selecting features in the wrong order is not of serious concern in the orthogonal case,

because the same set of features will have been selected by the end of each testing pass. In

nonorthogonal settings, however, test statistics change based on the model in which they are

computed, so selecting features in a different order can lead to significantly different models.

This is easiest to see by example. Table 4 gives the sequential p-values of all features in

the prostate cancer data in different selected models. Two algorithms are compared: RH

testing the features in sorted stepwise order 1-8 (RH-sort), and RH testing the features in

the reverse order 8-1 (RH-rev). The reverse order provides a worst-case ordering for RH.

In the table, hyphens indicate the features in the model.

Forward stepwise, RH-sort, and RH-rev consider the same p-values initially (step 0), as

no features have been added to the model. These p-values are computed from simple

regressions between the response and the feature of interest using an independent estimate

of the error variance. While all features fall below the RH threshold, lcavol has the lowest

p-value. Therefore, forward stepwise and RH-sort select the same feature on step 1. The
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Table 4: Stepwise p-values after each step.

Feature (Step) RH-0 RH-sort-1 RH-sort-2 RH-rev-1 RH-rev-2 RH-rev-3

lcavol (1) 0.0000 - - 0.0000 0.0000 0.0000
lweight (2) 0.0000 0.0003 - 0.0000 0.0000 0.0000

svi (3) 0.0000 0.0410 0.0424 0.0000 0.0001 0.0000
lbph (4) 0.0006 0.0041 0.1506 0.0010 0.0001 -

pgg45 (5) 0.0000 0.1453 0.0758 0.0002 0.1330 0.1078
lcp (6) 0.0000 0.7300 0.9494 0.0000 - -
age (7) 0.0027 0.7998 0.4649 0.1352 0.1331 0.7534

gleason (8) 0.0000 0.6516 0.3592 - - -

p-values in the column RH-sort-1 are the stepwise p-values given that lcavol is in the model.

Again, RH-sort and forward stepwise select the same variable, lweight, at the second step.

Adjusting the stepwise p-values for the model (lcavol, lweight) results in the column RH-

sort-2. All of these p-values fall above the RH threshold for the third testing pass, so the

procedure terminates. The correspondence between RH-sort and forward stepwise seen here

is a general property: if RH tests variables in the order determined by stepwise, then RH

selects variables in the same order as stepwise.

RH-rev behaves significantly differently than RH-sort and forward stepwise. The initial p-

values it considers are identical, but RH-rev tests gleason first and the test is rejected. The

p-values in the column RH-rev-1 condition on gleason being in the model. Proceeding in the

reverse order, the test of age is not rejected, but the test of lcp is. Column RH-rev-2 updates

the stepwise p-values given the model contains gleason and lcp. Using these p-values, lbph

is also rejected, and the process continues. In fact, RH-rev rejects all 8 features. Given

the ordering of the features this is at least justifiable. Each subsequent feature explains a

significant reduction in ESS. Even after several features are in the model, lcavol provides

unique information about the response. That being said, selecting all 8 features is clearly

not desirable and motivates the relaxations of Section 2.2.2. Alternatively, by choosing a

different set of rejection thresholds Johnson et al. (2015b) mimic stepwise regression very

well. In this case, their method selects the RH-sort model of {lcavol, lweight} regardless of

the ordering of the features.
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In nonorthogonal data, one may object to the updating in equation (2.5) because sequential

p-values are relevantly different between steps. While the same explanatory feature is being

tested, the sequential p-value is a function of the other variables in the model. For example,

if other hypotheses were rejected between two tests of Hi, there is, in general, no guarantee

that the conditioning statement in equation (2.5) is accurate; a feature can become more

significant in the presence of other features. This is seen in Table 6 and discussed at length

in Johnson et al. (2015c). Three considerations alleviate this concern. First, the extent to

which p-values can change in the presence of other variables is controlled by the approximate

submodularity of the data Johnson et al. (2015b). In fact, the statement is conservative if

the data are submodular. The degree of approximate submodularity can be bounded by

the minimum eigenvalue of the covariance matrix of X. Dependence is not measured by the

correlation between variables because not all correlation is problematic for model selection.

Second, the simulation in Section 2.3.2 demonstrates that deviations do not harm type-I

error control. Third, the significance thresholds developed in Johnson et al. (2015b) render

the critique obsolete, in that the correction in equation (2.5) makes a minuscule change

to the effecting testing level. The correction can be ignored with a minimal reduction in

power.

We provide two simulated examples using correlated data to demonstrate the behavior of RH

in more difficult scenarios. RH provides a good approximation of true critical values under

mild dependence, but extreme dependence degrades the approximation. As shown in Section

2.3.2, even conservative competitors can be broken in these cases. We directly simulate the

distribution of 10 t-statistics as done in the original simulations of this section. The first

simulation example has a benign correlation structure where the correlation between indices

i and j is .2|i−j|. The minimum eigenvalue of the corresponding data matrix is .68.

The second simulation example has a challenging correlation structure in which the corre-

lation between indices i and j is .8|i−j|. This results in the strange effects in Table 6, where

t∗T (2) > t∗T (1). This is counter-intuitive since forward stepwise selects the most significant
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Table 5: Benign correlation structure with minimum eigenvalue .68.

1 2 3 4 5

Fixed-selective t∗F (i) 2.56 1.93 1.58 1.33 1.12
“True” Total-selective t∗T (i) 2.56 2.43 2.30 2.20 1.98

R-Holm Total-selective t∗T (i) 2.56 2.32 2.15 2.01 1.90
R-Holm 2.58 2.31 2.13 1.99 1.86

feature on the first step. Therefore, given this one feature model, it is possible for a feature

to appear even more significant than the initially most significant feature. This reversal

produces effects such as insignificant steps followed by significant ones. While RH does not

approximate the total-selective critical value as well, the deviations are not extreme. This

allows it RH to maintain performance measures in the simulations of Section 2.3.2.

Table 6: Challenging correlation structure with minimum eigenvalue .18.

1 2 3 4 5

Fixed-selective t∗F (i) 2.39 2.04 1.79 1.57 1.38
“True” Total-selective t∗T (i) 2.39 2.85 3.17 3.39 3.41

R-Holm Total-selective t∗T (i) 2.39 2.51 2.27 2.10 1.95
R-Holm 2.58 2.31 2.13 1.99 1.86

2.2.2. Relaxations

The dependence of RH on the order in which features are tested may be impractical or

unsatisfactory for some applications. This subsection introduces two relaxations that can

be validly used to identify a model using a stepwise table such as Table 1. The first relaxation

makes the tacit assumption that only one hypothesis is rejected per round. In this case,

RH selects the same features in the same order as forward stepwise. Furthermore, the RH

critical values accurately describe the forward stepwise table. The approximate procedure,

aRH, operates as follows:

1. Compute a stepwise table where the sequential p-value for step i is pi. The p-values are

not necessarily sorted: pi need not be less than pj if i < j.

2. Compute the set of RH critical values crh:
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crh(1) = α/m,

crh(i) = crh(i− 1) + α/(m− i+ 1)− crh(i− 1)α/(m− i+ 1) for i > 1.

This follows from the conditioning in equation (2.5).

3. Identify k = mini pi > crh(i).

4. Reject H(1), . . . ,H(k−1).

Foster and Stine (2008) point out that crh are initially close to the Benjamini-Hochberg

thresholds iα/m. Conjecture 1 suggests that aRH controls mFDR and is substantiated by

the simulations in Section 2.3.2. Clearly the claim is true if only one sequential p-value is

rejected per round as aRH and RH coincide. The proof of this claim is less important as

further revisions to RH yield a revisiting procedure, Revisiting Alpha-Investing, which is

proven to closely mimic forward stepwise (Johnson et al., 2015b). The authors also explain

and develop further practical benefits of using a precise threshold approximation to stepwise

regression.

A final relaxation is of independent theoretical and practical interest. Given the discussion

at the end of Section 2.2.1, one may question the update implied by revisiting in equation

(2.5). In particular, if the data is not submodular, then there is no guarantee that a p-

value does not decrease in the presence of other variables. A conservative statement is

provided by ignoring the revisiting component of RH. Namely, merely use the Holm levels

as the rejection thresholds for each testing pass on a given stepwise table. The resulting

procedure, Stepwise-Holm (SH), proceeds as follows:

1. Compute a stepwise table where the sequential p-value for step i is pi. The p-values are

not necessarily sorted: pi need not be less than pj if i < j.

2. Identify k = mini pi > α/(m− i+ 1).

3. Reject H(1), . . . ,H(k−1).

SH extends the intuition behind the Max-|t| procedure of Buja and Brown (2014). Under

the assumption of submodularity, this procedure controls the FWER. The proof of Theorem
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2 is given in the Appendix. While this controls false rejections in a conservative way, SH

performs well in the simulations of Section 2.3.2.

As pointed out in Taylor et al. (2014), the conservatism of SH is in part due to the ranking of

test statistics, ie |t(3)| is constrained to be less than |t(2)|. That being said, their discussion

is incomplete because it ignores the testing effect. Furthermore, as shown in Section 2.2.1,

the t-statistics of subsequent steps need not be smaller than those of previous steps in non-

orthogonal cases. This complicates the analysis because merely observing an insignificant

variable is not sufficient indication that there is no signal left in the data. Such instances

form the core problem cases for feature selection algorithms and are discussed at length in

Johnson et al. (2015c).

2.2.3. Alpha-Investing

RH is closely connected to commonly used multiple comparison procedures which alludes

to its type-I error control. This control is proven by demonstrating that the procedure is

an alpha-investing rule (Foster and Stine, 2008). Alpha-investing rules are similar to alpha-

spending rules in that they are given an initial amount of alpha-wealth which is spent on

hypothesis tests. Wealth is the total allotment of error probability. Bonferroni allocates

this error probability equally over all hypothesis, testing each one at level α/m. In general,

the amount spent on tests can vary. If αi is the amount of wealth spent on test Hi, FWER

is controlled when
m∑
i=1

αi ≤ α.

In clinical trials, alpha-spending is useful due to the varying importance of hypotheses.

For example, many studies include both primary and secondary endpoints. The primary

endpoint of a drug trial may be determining if a drug reduces the risk of heart disease.

As this is the most important hypothesis, the majority of the alpha-wealth can be spent

on it, providing higher power. There are often many secondary endpoints such as testing

if the drug reduces cholesterol or blood pressure. Alpha-spending rules can allocate the
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remaining wealth equally over the secondary hypotheses. FWER is controlled and the

varying importance of hypotheses is acknowledged.

Alpha-investing rules are similar to alpha-spending rules except that alpha-investing rules

earn a return, or contribution to their alpha-wealth, of ω ≤ α when tests are rejected.

Therefore, the alpha-wealth after testing hypothesis Hi is

Wi+1 = Wi − αi + ωRi

An alpha-investing strategy uses the current wealth and the history of previous rejections

to determine which hypothesis to test and the amount of wealth that should be spent on it.

Intuitively, alpha-investing rules spend error probability in search of false null hypotheses

to reject. Each false null that is rejected allows α more incorrect rejections in expectation.

Alpha-investing rules merely need to spend more wealth (error probability) than the prob-

ability of error they incur. In some sense, this behavior is present in all procedures which

control a proportion of false rejections. For example, if it is known that the first 9 rejec-

tions were of false hypotheses, then any 10th hypothesis can be rejected while controlling

the proportion of false rejections at .1.

We provide two examples of potential spending rules. The first is similar to Bonferroni

in that wealth is spent evenly over all remaining hypotheses. Note that this requires the

number of hypotheses to be known in advance. Given current wealth Wi, this procedure

spends

αi =
Wi

m− i+ 1

to test Hi. Figure 3a shows the testing levels of this rule with starting wealth W1 = .1 when

testing a set of 50 hypotheses in which rejections are made on tests 4, 11, 26, 40, and 44.

The procedure begins by testing at the usual Bonferroni level with m = 50, but rejections

allow more wealth to be spent, increasing the power of the tests.
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Figure 3: Example alpha-investing rules with testing levels. Tests are ordered numerically
and rejections are made at indices 4, 11, 26, 40, and 44.

The second example is a geometric spending rule that allows the total number of hypotheses

to be unknown. In this case, the alpha-investing rule merely spends one quarter of its current

wealth on the current test: αi = Wi/4. This spends wealth rapidly following a rejection

and is sensible if false hypotheses are anticipated to arrive in groups. Figure 3b shows the

testing levels in the same scenario considered for the Bonferroni strategy. One important

difference between the procedures is that the Bonferroni rule spends all of its wealth by

the end of the 50 tests whereas the geometric rule does not. The geometric procedure is

also related to a universal strategy. If tests only arrive sequentially without being revisited,

there exists a strategy that cannot be outperformed by a significant margin by any other

strategy. This universal procedure is an adaptively weighted set of geometric strategies

(Foster et al., 2001).

Viewing the Holm step-down procedure as an alpha-investing rule creates the Revisiting

Holm procedure and proves its control of mFDR. Given initial alpha-wealth α and return

ω = α, test all hypotheses at the Bonferroni level, α/m. This exhausts all alpha-wealth,

so that the procedure terminates if no rejections are made. If a rejection is made, the
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procedure earns a return equal to α and only m − 1 hypotheses remain. The wealth is

again split evenly among all remaining hypotheses, yielding the Bonferroni threshold over

m− 1 hypotheses of α/(m− 1). While Holm controls FWER, conditioning on the result of

previous tests improves power and controls mFDR. If any round is conducted without any

rejections, then the procedure is out of wealth and terminates.

RH accounts for the effects of inference during model selection. It controls the rank effect

by spending alpha-wealth on all hypotheses. This is an important change in perspective for

multiple comparisons research: the effects of multiple comparisons are controlled by paying

alpha-wealth to perform a given operation. For example, forward stepwise sorts the stepwise

p-values and only tests the minimum; however, this sort operation requires considering all

hypotheses, and is formally paid for using alpha-spending. Furthermore, RH controls the

testing effect because the amount of alpha-wealth spent on tests is larger than the rejection

threshold due to revisiting. If a hypothesis is tested twice, initially at level α1 and then at

level α2, the rejection threshold is

α2 = Pnull(p ≤ p∗|p > α1)

=
p∗ − α1

1− α1

⇒ p∗ = α1 + α2 − α1α2. (2.6)

This threshold is smaller than α1 + α2, which is the rejection threshold if the total wealth

spent testing this hypothesis was used on one test instead of two.

2.3. Polyhedral Selection

One attempt so solve the problems brought up in Section 2.1.1 is provided by Taylor et al.

(2014). The authors formalize the steps of a selection procedure as constraints on the

response in order to accounts for the selection effect. For ease of exposition, we focus on

the forward stepwise case, though the arguments are also applicable to LARS (Efron et al.,

2004). The authors’ propose an “Exact Forward Stepwise” procedure (eFS) that assigns
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new, “exact” p-values to the variables in a standard forward selection algorithm. After a

variable is added, it is assigned a “p-value” by this “exact” procedure. This is a numerical

quantity that has a U(0,1) distribution conditional on the sign of the selected variable and

the variables that have been previously chosen.

While forward stepwise and LARS operate independently of these p-values, one would

expect the modeler to want to use the p-values to determine the step at which to “stop”

the procedure and provide a final model. Consider the p-values given in Table 1, which

compares their eFS p-values to naive stepwise p-values. Identifying a final model using such

a table requires considering multiple p-values from separate steps of the procedure. Therein

lies the problem: the set of exact p-values cannot be used to make decisions, else they are

invalid. Even using these p-values as input into a secondary FDR-controlling procedure

as in G’Sell et al. (2015) is inappropriate. Only one exact p-value can validly be used,

testing one step of a much larger procedure. Similarly, if a model is selected through other

means such as cross-validation, the inferential guarantees of related methods need not hold

(Bachoc et al., 2014).

The conventional p-values are single-step values. They do not correct for the multiple

testing nature of a stepwise procedure. Later in this section, we recommend the procedures

from Section 2.2 which can be validly and directly used for stepwise selection. Alternatively,

one could update the conditional inference logic of Taylor et al. (2014) to account for the

testing effect. For reasons discussed below, however, we do not favor its use.

The paradox in using the eFS p-values is rather subtle, and is easiest to explain in the

context of an example. Let Zi be independently distributed N(θi, 1), for i ∈ {1, 2}. The

forward selection problem is equivalent to determining an order for testing H0,i: θi = 0,

while controlling false rejections at level α. Allowing correlated variables does not change

our discussion, it merely complicates the exposition and graphs. Similarly, without loss of

generality, let Z1 > Z2 > 0.
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The authors’ eFS significance thresholds are given as “eFS Step 1” and “eFS Step 2” in

Figure 4. The conditioning set for both steps of the procedure is the same: {Z1 > Z2 > 0}.

Values to the right of the curve “eFS Step 1” (in red) yield p-values below α when testing

H0,1 while values between “eFS Step 1” and the blue, 45◦ line yield p-values greater than

α. Thus, values to the right of eFS Step 1 are those for which the statistician using eFS

p-values would select Z1 with a positive sign at the first step of the selection process. During

the second step, values above the curve “eFS Step 2” (in gold) are significant at level α,

while values below are not. Note that the calculation at the second step does not change

depending on whether or not H0,1 was rejected.

In order to use the eFS p-values as Table 1 would imply, testing H0,2 must account for

rejecting H0,1 (the testing effect). Following the methodology of the authors’ paper, this

requires updating the conditioning set. Our corrected procedure, “Exact Stepwise (condi-

tional)” (ES-c), terminates on the first step in which a corrected, conditional p-values is

above α. If H0,2 is only tested when H0,1 is rejected by eFS, then the conditioning set is

the region to the right of eFS Step 1. Those points to the right of eFS Step 1 and outside

the convex, parabolic region whose boundary is the curve “ES-c Step 2” (in green) are

those for which the new ES-c procedure selects Z1 at the first step (with a positive sign)

and Z2 at the second step (with positive sign). It is clear that this correction does not

invalidate the authors’ methodology, but it does yields different p-values. Furthermore, the

new conditioning sets are not polyhedral and need not be convex.

2.3.1. Stopping Procedures Using ES-c P-values

We are also concerned with the counter-intuitive results given when using conditional p-

values, even when they are corrected as above. The problem has obvious symmetries such

as relabeling variables 1 and 2 or changing their signs. While our new proposal, ES-c,

preserves those symmetries, it does not preserve the natural monotonicity of the problem.

For example, there exist values (z1, z2) and (z′1, z
′
2) for which z1 ≤ z′1 and z2 ≤ z′2, but for

which ES-c selects both variables at (z1, z2) and no variables at (z′1, z
′
2). The authors’ eFS
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procedure does not produce as extreme an example since H0,2 is tested regardless of the

result of testing H0,1; however, the significance of the test of H0,1 depends on the value of

Z2. This is particularly troubling given that Z1 and Z2 are independent.
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Figure 4: Stepwise rejection regions at α = .1. The full picture is symmetric around the
x- and y-axes. A corresponding image would be drawn if Z2 > Z1 > 0, in which case the
graph would be rotated 90◦ and maintain its symmetries.

It is also instructive to compare the rejection regions of the eFS and ES-c procedures to those

of more traditional methods (again, see Figure 4). The conventional procedure controls the

nominal type-I error rate, ignoring the selection of M and H0. It first adds Z1 if |Z1| > |Z2|

and |Z1| > Φ−1(1− α/2). It then adds Z2 if, also, |Z2| > Φ−1(1− α/2). If |Z2| > |Z1| and

|Z2| > Φ−1(1− α/2) the first step adds Z2, etc. Relevant portions of the lines in pink form

the boundaries of this region. There are multiple, classically-constructed stepwise regions

to control for selection and multiple comparisons:

a) Conventional: The pink lines are at Z1 = 1.645 and Z2 = 1.645. To the right of the

blue 45◦ line, they show regions where the fully classical stepwise procedure would first

choose Z1 (to the right of Z1 = 1.645) and then Z2 (above Z2 = 1.645). This region is

not adjusted for multiple comparisons, and hence has an error probability of choosing

non-empty models under the null hypothesis that exceeds the nominal level α.
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b) Bonferroni (B): Similarly, the purple lines at Z1 = 1.96 and Z2 = 1.96 bound re-

gions which provide conservative multiple-comparison adjustments based on conven-

tional single-coordinate p-values. This uses the Bonferroni approximation to control

for multiple-comparisons. The exact numerical value can be computed from a maximum

modulus calculation and is 1.948.

c) Stepwise Holm (SH): A better stepwise procedure controlling for multiple comparisons

can be constructed as follows: at each step, choose among the remaining k variables using

a p-value threshold such that the null probability of choosing any model is less than or

equal to α. As in b), Bonferroni yields the conservative threshold α/k, though an exact

calculation is possible when k is small. On the figure, one would include Z1 to the right

of Z1 = 1.96 (or 1.948 for an exact calculation) and then would include Z2 when Z2 is

above Z2 = 1.645. At each step of the procedure, the conditional probability under the

null hypothesis of continuing with an incorrect rejection is α. This type of procedure was

briefly proposed in Buja and Brown (2014) as Max-|t|. If Bonferroni is used to pick a

conservative threshold at each step, then the resulting procedure is Stepwise Holm from

Section 2.2.2. If the goal is to preserve mFDR, then Revisiting Holm or Approximate

Revisiting Holm can be used to achieve substantially higher power.

Many interesting comparisons can be made between eFS, ES-c, and the more conventionally

motivated, multiplicity-corrected procedures B and SH. These regions are labeled (numeri-

cally) in Figure 4.

1. Consider the triangular region to the right of eFS Step 1 and to the left of Z1 = 1.96.

This is where the ES-c procedure selects Z1 and the conventionally motivated procedures

choose no variables. Heuristically, this seems to be a success for the ES-c procedure.

2. Within the region described in 1, there is a sliver between eFS Step 1 and ES-c Step

2. Here, ES-c selects both Z1 and Z2, while the conventional procedures select nei-

ther. While this maintains a significance guarantee, this may not be an advantage.

These points do have conventional (2-sided) p-values for Z1 that are below α, but the

36



conventional p-value for Z2 is quite large. Selecting Z2 appears to be a mistake.

3. There is a more noticeable triangular region bounded by eFS Step 1, ES Step 2, and

Z2 = 1.645. In this region, the ES-c procedure selects both Z1 and Z2 but B and

SH select only Z1. For reasons similar to those in 2, the second step of ES-c appears

undesirable. The disadvantage is not as clear, however, since Z2 can have a 2-sided

p-value as small as α = .1 in this region. The uncorrected FS p-value yields intuitively

more satisfactory results in this region.

4. Consider the region between Z2 = 1.645 and Z2 = 1.96, and to the right of eFS Step 1.

ES-c and SH select both variables, but the simpler, conservative procedure B does not

include Z2. The advantage here goes to ES and SH.

5. The area between the 45◦ line and eFS Step 1 and to the right of Z1 = 1.96 is where

B and SH have a clear advantage in power relative to ES-c or to a procedure based on

eFS. In those regions, ES-c and eFS have first step p-values above α and hence do not

select any variable, while B and SH always select Z1 and often select Z2.

6. In the region above eFS Step 2 and below Z2 = 1.645, Z2 has a significant eFS p-value

even though its conventional p-value can be close to 1 near the origin.

In summary, B or SH seem preferable to the ES-c procedure. The latter does better if the

data fall in the small, but not negligible region 1; however, B and SH produce much more

reasonable models in the more noticeable area 5. Procedure SH is preferred to B because of

the difference noted in region 4. The regions 2 and 3 are quite small and nearly negligible

in probability. While the ES-c procedure seems undesirable on these regions, the concern

is not important.

As a further comparison, consider the point (4, 3.8). The ES-c p-values for step 1 and 2 are

≈ .44 and ≈ .0001 respectively, while the naive p-values are approximately .0001 for both

variables. The decision of ES-c to stop at step 1 and declare an empty model might well be

viewed as embarrassing and subjectively undesirable. This is consistent with the claimed

ES-c p-values though. Similarly, while methods of G’Sell et al. (2015) are not required to
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stop at step 1, the penalty for continuing is extremely large given the unconventionally large

p-value.

In the correlated setting, the interesting simulation in Taylor et al. (2014) strongly suggests

that the p-values used in procedures B and SH can be extremely conservative. The conser-

vatism is the result of different objects of inquiry: both B and SH control the FWER as

opposed to the FDR control provided by G’Sell et al. (2015). Furthermore, the simulations

of Section 2.3.2 demonstrate that SH performs well and has uniformly higher power than the

G’Sell et al. (2015) procedures. This is particularly interesting since SH provides stronger

control over false rejections.

For all considered testing methods, when the regressors are correlated the values of re-

gression coefficients depend on which other coefficients are in the current model. Hence a

coefficient may have a non-zero value within the currently active set of variables; and so

be correctly included into that model at that step. Within a later active model it might

then have a value of 0. Thus a correct selection at a given step may become “incorrect”

as the process proceeds, and vice-versa. The related phenomenon of suppression can yield

a series of insignificant steps followed by highly significant steps (Johnson et al., 2015c).

These issues have important consequences for interpretation of p-values produced in a step-

wise routine. Such issues do not occur in the simple model at hand involving independent

variables with fixed mean values.

2.3.2. Performance Comparisons

While we have raised some concerns about the accuracy of the “exact” description of the

eFS p-values, one could still use them for model selection. This is particularly salient since

the package reports a statistic that does precisely that. Furthermore, as our proposed

alternative, Revisiting Holm, is only exact under orthogonality, we are interested in its

performance when that assumption is violated. The simulations below indicate that eFS p-

values do, in most cases, yield FDR control when coupled with appropriate model selection
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methods. Given the regions where the eFS p-values are surprisingly small, we conjecture

that a reasonable example could violate the FDR guarantees; however, the lack of power

seen by the eFS p-values in region 5 as well as the conservative nature of the G’Sell et al.

(2015) procedures provide some protection against this.

Given a full set of p-values as those in Table 1, selecting a model using hypothesis testing

requires rejecting an initial contiguous set of hypotheses. If hypotheses are ordered nu-

merically, H2 and H4 cannot be the only rejections. The sets {H1, H2} or {H1, . . . ,H4}

are possible rejection sets that identify forward stepwise models. As the eFS p-values are

not necessarily sorted by size as required by the step-up BH procedure, controlling FDR

under this constraint is nontrivial. G’Sell et al. (2015) transform p-values such that they

are ordered and uses step-up BH on the transformed p-values. The model selection criteria

we consider is Forward Stop, which rejects hypotheses H1, . . . ,Hk̂ where

k̂ = max
k∈{1,...,m}

−1

k

k∑
i=1

log(1− pi) ≤ α.

Our simulated data has 200 observations, m ∈ {20, 50} covariates with correlation between

covariates i and j given by ρ ∈ |i− j|, ρ ∈ {0, .2, .8}. We consider 10 nonzero coefficients

in both high- and low-signal cases. The high-signal case sets |βi| = i/6 for 1 ≤ i ≤ 10

and the low-signal case sets |βi| =
√

2 log(p)/
√
n for 1 ≤ i ≤ 10. True covariates in the

high-signal case have t-statistics in the true model in the range [3, 24]. The low-signal case

produces t-statistics in the true model in the range in the range [1, 3.5], which is close to the

RIC threshold (Foster and George, 1994). As a final complication, the signs of the nonzero

coefficients are either all positive or equal to (−1)i. This is noted in Table 7 as “+” or “+/-”.

Comparisons are made between forward stepwise models selected via four procedures: Holm

(equivalently Max-t or SH), Approximate Revisiting Holm (aRH), Revisiting Holm (RH),

and Forward Stop (FStop). The SH, aRH, and RH procedures use traditional, stepwise p-

values, while FStop uses the eFS p-values. Since RH depends on the order in which features
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Table 7: Simulation results for Holm, Revisiting Holm, and Forward Stop selection rules.

FDR Power
m β Sign ρ SH aRH RH FStop SH aRH RH FStop

20 High + 0 0.004 0.035 0.037 0.000 0.921 0.950 0.951 0.557
.2 0.001 0.005 0.040 0.000 0.900 0.919 0.953 0.553
.8 0.001 0.004 0.321 0.000 0.812 0.846 0.920 0.572

+/- 0 0.000 0.005 0.036 0.000 0.895 0.921 0.954 0.560
.2 0.001 0.004 0.039 0.000 0.873 0.907 0.949 0.583
.8 0.003 0.004 0.288 0.001 0.561 0.626 0.767 0.212

Low + 0 0.006 0.007 0.029 0.000 0.143 0.178 0.364 0.099
.2 0.001 0.005 0.030 0.000 0.254 0.318 0.539 0.102
.8 0.005 0.008 0.222 0.001 0.293 0.307 0.811 0.168

+/- 0 0.004 0.006 0.029 0.000 0.143 0.176 0.367 0.099
.2 0.009 0.009 0.031 0.001 0.101 0.104 0.123 0.093
.8 0.008 0.008 0.045 0.005 0.065 0.065 0.009 0.065

50 High + 0 0.000 0.003 0.049 0.000 0.870 0.897 0.940 0.331
.2 0.000 0.001 0.052 0.000 0.874 0.893 0.936 0.361
.8 0.001 0.002 0.313 0.000 0.769 0.801 0.903 0.368

+/- 0 0.000 0.001 0.048 0.000 0.862 0.884 0.934 0.347
.2 0.000 0.002 0.049 0.000 0.830 0.861 0.931 0.328
.8 0.003 0.006 0.302 0.001 0.475 0.531 0.688 0.158

Low + 0 0.004 0.006 0.044 0.000 0.124 0.139 0.328 0.098
.2 0.004 0.005 0.048 0.000 0.214 0.256 0.535 0.101
.8 0.003 0.005 0.222 0.000 0.294 0.306 0.826 0.148

+/- 0 0.004 0.005 0.039 0.000 0.125 0.141 0.326 0.098
.2 0.009 0.009 0.049 0.001 0.093 0.095 0.100 0.091
.8 0.004 0.004 0.048 0.002 0.042 0.042 0.005 0.042

are tested, we provided a worst case ordering. Features are tested from Xm to X1. This not

only provides the greatest chance for false rejections, but makes X11, . . . ,Xm as significant

as possible in high-signal, high-correlation settings. Both power and FDR is measured over

1000 simulation repetitions. Results are given in Table 7.

There are many messages conveyed by Table 7. First, while SH is conservative, it still

performs very well. This is especially telling as Taylor et al. (2014) demonstrate that

the test statistic is highly conservative after multiple steps. It has significantly higher

power than FStop, by as much as a factor of three, as is never outperformed by FStop. It

may be surprising that in many cases there is not a large difference between SH and RH.
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Their similarity is due to the small number of non-zero coefficients. The corrections due

to revisiting in equation (2.5) can be quite small. In some low-signal cases, however, RH

achieves much higher power. This is expected as it controls mFDR instead of the FWER.

The RH procedure has the highest power of all of the methods by a significant margin,

even in cases in which its corrections are not exact. In low signal cases, this comes at a

cost of having the highest FDR of the considered algorithms. In most highly correlated

cases, RH is significantly higher than the desired FDR bound. This is large due to the

worst-case ordering of the hypotheses, which can be improved using different thresholds

(Johnson et al., 2015b). There is a necessary trade-off between power and FDR in this

setting since all algorithms are considering the stepwise model: the only way to increase

power is to create larger models, which in turn may result in more false rejections. That

being said, in the majority of cases FDR is still controlled at level-.05, demonstrating the

similarity between mFDR and FDR. Positively correlated variables with direct effects of

mixed sign creates the most challenging cases for feature selection algorithms as the data

is highly non-submodular. For a complete discussion of this, see Johnson et al. (2015c).

While FDR does provide a measure of false rejections in this setting, it is somehow inappro-

priate. It is difficult to disentangle the meaning of false rejections given that the stepwise

model is being tested. If forward stepwise identified a highly significant variable on the first

step which is actually not in the true model, then the false rejection is the fault of stepwise,

not the hypothesis testing procedure. Furthermore, one may be inclined to claim that it is

not a false rejection at all! Given the high correlation between features in real data, the

tested feature may account for a statistically significant portion of the variability in Y in the

model in which it is considered. Addressing this requires a difference in perspective on false

rejections. Alternative definitions motivated by such considerations have been proposed by

(G’Sell et al., 2013).

The conservativeness of FStop warrants further discussion. The transformation performed

by FStop can be interpreted through the lens of a sequential revisiting procedure. Suppose
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that we repeatedly test a hypothesis H0 at level δ > 0. Consider the amount of wealth

spent to reject H0 if its p-value is p0. Each failed rejection implies that p0 is in the upper

(1− δ) portion of its feasible region, which is initially [0, 1]. If H0 is rejected after q tests,

a Taylor approximation provides

(1− δ)q = 1− p0

⇒ qδ ≈ −log(1− p0).

While H0 could have been rejected by spending p0, −log(1 − p0) > p0 was spent on the

rejection. If p0 is small, the amount of alpha-wealth wasted by revisiting is minor, but larger

p-values waste significant wealth. This wastefulness is one explanation for the conservative

behavior of FStop. Given the eFS p-values are conservative in large regions of the parameter

space, it is not surprising that the combined procedure is highly conservative. Less wasteful

alpha-investing procedures can be given to rectify this conservativeness, and we are currently

working on a paper to describe how to do so.

One may be interested in rectifying the concerns we have raised about the eFS p-values.

If a model is selected via FStop, one suggestion would be to include this as a constraint

on Y . Even ignoring the computational difficulties of such a task, the enterprise itself is

unjustified. FStop is not a stopping rule in the sense of providing a stopping time. As it

mimics step-up BH, it is forward looking and cannot be computed until all p-values are

known. If one desires a proper stopping rule, FStop can be modified to mimic step-down

BH. The revised step-down Forward Stop rejects hypotheses H1, . . . ,Hk̂−1 where

k̂ = min
k∈{1,...,m}

−1

k

k∑
i=1

log(1− pi) ≥ α.
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2.4. Appendix

The sequential p-values were constructed using data downloaded from Robert Tibshirani’s

website. The p-values computed in Table 1 are computed from the standard F-test with 1

and 58 = 67 - 9 degrees of freedom. As some additional numerical details, note that the

MSE from the full model is σ̂2 = 0.5074. Thus, for example, the sequential F-value for

testing “svi” is 2.1841/.5074 = 4.305 with a t-value of 2.075 =
√

4.305. This has a p-value

with 58 degrees of freedom of 0.0426.

2.4.1. Proof of Theorem 2

While the assumption of submodularity is uncommon in the statistics literature, an equiva-

lent concept has been discussed in the social sciences: the absence of conditional suppressor

variables. A full discussion of this connection is given in Johnson et al. (2015c), and only

the required implication is provided here. If data is submodular, then the p-values in a

stepwise table are necessarily non-decreasing. Clearly, the prostate data from Table 1 is not

submodular, however, the majority of steps have non-decreasing p-values. Deviations from

submodularity can be captured using notions discussed in Johnson et al. (2015c).

The main challenge in applying multiple comparison proof methods in sequential testing

is that test statistics can change between rounds of stepwise regression as seen in Table

4. Under submodularity, however, the sign of the change is fixed. Consider the initial

sequential p-values for all features considered marginally. Since this is prior to the first

step of stepwise, the p-values will be written as p0i , to index the 0th round. Submodularity

guarantees that p0i ≤ p
j
i for all i and j > 0. Consider testing the hypotheses Hi: βi = 0 for

all i.

Proof of Theorem 2. Holm provides a valid procedure for controlling the FWER in this

scenario. Let I(β) be the set of true null hypotheses for a given parameter vector β. For all

i ∈ I(β), p0i < pji where j is the step at which forward stepwise would select the ith variable
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for inclusion into the model. Holm is guaranteed to control FWER when using p0i and the

probability of making a false rejection on the jth step is smaller. Therefore, SH controls

FWER under submodularity. In fact, it is clear from this discussion that the absence of

conditional suppressor variables only needs to hold for the member of I(β). This mirrors

the use of positive regression dependence in proofs of FDR control Benjamini and Yekutieli

(2001).

2.4.2. Computations for Updated Polyhedral Methods

FS Step 1 (red curve): If Z1 is chosen before Z2 with a positive sign, the observation lies in

the cone R1 = {Z1 > Z2 > 0}. In order to have a level α test of H0: θ1 = 0 conditional on

(z1, z2) ∈ R1 one must have

θ = P(Z1 > τ1|(z1, z2) ∈ R1, Z2 = z2) ∀z2.

This entails choosing the point via

α =
1− Φ(z1)

1− Φ(|z2|)
. (2.7)

This defines z1 = z1(z2) for the red curve.

FS Step 2 (yellow curve): The conditioning region is the same, so the level α test of H0:

θ2 = 0 conditional on (z1, z2) ∈ R1 requires

θ = P(Z2 > τ2|(z1, z2) ∈ R1, Z1 = z1) ∀z1.

This entails choosing the point via

α =
Φ(z1)− Φ(Z2)

Φ(z1)− 1/2
. (2.8)

ES-c Step 2 (green curve): Given H0: θ1 = 0 has been rejected, possible values of (Z1, Z2)
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lie to the right of eFS Step 1. Denote this region as R2. Now the test H0 : θ2 = 0 must

satisfy

θ = P(Z2 > τ2|(z1, z2) ∈ R2, Z1 = z1)

for all z1 for which the conditioning region is non-empty. The only change from eFS Step 2

is that the conditioned region is a function of z2. This entails choosing the point z2 = z2(z1)

for which

α =
Φ(z∗2)− Φ(Z2)

Φ(z∗2)− 1/2
, (2.9)

where z∗2 denotes the value for which z1(z
∗
2) = z1. The computation in equation (2.9) is

facilitated by noting that equation (2.7) implies

Φ(z∗2(z1)) = 1 +
Φ(z1)− 1

θ
. (2.10)
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CHAPTER 3 : REVISITING ALPHA-INVESTING

A final model from the forward stepwise path is often identified using cross-validation or

minimizing a criterion such as AIC. The classical rules to stop forward stepwise such as F-to-

enter do not control any robust statistical quantity, because attempting to test the addition

of such a feature uses non-standard and complex distributions (Draper et al., 1971; Pope

and Webster, 1972). Chapter 2 approximates forward stepwise in order to provide valid

statistical guarantees. We improve upon this method, ensuring the risk of the selected

model is close to that of the stepwise model, even in cases when the models differ (Theorem

3). In this way, our results can be interpreted as type-II error control. We also provide the

speed and flexibility to use forward stepwise in modern problems.

There are few provable bounds on how well greedy statistical algorithms perform. Zhang

(2008) provides bounds for a forward-backward selection algorithm, FoBa, but the algorithm

is slower than forward stepwise, limiting its use. Guaranteeing the success of greedy methods

is important as l1-relaxations of (1.3) such as the Lasso (Tibshirani, 1996) can introduce

estimation bias that generates infinitely greater relative risk than l0-methods (Johnson

et al., 2015a). While convex regularizers are computationally convenient, they are less

desirable than their non-convex counterparts (Breheny and Huang, 2011). Furthermore,

l1-based methods over-estimate the support of β (Zou, 2006). One potential solution is to

use blended, non-convex regularizers such as SCAD (Fan and Li, 2001), to which we will

compare out solution in Section 3.2.

Our solution, given in Section 3.1, provides performance enhancing modifications to the valid

stepwise procedure identified in Johnson et al. (2016). The resulting procedure, Revisiting

Alpha-Investing (RAI), has a performance guarantee that can be interpreted as type-II error

control as the procedure is guaranteed to find signal. The guarantees of Section 3.1.2 are

closely related to Das and Kempe (2008, 2011) and the classical result of Nemhauser et al.

(1978) which states that, under suitable assumptions, greedy algorithms provide a (1−1/e)
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approximation of the optimal solution to (1.2).

Section 3.1 describes how RAI leverages statistical testing to choose the order in which

features are added to the model. RAI is a “streaming” procedure that sequentially considers

each feature for addition to the model, instead of performing a global search for the best one.

A feature merely needs to be significant enough, and not necessarily the most significant. It

is a thresholding approximation to the greedy algorithm (Badanidiyuru and Vondrák, 2014).

RAI makes multiple, fast passes over the features. No more than log2(n) passes are required,

but in practice we find that 5-7 passes are sufficient regardless of sample size. Each testing

pass identifies those features that meet a required level of statistical significance. The initial

testing pass conducts a strict test for which only extremely significant features are added to

the model. Subsequent passes perform a less stringent test. RAI is not guaranteed to pick

the most significant feature, only one that is significant enough to pass the test. As such,

the final model is built from a series of approximately greedy choices.

The sequential testing framework of RAI allows the order of tested hypotheses to be changed

as the result of previous tests. This allows for directed searches for data base queries or

identifying polynomials. Section 3.2 leverages this flexibility to greedily search high-order

interactions spaces. We provide simulations and real data examples to demonstrate the

success of our method.

RAI enjoys three key properties:

1. It is guaranteed to find signal.

2. It does not over-fit the data by controlling type-I errors; few spurious features are se-

lected.

3. It is computationally efficient.

By leveraging Variance Inflation Factor Regression (Lin et al., 2011), if the final model is

of size q << min(n, p), the computational complexity of RAI grows at O(np log(n)). Using

the full data requires computing X′y, which takes O(np) time. Therefore, RAI merely adds
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a log factor to perform valid model selection.

3.0.3. Notation

We use notation from the multiple comparisons literature given its connection to RAI. Con-

sider m null hypotheses, H[m]: H1, . . . ,Hm, and their associated p-values, p[m]: p1, . . . , pm.

The hypotheses can be considered to be Hi: βi = 0. Forward stepwise provides an ordering

for testing H[m]. Since our goal is model selection, a feature is “included” or “added” to

the model when the corresponding null hypothesis is rejected. Define the statistic Ri = 1 if

Hi is rejected and the random variable V β
i = 1 if this was a false rejection. The dependence

of V β
i on β indicates that this is an unknown quantity which depends on the parameter of

interest. Define

R(m) =
m∑
i=1

Ri, and

V (m) =

m∑
i=1

V β
i .

RAI approximates forward stepwise by making approximately greedy choices of features.

At each step, forward stepwise sorts the p-values of the m′ remaining features, p(1) < . . . <

p(m′), and selects the feature with the minimum p-value p(1). Instead of performing a full

sort, consider using increasing significance thresholds, where hypotheses are rejected when

their p-value falls below a threshold. Chapter 2 used thresholds determined by the Holm

step-down procedure. The resulting procedure, Revisiting Holm (RH), is well-motivated for

type-I error control, but can fail to accurately approximate forward stepwise in some cases.

3.0.4. Outline

Section 3.1 improves the Holm thresholds by controlling the risk incurred from making false

selections. From the perspective of alpha-investing (Section 2.2.3), this has many other

benefits as well. Section 3.1.2 discusses the main performance result in which RAI is shown

to produce a near-optimal approximation of the performance of the best subset of the data.
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RAI, and alpha-investing procedures in general, have additional flexibility beyond merely

performing forward stepwise. This flexibility is demonstrated in Section 3.2 by adaptively

searching high-order interaction spaces using RAI.

3.1. Better Threshold Approximation

Threshold approximations to forward stepwise can select different features than stepwise,

reducing performance guarantees. To motivate our new thresholds, consider a threshold

approximation that is guaranteed to mimic forward stepwise exactly. Suppose the set of

thresholds is iδ, δ > 0 and i = 1, 2, . . .. On the first “pass” through the hypotheses or

“round” of testing, all m p-values are compared to δ. If none fall below this threshold,

a second pass or round is conducted, in which all m p-values are compared to 2δ. The

threshold is increased by δ each round until a hypothesis is rejected and the corresponding

feature is added to the model. The stepwise p-values are recomputed according to their

marginal reduction in ESS given the new model, and the process continues.1 For sufficiently

small δ, this procedure selects variables in the same order as forward stepwise.

3.1.1. Revisiting Alpha Investing

Instead of focusing on identifying the identical features as forward stepwise, we develop

a set of thresholds to control the additional risk incurred from selecting different features

than forward stepwise. These thresholds must initially correspond to stringent tests so that

only extremely significant features are selected. Our significance thresholds correspond to

selecting features which reduce the ESS by ESS(Ȳ )/2i, where i indicates the round of testing.

The resulting procedure is provided in Algorithm 1 and is called Revisiting Alpha-Investing

(RAI) because it is an alpha-investing strategy that tests hypotheses multiple times. This

results in both practical and theoretical performance improvements while maintaining type-I

error guarantees. The details of the required calculations are given in the Appendix.

RAI is well defined in any model in which it is possible to test the addition of a single feature

1If X is orthogonal, p-values do not change between steps. If p-values do change, a conservative approach
restarts testing with threshold δ.
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Algorithm 1 Revisiting Alpha-Investing (RAI)

Input: data Y and X. Without loss of generality, let Y and X be centered and ‖Y ‖2 = ‖Xi‖2 = 1, ∀i.
Initialize: W = .25, ω = .05, s = 1, S = ∅
Output: selected model with coefficients
Set: r = y
repeat

tlvl =
√
n ∗ 2−s/2 // testing level per testing pass

αs = 2*Φ(-tlvl) // alpha spent per test
for j /∈ S do // consider features not in the model

Compute t-statistic for Xj : t̂j
W = W − αs // wealth lost from test
if |t̂j | >tlvl and W > αs then
S = S ∪ {j}; W = W + ω
r = (I−HXS )y // make new residuals

end if
if W < αs then // If run out of alpha-wealth, end

Output S
end if

end for
s = s + 1

until max CPU time

such as generalized linear models. The testing thresholds ensure that the algorithm closely

mimics forward stepwise, which provides performance guarantees. A precise statement of

this comparison is given in Section 3.1.2.

Approximating stepwise using these thresholds has many practical performance benefits.

First, multiple passes can be made without rejections before the algorithm exhausts its

alpha-wealth and terminates. The initial tests are extremely conservative but only spend

tiny amounts of alpha-wealth. Tests rejected in these stages still earn the full return ω. This

ensures that wealth is not wasted too quickly when testing true null hypotheses. Further-

more, false hypotheses are not rejected using significantly more wealth than is required. An

alternative construction of alpha-investing makes this latter benefit explicit and is explained

in Foster and Stine (2008). Taken together, this improves power in ways not addressed by

the theorem in the next section. By earning more alpha-wealth, future tests can be con-

ducted at higher power while maintaining the type-I error guarantee.

RAI performs a sequential search for sufficient model improvement as opposed to the global

search for maximal improvement performed by forward stepwise. Most sequential, or online,
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algorithms are online in the observations, whereas RAI is online in the features. This allows

features to be generated dynamically and allows extremely large data sets to be loaded

into RAM one feature at a time. As such, RAI is trivially parallelizable in the MapReduce

setting, similar to (Kumar et al., 2013). For example, many processors can be used, each

considering a disjoint set of features. Control need only be passed to the master node

when a significant feature is identified or a testing pass is completed. Parallelizing RAI will

be particularly effective in extremely sparse models, such as those considered in genome-

wide association studies. Online feature generation is beneficial when features are costly to

generate and can be used for directed exploration of complex spaces. This is particularly

useful when querying data base or searching interaction spaces and is described in Section

3.2.

Using additional speed improvements provided by variance inflation factor regression (VIF)

(Lin et al., 2011), RAI performs forward stepwise and model selection in O(np log(n)) time

as opposed to the O(np2q2) required for traditional forward stepwise, where q is the size

of the selected model. The log term is an upper bound on the number of passes through

the hypotheses performed by RAI. This is significantly reduced for large n by recognizing

when passes may be skipped. This is possible whenever a full pass is made without any

rejections, as all of the sequential p-values are known. The control provided by alpha-

investing is maintained, because RAI must pay for all of the skipped tests. Using this

computational shortcut, only 5-7 passes are required to select a model using RAI.

3.1.2. Performance Guarantee

This subsection bounds the performance of RAI and requires additional notation. Let

[m] = {1, . . . ,m}. For a subset of indices S ⊂ [m], we denote the corresponding columns of

our data matrix as XS , or merely S when the overloaded notation will not cause confusion.

Most of our discussion concerns maximizing the model fit as opposed to minimizing loss.

Our measure of model fit for a set of features XS is the coefficient of determination, R2 ,
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defined as

R2 (S) = 1− ESS(XS β̂S)

ESS(Ȳ )

where Ȳ is the constant vector of the mean response and β̂S is the least squares estimate of

βS . Maximizing an in-sample criterion such as R2 is known to over-fit the data, worsening

out-of-sample performance. To prevent over-fitting, a practical implementation of forward

stepwise requires selecting a model size via cross-validation or criteria such as AIC. RAI

bypasses this problem by controlling mFDR. Without loss of generality, we assume that our

data is centered and normalized such that ‖Y ‖2 = ‖Xi‖2 = 1, ∀i.

We will often need to consider a feature Xi orthogonal to those currently in the model,

XS . This will be referred to as adjusting Xi for XS . The projection operator (hat matrix),

HXS
= HS = XS(XT

SXS)−1XT
S , computes the orthogonal projection of a vector onto the

span of the columns of XS . Therefore, Xi adjusted for XS is denoted Xi.S⊥ = (I−HXS
)Xi.

This same notation holds for sets of variables: XA adjusted for XS is XA.S⊥ = (I−HXS
)XA.

RAI is proven to perform well if the improvement in fit obtained by adding a set of fea-

tures to a model is upper bounded by the sum of the improvements of adding the features

individually. If a large set of features improves the model fit when considered together,

this constraint requires some subsets of those features to improve the fit well. Consider the

improvement in model fit by adding XS to the model XT :

∆T (S) := R2 (S ∪ T )− R2 (T ).

Letting S = A ∪B, we bound ∆T (S) as

∆T (A) + ∆T (B) ≥ ∆T (S). (3.1)

If A ∪ B improves the model fit, equation (3.1) requires that either A or B improve the

fit. Therefore, signal that is present due to complex relationships among features cannot
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be completely hidden when considering subsets of these features. Equation (3.1) defines a

submodular function:

Definition 4 (Submodular Function). Let F : 2[m] → R be a set function defined on the

the power set of [m]. F is submodular if ∀A,B ⊂ [m]

F (A) + F (B) ≥ F (A ∪B) + F (A ∩B) (3.2)

This can be rewritten in the style of (3.1) as

F (A)− F (A ∩B) + F (B)− F (A ∩B) ≥ F (A ∪B)− F (A ∩B)

⇒ ∆A∩B(A) + ∆A∩B(B) ≥ ∆A∩B(A ∪B),

which considers the impact of A\B and B\A given A ∩ B. Given (3.1), it is natural to

approximate the maximizer of a submodular function with a greedy algorithm. We provide

a proof of the performance of RAI by assuming that R2 is submodular or approximately so

(made precise below).

In order for these results to hold even more generally, the definition of submodularity can

be relaxed. To do so, iterate (3.1) until the left hand side is a function of the influences of

individual features and only require the inequality to hold up to a multiplicative constant

γ ≥ 0. For additional simplicity, consider adding the set A = {ai, . . . , al} ⊂ [m] to the

model S. Hence ∆S(ai) is the marginal increase in R2 by adding ai to model S. When data

is normalized, ∆S(ai) is the squared partial-correlation between the response Y and ai given

S: ∆S(ai) = Cor(Y, a⊥i.S)2. Therefore, define the vector of partial correlations as rY,A.S⊥ =

Cor(Y,A.S⊥), then the sum of individual contributions to R2 is ‖rY,A.S⊥‖22. Similarly, if we

define CA.S⊥ as the correlation matrix of A.S⊥ then ∆S(A) = r′
Y,A.S⊥

C−1
A.S⊥

rY,A.S⊥ .

Definition 5. (Submodularity Ratio) The submodularity ratio, γsr, of R2 with respect to a
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set S and k ≥ 1 is

γsr(S, k) = min
(T :T∩S=∅,|T |≤k)

r′
Y,T.S⊥

rY,T.S⊥

r′
Y,T.S⊥

C−1
T.S⊥

rY,T.S⊥

The minimization identifies the worst case set T to add to the model S. It captures how

much R2 can increase by adding T to S (denominator) compared to the combined benefits

of adding its elements to S individually (numerator). If S is the size-k set selected by

forward stepwise, then R2 is approximately submodular if γ(S, k) > γ, for some constant

γ > 0. We will refer to data as being approximately submodular if R2 is approximately

submodular on the data. R2 is submodular if γ(S, 2) ≥ 1 for all S ⊂ [m] (Johnson et al.,

2015c). This definition is similar to that of Das and Kempe (2011).

Our main theoretical result provides a performance guarantee for RAI and is proven in

the Appendix. The result is similar to the in-sample performance guarantees for forward

stepwise provided by Das and Kempe (2011). Let s index the testing pass, with sf denoting

the first pass in which a hypothesis is rejected. The term γ(Sl, k) is the submodularity ratio

of the selected set of l features, denoted Sl, and S∗k is the set of k features which minimizes

equation (1.2).

Theorem 3. Algorithm 1 (RAI) selects a set of features Sl of size l such that

R2(Sl) ≥ max

{
c1R

2(S∗k)−
l∑

j=1

e
−(j−1)γSl,k

k 2j−(l+ξf ), c2R
2(S∗k)

}

where ci =

(
1− e

−lγSl,k
ik

)
.

The constant c1 is the optimal constant for greedy approximation, yielding the standard

(1-1/e) approximation for submodular function maximization. As RAI may deviate from

true forward stepwise, the loss incurred can be summarized in two ways. The first term of

the maximization incorporates a small, additive loss that is constructed by considering the

additive cost of selecting a different variable than forward stepwise. It provides a better

54



bound when k is not small and l ≥ k. The additive error is small, often less than .02.

The cost of errors made during early testing passes are heavily discounted because the loss

of the incorrect selections can be made-up in subsequent steps. The second term in the

maximization incorporates the loss of selecting a different feature than forward stepwise as

a multiplicative error and provides a better bound when l and k are small. Performance is

often better than these bounds indicate, because performance is not a function of the order

in which variables are added, but merely the set of variables in the final model. If RAI

and forward stepwise select the same variables but in a different order, the bound is merely

c1R
2(S∗k).

The bound from Theorem 3 does not require the linearity assumption of equation (1.1) to

hold. It holds uniformly over the true functional relationship between Y and X because

RAI is compared to the best linear approximation of Y given X. The guarantee is also

not a probabilistic statement. Therefore, the ability to compare a model of size l to a

model of size k, where l 6= k, allows practitioners to trade computation time and model

complexity for fit. For example, suppose a selection method selects k features with R2 =

R2∗. RAI can quickly identify a model that is guaranteed to achieve .95R2∗ by selecting

l = 3k features. RAI is designed to determine l = k adaptively, however, which results in

a stronger interpretation of the Theorem 3: RAI produces a near optimal approximation

of the best size-k model, where k is chosen such that little signal remains in unselected

features. The extent to which signal is hidden in the remaining features is a function of the

approximate submodularity of the data (Johnson et al., 2015c).

3.2. Searching Interaction Spaces

As an application of RAI, we demonstrate a principled method to search interaction spaces

while controlling type-I errors. In this case, submodularity is merely a formalism of the

principle of marginality: if an interaction between two features is included in the multiple

regression, the constituent features should be as well. This reflects a belief that an interac-

tion is only informative if the marginal terms are as well. RAI can perform a greedy search
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for main effects, while maintaining the flexibility to add polynomials to the model that were

not in the original feature space. Therefore, we search interaction spaces in the following

way: run RAI on the marginal data X; for i, j ∈ [m], if Xi and Xj are rejected, test their

interaction by including it in the stepwise routine. This bypasses the need to explicitly

enumerate the interaction space, which is computationally infeasible for large problems.

Furthermore, as our data results indicate, it is highly beneficial to only consider relevant

portions of interaction spaces, as the full space is too complex. This is addressed in detail

below. To demonstrate the success of this routine we provide results on both simulated and

real data.

3.2.1. Simulated Data

Simulated data is used to demonstrate the ability of RAI to identify polynomials in complex

spaces. Our simulated explanatory variables have the following distribution:

Xi,j ∼ N(τj , 1) where τj ∼ N(0, 4).

The true mean of Y , µY , includes four terms which are polynomials in the first ten marginal

variables:

Y = µY + ε

µY = β1X1X2 + β2X3X
2
4 + β3X5X

3
6 + β4X7X8X9X10

ε ∼ N(0, I)

The coefficients β1, . . . , β4, are equal given the norm of the interaction and are chosen to

yield a true model R2 of approximately .83. The t-statistics of features in the true model

range between 25 and 40.

We first simulate a small-p environment: 2,000 observations with 350 explanatory features.

While our features are simulated independently, the maximum observed correlation is ap-
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proximately .14. While many competitor algorithms are compared on the real data, only

two are presented here for simplicity. Our goal is to demonstrate the gains from searching

complex spaces using feature selection algorithms. Five algorithms are compared: RAI

searching the interaction space, the Lasso, random forests (Breiman, 2001), the true model,

and the mean model. The mean model merely predicts Ȳ in order to bound the range

of reasonable performance between that of the true model and the mean model. Two

Lasso models are compared: the one with minimum cross-validated error (Lasso.m) and the

smallest model with cross-validated error within one standard deviation of the minimum

(Lasso.1). Since the feature space is small, it is possible to compute the full interaction

space of approximately 61,000 variables. Lasso is given this larger set, while RAI and ran-

dom forests are only given the 350 marginal variables. Random forests is included such that

comparison can be made to a high-performance, off-the-shelf procedure that also constructs

its own feature space.

Figure 5 compares the risk of all procedures and the size of the model produced by the

feature selection algorithms. The risk is computed using squared error loss from the true

mean: ‖µY − Ŷ ‖22. RAI often outperforms the competitors even though it is provided with

far less information. The success of Lasso demonstrates the strength of correlation in this

model. Even though Lasso can only accurately include the interaction X1X2, it is able to

perform reasonably well in some cases. Figure 5 resamples the data 50 times, creating cases

of varying difficulty. Often, difficult cases are challenging for all algorithms, such that the

highest risk data set is the same for all procedures. RAI performs better than Lasso.m on

the majority of cases and almost always outperforms Lasso.1. The overlapping box plots

merely demonstrates the variability in the difficulty of data sets.

It is also worth comparing the size of the model selected by different procedures. The Lasso

often selects a very large number of variables to account for its inability to incorporate the

correct interactions. As we show more explicitly in the real data examples, this is a general

problem even when the Lasso is provided the higher-order interactions. Using the model
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(a) Risk (b) Model Size

Figure 5: Small-p results.

identified by Lasso.1 dramatically reduces model size with a concomitant increase in loss.

Contrast this with RAI, which selects a relatively small number of features even though its

search space is conceptually infinite, as no bounds on complexity of interactions is imposed.

Furthermore, RAI necessarily selects more than four features in order to identify the higher

order terms. For example, in order to identify the term X7X8X9X10, all four marginal

features need to be included as well.

While our results do not focus on speed, it is worth mentioning that RAI easily improves

speed by a factor of 10-20 over the Lasso. This is notable since the Lasso is computed

using glmnet (Hastie and Junyang, 2014), a highly optimized Fortran package, while RAI

is coded in R and is geared toward conceptual clarity as opposed to speed. It also does

not implement the improvement provided by VIF (Lin et al., 2011). Even outside of these

considerations, RAI also does not have to compute the full interaction space.

Next, consider a comparatively large feature space case: 2,000 observations with 10,000

explanatory features. In this case, the maximum observed correlation between features is

.177. Both RAI and the Lasso are only given the marginal variables because the full second-

order interaction space has 50 million features. Traditional forward stepwise is also very
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Figure 6: Large-p results.

time intensive to run on models of this size even without considering the interaction space.

Therefore, an intelligent search procedure is required to identify signal. Random forests

were excluded given the excessive time required to fit them off-the-shelf.

Figure 6 shows the risk and model size resulting from the algorithms fit to these data. When

comparing the risk of the algorithms, RAI always outperforms both Lasso models, often by

55-90%. The overlapping region in the plot merely shows the variability in the difficulty of

data cases.

RAI only identifies 1.6 true features on average, and rarely identifies all four. This is in

large part due to the number of hypotheses that need to be rejected in order to identify an

interaction such as X7X8X9X10. At least seven tests must be rejected, starting with the

marginal terms, some second- and third-order interactions, and lastly the true feature. As

the last test of X7X8X9X10 cannot even be conducted until all previous tests have been

rejected, there is a high barrier to identifying such complex interactions. That being said,

significant progress toward this true feature is made in all cases. For example, the model

includes features such as X7X8 and X8X9 or X7X9X10. Therefore, in the small-m case,

the true fitted space is not much larger than that considered by the Lasso. RAI performs
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better in this case because it does not need to consider the full complexity of the 61,000

features in the interaction space.

3.2.2. Real Data

One may be concerned that the reason RAI outperforms the Lasso in the simulated scenarios

is that RAI is able to search a more complex space. The simulated signal lies in higher-

order polynomials of the features to which Lasso does not have access. While this itself is an

important benefit of our method, we address this concern using a small, real data set. The

results demonstrate that RAI is able to identify the appropriately complex interaction space.

Searching unnecessarily complex spaces worsens performance of the competitor algorithms.

We use the concrete compressive strength data from the UCI machine learning repository

(Yeh, 1998). This data set was chosen because the response, compressive strength, is

described as a “highly nonlinear function of age and ingredients” such as cement, fly ash,

water, superplasticizer, etc. It is also useful since it has approximately 1000 observations

and only 8 features. A small number of features is needed so that a very large, higher-

order interaction space can be generated. All interactions up to fifth order are provided to

competitor algorithms, in which case there are 1,200 features.

We compare RAI to forward stepwise, Lasso, SCAD (Fan and Li, 2001), and the Dantzig

selector (Candes and Tao, 2007). These are computed in R with the packages leaps, glmnet,

ncvreg, and flare, respectively. Leaps and glmnet are both written in Fortran with wrappers

for R implementation. SCAD uses a non-convex regularizer that attempts to blend the

benefits of non-convex and convex regularizers. The stepwise model is chosen by minimizing

AIC as this asymptotically selects a model that performs best among candidate models

(Shao, 1997). The leaps package does not actually fit each model, so if selection with cross-

validation is desired, computation time will increase concordantly. Lasso and SCAD use

10-fold cross-validation to determine the regularization parameter, since this is the default

for their estimation functions. As before, both Lasso.m and Lasso.1 are considered. The
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regularization parameter for the Dantzig selector is chosen via 5-fold cross-validation due

to its slow run time.

To honestly estimate out-of-sample performance, we create 20 independent splits of the data

into training and test sets. The training data is 5/6 of the full data, and the test set is the

remainder. Each algorithm is fit using the training data; hence, cross-validation is conducted

by splitting the training data again. The test set was only considered after the model was

specified. We compare models using the predictive mean-squared error (PMSE) on the test

set and average model size. Each row in Table 8 indicates the explanatory variables that

the algorithms are provided. For example, the first row shows the performance results when

all algorithms are only given marginal features, while in subsequent rows the competitor

algorithms are given all second order interactions etc. Both the Stepwise and Dantzig models

were excluded for the data set of fifth-order interactions. The Leaps package was unable to

manage the complexity of the space and other implementations of stepwise proceed far too

slowly to even consider being used on these data. Similarly, the Dantzig selector was too

slow and performed too poorly on smaller feature spaces to warrant its inclusion.

Table 8: Concrete Compression Strength Results.

Set Statistic RAI RAI.L Step Lasso.m Lasso.1 SCAD Dantzig

X MSE 37.33 39.75 112.93 112.63 116.78 112.80 204.08
p = 8 Size 37.25 36.30 6.60 8.60 7.85 7.90 3.05

X2 MSE - - 59.03 60.70 64.65 60.59 171.37
p = 44 Size - - 41.45 39.05 24.60 34.70 5.40

X3 MSE - - 38.58 38.02 40.25 38.50 174.29
p = 164 Size - - 135.10 125.55 73.15 68.15 6.35

X4 MSE - - 287.86 33.02 34.83 39.45 173.77
p = 494 Size - - 279.65 235.10 145.60 102.40 9.70

X5 MSE - - - 47.65 51.32 61.03 -
p = 1286 Size - - - 73.10 59.80 17.35 -

There are several important points in Table 8. As expected, RAI is superior to other feature

selection methods when only considering marginal features; however, we can adjust for the

information differences by giving the competitor algorithms a richer feature space. Other
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methods need to be given all fourth-order interactions before they are competitive with RAI.

As further information is provided, however, the performance of the competitor algorithms

worsens. This demonstrates that RAI adaptively determines the appropriate feature space.

The number of features chosen by the algorithms is wildly different. For example, in the

case of fourth-order interactions where Lasso.1 and Lasso.m are competitive with RAI,

they select approximately 3.5-6.5 times as many features. As seen in the simulated data

example, this may partially be due to the necessity of accounting for missing higher-order

terms. These terms cannot be provided directly, however, because larger spaces, such as

the fifth-order interaction space, become too complex for them to be found. The procedure

RAI.L is included to further test the hypothesis that Lasso is merely not provided with

the correct feature space. RAI.L first fits RAI to select the feature space, then selects a

submodel via the Lasso. This second step rarely removes variables and performs statistically

significantly worse than merely using the ordinary least squared model identified by RAI.

RAI can intelligently search the interaction space to identify complex signal while still

performing valid feature selection. The performance stems from its simultaneous type-I

and type-II error control.

3.3. Appendix

Before proving our main result, we give a detailed derivation of the spending and selection

rules used by RAI. First, we give the sequence of cutoff values that RAI uses to select

features. Second, we bound the maximum error made by the algorithm on each accepted

feature. There exist both additive and multiplicative bounds on this error, each yielding a

separate proof for the performance bound. These proofs are first given under submodularity.

Lastly, we extend the proofs to allow for approximate submodularity. Without loss of

generality, let Y and X be centered and ‖Y ‖2 = ‖Xi‖2 = 1, ∀i.

RAI passes over the features several times, testing them against t-statistic thresholds that

decrease with each pass. Each pass through the full data is indexed by s. Our algorithm
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searches for features that result in an increase of (1/2)s in R2 for the current model. This

increase is upper bounded by (1/2)(s+i) in terms of R2 on the original scale, where i is

the number of features in the current model. Therefore, rejecting multiple hypotheses at

the same level can result in an exponential decrease in residual variation. First, we must

convert this increase in terms of R2 to critical values. The maximum t-statistic is (n−1)1/2,

because

t =
β̂

SE(β̂)
= (n− 1)1/2Cor(Xi, Y ).

R2 of the simple regression of Y on Xi is merely Cor(Xi, Y )2. Therefore the desired cutoff

is

ts = (n− 1)1/22−s/2.

Since RAI tests all of the features every pass, the largest difference between the R2 of RAI

and forward stepwise is incurred by selecting a feature whose hypothesis test was barely

rejected, while the hypothesis test of the best feature barely failed being rejected in the

previous testing pass. These choices increase R2 by at least (1/2)(s+i) and (1/2)(s+i−1),

respectively. The difference decreases by a multiplicative factor of 1/2 whenever a feature

is added or a testing pass is completed. Hence, the additive loss in terms of R2 incurred

when selecting a feature is bounded by

R2
opt −R2

chosen ≤ 2−(s+i)

We can plug this additive bound into the standard greedy proof of (Nemhauser et al., 1978),

most of which stays the same. The proof is valid for any appropriately bounded submodular

function. Therefore, we use a general f instead of R2 . We denote the discrete derivative of

f at S with respect to v as ∆(v|S) := f(S∪{v})−f(S). Let ai be the feature chosen by RAI
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at time i, sf the testing pass in which the first feature is chosen, and δi = f(S∗k)− f(Si).

f(S∗k) ≤ f(Si ∪ S∗k)

= f(Si) +

k∑
j=1

∆(v∗j |Si ∪ v1, ...vj−1)

≤ f(Si) +
∑
v∗∈S∗k

(f(Si ∪ v∗)− f(Si))

≤ f(Si)

+
∑
v∗∈S∗k

(2−(s+i) + f(Si ∪ ai)− f(Si))

≤ f(Si) + k(2−(s+i) + f(Si+1)− f(Si))

⇒ δi+1 ≤ (1− 1/k)δi + 2−(s+i)

≤ e
−(i+1)
k f(S∗k) +

i∑
j=0

(1− 1/k)j2j−(s+i)

⇒ f(Si+1) ≥
(

1− e
−l
k

)
f(S∗k)−

l∑
j=1

e
−(j−1)

k 2j−(l+s)

Instead of considering the error bounded in additive terms, consider the multiplicative

bound. Since the error is being cut in half, the worst error incurred is the remaining half.

This is upper bounded by the observed reduction from adding the next feature. Changing
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the proof accordingly yields,

f(S∗k) ≤ f(Si ∪ S∗k) by monotonicity

= f(Si) +

k∑
j=1

∆(v∗j |Si ∪ v1, ...vj−1) expanding sum

≤ f(Si) +
∑
v∗∈S∗k

∆(v∗|Si) by submodularity

= f(Si) +
∑
v∗∈S∗k

(f(Si ∪ v∗)− f(Si))

= f(Si) +
∑
v∗∈S∗k

(f(Si ∪ v∗)− f(Si ∪ ai) + f(Si ∪ ai)− f(Si))

≤ f(Si) +
∑
v∗∈S∗k

2(f(Si ∪ ai)− f(Si)) by the above discussion

= f(Si) +
∑
v∗∈S∗k

2(f(Si+1)− f(Si))

≤ f(Si) + 2k(f(Si+1)− f(Si))

Replacing k by 2k in the remainder of the proof yields

f(Sl) ≥
(

1− e
−l
2k

)
f(S∗k)

The above proofs do not leverage particular characteristics of the R2 objective. The proof

below is similar to that of (Das and Kempe, 2011), though somewhat cleaner and allows

for l ≥ k.

First, we need to compute the difference between the R2 of adding a set of features and

the sum of the changes in R2 by adding the features one at a time. In what follows, T/S

is the elements in T projected off of the elements in S and T\S is set difference. We write

R2(T/S) to be the contribution to R2 of the features in T/S. bST and CST are defined in the

introduction.

Lemma 1. Given subsets S and T ,

R2 (S ∪ T ) = R2 (S) + R2 (S/T )
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Proof. Let XS,S/T = [XS ,XS/T ]

R2 (S ∪ T ) = R2 (S ∪ S/T )

= Y ′XS,S/T (XT
S,S/TXS,S/T )−1XT

S,S/TY

= Y ′XS(XT
SXS)−1XT

SY + Y ′XS/T (XT
S/TXS/T )−1XT

S/TY

= R2 (S) + R2 (S/T )

The first line follows because the prediction space did not change and the second to last

line follows because (XT
S,S/TXS,S/T )−1 is block diagonal.

Lemma 2. For simplicity let T ∩ S = ∅, or define T̃ = T\S. Then,

R2 (T/S) ≤
∑

x∈T\S R2 (S ∪ {x})− R2 (S)

γ(S, |T |)

Proof.

R2 (T/S) = (bST )′(CST )−1(bST )

≤
(bST )′(bST )

γ(S, |T |)

=

∑
x∈T/S R2 ({x})
γ(S, |T |)

,

where the inequality follows by the definition of γ(S, |T |). Since each element in bST is a

correlation, squaring this gives the R2 from the simple regression of Y on x/S, giving the

final equality. The lemma just rewrites the result of the projection off of S as a difference

in observed R2 .
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Proof of Theorems 1 & 2.

R2 (S∗k) ≤ R2 (Si ∪ S∗k) by monotonicity

= R2 (Si) + R2 (S∗k/Si) Lemma 1

≤ R2 (Si) +

∑
x∈S∗k\Si

R2 ({x})
γSi,|S∗k\Si|

Lemma 2

≤ R2 (Si) +
k

γSi,|S∗k\Si|
max

x∈S∗k\Si
R2 ({x}) sum less than k*max

≤ R2 (Si) +
k

γSi,|S∗k\Si|
(R2 (Si+1)− R2 (Si)) by greedy algorithm

Increasing the size of the set T by inclusion and increasing k can only decrease γ(T, k).

Therefore, γ(Si, |S∗k\Si|) ≥ γ(Sl, |S∗k |). Making this replacement, this is the original proof

with k replaced by k/γ(Sl, k). Therefore,

R2 (Sl) ≥
(

1− e
−lγ(Sl,k)

k

)
R2 (S∗k)

The proofs for RAI using approximate submodularity can be added exactly as they were

presented before.
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CHAPTER 4 : SUBMODULARITY IN STATISTICS

Subset selection problems are difficult because features can interact in unexpected ways.

Here, “unexpected” means that the change in model fit when adding a feature can be

completely different depending on the other features in the model. This paper characterizes

the cases in which features produce such unexpected results.

A simple example from Miller (2002) clarifies this point. Suppose forward stepwise is run

on the data in Table 9. The first step selects the feature that is maximally correlated with

Y . For features X1, X2, and X3, these are rY 1 = .0, rY 2 = −.0016, and rY 3 = .4472,

respectively. Therefore, forward stepwise selects X3 on the first step. The second step

chooses the feature with the maximum partial correlation. That is, the maximum correlation

when features are considered orthogonally to X3. For X1 and X2 these are rY 1.3⊥ = .0 and

rY 2.3⊥ = −.0014, respectively. Forward stepwise appears to find a significant features on the

first step, but then no other features seem important. The true equation for the response,

however, is Y = X1 − X2. This cannot be identified by forward stepwise because of the

“incorrect” first step which includes X3. Furthermore, unless forward stepwise continues to

select features even when they appear uninformative, the optimal set can never be found.

Intuitively, the difficulty arises because X1 and X2 have large errors which cancel out.

Table 9: Simple data in which forward stepwise fails to identify the correct model.

Y X1 X2 X3

-2 1000 1002 0
-1 -1000 -999 -1
1 -1000 -1001 1
2 1000 998 0

Most of our discussion concerns maximizing the model fit as opposed to minimizing loss. Let

[m] = {1, . . . ,m}. For a subset of indices S ⊂ [m], we denote the corresponding columns of

our data matrix as XS , or merely S when the overloaded notation will not cause confusion.

Our measure of model fit for a set of features XS is the coefficient of determination, R2 ,
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defined as

R2 (S) = 1− ESS(XS β̂S)

ESS(Ȳ )

where Ȳ is the constant vector of the mean response and β̂S is the least squares estimate

of βS .

Forward stepwise performs well when the improvement in fit obtained by adding a set of

features to a model is upper bounded by the sum of the improvements of adding the features

individually. If a set of features improves the model fit when considered together, a subset

of those features must improve the fit as well. Consider the improvement in fit by adding

XS to the model XT :

∆T (S) := R2 (S ∪ T )− R2 (T ).

Letting S = A ∪B, bound ∆T (S) as

∆T (A) + ∆T (B) ≥ ∆T (S). (4.1)

If A ∪B improves the model fit, equation (4.1) requires that either A or B improve the fit

when considered in isolation. Therefore, signal that is present due to complex relationships

among features cannot be completely hidden when considering subsets of these features.

Equation (4.1) defines a submodular function:

Definition 6 (Submodular Function). Let F : 2[m] → R be a set function defined on the

the power set of [m]. F is submodular if ∀A,B ⊂ [m]

F (A) + F (B) ≥ F (A ∪B) + F (A ∩B) (4.2)

The intuition in equation (4.1) is recovered by considering A ∩ B = ∅. Alternatively,
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Definition 6 can be rewritten as

F (A)− F (A ∩B) + F (B)− F (A ∩B) ≥ F (A ∪B)− F (A ∩B)

⇒ ∆A∩B(A) + ∆A∩B(B) ≥ ∆A∩B(A ∪B),

which considers the impact of A\B and B\A given A ∩ B. The influence of the union of

set differences is less than the impact of the sum of their marginal influences. We will refer

to data as being submodular if R2 is a submodular function on the data.

Forward selection is a natural algorithm under submodularity as it adds the feature to the

model that yields the maximum marginal increase in fit. To fix notation, if Si is the model

at step i, feature Xj is added if

j = argmax
l /∈Si

∆Si(Xl)

and Si+1 = {Si ∪ j}. Other greedy procedures have been proposed that change the criteria

being maximized at each step. For different criteria, this yields orthogonal matching or

orthogonal projection pursuit (Barron et al., 2008; Miller, 2002).

For all such methods, let Ŷ (k) = XSk β̂Sk be the estimated response after k steps of the

algorithm. Previous analyses determined the rate at which ESS(Ŷ (k)) decreases as a function

of k (Barron et al., 2008; Jaggi, 2013). Instead, we focus on identifying the data conditions

that guarantee that ESS(Ŷ (k)) is close to that of the optimal size k subset. If forward

stepwise is used and R2 is submodular, the classic result of Nemhauser et al. (1978) shows

that R2 (Sk) ≥ (1− 1/e)R2 (S∗k), where S∗k is the subset of features which solves the sparse

regression problem in equation (1.2).

Instead of asking for an approximate solution to (1.3), one can relax the problem formu-

lation. For example, the l0 penalty can be relaxed to an l1 penalty, yielding the Lasso

(Tibshirani, 1996). Additionally, loss be measuring with the l∞ norm, which yields the
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Dantzig selector (Candes and Tao, 2007). While subset selection and greedy methods like

forward stepwise are classically studied, these relaxations have been the primary focus of

research in recent years. For cases where log(p) = O(nc) for c > 0, the computational

improvements from relaxing the constraint in equation (1.2) do not produce efficient algo-

rithms. In these cases, a feature screening method can be used to reduce the dimensionality

p to feasible ranges before performing model selection (Fan and Lv, 2008).

These define two classes of algorithms: the first maintains the problem formulation in

(1.2) and provides approximate solutions, while the provides exact solutions to relaxed

problem formulations. Given that both classes of algorithms can be used to answer the

same question, it is natural to ask which style of approximation is preferred. A general

framework comparing these as penalized regressions is given in Fan and Li (2001), and

cases in which approximating (1.2) is preferable to solving the relaxations are discussed in

Johnson et al. (2015a). We take a different approach and analyze the assumptions necessary

to have performance guarantees for either class of methods.

Our main contribution is a characterization of the data situations which are difficult for

feature selection algorithms. This characterization should provide statistical insight as well

as a way to generalize insight gained from low-dimensional problems. Unfortunately these

two are not accomplished in the same way, which necessitates providing multiple definitions

of approximate submodularity.

Das and Kempe (2011) introduced a notion of approximate submodularity, measured by

the submodularity ratio, which we will call “statistical submodularity” given its connection

to performance guarantees of statistical algorithms. We provide a characterization of the

data situations in which this criteria holds. While the submodularity ratio is statistically

useful, it does not allow insight gained from low-dimensional problems to be generalized. We

provide a stronger definition for approximate submodularity and show that it yields a lower

bound on the submodularity ratio. In particular, we explain which data conditions yield

approximate submodularity for all feasible two-dimensional regression problems. While this
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is restrictive, it yields generalizable bounds and insights.

As submodularity is a function of model fit, it depends on the response Y . This allows for a

broader understanding of problematic correlation structures and is highly relevant to many

simulation settings. From this perspective, not all deviations from orthogonality are the

same. Spectral measures of such deviations do not always account for this lack of symmetry.

Often simulations are described by their signal to noise ratio without considering the relative

difficulty of different functional forms of the response. Provide an honest measurement of

the difficulty of simulated data case requires considering both the strength of the signal and

the ease with which the signal can be found.

Lastly, we demonstrate that submodularity often appears in statistics literature, just not by

that name. We discuss the restricted eigenvalue (Raskutti et al., 2010) and conditions for

sure independent screening (SIS) (Fan and Lv, 2008). The discussion highlights the data

situations in which the sparse regression problem (1.2) is solvable by either approximating

the solution or relaxing the problem formulation. Essentially, achieving an approximate

solution to the exact problem is successful is the same instances in which achieving an

exact solution to the approximate problem is successful. Furthermore, counter-intuitive

results from recent conditional testing literature on forward stepwise and Lasso (Taylor

et al., 2014) are explained by deviations from submodularity.

Section 4.1 introduces submodularity and our definition of approximate submodularity.

Section 4.2 provides a simple example with only two features to provide intuition about

the constraint of approximate submodularity. Furthermore, it is shown how submodularity

can influence the search path identified by a greedy procedure. We also demonstrate the

effect of signal strength in conjunction with submodularity. If the signal is strong enough,

deviations from submodularity are easier to tolerate because signal is harder to hide in

complex relationships between features. Lastly, Section 4.3 discusses the connection between

submodularity and more common assumptions in statistics.
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4.1. Submodularity

Submodularity is a condition under which greedy algorithms perform well. In this section,

submodularity is given a statistical interpretation which begins to reveal its relevance in

statistics. We often need to consider a feature Xi orthogonal to those currently in the

model, XS . This is referred to as adjusting Xi for XS . The projection operator (hat

matrix), HXS
= HS = XS(XT

SXS)−1XT
S , projects a vector onto the span of the columns

of XS . Therefore, Xi adjusted for XS is denoted as residual Xi.S⊥ = (I −HXS
)Xi. This

same notation holds for sets of features: XA adjusted for XS is XA.S⊥ = (I−HXS
)XA.

While assuming R2 is submodular is uncommon in the statistics literature, an equivalent

formulation has been discussed in the social science literature: the absence of conditional

suppressor variables (Das and Kempe, 2008). It is often observed features that have positive

marginal correlation with the response can have negative partial correlation in the presence

of other features. Similarly, features can be more significant in the presence of others than

they are in isolation. In these situations, “suppression” is said to have occurred. The

words “suppression” and “suppressor variable” can be understood through the algebra of

adjustment for multiple regression coefficients.

If X and Y are standardizes, the coefficient for a feature Xi in a simple regression is the

correlation between Xi and Y : rY,i. Letting C = S\i be the other features in the model,

the coefficient for Xi in a multiple regression is

β̂i =
〈Y,Xi,C⊥〉
〈Xi,C⊥ ,Xi,C⊥〉

.

Therefore suppression occurs when variability in the feature of interest that is unrelated to

Y is suppressed by the other features in the model.

A suppressor variable is one which, once controlled for, increases the observed significance

of another feature. The absence of a conditional suppressor implies that ∀S ⊂ [m] and
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i, j /∈ S

|Corr(Y,Xi,(S∪j)⊥)| ≤ |Corr(Y,Xi,(S)⊥)|.

Suppression is fundamentally the same problem as Simpson’s paradox and Lord’s paradox.

The distinction arises based on the type of features being considered. Given features X1

and X2, Simpson’s paradox can occur when both features are categorical, Lord’s paradox

can occur when one is categorical and the other is numeric, and suppression can occur when

both features are numeric. Any of these paradoxes create problems with interpreting the

influence of features in a regression model.

If one is only interested in prediction, the interpretation of coefficients is often unimpor-

tant. The existence of a suppressor variable does not change the predictions from a model;

however, suppression has significant consequences for the ability of an algorithm to identify

an important feature. In extreme cases, important features can only be identified as such in

the context of many other features. To extend the simple example given in the introduction,

consider the following set of random variables:

Z = Np(0, σzIp) ε = Np−1(0, σεIp−1)

X1:(p−1) = Z1:(p−1) + ε Xp = Zp −
p−1∑
i

εi

Y =

p∑
i=1

Xi =

p∑
i

Zi

Suppose that σε/σz is large enough that the variability in ε hides any signal that is in

Zi. In this example, any model with fewer than p features has an R2 near 0, while using

all p features yields an R2 of 1. The improvement in fit by adding any single variable is

approximately 0 or 1, depending on which other variables are in the model. This clearly

harms any procedure that solves isolated subproblems. Given the equivalence between

lack of suppression and submodularity, we will use these term interchangeably. Similarly,
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subsets of features which violate Definition 6 are instances of supermodularity. Therefore

suppression situations are also supermodular.1 Further implications of the submodularity of

R2 are understood by considering equivalent definitions of submodular functions. Definition

6 provides the classical definition of submodularity, and two refinements can be made that

merely specify the sets under consideration in increasing detail. For completeness, all three

formulations are provided in Definition 7 and are ordered in terms of specificity.

Definition 7 (Submodularity). Let F : 2[m] → R be a set function defined on the the power

set of [m]. F is submodular iff

1. (Definition) ∀A,B ⊂ [m]

F (A) + F (B) ≥ F (A ∪B) + F (A ∩B)

⇒ F (A)− F (A ∩B) ≥ F (A ∪B)− F (B)

⇒ ∆A∩B(A) ≥ ∆B(A)

2. (First-order difference) ∀A,B such that A ⊂ B ⊂ [m] and i ∈ [m]\B

F (A ∪ {i})− F (A) ≥ F (B ∪ {i})− F (B)

⇒ ∆A(i) ≥ ∆B(i)

3. (Second-order difference) ∀A ⊂ [m] and i, j ∈ [m]\A

F (A ∪ {i})− F (A) ≥ F (A ∪ {i, j})− F (A ∪ {j})

⇒ ∆A(i) ≥ ∆A∪j(i)

The definition in terms of first-order differences shows that submodular functions are similar

to concave functions in that they exhibit diminishing marginal returns. The marginal impact

or discrete derivative of adding a feature to A is larger than that of adding it to B since

1Given that R2 ≥ 0, submodular function are also subadditive. Similarly, supermodular ones are super-
additive. While we do not use this terminology, it may be encountered elsewhere.
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A ⊂ B. In terms of optimization, however, they behave like convex functions and can

be efficiently minimized. See Bach (2011) for a survey of this viewpoint. One further

simplification is possible by specifying B = A ∪ {j}, which yields the definition in terms

of second-order differences. This provides the most granular, well-specified definition of

submodularity, and it is the easiest to verify in practice. The proofs of the equivalence of

these definitions are standard and can be found in many places, for example Bach (2011).

Furthermore, when showing the equivalence of definitions for approximate submodularity,

we will be using proofs of essentially the same form.

In statistical terms, the first- and second-order difference definitions capture the intuitive

notion that correlated features share information. Suppose XS is a highly positively cor-

related set of features where βi ≥ 0, ∀i ∈ S. If only Xj , j ∈ S, is added to the model,

it produces a larger marginal improvement in fit than if the entire set XS is included:

∆∅(Xj) ≥ ∆S\j(Xj). This claim does not hold in general, but does in this example be-

cause it is submodular. Correlation structures which violate this intuitive notion of shared

information are described in Section 4.2.1.

The above discussion follows from elementary decompositions of simple and multiple re-

gression coefficients. Let S = {i ∪ j} and consider the following models, where subscripts

m and s index the model coefficients and error terms:

Multiple Regression Simple Regression

Model Y = β0,m + Xiβi,m + Xjβj,m + εs Y = β0,s + Xiβi,s + εm

Estimated Coefficients β̂0,m, β̂i,m and β̂j,m β̂0,s and β̂i,s

The simple regression coefficient can be decomposed into direct and indirect effects:

β̂i,s = β̂i,m︸︷︷︸
direct

+ α̂j β̂j,m︸ ︷︷ ︸
indirect

. (4.3)

where α̂j is estimated from

Xi = α0 + Xjαj + ε.
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By construction, all terms are positive in equation (4.3) and the simple regression coefficient

β̂i,s is larger than β̂i,m. Therefore, the marginal impact of adding Xi is larger in isolation

than in conjunction with Xj . While this is a simplistic example, it introduces the general

insight gained in later sections. In the simplest case, submodular data requires positively

correlated features to have correlations with the response of the same sign. For example,

both must be negative or positive. Similarly, if features are negatively correlated, their

correlations with the response need to be of opposite sign.

The conditions provided in Definition 7 need to be relaxed in order to capture the contin-

uum of possible scenarios. This will provide a measure of how signal can “hide” in sets of

features while not being visible marginally. This measure is closely connected to assump-

tions more commonly discussed in statistics (see Section 4.3). There are two conflicting

interests when providing an approximate definition of submodularity. First, it needs to be

statistically meaningful. Such a definition should characterize a relevant statistical problem

that needs to be addressed by many algorithms. Second, understanding submodularity in

spaces with few features should provide generalizable insight into higher-dimensional prob-

lems. Unfortunately, both goals are not accomplished in the same way. Therefore, two

notions of approximate submodularity are developed and their relationships are described.

Forward stepwise works better if the influence of a set S can be bounded by the sum of

the margin influences of the elements in it. This can be achieved by applying Definition

6 multiple times to reduce the left hand side to a sum of individual elements. If A =

{a1, . . . , al} ⊂ [m] and B = {b1, . . . , bm} ⊂ [m], this yields

l∑
i=1

∆A∩B(ai) +

m∑
i=1

∆A∩B(bi) ≥ ∆A∩B(A ∪B). (4.4)

Note that for elements ai ∈ A ∩B or bi ∈ A ∩B that ∆A∩B(ai) = ∆A∩B(bi) = 0.

Das and Kempe (2011) propose a definition of approximate submodularity that requires

equation (4.4) to hold approximately by including a constant γsr > 0 on the right hand
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side. This is different than incorporating the same constant into Definition 6 as multiple

applications of the definition are required to produce equation (4.4). For additional sim-

plicity, consider adding the set A = {ai, . . . , al} ⊂ [m] to the model S. Hence ∆S(ai) is

the marginal increase in R2 by adding ai to model S. In this simple case, ∆S(ai) is the

squared partial-correlation between the response Y and ai given S: ∆S(ai) = Cor(Y, a⊥i.S)2.

Therefore, define the vector of partial correlations as rY,A.S⊥ = Cor(Y,A.S⊥), then the left

hand side of (4.4) is ‖rY,A.S⊥‖22. Similarly, if we define CA.S⊥ as the correlation matrix of

A.S⊥ then ∆S(A) = r′
Y,A.S⊥

C−1
A.S⊥

rY,A.S⊥ .

Definition 8. (Das and Kempe, 2011) The submodularity ratio, γsr, of R2 with respect to

a set S and k ≥ 1 is

γsr(S, k) = min
(T :T∩S=∅,|T |≤k)

r′
Y,T.S⊥

rY,T.S⊥

r′
Y,T.S⊥

C−1
T.S⊥

rY,T.S⊥

The minimization identifies the worst case set T to add to the model S. It captures how

much R2 can increase by adding T to S (denominator) compared to the combined benefits

of adding its elements to S individually (numerator). R2 is submodular if γsr ≥ 1 for all

S ⊂ [m] and k = 2. Only checking k = 2 is sufficient due to the second-order difference

definition of submodularity and is clear from the proofs later in this section.

To not conflate the different notions of approximate submodularity introduced in this sec-

tion, γsr will be referred to as the submodularity ratio or statistical submodularity. It can

be used in proofs of the performance of greedy algorithms (Johnson et al., 2015b; Das and

Kempe, 2011) and is lower bounded by a sparse eigenvalue (Das and Kempe, 2011). The

connection to spectral quantities is obvious as γsr is an inverted Rayleigh quotient of the

covariance matrix CT.L⊥ . As CT.L⊥ is the Schur complement of CT∪L, Corollary 2.4 from

Zhang (2006) proves that γsr is lower bounded by the minimum eigenvalue of CT∪L. The

minimum sparse eigenvalue merely removes the dependence on the selected sets L and T .

The connections to other algorithms that depend on spectral quantities are discussed in

Section 4.3.
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The submodularity ratio is not appealing from the perspective of submodularity. It is

redefined for different cardinalities k and does not allow information gained for fixed k to

percolate to larger k. We now provide a refined construction of approximate submodularity

that produces generalizable insights. The definitions of approximate submodularity should

mirror those of Definition 7, so that knowledge gained from restrictive, two-dimensional

cases can generalize to higher-dimensional cases. These equivalent definitions, however,

consider submodular functions in a slightly different context than the submodularity ratio

γsr. The distinction is due to bounding the minimum of a set of differences versus the sum

of a set of differences. Clearly bounding the minimum is stronger.

Approximate submodularity is constructed by starting with the second-order differences

definition as it is the most granular and well-specified. Ideally, the sum of the marginal

impact of features considered individually would be approximately greater than their impact

considered jointly. Namely, for some constant γ > 0,

∆A(i) + ∆A(j) ≥ γ∆A(i, j). (4.5)

This is γA,2 after fixing the sets being minimized, but is unfortunately too weak to gener-

alize to the larger sets considered in Definition 7. Instead, we must maintain the type of

comparisons considered in the standard definitions.

Definition 9 (Approximate Submodularity). F is approximately submodular if there exists

constants γs γs2, where γs2 ≥ γs > 0, such that any of the following hold

1. (Second order difference) ∀A ⊂ [m] and i, j ∈ [m]\A

F (A ∪ {i})− F (A) ≥ γs2(F (A ∪ {i, j})− F (A ∪ {j}))

⇒ ∆A(i) ≥ γs2∆A∪j(i)
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2. (First order difference) ∀A,B such that A ⊂ B ⊂ [m] and i ∈ [m]\B

F (A ∪ {i})− F (A) ≥ γs(F (B ∪ {i})− F (B))

⇒ ∆A(i) ≥ γs∆B(i)

3. (Definition) ∀A,B ⊂ [m]

F (A)− F (A ∩B) ≥ γs(F (A ∪B)− F (B))

∆A∩B(A) ≥ γs∆B(A)

One difference between the definitions for submodularity and approximate submodularity

is that the constant will not be the same in all three cases, as indicated by our use of γs

and γs2; however, if either is strictly greater than 0, then they both are. We are most

interested in γs, which considers large sets, instead of γs2, which only holds for second order

differences. We are able to provide a full account for γs2 though, which yields a conservative

lower bound on γs. Therefore, understanding approximate submodularity in two dimensions

gives generalizable insights. The equivalence of these definitions is proved in the Appendix.

It is easy to see that γsr ≥ γs2 in the relevant region in which γs2 ≤ 1. In this region,

forward stepwise can perform poorly. The second-order characterization of γsr in equation

(4.5) can be constructed using γs2.

∆A(i) ≥ γs2∆A∪j(i)

F (A ∪ i)− F (A) ≥ γs2(F (A ∪ {i, j})− F (A ∪ {j}))

F (A ∪ i)− F (A) + γs2(F (A ∪ {j})− F (A)) ≥ γs2(F (A ∪ {i, j})− F (A))

⇒ ∆A(i) + ∆A(j) ≥ γs∆A(i, j).

Where the last line follows since γs2 ≤ 1. The submodularity ratio fixes the base set; hence

the above rearranges the definition of γs2 such that the marginal impact of all features is
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relative to the same base set A. This yields a bound on the sum of marginal effects, whereas

the γs2 is a bound on the minimum of the marginal effects. As expected, the minimum can

yield much worse bounds than the sum; however, as seen in Section (4.2.1), not all steps

can be taken at this worst case bound.

4.2. Submodularity in 2 Dimensions

Attempting to classify types of suppression led Tzelgov and Henik (1991) to graph sup-

pression situations that are possible with only two features. These graphs have unintuitive

dimension, double-count data instances, and show impossible configurations. We analyze

the same case, but provide graphs that fully characterize the set of possible regression

problems. This clearly displays the regions in which γs2 and γsr are bounded.

4.2.1. Graphing Approximate Submodularity

We parameterize possible regression problems using angles derived from projecting the

response onto individual features. Our data consists of Y , X1, and X2 and Ŷi as the

response Y projected onto Xi. See Figure 7 for an illustration. Since all features have

been normalized, the distance from the origin to Ŷi is the correlation between Y and Xi,

rY i. The correlation between explanatory features is parameterized as cos(θ), where θ is

the angle between X1 and X2. The relative predictive power of the features is measured

by τ , the angle between Ŷ1 and Ŷ2. Lastly, the strength of the signal is a function of the

length of b, the side between Ŷ1 and Ŷ2.

Figures 8, 9, and 10 only display θ ∈ [0, π] and rY i ≥ 0 because of the symmetries in

submodularity. θ > π is equivalent to θ′ = (2 − θ)π ∈ [0, π] and rY i = −rY i for some

i. The vertical axis has units (τ + θ/2)π so that the contour plots are symmetric around

.5π. Figure 7 is an isosceles triangle when τ + θ/2 = .5π, meaning that both features

have the same marginal significance. Therefore, deviations correspond to one feature being

marginally more significant than the other. Similarly, θ = .5π is the orthogonal case and

represents one line of symmetry on the horizontal axis.

81



�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
��

   
   

   
   

  

B
B
B
B
B

T
T
T
T
T
T
T
T
T
TT

e
e
e
e
ee

Y

X1

X2

Ŷ1
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Figure 7: Characterization of possible two-dimensional regression problems: our data con-
sists of Y , X1, and X2. Ŷi is Y projected on Xi. The side length from the origin to Ŷi is
rY i.

To completely specify the derived triangle in Figure 7, fix a measure of the signal to noise

ratio as this does not represent a meaningful distinction between models for submodularity.

Higher signal just means that the effects will be larger. This has the practical impact of

being making it easier to identify a significant effect, but this discussion is delayed until

Section 4.2.2. For convenience, we fix R2 under the full model: R2
full = .5. All figures are

identical for any value of R2
full ∈ (0, 1]. The length of b, the side between Ŷ1 and Ŷ2, is√

(1− r212)R2
full.

Figure 8 is a contour plot of γs2 over the set of feasible regression problems. It demonstrates

that submodularity (γs2 ≥ 1) is only possible when sign(r12rY 1rY 2) = 1. This is the intuitive

case introduced in Section 4.1: if features have opposing relationships with the response,

we expect them to be negatively correlated. Since Figure 8 displays rY 1 > 0 and rY 2 > 0,

submodularity only occurs when the features are positively correlated. Furthermore, for

fixed r12 the maximum γs2 occurs when both features have equal marginal effect. As this

is a only a two-feature problem, the joint effects are also equal. Therefore, the common

simulation setting that sets all non-zero coefficients to the same value maximizes the worse-

case step, improving the performance of feature selection algorithms.

Figure 8 demonstrates that while submodularity holds in a large area, relaxing the definition

does not increase the set of problems in a dramatic way; however, this is because γs2 is the
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single worst case step. Let γi be ∆(Xi)/∆Xj (Xi), i 6= j, i, j ∈ {1, 2}, then γs2 is calculated

by

γ1 =
r2Y 1

(r2Y 1 − 2rY 1rY 2rY 2 + r2Y 2r
2
12)/(1− r212)

γ2 =
r2Y 2

(r2Y 2 − 2rY 1rY 2r12 + r2Y 1r
2
12)/(1− r212)

γs2 = min(γ1, γ2).

γi is not symmetric in X1 and X2, though given our interest is in the true model con-

taining both features, it is only important that one feature appears marginally significant.

Importantly, both features cannot attain the minimum level γs2 simultaneously.

To illustrate this, consider bounding the marginal impact of both X1 and X2 using γs2.

Summing these two inequalities produces

∆A(i) + ∆A(j)

∆A∪j(i) + ∆A∪i(j)
≥ γs2

⇒ ∆A(i) + ∆A(j)

2∆A(i, j)−∆A(i)−∆A(j)
≥ γs2, (4.6)

where the second line just rewrites the first such that the base set is constant. Figure 9 is

a contour plot of the left hand side of equation (4.6). Clearly γs2 is a poor bound on this

function, demonstrating that if signal is contained in the joint distribution of the features,

it cannot be hidden from both marginal distributions simultaneously. It demonstrates that

useful properties of submodularity obtain in much larger region than indicated by γs2 due

to its conservativeness.

Lastly, Figure 10 is a contour plot of the submodularity ratio γsr. It behaves similarly to

the bound on the sum in Figure 9, though more regularly. There are several interesting

features that can be seen from this graph. First, γsr can be larger than 1. These are data

situations in which forward stepwise achieves a better bound than the usual (1−1/e) factor

off of the optimal. This region corresponds to cases when the features are highly correlated
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Figure 8: Contour plot of approximate submodularity using second order differences (γs2).
Level sets are given for γs2 ∈ {.2, .4, . . . , 1}.

and have similar marginal relationships with Y . In this case, there is redundancy in our

data and selecting appropriate features is less difficult.

Second, the dependence of γsr on Y is captured by the vertical axis via τ . Only orthogonal

data, θ = .5π, is submodular regardless of Y . In this case, the definition of submodular-

ity, equation (4.2), holds with equality. This defines a modular function, and it is well

known that the greedy algorithm produces the optimal answer when maximizing a modular

function (Fujishige, 2005). Due to this dependence on Y , γsr is not symmetric around the

orthogonal case. Obviously the feasible region is not symmetric, but we consider symmetry

in terms of the contours of γsr. The minimum γsr along any vertical strip is achieved at the

boundary of the feasible region. Along the boundaries, submodularity decays at the same

rate when orthogonality is violated with by either positive or negative correlation. In this

way, submodularity is symmetric around the orthogonal case. This demonstrates the result
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Figure 9: Contour plot of the left hand side of equation (9). The level sets are {.2, .4, . . . , 1}.

of Das and Kempe (2011), that γsr is lower bounded by minimum eigenvalues, which occur

on the boundary of the feasible region.

4.2.2. Graphing Change in t-Statistics

We now address the issue of significant suppression. As the deviation from submodularity

grows, the greedy search path can deviate from the optimal path; however, slight suppression

does not mean that the true model will not be found. For example, even suppressed features

may still be marginally significant enough to be identified. In this case, the greedy search

procedure has not been harmed.

To analyze these cases, the submodularity ratio can be related to differences in t-statistics.

As in Figure 10, consider the contours of the percentage change in t-statistics caused by
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Figure 10: This is a contour plot of the submodularity ratio over the set of feasible regression
problems. Level sets are given for γsr ∈ {.2, .4, . . . , 2}.

different correlation structures. For clarity, consider the following statistics:

β1m = ry1 m for marginal

β1j =
ry1 − ry2r12

1− r212
j for joint

t1m =
ry1
σim

σ21m =
1− r2y1√
n− 1

t1j =
(ry1 − ry2r12)
(1− r212)1/2σj

σ2j =
1√
n− 1

−
r2y1 − 2ry1ry2r12 + r2y2√

n− 1(1− r212)

Submodularity requires t21m ≥ t21j . This is a conservative statement since
σ2
1m

σ2
j
> 1. If the

features are jointly highly significant, this becomes very conservative because the ratio is
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much larger than 1.

t2m1 =
r2y1
σ2m
≥
r2y1 − 2ry1ry2r12 + (ry2r12)

2

(1− r212)σ2j
= t2j1

⇒ r2y1 ≥
r2y1 − 2ry1ry2r12 + (ry2r12)

2

1− r212

⇒ r2y1 + r2y2 ≥
r2y1 − 2ry1ry2r12 + r2y2

1− r212

Some algebra and incorporating γsr yields the following bound on the difference between

the squared t-statistics:

⇒ t2j1 − t2m1 ≤
(1− γsr)(r2y1 − 2r12ry1ry2 + r2y2)

1− r212

The previous display ignores the symmetry of the problem: it is not of concern which of X1

or X2 is the suppressed feature, merely that there exists one. As such, add the corresponding

equation for X2 and divide by the sum of the marginal t-statistics. This treats X1 and X2

symmetrically, and yields

t2j1 + t2j2
t2m1 + t2m2

≤ 1 +
2(1− γsr)(r2y1 − 2r12ry1ry2 + r2y2)

(1− r212)(r2y1 + r2y2)

= 2γ−1sr − 1. (4.7)

Since equation (4.7) is conveniently written in terms of the γsr, we provide its contour plot

in Figure 11. Equation (4.7) is always positive since γsr ≤ 2.

The contours of Figure 11 are similar to those in Figure 10, but the contours change at

different rates. If γsr > .8, then the ratio of squared t-statistics cannot be greater than

1.5. In this case, if a greedy procedure stops because all remaining features have a marginal

t-statistic less than 2 in absolute value, neither feature can have a t-statistic larger than

3.46 when considered jointly. This upper bound is attained when one feature has a joint t-

statistic of 0. If the joint information is split evenly between the two features, the maximum

joint t-statistics are 2.44. Again, it is important to note that R2 is not involved in this
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equation. Therefore submodularity is measuring a fundamentally different component than

the signal-to-noise ratio.

4.3. Connection to Other Assumptions

Some algorithms that leverage assumptions similar to submodularity are the Lasso, Dantzig

selector, and sure independent screening (SIS). It should not be surprising that the Lasso

and forward stepwise are closely connected as the LARS procedure demonstrates the ap-

proximate greedy nature of the Lasso (Efron et al., 2004). This similarity extends to the

Dantzig selector given that the same assumption guarantees success of the Lasso and Dantzig

selector (Bickel et al., 2009). Lastly, SIS needs guarantees that information learned from

marginal correlations is sufficient for model selection (Fan and Lv, 2008). This section de-

scribes these procedures, the assumptions used to demonstrate their success, and their close

connection to submodularity.

4.3.1. Lasso and Dantzig

Relaxing the constraint from problem (1.3) from ‖β‖l0 to ‖β‖l1 yields the Lasso problem

(Tibshirani, 1996).

β̂l = argminβ {ESS(Xβ) + λ‖β‖l1} (4.8)

This is a convex program and can be efficiently solved using a variety of algorithms (Efron

et al., 2004; Hastie and Junyang, 2014).

The Dantzig selector (Candes and Tao, 2007) optimizes the following linear program

β̂d = argminβ {‖Y −Xβ‖∞ + λ‖β‖l1} (4.9)

Our discussion of these procedures focuses on the assumptions required to provide bounds

on their prediction loss. Many properties have been defined such as the restricted isometry
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property (Candes and Tao, 2005), the restricted eigenvalue constant (Bickel et al., 2009;

Raskutti et al., 2010), or the compatibility condition (van de Geer, 2007). For a review of

these and related assumptions, see van de Geer and Bühlmann (2009). For our purposes,

the most important of these is the restricted eigenvalue, which is defined over a restricted

set of vectors that contain β̂l and β̂d. Consider a subset S ⊂ {1, . . . , p} and constant α > 1.

Define the set

C(S;α) := {β ∈ Rp|‖βSc‖1 ≤ α‖βS‖1}

The restricted eigenvalue of the p×p sample covariance matrix Σ̂ = XTX/n is defined over

S with parameter α ≥ 1.

γ2re(α, S) := min

{
β′Σ̂β

‖βS‖22
: β ∈ C(S;α)

}

If γre is uniformly lower-bounded for all subsets S with cardinality k, Σ̂ satisfies a restricted

eigenvalue condition of order k with parameter α.

The restricted eigenvalue is effectively the submodularity ratio tailored to the Lasso and

Dantzig selectors and generalized to hold for all response vectors Y . Previous work has

demonstrated the connection between γsr and sparse eigenvalues (Das and Kempe, 2011).

A sparse eigenvalue with parameter k < p is

λmin(k) = min
δ∈Rk:1≤‖δ‖0≤k

δTXTXδ

n‖δ‖22
.

In order to remove the dependence on Y in the definition of γsr, both the model S of size k

and the comparison set L of size k need to be arbitrary. Therefore, γsr(S, k) ≥ λmin(2k). As

discussed in Bickel et al. (2009), bounding the restricted eigenvalue bounds the minimum

2k-sparse eigenvalue. Thus the data conditions under which the Lasso and Dantzig selector

are guaranteed to be successful are stronger than those under which forward stepwise is.

Granted, the form of the guarantees are significantly different, but of interest is the similarity
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of the assumptions required.

The Lasso and Dantzig selector are known to over-estimate the support of β (Zou, 2006),

and thus should not be compared to a sparse vector with k non-zero entries. The estimates

βl and βd are elements of C(S;α) with probability close to 1 (Bickel et al., 2009). There-

fore, the bound corresponding to submodularity needs to minimize over C(S;α) instead of

truly sparse vectors. Given the looseness of λmin(2K) as a lower bound on γsr(S, k), we

expect a similar looseness exists between the restricted eigenvalue and the corresponding

Y -dependent bound. While it is useful to provide guarantees that do not depend on Y ,

the potential to produce a better estimate of the crucial constant at runtime may pro-

vide stronger practical performance guarantees. This development could mirror (Bertsimas

et al., 2015).

4.3.2. SIS: Sure Independent Screening

SIS is a correlation learning method in which the marginal correlations between the response

and all features are computed and the features with the largest d correlations are kept.

This can be coupled with subsequent feature selection algorithms such as SCAD, Dantzig,

or Lasso to select a final model from these d features. As an additional step, this process

can be iterated in much the same way as stepwise regression: all remaining features are

projected off of the selected set, and the process continues using the residuals from the first

model. Therefore, iterated SIS is similar to a batch greedy method.

Fan and Lv (2008) split the assumptions for the asymptotic analysis into two groups: one

focuses on parameters of the true regression function and the second focuses on the sampling

distribution of the data. The assumptions on the true function are stronger than submod-

ularity and the sampling distribution does not distort this. The most relevant assumption

the authors make is the following:
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Assumption 1. Fan and Lv (2008) For some κ, 0 ≤ κ < 1/2, and c2, c3 > 0,

min
i∈M∗

|βi| ≥
c2
nκ

and min
i∈M∗

|Cov(β−1i Y,Xi)| ≥ c3.

This is of the same form as submodularity by:

|cov(β−1i Y,Xi)| = |β−1i ||cov(Y,Xi)|

= |β−1i ||rY i|,

where the second line follows because Xi and Y are standardized. As rY i is the coefficient

estimate when Xi considered marginally, Assumption 1 assures that features with non-zero

coefficients in the true model have marginal correlations which are large enough to fall above

the noise level. If S is the true model, this can be written in a similar form as submodularity

as ∆(Xi) ≥ c3∆S\i(Xi). This is the first order difference definition of submodularity when

A = ∅. Furthermore, this is more restrictive than statistical submodularity since γsr > 0

merely requires that there exists at least one feature which increases the model fit when

considered in isolation. Assumption 1 requires that all true features increase model fit when

considered in isolation. Therefore, all relevant joint information is visible from correlations.

It is impossible to hide signal in even two-dimensional subproblems such as those considered

in Section 4.2.

4.4. Appendix

Proof of equivalence of Definition 7. Implications 3. ⇒ 2. ⇒ 1. are clear by appropriately

defining the sets of interest as done when introducing the definitions of submodularity. To

prove the reverse implications, we write lower-level definitions multiple times using nested

sets. Summing these inequalities and simplifying gives the result.

To prove the first-order definition from the second-order definition, consider B = A ∪

{b1, . . . , bk}, and apply the second-order definition to sets A′i = A∪{b1, . . . , bi}. This yields
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a set of inequalities

∆A(i) ≥ γs2∆A′1
(i)

∆A′1
(i) ≥ γs2∆A′2

(i)

...

∆A′k−1
(i) ≥ γs2∆B(i)

⇒ ∆A(i) ≥ γs2∆B(i) + (γs2 − 1)∆A′1
(i) + . . .+ (γs2 − 1)∆A′k−1

(i)

≥ γs2∆B(i) +
γs2 − 1

γs2
∆A(i) + . . .+

γs2 − 1

γk−1s2

∆A(i) (4.10)

≥

(
γs2 + (1− γs2)

1− γ−ks2
1− γ−1s2

)−1
∆B(i)

where the second to last line follows from applying the second order definition repeatedly

to convert ∆A′i
to ∆A. The constant in the last line provides a lower bound on γs and is

always strictly positive if γs2 is. It assumes that all of the individual steps are worst-case

steps. As seen in Section 4.2.1, there are constraints on the number of steps that can be

taken at this worst case level.

Similarly, to prove the standard definition from the first-order definition, apply the lat-

ter multiple times and sum the inequalities to produce ∆A(C) ≥ γs∆B(C). Here C =

{c1, . . . , ck} and C ∩ A = ∅. Again, let A′i = A ∪ {c1, . . . , ci}. Note that since A ⊂ B this

implies that B′i = B ∪ {c1, . . . , ci}. This yields a set of inequalities

∆A(c1) ≥ γs∆B(c1)

∆A′1
(c2) ≥ γs∆B′1

(c2)

...

∆A′k−1
(ck) ≥ γs∆B′k−1

(ck)

⇒ ∆A(C) ≥ γs∆B(C)

Where the last line follows by summing the previous lines, canceling most terms. ∀S, T ⊂
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[m], set A = S ∩ T , C = S\T , and B = T . This yields the result.
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CHAPTER 5 : ENSURING FAIRNESS IN ARBITRARY MODELS

Machine learning has been a boon for improved decision making. The increased volume and

variety of data has opened the door to a host of data mining tools for knowledge discovery;

however, automated decision making using vast quantities of data needs to be tempered

by caution. In 2014, President Obama called for a 90-day review of big data analytics.

The review, “Big Data: Seizing Opportunities, Preserving Values,” concludes that big data

analytics can cause societal harm by perpetuating the disenfranchisement of marginalized

groups House (2014). Fairness aware data mining (FADM) aims to address this concern.

Broadly speaking, the goal of this project is to allow increasingly complex methods to be

widely used without fear of infringing upon individuals’ rights. This will be beneficial in

all domains that have the potential for discrimination on the basis on data. Applications

abound in both the private sector and academics. Companies will be able to justify the use

of partially automated decision making in areas as diverse as loan applications, employment,

and college admissions. There will be clear fairness criteria to guide the construction of fair

models, thus reducing unintentional discrimination and litigation. A proper understanding

of fairness will inform regulatory agencies and policy makers such that they can promote

fairness and understand its statistical implications. In legal disputes, a set of fairness models

provides a baseline from which detrimental impact can be assessed.

To clarifies the issue of fairness we reiterate the example from the introduction. Consider

a bank that wants to estimate the risk in giving an applicant a loan. The applicant has

“legitimate covariates” such as education and credit history, that can be used to determine

their risk. They also have “sensitive” or “protected” covariates such as race and gender,

which society does not want to be used to determine their risk. The bank’s task is to model

the credit risk or credit score C. To do so, they use historical data, estimate the credit

worthiness of the candidate, then determine the interest rate of the loan. The question

asked by FADM is whether or not the model the bank constructed is fair. This is different
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than asking if the data are fair or if the historical practice of giving loans was fair. It is a

question pertaining to the estimates produced by the bank’s model. This generates several

questions. First, what does fairness even mean in this statistical model? Second, what is

the role of the sensitive covariates in this estimate? Lastly, how do we constrain the use of

the sensitive covariates in black-box algorithms?

Multiple authors have raised doubts that the legal requirement of removing race prior to

fitting a model is sufficient to achieve fairness Kamishima et al. (2012); Kamiran et al.

(2013). Due to the relationships between race and other covariates, merely removing race

can leave lingering discriminatory effects that permeate the data and potentially perpetuate

discrimination. These equate this type of statistical discrimination to redlining. As we will

demonstrate, their discussion is incomplete and conflates two different effects. We answer

all of these questions and provide a post-processing method that corrects estimates from

arbitrary models to achieve fairness. This work is primarily foundational as the literature

is still debating the definition of fairness in statistics.

The use of historical data raises further concerns. First, if loans were provided in a discrim-

inatory manner, the data set may not contain sufficient data on all relevant subpopulations

for some analyses. Two effects can result: unfair estimates could perpetuate discriminatory

lending practices, or missing information could lead to lower quality estimates of default

rates for unobserved groups. The standard FADM problem, introduced by Pedreschi et al.

(2008), often focuses on similar issues, where the data are the result of discrimination.

Historical data can lead to a second issue in which sufficient data is available for assessment

but there is an observed difference in default rates based on a sensitive covariate. This

possibility makes our loan example fundamentally different from, and more challenging

than, the standard problem statement in FADM. The response is not the decision variable

of an institution, but the result of individuals’ behavior. Race may be an informative

predictor in the sense that it improves the predictive ability of the model both in- and

out-of-sample. As an example of this, Ridgeway (2016) identifies race of the officer as an
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informative risk factor associated with police shootings.

Suppose the response in the loan example was the indicator of an applicant being given

a loan instead of the risk of the applicant. If the bank used this data to estimate the

probability that a loan was given, and only gave loans based on this measure, historical

discrimination would bias the results. This case is easier to analyze since it posits that

certain observable differences in the data are the result of discrimination, whereas they can

be informative in our model. A more plausible business problem may be the automation of

salary decisions. A statistical procedure derived from discriminatory, historical data may

predict salaries that discriminate against women. Therefore, the standard FADM problem

is a simple, special case of our framework. Furthermore, we answer the socially relevant

discussion surrounding the use of sensitive information in general prediction tasks.

The problem is fundamentally about what constitutes “explainable variation.” That is,

what differences between groups are explainable due to legitimate covariates, and what dif-

ferences are due to discrimination. More precisely, there are important distinctions between

statistical discrimination and redlining. Statistical discrimination is defined as a sufficiently

accurate generalization. In many ways, this is the statistical enterprise. For example, it is a

sufficiently accurate generalization that individuals with good repayment history are likely

to repay future loans. Therefore, such applicants are considered to be of lower risk and re-

ceive lower interest rates. The Equal Credit Opportunity Acts of 1974 and the amendments

in 1975 and 1976 allow such “discrimination” if it is “empirically derived and statistically

valid.” It is clear that “discrimination” in this case refers to distinguishing good and bad

risks.

The distinction between legal and illegal forms of statistical discrimination primarily arises

due to which covariates are being used to make generalizations. The concept of a “sensitive”

or “protected” characteristic in some ways prohibits its use for generalizations. For example,

in the United States there are unfortunate relationships between incarceration and race;

black males are significantly more likely to have been imprisoned at some point in their
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lives than white males. Actions based on such heuristics are often illegal, though they

may be economically rational. Risse and Zeckhauser (2004) provide a richer account of

these cases, addressing concerns surrounding racial profiling. They separate the notion

of statistical discrimination from the larger setting of societal discrimination. The debate

often centers on what is a “disproportionate” use of sensitive information Banks (2001). In

Section 5.1, we provide a detailed account of statistical discrimination and describe how

proportionality can be measured.

Statistical discrimination is contrasted with redlining, which is a negative consequence of

the ability to estimate sensitive covariates using legitimate ones. This can be used to dis-

criminate against a protected group without having to see group membership. In this case,

“discrimination” is used to describe prejudicial treatment and is a normatively negative

concept. While often clear from context, in the interest of avoiding confusion between a le-

gitimate type of statistical discrimination and redlining, “discrimination” will primarily be

used in a normative, prejudicial sense. The exception is in the phrase “statistical discrimi-

nation,” in which case we will be more precise. General statistical uses of “discrimination”

will be described as “differentiating” individuals etc. This will separate the normative and

statistical uses of the term “discrimination.”

The term “redlining” originated in the United States to describe maps that were color-

coded to represent areas in which banks would not invest. Figure 12 shows one such map

from Philadelphia in the 1930s. It is marked in different colors to indicate the riskiness of

neighborhoods. For example, red indicates hazardous areas and blue indicates good areas

for investment. Denying lending to hazardous areas appears “facially neutral” because it is

“race blind:” the bank need not consider racial information when determining whether to

provide a loan. These practices, however, primarily denied loans to black, inner-city neigh-

borhoods. This was used as a way to discriminate against such borrowers without needing

to observe race. This clearly demonstrates that merely excluding sensitive information does

not remove the possibility for discrimination. Conceptually, the core issue is the misuse of
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Figure 12: A 1936 map of Philadelphia marking high and low-risk areas.

available information. This will be an often-cited example in the remainder of the paper.

Our contributions fall into two main categories: conceptual and algorithmic. First, we

provide a statistical theory of fairness. The literature is lacking a serious discussion of the

philosophical components of fairness and how they should be operationalized in statistics.

Doing so will require a spectrum of models to be defined, because fairness is a complicated

philosophical topic. Furthermore, such a spectrum is necessary to capture varying notions

of fairness present in multiple cultures. Second, after providing this framework it will

be clear how to both construct fair estimates using simple procedures as well as correct

black-box estimates to achieve fairness. It is important to note that these corrections

can only be made by using all of the data, including the sensitive covariates. This is

intuitively clear because guaranteeing that discrimination has not occurred requires checking

the estimates using sensitive characteristics. Having a spectrum of fairness models also

yields two practical applications. First, we can quantify the cost of government programs

by considering the different incentives between a profit-maximizing firm and a government-

owned, welfare-maximizing one. Second, we can quantify disparate impact, which is an

important component of redlining litigation.

A few remarks need to be made about the sensitive nature of the topic at hand. Sensitive

covariates such as race and gender are not neutral concepts. It is the plight of the data

analyst that these categories are taken as given. We assume that data are provided in
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which someone else has determined group membership. Our questions are about the types of

protection that can be offered given such a data set. Furthermore, this project is descriptive,

not normative. Our goal is to provide scientific, data-generating scenarios that elucidate

philosophical nuances in statistical modeling. Each scenario gives rise to a different fair

estimate; however, determining which scenario is accurate for a given culture is outside

of the scope of this project. An important consequence of this is that different scenarios

are accurate in different societies. For example, a society with more social mobility or

equal opportunity can use different estimation techniques than those where discrimination

is pervasive. For a further discussion of race in data analysis, interested readers are referred

to Holland (2003).

The main body of the paper is organized as follows: Section 5.1 defines fairness in statistics.

This requires careful consideration of the philosophical and legal underpinnings of fairness

and is motivated by a long history of literature in ethics. This discussion constructively

generates fair estimates using multiple regression. We also compare estimates on an indi-

vidual level in Section 5.1.4. This has never been done in the literature but is crucially

important if we intend to justify our models as fair. Often social discussions revolve around

a individual being treated fairly, so it is ironic that the only discussion of fairness in the

literature is about global properties. Section 5.2 uses the methods generated in Section

5.1 to correct estimates from black-box models to achieve fairness. In light of Section 5.1,

this is a straight-forward task. We also test our methods on a data example to not only

elucidate the conceptual difficulties that the literature has been having with fairness, but

also to demonstrate that our method achieves superior results.

5.1. Defining Fairness

Fairness has been discussed extensively in the philosophy as it is both a highly complex

and socially relevant topic. Any meaningful treatment of fairness-aware data mining needs

to address a variety of viewpoints, as there is no consensus as to what “fairness” means.

Colloquially fairness is considered as similar people are treated similarly. This posits the
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need for a metric by which we can measure the similarity of individuals. FADM is motivated

by the requirement that sensitive covariates such are not relevant measures of similarity

in many applications; they are not a meaningful source of variability. As such, sensitive

information needs to be “ignored;” however, the naive method of merely excluding the

information, is obviously insufficient due to redlining. In this section, we describe a way to

ignore the influence of these covariates.

More formally, the discussion of fairness-aware data mining revolves around the literature

on equality of opportunity Arneson (2015). The philosophical literature on equality of

opportunity analyses the way in which benefits are allocated in society. A benefit can be

anything from a home loan or high salary to college admission and political office. One

viewpoint is formal equality of opportunity (FEO), which requires an open-application for

benefits (anyone can apply) and that benefits are given to those of highest merit. Merit

will of course be measured differently depending on the scenario or benefit in question.1

Therefore, the most productive employee receives the high salary, while the least-risky

borrower receives a low interest rate loan. There is cause for concern if discrimination

exists in either the ability of some individuals to apply for the benefit or in the analysis of

merit. A constraint in FADM is the belief that sensitive features are not a relevant criteria

by which to judge merit.2

Substantive equality of opportunity (SEO) contains the same strictures as above, but ques-

tions whether everyone has a genuine opportunity to be of high merit. In particular, suppose

only those who received benefits in the past are of high merit. For clarity, consider a rigid

caste system, where only the upper caste has the time and financial resources to educate

and train their children. Only children born to upper-caste parents will be of high quality

and receive the benefits. This is true even though lower-caste individuals can apply for

the benefits and benefits are given based on merit. In this case, proponents of SEO claim

1Here we will ignore the randomness in estimates of quality.
2There are important legal exceptions such as business necessity allowed in the doctrine of disparate

treatment.
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that true equality of opportunity has not been achieved. While the United States is not

a caste system, some may argue that the cycle of poverty may lead to a similar regress in

the reasons for the disparity between races. It is important to draw the distinction between

these two viewpoints, because it represents a large distinction in the philosophical literature

as well as captures a significant component of the social debate around fairness. Concerns

with SEO will be captured through the use of a new set of “suspect” covariates, that have

not been discussed in the literature. This is explained in detail in Section 5.1.3.

In the United States, legal cases on equality of opportunity are based on two theories of

discrimination outlined under Title VII of the U.S. Civil Rights Act. Disparate treatment is

direct discrimination on the basis of a protected trait, and disparate impact is discrimination

on the basis of another covariate which disproportionately effects a protected class. While

initially introduced to govern employment, they have been expanded to other domains. For

example, in June, 2015 the U.S. Supreme Court ruled that the Fair Housing Act extends

these definitions to apply to housing dis (a). These concepts also govern legal cases in

Europe, Australia, and New Zealand, though by other names such as “discrimination by

subterfuge” or “indirect discrimination.”

According to the U.S. Supreme Court, disparate treatment occurs when action is taken

that “simply treats some people less favorably than others because of their race, color,

religion, sex, or national origin” dis (b). It requires justification of the intent to discriminate

based on the protected trait. An easy solution to prevent disparate treatment is merely

to hide the information. Kamishima et al. (2012) termed this direct prejudice, providing

the mathematical definition of its presence as conditional dependence of the response and

sensitive covariates given the legitimate covariates.

Disparate impact occurs when “practices that are facially neutral in their treatment of dif-

ferent groups . . . fall more harshly on one group than another and cannot be justified by

business necessity” dis (c). Under this tenant, a policy is not discriminatory by definition

(in that it does not codify treating groups differently) but is discriminatory in practice.
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Kamishima et al. (2012) called this indirect prejudice, but incorrectly defined its presence

as dependence of the response and sensitive covariates. Defining disparate impact requires

a more refined notion of fairness, one that is able to capture the distinction between ex-

plainable variability and discrimination, see Section 5.1.1.

The canonical example of disparate impact is redlining. The bank treats all races equally

within each neighborhood; however, it decides to build offices and provide loans in only select

regions. While race is irrelevant in the statement of the policy, the racial homogeneity of

many neighborhoods reveals this practice to be potentially discriminatory. While redlining

occurs increasingly less often, two large cases were settled in Wisconsin and New Jersey in

2015. In Section 5.1.4, we provide a detailed numerical example that measures redlining

precisely.

5.1.1. Mathematical Models of Fairness

All parties involved in our loan example have a vested interest in the model. The bank

wants the best estimate of credit risk, society is interested in equality of opportunity, and

the loan applicant wants to be treated fairly as an individual, not merely as a member

of a group. All parties can be satisfied by acknowledging that “skin color,” in its own

right, has nothing to do with credit risk. If sensitive features appear to be informative,

it indicates there are important excluded covariates. For example, there are unfortunate

discrepancies between races in incarceration rates, income, and education. Such covariates

may be legitimately predictive of credit risk, and their exclusion from the model will lead

to the apparent importance of race.

Fairness assumptions will be explained via directed acyclic graphs (DAGs), which are also

referred to as Bayesian or Gaussian networks or path diagrams. DAGs will be used to

conveniently represent conditional independence assumptions. While often used as a model

to measure causal effects, we are explicitly not using them for this purpose. As previously

stated, our goal is to create fair estimates, whereas the estimation of a causal effect would
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Figure 13: Example Directed Acyclic Graph (DAG)

attempt to answer if the data are fair.

Figure 13 provides an example DAG representing a possible set of variables and relationships

in a simplified college admissions process. The variables are Tutor, SAT Score, IQ, and

Admit. These indicate whether the student received SAT tutoring, their SAT and IQ

scores, and whether they were admitted to a given university. In the graph, the variables

are called nodes and are connected via directed edges. This direction captures a causal

relationship: the value of Tutor causally relates to the value of SAT score. Dashed edged

indicate a latent common cause: an unseen variable U that causally effects both nodes. We

use DAGs to concisely represent conditional independence assumptions. In the language of

DAGs, two nodes are called “d-separated” by a set of nodes B if all of the paths (series

of edges, regardless of direction) connecting the two nodes are “blocked” by a collection of

nodes. The only criteria for blocked paths we will use is the following: a path is blocked

if it contains a chain i → b → j such that b is in B. If two nodes are d-separated given

B, then the nodes are conditionally independent given B. For example, Tutor and Admit

are d-separated (conditionally independent) given SAT and IQ. For further information on

DAGs, see Pearl (2009).

While our models take the form of DAGs similar to causal models used in economics or the

social sciences, they do not require the same type of causal interpretation. This stems from

a different object of interest: typically one cares about a parameter or direct effect of the

model whereas in FADM we care about the estimates produced by the model. Estimating

a causal effect requires considering counterfactuals. For example, the average treatment

effect of a drug is the average difference in individuals’ response when they are given the
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treatment versus control. Obviously patients are either given or not given the treatment. As

such, he average treatment effect requires considering the counterfactual of their response

under the alternative treatment.

Counterfactuals are easily computed in FADM by merely changing the observation on which

the estimate is produced. The modular change is trivial to accomplish because it only

requires changing the data set. We need not consider the performance of an individual

with that set of covariates (or even if it exists). The hypothetical counterfactual exists

in either instance and can be used to define fairness. Therefore, we do not need recourse

to the interventionist or causal components of standard causal models and can deal only

with their predictive components. In short, we only use DAGs to represents the conditional

independence assumptions made between variables. Later we will need recourse to causal

language, but it will not be for the estimation of treatment effects etc.

As a first step in operationalizing fairness in statistics, we provide models in which the as-

sumption of fairness will be tractable. Consider an idealized population model that includes

all possible covariates. For the i’th individual, Ci is credit risk, si contains the sensitive

attributes (race, gender, age, etc), xo,i contains the observed, legitimate covariates, and xu,i

contains the unobserved, legitimate covariates. Covariates si, xo,i, and xu,i are all bold to

indicate they are column vectors. Unobserved covariates could be potentially observable

such as drug use, or unknowable such as future income during the term of the loan. The

data are assumed to have a joint distribution P(Ci, si,xo,i,xu,i), from which n observations

are drawn. Society’s fairness assumption is that si is not relevant to credit risk given full

information:

P(Ci = 1|si,xo,i,xu,i) = P(Ci = 1|xoi,xu,i).

It is important to posit the existence of both observed and unobserved legitimate covariates

to capture the often observed relationship between sensitive covariates and the response.
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Figure 14: Observationally Equivalent Data Generating Models

Specifically, observed data often show

P(Ci = 1|si,xo,i) 6= P(Ci = 1|xoi.

This lack of independence violates the intuitive notion that sensitive features are uninfor-

mative.

Since assumptions like these will need to be presented many times, they will be succinctly

captured using DAGs such as Figure 14. Observed data are often only representable by a

fully connected graph which contains no conditional independence properties (Figure 14a).

This observed distribution can be generated from multiple full-information models. The first

possible representation of the full data is an unrestricted model (Figure 14b). In this case,

sensitive covariates are not conditionally independent of the response given full information.

Such a model states that there are different risk properties between protected groups even

after considering full information. Society’s motivation for fairness aware data mining

is captured in Figure 14c: C is d-separated from s given xu and xo. Stated differently,

credit risk is conditionally independent of the sensitive covariates given full information.

Therefore, the apparent importance of sensitive information in the observed data is only

due to unobserved covariates.

To motivate our construction of fair estimates we use a thought experiment similar to

John Rawls’ veil of ignorance: consider a hypothetical scenario in which two individuals

apply for a loan. Their legitimate covariates are all identical but their sensitive attributes

are different. We then decide which individual we would rather be for the purposes of
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acquiring the loan. This is similar to the veil of ignorance if we consider being one of the

two applicants, just unsure of which one we are. In this way, the sensitive information is

“hidden” by the veil of ignorance. There are two different ways to consider fairness in this

thought experiment. The first is “fairness as indifference” and the second is “fairness as

no-direct-effect” of sensitive information.

Such a scenario has been experimentally tested using job applications in Chicago and Boston

Bertrand and Mullainathan (2003). Researchers applied to many jobs using resumes which

only differed in terms of the name used. One resume had a stereotypically black name while

the other had a stereotypically white name. There was a significantly higher response rate

to the resumes with the white name. In this case, it is clear that we are not indifferent

between which resume we would rather use. This does not appear fair under the colloquial

use of the term and violates the doctrine of disparate treatment. Therefore, indifference is

a necessary component of fairness; however, this is not sufficient.

The historical examples of redlining demonstrate that one can be indifferent to sensitive

characteristics but still receive unfair treatment. For example, suppose our applicants were

both from “hazardous” areas in Philadelphia. Both black and white borrowers would be

denied credit. We are indifferent to sensitive information because both groups are being

discriminated against. Discrimination occurs because the information contained in location

is being used incorrectly. Fairness is challenging because it requires estimating the response

under an assumption that does not hold in the data; however, the unrestricted model in

Figure 14b is equivalent to the fair model in Figure 14c if the direct effect of s on C

is zero. This provides insight into the manner in which the fair estimate of C will be

constructed: fairness requires constraining the sensitive covariate to have “no-direct-effect”

on the estimates.

For clarity, this will be described using linear regression models of credit risk. Our goal is to

describe fairness in general models: P(Ci|si,xo,i) = f(si,xo,i); however, understanding the

problem in a linear model provides not only tractable solutions but also insight into how the
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goal can be accomplished in general. The insight is gained through properly understanding

standard effect decompositions. Conceptually identical, but non-standard, decompositions

also yield novel connections to both legal and philosophical standards for fairness.

Compare the classical full and restricted regression models. The full regression model

includes both the sensitive and legitimate covariates as explanatory variables, while the

restricted or marginal regression model only includes legitimate covariates as explanatory

variables. Coefficients estimated in these models are given subscripts f and r, respectively.

In both cases εm has mean 0, m = f, r.3 While the notation is similar to that of multiple

and simple regression models, respectively, covariates are potentially vector valued. Since

this distinction is clear, we still use the terminology partial and marginal coefficients for the

full and restricted models, respectively.

Full Regression Restricted Regression

Model Ci = γf + s′iαf + x′o,iβf + εf Ci = γr + x′o,iβr + εr

Estimated Coefficients γ̂f , α̂f , and β̂f γ̂r and β̂r

A standard decomposition demonstrates that the marginal coefficient β̂r can be represented

as a function of the partial coefficients β̂f and α̂f Stine and Foster (2013). This separates

the marginal coefficient into direct and indirect effects:

β̂r︸︷︷︸
marginal

= β̂f︸︷︷︸
direct

+ ν̂α̂f︸︷︷︸
indirect

. (5.1)

where ν̂ is estimated from

si = γ + x′o,iν + ε

As alluded to previously, an ideal case is when α̂f = 0. Here the naive solution of ignoring

s during model fitting does not change anything. In general, the same effect can be accom-

plished by fitting the full regression model to generate coefficient estimates, but making

3The only property used below is orthogonality inherent to regression procedures. No inference is con-
ducted at this stage, so no further assumptions are required.
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predictions that only use ω̂f and β̂f . This removes the influence of s. While only legitimate

covariates are used, coefficients must be estimated in the full model, else the relationship

between sensitive and legitimate covariates will bias the estimated effect of xo. Such bias

allows lingering discriminatory effects to bias the estimation. The estimates are fair un-

der FEO since we are not addressing the possibility of discrimination in xo. The reverse

regression literature in economics uses these estimates as a preprocessing step Goldberger

(1984). That literature did not justify this as a fair estimate. We do so here and extend

the estimates to more philosophically robust settings.

Definition 10 (Fair Estimate: Formal Equality of Opportunity). Ĉi = γ̂f + x′o,iβ̂f

The standard decomposition in equation (5.1) can be presented in a non-standard way to

yield additional insight. Collect the observations into matrices C, S, and X and consider

writing the estimated response from the full regression. By decomposing this expression

we can identify components which are of philosophical and legal interest. Separate the

sensitive covariates into the component which is orthogonal to the legitimate covariates and

that which is correlated with them. We will refer to these as the “unique” and “shared”

components, respectively. It is important to note that the coefficient is computed only

from the unique component. This decomposition can be done by considering the projection

matrix on the column space of Xo. For a general matrix M, the projection or hat matrix

is HM = M(M′M)−1M′.

Ĉ = γ̂f + Sα̂f + Xoβ̂f

Ĉ = γ̂f +
︷ ︸︸ ︷
HXoS︸ ︷︷ ︸
di

α̂f + (I−HXo)S︸ ︷︷ ︸
dt

α̂f + Xoβ̂f (5.2)

The resulting terms are identified in equation (5.2) as di and dt, to indicate their legal

significance. The term di captures the disparate treatment effect: it is the component of

the estimate which is due to the unique variability of S. Given the fair model in Figure

14c, we know the apparent importance of S (signified by the magnitude of α̂f ) is due to
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excluded covariates; however, it is identified by S in the observed data. While this may be

a “sufficiently accurate generalization,” this is illegal statistical discrimination and is the

common way the term “statistical discrimination” is used in social science.

The term dt captures the disparate impact effect. We refer to it as the informative redlining

effect in order to contrast it with an effect identified later. Intuitively, it is the misuse of

a legitimately informative variable. It is the result of the ability to estimate S with other

covariates. It is an adjustment to the influence of Xo that accounts for different performance

between groups of S. It is important that the adjustment is caused by variability in S instead

of Xo, as seen in equation (5.1). Identifying a disparate impact effect may be challenging

because it is in the space spanned by the legitimate covariate, Xo. The current legal solution

merely removes the sensitive features from the analysis which allows for redlining via the

term dt.

5.1.2. New Variable Type

The FADM literature currently only separates covariates into sensitive and legitimate

groups. We relax this dichotomy and introduce a third class of “proxy” variables given

by w. Proxy variables, also known as information carriers, do not directly influence C

given full information. While this is a similar property as s, they are not considered to

protected characteristics. A common example of an information carrier is location. Living

in a particular location does not make someone of higher merit for most applications, but it

may be indicative of things that do so. For example, suppose that information on education

is missing in the data set. Location can be used as a proxy for education.

For simplicity, our current discussion will not include observed legitimate covariates. These

are added in Section 5.1.5. The data are assumed to have joint distribution P(Ci, si,xu,i,wi),

from which n observations are drawn. As before, consider a linear model of credit score

given the sensitive features and proxy variables. The coefficients given the subscript p, and
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Figure 15: DAGs Using Proxy Variables

εp has mean 0.

Proxy Model: Ci = γp + s′iαp + w′iδp + εp

Estimated Coefficients: γ̂p, α̂p, and δ̂p

DAGs similar to those in the previous subsection visually present the definition of proxy

variables: w is conditionally independent of C given xu (Figure 15c). When xu is miss-

ing, w is often not conditionally independent from C. This is given in Figure 15a and

can also be understood through decompositions similar to equation (5.1). As before, this

observed data structure can be generated from multiple full data models which include

the unobserved, legitimate covariates. An unrestricted data model, Figure 15b, posits no

conditional independence between variables. This violates both the fairness assumption for

sensitive features as well as the definition of proxy variables. The fair data model, Figure

15c, respects both of these constraints. This captures the intuition of a proxy variable; if

location is a proxy for income, but income is already in the data set, then location will be

uninformative.

One concern in using proxy variables in FADM is that most neighborhoods are racially

homogeneous. The famous Schelling segregation models demonstrate that this happens

even without the presence of strong discrimination Schelling (1971). Fair estimation in this

setting should allow location to be a proxy for a legitimate variable but must not use location

as a proxy for race or other sensitive covariates. Given the difficulty of exactly separating

these two components, conservative estimates can be used to ensure that location is not use

for redlining.

111



As before, decompose the estimates from the proxy model, where W is the matrix of

proxy variables with w′i as rows. All explanatory variables are separated into shared and

unique components. In both decompositions, there are components identified as disparate

treatment and disparate impact. Further information can be gained by considering the

decompositions of W and X into their constituent parts. There is a unique component,

unrelated to S, as well as components labeled sd+ and sd−.

Ĉf = γ̂f + HXoS︸ ︷︷ ︸
di

α̂f + (I−HXo)S︸ ︷︷ ︸
dt

α̂f + HSXo︸ ︷︷ ︸
sd+

β̂f + (I−HS)Xo︸ ︷︷ ︸
u

β̂f (5.3)

Ĉp = γ̂p + HWS︸ ︷︷ ︸
di

α̂p + (I−HW)S︸ ︷︷ ︸
dt

α̂p + HSW︸ ︷︷ ︸
sd−

δ̂p + (I−HS)W︸ ︷︷ ︸
u

δ̂p (5.4)

In equation (5.3), previous discussions of redlining do not distinguish between the terms

di and sd− Kamishima et al. (2012); Kamiran et al. (2013) because they are both due

to the correlation between Xo and S. It is clear that they are different, as HXoS is in

the space spanned by Xo and HSXo, is in the space spanned by S. Furthermore, the

coefficients attached to these terms are estimated from different sources. Intuition may

suggest we remove all components in the space spanned by S, but this is often incorrect.

The term sd+ can be included in many models because it accounts for the group means of X.

Excluding sd+ implies that the level of X is not important but that an individual’s deviation

from their group mean is. This makes group membership a hindrance or advantage and is

inappropriate for a legitimate covariate. For example, if an individual’s group mean is low, a

moderately high value will result in a large change in estimates. Similarly, if an individual’s

group mean is high, a moderately low value will have a large negative impact. These

deleterious effects are due to group membership and not due to individual characteristics.

Therefore, sd+ should be included if x is legitimate.

In the decomposition of the proxy model, equation (5.4), sd− addresses the concern that

the group means are potentially unfair or could be used to discriminate. For example,

if w is location, sd− accounts for the race distributions in a neighborhood. Given that
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proxy variables w are not considered directly informative, it is unclear what this race

distribution can legitimately contribute. If there is racial bias in the demographics of

neighborhoods, using such information would perpetuate this discrimination. Ensuring

that this is not perpetuated requires removing sd− from the estimates of C. This identifies

a new type of redlining effect that we call uninformative redlining; it is the sum of di

and sd−. Uninformative redlining can be identified visually using the graphs in Figure 15.

Fairness requires consideration of the information contained in the arrow s → C as well

as information conveyed in the path s → w → C. This is because s → w is potentially

discriminatory. Therefore, fair estimates with proxy variables only use the unique variability

in W. An important consequence of this estimate is that average estimates are the same

for different groups of s.

Definition 11 (Fair Estimate: Proxy Variables). Ĉi = γ̂p + (I−HS)Wδ̂p

5.1.3. Substantive Equality of Opportunity

One objection to this model is the assumption that all x covariates are legitimate. Thus,

while default can be explained in terms of x without recourse to s, that is only because

the covariates x are the result of discrimination. This critique stems from concerns over

substantive equality of opportunity: different s groups may not have the same possibility

of being of high merit as measured by x. If this is driven by societal factors such as

a class hierarchy or a cycle of poverty, these covariates may be suspect, and their use

could perpetuate the disenfranchisement of historically marginalized groups. Such seemingly

legitimate variables which are prejudicially associated with sensitive covariates need to be

considered differently as they are simultaneously potentially informative and discriminatory.

This class of “potentially illegitimate covariates” can be treated as proxy variables w, given

their conservative treatment: information from w can be used to estimate merit, but only

in such a way that does not distinguish between groups in s.

A full discussion of this topic requires positing different models for the relationship between

sensitive and legitimate covariates. This lies at the heart of not only legal cases and social
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science literature but also the public debates about fair treatment. The three models are

independence, benign association, and prejudicial association. Often, independence between

s and w is inaccurate but can be checked. As such, we focus on distinguishing the two types

of association. As we will see in the simple example of Section 5.1.4, these models must be

considered if one is to justify the types of estimates constructed in the FADM literature.

This discussion is completely lacking, leaving all previous estimates unjustified.

In the benign association model, the relationship between s and x is not prejudicial. Here,

differences in conditional distributions, P(x|x), are the result of justified, individual choices.

For example, suppose differences between groups are the result of different motivation via

familial socialization. Broadly speaking, if some communities or cultures impart a higher

value of education to their children than other cultures, the conditional distributions for

educational attainment may be significantly different. These differences, however, appear

legitimate and raise the question if the parents’ rights to raise their children take priority

over strict adherence to substantive equality of opportunity Arneson (2015); Brighouse and

Swift (2009).

Alternatively, suppose the relationship between s and x is the result of either social re-

strictions or social benefits. For example, one group could be historically denied admission

to university due to their group membership. This can produce the same observable dif-

ferences between covariate distributions, in that the favored group has higher educational

attainment than the disfavored group. In the context of fairness-aware data mining, these

two cases need to be treated differently; however, differentiating them is beyond the scope of

this paper. Our interest is not in specifying which variables have benign versus prejudicial

association, but in constructing fair estimates once such a determination has been made.

Determining which case accurately describes a given society is crucially important, but is

in the domain of causal inference and social science. Some cultures may differ in terms

of which variables are prejudicially associated with sensitive information. To continue the

education example, compare and contrast the Finnish education system with the United
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States education system. The Finnish system is predicated on equality of opportunity

instead of educational quality. Regardless of the community in which students are raised,

there is a reasonable expectation that they are provided the same access to education. In the

United States, however, there are large differences in school quality, particularly between

wealthy and poor areas. This may require education to be treated differently if one desires

fair estimates in Finnish data or United States data.

We can now consider the philosophical differences between formal equality of opportunity

and substantive equality of opportunity that are relevant to FADM. The motivation for

incorporating substantive equality of opportunity is twofold: first, it addresses the concern

that all people may not have a legitimate opportunity to be of high merit. In this way,

substantive equality of opportunity is intimately connected with social mobility. It reflects

a belief in a prejudicial, caste system along s with respect to a covariate x. From this

perspective, addressing the concern requires removing the group differences when making

predictions using x. A second motivation is to balance the allocation of benefits. The aim

here is to attempt to move towards a more balanced society by increasing social mobility

via cycles of poverty and wealth. The distinction between FEO and SEO revolves around

whether there is benign or prejudicial association between variables, and changes the way

a covariate must treated in our analysis.

Again, conduct a thought experiment using the veil of ignorance in the resume example.

Instead of merely changing names on otherwise identical resumes, consider the following

construction of a resume. Fix all information besides race and education; on one resume,

put the stereotypical black name as well as a level of education sampled from the conditional

distribution of education given race. Do the same for the resume with the stereotypical white

name. This is a way to operationalize the veil of ignorance in statistical modeling: we must

compare the two resumes constructed while hiding both race and education. Figure 16

visually demonstrates this by shading information that is hidden by the veil of ignorance.

Asking for indifference between which resume to accept in this scenario treats education
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Figure 16: Veil of Ignorance Hides More Information

differently between the two groups. If education distributions differ, this places a stronger

constraint to achieve fair treatment. This is only accurate in the setting where the covariate

is partially the result of discrimination.

Fairness requires average group differences to be removed because averages differ due to

discrimination. The veil of ignorance needs to hide all of the information on which average

differences are the result of discrimination. Mathematically this is easy to accomplish in

our framework. Notice that the story of average difference being unfair is the exact same

as the story we provided for proxy variables. Therefore satisfying substantive equality of

opportunity with respect to a suspect covariate merely requires treating that covariate as a

proxy, instead of a legitimate, covariate. This allows the covariate to be meaningfully used

without changing average differences in estimates between protected groups. Other papers

have advocated a regression approach where all variables are considered proxy variables

Calders et al. (2013). Without a proper understanding of the implications of this viewpoint,

however, the results are highly unsatisfactory. This will be discussed in detail via example

in Section 5.1.4.4

In light of this discussion, fair estimates are given as

Definition 12 (Fair Estimate: Substantive Equality of Opportunity). Ĉi = γ̂p + (I −

HS)Wδ̂p

4It is interesting to note that hiding all information behind the veil of ignorance is closely related to
Rawlsian fair equality of opportunity and even results in his maxi-min perspective on social justice. These
ideas are pursued elsewhere as they extend beyond FADM applications.
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5.1.4. Simple Example

This section provides a simplified example to demonstrate different fair estimates. This

has been overlooked in the literature, which favors providing a mathematical statement

of discrimination for the set of predictions and demonstrating that the measure has been

satisfied. It is important to understand what the estimates themselves look like. Claims

about fairness are often made my individuals: the applicant in our loan example wants to

be treated fairly. As such, it is ironic that such an analysis has never been conducted. We

demonstrate how ignoring this is such a large oversight of previous works. Without a proper

generative story “fair” estimates can appear decidedly unfair, possible drastically so.

Consider a simple example with only two covariates: income, x and sensitive group, s.5

Suppose the data is collected on individuals who took out a loan of a given size. In this

case, higher income is indicative of better repayment. As an additional simplification,

suppose that income is split into only two categories: high and low. Lastly, to see the

relevant issues, s and x need to be associated. The two sensitive groups will be written as

s+ and s− merely to indicate which group is, in general, of higher income. As such, the

majority of the low income group is s− and the majority of the high income group is s+.

The response is the indicator of default Di. The data and estimates are provided in Table

10, in which there exist direct effects for both s and x. This is consistent with the observed

data DAGs in previous sections. As discussed at the end of the paper, the framework

presented in this paper is equally applicable to binary data and generalized linear models.

This case is simple enough that linear regression produces accurate conditional probability

estimates. Therefore, different fair estimates can be directly analyzed for fairness.

Five possible estimates within our framework are compared in Table 10: the full OLS model,

the restricted regression which excludes s, the formal equality of opportunity model in which

income is considered a legitimate variable, the substantive equality of opportunity model

in which income is considered a proxy or discriminatory variable, and the marginal model

5Variables are no longer in bold because they are not vectors.
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Table 10: Simplified Loan Repayment data.

Income (P(x)) Low (.6) High (.4)
Group (P(s|x)) s− (.75) s+ s− (.25) s+ Total

Default Yes 225 60 20 30 335
Default No 225 90 80 270 665

P̂(Di = 1|xi, si) DS RMSE

Full Model .5 .4 .2 .1 -.25 13.84
Exclude s .475 .475 .125 .125 -.17 13.91
Formal EO .455 .455 .155 .155 -.15 13.93
Sub. EO .39 .535 .09 .235 0.00 14.37
Marginal .35 .35 .35 .35 0.00 14.93

which estimates the marginal probability of default without any covariates. Estimates

are presented along with the “discrimination score” and the RMSE from estimating the

true default indicator. The discrimination score is merely the difference in the estimate

probability of default between the two groups: P̂(D = 1|s+) − P̂(D = 1|s−) Calders and

Verwer (2010). This, however, is a misnomer since it does not separate explainable from

discriminatory variation. It provides a useful perspective given its widespread use in the

literature.

Since income is the only covariate that can measure similarity, the colloquial notion of

fairness dictates that estimates should be constant for individuals with the same income.

This is easily accomplished by the legal prescription of excluding s. If the information is

unobserved, it cannot lead to differences in estimation. The formal equality of opportunity

model satisfies this as well. As seen in the standard decomposition in equation (5.1) the only

difference between the two estimates is the coefficient on x. Said differently, the term di in

equation (5.2) lies in the space spanned by x. Therefore its removal only changes estimates

for income groups. For reasons given in Section 5.1.1, the FEO estimates are considered

fair. Excluding s permits redlining because it increases the estimated disparity between

low- and high-income groups. This disproportionately effects those in s− as they constitute

the majority of the low income group. The FEO estimates result in some average differences

between groups, but this is acceptable if the association between x and s is benign as in our
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education example. This accurate measures the proportional differences desired by Banks

(2001) for fair treatment.

The SEO estimates are highly counter-intuitive: although s+ performs better in our data set

even after accounting for income, these “fair” estimates predict the opposite. Understand-

ing this requires accepting the world view implicit in the SEO estimates: average income

differences are the result of discrimination. Members of s− in the high income group have

a much higher income than average for s−. Similarly, members of s+ who are in the high

income group have a larger income than average for s+, but not by as much since s+ has a

higher average income than s−. The magnitude of these differences is given importance, not

the income level. Intuitively, it implies that high-income, s− individuals overcame a type

of hindrance and may be of higher quality than corresponding s+ individuals that received

a benefit. Therefore, the benefit the high-income, s+ group received due to being of high

income is smaller than the benefit that the high-income, s− group receives. The opposite is

seen in the low income category. Low income, s+ individuals have income much lower than

average s+ income, while low income, s− individuals have income lower than, but closer

to average s− income. Therefore, low income s+ individuals receive a larger detriment to

being low income than s− individuals. In the SEO world view, low income s+ individuals

are low income in spite of having received a benefit.

These effects balance the differences in income distributions, resulting in both groups having

the same average estimated default. This is seen in the discrimination score of 0. Without

this framework of x being discriminatory, the SEO estimates discriminate against s+. All

estimation methods previously considered in the literature produce estimates relevantly

similar to SEO in this regard. This was never acknowledged because a direct comparison of

the change in individual estimates was never provided. Furthermore, if not all s+ individuals

are given a benefit or not all s− individuals are given a detriment, then these models are

merely approximations of the fair correction. An ideal protected or sensitive covariate s is

exactly that which accounts for differences in the opportunity of being high merit. This is
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more in line with Rawl’s conception of equality of opportunity as pertaining chiefly to the

socioeconomic status into which people are born Rawls (2001). While important, this line

of inquiry is beyond the scope of this paper.

The SEO estimates show another important property: their RMSE is lower than that of

the marginal estimate of default while still minimizing the discrimination score. As such,

if a bank is required to minimize differences between groups in the interest of fairness, it

would rather use the SEO estimates than the marginal estimate. The difference between

the two estimates is that SEO still acknowledges that income in an informative predictor

and contains an income effect. Furthermore, formal equality of opportunity is not satisfied

in the marginal case because all merit information is ignored. See Arneson (2015) for a

more detailed discussion.

5.1.5. Total Model

As a final level of complexity, consider models with sensitive, legitimate, and proxy variables.

The data are assumed to have a joint distribution P(Ci, si,xo,i,xu,i,wi), from which n

observations are drawn. The relevant DAGs are given in Figure 17. A before, the observed

data and unrestricted full data contain no conditional independence relationships. The

fair data model captures the fairness constraint on s as well as the definition of the proxy

variables w. Again consider a simple linear model for clarity. Coefficients given the subscript

t and εt has mean 0.

Total Model: Ci = γt + s′iαt + x′o,iβt + w′iδt + εt (5.5)

Estimated Coefficients: γ̂t, α̂t, β̂t, and δ̂t

The now familiar decomposition into unique and shared components is more complex be-

cause “shared” components exist across multiple dimensions. Equation (5.6) separates each

term into its unique component and the component which is correlated with the other
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Figure 17: DAGs of Total Model

variables.

Ĉ = γ̂t + H[Xo,W]S︸ ︷︷ ︸
di

α̂t + (I−H[Xo,W])S︸ ︷︷ ︸
dt

α̂t

+ H[S,W]Xo︸ ︷︷ ︸
sd+

β̂t + (I−H[S,W])Xo︸ ︷︷ ︸
u

β̂t

+ H[Xo,S]W︸ ︷︷ ︸
sd−,sd+

δ̂t + (I−H[Xo,S])W︸ ︷︷ ︸
u

δ̂t

The sensitive features are again separated into disparate impact and disparate treatment

components. Similarly, the legitimate variables are separated into permissible statistical

discrimination and a unique component. The proxy variables, however, display an inter-

esting property. There is the usual unique component but the correlated component is

more complex. The term labels both sd+ and sd− indicates that this combines both legal

and illegal forms of statistical discrimination. The notation, H[Xo,S]W, indicates that the

shared component is the best linear estimate of W given both S and X. This is the original

problem of creating a fair estimate in the presence of sensitive and legitimate covariates.

The only difference is that W is the response instead of C.

Note that we assume the categories s, x, and w are given. This accounts for the distinction

between formal and substantive equality of opportunity, allowing the definition below to be

applicable in both scenarios.

Definition 13 (Fair Estimate: Total Model). General fair estimates are created with the

following multi-step procedure:
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1. Estimate the total model (5.5) to produce γ̂t, α̂t, β̂t, and δ̂t.

2. Create a fair estimate of W by

a. Estimate wi = γ + s′iα+ x′iβ + ε to produce γ̂, α̂ and β̂.

b. Set Ŵ = γ̂ + x′iβ̂.

3. Set Ĉ = γ̂t + Xoβ̂t + Ŵδ̂t + (I−H[Xo,S])Wδ̂t.

5.1.6. Novel Applications

Now that fair estimates have been provided, a simple comparison can be made to identify

the cost of disparate impact and governmental policies. The cost of fairness in these cases

can be quantified by considering different actors as making the decision. Suppose that a

privately owned, profit-maximizing bank is providing credit. As such, the best estimates

are those which most accurately predict the riskiness of a loan while operating satisfying

Title VII of the Civil Rights Act. Contrast this with a government-owned company that is

interested in maximizing social utility or welfare instead of profit. This bank can constrain

profit to achieve fairness goals. Conceptually, the cost of the government policy is the

difference in the expected profit between the estimation methods these two banks would

use.

The formal equality of opportunity models provide the minimally constrained fair estimates.

A private bank may argue in favor of this method even if some covariates are prejudicial,

because covariate generation is outside of the scope of the bank’s operation. For example,

discrimination in education is not within the power of the bank to change. That discussion,

however, is well beyond the scope of this paper. Therefore, the private bank’s estimates will

be from the FEO model. The government may want to use a partially or fully substantive

equality of opportunity model due to discrimination in the generation of some explanatory

variables. The state-owned bank’s estimates are from the corresponding SEO model. Using

these estimates of risk, a bank would provide different loans at different rates.

One could consider that loans are provided at rates determined by the state-owned estimates
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but whose cost to the bank is computed using the privately-owned estimates. The bank

expects this to result in lower profit given its estimates of risk. The difference in expected

profit between this loan scheme and the desired, profit-maximizing scheme is an estimate

of the cost of the government program. Said differently, it is the price that the government

should pay the bank for accomplishing the government’s goals. Examples of the different

estimates can be seen in our simplified data example in Table 10.

The cost of disparate impact can be estimated similarly. Instead of the reference being the

ideal private bank and the state-owned bank, the comparison is between the rates the bank

actually provided and what the ideal private bank would have provided given the same

data. Therefore, instead of comparing the SEO and FEO models, one would compare the

bank’s actual lending history to what would be predicted under the FEO risk estimates.

For example, suppose the bank followed the current minimal legal prescription of excluding

the sensitive information. The difference between the actual and ideal estimates are again

seen in our simplified data example in Table 10. The additional revenue the bank received

due to their discriminatory lending practices can be estimated as the difference in the two

estimation methods. Elaboration of these applications with real data is a subject of current

research.

5.2. Correcting Estimates

Suppose that we have estimates given by an unknown model with unknown inputs. The

model may use sensitive information to be intentionally or unintentionally discriminatory.

This is a challenging but necessary case to consider. Most models used by private companies

are proprietary. Society requires methods that can check if a model is fair merely by

observing its output. Therefore, we must be completely agnostic as to the construction

of these black-box estimates given as C†. It is perhaps surprising that fairness can be

easily accomplish by considering such estimates as another explanatory variable similar to
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a stacked regression:

Ci = γs + s′iαs + x′o,iβs + w′iδs + C†i λs + εs

Intuitively these black-box estimates are potentially predictive, but there is no guarantee

that they are fair. This identically matches the description of proxy variables considered

in Section 5.1.3. If we treat C†i as a proxy variable, its information can be used but not in

a way that makes distinctions between protected groups. This allows us to easily correct

black-box estimates.

A numeric example will solidify this idea and demonstrate the efficacy of our methods.

Our data contains rankings of wine quality and is taken from the UCI Machine Learning

Repository Lichman (2013). There are ratings for both red and white wines and a reasonable

request is that ranking be “fair” between the two groups. This data captures all of the

relevant issues that arise in FADM and was also considered in Calders et al. (2013). It

captures the similarity between fairness-aware data mining and controlling for batch effects

if data is aggregated from multiple sources.

Our response is the rating of wine quality measured between 0 and 10, the sensitive feature

is wine type (red or white), and there are 10 explanatory variables such as acidity, sugar,

and pH. Of the approximately 6,500 ratings, about 25% are for red wines. The distributions

are very similar, as seen in Figure 18.

Calders and Verwer (2010); Calders et al. (2013) claim that the measure of “unfairness” in

this case is given by the average rating difference between the two groups. This paper has

argued that understand a bias in ratings requires explainable differences to be taken into

account. This is evidence for treating the multiple regression coefficient as an estimate of

unfairness. We do not advocate doing so for reasons made clear shortly, but the difference

in measures is worth discussion. The two measures can disagree substantially, not only

in magnitude but even in sign. The average difference in wine rating is .24, with white
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Figure 18: Histogram of wine data rankings.

wine being preferred; however, a multiple regression analysis indicates that white wine is,

on average, rated .14 lower than red wines, ceteris paribus. The difference in sign is an

example of Simpson’s Paradox and is more generally related to the problem of suppression

Johnson et al. (2015c).

Estimating the degree of discrimination in this case is a far more challenging problem than

providing fair estimates. It is identical to asking for an estimate of the average treatment

effect, where the treatment is wine type. It requires a set of causal assumptions to be

made about the comparability of the two groups. In the language of causal inference, there

may be insufficient covariate overlap between the two groups given the required differences

between the two types of wine. This prevents accurate estimation of a fairness measure.

The complexities inherent in estimating discrimination are insufficiently acknowledged in

the FADM literature. Interested readers are directed toward Pearl (2009); Rosenbaum

(2010) for introductions to various perspectives on causal inference.

Our validation framework follows that of Calders et al. (2013). Models will be trained on

intentionally biased data and tested on the real data. Note that this is not exactly the

desired measure; ideally one should test on appropriately “fair” data. This presupposes an

answer to the problem at hand; however, by including bias in the training data the test
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data is at least more fair. Data is biased by randomly selecting 70% of the white wines

and increasing their rating by 1. This results in group mean differences (white-red) of .94

on the biased data and .24 on the raw data. Importantly the entirety of this bias is picked

up by the multiple regression coefficient on wine type (WHITE). This gives more evidence

to the massive difference in perspectives afforded by the multiple regression viewpoint.

The multiple regression coefficients on the biased data is .56WHITE whereas the multiple

regression coefficient on the raw data is -.14WHITE. All other coefficient estimates are

unchanged. Therefore our fair estimates are exactly the same if produced using the biased

or raw data. This is precisely the type of result necessary for fair algorithms; the multiple

regression model is exactly reversing the bias added to the data. Admittedly, this is trivial

since the bias is randomly attributed to 70% of white wines. That being said, this is

heretofore unrecognized in the literature and not acknowledged in Calders et al. (2013).

The hope in this validation scenario is that the fairness constraint will improve performance

on the test sample even when training on biased data. We compare our models with those of

Calders et al. (2013) and indicate them by “Calders”. They attempt to capture explainable

variability through the use of propensity score stratification. This method estimates the

probability that an observation is from a red or white wine. Observation are then binned

into 5 groups based on this propensity score. In each group, a full substantive equality

of opportunity model is fit where all explanatory variables are considered discriminatory.

Therefore, within each strata, there is no average difference between groups. There is a large

problem with this perspective since there is often enough information to predict the sensitive

attribute almost perfectly. This results in largely homogeneous strata and the method fails.

Calders et al. (2013) focus on a smaller problem with only two covariates in which this

issue does not arise. Furthermore merely using 5 bins does not provide sufficient covariate

overlap for the guarantees surrounding propensity score matching to hold. Other methods

such as those of Kamiran et al. (2013) only handle a single sensitive and single legitimate

covariate. Our estimates satisfy all of their fairness requirements in a more general and

flexible framework.
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Table 11 shows the results of using linear methods on this data. As a baseline measure,

we use ordinary least squares (OLS), which is merely the estimates from the full model.

This contains the disparate treatment and disparate impact effect. The formal equality of

opportunity model treats all non-sensitive explanatory variables as legitimate, while the sub-

stantive equality of opportunity model treats all non-sensitive covariates as proxy variables.

There is a spectrum of SEO models that consider different sets as fair or discriminatory.

We chose to consider the full SEO model so as to permit easy comparison to the Calders

estimates. Three performance measures are given: RMSE measured on the biased data

(in-sample), RMSE on the test sample (raw data), and the mean difference in estimates

between groups (DS).

Table 11: Regression Performance

OLS Formal EO Sub. EO Calders

RMSE-biased 0.84 0.85 0.93 0.86
RMSE-raw 0.95 0.92 0.91 0.92

DS 0.94 0.60 -0.00 0.79

The general direction of performance results are as expected: fairness constraints worsen

performance on the biased data but improve performance on the test data. Even using linear

regression models, we provide more accurate estimates of the test data while minimizing

the mean difference between groups. This significantly improves upon the results of the

Calders estimates. This is in spite of the fact that the Calders estimates require at least 6

times as many parameters. One set of parameters is used in the propensity score model to

perform stratification, and additional parameters are estimated in each of the 5 strata.

From a different perspective, the results in Table 11 may not be particularly impressive

in that wine ratings are not well estimated. This is to be expected, in part because wine

quality is far more complex than these 10 explanatory variables, but also because rating is

most likely not a linear function of the explanatory variables. Therefore, consider a more

complex, black-box estimate of rating that can account for these nonlinearities. A random

forest Breiman (2001) will be our canonical black-box as it an off-the-shelf method which
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performs well in a variety of scenarios but has largely unknown complexity. It is challenging

to consider how s should be used constructively in a random-forest algorithm while ensuring

fairness. The estimates can be easily corrected, though, as outlined above.

Table 12 contains the results of the random forest models. The formal equality of opportu-

nity model treats the random forest estimates as potentially discriminatory but the others

as legitimate, while the substantive quality of opportunity model considers all variables

as potentially discriminatory. These are again compared to the base-line random forest

estimates and the Calders estimates. The general trend is the same as before: fairness

constraints improve performance on the test sample but worsen performance on the biased

sample. Using a random forest significantly reduced RMSE while not worsening the fairness

measures. The corrected random forests estimates significantly outperform the Calders es-

timates along all measures. It does so even while exactly satisfying their desired constraint

of zero mean difference between groups.

Table 12: Corrected Random Forest Performance

RF Formal EO RF Sub. EO RF Calders

RMSE-biased 0.73 0.74 0.83 0.86
RMSE-raw 0.87 0.82 0.81 0.92

DS 0.93 0.62 -0.00 0.79
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CHAPTER 6 : DISCUSSION

This dissertation has discussed two frameworks for addressing inference during model selec-

tion and fairness-aware data mining. The different viewpoint afforded by these frameworks

provides simple, algorithms that perform very well. We close by discussing insights provided

by the algorithms and future projects in these domains.

6.1. Valid Stepwise Regression

Separation of the ranking and testing effects is important in its own right as it demonstrates

that the current research on post-selection inference ignores the testing effect. Furthermore,

the magnitude of the testing effect is often much larger than that of the ranking effect.

Revisiting sequential methods are designed to control these selection effects, producing

simple procedures that outperform the more complicated ones from the conditional inference

framework.

The sequential selection framework provides many practical benefits. The core improve-

ment is the ability to have dynamic algorithms that do not require a fixed set of hypotheses

to be specified in advance. This allows for revisiting and directed search procedures. This

flexibility also highlights the needs for new notions of false rejections. For example, identi-

fying the interaction X1X2 in our framework requires both marginal terms to be included

initially, even though neither is in the true model. The marginal terms are often considered

false rejections even though, in the model in which they are tested, they capture significant

signal. Progress on revising measures of false rejections to account for these considerations

has been made by (G’Sell et al., 2013).

Future projects in this domain are as follows:

• One straightforward extension to Chapter 3 is to explore the use of Revisiting Alpha-

Investing in generalized linear models. As previously discussed, type-I error control is

maintained in this domain, but similar proofs for the performance of the procedure and
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the implications of submodularity are unknown. This is partly due to submodularity

being closely tied to linear models theory, but this can be extended to generalized lin-

ear models via weighted least-squares. Even in linear models, however, assessing the

approximate submodularity of interaction spaces is an interesting and open problem.

• Further computational improvements can be achieved when approximating forward step-

wise by using “lazy evaluation,” which is an alternative algorithm to approximately sort

the p-values. Lazy evaluation begins with a sorted list of marginal p-values from which the

most significant feature is chosen. In order to select the correct second feature, forward

stepwise recomputes all stepwise p-values conditional on the previously selected feature.

Lazy evaluation merely recomputes the second smallest p-value. If, after recomputing,

it is still smaller than the third smallest p-value, the corresponding hypothesis test is

rejected. Else, the third smallest p-value is recomputed and compared to the fourth-

smallest. The process continues until the corrected p-value is smaller than all p-values

from the previous step and the corrected p-values in the current step. Under submodu-

larity, this process is exactly the same as forward stepwise. The performance and error

control of lazy evaluation under approximate submodularity are open questions.

• Instead of recomputing p-values after each feature is added to a model, one could only

recompute p-values after each testing pass of a revisiting procedure is complete. This may

result in a different set of features selected; however, rejected features fall into two sets

which are intuitively appealing. The first set contains those features which would have

been rejected in the revisiting procedures of Chapters 2 and 3. These features contain

unique signal not captured by the others. The second set of features are “redundant” in

that multiple features convey the same information. Loosely speaking, forward stepwise

only selects one from each set. While this does reduce the proportion of seemingly false

rejections, when correlation is high as it is in real data, it can be difficult to separate true

features from the false features with which they are highly correlated. Including groups

of features in this way is similar to a discrete version of the group lasso (Yuan and Lin,

2006).
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• The Benjamini-Hochberg step-up procedures are “forward looking” in that they do not

provide an accurate stopping time like alpha-investing rules. The power of alpha-investing

can be increased if it is allowed to “peek” at the results of subsequent tests. The challenge

in doing so is that the martingale properties of mFDR need to be preserved. By leveraging

tests of intersection hypotheses and the closure principle we conjecture that some future

information can be used. For example, instead of merely testing an individual hypothesis

H1, consider a test of the joint hypothesis H[4] = H1 ∩ . . .∩H4. If H1 fails to be rejected

but H[4] is rejected, it indicates that there is a false hypotheses in subsequent tests.

Intuitively, if alpha-investing could take out a “loan” of error probability, it may be able

to “repay” the loan when rejecting the future tests. Such behavior may preserve the

martingale structure over sets of tests.

6.2. Submodularity

Submodularity plays an important role in statistics because it characterizes the difficulty

of the search problem of feature selection. Assumptions used to prove the success of the

Lasso, such as the restricted eigenvalue and restricted isometry properties, bound minimum

sparse eigenvalues and hence are stronger assumptions than submodularity. Similarly, SIS

requires true model features to have a bounded discrepancy between their joint coefficient

in the true model and their marginal coefficient from a simple regression. Bounding this

discrepancy is stronger than approximate submodularity as all true features cannot become

vastly more significant in the presence of others. Similarly, worst case data examples can

be crafted by intentionally breaking submodularity. This can be seen in Berk et al. (2013)

and Miller (2002). Due to the importance of submodularity in discrete optimization, it

provides a more theoretically robust assumption than those more commonly considered in

statistics. Furthermore, it characterizes a different dimension of difficulty than the signal

to noise ratio. As such, it is an important statistic to report in simulated data analyses.

Future projects in this domain are as follows:
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• If data is submodular then the forward stepwise table will have non-decreasing p-values;

however, it is not known the extent to which the converse holds. It clearly does not

need to be the case that sorted p-values implies that there are no conditional suppressor

variables in the entire data set. It can easily be the case that suppression occurs in

the “insignificant” features which are not selected by forward stepwise for many steps;

however, many feature selection assumptions only need to hold on the restricted set

of relevant variables. Therefore, we conjecture that sorted stepwise p-values have an

important connection to the submodularity of the highly significant variables.

• The graphs and discussion of Chapter 4 indicate that regardless of the correlation between

X1 and X2, there exists a response Y such that the data is submodular. We conjecture

that this is a general property for any correlation matrix with fewer than n features. This

would force researchers to focus more on the nature of their true response function when

using simulated data.

6.3. Fairness-Aware Data Mining

Our models ensure black-box estimates are fair and can be used to quantify regulation and

disparate impact. All of this is done through providing a clear statistical theory of fairness

and explainable variability. While we discuss the classical method of multiple regression,

its power and interpretability were heretofore not well-understood in fairness-aware data

mining. There are two key components that are required to generalize this approach to other

methods. First, we identified the direct effect of xo by estimating the regression model using

all available information. This is required for the coefficient estimates in both the formal

and substantive equality of opportunity models. Second, variables were residualized to

remove the direct effect of s from w. This was necessary for the substantive equality of

opportunity models and to correct black-box estimates. Both generalized linear models and

generalized additive models can perform these tasks. Therefore, the theory provided here

transfers to those domains. A more thorough investigation of these settings is currently

being conducted.
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Future projects in this domain are as follows:

• More nuanced relationships can be identified by increasing the complexity of the similarity

metric between individuals as well as the functional form of the response. For example,

decision trees can be built to identify group of similar individuals.

• There are many open questions for FADM even in the linear setting. For example, how

should one conduct fair inference? If estimates produced by a proprietary model are close

but not identical to our methods, can we conduct a statistical test for similarity? This

is crucially important in legal cases if fault must be demonstrated and is closely related

to inference under model-misspecification Buja et al. (2014).

• Another major challenge is to relax the assumption of known covariate groups. A method

to interpolate the categories may remove some of the inherent difficulties in the classifi-

cation.
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