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ABSTRACT 

 

SEMICONDUCTOR NANOWIRES:  

OPTICAL PROPERTIES AND ALL-OPTICAL SWITCHING 

Brian Piccione 

Ritesh Agarwal 

The optical properties of semiconductor nanowires are both important from a 

fundamental materials physics standpoint and necessary to understand in engineering 

applications: nanowire photovoltaic devices, sensors, and lasers, among others, could all 

benefit. Unfortunately, these optical properties are not easy to ascertain.  Transmission 

times are short, in-coupling of white probe light is difficult, and the angle-resolved 

measurements typically used to determine material dispersion relations in bulk materials 

are hindered by diffraction effects at subwavelength nanowire end facets. 

Here, we present a series of experimental techniques and theoretical models developed to 

study of the optical properties of active nanowire waveguides.  Beginning with a 

technique for determining the waveguide dispersion of individual ZnSe nanowires, we 

demonstrate enhanced properties with respect to bulk material.  After investigating 

propagation loss in individual CdS nanowires, the theoretical model was then refined to 

quantify the strength of light-matter coupling, where size-dependence was observed.  The 

knowledge gained from these studies was put to use in the first demonstration of all-
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optical switching in individual semiconductor nanowires.  The switch concept was then 

extended into an all-optical nanowire NAND gate.  These developments highlight the 

importance of semiconductor nanowires as both model materials systems and novel 

devices. 
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MAIN TEXT 

Chapter 1. Introduction 

Portions in preparation for submission to Philosophical Magazine. 

1.1. Semiconductor nanowires 

 Semiconductor nanowires, one-dimensional semiconductor structures with 

nanometer-scale dimensions, have received significant attention in the last decade.1  First 

synthesized by Wagner and Ellis in 1964,2 the novel nanostructures have since been 

proposed as active components, and interconnects, in a multitude of nanoscale devices: 

biosensors,3, 4 gas sensors,5-7 nanogenerators,8, 9 light-emitting diodes,10, 11 electrically-

driven lasers,12 solar cells,13 and complete programmable circuits14 have all been 

demonstrated.  Benefits gained from high-surface-to-volume ratios, as well as electrical 

or optical confinement in the radial direction, are easily accessible via connections to 

nanowire long axes, making nanowires the ideal morphology for many of these 

applications.  While nanowire synthesis cannot yet produce large-scale integrated 

systems as complex as those possible via “top-down” fabrication methods, where bulk 

material is reduced in size to desired dimensions, the “bottom-up” methods utilized in 

nanowire synthesis, which rely on self-assembly of molecular components by principles 

of molecular recognition, typically result in high yields with consistent physical 

properties and comparatively superior surface conditions.15   

 Among the most common synthesis methods, solution growth offers the potential 

for high-volume synthesis at near-ambient environmental conditions,16 but low length-to-

diameter aspect ratios and poor control over vertical alignment when deposited on 
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substrates currently limit its utility in integrated device applications.  Electrochemical 

deposition in combination with nanoporous templates (e.g., anodic aluminum oxide) can 

produce much higher aspect ratios at comparably inexpensive environmental 

conditions;17 however, the crystals which result are typically either amorphous or 

polycrystalline in nature, somewhat limiting their potential in electronic applications and 

severely hindering their utility in optical applications.  When semiconductor nanowires 

possessing both high aspect ratios and crystalline quality are desired, the most reliable 

method is currently the same as that first used by Wagner and Ellis, known as the vapor-

liquid-solid (VLS) process. 

 As shown in Figure 1.1, the VLS mechanism can be described as a two-step 

proccess.18  After small metal clusters are deposited on the desired growth substrate, the 

assembly is placed in a reaction tube and heated until the clusters melt: frequently 

achieved by the metal forming an alloy with the substrate, with a reduced melting point 

compared to the pure metal.  A gas containing the semiconductor growth material is then 

introduced to the reaction tube and begins to saturate the liquid alloy.  When this alloy 

reaches the point of supersaturation, the semiconductor component is expelled at the 

liquid/substrate interface, resulting in vertical growth of the desired semiconductor 

nanowire crystal.  Nanowire composition, morphology, and orientation can all be 

controlled through variations on the basic technique: superlattice structures can be 

produced by alternating the vapor phase reactants,19 core/shell structures can be produced 

by altering vapor phase pressure to induce radial growth,20 and substrate lattice matching 

can be used for epitaxial growth.21  In addition to this, the size of the metal particles as 



3 

 

deposited determines final nanowire diameters, and controlled placement22 can be used to 

create ordered arrays. 

 

Figure 1.1: Schematic of the vapor-liquid-solid (VLS) growth mechanism. a) A substrate 
coated with metal clusters is heated until the metal melts, and gas containing the desired 

nanowire material is introduced to the growth chamber. b) Upon supersaturation, the 
droplet expels material at the substrate surface, resulting in vertical nanowire growth.18 

 

 Control over physical properties of nanowires during growth subsequently allows 

for control over properties: among many others, electrical,23 magnetic,24 thermal,25 and 

mechanical26 properties are all altered in the nanowire form.  Most relevant to this 

dissertation, however, are the optical properties of nanowires.  Section 1.2 discusses these 

properties in more detail, while Section 1.3 details a novel exploitation of the enhanced 

optical properties: all-optical switching in individual semiconductor nanowires. 
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1.2. Optical properties of optically active semiconductor nanowires 

 In regards to optical properties, self-assembled, single-crystalline nanowires 

occupy an important niche among nanostructure morphologies.  Due to a high refractive 

index mismatch with their surroundings, semiconductor nanowires with diameters in the 

subwavelength regime can strongly confine optical waves in the radial direction while 

guiding light in the axial direction,27, 28 a unique combination which makes them ideally 

suited for the development of many nanophotonic systems including modulators,29 

switches,30 probes,31 and sensors.32  Achieving the full potential of nanowire systems, 

however, requires a fundamental understanding of how properties vary as a function of 

size, and the size dependence of nanowire optical phenomena was, until recently, poorly 

covered in the literature.  While photoluminescence,33 optically-pumped lasing,34, 35 

waveguiding,36 and photoconductivity,37 for example, have been extensively documented 

in individual nanowires, explicit studies of these phenomena and their underlying 

physical causes as a function of size have only recently reached sufficient volume for 

critical meta-analysis.  Massively parallel synthesis methods38, 39 resulting in large 

quantities of nanowires per batch allow for a higher probability of obtaining a single 

suitable crystal demonstrating a novel phenomenon, but systematic study as a function of 

size has significantly more stringent requirements.  In addition to controlled synthesis of 

consistently high-quality, single-crystalline nanostructures of narrow size distribution, 

optical studies of individual nanowires have an additional barrier towards actuation in 

that their diameters are typically smaller than the wavelengths of light utilized in far-field 

optical analysis.   
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The resulting diffraction limitations in this one dimension certainly do not 

preclude study of all optical properties, and indeed, the earliest studies of optical 

properties (e.g. effects of quantum confinement40 and non-radiative surface 

recombination41 on luminescence) were not hindered by this issue.  However, a 

comprehensive, quantitative analysis of light-matter interaction within any condensed 

matter system requires knowledge of the full energy-wavevector dispersion relation, and 

it measurement of this which is made difficult by the nanowire geometry.  Direct 

measurements are commonly performed by angle-resolved transmission or emission 

experiments42, 43 and time-resolved transmission experiments can measure its derivative, 

the group velocity.44  For nanowires these measurements are hindered by the scrambling 

effect of the subwavelength apertures at the wire ends due to diffraction,45 the short 

transmission times involved46 and the difficulty of in-coupling of probe light with a large 

energy and wavevector distribution.47 

The complete energy-wavevector dispersion relation is ultimately defined by both 

the nanowire geometry and the materials system, and in the case of active optical 

materials, resonant coupling between the light field and the material considerably 

complicates waveguide behavior in comparison with passive waveguides.  It is known 

that due to the substantially larger oscillator strength of electron-hole pairs (excitons) 

than that of free electron and hole (band to band) recombination, excitons can strongly 

couple to the light field resulting in the formation of composite quasiparticles with both 

electronic and photonic character known as exciton-polaritons.48  Energy oscillates back 

and forth between the excitonic and photonic states with what is known as the Rabi 

frequency, which is expressed by the formation of anti-crossing upper and lower 
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polariton branches (UPB and LPB) in the material dispersion relation, and drastic 

changes to the dielectric function.  It is through this polaritonic coupling mechanism, as 

well as effects such as giant exciton oscillator strength and superradiance effects,49, 50 that 

finite crystal sizes comparable to the optical wavelengths can result in material dispersion 

that is significantly different from that of macroscopic crystals.51 

Among materials which exhibit polaritonic effects, popular choices for active 

nanowire waveguides include ZnO, ZnSe, CdS, GaN, and SnO2, all semiconductors 

exhibiting a relatively high refractive index, a direct electronic bandgap, and the 

formation of excitons as dictated by their relatively large exciton binding energies.52   

Nanowires of two different semiconducting materials were synthesized for the purposes 

of this dissertation.  The material used in Chapter 3 is zinc selenide (ZnSe), a direct 

bandgap II-VI semiconductor which has been employed in both light-emitting53, 54 and 

detecting55 configurations, as well as transmissive optical components due to its generally 

low absorption coefficient in the infrared.56  The following chapters, however, focus on 

cadmium sulfide (CdS), another direct bandgap II-VI semiconductor which has been 

extensively studied in bulk57-60 where it has been established that in its wurtzite crystal 

structure, the crystal field and spin-orbit coupling61-63 cause the valence band to split into 

three levels, giving rise to A, B, and C excitons.  Due to a high exciton binding energy of 

27 meV64 and high oscillator strengths of 1.84 and 1.35 meV for the A and B excitons, 

respectively,65, 66 these excitons can couple strongly to the optical field, significantly 

altering the dielectric function and waveguide dispersion of the material.67  Signatures of 

exciton-polaritons such as strong dispersion,68 reduced group velocity69 and increased 

band edge absorption70 have been found in numerous studies on bulk CdS crystals. 
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Though the groundwork for obtaining complete dispersion relations from 

individual nanowires was first laid by van Vugt et al.71 using ZnO,72 and the resulting 

experimental waveguide dispersion relation was also found to be substantially modified 

from bulk material, the size-dependence data and analysis tools necessary to draw 

quantitative conclusions regarding the strength of light-matter enhancement in the 

nanowire morphology were not yet available before the work presented in this 

dissertation.  Following a brief overview of our experimental setup in Chapter 2, Chapter 

3 presents the first use of the analytical tools developed by van Vugt to obtain size-

dependent data from ZnSe nanowires.  Chapter 4, details a method for obtaining 

propagation losses in individual nanowires, Chapter 5 discusses a surface passivation 

method which led to improved optical properties, and Chapter 6 details refinements to the 

theoretical waveguide model which allows for quantification of light-matter coupling 

strength enhancement.  In Chapter 7, all previous developments are combined for a 

quantitative size-dependent study of light-matter coupling in CdS nanowires, 

unambiguously showing the transition from bulk- to cavity-polaritons for the first time. 

 

1.3. All-optical switching in semiconductor nanowires 

The condition in which two different output intensities are possible for a given 

optical input intensity, traditionally defined as optical bistability,73, 74 was first described 

theoretically and observed experimentally using an absorptive optical nonlinearity by 

Szoke et al in 1969.75  Though the condition can manifest in vapors76 and soft matter,77 

optical bistability in semiconductors78 in particular was the subject of intense interest in 

the 1980s and early 1990s for its potential for use in digital optical computers based upon 
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solid-state optically bistable elements.79  Though digital optical computers offer the 

potential advantage of very short switching times and massive parallelism in data 

processing,80 interest in their development gradually faded due in part to the elements’ 

power disadvantages when compared with their all-electronic counterparts.81  The power 

requirements of these early devices were not symptomatic of optical bistability itself, 

rather, they were a consequence of the necessity for strong optical nonlinearity, which 

itself benefits from high optical intensities.  When combined with suitable feedback, this 

nonlinearity will give rise to a static hysteresis loop in the relation between incident and 

transmitted (or reflected) light intensities characteristic of optically bistable systems. 

More recently, computing applications of photonics have regained relevance.  

Imminent bandwidth limitations of electronic integrated circuits82 is stimulating intense 

activity in the area of nanophotonics for the development of on-chip optical components, 

and solutions incorporating direct bandgap semiconductors are important to this end.83 

The exciting prospects of optical processing84 and interconnects85 require a large toolbox 

of high-performance components that includes emitters, detectors, modulators, 

waveguides and switches. Semiconductor nanowires with superior surface properties86 

and strong optical confinement in comparison to components fabricated via top-down 

methods can serve as both candidates for nanowire-based optical networks,87 as well as 

model systems for furthering the understanding of optical processes in confined 

structures.88 

As mentioned earlier, high power requirements are not an inherent flaw of 

optically bistable systems, rather, the high optical intensities necessary to bring about 

nonlinear optical effects themselves have high power requirements in bulk materials.  
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Additionally, achieving these high intensities in bulk materials requires tight focusing, 

which leads to a shortened light-matter interaction length due to the reduced confocal 

parameter.89  Attempts to circumvent these issues thus far have resulted in various 

integrated solutions, including vertical-cavity optical amplifiers90 and ring resonators,91 

all of which show promise but can exhibit an unnecessarily large footprint.  Various 

hybrid electro-optic switches92-94 and even electro-optic nanowire modulators95 have been 

realized, but these devices cannot fully exploit the speed advantages offered by all-optical 

counterparts and would be incompatible with an all-optical circuit architecture. 

Within the realm of all-optical devices, the nanowire waveguide geometry is an 

ideal structure for minimizing the input power needed to induce bistability since it both 

maximizes light confinement in the radial direction and provides an effective light-matter 

interaction length as long as the nanowire itself.  Though dielectric contrast between the 

waveguide core (refractive index ncore) and its cladding (refractive index nclad) ceases to 

tightly confine light beneath a certain critical radius rc where evanescent fields begin to 

dominate, as shown in Figure 1.1, even the modest contrast between a glass rod 

(ncore=1.42) and air (nclad=1) provides maximal fundamental waveguide mode light 

intensity for radii well below a micron.  The empirical relationship for rc (Equation 1.1)96, 

97 makes explicit that for a given vacuum wavelength λ the critical radius is inversely 

proportional to the quantity ncore-nclad: simply increasing the core refractive index to 

ncore=2.2 while maintaining air cladding yields rc well below 100 nm for blue light. 
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Figure 1.2: Field intensity distribution for the fundamental waveguide mode inside 
glass-rod-in-air photonic nanowires for various sub-micron core radii and a wavelength 
of 800 nm.  The field confinement increases as the core is reduced until a point where 

the evanescent field dominates.  This critical radius at which maximal intensity is 
reached decreases as dielectric contrast between the core and its cladding is increased.89 
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Upon reaching sufficient intensity, nonlinear interactions will begin to occur 

between the light and a nonlinear waveguide medium, and in the case of a 

semiconducting nanowire core, these interactions can occur through many different 

physical mechanisms.  Though the specific mechanism is currently thought to lie outside 

of those traditionally associated with the term “optical bistability,” Chapter 8 details, for 

the first time, optically driven active switching in individual CdS nanowire cavities with 

sub-wavelength dimensions via stimulated polariton scattering mechanism which relies 

on the intense fields maintained in the highly confining structures.  In addition to this, we 

demonstrate a functional nanowire NAND gate built from multiple switches.  The unique 

device designs utilize very strong light-matter coupling in nanowires and therefore result 

in total footprints a fraction that of comparable silicon-based dielectric contrast98, 99 and 
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photonic crystal100 devices, demonstrating a practical application of the physics explored 

elsewhere in this dissertation. 
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Chapter 2. Nanowire Growth and Experimental Methods 

 Though the particular details of specific experimental conditions are discussed in 

each chapter, an overview is provided here for the sake of providing a unified orientation.  

All nanowires discussed in this dissertation were synthesized via the VLS mechanism 

with chemical vapor deposition (CVD) used to provide the vapor.  In this process, a Si 

wafer is cleaned and covered by a 5 nm thick metal layer using plasma sputter deposition, 

placed in the center of a tube furnace and annealed, during which time surface forces 

cause the layer to separate into droplets with a diameter distribution roughly centered 

around 150 nm.  Early attempts at colloidal gold seeds generally did not produce 

satisfactory results, though this speaks more towards the nuances in our particular furnace 

than anything else.  After cooling, solid, elemental precursors were introduced upstream 

of the substrate, the tube evacuated, and argon carrier gas introduced to encourage 

transfer.†  The tube was then rapidly heated and held at an elevated temperature during 

growth, during which time precursors begin to collect in the metallic catalyst droplets.  

As discussed in Chapter 1, once the liquid droplets saturate, solid nanowires nucleate at 

the droplet/substrate interface and continue to grow as long as precursor is provided.  At 

the end of the growth period, the furnace is cooled via forced airflow. 

 In order to illustrate typical growth results, CdS nanowires as-grown on a silicon 

substrate are shown in Figure 2.1a.  Nanowires were consistently shown to be single-

crystalline when transferred onto carbon lace sample grids via dry transfer and 

                                                           
† Organometallic precursors were tested, and did generally produce nanowires of appropriate size and 
morphology, but significant defect emission under photoluminescence showed that nanowires produced via 
this method were generally inferior to those produced using elemental precursors.  This result is not 
unexpected, as incomplete dissociation of the organic group tied to organometallic precursors is known to 
occasionally lead to undesirable carbon incorporation in deposited thin films.1 
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crystallographic orientation of individual nanowires with respect to growth direction was 

determined using an environmental SEM (FEI XL30) equipped with an electron-

backscattered diffraction (EBSD) detector (see Chapter 7).  Despite small interaction 

volumes, sufficient signal was obtained from the nanowires to both re-confirm the 

wurtzite CdS structure and determine growth orientation.  Of the samples analyzed, most 

were found to grow along the crystallographic a-axis, though even wires from the same 

growth substrate were not consistent: some were found to grow along the crystallographic 

c-axis, others along higher-order axes, with no outwardly discernable difference aside 

from the diffraction data. 

 As shown in Figure 2.2, the SiO2 substrates were typically glued with silver paint 

to the cold finger of a free flowing liquid nitrogen cryostat fitted with a fused silica 

window (Janis), so that optical measurements in the 4.2 K-298 K temperature range could 

be made.  The spatially resolved photoluminescence excitation and detection setup 

consisted of a homebuilt microscope using a 60X 0.7 N.A. objective (Nikon) and an f = 

750 mm tube lens, giving a total optical magnification of 267X.  Laser light from an 

argon ion laser (Coherent MotoFred) at a wavelength of 457.9 nm was spatially filtered 

and expanded to a beam of 5 mm waist and was subsequently focused on the sample by 

the objective to a spot of ~800 nm waist. A frequency doubled titanium-sapphire 

(Ti:Sapph) laser (Coherent Chameleon Ultra II, pulse width 140 fs, repetition rate 80 

MHz) was also focused on the sample for the experiments described in Chapter 8.  Using 

piezoelectric translator stages (Physik Instrumente) holding the first lens in a telescope 

setup, both laser spots could be moved on the sample with an accuracy of ~50 nm. The 

resulting PL from the sample was collected by the same objective and was spectrally split 
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off by a dichroic mirror and long wavelength pass filter combination giving a detection 

wavelength range of 480-700 nm. A spatial resolution in the detection of ~500 nm could 

be obtained by placing an optical fiber connected to the entrance slit of 0.3 M 

spectrometer fitted with 150 and 600 g/m (Acton) gratings, at the projected sample plane 

on piezoelectric translator stages. A cooled CCD camera (Pixis 2K, Princeton 

Instruments) was used for detection of the dispersed light, giving a maximum wavelength 

resolution of ~0.1 nm (500 µeV). 

 

Figure 2.2: Micro-photoluminescence setup used in most optical measurements.  Argon 
ion and titanium:sapphire laser positions on the sample surface were computer controlled 
with lenses mounted on piezoelectric stages.  An optical fiber mounted on a third set of 

piezoelectric stages in the image plane was used to send photoluminescence from specific 
portions of the image output to a spectrometer.  Samples were typically mounted on a 

cryostat and viewed under a 60X 0.7 N.A. objective. 

 

 Following optical measurements, data was converted, parsed, and analyzed using 

a number of commercial software packages.  Mathematica was employed for a number of 
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programming tasks, Origin was generally used for plotting data, and COMSOL 

Multiphysics was used to model the nanowire/substrate system.  



22 

 

References 
 

1. Kuech, T.F. & Veuhoff, E. Mechanism of carbon incorporation in MOCVD 
GaAs. Journal of Crystal Growth 68, 148-156 (1984). 
 

 



23 

 

Chapter 3. Size-Dependent Waveguide Dispersion in Nanowire Optical Cavities 

Reproduced in part with permission from Nano Letters, Volume 9, Issue 4, Pages 1684-
1688. Copyright 2009 American Chemical Society. 

Central to the appeal of utilizing semiconductor nanowires for nanophotonic 

applications is their ability to confine and guide light at the nanoscale, enabling 

functionalities such as optical transport,1, 2 resonators,3 lasers,4 and sensors.5  By virtue of 

the high refractive index mismatch with their surroundings, semiconductor nanowires of 

subwavelength width strongly confine optical waves and are ideally suited for the 

development of integrated nanophotonic systems.6, 7  The various confined optical modes 

propagating in dielectric nanowire waveguides are characterized by their energy-

wavevector dispersion, which theory predicts to be strongly size dependent at the 

nanoscale.8  Knowledge of the size dependence of the waveguide mode dispersion is 

crucial for understanding the fundamental size effects of strong optical confinement and 

the optimal design of nanowire-based photonic devices where a specific dispersion and/or 

group velocity dispersion may be required.  For instance, in optical communication high 

speed transmission with a low group velocity dispersion is desirable in order to preserve 

signal pulse shapes9 whereas slowed light would, due to increased interaction times and 

increased electromagnetic densities, be advantageous in optical nonlinearity based 

applications10 or optical sensing.11 

While the theoretical mode properties of dielectric (nano)fiber waveguides have 

been elaborately treated,6, 8, 12, 13 no experimental data on the size dependence of the 

waveguide dispersion of subwavelength dielectric nanowires has been reported.  Direct 

measurements of the energy-wavevector dispersion are commonly performed by angle-
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resolved transmission or emission experiments14, 15 and time-resolved transmission 

experiments can measure its derivative, the group velocity.16  However, for nanowires 

these measurements are hindered by the scrambling effect of the subwavelength apertures 

at the wire ends due to diffraction,17 the short transmission times involved10 and the 

difficulty of in-coupling of the probe light with a large energy and wavevector 

distribution.18 

In this chapter we report on the experimentally determined strong size 

dependence of optical dispersion and associated group velocities in subwavelength width 

ZnSe nanowire waveguide cavities, using Fabry-Pérot resonator modes as probes over a 

wide energy range. Furthermore, we observed subwavelength (λ/9) dispersionless 

waveguiding and significant slowing of the propagating light by 90% (c/8). These results, 

in addition to providing insights into nanoscale optical transport, will facilitate the 

rational design of nanophotonic devices with dispersion and group velocity tailored 

towards specific functions including optical computation,19 sensing11 and 

communication.9  

 

3.1. Experimental Procedures 

ZnSe nanowires were synthesized in a quartz tube furnace using evaporation of 

elemental Zn and Se powders.  4 mg of Se powder was placed in a quartz boat at 12.9 cm 

upstream (referenced to the middle of the tube), 5 mg of Zn powder was placed in a 

quartz boat at 9.4 cm upstream and Si substrates covered by a 5 nm thick Au/Pd layer 

using plasma sputter deposition were placed 16.4 cm downstream.  The tube was 

evacuated to 20 mTorr and argon carrier gas was introduced at a flow of 20 SCCM to 
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reach a stable pressure of 50 Torr.  The tube was rapidly heated to 1000 °C and kept there 

for 60 minutes after which the furnace was cooled by a forced airflow.  After synthesis, 

the nanowires were transferred to Si substrates covered with a 300 nm thermal oxide by 

dry transfer.  The measurement substrates were lithographically patterned to contain 

markers so that individual wires could be characterized by both electron and optical 

microscopy (Figure 3.1a).  Optical experiments were carried out under the 

photoluminescence setup shown in Figure 2.2, using a beam expander/spatial filter to 

enlarge the Ar+ laser excitation spot to around 1 mm, giving an average excitation power 

density of 4 W/cm2.  Detail of the experimental geometry is shown in Figure 3.1b. 

Photoluminescence from the individual wires was spatially and spectrally resolved using 

the methods discussed in Chapter 2. After optical measurements, the lengths (+/-20 nm) 

and widths (+/-4 nm) of the nanowires were determined by Scanning Electron 

Microscopy (FEI Strata DB235 FIB) with the widest part of the wire taken as the width 

(diameter) i.e. ignoring any faceting. 

A photoluminescence image of a nanowire (Figure 3.1c) shows, in addition to 

emission from the nanowire body, pronounced emission from the end facets. Further 

investigation of the nature of the body and end emission by spatially resolving the spectra 

shows that the emission from the nanowire body (Figure 3.1d, black trace) consists of a 

broad peak centered at 2.15 eV in addition to minor band-edge emission centered at 2.65 

eV, characteristic of ZnSe defect emission caused by interstitial Zn ions and exciton 

recombination respectively.20  The emission spectra obtained from the nanowire ends 

however show a pronounced modulation over a wide spectral range (Figure 3.1d, red and 

blue traces), with the modulation period inversely proportional to nanowire length 
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(Figure 3.1d, right inset) demonstrating that the nanowire functions as an optical Fabry-

Pérot resonator along its length.   

 

 

Figure 3.1: a) Scanning electron microscopy image of a ZnSe nanowire dispersed onto a 
300 nm thick SiO2 covered Si wafer. Scale bar, 2 µm.  b) experimental geometry 

whereby the nanowire is uniformly excited perpendicular to its long axis.  c) real color 
optical image of the emission of a ZnSe nanowire under uniform laser illumination. Scale 

bar, 2 µm.  d) Typical emission spectra collected at the middle part of the nanowire 
(lower trace, black) and from the end of a 7.77 µm short nanowire (middle trace, red) and 

at the end of a 44.82 µm long wire (upper trace, blue) shows Fabry-Pérot modes of the 
nanowire resonator.  A magnification of the upper trace is shown in the left inset. (Right 
inset) mode spacing at 2.1 eV for nanowires of comparable widths as a function of their 

reciprocal length, fitted by a least squares linear fit. 

 

As introduced in Section 1.3, the internally generated light is confined due to the 

large refractive index mismatch between the nanowire and its surroundings and is 

waveguided to the ends where it is partially reflected.  If the reflection at the ends of the 
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nanowire is sufficiently high and the losses along the length of the wire are sufficiently 

low, standing optical waves can develop, giving rise to interference peaks in the spectrum 

of the leaked light at the nanowire ends.  In wavevector space these interference peaks are 

equally spaced at integral multiples of π/Lz (Lz, wire length).21  Thus, by plotting the peak 

positions in the energy space versus incremental wavevector multiples of π/Lz, the shape 

of the energy-wavevector dispersion can be determined.  Since our measurements are 

obtained in the far-field, the absolute values of the parallel wavevectors cannot be 

determined.  However, by comparison with theoretical calculations based on the 

numerical solutions of the Maxwell’s equations for the measured nanowire, precise 

assignment of the absolute parallel wavevectors and the waveguided mode-type (e.g., 

hybrid-electric, transverse-electric) can be made, which also helps to identify novel 

nanowire dispersion features owing to their small diameters. 

 

3.2. Numerical calculations 

In order to calculate the allowed photonic modes in our nanowires, we simplified 

the wire geometry to a cylindrical one with a homogeneous refractive index profile inside 

the ZnSe core and an air cladding so that analytical expressions can be used.  Since the 

observed interference phenomena are due to light propagating along the length of the 

wires, in the z-direction (confined by the surface in x and y) we calculated the mode 

dispersion in this direction.  The propagation constant β of confined waveguide modes of 

a step index profile dielectric cylinder waveguide can be calculated using the following 

transcendental exact eigenvalue equations for the transverse electric TEνm, transverse 
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magnetic TMνm and hybrid EHνm HEνm modes, where the subscript ν denotes the order 

and the subscript m denotes the mth root: 
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and J the Bessel function of the first kind, K the modified Bessel function of the second 

kind, r the cylinder radius, k the free space wavevector, λ the free space wavelength nco 

the core refractive index and ncl the cladding refractive index.  These equations were 

made specific for the ZnSe material by the inclusion of the known dispersion of the 

refractive index of ZnSe.  The calculated propagation constant β can in general be 

complex; therefore in this chapter kz was used to denote the real solutions of the 

eigenvalue equations.  The cutoffs of the TE01 modes (Figure 3.2c inset, solid lines) were 
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obtained by setting the waveguide parameter V (optical frequency normalized to the 

waveguide radius) equal to 2.40512.  The group velocity (∂ω/∂kz) was obtained by 

numerically differentiating the obtained mode dispersions.  Since the obtained 

experimental data points consist of relative kz values, typically an offset amount 

consisting of an integer number of (π/Lz) was added to the relative kz values in order to 

obtain the absolute mode wavevectors. 

 

3.3. Discussion 

In order to examine the influence of the nanowire width on the mode dispersion, 

emission spectra were taken from the ends of nanowires with varying width as 

determined by SEM (Figure 3.2a).  Figure 3.2b shows the spectra of these wires with 

radii of 110 nm, 100 nm, 90 and 80 nm.  Aside from the different interference peak 

spacings caused by the different wire lengths, the spectra show a decrease in the 

modulation intensity towards lower energy, eventually leading to smooth and 

unmodulated spectra.  This low energy cutoff, as is indicated by arrows, shifts to higher 

energy with a decrease of the nanowire width.  A plot of the measured interference peaks 

as a function of incremental wavevector steps for the four different nanowires of different 

diameters is shown in Figure 3.2c.  The solid lines represent the solutions of the 

numerically solved eigenvalue equation of an air-clad dielectric cylinder waveguide8 with 

the measured nanowire radius and the energy-dependent refractive index as determined 

from a bulk ZnSe crystal,22 as input parameters.  The nanowire width dependence of the 

measured mode dispersion and their cutoffs corresponds well with the lowest order mode 

possessing a cutoff, the transverse electric TE01 mode. In the inset of Figure 3.2c the 
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measured TE01 mode cutoffs as a function of nanowire width, and hence the boundary 

between multi- and single mode guiding (indicated by II and I respectively) are plotted 

along with the results of the calculations.  The good correspondence of the experimental 

points with the results of the calculations shows that although the nanowires are of 

subwavelength widths, classical electromagnetic theory can be used to predict the 

dispersion properties.  These results also clearly demonstrate that an increase in the 

confinement of optical waves leads to a systematic increase in the energy of the energy-

wavevector dispersions and the cut-off frequency, analogous to electron waves in 

quantum-confined nanostructures, but explained by purely classical optical wave 

phenomena. 

We further investigated the nanowires in the reduced size regime where only the 

lowest order, single HE11 mode can be guided with no “theoretical” cut-off limit in order 

to study their size-dependence and to determine the longest wavelength that can be 

guided in the “practical” limit.  The spectra obtained from the ends of nanowires with 

radii ranging from 75 nm to 40 nm (Figure 3.3a) show no low-energy cutoffs, in 

accordance with the theoretical predictions for the lowest order HE11 mode.8  Plots of the 

Fabry-Pérot mode energy maxima as a function of incremental wavevectors (Figure 3.3b-

d) along with the solutions of the aforementioned eigenvalue equations show excellent 

agreement and demonstrate that in this size regime the dispersion is highly sensitive to 

nanowire width.  For instance, the wire with a radius of 65 nm shows dispersion more 

similar to that of ZnSe whereas the wire with a radius of 50 nm shows dispersion more 

similar to that of the air cladding.  For the smallest wire (radius of 40 nm) we find that the 

dispersion totally coincides with that of light in vacuum i.e. the light propagates with a 
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group and phase velocity equal to that of light in air.  This can be understood by 

considering that a significant portion of optical waves in the wavelength range of 730-

540 nm travels outside of the 40 nm radius nanowire, in the air cladding.  It is however 

surprising that this light is still bound within the nanowire to complete at least one full 

roundtrip along the 14.01 µm long wire to display the Fabry-Pérot modes with a 

reasonably high quality factor of ~100, suggesting sufficient mode confinement.  This 

intriguing result shows that nanowires of extremely small widths (λ/9) can still guide 

light, without dispersion, which can be very useful for evanescent-wave optical sensors. 

 

Figure 3.2: a) SEM images of four ZnSe nanowires having radii of 110, 100, 90 and 80 
nm and lengths of 5.98, 2.08, 11.51 and 22.28 µm respectively (left to right). Scale bars 
are 100 nm. b) Emission spectra acquired from the ends of these wires with increasing 
diameters from top to bottom trace. The inset shows a magnification of the emission 
spectrum of the thinnest wire (radius 80 nm) in the 2.30-2.40 eV spectral range. The 

arrows indicate the mode cutoff. c) Dispersion of the TE01 mode of the nanowires with a 
radius of 110 nm (circles), 100 nm (squares), 90 nm (triangles) and 80 nm (asterisks). 

The solid lines are the numerical solutions for the eigenvalue equation of the TE01 mode 
of a dielectric cylinder and the dashed line is the dispersion of light in vacuum. In the 

inset the measured size dependence of the TE01 mode cutoff is shown for measurements 
performed on many more wires with the solid line the result of the calculations. 
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Figure 3.3: a) Emission spectra acquired from the ends of nanowires with radii of 75, 65, 
50 and 40 nm and lengths of 8.52, 8.02, 33.15 and 14.01µm respectively, with increasing 
diameters from top to bottom trace.  b-e) Dispersion of the HE11mode of the nanowires 

with radii of 75 nm, 65 nm, 50 nm, and 40 nm, respectively.  The solid lines are the 
results of the numerical solutions for the eigenvalue equation of the HE11 mode of a 

dielectric cylinder and the dashed line is the dispersion of light in vacuum.  In panels d) 
and e) the mode dispersion overlaps with the dispersion of light in vacuum. 

 

We also studied relatively thicker nanowires, which can guide multiple modes 

simultaneously.  The emission spectrum obtained from the end of a 150 nm radius 

nanowire shows intense Fabry-Pérot modulations (Figure 3.4a), which upon closer 

inspection (Figure 3.4a, inset) display an irregular peak spacing suggesting that at least 

two sets of modes participate in the standing wave formation.  The energy-wavector 

dispersion of this nanowire (Figure 3.4b) together with the calculation results show that 
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the spectrum is dominated by the HE11 and TE01 modes, and not by TM01 mode, due to its 

poor reflectivity.12  The calculated dispersion shows that in our observation range there is 

no low energy cut-off for these modes, which is corroborated by the observation of 

interference peaks down to the lowest observed emission energies.  Interestingly, this 

thicker wire allows us to observe interference peaks up to close to the bandgap (2.69 eV 

at room temperature).22  It can be seen (Figure 3.4b and inset) that at energies 

approaching the bandgap of ZnSe, the experimental data deviates strongly from the 

calculated HE11 dispersion.  This effect is more clearly seen in Figure 3.4c where the 

group index (group velocity normalized to the light speed) of these modes is plotted as a 

function of emission energy.  It can be seen that at low energies (sub-bandgap) the group 

velocity is reduced by 35% for the two guided modes with respect to bulk ZnSe (Figure 

3.4c, dotted line), solely due to the lateral confinement of the photon modes.  However, 

more significant effects are observed close to the ZnSe band-edge (2.6 eV) where the 

group velocity reaches a value of c/8, which is clearly not predicted by the calculations.  

Due to the ZnSe exciton binding energy of 19 meV22 and the small observed exciton 

related luminescence peak we expect that close to the bandgap strong light-matter 

coupling between excitons and photons can occur,23 resulting in a flattening of the 

dispersion and hence slowing of light (Figure 3.4b, c).16  This effect for macroscopic 

crystals is already included in the calculations by means of the dispersion of the refractive 

index which takes into account excitonic contributions.22  The strength of light-matter 

coupling in microcavity structures depends on the ratio of the oscillator strength to the 

optical mode volume.24  In nanowires it is not unreasonable to assume that the mode 

volume is considerably reduced compared to larger crystals therefore giving rise to 
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enhanced light-matter interaction as a result of the higher electric field intensities inside 

the wire, which also agrees with earlier observations in ZnO nanowires.25  More detailed 

experiments are being performed to quantify the strength of light-matter interaction in 

nanowire cavities. 

 

Figure 3.4: a) Emission spectrum acquired from the end of a nanowire with a radius of 
150 nm.  This spectrum shows three series of peaks which can be identified due to their 

spectral overlap giving rise to irregular periodicity (shown in the insets).  b) Mode 
dispersion obtained from the spectrum shown in panel a).  The solid lines are the results 

of the numerical solutions for the eigenvalue equation of the modes of a dielectric 
cylinder and the dashed line is the dispersion of light in vacuum.  Inset: Energy-

wavevector dispersion close to the bandgap region.  Close to the band-edge of ZnSe (2.69 
ev),22 a strong deviation of the experimental points from the calculations can be seen. c) 

Group index obtained by differentiating the mode dispersions in panel b).  
Experimentally measured group index of HE11 (blue squares) and TE01 (red circles) 
modes along with the numerical calculation results based on cylindrical waveguide 

modes (HE11 solid blue line; TE01 solid red line).  The dashed line represents the group 
index in a bulk ZnSe crystal.  Close to the band edge a pronounced slowing of the light 

can be seen for the HE11 mode. 
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In conclusion, we have demonstrated strong size dependent optical dispersion and 

group velocities in subwavelength ZnSe nanowire waveguide cavities using Fabry-Pérot 

resonator modes as probes.  The measured dispersions show good correspondence with 

the calculations for an air-clad dielectric ZnSe cylinder where deviations from cylindrical 

morphology of the nanowire, substrate interaction and crystal anisotropy do not have 

significant effects.  Furthermore, we observed subwavelength (λ/9) dispersionless 

guiding in the sub-bandgap range and significant slowing of the propagating light by 90% 

(c/8) due to enhanced light-matter interaction close to the exciton resonance.  These 

results open the way to a rational design of semiconductor nanowire photonic devices in 

which the dispersion and signal speed can be tailored to specific functions, such as 

enhanced non-linear effects for optical switching and computing, and high-speed, near-

dispersionless transmission of optical signals, and enhanced surface propagating waves 

for evanescent-wave sensor applications. 
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Chapter 4. Propagation Loss Spectroscopy on Single Nanowire Active 

Waveguides 

Reproduced in part with permission from Nano Letters, Volume 10, Issue 6, Pages 2251-
2256. Copyright 2010 American Chemical Society. 

Despite the recently increased activity in the field of active optical waveguides,1, 2 

not much attention has been focused on the understanding of the light-matter interaction 

and photonic propagation properties in nanoscale optical waveguides, which can lead to 

observation of novel phenomena originating from tight confinement in comparison to 

bulk materials and can in assist in optimal nanophotonic device design.  However, it is 

not trivial to characterize the propagation properties of nanoscale waveguides since their 

diminutive dimensions make direct loss measurements troublesome due to in- and out-

coupling losses3 as well as strong absorption close to the electronic band-edge of the 

material. These challenges require development of new measurement techniques to 

characterize nanoscale optical cavities. Waveguide losses in nanowires have been 

characterized previously,4, 5 however only limited or no spectral information was 

obtained, missing propagation loss dispersion information. Propagation loss dispersion is 

especially important in direct bandgap semiconductors where propagation close to the 

band-edge occurs by mixed photonic-electronic excitations (polaritons) that form due to 

strong light matter interaction of excitons with photons,6 thereby making the propagation 

particularly sensitive to the electronic structure of the wire.7 

CdS nanowires have previously been studied by micro-photoluminescence 

measurements to determine their electronic resonances,8 waveguiding,4 and lasing 

properties.9 However, this method is limited in that wavelengths near electronic 
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resonances are reabsorbed too strongly for detection in the photoluminescence 

measurements.  Additionally, such direct photoluminescence measurements cannot 

provide information on propagation length (or loss) and its dispersion, crucial for design 

of devices utilizing semiconductor nanowire waveguide elements. Absorption-based 

measurements are required for these situations where emission spectroscopy does not 

provide useful information near electronic resonances. 

In this chapter, we report on spatially and spectrally resolved laser excitation 

scanning measurements on CdS nanowires at room temperature and at 77.6 K, from 

which the waveguide propagation losses and dispersion could be determined.  By 

utilizing a measurement method involving scanning a laser spot over the body of the 

nanowire whilst detecting the spectrally resolved waveguided photoluminescence 

emerging at one of the nanowire end facets, propagation loss spectra in the strongly 

absorbing near-bandedge region could be found as well as signatures of the CdS A and B 

excitons via observation of both resonance peaks and their interaction with waveguided 

light. These signatures serve to highlight the importance of polaritonic interactions in 

active nanowire waveguide systems as well as inform the design of future active 

nanowire waveguide devices. 

 

4.1. Experimental Procedures 

CdS nanowires (Figure 4.1) were obtained by the vapor-liquid-solid method10 in a 

quartz tube furnace using evaporation of 99.995% pure CdS powder (Aldrich).  130 mg 

of CdS powder was placed in a quartz boat in the middle of the tube, and Si substrates 

covered by a 5 nm thick Au/Pd layer using plasma sputter deposition were placed 13.7 
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cm downstream (referenced to the middle of the tube).  The tube was evacuated to 20 

mTorr and argon carrier gas was introduced at a flow of 100 SCCM to reach a stable 

pressure of 294 Torr.  The tube was rapidly heated to 760 °C and kept there for 180 

minutes after which the furnace was cooled by a forced airflow.  After synthesis, the 

nanowires were transferred to 0.5 mm-thick Si substrates covered with a 300 nm thermal 

oxide by dry transfer, and the substrates were mounted on the temperature-controlled 

liquid nitrogen microscope cryostat using silver paint.  The measurement substrates were 

marked so that individual wires could be characterized by optical and electron 

microscopy techniques. Optical experiments were carried out using the micro-

photoluminescence setup shown in Figure 2.2.  The 457.9 nm laser line of a continuous 

wave argon ion laser was expanded onto the back aperture of the objective resulting in a 

Gaussian spot with a width of 800 nm, giving an average excitation power density of 

6×104 W/cm2.  Waveguided photoluminescence from the individual wires was collected 

by the same objective and projected onto either a small CCD for color imaging or the 

focal plane of an optical fiber fitted with a focusing lens.  The light collected by the fiber 

was coupled to the Acton spectrometer and detected by the cooled 2048 horizontal pixel 

Princeton Instruments CCD, resulting in a full width at half-maximum (FWHM) 

wavelength resolution of 0.1 nm.  After the optical measurements, the lengths and widths 

of the nanowires were determined by scanning electron microscopy (FEI Strata DB235 

FIB). 
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Figure 4.1: a)-c) Scanning electron microscopy images of three CdS nanowires dispersed 
onto a 300 nm thick SiO2-covered Si wafer on which optical measurements were 

performed.  These nanowires have lengths of 9.74, 8.96, and 9.58 µm, and diameters of 
245, 260, and 400 nm respectively.  d) Real color optical image of a CdS nanowire under 

focused 458 nm Ar+ laser illumination.  The laser is focused on the center of the 
nanowire, producing photoluminescence from the nanowire body.  Much of this emission 

is guided along the nanowire and diffracted at its end facets, as shown. 

 

A photoluminescence image of a nanowire under localized excitation (Figure 

4.1d) shows, in addition to emission from the nanowire body where the laser is focused, 

pronounced emission from the end facets due to waveguiding. For the primary 

experimental geometry, the excitation spot was scanned over a 40 x 100 pixel (8 × 20 

µm) rectangle containing the nanowire of interest while the collection area was left 

positioned over the nanowire end facet.  In this configuration, the excitation spot can be 

thought of as a moving light source in a type of modified absorption spectroscopy (Figure 

4.2a), whereby the local photoluminescence of CdS generated by the incoming laser acts 

as the source and the bandwidth of this source (a single exciton-related peak from 2.30 to 

2.45 eV at room temperature (300 K)) defines the effective range of the spectrographic 

method.  Light which is guided between the source and collection area is recorded by the 

a)

b)

c)

d)
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spectrometer as one element of a 40 × 100 spectra matrix, the laser then moves to a 

neighboring spot and the process repeats.  After the resulting 40 × 100 spectra are 

mapped out spatially, individual emission wavelengths as recorded by the spectrometer 

can be isolated in each pixel, producing a two-dimensional map of how much light at any 

particular energy was waveguided to the nanowire end facet (Figure 4.2b).  A line profile 

was taken along the nanowire length and intensity versus distance data were extracted for 

each emission wavelength (Figure 4.2c).  The first 1 µm from the detection point was 

removed to avoid convolution of source (laser spot) emission with waveguided emission.  

We assume linear optical losses which are constant along the length of the nanowire, 

leading us to fit line profiles to an exponential decay function, )(α 0e zzA −− , where A is the 

amplitude and z0 is fixed at the end facet.  The decay constant from this function, α, we 

term the propagation loss coefficient of the nanowire at that wavelength since it includes 

any losses such as waveguide leaking and scattering losses as well as material absorption. 

The energy dependence of α then gives the propagation loss spectrum, which contains 

detailed information about the nanowire active waveguides. 

The corresponding propagation loss spectrum for the same nanowire (Figure 4.1a) 

examined in Figure 4.2, obtained at room temperature, is plotted (black squares) 

alongside its waveguided photoluminescence spectrum (green line) for the emission 

range close to the room temperature bandedge of CdS ~2.45 eV11 in Figure 4.3.  The 

waveguided photoluminescence spectrum is modulated by a series of periodic peaks 

attributed to Fabry-Pérot resonances, which occur in wavevector space at equally-spaced 

intervals of |kz|=nπ/Lz where kz is the real wavevector along the length of the nanowire 

waveguide, n is a positive integer, and Lz is the nanowire length.  While these peaks are 
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useful insofar as they can be used to determine the waveguide dispersion of a given 

nanowire,12 Fabry-Pérot etalons containing absorbing material have been shown to act as 

long-path absorption cells13, 14 which can report absorption higher than that of the same 

spacer not placed within the cavity due to light undergoing multiple passes.15 

 

 

Figure 4.2: a) Illustration of CdS nanowire from Figure 4.1a) under focused 458nm Ar+ 
laser excitation at 300 K.  A position-sensitive photodetector collects photoluminescence 
spectra from the end facet as the laser is scanned along the wire, generating a local light 
source as it travels. b) Spatially resolved excitation images of the wire shown in Figure 

4.1a) obtained at energies 2.304 and 2.440 eV (highlighted in blue and red), respectively. 
Each pixel shows, for that specific energy, the relative intensity of light detected by the 
position-sensitive photodetector stationed over the leftmost end facet due to the laser 
being focused at that point. c) Normalized intensity vs. distance of the excitation laser 

from the end facet line profiles extracted from the spatially resolved images in b).  
Propagation loss coefficients were obtained by fitting each line trace to the form 

)(α 0e zzA −−
, where α is the propagation loss coefficient, A is the amplitude, and z0 is fixed 

at the nanowire end facet. 

 

 The exact ratio of measured to actual absorption is dependent on quantities 

difficult to ascertain for multimode, waveguiding nanowires such as end facet 

morphology and reflectivity and can therefore complicate the issue of drawing parallels 
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directly between experimentally obtained propagation loss coefficients and literature 

magnitudes for bulk CdS absorption.  This is not without advantage, however, as it serves 

to highlight the ability of this technique to experimentally discern true propagation length 

(obtained by inverting the propagation loss coefficients) and its frequency dependence in 

individual nanowires where subtleties unique to each structure hinder the effectiveness of 

theoretical prediction. 

 

Figure 4.3: Propagation loss spectrum (black) for the wire shown in Figure 4.1a) at 300 
K, plotted alongside photoluminescence (green) from the end facets, while the energies 

highlighted in Figure 4.2 are denoted blue and red.  The closely-spaced peaks are 
longitudinal Fabry-Pérot resonances.  Note that the propagation loss spectroscopy method 

provides enhanced range over the conventional photoluminescence due to its ability to 
track minute changes in emission as a function of distance even when the intensity of 

individual waveguided photoluminescence measurements is low. 

 

4.2. Discussion 

The propagation loss spectroscopy method lends itself well to judging the overall 

waveguiding ability of individual wires.  The propagation loss spectrum in Figure 4.2 

shows that this particular nanowire waveguides efficiently (propagation loss coefficient 

~15,000 m-1) below 2.35 eV, while a sharp decrease in propagation length occurs as the 
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energy approaches the CdS room temperature bandedge.  These observations are 

reinforced by the waveguided photoluminescence peaking significantly below the 

bandedge, again showing that waveguiding is favored at off resonance energies.16  Upon 

further comparing the two spectra, it is also immediately clear that the propagation loss 

spectrum provides sufficient intensity even at energies close to the band-edge where the 

photoluminescence output is relatively low. This extended range is possible because there 

is still enough intensity to track trends between spectra from neighboring pixels along the 

nanowire length in the propagation experiments even if the individual waveguided 

photoluminescence spectra do not show clear features themselves. 

While room temperature measurements are effective in demonstrating the 

expanded range and feature-detection capability of the propagation loss spectroscopy 

technique over individual photoluminescence spectra, the finite intensity of each 

spectrum remains a limiting factor in the quality of the final propagation loss spectrum: 

changes between spectra cannot be detected when intensity is very low.  Furthermore, 

laser damage limits the maximum excitation power, and microscopic sample drift limits 

total collection time.  Therefore, to obtain the fine electronic structure of CdS in the 

region of electronic resonances by reducing temperature broadening as well as enhance 

our ability to detect it by increasing emission for a given excitation power and collection 

time, we cooled the sample to 77.6 K.  The waveguided photoluminescence (green line) 

from an 8.96 µm long, 260 nm diameter CdS nanowire at 77.6 K is presented alongside 

its propagation loss spectrum (black squares) in Figure 4.4. Modulation peaks again 

attributed to Fabry-Pérot resonances are apparent in the photoluminescence spectrum, 

and aside from an overall blue shift, it appears qualitatively similar to that in the room 
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temperature measurement in Figure 4.3.  Here as well there are no discernable features at 

energies higher than the global peak at 2.533 eV, but it is in this range that the advantages 

of low temperature measurement become apparent in the propagation loss measurements. 

 

Figure 4.4: Propagation loss spectrum (black) for the nanowire shown in Figure 4.1b) at 
a cryostat-reported temperature of 77.6 K, obtained by plotting α as a function of energy.  

A peak corresponding to the free A exciton was found at 2.537 eV, while a peak 
corresponding to the free B exciton was found at and 2.553 eV (dashed lines), implying a 

sample temperature of 105 K (see text).  A waveguided photoluminescence spectrum 
from the same wire, exhibiting longitudinal Fabry-Pérot resonances, is shown in green. 

 

Significant range enhancement of the propagation loss spectroscopy method is 

again demonstrated, as it produces useful information until ~2.560 eV compared with 

~2.540 eV for waveguided photoluminescence.  The two most prominent features in the 

propagation loss spectrum are the transition from relatively constant propagation loss 

constants at lower energies to a steadily-increasing propagation loss which occurs around 

2.517 eV and the observation of two higher-energy peaks at 2.537 and 2.553 eV which do 

not appear in any individual photoluminescence measurements, pointing towards 

resonances which absorb more strongly than they emit.  Hopfield and Thomas17 studied 
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reflection spectra from CdS crystals at 77 K, and reported free A and B exciton 

resonances at 2.544 and 2.559 eV, differing from our values by 7 meV, respectively.  

Considering that both of our values have the same offset to that reported by Hopfield and 

Thomas (and therefore, the spacing between the two is also approximately equal), we 

believe our high-energy peaks are a direct measurement of the free A and B exciton 

resonances. The 7 meV average discrepancy is likely attributed to nanowire temperature: 

though the substrate is held under vacuum, the nanowires sitting on its surface are not 

attached and it is likely that they are at a higher temperature than the cryostat-reported 

77.6 K.  From temperature-dependent exciton resonance data,18 we determine our 

resonances translate to an actual nanowire temperature of 105 K. This discrepancy is 

reasonable considering the nanowires are separated from the thermocouple by a thick 

Si/SiO2 substrate and experience local heating due to the laser excitation of the sample. 

At the A and B exciton resonances, the propagation loss coefficient peaks at 

3.90×106 m-1 and 4.15 ×106 m-1, and in the region of constant propagation loss from 2.49-

2.52 eV (still close to the electronic resonances) it averages 1.70×106 m-1.  Shalimova and 

Khirin19 reported an absorption spectrum for polycrystalline CdS held at 77 K which 

qualitatively matches the shape of ours, though it differs in that their exciton absorption 

coefficients are within an order of magnitude but their lower-energy coefficients are 

multiple orders of magnitude smaller.  Though our method appears qualitatively similar 

to absorption spectroscopy, our coefficients provide information on both absorption and 

waveguide losses, which are much more sensitive to the morphology, diameter, and 

surface conditions of each individual nanowire.  While it would be difficult to infer 

conclusions from the small differences between coefficients at higher energies obtained 
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for nanowires in comparison to bulk CdS, the fact that our coefficients at lower energies 

are orders of magnitude higher suggests that, in addition to small waveguide losses, 

electronic losses greater than those seen in bulk CdS may also play a role in this energy 

range.  Exciton-photon interaction has been shown to dominate over exciton-phonon 

interaction in CdS thin-films crystals (300-800 nm thick) near our experimental 

temperature,20 which alters the dispersion of the material in the exciton resonance region.  

We believe that enhanced exciton-photon interaction in this nanowire, in comparison 

with bulk CdS, has increased the energy range over which excitonic absorption can take 

place, extending into what is the conventional “photonic” region in bulk.  Other 

nanowires of similar diameters measured at this temperature also show a similarly 

marked increase in propagation loss coefficient at lower energies than the electronic 

resonances, suggesting an increase in light-matter interaction regardless of individual 

length or morphology and dependent only upon the confining dimension of the diameter 

(Figure 4.5 and Table 4.1). 

A full model of the material dispersion relations in individual nanowires is 

necessary to understand important optical transport properties at the nanoscale where 

strong light-matter coupling becomes important,12 but precise placement of resonance 

levels is required before any other parameters such as exciton transition strength and 

damping21 can be adjusted and modeled for a given system.  Fortunately, the 

experimentally determined levels of the A and B exciton resonances from Figure 4.4 can 

be used to this end for all nanowires held at this temperature in our experimental setup, 

since the nanowire waveguides are much larger than the exciton Bohr radius in bulk CdS 

(~5 nm)22 and quantum confinement effects can be neglected.  While the waveguide 
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modes of a bulk dielectric cylinder are well described by solving Maxwell’s equations 

with appropriate boundary conditions23 and using a Sellmeier type equation24 to include 

bulk material dispersion, this fails to take into account changes in dispersion originating 

from strong light-matter interaction which can manifest in nanoscale cavities.  To take 

this interaction into account, we recently developed a polaritonic waveguide model25 with 

interacting excitons (A and B for CdS) which explicitly includes dispersive effects via the 

exciton-polariton model rather than the phenomenological Sellmeier model, and its 

strong dependence on exciton resonance levels is exploited here to confirm our values. 

 

 

Figure 4.5: Propagation loss spectra of Wires 1-5 at 77.6 K, ordered according to 
propagation loss coefficient at 2.525 eV.  Vertical lines are placed at the A- and B-free 

exciton resonances as determined for the nanowire discussed in Figure 4.4. 
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Wire 1 2 3 4 

Diameter (nm) 260 425 185 220 

Length (µm) 8.96 17.65 8.30 9.15 

Prop. loss coeff. at 

2.525 eV (106 m-1) 

2.79 1.05 0.42 0.34 

Table 4.1: Diameter, length, and propagation loss coefficients at 2.525 eV. 

 

Figure 4.6 shows the results of numerical solutions for the eigenvalue equation of 

the fundamental mode of a dielectric cylinder, calculated using the above mentioned 

polaritonic waveguide model, plotted (right) alongside the waveguided 

photoluminescence (left) of a 9.58 µm long nanowire with a radius of 200 nm (Figure 

4.1c) at a cryostat-reported temperature of 77.6 K.  The square data points superimposed 

on the calculated lines form the experimental dispersion relation of the nanowire, 

obtained from the Fabry-Pérot peaks in the photoluminescence by plotting their energies 

at equally-spaced intervals of the real wavevector kz.
12  The calculations were performed 

using Hopfield and Thomas’ literature value for the B exciton resonance at 77 K (2.559 

eV) as well as the experimentally obtained value obtained from Figure 4.4 (2.553 eV).  

From this graph it is clear that not only is the A exciton is inactive for this mode (possible 

when polarization is parallel to the crystallographic c-axis of wurtzite CdS),17 but more 

importantly the experimentally determined B exciton resonance produces a dispersion 

curve which fits, while the 77 K dispersion does not, reaffirming a clear increase in 

nanowire temperature to 105 K over the cryostat-reported value of 77.6 K.  This fitting 

not only adds credence to our interpretation of the two peaks in Figure 4.4 as A and B 
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exciton resonances, but also demonstrates the utility of propagation loss spectroscopy as 

an potential aid in the engineering of single nanowire devices which would implicitly or 

explicitly depend on electronic resonance levels and encourages further experimental 

refinement of the polaritonic model with the resonance level variables now set in place as 

constants. 

 

Figure 4.6: Photoluminescence (left) and dispersion (right) for the nanowire shown in 
Figure 4.1c) at a cryostat-reported temperature of 77.6 K.  The solid lines are the results 

of numerical solutions for the eigenvalue equation of the fundamental mode of a 
dielectric cylinder, calculated using a polaritonic model,25 the dashed line indicates the 
experimentally obtained A exciton resonance, and the square data points are determined 
from the longitudinal Fabry-Pérot resonances in the photoluminescence spectrum.  The 
calculations were performed using literature values for the B exciton resonance at 77 K 

(blue) as well as the experimentally-obtained resonance value (corresponding to a 
temperature of 105 K) from Figure 4.4 (red). 

 

In conclusion, we have demonstrated a method for obtaining the propagation loss 

spectra of single active nanowire waveguides, significantly enhancing the usable range of 

conventional photoluminescence and improving upon previous methods for optical 

analysis of individual nanowire structures by simultaneously utilizing fine spatial and 
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spectral resolution.  In addition to producing spectra detailing wavelength-dependent 

propagation lengths in individual CdS nanowires, signatures of exciton-polariton 

propagation were detected clearly and precise positioning of the CdS A and B free 

exciton resonances was achieved.  These resonances were utilized to determine the actual 

nanowire temperature and aid in the modeling of dispersion relations, which is key to 

obtaining a deeper understanding of active nanowire waveguides.  Such fundamental 

understanding could facilitate the engineering of active nanophotonic circuit components 

such as switches, sensors, and waveguides operating in the photonic and polaritonic 

regions, where knowledge of total propagation length and dispersion is critical to overall 

device design. 
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Chapter 5. Variable Temperature Spectroscopy of As-Grown and Passivated 

CdS Nanowire Waveguide Cavities 

Reproduced in part with permission from The Journal of Physical Chemistry A, Volume 
115, Issue 16, Pages 3827-3833. Copyright 2011 American Chemical Society. 

Crystalline nanowires synthesized from wide bandgap semiconductor CdS are of 

interest due to their demonstrated ability to be assembled as active waveguides,1, 2 

modulators,2 optical cavities,3 and lasers,4, 5 and also because they form an intermediate 

class of crystals which exhibit optical confinement, in between electronically confined 

quantum dots6-8 and their bulk counterparts that show no optical and electronic 

confinement. With their diameters ranging from ~50-300 nm and lengths of up to several 

tens of micrometers, high crystalline nature and well defined crystal orientation, these 

crystals form a natural link between the classic bulk platelet literature9-11 and present day 

nanophotonic applications such as wave guiding and lasing. CdS is particularly known 

for the strong coupling of its bound electron hole pairs (free excitons) to the light field 

due to the high oscillator transition strength and exciton stability up to room 

temperature12. This results in the formation of exciton-polaritons which are a linear 

superposition of excitons and photons, resulting in reversible emission and absorption 

and the formation of anti-crossing lower and upper polariton branches in the energy-

wavevector dispersion discussed in Section 1.2.  The polaritonic behavior is typically 

characterized by (time resolved) photoluminescence, transmission and reflection 

measurements.13, 14  These polaritonic effects hold promise for exciting physical 

phenomena such as slow light,15 low threshold polariton lasing16 and Bose-Einstein 

condensation17, 18 and are therefore worthwhile to pursue in the nanowire geometry. 
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 Before such advanced topics can be addressed in CdS nanowires, it is vital to 

have knowledge of the intrinsic electronic and optical resonances in the nanowires.1,3  

Due to optical cavity formation and the strong coupling of the optical field with the 

electronic resonances, polaritonic effects are particularly important in CdS nanowires. 

The dependence of the polaritonic properties on sample geometry can obfuscate 

determination of the purely electronic resonances; therefore careful spatially resolved 

temperature dependent analysis of the electronic, optical and polaritonic resonances is 

necessary. Additionally, due to the large surface to volume ratio of these nanostructures 

the optical quality is largely determined by the surface even though the nanowires 

themselves are single crystalline with a low concentration of intrinsic defects. Traps 

formed by dangling bonds and adsorbed species at the surface can bind and ionize 

excitons, causing changes in exciton transition strength, energy and lifetime, all 

influencing the light-matter coupling strength. These effects can be negated by 

electronically passivating the surface by binding with a suitable (in)organic ligand 

thereby removing surface traps which create intra bandgap states and restoring superior 

optical quality.19 Temperature dependent optical characterization of the electronic 

resonance levels in unpassivated CdS nanowires has been reported before5, 20 however 

either the nanowire quality was not high enough to form optical cavities with low 

intrinsic defect concentrations or determination of the resonance levels was outside the 

scope of the study. 

Here we show the spatially resolved photoluminescence characterization of CdS 

nanowire crystals at temperatures ranging from 77 K to 298 K. Due to the spatially 

resolved detection, a distinction can be made between purely electronic and polaritonic 
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resonances and their temperature dependence can be determined. To improve the optical 

quality of the nanowires a SiO2 passivation layer is applied resulting in the observation of 

free excitons in contrast to the observation of defect bound excitons in unpassivated 

wires. 

These results will facilitate the precise determination of light-matter coupling 

strength in CdS nanowires as well as its manipulation through temperature tuning of the 

electronic resonances and the optical cavity resonances, important for the utilization of 

polaritonic effects such a macroscopic coherence, nonlinearities and slow light for 

devices such as lasers, switches and sensors at the nanoscale. 

 

5.1. Experimental methods 

 CdS nanowire crystals were obtained under the same conditions described in 

Section 4.1.  The growth substrates were subsequently characterized by SEM and micro-

photoluminescence measurements in order to screen the samples for morphology and 

spectral quality. Photoluminescence was performed using the same setup as described in 

Section 4.1.  CdS nanowire passivation with SiO2 was carried out using Atomic Layer 

Deposition (ALD, Cambridge Nanotech) using alternating O3, 3-

aminopropyltriethoxysilane and H2O pulses which deposited a conformal coating of ~5 

nm on the nanowires. Fourier transform infrared spectroscopy (FTIR, Thermo Scientific) 

measurements were done on the uncoated and coated wires to check the coating process. 
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5.2. Results and discussion 

Figure 5.1a shows the growth substrate imaged by SEM immediately after three 

hours of nanowire growth at 760 °C. The synthesis yielded wires of 100-300 nm 

diameters with an average length of 15 µm.  Wires grown using sputter deposition of 

gold exhibit some variation in diameter and length, but optimization of growth 

parameters and careful monitoring of conditions resulted in wires with single-crystalline 

wurztite structure.  Figure 5.1b and the inset in Figure 5.1a show SEM images of an 

isolated 9.98 µm-long wire of diameter 130 nm after dry transfer to the silicon oxide 

covered optical measurement substrate.  The diameter is uniform from base to tip with no 

visible morphology defects present along the wire length. The zoomed in SEM image of 

the tip in the inset of Figure 5.1a shows a clearly faceted particle, indicative of nanowire 

growth via the VLS mechanism with a gold nanoparticle acting as the catalyst.21-26  

Figure 5.1c shows the X-ray diffraction (XRD) pattern of a typical Si substrate after 

nanowire growth as shown in Figure 5.1a. The peaks in the diffractogram correspond 

exclusively to wurtzite CdS or the aluminum sample holder, and no evidence of CdS 

polymorphism (i.e. zinc blende CdS) was found. 

Temperature-dependent optical measurements were performed in the 

experimental geometry as is shown in Figure 5.2a with the shown substrate glued to the 

cold finger of a continuous flow liquid nitrogen cryostat using silver paint. An individual 

nanowire lying on the SiO2-coated Si substrate is excited from the far field by focusing 

an 800 nm diameter Ar-ion laser beam on the wire center, resulting in local 

photoluminescence.  This local photoluminescence (termed body emission in the 
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remainder of this article) is generated in the wire core and can subsequently be guided to 

the wire ends due to optical confinement resulting from the high refractive index contrast 

between the CdS wire and its air cladding.  At the wire ends this guided light can partly 

leak out and is scattered into the excitation direction due to diffraction from 

subwavelength apertures (ends), resulting in the observation of localized emission at the 

wire ends. Figure 5.2b and Figure 5.2c show real color optical micrographs of such a 

nanowire; Figure 5.2b shows the wire illuminated under white light, whereas Figure 5.2c 

shows the same wire excited in the manner illustrated in Figure 5.2a.  Both the body 

(region where the nanowire is directly excited) and the end emission (waveguided 

emission from the ends) spots display the characteristic green CdS emission color. 

 

Figure 5.1: a) SEM image of the nanowire growth substrate. Scale bar, 1 µm.  Inset: 
Detail of a catalyst particle on the tip of the nanowire shown in panel b). Scale bar, 100 

nm. b) SEM image of an individual nanowire of width 130 nm and length 9.98 µm on the 
optical measurement substrate. Scale bar, 1 µm.  c) X-ray diffractogram of the CdS 

nanowire covered substrate shown in panel a). 
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Room temperature (298 K) emission spectra from the body and the ends obtained 

in this manner for the wire shown in Figure 5.1b and c are displayed in Figure 5.3a (blue 

and black lines, respectively).  It is immediately apparent that there is a large red shift of 

(39 meV) between the maxima of the body emission (2.4568 eV) and that of the end 

emission (2.4176 eV).  The body emission is significantly broadened (FWHM 58.4 meV) 

and although emission takes place at energies that coincide with exciton levels obtained 

from established literature27 (indicated by the two vertical arrows), the spectra do not 

show any features that can be assigned to discrete exciton lines.  The end emission is 

periodically modulated with the period becoming shorter towards higher energies (in the 

vicinity of excitonic resonances).  This intensity modulation is due to standing wave 

formation along the length of the nanowire, demonstrating that the nanowire acts as a 

longitudinal (z-direction) Fabry-Pérot cavity.28-30  In principle, the Fabry-Pérot 

interference peaks can be used to determine the effective length of the resonator, which 

may be different from the actual nanowire length.  Although the observed end emission 

does originate from the actual ends of the nanowires, the ~500 nm optical resolution limit 

of our system gives rise to some uncertainty in determining the actual resonator length. In 

addition, due to the formation of exciton-polaritons in this energy region, a complete 

fitting of the experimental points to a full polaritonic model3 taking into account size 

dependent light-matter interactions is needed, which is outside the scope of this article.  
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Figure 5.2: a) Spatially resolved optical measurement geometry. b) Reflected white light 
microscopy image of a single CdS nanowire. c) Photoluminescence image of the wire 

shown in panel b). 

 

At 77.6 K the body and end emission spectra as shown in Figure 5.3b by the blue 

and black lines respectively, are markedly less broad (FWHM of 30 meV and 19 meV 

respectively) and the end emission maximum (2.5108 eV) is markedly less red-shifted 

(13.7 meV) from the body emission (2.5322 eV) than at room temperature.  In wurtzite 

CdS the valence band is split in three due to spin-orbit coupling and the crystal field with 

the valence bands labeled A, B and C, resulting in the formation of excitons labeled A, B 

and C from lowest to highest energy.31  In the body emission spectrum there is now a 

clear feature at 2.5433 eV which we assign to the CdS free A-exciton based on the 

literature values (vertical arrows) whereas there are no features that can be attributed to 
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the wurztite CdS B and C excitons.  It must be remarked that the majority of the body 

emission in this wire occurs at energies lower than the lowest exciton energy, indicating 

alternate radiative processes to spontaneous exciton recombination (e.g. exciton-exciton 

scattering, exciton-phonon scattering and exciton trapping, see Figure 5.4c for further 

discussion).  The end emission now shows much clearer Fabry-Pérot resonator intensity 

modulations in comparison to 298 K, a sign that the lifetime of the species in the 

resonator is increased (increased cavity quality factor).  This is a clear demonstration of 

the polaritonic nature of the guided light in the cavity since the photon lifetime in a 

purely photonic cavity would not significantly be influenced by the lowered 

temperature32 whereas polaritons would find less phonons to scatter, increasing their 

lifetime. 

 

Figure 5.3: a) Room temperature photoluminescence spectra of the body emission (blue 
line) and the end emission (black line) of an unpassivated CdS nanowire b) 77.6 K 

photoluminescence spectra of the body emission (blue line) and the end emission (black 
line). In both panels the reference exciton energies27 are indicated by the two vertical 

arrows. 
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Temperature-dependent body and end-emission of this same wire are shown in 

Figure 5.4a and Figure 5.4b, respectively.  Aside from an overall red-shift in both spectra 

as temperature is increased due to a gradual reduction in bandgap, qualitatively features 

appear to maintain their overall form with no apparent drastic changes.  To better 

understand the physical processes at work, individual peaks were tracked across multiple 

spectra at different temperatures with increments of 20 K and plotted in Figure 5.4c.  

Here, the upper and lower solid black lines show literature values for A- and B-

excitons,27 respectively, and the black and red dotted lines at low temperatures show 

discernable peaks in the body spectra which match these literature values well, 

suggesting they indeed originate from spontaneous free A- and B- exciton recombination.  

The magenta line immediately 12 meV (27 meV) beneath the free A-exciton (B-exciton) 

line indicates the energy of the body emission global maximum which corresponds to the 

near band-edge emission (NBE) observed in other temperature dependent studies on 

single CdS nanowires.20  This line follows the literature exciton curves well and 

maintains near-constant distance throughout, suggesting it is exciton related. This peak 

falls in the energy range of the impurity bound B-exciton lines (19 to 32 meV below the 

B exciton33,34) and since the emission is still visible at room temperature it follows that 

this emission does not originate from the A-exciton, since the 12 meV activation energy 

towards free A-exciton emission is easily overcome at elevated temperatures. All peaks at 

lower energetic positions than this magenta line indicate the positions of individual 

Fabry-Pérot cavity modes which red-shift with higher temperature as well. As an 

expression of the polaritonic nature of these modes it can be seen that the slope of the 

higher energy modes mimics that of the excitons whereas the lower energy (more 
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photonic) modes show a much smaller red-shift with temperature. Based on the data 

presented here we propose that in this (representative) uncoated CdS wire the dominant 

emission is excitonic but not from free excitons, and instead originating from deeply 

trapped (27 meV) B-excitons. 

 

Figure 5.4: Photoluminescence spectra of the body a) and end b) emissions of an 
unpassivated CdS wire over the 77.6 K to 298 K temperature range. c) Temperature 
dependence of the observed photoluminescence peaks (the triangular magenta, star-

shaped red, and hexagonal black data points) and the Fabry-Pérot peaks at lower energies 
(square black data points). The two solid black lines indicate reference data for the CdS A 

and B exciton energies.27 
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Inspired by the positive effect of H3PO4 surface etching on the observation of 

excitonic features in CdS platelets,9 we grew a conformal SiO2 shell around the CdS 

wires on the growth substrate using ALD with alternating pulses of O3, 3-

aminopropyltriethoxysilane and H2O. Figure 5.5a shows a TEM image of a CdS 

nanowire after 70 deposition cycles. A 5 nm amorphous shell can be discerned around the 

single crystalline CdS nanowire core as is indicated by the two lines.  FTIR spectra 

obtained before and after SiO2 deposition are displayed in Figure 5.5b.   

 

Figure 5.5: a) TEM image of a 5 nm SiO2 ALD coated CdS nanowire. b) Fourier 
Transform Infrared absorption (FTIR) spectrum of an ensemble of SiO2 passivated (blue 

line) and unpassivated (black line) CdS nanowires. 

 

After deposition, peaks at 1062 cm-1,1221 cm-1 and 2080 cm-1 are clearly visible 

which can be attributed to Si-O-Si asymmetric stretching,35,36 M-SO4
2- 37 and nitrogen 
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compounds from the precursor38 respectively.  While the SiO2 layer is amorphous and is 

not known to electronically passivate CdS surfaces, during the ALD treatment the first 

chemical pulse is O3 which oxidizes the surface and causes the formation of sulfates 

which are known in literature to have an electronically passivating effect.32, 33  The 

amorphous silica shell further protects the sulfates against ad/desorption under the intense 

laser illumination and exposure to air.  Thus we believe that the ALD treatment can result 

in a stable sulfate passivation of CdS nanowires, which will be further confirmed by 

optical spectroscopy. 

In an analogue to Figure 5.3, Figure 5.6 shows body (blue) and end-emission 

(black) for a passivated 10.88 µm–long wire of diameter 186 nm at 298 K (a) and at 77.6 

K (b) with literature values27 for A- and B-exciton resonances in both indicated by 

vertical arrows.  While the spectra at 298 K appear similar to their counterparts in Figure 

5.3a (the Fabry-Pérot peak spacing is larger due to the shorter wire length) there is a 

slight (12 meV) blue shift of the maximum of the body emission. At 77.6 K the nanowire 

end spectrum shows a much sharper cutoff as it approaches the A-exciton resonance, 

while the body emission now is completely dominated by narrow peaks at both A- and B-

resonances (2.5444 eV and 2.5597 eV) due to the absence of impurity bound excitons.  

We believe this enhancement of excitonic features to be the direct result of surface 

passivation due to the ALD SiO2 deposition. In a logarithmic plot of the body emission 

from the coated wire at 77.6K shown in the inset of Figure 5.6b two additional peaks at 

lower energies of 2.5175 eV and 2.4772 eV can be discerned.  These peaks are 41 meV 

and 82 meV separated from the B-exciton energy thus leading us to assign these peaks to 

the 1LO and 2LO phonon replicas of the B- exciton resonance. While most literature 
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reports an LO phonon energy of 37.6 meV34, 35 there is a study that reports of LO phonon 

energies at both 41meV and 37.7 meV in ultra pure CdS crystals exhibiting free excitonic 

emission and less perfect crystals exhibiting bound exciton emission respectively.36  Thus 

we assign the peaks 2.5175 eV and 2.4772 eV to the 1LO and 2LO phonon replicas of the 

B-exciton resonance in a high quality CdS crystal. 

 

Figure 5.6: a) Room temperature photoluminescence spectra of the body emission (blue 
line) and the end emission (black line) of an unpassivated CdS nanowire.  b) 77.6 K 

photoluminescence spectra of the body emission (blue line) and the end emission (black 
line). In both panels the reference exciton energies27 are indicated by the two vertical 

arrows. The inset in panel b) shows the body emission at 77.6 K on a logarithmic scale. 

 

Temperature-dependent measurements of both body- and end-emission from the 

SiO2 coated wire are shown in Figure 5.7a and b, respectively, as well as a summary of 
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the observed PL and Fabry-Pérot lines in Figure 5.7c. The Fabry-Pérot resonances from 

the end emission are shown below the literature A- and B-exciton values in black,27 while 

the four distinct peaks in the body emission are shown in black, red, magenta, and green.  

The black and red lines again follow literature exciton values and can be attributed to 

spontaneous free A- and B- excitonic emission.  The magenta and green lines generally 

follow the curvature of both exciton lines, remaining a constant distance of 41 meV and 

82 meV beneath the B-exciton energy throughout the temperature series.  While the 2LO 

peak does not appear at temperatures above 240 K, the LO peak persists up to room 

temperature.  Although the ALD coating process clearly improves the optical quality of 

the nanowires, we cannot remark on the absolute photoluminescence intensity before and 

after the process since the detected intensity in these single particle measurements 

depends too much on the nanowire alignment with the excitation and detection spots as 

well as the natural variation of properties between wires. 

As shown in Chapter 4, by scanning the excitation laser over the nanowire whilst 

monitoring the spectrally resolved end emission, information about the energy-dependent 

propagation losses in the nanowires can be obtained.1  The results of two separate 

experiments performed on the same passivated wire of 11.4 µm length and 185 nm 

diameter are shown in Figure 5.8.  At left (a) are body (blue) and end (black) emission, 

and at right (b) is the propagation loss spectrum. The two images are aligned along the 

energy axis and the red lines drawn across all three show literature values27 for the A- and 

B-free excitons at 77.6 K. 
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Figure 5.7: Photoluminescence spectra of the body a) and end b) emissions of SiO2 

coated CdS wire over the 77.6 K to 298 K temperature range.  c) Temperature 
dependence of the observed photoluminescence peaks (the green, magenta, red and black 
data points) and the Fabry-Pérot peaks at lower energies (black square data points). The 

two solid black lines indicate reference data for the CdS A and B exciton energies.27 
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Qualitatively, the shape of the propagation loss spectrum matches that of bulk 

CdS absorption37 with the peak directly beneath the B-exciton (6.240 x 106 m-1) showing 

more loss than the peak directly beneath the A-exciton (3.138 x 106 m-1), and with a sharp 

drop in loss away from the excitonic region at energies below 2.535 eV. This sharp drop 

in propagation loss explains the significant red-shift of the guided emission shown in 

Figure 5.3 and Figure 5.6 as well as the decreased end emission width; since the detected 

end emission first has to travel to the nanowire end, the high loss in the excitonic region 

effectively shapes the guided spectrum and only allows detection of low loss emissions at 

lower energies.  This shaping of the end emission is an absorptive process due to 

waveguiding phenomena, which causes less temperature sensitivity of the width of the 

end emission than that of the body emission.  The two high-energy peaks at the A- and B- 

exciton resonances yield propagation lengths of 320 and 160 nm respectively, both 

significantly shorter than the nanowire length and within the same order of magnitude of 

free exciton diffusion lengths determined for CdS platelets.11  Despite their very slight 

red-shift from literature values, this is further evidence that the peaks in propagation loss 

are indeed free-exciton related. 
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Figure 5.8: a) Photoluminescence spectra of the body (blue line) and end (black line) 
emissions of a SiO2 coated CdS wire at 77.6 K.  Wire length 11.4 µm and diameter 185 

nm.  b) Propagation loss spectrum of this same wire. 

 

In conclusion, we have shown that the optical quality of wurtzite CdS nanowires 

can be dramatically improved by a conformal ALD coating with a 5 nm SiO2 capping 

layer.  The passivation effect is attributed to the formation of sulfates on the CdS 

nanowire surface due to reaction with O3 during the ALD process, after which the 

amorphous SiO2 layer seals the passivated wire against damage under laser illumination.  

As-grown unpassivated wurtzite CdS nanowires show only discernable free A- and  B- 

exciton emission at temperatures below 120 K whereas the dominant emission at 12 meV 

lower energy than the A-exciton line, tentatively assigned to deep trapping of the B-

exciton, persists up to 298K. Upon passivation, clear A- and B- free exciton peaks are 

observed that are resolvable up to 220 and 298 K respectively.  Surprisingly, only the B-

exciton seems to interact with optical phonons, and 1LO and 2LO peaks are observed at 

temperatures up to 298 K and 240 K respectively with an LO phonon energy of 41 meV.  

Propagation loss experiments on the passivated wires showed a clear correspondence 
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between observed exciton luminescence peaks and peaks in the propagation loss.  These 

measurements explain the large red-shift of the guided emission emerging at the wire 

ends since at higher energies very close to the exciton resonances the 

absorption/propagation loss is too large (peak values of 3.138 x 106 m-1 and 6.240 x 106 

m-1 for the A- and B- exciton, respectively) for the polariton to propagate to the end of 

the nanowire.  These results demonstrate the high optical quality of the nanowire crystals 

and provide the fundamental input parameters for strong light-matter coupling studies in 

these CdS nanowire waveguide cavities, potentially leading to low threshold polariton 

lasers, sensitive sensors and optical switches at the nanoscale. 
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Chapter 6. Incorporating Polaritonic Effects in Semiconductor Nanowire 

Waveguide Dispersion 

Reproduced in part with permission from Applied Physics Letters, Volume 97, Issue 6, 
Page 061115. Copyright 2010 American Institute of Physics. 

As discussed in Chapter 3, light propagation in semiconductor nanowires can be 

described by the energy-wavevector dispersion (E-k) and the group velocity can 

theoretically be obtained by solving Maxwell’s equations with appropriate boundary 

conditions if the dielectric functions ε(ω) of the core and cladding materials are known.1  

A common approach to include this material dispersion into waveguide dispersion 

calculations is by using a phenomenological Sellmeier-type equation in which the 

coefficients are obtained by numerical fitting to dielectric dispersion obtained from 

measurements on macroscopic crystals.2  Although this approach gives satisfactory 

results at energies much lower than the electronic bandgap, deviations at energies close to 

the bandgap occur, particularly if excitons are present.3  

As discussed in Section 1.2, excitons can strongly couple to the light field 

resulting in the formation of composite particles with both electronic and photonic 

character, exciton-polaritons,4 resulting in the formation of anti-crossing upper and lower 

polariton branches and drastic changes to the dielectric function.  In order to describe the 

energy-wavevector dispersion and group velocity in these nanowire waveguides 

accurately, it is highly desirable to explicitly include physical quantities such as the 

transverse and longitudinal exciton resonance frequencies (which relates to light-matter 

coupling strength) and their damping constants in the analysis so that that nanoscale size 

effects can be readily incorporated.  In this chapter we show how in CdS nanowires the 
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waveguide dispersion is altered due to the presence of excitons (binding energy 27 

meV),5 which strongly couple to the confined photonic waveguide modes. After 

calculating the waveguide E-β dispersion for the purely photonic modes using a Sellmeier 

type equation, we introduce electronic resonance effects into the calculations via the 

polaritonic contributions to the dielectric function. Next, these calculations are compared 

with experimental data obtained on CdS nanowires and finally, we briefly discuss the 

implications of the strongly modified dispersion on photonic switching and sensing with 

nanowires. 

CdS nanowires were obtained by the vapor-liquid-solid method using evaporation 

of CdS powder (99.999% Sigma Aldrich) and 5 nm Au/Pd covered silicon substrates.6  

After synthesis, the nanowires were transferred to Si substrates covered with a 300 nm 

thermal oxide.  The substrates contained markers so that individual wires could be 

characterized by both scanning electron (SEM) and optical microscopy.  Optical 

experiments were carried out using a home-built microscope equipped with a Nikon 60X 

0.7 NA objective as described previously.9  

To calculate the confined photonic modes in the CdS nanowires, we simplified 

the wire geometry to that of a cylindrical step-index fiber of radius r with a CdS core 

(refractive index nco(λ))  and air cladding (nclad=1).  It was previously shown that this 

simplification does not markedly influence the correspondence of the calculated modes 

with the experimental data.  In addition, we omitted consideration of a small phase shift 

upon reflection at the nanowire ends3, 7 which is not significant for long nanowires.  

Generally, the waveguide modes of cylindrical waveguides are of a hybrid nature, that is 



78 

 

the electric and magnetic fields can have components in the propagation direction, z.  The 

transverse electric (TE) and or transverse magnetic (TM) modes can be considered 

special cases of the hybrid modes where either the electric or the magnetic fields in the 

propagation direction vanish.  From Maxwell’s equations and the boundary condition of 

continuous tangential fields at the fiber surface, exact eigenvalue equations can be 

formulated for the various modes, as shown previously in Equations 3.1 through 3.6.1  

Subsequently, these eigenvalue equations were numerically solved for the propagation 

constant β at each wavelength using a core refractive index defined by a Sellmeier 

equation obtained from macroscopic CdS crystals.8  The results of these calculations are 

plotted in Figure 6.1a and Figure 6.1b as red dashed lines for two CdS nanowires with 

radii of 120 nm (a, TM01 mode) and 255 nm (b, HE12 mode) as determined from SEM 

imaging (inset in Figure 6.1a and Figure 6.1b), together with the dispersion of light in air 

(dotted). The calculated modes are to the right of the light line, showing that these modes 

are indeed confined to the nanowire core and are therefore waveguide modes.  

Next, to include dispersive effects due to the presence of excitonic resonances and 

polariton formation, we introduce a dispersive core refractive index nco(λ) that is taken as 

the real part of the square root of the dielectric function, where the dielectric function in 

the vicinity of the CdS excitons A and B9 can be described by a coupled oscillator model 

for two closely spaced resonances:10 
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Figure 6.1: a) Waveguide dispersion for the TM01 mode of a CdS nanowire with a radius 
of 120 nm calculated using a Sellmeier equation2 for material dispersion  (dashed red 
line) and the polaritonic model (full black line). (Inset) SEM image of the wire.  b) 

Waveguide dispersion for the HE12 mode of a CdS nanowire with a radius of 255 nm 
calculated using a Sellmeier equation for material dispersion2 (dashed red line) and the 

polaritonic model (full black line). (Inset) SEM image of the wire. The dispersion of light 
in air is shown in both panels by the black dotted lines. The square data points are 

determined from the spectra shown in Figure 6.2. Scale bar, 500 nm. 

 

Where εb is the background dielectric constant, ωAT and ωAL are the A-exciton 

transverse and longitudinal resonance frequencies, ωBT and ωBL are the B-exciton 

transverse and longitudinal resonance frequencies, ΓA the A–exciton damping and ΓB the 

B–exciton damping. We have omitted spatial dispersion since in our investigated energy 

range the UPB is severely damped and only modes on the LPB propagate along the 
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nanowire.11 Numerically solving the mode eigenequations, which now include the 

resonance effects, with bulk parameters εb=8,12 ћωAT=2.4696 eV,5 ћωAL=2.4715 eV,12 

ћωBT=2.4882 eV,5 ћωBL=2.4895 eV,12 ћΓA=ћΓB=10 µeV13 leads to the dispersions plotted 

as black solid lines in Figure 6.1a and Figure 6.1b. At low energies the mode mimics a 

purely photonic mode but closer to the resonances the dispersion flattens out and 

resembles the dispersion of the electronic resonances. This is due to the dual nature of the 

exciton-polaritons having more electronic or photonic character depending on the energy 

and propagation constant. 

To verify our calculations experimentally, CdS nanowires where excited non-

resonantly across the bandgap at one end whereas the waveguided photoluminescence 

was collected at the other end of the wire. The collected spectra (Figure 6.2) consist of a 

strong peak of near band-edge emission which is periodically modulated. It has been 

previously demonstrated that these modulations are the result of standing wave formation 

inside the nanowire (i.e. the nanowire acts as a longitudinal Fabry-Pérot cavity14, 15) with 

cavity modes equidistantly spaced in reciprocal space at integer multiples of π/L, with L 

the cavity (nanowire) length.12, 16 Thus, the interference peaks in the waveguided 

photoluminescence spectrum can be used to reconstruct the waveguide dispersion.3, 15, 16 

The extracted peak positions for the spectra of the two wires are plotted in Figure 6.1a 

and Figure 6.1b. A striking resemblance between the experimental data and the calculated 

polaritonic dispersions can be seen, whereas the correspondence with the modes 

calculated using the Sellmeier equation is poor. This demonstrates that this method of 

incorporating polaritonic effects into nanowire waveguide dispersion is valid and more 
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appropriate than the phenomenological approach for its accuracy and flexibility towards 

incorporating real physical parameters. 

 

Figure 6.2: Emission spectra of guided photoluminescence light for a) a 9.59 µm long 
wire with a radius of 120 nm and b) a 9.10 µm um long wire with a radius of 255 nm 

Note the logarithmic intensity scale used to show the intensity modulations. 

 

The strong coupling of light with matter whilst still maintaining a propagation 

length of at least twice the nanowire length as evidenced by the Fabry-Pérot interference 

peaks offers interesting opportunities. For instance, the strong curvature of the dispersion 

implies that the group index defined as (dE/dβ)vacuum/(dE/dβ)mode dramatically goes up, 

reducing signal velocity, which can be beneficial for the sensitivity of a nanowire optical 

sensor due to an increased interaction time.17 In Figure 6.3, the group index of the 

photonic (dashed lines) and polaritonic (solid lines) modes are shown for the same 

nanowires. The photonic modes show a relatively constant low group index over the 

investigated energy range whereas the polaritonic modes reach up to a group index of 20. 
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Furthermore, since the slowing of the signal velocity is dependent on the presence of 

excitons, it can be expected that the signal retardation can be switched by using low 

modulation intensities since the exciton resonances can be bleached by pumping up to the 

CdS exciton Mott density.11 At the Mott density, the exciton dissociates into free electron 

and holes due to screening and the resonance disappears from the spectrum and thus the 

waveguide dispersion reverts back to the purely photonic one. 

 

Figure 6.3: Group index vs. energy for purely photonic (dashed lines) and polaritonic 
(solid lines) modes of the 120 nm radius (blue) and 255 nm radius wire (green). The 

figure is cut-off at the highest group index that was experimentally determined. 

 

In conclusion, we have shown that close to the electronic band edge in CdS 

nanowires, polaritonic contributions to the dielectric function need to be taken into 

account in order to accurately describe the experimentally observed E-β dispersion of the 

confined waveguide modes. Furthermore, we include these effects by using a physical 

model of coupled oscillators which takes into account the different excitons that are 
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present in the system. The coupled oscillator model has the advantage that it fits with 

basic exciton oscillator parameters such as their transverse and longitudinal resonance 

energies, which are directly related to the oscillator strength of the transitions, and their 

damping. The polaritonic effect in CdS nanowires at room temperature slowed the signal 

propagation velocity by a factor of 7 more when compared to purely photonic 

propagation, making polaritonic nanowires prime candidates for sensing and photonic 

switching applications. 
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Chapter 7. One-Dimensional Polaritons With Size-Tunable and Enhanced 

Coupling Strengths in Semiconductor Nanowires 

Reproduced in part for noncommercial use from Proceedings of the National Academy of 
Sciences of the United States of America, Volume 108, Issue 25, Pages 10050-10055. 
Copyright 2011 The National Academy of Sciences. 

Exciton-polaritons1, 2 are fundamental to many exciting observations due to their 

hybrid photonic-electronic properties, including reduced effective mass when compared 

with excitons, bosonic particle statistics, long coherence lengths and large scattering 

cross-sections.3  While strong optical coupling in the single-quantum limit provides 

tremendous possibilities for quantum information processing through quantum 

electrodynamic effects,4, 5 it is through the use of strong optical coupling in many particle 

systems that novel phenomena such as Bose-Einstein condensation in the solid state6, 7 

and low-threshold polariton lasing and light emission8, 9 have been discovered.  In 

addition, many particle strong coupling provides tremendous possibilities for slow-light10 

and terahertz11 applications using many particle effects.  

The strong-coupling regime in the solid-state is generally obtained by confining 

excitons in semiconductor quantum dots (QD) and wells (QW) in order to enhance their 

oscillator transition strengths and coupling them to the low-loss optical mode of small 

mode volume optical cavities that enhance the electromagnetic field density.2, 12-15  The 

coupling strength is expressed as the Rabi frequency, mVfng /∗∝ ,4, 13, 16 with n the 

number of oscillators, f their oscillator strength and Vm the mode volume, noting that the 

photon lifetime as determined by cavity quality factor (Q) should be long enough to allow 

for the Rabi oscillation to occur. The extremely high Q of micropillar cavities,13 photonic 
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slab crystals14 and micro-toroids17 have previously allowed QWs and QDs embedded at 

optical field antinodes to exhibit strong coupling, even though the oscillator strengths 

were not necessarily optimal due to the choice of material (GaAs) as dictated by the state 

of the art in thin-film processing technology. Additionally, these top-down fabricated 

structures have a large footprint coupled with the challenges of preventing surface 

roughness and exciton dead layers during etch processes for laterally confined systems, 

which strongly limits their potential to achieve very high coupling strengths.  

The need for a very high Q cavity can be avoided by using semiconductors with 

high intrinsic exciton oscillator strengths such as ZnO, CdS and GaN,1, 3, 18 or organic 

materials,19 providing a logical starting point for the observation and manipulation of 

strong-coupling phenomena. Indeed, exciton-polariton formation in bulk ZnO and CdS 

crystals has been measured up to room temperature.1 However these polaritons are a bulk 

phenomenon and consequently not much attention has been devoted to manipulating their 

coupling strengths beyond bulk values, aside from some studies where only the bulk 

polariton coupling strength was recovered in large lateral cavities by placing λ/2 and 2λ 

thick active GaAs layers between DBRs.20  

Here we demonstrate the manipulation of bulk polaritons into one-dimensional 

cavity-polaritons with size-tunable enhancement of the light-matter coupling strength, 

using self-assembled, surface-passivated excitonic CdS nanowire optical waveguide 

cavities exhibiting strong lateral confinement, circumventing surface roughness and 

electronically dead layer problems associated with top-down fabricated nanocavities. We 

extract the coupling strengths from these difficult-to-access cavities by fitting a recently 
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developed one parameter (coupling strength) model that incorporates nanowire 

waveguide dispersion and exciton-polariton formation, to Fabry-Pérot modes measured 

from the nanowire end facets21, 22 that otherwise obstruct angle resolved measurements 

due to diffraction at these subwavelength apertures. Additional surface passivation23 

allows us to push the observed vacuum Rabi splitting to values of up to 200 meV in 

comparison to bulk values of 82 meV.  These results provide new avenues to achieve 

very high coupling strengths (beyond bulk) enabling application of exciting phenomena 

such as Bose-Einstein condensation of polaritons, efficient light-emitting diodes and 

lasers, optical switching, and slow-light applications, all in a subwavelength waveguide 

geometry with a small footprint that can be readily integrated into nanophotonic circuitry. 

 

7.1. Materials and Methods 

 CdS nanowire crystals were obtained using the growth and passivation conditions 

described in Chapter 5.  CdS nanowires were dispersed onto silicon oxide substrates and 

mounted with silver paint in a continuous flow optical microscopy cryostat, which was 

kept at 77 K using liquid nitrogen.  The continuous wave 457.9 nm Ar ion excitation laser 

beam was directed at one end of each nanowire.  Guided photoluminescence from the 

individual wires was collected in the same manner as described previously. 

 

7.2. Experimental Results 

In order to investigate the influence of cavity size and dimensionality on the light-

matter coupling strength in CdS crystals, single-nanowire cavities were studied by SEM 
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(Figure 7.1a).  From electron backscatter diffraction (EBSD) data (Figure 7.1a, upper 

inset), we determined that the CdS nanowires had the wurztite crystal structure with the [

0110
−

] direction (a-axis) oriented along the nanowire long axis.  The configuration of the 

optical experiments (Figure 7.1b) consists of a focused laser spot exciting one end of the 

nanowire cavity whilst detecting the spatially and spectrally-resolved emission which has 

been guided to the other end of the wire (Figure 7.1c).  Emission spectra of the guided 

emission collected at the non-excited end of the wires (Figure 7.2a, c and e, for wires 

with diameters of 260, 190 and 200 nm and lengths of 7.9, 8.1 and 2.46 µm respectively) 

show multiple intensity modulations due to longitudinal Fabry-Pérot modes caused by 

reflections at the nanowire ends.  The energetic positions of these cavity resonances were 

extracted by fitting with a series of Lorentzian line-shapes with quality factors ranging 

from 350-950 and can be used to reconstruct the energy-wavevector dispersion of the 

propagating mode by placing these peaks at integer multiples of π/L in the wavevector 

space.21  These experimental points are plotted in Figure 7.2b, d and f for the nanowires 

with diameters of 260, 190 and 200 nm respectively.  It is apparent that these 

experimentally determined dispersion curves of the propagating modes show significant 

curvature which is not expected for purely photonic modes.21   

We fitted these points to our model for the waveguide dispersion in a polaritonic 

circular cross-section step-index semiconductor waveguide22 with the transverse 

resonance frequencies of the CdS A and B excitons (at 77 K) as were determined in our 

propagation spectroscopy experiments,24 and from the corresponding PL peaks.23  For the 

260 nm diameter wire of length 7.9 µm (Figure 7.2b), an excellent fit was obtained by 
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strong coupling of the B-exciton to the fundamental HE11 guided mode using the bulk 

value of 1.4 meV for the longitudinal-transverse splitting (∆ELT),
25 a quantity which is 

proportional to the square of the oscillator strength.26  However, good fits to the HE11 

fundamental mode can only be obtained for the 190 nm x 8.1 µm and 200 nm x 2.46 µm 

(diameter x length) wires by increasing ∆ELT to 4.5 and 6 times the bulk value 

respectively.  Good fits to other higher order waveguide modes such as the TE01 and 

TM01 could not be obtained and interestingly, the dispersions show no sign of coupling to 

the CdS A-exciton.  This can be understood by considering the polarization properties of 

the involved excitons and the waveguide mode;27 due to the wurztite crystal structure and 

the a-axis along the growth direction of the nanowires, the A-exciton oscillator has no 

dipole moment along the transverse nanowire cavity directions,25 which precludes any 

coupling to the transversely polarized fundamental HE11 mode. 

 

Figure 7.1: CdS nanowire waveguide cavity and low-temperature micro-
photoluminescence experimental geometry. a) SEM picture of a CdS nanowire lying on 

the SiO2 measurement substrate. Scale bar, 1 µm.  In the top inset the electron backscatter 
diffraction pattern is shown, indicating wurtzite CdS with a unit cell orientation as shown 
in the lower inset. b) Schematic of the experimental geometry showing a nanowire laying 
on the substrate inside a cryostat at 77K. The wire is excited at the left end and only the 
wave-guided emission is collected at the right. c) Low-resolution optical micrograph of 

PL resulting from exciting the CdS nanowire from the left.  The scale bar is 2 µm. 
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Figure 7.2: Photoluminescence spectra of the guided emission and size-dependent light-
matter coupling strength. a), c), e) PL spectra of emission collected at the guided (non 

excited) ends of nanowires with diameter x length dimensions of a) 260 nm x 7.9 µm, c) 
190 nm x 8.1 µm and e) 200 nm x 2.45 µm. The spectra show multiple Fabry-Pérot 
interference peaks, caused by reflection of guided light between the nanowire ends, 

which have been fitted by Lorentzian line shapes to determine the resonance energies. b), 
d), f) Energy-wavevector dispersion in the z-direction (along nanowire length) for the 

three wires shown in panels a), c) and e). The square data points indicate the Fabry-Pérot  
maxima, which have been placed in wavevector space at integer values of π/Lz with Lz the 

nanowire length. The solid lines show the results of numerical calculations for the 
fundamental HE11 guided mode including light-matter coupling with the CdS B-exciton 

(dotted horizontal line).22 Importantly, as is shown by the arrows indicating 2×ћg, 
accurate fits could only be obtained by increasing the light-matter coupling strength 

(∆ELT) from 1x (bulk value) in panel d) to 4.5x in panel e), and to 6x in panel f). 
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7.3. Numerical mode volume calculations 

To elucidate the strong dependence of light-matter coupling on individual 

nanowire dimensions, we numerically calculated the modal volumes of the confined 

fundamental modes in our nanowire waveguide cavities using full 3D and cross-sectional 

models.  We calculated the mode volume Vm of our CdS nanowire waveguide cavities at 

the B-exciton resonance energy by numerically calculating the electric and magnetic 

fields of the purely photonic confined fundamental HE11 waveguide mode in waveguides 

with circular cross-sections laying on a SiO2 substrate, using a finite element (FE) 

method (COMSOL). Maxwell’s equations were solved for the magnetic field with 

continuous boundary conditions at the nanowire interfaces and a perfect magnetic 

conductor interface located at a distance of 10λ from the nanowire surface. The crystal 

structure was assumed to be uniaxial with the optical axis perpendicular to the length of 

the wire resulting in εx=εz= 8.27 for the in plane dimensions and εy=8.63 for the out of 

plane direction y. Since the nanowire length is much longer then the lateral dimensions 

i.e. Lz>>Lx, Ly, we can obtain the mode volume from the fields by using16: 
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with V(A) the simulation volume (area), Vwire(Awire) the actual nanowire volume (cross-

sectional area), and the maximum values taken inside the wire domain. For large 
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volumes, Equation 7.1 returns the nanowire crystal volume, whereas at smaller nanowire 

diameters Veff>V, caused by leaking of the waveguide field into the surroundings leading 

to a lower averaged field inside the nanowire. Calculated effective mode volumes were 

checked down to nanowire lengths of 2 µm by performing full three-dimensional FE and 

finite-difference time-domain (MEEP) calculations which yielded similar results. 

Figure 7.3a shows a 2D projection of the obtained 3D electric field distribution 

|E|2 for the HE11 confined mode in a 200 nm x 5 µm nanowire at λ=480 nm resulting in a 

modal volume of 0.024 µm3 (5.3 (λ/n)3) The effective mode index (black line) of the 

confined HE11 mode as well as the modal volume at a fixed nanowire length of 2 µm 

(blue line) is shown as a function of nanowire diameter in Figure 7.3b.  It can be seen that 

the mode volume steadily drops with decreasing nanowire width until the lowest mode 

volumes are reached at nanowire widths between 160 and 120 nm.  Further reduction of 

the nanowire width results in a dramatically larger mode volume which coincides with 

the effective mode index dropping to that of the SiO2 substrate (dashed line), indicating 

loss of confinement.  Cross-sectional plots of the normalized electric field in nanowires 

with diameters of 520, 250 160 and 110 nm (Figure 7.3c-f) respectively confirm that this 

increase in modal volume is caused by the loss of electric field confinement and leakage 

of the fields to the substrate.  Thus, it is expected that minimum mode volume in our 

nanowire cavities can be achieved in the diameter range of 120-160 nm, given the same 

cavity lengths. 
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Figure 7.3: Numerical mode volume calculations of CdS nanowire waveguide cavities. 
a) 2D projection of the obtained 3D electric field distribution |E|2 for the HE11 confined 
mode in a 200 nm wide and 5 µm long nanowire at λ=480 nm. b) Effective mode index 
of the fundamental HE11 mode (black line, left axis) and mode volume for a wire with a 

length of 10 µm (blue line, right axis) as a function of nanowire cavity width. As the 
nanowire width decreases, the mode volume and the effective mode index decrease until 
at a width of 120 nm the mode index attains the refractive index of SiO2 substrate (dashed 

line), which causes a dramatic increase in mode volume. c)-f) Plots of the normalized 
electric field |E|2 for nanowire diameters of  c) 520 nm, d) 250 nm e) 160 nm and f) 110 

nm, confirm that this increase in Vm is caused by loss of electric field confinement for the 
smallest cavities thus providing a lower limit on the nanowire cavity lateral dimensions. 

 

7.4. Analysis of enhanced oscillator strengths 

The results for the Rabi frequency, g, in 28 different nanowire cavities with 

diameters ranging from 130-575 nm and lengths ranging from 2.5 to 21 µm are 

summarized in Figure 7.4a, with square and circular data points for as-grown and SiO2 

surface-passivated nanowires respectively.  As the mode volume is reduced, a transition 

from a region with constant coupling strength to a region with strongly enhanced, size-

dependent coupling strength takes place.  For large modal volume cavities, the coupling 

strength remains constant at g=6.42×1013 Hz over a large range spanning from Veff = 1.15 
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to 3.5 µm3.  This is consistent with the reported bulk polariton coupling strength in CdS 

of 41 meV (Rabi splitting, 82 meV) indicated by the blue dotted line in Figure 7.4a, and 

also obtained from:26 
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=
 

Eq. 7.3 

with ω0 the CdS B-exciton resonance frequency and ωLT its bulk longitudinal-transverse 

splitting. This consistency shows the validity of our Fabry-Pérot interference based 

experimental and theoretical analysis of these nanoscale cavities. 

 As we further decrease the cavity mode volume to values smaller than 1.15 µm3 

(210(λ/n)3), the coupling strength increases dramatically until at a mode volume of 0.079 

µm3 (20(λ/n)3) the coupling strength, g, becomes 2.4 times the bulk coupling strength 

(2ћg=200 meV).  We note that for the smallest cavity sizes due to the large surface-to-

volume ratio, surface passivation is essential to preserve the excitonic nature of the 

excitations23 enabling the observation of such strongly enhanced coupling.  In this regime 

of enhanced coupling strength, the data clearly follows the aforementioned square root 

dependence of coupling strength on inverse modal volume (Figure 7.4a, red dotted line) 

which demonstrates that we are now dealing with confined cavity-polaritons.2, 13, 26   

 In order to extract the relevant oscillator strengths in our systems, we use the 

expression relating coupling strength with modal volume obtained for cavity-polaritons in 

microcavities, but with mode volume replaced by effective volume to account for the 

averaging effect of excitons not confined to positions at antinodes of the electric field:13 
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Eq. 7.4 

with ethe elementary charge, ε0 the permittivity of vacuum, εr the relative permittivity of 

8 for CdS, m0 the electron mass, n(V) the number of oscillators, f(V) their oscillator 

strength and Veff(V) the mode volume. A good fit (R2=0.949) of Equation 7.4 to the 

experimental data (Figure 7.4a, red dotted line) was obtained with effective oscillator 

strength n(V) × f(V) = 2.27 × 107 as a fit parameter.  However, to determine the actual 

oscillator strength, f, for each nanowire, it is necessary to first consider its value in the 

bulk regime.  To understand the constant coupling strength in the bulk regime, we 

propose that in this regime both n(V) and Veff(V) are directly proportional to the nanowire 

cavity volume (see Figure 7.3b) while f remains constant, resulting in a constant effective 

oscillator strength per unit volume, and hence constant coupling strength. 
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Figure 7.4: The transition from the bulk-polariton to the confined cavity-polariton 
regime.  a) Coupling strength, g, vs. mode volume for 28 nanowire waveguides with 

diameters ranging from 160-575 nm and lengths ranging from 2.45 to 21 µm. For larger 
mode volumes, the coupling strength remains constant and can be fitted by Equation 7.4 

with a constant quotient n×f/Vm (blue line).  For smaller mode volumes, the coupling 
strength g increases by up to 2.4 times which can be fitted by Equation 7.4 with n×f= 

3.06×105.  b) In the bulk polariton regime the oscillator strength per oscillator f remains 
constant whereas in the cavity-polariton regime it peaks due to the increased electric field 

amplitude and giant oscillator strength effect.  c) Group refractive index vs. energy for 
nanowires with Rabi splitting of 82 meV (bulk, dashed line), 140 meV (blue line), and 

200 meV (purple line).  The experimentally determined Fabry-Pérot peaks are indicated 
by squares.  Inset: Group refractive index obtained for a wire with 200 meV Rabi 

splitting that is cut off at the highest observed guided emission for the lower polariton 
branch (see Figure 7.2e). 

 

 The validity of this hypothesis is proven by an excellent linear fit (R2 = 0.992) to 

the values of n(V) × f(V) vs. crystal volume for the “bulk regime” data points, showing 

that the oscillator strength per oscillator remains constant in this bulk regime (see Figure 

7.5).  By extrapolating this linear relation to the volume per CdS exciton oscillator (n(V) 

= 1, Vunitcell/2 = 4.98 x 10-29 m3) a value of fbulk = 2.27 x 10-3 per B-exciton in wurtzite 



97 

 

CdS at 77 K is obtained, in excellent agreement with f = 1.94 x 10-3 in bulk CdS obtained 

from Dagenais et al.†  This result also signifies that the exciton-polariton wavefunction is 

delocalized over the entire nanowire crystal, even up to our largest volume sample 

measuring 575 nm in diameter and 13.2 µm in length. 

 

Figure 7.5: n×f for nanowires in the constant coupling strength regime plotted against 
real nanowire volume V. 

 

 In the cavity regime (Veff < 5.47 x 10-19 m3), values for the oscillator strength are 

obtained from Equation 7.4 by determining for each nanowire the value of n(V) from the 

volume, the volume per oscillator, and the corresponding values of Veff and coupling 

                                                           
† The explicit bulk oscillator strength for the B-exciton at 77K per molecule CdS can be calculated via:28 
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where EG is the band gap energy, ELT is the longitudinal-transverse splitting, εb is the background dielectric 
constant, and Ω is the volume of one CdS molecule.  Using EG=2.582 eV,29 ELT=1.4 meV,30 εb=8,31 and 
Ω=4.98*10-29 m3,28 we obtain fex=2.09*10-3. 
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strength.  The obtained oscillator strengths in the cavity regime are plotted as a function 

of Veff in Figure 7.4b, where it can be seen that for the highest coupling strength the 

oscillator strength reaches a value of 1.15 x 10-2, a sixfold enhancement over the bulk 

value.  We note that the oscillator strength values obtained here represent upper limits 

because the exciton diffusion length in CdS is more than the nanowire diameters so that 

the excitons can preferentially move to positions of high optical field,32 making it 

necessary to account for this exciton distribution by using a volume in Equation 7.4 that 

lies in between the mode volume that would be used for oscillators at the antinodes of the 

optical field and the effective volume as used in this paper for a spatially averaged field 

(see Figure 7.3b). 

 Enhancement of exciton oscillator strengths is known to occur in semiconductor 

crystals when several oscillators coherently combine into one larger dipole with 

quadratically higher strength, mediated by coupling to the same optical mode.33  The 

oscillator strength enhancement has an optimum value at intermediate crystal dimensions 

approximately equal to the wavelength of light in the material (~170 nm for CdS) due to 

the optimization of the number of oscillators constructively contributing to the dipole.34, 

35  Therefore, we assign the observed enhanced oscillator strength in nanowires to such a 

polaritonic effect, where the crystal sizes are in between the quantum-confined and 

macroscopic regimes.  We must also stress that our cavity dimensions are two orders of 

magnitude larger than those where quantum confinement effects in CdS arise, excluding 

these effects as the source of the enhanced oscillator strength and strong light-matter 

coupling. 
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 We propose that the remarkable enhancement of light-matter coupling strength in 

these nanowire cavities is the result of two complementary processes; firstly, the 

reduction of modal volume directly results in increased coupling by increasing the 

electromagnetic energy density in the cavity, analogous to microcavities (Equation 7.4). 

This is corroborated by our experimental observation that shorter wires display higher 

coupling strength for a fixed diameter. Secondly, the formation of a coherent dipole with 

giant oscillator strength contributes strongly to the enhanced coupling strength at smaller 

modal volumes since in this regime the nanowire diameter approaches the optimum 

dipole size of ~100 nm for maximum oscillator strength. Although, we did not find an 

expected maximum in the coupling strength due the significant evanescent field 

intensities for nanowire diameters smaller than ~120 nm (see Figure 7.3) precluding 

observation of Fabry-Pérot modes required for our analysis, our cavities provide an 

excellent natural match between minimal modal volume and maximal oscillator strength, 

resulting in the observed exceptional strong light-matter coupling. 

Due to the increased coupling strengths, the group refractive index of the 

nanowires also increases dramatically, as shown in Figure 7.4c. The maximum group 

index enhancement for light that made at least a round trip in the cavity (Fabry-Pérot 

peaks) is sixfold when compared to the bulk group index (Figure 7.4c) and hundred- fold 

when compared to the light line in CdS, which occurs when there are no excitons present. 

The group index of light corresponding to the lower-polariton branch that traveled along 

the entire length of the nanowire (Figure 7.4c, inset) can even reach values three orders of 

magnitude larger than in the purely photonic case, although the propagation distance is 

small due to large damping (i.e. absence of Fabry-Pérot modes). This demonstrates that 
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the size-dependent strong-coupling can be used to tune the signal velocity over a wide 

range in nanowire waveguides and illustrates the importance of tunable light-matter 

coupling strength for slow-light applications such as switching and sensing.10 
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Chapter 8. All-Optical Active Switching in Individual Semiconductor Nanowires 

Submitted for publication in Nature Nanotechnology. 

Self-assembled, single-crystalline semiconductor nanowires have the ability to 

fulfill a number of roles relevant to nanophotonic applications: lasers,1 electro-optic 

modulators,2 waveguides3, 4 and photodetectors,5 all of which have been demonstrated. 

However, one key application which has not yet been demonstrated in semiconductor 

nanowires is all-optical active switching, an equally important tool relevant to photonic 

routing,6 modulation,7 and processing.  Footprints smaller than comparable silicon-based 

devices8 and low propagation losses with respect to plasmonic nanowires9 position 

semiconductor nanowires as unique systems towards attainment of all-optical light 

manipulation on a technologically relevant dimensional scale. Nanowires from direct 

bandgap semiconductors such as ZnO, GaN, CdS and CdSe in particular are attractive for 

their wide range of bandgap energies as well as potential for both tunable electric field 

confinement and strong coupling between electron-hole pairs (excitons) to the light 

field10 due to the high oscillator transition strength and exciton stability to room 

temperature.11 In this work, we exploit the highly nonlinear scattering behavior12 of 

exciton-polaritons, to demonstrate reliable all optical active switch in single CdS 

nanowires by realizing a new device architecture and extend the concept to configure a 

NAND logic gate.  Unlike switches fabricated from weakly coupled systems, which 

require large quality factor (>104) cavities and utilize changes in refractive index 

achieved with high excitation intensities,8-10 our nanowires do not rely on cavity quality, 
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nor do they require the high intensities necessary for the large refractive index changes 

under other forms of conventional optical bistability in active materials.13 

8.1. Experimental setup 

One of the biggest challenges to realize a nanowire-based optical switch is to be 

able to couple a suitable probe light into a nanowire waveguide. An ideal probe light 

should be bright with very narrow bandwidth, and most importantly, wavevector matched 

to the nanowire switch growth axis (kz) for maximum in-plane coupling to the waveguide 

mode. Due to the wavevector mismatch for direct coupling of a free-space laser into a 

nanoscale waveguide in addition to large in-coupling losses at the length scales involved, 

it is not trivial to couple the probe beam in individual nanowires. In order to overcome 

this obstacle we developed a unique design utilizing a nanometer scale gap etched in a 

nanowire optical waveguide (Figure 8.1a) grown and passivated under the same 

conditions outlined in Chapter 5, which serves the critical functions of structurally 

isolating two optical waveguides while providing efficient optical coupling between them 

to inject the probe light generated by one segment into another via butt coupling. Such an 

arrangement requires perfectly aligned nanowire waveguides, which we achieved by 

“cutting” a small nanoscale region from a single nanowire optical waveguide (5 to 460 

nm gaps) using the Ga+ source of a FEI Strata DB235 electron/focused Ga+ dual beam 

microscope (Figure 8.1a).  Nanowires were centered at 20000x magnification using a 5 

kV electron beam, tilted such that their growth axes were perpendicular to the ion source, 

and cut with 10 to 30 pA Ga+ beam current with nominal milling parameters (dwell time 

1 µs, overlap ranging from 40 to 60%) to achieve control over the gap size.  Sample 

damage was minimal and not found to significantly affect photoluminescence properties. 
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Figure 8.1: Creation of on-chip laser light sources for optical switching. a) Illustration of 
the switching device concept with a single CdS nanowire cut in two with a focused Ga 

ion beam, resulting in two nanowires of identical diameters aligned end-to-end, 
structurally isolated from one another and separated by a distance of 5 to 500 nm. A 
frequency-doubled Ti:Sapphire laser at 458 nm is used to optically pump the upper 

portion to lasing conditions; the resultant on-chip laser light emitted by the nanowire is 
then transmitted through the gap and waveguided to the bottom end facet. b) True color 

optical microscope image of a 10.9 µm long, 205 nm diameter CdS nanowire device at 77 
K under the conditions explained in a). Note strong interference fringes emanating from 
both portions of the nanowire indicate successful transmission of laser light across the 
160 nm wide ion-milled gap. Inset: SEM micrograph of the nanowire device. c) and d) 

Photoluminescence spectra collected using a position-sensitive photodectector positioned 
at the top (c) and bottom (d) end facets. Aside from minor changes due to Fabry-Pérot 

resonances in the lower portion and attenuation of short wavelengths, the two spectra are 
similar and the laser peak at 2.510 eV remains intact. 

 

Following ion milling, substrates were then moved to a cryostat held at 77 K and 

one half of each “cut” nanowire was optically pumped to lasing conditions using a 

frequency-doubled pulsed Ti:Sapphire laser focused to a Gaussian spot size smaller than 

the nanowire segment (see Figure 2.2 and Figure 8.1b). The spectral output of the lasing 

portion (Figure 8.1c), shows laser peaks attributed to exciton-exciton scattering (Figure 

8.2).1 This on-chip laser output traversed the nanoscale gap and was waveguided through 
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the lower portion to the bottom nanowire end facet, resulting in a spectral output profile 

(Figure 8.1d) very similar to that of the input, and most importantly, maintaining the 

integrity of the most intense laser peak, thus satisfying all the required attributes of a 

“probe” for switching experiments. 

 

Figure 8.2: a) PL spectrum collected from nanowire end facet at 4.1 K showing laser 
emission at 2.527 eV, consistent with known literature values for exciton-exciton lasing 
in CdS nanowires.1  b) SEM image of measured SiO2-passivated CdS nanowire, 210 nm 

in diameter and 4.4 µm long. 

 

8.2. Results 

With a suitable probe light source in place, we then tested the feasibility of all-

optical switching in individual nanowires (Figure 8.3a). With the upper portion 

continuously emitting probe light, a continuous wave Ar+ laser at 2.708 eV was focused 

to a Gaussian spot of width ~1 µm on the center of the lower portion (structurally 

unconnected to the on-chip nanowire laser). The Ar+ laser was repeatedly turned on and 

off while monitoring the output of the transmitted probe signal by collecting emission 

from the bottom end facet. The result of one such experiment for a nanowire with a 5 nm 

gap is shown in Figure 8.3b. As seen in the cascade plot, the on-chip laser continuously 
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emitted, and transmitted to the switch, a single laser peak centered at 2.510 eV. At t=3 s, 

380 µW of Ar+ laser power was applied, causing an immediate drop in transmitted laser 

intensity (the sharp peak corresponding to exciton-exciton scattering at 2.510 eV is 

completely extinguished) and instead only showing a much broader peak centered at 

2.514 eV primarily attributed to CdS photoluminescence produced from the Ar+ 

excitation waveguided to the end facet. Turning the Ar+ laser off resulted in a complete 

restoration of on chip laser transmission (probe light), and the cycle was repeated five 

times to demonstrate repeatability. Both peaks were tracked as a function of time (Figure 

8.3b, inset), showing an on/off ratio of approximately 5:1 for the transmitted laser peak. It 

should be noted that this is merely the measured ratio at 2.510 eV, and the actual 

switching capability is much higher: output collected when the Ar+ laser is turned on is 

actually a nonlinear, overlapping combination of both the incoming probe light and local 

CdS photoluminescence excited by the Ar+ laser, so a true ratio would take this into 

consideration and subtract out local photoluminescence. It should also be noted that the 

time scale of this demonstration is not meant to indicate the speed of the switching 

mechanism, as the sample geometry renders such measurements extremely difficult.  

Sufficiently high-frequency modulation of the system is not possible due to the low 

photon counts which would be result.  To determine any possible influence of near-field 

coupling between the cavities and rule out the possibility of the Ar+ laser affecting the 

operation of the nanowire laser probe source itself, the experiment was successfully 

repeated for multiple nanowires with cuts as wide as 460 nm (Figure 8.3c). Results for 

the largest cut width are shown in Figure 8.3c and Figure 8.3d, demonstrating relative 

indifference of the switching efficiency towards distance from the probe source. 
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Figure 8.3: All optical active switching in CdS nanowires. a) Schematic of all-optical 
switching experimental setup. As in Figure 8.1a), on-chip laser light is generated in the 

top portion and transmitted across an ion-milled gap. An Ar+ laser at 457.9 nm is focused 
on the center of the bottom portion and turned on and off while the position-sensitive 

photodetector remains fixed on the bottom facet, collecting spectra once every 30 ms. b) 
Cascaded plot of the spectra collected from the bottom facet of a 13.2 µm long, 190 nm 
diameter nanowire device with a 5 nm gap as a function of time. At t=0 s, only the on-

chip laser is on. Ar+ laser (380 µW of power) is turned on at 3s and turned off at 6s, and 
this process is repeated. Left inset: Cross-section of the waterfall plot, tracking the laser 
peak intensities at 2.509 and 2.514 eV. Right inset: SEM micrographs of the nanowire 
device with a 5 nm gap. c) Left: SEM micrograph of a 9.9 µm long, 205 nm diameter 

nanowire switching device with a 460 nm gap. Right: true color optical image of the top 
portion of the nanowire device being optically pumped to lasing at 77 K. d) Cross-

sectional plot for the above nanowire device under an applied pump power of 165 µW 
(Ar+ laser to the bottom portion), tracking the laser peak intensities at 2.513 and 2.508 

eV and demonstrating switching phenomena.  Minor variations in detected nanowire laser 
intensity over the duration of each experiment are observable due to vibrations of the 

optical setup. 

 

8.3. Analysis of Switching Mechanisms 

Physical phenomena with the potential for actuating all-optical switching are well 

documented for large CdS platelets:13 among those relevant to the pump-probe geometry 

are induced absorption, whereby an absorptive spectral feature is redshifted onto the 

probe, and dispersive bistability, whereby cavity maxima and minima are tuned to switch 
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between transmissive and absorptive states, respectively.  Induced absorption was ruled 

out in our nanowires by tracking the A and B free exciton resonances as a function of 

applied pump power (Figure 8.4).  Had bandgap renormalization or significant nanowire 

heating occurred at higher applied pump power intensities, the transverse A- and B- free 

exciton resonances would redshift, potentially inducing absorption due to significant 

propagation losses documented3 on resonance.  Nanowires which exhibited emission of 

free exciton peaks did not show any exciton resonance shifts to indicate renormalization 

or heating at high excitation intensities. 

 

Figure 8.4: Photoluminescence collected from the center of a 200 nm diameter, 7.5 µm-
long surface passivated CdS nanowire held at 77K under applied pump powers of 445, 
95, and < 1 µW.  Dotted lines at 2.544 and 2.559 eV show literature values14 for A- and 
B- free exciton resonances in CdS at 77K, respectively.  The exciton resonances do not 

shift in energy with respect to applied pump power, ruling out induced absorption due to 
either bandgap renormalization or heating as a possible switch mechanism. 
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Dispersive bistability as a switching mechanism was ruled out by observing probe 

beam indifference towards shifting cavity resonances.  The intense probe light was shown 

indifferent to relatively low Q-factor (< 500) Fabry-Pérot maxima and minima within the 

switch cavities, and light-matter coupling as determined from numerically calculated15 

waveguide dispersion relations only increased up the highest intensities used, indicating 

that nanowires remained in the strong-coupling regime upon application of the Ar+ pump 

laser.  Figure 8.5 demonstrates this for the nanowire presented in Figure 8.3c.  Intrinsic 

nanowire longitudinal Fabry-Pérot-type cavity resonances are first revealed in the 

collected photoluminescence spectrum (Figure 8.5a, red line) upon application of a low-

intensity pump beam (used to approximate cavity conditions with no applied pump).  

Individual cavity resonances redshift upon application of a 165 µW pump (Figure 8.5a, 

blue line) due to an increase in excited carrier density.10  The incoming probe (Figure 

8.5a, black line) traverses the switch at a cavity minimum with no applied pump, and a 

cavity maximum when the pump is turned on, meaning that cavity effects would dictate 

an enhancement in probe intensity upon application of the pump.  The dramatic de-

enhancement presented in Figure 8.3d shows this is not the case, and cavity-based 

switching is therefore ruled out as a potential mechanism. 
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Figure 8.5: a) Photoluminescence spectra collected from bottommost facet of the 
nanowire discussed in Figure 8.3c.  Spectra showing emission from application of < 1 
µW and 165 µW pump power are shown in red and blue, respectively, to highlight the 
spectral position of longitudinal Fabry-Pérot cavity4 resonances with respect to applied 
pump power.  The spectrum of the probe light with no applied pump is shown in black. 
At low applied pump power, the probe is traversing a cavity minimum, while at high 
applied pump power, cavity resonances redshift, meaning the probe beam must now 

traverse a cavity maximum. Had cavity effects dominated switch behavior, amplification, 
rather than the de-amplification exhibited in Figure 8.3d, would occur upon application of 
the 165 µW pump.  b) Experimental dispersions4 for < 1 µW and 165 µW applied pump 
power shown in red and blue, respectively, plotted alongside numerically calculated15 
dispersions (solid black lines) for each as well as the energy level of the probe (dotted 

black line).  An increase in longitudinal-transverse B-exciton resonance splitting (∆ELT) 
from 5.4x to 6x bulk CdS values due to an increase in excited carrier density with 

increasing applied pump power10 causes a slight redshift in individual cavity resonances. 

 

In evaluating remaining potential mechanisms for the observed switching in CdS 

nanowires, we note that in all our measurements switching occurred only between 2.482 

and 2.531 eV, well within the 77 K CdS exciton-polariton thermalization bottleneck 

regime16 where light is of mixed photonic and excitonic character (polariton formation)10 

and relaxation to lower momentum states is hindered when exciton-photon coupling is 

strong due to the small density of available states.17, 18 A collapse of this bottleneck and 

fast relaxation into lower momentum states is possible, however, in the low-density, 
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strong-coupling regime via stimulated polariton-polariton scattering19-21 by an applied 

probe beam to a final state where light is more photonic in character. Though 

enhancement from a spectrally well-defined pump resonant with the exciton-polariton 

bottleneck reservoir is a common focus of stimulated scattering literature, direct 

observation of initial state depopulation22 as well as scattering from nonresonant pump 

excitation into a broad distribution of final state momentums23 have also been reported.  

Figure 8.6a shows a nanowire with 40 nm-wide cut, as well as optical images of the 

upper portion lasing under Ti:Sapphire excitation and the lower portion emitting 

photoluminescence under focused Ar+ excitation (Ti:Sapphire pumping off). Spectra 

collected from the bottom end facet are shown for each case in Figure 8.6b and Figure 

8.6c, respectively, and the experimental waveguide dispersion for the lower portion as 

culled from the Fabry-Pérot peaks4 in Figure 8.6c is plotted alongside the numerically-

calculated fundamental mode dispersion.15 As shown in Figure 8.6c, the addition of the 

Ar+ laser not only creates additional polaritons at the same momentum as the dominant 

laser peak at 2.505 eV, but also partially occupies many final states over the momentum 

range kz = 2.1 x 107 to 2.5 x 107 m-1. We believe scattering of the primary laser peak to 

lower momentum values (kz), as can be seen (Figure 8.6e) by the simultaneous de-

enhancement of the primary (2.505 eV) and enhancement of the secondary laser peaks at 

2.497 eV upon the application of increasing Ar+ laser power (up to 450 µW) to be the 

mechanism of the observed switching phenomena in CdS nanowires. Other lower-

momentum emission is also enhanced slightly, but preexisting state occupancy at the 

secondary peak momentum is higher and is likely the preferred final state18 as a result. 

The power dependence of integrated peak intensity loss is also nonlinear (Figure 8.6f), 
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further suggesting stimulated scattering of polaritons is responsible for the observed 

switching in nanowires.22 Because scattering occurs only where the Ar+ laser pump is 

focused, the interaction volume responsible for switching is extremely small (~0.015 

µm3) and presents the limit on the miniaturization of nanowire switches. 

 

Figure 8.6: Mechanism of switching phenomena.  a) SEM micrograph of a 31 µm long, 
140 nm diameter nanowire device with a 40 nm gap. Top inset: Optical image of the 

device showing the top portion being optically pumped to lasing conditions at 77 K by a 
Ti:Sapph laser. Bottom inset: Optical image showing the bottom portion under focused 
Ar+ excitation at 77 K (Ti:Sapph laser is off). b) and c) Photoluminescence collected 
from the bottom end facet under Ti:Sapph and only Ar+ excitation, respectively. d) 

Numerically calculated15 dispersion (black line) of the switching portion (cavity length 
13 µm), showing enhanced (3.1 times bulk CdS) light-matter coupling strength (∆ELT) for 
the nanowire,10 as determined from the Fabry-Pérot resonances (red squares) in c). The 

2.505 eV laser peak from b) is indicated with a blue arrow and the 2.497 eV laser peak is 
indicated with an orange arrow. e) Spectra collected from the bottom end facet of the 

switch with the nanowire aser emitting, and the bottom portion under 140, 245, and 445 
µW applied Ar+ pump power.  The 2.497 eV peak (orange line) is enhanced, while the 

2.505 eV peak (blue line) is de-enhanced.  f) Integrated intensity of both peaks plotted as 
a function of applied Ar+ power. Nonlinear de-enhancement of the 2.505 eV peak is 
observed simultaneously with the enhancement of the 2.497 eV peak, implicating a 

polariton scattering mechanism for the observed switching phenomena. 
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In order to demonstrate the utility of our devices in an optical processing context, 

we utilized the nanometer-scale gaps to create a working NAND logic gate (Figure 8.7) 

with functional completeness. Here, the outputs from the two nanowire switches are 

combined via evanescent coupling. The Ti:Sapphire laser simultaneously pumps both the 

segments to lasing and is continuously left on, creating two on-chip laser sources with the 

right laser cavity (“Laser 2”) emitting a primary peak centered at 2.499 eV, and the left 

laser cavity (“Laser 1”) outputting a primary peak centered at 2.511 eV. With no Ar+ 

pumps applied to the switch portions, this corresponds to the (0 0 1) logic condition.†  

When the Ar+ laser is focused on the right switch (“Input 2”) this stops transmission 

from Laser 2 and results in the red spectrum shown in Figure 8.7c, corresponding to the 

(0 1 1) logic condition. The reverse holds true and produces a (1 0 1) condition in Figure 

8.7d, while centering the Ar laser spot directly between Inputs 1 and 2 (Figure 8.7e) 

results in cutting off nearly all transmission, corresponding to the 1 1 0 condition. The 

initial (0 0 1) condition differing slightly in Figure 8.7c-e (shown in black) is a result of 

system vibrations and reflects only instabilities inherent to the pinpoint optical pumping 

of Lasers 1 and 2 under an open-flow cryostat: the switching process itself is stable. 

                                                           
† The nanowire device in Figure 8.7 follows NAND gate logic.  Each switch is 
considered “ON” (1) when the argon ion laser is on, and “OFF” (0) when the argon ion 
laser is off.  Output states are considered “ON” (1) when the integrated intensity drop 
over the range of both laser peaks is less than 66%, and “OFF” (0) when the drop is 
greater than 83%. 
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Figure 8.7: All optical nanowire NAND gate. a) Schematic of an all-optical nanowire 
NAND gate. The design requires two on-chip laser sources and two nanowire switches 

with their outputs combined through evanescent coupling in a waveguide. With no 
applied Ar+ pump, this illustration corresponds to the 0 0 1 logic condition. b) SEM 

micrograph of all-optical nanowire NAND gate device. c-e) Spectra collected from the 
output, illustrating the 0 0 1 (black) and 0 1 1 (red) (c), 0 0 1 (black) and 1 0 1 (red) d), 
and 0 0 1 (black) and 1 1 0 (red) e) logic conditions upon the application of 1 mW Ar+ 

power to each switch. Minor differences between the three initial (0 0 1) logic spectra are 
due to optical table vibrations. 

 

In summary, we have demonstrated on-chip all-optical switching using individual 

CdS nanowires and leveraged the concept into a working all-optical, semiconductor 

nanowire NAND gate. We believe stimulated scattering of exciton-polaritons to be the 

most likely physical mechanism for the observed active switching phenomena. Reduced 

effective mode volumes, and therefore increased electromagnetic energy density, from 
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strong dielectric confinement in the radial direction10 allow for the onset of nonlinear 

optical phenomena at low powers in nanowire structures.  The nanowire geometry and 

our unique experimental configuration have thereby enabled observation of this strong 

optical nonlinearity, occurring on a length scale facilitative of high device densities. The 

study underscores the potential of strong light-matter coupling in compound 

semiconductor nanostructures as well as the importance of continued research alongside 

their easily integrated yet weakly-interacting silicon counterparts. 
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Chapter 9. Future Work 

 Though much progress has been made in the quantification of light-matter 

coupling strength, and the transition from three-dimensional bulk to one-dimensional 

cavity polaritons has been observed in a solid state system for the first time, there is still 

room for improvement in the theoretical modeling of active semiconductor nanowire 

waveguides.  In “Model of Fabry-Pérot-type electromagnetic modes in a cylindrical 

nanowire,”1 Bordo improved upon our models by treating nanowires as finite dielectric 

cylinders dielectric when solving Maxwell’s equations.  In doing so, the Bordo model 

includes effects induced from electromagnetic fields originating at nanowire end facets, 

resulting in a wavelength-dependent “effective phase shift” for reflection of waveguided 

modes not taken into account in our infinite cylinder treatment.  This more rigorous 

treatment could be combined with the dielectric function detailed in Chapter 6 for a more 

complete model of active nanowire waveguides and used to revisit our previous results, 

though the minor corrections to absolute wavevector predicted to occur when 

incorporating finite length effects in nanowires of our high length-to-diameter ratios may 

not be worth the significant additional computational overhead at present. 

 There are few experiments imaginable which would significantly benefit from the 

slight improvements offered by Bordo’s treatment; however, one which may be worth 

investigating involves the use of near-field scanning microscopy (NSOM).  The 20-nm 

lateral resolution2 made possible by exploiting the properties of evanescent waves close 

to a sample surface could allow for direct imaging of standing waves within individual 

nanowires, potentially aiding in experimental determination of absolute wavevectors (as 
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opposed to the “relative” wavevectors currently measured using the far-field Fabry-Pérot 

method) by iterating well-defined injected wavelengths and counting the number of 

maxima present in the resultant NSOM images.  Comparing the obtained absolute 

experimental wavevectors to the Bordo model may well aid in revealing any remaining 

deficiencies in the theory.  Attempts at evaluating the feasibility of this method were 

hampered by a limited range of available input wavelengths, but plans for ultimately 

attaching the frequency-doubled Ti:Sapph laser to the NSOM could allow for this in the 

future.  In addition to utilizing NSOM for analysis, the nanowires themselves could 

potentially be used in a type of novel NSOM probe.  In analogue to carbon nanotubes 

used as atomic force microscope (AFM) probes,3 active semiconductor nanowire 

waveguides attached to pulled-fiber NSOM probes could allow for enhanced spatial 

resolution in the transparent regime owed to their extremely high aspect ratios.  

Techniques for constructing such probes have been described elsewhere,4 placing the idea 

in the realm of plausibility. 

 In regards to other applications, the most logical step after demonstrating all-

optical switching via successful light transmission across ion-milled gaps is utilizing 

them in some other context.  Our unpublished results on the size-dependence of 

transmission across gaps as a function of ion beam cut width (Figure 9.1) show that 

transmission is very sensitive to minor variations in distance between source and 

detector, and this sensitivity could potentially be exploited.  Introduction of a gas, 

analyte, or biological sample of interest between source and detector could alter 

transmission intensity through either a change in refractive index or scattering, while 

continuous monitoring of the waveguided output would allow for detection.  Converting 



the emitting half into an LED and the receiving half into a photodetector could 

the device from the confines of a far

see deployment in 

Figure 9.
facet of a nanowire, while a position

resulting optical image
after a FIB cut is made in the nanowire, and again after further enlarging the cut width. 

SEM image of a 9.8 µm long, 345 nm wide ZnSe nanowire. 
scans of the nano

and a 29 nm cut. After the first incision is made, light begins to escape from the cut, 
reducing the total light intensity waveguided 

waveguided i

 

 The ion milling process is 

creation due to its severe speed limitations in comparison with the massively parallel 

processes used in 

damage caused by even a well

the emitting half into an LED and the receiving half into a photodetector could 

the device from the confines of a far-field micro

see deployment in real-world applications. 

.1: a) Scanning detection experiment setup. A laser spot is focused on one end 
facet of a nanowire, while a position-sensitive photodetector is scanned through the 

resulting optical image, resulting in the images shown in c). The experiment is repeated 
after a FIB cut is made in the nanowire, and again after further enlarging the cut width. 

SEM image of a 9.8 µm long, 345 nm wide ZnSe nanowire. 
scans of the nanowire in b), excited at the top end facet, shown with no cut, a 25 nm cut, 

and a 29 nm cut. After the first incision is made, light begins to escape from the cut, 
reducing the total light intensity waveguided 

waveguided intensity is further reduced after enlarging the gap to 29 nm.

he ion milling process is primarily useful only in prototype nanowire device 

creation due to its severe speed limitations in comparison with the massively parallel 

processes used in commercial integrated circuit manufacture

damage caused by even a well-focused ion 

 

the emitting half into an LED and the receiving half into a photodetector could 

field micro-photoluminescence setup and potentially 

Scanning detection experiment setup. A laser spot is focused on one end 
sensitive photodetector is scanned through the 

, resulting in the images shown in c). The experiment is repeated 
after a FIB cut is made in the nanowire, and again after further enlarging the cut width. 

SEM image of a 9.8 µm long, 345 nm wide ZnSe nanowire. c) Panchromatic detector 
wire in b), excited at the top end facet, shown with no cut, a 25 nm cut, 

and a 29 nm cut. After the first incision is made, light begins to escape from the cut, 
reducing the total light intensity waveguided to the bottom end facet.  The total 

ntensity is further reduced after enlarging the gap to 29 nm.

primarily useful only in prototype nanowire device 

creation due to its severe speed limitations in comparison with the massively parallel 

commercial integrated circuit manufacture and substantial 

focused ion beam.   As shown in Figure 9.2

121 

the emitting half into an LED and the receiving half into a photodetector could also free 

and potentially 

 

Scanning detection experiment setup. A laser spot is focused on one end 
sensitive photodetector is scanned through the 

, resulting in the images shown in c). The experiment is repeated 
after a FIB cut is made in the nanowire, and again after further enlarging the cut width. b) 

Panchromatic detector 
wire in b), excited at the top end facet, shown with no cut, a 25 nm cut, 

and a 29 nm cut. After the first incision is made, light begins to escape from the cut, 
to the bottom end facet.  The total 

ntensity is further reduced after enlarging the gap to 29 nm. 

primarily useful only in prototype nanowire device 

creation due to its severe speed limitations in comparison with the massively parallel 

substantial peripheral 

9.2, preliminary 



122 

 

attempts at healing damage through annealing show promise, but further experimentation 

is necessary to optimize the healing process.  Such optimization would likely find use in 

healing nanostructures following other, similarly damaging, top-down modifications, 

potentially making this a worthwhile pursuit concurrent with construction of future 

devices. 

 

Figure 9.2: a) SEM image of CdS nanowire cut using a focused beam of gallium ions.  
Contrast has been artificially enhanced to accentuate the thin ~30 nm cuts.  b) Real color 

optical image of the nanowire under diffuse, super-bandgap excitation.  c) Real color 
optical image of the nanowire under the same excitation conditions after annealing under 
vacuum at 527 K for five hours.  Scale bar in a) is 2 µm and common to all three images, 

which are aligned horizontally. 

 

 In addition to annealing, there are a number of potential avenues for future work 

similarly under the umbrella of more traditional materials science.  The two materials 

grown during the course of this dissertation and the surface passivation techniques 

invoked hardly cover the range of what is possible using the existing experimental 

framework.  With its bandgap of 3.37 eV at room temperature and exciton binding energy 

60 meV,5 ZnO is an obvious choice for further study, as its excitons are stable well 
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beyond room temperature and non-toxicity could aid in gaining approval for commercial 

applications.  Aside from merely altering the material of the nanowire core, however, 

changes during growth could result in branched structures,6 superlattice structures,7 or 

core-multishell structures,8 among other variations.  Recent advances in superlattice 

growth are particularly interesting from an application standpoint, as single quantum dots 

grown along the nanowire length have allowed for both photon emission9 and detection.10  

One can envision that with better control over dot placement, interaction with 

longitudinal Fabry-Pérot modes through placement at a cavity maximum could give rise 

to significant enhancement of the chosen wavelength via the Purcell effect.11  Selective 

enhancement or suppression of chosen wavelengths should also be attainable through 

distributed Bragg reflectors built using controlled superlattice growth, though again, the 

accuracy and precision required of such a structure likely lie beyond the capabilities of 

the techniques currently used. 
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Chapter 10. Conclusions 

 Explicit quantification of light-matter coupling strength in individual nanowires 

was not possible before the development of the tools presented in this dissertation.  

Beginning with the measurements of ZnSe nanowires in Chapter 3, we demonstrated 

strong size-dependent optical dispersions and group velocities.  Using Fabry-Pérot 

resonances observed in micro-photoluminescence measurements, experimental energy-

wavevector dispersion relations were determined from individual nanowires.  The early 

theoretical model presented here, treating the nanowires as dielectric cylinders using an 

empirical approximation of the bulk refractive index from literature values, provided an 

adequate baseline for comparison in the transparent spectral region to show 

dispersionless guiding and slowed light close to electronic resonances. 

 With an experimental technique for evaluating optical properties of individual 

nanowires established, computer control over the excitation spot position was used to 

obtain propagation loss spectra, containing information from waveguide loss, loss to the 

substrate, and absorption within CdS.  The method was found to significantly enhance the 

usable spectral range of conventional photoluminescence and again confirm the presence 

of exciton-polaritons in our nanowires.  Peak positions were used to determine exact 

transverse exciton resonance frequencies, an important parameter for accurate dispersion 

modeling. 

 Following the development of surface passivation techniques, the waveguide 

dispersion model was refined to explicitly include interacting exciton resonances in the 

dielectric function.  This modification to our earlier model is necessary to accurately 
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describe the experimentally observed dispersion of confined waveguide modes in active 

materials.  Using the transverse exciton resonances determined from propagation loss 

spectroscopy, the numerical model was fit to experimental data using the longitudinal-

transverse exciton splitting as a fitting parameter, again showing significant enhancement 

with regards to bulk material and paving the way for explicit quantification of the exciton 

transition oscillator strength. 

With an accurate model in hand, we observed, for the first time, the transition 

from three-dimensional bulk exciton-polaritons to one-dimensional cavity-polaritons by 

reducing the cavity size, mostly by lateral optical confinement using CdS nanowire 

waveguides. The squeezing of the polaritons results in a drastic increase of the light-

matter coupling strength, much beyond the bulk values, which we attribute to the superior 

surface properties, increased electric-field intensity inside the small mode volume 

cavities and matching the size of our cavities with the maximum coherent dipole length 

scale resulting in giant oscillator strength effects. Besides increasing the robustness of 

strong light-matter coupling for high carrier concentration applications such as polariton 

lasing and condensation, and a dramatic increase of the phase shift for optical bistability-

based switching applications, the large coupling enhancement also reduces the signal 

group velocity by more than three orders of magnitude in comparison to the speed in 

vacuum. 

Using the knowledge gleaned from all previous studies, we took advantage of the 

enhanced oscillator strength to demonstrate an application, in the form of all-optical 

switching.  Probe light was injected into a switch using novel on-chip laser source, and 
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light was found to switch due to a stimulated polarition scattering mechanism.  The 

output from multiple switches was combined to form an all-optical NAND gate, 

demonstrating the first such device to be constructed from nanowires. 

The discoveries made during the course of this work have contributed to a small 

but significant step forward in understanding light-matter interaction within 

semiconductor nanostructures.  It is hoped that the knowledge gained here will allow for 

further studies into this rich field, and perhaps lead to practical applications taking 

advantage of the unique properties made possible by the nanowire morphology.  

Regardless of impact, what was previously unknown is now slightly less so; this alone 

has motivated the work, and stands as an objective demonstration of its success. 
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