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covariates, (ii) the IV affects outcomes only by altering the treatment, the so-called ``exclusion restriction".
These two assumptions are often said to be untestable; however, that is untrue if testable means checking the
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ABSTRACT

CAUSAL INFERENCE METHODS FOR ADDRESSING CENSORING BY

DEATH AND UNMEASURED CONFOUNDING USING INSTRUMENTAL

VARIABLES

Fan Yang

Dylan Small, Edward George

This thesis considers three problems in causal inference. First, for the censoring

by death problem, we propose a set of ranked average score assumptions making use

of survival information both before and after the measurement of a non-mortality

outcome to tighten the bounds on the survivor average causal effect (SACE) ob-

tained in the previous literature that utilized survival information only before the

measurement. We apply our method to a randomized trial study of the effect of

mechanical ventilation with lower tidal volume vs. traditional tidal volume for

acute lung injury patients. Our bounds on the SACE are much shorter than the

bounds obtained using only the survival information before the measurement of the

non-mortality outcome. Second, for the IV method with nonignorable missing co-

variates problem, we develop a method to estimate the causal effect of a treatment

in observational studies using an IV when there are nonignorable missing covari-

ates, i.e., missingness depending on the partially observed compliance class besides

the fully observed outcome, covariates and IV. We apply our method to a motivat-
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ing study in neonatal care to study the effectiveness of high level compared to low

level NICUs. Third, besides the association with the treatment, there are two key

assumptions for the IV to be valid: (i) the IV is essentially random conditioning

on observed covariates, (ii) the IV affects outcomes only by altering the treatment,

the so-called “exclusion restriction”. These two assumptions are often said to be

untestable; however, that is untrue if testable means checking the compatibility of

assumptions with other things we think we know. A test of this sort may result in

an aporia. We discuss this subject in the context of our on-going study of the effects

of delivery by cesarean section on the survival of extremely premature infants of

23-24 weeks gestational age.

v



Contents

1 Introduction 1

2 Two-stage Censoring by Death 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Notation and Assumptions: Randomized Experiment with Perfect

Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Derivations of Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Bounds for proportions of each stratum . . . . . . . . . . . . 21

2.3.2 Bounds for the SACE . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Extension to IV settings . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Derivations of Bounds . . . . . . . . . . . . . . . . . . . . . 34

vi



2.5 Checking the plausibility of ranked average score with two stage sur-

vival assumptions and exclusion restriction assumptions . . . . . . . 38

2.6 Confidence Intervals for Bounds . . . . . . . . . . . . . . . . . . . . 40

2.7 Application to ARDSNet Study . . . . . . . . . . . . . . . . . . . . 42

2.8 Conclusions and Discussions . . . . . . . . . . . . . . . . . . . . . . 45

3 IV with Nonignorable Missing Covariates 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Effect of type of delivery NICUs on premature infants . . . . 48

3.1.2 Instrumental variable approach . . . . . . . . . . . . . . . . 51

3.1.3 Nonignorable missing covariates . . . . . . . . . . . . . . . . 53

3.2 Notation and Assumptions . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Model and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Application to NICU study . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Aporetic Conclusions When Testing the Validity of an Instrumen-

vii



tal Variable 85

4.1 Testing untestable assumptions in causal inference with instrumental

variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1 What is an instrument? What assumptions underlie its use? 85

4.1.2 Untestable assumptions? . . . . . . . . . . . . . . . . . . . . 88

4.1.3 Aporia: mutually inconsistent but individually plausible claims 90

4.1.4 Outline: an IV study; a test of IV assumptions; two technical

innovations . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Does delivery by cesarean section improve survival of extremely pre-

mature neonates? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 Background: Studies of cesarean section without an instru-

mental variable . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.2 An instrument: variation among hospitals in the use of ce-

sarean section for older babies . . . . . . . . . . . . . . . . . 96

4.2.3 Matching to strengthen the instrument . . . . . . . . . . . . 97

4.2.4 Outcomes: c-section and mortality rates . . . . . . . . . . . 99

4.2.5 A test of the exclusion restriction . . . . . . . . . . . . . . . 102

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Appendix A Two-Stage Censoring by Death 132

A.1 Bounds of the SACE . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.2 The ARDSNet data . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

viii



Appendix B IV with Nonignorable Missing Covariates 136

B.1 E-step Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Appendix C Testing IV Assumptions 139

C.1 A new bipartite matching algorithm for

strengthening an IV . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

C.2 Confidence intervals and sensitivity analyses for A/D . . . . . . . . 142

ix



Chapter 1

Introduction

Causal inference is a central aim of many medical studies and social science studies

where the goal is to identify the impact of a treatment or exposure on outcomes of

interest, for instance, the effect of smoking on lung cancer. In this thesis, we focus

on three problems that complicate the analysis of experiments and observational

studies to draw causal conclusions, namely, the censoring by death problem, the IV

method with nonignorable missing covariates and testing the validity of an IV.

Many clinical studies where the effect of treatment on a non-mortality outcome

is of interest are complicated by censoring by death – for those patients who die

before the measurement of non-mortality outcome, their non-mortality outcomes

are not measured or well-defined. This is a special type of missing data. Even in

randomized experiments with perfect compliance, a direct comparison of the non-

mortality outcomes among the survivors in treatment vs. control could be biased
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because censoring by death is typically informative since patients who die usually

would have had bad non-mortality outcomes compared to those who did not die even

if the dead patients could have somehow been kept alive. To address this problem,

we focus on a well defined causal estimand-the survivor average causal effect (SACE)

(Rubin, 2000; Frangakis and Rubin, 2002)- which is the effect of treatment on the

non-mortality outcome among subjects who would survive under both treatment

and control to the time point when the non-mortality outcome is measured. The

SACE is not point identified without strong untestable assumption; however, with

reasonable assumptions, it can be bounded (Zhang and Rubin, 2003; Imai, 2008;

Chiba, 2012). In the previous literature on bounding the SACE, only the survival

information before the measurement on the non-mortality outcome has been used.

With limited information used, the bound is generally wide. In most clinical studies,

the information is not restricted to the treatment the patient received, the outcome

of interest and the survival information before the measurement of this outcome.

In this thesis, based on the fact that the survival information after measurement of

non-mortality outcome is also informative as a proxy of the severity of conditions

of subjects, we proposed a set of ranked average score with two stage survival

information assumptions which are plausibly satisfied in many quality of life studies

and developed a two-step linear programming approach to obtain the closed form

of the bound of the SACE under our assumptions. By utilizing both the survival

information before and after the measurement of non-mortality outcome, inferences
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on the SACE could be sharpened. Both numerical examples and an application to a

critical care study illustrate the benefit of utilizing the further outcome information

of survival. We also extend our method to bound the complier survivor average

causal effect (CSACE) in randomized trials with noncompliance or observational

studies where a valid instrumental variable is available.

The work on the IV method with nonignorable missing covariates is motivated

by an observational study of neonatal care that aims to estimate the effect on mor-

tality of premature babies being delivered in a high level NICU (neonatal intensive

care units that have the capacity for sustained mechanical assisted ventilation and

high volume) vs. a low level NICU. This study is complicated by unmeasured con-

founders as well as nonignorable missing covariates. To control for unmeasured

confounders, we adopt the IV approach. An IV is a variable that is (i) associated

with the treatment, (ii) has no direct effect on the outcome, and (iii) is independent

of unmeasured confounders conditional on measured confounders. In the neonatal

care study, we consider the use of excess travel time as an instrumental variable

(IV) to control for unmeasured confounders. However, some confounders of the IV

- outcome relationship we must condition on in order for our IV to be valid are not

completely recorded and the missingness of those covariates may depend on only

partially observed compliance status (i.e., whether the choice of treatment complies

with the IV encouragement) besides the fully observed outcome, fully observed

covariates and IV. Many observational studies face similar issues of unmeasured
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confounding and nonignorable missing covariates, for example, in comparative ef-

fectiveness studies, it is a concern that the missingness of important lab values

might be related with compliance status. Thus, developing an approach that can

account for both issues is of real need. Previous literature on IV with nonignorable

missing data focused on outcomes (Frangakis and Rubin, 1999; Mealli et al., 2004;

Peng et al.(2004); Chen et al., 2009; Small and Cheng, 2009). In this literature,

it has been argued that ignorability of the missing outcome may only be plausible

after conditioning on the covariates and the partially observed compliance status.

Methods have been developed for estimating causal effects under this ”latent ignor-

ability”. However, no literature we are aware of addressed the problem of IV with

nonignorable missing covariates. In this thesis, a method is developed to address

the above issues. We proposed a series of models to estimate the causal effect of

a treatment when a valid IV is available under our nonignorable missingness as-

sumption which assumes that the missingness of covariates is ignorable conditional

on the fully observed outcome, the fully observed covariates, the IV as well as the

partially observed compliance behavior. Simulation studies indicate that when the

missingness of covariates is related to the partially observed compliance behavior,

even if the missing rate of covariates is low and the effect of compliance status on

the missingness is only moderate, the commonly used estimation methods, complete

case analysis and multiple imputation by chained equations assuming missingness

at random, provide substantially biased estimates, while our method, which is de-

4



signed to deal with nonignorable missingness of covariates, provide approximately

unbiased estimates. By extending the proposed series of models to allow for an

unmeasured confounder’s effects on both outcome and missingness, one can assess

the sensitivity of the causal conclusions to a deviation from our nonignorable miss-

ingness assumption.

The IV method is widely used in observational studies (Angrist and Krueger,

1991; Baiocchi et al., 2010; Yang, Lorch and Small, 2014). Besides the association

with the treatment, there are two key assumptions for the IV to be valid: (i) the IV

is haphazard or essentially random once adjustments have been made for observed

covariates, (ii) the IV affects outcomes only by altering the treatment, the so-called

”exclusion restriction”. These two assumptions are often said to be untestable

(e.g., Morgan and Winship 2007, p.196). Our point of view is that if one confined

attention to the information in the target study itself - namely, the confounders

measured, the IV, treatment and outcome - then perhaps there is no way to test IV

assumptions, however, it is often possible to check the IV assumptions against other

things we think we know. In this thesis, we suggest that a test of IV assumptions

may lead neither to rejection of the assumptions nor to acceptance but rather to

an aporia. An aporia is a collection of propositions such that each one is plausible

on its own but they are jointly inconsistent. We discuss this subject in the context

of an ongoing study I am collaborating on about the effect of delivery by cesarean

section on the survival of extremely premature infants of 23-24 weeks gestational

5



age. We proposed as an IV the cesarean section rate at the hospital at which the

baby was delivered; similar IVs of how often a procedure is performed at a hospital

or in a geographic region have been used in many health care studies (Brookhart

and Schneeweiss, 2007) We applied to the data a new bipartite matching algorithm

to strengthen this instrumental variable. Under the assumption that the IV is valid,

we found strong evidence that cesarean sections increase the survival of premature

infants of 23-24 weeks gestational age. To test the validity of our IV, we used the fact

that the literature claims that for older preterm babies of 30-34 weeks gestational

age, there is no benefit from cesarean section (Werner et al., 2013; Malloy, 2009).

We used the same IV and applied the same matching procedure on older preterm

babies, say 30-34 weeks gestational age. There are two possible results: (i) there

is no evidence of the benefit from cesarean section for infants of 30 - 34 weeks

gestational age using the IV proposed which agrees with the literature, then we

are more confident about the validity of our IV thus more comfortable with the

causal conclusion we obtained for the infants of 23-24 weeks gestational age; (ii)

there is evidence from the IV analysis that cesarean sections benefit 30-34 week old

babies, which contradicts to the current literature. In our analysis of the data, we

obtained result (ii). This creates an aporia – the assumption that the IV is valid and

the literature that says that cesarean sections don’t benefit 30-34 week old babies

cannot both be right. This is an advance in understanding, albeit recognizing an

aporia is an uncomfortable one, but it is certainly better than believing each claims

6



without recognizing their aporetic status.

The rest of this thesis is organized as follows.

In Chapter 2, we discuss the problem of censoring by death. Section 2.1 pro-

vides a detailed introduction to this problem. In section 2.2, we introduce notation

and assumptions to set up the causal framework. In section 2.3, we present the

derivations of the bounds of SACE and provide some numerical examples to com-

pare the bounds derived with the bound using one set of assumptions in Zhang and

Rubin (2003). We extend our method to IV settings in section 2.4. In section 2.5,

we discuss how to check the plausibility of our assumptions for the ”large sample”

data as well as the sample data. We discuss the confidence intervals for bounds in

section 2.6, and we apply our approach to the tidal volume study in section 2.7.

Conclusions and discussions are presented in section 2.8.

In Chapter 3, we discuss the IV method with nonignorable missing covariates.

Section 3.1 provides a detailed introduction to this problem. In section 3.2, we

introduce notation and assumptions to set up the causal framework. In section 3.3,

we present our model for inference about complier average causal effect (CACE) and

EM algorithm to estimate parameters involved in the model. A simulation study is

be provided in section 3.4, and we study how the estimates of CACE can be affected

by wrong assumptions about missing mechanisms. Then, we apply our approach to

the neonatal care data in section 3.5, and conduct the sensitivity analysis in section

3.6. Conclusions are presented in section 3.7.

7



In Chapter 4, we discuss the aporetic conclusions when testing the validity of an

IV. Section 4.1 provides an introduction to this problem. In section 4.2, we discuss

some backgroud, present the IV analysis, test the IV assumptions and discuss in

detail resulting in an aporia. A summary is presented in section 4.3.
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Chapter 2

Two-stage Censoring by Death

2.1 Introduction

In many clinical studies, researchers are interested in the effect of a treatment on

a non-mortality outcome such as complications or quality of life in addition to

mortality. However, the assessment of the causal effect on non-mortality outcomes

of interest is often complicated by censoring by death. This censoring by death

occurs because, by the time the non-mortality outcome is measured, some patients

have died and thus the non-mortality outcome cannot be measured or is not well

defined for these dead patients. For example, suppose we want to study the effect on

intraventricular hemorrhage (IVH) of premature babies being delivered in a high-

level neonatal intensive care unit (NICU) vs. a lower-level NICU. IVH is rarely

present at birth but usually occurs in the first several days of life ( See Lee, 2013).
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If the baby died before being born (a fetal death) or shortly after birth, then whether

the baby had IVH is not well-defined. Another example is that in cancer studies,

quality of life outcomes that might be measured six months or a year after treatment

like incidence of fatigue, myelosuppression and treatment side-effects (e.g., Motzer

et al., 2013) are important outcomes considered to assess the efficacy of a treatment.

However, patients may die before the measurement of the quality of life outcomes;

for those patients, the quality of life outcomes are not well-defined. Censoring by

death is typically informative – patients who die usually would have had worse

quality of life than those who did not die even if the dead patients could have

somehow been kept alive (Cox et al., 1992). Furthermore, those patients who are

saved by a treatment are often sicker patients on average than those patients who

would live under both treatment and control. Consequently, a direct comparison

of the non-mortality outcomes among the survivors in treatment vs. control would

be biased. To address the fundamental problems that the non-mortality outcomes

are not well defined for those who die before measurement and that the censoring

of the measurement is informative, Rubin (2000), and Frangakis and Rubin (2002)

proposed a well defined causal estimand – the survivor average causal effect (SACE)

– which is the effect of treatment on the non-mortality outcome among patients who

would survive under both treatment and control to the time point when the non-

mortality outcome is measured.

Without strong untestable assumptions, the SACE is not point identified; how-

10



ever, with reasonable assumptions, we can obtain an interval in which SACE will

lie. Zhang and Rubin (2003) discussed various assumptions (ranked average score

assumptions) that can be made to bound the SACE, and derive large sample bounds

in a randomized trial. Imai (2008) provided an alternative proof that the bounds

obtained in Zhang and Rubin (2003) are sharp and generalized the proof to obtain

sharp bounds on the quantile treatment effect. Chiba (2012) proposed a number of

assumptions that are different from the ranked average score assumptions in Zhang

and Rubin (2003) and derived the corresponding bounds. Another stream of work

on drawing inference about the SACE is through sensitivity analysis procedures,

for instance, Hayden et al. (2005), Egleston et al. (2007), and Chiba and Van-

derWeele (2011). A problem similar to censoring by death arises in evaluating the

effect of vaccine vs. placebo on post-infection outcomes. Hudgens, Hoering and Self

(2003) developed tests for the causal effect on viral load among the individuals who

would be infected no matter whether they received the vaccine regimen or a placebo

regimen. Gilbert, Bosch and Hudgens (2003) proposed a class of models indexed

by an interpretable sensitivity parameter, where the SACE is identified given the

sensitivity parameter.

In the previous literature on bounding the SACE, only the survival information

before the measurement on the non-mortality outcome has been used. However,

survival information after measurement may be informative. In this chapter, we

develop a method to use both the survival information before and after the mea-

11



surement of non-mortality to sharpen inferences on the SACE in the setup of ran-

domized experiments. We will also present an extension of our method to bound

the complier survivor average causal effect (CSACE) in a randomized trial with

noncompliance or an observational study where an instrumental variable (IV) is

available.

We will apply our method to the ARDSNet study, a randomized clinical trial

on the effect of mechanical ventilation with lower tidal volumes vs. traditional tidal

volumes for patients suffering from acute lung injury (The Acute Respiratory Dis-

tress Syndrome Network, 2000). The trial found evidence that lower tidal volumes

reduce mortality. The investigators were also interested in assessing the effect of

lower tidal volumes on a quality of life (QOL) outcome, whether the patient was

able to breathe without assistance by day 28. In the data, both survival at day

28, when the QOL is measured, and whether the patient was ultimately discharged

home alive, post-QOL measurement survival information, are recorded. Utilizing

the post QOL measurement survival information in addition to the pre-QOL mea-

surement survival information, we are able to substantially sharpen the bounds on

the SACE for the effect of lower tidal volume on being able to breathe without

assistance by day 28.

12



2.2 Notation and Assumptions: Randomized Ex-

periment with Perfect Compliance

In this section and the following, we focus on two arm randomized experiments

where the subjects are randomly assigned to either treatment or control. The

method is extended to IV settings in section 2.4.

2.2.1 Notation

We use the potential outcomes approach to define causal effects. Let Di represent

the binary treatment for the ith subject; we call level 1 “the treatment” and level

0 “the control”. Let D denote the vector of treatment assignment indicators for

all subjects. Let S1i(d) be the potential survival indicator of subject i that would

be observed at the first time point after which the measurement of non-mortality

outcome is taken, with 0 indicating death, 1 if alive. Let Yi(d) represent the po-

tential non-mortality binary outcome (for instance, complication of babies, QOL

of participants ) that would be observed under treatment assignment d. The non-

mortality outcome is measured after the first time point, thus if the subject would

die before that time point (S1i(d) = 0), Yi(d) is not defined. For convenience, we

assume that level 1 of the non-mortality outcome is worse than level 0 of the out-

come, e.g., in the ARDSNet study, level 1 indicates that the patient was not able to

breathe without assistance by day 28 and level 0 indicates the patient was able to

13



breathe without assistance by day 28. We further define S2i(d) to be the potential

indicator of survival at the second time point for subject i that would be observed

if under treatment assignment d. If S1i(d) = 0, then S2i(d) = 0 by definition.

We use Di, S1i, Yi and S2i to denote respectively the observed treatment received,

observed survival indicator at the first time point, observed non-mortality outcome

and observed survival indicator at the second time point for subject i.

2.2.2 Assumptions

We assume that the following assumptions hold for randomized experiments.

Assumption 1. Stable unit treatment value assumption (SUVTA).

• If di = d′i, then S1i(d) = S1i(d
′), S2i(d) = S2i(d

′), and Yi(d) = Yi(d
′)

SUVTA means that there is no interference between subjects so that a subject’s

outcome only depends on the subject’s own treatment. Under SUVTA, each subject

has two potential first time point survival outcomes (S1i(1), S1i(0)), based on values

of which we can classify subjects into four groups:

• 11 = {i|S1i(1) = 1, S1i(0) = 1}, always survivors: the subjects that would

survive at least to the first time point under both treatment arms,

• 10 = {i|S1i(1) = 1, S1i(0) = 0}, protected: the subjects that would survive at

least to the first time point under treatment, but would die before then under

control;
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• 01 = {i|S1i(1) = 0, S1i(0) = 1}, harmed: the subjects that would die before

the first time point under treatment, but would survive at least to the first

time point under control;

• 00 = {i|S1i(1) = 0, S1i(0) = 0}, never survivors: the subjects that would die

before the first time point under both treatment arms;

Assumption 2. The assignment Di of each subject is independent of his/her

potential outcomes.

Assumption 3. Monotonicity: S1i(1) ≥ S1i(0), S2i(1) ≥ S2i(0). There is no 01

(harmed) group.

The monotonicity assumption says that the treatment does not cause death,

which is often plausible in practice. Under this assumption, subjects could either

be “always survivors”, “protected” or “never survivors”. The most meaningful

inference of causal effect of treatment on Y can be drawn only for the “always

survivors”, because it is the only group for which both Yi(1) and Yi(0) are well

defined, see Rubin (2000), Frangakis and Rubin (2002). Define the survivor average

causal effect (SACE) as E(Yi(1)− Yi(0) | 11), which is our quantity of interest.

We further create finer strata based on the possible combinations of potential

survival at both the first (QOL measurement point) and second (post-QOL mea-

surement point) time points, which is described in Table 2.1.

The always survivors at time point 1 are divided into the following three sub-

groups: 1111, always survivors who would live at least to the second time point
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Table 2.1: Fine Strata

Probability S1i(1) S1i(0) S2i(1) S2i(0) Principal Strata at Time Point 1

π1111 1 1 1 1 Always survivors

π1110 1 1 1 0 Always survivors

π1100 1 1 0 0 Always survivors

π1010 1 0 1 0 Protected

π1000 1 0 0 0 Protected

π0000 0 0 0 0 Never survivors

under both treatment arms; 1110, always survivors who would survive at least to

the second time point under treatment, but would die before then under control;

1100, always survivors who although they can live at least to the first time point,

would die before the second time point under both treatment arms. The protected

at time point 1 are combinations of the following two subgroups: 1010, subjects

who would live at least to the second time point under treatment, but would die

before the first time point under control; 1000, subjects who if they receive treat-

ment would live at least to the first time point but would die before the second time

point, but if they receive control, would die even before the first time point. Never

survivors comprise a single subgroup which we denote as 0000 because the second

time point death indicator provides no additional information for them.
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In terms of our fine strata, the SACE is expressed as:

SACE = E(Yi(1)− Yi(0) | S1i = S1i(0) = 1)

= P (Yi(1) = 1 | S1i(1) = S1i(0) = 1)− P (Yi(0) = 1 | S1i(1) = S1i(0) = 1)

=
(π1111E(Yi(1) | 1111) + π1110E(Yi(1) | 1110) + π1100E(Yi(1) | 1100))

π1111 + π1110 + π1100

− (π1111E(Yi(0) | 1111) + π1110E(Yi(0) | 1110) + π1100E(Yi(0) | 1100))

π1111 + π1110 + π1100
(2.2.1)

Plausible assumptions can be made on data to tighten the bounds of SACE. Zhang

and Rubin (2003) proposed the assumption that when assigned treatment, on aver-

age, the outcome for “always survivors” is better than “protected”, in our case, that

is to say P (Yi(1) = 1 | 11) ≤ P (Yi(1) = 1 | 10), recalling that we use 1 to denote

worse outcome for Y. This uses only the information on death before the measure-

ment of the non-mortality outcome. In the rest of this chapter, we will refer to this

assumption as the ranked average score with one stage survival information assump-

tion. Survival information after measurement of the non-mortality outcome may

deliver finer information, making use of which can help us make more reasonable as-

sumptions and sharpen inferences. We will refer to the following set of assumptions

as ranked average score with two stage survival information assumptions.

Assumption 4. Among always survivors at time point 1, the probability of worse

outcome for group 1111 is the lowest, whereas the probability of worse outcome for

group 1100 is the highest under both treatment arms:

P (Yi(1) = 1 | 1111) ≤ P (Yi(1) = 1 | 1110) ≤ P (Yi(1) = 1 | 1100) (2.2.2)
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P (Yi(0) = 1 | 1111) ≤ P (Yi(0) = 1 | 1110) ≤ P (Yi(0) = 1 | 1100) (2.2.3)

Assumption 5. Among protected at time point 1, the probability of worse out-

come for group 1010 is no higher than that for group 1000 under treatment:

P (Yi(1) = 1 | 1010) ≤ P (Yi(1) = 1 | 1000) (2.2.4)

Assumption 6. Under treatment, the probability of worse outcome for group

1100 is not lower than that for group 1010, but not higher than that for group

1000, and the probability of worse outcome for group 1110 is not higher than that

for group 1010:

P (Yi(1) = 1 | 1110) ≤ P (Yi(1) = 1 | 1010) ≤ P (Yi(1) = 1 | 1100) ≤ P (Yi(1) = 1 | 1000)

(2.2.5)

Assumptions 4, 5 and 6 are plausibly satisfied in many QOL studies. Consider the

ARDSNet study of the effect of lower tidal volumes (treatment) vs. traditional

tidal volumes (control) on being able to breathe without assistance by day 28 in

the ICU described in the introduction, where the post-QOL measurement survival

time point is being discharged home alive. Assumption 4 says, among patients

who would survive to day 28 under both treatment and control, those patients who

would be discharged home alive under both treatment and control are healthiest at

day 28 on average, and those who would be discharged home alive under treatment

but not control are healthier at day 28, than those who would die in the hospital

under both treatment and control. Assumption 5 says, among patients who would

survive to day 28 only under treatment, those patients who would ultimately be
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discharged home alive under treatment are healthier on average than patients who

would ultimately die in the hospital. Assumptions 4 and 5 are plausible because

being discharged home alive is a proxy for health at day 28. Assumption 6 is

a comparison of the 1010 patients who would die before day 28 under control but

survive to day 28 and be discharged home alive under treatment, to the 1100 patients

who would survive to day 28 under both treatment and control but die in the

hospital after day 28 under both treatment and control. Assumption 6 says that

under the treatment, the 1010 patients tend to be healthier than the 1100 patients

at day 28. This is plausible for the ARDSNet study for the following reasons. The

1100 patients are likely to be fairly sick by day 28 under the treatment since these

patients will die in the ICU. In contrast, the 1010 patients are likely to be less sick

on day 28 under the treatment because they will be (or already have) discharged

home alive. An example of a 1010 patient would be a patient who was healthy

but suffered a gunshot wound that caused an acute lung injury. When the patient

arrives at the ICU, the patient is in critical condition and only the treatment will

save the patient, but if the patient receives the treatment, the patient’s health before

the gunshot wound will enable the patient to recover well and be regaining his or

her health by day 28. In summary, assumptions 4, 5 and 6 are plausible for the

ARDSNet study.

The ranked average score with one stage survival information assumption is

different from our ranked average score with two stage survival information as-
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sumptions. The major difference is that the one-stage survival assumption assumes

that always survivors, on average, have better QOL outcome than the protected,

whereas our two-stage survival assumptions assume that one particular always sur-

vivors group, 1100, has worse QOL outcome than a particular protected group,

1010, on average under treatment, which is a more reasonable assumption for the

ARDSNet study. The differences in the bounds obtained under the ranked average

score with one stage survival information assumption and our two stage survival

information assumptions are presented in numerical examples and the analysis of

ARDSNet study in section 2.3.3 and 2.7 respectively.

2.3 Derivations of Bounds

Under assumptions 1-6, the SACE is not point identified based on the knowledge of

the observable joint distribution of (Di, S1i, S2i, Yi). However, we can use that joint

distribution to obtain an interval in which the SACE must lie. We first derive the

bounds for the proportions in each stratum, then for fixed proportions we derive

the bounds for the SACE. In this section, we assume that the joint distribution of

(Di, S1i, S2i, Yi) is known; in section 2.6, we will discuss forming confidence intervals

for the bounds that acknowledge sample uncertainty.
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2.3.1 Bounds for proportions of each stratum

Notice that the observable strata of (Di, S1i, S2i) are mixtures of fine strata (Table

1). Thus we can express the proportions of strata of (Di, S1i, S2i) by proportions

of fine strata. Combining this with the fact that all the proportions in the fine

strata must lie between 0 and 1, we can obtain the bounds for each fine stratum’s

proportion. We use ps1s2|d to denote P (S1i = s1, S2i = s2 | Di = d). The following

equations hold:

p11|1 = π1111 + π1110 + π1010 (2.3.1)

p10|1 = π1100 + π1000 (2.3.2)

p00|1 = π0000 (2.3.3)

p11|0 = π1111 (2.3.4)

p10|0 = π1110 + π1100 (2.3.5)

p00|0 = π1010 + π1000 + π0000 (2.3.6)

Further we have,

0 ≤ π1111, π1110, π1100, π1010, π1100, π1000, π0000 ≤ 1 (2.3.7)

Given (2.3.1)-(2.3.6), we can express each π by functions of pss|d and π1100:

π1111 = p11|0

π1110 = p10|0 − π1100
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π1010 = p11|1 − p11|0 − p10|0 + π1100

π1000 = p10|1 − π1100

π0000 = p00|1

and subject to the constraint of (2.3.7), we have,

max{0, p11|0 + p10|0 − p11|1} ≤ π1100 ≤ min{p10|0, p10|1} (2.3.8)

2.3.2 Bounds for the SACE

In this step, we first derive the bounds for the SACE with known proportions of

each fine stratum, then will combine the result with the bounds obtained in section

2.3.1 to construct the final bounds for the SACE.

The observable strata of (Yi, S1i, S2i | Di) are mixtures of potential outcomes

from the fine strata. Letting qys1s1|d denote P (Yi = y, S1i = s1, S2i = s2 | Di = d),

we have the following identities:

q111|1 = π1111E(Yi(1) | 1111) + π1110E(Yi(1) | 1110) + π1010E(Yi(1) | 1010) (2.3.9)

q110|1 = π1100E(Yi(1) | 1100) + π1000E(Yi(1) | 1000) (2.3.10)

q111|0 = π1111E(Yi(0) | 1111) (2.3.11)

q110|0 = π1110E(Yi(0) | 1110) + π1100E(Yi(0) | 1100) (2.3.12)
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Recall that

SACE =
(π1111E(Yi(1) | 1111) + π1110E(Yi(1) | 1110) + π1100E(Yi(1) | 1100))

π1111 + π1110 + π1100

− (π1111E(Yi(0) | 1111) + π1110E(Yi(0) | 1110) + π1100E(Yi(0) | 1100))

π1111 + π1110 + π1100

(2.3.13)

Given π′s, (π1111E(Yi(0)|1111)+π1110E(Yi(0)|1110)+π1100E(Yi(0)|1100))
π1111+π1110+π1100

=
q111|0+q110|0

π1111+π1110+π1100
which

is point identified. Thus to bound the SACE, we only need to bound π1111E(Yi(1) |

1111) + π1110E(Yi(1) | 1110) + π1100E(Yi(1) | 1100), which defines a linear program-

ming problem:

min /max (π1111E(Yi(1) | 1111) + π1110E(Yi(1) | 1110) + π1100E(Yi(1) | 1100)) | π1100

(2.3.14)

Subject to:

q111|1 = π1111E(Yi(1) | 1111) + π1110E(Yi(1) | 1110) + π1010E(Yi(1) | 1010) (2.3.15)

q110|1 = π1100E(Yi(1) | 1100) + π1000E(Yi(1) | 1000) (2.3.16)

E(Yi(1) | 1111) ≤ E(Yi(1) | 1110) ≤ E(Yi(1) | 1100) (2.3.17)

E(Yi(1) | 1010) ≤ E(Yi(1) | 1000) (2.3.18)

E(Yi(1) | 1110) ≤ E(Yi(1) | 1010) ≤ E(Yi(1) | 1100) ≤ E(Yi(1) | 1000) (2.3.19)

0 ≤ E(Yi(1) | 1111),E(Yi(1) | 1110),E(Yi(1) | 1100),E(Yi(1) | 1010),E(Yi(1) | 1000) ≤ 1

(2.3.20)

where constraints (2.3.17)-(2.3.19) are imposed by assumptions 4-6.
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The above linear programming problem has a solution if and only if
q110|1
p10|1

≥

q111|1
p11|1

, which is an inequality that must be satisfied based on assumptions 4-6. For

each possible value of π1100, we solve the above linear programming problem; then,

combining this result with the bound for π1100 derived in section 2.3.1 that π1100 ∈ I,

where I = [max{0, p11|0 + p10|0 − p10|1}, min{p10|0, p10|1}], we have,

minSACE = min
π1100∈I

[
min((π1111E(Yi(1) | 1111) + π1110E(Yi(1) | 1110) + π1100E(Yi(1) | 1100)) | π1100)− (q111|0 + q110|0)

π1111 + π1110 + π1100

]

=


max{

q111|1+q110|1−p11|1−p10|1+p11|0+p10|0
p11|0+p10|0

,
q111|1
p11|1

} −
q111|0+q110|0
p11|0+p10|0

, if p11|0 + p10|0 − p11|1 ≥ 0

max{0,
q111|1p10|1+q110|1(p11|0+p10|0−p11|1)

p10|1(p11|0+p10|0)
} −

q111|0+q110|0
p11|0+p10|0

, if p11|0 + p10|0 − p11|1 < 0

(2.3.21)

maxSACE = max
π1100∈I

[
max((π1111E(Yi(1) | 1111) + π1110E(Yi(1) | 1110) + π1100E(Yi(1) | 1100)) | π1100)− (q111|0 + q110|0)

π1111 + π1110 + π1100

]

=
q111|1

p11|1
−
q111|0 + q110|0

p11|0 + p10|0
+
q110|1p11|1 − q111|1p10|1
p10|1p11|1(p11|0 + p10|0)

·min{p10|0, p10|1} (2.3.22)

The details of the calculation for the bounds of SACE are provided in the Appendix.

2.3.3 Numerical Examples

Example 1

Assume that the underlying truth about the population is described by Table 2.2.

The SACE = 0.05, meaning that the treatment will increase the probability of the

worse non-mortality outcome by 0.05 among always survivors who will survive at

least to the first time point under both treatment and control.

Suppose that we have an infinite sample, then we would observe that

p11|1 = 0.65 p10|1 = 0.2 p00|1 = 0.15 p11|0 = 0.5 p10|0 = 0.15 p00|0 = 0.35

(2.3.23)
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Table 2.2: Setup 1

% of population Fine Strata % of Yi(1) = 1 % of Yi(0) = 1

50 1111 10 5

10 1110 20 15

5 1100 40 35

5 1010 30 -

15 1000 50 -

15 0000 - -

q111|1 = 0.085 q110|1 = 0.095 q111|0 = 0.025 q110|0 = 0.0325 (2.3.24)

Given the constraints imposed by the observed data (2.3.23)-(2.3.24) and assump-

tions 4-6, we obtain the bound for SACE: [0.042, 0.122], showing that the treatment

increases the probability of the worse non-mortality outcome.

However, if we don’t use the second time point survival information, the observed

data would be:

P (S1i = 1|Di = 1) = 0.85 P (S1i = 1|Di = 0) = 0.65 (2.3.25)

P (Yi = 1, S1i = 1|Di = 1) = 0.18 P (Yi = 1, S1i = 1|Di = 0) = 0.0575 (2.3.26)

Then, given the constraints imposed by the observed data (2.3.25)-(2.3.26) and the

ranked average score with one stage survival assumption, the bound we would obtain

for the SACE is [-0.088, 0.123], according to which we wouldn’t know whether or

not the treatment increases the probability of the worse non-mortality outcome even
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Table 2.3: Setup 2

% of population Fine Strata % of Yi(1) = 1 % of Yi(0) = 1

50 1111 10 5

15 1110 20 15

5 1100 40 35

5 1010 30 -

10 1000 50 -

15 0000 - -

though the true SACE is positive. From this example, we see that making use of

the survival information after measurement may provide us with more information

and narrow the bounds on the SACE.

Example 2

Through elementary calculation, one can easily prove that the lower bound for

the SACE under our assumptions 4-6 will be at least equal to or larger than the

lower bound for SACE under the ranked average score with one stage survival

information assumption. However, the upper bound under our two stage survival

information assumption is not comparable with the upper bound under one-stage

survival assumption. Our upper bound can be smaller as shown in Example 1, but

it can also be larger as we show below. Assume that the underlying truth about

the population is described by the following Table 2.3.
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The true SACE is 0.05. If we have an infinite sample, then we would have the

following observed data:

p11|1 = 0.7 p10|1 = 0.15 p00|1 = 0.15 p11|0 = 0.5 p10|0 = 0.2 p00|0 = 0.3

(2.3.27)

q111|1 = 0.095 q110|1 = 0.07 q111|0 = 0.025 q110|0 = 0.04 (2.3.28)

Given the constraints imposed by the observed data (2.3.27)-(2.3.28) and as-

sumptions 4-6, we obtain the bounds for the SACE: [0.043, 0.114]. If we don’t

utilize the second time survival information, we would observe the following data:

P (S1i = 1|Di = 1) = 0.85 P (S1i = 1|Di = 0) = 0.7 (2.3.29)

P (Yi = 1, S1i = 1|Di = 1) = 0.165 P (Yi = 1, S1i = 1|Di = 0) = 0.065 (2.3.30)

Then, given the constraints imposed by the observed data (2.3.29)-(2.3.30) and the

ranked average score with one stage survival information assumption, the bound

we would obtain for the SACE is [-0.071, 0.101]. In this setup, the upper bound

under the ranked average score with two stage survival information assumption

(Assumption 4-6) is larger than that of the ranked average score with one stage

survival information assumption. The reason is that the ranked average score with

two stage survival information assumptions allow for the possibility that the always

survivors’ (1111, 1110, 1100) probability of bad outcome exceed the protecteds’

(1010, 1000) probability of bad outcome which contradicts the ranked average score

with one stage survival information assumption.
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2.4 Extension to IV settings

The idea of using second time point survival information to sharpen the inference of

SACE under randomized trials with perfect compliance can be naturally extended

to randomized trials with noncompliance or observational studies with a valid IV

to obtain inference about the complier survivor average causal effect (CSACE). In

a randomized trial with noncompliance, the assignment of treatment can be used

as an IV to assess the effects of receiving the treatment on the outcome. In ob-

servational studies, natural experiments such as a person’s draft lottery number,

randomly assigned federal judges or quarter of birth have been used as IVs. (An-

grist, 1990; Angrist and Krueger, 1991; Kling, 1999). For more literatures on IV, see

Angrist, Imbens, and Rubin (1996), Abadie (2002), Hernan and Robins (2006), Tan

(2006), Brookhart and Schneeweiss (2007), Cheng (2009), and Clarke and Wind-

meijer (2012).

Let Zi represent the binary IV; 1 encourages the treatment for the ith subject

and 0 does not provide encouragement of the treatment. We use Z to denote the

vector of IV for all subjects. Let Di(z) be the potential binary treatment variable

that would be observed under IV assignment z for subject i; 1 being the treatment

and 0 denotes the control. Let S1i(z) be the potential survival indicator of subject

i that would be observed at the first time point after which the measurement of

non-mortality outcome is taken; with 0 indicating death, 1 if alive. Let Yi(z)

represent the potential non-mortality binary outcome that would be observed under
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IV assignment z. Again, the non-mortality outcome would be measured after the

first time point, thus if the subject would die before that time point (S1i(z) = 0),

Yi(z) is not defined; otherwise S1i(z) = 1 and Yi(z) = 1 or 0, 1 indicating a worse

outcome. We further define S2i(z) to be the potential indicator of survival at the

second time point for subject i that would be observed if under IV assignment z. As

in section 2.2, if S1i(z) = 0, then S2i(z) = 0 by definition. We use Zi, Di, S1i, Yi and

S2i to denote respectively the observed IV, treatment received, observed survival

indicator at the first time point, observed non-mortality outcome and observed

survival indicator at the second time point for subject i.

2.4.1 Assumptions

We assume the following assumptions hold for the IV setup. These assumptions

combine those of Angrist, Imbens and Rubin (1996) for the IV setup and the ranked

average score with two stage survival information assumptions of section 2.2.

Assumption IV-1. Stable unit treatment value assumption (SUVTA).

• If zi = z′i, then Di(z) = Di(z
′), S1i(z) = S1i(z

′), S2i(z) = S2i(z
′), and

Yi(z) = Yi(z
′)

SUVTA means that a subject’s potential treatments and outcomes are not affected

by other individuals’ IV status and means that we can write Di(z) as Di(zi), S1i(z)

as S1i(zi), S2i(z) as S2i(zi) and Yi(z) as Yi(zi)
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Assumption IV-2. Nonzero average causal effect of Z on D. The average causal

effect of Z on D, E[Di(1)−Di(0)], is not equal to zero.

Assumption IV-3. Independence of the instrument from unmeasured confounders:

the random vector (D(1), D(0), S1(1), S1(0), S2(1), S2(0), Y (1), Y (0)) is independent

of Z.

Based on subjects’ compliance behavior, we can first partition the population

into four groups:

Ui =



00, if Di(1) = Di(0) = 0

10, if Di(1) = 1, Di(0) = 0

11, if Di(1) = Di(0) = 1

01, if Di(1) = 0, Di(0) = 1

(2.4.1)

where 00, 10, 11, and 01 represent never taker, complier, always taker and defier,

respectively. Because Di(1) and Di(0) are never observed jointly, the compliance

behavior of a subject is unknown.

Assumption IV-4. Monotonicity of effect of IV on treatment: D(1) ≥ D(0).

There is no U=01 group.

Assumption IV-5. Monotonicity of effect of IV on survival: S1i(1) ≥ S1i(0),

S2i(1) ≥ S2i(0).

The monotonicity of the effect of the IV on the survival will hold if the treatment

never causes death and assumption IV-4 holds if the IV has a monotone effect on

treatment.
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Table 2.4: Principal Strata

Di(1) Di(0) S1i(1) S1i(0) Principal Strata

1 0 1 1 Complier, always survivors

1 0 1 0 Complier, protected

1 0 0 0 Complier, never survivors

1 1 1 1 Never taker, always survivors

1 1 0 0 Never taker, never survivors

0 0 1 1 Always taker, always survivors

0 0 0 0 Always taker, never survivors

Assumption IV-6. Exclusion restrictions among never-takers and always-takers:

S1i(1) = S1i(0), S2i(1) = S2i(0), Yi(1) = Yi(0), for Ui = 00 or 11.

This means that the IV only affects the outcomes through treatment and has

no direct effect on outcomes.

Based on the possible joint combinations of (Di(1), Di(0), S1i(1), S1i(0)) under

the above assumptions, we can define principal strata as shown in Table 2.4.

Different from the case of randomized experiments with perfect compliance, the

principal strata in the IV setup are defined with respect to IV levels, for example,

the “complier, always survivors” are compliers(comply with their IV encouragement

of treatment) who would survive under both IV levels. Among all the principal

strata, the ”complier, always survivors” (1011) group is the only group that we

can observe the outcome under treatment if IV is 1, as well as the outcome under
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Table 2.5: Fine Strata
Probability Di(1) Di(0) S1i(1) S1i(0) S2i(1) S2i(0) Principal Strata at Time Point 1

π101111 1 0 1 1 1 1 Complier, always survivors

π101110 1 0 1 1 1 0 Complier, always survivors

π101100 1 0 1 1 0 0 Complier, always survivors

π101010 1 0 1 0 1 0 Complier, protected

π101000 1 0 1 0 0 0 Complier, protected

π100000 1 0 0 0 0 0 Complier, never survivors

π111111 1 1 1 1 1 1 Always takers, always survivors

π111100 1 1 1 1 0 0 Always takers, always survivors

π110000 1 1 0 0 0 0 Always takers, never survivors

π001111 0 0 1 1 1 1 Never takers, always survivors

π001100 0 0 1 1 0 0 Never takers, always survivors

π000000 0 0 0 0 0 0 Never takers, never survivors

control if IV is 0, and that would survive under both treatment such that the non-

mortality outcome Y is well defined in both cases. Thus, it is the only group for

which variation in the IV can identify the causal effect of the treatment on the

non-mortality outcome: CSACE = E(Yi(1)− Yi(0) | 1011).

Similarly to the case of randomized experiments with perfect compliance (Sec-

tion 2.2), we can further incorporate the information of second time survival indi-

cator to create finer strata as shown in Table 2.5.
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In terms of the fine strata in Table 2.5, the CSACE is expressed as:

CSACE = E(Yi(1)− Yi(0) | 1011)

= P (Yi(1) = 1 | 1011)− P (Yi(0) = 1 | 1011)

=
(π101111E(Yi(1) | 101111) + π101110E(Yi(1) | 101110) + π101100E(Yi(1) | 101100))

π101111 + π101110 + π101100

− (π101111E(Yi(0) | 101111) + π101110E(Yi(0) | 101110) + π101100E(Yi(0) | 101100))

π101111 + π101110 + π101100

(2.4.2)

The same assumptions are made for compliers as we made for subjects under

randomized trials with perfect compliance (Assumptions 4-6 in Section 2.2).

Assumption IV-7. Among ”complier, always survivors”, the probability of worse

outcome for group 101111 is the lowest, whereas the probability of worse outcome

for group 101100 is the highest under both treatment arms:

P (Yi(1) = 1 | 101111) ≤ P (Yi(1) = 1 | 101110) ≤ P (Yi(1) = 1 | 101100) (2.4.3)

P (Yi(0) = 1 | 101111) ≤ P (Yi(0) = 1 | 101110) ≤ P (Yi(0) = 1 | 101100) (2.4.4)

Assumption IV-8. Among ”complier, protected”, the probability of worse out-

come for group 101010 is no higher than that for group 101000 under treatment:

P (Yi(1) = 1 | 101010) ≤ P (Yi(1) = 1 | 101000) (2.4.5)

Assumption IV-9. Under treatment, the probability of worse outcome for group

101100 is not lower than that for group 101010, but not higher than that for group

101000, and the probability of worse outcome for group 101110 is not higher than
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that for group 101010:

P (Yi(1) = 1 | 101110) ≤ P (Yi(1) = 1 | 101010) ≤ P (Yi(1) = 1 | 101100) ≤ P (Yi(1) = 1 | 101000)

(2.4.6)

2.4.2 Derivations of Bounds

As for the SACE in randomized experiments setup, the CSACE is not point iden-

tified without further assumptions based on the observable joint distribution of

(Zi, Di, S1i, S2i, Yi), but can be bounded. We will again adopt the two step method

we used in section 2.3 to obtain the bound.

The observable strata of (Zi, Di, S1i, S2i) are mixtures of fine strata, if we use

ps1s2d|z to denote P (S1i = s1, S2i = s2, Di = d | Zi = z), we have the following

identities:

p111|1 = π101111 + π101110 + π101010 + π111111 (2.4.7)

p101|1 = π101100 + π101000 + π111100 (2.4.8)

p001|1 = π100000 + π110000 (2.4.9)

p110|1 = π001111 (2.4.10)

p100|1 = π001100 (2.4.11)

p000|1 = π000000 (2.4.12)

p110|0 = π101111 + π001111 (2.4.13)

p100|0 = π101100 + π001100 + π101110 (2.4.14)
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p000|0 = π100000 + π000000 + π101010 + π101000 (2.4.15)

p111|0 = π111111 (2.4.16)

p101|0 = π111100 (2.4.17)

p001|0 = π110000 (2.4.18)

and the constraint

0 ≤ π101111, π101110, π101100, π101010, π101000, π100000, π111111, π111100, π110000, π001111, π001100, π000000 ≤ 1

(2.4.19)

Given (2.4.7)-(2.4.18), we can express each π in terms of ps1s2d|z and π101100:

π000000 = p000|1

π001111 = p110|1

π001100 = p100|1

π111111 = p111|0

π110000 = p001|0

π111100 = p101|0

π100000 = p001|1 − p001|0

π101111 = p110|0 − p110|1

π101000 = p101|1 − p101|0 − π101100

π101110 = p100|0 − p100|1 − π101100

π101010 = p111|1 + p110|1 + p100|1 − p110|0 − p100|0 − p111|0 + π101100
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and subject to the constraint of (2.4.19), we have,

max{0, p110|0+p100|0+p111|0−p111|1−p110|1−p100|1} ≤ π101100 ≤ min{p101|1−p101|0, p100|0−p100|1}

(2.4.20)

Bounds for the CSACE

For fixed π′s, let qys1s2d|z denote P (Yi = y, S1i = s1, S2i = s2, Di = d | Zi = z). We

have the following identities based upon the observable strata of (Yi, S1i, S2i, Di, Zi):

q1111|1 = π101111E(Yi(1) | 101111)+π101110E(Yi(1) | 101110)+π101010E(Yi(1) | 101010)+π111111E(Yi(1) | 111111)

(2.4.21)

q1101|1 = π101100E(Yi(1) | 101100) + π101000E(Yi(1) | 101000) + π111100E(Yi(1) | 111100) (2.4.22)

q1110|1 = π001111E(Yi(1) | 001111) (2.4.23)

q1100|1 = π001100E(Yi(1) | 001100) (2.4.24)

q1111|0 = π111111E(Yi(0) | 111111) (2.4.25)

q1101|0 = π111100E(Yi(0) | 111100) (2.4.26)

q1110|0 = π101111E(Yi(0) | 101111) + π001111E(Yi(0) | 001111) (2.4.27)

q1100|0 = π101110E(Yi(0) | 101110) + π101100E(Yi(0) | 101100) + π001100E(Yi(0) | 001100) (2.4.28)

Recall that

CSACE =
(π101111E(Yi(1) | 101111) + π101110E(Yi(1) | 101110) + π101100E(Yi(1) | 101100))

π101111 + π101110 + π101100

− (π101111E(Yi(0) | 101111) + π101110E(Yi(0) | 101110) + π101100E(Yi(0) | 101100))

π101111 + π101110 + π101100

(2.4.29)

Given π′s,
(π101111E(Yi(0)|101111)+π101110E(Yi(0)|101110)+π101100E(Yi(0)|101100))

π101111+π101110+π101100
=

q1110|0+q1100|0−q1110|1−q1100|1
π101111+π101110+π101100

which is point identified. Thus to bound the CSACE, we only need to bound

π101111E(Yi(1) | 101111) + π101110E(Yi(1) | 101110) + π101100E(Yi(1) | 101100), which

defines a linear programming problem:

min /max (π101111E(Yi(1) | 101111) +π101110E(Yi(1) | 101110) +π101100E(Yi(1) | 101100)) | π101100 (2.4.30)
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Subject to:

q1111|1 − q1111|0 = π101111E(Yi(1) | 101111) + π101110E(Yi(1) | 101110) + π101010E(Yi(1) | 101010) (2.4.31)

q1101|1 − q1101|0 = π101100E(Yi(1) | 101100) + π101000E(Yi(1) | 101000) (2.4.32)

E(Yi(1) | 101111) ≤ E(Yi(1) | 101110) ≤ E(Yi(1) | 101100) (2.4.33)

E(Yi(1) | 101010) ≤ E(Yi(1) | 101000) (2.4.34)

E(Yi(1) | 101110) ≤ E(Yi(1) | 101010) ≤ E(Yi(1) | 101100) ≤ E(Yi(1) | 101000) (2.4.35)

0 ≤ E(Yi(1) | 101111),E(Yi(1) | 101110),E(Yi(1) | 101100),E(Yi(1) | 101010),E(Yi(1) | 101000) ≤ 1 (2.4.36)

where constraints (2.4.33)-(2.4.35) are imposed by assumptions (IV-7) - (IV-9).

The above linear programming problem has a solution if and only if
q1101|1−q1101|0
p101|1−p101|0

≥

q1111|1−q1111|0
p111|1−p111|0

.

For each possible value of π101100, we can solve the above linear programming
problem; then, combining this result with the bound for π101100, let L = p110|0 +
p100|0 + p111|0 − p111|1 − p110|1 − p100|1, U = min{p101|1 − p101|0, p100|0 − p100|1}, then
π101100 ∈ I, where I = [max{0, L}, U ], we obtain

maxCSACE =
q1111|1 − q1111|0
p111|1 − p111|0

−
q1110|0 − q1110|1 + q1100|0 − q1100|1
p110|0 − p110|1 + p100|0 − p100|1

+
(q1101|1 − q1101|0)(p111|1 − p111|0)− (q1111|1 − q1111|0)(p101|1 − p101|0)

(p101|1 − p101|0)(p110|0 − p110|1 + p100|0 − p100|1)(p111|1 − p111|0)
· U

If L ≥ 0

minCSACE = max{
q1111|1 − q1111|0 + q1101|1 − q1101|0 − p111|1 + p111|0 − p101|1 + p101|0 + p110|0 − p110|1 + p100|0 − p100|1

p110|0 − p110|1 + p100|0 − p100|1
,

q1111|1 − q1111|0
p111|1 − p111|0

} −
q1110|0 − q1110|1 + q1100|0 − q1100|1
p110|0 − p110|1 + p100|0 − p100|1

If L < 0

minCSACE = max{
(q1111|1 − q1111|0)(p101|1 − p101|0) + (q1101|1 − q1101|0)(p110|0 − p110|1 + p100|0 − p100|1 − p111|1 + p111|0)

(p101|1 − p101|0)(p110|0 − p110|1 + p100|0 − p100|1)
,

0} −
q1110|0 − q1110|1 + q1100|0 − q1100|1
p110|0 − p110|1 + p100|0 − p100|1
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2.5 Checking the plausibility of ranked average

score with two stage survival assumptions and

exclusion restriction assumptions

From the observable data, it cannot be determined whether our ranked average score

with two stage survival information assumptions for randomized experiments setup

or IV settings hold, also it cannot be determined whether the exclusion restriction

assumed in the IV settings hold. However, there are some necessary conditions that

the probability distribution of the observable data must satisfy when these assump-

tions are valid. If these conditions are violated, then we know our assumptions do

not hold.

For randomized experiments with perfect compliance, from the derivation of

the bound for SACE in section 2.3, we know that the linear programming problem

(2.3.14)-(2.3.20) under the ranked average score with two stage survival information

assumptions as well as the constraints imposed by the observable”infinite sample”

probability distribution has a solution if and only if

q110|1

p10|1
≥
q111|1

p11|1
(2.5.1)

This constraint says that the probability of the worse non-mortality outcome

among the patients that are randomly assigned to treatment and that survive to

the first time point but die before the second time point is equal to or larger than
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the probability of the worse non-mortality outcome among the patients that are

randomly assigned to treatment and that survive at least to the second time point.

This is a direct result from our ranked average score with two stage survival as-

sumptions (Assumptions 4-6) which say that E(Yi(1) | 1111) ≤ E(Yi(1) | 1110) ≤

E(Yi(1) | 1010) ≤ E(Yi(1) | 1100) ≤ E(Yi(1) | 1000). The first three expectations

are for subjects who can survive at least to the second time point under treatment

and the last two expectations are for subjects who die before the second time point.

For the IV setting of Section 2.4, based on the calculations in section 2.4.2,

the corresponding necessary conditions that the probability distribution of the data

must satisfy under Assumptions (IV-1)-(IV-9) are as follows: ,

q1101|1−q1101|0 ≥ 0, p101|1−p101|0 ≥ 0, q1111|1−q1111|0 ≥ 0, p111|1−p111|0 ≥ 0 (2.5.2)

q1101|1 − q1101|0

p101|1 − p101|0
≥
q1111|1 − q1111|0

p111|1 − p111|0
(2.5.3)

Pearl (1995) provides a necessary condition on the joint probability distribution

of the outcome, treatment and IV when the exclusion restriction holds. Extending

Pearl’s result to our case where exclusion restrictions are assumed on both survival

at the first time point and the second time point as well as a non-mortality outcome

which may be censored, a necessary condition is that the following inequalities hold:

p00d|z1 + q010d|z2 + q110d|z3 + q011d|z4 + q111d|z5 ≤ 1 (2.5.4)

where d ∈ {0, 1}, zi ∈ {0, 1} for i = 1, 2, 3, 4, 5
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The above constraints to check the plausibility of our assumptions are for ”infi-

nite sample” data. In practice, we can estimate the confidence with which the true

observable population distribution satisfies the above constraints using a simple

bootstrap procedure (Efron and Tibshirani, 1998). We bootstrap from the empirical

distribution of the observed data and then count the percentage of the bootstrapped

data sets for which the empirical distribution satisfies the constraints as an estimate

of the confidence. Efron and Tibshirani (1998) provide some refinements on this

simple bootstrap procedure that improve the accuracy of the estimated confidence.

2.6 Confidence Intervals for Bounds

In sections 2.3 and 2.4, the bounds we obtained are ”infinite sample” bounds where

we assume that the joint distributions of (Di, S1i, S2i, Yi) or (Zi, Di, S1i, S2i, Yi) is

known. However, in practice, all these probabilities need to be estimated from the

observed data. To account for the sampling uncertainty, we would like to construct

confidence intervals for the bounds. The simplest way to construct confidence in-

terval is through the Bonferroni method, where if we want an overall level of 1−α,

we can obtain first the individual 1 − α
2

confidence interval for the upper bound

and lower bound (e.g., via the bootstrap), then combine the results to derive the

simultaneous confidence interval. The disadvantage of the Bonferroni method is it’s

conservative; the way to form it ignores the joint distribution of the upper bound

and lower bound. Horowitz and Manski (2000) proposed a method to obtain the
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confidence interval taking into account the joint distribution of the lower and up-

per bound. The Horowitz and Manski confidence interval adds the same length

to the upper and lower bounds in the confidence interval. Beran (1988) proposed

the B method which also takes into account the joint distribution of upper and

lower bounds without the restriction on the form of the confidence interval of the

Horowitz and Manski confidence interval. A description of the above confidence in-

terval approaches for bounds can be found in Cheng and Small (2006). Because of

the nice properties of B method, we will use it to construct the confidence interval

for the ARDSNet study.

We did a simulation study to examine the finite sample coverage of the B method

95% confidence interval for data like the ARDSNet study (See Section 2.7). We sim-

ulated 2000 samples based on the observed empirical distribution of the ARDSNet

data (Table 2.6). Then for each simulated data set, we bootstrapped 2000 data sets

to obtain the 95% B method confidence interval. We counted the proportion of the

two thousand bootstrap CIs that cover the bound of the empirical distribution of

the ARDSNet data and did the analysis using both the two stage and one stage

assumptions. For the ranked average score with two stage survival information as-

sumptions, the coverage probability of the B method is estimated to be 95.65%,

and for the ranked average score with one stage survival information assumptions,

the coverage probability of the B method is estimated to be 95.75%. Thus the finite

sample coverage of the B method for studies like the ARDSNet study seems to be
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good.

2.7 Application to ARDSNet Study

The ARDSNet study described in the introduction involved 861 patients with lung

injury and acute respiratory distress syndrome who were randomized to receive

mechanical ventilation with either lower tidal volumes or traditional tidal volumes.

The non-mortality outcome variable we are interested in is whether patients were

able to breathe without assistance by day 28 which is a measurement that reflects

the quality of life for patients after treatment. We use Yi to represent this binary

quality of life measurement, with Yi being 1 indicating that the ith patient were

not able to breathe without assistance by day 28. Naturally, the first survival time

point is day 28 after the treatment. If the patient died before day 28, then the

non-mortality outcome could not be measured, thus will be undefined. The second

time point survival indicator is whether the patient was eventually discharged home

with unassisted breathing or not. We view the patients who received mechanical

ventilation with lower tidal volume as the treatment group, and the patients who

received mechanical ventilation with traditional tidal volume as the control group.

Let Di equal 1 if the ith patient is randomized to treatment group, 0 if randomized

to control group. Further details on the data are described in appendix.

Table 2.6 presents the observed strata of (Di, S1i, S2i, Yi). Among the survivors

in the lower tidal volume group, the proportion of patients that cannot breathe
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Table 2.6: Observed data for ARDSNet Study

Number of Patients Di S1i S2i Yi

258 1 1 1 0

29 1 1 1 1

10 1 1 0 0

26 1 1 0 1

109 1 0 0 –

211 0 1 1 0

34 0 1 1 1

7 0 1 0 0

25 0 1 0 1

152 0 0 0 –
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Table 2.7: The estimated bounds and 95% B method CIs of the SACE for ARDSNet

study using ranked average score with two stage survival assumptions and one stage

survival assumptions.
SACE Two-stage survival assumptions One-stage survival assumptions

Estimated bounds [−12.99%, −4.02%] [−17.38%, −4.27%]

95% confidence interval [−20.11%, 1.99%] [−27.57%, 2.18%]

without assistance by day 28 is 17.03% (which is 55/323); among the survivors in

the traditional tidal volume group, the proportion of patients that cannot breathe

without assistance by day 28 is 21.30% (which is 59/277). The difference of those

two proportions −4.27% which is a direct comparison of the QOL among survivors

in the lower tidal volume and survivors in the traditional tidal volume is likely an

upward biased estimate for the SACE due to the informativeness of censoring by

death.

The empirical distribution of (Di, S1i, S2i, Yi) satisfies the constraint (2.5.1). Us-

ing the bootstrap procedure, all of the 2000 bootstrapped datasets satisfy the con-

straint (2.5.1), thus we are very confident that our set of two stage assumptions is

plausible in the sense that it does not violate the constraint (2.5.1).

Table 2.7 compares the estimated bounds of the SACE as well as the 95% confi-

dence intervals obtained through our proposed ranked average score with two stage

survival information assumptions to the ranked average score with one stage survival

information assumptions. According to the result of our two stage analysis, among

the patients with lung injury and the acute respiratory distress syndrome who would
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survive under both ventilation tidal volumes, the lower tidal volume would help re-

duce the probability of breathing with assistance by day 28 by an amount between

4.02% to 12.99%. This bound for the SACE is substantially shorter, thus more

informative, than the bound obtained through the one stage analysis which esti-

mates the reduction to be between [4.27%, 17.38%]. The 95% B method confidence

intervals under both sets of assumptions cover 0, meaning that there is not strong

evidence that ventilation with lower tidal benefits patients in terms of the quality

of life outcome of breathing without assistance by day 28.

2.8 Conclusions and Discussions

The effect of treatment on a non-mortality outcome among always survivors is of

interest in many clinical studies. The previous literature on bounding the SACE

uses only the survival information before the measurement of the non-mortality

outcome; however, in many cases, the survival information after the measurement

of non-mortality outcome is informative. We proposed a set of ranked average score

with two stage survival information assumptions which are plausibly satisfied in

many quality of life studies and developed a two-step linear programming approach

to obtain the closed form of the bounds of the SACE under our assumptions. Our

method works not only for randomized trials with perfect compliance, but also can

be extended to randomized trials with noncompliance or observational studies with

a valid IV to obtain bounds on the complier survivor average causal effect.
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We applied our method to the ARDSNet study. Making use of the post QOL

measurement survival information (patients’ status when discharged home) in addi-

tion to the pre-QOL survival information (survival status at day 28) helps substan-

tially shorten the bound on the SACE – the effect of lower tidal volume on being

able to breathe without assistance by day 28.

The SACE and CSACE are principal strata effects, causal effects on a subgroup

of patients defined by the values that post-randomization variables would take un-

der both treatment and control (Frangakis and Rubin, 2002). We have shown that

bounds on these principal strata effects can be sharpened by using the further out-

come information of survival after the non-mortality outcome is measured. In a

different context, Mealli and Pacini (2013) showed that using further outcomes can

narrow bounds on principal strata effects. Mealli and Pacini consider an outcome

that is not affected by censoring by death in a randomized trial with noncompli-

ance, and study bounds on the intention to treat effects for the compliers, always

takers and never takers. Mealli and Pacini consider settings in which the exclu-

sion restriction may not be satisfied and they show that a secondary outcome for

which the exclusion restriction is satisfied can be used to narrow the bounds. For

randomized trials with noncompliance in which there is censoring by death and the

exclusion restriction may not be satisfied, it would be of future research interest

to consider combining the post-quality of life measurement survival information we

have studied with the secondary outcomes Mealli and Pacini studied to narrow the
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bounds on the CSACE.

So far, we have assumed that we are in the context of a randomized trial or an

observational study with a valid IV. Our method can also be naturally extended to

the cases in which conditional on some discrete covariates there is ignorability such

that the subjects are randomized or the IV is valid conditional on the covariates.

We can stratify the subjects into subsets defined by each level of covariates, and

apply our method to obtain the bound of SACE within each subgroup. Then we

can obtain the overall bound of SACE combining the proportions of each subgroup.

See (Freiman and Small, 2013) for more details on this topic. How to deal with the

case in which the covariates are continuous requires further research.

In this study, we focus on studies where the non-mortality outcome is measured

at a fixed time for all subject. However, there are cases where the non-mortality out-

come might be measured at different time for different subjects which complicates

the analysis. For instance, IVH may happen at any time in the first several days

of life of babies. How to handle the situation in which the non-mortality outcome

could be measured at continuous time period is a topic we are working on.
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Chapter 3

IV with Nonignorable Missing

Covariates

3.1 Introduction

3.1.1 Effect of type of delivery NICUs on premature infants

Premature infants are infants born before a gestational age of 37 complete weeks.

Compared to term infants, premature infants have less time to develop, so that they

are at higher risk of death and complications and often in need of advanced care, ide-

ally in a neonatal intensive care unit (NICU) (Profit et al., 2010; Doyle et al., 2004;

Boyle et al., 1983). There are two types of NICUs - a high level NICU is a NICU

that has the capacity for sustained mechanical assisted ventilation and that delivers

on average of at least 50 premature babies per year, whereas a low level NICU is
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a unit that does not meet these requirements. There is literature that shows that

delivery at high level vs. low level NICUs is associated with a reduction in neonatal

mortality after controlling for measured confounders (Phibbs et al., 2007; Chung

et al., 2010; Rogowski et al., 2004). However, there are unmeasured confounders

such as fetal heart tracing test results and severity of conditions that could bias

these results. The aim of this chapter is to use the instrumental variable method

along with a novel method of controlling for nonignorable missing covariates to ob-

tain unbiased inferences about the effect on neonatal mortality of premature babies

being delivered in a high level NICU vs. a low level NICU. Understanding how

effective high level NICUs are compared to low level NICUs is important for both

individual mothers deciding whether to travel a distance to go to a high level NICU

rather than going to a local low level NICU, and also for public policy decisions

about premature infant care. In the 1970s, a system of perinatal regionalization

was built in most states in which most infants at risk of complications such as very

premature infants would be sent to regional high level NICUs (Lasswell et al., 2010).

This regionalization system has weakened in recent years with more very premature

infants being born in low level NICUs (Lasswell et al., 2010; Howell et al., 2002;

Richardson et al., 1995; Yeast et al.,1998). If high level NICUs are truly providing

considerably better care for premature babies, then it is valuable to invest resources

in strengthening the perinatal regionalization system, while if high level NICUs are

providing at best marginal improvements in care, then strengthening the perinatal
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regionalization should probably not be a priority. Additionally, if only certain types

of premature babies benefit from high level NICUs (e.g., only those below a certain

gestational age), then resources would be best spent on increasing the rate of high

level NICU delivery for those types of babies. To address this, we will estimate the

effect of high level NICU delivery for babies with different characteristics, such as

different gestational ages.

The ideal way to assess the effectiveness of high level NICUs vs. low level NICUs

would be to randomize pregnant women to deliver at different level NICUs, but

such a study is not ethical or practical. We instead consider an observational study.

We have compiled data on all babies born prematurely in Pennsylvania between

1995-2005 by linking birth certificates to death certificates as well as maternal and

newborn hospital records. More than 98% of the birth certificates could be linked

to the hospital records (Lorch et al. (2012) for more details). We will use the

189,991 records that could be linked in our analysis. The measured confounders we

will consider are gestational age, the month of pregnancy that prenatal care started

(precare), and mother’s education level. If these measured confounders are the only

confounding variables, i.e., the only variables that are related to both level of NICU

delivered at and mortality, then we could use propensity score/matching/regression

methods to control for the confounders. Unfortunately, some key confounders are

unmeasured such as the results of tests like fetal heart tracing which are related to

both how strongly a doctor encourages a woman to deliver at a high level NICU

50



and a baby’s risk of mortality. To control for such unmeasured confounders, we will

consider the instrumental variable (IV) method.

3.1.2 Instrumental variable approach

The IV method is widely used in observational studies (Angrist and Krueger, 1991;

Baiocchi et al., 2010). An instrumental variable (IV) is a variable that is (i) as-

sociated with the treatment, (ii) has no direct effect on the outcome, and (iii) is

independent of unmeasured confounders conditional on measured confounders. The

relationships between the IV, treatment(D), outcome(Y), measured confounders

(X) and unmeasured confounders(UC) are shown in the directed acyclic graph in

Figure 1. The basic idea of the IV method is to extract variation in the treatment

that is free of the unmeasured confounders and use this confounder free variation to

estimate the causal effect of the treatment on the outcome. The beauty of the IV

method is that although treatment is not randomly assigned in observational stud-

ies, the method still allows consistent estimation of the causal effect of a treatment.

X

��}}vv
IV // × ++D // Y

UC

×
kk OOaa

Figure 1. This directed acyclic graph shows the assumptions for a valid IV. D denotes the

treatment, Y the outcome, X measured confounders and UC unmeasured confounders.
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The key assumptions for an IV are (i) the IV affects D; (ii) the IV does not have a direct

effect on Y; (iii) the IV is independent of the unmeasured confounders UC given the

measured confounders.

The instrumental variable we consider is whether or not the excess travel time

that a mother lives from the nearest high level NICU compared to the nearest low

level NICU is less than or equal to 10 minutes; a mother is said to live ”near” to

a high level NICU if the excess travel time is ≤ 10 minutes and ”far” otherwise.

Excess travel time satisfies the first two characteristics of an IV: (i) association

with treatment: previous studies suggest that women tend to deliver at NICUs

near their residential zip code (Lorch et al., 2012; Phibbs et al., 1993) and (ii)

no direct effect: most women have time to deliver at both the nearest high level or

other delivery NICU so the marginal travel time to either facility should not directly

affect outcomes (Lorch et al., 2012). The third assumption needed for excess travel

time to be an IV, that it is independent of unmeasured confounders conditional on

measured confounders, is plausible in that most women do not expect to have a

premature delivery and hence do not choose where to live based on distance to a

high level NICU. However, because high level NICUs tend to be in certain types

of places (e.g. in cities) and people living in places with high level NICUs have

different characteristics from people living far away from high level NICUs, for the

third IV assumption to hold, we need to condition on these characteristics that may

affect the risk of neonatal death in these pregnancies. The measured characteristics
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we are able to condition on are the month of pregnancy that prenatal care started

(precare), mother’s education, and gestational age of the baby. We only have a small

number of measured characteristics; for settings where there are a large numbers

of measured characteristics, it is worth considering Lasso methods to control for

the characteristics as in Imai and Ratkovic (2012). In previous work (Guo et al.,

2014; Lorch et al., 2012), we used excess travel time as an IV to estimate the

effect of high level vs. low level NICUs, but we did not account for the potential

nonignorable missingness of certain measured characteristics. We will develop a

method for accounting for nonignorable missing covariates.

3.1.3 Nonignorable missing covariates

Among the measured confounders, the gestational ages are completely recorded

but some subjects’ precare and education level are missing . We are concerned

that the missingness is related with the outcome (death) and the risks of mother

and infant. The information for mother is usually filled out partly by mother, and

partly by the nurse or doctor. If the baby died, the mother may not want to fill

out the questionnaire due to her grief, or nurses may not bother the mother to

fill out a questionnaire out of caring for the mother’s grief. When the mother or

infant is at high risk of complications, nurses and doctors focus on this emergency

and may ignore recording mother’s information. Consequently, missingness is only

plausibly ignorable if we condition on the outcome (death) and mother’s/infant’s
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risk of complications. The outcome is fully observed but the mother’s/infant’s risk

of complication is not fully observed. The measured variable gestational age is a

strong predictor of risk but other predictors of risk that are known to the doctor but

not recorded in the data include the results of fetal heart tracing and the doctor’s

knowledge about the severity of mother’s and baby’s condition. These unmeasured

confounders may be related to the compliance status of the mother. The compliance

status of the mother refers to whether the mother would deliver at a high level NICU

if she lived near to one (excess travel time ≤ 10 minutes) and whether she would

deliver at a high level NICU if she lived far from one (see section 3.2.2 for further

discussion). If the mother would always deliver at a high level NICU regardless of

whether she lives near to one, her compliance status is always taker. If the mother

would only deliver at a high level NICU if she lives near one, her compliance status

is complier. If a doctor knows that a baby/mother is at higher risk of complications

based on fetal heart tracing or other knowledge, then the doctor is more likely

to recommend the mother to deliver at a high level NICU regardless of how near

she lives to the high level NICU and the mother is more likely to be an always

taker. Thus, compliance status is related to unmeasured risk and consequently,

the missingness of observed variables is likely to be related to compliance status.

Compliance status is only partially observed, e.g., under the assumptions in section

3.2.2, if a mother lives far from a high level NICU, but still delivers at a high level

NICU, she is an always taker, but if she lives near a high level NICU and delivers

54



at a high level NICU, she might be an always taker or complier.

Previous literature on IV with missing data has considered missing outcomes

(Frangakis and Rubin, 1999; Levy, O’Malley and Normand, 2004; Mealli et al.,

2004; Peng, Little and Raghunathan, 2004; Chen, Geng and Zhou, 2009; Small

and Cheng, 2009). In this literature, it has been argued that ignorability of the

missing outcome may only be plausible after conditioning on the covariates and the

partially observed compliance status (see (3.2.1)). Methods have been developed

for estimating causal effects under this ”latent ignorability”. For missing covariates

rather than missing outcomes, the only work on IV estimation that we are aware of

is Peng, Little and Raghunathan (2004), which assumes missingness of covariates is

ignorable conditional on observed data, but not allowed to depend on compliance

behavior. In this chapter, we develop a method for estimation of the causal effect

when the missingness of covariates may depend on the fully observed data as well

as the partially observed compliance behavior.

Generally, if missingness depends only on observed variables, even on observed

outcome, methods like multiple imputation under the assumption that the data is

missing at random (MAR) can provide reasonably good estimates (Schafer, 1997).

However, if the missingness of covariates also depends on partially observed com-

pliance status, multiple imputation methods based on MAR assumptions may fail

to provide valid inference. In this chapter, we will provide a model which allows

for missingness to depend on partially observed compliance status and we use the
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EM algorithm to obtain the MLE estimates. We also provide a sensitivity analysis

which allows for missingness to depend on further unobserved confounders besides

compliance status.

Many other observational studies face similar issues of unmeasured confounding

and missing data as ours, and the methods we develop in this paper may be useful for

them. For example, for studying the comparative effectiveness of two types of drugs,

data collected as part of routine health care practice is often used. Such data may

not contain measurements of important prognostic variables that guide treatment

decisions such as lab values (e.g., cholesterol), clinical variables (e.g., weight, blood

pressure), aspects of lifestyle (e.g., smoking status, eating habits) and measures

of cognitive and physical functioning (Walker, 1996; Brookhart and Schneeweiss,

2007). To control for such unmeasured confounders, instrumental variable methods

have been used, for example, the prescribing preference of a patient’s physician

for one type of drug vs. the other has been used as an IV (Korn and Baumrind,

1998; Brookhart et al., 2006). For prescribing preference to be a valid IV, it is

often necessary to condition on patient characteristics that differ between different

physicians to account for the possibility that certain physicians tend to see sicker

patients and these physicians may be more likely to prefer one type of drug than

physicians who tend to see less sick patients (Korn and Baumrind, 1998). However,

there is often missing data on some of these patient characteristics we would like to

condition on, in particular because the data is collected as part of routine practice
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rather than as part of a research study. For example, even if lab tests are always

measured when a lab test is actually administered, since doctors will only order a

lab test for some patients, there will be missing data. The missingness of lab values

might be related to the treatment decision and outcome, and be nonignorable. For

example, the decision to order a lab test is likely related to patient symptoms and/or

disease severity, and we would expect that the probability of a lab test being ordered

depends on what the value of the test would be, if measured, with unusual values

being more likely to be measured (Roy and Hennessy, 2011). Thus, comparative

effectiveness studies of drugs may need to consider instrumental variable methods

with nonignorable missing covariates as in our study.

3.2 Notation and Assumptions

3.2.1 Notation

We use the potential outcome approach to define causal effects. Let Zi represent

the binary IV of infant i; 1 if excess travel time is less than 10 minutes, which

encourages delivery in a high level NICU; 0 if excess travel time is more than 10

minutes, which does not provide encouragement of delivery in a high level NICU.

In our data, 56.4% of subjects have excess travel time less than 10 minutes. We

use Z to denote the vector of IVs for all infants. Let Di(z) be the potential binary

treatment variable that would be observed for subject i under IV assignment z. Let
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Di(z) be 1 if baby i would be delivered at a high level NICU under the vector of z

and 0 if the baby would be delivered at a low level NICU. We also let Yi(z) denote

the potential binary outcome, neonatal death indicator, that would be observed for

infant i under IV assignment z, with Yi(z) being 1 indicating that the newborn

would die in the hospital (neonatal death). We use X i to denote the covariate

values for ith subject. The covariates in our study are discrete: infant’s gestational

weeks, the month of pregnancy that prenatal care started and mother’s education,

namely 8th grade or less, some high school, high school graduate, some college,

college graduate, and more than college. For simplicity, we include the intercept

in X i. Finally, we let Rx
i (z) be the binary response indicator of covariate x under

IV z, that is, Rx
i (z) = 1 if covariate x would be observed for infant i under IV

assignment z, and Rx
i (z) = 0 if covariate x would be missing. There is a Rx

i (z)

for each covariate. In the above set of notations, Di(z), Yi(z) and Rx
i (z) are all

potential outcomes of an infant. For each infant, depending on the value of z, one

scenario is factual (observed), the other ones are counter factual (not observed). We

use Di, Yi and Rx
i to denote observed treatment received, observed death outcome

of infant, and the observed response indicator for covariate x.

3.2.2 Assumptions

We assume the following assumptions hold in our study. The first 5 assumptions

are the same as Angrist, Imbens and Rubin (1996).
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Assumption 1. Stable unit treatment value assumption (SUVTA) , meaning

that a subject’s potential outcomes cannot be affected by other individuals’ status.

SUVTA allows us to write Di(z) as Di(zi), Yi(z) as Yi(zi) and Rx
i (z)=Rx

i (zi).

This assumption is plausibly satisfied for our data since whether a mother delivers

at a high level NICU and her baby’s outcome is unlikely to be affected by other

mothers’ choice of living near to a high level NICU or not.

Based on subjects’ compliance behavior, we can partition the population into

four groups:

Ui =



n, if Di(1) = Di(0) = 0

c, if Di(1) = 1, Di(0) = 0

a, if Di(1) = Di(0) = 1

d, if Di(1) = 0, Di(0) = 1

(3.2.1)

where n, c, a, and d represent never taker, complier, always taker and defier, respec-

tively. Because Di(1) and Di(0) are never observed jointly, the compliance behavior

of a subject is unknown. The parameter of interest in our study is the complier

average causal effect (CACE), E(Yi(1)− Yi(0) | Ui = c,Xi = x).

Assumption 2. Nonzero average causal effect of Z on D. The average causal

effect of Z on D, E[Di(1)−Di(0)], is not equal to zero.

The excess travel time should affect whether mother delivers at a high level or
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low level NICU due to near NICUs being more convenient, thus assumption 2 is

plausible.

Assumption 3. Independence of the instrument from unmeasured confounders:

conditional on X, the random vector (Y(0), Y(1), D(0), D(1)) is independent of Z.

This assumption is plausible for our study because premature delivery is unex-

pected for women, so people do not choose where to live based on the closeness to

high level NICU, especially after controlling for measured socioeconomic variable

such as mother’s education level.

Assumption 4. Monotonicity: D(1) ≥ D(0).

If a mother is willing to travel to deliver at a high level NICU when living 10 or

more minutes further to a high level NICU than a low level NICU, she is probably

also willing to travel to deliver at a high level NICU when living less than 10 min-

utes further to a high level NICU than a low level NICU.

Assumption 5. Exclusion restrictions among never-takers and always-takers:

Yi(1) = Yi(0) if Ui = n, and Yi(1) = Yi(0) if Ui = a.

This means that the IV only affects the outcome through treatment and has no

direct effect. In our study, this is plausible because most women have enough time

to make it to either the nearest high level or low level NICU so that marginal travel
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time should not directly affect outcomes.

Assumption 6. Nonignorable missingness assumption (missingness ignorable

conditional on compliance class, outcome and fully observed covariates): suppose

the first k covariates of X are fully observed, and the last m-k covariates have miss-

ing values, then,

P (R
Xi,j
i (z) | Yi(z), Ui,X i) = P (R

Xi,j
i (z) | Yi(z), Ui, Xi,1, ..., Xi,k), ∀j = k + 1, ...,m.

This is saying that the missingness of covariates precare and mother’s education

depends only on neonatal death information, compliance status of infant, gestational

age (fully recorded) as well as the delivery level of NICU. It’s a plausible assumption

for our data given the discussion in section 3.1.3.

Assumption 7. Exclusion restriction on missing indicator among never-takers

and always-takers. R
Xi,j
i (1) = R

Xi,j
i (0) if Ui = n, and R

Xi,j
i (1) = R

Xi,j
i (0) if Ui = a.

These are analogous assumptions to Frangakis and Rubin (1999). This means

that the IV has no effect on missingness for never takers and always takers. We

think this assumption is plausible for our data for the following reasons. We think

that the missingness of covariates if affected by death and the baby’s risk of death

and complications as captured by gestational age and compliance class. Since for

always takers and never takers, death is not affected by their level of the IV z ( this

is assumption 5), and additionally the gestational age and compliance class are not

affected by the level of the IV, the missingness of covariates for always takers and
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never takers should not be affected by the level of the IV.

3.3 Model and Estimation

We use a general location model (Olkin and Tate, 1961; Little and Rubin, 2002) for

a mixture of continuous and categorical covariate variables, which could be easily

adjusted for cases where covariates variables are all categorical or all continuous.

We consider logistic models for (i) treatment assignment given covariates, (ii) out-

come in each compliance class/ treatment assignment combination given covariates,

and (iii) missingness in each compliance class/treatment assignment combination

given covariates, and we use a multinomial logistic model for compliance class.

Model for covariate : Suppose that in the m covariates, the first p are categorical

and the remaining m-p are continuous. We assign probability Wx1,...,xp to each

combination of possible values of those p categorical covariates variables, where

Wx1,...,xp are unknown parameters, and sum up to 1.

• (Xi,1, ..., Xi,p) are iid distributed with

P ((Xi,1, ..., Xi,p) = (x1, ..., xp)) = Wx1,...,xp , where
∑

Wx1,...,xp = 1 (3.3.1)

• Conditional on (Xi,1, ..., Xi,p) = (x1, ..., xp), we assume that the continuous

covariates random variables (Xi,p+1, ..., Xi,m) is multivariate normal with un-

known mean vector µx1,...,xp which may depend on the values of (x1, ..., xp),
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and with unknown common positive definite covariance matrix Σ in order to

reduce the number of parameters.

Xi,p+1, ..., Xi,m | (Xi,1, ..., Xi,p) = (x1, ..., xp) ∼iid Nm−p(µx1,...,xp ,Σ) (3.3.2)

Model for IV :

P (Zi = 1 |X i = x) =
exp (αTx)

1 + exp (αTx)
(3.3.3)

Model for compliance class :

P (Ui = n |X i = x) =
1

1 + exp (δTa x) + exp (δTc x)
(3.3.4)

P (Ui = c |X i = x) =
exp (δTc x)

1 + exp (δTa x) + exp (δTc x)
(3.3.5)

P (Ui = a |X i = x) =
exp (δTa x)

1 + exp (δTa x) + exp (δTc x)
(3.3.6)

Model for outcome :

P (Yi(z) = 1 | Ui = u,X i = x) =
exp (βTuzx)

1 + exp (βTuzx)
(3.3.7)

According to assumption 4, βa0 = βa1, and βn0 = βn1. The quantity of interest is

the average treatment effect for compliers of each covariate level, which is estimated

by E(Y (1)− Y (0) | U = c,X = x) = 1
1+exp (βTc0x)

− 1
1+exp (βTc1x)

.

Model for missingness indicators :

P (R
Xi,j
i (z) = 1 | Yi(z) = y, Ui = u,Xi,1,...,k = x1,...,k) =

exp (θTj,ux1,...,k + γj,uIy=1 + ηj,uIz=1)

1 + exp (θTj,ux1,...,k + γj,uIy=1 + ηj,uIz=1)
(3.3.8)

where j = k + 1, ...,m. Based on assumption 7, ηj,a = ηj,n = 0,∀j = k + 1, ...,m
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Under the model (3.3.1)-(3.3.8), we seek to maximize the likelihood of the joint

distribution of X,Z, U, Y,R. If we know the compliance classes and the missing

covariates for each subject, we can get the MLE of parameters involved in those

models easily. Based on this idea, we are going to use EM algorithm.

3.3.1 EM algorithm

For simplicity, we are going to present the EM algorithm for the case where all

the covariates are categorical and that there are 4 covariates (including intercept)

with only the first two completely observed, which is the case of our data. The

EM algorithm can be easily extended to other scenarios. The first covariate is

the intercept, and we further assume that the other three covariates are ordered

categorical with q2, q3, q4 levels respectively. For a nominal categorical variable, we

can use indicator functions for each category, which the following algorithm could

be easily adjusted for.

Let Nr3,r4,x2,x3,x4,u,z,y be the number of cases where RX3
i = r3, R

X4
i = r4, Xi,2 =

x2, Xi,3 = x3, Xi,4 = x4, Zi = z, Yi = y, Ui = u. Notice that Xi,1 = 1, ∀i. Those

numbers are only partially observed, however, if they are known, the complete data

log likelihood is,

lc =
∑

r3,r4,x2,x3,x4,u,z,y

Nr3,r4,x2,x3,x4,u,z,y · (log(Wx2,x3,x4) + log(P (Zi = z | Xi = (1, x2, x3, x4)))

+ log(P (Ui = u | Xi = (1, x2, x3, x4))) + log(P (Yi = y | Zi = z, Ui = u,Xi = (1, x2, x3, x4)))

+ log(P (R
Xi,3
i = r3 | Zi = z, Yi = y, Ui = u,Xi,2 = x2))

+ log(P (R
Xi,4
i = r4 | Zi = z, Yi = y, Ui = u,Xi,2 = x2)))
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Once we know N, the MLE estimates of the logistic models in (3.3.3)-(3.3.8) are

standard, and the MLE for Wx2,x3,x4 ∝ N,,x2,x3,x4,,,, where N,,x2,x3,x4,,, is defined to

be
∑

r3,r4,u,z,y
Nr3,r4,x2,x3,x4,u,z,y.

In the E-step, conditional on observed data and parameters’ estimates obtained

through the previous step, we can get the expected values for Nr3,r4,x2,x3,x4,u,z,y.

From the observed data, we can get the following counts:

1. NNx2,x3,x4,d,z,y which denotes the number of cases that Xi,3, Xi,4 are both

observed and that Xi,2 = x2, Xi,3 = x3, Xi,4 = x4, Di = d, Zi = z, Yi = y

2. N3x2,x4,d,z,y which denotes the number of cases that only Xi,3 are unobserved

and that Xi,2 = x2, Xi,4 = x4, Di = d, Zi = z, Yi = y

3. N4x2,x3,d,z,y which denotes the number of cases that only Xi,4 are unobserved

and that Xi,2 = x2, Xi,3 = x3, Di = d, Zi = z, Yi = y

4. NBx2,d,z,y which denotes the number of cases that Xi,3, Xi,4 are both missing

and that Xi,2 = x2, Di = d, Zi = z, Yi = y

Further, let Pr3,r4,x2,x3,x4,u,z,y be the probability of a subject having case where RX3
i =

r3, R
X4
i = r4, Xi,2 = x2, Xi,3 = x3, Xi,4 = x4, Zi = z, Yi = y, Ui = u which are

calculated based on models (3.3.1)-(3.3.8). Then we can get the expected values for

each Nr3,r4,x2,x3,x4,u,z,y, for example,

EN1,1,x2,x3,x4,a,1,y = NNx2,x3,x4,1,1,y
P1,1,x2,x3,x4,a,1,y

P1,1,x2,x3,x4,a,1,y + P1,1,x2,x3,x4,c,1,y
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To save space, all the formulas to update each Nr3,r4,x2,x3,x4,u,z,y are given in

appendix. By iteratively finding the E step estimate of N and maximizing the

expected value of the complete data log likelihood in the M step until the algorithm

converges, we obtain estimates of the parameters in models (3.3.1)-(3.3.8).

3.4 Simulation

In this section, we conduct simulation studies to estimate the complier average

causal effect in the simplest context where there is only one covariate, the values of

which could only be 0,1. We consider the following three scenarios under assump-

tions 1-7: 1) covariate is missing completely at random; 2) covariate is missing at

random, meaning that the missingness does not depend upon the unobserved data,

for example, does not depend on latent compliance status ; 3) missing mechanism

for covariate is nonignorable: the missingness of covariate can depend on not only

the observed outcome Y, treatment assignment Z, but also latent compliance status

U.

In each scenario, we are going to apply the following three estimation meth-

ods and compare their results: 1) complete case analysis, which provides unbiased

estimates when the missing mechanism of the data is missing completely at ran-

dom. 2) the estimates using multiple imputation by chained equations (conducted

by MICE, see Van Buuren and Groothuis-Oudshoorn, 2011) which gives valid esti-

mates when data are missing at random. 3) Our method, which is designed to deal
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with nonignorable missingness of covariates.

In the single covariate case, the models described in section 3 can be represented

simply by the following set of parameters: Wu, which is P (Ui = u); Mu, which is

P (Xi = 1 | Ui = u); ξx, which represents P (Zi = 1 | Xi = x); θzux, which denotes

P (Yi(z) = 1 | Ui = u,Xi = x) and ρyzu, which are parameters for missingness

indicators P (Ri(z) = 1 | Yi = y, Ui = u), where Ri = 0 if covariate for ith subject

is missing. θ1c1 − θ0c1 and θ1c0 − θ0c0 are corresponding compliers’ average causal

effect for subjects with X being 1 and 0 respectively.

In all three scenarios, the parameters other than the ones in the missingness

model are arbitrarily chosen and fixed as follows:

Wn = 0.2, Wa = 0.375, Mn = 0.5, Ma = 0.25, Mc = 0.8, ξ1 = 0.4, ξ0 = 0.6

θ1n1 = 0.5, θ1n0 = 0.3, θ0a1 = 0.8, θ0a0 = 0.7

θ1c1 = 0.7, θ1c0 = 0.45, θ0c1 = 0.45, θ0c0 = 0.3

The missingness parameters in each scenario are described below, the values for

ρ′s are chosen to generate 12% missingness for covariate (the same missing rate

as in the NICU study), and satisfy the exclusion restriction for missing indicator,

which implies that ρy0a = ρy1a, and ρy0n = ρy1n. In the first case, the missingness

parameters ρ′s are the same for all possible outcomes, IV levels as well as compliance

classes, thus the covariate is missing completely at random; in the second case, the

missing rates are different for different outcomes and IV levels, however won’t be
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affected by partially observed compliance status, so that the missingness won’t

depend on unobserved data, which is a case of missing at random; in the last case,

besides outcome and IV, the compliance status also plays a role in deciding the

probability of missingness, and the values of ρ′s are chosen so that even the largest

effect of compliance status on missingness is still moderate (ρ11a− ρ11n = 0.25) and

realistic.

1. Missing Completely at Random

ρ11n = ρ01n = ρ10a = ρ00a = ρ11c = ρ01c = ρ00c = ρ10c = 0.88

2. Missing at Random

ρ11n = ρ10n = ρ10c = 0.88, ρ10a = ρ11a = ρ11c = 0.78

ρ01n = ρ00n = ρ00c = 0.94, ρ00a = ρ01a = ρ01c = 0.97

3. Nonignorable Missingness

ρ11n = ρ10n = 0.75, ρ01n = ρ00n = 0.8, ρ10a = ρ11a = 1

ρ00a = ρ01a = 0.95, ρ11c = 0.8, ρ01c = 0.9, ρ00c = 0.83, ρ10c = 0.97

We simulated 500 data sets for each scenario described above with each simulated

dataset containing 5000 subjects. Under the above setup, the CACE for subjects

with covariate being 1 is 0.25, whereas the CACE for subjects with covariate 0 is

0.15. Table 3.1 shows the means and standard deviations for the estimates of CACE
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across 500 simulated datasets using the EM algorithm based on our nonignorable

missingness assumption, the complete-case estimates and multiple imputation es-

timates using MICE for each missingness mechanism. The corresponding bias in

percentage is given in parentheses.

Table 3.1: Simulation Results under MCAR, MAR and Nonignorable Missing Mech-

anism

MCAR CACE EM(NI) Complete-Case MICE

Mean SD Mean SD Mean SD

θ1n1 − θ0n1=0.250 0.250 (0.00%) 0.027 0.249 (0.40%) 0.028 0.248 (0.80%) 0.028

θ1n0 − θ0n0=0.150 0.149 (0.67%) 0.095 0.148 (1.33%) 0.096 0.154 (2.67%) 0.095

MAR CACE EM(NI) Complete-Case MICE

Mean SD Mean SD Mean SD

θ1n1 − θ0n1=0.250 0.250 (0.00%) 0.027 0.221 (11.60%) 0.029 0.246 (1.60%) 0.028

θ1n0 − θ0n0=0.150 0.147 (2.00%) 0.097 0.113 (24.67%) 0.096 0.160 (6.67%) 0.097

Nonignorable CACE EM(NI) Complete-Case MICE

Mean SD Mean SD Mean SD

θ1n1 − θ0n1=0.250 0.250(0.00%) 0.027 0.188 (24.80%) 0.029 0.234(6.40%) 0.029

θ1n0 − θ0n0=0.150 0.148(1.33%) 0.093 0.089(40.60%) 0.096 0.221(47.33%) 0.084

From Table 3.1 we see that when data is missing completely at random, all

three methods provide unbiased estimates. In the second scenario when the miss-

ingness depends on observed data, we can no longer obtain unbiased estimates from

complete-case analysis, whereas both our EM algorithm for nonignorable missing-
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ness and MICE designed for data missing at random still provide reasonable esti-

mates as we expected. However, when the missingness of covariates depends not

only on the observed outcome, but also on the partially observed compliance status,

simply using the complete cases or assuming missing at random to impute miss-

ing covariates based on the observed data gives us biased estimates of CACE. The

complete-case analysis provides biased estimates due to the fact that it is actu-

ally estimating E(Yi(1) − Yi(0) | Ui = c, Ri = 1), which is generally different from

E(Yi(1) − Yi(0) | Ui = c) when the data is not missing completely at random. Im-

putation based on missingness at random is actually imputing X as if the missing

mechanisms for compliers and always takers assigned to treatment are the same,

and that for compliers and never takers assigned to control are the same. When

this is not the case, the imputation estimates are biased.

From our simulation study, we can see that even if the missingness rate of a

covariate is low (12%), and the compliance class has only a moderate effect on the

missingness, it’s still important and necessary to model the effect of compliance

class on missingness in the analysis, otherwise, the results could be significantly

biased.

3.5 Application to NICU study

The data describes 189,991 babies born prematurely in Pennsylvania between 1995-

2005. These premature babies are the ones whose gestational ages are between 23
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and 37 weeks. The outcome variable we are interested in is neonatal death of babies,

which refers to death during the initial birth hospitalization; we use Yi to represent

the outcome of ith baby in the data set, with Yi being 1 indicating the death of

baby i. We view infants that are delivered in a high level NICU as the treatment

group, whereas the ones that are delivered in a low level NICU are the control

group. Let Di equal 1 if the ith baby is delivered in a high level NICU, 0 if in a low

level NICU. The instrumental variable we consider is whether or not the mother’s

excess travel time that a mother lives from the nearest high level NICU compared

to the nearest low level NICU is less than or equal to 10 minutes. As we discussed

in section 3.2.2, mother’s excess time is a plausible IV in our study which satisfies

the IV assumptions 1-7 in section 3.2.2. We use Zi to denote the IV value for the ith

baby, with Zi being 1 indicating that the excess travel time is less than 10 minutes.

The measured confounders X i for baby i are baby’s gestational age, the month of

pregnancy that prenatal care started and mother’s education. We also include an

intercept in X i.

In this data set, all variables mentioned above are fully observed except the

month of pregnancy that prenatal care started and mother’s education level. The

missing rates for those two covariates are 10.3% and 2.3% respectively. We did Chi-

Square tests of independence to test whether the missingness of those two covariates

depends on outcome Y. The p-values are both below 10−15, strong evidence that

missingness depends on the outcome. We also did logistic regression to test whether
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the missing indicators also depend on the observed risk characteristic of gestational

age given the outcome of neonatal death. The results show that gestational age

has a significant negative association with the missingness of those two covariates

even conditional on outcome (p-values are both below 10−15). Since we have strong

evidence that the missingness depends on observed risk characteristics, we believe

that the missingness should also depend on unobserved risk characteristics which

are reflected in compliance status.

Table 3.2 describes the estimated proportions of each compliance class - always

takers, compliers and never takers - for some typical combinations of covariates.

There is a clear trend that as the gestational ages gets larger, the proportion of

always takers gets smaller, and the proportions of the other two compliance classes

gets larger. A reasonable explanation for this phenomenon is that the gestational

age is a strong predictor for the risk of complications as well as death– the smaller

the baby is, the higher risk the baby and mother have. For babies or mothers at

higher risk of complications or death, doctors are more likely to encourage them

to go to a high level NICU no matter the mother lives near one or not, i.e. those

mothers are more likely to be always takers. Notice that from the fit of our model,

there is a substantial proportion of never takers. Although it may be surprising

that people would choose to bypass a high level NICU for a low level NICU (i.e.,

be a never taker). Choice of hospital is driven by a number of factors, including

where a patient’s physician practices; the general view of the hospital by a specific
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community of patients; and what family or friends believe about a hospital. There

are families who choose to deliver at smaller hospitals regardless of where they

live, and their illness severity. This may be because some families are suspicious of

academic hospitals, which make up the majority of high level NICUs, and would

rather travel to deliver at a community hospital even if the hospital has fewer

resources to care for them.

Table 3.3 shows the estimates of parameters in outcome model for compliers,

which are the parameters to estimate the CACE, E(Y (1)−Y (0) | U = c,X = x) =

1
1+exp (βTc0x)

− 1
1+exp (βTc1x)

. The standard errors for the corresponding parameters are

provided in parentheses; the standard errors are estimated through bootstrap using

1000 re-samples. From the estimates for the outcome model, we see that larger

gestational age and higher mother’s education level are related to low death rate,

and that for the mothers who started prenatal care late, the baby is at more risk of

death.

Table 3.4 shows the estimated CACE of delivering at high level NICU vs. low

level NICU for various combinations of the measured covariates. High level NICUs

substantially reduce the probability of death for very premature babies. For exam-

ple, for an infant of gestational age 24 weeks, whose mother started prenatal care

in the second month of pregnancy and has a high school education, being delivered

in a high level NICU will reduce the probability of death by 0.296, with a 95%

confidence interval of -0.429 to -0.137. The effect of high level NICUs is less for less
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premature babies; when the baby’s gestational age is about 37 weeks, the high level

NICU has almost no effect on mortality. This is plausible since a 37 baby is almost

mature and is at less risk, and consequently, the type of delivery NICU may not

matter much.

Using our method, the estimated CACE weighted by the probability of each

combination of the measured covariates is -0.010, with a 95% confidence interval

[-0.014, -0.006]; and the estimated CACE weighted by the number of compliers

in each combination of the measured covariates is −0.002, with a 95% confidence

interval [-0.004, -0.001]. Thus, our analysis shows that high level NICU significantly

reduce the probability of death for premature babies.

We compare our analysis to several ”baseline” methods commonly used to ana-

lyze observational studies that are not designed to allow for unmeasured confounders

or nonignorable missingness. The first method we consider is an unadjusted anal-

ysis using the observed rates of neonatal death in high level NICUs and low level

NICUs to estimate E(Y | D = 1)−E(Y | D = 0). The estimate is 0.01 with a 95%

confidence interval [0.009, 0.011], which shows that high level NICU is associated

with a higher probability of death. The second method we consider is a logistic

regression model of neonatal death indicator Y on treatment D as well as the mea-

sured confounders to get an estimate 1
N

∑N
i=1[Ê(Y | D = 1,X)− Ê(Y | D = 0,X)]

to adjust for covariates. We use mice under MAR assumption to impute the missing

values in the data. This adjusted estimate is 0.000, with a 95% confidence interval
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[-0.001, 0.001], which provides no evidence of an association between level of NICU

and chance of neonatal death. The third method we consider is subclassification

on the propensity score following Rosenbaum and Rubin (1984). As suggested in

Rosenbaum and Rubin (1984), we divided babies into five subclasses based on the

propensity score, and obtain the average treatment effect by weighting each subpop-

ulation’s average treatment effect by the proportion of each subclass. This adjusted

analysis shows that the high level NICU increases the probability of neonatal death

by 0.002, with a 95% confidence interval [0.001, 0.003]. The conclusions of all the

three baseline methods contradicts with the result of our method, which found ev-

idence that delivery at a high level NICU increases a premature baby’s chance of

survival. Unlike the three baseline methods, our method allows for unmeasured

confounders and a certain type of nonignorable missingness of covariates.

Table 3.3: Estimates of Outcome Model for Compliers

Parameters Intercept Gestational age Precare Mother’s education

βc1 1.400 (1.617) -0.153 (0.043) 0.091 (0.063) -0.522 (0.118)

βc0 9.450 (1.274) -0.395 (0.042) 0.144 (0.055) -0.315 (0.113)

3.6 Sensitivity Analysis

In this section, we will assess the sensitivity of our causal conclusions to an unmea-

sured patient risk characteristic relevant to both the outcome of death and missing-
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Table 3.4: CACE with Different Covariate Values

Gestational age Precare Mother’s education CACE 95% Confidence interval

24 2 High School -0.296 [-0.429, -0.137]

24 4 High School -0.343 [-0.490, -0.162]

24 2 College -0.192 [-0.349, -0.064]

24 4 College -0.230 [-0.421, -0.077]

30 2 High School -0.032 [-0.043, -0.017]

30 4 High School -0.040 [-0.056, -0.023]

30 2 College -0.019 [-0.033, -0.008]

30 4 College -0.024 [-0.043, -0.009]

37 2 High School 0.001 [-0.001, 0.002]

37 4 High School 0.001 [-0.001, 0.002]

37 2 College 0.000 [-0.001, 0.001]

37 4 College 0.000 [-0.002, 0.001]

ness of covariates, for example, results of tests like fetal heart tracing or doctor’s

knowledge about mother’s severity of condition. Following the idea of Rosenbaum

and Rubin (1983), we assume that there is an unobserved binary covariate Q which

represents the risk not explained by compliance status and gestational age, and

that is independent of the observed covariates, the compliance status and the in-

strument. We want to know after accounting for such an unmeasured covariate, is

there still evidence that the high level NICU reduces the probability of death for

babies of small gestational age.
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The adjusted model is as follows:

P (Q = 1) = π,

the parameter π gives the probability that the unobserved binary risk variable being

1. We assume that the unobserved binary risk variable Q is independent of IV Z,

compliance class U and covariates X, thus, the models (3.3.1)-(3.3.6) remain the

same in our sensitivity analysis. The model of outcome controlling also for Q is:

P (Yi(z) = 1 | Ui = u,X i = x, Qi = q) =
exp (βTuzx+ ξuzq)

1 + exp (βTuzx+ ξuzq)

Again, according to assumption 4, βa0 = βa1, βn0 = βn1, ξa0 = ξa1, and ξn0 = ξn1.

ξuz gives the log odds ratio for Y in two subpopulations q=1 and q=0. Finally, the

model for missing indicators of covariate j controlling further for Q is:

P (R
Xi,j
i (z) = 1 | Yi(z) = y, Ui = u,X i,1,...,k = x1,...,k, Qi = q)

=
exp (θTj,ux1,...,k + γj,uIy=1 + ηj,uIz=1 + κj,uq)

1 + exp (θTj,ux1,...,k + γj,uIy=1 + ηj,uIz=1 + κj,uq)

where j = k + 1, ...,m. Based on assumption 6, ηj,a = ηj,n = 0,∀j = k + 1, ...,m.

κj,u gives the log odds ratio for R in two subpopulations q=1 and q=0.

For fixed sensitivity parameters π, ξuz, κj,u, there exist unique MLEs of the re-

maining parameters. Our EM algorithm for the original model could be easily

extended to obtain those estimates. The average treatment effect for compli-

ers of each covariate level is estimated by E(Y (1) − Y (0) | U = c,X = x) =

π · ( 1
1+exp (βTc0x+ξc0)

− 1
1+exp (βTc1x+ξc1)

) + (1− π) · ( 1
1+exp (βTc0x)

− 1
1+exp (βTc1x)

).
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In order to limit the size of the sensitivity analysis, (κ, ξ) is assumed in the

sensitivity analysis to be the same across all subclasses defined by IV, compliance

class and covariates. And also as in Table 3.4, we estimated CACE for some typical

combinations of the measured confounders under each assignment of (π, κ, ξ).

Table 3.5 presents part of the sensitivity analysis results, showing how the unob-

served binary covariate Q affects the CACE for patients with prenatal care starting

at second month of pregnancy, mother’s education being high-school and babies’

gestational age being 24 weeks, 30 weeks and 37 weeks respectively. From Table

3.5, we observe that when the odds ratios are doubled, the estimated CACEs do

not change much in each assignment of sensitivity parameters; and when the odds

ratios are tripled, the estimated CACEs vary more. It’s time consuming to con-

duct bootstrap for each combination of sensitivity parameters to obtain the 95%

confidence interval for each scenario, however, due to the fact that we are using the

same dataset in outcome analysis in section 3.5 and also in our sensitivity analy-

sis, it is reasonable to assume that the width of the confidence intervals would be

similar to the ones shown in Table 3.4 for each scenario. Specifically, if the point

estimate and the confidence interval for a parameter in Table 3.4 is a and [b, c]

respectively and the point estimate for a corresponding parameter in the sensitivity

analysis tables is d, then we estimate the confidence interval for the parameter in

the sensitivity analysis to be [d-(a-b), d+(c-a)]. For example, in the first case in

Table 3.5, where the gestational age is 24, precare is 2, and mother’s education
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level is high school, if 10% of patients’ unobserved risk covariate is 1, and the un-

observed covariate doubles both odds ratios for Y and missingness indicators R,

the estimated CACE is -0.289, with approximate 95% confidence interval [–0.422,

-0.130]. Consequently, the unobserved covariate Q, would have to more than triple

the odds in both the outcome and missing indicator models, before altering the

conclusion obtained in section 3.3.5 that high level NICUs reduce the probability

of death in babies of small gestational age. To provide some idea about how large

an effect an unobserved covariate would have to have to change our conclusions,

we compare the effect to that of the observed covariate gestational age, which is

a strong predictor for death and risk of complications. According to the fit of our

model (see Table 3.3), if gestational age is changed by 2 weeks, then the odds ratios

for the outcome death would be altered by a factor of 2.2 and the odds ratios for the

response would be altered by a factor of 1.6. Thus based on our sensitivity analysis

results, an unobserved covariate with the same effect as changing gestational age by

2 weeks would not change our conclusion that high level NICUs reduce the prob-

ability of death in babies of small gestational age. We conclude that even if some

confounders, for instance, results of tests like fetal heart tracing, doctor’s knowledge

about mother’s severity of condition, are unmeasured and affect both the outcome

and missingness of covariates, they would not change our conclusions unless they

had very large effects.
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3.7 Summary

We proposed a series of models to estimate the causal effect of a treatment using

an instrumental variable when the missingness of covariates may depend on the

fully observed outcome, fully observed covariates, IV as well as the partially ob-

served compliance behavior. Simulation studies show that under our nonignorable

missingness assumption where the missingness depend on partially observed com-

pliance class, even if the missing rate of covariate is low (12%), and the effect of

compliance class on the missingness is only moderate, the commonly used estima-

tion methods, complete case analysis and multiple imputation by chained equations

assuming MAR, could provide substantially biased estimates; in contrast, our pro-

posed method, which is designed to deal with nonignorable missingness of covariate,

provides unbiased results.

In this chapter, we have developed a maximum likelihood method for instru-

mental variable estimation with nonignorable missingness of covariates. Further

research could consider a Bayesian version of our model which would enable carry-

ing our multiple imputation based on our model.

We applied our method to an observational study of neonatal care that aims

to estimate the delivery effect on mortality of premature babies being delivered

in a high level NICU vs. a low level NICU. We found that high level NICUs

substantially reduce the death risk for babies with small gestational age, which

implies that high level NICUs are truly providing considerably better care for babies
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with small gestational age. Therefore, it is valuable to invest resources to strengthen

the perinatal regionalization system for those babies. For babies that are almost

mature, strengthening the perinatal regionalization system should probably not be

a priority.

The methods we develop in this chapter may be useful for many other observa-

tional studies facing unmeasured confounders as well as nonignorable missing data

like ours. One example we described in the introduction is comparative effectiveness

studies where it is a concern that the missingness of important lab values might be

related with compliance status. For these settings, our simulation study shows that

it is important and necessary to model the effect of compliance status on missingness

to get valid estimates.

In this study, we focus on cases which contain missing covariates, and the miss-

ingness of covariates is nonignorable. However, in practice, many studies face the

issue of not only missing covariates but also missing outcomes. In our nonignorable

missingness assumption (Assumption 6), we allow the missingness of covariates to

depend on the outcome. If there are also missing outcomes, since the covariates

are predictors for the outcome, it is likely that the missingness of the outcome

is related to the values of covariates which are unobserved for some subjects. If

missingness exists in both the covariates and the outcome, identifiability is a major

issue to study since the missingness of the covariates and outcome may depend on

each other. Additional assumptions beyond what we have considered are needed
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for identifiability. Possible assumptions could be developed based on Peng, Little

and Raghunathan (2004) where missingness of outcome is allowed to depend on

compliance and fully observed data whereas missingness of covariates is allowed to

depend on only the fully observed data but not compliance status.
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Table 3.5: Effects of Q on the CACE for patients with prenatal care starting at sec-

ond month of pregnancy, mother’s education being high-school and with gestational

age being 24 weeks, 30 weeks and 37 weeks respectively

Gestational age Effect of Q on Y Effect of Q on R P (Q = 1) : π

0.1 0.5 0.9

24 exp(ξ)=2 exp(κ)=2 -0.289 -0.283 -0.290

exp(κ)= 1
2

-0.297 -0.296 -0.293

exp(ξ)= 1
2

exp(κ)=2 -0.293 -0.296 -0.297

exp(κ)= 1
2

-0.290 -0.283 -0.289

exp(ξ)=3 exp(κ)=3 -0.273 -0.228 -0.217

exp(κ)= 1
3

-0.296 -0.252 -0.225

exp(ξ)= 1
3

exp(κ)=3 -0.298 -0.329 -0.379

exp(κ)= 1
3

-0.289 -0.300 -0.352

30 exp(ξ)=2 exp(κ)=2 -0.032 -0.031 -0.031

exp(κ)= 1
2

-0.032 -0.033 -0.032

exp(ξ)= 1
2

exp(κ)=2 -0.032 -0.033 -0.032

exp(κ)= 1
2

-0.031 -0.031 -0.032

exp(ξ)=3 exp(κ)=3 -0.029 -0.024 -0.022

exp(κ)= 1
3

-0.032 -0.026 -0.022

exp(ξ)= 1
3

exp(κ)=3 -0.032 -0.038 -0.046

exp(κ)= 1
3

-0.032 -0.035 -0.043

37 exp(ξ)=2 exp(κ)=2 0.001 0.001 0.001

exp(κ)= 1
2

0.001 0.001 0.001

exp(ξ)= 1
2

exp(κ)=2 0.001 0.001 0.001

exp(κ)= 1
2

0.001 0.001 0.001

exp(ξ)=3 exp(κ)=3 0.001 0.001 0.001

exp(κ)= 1
3

0.001 0.001 0.001

exp(ξ)= 1
3

exp(κ)=3 0.001 0.001 0.001

exp(κ)= 1
3

0.001 0.001 0.001
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Chapter 4

Aporetic Conclusions When

Testing the Validity of an

Instrumental Variable

4.1 Testing untestable assumptions in causal in-

ference with instrumental variables

4.1.1 What is an instrument? What assumptions underlie

its use?

An instrument is a haphazard nudge to accept a treatment where the nudge can af-

fect the outcomes only to the extent that it alters the treatment received. The most
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basic example is Holland’s (1988) randomized encouragement design, in which peo-

ple are randomized to one of two groups, and members of one group are encouraged

to adopt some health promoting behavior, say quit smoking, but the outcome, say

an evaluation of lung tissue, might respond to a reduction in cigarettes consumed

but not to encouragement to quit that leaves cigarette consumption unchanged.

There are two key elements here. First, in the encouragement experiment, people

are picked at random for encouragement — selection does not just look haphazard,

it is actually randomized — so the comparison of encouraged and unencouraged

groups is equitable, not subject to biases of self-selection. Even in the randomized

encouragement design, people who change their behavior, quit smoking, are a self-

selected part of the encouraged and possibly unencouraged groups, so a comparison

of quitters and others could be very biased: quitters may be more self-disciplined

in all areas of their lives and may be more concerned with health promotion. The

second element is that encouragement works, affects the outcome, only if it changes

behavior, the so-called exclusion restriction. Stated informally in words, the instru-

mental variable (IV) estimate, the Wald estimate, attributes the entire difference

in outcomes between the randomized encouraged and unencouraged groups to the

greater change in behavior in the encouraged group, thereby avoiding biases of self-

selection. If the encouraged group has a mean outcome that is one unit better than

the mean in the unencouraged group, and if half of the encouraged quit while none

of the unencouraged quit, then the Wald estimator claims the effects of quitting on
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those who quit when encouraged is two units, because encouragement only affected

half of those who were encouraged. See Angrist, Imbens and Rubin (1996) for an

equivalent formal statement.

So there are two key elements in the randomized encouragement design:

(i) encouragement is randomized,

(ii) encouragement affects only those individuals who change their behavior in

response to encouragement, the exclusion restriction.

In the encouragement design, (i) is ensured by the use of randomization, and (ii)

seems highly plausible because of what we think we know about the relationships

that might exist between advice, behavior and lung tissue. Typical applications

of the reasoning involving instruments are less compelling, sometimes much less

compelling, because (i) is not ensured by actual random assignment, and (ii) is less

firmly grounded in other things we think we know. In particular, (i) is typically

rendered somewhat plausible by adjusting for visible differences in measured pre-

treatment covariates between encouraged and unencouraged groups, but of course

this strategy may fail to control a covariate that was not measured. Typically,

the encouraged and unencouraged groups are not formed by random assignment,

but rather in a way that appears irrelevant and haphazard, but these appearances

may deceive. Typically, the exclusion restriction seems plausible to anyone who

cannot imagine a way encouragement could affect the outcome without altering the
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treatment, but this may simply reflect inadequate imagining. So it is natural to

want to test the assumptions that define an instrument.

Instruments are increasingly used in the study of health outcomes; see, for exam-

ple, McClellan et al. (1994), Lalani et al. (2010) and Lorch et al. (2012). Outside of

randomized clinical trials, the treatment a patient receives may reflect a physician’s

judgment about the best treatment for this patient or else a patient’s preference

for a particular treatment. Instruments are used in health outcomes research in

the hope of finding circumstances in which attributes of the patient do not decide

treatment assignment, and instead something haphazard and irrelevant decides the

treatment. For instance, if a patient has a heart attack and lives far from a hos-

pital capable of performing coronary bypass surgery, then the heart attack may be

treated without bypass surgery just because of where the patient happens to live.

Obviously, geography might appear to be haphazard and irrelevant, might appear

to satisfy conditions (i) and (ii), yet these appearances may be incorrect; so, testing

(i) and (ii) is important. For several recent discussions of instrumental variables

in health outcomes, see Baiocchi et al. (2010), Brookhart and Schneeweiss (2007),

Cheng et al. (2011), Swanson and Hernán (2013) and Tan (2006).

4.1.2 Untestable assumptions?

The assumptions required for an instrument are often said to be untestable (e.g.,

Stock 2002, §4.1). Whether this is true or not depends in part on what one
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means by untestable. Assumptions might be said to be untestable if they (A)

are premises of a theorem that is the basis for an inference, (B) these premises

are not self-evident or implied by other premises that are self-evident, (C) these

premises cannot be tested against data from the observable distributions specifically

mentioned in the statement of the theorem. This is an internally consistent way to

use the word untestable, but it is a manner of speaking at considerable tension with

typical scientific practice. Typically in science, each new claim to know something

is checked for consistency with the other things we think we know. There is

no reason to confine this checking for consistency to the short list of premises of a

theorem. This checking may involve logical consistency, but more often the question

is whether the new knowledge claim and old knowledge claims could plausibly be

describing one and the same world, or whether something has to give. We discuss

an example in detail in §4.2. In practical work with instruments, it is quite common

to hear people announce that IV assumptions are untestable and then to see them

do the sorts of checks that test IV assumptions.

Why are IV assumptions often said to be untestable when people often test

them? We suspect there is a reason. A test of IV assumptions may lead neither

to rejection of the assumptions nor to acceptance but rather to an aporia.
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4.1.3 Aporia: mutually inconsistent but individually plau-

sible claims

The Oxford American Dictionary defines the noun aporia as “an irresolvable internal

contradiction . . . in a text, argument or theory,” with aporetic as the adjective. A

collection of propositions, $1, . . . , $L is an aporia if each $` is plausible on its own

but they are jointly inconsistent, that is, $1 ∧ . . . ∧$L is false or implausible; see

Rescher (2009). A special case of aporia occurs in mathematical reasoning in a

proof by contradiction, in which one proves ∼ $L by showing that $1, . . . , $L−1 are

certainly true and $1, . . . , $L is aporetic in yielding a contradiction. In contrast,

in a typical aporia, in the general case, the identity of the culpable proposition or

propositions is unknown. In Plato’s early dialogues, Socrates would invalidate the

views of his opponents by demonstrating that those views were aporetic; see Vlastos

(1994, p. 58).

To recognize that one’s beliefs contain an aporia is an advance in understanding,

albeit an uncomfortable one. From a false premise, one can logically deduce every

conclusion, true or false (because, in elementary propositional logic, A⇒ B is true

for all B if A is false). To believe $1, . . . , $L individually but fail to recognize

them as aporetic is to risk logically deducing false propositions from beliefs one

holds (because one believes $1, . . . , $L, can deduce the false proposition A = $1 ∧

. . . ∧$L from one’s beliefs, and can deduce any B from A because A is false). To

recognize that one’s beliefs $1, . . . , $L are aporetic is to recognize that one harbors
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at least one false belief, to be motivated to identify that belief, and to be hesitant in

deducing consequences from $1, . . . , $L. To recognize an aporia is an advance in

understanding, and it is certainly better than believing the component propositions

without recognizing their aporetic status.

One can escape an aporia $1, . . . , $L by arbitrarily discarding propositions $`

until the remaining propositions are no longer inconsistent. In this process, there is

nothing to ensure that one has discarded false propositions and retained true ones.

Rather, one has narrowed the scope of one’s beliefs to the point that one is com-

mitted to sufficiently few beliefs that one is safe from accusations of inconsistency.

For instance, one can avoid an aporia in testing the assumptions of IV by defining

those assumptions so narrowly that they become untestable.

4.1.4 Outline: an IV study; a test of IV assumptions; two

technical innovations

We are currently using an instrument in a study of the possible effects of deliv-

ery by cesarean section of extremely premature infants of 23-24 weeks gestational

age. Some background is discussed in §4.2.1 and the IV analysis is presented in

§4.2.2-§4.2.4. In §4.2.5, the IV assumptions are tested, resulting in an aporia that

is discussed in detail. The two appendices present two technical innovations: a

new simpler approach to strengthening an instrument, and a sensitivity analysis for

an attributable effect closely related to the Wald estimator. A reader who wishes
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to reproduce the analysis reported here will need to consult these appendices. We

placed this material in the appendix because we wanted to emphasize the concep-

tual discussion of aporetic conclusions when testing the assumptions underlying

instrumental variables.

4.2 Does delivery by cesarean section improve

survival of extremely premature neonates?

4.2.1 Background: Studies of cesarean section without an

instrumental variable

We are currently engaged in a study of the possible effects of cesarean section on

the survival of very premature babies of 23-24 gestational age. For reasons to be

described shortly, we tried to find an instrument for delivery by cesarean section and

to check its validity by contrast with other trusted information. Some terminology

and background are needed.

The gestational age of a full-term baby is 39 weeks or 9 months. Babies born

under 37 weeks gestation are considered premature, with infants born younger hav-

ing more medical problems, requiring more intensive medical care to survive, and

having a higher likelihood of long-term neurodevelopment and medical problems.

This issue is most prominent for the infants at the limits of viability, that is, those
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infants born at 23 and 24 weeks gestation. Babies born between 23 and 24 weeks of

gestational age are very premature and face high risks of death and life-long health

problems even with special care. A fetus of 23 and 24 weeks of gestational age

that is not born alive is defined as a fetal death, whereas an infant who dies after

delivery is designated as a neonatal death. There are clinical indicators around a

pregnancy at the limits of viability that give the physician information about the

likelihood that an infant will survive first the delivery, and then the initial period

of time after delivery.

In clinical epidemiology, the phrase “confounding by indication” is often defined

as the bias introduced when patients receive medical treatments based on pretreat-

ment indications that the patient would benefit from the treatment. To the extent

that such indications for treatment are incompletely recorded, thus incompletely

controlled by adjustments for recorded pretreatment differences, they may lead to

bias in elementary analyses that rely on adjustments for confounding factors us-

ing recorded pretreatment differences. At gestational age 23-24 weeks, delivery by

cesarean section is likely to reflect clinical judgement about the clinical stability

and likelihood of survival of the infant and the generally unrecorded preferences of

the mother. Both of these factors are likely to be incompletely recorded in most

large-scale population datasets.

A major use of instrumental variables in medicine is to break up or otherwise

avoid confounding by indication, that is, to find some circumstances in which pa-
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tients received a medical treatment for reasons other than that the patient was

expected to benefit from treatment. In a randomized trial, patients receive treat-

ments for no reason at all, the flip of a fair coin, and instruments are sought in

observational studies to recover as best one can some aspects of the randomized

situation.

Existing literature suggests that routine or optional use of cesarean delivery for

babies of ≥ 30 weeks gestational age is not of benefit to the baby. For instance,

Werner et al. (2013) concluded:

In this preterm cohort, cesarean delivery was not protective against poor

outcomes and in fact was associated with increased risk of respiratory

distress and low Apgar score compared with vaginal delivery. (page

1195)

More than seventy percent of the preterm cohort in Werner et al. (2013) were

≥ 30 weeks gestational age, and more than half were ≥ 32 weeks, while less than

6% were less than 26 weeks. Werner et al. (2013) compared babies delivered by

cesarean section and babies delivered vaginally adjusting for measured covariates

using logit regression. For instance, women on Medicaid were more likely to deliver

vaginally with an odds ratio of 1.43, while women with third party insurance (e.g.,

Blue Cross) were more likely to deliver by cesarean section with odds ratio 1.46,

and additive adjustments on the logit scale were intended to correct for this. Using

similar methods and focusing on premature babies of ≥ 32 weeks gestational age,
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Malloy (2009) reached similar findings.

In contrast, for very premature infants of 22-25 weeks gestational age, Malloy

(2008) concluded: “Cesarean section does seem to provide survival advantages for

the most immature infants. . . ” (page 285). As in the other studies, the comparison

was of babies delivered by one method or the other with adjustments for measured

covariates by logit regression.

With varied emphasis, these studies note the problem of confounding by indica-

tion. They note that a direct comparison of babies delivered by cesarean section

and babies delivered vaginally could be biased by aspects of the baby and the mother

that led to the decision to deliver by one method rather than the other, and this is

true even if logit regression is used to adjust for measured covariates. The decision

to perform a cesarean section in one case but not in another may reflect indications

that were evident to the physicians or mothers involved but not evident in mea-

sured covariates. This seems especially likely when a complex choice is made in a

thoughtful, deliberate way. For a baby of gestational age 23-24 weeks, these con-

siderations may include a medical judgement about the viability of the baby, and a

mother’s concern for a baby who may face severe life-long health problems. When

studying a survival outcome, one is especially concerned about comparing groups of

babies that may have been constructed with the viability of those babies in mind.

One might prefer circumstances in which more or fewer babies were delivered by

cesarean section for reasons that had nothing to do with the particular situation of
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the baby and mother.

The finding that cesarean sections did not benefit more mature preterm babies

did not stir up much controversy, but the finding of benefit for very premature

babies was more controversial and surprising. We set out to study this using an

instrument for cesarean section among babies 23-24 weeks of gestational age.

4.2.2 An instrument: variation among hospitals in the use

of cesarean section for older babies

As noted in §4.2.1, confounding by indication occurs when patients receive treat-

ments for good reasons, for instance because a physician believes giving the treat-

ment to this patient will benefit this patient. It turns out that the use of cesarean

section varies substantially from one hospital to the next. A mother may deliver

by cesarean section not because of anything unique to her but simply because she

delivers at a hospital that makes more extensive use of cesarean section.

Our instrument is the predicted c-section rate among babies of 23-24 weeks

gestational age at the hospital where the baby was delivered. The rate is predicted

using logit regression with four predictors. Three predictors describe the hospital’s

use of c-sections for older babies, that is: (a) the rate among babies with gestational

age 25-32 weeks, (b) the rate among babies with gestational age 33-36 weeks, (c)

the rate among babies with gestational age 37+ weeks. The fourth predictor was

(d) the malpractice insurance rate in the county in which the hospital was located.
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There is evidence that cesarean sections are more common in regions where the risk

of malpractice litigation is greater; e.g., Dubay, Kaestner, and Waidmann (1999),

Baicker, Buckles, and Chandra (2006) and Yang et al. (2009). The continuous

instrument was the predicted probability from the logit regression. The value of

this instrument would have been constant within a hospital but for predictor (d)

which varied from year to year, so the instrument was constant in a given hospital in

a given year, and was describing the proclivity of the hospital to perform c-sections

rather than anything about a particular baby or mother.

4.2.3 Matching to strengthen the instrument

Available pretreatment covariates described the mother (e.g., her age), her baby

(e.g., birth weight), the mother’s Census tract (e.g., median household income),

and the hospital. Hospitals vary in their abilities to care for premature infants.

In particular, neonatal intensive care units (NICUs) are graded into seven levels of

care based on available technology to care for sicker newborn patients. We matched

exactly for the level of the NICU; see Table 4.1. We also used logit regression to es-

timate a hospital’s risk-adjusted rates of two complications, thrombosis and wound

infection, and matched to balance these variables. These scores were estimated

from older babies, ≥ 25 weeks gestational age, so the scores make no use of out-

comes for the group under study, namely babies of 23-24 weeks gestational age.

The literature has suggested these two factors, thrombosis and wound infection, as
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measures of the quality of care provided by the obstetrical hospital. In brief, the

matching sought to compare similar mothers and babies from similar neighborhoods

at similar hospitals.

Matched pairs were formed to be similar in terms of covariates and very different

in terms of the instrument. Specifically, each of 1489 pairs contained two babies

of 23-24 weeks gestational age, one at a hospital with a high frequency of use of

c-sections for older babies, the other with a low frequency of use of c-sections for

older babies. So the high and low groups looked similar in measured covariates, but

one group went to hospitals that often delivered by c-section for older babies and

the other group went to hospitals that used c-sections sparingly. As seen in Tables

4.1-4.3, the 1489 babies in the high group and the 1489 babies in the low group were

similar in terms gestational weeks (23 or 24), birth weight, year of birth, mother’s

age, mother’s education, mother’s race/ethnicity, mother’s health insurance, the

technical level of the hospital’s neonatal intensive care unit (NICU), pregnancy

complications such as hypertension and oligohydramnios, number of prenatal care

visits, parity, month that prenatal care started, various aspects of the mother’s

census tract. In Table 4.1, the three covariates were matched exactly. In Table

4.2, the five covariates had identical marginal distributions but were not exactly

matched, a condition known as “fine balance.” In Table 4.3, the difference in means

for the covariates was never more than a tenth of a standard deviation, while the

difference in the instrument was more than three standard deviations. This is
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depicted for three continuous covariates and the instrument in Figure 1.

The matching was done in a new but simple way described in Appendix C. The

approach taken here is a small extension and slight simplification of the approach

taken in Zubizarreta et al. (2013). Described informally, nonoverlapping high

and low instrument groups were defined by cutting the instrument in three places,

discarding the middle. High and low babies were then selectively matched to push

the groups further apart on the instrument, balance the covariates, and produce

close individual pairs. The match was the solution to a constrained optimization

problem.

4.2.4 Outcomes: c-section and mortality rates

The instrument is intended to manipulate one outcome, whether or not a baby is

delivered by cesarean section, with possible effects on another outcome, mortality

of the baby. As intended and expected, the instrument did manipulate the rate of

cesarean sections; see Table 4.4. Table 4.4 counts pairs, not babies, in the manner

that is commonly associated with McNemar’s test; see Cox (1970). More than half

the babies in both the high and low groups were delivered vaginally, but the 24.6%

c-section rate in the low group was increased by more than half to 38.2% in the

high group. When the two babies in a pair were delivered in different ways, the

odds were 396/194 = 2.04 to 1 that the high baby had the c-section.

Table 4.5 displays the main outcome, namely total in-hospital mortality. Table
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4.5 is examining the possible effects of delivering at a high c-section hospital rather

than a low c-section hospital, not yet the effects of c-sections themselves. The point

estimate of the odds ratio favoring survival at a hospital with a high c-section rate is

360/185 = 1.95. In the high group, survival rate was 34.8% and in the low group it

was 23.0%, or a difference of 360−185 = 175 survivors. If one believed naively that

the matching in Tables 4.1-4.3 and Figure 1 had reproduced a paired randomized

experiment that assigned one baby in each pair at random to the high hospital and

the other to the low hospital (i.e., if one believed (i) but perhaps not (ii) in §4.1.1),

then, using the method in Rosenbaum (2002, §6), one would be 95% confident that

A ≥ 132 babies were caused to survive because of delivery at a high hospital. (This

is a one-sided 95% confidence interval derived from the randomization distribution,

but if one prefers a two-sided interval, then the one-sided 97.5% interval is A ≥ 124

babies rather than 132. In a paired randomized experiment, A is an unobserved

random variable; see Rosenbaum (2002) or on-line Appendix II.) Moving away from

the naive model for treatment assignment (i.e., moving away from (i) in §4.1.1), if

an unobserved covariate doubled the odds of delivery at a high hospital and doubled

the odds of survival, then the one-sided 95% confidence interval is A ≥ 66 babies

were caused to survive because of delivery at a high hospital. (More precisely, the

95% interval is A ≥ 66 at Γ = 1.25 by the method in Rosenbaum (2002), and this

amplifies to (Λ,∆) = (2, 2) by the method in Rosenbaum and Silber (2009).) If an

unobserved covariate doubled the odds of delivery at a high hospital and quadrupled
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the odds of survival, then the one-sided 95% confidence interval is A ≥ 23 babies

were caused to survive because of delivery at a high hospital (or technically, this is

the 95% interval at Γ = 1.25 which amplifies to (Λ,∆) = (2, 4)). The ostensible

effects of delivering at a high rather than low c-section hospital are not sensitive to

small departures from random assignment. So far, nothing has been said about the

effects of c-sections, only about the effects of delivering at hospitals that do more

of them.

In Table 4.4, the high c-section hospitals did D = 396 − 194 = 202 more c-

sections than did the low c-section hospitals and 175 more babies survived. If the

high-versus-low grouping were a valid instrument for delivery by c-section, then the

Wald estimator would attribute the additional survivors at high c-section hospitals

to the additional c-sections at those hospitals, that is, ignoring sampling variability,

175 additional survivors attributed to 202 additional c-sections. Assuming that the

high-versus-low grouping is a valid instrument (that is, assuming both (i) and (ii)

in §4.1.1), the Wald estimate of the effect of c-sections on the survival of babies who

receive them because they were born at high c-section hospitals is 175/202 = 0.87,

an impressive ratio, not quite one more survivor for one more c-section. There

is substantial sampling variability and possible bias in assignment to high or low

hospitals, and both must be addressed, the first using a confidence statement, the

second using sensitivity analysis. An interesting quantity is A/D where A is the

attributable effect in the previous paragraph and D is number of additional c-
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sections at high c-section hospitals. The 95% confidence intervals for A/D are

A/D ≥ 132/202 = 0.65 for randomization inference (Γ = 1), A/D ≥ 66/202 = 0.33

for an unobserved covariate that doubled the odds of delivering at a high c-section

hospital and doubled the odds of survival (Γ = 1.25), and A/D ≥ 23/202 = 0.11

for an unobserved covariate that doubled the odds of delivering at a high c-section

hospital and quadrupled the odds of survival (Γ = 1.5). (In on-line Appendix II,

it is noted that A/D is the ratio of an unobserved to an observed random variable

and a confidence interval for it is discussed.)

The exclusion restriction would be false if high c-section hospitals were more

aggressive in many ways in their efforts to save babies of 23-24 weeks gestational

age and if some of the reduced mortality were due to other aspects of the care

provided at high c-section hospitals. Is the exclusion restriction compatible with

other things we think we know?

4.2.5 A test of the exclusion restriction

As discussed in §4.2.1, the literature claims that there is no benefit from cesarean

section for older preterm babies, say 30-34 weeks gestational age. Presuming —

that is, tentatively and uncritically assuming — that claim to be true, we tested

the exclusion restriction by redoing the study for babies of 30-34 weeks gestational

age. It is important to realize that the literature is based on direct comparisons

of babies delivered by c-section and babies delivered vaginally, whereas we used
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an instrument, and there are other differences to be discussed in a moment. So

we are really asking whether different methodologies concur in saying c-sections

benefit babies at 23-24 weeks gestational age and not at 30-34 weeks gestational

age, or whether an aporia has been produced, in which it is not reasonable to

believe everyone’s methodology, in the literature and our own, is producing correct

conclusions about the effects of c-sections.

There were, of course, many more babies born at 30-34 weeks gestational age

and the mortality rate was much lower. We matched in a manner similar to

that in §4.2.3, but because there were many more babies involved, we made more

extensive use of exact matching. This produced 23631 pairs of babies of 30-34

weeks gestational age with covariate balance and instrument separation similar to

that seen in Tables 4.1-4.3 and Figure 1 for the younger babies.

As before for babies of 23-24 weeks gestational age, the instrument worked for

babies of 30-34 weeks gestational age, with high babies more likely than low babies to

be delivered by cesarean section. The mortality results appear in Table 4.6. After

noting that the mortality rates are very different in Tables 4.5 and 4.6, one notes also

that high babies had lower mortality rates than low babies in both tables, and the

odds ratios are somewhat different in magnitude but neither is small, 360/185 = 1.95

for 23-24 weeks and 1076/672 = 1.60 for 30-34 weeks. We also looked for a trend,

and indeed the odds ratio is larger at 30 weeks gestational age and smaller at 34

weeks. We redid the study again for babies of 25-29 weeks gestational age, finding
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mortality results between Tables 4.5 and 4.6.

So the claims in the literature and our results sound plausible and reasonable if

taken one at a time, but they cannot all be correct inferences about the effects of

cesarean section on mortality. The conclusion is an aporia, individually plausible

claims that are mutually incompatible. Of course, many things could have gone

wrong, either in the literature or in our study. In our study, the two assumptions

required of an instrument might be false. The literature implicitly assumes that

if one takes account of observed covariates, say by logit regression, then one has

reproduced a randomized experiment (or formally, they implicitly assume ignorable

treatment assignment), and that assumption gets people in no end of trouble in

observational studies. Are there other possibilities?

Indeed, there is another possibility. The cited literature in §4.2.1 focused on

neonatal deaths, excluding fetal deaths, whereas we looked at all deaths. If a

woman was pregnant with a baby of 23-24 weeks gestational age and the pregnancy

terminated at that time, then we did not distinguish a death moments before birth

and a death moments after birth. Remember that a baby of 23-24 weeks gestational

age will require substantial medical assistance to remain alive. To our minds,

the death of a baby of 23-24 weeks gestational age is a biological event, whereas

the classification of that death as before or after birth may be little more than

bookkeeping, perhaps an attempt to reduce the emotional pain of an event that is

typically distressing for the mother.
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Because our findings differ from the literature, we separated fetal and neonatal

deaths, as shown in Tables 4.7 and 4.8. Consider what Tables 4.7 and 4.8 would

look like if one removed all pairs with at least one fetal death, that is, removed the

first row and first column of each table. The remaining babies would be either

alive or neonatal deaths, the outcomes studied in the existing literature. Indeed,

the resulting tables would then agree with the existing literature, in that c-sections

would look beneficial in Table 4.7 but not in Table 4.8. By contrast, including fetal

deaths, c-sections look beneficial in both tables. Arguably, a death of a fetus of

23-24 weeks gestational age is a death of an extremely premature baby, a biological

event, whereas the classification of that death into a fetal death or a neonatal death

is partly a style of practice and a manner of speaking. Arguably, fetal deaths should

not be excluded from all deaths, as they were not excluded in Tables 4.5 and 4.6.

The available evidence is aporetic. Each part looks plausible on its own but

the parts are mutually inconsistent. Something has to give, but it is less than clear

what that something should be. The literature finds a benefit from c-sections at

23-24 weeks gestational age but not at 30-34 weeks gestational age. The literature

makes no effort to address unmeasured biases in the selection of individual babies

for delivery by cesarean section, though biases at the individual level are at least

plausible, perhaps more plausible than not. In contrast, our analysis uses an

instrument to avoid selection biases operating at the level of individual babies,

using the frequency of c-sections among older babies at a hospital as an instrument
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for c-sections among babies of 23-24 weeks gestational age. Hospitals with higher

frequencies of c-sections have somewhat lower mortality, and this difference is not

sensitive to small biases of selection into high or low c-section hospitals. By virtue

of assuming the exclusion restriction, the Wald estimator attributes higher survival

to higher rates of c-sections, producing a point estimate of 87%, and that seems

implausibly large — that is, 87% of c-sections save babies who would otherwise have

died — however, confidence intervals include substantially smaller effects. The

exclusion restriction could easily be false here if hospitals that do more c-sections

also are more aggressive in other ways in their treatment of extremely premature

infants — the exclusion restriction would wrongly attribute the effects of those other

efforts to c-sections. Our results would look much more like the existing literature

if we followed the literature in ignoring fetal deaths at 23-24 weeks gestational age,

counting only neonatal deaths at 23-24 weeks gestational age, but we worry that

in many cases the distinction between a fetal death and a neonatal death at 23-24

weeks gestational age is a distinction without much of a difference. The element

that seems least ambiguous in all this is that hospitals that do more c-sections have

lower total mortality at 23-24 weeks gestational age, a difference that is not easily

attributed to small biases in selection of mothers into hospitals, although it could

conceivably be explained by moderately large biases. Whether this difference is

caused by c-sections or by something else these hospitals are doing is not as clear.
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4.3 Summary

We have suggested that the assumptions of the instrumental variable argument are

often testable providing an aporia is seen as an acceptable conclusion. An aporia

is a collection of individually plausible but mutually incompatible propositions.

An aporia is an advance in understanding, albeit an uncomfortable one. In the

example, the result of testing the exclusion restriction is a heightened concern that

the exclusion restriction may be false, and the IV analysis may be wrong, but also

a heightened concern that some of the things we think we know from the literature,

some of the things we assumed in testing the exclusion restriction, may themselves

be false.

107



Table 4.1: Three variables were exactly matched in forming 1489 pairs of two babies

with gestational ages 23-24 weeks, namely gestational age (23 or 24 weeks), the

capability or level of the neonatal intensive care unit (NICU), and the year of birth

(1993-2005). The table gives counts of babies, and these are identical in the high

and low instrument group defined by the estimated probability of a c-section at a

given hospital.

Instrument Group

High Low

Gestational age in weeks

23 weeks 726 726

24 weeks 763 763

NICU Level

1 333 333

2 56 56

3A 126 126

3B 480 480

3C 438 438

3D 15 15

FC 41 41

Year of birth

1993 30 30

1994 47 47

1995 90 90

1996 89 89

1997 104 104

1998 124 124

1999 133 133

2000 132 132

2001 129 129

2002 166 166

2003 188 188

2004 132 132

2005 125 125
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Table 4.2: Five variables were finely balanced in forming 1489 pairs of two babies

with gestational ages 23-24 weeks, meaning that these variables had the same marginal

distributions in the high and low instrument groups, so the counts are identical. The

table gives counts of babies, and these are identical in the high and low instrument

group defined by the estimated probability of a c-section at a given hospital.

Instrument Group

High Low

Mother had hypertension during pregnancy

Yes 75 75

No 1437 1437

Oligohydramnios

Yes 52 52

No 1308 1308

Mother’s race/ethnicity

Non-Hispanic White 551 551

Non-Hispanic Black 305 305

Hispanic 478 478

Non-Hispanic Asian/P. Islander 87 87

Other 36 36

Missing 32 32

Mother’s education

8th grade or less 128 128

Some high school 249 249

High school graduate 473 473

Some college 303 303

College graduate 164 164

More than college (MS, PhD) 108 108

Missing 64 64

Mother’s health insurance

Fee for service 116 116

HMO 647 647

Federal/State 662 662

Other 20 20

Uninsured 42 42

Missing 2 2
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Table 4.3: Covariates balanced in mean only and forced imbalance in mean in the

instrument in forming 1489 pairs of two babies with gestational ages 23-24 weeks. The

table gives the mean of each covariate or instrument before and after matching, together

with the difference in means divided by the standard deviation before matching (S-Dif).

For Yes/No = Y/N variables, 1=Yes, 0=No. RAHR = risk adjusted hospital rate.

PROM = premature rupture of membrane.

Before matching After matching

Mean S-Dif Mean S-Dif

High Low High Low

Hospital Covariates

Hospital delivery volume (#) 2850 2903 -0.03 2568 2722 -0.09

RAHR of thrombosis 0.00 0.00 0.31 0.00 0.00 0.09

RAHR of wound infection 0.00 0.00 0.18 0.00 0.00 -0.05

Mother/Baby Covariates

Birth weight (grams) 591.12 577.25 0.16 587.08 580.31 0.08

Hypertension (Y/N) 0.07 0.04 0.12 0.05 0.05 0.00

Chorioamnionitis (Y/N) 0.28 0.26 0.04 0.27 0.26 0.02

Mother’s age (years) 28.15 26.89 0.19 27.69 27.61 0.01

Prenatal care visits (#) 7.04 5.89 0.27 6.52 6.32 0.05

Prenatal care missing (Y/N) 0.09 0.05 0.14 0.07 0.05 0.07

Parity 1.90 1.90 -0.00 1.91 1.77 0.09

Parity missing (Y/N) 0.01 0.01 0.02 0.01 0.01 0.03

Month prenatal care started 2.00 2.16 -0.14 2.00 2.12 -0.10

Month care started missing (Y/N) 0.08 0.04 0.20 0.06 0.04 0.09

Multiple delivery 1.27 1.19 0.15 1.22 1.18 0.09

Congenital (Y/N) 0.15 0.14 0.04 0.15 0.14 0.03

Placentation (Y/N) 0.23 0.20 0.07 0.22 0.20 0.04

Diabetes (Y/N) 0.03 0.03 0.00 0.03 0.03 -0.03

Pre-term labor (Y/N) 0.81 0.74 0.17 0.80 0.76 0.09

PROM (Y/N) 0.35 0.28 0.15 0.33 0.30 0.08

Small for gestation age (Y/N) 0.09 0.12 -0.11 0.09 0.12 -0.09

Neighborhood Covariates from the Census

Household median income ($) 45024 41435 0.21 44730 44848 -0.01

Income missing (Y/N) 0.00 0.00 0.03 0.00 0.00 0.00

Below Poverty Level (fraction) 0.11 0.16 -0.10 0.15 0.16 -0.03

Instrumental variable

C-sec. predicted prob. 0.38 0.23 2.56 0.40 0.22 3.12
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Table 4.4: C-sections in 1489 matched pairs of babies of 23-24 weeks gestational

age. The table counts pairs, not babies. As expected, c-section rates are higher in

the high c-section group.

Low Baby

High Baby C-section Other Total High Baby Rate

C-section 173 396 569 38.2%

Other 194 726 920 61.8%

Total 367 1122 1489

Low Baby Rate 24.6% 75.4% 100.0%

Table 4.5: Mortality in 1489 matched pairs of babies of 23-24 weeks gestational age.

The table counts pairs, not babies. Mortality rates are higher in the low c-section

group.

Low Baby

High Baby Dead Alive Total High Baby Rate

Dead 786 185 971 65.2%

Alive 360 158 518 34.8%

Total 1146 343 1489

Low Baby Rate 77.0% 23.0% 100.0%
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Table 4.6: Mortality in 23631 matched pairs of babies of 30-34 weeks gestational

age. The table counts pairs, not babies. Mortality rates are higher in the low

c-section group.

Low Baby

High Baby Dead Alive Total High Baby Rate

Dead 108 672 780 3.3%

Alive 1076 21775 22851 96.7%

Total 1184 22447 23631

Low Baby Rate 5.0% 95.0% 100.0%
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Table 4.7: Mortality by type of death in 1489 matched pairs of babies of 23-24 weeks

gestational age. The table counts pairs, not babies. Mortality rates are higher in

the low c-section group.

Low Baby

High Baby Fetal Death Neonatal Death Alive Total High Baby Rate

Fetal Death 111 99 47 257 17.2%

Neonatal Death 220 356 138 714 48.0%

Alive 141 219 158 518 34.8%

Total 472 674 343 1489

Low Baby Rate 31.7% 45.3% 23.0% 100.0%
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Table 4.8: Mortality by type of death in 23631 matched pairs of babies of 30-34

weeks gestational age. The table counts pairs, not babies. Mortality rates are higher

in the low c-section group.

Low Baby

High Baby Fetal Death Neonatal Death Alive Total High Baby Rate

Fetal Death 64 6 298 368 1.6%

Neonatal Death 26 12 374 412 1.7%

Alive 692 384 21775 22851 96.7%

Total 782 402 22447 23631

Low Baby Rate 3.3% 1.7% 95.0% 100.0%
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Figure 1: The match was intended to balance covariates and imbalance the instrument, and the boxplots 

depict this for three continuous covariates – mother’s age, birth weight, and number of prenatal visits – 

and for the continuous instrument – the estimated probability of a c‐section at the hospital predicted 

from c‐section rates for older babies. 
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Appendix A

Two-Stage Censoring by Death

A.1 Bounds of the SACE

Given the value of π1100, the linear programming problem (2.3.14)-(2.3.20) has a

solution if and only if the set Φ = [max{q110|1 − π1000,
q111|1π1100

π1111+π1110+π1010
}, q110|1π1100

π1100+π1000
]

is not empty, which is essentially
q110|1
p10|1

≥ q111|1
p11|1

, an inequality that must be satisfied

based on assumptions 4-6. If Φ is not empty, let T = max{q110|1−π1000,
q111|1π1100

π1111+π1110+π1010
},

T =
q110|1π1100

π1100+π1000
, the solution to the linear programming problem is,

max((π1111E(Yi(1) | 1111) + π1110E(Yi(1) | 1110) + π1100E(Yi(1) | 1100)) | π1100)

=
q111|1(π1111 + π1110)

π1111 + π1110 + π1010

+ T (A.1.1)
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min((π1111E(Yi(1) | 1111) + π1110E(Yi(1) | 1110) + π1100E(Yi(1) | 1100)) | π1100)

=



T if
q111|1π1100

π1010
≤ T

q111|1 + (1− π1010

π1100
)Ṫ if

q111|1π1100

π1010
≥ T

q111|1 + (1− π1010

π1100
)T̈ if T <

q111|1π1100

π1010
< T

(A.1.2)

where

Ṫ =


T ifπ1010 ≤ π1100

T ifπ1010 > π1100

T̈ =


T ifπ1010 ≤ π1100

q111|1π1100

π1010
ifπ1010 > π1100

Thus, given a fixed value of π1100, the bounds for the SACE are given by:

min(SACE | π1100) =
min((π1111E(Yi(1) | 1111) + π1110E(Yi(1) | 1110) + π1100E(Yi(1) | 1100)) | π1100)− (q111|0 + q110|0)

π1111 + π1110 + π1100

max(SACE | π1100) =
max((π1111E(Yi(1) | 1111) + π1110E(Yi(1) | 1110) + π1100E(Yi(1) | 1100)) | π1100)− (q111|0 + q110|0)

π1111 + π1110 + π1100

From section 2.3.1, we know that π1100 is not point identified, but bounded:

π1100 ∈ I, I = [max{0, p11|0 + p10|0 − p10|1}, min{p10|0, p10|1}], we have,

minSACE = min
π1100∈I

[
min((π1111E(Yi(1) | 1111) + π1110E(Yi(1) | 1110) + π1100E(Yi(1) | 1100)) | π1100)− (q111|0 + q110|0)

π1111 + π1110 + π1100

]

maxSACE = max
π1100∈I

[
max((π1111E(Yi(1) | 1111) + π1110E(Yi(1) | 1110) + π1100E(Yi(1) | 1100)) | π1100)− (q111|0 + q110|0)

π1111 + π1110 + π1100

]

One can prove that the expression on the left side of equation (A.1.2) is continu-

ous as a function of π1100 and both the functions on the left side of equations (A.1.1)

and (A.1.2) are non-decreasing as functions of π1100. Thus, the maxSACE could be
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achieved when π1100 is min{p10|0, p10|1} which is the right end point of the range for

π1100, and the minSACE could be achieved when π1100 is max{0, p11|0 +p10|0−p10|1}

which is the left end point of the range for π1100. Based on this observation, we can

obtain the formula for the bound of SACE which is given in (2.3.21) and (2.3.22).

A.2 The ARDSNet data

861 patients were randomized to receive mechanical ventilation with either lower

tidal volume or traditional tidal volume. The lower tidal volume group contained

432 patients and the traditional tidal volume group contained 429 patients. We

created our variables based on the recorded answers for the study termination form

and weaning form.

The first time point (day 28) survival information is obtained through the

“ST2DT” variable in the study termination sub-dataset which recorded the date of

death. If the date of death for subject i is below day 28, then S1i is 0 and the QOL

is not defined; otherwise, S1i is 1.

For the patients who survive to day 28, the QOL that whether patient was able to

breathe without assistance by day 28 was well defined. The variable ”UNASSIST” in

the study termination sub-dataset recorded whether the patient was able to sustain

unassisted breathing for ≥ 48 hours during the first 28 days after initiation of study

procedures. However, even if the patient sustained unassisted breathing for at least

48 hours, the patient could return to assisted breathing before day 28. The variable
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”ASSIST” recorded this information. If the patient returned to assisted breathing

from unassisted breathing for at least 48 hours, the ”ASSIST” was recorded as

”Yes”. Thus, for patients whose ”UNASSIST” was recorded as ”No”, we view

them as the ones who were not able to breathe without assistance by day 28. For

patients whose ”UNASSIST” was recorded as ”Yes”, and ”ASSIST” was recorded

as ”No”, we view them as the ones who were able to breathe without assistance by

day 28; for patients whose ”UNASSIST” was recorded as ”Yes” and ”ASSIST” was

recorded as ”Yes”, each patient could either (a) have had unassisted breathing at

some point and then returned to assisted breathing and still be on assisted breathing

at day 28 or (b) have had unassisted breathing before day 28, returned to assisted

breathing before day 28 and then returned to unassisted breathing before day 28.

For these patients, we further use the weaning sub-dataset which recorded in detail

about each patients’ breathing status to figure out whether the patient was able to

breathe without assistance by day 28.

Our second time point survival indicator is whether the patient was eventually

discharged home with unassisted breathing. This information was recorded in the

variable ”STATUS” which described patient status at study termination.
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Appendix B

IV with Nonignorable Missing

Covariates

B.1 E-step Estimates

The fomulas to update N in E step are as follows, ∀x2, x3, x4, y

N1,1,x2,x3,x4,a,0,y = NNx2,x3,x4,1,0,y

N1,1,x2,x3,x4,n,1,y = NNx2,x3,x4,0,1,y

EN1,1,x2,x3,x4,a,1,y = NNx2,x3,x4,1,1,y
P1,1,x2,x3,x4,a,1,y

P1,1,x2,x3,x4,a,1,y + P1,1,x2,x3,x4,c,1,y

EN1,1,x2,x3,x4,c,1,y = NNx2,x3,x4,1,1,y
P1,1,x2,x3,x4,c,1,y

P1,1,x2,x3,x4,a,1,y + P1,1,x2,x3,x4,c,1,y

EN1,1,x2,x3,x4,n,0,y = NNx2,x3,x4,0,0,y
P1,1,x2,x3,x4,n,0,y

P1,1,x2,x3,x4,n,0,y + P1,1,x2,x3,x4,c,0,y

EN1,1,x2,x3,x4,c,0,y = NNx2,x3,x4,0,0,y
P1,1,x2,x3,x4,c,0,y

P1,1,x2,x3,x4,n,0,y + P1,1,x2,x3,x4,c,0,y
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EN0,1,x2,x3,x4,a,0,y = N3x2,x4,1,0,y
P0,1,x2,x3,x4,a,0,y∑x3=q3

x3=1 P0,1,x2,x3,x4,a,0,y

EN0,1,x2,x3,x4,n,1,y = N3x2,x4,0,1,y
P0,1,x2,x3,x4,n,1,y∑x3=q3

x3=1 P0,1,x2,x3,x4,n,1,y

EN0,1,x2,x3,x4,a,1,y = N3x2,x4,1,1,y
P0,1,x2,x3,x4,a,1,y∑x3=q3

x3=1 P0,1,x2,x3,x4,a,1,y +
∑x3=q3

x3=1 P0,1,x2,x3,x4,c,1,y

EN0,1,x2,x3,x4,c,1,y = N3x2,x4,1,1,y
P0,1,x2,x3,x4,c,1,y∑x3=q3

x3=1 P0,1,x2,x3,x4,a,1,y +
∑x3=q3

x3=1 P0,1,x2,x3,x4,c,1,y

EN0,1,x2,x3,x4,n,0,y = N3x2,x4,0,0,y
P0,1,x2,x3,x4,n,0,y∑x3=q3

x3=1 P0,1,x2,x3,x4,n,0,y +
∑x3=q3

x3=1 P0,1,x2,x3,x4,c,0,y

EN0,1,x2,x3,x4,c,0,y = N3x2,x4,0,0,y
P0,1,x2,x3,x4,c,0,y∑x3=q3

x3=1 P0,1,x2,x3,x4,n,0,y +
∑x3=q3

x3=1 P0,1,x2,x3,x4,c,0,y

EN1,0,x2,x3,x4,a,0,y = N4x2,x3,1,0,y
P1,0,x2,x3,x4,a,0,y∑x4=q4

x4=1 P1,0,x2,x3,x4,a,0,y

EN1,0,x2,x3,x4,n,1,y = N4x2,x3,0,1,y
P1,0,x2,x3,x4,n,1,y∑x4=q4

x4=1 P1,0,x2,x3,x4,n,1,y

EN1,0,x2,x3,x4,a,1,y = N4x2,x3,1,1,y
P1,0,x2,x3,x4,a,1,y∑x4=q4

x4=1 P1,0,x2,x3,x4,a,1,y +
∑x4=q4

x4=1 P1,0,x2,x3,x4,c,1,y

EN1,0,x2,x3,x4,c,1,y = N4x2,x3,1,1,y
P1,0,x2,x3,x4,c,1,y∑x4=q4

x4=1 P1,0,x2,x3,x4,a,1,y +
∑x4=q4

x4=1 P1,0,x2,x3,x4,c,1,y

EN1,0,x2,x3,x4,n,0,y = N4x2,x3,0,0,y
P1,0,x2,x3,x4,n,0,y∑x4=q4

x4=1 P1,0,x2,x3,x4,n,0,y +
∑x4=q4

x4=1 P1,0,x2,x3,x4,c,0,y

EN1,0,x2,x3,x4,c,0,y = N4x2,x3,0,0,y
P1,0,x2,x3,x4,c,0,y∑x4=q4

x4=1 P1,0,x2,x3,x4,n,0,y +
∑x4=q4

x4=1 P1,0,x2,x3,x4,c,0,y

EN0,0,x2,x3,x4,a,0,y = NBx2,1,0,y
P0,0,x2,x3,x4,a,0,y∑x4=q4

x4=1

∑x3=q3
x3=1 P1,0,x2,x3,x4,a,0,y

EN0,0,x2,x3,x4,n,1,y = NBx2,1,0,y
P0,0,x2,x3,x4,n,1,y∑x4=q4

x4=1

∑x3=q3
x3=1 P1,0,x2,x3,x4,n,1,y

EN0,0,x2,x3,x4,a,1,y = NBx2,1,1,y
P0,0,x2,x3,x4,a,1,y∑x4=q4

x4=1

∑x3=q3
x3=1 P0,0,x2,x3,x4,a,1,y +

∑x4=q4
x4=1

∑x3=q3
x3=1 P0,0,x2,x3,x4,c,1,y
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EN0,0,x2,x3,x4,c,1,y = NBx2,1,1,y
P0,0,x2,x3,x4,c,1,y∑x4=q4

x4=1

∑x3=q3
x3=1 P0,0,x2,x3,x4,a,1,y +

∑x4=q4
x4=1

∑x3=q3
x3=1 P0,0,x2,x3,x4,c,1,y

EN0,0,x2,x3,x4,n,0,y = NBx2,1,1,y
P0,0,x2,x3,x4,n,0,y∑x4=q4

x4=1

∑x3=q3
x3=1 P0,0,x2,x3,x4,n,0,y +

∑x4=q4
x4=1

∑x3=q3
x3=1 P0,0,x2,x3,x4,c,0,y

EN0,0,x2,x3,x4,n,0,y = NBx2,1,1,y
P0,0,x2,x3,x4,c,0,y∑x4=q4

x4=1

∑x3=q3
x3=1 P0,0,x2,x3,x4,n,0,y +

∑x4=q4
x4=1

∑x3=q3
x3=1 P0,0,x2,x3,x4,c,0,y
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Appendix C

Testing IV Assumptions

C.1 A new bipartite matching algorithm for

strengthening an IV

Following Baiocchi et al. (2010) and Zubizarreta et al. (2013), we used matching to

strengthen the instrumental variable while balancing observed covariates. However,

we changed, simplified, and in some contexts improved, a key element. These two

papers both took a single population, discarded part of the population, split the

remainder into pairs, where the pairs balance covariates while being far apart on the

instrument. Discarding a middle portion, an ambiguous portion, of the population

makes the instrument stronger, improving its design sensitivity, making the study

less sensitive to bias from nonrandom assignment of encouragement; see Small and

Rosenbaum (2008). Traditionally, splitting a single population into pairs is called
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by the awkward name “nonbipartite matching” which means “not two parts.” The

history of the awkward name involves the fact that optimal two-part matching (e.g.,

treatment versus control matching), so called optimal bipartite matching, was stud-

ied and solved first; see Korte and Vygen (2008) for a textbook discussion of both

problems with comprehensive references. Baiocchi et al. (2010) used an algorithm

and Fortran code for optimal nonbipartite matching created by Derigs (1988), as

implemented in Lu et al.’s (2011) R package nbpmatching; it minimizes the total

distance within pairs formed from a single population, discarding a portion of the

population using a technical trick called “sinks”. Zubizarreta et al. (2013) used in-

teger programming, specifically Zubizarreta’s (2012) mipmatch package, to impose

additional linear constraints on the nonbipartite match, such as requiring nominal

covariates to be perfectly balanced or requiring means of continuous covariates to

be close. Also, Zubizarreta et al. (2013) changed the optimized objective function

along the lines suggested in Rosenbaum (2012), so as to optimize the number of

individuals discarded. A feature of the nonbipartite approach is that individual

pairs are far apart on the instrument, but the high baby in one pair may be lower on

the instrument than the low baby in some other pair. Depending upon the nature

of the instrument and the covariates, that feature may or may not be reasonable. It

might be reasonable if the meaning of the instrument changed with the levels of the

covariate. In the current study, with an instrument defined in terms of a hospital’s

rate of use of c-sections in older babies, this feature did not seem reasonable.
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We wanted each and every baby in the high group to have a higher value of the in-

strument than each and every baby in the low group. This change was implemented

in a simple way using bipartite matching. We cut the population into three groups

based on the value of the instrument, V , where the middle group, 0.29 ≤ V ≤ 0.31

contained 10% of the population and was discarded. Write {α1, . . . , αh, . . . , αH}

for the H remaining babies in the high group and {β1, . . . , β`, . . . , βL} for the L

remaining babies in the low group, noting that Vαh > Vβ` for every h, `. We then

matched babies in the high group to babies in the low group to be close in terms

of a covariate distance, δh`, measuring how similar baby αh and baby β` were in

terms of covariates, and far apart on the instrument, with δh` =∞ if Vαh −Vβ` < ω

for an ω > 0. The covariate distance combined a robust Mahalanobis distance for

covariates with δh` =∞ for mismatches on the variables in Table 1. Write ah` = 1

if baby αh in the high group is paired with baby β` in the low group, ah` = 0

otherwise, so that we require ah` ∈ {0, 1},
∑H

i=1 ai` ≤ 1,
∑L

j=1 ahj ≤ 1, for each h,

`. In principle, one could simply minimize the total distance within matched pairs,∑H
h=1

∑L
`=1 ah` δh`, subject to

∑H
h=1

∑L
`=1 ah` = min (H,L), and this could be done

using the optimal assignment algorithm — e.g., Bertsekas’ (1981) auction algorithm

as made available in the pairmatch function of Hansen’s (2007) optmatch package

in R. Alternatively, one could make ω larger, as we did, to further strengthen the in-

strument, discarding some babies to achieve this more stringent objective. This can

be done using the same software for the assignment algorithm without constrain-
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ing
∑H

h=1

∑L
`=1 ah` and instead minimizing

∑H
h=1

∑L
`=1 ah` δh`−λ

∑H
h=1

∑L
`=1 ah` for

specified λ > 0, and this determines an optimal number of babies to discard; see

Rosenbaum (2012) for extensive specifics.

As in Zubizarreta (2012) and Zubizarreta et al. (2013), we used integer pro-

gramming, not the optimal assignment algorithm, to minimize
∑H

h=1

∑L
`=1 ah` δh`−

λ
∑H

h=1

∑L
`=1 ah` but with additional linear constraints. As in these references,

these added constraints forced the fine balance in Table 4.2 and the close mean

match seen in Table 4.3. Moreover, we added a new constraint to further strengthen

the instrument. Setting δh` =∞ if Vαh−Vβ` < ω forces each matched pair to differ

by ≥ ω in terms of the instrument. The new additional constraint forced the mean

difference in the instrument V to differ by a larger number, Ω > ω, so every pair

meets the minimum requirement of ω, but on average a larger difference of Ω is

achieved. The new constraint was
∑H

h=1

∑L
`=1 ah` (Vαh − Vβ` − Ω) > 0.

C.2 Confidence intervals and sensitivity analyses

for A/D

Section 4.2.4 of the paper reported confidence intervals for ratios of survival effects

to differences in the frequency of use of c-sections. These intervals are new but are

a direct extension of an existing method. This appendix describes the new method

and briefly indicates its justification. There are I matched pairs, i = 1, . . . , I, of two
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subjects, j = 1, 2, one encouraged, Zij = 1, the other not, Zij = 0, so Zi1 +Zi2 = 1

for each i. In §4.2.3, there are I = 1489 pairs of two babies, one at a high c-

section hospital, Zij = 1, the other at a low c-section hospital, Zij = 0. Pairs were

matched for observed covariates xij, so xi1 = xi2 for each i, but the matching may

have failed to control an unobserved covariate uij, so possibly ui1 6= ui2 for many or

all i. Baby ij has two potential binary responses (rT ij, rCij), one rT ij if encouraged

with Zij = 1, the other rCij if unencouraged with Zij = 0. In §4.2.4, rT ij = 1

if baby ij would survive at the high c-section hospital in the ith pair, rTij = 0

otherwise, and rCij = 1 if baby ij would survive at the low c-section hospital in

the ith pair, rCij = 0, otherwise. Fisher’s (1935) sharp null hypothesis of no

treatment effect asserts H0 : rT ij = rCij for all babies ij — in words, switching from

a low c-section hospital to a high c-section hospital does not change any baby’s

survival. In a randomized paired experiment with binary response, McNemar’s

test is the randomization test of Fisher’s H0. Each baby is observed under one

treatment, so the effect of the treatment, rT ij − rCij, is not observed for any baby;

see Neyman (1923), Welch (1937) and Rubin (1974). An important unobservable

quantity in §4.2.4 is the attributable effect A =
∑I

i=1

∑2
j=1 Zij (rT ij − rCij); it is the

unobservable number of babies caused to survive by virtue of delivering at the high

c-section hospital. In constructing one-sided confidence intervals for A, we follow

Angrist, Imbens and Rubin (1996) in additionally assuming rT ij ≥ rCij, so a 23-24

week baby who would survive with the stress of a vaginal delivery, rCij = 1, would
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also survive with the reduced stress of a cesarean delivery, rTij = 1. A two-sided

interval for A may be constructed from two one-sided intervals. Under Fisher’s null

hypothesis of no effect, every rT ij − rCij = 0, so A = 0 no matter how treatments

Zij are assigned.

Similarly, (dT ij, dCij) is the binary indicator of delivery by cesarean section or

vaginal delivery (1 for c-section, 0 for vaginal delivery) at the high and low c-

section hospital. Baby ij is said to be a complier if encouragement shifts the

baby’s delivery in the encouraged direction, that is, if 1 = dT ij > dCij = 0, so

this baby would be delivered by c-section at the high c-section hospital in pair i

and would be delivered vaginally at the low c-section hospital in pair i. Baby ij

is said to be an always taker if dT ij = dCij = 1, a never taker if dT ij = dCij = 0,

and a defier if 0 = dT ij < dCij = 1, and we follow the usual practice of assuming

there are no defiers, dT ij ≥ dCij, so a baby who would be delivered by c-section at

a low c-section hospital would also be delivered by c-section at a high c-section

hospital; see Angrist, et al. (1996) for discussion of this terminology. Write

F = {(rT ij, rCij, dT ij, dCij,xij, uij) , i = 1, . . . , I, j = 1, 2} and Z for the event that

Zi1 +Zi2 = 1 for each i. In a randomized paired encouragement design, encourage-

ment Zij is assigned by Pr (Zi1 = 1 | F , Z) = 1/2, Zi2 = 1− Zi1, and assignments

in distinct pairs are independent. A simple model for sensitivity analysis in ob-

servational studies has 1/ (1 + Γ) ≤ Pr (Zi1 = 1 | F , Z) ≤ Γ/ (1 + Γ) for specified

Γ ≥ 1, Zi2 = 1 − Zi1, with independent assignments in distinct pairs, so ran-
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domization inference corresponds with Γ = 1; see Rosenbaum (1987; 2002, §4) for

discussion of this method of sensitivity analysis, and for other methods, see Corn-

field et al. (1959), Rosenbaum and Rubin (1983), Gastwirth (1992), Marcus (1997),

Small (2007), Yu and Gastwirth (2005), Hosman et al. (2010), and Liu et al. (2013).

Write Rij for the baby ij’s observed survival response, Rij = Zij rT ij+(1− Zij) rCij,

and Dij for the observed delivery, Dij = Zij dT ij + (1− Zij) dCij. Appendix Table

1 renumbers the two babies in a pair so Zi1 = 1, Zi2 = 0, and then records the joint

distribution of (Ri1, Di1, Ri2, Di2) = (rT i1, dT i1, rCi2, dCi2).

As I → ∞ in a randomized encouragement design, for fixed α, 0 < α < 1,

conventionally α = 0.05, it is possible to find an observed random variable Ã such

that Pr
(
A ≥ Ã

∣∣∣ F , Z) tends to a probability ≥ 1− α, so that A ≥ Ã holds with

95% confidence, that is, the unobserved attributable effect A is at least equal to

Ã except in at most 100α% of experiments; see Rosenbaum (2002) for specifics

and Weiss (1955) for general discussion of confidence sets for unobserved random

variables in terms of observed random variables. Moreover, in a sensitivity analysis

in an observational study, if the bias in treatment assignment is at most Γ ≥ 1, then

there is an observed random variable ÃΓ such that Pr
(
A ≥ ÃΓ

∣∣∣ F , Z) tends to a

probability ≥ 1− α as I →∞; again, see Rosenbaum (2002).

The exclusion restriction says that encouragement that does not change the

delivery (dT ij, dCij) does not change the response (rT ij, rCij), that is, rT ij = rCij

whenever dT ij = dCij. Stated informally, the exclusion restriction says that if
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high c-section hospitals sometimes save the lives of babies, then they do it by

performing c-sections not by doing something else. The exclusion restriction could

easily be false: high c-section hospital could be more aggressive in many ways in

trying to save the lives of babies of 23-24 weeks gestational age, and c-sections

may produce only a part or even none of the survival effect of generally more

aggressive treatment. The exclusion restriction places a series of constraints on the

relationship between the observed appendix Table C.1 and the unobservable table

recording (rCi1, dCi1, rCi2, dCi2). The unobserved table is called the pivot table.

Consider, for example, the 44 pairs in the first row and first column of the observed

appendix Table C.1. Because the exclusion restriction says rT ij = rCij whenever

dT ij = dCij, those 44 pairs could be in the same place in the pivot table or some

could move to the third and fourth row of the first column, but none could move

to the second row. Also, pairs in the second row could move to the fourth row.

In fact, the only differences that can exist between the observed and pivot tables

are the movements just described. Under the exclusion restriction, A is the total

number of pairs that are in the first row of the observed table and in the fourth row

of the pivot table.

Let bij = 1 if rT ij > rCij and dT ij > dCij, and bij = 0 otherwise. If bij = 1, then

baby ij would survive receiving a c-section at the high c-section hospital in pair i

and would die without a c-section at the low c-section hospital in pair i. Using

the exclusion restriction, rT ij − bij (dT ij − dCij) = rCij, and the attributable effect

is A =
∑I

i=1

∑2
j=1 Zij (rT ij − rCij) =

∑I
i=1

∑2
j=1 Zijbij (dT ij − dCij). The mean
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difference in survival is:

Tr =
1

I

I∑
i=1

2∑
j=1

ZijRij − (1− Zij)Rij =
1

I

I∑
i=1

2∑
j=1

Zij {rCij + bij (dTij − dCij)} − (1− Zij) rCij

=
1

I

I∑
i=1

2∑
j=1

(2Zij − 1) rCij +
1

I

I∑
i=1

2∑
j=1

Zijbij (dTij − dCij)

=
1

I

I∑
i=1

2∑
j=1

(2Zij − 1) rCij +
A

I
.

In a randomized paired encouragement experiment, E (Zij = 1 | F , Z) = 1/2 so

that

E

 1

I

I∑
i=1

2∑
j=1

(2Zij − 1) rCij

∣∣∣∣∣∣ F , Z
 = 0, and E

(
A

I

∣∣∣∣ F , Z) =
1

2I

I∑
i=1

2∑
j=1

(rTij − rCij) = τ

so that Tr and A/I are both unbiased for the average effect of encouragement, τ ;

however, departures from random assignment (i.e., failures of (i) in §4.1.1) can intro-

duce bias. The observable random variable Td = 1
I

∑I
i=1

∑2
j=1 ZijDij−(1− Zij)Dij

is the difference between the number of c-sections performed by the high and low

c-section hospitals; in Table 4.4 it is Td = 396 − 194 = 202. It is a descriptive,

not a causal quantity: it describes what happened, not what would happen. The

Wald estimator is Tr/Td. For the Wald estimate to work, encouragement must

increase the frequency of what is encouraged so that Td converges in probability to

a strictly positive quantity δ > 0 as I → ∞, and that is assumed here; therefore,

with high probability, high c-section hospitals have done more c-sections among the

I pairs than low c-section hospitals for sufficiently large I, and Pr (Td ≤ 0 | F , Z)

is negligible for large I. The quantity

W =

∑I
i=1

∑2
j=1 Zijbij (dT ij − dCij)∑I

i=1

∑2
j=1 ZijDij − (1− Zij)Dij

=
A∑I

i=1

∑2
j=1 ZijDij − (1− Zij)Dij

=
A/I

Td
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is the number of babies caused to survive by a c-section in a high c-section hospital

as a fraction of the number of additional c-sections performed by high c-section

hospitals. Now, W is the ratio of an unobservable random variable A/I, a causal

quantity, and an observed random variable Td, a descriptive quantity, so W is

unobservable. The quantity W is directly interpretable on its own; however, it

might reasonably be regarded as the intended finite sample estimand of the Wald

estimator, in the sense that Tr/Td and W both converge in probability as I → ∞

to the average effect of c-sections on compliers if encouragement is randomized

within pairs; see Angrist et al. (1996) for discussion of this estimand. Given the

large sample confidence interval, A ≥ Ã Γ with Pr
{
A ≥ Ã Γ

∣∣∣ F , Z} ≥ 1 − α for

sufficiently large I, and continuing to regard Pr (Td ≤ 0 | F , Z) is negligible for

large I, we have Pr
{
A/Td ≥ Ã Γ/Td

∣∣∣ F , Z} = Pr
{
W ≥ Ã Γ/Td

∣∣∣ F , Z} ≥ 1 − α

for sufficiently large I. The confidence interval W ≥ Ã Γ/Td was reported in §4.2.4.
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Table C.1: Mortality Rij and mode of delivery Dij (C = C-section, V = vaginal)

in 1489 matched pairs of babies of 23-24 weeks gestational age. For the high baby

with Zij = 1, mortality is Rij = rT ij and delivery is Dij = dT ij, whereas for the

low baby with Zij = 0, mortality is Rij = rCij and delivery is Dij = dCij. To avoid

notational ambiguity, in this table j is changed so the first baby, j = 1, is the high

baby. The table counts pairs, not babies.

Low Baby, Zi2 = 0

C-Alive C-Dead V-Alive V-Dead

rCi2 = 1 rCi2 = 0 rCi2 = 1 rCi2 = 0

High Baby, Zi1 = 1 dCi2 = 1 dCi2 = 1 dCi2 = 0 dCij = 0

C-Alive, rT i1 = 1, dT i1 = 1 44 54 37 144

C-Dead, rT i1 = 0, dT i1 = 1 37 38 36 179

V-Alive, rT i1 = 1, dT i1 = 0 31 35 46 127

V-Dead rT i1 = 0, dTi1 = 0 47 81 65 488
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